APPENDIX II

MINUTES OF DISCUSSIONS

APPENDIX-III

Minutes of Discussions

on

Rural Broadcasting Facilities Project

in

the Democratic Republic of Sudan

the transfer of the property of the entire terms of

In response to the request by the Government of the Democratic Republic of Sudan, the Government of Japan has sent, through the Japan International Cooperation Agency, a team headed by Mr. Mototsugu KANO (Deputy Director, Radio Monitoring Division, Ministry of Posts and Telecommunications) to conduct a Basic Design Study on the Rural Broadcasting Facilities Project (hereinafter referred to as "the Project"), from Februay 3 to March 3, 1984.

The Team has conducted the field survey, held a series of discussions and exchanged views with the central and regional governmental authorities concerned of the Democratic Republic of Sudan.

As a result of the survey and discussions, both sides have agreed to recommend to their respective Government to examine the result of the study attached herewith towards the realization of the Project.

Khartoum, February 28, 1984

Mototsugu KANO

医氯化氯 医动物性 医氯化二甲基乙醇

Tean Leader

Japanese Study Team

Poswya Hassan Pudlalha

Mirector General

Sudan Hational Drandcasting

Corporation

- 94 -

Minutes

- 1. The objective of the Project is to provide facilities and equipment for the medium wave radio broadcasting transmitting stations in order to improve the radio broadcasting service with a view to promoting education activities and improving living standards in rural areas.
- 2. Sudan National Breadcasting Corporation is responsible for the implementation of the Project on Sudanese side.
- 3. According to priority, the proposed sites and the output power for the transmitting stations are as follows;
 - 1) El Obeid, 5kw
 - 2) Wad Medani, 5kw or 10kw (*)
 - 3) Atbara, 5kw or 10kw (*)
 - 4) Kassala, 5kw
 - 5) Dongola, 5kw
- (*) subject to the further study in Japan
- that the former takes the necessary measures to cooperate in implementing the Project and provide the facilities and equipment listed in Annex I for the five radio broadcasting transmitting stations as stated in the paragraph 3 within the scope of Japanese economic cooperation in grant form.
- 5. The Government of the Democratic Republic of Sudan will take the necessary measures listed in Annex II on condition that the grant assistance by the Government of Japan is extended to the Project.
- 6. Both sides confirmed that the Japanese Study Team explained the Japanese Grant Aid Programme and Sudanese side understood it.

Анлех І

i.	Nedium Wave Radio Broadcasting Transmitter	2	sets
2.	Transmitting Antenna	1	set
3.	Durany Load	1	set
4.	Input Equipment	1	set
5.	Transmission Control Equipment	1	set
6.	Remote Control/Supervisory System	1	set
7.	Studio-te-Transmitter Link	1	set
8.	Measuring Equipment	. 1	set
9.	Engine Generator	· 1	set
10.	Shelters		
•	1 each for transmitter and engine generator		
11.	Monitoring Receiver	1	set
12.	Other related equipment, spare parts and tools	1	set
٠.			

ANNEX II

- 1. To provide data and informations necessary for basic design.
- 2. To secure the lands necessary for the radio broadcasting transmitting stations.
- 3. To take necessary steps to ensure the reliable programme transmission to the studies of the proposed transmitter sites.
- 4. To carry out site preparation such as clearing, leveling and access road before commencement of construction works.
- 5. To provide facilities for distribution of electricity, drainage, communications and security.
- 6. To ensure prompt unloading, tax exemption, customs clearance at the ports of disembarkation in Sudan and prompt internal transportation of the products purchased under the grant.
- 7. To exempt the Japanese nationals concerned from custom duties, internal taxes and other fiscal levies imposed in Sudan with respect to the supply of the products and services for the Project.
- 8. To provide necessary permissions, licences and other authorizations for carrying out the Project.
- 9. To establish necessary operation and maintenance organizations in time for the completion of the radio broadcasting transmitting stations.

APPENDIX IV

LIST OF CONCERNED PERSONS MET
BY THE SURVEY TEAM

APPENDIX-IV

LIST OF CONCERNED PERSONS MET BY THE SURVEY TEAM

 Ministry of Information and Culture the Hon. Mr. Ismail Al-Haj Musa Minister

Mr. Mohamed Kgogali Sallehin

2. Sudan National Broadcasting Corporations (SNBC)

Mr. Moauya Hassan Fudlalha Director General

Mr. Hassan A. A. Rahman Director General of

Engineering

Mr. Mahmoud Said Badri Director of Planning

and Projects

3. Mr. Abdelrhman Elsated Badri

University of Khartoum

Dr. Elfafih Mohamed Ali Professor, Building and

Read Institute

4. KORDOFAN

the Hon. Mr. Alatin Bushare Governor

The Hon. Mr. Dalom Aikhtim Minister of Regional

and Administrative

Affairs

Mr. Salah Deputy Director of

Information & Culture

Mr. Awad Director of

Broadcasting

Mr. Ibrahim Mekki Dool Director of

Telecommunication

5. ATBARA

the Hon. Professor Abdella Ahmed Abdella Governor

Mr. Wahbi Director General of TV

Station

Mr. Kamal Osman

District Manager of Telecommunication

Mr. Mohamed Elhassan

Microwave Engineer of Telecommunication

6. KASSALA

the Hon. Mr. Abdulah Ahmed El Hardula

Minister of Regional and Administrative Affairs, East Region

7. DONGOLA

Mr. Osman Barri Algamas

Mr. Mahgob Elsidig

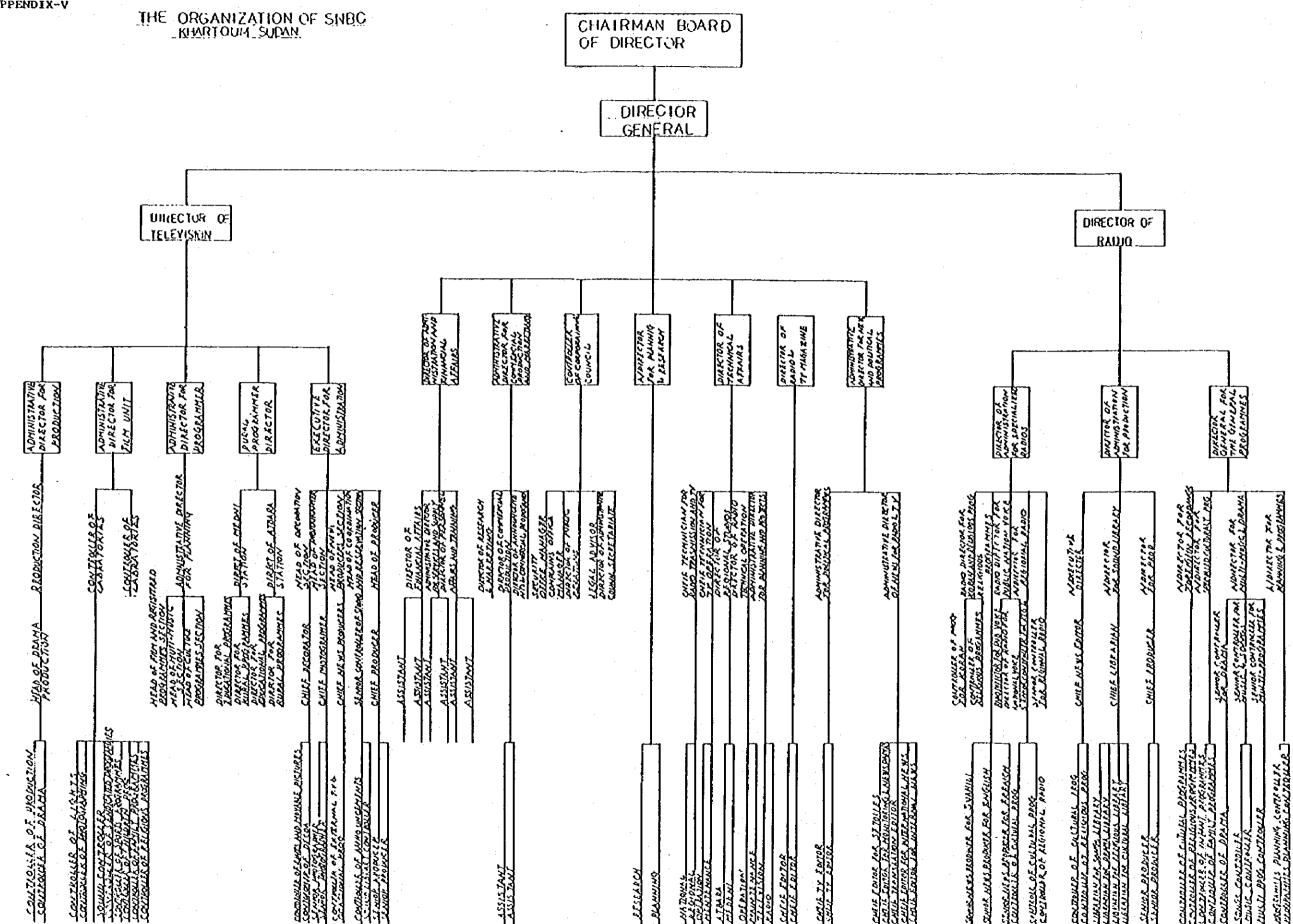
Mr. Alkawad El Khalifa

Commissioner

Director of the

Province

Assistant Commissioner


8. SENNAR

Mr. Salih El Hag El Bashier

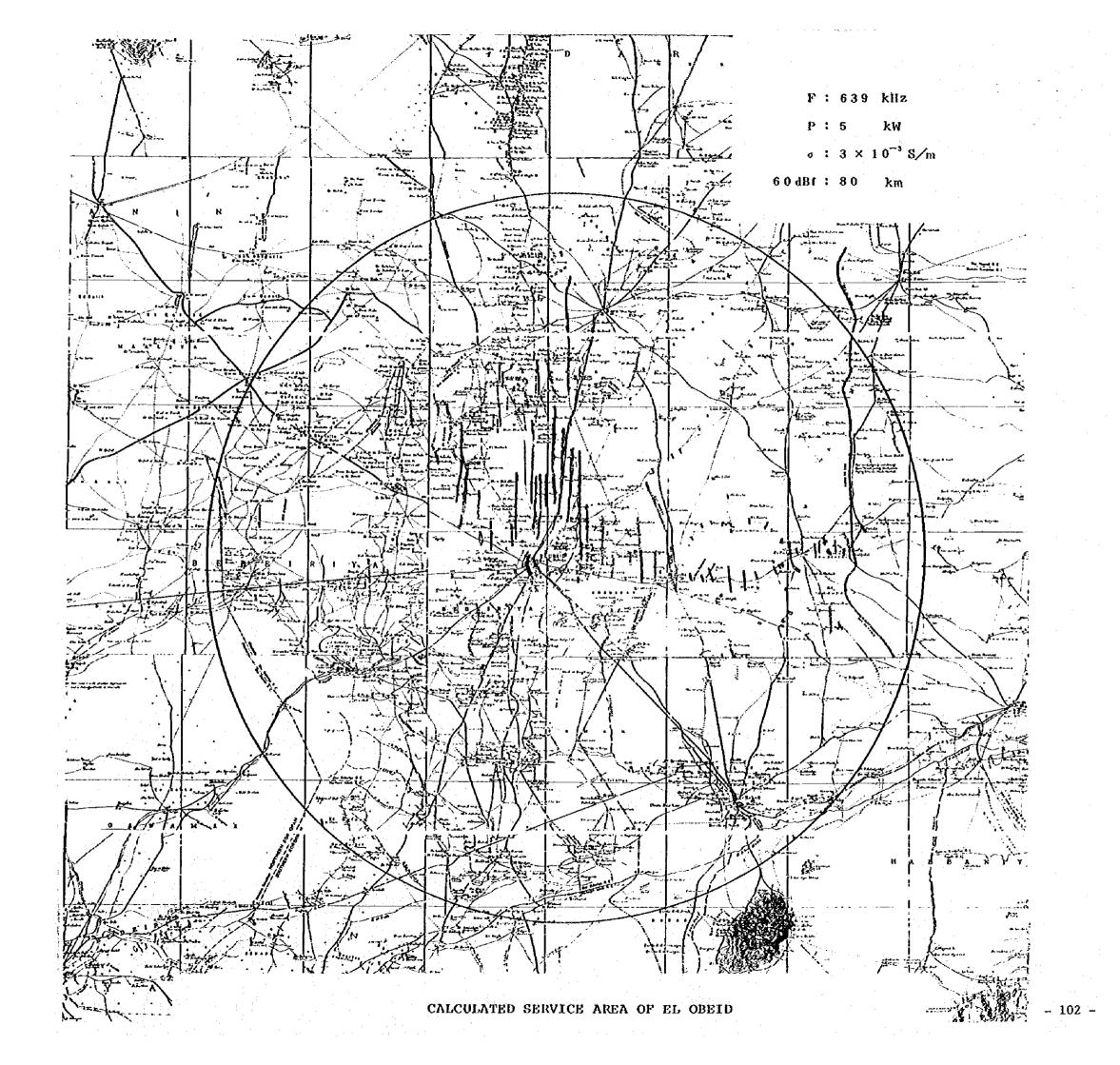
Chief Engineer, SENNAR Transmitting Station

