single indicative element.

Consequently, it was decided to apply the principal component analysis method for the analytical research and to adopt the method of picking up anomaly areas resembling the Matsitama copper mineralization area which is adjacent to the survey area on the southwest.

4-2 Results of Surveys

The results of the aforementioned surveys are summarized as follows:

4-2-1 Analysis of LANDSAT Data

Such geological units as intrusive granite, ultrabasic rocks and basic rocks in the survey area of 5,300 km² were distinguished by the differences of tones of color, and from lineations indicated in the directions of intrusive rock and drainage system patterns, three systems of NW-SW, NNW-SSE, and NE-SW as principal structural directions were picked up.

Also, as a regional structure including the surrounding areas of Maitengwe, Matsitama, and Francistown, a semicircular structure opening to the east as if to encircle Vumba schist relict was distinguished.

4-2-2 Geological Survey

A geological survey was made along survey lines for geochemical sampling and in parallel with the geochemical survey. However, as a detailed trace of strata was not made, only an outline of geology was found. Accordingly, basically the views of Litherland (1975) and Bennett (1970) were followed for geology and geological strucutre, only partly revising the lithfacies in the generally surveyed area of Vumba. According to our synthetic study of the results of the age determination by the K-Ar method of granitic rocks, rock analysis, analysis of LANDSAT data, interpretation of aerial photographs, it was found that the results of our study does not always agree with the views so far expressed in such points as stratigraphical correlation and the ages of intrusion of intrusive rocks in various areas; these issues, in particular correlation between the Vumba area and the Matsitama area, have come to remain as unsolved problems.

4-2-3 Mineral Deposits

As the result of the geological survey, the three mineralization zones of Vumba, Timbale and Matsitama were recognized in the survey area. Among these, in the northern Matsitama area, the Matsitama Schist and Metasedimentary Group which bears metasedimentary copper deposits was found to offer the possibility of extending into the survey area, justifying further exploration.

4-2-4 Geochemical Survey

As the result of studying the relations between the properties of the samples as well as the environment of the sampling points and the indicative elements, the color tones of soil which are considered to reflect considerably the chemical composition of the country rock were found to roughly correspond to the geological units and vegetation.

Also found was the fact that the contents of the elements vary according to the difference of the geological units and the color tones of soil. However, the variance was not so much as to enable discrimination of geology by the differences of color tones of soil and of the contents of the elements. Furthermore, geochemical anomalies picked up from the distribution of the content of each element that derive from rock overlap with those that derive from mineralization, and it was considered difficult to distinguish between these. Among the indicative elements, molybdenum showed values less than 3 ppm, for almost all, as the result of chemical analysis, and was found unsuitable as an indicative element.

Since it was judged difficult to pick up mineralization anomaly areas by means of analytical research for each element, first the characteristics of principal components in Matsitama deposits, which are copper mineralization anomaly areas, were turned out. Then analytical research by the principal component analysis method for all the survey area was made, to seek similar characteristics in the survey area.

As a result 10 anomaly areas were picked out, and among then an anomaly area at the southwest corner of the survey area was found to show the highest degree of anomaly and cover a large area and to require a more detailed prospecting.

The above-mentioned result having been synthesized, the northern Matsitama area of about 800 km² was selected as the survey area for the second year.

4-2-5 Conclusion and Recommendation

Among the three areas offering the hope of mineralization — Vumba, Timbale and northern Matsitama which were revealed by the first year surveys the promising one as the area that was proposed for semi-detailed and detailed surveys for the next year and on is the northern Matsitama area.

According to the result of the surveys, the east wing of the folds of the Matsitama Schist and Metasedimentary Group which bear copper deposits was found to expand further north than had been thought in the past and came to make one expect its distribution in the survey area too. As promising anomalies found by the geochemical survey by the principal component analysis method lie also in this northern Matsitama area, this area was chosen as the survey area for the next year and onward.

The survey area covers 800 km^2 . It was desired that this be explored by airborne geophysical prospecting with a total length of survey lines of 3,000 km, a geological survey on the surface, geochemical survey and other methods, to narrow down this area into about 100 km² as a more promising area.

In the Vumba area unrecorded sulphide-disseminated outcrops and old pits were found scattered around Somerset Mine. However, since systematic exploratory work had been done to some-extent over this area, and the mineral indications were within the explored area, there was no need to repeat similar work.

As for the Timbale area, the geological survey and geochemical survey did not result in discovery of promising mineral indications. Although the extent of the surveys in this year was greatly restricted and the extent of unexplored areas remained quite large, the possibility of existence of porphyry-type copper-molybdenum deposits was considered little.

Chapter V. SURVEYS IN THE SECOND YEAR

5-1 Methods of Surveys

Over the northern Matsitama area covering about 800 km² which was selected as the result of the first year surveys, an airborne geophysical prospecting over the whole area and a sub-regional geological survey were conducted. And over a part of this area, an area of about 230 km², ground geophysical prospecting, geochemical survey and a geological survey were carried out in this order.

5-1-1 Airborne Geophysical Prospecting

The field work of the airborne geophysical prospecting was made at the beginning of the second year in advance of the geological survey. The work covered the area of about 800 km². The measurement was made at an altitude of 120 m with 300 m spacing of survey lines, the total of which came up to 2,800 km.

For the survey methods, the Input Electromagnetic method with Barringer Mark V Input System, which was considered most effective in the prospecting of Matsitama-type metasedimentary ore deposits, was mainly employed, with combined use of magnetic prospecting with a Geometries G-803 proton magnetometer and radioactive prospecting with a four channel γ -ray spectrometer.

The field work was entrusted to Geoterrex Limited because of the patent license, and synthetic analysis was made by the survey team. The results of the work were taken over by the ground geophysical prospecting work to follow up them.

5-2-2 Geological Survey

The geological survey comprised a sub-regional survey along the water system of the whole area, and for some part geological survey was also conducted along the survey lines for geochemical survey in parallel with sampling work for this prospecting.

The survey area lies in the northeastern part of the geological map of the Mosetse – Matsitama area by Bennett (1970). The geology is composed of the Mosetse River Gneiss Group formed of a basement complex, the Matsitama Schist and Metasedimentary Group overlying the said gneiss group, igneous rocks intruding into these and superficial sediment.

In this survey the team basically followed the view of Bennett, but made further detailed classification of lithofacies and traced calcrete – amphibole schist – limestone strata, to analysize the geological structure.

The survey area is situated at the middle of the east edge of a mineralization zone connecting the Matsitama deposit group and Bushman mine; in particular, in the southwest of the survey area copper indications were found in the Matsitama Schist and Metasedimentary Group, and a survey of outcrops and sampling were carried out there.

On geophysical prospecting anomalies at the top of folds on the horizon of folded calcrete – amphibole schist – limestone strata in the Mosetse River Gneiss group, the study of the possibility of occurrence of deposits was made.

In addition, chromite in ultrabasic rock was explored in an area on the north of th Lepashe river.

5-1-3 Geochemical Survey

Geochemical survey was conducted on soil for the three elements of copper, lead and zinc over an 230 km² area in the survey area that had been judged promising as a result of on-the-site analysis in the airborne geophysical prospecting. The sampling intervals were 500 m on survey lines that were spaced 500 m apart, as a rule. The sampling intervals were made 250 m on the anomaly areas indicated by the result of the airborne geophysical prospecting. In the south of Mmapatse area where the geological survey found mineral indications, samples were taken at the intervals of 50 to 100 m. The total number of samples was 1,363. The method of treatment and analysis of the collected samples was the same as in the first year. In analyzing the chemical analysis method were jointly used.

5-1-4 Ground Geophysical Prospecting

Ground geophysical prospecting was carried out over 26 anomaly areas out of the anomaly areas that had been picked up by the airborne geophysical prospecting. The field work was entrusted to Geoterrex for the same reason as the case of the airborne geophysical prospecting. The prospecting methods were as follows: Aiming at the effect of the overlap of various geophysical prospecting methods, Pulse Electromagnetic prospecting and magnetic prospecting were made on three survey lines at the internals of 500 m, and seeing the results of these, induced polarization prospecting was made on one of the above-mentioned three survey lines. The synthetic analysis of their results was conducted by the survey team.

5-2 Results of Surveys

The surveys carried out in the second year as described in the foregoing sections produced the following results.

5-2-1 Geological Survey

Geology of this area is formed of the Mosetse River Gneiss group comprising a basement complex, the Matsitama Schist and Metasedimentary Group, igneous rocks intruding into these and superficial sediment. Also unrecorded ultrabasic rocks and basic rock dike group were presumed to exist in the northwest of the survey area. The existence of graphite, which was found to be one of the causes of anomaly in the geophysical prospecting, was unable to be confirmed on the surface. Development of shear zones running in parallel with the Bushman lineament was not recognized on the surface.

Four copper indications discovered in the Matsitama Schist and Metasedimentary Group in the southwest of the survey area were found to be arranged along a certain horizon that is characterized by amphibole schist and calcareous rocks in the group, as the result of a survey of outcrops and a detailed survey of old trenches. In addition, a chromite boulder zone which was found to justify further exploration was confirmed in ultrabasic rock that has intruded into the upper part of the Mosetse River Gneiss Group on the north of the Lepashe river.

5-2-2 Geochemical Survey

In the geochemical survey on soil, as the result of conducting monovariant analysis and multivariant analysis by the principal component analysis method for the three elements of copper, lead and zinc, a large number of geochemical anomalies were found. The anomaly areas, which are largely grouped into four zones, are all distributed practically in hamony with the distribution of the strata where copper indications were found in the geological survey, except for those in the north. And almost all the anomaly areas by the above-mentioned geophysical prospecting concentrated on these zones.

5-2-3 Airborne Geophysical Prospecting

A survey by the Input Electromagnetic method resulted in finding 47 clear anomaly areas in the survey area. Among them anomaly areas that are considered attributable to the bed rock (The conductors are a massive sulphide or graphite.) are in harmonic arrangement with the arrangement direction of the strata; they were grouped into the following seven zones from north to south.

A M-1' (checked immediately above the Matsitama ore horizon)
B M-2, M-3, M-4
C M-9, M-8, M-7D, M-7C, M-7B, M-10, M-11, M-7A, M-6
D M-32, M-31, M-33, M-26, M-30, M-29, M-27, M-28
E M-17, M-16, M-15, M-14, M-18, M-19, M-20, M-21, M-22, M-23, M-23A, M-24A, M-24, M-25
F M-35
G M-36, M-37, M-38

According to the result of the magnetic survey, D. F and G of the above-listed bedrock anomaly areas are comparatively in conformity with magnetic anomaly axes, and their relations with some magnetic bodies are inferred. However, the relations between the two are not generally recognized, and it is presumed that the magnetic anomalies derive from basic rock dikes.

Radioactive anomalies were rendered into a contour map about uranium. The distribution of the anomalies seems to concentrate in the west of this area, but no evident concentration or arrangement is recognized. Correlation between the redioactive anomalies and the arrangement of the input EM anomalies and airborne magnetic anomalies, and their relations with geological structure are not clear.

5-2-4 Ground Geophysical Prospecting

From the 47 anomaly areas obtained as the result of the airborne geophysical prospecting, 26 areas were selected paying attention to geological conditions and the arrangement and distribution of the anomalies. Over them pulse EM, IP and magnetic prospecting were conducted. As the result the following anomaly areas which are considered attributable to graphite or a sulphide were confirmed. (M-1) was excluded because it was checked above the Matsitama and Takadu known deposits.)

M-2, M-3, M-4, M-7A, M-7B, M-7C, M-7D, M-9, M-10, M-14, M-16, M-18, M-19/20, M-21, M-23, M-23A, M-24, M-25, M-28/29, M-35, M-36

Among the above, anomaly areas that were considered to be related with a sulphide mineral even to some extent were M-3, M-4, M-7B, M-7C, M-10, and M-35, and the others were judged ones due to graphite.

5-2-5 Synthesis of Result of Surveys

The anomaly areas obtained by the various surveys present belt-shape distribution and seem to coincide with the zones of distribution of the horizon of calcrete – amphibole schist – limestone, the strikes of strata and their folds. The distribution of anomaly areas found by the various surveys were put together and grouped into Zone I to Zone V as shown in Fig. 20.

In Zone I the geology is composed of metasedimentary rock, and there is a copper indication on the southeast extension of the anomaly areas.

In Zone II the geology is composed of metasedimentary rock with interposing thin layers of limestone; there is no copper indications on the surface.

Zone III is a block that was dislocated from Zone II by faulting, and like Zone II metasedimentary rock is distributed. The result of the geochemical survey showed generally high content of copper, but no copper indication was found on the surface. At the northwestern extremity of this zone a small float (S-127) of biotite schist which seemed likely to contain graphite was found, but existence of graphite has not been confirmed yet. Two old drilling sites were found in this zone.

Zone IV almost coincides with the distribution of the horizon of calcrete – amphibole – limestone, and a geophysical anomaly was found at the top of its fold. However, no copper indication was able to be recognized in the results of the geological survey on the surface and geochemical survey.

Zone V is an area where floats of basic rock and ultrabasic rock are dominant, and it is presumed from the result of the magnetic prospecting that basic rock dikes are densely concentrated. The result of the geochemical survey showed higher lead content than the

other zones, but no lead indication was recognized; nor copper indication was found in this zone. In this zone chromite indications were confirmed.

In the geophysical prospecting, graphite was considered as one of the causes of the anomalies, but as the result of the geological survey only a little of rock likely to contain graphite was found on the surface at the northwest end of Zone III. In the survey area, the firstly expected type of deposit is the Matsitama-type metasedimentary deposit which is unrelated with graphite or graphite schist, but in addition there still remains the possibility of the Bushman-type mineralization with dense concentration of copper – graphite along shear zones.

5-2-6 Conclusion and Recommendation

Table 10 represents the summary of the synthesis of the anomaly areas obtained as the result of the above-mentioned surveys. They were found to be concentrated in the areas where geochemical survey was carried out in the survey area. They were divided into five zones broadly; all of them had a nearly NW-SE strike except for Zone V, the northernmost one, and are distributed almost in conformity with the distribution of the strata. It was the relation of graphite with mineralization that was taken up as the most important problem in assessing the anomaly areas.

Analytical study was made on the assumption that in the survey area the possibility of occurrence of deposits was higher in the type of the Matsitama deposit group than in the Bushman-type.

As the result, as far as ore deposits with copper principally were concerned, Zone I, located at the southwest extremity, was judged most promising, followed by Zones II, III and IV in this order in terms of the value of further exploration.

Zone V, the northernmost, had some anomaly detected as the result of analysis of the geochemical survey finding by the principal component analysis method, in addition to the chromite indications mentioned later. (The anomaly is due to lead content in a large measure.) However, they do not coincide with geological or geophysical anomaly, and since they were along farm roads and farms, which make one suspect some secondary contamination, they were excluded from areas for copper prospecting thereafter.

For the third year surveys, it was recommended that, out of the anomaly areas picked up as the result of the ground and airborne geophysical prospecting, drilling exploration

be made on the following anomaly areas which were included in the geochemical survey anomaly areas: M-4, M-3, the vicinity of M-13, M-7B, M-7C, M-7A, M-23A, M-10, M-35, M--32 and M-16 in the priority order.

For the drilling exploration, judging from the facts that the strata generally dip to south and that the extent of detecting anomalies by the Pulse EM method and the IP method in the ground geophysical prospecting was about 30 m below the surface, it was decided appropriate to make the drill holes vertical, to make the intended depth of reaching ore the range between 30 and 60 m approximately, and to make the depth of a hole about 100 m.

In addition to the above-mentioned copper indications mainly in the southwest of the survey area, a detailed geological survey including shallow drilling was recommended over the massive chromite ore indications that had been found in the second year in Zone V in the northwest of the survey area. At the same time the necessity for a geological survey was additionally recognized of the chromite indication area, the existence of which had been reported in the Lepashe area about 10 km southwest of the said indications.

Table 10 List of various anomalies with interpretation

.

	Priority		N		Ŷ	4	У				ۍ . ا		11				<u> </u>				• •	-		<u>.</u>												10	
Kecommendation	0'0' 0'0	×	0	Ø	0	0	0	×	×	Ö	0	×	0	×	×	×	×	0	0	×	0	×	×	0	×	1	` I	1			1	 I		1	 I	0	1
	じい	t	0	0	0	0	0	0	0	0	Ø	×	0	0	0	0	×	0	0	Ó	0	0	×	0	×	• 1	0	0	0	0	0	1	×	0	0	0	0
	c.s.	1	Ó	Ø	0	0	0	0	0	0	0	0	0	×	o	×	×	0	0	0	0	0	0	0	0	1	0	×	0	0	0	0	0	Ø	0	Ø	0
	Probable pri- mary source	Graphite	Suiphide	Sulphide	Graphite	0 + 0 8	0 + 0 8	Graphite	Graphite	0 + N	~	Graphite	Graphite	Graphite	Graphice	Graphite	•	Graphite	Graphite	Graphite	Graphice	Graphite	Graphite	0 + 0	Graphice	I	4	1	I	ł	t	1	ŀ	1	1		 1
	Magnetic association	°Z	0N	No	Yes	°N N	No	Ŷ	No	No	*-	°N N	Ň	Ŷ	No, ?	Yes, ?	0 N	Yes	Yes	°Ž	Yes, ?	Yes, ?	Yes, ?	°N N	No	i	1	ı	1	1	1	i	1	!	I	I	
	Polarizable	Yes	Yes	Yes	Yes	· Yes	Yes	Yes	Yes	Yes	I	Yes	Yes, 7	Yes	Yes	Yes	°Z	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	i	ł	ł	1	ł	1	ŀ	1	1	1		ł
	Conductor	Multiple bed rock	Bedrock	Bed rock	Multiple bed rock	Bed rock	Bed rock	Bed rock	Bed rock	Multiple bed rock	~ -	Bed rock	Multiple bed rock	Bed rock	Bed rock	Bed rock	Surficial?	Multiple bed rock	Bed rock	Multiple bed rock	Bed rock	I .	I	1	ł	1	i	I	1	ŀ	1	1					
	P.C.M. result	عرده	0	0	0	0	0	0	0	0	Ó	0	0	×	0	0	×	0	0	0	0	0	0	0	1	1	0	Ø	0	Ø	0	•	0	0	0	0	0
	Max. value P.C.M. in ppm (Cu) result	out of survey a	521	565	90	87	272	175	1	69	187	62	20	51	4 8	53	42	53	52	47	47	62	31	\$	I	1	65	87	103	130	56	1	37	62	144	156	115
	Soil	Ino	1.2	1.2	2.3	2.3	1.2.3	1.2	1.2.3	1.2.3	1.2	1.2.3	1.2	1.2	1.2		1.2	1.2	1.2	1.2	1.2	2.3	1.2	1.2	1.2		3	6	1.2.3	1.2	1.2.3		7	1.2	1.2	1.2	1.2
	Poution		4	4	4	4	4	4	4	4	4	4	4	4	4	4		•	4	ব	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Mineralization	out of survey area	Cu showing	Cu showing	· •	ł	1		•	1	Cu showing	ŧ	1	1	 - - -		t	I	ŀ	ł	1	3	I	•		1		1			1		ŀ	ł	1		ŀ
	Geology		A (U)	۶ ۲	A (L)	(I) V	A (Ľ)	A (Ľ)	(۲) ۲	A (Ľ)	A (Ľ	(ດ) ສ	(n) g	(C) 8	(U) &	(ว.บ) ส	B (U)	B (U)	(T'D) ਬ	(T'N) ਬ	B (U.L)	A (L)	A (L)	B (U.L)	£ ▼	A (U)	A (L)	A (L)	A (L)	A (L)	(ດ) ສ	B (U)	A (L)	A (E)	A (L)	A (Ľ)	A (Ľ)
	Location	X6-7 Y0-1	1 ¥ 2 X	1 7 2 2	X2-3 Y11-12	9 F7 2 S	۹۹ ۲. ۲.	X8-10 Y5-8	X9-13 Y0-5	X4-6 Y10-11	X3-14 Y13-14	X10-13	X12-14 Y7-8		X9-11 Y14-15								·· ·· ·			۴ ۴ ۲ ۲		X9-10 X5-6								Xi Vi Vi Vi Vi	
Let survey	Anomaly	M-2	M-3	¥ 4	M-7A	M-73	M-7C	М-7D	6-M		ncar M-13	M-14	M-16	M-18	M-19/20	M-21	M-22	M-23	M-23A	M-24	M-25	M-28	M-29	M-35	M-36	M-S	¥¥	8-W	M-11	M-12	M-15	M-17	M-27	06-M	M-31	M-32	M-33

•

.

ŧ 1 I L × 2 8. Ŧ) A (L) X2-3 M-34

Note;

-74-

1. M-1, M-1' Out of the survey area. Checking known Matsitama deposits. Data are not listed on the table.

M-37, M-38, M-39, M-40, M-41 are minor conductors and have no priority. Data are not listed on the table.
 Abbreviation

Matsitama schist and metasedimentary group (upper, lower)	Kosetse river gneiss group (upper, lower)		1: brwon soil, 2; brown grey soil, 3; dark brown soil	
metasedi	gu) quor	Lower	rown grey	alcrete
chist and	er gneiss (ר ה	soil, 2; b	close to c
datsitama s	Aosetse niv	Upper.	1: brwon	Position 4; in and close to calcrete
A: A	Ä	, ä	Soil	Position

Sulahide	Graphite	
i	öö	

.

.

Chapter VI. SURVEYS IN THE THIRD YEAR

6-1 Methods of Surveys

On the basis of the results of the first and second year surveys, the following works were carried out.

I hopes of finding copper deposits, drilling prospecting and a geological survey were conducted on four areas, Area I to Area IV, totalling a 53 km² area, in the northern Matsitama area, and general geochemical survey was made on an area of 12 km² within the above.

