(3) Adequate Durability

Preference will be given to adequate durability of wearing parts even though the price of the pump may be considerably higher. Wearing parts should last for 2-months at least in actual operation, otherwise employment of manual operated pumps in the rural area will become meaningless.

The average discharge capacity of the pump is 500 to 1,300//hr which is enough to supply water for a population of 330 to 860 per day on the basis of a daily operation of 10 hours and 15/ of the design level.

Pump Specifications

a)	Model	Shallow type	Deep type
b)	Depth (M)	1 - 50	20 - 70
C)	Average output (L/H)	800 - 1,100	50 - 1,300
d)	Min. diameter of borehole (mm)	76 (3in.)	100 (4in.)
e)	Discharge pipe	Polyethylene	Polyethylene
	- Size (mm)	18 x 26	20 x 32
	- Weight (kg/m)	0.25	0.27

4.9.3 Pump Outlet

In order to protect well water from contamination by surface drainage or waste, an elevated concrete platform will be placed over the well with a simple drainage ditch around it. A fence will also be installed to prevent intrusion by livestock.

A typical arrangement of such facilities is shown in FIG. IV-8.

4.9.4 Rainfall Storage Unit

The rainfall storage unit is designed to supplement insufficiencies in the main water source during the dry season, from June through August. The unit is particularly advantageous when it is installed in districts where ground water is not available at a reasonable depth. Standard capacity of the unit is designed to supply 100 families (with 5 members each) with 30m³ of drinking water per month (10%/family/day).

Estimation of available rainfall is as described below.

(1) Available Rainfall

More than 2mm of daily rainfall is assumed to be collected and stored in the tank, even considering several kinds of losses such as evaporation and runoff. Rainfall records in 1974 were used in estimation as the total rainfall in that year was 955mm, which is close to the average value (969mm) during the past 11 years, from 1973 to 1983. Rainfall in 1974, also represents the typical rainfall pattern in the project area as shown in FIG. IV-9.

(2) Design Rainfall

Yearly rainfall variation must be considered in order to design the surface area of collecting yards and the capacity of reservoirs. Based on investigation of rainfall for 11 years from 1973 through 1983, the variation factor was determined as 85%. Design value of rainfall can be calculated as follows:

Design rainfall = (rainfall in 1974) x (1 - $\frac{\text{unavailability } \%}{100}$ x 0.85)

(3) Design Capacity of the Facilities

The size of the collecting yard and the reservoir is designed at 500m^2 and 100m^2 , respectively. The collecting yard will have an annual capacity of 373m^3 of rain water while the reservoir will provide approximately 30m^3 of water year-round which will be stored monthly throughout the year. The lowest storage level will be 13.7m^3 in September and will recover to 112.6m^3 in May.

(4) Principles of Collection and Reservoir Design

The collecting yard of 500m² can be divided into a few small yards, depending on the topographical conditions at each site and these small yards will be connected with covered ditches or pipes to a reservoir. Around the collecting yard, fences and drainage ditches will be placed so as to keep the surface of the yard clean. In some places, existing unpaved roads or other spaces can be used by covering the surface with concrete. Elevated places are preferable for the installation of the collecting yard.

The reservoir should be a closed type and may be constructed of stone or bricks, which are inexpensive. The inside wall should be waterproofed.

(1 of 11)

TABLE IV-1

Commune : BIRENGA

NAME OF SECTOR	AREA (km²)	POPULATION	1983 DENSITY (hab/km ²)	NO. OF FAMILIES	SIZE OF FAMILY	AVERAGE GROWTH RATE (78-83)	ESTIMATED POPULATION	1990 DENSITY (hab/km ²)	SIZE OF FAMILY
1. BARE	37.1	1,897	51.5	635	2.99	N.A.	2,333	62.9	3.67
2. BIRENGA	32.7	2,087	63.8	167	2.72	N.A.	2,567	78.5	3,35
3. GAHARA	72.7	5,436	74.8	066	5.49	N.A.	6,686	92.0	6.75
4. GAHULIRE	13.5	2.765	204.8	455	6.08	N.A.	3,401	259.9	24.7
5. GASHONGORA	38.3	4,193	109.5	414	10.13	N.A.	5,157	134.6	12.46
6. KIBAYA	8.3	2.967	357.5	412	7.20	N.A.	3.649	439.6	8.86
7. KIBARA	15.4	3.406	221.2	353	9.65	N.A.	4,189	272.0	11.87
8. KIBIMBA	16.7	2,947	176.5	358	8.23	N.A.	3,624	217.0	10.12
9. KIBUNGO	14.4	2,998	208.2	N.A.	N.A.	N.A.	3,687	256.0	N.A.
10. MATONGO	28.8	968*#	152.6	534	8.23	N.A.	5,406	187.7	10.12
11. NDAMIRA	11.0	2,349	213.5	194	5.03	N.A.	2,889	262.6	6.19
12. SAKARA	22.7	3,866	170.2	₹22	6.14	N.A.	4,755	209.5	6.14
TOTAL	311.6	39,307	126.1	N.A.	N.A.	3.0	48,343	155.1	N.A.