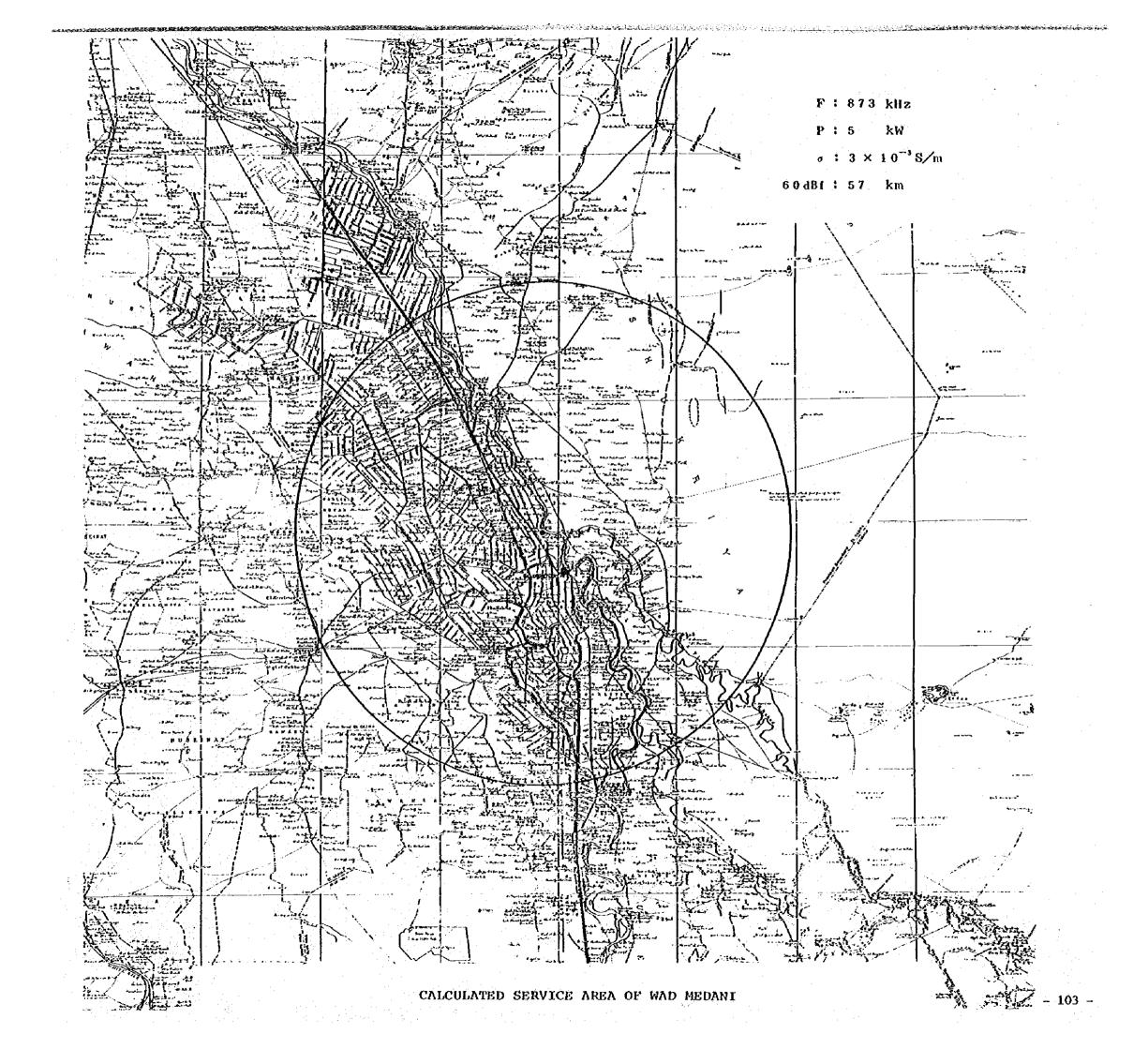
APPENDIX V

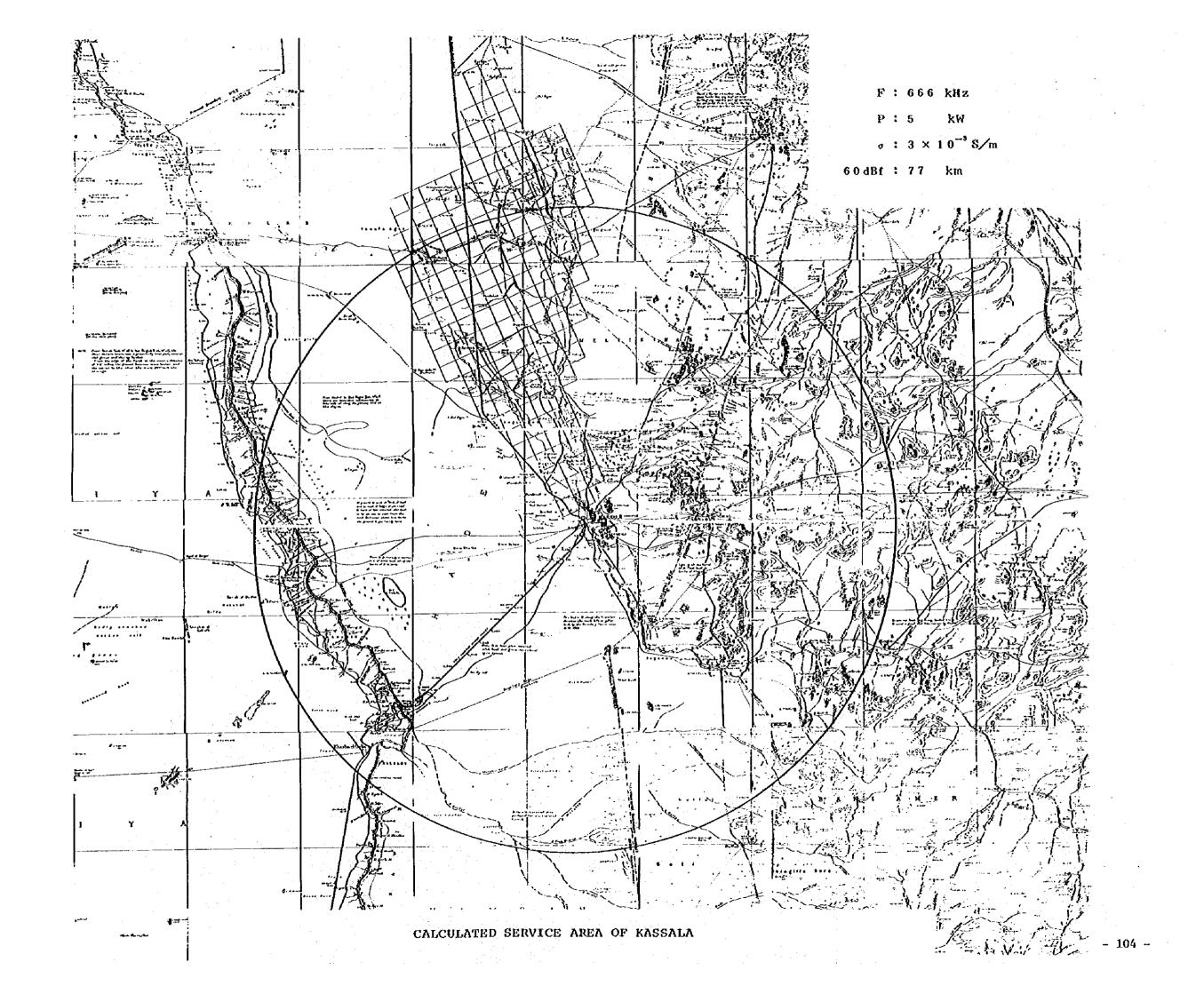
ORGANIZATION OF SNBC

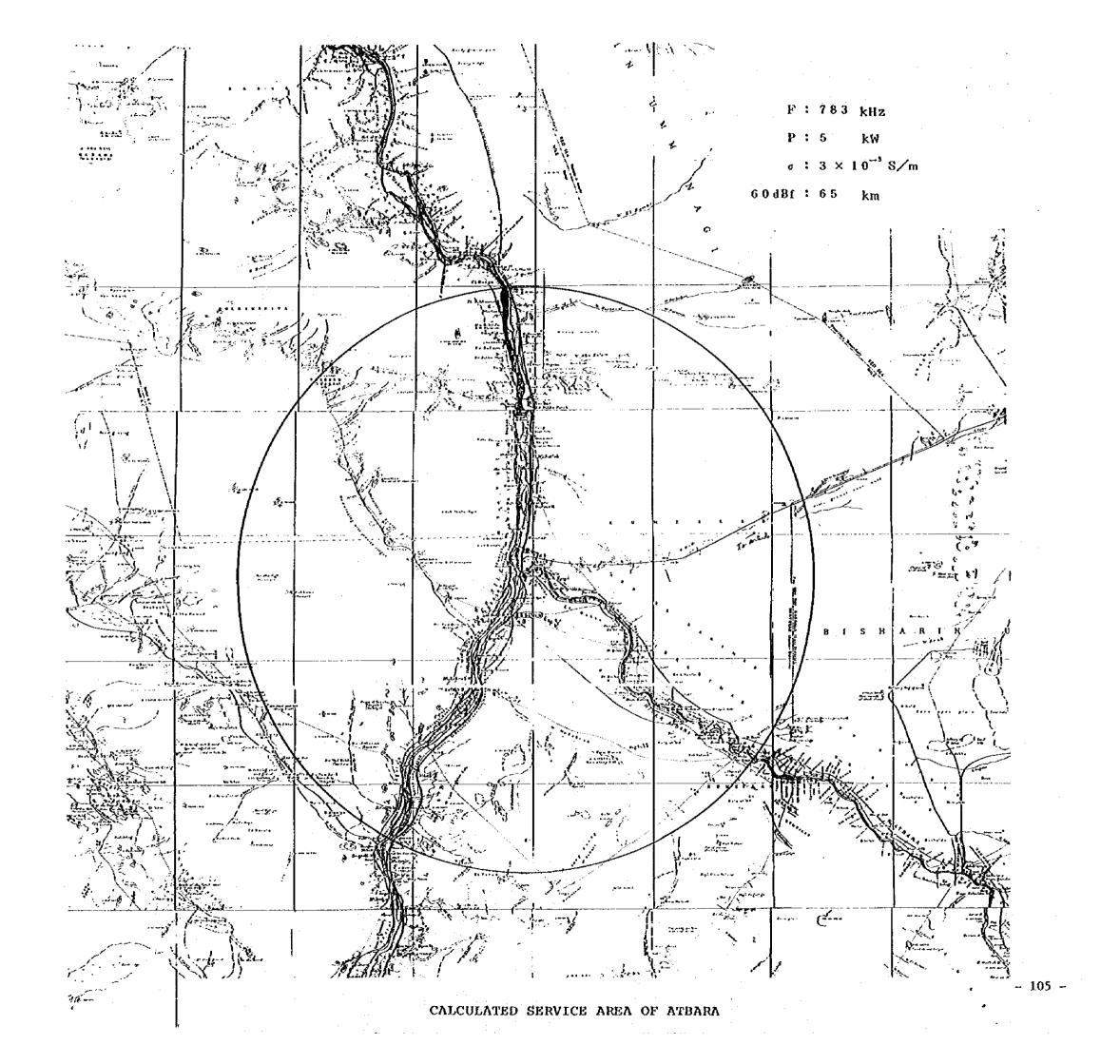
APPENDIX VI

LIST OF FREQUENCY ASSIGNMENT (WARC)