On an area of 4 km^2 of chromite indication too, drilling geological survey, and handy magnet prospecting were carried out.

6-1-1 Geological Survey

In the areas offering hopes of finding copper deposits, routes totalling 127 km were set along survey lines for geochemical survey in the vicinities of the drilling positions, and a semi-detailed geological survey was made for the purposes of inquiring into the cause of the indications yielded by the second year geophysical prospecting, finding the positions of mineral indications as geologically borne and their scale, and synthesizing these findings with the result of drilling.

Since there were scarcely any outcrops in the chromite indication area, lines on a grid pattern with 100 m spacing were set in the boulder-distributed area, and a detailed geological survey and handy magnetic prospecting were made along the survey lines totalling 40 km. On the basis of their results, a trenching survey was made excavating 16 trenches, the total length of which was 144.4 m.

6-1-2 Geochemical Survey

Among the anomaly areas discovered by the soil geochemical survey in the second year, an anomaly area in the southwest of the survey area included Class A anomaly with the maximum value of Cu 560 ppm, and floats containing a copper mineral were found at several places of the surface. These facts led to the judgement that this was the most promising area.

Since this anomaly area was presumed to extend further west, soil geochemical survey was made along with geophysical prospecting over an 2 by 6 km area adjacent to this area on its southwest side as a continuation of the second year geochemical survey. In addition, complementary soil geochemical survey was made along Survey Line M--5 in the area prospected in the preceding year, because a copper indication had been found there.

Sampling was made at each point of the 500 m x 250 m units of the grid pattern, the total number of the samples coming up to 183. The indicative elements were Cu, Po and Zn. Such matters as sampling, analysis and analytical study of the result were made all by following the methods taken in the second year (PL. 2).

6-1-3 Drilling Exploration

On the basis of the results of the surveys in the first and second years, in the third year, drilling exploration was carried out by drilling 14 holes with a depth of 100 m each, totalling 1,405.45 m, aiming at firstly geophysical anomalies and secondly geochemical anomalies, for the purpose of exploring copper indications. The geology of the places where drilling was made, the results of the geophysical and geochemical prospecting, and the result of the drilling are shown in Table 11, and the drilling positions in Table 12, Fig. 21.

The object of drilling in each area is explained as follows:

- Area I The holes of GSJ-4 and 5 were drilled at a fold in a NE direction of the Mosetse River Gneiss group, where amphibole schist, quartz schist, quartzite, limestone and large quantity of calcrete are distributed. In this area, as a result of geophysical prospecting in the second year, an indication by ground geophysical prospecting suggesting existence of graphite was found in Anomaly Area M-23A, and also in the neighborhood a geochemical anomaly about Zn was found. Situated at a fold axis of strata, it is equipped with geologic conditions likely to become a place to bear mineral deposits.
 - Area II GSJ-6 was drilled aiming at a strong geochemical anomaly in a stratum of amphibole schist with secondary calcrete, which belong in the Matsitama Schist and Metasedimentary Group.

To the north of GSJ-6 there is the airborne geophysical anomaly of M-32, and to its south is th some kind of anomaly, M-12. About 800 m north of

this hole there is an old site of drilling by the ACC group, and at a point about 1,000 m north northeast of the hole there is a small outcrop of quartzite accompanied by green copper. Also about 1,250 m southwest of the hole, an amphibole schist boulder with green copper was found.

Area III The holes of GSJ-7, 8, 9 and 10 were drilled at places where the airborne geophysical prospecting anomalies of M-7A, M-7B, M-7C and M-10 and a geochemical prospecting anomaly of Class B were found in a strata of the Matsitama Schist and Metasedimentary Group, mainly aiming at the geophysical anomalies. The results of the airborne and ground geophysical prospecting made one presume existence of graphite or a sulphide. The existence of graphite forms an important indication of Bushman copper deposits located about 50 km northwest of the survey area for the third year.

On the surface characteristic black soil is widely distributed, and this area forms a savanna with low trees and plants.

- Area IV The drilling points are divided into (1) an area where geochemical and geophysical anomaly areas are concentrated, in the middle part of the area, and (2) vicinities of old trench sites in the east.
- Area IV-(1) The holes of GSJ-11, 12, 13, 14 and 15 were drilled aiming at the airborne geophysical anomalies of M-3 and M-4 and geochemical anomalies in the Matsitama Schist and Metasedimentary Group. The holes of GSJ-11, 13 and 14 were aimed at geophysical anomalies suggesting existence of a sulphide, and the holes of GSJ-12 and 15 at geochemical anomalies of Class A.
- Area IV-(2) The holes of GSJ-16 and 17 were drilled to confirm the lower extension of a green copper indication found in a trench. The strata here belong in the Matsitama Schist and Metasedimentary Group.

Four drill holes, each 100 m in depth, were made for chromite in the chromite deposit area on the basis of the results of the prospecting in the first and second years. The geological conditions found by the four holes totalling 401.5 m.

The conditions of exposure in this area were extremely poor, there was not a single outcrop where the strike and dip of the stratum could be measured. As the result of trenching, however, the strikes and dips of chromite deposits were found, though very unclear, to be $N50^{\circ}E/N50^{\circ}$ with the deposits of B, C, E and F and N60°W/N60° with the deposit of D.

Accordingly, to explore below the deposits of B, C, D, E and F, the drill holes of GSJ-1, 2, 3 and 18 were all sunk vertically from points that were judged to be on the hanging wall side and 10 to 20 m apart from the ore bodies.

6-2 Results of Surveys

The copper indication areas surveyed in the third year project had been selected as areas offering the highest possibility of occurrence of deposits from the results of the second year prospecting work, particularly those of the geophysical and geochemical prospecting.

The chromite deposit area is an area where outcrops had been found, though to a limited extent, by the surveys until the second year. All of these are borne on a certain horizon.

6-2-1 Result of Surveys of Copper Indication Areas

For copper indications, areas with similar geological conditions to those of the Matsitama deposit group about 10 km south of the survey area, as its extension, and with some indications were selected and explored mainly depending on drilling.

The result of the exploratory work for each area is described as follows, and is summarized in Table 11, Fig. 20.

- Area I No mineral indication was confirmed as the result of the geological survey and drilling. The indication by the geophysical prospecting is presumed attributable to graphite schist.
- Area II The rock in which dissemination of chalcopyrite and pyrite was confirmed extensively by the result of drilling for a geochemical anomaly area of Class A was found to be amphibole schist in the Matsitama Schist and Metasedimentary Group and belong in the same group as the country rock of the Matsitama deposit group and identical with this rock. The area is considered to be the most promising one in view of the fact that copper indications

are found in the neighborhood.

- Area III As the result of drilling made for a geophysical indication, weak mineralization of pyrite and chalcopyrite and graphite schist was recognized, and it was confirmed that this area has a geological condition close to geological environment that bears deposits of the Bushman type accompanied by graphite.
- Area IV As the result of drilling made for a geophysical anomaly area and a nearby geochemical anomaly, comparatively extensive dissemination of pyrite and a copper indication, though slight, were found. As floats containing copper minerals are scattered in an area on the west side of this drilling area and also anomalies by geochemical survey made additionally this year tend to extend westward, occurrence of Matsitama-type deposits can be hoped.

In drill cores from drilling at the side of an old trench revealing an outcrop of copper mineral which is found in a limited number in the east of this area, a mineral indication similar to a copper indication seen in the trench was found. However, in geology as found in the trench and drill core, the origin of the rock is unknown as there has been a complication of intrusion of basalt occuring several times, alteration as its result, and the effects of weathering. So that, though this cannot be said definitely, the copper indication seems to be of a small size because this copper mineralization derives from basalt.

6-2-2 Result of Survey of Chromite Indications

The chromite deposits are found in ultrabasic rock. The distribution of ultrabasic rock is not found on a sizable scale except for the indication area of A to D and the surrounding of the indications of E and F. In view of the condition of the boulders, concealed rock bodies are considered small in size.

All the chromite bodies are small and their shape is lenticular or pod-like; they do not show clear strike, which could be accounted for by their having been controlled by minor structure of the country rock.

The drilling aiming at the lower extension of the ore bodies in the third year work failed to seize it but reached other ore bodies.

From the result of drilling and trenching, the size of the ore bodies is considered to be, as one unit, 0.5 to 1 m in thickness, 5 to 10 m in length, and several meters in the dip direction. Such ore bodies of small size are scattered in ultrabasic rock. Therefore, although prospecting in this year was made aiming at mainly the north side of them, it is possible that ore bodies may occur on the south side too.

However, as the ore bodies are small and do not show any structural control, it would be a proper way of exploration to expand the prospecting extent while confirming the ore body through driving a drift from the outcrop. As for the indication area of A to D, if this is regarded as a gathering of small ore bodies, an ore reserve of somewhat sizable size would be expected.

6-2-3 Conclusion and Recommendation

The surveys for this year were conducted on the area that had been selected as an area with high potentialities of occurrence of copper ore deposits and the area where outcrops of chromite had been confirmed and an increase in its reserves was expected.

The surveys consisted of primarily drilling, and in addition geological survey, handy magnet prospecting and geochemical survey over the surroundings of the drilling points.

The purpose of this year's surveys over copper mineral indication areas consisted in confirmation of the indications and finding their size, ore grade and other properties by conducting geophysical prospecting and geochemical survey, drilling and other activities to make comprehensive evaluation of this area and to find the principle for the future prospecting work.

On the other hand, the purpose over the chromite deposits lied in finding the conditions of the mineral occurrence and confirming the indications in the surroundings of outcrops by making a geological survey, trenching, drilling, handy magnetic prospecting and other activities centering on the outcrops.

The conclusion from the results of the surveys in this year is as follows:

1. As for the geology in the survey area, new facts which would lead to a change in the past views were not found because the survey area for this year was limited and also there are few outcrops. 2. The copper mineral indication areas were divided into four, Area I to IV. In Area I, which is located on a fold of the strata of the Mosetse River Gneiss Group, drilling (GSJ-4 and 5) was made for geophysical indications. No copper mineralization was found, with thin layers of pyrite being found in GSJ-5.

In Area II, drilling (GSJ-6) was made to probe a geochemical anomaly. At a result, mineralization of pyrite, chalcopyrite and hematite was found in amphibole schist in the Matsitama Schist and Metasedimentary Group. The mineralization was weak but extensive, and on the surface copper indications were observed near a drilling point.

In Area III, drilling (GSJ-7 to 10) was made for mainly geophysical indications. As a result, only a little chalcopyrite and pyrite were found in GSJ-9. Graphite schist was recognized in GSJ-7 and 10, which indicates a geological condition close to a geological environment bearing Bushman-type deposits accompanied by graphite.

The work in Area IV included drilling (GSJ-11 to 15) made aiming at geochemical and geophysical anomalies in an ara extending from the middle to the west of the area and the drilling (GSJ-16 and 17) made by the side of an old trench on the east side. In the former (in GSJ-14) relatively wide dissemination of pyrite was revealed, and native copper also was found, though in a very small quantity (in GSJ-11).

Geochemical survey was carried out as a continuation of the second year survey over an area of 12 km^2 at the southwest end of the survey area, resulting in the finding that anomalies of Class B, together with anomalies of Class A, extend westward. On the surface too copper indications were confirmed at several places.

On the other hand, as the result of drilling (GSJ-16 and 17) to follow up a mineral indication in a trench made by the A.A.C. group in the southwest of the survey area, the indication was confirmed but the rock was found to be a complication of wearthered rock, intrusive rock and altered rock, not allowing determination of the geology.

The original rock of the altered rock where a mineral indication was observed was considered basalt, and if the mineralization derives from basalt it should be of a small scale.

3. In this year's surveys, the greater part of drilling was intended for the indications detected by the ground geophysical prospecting which was conducted overlapping with anomaly areas picked up by airborne geophysical prospecting, to confirm the real conditions.

As the result, graphite was found in GSJ-4, 7, 10 and 13, which is judged to be the cause of the said indications by the geophysical prospecting. The other anomalies are presumed to be the reflection of the geology such as dikes or the likes or a difference in lithofacies but this cannot be definitely said. No mineral indication was in any of these drill holes, and the geophysical indications are inferred to be attributable to geological units such as strata and faults.

Drilling aiming at geochemical anomalies resulted in finding mineral indications in all the holes, though they were weak.

- 4. Chromite is considered to be borne in ultrabasic rock in a lenticular or pod-like form. The scale of the ore bodies is 0.5 to 1.0 m in width and 5 to 10 m in length. The ore grade is: $32 \text{ to } 36\% \text{ of } \text{Cr}_2\text{O}_3$, 17 to 19% of T. Fe, 11 to 13% of Al_2O_3 , 11 to 15% of MgO, and 7 to 11% of SiO₂. These small ore bodies are scattered in the ultrabasic rock. The individual ore bodies have no certain strike, making one assume that they have been controlled by the local structure of the country rock, ultrabasic rock.
- 5. From the above-mentioned results of the surveys, in the copper mineralization area, Area II and the western part of Area IV were considered promising.

As for Area II, the facts that the drilling revealed copper mineralization ranging widely, that there are geochemical anomalies, that copper indications are seen on the surface, and that these are found within the Matsitama Schist and Metasedimentary Group on whose horizon the Matsitama deposits are borne, suggested the following surveys: Geochemical survey on a fine grid pattern centering on GSJ-6 should be made to narrow down the prospecting area, and a horizontal and vertical extent of the mineralization areas should be confirmed by drilling holes about 100 m in depth.

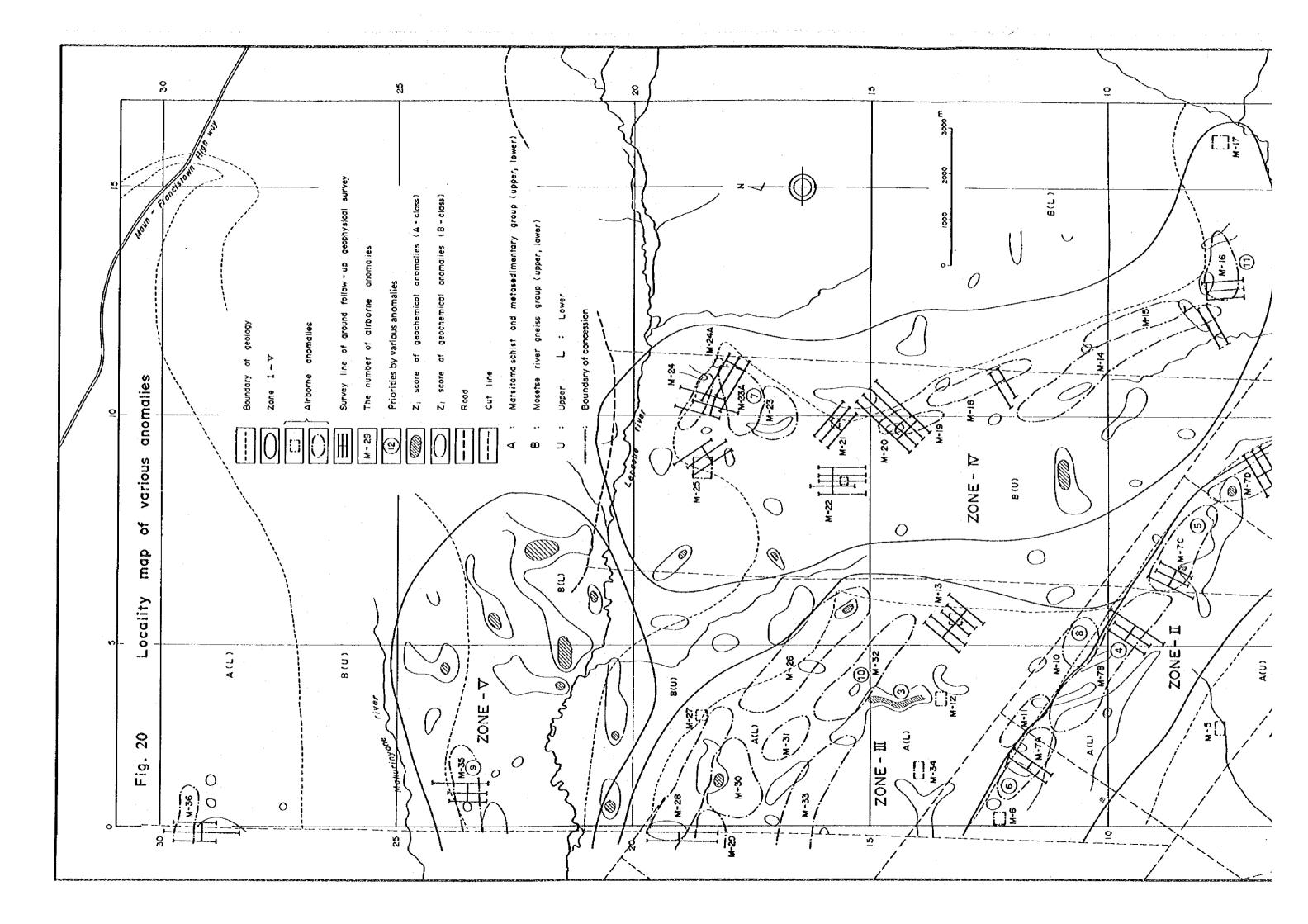
About Area IV, the facts that some anomaly areas were picked up by the geochemical survey, that copper mineral indications were found on the surface too, and that the Matsitama Schist and Metasedimentary Group is distributed there, suggest: Prospecting should be made on these indications by means of drilling holes about 100 m in depth for the purpose of confirming mineral occurrence.

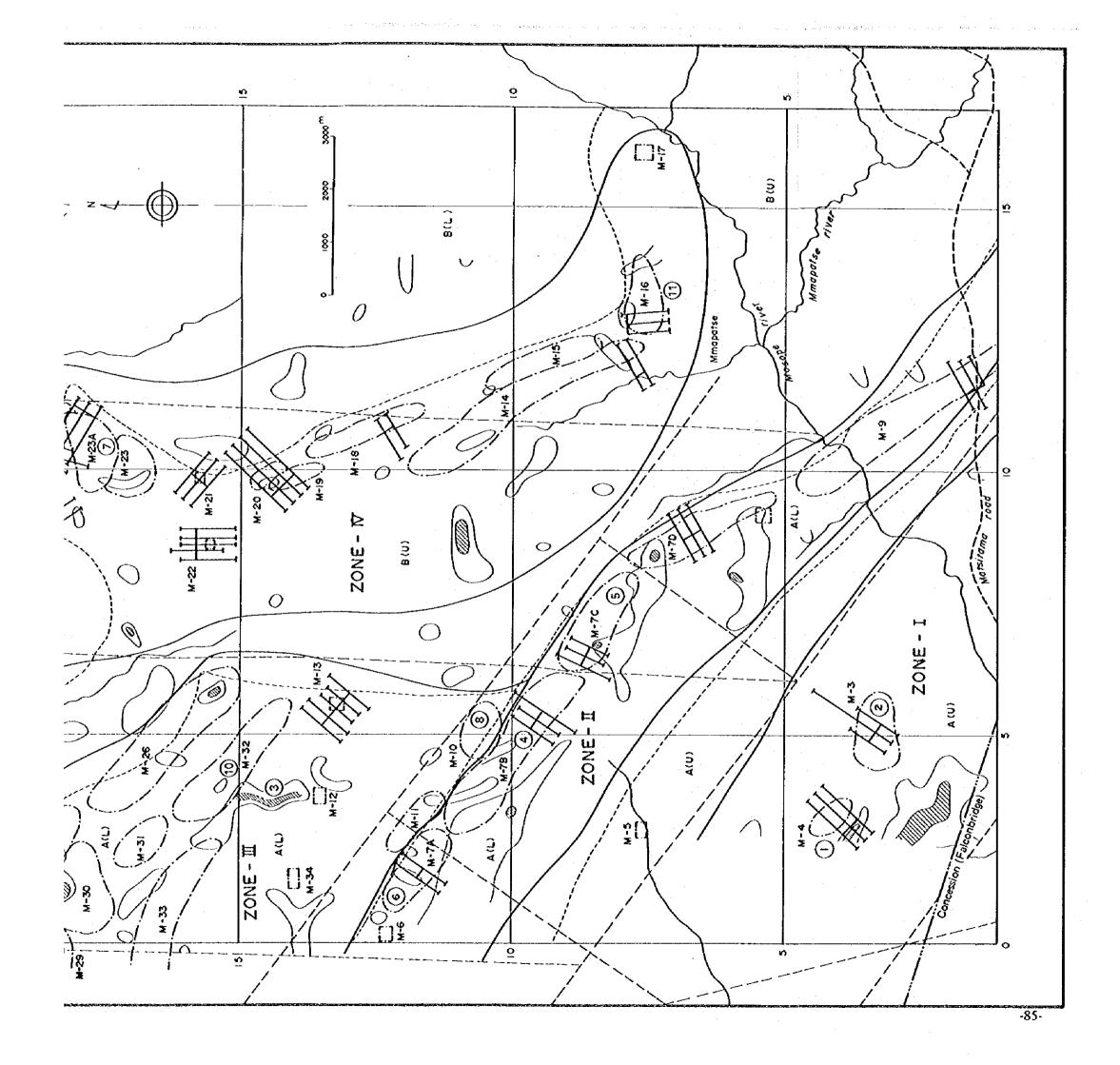
6.

As for the chromite deposit area, since the strikes of ore bodies vary and their extension is difficult to presume, the prospecting range should be expanded by making trenching to confirm the size, shape and ore grade of ore bodies, which is to be advanced together with short drilling combined for the purpose.