(2 of 11)

TABLE IV-1

Commune : KABARONDO

NAME OF SECTOR	AREA (km ²)	POPULATION	1983 DENSITY (hab/km ²)	NO. OF FAMILIES	SIZE OF FAMILY	AVERAGE GROWTH RATE (78-83)	ESTIMATED POPULATION	1990 DENSITY (hab/km ²)	SIZE OF FAMILY
1. BISENGA	19.8	2,104	106.3	914	2ħ*ħ	5.02	2,619	132.3	5.50
2. CYINZOVU	10.8	2,418	223.9	ħ8ħ	5.00	3.54	3,010	278.7	6.22
3. KABARONDO	15.0	2,101	140.1	301	86.9	2.88	2,616	174.4	8.69
4. MURAMA	21.0	1,461	9.69	284	5.14	1.80	1,819	9.98	₩0.6
5. NKANBA	12.7	2,955	232.7	628	4.71	2.48	3,679	289.7	5.86
6. RUBIRA	2.9	2,296	342.7	362	₹.9	1.78	2,859	426.7	7.90
7. RUKIRA	0.9	1,963	327.2	350	5.61	3.26	7° 444	407.3	86.9
8. RUNDA	11.7	2,908	248.6	616	4.72	3.38	3.621	309.5	5.88
9. RURAMIRA	15.8	2,866	181.4	612	4.68	2.50	3,568	225.8	5.83
10. RUSERA	9.6	1,875	195.3	180	3.91	5.16	2,334	243.1	4.86
11. RUYONZA	8.5	2,238	263.3	349	6.41	2.36	2,786	327.8	7.98
12. SHYANDA	36.3	2,346	9.49	315	7.45	5.46	2,921	80.5	9.27
TOTAL	173.9	27,531	158.3	5,257	5.24	3.18	34,276	197.1	6.52
			-					:	

(3 of 11)

TABLE IV-1
ESTIMATED POPULATION IN 1990

Commune : KAYONZA

NAME OF SECTOR	AREA (km ²)	POPULATION	1983 DENSITY (hab/km ²)	NO. OF FAMILIES	SIZE OF FAMILY	AVERAGE GROWTH RATE (78-83)	ESTIMATED POPULATION	1990 DENSITY (hab/km ²)	SIZE OF FAMILY
1. GASOGI	15.0	2,738	182.5	543	5.04	2.86	2,968	197.9	5.47
2. KAYONZA	13.5	3,247	240.5	530	6.13	0.86	3,520	260.7	ħ9 * 9
3. MBARABUTURO	10.0	1,982	198.2	365	5.43	1.80	2,149	214.9	5.89
4. MUSUMBA	20.2	2,454	121.5	324	7.57	1.16	2,660	131.7	8.21
5. NYAMIRAMA	19.6	3,524	179.8	298	11.8	-5.00	3,820	194.9	12.8
6. RUTARE	13.1	2,410	184.0	354	6.81	-0.50	2,613	199.5	7.38
7. RWINDWAVU	₽•66	4,784	48.1	557	8.59	10.46	5,186	52.2	9.31
8. SHYOGO	7.5	2,621	349.5	604	6.41	1.00	2,841	378.8	6.95
TOTAL	198.3	23,760	119.8	3,380	7.03	1.16	25,757	129.9	7.62

(4 of 11)

TABLE IV-1

Commune : KIGARAMA

NAME OF SECTOR	AREA (km ²)	POPULATION	1983 DENSITY (hab/km ²)	NO. OF FAMILIES	SIZE OF FAMILY	AVERAGE GROWTH RATE (78-83)	ESTIMATED POPULATION	1990 DENSITY (hab/km ²)	SIZE OF FAMILY
1. FUKWE	2.0	3,744	748.8	552	6.78	3.02	5,136	1,072.2	9.30
2. GASETSA	22.5	2,436	108.3	553	4.41	5.82	3,342	148.5	₹0*9
3. GSHANDA	15.6	2,622	168.1	451	5.81	3.98	3,597	230.6	7.98
4. KARABE I	16.0	2,473	154.6	638	3.88	95.9	3,393	212.1	5.32
5. KARARE II	8.89	4,156	4.09	806	4.58	6.48	5,701	82.9	6.28
6. KARABERANGUF	30.8	3,366	109.3	691	4.87	4.92	4,618	149.9	99.9
7. KANSANA	18.3	3,462	189.2	573	40.9	3.34	647,4	259.5	8.29
8. REMERA	16.7	2,327	139.3	206	4.60	5.72	3.192	191.1	6.31
9. RUBONA	22.5	5,389	239.5	625	8.62	3.08	7.393	328.6	11.83
10. RURENGA	20.8	2,168	104.2	615	3.53	6.32	2,874	143.0	₩8•₩
11. VUMUE	22.5	3,454	153.2	672	5.14	3.96	4,738	210.6	7.05
TOTAL	159.5	35,597	137.2	6,784	5.25	₹9° tr	48,833	188.2	7.20

(5 of 11)