1	2	3	4	5	6	7	8	9	10	11	12
540 (2)	NYALA	24E58	12N03	A20	250	24.6	A	221	4	0400-2200	
558 (4)	EN NOHUD	28623	12840	A20	100	23.4	A	333	4	0400-1500	
576 (6)	SOBA	32E40	15030	A20	200	26.4	A	3 2 3	3	0400-2200	24
603 (9)	RUMBEK	29E38	06N48	A20	50	20.4	A	313	3	0600-1600	24
621 (13)	RASHAD	31E31	11039	A20	100	23.4	A	304	4	0600-1600	24
639 (13)	EL CSEID	30E14	13N12	A20	200	25.1	A	225	4	0400-2400	18/G LSO UGA
666 (16)	KASSALA	36822	15N23	A20	200	27.0	В		4	0400-2400	24
693 (19)	JUBA	31E35	04050	A20	200	26.4	A	276	3	0400-2200	18/YGK
729 (23)	ZALINGEI	23833	12N57	A20	200	26.4	A	247	4	0600-1600	24
747 (25)	PT SUDAN	37E12	19836	A20	100	24.0	В		4	0400-2400	24
765 (27)	SOBA	32E40	15830	A20	200	26.4	A	228	3	0400-2200	24
783 (29)	ATBARA	34E00	17N30	A20	100	26.0	В		4	0400-2400	
801 (31)	EL FASHER	25E30	15838	A20	100	23.4	Α	241	4	0600-1600	24
819 (33)	DONGOLA	30E30	19810	A20	100	24.0	A	235	4	0600-1600	24
837 (35)	WADI HALFA	31E18	21854	A20	50	20.4	A	230	4	0400-1500	24
855 (37)	SOBA	32E40	15พ30	A20	500	30.0	8		. 3	0400-2400	24
873 (39)	BURAM	25E10	10847	A20	250	30.0	В	. !	4	0400-2400	24
891 (41)	BABANUSA	27E48	11821	A20	100	23.4	Α.	215	4	0400-1500	24
909 (43)	YAMBIO	28E24	04N32	AŻÒ	50	21.0	В		3	0400-1600	24
927 (45)	MALAKAL	31E40	09N32	AŽÓ	250	27.4	A	200	3	0400-2200	18/XEN 24
945 (47)	ABU HAMED	33208	15N30	A20	100	23.4	A	205	3	0500-1600	24
963 (49)	SOBA	32E40	15א30	A20	200	26.4	A	181	3	0400-2400	18/CYP -24
1026 (56)	PIROR POST	33508	06N49	A20	50	20.4	A.	164	3	0400-1500	24
1071 (61)	WAU	28501	07N48	A20	200	23.0	Α	266	3	0400-2200	24
1296 (86)	SENNAR	33836	13831	A20	1500	34.0	В	ļ ·	3	0400-2400	23/URS 24


- 1: Assigned Prequency (kHz) (CHANNEL MIMBER)
- 2: Name Of Transmitting Station
- 3: Geographical coordinates of the transmitting stations
- 4:


- ditto
- 5: Necessary Bandwidth (kHz)
- 6: Carrier Power (KW)
- 7: Maximum Radiation (dB)
- 8: Type of Antenna
- 9: Height of Antenna
- 10: Ground Conductivity [mS/m]
- 11: Hours of Operation (CAT)
- 12: Remarks


APPENDIX VI

CALCULATED BROADCASTING SERVICE AREA

APPENDIX W

FIELD STRENGTH DATA

Survey of Field Strength (EL OBEID 639 kHz)

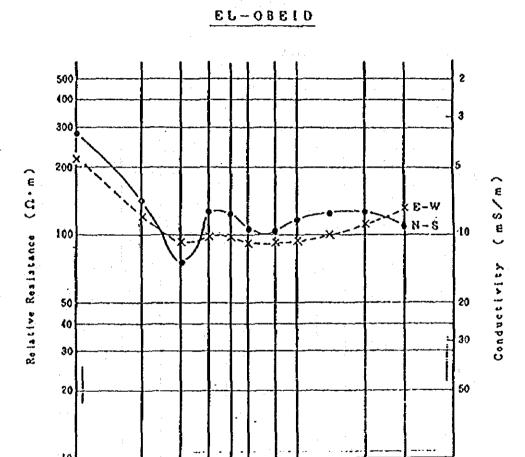
8th Feb. 1984

PLACE & TIME	FREQUENCY (kHz)	FIELD STRENGTH dB/\(\mu\rangle\)v	REMARKS
Site	560		ADF 2nd Harmonic
14:10 ∿	594	20	Music
	650	23	Arabic
•	690		
	963	30	Music
	1,520	23	
	610	9	Noise Level
	1,000	9	Noise Level
	1,600	9	Noise Level
Centre of	612	40	(-27kHz) beat
City (No.1)	621	45	(-18kHz) Arabic
-	639	48	Assigned Frequency, BBC
18:00 ∿	648	53	(+9kHz) Arabic
·	657	40	(+18kHz) Music
	666	23	(+27kRz) Music
_	570	25	Noise Level
	995	25	Noise Level
	1,580	20	Noise Level
Centre of	612	46	(-27kHz) beat
City (No.2)	621	51	(-18kHz) Arabic
18:30 ∿	639	56	Assigned Frequency, BBC
10.30	648	56	(+9kHz) Arabic
	657	40	(+18kHz) music
	666	35	(+27kHz) music
	575	17	Noise Level
	990	20	Noise Level
	1,590	10	Noise Level

	T		24th reb. 1984
PLACE & TIME	PREQUENCY (kHz)	FIELD STRENGTH dB/µv	REMARKS
Hotel 19:00 ∿	846 864	39-49 50	(-27kHz) Fading (-9kHz) Arabic
13:00 ₺	873	41-51	Assigned Frequency, Fading
·	882	35	(+9kHz)
	891	39	(+18kHz)
	990	34-44	(+27kHz)
	600	20	Noise Level
	875	22	11
	1,000	23	. 41
	1,500	<20	et
G. 11	846	34-44	(-27kHz) Fading
Suburb 19:45 ∿	855	39	(-18kHz)
17.45	864	53	(-9kHz) Arabic
	873	45-49	Assigned Frequency, Fading
	882	37	(+9kHz)
	891	. 36	(+18kHz)
	900	45-55	(+27kHz) Fading
	600	20	Noise Level
	875	< 20	ń
	. 1,000	< 20	11
	1,500	< 20	
Site	855	25	(-18kHz)
17:00 ∿	864	32	(-9kHz) Arabic
	900	20-30	(+27kHz) Fading
	600	<20	Noise Level
	880	<20	11
	1,000	<20	n
÷ · · · · · · · · · · · · · · · · · · ·	1,500	< 20	17
Hote1 8:30 ∿	1,296	80	Sennar Station
11 3	864	34	Arabic
Rotel	600	23	Noise Level
7:00 ∿	900	22	en e
	1	1	1
	1,000	<20	, n

PLACE & TIME	FREQUENCY (kHz)	FIELD STRENGTH dB/µv	REMARKS
Site	648		Arabic
10:44 ∿	683	25	
Railway Sta-	765	39	(-18kHz) music
tion	774	46	(-9kHz) Arabic
19:00 ∿	783	51	Assigned Frequency, beat
17.00	792	45	(+9kHz) Talk
	801	46	(+18kHz) music
	520	15	Noise Level
	1,000	24	Noise Level
	1,610	15	Noise Level
Guest house	765	46	(-18kHz)
20:00 °	774	47	(-9kHz)
20.00	783	52	Assigned Frequency
	792	56	(+9kHz)
	801	57	(+18kHz)
	519	20	Noise Level
	1,044	22	Noise Level
	1,611	14	Noise Level

Survey of Field	Strength (M	HOSALA COURTES	16th-17th Feb. 1984
PLACE & TIME	FREQUENCY (kHz)	FIELD STRENGTH dB/\mu\rangle	REMARKS
Hotel	639	58	(-27kRz) BBC
19:00 ∿	648	61	(-18kHz) Rabic
17.00	657	54	(-9kHz)
	666	55	Assigned Frequency
	675	53	(+9kHz)
	684	45~47	(+18kHz) Fading
	693	45	(+27kHz)
Suburb	639	62	(-27kHz) BBC
20:00 ∿	648	76	(-18kHz) Arabic
20.00	657	50	(-9kHz)
	666	57	Assigned Frequency
	675	48	(+9kHz)
	684	55 ~ 57	(+18kHz) Fading
	693	58	(+27kHz)
	520	20	Noise Level
	660	22	lt.
	980	22	11
	1,450	20	11
	1,540	21	0
Centre of City	520	20	Noise Level
20:30 ∿	660	24	· ·
	980	25	•
	1,540	22	ii ii
	_,		
Site	648	39	(-18kHz) Arabic
12:30 ∿	684	21	(+18kHz)
17:20 .6	520	20	Noise Level
	660	20	n
	980	20	u
	1,540	20	n


Survey of Field Strength (DONGOLA 819kHz)

23rd-26th Feb. 1984

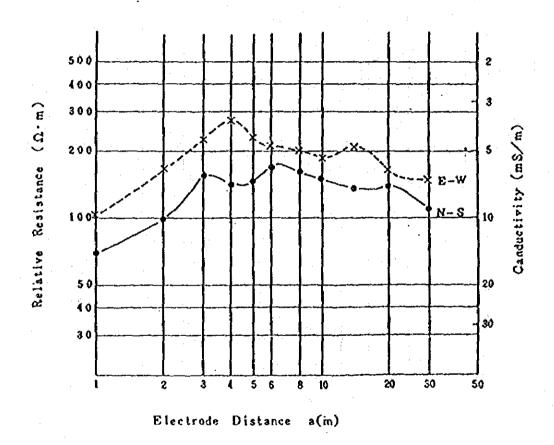
PLACE & TIME	FREQUENCY (kHz)	FIELD STRENGTH dB/uv	REMARKS		
Guest House 7:20 ∿	819	30	Assigned Frequency, Arabic		
Site	819	30	Assigned Frequency, Arabia		
17:00 ∿	505 1,000	13 10	Noise Level Noise Level		
	1,550	15	Noise Level		
Guest House 20:00 ∿	801 810	52 34	(-18kHz) Arabi		
	819 828	53 44	Assigned Frequency, Arabic (+9kHz) Beat		
	837	42	(+18kHz) Beat		
	500 975	23	Noise Level Noise Level		
	1,650	15	Noise Level		

APPENDIX IX

GROUND CONDUCTIVITY DATA

Note:

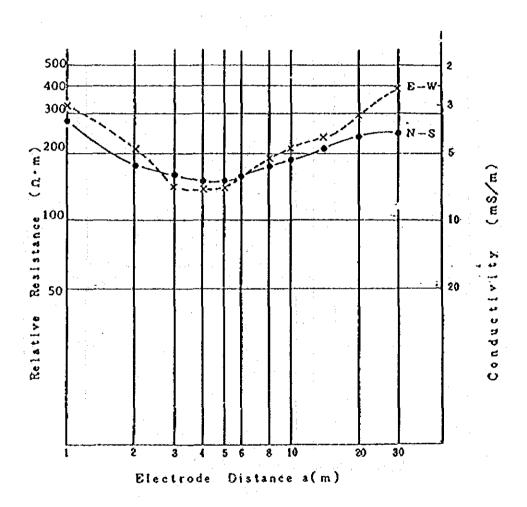
Measurement Instrument: Type L-10 (Yokogawa Electric Co.,)
Result of Ground Conductivity Measurement


6

5

8

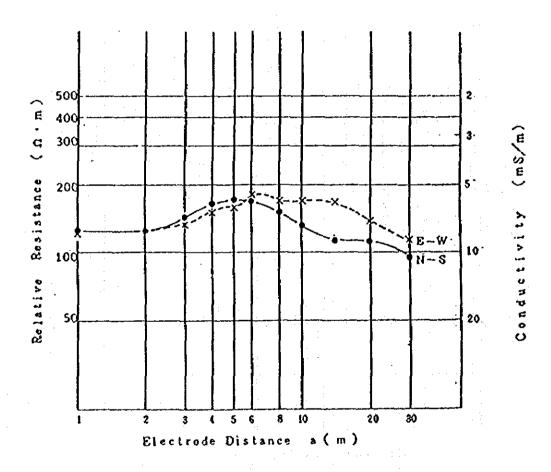
Electrode Distance s(m)


WAD -- MEDANI

Note:

Measurement Instrument: Type 3244 (Yokogawa Electric Co.,)
Result of Ground Conductivity Measurement

ATBARA

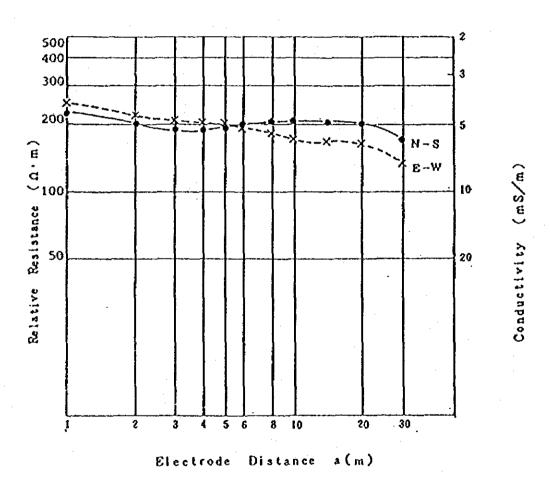


Note:

Measurement Instrument: Type L-10 (Yokogawa Electric Co.,)

Result of Ground Conductivity Measurement

KASSALA



Note:

Measurement Instrument: Type 3244 (Yokogawa Electric Co.,)

Result of Ground Conductivity Measurement

DONGOLA

Note:

Measurement Instrument: Type 2-10 (Yokogawa Electric Co.,)

Result of Ground Conductivity Measurement

APPENDIX X

RESULT OF SURFACE EXPLORATION

INDEX

1	. •		·P	re	ſа	ce

- Outline of the Topographic Features and Geology in Sudan
- 3. Outline of the Exploration
- 4. Exploration Result in KASSALA
- 4.1. Observation of Outcrop
- 4.2. Observation of Collected Samples
- 4.3. Physical Examination
- 4.4. Dutch Cone Penetration Test
- 4.5. Investigation on Soil Yield Strength
- 5. Exploration Result in ATBARA
- 5.1. Observation of Outcrop
- 5.2. Observation of Collected Samples
- 5.3. Physical Examination
- 5.4. Investigation on Soil Yield Strength
- 6. Exploration Result in DONGOLA
- 7. Exploration Result in EL OBEID
- 7.1. Observation of Outcrop
- 7.2. Observation of Collected Samples
- 7.3. Physical Examination
- 7.4. Investigation on Soil Yield Strength
- 8. Exploration Result in VAD MEDANI
- 8.1. Observation of Outcrop
- 8.2. Observation of Collected Samples
- 8.3. Physical Examination
- 8.4. Investigation on Soil Yield Strength
- 9. Summary

1. Preface

This report handles the reconnaissance work in Sudan from February 5 to March 1, 1984, and examination result done after arriving in Japan, as well as the investigations on soil yield strength of each spot, based upon the above result.