					· · · · · · · · · · · · · · · · · · ·	Phase I, II (1979, 1	780)					· · · · · · · · · · · · · · · · · · ·		Pi	use III (1981)	- · · _ · ·		
	Area	No. of dritt			Geochemical anomaly		C	round follow-up g	eophysical surve	y	· · · · · · · · · · · · · · · · · · ·						Drilling	
		hole	Geology	Mineralization	Z ₁ score (A, B class)	Air-borne anomaly	Conductor	Polarizable	Magnetic	Frobable primary	Geology	Geochem, anomaly	Magnetic	Rock		Mineralization (m)		
				·		ļ			association	source		Z, scores	\$fomaly		Соррег	Pyrite	Chromite	Graj
	•	4 5	B B			M-23A M-23A	Bed rock Bed rock	Yes Yes	Yes Yes	Graphite Graphite	amp sch, calcrete, gn mica sch,	Survey not done	Survey not done	{ mica sch, gn, is, groph sch, I vartrite, amp sch		52.60-70.25 (17.65) 38.83-30.85 (0.02)		45.80-49.4 53.70-54.1 14.60-14.7
		6	A	Copper showing	A				·		amp sch, ink a sch, gastzite	Survey	Survey not done	Amp sch not done	20.00-101.50 (81.50)			
Copper area	•••	7 8 9 10	A A A		(B) (B)	M-7A M-10, (M-7B) M-7B M-7C	Multiple bed rock Multiple bed rock Bed rock Bed rock	Yes Yes Yes Yes	Yes Yes No No	Graphite Sulf + Graph Sulf + Graph Sulf + Graph	amp sch, mica sch, calvrete, black turf soll covers widely	Survey not done	Survey not done	mka sch, graph sch, dokrite, green sch apbized basic rock, aplite tak-carb rock, dokrite amp sch. baszit, quartzite, tak-carb rock dokrite, graph sch. mica sch, q sch, green sch.	69.60-75.00 (5.40)	69.60-82.00 (12.40) 70.60-79.00 (8.40)		(9.05-25.30 28.90-31.6 40.20-51.5 58.15-81.9 49.35-70.0
Ŭ	I¥-(1)	11 12 13 14 15			A	M-4 M-3 M-3	Bed rock Bed rock Bed rock	Yes Yes Yes	No No No	Sulfide Sulfide Sulfide	quartzite, mica sch amp sch. Is, dolerite, floats of green copper in quartzite	At the western part of Arca IV-(1) A, B class of acomaties were detected	Survey not done	mica sch, q sch, amp sch, quartzite mica sch, q sch, green sch, q uartzite mica sch, q sch bb sch. q sch, mica sch, q uartzite mica scù	79.35-81-20 (1.85)	79.70-83.40 (3.70) 55.45 87.70 (32.25) 95.10-100.30 (5.20) 54.35-100.00 (45.35)		
	i¥-(2)	16 17	A A	Copper occurrence Copper occurrence							{ quartzite, mica sch, dolerite,	Survey not done	dolerite NW direction	Dolerite, tak-carb, rock, mkra sch, apl, sore skara minerals	41.75-47.50 (5.75) [30.50-34.80 (4.30) [64.09-66.09 (2.00)			
Chrome area		L 2 3 18	B B 8 8	Chromite occurtence Chromite occurtence Chromite occurtence Chromite occurtence							serp, ga, amp sch S deposits, many showings and floats of chromite were found. Fach serp body is	Survey not done	Most of serp bodies are less than 30 m, In width Dofeate dykes were catched clearly	Serp, gn serp, chrosnite, gn serp, gn gn, serp			12.97-13.39 (0.42) 20.45-21.75 (1.30) 23.38-24.10 (0.72) 38.10-38.45 (0.35) 40.10-40.33 (0.23)	· · · · · · · · · · · · · · · · · · ·

Geology A: Matsitama schist and metasedimentary group

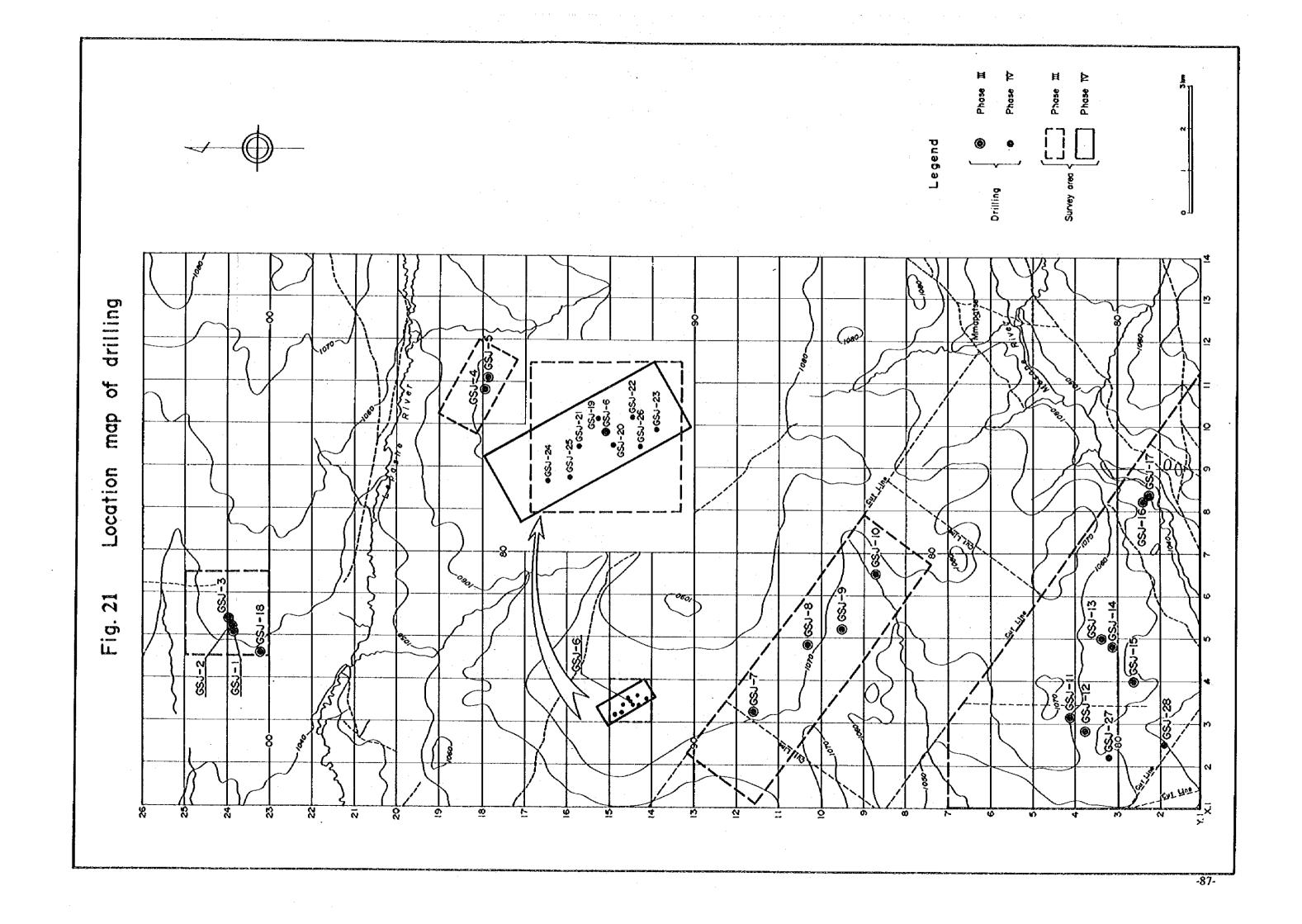

8: Mosetse ther gaelss group


.

Į	I	Ī
8	L	

Table 11 Result of prospecting, Phase III

				•	·	<u> </u>						· · · · ·	
			Ph	ase III (1981)				· · ·					
					· · · · ·	Drilling							Priority for
	Geochem,	Magnetic			Mineraliz	atien (m)			Assay max. %			Conclusion	
	anomaly Z, scores	anomaly	Rock	Copper	Pyrite	Chromite	Graphite	Note	<u>Cu</u>	Cr2O3			exploration
	Survey not done	Survey bot done	{ mica sch, gn, ls, groph sch,] luartzite, amp sch		52.60-70.25 (17.65) 38.83-30.85 (0.02)		45.80-49.45 (3.65) 53.70-54.10 (0.40) 14.69-14.70 (0.10)	Graphite: only a little Graphite: only a little			suitide (?) graphite (?) 2	No copper mineralization	
	Survey	Survey not done	Amp sch not done	20.00-101.59 (81.50)				Py, Cp, hem: imp, or in q rein	0,228	· .	sulfide	Copper mineralization is weak, but wide. Biggest potentiality for copper deposit.	i
	Survey not done	Survey not done	mica sch, graph sch, dokrite, green sch aptifized basic rock, aptile tale-carb rock, dolerite amp sch. basalt, quartzite, tale-carb rock dolerite, graph sch. mica sch, q sch, green sch.	69.50-75.00 (5.40)	69.60-82.00 (12.40) 70.60-79.00 (8.40)		(9.05-25.30 (6.25) 28.90-31.65 (2.75) 40.20-51.50 (11.30) 53.15-81.90 (23.75) 49.35-70.05 (20.70)	Strong aplitization Py.Cp imp. and in q vein py: weak imp.	0.113		graphite ? sulfxde (?) graphite	Existence of graphite, though not rich is preferable surround- ings for Bushman type copper deposit	3
	At the western part of Arca IV-(3) A, B class of anomalies were detected	Survey not done	mka sch, q sch, amp sch, quartzite mka sch, q sch, green sch, q uartzite mka sch. q sch hb sch. q sch, mka sch, q uartzite mka sch	79.35-81.20 (1.85)	79:70-83:40 (3:70) {55:45:87:70 (32:25) {95:10-100:30 (5:20) 54:35-100:00 (45:15)			native copper Py: weak imp. Py: weak imp. Py: imp > in q vein	0.022		? ? sulfide ?	No copper mineralization except native copper were found, but wide pyritization are observed. Results of geol, geochem, geophy, surveys show suitable environments for copper mineralization. Further explorations ions were preferable for this area	2
-	Survey not done	dolerite NW direction	Dolerite, tak-carb, rock, mkca sch, apL sore skarn minerals	41.75 47.50 (5.75) 30.50 34.80 (4.30) 64.00 66.00 (2.00)			· · · · · · · · ·	Bo, Ce, Cp, malochite	0.172		sulīde sulīde	Copper mineralization seems to be related with leaching products of baselt and small scale.	
e	Survey not done	Most of serp bodies are less than 30 m, in with. Dolente dykes were catched clearly	Serp, ga serp, chromite, ga serp, ga ga, serp			12.97-13.39 (0.42) (20.45-21.75 (1.30) 23.38-24.10 (0.72) 38.10-38.45 (0.35) 40.10-40.33 (0.23)		massive chromite, with some magnetite		27.30 31.70		Surface scale of unit deposit 20 m x 2 m (max.) Chromite layers by drilling seem to be accessory ones, but not the main ore bodies.	4



	Ph	ase III			· .	Pha	ase IV		· ·	
		Coord	inate	D 1		1 47)	Coord	- Remarks		
Hote No.	Length (m)	х	Y	Remarks	Hole No.	Length (m)	X	Y	Remarks	
GSJ– 1	100,20	4.87	22.56	cromite	G\$J-19	150.50	3.58	14.55		
GSJ- 2	100.60	5.06	24.06	area	GSJ-20	150.50	3.44	14.45		
GSJ- 3	100.50	5,83	26.26	<u> </u>	GSJ-21	100.40	3,42	14,66	,	
GSJ- 4	100.20	10.94	17.97		GSJ-22	100.20	3.63	14.33		
GSJ- 5	100.40	11.05	17.90		GSJ-23	150,50	3,56	14.14		
GSJ- 6	101,50	3.56	14.49	· · · · · · · · · · · ·	GSJ-24	150,50	3.17	14.86		
GSJ- 7	100,20	2.23	11.62		GSJ-25	100,30	3,25	14.70		
GSJ– 8	100,30	4.84	10.33		GSJ-26	100,40	3.42	14.30	· · · · · · · · · · ·	
GSJ- 9	100,20	5.24	9.50	· · · · · · · · · · · · · · · · · · ·	GSJ-27	100.05	2,21	3.22		
GSJ-10	101.00	6.50	8.73		GSJ-28 ·	100.05	2,53	1,88		
GSJ-11	100.05	3,34	4.16		1					
GSJ-12	100,10	2.92	3.75							
GSJ-13	100.30	4.99	3,33				[· · · ·	
GSJ-14	100.00	4.80	3.05		· · · · · · · · · · · · · · · · · · ·					
GSJ-15	100.20	4.00	2,70	· · · · · · · ·	:	e				
GSJ-16	100,20	8.31	2.38					·		
GSJ-17	100,80	8,40	2.31		ļ					
GSJ-18	100.20	4.58	23.21	cromite area						
Total	1,806.95	· _	_			1,203.40		· <u>-</u>		
				3,01	0.35 m	·	*			

	÷	· · · ·
Table 12	Coordinate	of drill hole

-86-

.

Chapter VII. SURVEYS IN THE FOURTH YEAR

7-1 Methods of Surveys

Prospecting was made, mainly relying on drilling, of the copper indication areas of A and B, which had been selected on the basis of the results of surveys in the first to third years.

7-1-1 Geochemical Survey

The area covered by geochemical survey was an area of 1.3 km by 0.5 km centering on GSJ-6 where a copper indication was found in the third year survey. This survey was made to know the extent of the mineral indication prior to drilling and also to use the result as material for deciding the drilling positions.

The sampling was made on a grid pattern with 50 m spacing collecting a total of 297 samples. The indicative elements were Cu and Zn, and an analytical research by the mono-variant analysis was carried out (Fig. 22).

7-1-2 Drilling

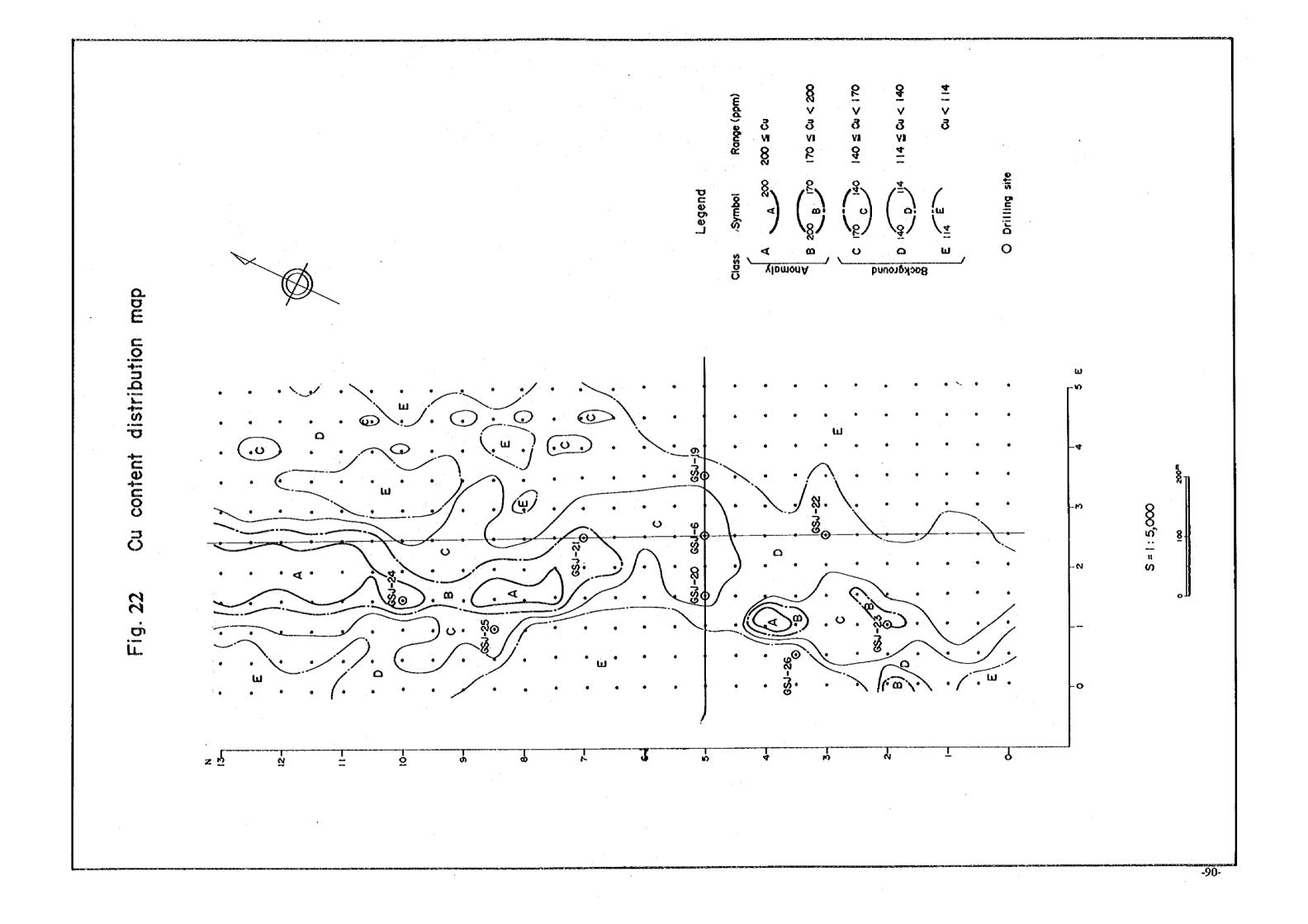
Area A: This is an area of 1.3 km by 0.5 km centering on GSJ-6; in this area amphibole schist belonging in the Matsitama Schist and Metasedimentary Group and partly quartz schist are distributed. Out of outcrops that can be seen in a very small number a small outcrop of amphibole schist lying in the northwest corner of this area has a strike of N45°W and a dip of 45°S, and is accompanied by a very small quantity of green copper.

The result of geochemical survey showed copper anomaly distributed in a clear belt shape, out of which an anomaly of Class A extends in the northern half. GSJ-6 was drilled aiming at a strong geochemical anomaly in the third year program, and resulted in confirmation of a copper indication extending to its depth, through low in content.

In the fourth year program, eight holes, four with a 100 m length and remaining four with a 150 m length, were drilled centering on this copper indication to confirm its size and grade.

-88-

Area B: The Matsitama Schist and Metasedimentary Group is distributed here. Since on the surface floats of copper-containing rock had been found at several places, the highest values of geochemical anomaly in the area had been found here, and this as not for from the Matsitama deposit group, there was the hope of occurrence of deposits.


> In the fourth year one drill hole with a 100 m length was made for each of the two anomalies that had been picked up by the third year geochemical survey.

7-2 Results of Surveys

- 7-2-1 Results of Surveys
- Area A: As the result of the geochemical survey a clearly belt-shaped copper anomaly was picked up. Geological structure of this area is in the direction of NW-SE, and the same direction is taken by the geochemical anomalies. All the holes drilled for these anomalies indicated mineral indication. The fact that, though the content of copper was low as a whole with the content of copper 0.1% or over being seen sporodically and almost all the contents of lead and zinc were 0.01%, areas with geochemical anomaly showed mineral indications to some extent indicates that this area of A practically coincides with the deposit-bearing horizon.

With regard to the mutual relations between the drill holes, however, almost all of them showed the same rock and mineral indication. Accordingly, correlation of lithofacies or parts of mineral indication was made impossible, so that the survey team was unable to learn detailed geological structure and the characteristics of deposits.

Area B: Out of two drill holes, one encountered a dolerite dike; almost all the strata were missed, and no mineral indication was found. In the other one, two this layers of limestone in mica schist were confirmed, and in one of them dissemination of chalcopyrite, though slight, was recognized. Since the geochemical anomaly of this area is a little weaker than that of Area A, the anomaly area was unable to be narrowed down enough because it was a semi-detailed prospecting, and only two holes were drilled, it was unable to concentrate a promising area.

7-2-2 Conclusion and Recommendation

In the fourth year, on the basis of the result of the surveys in the first to third years, •surveys were conducted, primarily depending on drilling, on the vicinity of GSJ-6 that had been selected as a highly promising area for occurrence of copper deposits (Area A) and on an anomaly area that had been picked up by geochemical survey (Area B).

As for Area A, mineral indications confirmed by drilling was weak in all the drill holes, and no indication that could justify mining operation was unable to be found. However, the fact that the geochemical anomaly area presents distribution concordant with the strata indicates that this coincides with a deposit bearing horizon. Also this anomaly area shows higher anomaly values on the northwest side, and also tends to extend further northwest ward.

This area falls in a part of anomaly areas that were picked up in the second year survey program. So that for the future it is desired that the scope of exploration be extended so that this anomaly area is covered, and that for anomaly areas that are picked up by a detailed geochemical prospecting, mineral indications be confirmed through drilling holes about 100 m in depth.

In Area B, since the number of drilled holes was too few and on top of that one drill hole encountered dolerite, the geology and the conditions of mineral indication were not able to be adequately known, and no clear promising area was concentrated. However, it suggests the possibility of this area bearing a Matsitama-type deposit that this area is equipped with geological conditions similar to those of Matsitama deposits and also copper indication was found, though slightly, in the findings from diriling.

Since the geochemical anomaly of this area tends to extend further westward, for the future it is desired that the extent of exploration be expanded westward and anomalies be picked up by a detailed geochemical survey, confirming mineral indications through short drilling.

Chapter VIII. CONCLUSION AND RECOMMENDATION

This technical cooperation project undertaken by the Japanese Government has come to an end in the 1982 fiscal year. In the event of the Botswanan Government continuing exploratory work, the undermentioned steps are recommended for the mineral indication areas that have been brought to light by the past four years' surveys.