TABLE IV-1

Commune : MUGESERA

NAME OF SECTOR	AREA (km ²)	POPULATION	1983 DENSITY (hab/km ²)	NO. OF FAMILIES	SIZE OF FAMILY	AVERAGE GROWTH RATE (78-83)	ESTIMATED POPULATION	1990 DENSITY (hab/km ²)	SIZE OF FAMILY
1. CYIZIHIZA	8.6	2,919	297.9	506	5.77	3.78	3,785	386.7	7.49
2. GATARE	16.3	3,015	185.0	538	5.60	3.33	3,915	240.2	7.28
3. KAGASHI	21.7	3,537	163.0	587	6.03	3.78	4,585	211.6	7.82
4. KARENBO	5.4	2,092	387.4	299	7.00	0ħ * ħ	2,716	503.0	90.6
5. KIBARE	8.8	3,444	391.4	483	7.13	3.75	4,472	508.2	9.26
6. KIBILIZA I-II	I 20.6	5,143	249.7	815	6.31	2.53	2.677	324.1	8.19
7. KIRANBO	10.6	2,454	231.5	327	7.50	4.13	3,186	300.6	9.74
8. KIKABUYE	8.5	3.427	403.2	653	5.25	3.63	4,450	523.5	6.81
9. MATONGO	5.2	2,583	496.7	422	6.12	3.95	3,354	645.0	7.95
10. NUGARA	11.0	2,895	263.2	459	6.31	4.35	3,759	341.7	8.19
11. NYANGE	20.2	2,085	103.2	797	4.51	5.33	2,707	134.0	5.86
12. SANGAZA	16.3	2,839	174.2	505	5.66	4.03	3,686	226.1	7.34
13. SHYWA	8.3	2,691	324.2	419	2ħ*9	3.50	3,494	421.0	8.34
14. ZAZA	7.7	2,385	309.7	329	7.25	5.20	3,094	401.8	04.6
TOTAL	170.4	41,509	243.6	6,801	6.10	3.80	53,880	316.3	7.92

TABLE IV-1 (6 of 11)

Commune : MUHAZI

SIZE OF FAMILY 5.73 29.9 9.27 6.24 6.24 6.08 7.34 6.12 6.60 91.9 (hab/km^2) 1990 DENSITY 270.0 385.5 274.2 351.7 36.2 318.7 275.0 407.4 392.1 257.1 ESTIMATED POPULATION 3,176 4,050 4,819 3,856 2,799 3.463 3,728 2.735 3.327 2,907 AVERAGE GROWTH RATE (78-83) 7.17 2.0 3.00 2.10 3.13 1.63 2.27 3.30 3.37 SIZE OF FAMILY 5.42 7.52 5.06 5.07 ħ6. ħ 5.96 4.97 5.36 5.49 NO. OF FAMILIES 402 466 438 522 525 504 457 1983 DENSITY (hab/km²) 222.5 280.5 208.6 330.6 219.1 312.8 285.4 318.1 258.1 223.1 POPULATION 3,910 2,219 2,700 2,810 3,025 2,395 3,129 2,577 2,271 15.0 12.5 8.8 8.5 10.6 10.6 7.9 15.0 AREA (Km²) 8.1 12.1 4. KITAZIGURWA 6. MUNYIGINYA NYANGATOVU 5. MUKARANGE 8. NKOMANGWA O. NYARUBUYE 2. GISHALI 7. MURANBI S. KARABE NAME OF 1. GATI SECTOR

5.63

356.1

2,956

2.17

301.6

.3,468

4.57 5.23

538

2,814

289.1 244.7

2,399

8.3

11. NYARUGALI

12. RUHUNDA

TOTAL

3.30

5.31

6.311

6.54

(7 of 11)

TABLE IV-1

Commune : RUKARA

NAME OF SECTOR	AREA (km ²)	POPULATION	1983 DENSITY (hab/km ²)	NO. OF FAMILIES	SIZE OF FAMILY (78-83)	AVERAGE GROWIH RATE	ESTIMATED POPULATION	1990 DENSITY (hab/km ²)	SIZE OF FAMILY
1. GAHINI	27.1	5,111	188.6	521	9.81	1.70	5,803	214.1	11.14
2. KAWANGIRE	17.9	3,492	195.1	553	6.31	1.47	3,965	221.5	7.17
3. KIYENZI	15.6	3,355	215.1	331	10.14	1.33	3,809	244.2	11.51
4. NYANKABUNGO	31.9	2,663	83.5	340	7.83	1.77	3,809	244.2	11.51
5. NYAWERA	9.44	3,809	85.4	350	10.88	1.70	4,325	0.76	12.35
6. RUKARA	47.5	6,049	127.4	745	8.12	2.10	6.868	9.441	9.22
7. RWIMISHINYA	22.5	4,609	204.8	638	7.22	1.60	5,233	232.6	8.208
8. RYAMANYONI	63.8	2,454	38.5	377	6.51	3.33	2,786	43.7	7.39
TOTAL	270.9	31,542	116.4	3,855	8.18	1.83	35,811	132.2	9.29
		;		-					

(8 of 11)