2. Outline of the Topographic Features and Geology in Sudan

Outline

Firstly, the topographic features as well as geology of African continent is very monotonous. Except the Atlas Mountain Range, which is a young fold mountains of the northern tertiary era layer, most of the land is the plateau area, which has not got the fold since old geographical age. It is based on the old crystal rock gneiss, granite, etc.), and the rocks of each geographical era, which cover it, are mostly terrigenous layer, except the sea coast area. (Fig. 1) The feature of the Continent is that the sea cost plane is narrow, the inner area is a huge basin, as well as high swells, which surround it (Fig. 2).

Secondary, the topographic features and geology of Sudan will be mentioned. Sudan is situated on from nearly 40N, and its main part is in the Sudan Basin, which occupies the basins of the White and Blue Nile (Fig. 2). It consists of the plateau, which is divided into various natural scenic views, such as the tropical rain forests, marshes, the subtropical savannas and deserts, etc. In the south, rainfalls are abundant, and the characteristic swampland called Sad, which is the area of high temperatures and high humidities, mostly occupied by swamps and forests.

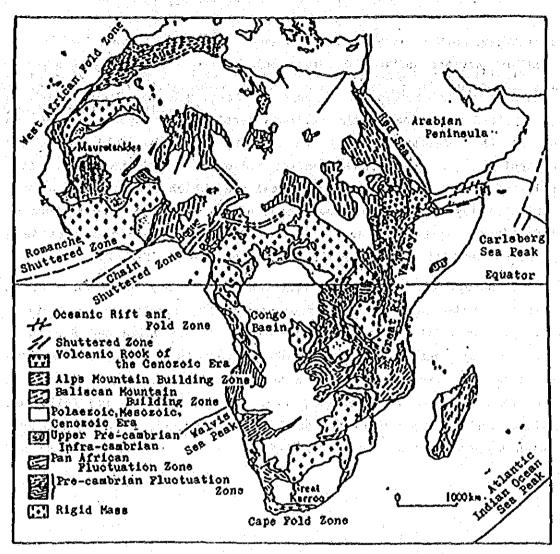


Fig. 1 Geographical Structure of the Africa Continent complied and simplified from 'International Tectonic Map of Africa (1968) and Geological Atlas, UNESCO (1975)

Reference 2

Fig.2 Basin and Swell Structures of African Continent

Survey spot

The survey spot are geographically classified in Table 1.

Table 1 Geography of the Survey Spots

Servey Spot	Above Sea Level (m)*	Remarks
KASSARA	495	EAst end of SUDAN
		Along the Ethiopian border East of ATBARA River, a tributary of Nile. Bastward from here, it reaches to the plateau. Just east of KHARTOUM.
ATBARA	350	North of KHARTOUM. Diverging point of Nile and ATBARA tributary.
DONGOLA	227	North of SUDAN and riverside of Nile. Nubia Desert is near its north.
ET OBEID	570	West of White Nile. Small plateau.
WAD MEDANI	405	Just north of KHARTOUM. Central city of Gezird area, a cotton plantation. Along Blue Nile.

^{*} Average altitude of African Continent is about 670m.

Climate

The climate in the dry land has great influence upon the soils. Among them, the rainfall is most important. According to Reference 3, the rainfall in SUDAN is as follows:

"Under the tropical climate, the intense heat covers the whole year espectialy in centre part. The yearly precipitation widely changes, under 100mm in north Egyptian boarder, and above 1,200mm in the south end. Consequently, the dry season lasts for as long as ten months in ATBARA, northeastern part, while only one month in MONGOLLA, southern part. In the central part, the yearly precipitation changes widely from 100mm to 500mm, and the rainy season is short".

Temperature of Gezird area, including KHARTOUM, WAD MEDANI, etc., of which cotton plantations are the treasures of SUDAN, is not below 30°C through the year. The rainfall becomes smaller from south to north. That of <u>WAD MEDANI</u>, THE CENTRAL PRTS, IS ABOUT 380mm per year, AND IN KHARTOUM, only about 180mm.

In addition, the rain concentrates mostly in two months, July and August, and scarcely from November to April. The rainfalls in EL OBBID and DONGOLA, which are not indicated, can be anticipated.

SOIL

In the land, the cohesive soils are widely distributed. The penetration of water into the soil in the irrigation area is small, and almost all rainfall stay on the surface and evaporate.

Black Cotton Soils

This is a special soil, noteworthy in SUDAN. It is black clay soil, and called Badole. It's distribution in Africa is shown in Fig. 3^{5}).

It is clearly observed that the soil is distributed from centre to south-east, as well as south in Sudan.

This soil belongs to the special soil and shows remarkable swelling according to the change of the water content percentage.

According to Reference 6, 'this black-gray soil becomes clay-like by rain, and is very trouble something, which obstructs the automobile traffic. Accordingly, the season of field survey in INGESANA HILLS area, east-southeast of EL OBEID, is limited from around October to March'. This soil is deposited on the surface course in the area. By another Reference 4, the layer thickness of the soil is about 1 M in average, when the basic layer is shallow. Consequently, the depth of embedment base should be decided avoiding this soil.

The reason of swelling is Monmolinite, the main component of the clay minerals in the soil.

Fig. 4^{5}) shows the comparison on the plasticity chart between the black cotton soils and the samples collected in each survey spots, mentioned later.

All references are shown in Annex-2.

Fig 3 distribution of black clay soils in africa

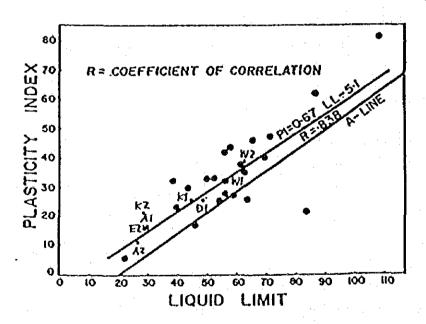


Fig 4 PLASTICITY CHART, AFRICAN BLACK CLAYS

3. Outline of Exploration

Explorations were conducted at five spots shown in Fig. 5. The items are as follows:

i) Investigation of the outerop on the spot, and the sample collecting.

At each spot, the outcrop is observed, and the samples are collected at G.L. -1.0m and -2.0m by digging the test pits.

ii) Static Cone Penetration Test at in-site Only in KASSARA

iii) Observation of Samples and Physical Test

After arriving in Japan, the collected samples were carefully observed, and physical test was conducted. The items of the test and the standards⁷⁾ in conformity are as follows:

#	Special Gravity Test of Soil Particles	JIS A 1202
*	Water Content Test	JIS A 1203
¥	Grading Test	JIS A 1204
*	Liquid Limit Test	JIS A 1205
¥	Plastic Limit Test	JIS A 1206

Solid yield strength at each spots were examined based on i) to iii) and materials from KHARTOUM University, Annex 1.

4. Exploration Result in KASSARA

4.1 Observation of Outcrop

Situation of Site

It is situated on the outskirts of farm land, spreading westward of the city and along the river of GASH. Contemporary, a vacant ground. Flat and no vegetation. A well, of which water depth is G.L.-42m, is one km far eastern of the site.

Situation of Surface Soil

Blackish clay soil. Hard, under 2 to 3 cm. Water penetration is good. When water is spilt, the surface comes down and a hole is made.

Observation of Excavation Pit Wall

Considerably hard. A mark of excavation by the pick is engraved on the pit wall. The harder, the lower. The soil is same down to 200 cm.

4.2 Observation of Collected Samples

Samples were collected at G.L. about -1.0m and 02.0m.

Samples from G.L. -1.0m

They were collected as hard cores. Apparently, volcanic rock, but so strong as expected by the appearance. Some parts collapse easily by the fingers. Dark brown. Soil lump, in the water, collapses and becomes fine grained soils.

Samples from G.L. -2.0m

Apparently, the solid silt or sand stone. When crashed the fingers, mostly becomes fine grained (remains as grains, but diameter is very small, like silt). Some parts remains as small lump. They has light other colour.

4.3 Pysical Test

The list of test is shown in Table2, as follows:

Table 2. List of Physical Test (KASSARA)

Table- & List of Physical Test

Name of Sample Soil Texture			K-1 (G.L1.0 ^m)	K-2(G.L2.0 ^m)
Gravity	G		2.745	2.765
Water Content *		₩n (%)	11.0	5.4
anamanan da inina mata damah apika damah da inina da da inina da da inina da inina da inina da inina da inina d	Liquid L	imit Wl (%)	43.4	27.5
Consistency	Plastic	Limit Wp (%)	17.9	6.8
	Plastici	ty Index Ip	25.5	20.7
دوره رفعان پیرون کار ۱۳۰۰ نورون دید به در زید داده کار <u>در در این در </u>	Gravel	(8)	0.7	2.2
		Coarse Sand	11.6	4.2
Grading * *	Sand (%)	Fine Sand	14.4	40.5
Characteristic	Silt (%)	47.7	30.8
	Cley (%	;)	25.6	22.3
		Standard ssification	CL	CL
Classification	Triangle Presenta	Axis	F	F

- * Due to the aridity during the transportation, these water content percentage will be smaller than that of the original condition.
- * * Gravel 2,000 μ < , Sand 74 2,000 μ (Coarse Sand 420 2,000 μ) Fine Sand 74 - 420 μ), Silt (5 - 74 μ), Clay 5μ

4.4 Dutch Cone Penetration Test

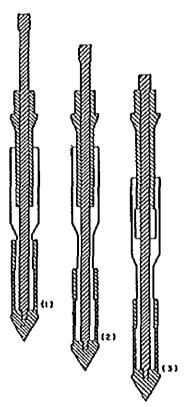

Dutch Cone Penetration Test was conducted at the Building and Road Research Institute of KHARTOUM University. The test equipment used is a mechanical friction cone penetrator (Begemann Cone) for 10 tons. The cone resistance (q_c) and the friction on the jacket (f_g) were measured at 15 cm deep at intervals of 20 cm. Fig. 6 shows the process of measurement.