8-1 Methods of Surveys and the Results

- (1) Since the survey area was as large as 5,300 km² and is covered with the Kalahari sediment of the Cenozolic, showing very few outcrops, the survey work depended on the method that geochemical survey was principally used, with geophysical prospecting and geological survey combinedly used, and that the scope of exploration was narrowed down by stages, mineral indications being finally confirmed by drilling.
- (2) In the first year the geology, geological structure and geological history of the survey area were revealed through geological survey and geochemical survey on the whole area, and all mineral indication areas were studied; as the result an 800 km² area in the northern Matsitama area was picked up.
- (3) In the second year geological survey and airborne geophysical prospecting were made over this area, thereby picking up an area of 230 km². As a result of conducting ground geophysical prospecting and geochemical survey to find more detailed conditions of mineralization of this 230 km² area, four copper anomaly areas (53 km²) and one area (4 km²) of chromite were picked up.
- (4) In the third year, over these picked-up areas geological survey and drilling survey of 18 holes with the total length of 1,806.95 m to reveal underground conditions, were conducted. These surveys produced the result of picking up, as the survey areas for the next year, two areas (Area A and Area B) where copper indication were found through the geological survey and drilling survey.
- (5) The fourth year program comprised geochemical survey and drilling survey of 10 holes totaling 1,203.40 m, for the purpose of confirming the conditions and scale

of the mineralization. As the result, in Area A copper indication was confirmed in all the drill holes, though the copper content was low (0.442% at maximum but not more than 0.01% in almost all the holes).

8-2 Conclusion and Evaluation

- (1) Geochemical survey and airborne geophysical prospecting proved effective in picking up promising areas in this survey area.
- (2) Starting with an area of 5,300 km² which shows scarcely any outcrops and is a semi-desert, various kinds of surveys were carried out, and the area was narrowed down to an area of 1.3 km x 0.5 km in the northern Matsitama area as a zone where copper indication is expected.
- (3) In the anomaly areas found by a detailed geochemical survey in the promising zones, copper indication was confirmed, though copper content was low, by the drilling survey; It is considered a sedimentary copper deposit along a specific horizon from the conditions of its occurrence; so the possibility is supported that a Matsitama-type metasedimentary copper indication occurs in a zone including these areas.

Also the said areas form a part of the anomaly areas that were picked up by a semidetailed geochemical survey and the anomaly areas found by a detailed geochemical survey over these areas tend to extend further in the northwest direction. Accordingly, the plan considered for the future would be to follow up the mineral indication by means of detailed geochemical survey and drilling in the above-mentioned anomaly areas found by the semi-detailed geochemical survey.

(4) Exploration of the chromite indication by trenching and drilling resulted in confirming that small lenticular ore bodies, each 5 to 10 m in length and 0.5 to 1 m in thickness, are scattered in ultrabasic rock, and in obtaining general characteristics of them. However, there still remain some leeway for exploration, and the steps considered for the future would be to expand the scope of prospecting while confirming ore bodies by drilling along them or making short drilling because the scale of the ore bodies is small.

REFERENCE

Geological and Geochemical Survey

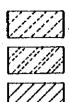
-

(1)	Baldock, J.W., Hepworth, J.V., Marengwa, B.S.	1976	Gold, Base Metals and Diamonds in Botswana, Geol. 71, p.p. 139 – 156
(2)	Baldock, J.W. (compile)	1977	Resources Inventory of Botswana, Metallic Minerals, Mineral Fuels and Diamonds, Mineal Resources Report No. 4, Geol. Surv. Bots.
(3)	Bennett, J.D.	1970	The Geological Map of the Mosetse-Matsitama Atea, Geol. Surv. Bots.
(4)	Bennett, J.D.	1970	Craton-Mobile Belt Relations with Particular Reference to the Mosetse-Matsitama Area, Northeastern Botswana, Geol. Mag. 107, p.p. 113 – 123
(5)	Fujioka, H. and Fujioka, N.	1977	Geological and Structural Interpretation of the LANDSAT - Imagery (in Japanese), Prof. K. Fujioka memorial Volume, p.p. 223 – 247
(6)	Fujita, M.	1977	Remote Sensing Techniques and Oil Prospect- ing (in Japanese), Journal of the Japan Petro- leum Institute, Vol. 20, No. 3, p.p. 205 – 212
(7)	Fujita, M.	1979	New Technique of Mineral Resources Explora- tion (in Japanese), Metal Mining Agency of Japan, "Bonanza", No. 41 p.p. 1 – 17, No. 44 p.p. 2 – 16
(8)	Gold section of Sedge (Botswana) Ltd.	1971	Prospecting in Tati Concession, Open Filed Record, Geol. Surv. Botswana.
(9)	Houston, J.F.T.	1972	Investigations into the Groundwater Resources of the Francistown Area, Rep. Geol. Surv. Botswana, (Un-pub.)
(10)	Hutton, L.G., Key, R.M., Hutton, S.M.	1974	Chemical Analyses of Rocks, Ores and Minerals of Botswana, Bulletin Series 3, Geol. Surv. Bots.
(11)	Jordan, J.N.	1968	Grandwater in the Rhodesian Basement Com- plex, Annex., Geol. Soc. S. Afr. 71, p. 103

-3

-

(12)	Key, R.M.	1975	Radiometric Age Measurements on Rocks from Botswana up to the End of 1975, Bulletin Series 6, Geol. Surv. Bots:
(13)	Key R.M.	1976	The Geology of the Area Around Francistown and Phikwe, Northeast and Central District
(14)	Key, R.M.	1977	The Geochronology of Botswana, Trans., Geol. Soc. S. Afr. 80, p.p. 31 – 42
(15)	Litherland, M.	1973	Sampling of the Timbale Granite for Age Determination, Rep. Geol. Surv. Botswana, No. ML/13/73
(16)	Litherland, M.	1975	The Geology of the Area Around Maitengwe, Sebina and Tshesebe Northeast and Central Districts, Botswana Distr. Mem. 2, Geol. Surv. Bots.
(17)	Metal Mining Agency of Japan	1976, 1977, 1978	Report on the Development of Mineral Re- sources Exploration Technique (in Japanese)
(18)	MMAJ and JICA	1980	Report on geological survey of the north- eastern Botswana. Phase I.
(19)	MMAJ and JICA	1981	Report on geological survey of the north- castern Botswana. Phase II.
(20)	MMAJ and JICA	1982	Report on geological survey of the north- eastern Botswana. Phase III.
(21)	MMAJ and JICA	1983	Report on geological survey of the north eastern Botswana. Phase IV
(22)	Preussage Metal Explanation	1977	Final Report Special Prospecting Licence 12/76, Francistown Project III, Northeastern Botswana, Open Field Record, Geol. Suv. Bots.
(23)	Sedge (Botswana) Pty. Ltd.	1972	Final Report on a Basemetal Exploration Programe Over the Tati Concessio, Botswana, June 1969 to March 1972, Open Field Record, Geol. Surv. Bots.
(24)	Summers, R.	1969	Ancient Mining in Rhodesia and Adjacent Areas, Museum Memoir No. 3, Trustees of Nat. Mus. of Rhodesia, Salisburry, p. 236


(25)	Stansfield, G.	1973	The geology of the area around Dukwe and Tlalamabele, central district, Botswana. Geol. Surv. Bots.
(26)	Strugnell, S.R.	1974	Final report Bushman regional area, May 1972 to June 1974.
(27)	Suwa, K., Yairi, K.	1979	Africa, "Earth Science", Vol. 16, Geology of world. Iwanami (in Japanese).
(28)	Weare, P. and Yalala, A.	1971	Provisional Vegetation Map of Botswana, Botswana Notes and Records 3, p. 131
Geopl	hysical Survey		
(1)	Palacky, G.J. and West, G.W.	1973	Quantitative interpretation of INPUT AEM measurements geophysics, Vol. 38, p.p. 1145 – 1158
(2)	Palacky, G.J.	1975	Interpretation of INPUT AEM measurements in area of conductive overburden, Geophysics, Vol. 40, p.p. 490 – 502
(3)	Hahn, A., Kind, E.G. and Mishra, V.S.	1976	Depth estimation of magnetic sources by means of fourier amplitude spectra, Geopy- sical Prospecting, Vol. 24, p.p. 287 – 308
(4)	Baramov. V.	1957	A new method for interpretation of aeromag- netic maps Pseudo-gravimetric anomalies, Geo- physics, Vol. 22, p.p. 359 – 383
(5)	Legault, M.	1980	Interpretation report airborne electomagnetic survey BARRINGER INPUT system of the MATSITAMA NORTH AREA, REPUBLIC OF BOTSWANA. Geoterrex limited.
(6)	Keeler, K.R.	1980	Ground follow-up geophysical surveys under taken near MATSITAMA, REPUBLIC OF BOTSWANA. Geoterrex limited.

.

.

-

Legend

quartzite

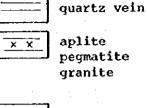
quartz schist

black schist muscovite schist biotite schist

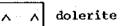
biotite schist (porphyroblastic) graphite schist

limestone

amphibole schist


gréen schist

+ gneiss


+ 0 +

t

gneiss (porphyroblastic)

✓ basalt

L

.

altered basic rock

L

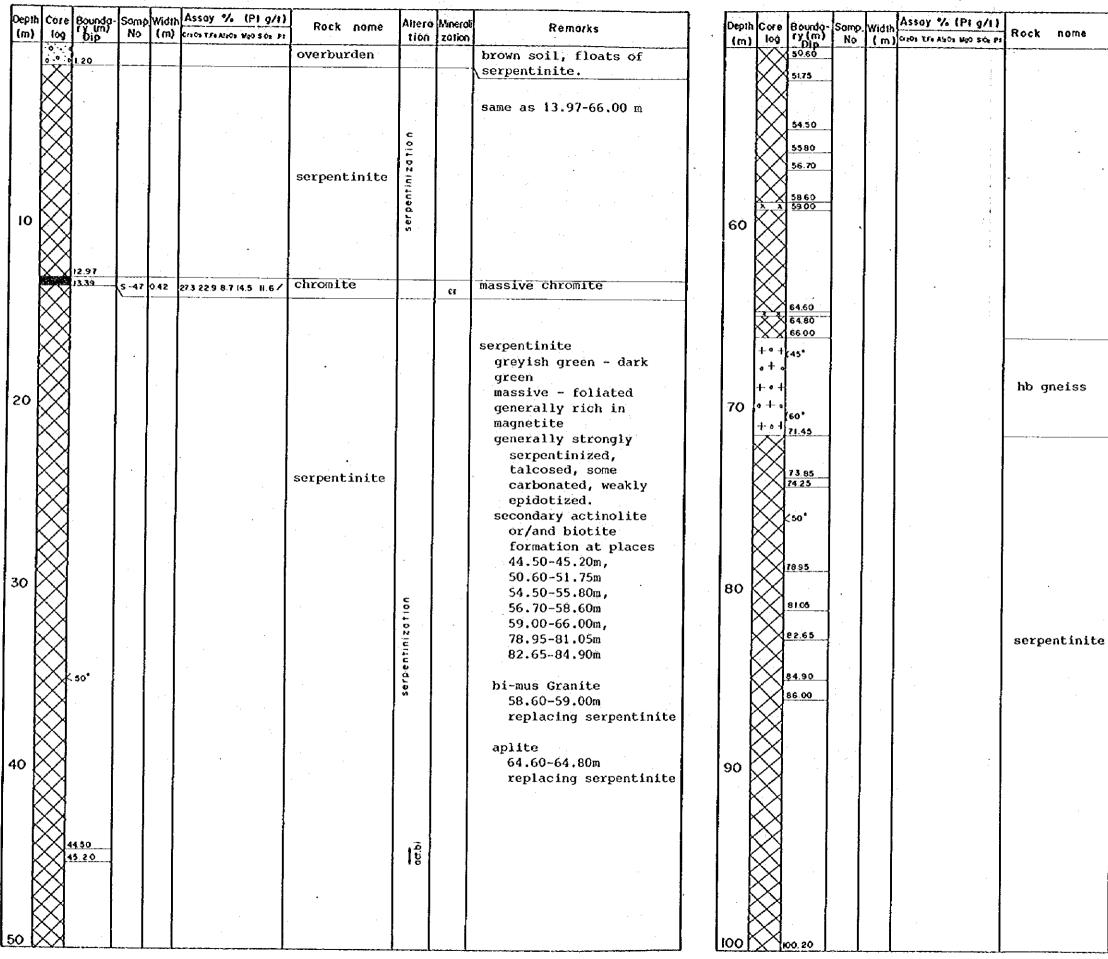
serpentinite

LA L

talc-carbonate rock

aplitized basic rock with skarn

chromite


dip of schistosity and gneissosity

Abbreviation

q:	quartz	tour:	tourmaline
fs:	feldspar	ta:	talc
mus:	muscovite	carp:	carbonate
bi:	blotite	amp:	amphibole
hb:	hornblende	apl:	aplite
act:	actinolite	kaol:	kaolinite
cpx:	clinopyroxene	ct:	chromite
ep:	epidote	Cp:	chalcopyrite
chl:	chlorite	Py:	pyrite
gt;	garnet	Km:	hematite

.-

Altero Minero Remarks tion zation 7 13 ā ĉ porphyroblastic gneiss granitic composition porphyroblast: fs same as 13.97-66.00 m 18 pentini; act.bi Apex.-2

50-100.20 m

GSJ-2

0--50 m

GSJ-2

Somp Width Assoy % (PI 9/1) No (m) Dros the Aleos byo sou PI Depth Core Bounda-Samp Width Assay % (Pt g/t) (m) log Dip No (m) crica tradizos Ngo Soz Pt Depth Core Bourdo-(m) log ry(m) Dip Altera Mineroi Rock name Remarks Rock name tion zation overburden light brownish grey soil, 1.20 + 0 calcretized, floats of chr 0 † 0 (80 serpentinite 40 brownish grey - greenish grey, massive - foliated + • + generally rich in ۹ 🕂 ۹ magnetite - e generally strongly • + • surpentinized, talcosed, + 0 + subordinately carbonated 60 10 , **†** • secondary actinolite serpentinite serpentini zation or/and biotite formation at places. 43.45-44.50m 86.80-89.50m 4 96.45-98.20m 100.00-100.60m hb-bi gneiss • + + 0 + • + • +•+ massive chromite. 2cm at 20 70 4 + 0 the upper contact, magne-20.45 tism is strong, while 5cm chromite + • + 5-48 1.30 31.7 19.7 11.4 14.1 10.4 0.0 cr 21.75 at the lower contact, it + d Le is weak. Middle part serpentinite 3.38 has no magnetism 5-49 0.72 302 2009.7 39 \$5 0.0 chromite Ċſ 24.10 • + massive chromite + • + 55 2cm at upper and lower • + contact, magnetism is strong, but the rest is non-magnetic • + 80 30 • + serpentinizatio : 65¹ 4 0 4 4 serpentinite 10-• + • 10 + 86.80 massive chromite serpentinite magnetism is strong at 0.35 267 21.9 8 2 14.7 12.3/ cr chromite s - 50 upper and lower contact, 89.50 £ serpentinite serpentinite 90 40 the rest is non-magnetic. (65 17020,0 10.8 193 18.04 1033 0.23 chromite · ct s - 51 massive chromite serpentinite 43.45 2 2 bi-hb gneiss 4.50 70 -96.45 98.20 serpentinite 100 50

		50–100.60 m
Altero tion	Mineroi zotion	Remarks
		porphyroblastic gneiss granitic composition mafic hb>bi 44.50 - 55.20m 63.20 - 86.80m
		bi>hb 55.20 - 63.20m 77.45 - 86.80m
		porphyroblast: fs gneissosity:very clear
•		
serp act. bi		
		same as 44.50-86.80m
		bi>hb 89.50-95.10m hb>bi 95.10-96.45m
serp act.b		
ā	1	Apex3

50--100.60 m

ih Co) fo	re Bounda ry (m)	- Sam No	pWidth (m)	Assay % (Pt g/t) Creds T.Fr Aleds Med Side Pt	Rock nome	Altero	Minerali zation	Remorks	Depti	Core	Boundo-	Somp.	Width	Assoy % (Pt g/t) (1203 Tri Abda Ngo soa Pi	Rock nome	Altero	Mineroi	Remarks
0	0 120				overburden		20101	brown soil floats of Q, chr	<u>(m)</u>		Dip	No	(m)	Cr2O3 T.Fa AlzOa MgÓ S.Oa Pa			zotion	aemorks
					serpentinite			brown soil			53 <u>.80</u>				serpentinite	serpenti- nization		-
× +	× 490 × 5.43 +			· · · · · · · · · · · · · · · · · · · ·	aplite			granitic composition mafic		• 1 •	54.75 55.20 56.00 56.40 40' 57.50				hb gneiss		-	porphyroblast: feldspar 54.75-55.02m aplite 56.00-56.40m serpentini
+	+							mafic hb > bi > gt fine-coarse grained	60	\bigotimes								
+	+ +							color index: 10-15% gt: transparent		\bigotimes								peridotite origin
+	-1				gt-bi-hb gneiss			pale brown 0.3-0.5 mm		\bigotimes	64.75							sergentinite
+ -+ -+					• · ·				70	\bigotimes	69.50					Ā		
\bigotimes	20.85	•			serpentinite	serpentiniza - tion act				\bigotimes		1			serpentinite	ntintzation		
	2300			1 - 1		sern tion		peridotite origin serpentinite		\bigotimes						serpe		
\bigotimes	X X X								80	\bigotimes	1950 BL45		- - 			act.bi		
\bigotimes	XXX				serpentinite	c				+ + + + + + + + + + + + + + + + + + + +						- 1		porphyroblastic gneiss granitic composition bi > hb
	<					serpentini zation				o † o † o †				1	hb-bi gneiss			porphyroblast: fs generally 3-5 mm
\bigotimes				-		serpe			90	• + • + • + • + •	554			•				max. 10 mm gneissosity very clear
\otimes	1									+ • +	2.50		[_					
X	47.40									+ + + + + + + +				g	ineiss			light grey, felsitic composition gneissosity is not clear
\bigotimes						gčt			100	+ + * * * K	55° 50 50							it looks like aplite, some thin layers of biot 98.70-99.00maplite

-

.

· .

GSJ-4

0-50 m

.

GSJ-4

Depth	Core	Bounda-	Somp	Width	Assay % (Au,Agg/) Cu Pb Zn Au Ag	Rock nome	Altera			·]	Depin	Core	Bourdo-	Somo	Width	Assay % (Au,Agg/t) Cu Pd Zn Au Ag	Rock name	A
(m)	100	Dio	. NO	(11)	Cu Pb Zn Au Ag		1100	zation			<u>(m)</u>	7777	Dip 50 40		(m)	CU PO ZA AU AG		+-
	. 0					overburden			brown soil floats of Q.			57	51.25		<u> </u>		limestpne black schist	
	77	2.20					·					¥ДД	52.60				DIACK SCHISC	Ţ
	V/	1		ľ					light grey				53.70 54.10	<u> </u> .				1
	V/								very rich in mica			ЦЦ	54.10	1				
	Y//			l l					schistosity: very clear	-		h		1	1			
	\mathcal{V}	1										65				-		
	V/							· .				ΠĒ]					
	\mathbb{V}	1										ΠŢ				· · ·		
10	//	23				1.4	· ·				60	FT.	k 20°				limestone	
1.	\mathbb{V}	13				bi-mus schist							1				Timestone	
	//	1				Jentoe						ĽΤ	1					
		1											1	1		1		
	\mathbb{V}	1			н]		ľ			
	V/	1	ł									口口	6340		<u> </u>			
	\mathbb{N}	7											c 20°			00290 001 0.002 //		
	\mathbb{N}	17.60											06.33	1.50	3-32	00230001000277		
	1.		<u> </u>	[quartzite			18.60-19.60m some wollastonite							1		
	11	19.00					·		some worrasconre		-		-		1			
20	10/	19.80				·					70		10.25				· · · · · · · · · · · · · · · · · · ·	╉
	//		ł						dark grey q > fs > bi > mus			⁻ -						
	//		l						schistosity: very clear									
	1/					,	·		porphyroblast							: .		
	//								pale brown-grey			+ +	j					
									less than lcm garnet, feldspar			h	75.67 75.72	4				
	1//	27.25			-				garneer readpar							:		ļ
	191	27.45	1															
	1/2/	28.60		,								+ +			}			Ì
30	1/	29.85	4								80	Ľ,	79.80	1	1			ł
	///	k 30				mus-bi			q veins: barren			<u> </u>	80.10 81.30 61.72	4	1		bi gneiss	
	V./	1				schist			-			Î Î Î		1				
		2										' + '						1
	V//	j											* •	Į.			· .	
	V//	35.60		1								+ - _+			1			
1	191	35.60	1									+'-		1	1			
	¥4	37.40 37.45 3928	-											1	1.			
	2/	3928	4									4						
	194	c 39.65 39.90 40.35	-		-						90	' + '				· ·	. •	
40	10/1	40 35	-	1							l ° °	' ₊ -∣		i.				
	1.	× 30										{'+'		1				
ļ	V.//	3						1				<u>+ </u>	92.75 93.30	4				
	/./	1										+ +						
	V/	8										+						
1	11	45.60					·					+ +			1			
1	$\mathbb{V}/$	4				graphite			black			+			1			1
	V//	1				schist		1	amount of grahoite is only a little.				ł		1			
	\langle / \rangle	49.45							Uniy a liccie.		100	+				· ·		
50	YITI	2	1	1	I	bi schist		I	<u>]</u>		100	1	100.20	J	1		Į	! -