TABLE IV-1

Commune : RUKIRA

157.7	43,098	5.14	5.00	5,139	111.0	30,344	273.3	TOTAL
293.2	4,632	N.A.	5.08	642	206.4	3,261	15.8	10. RURENGE
306.5	4,475	N.A.	5.51	572	215.8	3,151	14.6	9. RURAMA
100.1	3,083	N.A.	5.92	367	70.5	2,171	30.8	8. RUGARAMA
88.9	3,281	N.A.	5.04	458	62.6	2,310	36.9	7. NUTARUKA
73.3	4,257	N.A.	6.53	<i>1</i> 129	51.6	2,997	58.1	6. MUSHIKIRI
380.4	4,451	N.A.	5.55	595	268.0	3,134	11.7	5. MURAMA
319.7	4,923	N.A.	5.67	611	225.0	3,466	15.4	4. MUBANGO
150.6 10.58	5,045	N.A.	7.45	<i>LL</i> 17	106.0	3,552	33.5	3. GITWE
175.1	4,324	N.A.	6.33	483	123.3	3,057	24.8	2. GITUKU
145.4	609 ° tr	N.A.	£†*9	505	102.4	3,245	31.7	1. GASHIRU
1990 DENSITY SIZE OF (hab/km ²) FAMILY	ESTIMATED POPULATION	AVERAGE GROWTH RATE (78-83)	SIZE OF FAMILY	NO. OF FAMILIES	1983 DENSITY (hab/km ²)	POPULATION	AREA (km ²)	NAME OF SECTOR
(2)	ESTIMATED POPULATION 4,609 4,451 4,451 3,281 3,281 4,475 4,632	AVERAGE GROWTH RATE (78-83) N.A. N.A. N.A. N.A. N.A. N.A. N.A.	SIZE OF FAMILY 6.43 6.33 7.45 5.67 5.55 6.53 5.04 5.92 5.92	i I	NO. OF FAMILIES 505 483 477 611 565 458 367 572	5)	1983 DENSITY (hab/km ²) 102.4 123.3 106.0 225.0 268.0 51.6 62.6 70.5 215.8	1983 POPULATION DENSITY (hab/km²) 3,245 102.4 3,057 123.3 3,552 106.0 3,466 225.0 3,466 225.0 2,997 51.6 2,310 62.6 2,171 70.5 3,151 215.8

(9 of 11)

TABLE IV-1 ESTIMATED POPULATION IN 1990

Commune : RUSUMO

NAME OF SECTOR	AREA (km ²)	POPULATION	1983 DENSITY (hab/km ²)	NO. OF FAMILIES	SIZE OF FAMILY	AVERAGE GROWTH RATE (78-83)	ESTIMATED POPULATION	1990 DENSITY (hab/km ²)	SIZE OF FAMILY
1. GATURE	9.47	6,088	81.6	N.A.	N.A.	3.36	8,341	111.8	8.69
2. GISENBI	47.1	2,346	8.64	512	4.58	2.38	3,214	68.2	6.28
3. KANKOBWA	267.5	4,225	15.8	722	5.85	5.92	5,788	21.6	8.02
4. KIGARAMA	135.6	5,711	42.1	753	7.58	ħ8 * ħ	7,824	57.7	10.39
5. KIGINA	65.0	5,296	81.5	876	6.05	4.24	7,256	111.6	8.28
6. KIRFHF	50.6	4,792	7.46	905	5.31	4.88	6,565	129.7	7.28
7. MUSAZA	86.5	6,509	75.	N.A.	N.A.	45.4	8,917	103.1	8.69
8. NYABITARE	42.1	3,177	75.5	804	7.79	4.06	4,353	103.4	10.67
9. NYAMUGALI	114.8	3,614	31.5	N.A.	N.A.	3.76	4,951	43.1	8.69
10. NYARUBUYE	85.0	5,214	61.3	723	7.12	7.68	7,143	84.0	88*6
TOTAL	968.8	46,972	48.5	N.A.	N.A.	09°ħ	64,352	t-99	8.69

(10 of 11)

TABLE IV-1

Commune : RUTONDE

NAME OF SECTOR	AREA (km ²)	POPULATION	1983 DENSITY (hab/km ²)	NO. OF FAMILIES	SIZE OF FAMILY	AVERAGE GROWTH RATE (78-83)	ESTIMATED POPULATION	1990 DENSITY (hab/km ²)	SIZE OF FAMILY
1. KADUHA	18.1	3,267	180.2	558	5.85	9.90	4,201	232.1	7.53
2. KIGABIRO	9°.8	3,417	899.2	904	8.42	1.88	1,401	1,158	10.84
3. NKUNGU	12.1	2,866	236.9	501	5.72	7.36	3,691	305.0	7.37
4. NSINDA	9.0	2,731	303.4	216	12.6	8.86	3,517	390.8	16.28
5. NYARUSANCE	11.7	3,161	270.2	200*	6.32*	4.80	4,071	347.9	8.14
6. RUTONDE	15.8	3,273	207.2	551	5.94	10.60	4,215	266.8	7.65
7. RWERU	8.3	3,235	389.8	700	4.62	0.46	4.166	501.9	5.95
8. RWIKUBO	11.9	3,022	254.0	597	5.06	-1.48**	3,892	327.1	6.52
9. sovu	13.3	2,759	207.4	491	5.62	0.02	3,553	267.1	7.24
TOTAL	104.0	27,726	266.6	4,520*	6.13	3.68	35,707	343.3	7.90*

(11 of 11)