Fig. 7 shows the result of test. The unit, MN/m^2 , in the figure, has the following relations to kgf/cm^2 :

$$1MN/m^2 = 1,000 \text{ KN/m}^2 = 10 \text{ kgf/cm}^2$$

Fig. 6 Measuring Process of the Mechanical Friction Cone Penetrometer (Begemann Cone)

Fig. 7 Result of Dutch Cone Penetration Test (KASSARA)

- (1) Cone and friction sleeve retracted
- (2) Cone in extended position
- (3) Cone and friction steams both advanced

Fig. 6 Measurement Process of Mechanical Friction Cone Penetration Test(KASSARA)

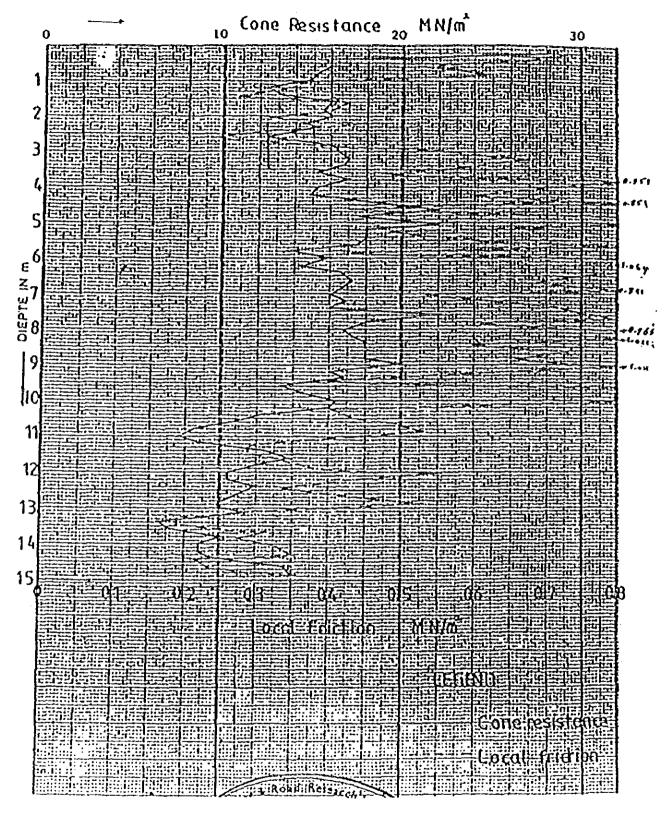


Fig. 7 Result of Dutch Cone Penetration Test (KASSARA)

4.5 Investigation on Soil Yield Strength

In the soil analysis, this soil is regarded as cohesive soil, because it is CL (sandy clay or silty clay).

According to the result of Dutch cone penetration test, mentioned in Section 4.4,

 $q_{_{\rm C}}$ is larger in the upper layer than in the lower layer. Judging from these low $F_{_{\rm R}}$ values, the sand is increased in the lower layer.

If the surface is supposed to be cohesive soil, the relations between the non-drainage shearing strength (C_{ij}) and q_{ij} is as follows:

$$Cu = \frac{q_Q}{N}$$

here, N: cone coefficient

upper ridden stress (negligible, because it is too smaller than q_0 .)

Concerning N, the following proposals are Submitted:

(i) Sanglerat
10
)
 $q_c < 20 kg f/cm^2$
 $15 < M < 18$ (Normally Consolidated Clay)
 $q_c > 25 kg f/cm^2$
 $22 < N < 26$ (Over Consolidated Clay)

- (11) By Soil Exploration Methods of Soil Engineering Society¹⁾ 14 < N < 17
- (iii) By Standard of Basic Architectural Construction Design and Comment of Architectural Engineering society 12)

When $q_0 = 17 \text{ MN/m}^2$ and N=30 for the safty's sake,

$$C_{ij} = 5.7 \text{ kgf/cm}^2$$
 (1)

If the strength of basic bottom becomes low by inundation $\mathbf{C}_{\mathbf{u}}$ value becomes one half:

$$C_{\rm p} = 2.8 \text{ kgf/cm}^2 \tag{2}$$

The allowable bearing power will be, using above C_{ij} , as follows:

$$q_a = \frac{1}{3} (CN_0 + _1BN_r + r_2D_1N_0)$$
 (Long term) (3)

here, = 1.3
$$N_c = 5.3 \ (6 = 0^{\circ}), N_r = 0$$

2 = 1.69, $\frac{1}{2} = 0.69, N_q = 3$

The allowable bearing power (q_a) without the influence of water is as follows:

$$q_a = \frac{1}{3}$$
 (1.3 x 57 x 5.3 + 1.69 x 3 x D_f)

If the influence of $D_{\mathbf{f}}$ is negligible for its small value,

$$q_a = \frac{1}{3} \times 392 = 131 \text{ t/m}^2$$
 (4)

$$q_a = \frac{1}{3} (1.3 \times 28 \times 5.3) = 64 \text{ t/m}^2$$
 (5)

In conclusion, the allowable bearing power in KASSALA will be determined for the safty's sake, as follows:

$$q_a = 50 \text{ t/m}^2$$
 (Long term) (6)
 $q_a = 100 \text{ t/m}^2$ (Short term) (7)

$$q_a = 100 \text{ t/m}^2$$
 (Short term) (7)

In the above investigation, the allowable bearing power is regarded to be equal to the permissible soil pressure.

5. Exploration Result in ATBARA

5.1 Observation of Outcrop

Situation of Site

Desert area, about 5 km south from the city. The site is dotted with sandy hills with about 2m high. To ATBARA River, 1 km north and 5m to the water level.

Situation of Surface Soil

Sand, mixed by small gravels. Poured water is absorbed quickly.

Observation of Excavation Pit Wall

Black soil down to G.L. -70cm, and white soil underneath. Very hard. It can not be excavated without a pick.

5.2 Observation of Collected Samples

Samples were collected at G.L. about -1.0m and -2.0m.

Samples from G.L. -1.0m

Samples were collected as cores. Light brown, a little blackish comparing with that of from G.L. -2.0m. Clods can be easily collapsed by hands. Partly white small particles. All samples can be grained finely by hands.

Samples from G.L. -2.0m

Nearly the same as above. A little white.

5.3 Physical Test

The list of physical test is shown in Table 3.

Table 3 List of Physical Test (ATBARA)

Table- 3 List of Physical Test

Soil Texture	Name of S	ample	A-1 (G.L1.0 ^m)	A-2(G.L.2.0 th)
Gravity	:	G	2.735	2.724
Water Content *		Wn (%)	4.9	4.8
	Liquid L	imit Wl (%)	28.7	24.8
Consistency	Plastic	Limit Wp (%)	12.0	13.9
	Plastici	ty Index Ip	16.7	10.9
	Gravel	(%)	13.7	29.4
•		Coarse Sand	Coarse Sand 18.0	
Grading **	Sand (%)	Fine Sand	38.6	33.7
Characteristic	Silt (%)		22.1	14.2
	Cley (%)	7.6	5.7
	Japanese Standard Soil Classification		Japanese Standard SC Soil Classification	
Classification	Triangle Presenta	Axis	SF	SF

- * Due to the aridity during the transportation, these water content percentage will be smaller than that of the original condition.
- * Gravel 2,000 μ < Sand 74 2,000 μ (Coarse Sand 420 2,000 μ Sand 74 2,000 μ (Coarse Sand 420 2,000 μ , Fine Sand 74 420 μ), Silt (5 74 μ), Clay 5μ >.

5.4 Investigation on Soil Yield Strength

The soil of this area, north of KHARTOUM, contains much sand. In soil analysis, it is classified as silty sand or hefty sand. It does not considerably contain black cotton soils.

If the soil is considered as sand, the conversion equation between q_a and N is, by Reference 4,

$$N = \frac{q_0}{4} = \frac{170}{4} = \frac{42}{20}$$
If $6\sqrt{20N} + 15 = \sqrt{20} \times \frac{42}{42} + 15 = \frac{43}{40} \rightarrow \frac{40}{40}$

$$0 = 1.3, \quad C = 0, \quad \beta = 0.4, \quad \chi_1 = 1.69 \quad (\chi_1' = 0.69)$$

$$N_r = 114, \quad \chi_2' = 1.69 \quad (\chi_2' = 0.69), \quad N_q = 3$$

If the above values are put into equation (3) in Section 4.5,

$$q_a = \frac{1}{3} (0.4 \times 1.69 \times 114 \times B + 1.69 \times 3 \times D_f)$$

= $\frac{1}{3} (77B + 5.0 D_f)$ Without influence of water (2)

$$q_a = \frac{1}{3} (0.4 \times 0.69 \times 114 \times B + 0.69 \times 3 \times D_f)$$

= $\frac{1}{3} (31.5B + 2.0 D_f) \dots$ With influence of water (3)

Consequently, if $D_f = 0$, for the safty's sake, $f_e = q_a = 10.5B$ (Long term) $f_e = q_a = 21.0B$ (short term) With influence of water

6. Exploration Result in DONGOLA

6.1 Observation of Outcrop

Situation of Site

Desert area, along Nile River, about 7 km south of the city. In the east of the site, hills of 4m high extend to the city.

Situation of Surface Soil

Fine grained white sand

Observation of Excavation Pit Wall

Blackish soil down to G.L. -160cm, underneath white soil mixed with small gravels.

6.2 Observation of Collected Samples

Samples were collected from G.L. about -1.0m and -2.0m.

Samples from G.L. -1.0m

Hard soil grains, not collapsed easily by hands. It resembles the samples in WAD MEDANI in colour and shape. In the water, it collapses into fine grains. Gray colour.

Samples from G.L. -2.9m

Roundish gravels with the diameter of under 3cm and fined silt of light brown (white) colour. Silt is not hard solid as in the upper layer.

6.3 Physical Test

The list of physical test is shown in Table 4.

Tabke 4 List of Physical Test (DONGOLA)

Table- 4 List of Physical Test

Soil Texture	Name of S	W-1 (G.L1.0 ^m)	W-2(G.L2.0 ^m)					
Gravity	G		G		G		2.701	2.734
Water Content *	Wn (%)		Wn (%)		9.6	10.5		
	Liquid L	imit Wl (%)	55.4	61.1				
Consistency	Plastic	Limit Wp (%)	24.1	23.0				
	Plastici	ty Index Ip	31.3	38.6				
Andreas and the first and a second	Gravel	(%)	2.2	3.1				
		Coarse Sand	3.3	2.5				
Grading * * *	Sand (%)	Fine Sand	17.3	28.7				
Characteristic	Silt (%)	57.4	52.0				
	Cley (%)	19.8	13.7				
		Standard ssification	СН	СН				
Classification	Triangle Presenta	Axis	F	F				

- Due to the aridity during the transportation, these water content percentage will be smaller than that of the original condition.
- ## Gravel 2,000 μ <, Sand 74 2,000 μ (Coarse Sand 420 2,000 μ , Fine Sand 74 420 μ), Silt (5 74 μ), Clay 5 μ >.

6.4 Investigation on Soil Yield Strength

Because this site is located in the northern SUDAN, and near the desert, the soil contains much sadgravels. Precipitation is considerably little.

The bearing power is found by Equation (2). Section 5.4, as follows:

$$q_a = \frac{1}{3} (778 + 5.0D_f)$$
 Without influence of Water (1)

For the safty's sake, if $D_f = 0$,

$$f_e = q_a = 25.6B$$
 (Long term)
 $f_e = q_a = 51.3B$ (Short term) Without influence of Water (2)

7. Exploration Result in EL OBEIDO

7.1 Observation of Outcrop

Situation of Site

Desert area, about 10km east of the city. The whole site inclines slightly to the south. It is dotted with thorns, around where the surface sand soil is heaped up.

Situation of Surface Soil

Fine grained red sand, mixed by white ones. Poured water is absorbed quickly.

Observation of Excavation Pit Wall

Solidified red sand, seen on the surface, makes the layer down to 30 - 50cm, and underneath a sandstone layer, slightly softer than bricks, with little moisture.

7.2 Observation of Collected Samples

Samples were collected from G.L. about -1.0m and -2.0m.

Samples from G.L. -1.0m

Small clods in brick colour. Clods can be easily collapsed by hands into fine grain (like silt).

samples from G.L. -2.0m

Water content is probably higher than other samples. However, the feeling by fingers is same as clay. Other colour.

7.3 Physical Test

Table 5 List of Physical Test (EL OBEID)

Table- 5 List of Physical Test

Soil Texture	Name of S	E-1 (G.L1.0)	E-2(G.L2.0 ^m)					
Gravity		G	2.637	2.665				
Water Content *		Wn (%)	1.8	11.8				
And the second section of the section	Liquid L	imit Wl (%)	N.P.	27.2				
Consistency	Plastic	Limit Wp (%)	N.P.	11.4				
	Plastici	ty Index Ip	N.P.	15.8				
	Gravel (%)		Gravel (%)		0	0.6		
		Coarse Sand	3.5	2.2				
Grading * *	Sand (%)	Fine Sand	76.5	73.2				
Characteristic	silt (8)	11.2	12.7				
ricegyggitedireksyyyse, mannyaiksyd makayathan yayakithan qiliyakii tiliyaliyatii qiliyakii tiliyaliyatii qili	Cley (%)	8.8	11.3				
		Standard ssification	sc	sc				
Classification	Triangle Presenta	Axis	SF	SF				

- * Due to the aridity during the transportation, these water content percentage will be smaller than that of the original condition.
- ## Gravel 2,000 μ <, Sand 74 2,000 μ (Coarse Sand 420 2,000 μ , Fine Sand 74 420 μ), Silt (5 74 μ), Clay 5μ >.