50--100.20 m

crystallineblack schist-phyllitewhite-light grey crystalline. some silicification wollastonite: max. 10 mm 61.50-70.25 m rich in wollastonite pyrite parallei-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schistgneiss-schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m aplitic granite			Minerol zation	Remarks
black schist-phyllite white-light grey crystalline. some silicification wollastonite: max. 10 mm 61.50-70.25 m rich in wollastonite pyrite parallel-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m	-			crystalline
white-light grey crystalline. some silicification wollastonite: max. 10 mm 61.50-70.25 m rich in wollastonite pyrite parallel-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist 53.70-54.10 m graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m	-			
crystalline. some silicification wollastonite: max. 10 mm 61.50-70.25 m rich in wollastonite pyrite parallel-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist 53.70-54.10 m graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m	-			-
crystalline. some silicification wollastonite: max. 10 mm 61.50-70.25 m rich in wollastonite pyrite parallel-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist 53.70-54.10 m graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
some silicification wollastonite: max. 10 mm 61.50-70.25 m rich in wollastonite pyrite parallel-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
<pre>wollastonite: max. 10 mm 61.50-70.25 m rich in wollastonite pyrite parallel-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m</pre>				
max. 10 mm 61.50-70.25 m rich in wollastonite pyrite parallel-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist 53.70-54.10 m graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
61.50-70.25 m rich in wollastonite pyrite parallel-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist 53.70-54.10 m graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
rich in wollastonite pyrite parallel-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
parallel-subparallel to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
to bedding 20° (biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m			9Y	
(biotite thin layer) 65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
65.40-66.90 m many pyrite layers 53.70-54.10 m graphite schist graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
many pyrite layers 53.70-54.10 m graphite schist graphite schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
53.70-54.10 m graphite schist gneiss-schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				• - · · ·
graphite schist gneiss-schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				many pyrado injero
gneiss-schist granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				53.70-54.10 m
granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				graphite schist
granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
granitic composition mafic: bi hard, q veins: barren 81.30-81.72m				
granitic composition mafic: bi hard, q veins: barren 81.30-81.72m	-			
mafic: bi hard, q veins: barren 81.30-81.72m				gneiss-schist
hard, q veins: barren 81.30-81.72m				-
q veins: barren 81.30-81.72m				mafic: bi
81.30-81.72m				hard,
81.30-81.72m				
				q veins: barren
				01 20 01 72m
		Į		
				apricie granice
		ł		
		1		
			1	
		1	1	
			1	
			1	
			1	
			1	
		· .	1	
		[ŀ	
			1	
		1	1	
		.	1	
			1	

GSJ-5

•

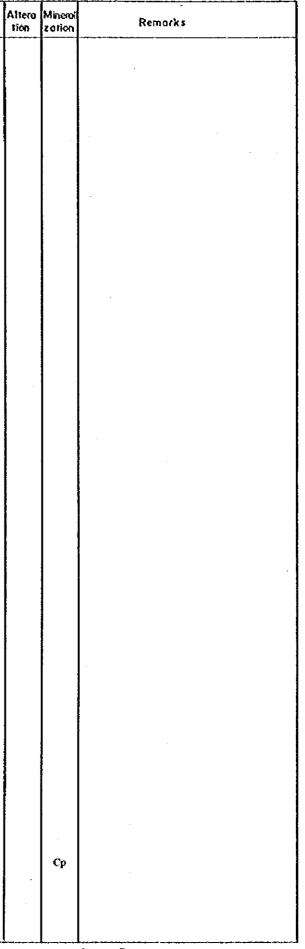
GSJ-5

Depth ((m)	Core log	Bounda (y (m) Dip	Somp No	Widih (m)	Assay % (Au,Ágg⁄) Cu Pb Zn Au Ag	Rock name	Altera tion	Mineroli zotion	Remarks		Depth (m)	Core log	Bourdo- ry (m)	Samp. No	Widih (m)	Assay % (Au,Agg/i) Cu Pb Zn Au Ag	Rock nome		Minerol zotion	
	• • •					overburden	· · · ·		pale brown soil and calcrete.			 + +	51.30					-		gneiss-schist
	77	2.30	<u> </u>		,	<u> </u>			calcrete.			+ ° +	51.50							granitic composition gneissosity (schistosity
	<u>.</u>	3.50		. [bi > mus.			+								very clear.
	//					bi schist			upper part: calcretized	Í			54.60			-				fine-coarse grained
		6.10				· · · · · · · · · · · · · · · · · · ·			schistosity: very clear			4	55.40	1						several veins-dykes. q veins: barren
	\square	7.30				mus schist						4 · · ‡	< 20°							2.30-3.50m
	\square											+	:	-		-				51.30-51.50m 54.60-55.40m
10	\square	9.85				black schist					60	+ + +				-				aplite:
	\mathbb{Z}					bi-mus					v	+ +			<u>}</u>	:				82,95-83,35m 89,20-89,30m
		< 20 "				schist			•			ł					bi gneiss		1	91.10-91.20m
	41	12.85]				·					+ . 1								granite: 89.45-87.95m
	770	14.60 14.70 15.00					· ·		white-light grey crystalline, mainly massive			+ +								91.60-91.75m
		15.90							some silicification			+								96.70-96.90m 98.10-98.40m
	111	16.50							wollastonite. 18.45-19.00m			+ +								90 + 10 - 90 • 40m
		•				,			siliceous ls with			+						i i		
20	┶┰┛ ┍╼┖╻┨								wollastonite. 28.40-31.50m		70	+ +								
	┺╼┸╢ ┯╼┺╼╢		i I			limestone			rich in wollastonite		70		< 50°							
	┼┰╨╢								pyrite layers			+	< 50							
									30.83-30.85m			+ +								
·									14.30-14.60m graphite	·		Ŧ								
 -									schist (?) 14.70-15.00m quartzite			+ +								
·	┺╌┰╼┵┥ ╻╌┺╌┰┝	< 20"							15.90-16.50m black			. + +								
_								-	schist			+								
-	┎┸┤											++	-							
30 -	╘╌┶┫							Py			80	+								
	\int	3150								i		+ +								
ĺ		< 15"					-	-	bi = hb			1{ * -*	82.95							
						bi-amp			1-4 mm		Ì	0 + 0	83.35			· · · · · · · · · · · · · · · · · · ·		-		
		35.80				schist						+ •+					hb-bi gneiss			porphysoblastic gneiss granitic composition
2.	+		[I	\$ + \$ 					gnerss	:		porphyroblast: fs
•	+ +					hb-bi			gneiss-schist light grey			+₀+ × ×	8745 87.95				· · · · · · · · · · · · · · · · · · ·			
· 1.	+					gneiss			granitic composition			+	8920 89.30							
40	⊦ † + k	< 25 ⁴			-				fine grained		90									same as 44.75-82.95 m
H	⊦ - 	4155										ŧ	91.10 91.20 91.60							
									· ·				03.10 91.75				bi gneiss			aplite 82.90-89.30m
		44.75				amp schist			minor folding			+ +	. [91.10-91.20m
1		44.75	{] ·								+ + +	< 30*							granite 87.45-87.95m
+	- + -+		ļ																	91.60-91.75m
4	т į к	< 15 ⁴	Į						ļ			1-1 4	96.70 96.90 98.10							96.70-96.90m
	+-										F		98.40							98.10-98.40m
<u>50 </u>	- +									1	100	+-	00.40						<u> </u>	L

50–100.40 m

.

.


0–50 m

GSJ-6

Rock nome

amp schist

[1	1		ſ ~~~	T	<u> </u>	······	r			· · · · · · · · · · · · · · · · · · ·		· · · · ·		Т
Oepth (m)	Core	Boundar	Somp No	Width (m)	Assay % (Au,Agg/1) Cu Pb Zn Au Ag	Rock nome	Altera	Mineros zation	it officing	. [0	Depth	Córe	Bounda- ry(m) Dip	Somp	Width	Assay % (Au,Agg/) Cu Pb Zn Au Ag	-
	10 g	UIP		1	CO FO EII AG AY			20100		-	<u>(m)</u>	11/1	Qip	110	(m)	CU PO ZA AU AQ	╉
		1.50		ļ		overburden	 		brown soil floats of Q.			"//i/				0.054 0.001 0.005/ /	,
			i i					-	dark green				53.0Ò	5-63	300	0.034 0.001 0.003	
	////			[generally schistosity is			////	· .				1
									very clear.			11/1		S-64	3.00	0050 0.001 0.004//	
	///								dip of schistosity 0-30m 55°,30-101.Sm			///	56.00			· · · · · · · · · · · · · · · · · · ·	
	[]]	< 55"							40° from horizontal.	.	ł	///	1				
	[]]					:		. .	some epidote			<i>[]]]</i>]	1	\$-65	3.00	0.023 0.001 0.004 / /	
								[61.70-62.70m,89.90-92.40m				59.00			·	-
10							1		12.10-12.90m amp schist becomes	Ì	60	///	K40'	\$-66	270	0.023 0.001 0.006 / /	,
									clayey.			////	61.70		2.10	0.020 0.001 0.000	
						-			some carbonate veinlets]
	///						· .		69.10-69.15m,72.30 73.90m]	[]]	63.70	5-67	2.00	0.028 0.001 0.003 / /	Ί
									Py.Cp.hm > malachite Py.Cp.								
					· ·				impregnated > within			[][]	1 .	5-68	3.30	0.045 0.002 0.005/	
									hm-q veinlets	1	İ	///	66.10			·	
		< 60							hm-q veinlets with or without Py, Cp.		ł						
	111								width 0.05-3cm		ļ	///		S ~ 69	3.00	0 @ 9 0 0 0 3 0 0 0 4 1 /	1
20		20.00							about 50 veinlets		70	////	70.00				
									generally veinlets are accompanied by		ł	///	1	6 70	1 00	0.037 0.002 0.005//	
			S-53	3.00	0.039 0.000 0.007 0.0 0			Į	Py or/and Cp.		ļ	///	1	3-10	3.00	0.031 0.002 0.0031 ;	
		23.00			· · · · · · · · · · · · · · · · · · ·	,			generally they are		ļ	////	73.00				-
			654	100	0.046 0.000 0.007 0.0 0	amp schist			parallel-subparallel		ł	[i]]	1	s-71	3.00	0.045 0.002 0.005/	
		26.00							to schistosity. Cu content		ļ		76.00				
		<50°							26.00-29.00m Cu 0.178%		ļ	11/1/					1
			S - 55	3.00	0 178 0000 0006 0.0 0			Cp	94.00-97.00m Cu 0.228%		ł	////		5-72	3.00	0.036 0.002 0.007/	1
		2900								· · · · ·	· [///	79.00				
30									•	i	80 Î		K 35°				
	1		S~56	300	0.043 0000 0007 0.0 0						ł	1/1		S-73	3.00	0.083 0.002 0.00677	1
		32.00								ŀ	t	///.)	82.00				-
		33.80	C_47	100	0.029 0.000 0.006 / /						ł	1/1		6-74	1 00	0.041 0.002 0.006/	
	0	34.50	3-57	3.00	0.029 0000 00080 -				· · ·		t	///		3-14	3,00	0.047 0.002 0.008	Ί
		<u> </u>									ł	11/1	85.00				1
			S-58	3.00	0.041 0.000 0.005 / /						ľ	0		s - 75	3.00	0.073 0.002 0.007/	
		38.00										[i]])	88.00				
		39 80 39 40					aci.chi				ł			·			
40	111.5	40 [°]	5-59	3.00	0.066 00000.004 / /						90			s - 76	300	0.062 0.001 0.0077	4
		41.00									ł	////	91.00			. <u>.</u>	
	11/18										ł	///			,		
	11D		S - 60	3.00	0.025 0.000 0.004 / /						t			3.11	3.00	0.036 0.0010.004 0.0	1
	1/1/5	44.00			·						ł		94.00				-
			5-61	3.00	0.043 0.000 0.006 / /					•	t	1//		\$ -78	3.00	0.228 0.001 0.006 /	
		4200			······································	· · ·					ł		97.00				
						•					- ľ	[/],					1
			\$-62	3.00	0.034 0.000 0.00 4 0.0 0						. ł		<40 '	\$ -79	4.50	0.063 0.001 0.007 /	
50	1.1.1	50.00								l	00	1:13	101.50				1

50-	1()1.	.50	m
-----	----	-----	-----	---

0-50 m

. .

GSJ--7

									0–50 m	· •	GSJ-				· ·				50–100.20 m
Oept (m)	h Core log	Bounda- ry (m) Dip	Samp No	Width (m)	Assoy % (Au,Agg/) Cu Pb Zn Au Ag	Rock nome	Altero tión	Minerati zation	Remarks	Depi	h Core	Bounda- ry (m)	Somp No	Widin (m)	Assay % (Au,Agg/1) Cu Pb Zn Au Ag	Rock nome	Alleta tion	Minerol zation	Remarks
	с	2.00			·	overburden			black turf soil floats of Q, schist			51.50				· · · · · · · · · · · · · · · · · · ·			51.50-52.50m, 57.30-58.15m chilled margin
		< 40°				bi-mus schist			up to 5.90m slime slime contains some garnet(?)			58 .15				dolerite			dolerite - microgabbro very fresh
10		11.40		· ·	· · · ·	black schist	•		pelitic	60		59.00 59.15		L.	-				59.00-59.15m quartzite
		19.05				mus schist			pale purplish schist pelitic, phyllitic			< 40*							amount of graphite is only a little abrasived by fingers, then they become dark grey it has weak electric conductivity sometimes, not often.
20										70	$\langle \rangle \rangle$					graphite schist			pelitic,
		< 35*				graphite schist			same as 58.15-81.90 m		$\langle \rangle \rangle$	-							it looks like slate
		25.30								-	$\langle \rangle \rangle$	< 40*							
		< 35 * 28 90		• .		mus schist graphite			pale purplish schist pelitic, phyllitic			-	-						
30					[schist basalt			graphite (?)	80									
		29.55 30.20 31.65				graphite schist	·	·	graphite schist – black schist		¥/	81.90						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
						basalt			fs phenocryst max. 3 cm 28.90-29.55m, 31.65-32.90m weathering, clayish		V:///	< 30" 84.50				mus-bi-amp schist	·		
	~ ~ ~ ~ ~					busare			36.05.36.75 m soft, yellowish green, serpentinization		/// /*/	87.65 87.70				mus schist			
40	77	40.20			·					90		89.90 9020 91.10 91.60					·		q veins
		< 25*		-					45.70-46.45m aplite			91.60 93.25				green schist			w=2cm parallel to schistosity
		45.70				graphite schist			same as 58.15-81.90 m		Y///	< 40° 9565 96.15				mus schist green schist			
						·						9865				bi-mus schist			
50]			100	\$/:/i/	100.20				green schist			Apex8

50-100.20 m

-

0-50 m

.

GSJ-8

	J8								0–50 m	•		GSJ-	v		. *					50100.30 m
Depth Cor (m) Io	e Bounc ry ur Dip	ia Sa N	mp Wi lo (ñdih m}	Assay % (Au,Agot) Cu Po Zn Au Ag	Rock nome	Altero tióń	Mineroli zation	Remorks		Depth (m)	Core log	Bourda- ry (m) Dip	Sorra No	Width (m)	Assay % (Au,Agg/1) Cu Pb Zn Au Ag	Rock nome	Altero tion	Minerol zótion	Remarks
						overburden							51.00		····		basalt			basalt with megaphenocryst remains
	* 150 1.80 * 225 5.85			-		quartzite			fs quartzite or aplite 1.80-2.25 m aplite			X X	55.60 56.30				basalt	ch1 si1		darkgrey-black-dark green phenocryst: fs max. 3 cm 55.60-56.30 m aplite
	8 30					green schist			green basic rock (basalt?) origin			~ ~*	56.85			·····	aplitized basalt			basalt has been aplitized 50%.
10	× 10.20					aplite			white, fs > q		60					·				
	13.75					green schist			same as 5.85-8.30 m	-		X X V V	61.10 61.34 62.00		-		basalt			61.10-61.34 m granite
× × ×	× × × 20.70					aplite			white fs > q		70	* 1 L *	•		•					reddish pink-greenish grey -green strong aplitization relict of basic rock (basalt?) 5-95% i.e. aplite replaces basic rock 95-5%
	22.35					bi-mus-q schist			basic rock origin (?)			x								· · · · · · · · · · · · · · · · · · ·
×	×					aplite			white fs > q			L L ×								95.00-96.70 m bi quartzite or aplite
, 30 L	28.70 L 29.90	1	-		<u> </u>	altered basic rock			yellowish green			L L ×					aplitized basic rock			
	< 70 [°] 32.90					amp-bi-q schist					80	×			-		aplite			
	ý A					q-schist			pale brown-brownish grey weak magnetism basic rock origin (?) aplitization			× L L X	-	-						
19 XXXXXXXX	3950 4330 4365		· · · · · · · · · · · · · · · · · · ·			talc-carbon-	to carb ch I		yellowish and purplish green alteration product from basalt 43.30-43.60m, 46.50-46.80m fs megaphenocryst bearing		90	_ L _ X _ L				-				
~ 100	46.50					ate rock			basalt remains			- ^{t.} [16.70							
50 VXV		-				aplitized	·		49.90-50.20 m		00		00.30	· ·						

50-100.30 m

0–50 m

GSJ--9

						<u>. </u>			· · ·			0-50 m			031-	- -	1.1.1			
Oepti	Core	Bounda- ry (m) Dip	Somp	Widin	Asso	y % (A	u,Agg/1)	Rock	nome		Minerol]	Depth	Core	Bourda-	Somp.	Width	Assoy % (Au,Agg/1)	Rock name
<u>(m)</u>		Dip	No	(m)	Cu P	vb Zn /	Au Ag			tion	zation		1 :	(m)	log	Bourda- ry(m) Dip	No	(m)	Cu Pb Zn Au Ag	
	0 0 0 0 0 0	2.00						óverbu	rdén			brown soil, calcrete,floats				52.25				bi-q schist
		7.50							•	-		greenish yellow-greyish green-grey fine-coarse grained schistosity very clear 20°-50° from horizontal.				55.15 55.30				
10		9.40 9.45								-		alteration chlorite, talc-carbonate,		60			-			amp schist
		< 20°										epidote, tourmaline chl-talc-carb 2.00-37.90 m	-			< 20* 64.85				
										chi		talc-carb				- 				talc-carbon-
												64.85-66.45 m 83.60-84.00 m				66.45				ate rock
										10	-	some epidote 72.00-77.00 m				69.60				
20					-					corb		tourmaline		70						
		:										55.15-55.30 m tour-q vein			////	72.00	s - 80	5.40	0.113 0.000 0.006 / /	
								amp scł	nist			72.20-72.40 m tour-fs-q-vein with some ep and py.				74.80			-	amp schist
		< 25 [°] 26.90 26.95 27.70										carbonate 5.0-9.0 m				75.00 77.00				
30	1187	27.80 29.10 29.20			-							veinlet-network q veins		80			S-81	7.00	0.059 ////	:
							•					width 1-30 cm with or without sulfide				82.00				
		33.95										aplite veins 7.50-7.53 m				83.60 84.00				
		34.00										87.40-88.15 m			V V				: :	basalt
		36.05										•				87.40				amp schist
		37.90													Хy	88.15				aplite
40		< 30*				•								~	∨ ∨ ∨ ∨ ∨	90.50			:	basalt
		41.85													111	9180				quartzite
		42.15 42.85 43.15										36.20-37.90 m some clay		-						
	1/37	46 10 46 20 48 50						•				40.90-43.60 m core is taken as slime				< 50*				amp schist
50														100		100.20			-	

Altera Minero tion zation Remarks . mineralization 69.50-82.00 m Py > Cp lour impregnation > within q vein. cu content 69.60-75.00 m cu: 0.113% to-carb same as 2.00-64.85 m ep Ср tour Py 11-2010 phenocryst fs max 7 mm phenocryst: fs max 7 mm with some fs (aplite?)

50–100.20 m

.

GSJ	-10
-----	-----

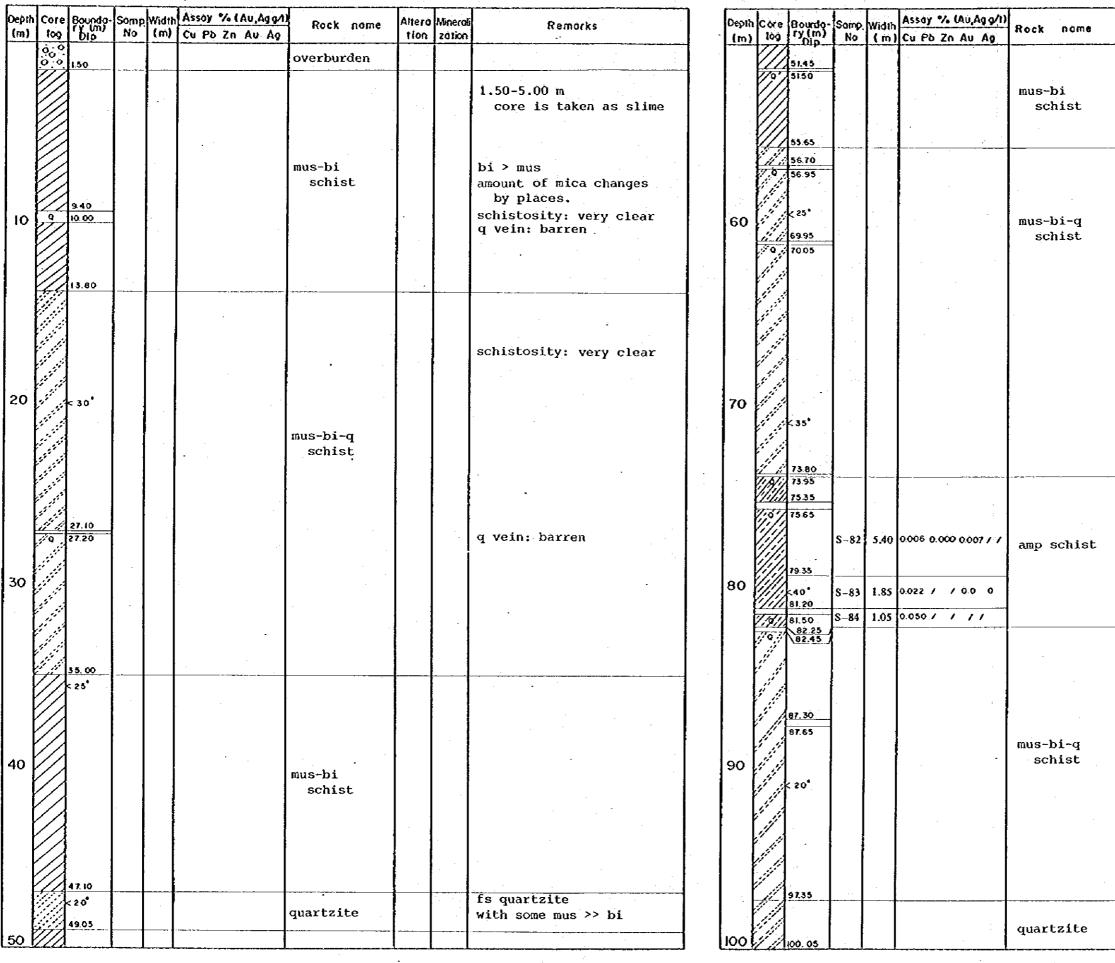
.