TABLE IV-1

Commune : SAKE

NAME OF SECTOR	AREA (km ²)	POPULATION	1983 DENSITY (hab/km ²)	NO. OF FAMILIES	SIZE OF FAMILY	AVERAGE GROWTH RATE (78-83)	ESTIMATED POPULATION	1990 DENSITY (hab/km ²)	SIZE OF FAMILY
1. GITUZA	19.8	2,830	142.9	415	6.82	7.08	3,625	183.1	8.73
2. MABUGA I	11.0	2,228	202.5	374	5.96	2.88	2,854	259.5	7.63
3. MABUGA II	10.4	2,295	220.7	378	6.07	3.44	2,940	282.7	7.78
4. MBUYE	28.5	3,031	106.4	856	3.54	3.36	3,883	136.2	4.54
5. MURWA	0.09	3,541	59.0	52	6.78	7.06	4,536	75.6	8.69
6. NGOMA	17.41	2,228	154.7	536	4.16	1.42	2,854	198.2	5.32
7. NSHILI I	13.3	2,641	198.6	96†	5.32	4.30	3,383	254.4	6.82
8. NSHILI II	9.6	2,263	235.7	219	10,33	2.10	2,899	302.0	13.24
9. RUBAGO	14.0	3,315	236.8	518	04.9	2.60	4,246	303.3	8.20
10. RUKUMBELI	126.5	3,320	125.3	589	5.64	2.28	4,252	160.5	7.21
11. RUYEMA I	4.6	1,731	376.3	300	5.77	3.98	2,217	482.0	7.39
12. RUYEMA II	5.6	1,604	286.4	344	ŋ••66	₩.80	2,054	366.8	5.97
13. SHOLI	23.8	3,091	129.9	348	12.46	2.68	3,959	166.3	11.38
TOTAL	241.5	34,118	141.3	5,895	5.79	3.60	43,702	181.0	7.41

TABLE IV-2
SUMMARY OF DESIGN WATER DEMAND

COMMUNE	POPULATION IN 1990	ESTIMATED DAILY WATER DEMAND (GROSS) (m3/d)	% OF DEMAND COVERED BY SPRING	DESIGN DAILY WATER DEMAND (m ³ /d)
BIRENGA	48,343	1,807.7	54.9	490.6
KABARONDO	34,276	771.2	53.6	357.8
KAYONZA	25,757	579.5	25.1	434.0
KIGARAMA	48,833	1,098.7	50.9	539.5
MUGESERA	53,880	1,212.0	60.7	476.3
MUHAZI	41,284	928.9	6.3	870.4
RUKARA	35,811	805.7	11.1	716.3
RUKIRA	43,098	969.7	29.7	681.7
RUSUMO	64,352	1,447.9	45.9	783.3
RUTONDE	35,707	803.4	76.0	192.8
SAKE	43,702	903.3	28.6	702.1

TABLE IV-5
HYDROGEOLOGICAL CONDITIONS OF
THE AQUIFER AT EACH TEST BORING SITE

No.	Location (Secteur)	Basement	Overburden	Aquifer	Topography	Туре
1.	KAYONZA (RWINKWAVU)	quartzite/schist (dominant schist)	clay/thick sand and gravel with boulders	quartzite (confined/ unconfined)	wide valley flanvial fan	S ₁ + D ₁
2.	KABARONDO (KABARONDO)	quartzite/schist (dominant quartzite)	clay/thick sand and gravel with boulders	quartzite (confined)	narrow valley colluvial	D ₂
3.	RUKIRA (RURENGE)	quartzite/schist (dominant schist)	clay/thick sand and gravel	quartzite (confined)	wide valley marsh	S ₁ + D ₁
4.	RUSUMO (KIGINA)	quartzite/schist (dominant quartzite)	clay/thick sand and gravel	quartzite (confined)	narrow valley steeply inclined layer	D ₁
5.	KIGARAMA (GASETZA)	quartzite/schist (dominant schist)	clay/thick sand and gravel	quartzite (confined/ unconfined)	wide valley alluvial	s ₂ + D ₁
6.	SAKE (SHOLI)	granite	thin clay layer	granite/ weathered layer (confined)	terraced hills hill side	D ₃
7.	BIRENGA (BIRENGA)	quartzite/schist (dominant quartzite)	clay/thin sand and gravel	quartzite (confined)	narrow valley mountainside	D ₂

TABLE IV-6 SUMMARY OF TEST BORING RESULTS

Yield Comment (m3/h)	15.0 Foot pedal pump (now in use) Potentical for use of S ₁ -D ₂ power pump in future	2.0 Foot pedal pump (now in use) D2 type	2.0 Foot pedal pump (now in use) S ₁ -D ₂ type	no water $ { t D}_1 $ type	12.0 Foot pedal pump (now in use) Potentical for use of S ₂ -D ₁ power pump in future	no water Bored through weathered granite zone bedrock but did not strike water	2.4 Foot pedal pump (now in use) D_2 type
Water Level (m)	04.6	19.50	22.18	០ជ	11.41	ou .	33.8
Pump Depth (m)	25	04	32.5	ı	52	t	04
Strainer Depth (m)	36-42	30-42	30–36	1	45-51	ı	34-52
Well Depth (m)	48 . 85	43.50	42.00	00°9ħ	54.85	58.00	58.00
Location No. (Sector)	1. KAYONZA (RWINKWAVU)	2. KABARONDO (KABARONDO)	3. RUKIRA (RURENGE)	4. RUSUMO (KIGINA)	5. KIGARAMA (GASETZA)	6. SAKE (SHOLI)	7. BIRENGA (BIRENGA)