7.4 Investigation of Soil Yield Strength

Down to G.L. -1.0m, it is considered as laterite layer. Underneath clayed soil or silt sand grain. Therefore, the strength can be found as in ATBARA, Section 5.4.

$$f_e = q_a = 10.5B$$
 (Long term)
 $f_e = q_a = 21.0B$ (Short term) With the influence of water (1)

8. Exploration Result in WAD MEDANI

8.1 Observation Outcrop

Situation of Site

The site is located about 13 km north of the city, on the left bank of Nile River, and about 800m from the bank. Undulations probably due to the rain. Whole site inclines into the river. 7m high from the water level.

Situation of Surface Soil

Clayey soil mixed by small gravels. Hard in 1 -2cm deep. With water it becomes clay-like.

Observation of Excavation Pitt Wall

Very hard. Only by a pick, excavation is possible. Harder in the lower layer. An iron bar is stuck barely with a hammer. However, it is unexpectedly fragile, when a force is applied.

8.2 Observation of Samples Collected

Samples were collected from G.L. about -1.0m and -2.0m.

Samples from G.L. -1.0m

Small clods in dark brown or grey colour. They can not be collapsed into grains by fingers. In the water, they turn to fine grains.

Samples from G.L. -2.0m

Nearly same as the above. The part of clods is more.

8.3 Physical Test

List of Physical Test is shown in Table 6.
Table 6 List of Physical Test (WAD MEDANI)

Table-6 List of Physical Test

Soil Texture	Name of S	D-1 (G.L1.0 ^m)	D-2(G.L2.0 ^m)	
Gravity		G	2.771	2.658
Water Content *		Wn (%)	7.6	1.4
	Liquid L	imit Wl (%)	48.0	N.P.
Consistency	Plastic	Plastic Limit Wp (%)		N.P.
(x,y) = (x,y) + (x,y) + (x,y)	Plastici	ty Index Ip	5.4	
	Gravel	(%)	2.4	44.2
		Coarse Sand	18.7	16.9
Grading **	Sand (%)	Fine Sand	57.6	24.9
Characteristic	Silt (%)	15.9	10.5
	Cley (%	}	CL	3.5
		Standard ssification	P	G-C
Classification	Triangle Presenta	Axis		C-F

- * Due to the aridity during the transportation, these water content percentage will be smaller than that of the original condition.
- ## Gravel 2,000 μ <, Sand 74 2,000 μ (Coarse Sand 420 2,000 μ , Fine Sand 74 420 μ), Silt (5 74 μ), Clay 5 μ >.

8.4 Investigation of Soil Yield Strength

According to the plasticity chart (Fig. 4) and the value of W_L , this is considerably the black cotton soils. Therefore, the foundation should be placed where the black cotton soil does not exist. If the situation is not allowed, the following idea is found:

If the sensitivity ratio of this cohesive soil is 1/10, q_0 in KASSALA

$$q_e = 170 \text{ kg/cm}^2 \text{ will be}$$
 $q_e = \frac{170}{10} = 17 \text{ kg/cm}^2$

If
$$C_u = q_c/15$$
 is adopted,
 $C_u = 1.1 \text{ kg/cm}^2$ (2)

Just as equations (3) and (4) in Section 4.5,

$$f_e = q_a = \frac{1}{3} (1.3 \times 17 \times 5.3) = 25 \text{ t/m}^2$$
 (long term) with influence $f_e = q_a = 50 \text{ t/m}^2$ (short term) water (3)

9. Summary

(1) Considering the inundation at each site, the long-term soil yield strength is proposed as follows: (in case of a direct foundation)

KASSALA	50	t/m ²
ATBARA	10.5B	
DONGOLA	25.6B	t/m ²
EL OBEID	10.5B	t/m ²
WAD MEDANI	25	t/m ²

The above figures were obtained on the analogy of only Dutch cone penetration test in KASSALA, therefore, overestimation should be avoided.

The depth of embedment should be more than 2m at each site, and specifically in WAD MEDANI, the foundation in the black cotton soil. G.L. -2.0m, should be avoided as possible.

- (2) Though the amount of settlement was not mentioned in this report, for sand soil, $E = 2q_c$, and for olay soil, $E = 480 C_u$ will be proposed.
- (3) The black cotton soil in SUDAN is a special expanded clay. The possibility of low bearing power, as well as high settlement can be considered at inundation of different types in each site. It is necessary to obtain useful information at KHARTOUM University and so on.
- (4) Surface soils of all sites are considered as good, according to the samples collected and the result of test pit (note that the test was done in the dry season). However, the fall of strength during water-containing or inundation is worrying. Samples collected at the site without disturbing the situation, as well as the inundation loading test at the original site are recommended.

SOIL TESTING RESULTS

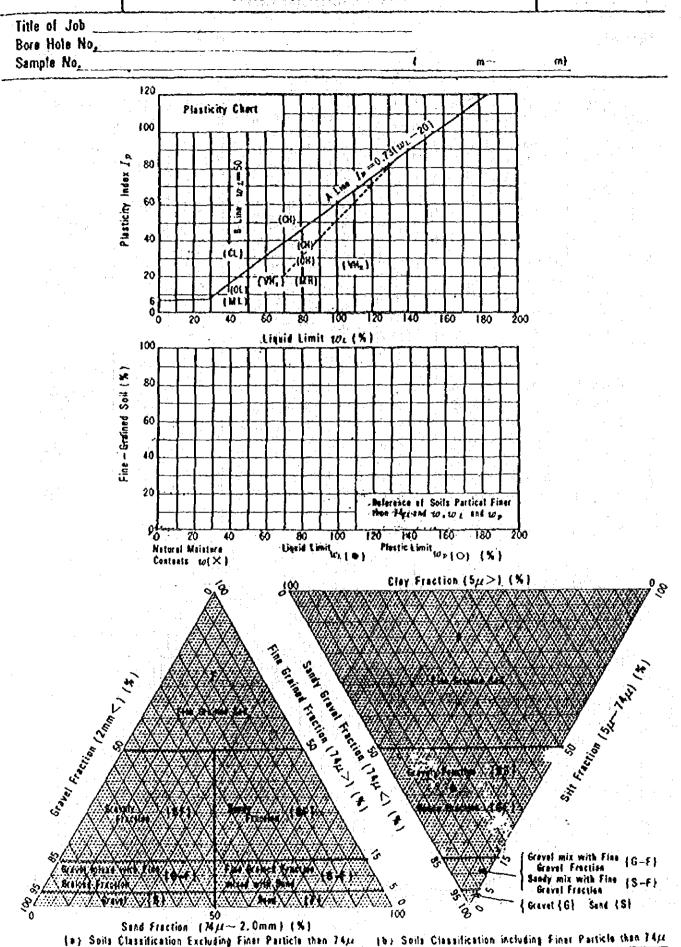
Title of Job _

		- 						i ciabi:	10
Sample	Ne.			ATBARA-1	ATBARA-6	DONGOLA-1	DONGOLA-2	ELVOE	2
Bapth o	f Sample (m)								·
	Gravel-Size Fraction (2000ce<)		*	13.7	29.4	5.4	44.2	0	0.6
. :	Sand-Size fraction (74~2000)	1	×	56.6	50.7	21.1	41.8	80	25.4
Genia - Sien	Sitt-Size Frection (5-74µ)		×	22.1	14.2	57.6	10.5	11-2	12 7
Analysis	Clay -Size Frection $\{\delta_{\mu}>\}$		*	7.6	57	15.9	3.5	8.8	11-3
	Max. Grein Size		p.m	9.52	9.52	4.76	25.4	2.600	4.760
	Uniformity Coalficent	v.		38.5	35.5	23.2	83.1	2].7	56-1
Sample Ne Question of Standard or of Soil Specific Gravity of Natural Unconfined Compression Test Test Test Test Consolidation Test	Ceelficent of Curvature	<i>U</i> .		2.5	2.8	/ 8	0.3		20.3
Depth of Sample (m)				27.2					
Cessistency		. .	X		<i>{</i>			0 80 11.2 8.8 2.000 21.7 8.4 NP NP NP NP	
	THE STREET PROPERTY.	!!		/ <i>k::</i> /	19: 4	24.0	7.6 4.8 80 7.6 70.5 11.2 5.9 3.5 8.8 7.76 25.4 2.000 3.2 83.1 21.7 7.8 0.3 8.4 8.0 NP NP 4.0 NP NP 4.0 NP NP 4.0 NP NP 7.0 NP	15.:Q	
Classification								0 80 11.2 8.8 2.600 21.7 8.4 NP N.P N.P V.P	
of Soil	ssitication Soil Japanese Unitled Soil Classification cilic Gravity of Seit Particle Natural Mainture Content Bulk Bunsity Natural Void Ratio Degrae of Saturation	n		SC	SC	CL	<u> </u>	5C	sc
Specific Gravity	of Soit Particle	G.	t/cm*	2.735	2.724	2.771	2.658	2.637	2.66
e ·	Natural Maiatura Content	v	%	4.9	4.8	7.6	1.4	7.8	77.8
Natural Unconfined Compression	1		t/tm*						:
		!							
						<u> </u>		<u> </u>	
		1	i girm		 				
			. 4					 	
·		L 50	rlkew.						<u></u>
Sample No. Depth of Sample No. Depth of Sample No. Grand Size Analysis Classification of Soil Specific Gravity of Sample No. Natural No. Unconfined Unconfined No. Compression Size Test No. Iriaxial Compression C		c	i Brm						
	Angle of laternal Friction	ø	(1)						
Oirect Sheat					<u> </u>				
Tust		C						0 6 80 2 11.2 1; 8.8 1 2.000 4; 21.7 5; 8.4 2; NP 2; NP 1;	
									<u>!</u>
			igycm"						
-					 	 			
				· · • • • • • • • • • • • • •					
	Coefficient of Volume Compress	bity	ortigi.						ļ
		1 11						 	1
	<u> </u>							'	!
					_			ļ	ļ
		·: 1				l			<u> </u>

W Unconsolidation - Undraind Shear Test Consolidation - Undrained Shear Test Consolidation - Breined Shear Test

UU .

cu, tu

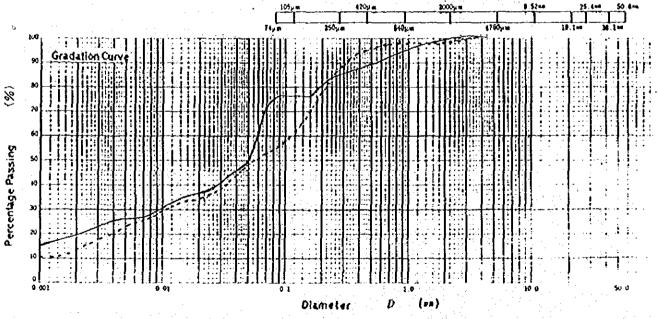

CÓ

SOIL TESTING RESULTS

Title of Job_

Bore l	tole No.			· · · · · · · · · · · · · · · · · · ·	**************************************		· · · · ·
Sample Ht.			WADNEDANI	WADMEDANI-	KASSARA-I	KASSARA-2	
Oapth o	Sample (m)		_ <u></u>				,
	Gravel-Size Fraction (2000ca <)	*	2.2	3.1	0.7	2.2	
Grain — Siza Analysia	Send-Size Fraction (14~2000ge)	*	20.6	31.2	26.0	44.7	
	Sitt-Size Fraction (5-74µ)	*	57.4	52.0	47.7	30.8	
	Clay - Size Frection (5µ>)	K	19.8	13.7	25.6	22.3	* · • · • · · · · · · · · · · · · · · ·
	Max. Grain Siza	FA.F		4.76	4.76	4.76	**
	Uniformity Coallicent U		37.4	22.3		116.3	
	Coefficent of Curvatura U		1.9	2.4		1.0	
Consistency	Liquid Limit w			61.6	43.4	27.5	
	Plastic Limit w Plasticity Index 1	(31.3	23.0 38.6	17.2 25.5	6.8 20.7	
				1.00	20.9.		
Classification of Soil							
	Japanese Unitled Sold Classification		CL	CL	CL	CL	
Specific Gravity at Sail Particle G.		1/0		2.734	2.745	2.765	
		w ×		10.5	11.0	5.4	
Hatura!		1/4	n*]				
		s,		}		,	
Uncentined		7 a kg/c		 			
Compression Test		31					
		Sso kyfei	, e				
Triaxial Cempressen	₩ Testing Method						
		C total		 			
Test	Angle of Internal Friction * Tasting Mathod	छ <u>। (।।</u>	<u> </u>	<u> </u>			
Oirect Sheat Test		C kefe					
	Angle of Internal Friction	d des		ļ			<u> </u>
Consulidation Test	Precempression Intensity	ne kyfei	n ·	<u> </u>			<u> </u>
		Ge					
		C • cm %					
	Coefficient of Volume Compressit	billy onth	y .				
				ļ			
. !							
		<u>.</u>					
							<u> </u>