GSJ-10

Depth Core (m) log	e Bounda ry (m) Dip	Samp No	Width (m)	Assay % (Au,Agg/) Cu Pb Zn Au Ag	Rock name	Altero tion	Minerali zation	Remorks	Depii (m)	Core log	Bounda- ry(m) Dip	Samp. No	Widih (m)	Assoy % (Au,Agq/1) Cu Pb Zn Au Ag	Rock nome	Altero tion	Minerot zótión	Remorks
0	• 1.85				overburden			black turf			1				graphite schist			
					· · · · ·			core is taken as slime fs. Q >> bi > gt (?)			<u>52.55</u> 53.60		·		aplite			
10	12.00				bi schist				60		55.40				graphite schist			53.60-53.80 m high grade graphite 53.75-53.80 m fixed carbon 66.8% volatile material 7.3% ash 24.8% 53.60-55.45 m with many q veinlets 55.45-69.75 m
	12.78							yellowish grey medium grained chilled margin	-		64.65 6500 65.55 66.00		-					core is taken as slime amount of graphite is only a little in slime
^ ^ 20	1							12.20-16.50m, 38.10-39.95m composed of fs. cpx, mt as main primary minerals	70		68 00 68 25		-					many aplite veins
	21.50			•		chl i -		without megaphenocryst of fs alteration		×	70.05 70.60 7.60	-				chl		pale greenish grey- dark green, generally schistosity is very clear
	24.65				dolérite	l carb		chl, talc, carb weathering many aplite veins white.			×40*			- -	green schist	to to t carb	Ру	some relict of basic rock remains, i.e., basic rock origin some magnetism, 70.60-79.00 m
30 ^ 	A 31.30 x 31.50								80		79.00 × 35*	-		• • •		-	· · · · ·	very weak pyritization
											82.90							dark greenish grey dolerite-microgabbro without megaphenocryst of fs.
40 ^	A 39.95								90		-		- - -					medium-strong magnetism.
	× 40°				q schist			core is taken as fragment		^ ^ ^					dolerite			
	44.65		-		black schist			schist or black massive slate (?) with small amount of graphite										·
50	49.35		+	· · · · · · · · · · · · · · · · · · ·					100		101.00					<u> </u>		Apex11

50--101 m

.


GŠJ-11

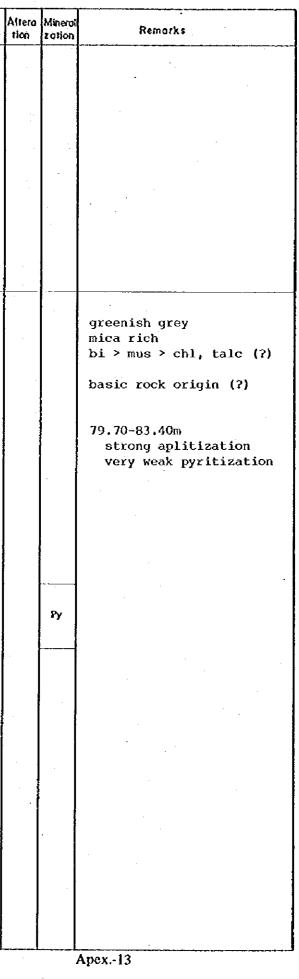
0--50 m

.

-

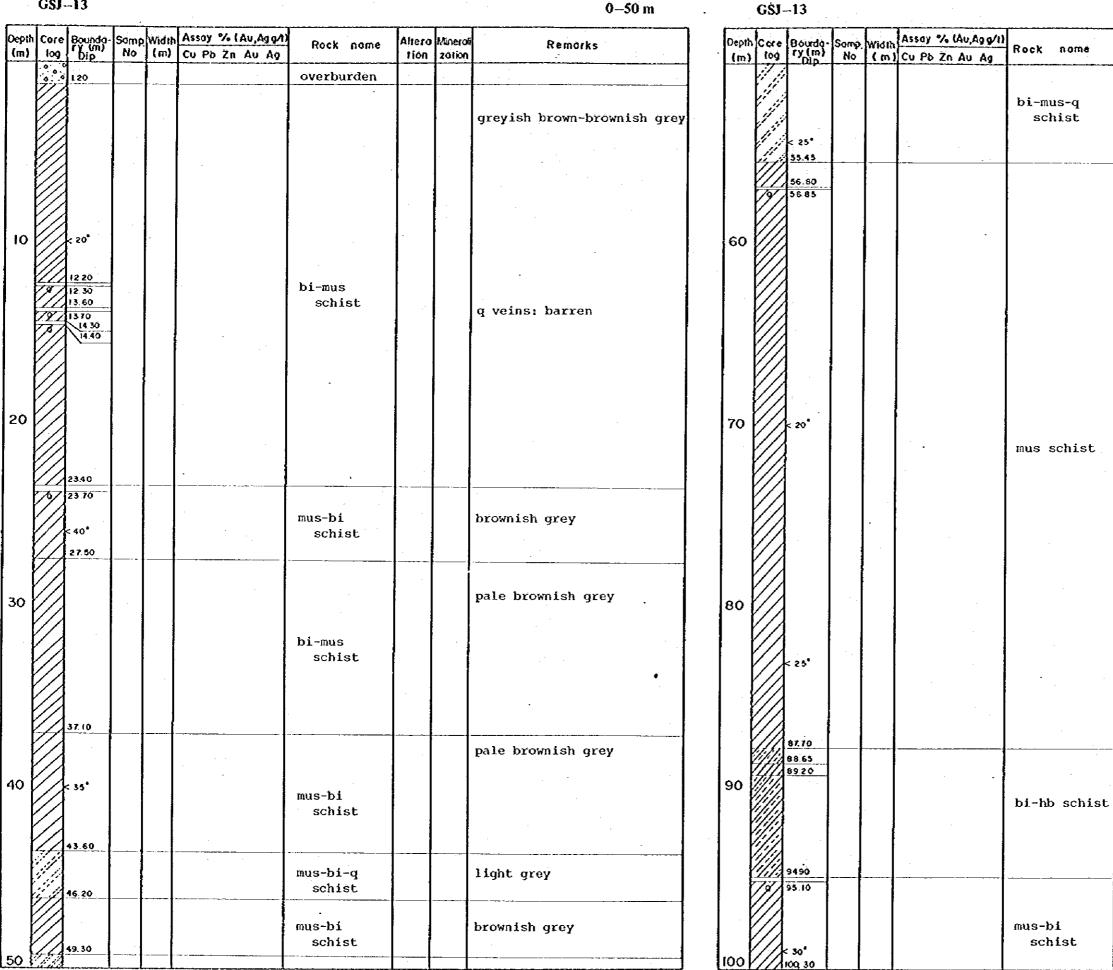
GSJ-11

a signal state


50-100.05 m

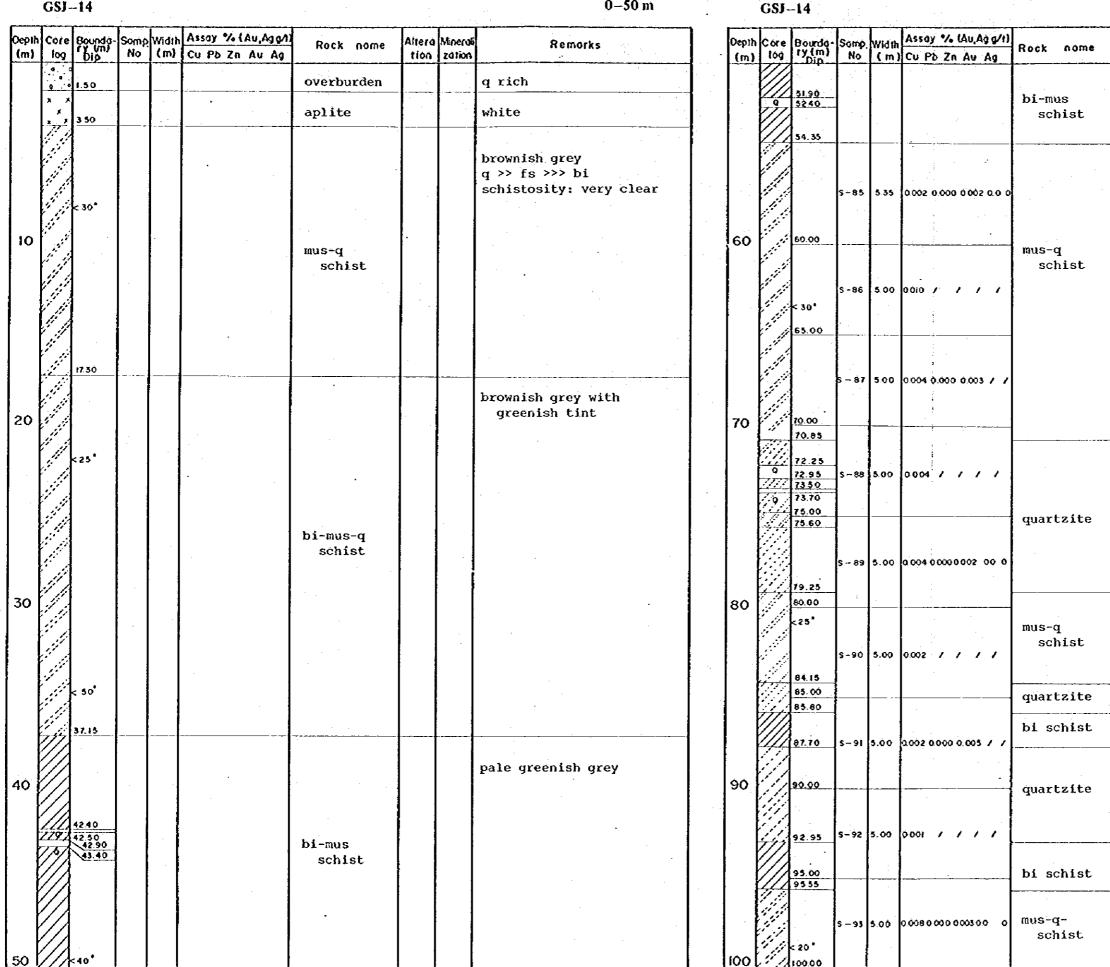
Altero tion	Minerol zótion	Remarks
		schistosity: very clear q vein: barren
		55.65-60.95 m coarse grained q veins: barren
	native cu	coarse grained some ep a little gt 79.35-81.20 m native copper along crack Cu: 0.022%
		85.90-86.00m sericite rich 87.30-87.65m sericite schist with some kaolinite
		fs quartzite

0--50 m


GSJ-12

Depth	Core	Bounda-	Somp	Widin	Assoy % (Au,AggA) Cu Pb Zn Au Ag	Rock name	Altera				Depih	Core	Boyrda-	Samo	Width	Assay % Cu Pb Zn	(Au, Ag g/1)	Rock name	
(m)	0	Dip 91.20	NO	(11)	Cu PD Zn Au Ag	overburden	tion	zotion	calcretized soil	•	<u>(m)</u>	100	Dip 5025	No	<u>(m)</u>	Cu Pb Zn	Au Ag		
				-		mus-q schist			5.20-5.40m bi schist				50.40 50.40 55.00 55.20			-		bi-mus-q schist	
10	× × × × × × × × ×					aplite	•		schist is replaced by aplite but schist remains at places. many q veins.		60				-	- - -	:		
	777	13.75		-	· · · · · · · · · · · · · · · · · · ·								63.60						
		< 45 [°] 18 20	-			mus-bi schist			greenish grey with brownish tint schistosity: very clear mus, bi very rich						-				
20		23.30			-	bi-mus schist			<pre>geenish grey 1.20-25.80m, 44.50-63.60m black small dot, graphite (?) amount of it is only a little, but distributes</pre>		70		< 20 [•]						
		25.80				mus quartzite			grey. schistosity not clear						-			bi-mus	
30		 40° 27.60 28.20 29.05 29.25 29.65 29.75 31.90 				bi-mus schist			greenish grey aplite veins q vein: barren		80		7970	-				green schist	
	* *	33.20 34.0 0			-		·		white aplite with relict of schist.				3.40						
		< 30° 3870				aplite			33.20-34.00m mus-q schist, grey 36.00-37.20m limonitization after Py										
40						mus-q			brownish grey		90		- -				. - .		·
		44.50				schist								:					
		<40*							greenish grey							• • •			
50		48.30 4880							q veins: barren		100		20° 00.10				:		

50–100.10 m


GSJ--13

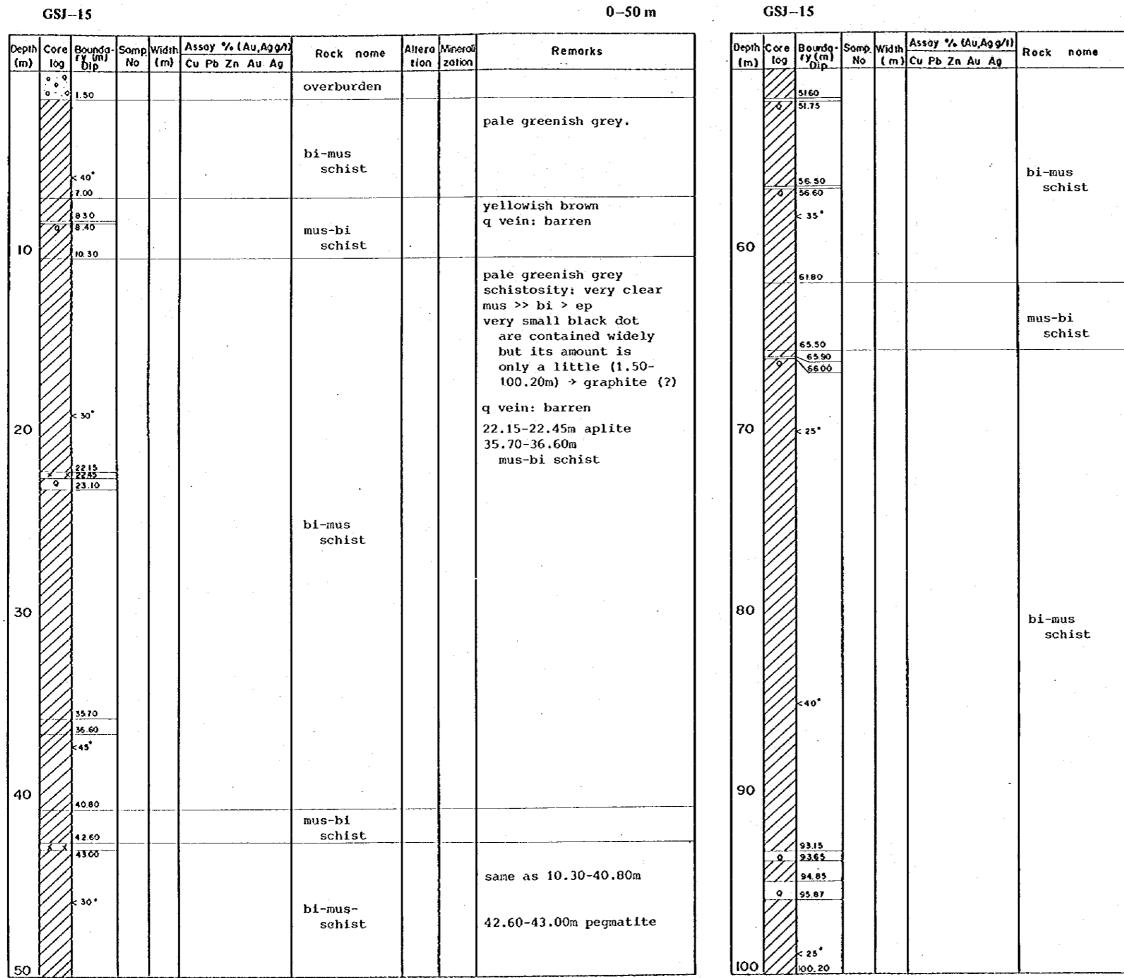
0-50 m

50-100.30 m

light grey light grey-dark grey weak pyritization. very small amount of graphite (?) exist. amount of pyrite is only a little. Py	Altero Minero tión zatión		_
weak pyritization. very small amount of graphite (?) exist. amount of pyrite is only a little.		- -	
	Py		
greenish grey 88.65-89.20m bi schist			
dark grey weak pyritization. Py	Ру		

100.00

GSJ--14


0-50 m

Remarks zotion light grey 54.35-100.00 m pyrite impregnated >> py bearing q veinlets. Ру light grey q veins: barren 74.70-75.60 m mus-q schist greenish grey light grey brownish grey light grey brown very rich in bi grey

50-100.00 m

Altera Minero

tion

.

50–100.20 m

Altera tion	Minerol zálion	Remarks.
		q veins: barren
		biotite very rich
		same as 10.30-40.80m
		q veins: barren
		· · ·
		Apex16

-

.

pih n)	Core log	Bounda- ry (m) Dip	Somp No	Width (m)	Assoy % (Au,Agg/) Cu Pb Zn Au Ag	Rock nome		Mineroli zotion	Remarks	De	oth C m)	ore Bo	unis-S (m) Dip	amp. No	Vidih (m)	Assay % (Au,Agg/1) Cu Pb Zn Au Ag	Rock	nome	Altero tion	Mineroi zation	Remorks
	• • • • •	1.70				overburden			calcrete		ľ								chi		pale brownish grey
						calcretized rock			white original rock: unclear. mus. schist (?)			53	.25	- - - - -		- -			ep amp		<pre>q > fs > mus. schistosity: not so cle rather massive homogenous sandstone origin</pre>
	x x	7.20			•	pomatito			· · · · · · · · · · · · · · · · · · ·		ľ					1					
0	× < < < < < < <	8.40				pegnatite		· · · · · · · · · · · · · · · · · · ·	dark grey-greenish grey fresh. many steep cracks. composed mainly of fs and transparent cpx by microscopic obserba- tion.	6	0						mus	schist			49.70-55.25m pale green layers of chl, ep, amp.
	^ ^ ^ ^ ^									7	0		والمراجع وال								
	^ ^									'	Ĭ	\mathcal{A}^{n}	50					~			
	^ ^ ^ ^ ^					dolerite					YY / / / KY										 this rock is divided if 2 facies. 1) talc-carbonate facion richer in ferromagnistic sian minerals than carbonate. same as 41.75-49.70
•	^ ^ ^ ^ ^									8	0 V / / X /X	KYX KY									70.50-71.40m 71.75-72.20m 73.25-75.30m 76.50-79.40m 80.50-81.50m
,											11671671	ZHYZHYYZ						c- arbonate ock			2) carbonate rich faci richer in carbonate than ferromagnesian minerals. red brown, pink, wh carbonate: crystall 71.40-71.75m 72.20-73.25m 75.30-76.50m
	^	-								9		X									79.40-80,50m 81.50-92.20m
					0 564 0000 0 004 0 0 1 D.K2 0 000 0 007 / /			· · · ·	dark green, yellowish green, red brown, greasy lustre, chl, talc, carb,		ZA	32	20								minerals in both facio are same, but amount i different.
(X A A A	X	45.00	\$-96	2 50	0.103 0.000 0.007 0.0 0	talc- carbonate róck	- carb		ep, diop, some gt, mica Cu mineralization Bo. Cc, Cp, malachite occur as impregnated								mus	schist			same as 49.70-70.50m
ľ	\bigotimes		5-97	2 2 0	0172 0000 0.005 / /		talc		grains.		K		20				alc…	carb. roc	×		
	$\gamma\lambda$	49 70						1		10	юŔ		.65				mus	schist	1	1	

.

talc-carb. rock

50–100.20 m

Apex.-17

.