TABLE IV-8
WATER QUALITY TEST RESULTS

Water Source	Nyakora River	Kodilidimba River	Sendaya River	Rwinkwavu Pond	Kadilidimba River
Items	(1)	Rugazi: I (2)	Rugazi: I (3)	(4)	Nkondo West
Date of Analysis	Aug.23,'85	Aug.26,185	Sep.26, 185	Sep.24, 185	Oct.10, 85
NO ₂ - N	Oppm	Oppm	0.05pp	m	Oppm
NO ₃ - N	0	0	2.0	0	0
$NH_{4} - N$	0.8	0	0.5	0	0
Cl	115	140	100	130	150
Cr ⁶⁺	0	0	0	0	0
Cu	0	0	0	0	0
Fe ^T	0	1.0	0.5	0	0
Zn	0	0	0.5	0	0
рН	8.0pH	7.0pH	7.0pH	7.0pH	7.5pH
COD	> 20	> 20	> 20	20	5
CaCO3	255	150	50	140	150
Colon Bactisille	++	++	++	++	++
Other Bacteria	++	++	++	++	++
Tervidity	>10°	> 100	> 10 °	>100	50
Temperature	20°C	16°C	17°C	20°C	20°C

TABLE IV-8
WATER QUALITY TEST RESULTS

Water Source	Kabilizi Rurenge	Ruvuvu Gasetsa	"Kano" Kayonza	Rutonde	Public Faucet near Somirwa
Items	(6)	(7)	(8)	Ngungu (9)	Hospital (10)
Date of Analysis	Sep.7,'85	Sep.24,185	Aug.26,185	Sep.24,'85	Sep.24, 185
NO ₂ - N	Oppm	Oppm	Oppm	0ppm	Oppm
иоз - и	0	0	0	0	. 0
NH4 - N	0.4	0	0	0	1.0
Cl	50	110	80	140	135
Cr6+	0	0	0	0	0
Cu	0.5	0	0	0	0
Fe ^T	0.5	0	0	0	0.5
Zn	0	0	0.5	0	0
рH	7.0pH	8.0pH	6.0pH	5.5pH	8.5pH
COD	> 20	> 20	15	5	10
CaCO3	105	110	150	100	130
Colon Bactisille	++	++	- ,	-	++
Other Bacteria	++	++	+	+	++
Tervidity	> 100	> 10°	00	00	> 10°
Temperature	19°C	20°C	16°C	17°C	20°C

TABLE IV-8
WATER QUALITY TEST RESULTS

Water Source Items	Nyankora Test Well No.1 (11)	Kabarondo Test Well No.2 (12)	Rukira Test Well No.3 (13)	Kigarama Test Well No.4 (14)	Test Well
Date of Analysis	Aug.23,'85	Aug.23,185	Sep.25, 185	Sep.12, 185	Oct.25,185
$NO_2 - N$	Oppm	Oppm	Oppm	0ppm	Oppm
ио ₃ - и	0	0	0	0	0
NH4 - N	0	0	0	0	0
Cl	75	90	75	85	75
Cr6+	0	0	0	0	O
Cu	0	0	0	0	0.5
$Fe^{\mathbf{T}}$	0	0.2	0.2	. 0	0.2
Zn	0	0	0.5	0	o
рН	7.0pH	6.5рН	6.0pH	6.0pH	7.5pH
COD	0	0	0	0	0
CaCO3	125	150	50	45	50
Colon Bactisille	-	***	-	_	-
Other Bacteria	-	-	-	-	-
Tervidity	00	00	00	00	00
Temperature	17°C	18°C	21°C	22 _o C	20°C

TABLE IV-9
WATER SUPPLY DISTRICTS

		No. of	No. of		No. of Water	Supply	Districts
, C	ommune	Sector	Cellules	Ide	al Program	Work	ing Program
				Wells	R.F.S Units	Wells	R.F.S Units
1. B:	irenga	12	59	57	41	3	2
2. Ka	abarondo	12	60	32	19	12	. 1
3. Ka	ayonza	8	38	18	4	15	1
4. Ki	igarama	11	66	39	17	19	1
5. Mu	ugesera	15	75	59	4	0	1
6. Mu	uhazi	12	66	40	0	25	1
7. Ru	ukara	8	52	27	0	24	1
8. Ru	ukira	10	58	41	18	16	1
9. Ru	usumo	10	99	69	49	17	1
10. Ru	ıtonde	9	51	38	20	2	1
11. Sa	ake	13	70	69	14	3	1
тот	TAL	120	694	489	186	136	12

TABLE IV-10

SUMMARY OF WATER SUPPLY PLAN FOR COMMUNE

Zone	No. of Communes	No. of Sectors	No. of Cellules	Population (1983)	Population Served (1990)	Water Demand ((/d)	Discharge Supplied ((/d)	No. of Wells Required	Type of Wells
H	N.	7	m	2,752	3,187	71,708	80,000		D1
II.	٣	9	13	7,831	8,714	130,710	130,000	13	(Electric pump)
III.	m	9	18	6,324	11,754	176,310	180,000	£	(Manual pump) "
IV.	-3 †	13	40	20,144	26,247	393,705	400,000	70	r
	Subtotal			37,051	19,467	703,912	720,000	72	
ν.		S	7	3,823	5,239	78,585	80,000	ಹ	D1
VI.	7	9	17	9,355	12,952	194,280	180,000	18	10
VII.	-	5	191/	3,496	4,786	71,790	180,000	18	. 10
VIII.	-	-	Ŋ	1,534	2,101	31,515	20,000	ľ	
IX.	-	m	112/	3,252	4,455	66,825	110,000	=======================================	
×	ţ.	9	13	10,062	12,368	185,520	160,000	16	10
XI.	*	9	18 <u>3</u> /	12,528	15,399	230,985	240,000	24	. S
XII.	-	9	17	7,596	9,864	147,960	140,000	14	. ts
	Subtotal			51,646	67,164	1,007,460	1,140,000	114	
	Total			88,697	116,631	1,711,372	1,860,000	186	