W Unconsolidation — Undering Shear fast Consolidation — Undering Shear Tast Consolidation — Oraling Shear Tast cu. Tü

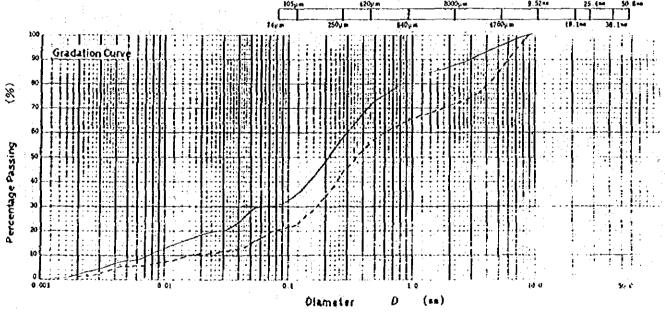


TOKYO SOIL RESEARCH COLLITO

Dale

\$ampleNo	M KASSI	RA -1	No KASSI	1 RA - 2
& Depth	(m	~ m)	(m	~ m)
	GrainSixe==	Percentageog Passing	Grain Size 🗪	Percentage %
	50.8		50.8	
	38.1		38.1	
	25.4		25.4	
%	19.1	[19.1	
	9.52		9.52	
ž.	4.76	100.0	4.76	100.0
Sieve Analysis	2.00	99.3	2.00	97.8
Ą	0.84	93.3	0.84	96.8
) }	0.42	87.7	0.42	93.6
ίŠ	0.25	83.5	0.25	85.2
	0.105	74.4	0.105	57.6
	0.074	73.3	0.074	53.1
	0.0538	52.0	0.0535	49.1
	0.0386	115.0	0.0383	42.5
	0.0247	38.0	0.0246	35 9
<u>.</u>	0.0144	34.5	0.0143	32.6
Ē	0.0102	31.0	0.0102	29.3
Hydrometer	0.0073	27.5	0.0072	26.0
I	0.0037	24.0	0.0037	19.4
	0.0030	22.3	0.0030	17.8
·	0.0015	17-1	0.0015	11.2

· · · · · · · · · · · · · · · · · · ·		
Sample No. & Depth	Na KASSARA-1	No KASSARA-2
4.76ee < %	0.0	0.0
Fine (4.76~ 2 ==)%	0.7 0.7	2.2 2.2
Coarse (2 ~ 0.42 = 1)%	11.6	4.2
Fine (0.42~0.074==)%	14.4 26.0	40.5 44.7
Silt (0.07(~0.005m)%	47.7	30.8
Clay (0.005** > 1%	25.6	22.3
Colloid (0.001=> 1%	15.0	10.0
2000µm Percentage %	99.3	97.8
120pm Percentage %	87.7	93.6
_{Инт} Percentage %	73.3	53.1
Max. Grain Size	4.7600	4.7600
60 % Grain Size **	0.0606	0.1163
30 % Grain Size	0.0094	0.0109
10 % Grain Size **		0.0010
Unitormity Coefficient Coefficient		116.28
Coefficient U.		1.02
Specific Gravity G.	2.75	2.75



Colors Clay Sill Fine Sand Coarse Sand Fine Coarse Gravel Rock

Date:

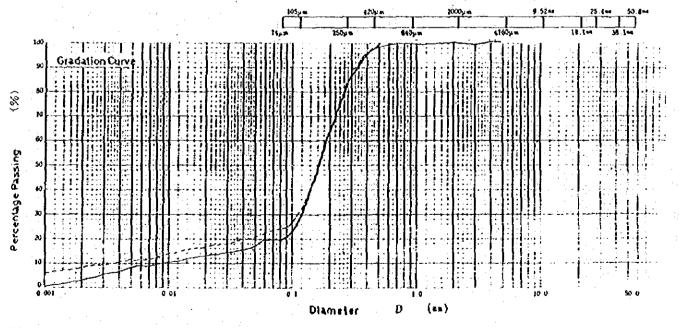
ampleNo	No ATBA	RA - J	No ATBA	
& Depth	m	~ <u>m</u>)	(m	~ m)
-	Grain Size##	Percentages Passing	Grain Size **	Percentage % Passing
	50.8		50.8	
	38.1		38.1	
	25.4		25.4	
. '	19.1		19.1	
:	9.52	100.0	9.52	100.0
2	4.76	949	4.76	82.1
Sieve Analysis	2.00	86.3	2.00	70.6
€	0.84	22.8	0.84	63.7
ž	0.42	18.3	0.42	13.6
iñ	0.25	14.6	0.25	40.0
	0.105	33.0	0.105	21.8
	0.074	29.7	0.074	19.9
	0.0446	29.4	0.0470	16.2
	0.0393	22.8	0.0406	12.9
Ļ	0.02+0	19.↓	0.0248	11.0
eşe	0.0146	16.1	0.0149	2.4
ě	0.0104	10.8	0.0106	29
Hydrometer	0.0071	2.5	0.0074	6.2
4-	0.0037	6.2	0.0038	4.6
	0.0001	11.6	0.0031	2.9
	0.001+	1.3	0.0015	1.5

Sample No. 6. Depth	No ATBARA -1	No ATBARA-6
Sample 150 & Dep 111	(m - m	i) { m ~ m
4.76== < %	3.1	12.9
Fine (4.76~ 2 = 1)%	1.6 13.7	11.4 29.16
Coarse (2 - 0.42 ma)%	18.0	17.0
Fine (0.42~0.074**)%	38.6 V6.6	33.7 40.7
SIII (0.074~0.005=1)%	20.1	111.2
Clay (0.005em > 1%	2.6	4.2
Colloid (0 0014 > 1%	0.5	o. t
2000µm Percentage %	86.3	70.6
120pm Percentage %	68.3	43.6
71µm Percentage %	29.2	19.9
Hax. Grain Size ##	2,4200	2.4200
60 % Grain Size **	03030	0.6081
30 % Grain Size **	0.0278	0.1718
10 % Grain Size 🗪	0.0079	0.0171
Uniformity U.	38.41	31.47
Coefficient U:	2.14	ن ۾ بر
Specific Gravity G.	2.234	2.704

Color Clay Sill Fine Sand Coarse Sand Fine Coarse Gravel Rock

Date:

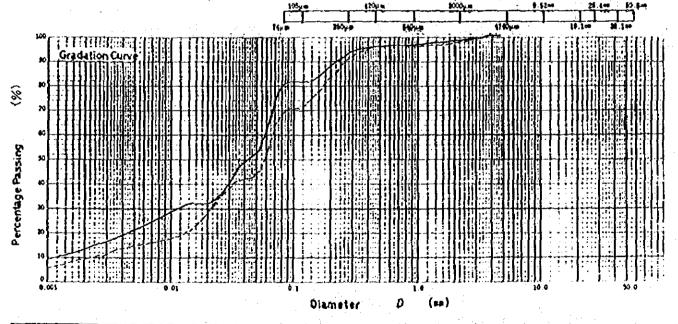
Rock


mpleHo Depth	Ha DONET	OLA-1 ~ m)	Na DONG	OLA-2 ~ m)	Sample Ho & Depth	No DONG	<i>0LA •</i> 1 m)	Ha DONG (m~	TOLA:
	Grain Size			Percentage & Passing	4.76m <	% 0.0	<u></u>	222	
- 1	50.8	Passing	50.8	P355109	fine (4.26~ 2 ma)		4.11	8.V-	44.0
-]	38.1		38.1	***********	Coarse (2 ~ 0.42mm)			16.9	***********
	25.4		25.4	100.0	Fine (0.42~0.07(**)		21.1	is state	41.8
	19.1		19.1	81.8	5111 (0.074-0.005m)			10	£
Ì	9.52		9.52	47.3	Çiay (0.005sa >)			٠,٠	
2	4.76	1000	4.76	62.3	Colloid (0.001-4 >)				
Analysis	2.00	94.6	2.00	11.8	Percertage	A.	***********************	0.0	
	0.84	93. V	0.84	47.t	Passing Passing Percentage			**	
Sieve	0.42	12.2	0.42	38.7	assing			38.	
vī.	0.25	29. 2	0.25	3/.7	7(µm Passing	73.4	Ç	!!	<i></i>
	0.105	77.6	0.105	14.9	Hay Cast flag		`		
	0.074	23.4	0.074	14.0	Hax- Grain Size #5	4.76		2. t. H.	•
}	0.013/	V6.8	0.0468	12.8	60 % Grain Size **	0.0V	64	3.10	90
. }	0.0384	46.7	0.01108	2.4	30 % Grain Size	1.01	18	ી, કોરો	হ্য
	0.0246	110.0	0.0260	2.9 2.3	10 % Grain Size PA	0.00	3H	0.04	29
Hydrometer	e.e.ut	23.2	0.0108	4.7	Uniformity U. Coefficient U. Coefficient	23.1	/	83.	12
ē 6	0.0101	12.8	0.0077	3.8	of Curvature U	1.8	1	0,3	Ŋ
, Ê	0.0037	13.	0.0038	3.0	Specific Gravity Gr	2.7	21	<i>\$</i> . \$	10
	0.0031	11.4	0.0001	2.2			-		
	0.0014	8.0	0.0016	0.6					
			, ·	105µ ա	470y m 1	000,0	\$ \$2×	25 (m 10	ę.
				1100	Hore earlie	6780y#)	l
100	i Triggia		nimie	annia ce		LIPPE TO THE	er chi	riner:	
20	Gradution Co	rye i							
									111 111
~									
60									
50									
,									
50 40 30									
. 20							: : :		Hiii
10							-		: :!
٠							III - : : :		
9 00 1		9.01		0.1	uneter D (sa)		10.6	50.	0
				A I					

SIII

Date

SampleNo	No ELOBE	10-1	Na ELOE	EID-2
& Depth		~ m)	(en	~ m)
	Grain Size==	Percentageog Passing	Grain Size ==	Percentage %
	50.8		50.8	
	38.1		38.1	
	25.4		25.4	
	19.1		19.1	
	9.52		9.52	
ž	4.76		4.76	100.0
Analysis	2.00	100.0	2.00	99.4
	0.84	18.9	0.84	98.7
Sieve	0.42	96.4	0.42	972
ίŠ	0.25	72.2	0.25	79.4
•	0.105	24.6	0.105	28.0
	0.074	20.0	0.074	24.0
	0.049+	19.3	0.01113	21.2
	0.0423	16.9	0.0387	18.4
	0.0068	14.4	0.0047	12.7
Hydrometer	0011	10.7	0.01111	14.9
E	00110	11.1	0.0100	141
λď	0.0078	25	0.0078	10.3
	0.0039	2.8	0.0037	10 t
	0.0032	6.0	0.0030	2.6
	0.0016	2.9	0.0014	28


	٦	No ELDE	BELD-T	No ELOB	ELD-2
SampleNo. & Depth	-	(· m ~	m)	(m~	, tn
4.76mm <	%	0.0		0.0	
fine (4.76~ 2 mm)	%	0.0	0.0	0.6	0.6
Coarse (2 ~ 0.42 =)	%	y.J		نه در	
Fine (0.42~0.07(sa)	%	76.4	80.0	230	NU
Sill (0.074-0.005m)	%	11	e>	10	.7
Clay (0.005es >)	%	8.	8	11.	.
Coltoid (0.001=>)	%		0	d.	0
2000 _{km} Percentage Passing	%	100.	0	99.	4
	%	96	F	92.	*
	%	20.	0	24.	0
Hax. Grain Size ##	•	2.00	00	4.7	600
60 % GrainSize **		0.19	dd.	0.1	84/
30 % Grain Size Ed		0.10	00	0.11	113
10 % Grain Size **		0.00	89	0.00	ઝુઝ
Uniformity U.		21.	66	46	est
Coefficient U.		8,-	ysk.	ZO.	26
Specific Gravity G.		<i>a</i> .,	637	ಎ,	66£

Date:

SampleNo	No WADMI	DNI-1	No WADM	EDANI-2
& Depth	, m	~ m)		~ m)
	Grein Size=4	Percentage	Grain Size #4	Percentage &
	50.8		50.8	
	38.1		38.1	
	25.4		25.4	
	19.1		19.1	
	9.52		9.52	,
Ş	4.76	100.0	4.76	100.0
5)1	2.00	97.8	2,00	96.9
4	0.84	96.0	0.84	94.7
Sieve. Analysis	0.42	94.4	0.42	94.11
ίŠ	0.25	91.8	0.25	89.1
	0.105	29.8	0.105	19.9
	0.074	77.2	0.074	64.7
	0.0446	14.3	0.0130	44.8
	0.0371	483	1.0379	41.11
	0.0014	34.4	a east	327
ete	0.0148	30.9	0.0146	20.4
E	0.010+	27.4	0.01011	17.0
Hydrometer	0.0071	34.0	0.0071	14.8
. .	00038	17.0	0.0037	11.8
	2.0031	14.3	0.0030	Lest
	0.0016	10.0	0.0015	6.6