GSJ–17

0-50 m

GSJ-17

1 1 <th></th> <th>1</th> <th></th> <th>T</th> <th>1</th> <th>Actor % LAN Acca</th> <th>J</th> <th><u> </u></th> <th></th> <th><u> </u></th> <th></th> <th></th> <th>1</th> <th></th> <th>1</th> <th></th> <th>Acces #1 1Au Acces</th> <th></th>		1		T	1	Actor % LAN Acca	J	<u> </u>		<u> </u>			1		1		Acces #1 1Au Acces	
10 A </th <th>(m)</th> <th>log</th> <th>ry (m) Dip</th> <th>No</th> <th>Width (m)</th> <th>Cu Pb Zn Au Ag</th> <th>Rock name</th> <th></th> <th></th> <th></th> <th></th> <th>Uepth (m)</th> <th>Core log</th> <th>Boundo- zy (m) Din</th> <th>Samo No</th> <th>Width (m)</th> <th>Cu Pb Zn Au Ag</th> <th>Rock nome</th>	(m)	log	ry (m) Dip	No	Width (m)	Cu Pb Zn Au Ag	Rock name					Uepth (m)	Core log	Boundo- zy (m) Din	Samo No	Width (m)	Cu Pb Zn Au Ag	Rock nome
A A <td></td> <td>•0 •</td> <td>1.60</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>dark brownish grey soil.</td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td>· ·</td> <td></td>		•0 •	1.60							dark brownish grey soil.			F				· ·	
10 A </td <td></td> <td></td> <td></td> <td></td> <td>· · .</td> <td></td> <td>·</td> <td></td> <td></td> <td>dary grey-greenish grey</td> <td></td> <td></td> <td>^</td> <td></td> <td></td> <td></td> <td></td> <td></td>					· · .		·			dary grey-greenish grey			^					
10 A </td <td></td> <td>^</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>fresh.</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td>		^								fresh.			<u> </u>					
10 A A B A B </td <td></td> <td>~ ^</td> <td></td> <td>Į</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>many steep cracks.</td> <td></td> <td></td> <td>^</td> <td></td> <td></td> <td></td> <td>·</td> <td>dolerite</td>		~ ^		Į						many steep cracks.			^				·	dolerite
10 A A B </td <td></td> <td>Λ</td> <td></td>		Λ																
10 A A A Bolerite Bolerite </td <td></td> <td>^ ^</td> <td></td> <td>[.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>[</td> <td>Ā</td> <td></td> <td></td> <td></td> <td></td> <td></td>		^ ^		[.								[Ā					
10 A </td <td></td> <td>^</td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>۸. ۸</td> <td></td> <td></td> <td></td> <td></td> <td></td>		^	ļ										۸. ۸					
A A <td>10</td> <td>^ ^</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>60</td> <td>^</td> <td></td> <td></td> <td></td> <td></td> <td></td>	10	^ ^	,								-	60	^					
A A A Basic rock romsing (101) Basic rock romsing (101) A A A Basic rock romsing (101) A A Basic rock romsing (101) A A A A A Basic rock romsing (101) I Basic rock romsick (101) <tr< td=""><td></td><td>^</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u>^</u></td><td>61.00</td><td></td><td></td><td></td><td></td></tr<>		^											<u>^</u>	61.00				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>^</u> ^	L.				dolerite						X					
A A		^											\bigotimes					
A A		^ ^											\bigotimes	64.00		·		carbonate rock
20 A A A Bit schist 20 A A Bit schist Bit schist 1 A Bit schist Bit schist 1 Bit schist Bit schist Bit schist 30 E Bit schist Bit schist 40 A Bit Schist Bit schist A Bit Schist Bit schist A Bit Schist Bit Schist Bit Schist <		^											\propto	66 00	S-102	2.00	0.021 0,000 0.005 7 7	IUCK
20 A </td <td></td> <td>^ ^</td> <td></td> <td>1</td> <td></td>		^ ^		1														
20 A		^					-							:				
10 A	20	· ·												•				bi schist
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20				-							10						
x x x x aplite basic rock remains (10%) x x x aplitized basic rock with starn y y y y y x x x x y x y y y y x y y y x y y y x y y y x y y x y y x y y x y y x y y x y y x y y x y y x y y y y y y y y y y y y y y y <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>																		-
1 1 <td></td> <td></td> <td>23.10</td> <td>ļ</td> <td></td> <td></td> <td>·</td> <td></td>			23.10	ļ			·											
A A B S - SS		x ^L X	2435				aplite			basic rock remains (10%)			$\langle \langle \langle $	74.00				
L L A A Bise basic rock with skarn altered basic rock with skarn altered basic rock som schistosity, along which q, apl veinlets intruded. B0 7220 bi-talc- carbonat rock 30 V 32.00 basic rock with skarn gi basic rock with skarn aplitization 40 A A B B B B B B 40 A A B B B B B B A B B B B B B B A A B B B B B B A A B B B B B B A A B B B B B B A B B B B B B B A B B B B B B B A B B B B B B B B B B B B B B B B B B B B B B B B <							mliticad			yellowish green			\lesssim					
A A with skarn g' some schistorsty, along which g, apl veinlets intruded. aplitization g' carbonat rock rock 30 V. V 30.50		1		S-98	5.35	0002 0000 0.007 / /		срх					\propto				:	
$30 \begin{array}{ c c c c c c c c c c c c c c c c c c c$													\bigotimes					
30 v </td <td></td> <td></td> <td>29.70</td> <td></td> <td></td> <td></td> <td></td> <td>gr</td> <td></td> <td>intruded.</td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td></td>			29.70					gr		intruded.			X					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30	V V	30.50	·	·····		basalt					80	\gg	79.20				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ււ			1.90	0025 0.000 0.005 / /	anlitized	CDX					$/\Lambda$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	1.0		100	0620 0.000 0.005 0.0 0			Cp				$//\lambda$					
40 A A A A A A A A A A A A A A A A A A A							with skarn	l gr						84.05			2	
A A A A A A A B000	1 1		!						{	ep. diop.			\mathbb{Z}	84,15				
$40 \begin{array}{c} \wedge \\ \wedge $																		
$40 \begin{array}{c} & & \\ & $										malachite (film)		łł	$/\Lambda$	88.00				
40 A A A A B 33.40-34.80m Cu=0.1103 90 bi-talc-carbonat rock A A A A B <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>XX</td><td></td><td></td><td></td><td></td><td></td></t<>									1				XX					
^ ^ dolerite dark grey-greenish grey fresh. many steep cracks. 92.00	40						•					90	\boxtimes			Ì	-	bi-talc-
$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$										dark grey-greenish grey			X					carbonate
Λ Λ 93.70 Λ Λ 66 93.90 Λ Λ Γ 97.20 Λ Λ Γ 97.30 Λ Λ Γ 97.30										fresh.			\gg	92.00				TOCK
Λ Λ Λ Λ Λ Λ Λ							dolerite			many steep cracks.								
Λ Λ Λ Λ Λ													11/	93.90				
Λ Λ													///					
					Í		•							9720				501156
													///	09.6A				
	50	^										100	1/	98.55 00.60				

.

50–100.80 m

• • .

	Minerol z ation	Remark s
ĺ		
		· .
		green-greenish brown greasy.
		brown banding (biotite) altered products of basic
	Ру	rock (?)
		greyish brown
		schistosity: very clear biotite very rich
		bi-talc-carb alteration is weaker than bi-talc-
		carbonate rock.
bi		
to		same as 61.00-66.00m
corb		
		brownish grey
		same as 66.00-74.00m
		q vein: barren
		same as 61.00-66.00m
		very pale greenish grey same as 64.00-74.00m
r		q veints: barren

.

GSJ--18

0-50 m

.

GSJ-18

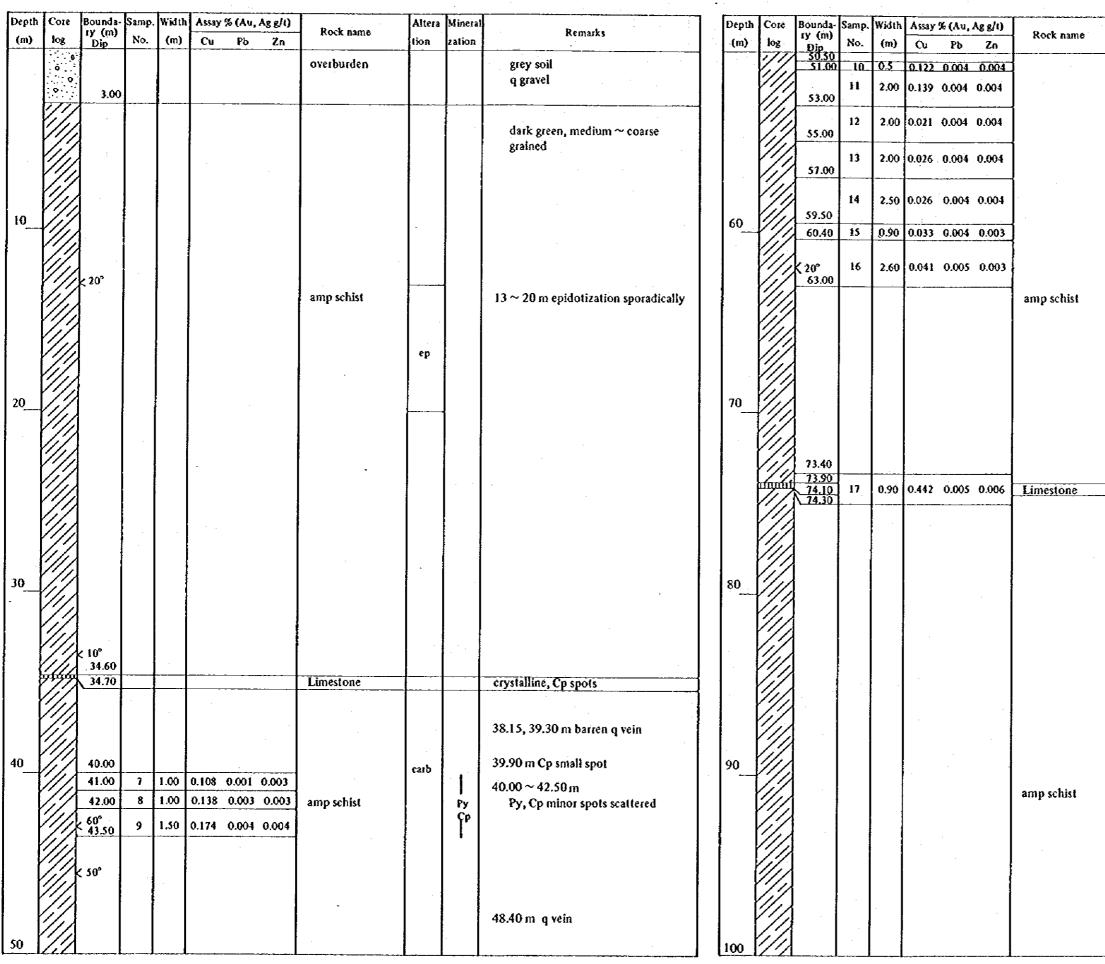
		-18							0–50 m	•		GSJ									50–100.20 m
Depth (m)	Core log	Boundo ry (m) Dip	p- Son No	np Width o (m)	A550y % (Au,AggA) Cr203 T.F+ A1203 H605QP	Rock name	Altera tión	Mineroli zation	Remorks		Depth (m)	Core log	Bourda ry (m)	- Samp No	Widih (m)	Assay % (Au,Ag g/I) Cr203 TFo Al203 Mg S 02 Fi	Roc	K nome	tion	Minero zotion	Remarks
						overburden			brown soil, floats of Q,			\otimes	< 80 51.30					•	ser-		
	\bigotimes	3.20				serpentinite		i	chromite, serpentinite			+ +	1 1 1								·
		3.20										+ 8000	53.30 53.62	4							same as 3.20-34.00 m
	т -											+ +	33.02			·.					
	+ +								granitic composition			+				÷					53.30-53.62 m
	+	ļ							composed of gt, bi, hb, q, fs			<u>∔</u> ∶+								1	dark green amphiböle
									coarse grained			+									
0	+			-			-		color index: 10-15% gt: transparent		60	+ +	< 50 [*]								
		× 30'							pale brown 0.3-0.5 mm			+									
	+								0.3-0.3 http			<u></u> ≁ +									
	 ∔ ⊣	-										1									
	+											+ +		Į							
	4 4											-+						bi-hb gneiss	-		
	+					, , , , , , , , , , , , , , , , , , ,						+ +						J			
0		× 30'	1			gt-bi-hb gneiss					70	+	< 50"			· .					
	' +											+ +									
	1		ĺ									-+									
	∔ -					•						+ +	1	.		-					
	+	< 60°										+									
	+ +											+ +									
	-1											+	77.80	.						 	
	-+ -+											·+ +	·								dioritic composition color index: 35%
0	†								•	1	80		< 40							-T- Py	
	·† - †		·						di seconda d				81.25 81.70				bi-	hb gneiss			81.25-81.70m, 84.40-8 granitic composition
	+	< 70°								. I.		1 1						gneros			85.30m just contact
	+ •+	34.00	-		·		·					+	89.40					•			
	• † •					-4 1.4 1.1			porphyroblastic gneiss granitic composition			\propto	85.30				<u> </u>				85.30-86.80m, 92.60-94
	+ • +					gt-bi-hb gneiss			mafic gt>bi>hb			\bigotimes	86.80	-					с I ^р		actinolite
	0 ·} ·								coarse grained porphyroblast: fs	1 A.		*							5 † i O	ŀ	86.80-92.60 m
0	+∘ †	< 15*									90	\bigotimes				-	ser	pentinite	n i zç		talc
	ŧ.											\bigotimes							pi u t		
	+ º - x -	4240										\bigotimes	92.60						ser.		
	Ń		1			aplite			grey			\bigotimes							0 0		
	<u>× ×</u> + +	44.90				gt-bi-hb			amount of gt is less than				94.75						f_ _		same as 3.20-34.00 m
	+ + + +	 				gneiss			above, color index: 30%			+ +	< 60'					bi-hb gneiss			
-	XXX	47.50	-			· · · · · · · · · · · · · · · · · · ·	÷ c	 	47.50-50.00 m rich in talc			+ + +						9110400			
0	\bigotimes	{				serpentinite	erper izotio		50.00-51.30 m secondary bi, act		100	+-				-					
	5 <u>777</u>	150.00					ωc	l		e			100.20	.l	I					1	Apex19

50--100.20 m

-

Apex.-19

-



G§J-19

01	U-17								0-50 m		UQ.	-19								50-100 m
Depth Cor (m) log	e Bound ry (r	13- 53 n) ,	imp. No.	Width (m)	Assay % (Au, Ag g/t) Cu Pb Zn	Rock name	Alteration	Mineral zation	Remarks	Dept	th Core	Bounda cy (m)	- Samp). Widt	th Ass	say % (Au, Ag g/t) u Pb Zn	Rock name		Minera zation	Remarks
• •	Dip					overburden			brown soil			Dip		1 (11)		u ro Zn			zation	
. 0,	3,	na l							q small gravel			1						ep		53.50m q veinlet with Cp spots
Ż		-						·				1			•					55.00 m Hm vein Cp spot
	$\langle \rangle$								pale yellow ~ pale green			1								
									weathered			1								
												1								
0	1		·				-			60		1			-					59.20 m Hm vein Py, Cp spots
									dark green,		///	1		ľ						
									schistosity: clear											
	X 40											× 30°								
														:						65.30 m IIm veinlet
			Ì									1								66.20 m Py 67.90 ~ 69.10 m Cp minor spot
<u> </u>	2									70	VII	1		1						
	2					amp schist						1					amp schist			
																				73.80 m magnetite spots
	\mathcal{I}										4	73.80	<u></u>							
V	1								27.30 m Hm vein			k 10°					bi - q schist			pale brown
	$\hat{\boldsymbol{\lambda}}$											77.50								
										-	\overline{V}									
-//		Ì		-	· .				30.10 m q vein with Cp spots	80_	-\//	80.00	-		-					80.00 ~ 95.00 m
									30.50 m Hm vein			k 45° 82.00	3	2.00	0.15	57 0.002 0.004				Py > Cp spots scattered
	× 40°										V//.	83.50	1 .	1.50	0.01	18 0.003 0.004				
	35.0 × 45°	00					ep					85.00	5	1.50	0.04	49 0.002 0.004				
	× 45°		1	1.70	0.093 0.002 0.004				35.00 ~ 45.00 m Cu minor spots scattered			1								
						· .		Cp	37.70 ~ 38.00 m calcareous rock								amp schist			20.20 · 0
	39.0	0	2	2.30	0.077 0.002 0.004		die)					K 20°								88.30 m Cp spot
	k 40°			Ì	-				· ·	90_	Y]							Py	90.80~95.70 m q vein with Py, Cp
	7					· .						1								sporadically
	1										11	1								
				l								k 10°								
												1				-				
		. 					1		47.70 m minor Cp veinlet			{								
												1	.	:					Ру	98.30 m, 98.80 m, 99.20 m, 99.40 m
_ZZ	/						1			100	1/1/	<u> </u>	1	L	J			1	Ср	q vein with Py, Cp spots Apex20

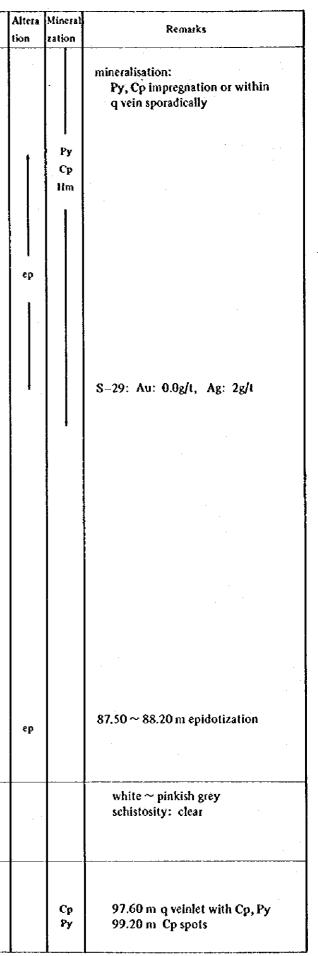
50—100 m

Depth	Core	Bounda-	Same	Witth	Accar 9	6 (Au. A	R g/tì		Altera	Minetal	- •
Jepin (m)	log	Bounda- ry (m)	No.	(m)	Assay 7 Cu	Pb	Zn	Rock name		zation	Remarks
	~~//	Dip							-		medium ~ fine grained schistosity: clear
		< 30°				·					······································
			-								105.30 m Cp minor spots
								:			107.80 ~ 109.90 m q vein with Cp spots
10											
		k 20°									
										Ср	113.70 m Cp minor spots
										Py	119.10, 119.70 m Py scattered
120											
•								amp schist			
130		129.00									pale grey
								bi - q schist	chl		schistosity waving
	//	132.10									
		k 20°									
		136.00	6	2.00	0.040	0.001	0.005			Py	136.00 ~ 138.00 m Py ≥ Cp impregnated
		138.00	ļ								
140				1		-					140,60 ~ 145,00 m
											He vein, q vein with Py, Cp sporadically
		¢ 20°			:						
										1	
		Î						•			
150		x 40° 150.50									

50--100 m

Altera	Mineral	
tion	zation	Remarks
	Py Cp	50.50 ~ 63.00 m Py, Cu minor spots scattered
		$73.40 \approx 73.80$ m Cp. Pu improgratico
	Cp Py	73.40 ~ 73.80 m Cp, Py impregnation
	Ср Ру	crystalline 74.10 ~ 74.20 m Cp, Py impregnation 75.50 ~ 76.00 m minor spots of Cu 76.60 m Cu spots
	Cp Py	80.50 ~ 87.00 m q veinlet with Py, Cp or small spots of Py, Cp impregnated sporadically
		92.50 m Hm vein 95.50 m Cp spots

.