Note: $\frac{1}{2}$ 11 cellules have no population data $\frac{2}{3}$ 5 - " - $\frac{2}{3}$ 1 - " -

TABLE IV-11

WATER SUPPLY PLAN (ZONE I) ELECTRIC PUMP SYSTEM

ŀ	4
	0
	Ξ
t	Š

No.	No. Communes	Sectors	Cellules	Population (1983)	Population Served (1990)	Water Demand (1/d)	Spring Supply (1/d)	Discharge Supplied (1/d)	No. of Wells Required	Type of Wells
.	Kayonza	Яміпкмауи	Mukoyoyo	1,572	1,703	38,318	0	80,000	-	10
2.			Gishanda	722	856	19,260	0	1	(electric pump)	(dumd
'n	Kigarama	Kabare II	Gisbanda	458	628	14,130	47,692	1	•	
	Total			2,752	3,187	71,708	47,692	80,000	-	D1
	Note: For c	daily water co	nsumption per	capita, 22.51/h	/day is applied.	(En ce qui ce	oncerne le debit	journalier pe	Note: For daily water consumption per capita, 22.5%/h/day is applied. (En ce qui concerne le debit journalier per haitant, 22.5%/h/day is applied.	i/h est ntilia

TABLE IV-11

WATER SUPPLY PLAN (ZONE II) ELECTRIC PUMP SYSTEM

Zone II.

Type of Wells		10	=	z	ŧ	.	=	=	=	- =	=	=	E	=		
No. of Wells Required	,		,-	,-					• •-		• •-	• •-			24	•
Discharge Supplied (X/d)	000	000 01	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	130,000	1
Spring Supply ((/d) \		•	0	0	15,033	23,328	0	30,585	0	0	0	19,180	0	0	88,126	
Water Demand (1/d)	(10 005)	700601	12,645	006*9	6,885	10,035	8,385	9,330	9,075	9,075	7,500	13,245	15,210	12,420	130,710	
Population Served (1990)	(199)	C 40	643	0911	45b	699	559	622	605	605	500	883	1,014	828	8,714	
Population (1983)	N.A.	887	300	370	398	537	450	500	486	486	402	† † † 9	936	765	6,324	
Cellules	Gisunzu	Nuskadovi	n Jana Baar	Rugazi I	Cyabajwa	Kabarondo	Rugazi II	Rurenge	Muko	Rulenge	Nyakanazi	Kamvumba	Nkondo	Cyabajwa		
Sectors	Shyanda			Kabarondo			Cyinzovu		Bisenga			Remera	Rwinkwayu			
Communes	Kabarondo											Kigarama	Kayonza		Total	
No.	, '	۶.	ſ	'n.	.	ທໍ່	•	7.	ф •	9.	10.	=	12.	<u>.</u>		

TABLE IV-11

WATER SUPPLY PLAN (ZONE III) ELECTRIC PUMP SYSTEM

Zone III.

		18	180,000	142,742	176,310	11,754	7,831			Total	
	= .	-	10,000	0	(10,005)	(667)	N.A.	Rurenge II			18.
	E	*	10,000	0	(10,005)	(199)	N.A.	Rurenge I	Gatore	Rusumo	17.
	=	سبو ۱	10,000	0	8,820	588	699	Nyagateme	Mubago		16.
	E	-	10,000	0	7,560	504	356	Rugombe			15.
	=	-	10,000	0	7,995	533	411	Ruvuzi II			14.
	E	v-	10,000	0	9,720	648	457	Nyakazinga			13.
	=	-	10,000	0	7,665	511	376	Ruzinga II			12.
	=	-	10,000	0	9,075	605	360	Ruzinga I			<u></u>
	=	-	10,000	0	11,235	749	528	Kizenga			10.
	z	-	10,000	0	7,350	. 06₩	345	Ntara	Rurenge		9.
	Ħ	-	10,000	0	7,320	488	344	Nyakabanga			&
	E	-	10,000	0	7,800	.520	366	Tonero			·-
		+	10,000	0	060'6	909	427	Rukizi			-9
	=	←	10,000	39,398	14,415	961	219	Nyagasozi			Ŋ,
	ŧ	,	10,000	0	14,055	937	099	Mutara	Мигаша	Rukira	.
	E		10,000	0	14,235	646	772	Nyamugali	Kibara		÷
	£	<i>t</i> -	10,000	11,588	7,725	515	419	Kabahushi			2.
	D1		10,000	91,756	12,240	816	†99	Gahama	Sakara	Birenga	
)£	Type of Wells	No. of Wells Required	Discharge Supplied (1/d)	Spring Supply (A/d)	Water Demand ((/d)	Population Served (1990)	Population (1983)	Cellules	Sectors	Communes	No.