	<u> </u>				
Sam	pleHa & Depth	Nº NA PM	*****	Ko WADM	
		1	m))	m)
4.76M	· < %	0.0		0.0	
Fine Gravel	(4.76~ 2 ma)%	2.2	20		3.7
Coars	(2~0.42==)%	٠,٠		2.4	
Fine Sand	(0.42~0.074=0)%	17.3	20.6	28.7	31.2
Silt	(0.074~0.005=)%	17	4		0
Clay	(0.005••>)%	19	. 8	13	. 7
	iciloid (1.00)=>1%	8	,0	1	1.0
2000; m	Percentage %	97	8	96	. 1
(20ym	Percentage %	911	, ,	911	.4
Hµm	Percentage % Passing	22	d	64	2
Hax-	Kale Size na	14.78	100	4.7	7500
60	% GrainSize==	0.01	184	0.0	671
30	% Grain Size **	0.01	بہی	0.0	000
10	% Grain Size **	0.00	16	0.0	030
Ųni Coe	tormity tricletent	37.	U.S	22.	J.K
	ticleient frictent prysture		99	₽.	un
_	c Gravity Gr		701		734
*********]	-	[,

Clay Sill Fine Sand Coarse Sand Fine Coarse Gravel Roc

JIS	Α	1205
312	A	1206

LIQUID LIMIT AND PLASTIC LIMIT

Title of Job

Date

sample Ho	& Depth N			1	(m~ in)					Ň,	ımb	er o	f Blo	w C	OUAI	s	
	Cloud LI					ic Umit Test		5		1 .	•	l)	!	15	20	25 3	3	10 50
Na		Blows 1	Water Conf		Na	Water Content %		ļ	<u>;</u>						Ι,		(A)	ls Oin
. <u> </u>	42		27.6		1	12.]	<u></u> የአተ				1) - I		(3 00∩ {-}}
2	34	<u></u>	28.0		2	11.8	501									i]		1
3	29		28.8		3	12.3	,		::		ŀ]						
4	23		28.7			-41-4/**			:::	•								ltiil
5	13		30.8				30				•	 -	ے			1.0		
5	<u> 8</u>		31.3		AV	12.0	. 50		**				: :	l.:.				
	Nº 1 % 1				ily Index Ip	<u>I f</u>	0.5	1.7.				}						
28.		12.	إرحيين	6	·7	5.1	20		:						i i			
imple Had	Li Depth N			<u>-b</u>	10.00	m~0.00 m)						!		ا ا				
	Llouid L	imil Tes	st .		Plast	lc Limit Test		Ţ.,	1:			}	T				i	
No			Nater Con		No	Water Corsent %												
1	44		24.0		1	14.2	50		ij				1				1,11	
2	3 5		24.	4	2	14.0			ij.	1			17		lii:			
3	2.8		24.	5	3	13.7			1	, t		11		1111			11::	
4	23	3	25.	0								17		1311		1		
5	14	-	25.	9			30:		1	-	-			أبنا				
6	9		26.	3	AV	13.9	•		: i		-							
wid Limit	v. % 1	Plastic Lin			ty Index Ip	1 f	_ 20°	-		-				1				
24.		13.0		10.		3, 3	%	: "		;:		1:			273			
				A - 1	10.00	m~0.00 m)	(0	÷.				†	<u> </u>	1::::				
	Liquid Li			-		lic Limit Test	*				ij	1 -	H	liii:		1311		
No			Water Cor A	ent %	Na	Water Content %	Content		1		-	1-	<u></u>	1:::	filli			
1	40		47.		1		્રે								111			
2	31		A 7.	Q	2	24.3	37560.			-	-	- -		155	111	:::		1:::1
3	27			3	3	23.7	.¥ .₹	- ;						Ü	2 - 1	::::		
4	20		49.				50	-			-	1=	•		-	فا	نيد	
5	13							-				1 :			i ji			
6	9		49· 50·		Αγ	24.0	•		-:-	-		-}- <u>:</u> -	: - - -			اندنا		
quid limit	└ ──					7.0		ļ.,				ļ.,			: : :	; <u>.</u>		
		Plastic Lir			ily Index Ip	- 1 <u>1</u>		ļ		\vdash			1	∤	1		- 4:-	132
48.0					0	3.4 m~0.00 m)			-			1.						
ample No.				<u>-U-Z</u>	0.00		50	}				· ·-·	<u>i</u> .:		4::	11.1		1.1.
No.	Liquid L			0/	Plas No	ic Limit Jest								1.,,,				14:
Na	Kumbe c	d Blows 1	Water Con	knt 70	192	Water Content%										I		
	42		25.8		ļ <u>.</u>	11.5		[ļ.,			: :		,			
2	35		26.8		2		30		-			.	-	ونا		::-	>	
3	30		24.	ļ	3	landale da ne e	. 50	.		ļ			. :		`		-0	-0-
4	23		2.6.4	}				ļ				.	••••	1			ļ.,	ļl
5	18		28:								į		. :	1				1:::
6	10		29.	<u>ජ</u> ු	AY_	11:4	10]									
wid Limit	w. % p	to jic Lim	il 4. %		tylodes_tp		10			•		ļ		!	\			
27.	2	11.4	<u>}</u>	15.	8	6.4			ĺ.,					 	l			
	•				-						1	•		:				
								i	í	į	;	•	_	5	1			
									į	:	•	į.		-	•		1	
															r	• •		1 .
						y		Š	i,			10		45	70	ž, :	30	45 (

JIS A $\frac{120}{120}$

LIQUID LIMIT AND PLASTIC LIMIT

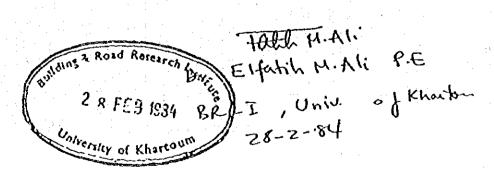
Title of Job

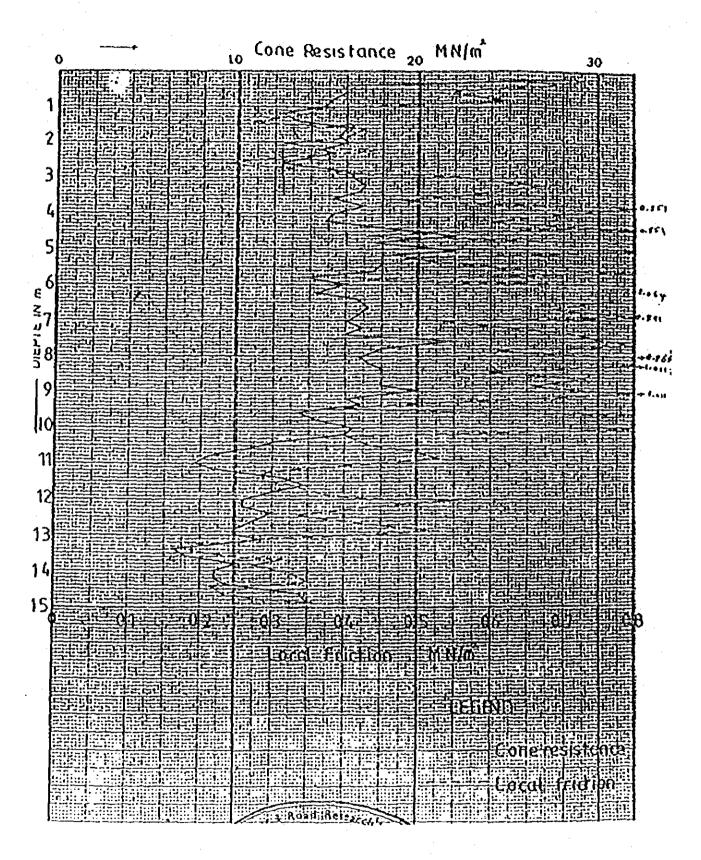
Date

Sample No. & Depth No WEDMEDANI - 1	{	m ~ m)		 -				
Liquid Limit Test	Plastic Umit Test			Number of Blow Counts				
No Number of Blown Water Content %	Na	Water Content %			111		25 30 40 50	
1 45 \$1.6		24.2					Blow Counts Curve	
2 36 52.6	2	24.3	80		11			
3 30 53.7	3	24.0						
4 23 56.0								
5 18 57.3			-		41			
6 13 59.6	AV	24-1	60			- 0		
	ity Index Ip		•	:::				
	1. 3	14.8	•					
Sample Ho. & Depth Ho. WEDME DANI-2		m~ m)	•					
Liquid Limit Test		ic Limit Test	-		4-1-			
Na Number of Bloss Water Content %	Na		• *		;-			
1 4 5 59.5	1	Waler Content % 23.3	80			- 		
			•					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	23.0						
3 2 8 60. T 4 2 3 62.0		22.7	•		: 1	8		
			60		: []:			
		000	•			1 1		
	L AV	23.0 1 f	-		-1-1-			
Liquiditinit 102 % Flasticitinit 100 % Plastic			· 🖟]]}				
61.6 23.0 38	• Ь	8.5	. 🖰		11.			
Sample No. & Depth No. KASSARA-I	1	m ~ ni)	· ½					
Liquid Limit Test		tic Limit Test	+2 70					
Na Mumber of Blows Water Content %	Na.	Water Content %	Galent Of					
1 43 41.2	1	18.0	ی ا					
2 36 42.0	2	18.2	- 13					
3 27 41.9	3	17:7	75 Water 50	-				
1 18 45.2			. ~~			0 0		
5 13 45.6			•		11		0 6	
6 8 48.2	Av	17.9	-					
	<u>aly Index Ip</u>		- 30			1.1.1.1		
43.4 17.9 2	2.5	9.5	•					
Sample Ho. & Depth No. KASSARA - 2	(tn ~	- '					
Llavid Limit Test	Plas	jie Limit Test						
No Humber of Blove Water Content %	Na	Water Content%	-			خات المناب		
1 42 26.0	. 1	6.5						
2 33 28.4	2	6.7	30]				
3 27 27.6	3	7.2						
4 2 1 28·1 5 1 5 29·6								
5 15 29.6			-			l		
6 9 30.5	AV	6.8						
Liquid Limit 10 1 Plastic Limit 10 % Plastic	itylndex.lp	1 f	10					
27.5 6.8 2	0.7	6.7	-	(i i				
		•		, ,				
				5 6	; <u> </u>	19 15	20 75 30 49 51	

BUILDING AND ROAD RESEARCH INSTITUTE UNIVERSITY OF KHARTOUM

The National Borad Casting Corporation Khartoum.


The Building and Road Research Institute of the University of Khartoum was invited by the National Broad-Casting Corporation to carry out soil investigation at Kassala.


A 10 ton capacity Dutch static cone penetrometer handled with an adhesion jacket cone type was used in this investigation.

A single come penetration test sounding (C.P.T.) was conducted at the location allocated by the client's representative.

The cone resistance and the friction on the jacket were recorded at 0.2m interval, and the total depth penetrated was 15m.

The given graph shows the cone resistance $q_s(M^N/m^2)$ as well as the friction on the jacket $f_s(MN/m^2)$, plotted against the depth penetrated in (m).

Literature Cited

1) General Geology (Page 1069 - 1075) by Arthur Homes

- 2) Geophysical Science Vol. 16 Geology of the World

 (Page 61 98) by Akino Miyashiro

 Iwanami Book
- 3) Irregation of the World by Shitoshi Fukuda (Page 388 400)
- 4) Black Cotton Soil in India and Foundation Work (Page 47 - 52) Nov. 1978
- 5) Properties of African Toropical Black Clay Soils
 Fifth Regional Conferences for Africa on Soil Mechanics and
 Foundation Engineering, Luanda, Angola August 1971 1-51 1 59
- 6) Soil in SUDAN by Kojiro Kobayashi
 (Page 58 65) Aug. 1980
- 7) Test Method of Soil by Soil Engineering Society
- 8) In-Site Testing for Geotechnical Investigations by M.C. Drvin Page 35 A.A. Balkema/Rotterdam 1983
- 9) Interpretation of Soil Result and its Application by Soil Engineering Society (Page 91 - 135)
- 10) Penetration Test and Surface Exploration
 (Page 237) by G. Saugrelar
- 11) Exploration Method of Soil by Soil Engineering Society (Page 237)

- 12) Designing standard on Architectural Foundation Structure and detail explanation Construction society.
 (Page 222)
- 13) Same as 7) Page 692
- 14) Same as 11) Page 237
- 15) Same as 9) Page 131