Depth	Core	Bounda- ry (m)	Samp.	Width	Assay	% (Au, .	Ag g/t)	.	Altera	Mineral	·
(m)	log	ry (m) Dip	No.	(m)	Cu	Pb	Zn	Rock name	tion	zation	Remarks
			-	-	-	· · · · ·			-		102.90 ~ 103.10 m Py impregnated 103.30 ~ 105.00 m minor Cp spots
]									
				-							
10		110.00					÷				
		111.80	18	1.80	0.092	0.006	0.003		carb	Py Hm	110.10 ~ 111.80 m carbonate rock with Py, Hm ≥ Cp
						_	-		carp	Py	113.20 ~ 113.30 m carbonate rock Py impregnated
											116.10 m Hm vein
20		 						,		Hm Py	119.50 m Hm with Py
					-			amp schist			
30		≥ 30°									
<u>, </u>										Ср	131,20 131.70 m q vein with Cp sp
										Cp	134.10 134.90 m q vein with Cp sp
							-				
40											
- <u>-</u>											
										Cp	143.60 m calcite vein with Cp spots
		150.50						-			

0--50 m

GSJ-21

Depth	Coro	Bounda		winn	A	, (7 , 1 1	Acala	I	A 74	Mineral		Depth	Core	Bounda-	Same	Width	Accou	K (Å H)	Ap pla	
(m)	log	Bounda- ry (m) Dìp	No.	(m)	Assa) Cu	Pb	Ag g/l) Zn	Rock name		zation	Remarks	. (m)	log	ry (m) Dip	No.		Cu		·	Rock name
	··· · · ·										brown soil		11	1	1 · ·		0.050	<u> </u>		
							÷ .	overburden					¥///	45° 52.00						
	1/1/	·	 					·						{ .	23	3.00	0.051	0.004	0.004	
											dark green		V./	\$\$.00				-		
		j.									medium \sim coarse grained							a a à 4		
		K 45°											<i>\///</i>	58.00		3.00	0.019	0.004	0.004	-
		{ .											X//	1	<u> </u>				·	- - -
10		_						-				60	<i>\///</i>	1		3.00	0.045	0.004	0.004	
													VI/,	61.00		`				
													<i>\'//</i>		26	3.00	0.063	0.002	0.004	
	///	K 35°											\///	64.00						
	///												V//							
			Í										¥//	67.00	27	3.00	0.037	0.001	0.002	
													X///	68.00	28	1.00	0.122	0.001	0.003	
]											VII.	68.90	29	0.90	0.309	0.001	0.003	
20	///	ł						amp schist			schistosity: unclear	70_	V//	71.00	30	2.10	0.034	0.004	0.004	amp schist
									н 1.2			-	XIII.	11.00			· · ·			
		ł											V//.		:					
		Į											V//].						
		ł											¥///							
]																		
	//	j .											V///	1						
30												80	VI),							
. ~		{ .								Py	30.20 m q veinlet, Py rich	° <u>′</u> _	<i>\///</i>		[
		ł							E.				V///	1						
		k 40°											V//,)						
		ł									35.50 Cp spots		<i>\[]</i>	}						
		{																		
													VI.	j .						
													¥//							
40		40.00										90	<i>\[]]</i>	{					-	
	///										40.00 ~ 71.00 m		¥##	90.60		· ·			<u>_</u>	
	///			3.00	0.061	0.004	0.004		ep 1		Py, Cp minor spots scattered q veinlets with Py, Cp			k 25°						q schist
		43.00	<u> </u>		}	<u> </u>		{		l Py				ļ	· ·					त श्लाम
			20	3.00	0.053	0.004	0.003			Cp				95.00						
		45.00	 					Į					11].						
			2	3.00	0.053	0.003	0.004						1//	{ .						amp schist
	///	49.00				0,001	0.004							}						-
50	///						· · · · · ·	1				100	<u> ///</u>	100.40						

50-100.40 m

GSJ--22

GSJ-22

	-22							0–50 m	•	031-			. *							50–100.20 m
Depth Core (m) log	Bounda- ry (m) Dip	- Samp. No.	. Width (m)	Assay % (Au, Ag g/t) Cu Pb Zn	Rock name		Mineral zation	Remarks	Depth (m)	Core log	Bounda- 1y (m) Dip	Samp. No.	Width (m)	Assay ? Cu	% (Au, A Pb	g g/t) Zn	Rock name	Altera tion	Mineral zation	Remarks
					overburden			brown soil calcrete			53.00				· · · ·		amp schist			
	3.80							upper part pale green-brown, weathered		111	< 20°					•.	bi - q schist			white ~ pale brown schistosity: clear, waving
10						-			60				i,							dark green massive
20									70								amp schist		Pu	
											< 72.30								Py Cp	70.10 ~ 70.25 m Py, Cp spots
					amp schist						(40° 74.50			*-*			bi - q schist	chl		light brown ~ grey schistosity: clear
30								dark green, coarse grained massive Amphibolite schistosity: unclear	80				-						Cp Py	78.40 m, 79.60 m q veinlet with Py, Cp spots
													-	-		-	amp schist		Py	83.50 m, 83.40 m 89.30 m q. veinlet with Py
40								39.00 m magnetite scattered	90										Ру Ср Ср	89.10 m small spots of Cp
	< 30°							barren q veinlets scattered												
								45.80 m green copper			94.10 94.50 96.50	· · · · · · · · · · · · · · · · · · ·		· · · · · ·			bi - q schist amp schist		He	pale brown reddish purple schistosity: waving
so l						ep			100		99.40 100.20						bi - q schist	chl		pale brown
50 ///		.			L	I	L	J	100	ΖZ	100.20						amp schist	I	Py	Py magnetite spots Apex25

50-100.20 m

 $< \infty$

GSJ-23

	ບລ-								÷.,	•	V-30 m	•		G\$J-	23							50–100 m
Depth	Core	Bounda- ry (m) Dip	Samp.	Width	Assay %	(Au, 4	Ag g/1)	Rock name	Altera	Minerali	Remarks	7	Depth	Core	Bounda-	Samp.	Width	Assay % (Au, Ag g/1)		Altera	Mineral	
(m)	log	Dip	No.	(m)	Cu	РЬ	Zn	NOCK Balle	tion	zation			• (m)	log	ry (m) Dip	No.	(m)	Assay % (Au, Ag g/1) Cu Pb Zn	Rock name	tion	zation	Remarks
		3.00			-			overburden		-	brown soil	-									Cp Hm Cp	50.20 m q. veinlet with Cp 54.50 m, 51.80 m. Hm veinlet 51.90 m Cp spots scattered
			· · .						-		upper part brownish grey, weathered				< 40°							
							-														Py	56.40 m Py spots
10							-		•			-	60		61.00 62.00		1.00	0.013 0.001 0.003		chi	Py	6≹.00 ~ 62.00 m
		< 35°									schistosity: clear		-									q veinlet, Py impregnated 65.10 ~ 65.40 m
																-					Cp Cp He	Cp minor spots impregnated 66.30 m calcite veinlet with Cp spots 68.40 ~ 68.90 m Hm network
20		< 50°						amp schist					70			-						
					• ·											-			əmp schist		Ср Ср	71.90 m Cp spot imp 73.60 m q vein with Cp
		< 35°			-										< 30°						Ср	76.10 ~ 76.50 m Cp minor spots scattered
30		< 45°	-										80		< 80.00							80.00 ~ 99.00 m
		(4)			· ·										82.00			0.068 0.001 0.004				minor spots of Cp, Py scattered
		< 40°													85.00							
															88.00	35	3.00	0.039 0.001 0.004			Cp Py	
40			-										90		< 45° 91.00	36	3.00	0.035 0.001 0.003				
		< 35°													94.00	37	3.00	0.041 0.092 0.004				
		47.40								-	47.40~49.0				97.00	38	3.00	0.034 0.003 0.004				
50		30° 49.00	31	1.60	0.043 0	0.004	0.012			Hm Cp	Hm vein Cp spots scattered Au 0.1g/t, Ag 1g/t		100									

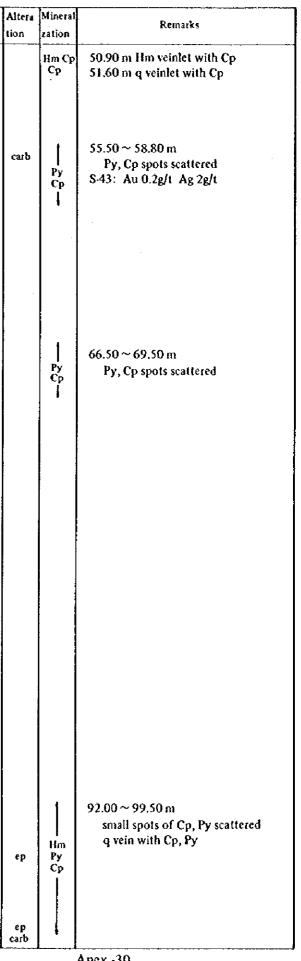
50--100 m

GSJ-23

100-150.50 m

epth (m)	Core log	Bounda- ry (m) Dip	Samp. No.	Width (m)	Assay Cu	% (Av, . Ръ	Ag g/1) Zn	Rock name	Altera tion	Minerali zation	Remarks
10		110.00 112.00	39	2.00	0.099	0.001	0.004		•	Cp ep	110.60 m, 11.40 m, 112.20 m q veinlet with Cp
-										еp	
20		(35°		· ·				amp schist			
								·			
											· · · ·
30			·							Cp	128.70 m q veinlet with Cp spots
										Py	130.30 m Py spots
40						-					
		143.40	40	1.10	0.052	0.001	0.004			Py Cp	143.40 ~ 144.50 m Py > Cp impregnated
50		150.50									

	T	r		<u>r</u>	r					T					r	1					50–100 m
Depth (m)	Core log	Bounda- sy (m) Dip	Samp, No.	¥iðth (m)	Assay : Cu	% (Au, A Pb	.g g/1) Zn	Rock name	Altera tion	Mineral zation	Remarks	Depth (m)	Core log	Bounda- iy (m) Dip	Samp. No.	Width (m)	Assay % (Au, Ag g/t) Cu Pb Zn	Rock name	Altera tion	Mineral zation	emarks
	0.0	3.00						overburden			red soil calcrete									· ·	dark green, medium ~ coarse grain schistosity: unclear
											dark green partly weathered: pale green medium ~ coarse grained								ep	- Ру Ср	52 ~ 54 m small spots of Cp, Py scattered
																		amp schist	ep sil	Ср	56.40 ~ 57.50 m 58.30 m qu veinlet with Cp spots
10												60							ep		$59 \sim 63 \mathrm{m}$ epidotization
									ep		11.20 m Hm q veinlet 13.50 m ep veinlet				· ·						
														65.40 × 45° 67.10				bi - q schist			pale brown q ≥ bi
20												70		10.00				amp schist		Cp	67.50 m Cu spots
• • •	//							amp schist						70.00 20 71.00				bi - q schist			pale grey
	//							amp senase]							72.50 m q vein with Cp
														74.00					ep		74.30 m 74.50 Cp spots
		< 30°												75.00	43	1.00	0.081 0.001 0.007			Ср	76.60 m q vein with Cp, Py
																				Py	
30											19.70 m Um vain	80									
-		 → 15° 							. ·		28.70 m Hm vein 31.40, 31.90 Hm veinlet							amp schist		Hm	83.40 m Hm veinlet
	$\langle \rangle \rangle$		-																		85.70 m q veinlet with Cp spots
											36.50 ~ 37.50 m q veinlets scattered, barren									Ср	our on q tennet what op spots
40		(50° .							ep	Cp	39.50 q veinlet with Cp 39.90 ~ 40.00 m Cp spots scattered	90									
											40.30 Ep. with Cp			91.00 92.50	42	1.50	0.102 0.001 0.004	· · · · ·		Hm Cp Py	
										Cp Py	43.50~43.60 Py, Cp minor spots						· · · · · · · · · · · · · · · · · · ·			Cp	93.50 m q veinlet with Cp spots
										Ср Ру	47.20 ~ 47.30 Py, Cp minor spots			- -							
50												100								G	
<u></u>	$\mathbb{Z}\mathbb{Z}_{k}$	33		LI.					L			100	<u>1//</u> .	l			I	·····	. l	Ср	Apex28


50–100 m

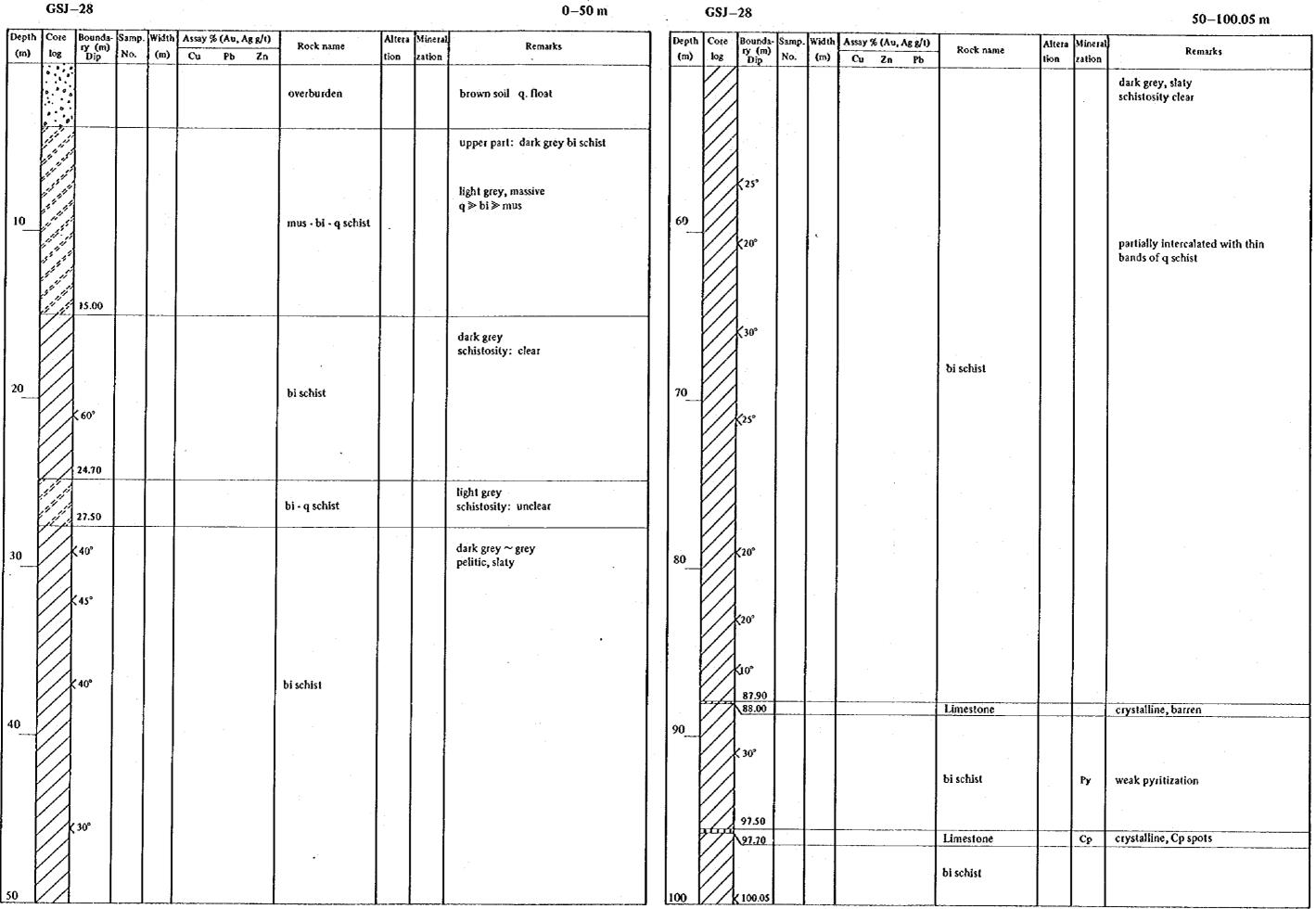
.

)epth		Bounda- ry (m) Dip	Samp.	Width	Assay	% (Au, A	\g g/t)	Rock name	1	Mineral	Remarks
(m)	log	Dip	No.	(m)	Cu	РЪ	Zn		tion	zation	
	<i>[]]]</i>	{		Î				·			
	\///	{								1 1	to the matter
	V//	1									106.40 m q. veinlet with Cp spots
	///]									107.90 m Py > Cp spots
	V1/,								-		
	V//										
	(///	}									
10	///	1									
	V///	1		ł							112.90 m Cp spot impregnated
	V/.]									
	¥///		- 1.					amp schist			
	<i>[]]</i>										
	<i>\//</i>	1									
		1									· .
	V//	1		Į						Ср	118.20 m, 118.80 m q veinlet
]									with Cp spots
20	1//		1							Ср	120.30 m q veinlet with Cp
		1								Ср	122.00 m q veinlet Cp
	V./	1						•			
		1								i	
	11]									
									ep	Ср	127.30 m Cp spots
30		1									
-	V///										
	V/	1									-
					Ì						
									Í		
	VII	1									
		1									
40	///									1	
									:		
	11	1									
	<i>[]]</i>	1									
	11]							1		
-	¥//										
	11			1						Cp	
150	Y//	150.50		1					ep		

		25										0–50 m			G81-	23						
Depth	Core	Bounda-	Samp.	Width	Ass	зу % (Au, Aş	(g/1)	Rock name	Altera	Minera	l Remarks	D	Depth	Core	Bounda-	Samp.	Width	Assa	y % (A	u, Ag g/t)	
(m)	log	Bounda- ry (m) Dip	No.	(m)	0	۱ د	Pb	Zn	KOCK Hallie	tion	zation	INCIRCIAS			log	ıy (m) Dip	No.	(m)	Cu	Pt	u, Ag g/t) Zn	Rock name
	° 0	3.00							overburden			red soil, Amp. gravel										
	V//	1									Ι	upper part weathered		[
	V///	4		ļ								dark green		.	[]],	\$5.50						
	\///] . 										generally coarse, partly fine \sim medium grained		ł		56.30	43	0.80	0.38	5 0.00	1 0.004	1
	V.//	4										schistosity: unclear		ł			44	2.70	0.019	0.00	1 0.004	
	V.//	1												ĺ	///	59.00						
10	¥///	k 60°	ł										6	60								
														ł	////							
														ł	///							
														ľ								
	(//)													ł	///	K 30°						
														ł	[]]	66.50						
														ł		68.00	45	1.50	0.02	0.00	4 0.006	
		< 40°												ł	///	69.50	46	1.50	0.018	3 0.00	1 0.004	amp schist
20	(//)								amp schist				7	70		07.30			 			ump ocmot
	(//													ł				ĺ				
	///	< 45°												ł	///							
	///	43			ľ									ĺ								
	///													ł	///							
														ł	///							
	///													ľ								
	V/	< 55°												Į.	///							
30	$\langle \prime \prime angle$		ŀ										8	30								
	///													ł	///							
Ì											1			ł								
														ŀ								
	///													[///	< 30°						
														ľ		C 30						
														k	IA							
	V/Λ													ľ	//							
40	//												9	10	//							
											Cp Hm	40.50 m veinlet with Cp spots 40.80 m calcite veinlet with Hm		k	///							
														ł		92.00						
										chi					///	94.00	47	2.00	0.049	0.00	0.004	
														ľ	///		48	2.00	0.071	0.00	0.004	
															//	96.00						
									•			47.70 m green Cp		k	1/,	^{<} 98.00	49	2.00	0.142	0.00	0.004	
	11/											47.90 m q veinlet with Cp spots		ľ		99.30	50	1.30	0.032	0.00	3 0.003	
50									····				10	00		100.30						

50-100.30 m

	C		<u>ь</u>	<u> </u>	T :				·····		k		·	1	.	· · · · ·	.	1					_	50–100.40 m
Depth (m)	log	Bounda- ty (m) Dip	Samp.	(m)		ssay %	Ph	Ag g/()	Rock name	1	Mineral zation	Remarks	Depth	Core	Bounda- 1y (m) Dip	Samp.	Width	Assay	% (Au,	Ag g/t)	Rock name		Mineral	Remarks
		1.70							overburden			red soil	(10)		Dip	<u>NO.</u>			10	Zn		tion	zation	dark green fine grained, lower part coarse grained
									amp schist			pale green ~ yellowish grey weathed											-	schistosity: unclear, partly clear 56.00 m green Cp
		7.50							binp souse														Ср	
10		1.30		-					-			grey	60											
; ; ;									mus - q schist			$q \ge mus$ generally sericitisation					•							
;												generally seriousation			x 45°									
;																								
20													70											-
		23.50 (60°																			amp schist			74.20 m q. veinlet with Py
												pale green ~ yellowish grey, calcite veinlet network schistosity: clear			× 45°								1	76 ~ 80 m Hm q veinlets with small spots of Cu, Py scattered
0													80		< 45°								Py Cp Hm	
															< 35°				-					
		35°							amp schist						< 50° 85.80									
					ĺ										86.00 × 40°						Limestone		Ср	Chalcopyrite (2 cm X 2 cm)
0		40°										lower part: dark green	90		K 4V				-					
		. 40°											90											90.15 ~ 95.60 m small spots of Cp, Py scattered
											ł	45.00 ~ 63.00 m									amp schist		Cp Py	
											a a a a a a a a a a a a a a a a a a a	epidotization spots (2~3 mm) scattered												
10											ep		100		< 40° 100.40									98.50 m q vein Py ≥ Cp impregnated 98.90 m Hm thin layer with Cp spots


50-100.40 m

GSJ-27

.

[b	6	hurter	1	1	1	T	- 50 M		0.55				- r			· .		<u>.</u>	
	h Core	Bounda- cy (m)	Samp.	Width	Assay % (Au, Ag git) Cu Pb Zn	Rock name	£	Minerali	Remarks	Depth	Core	Bounda- 1y (m) Dip	Samp.	. Width	Assay	% (Au.	Ag g/t)	Rock name		Mineral	Remarks
(m)	log	Dip	NO.	(m)	tu ro za	· · · · · · · · · · · · · · · · · · ·	tion	zation		(m)	log	Dip	No.	(m)	<u>Cu</u>	8 p	Zn		tion	zation	
			i			overburden			brown soil		^_^							dolerite	chl		
		3.00									<u>م</u> ^ ،							UVICING	Litte		· · · · ·
	77						<u> </u>				^	1									
1		1						· ·	grey,			54.00									
		1							schistosity: clear, generally weathed		Y/	4						121.			dask arau
	V/	1							Selectary needed		Y//	本 40°		1				bi schist			dark grey pelitic
	\vee	k 40°									Y//	1			ļ						
	V										\langle / \rangle	59.00	·								
10	V/]				bi schist			many calcite veinlets appear to be	60			1								drak grey, medium grained
	V/	Į							parallel to bedding		_ _			•							urak grey, medium granieu
	Y/										 ^ /									Py	$60 \sim 65$ m: hair cracks with
	V/										•										minor spots of Py
	Y/	{																			
	Y/										^							dolerite	chl		
	Y/										<u>^</u>		1								
	\mathbb{Y}	K 40°									^										
	\mathbb{Y}										<u> ^ (</u>										
20		{								70	1 ^										
-	1//									/ <u> </u>	1^. 1	·									
											.^										
	[//	21.50									^ '	`									
									brownish grey				i i								
											ĺ ^ '	Ì.									
	^					dolerite		chl				76.40									
											7	× 30°		+							
											V/	ĵ ‴									dark grey
	A .										V/]									78.10 m barren q vein (w = 7 cm)
30	- / ~									80	V/] .			[schistosity: clear
ľ	A A	31.90									1/	1									
	77										V/) -									
	1//	K40°				bi schist			brownish grey		Y/	k 40°	ļ								
	XL1	34.50									Y/										
	<u>^</u> ^								grey		YZ										
1						dolerite			01		Y/.										
						50101110					Y/							bi schist			
	· •	39.50									\langle / \rangle	1									88.40 ~ 90.00 m minor spots of Py scattered
40_	ŶŶ	J¥.3U			·	·		┨───┨		90	$\langle \rangle$	K 40°								Py	mmor spors or ry scattered
	V/								dark grey		V	1	1							'	
	1/	×40°				bi schist			pelitic		V	1	1								
	V/								-		VI	1	1								
	ΥL	43.90					<u> </u>	├			V		1								
	^ ^						1		0(6)		VI		1		- ·						
	1 ^								grey		VI	x 40°									
	^ ^					dolerite					V/										
	^										Y/										
6										100	Y/	100.05	i								
50	1	L					L	L		100	$V_{}$	1 100.03	1	1				I	. I	l	Apex32

50--100.05 m