TABLE IV-11

WATER SUPPLY PLAN (ZONE IV) ELECTRIC PUMP SYSTEM

Zone IV.

Type of Wells	10	£	=	F	=	=	=	£	E	£	=	=	E	F	F	=	E	=	*	#	2	F	
No. of Wells Required	-	-	,	-	-	,	4	-	-	-	-	-		-	-	-	-	-		-			
Discharge Supplied (1/d)	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	
Spring Supply ((/d)	0	0	0	0	0	0	0	0	0	0	0	0	0	0		23,846	0	33,696	0	0	6,739	0	
Water Demand ({/d)	9,150	9,150	10,680	7,155	8,415	13,320	13,515	13,305	6,690	5,430	8,160	8,160	8,160	11,715	9,570	14,580	11,160	11,055	11,055	11,265	10,830	12,420	
Population Served (1990)	610	610	712	114	561	888	901	887	944	362	544	544	544	781	638	972	ተተረ	737	737	751	722	828	
Population (1983)	445	445	520	348	6017	648	657	712	303	292	438	438	438	627	513	782	578	572	572	583	561	644	
Cellules	Murukore	Kurutari	Mundekwe	Gikomero	Sata	Rugese	Bugarama	Gisoro	Mashya	Ngatare	Murambi	Agasharu	Buhoro	Abiyahuzi	Суешо	Mabuga	Matabe	Rushangari	Rudashya	Kabuye	Nyagakombe	Kabare	
Sectors	Gasetsa				Rurenge	Kaberangwe		Rundu	Rukira					Ruramira	Nkamba		Nkungu					Kaduha	
Communes	Kigarama							Kabarondo									Rutonde						
No.		2.	m		'n		7.	ъ.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	

Zone IV.

Type of Wells	D1	=	z	= -	=	E	r	ŧ	=	2	-2	5	=	=	=		=	E		
No. of Wells Required	-	-	-	-	 -		-	g -sa	-	-	, -	grow		-	-	-		-		40
Discharge Supplied (1/d)	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000		400,000
Spring Supply ((/d)	175,789	6,739	112,492	51,840	0	0	9,331	0	3,628	55,987	0	41,990	112,492	0	24,364	68,947	76,956	11,404		766,240
Water Demand ((/d)	11,055	9,930	9,825	9,825	9,930	7,845	7,755	7,935	7,935	7,050	7,755	9,765	8,895	9,660	12,285	12,285	10,440	8,595		393,705
Population Served (1990)	737	662	655	655	662	523	517	529	529	470	517	651	593	544	819	819	969	573		26,247
Population (1983)	573	515	509	509	515	407	402	411	411	365	402	399	461	550	631	631	536	442	1111	20,144
Cellules	Gishike	Kangabo	Kababero	Rwimbago	Kamamana	Mubuga	Kinganzwa	Gatare	Rwisange	Kabazeyi	Kanyegera	Nyabishunzi	Rushangara	Rugobagoba	Rwakayango	Kalibu	Kashekashi	Gashekasheke		
Sectors						Rweru						Sovu			Kabilizi I			Kabilizi II		
Communes															Mugesera					Total
No.	23.	24.	25.	26.	27.	28.	29.	30.	31.	32.	33.	34.	35.	36.	37.	38.	39.	,0 ⁴		

TABLE IV-11

WATER SUPPLY PLAN (ZONE V)

Zone V.

Type of Wells	<u>D</u> 1	=	=	=	E	=	=	
No. of Wells Required		-	-	1	-	ip-rine.	8	α
Discharge Supplied (1/d)	10,000	10,000	10,000	10,000	10,000	10,000	20,000	80.000
Spring Supply ((/d)	0	0	0	0	0	0	0	0
Water Demand ((/d)	12,150	9,420	8,280	10,635	10,725	10,170	17,205	78,585
Population Served (1990)	810	628	552	402	715	678	1,147	5,239
Population (1983)	591	458	403	518	522	495	836	3,823
Cellules	Murugunga	Cyarubare	Rubimba	Bara	Rushenyi	Gitara	Nyagatovu	
Sectors	Kabare II						Rubona	
No. Communes	Kigarama							Total
No.	. ÷	5	m [*]	#	ŗ.	•	7.	i

TABLE IV-11

WATER SUPPLY PLAN (ZONE VI)

Zone VI.

	1																	
Type of Wells	10	1 =	#	2	. =	z	£	±	2	E	=	±	±	27	=	E	E	
No. of Wells Required	2	1 +-	• +	-				-	-	-	yan	;	-				***	18
Discharge Supplied (\(\lambda\)	20.000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	180,000
Spring Supply (L/d)	0	0	0	0	0	0	114,048	0	0	0	41,990	0	0	0	13,996	0	0	170,034
Water Demand (1/d)	16,395	14,865	10,005	13,800	11,130	11,895	12,000	10,035	10,590	7,740	12,420	12,420	12,420	10,395	10,395	9,780	7,995	194,280
Population Served (1990)	1,093	991	199	920	742	793	890	699	406	516	828	828	828	693	693	652	533	12,952
Population (1983)	777	669	0.24	648	542	579	584	489	515	377	605	605	605	506	506	470	384	9,355
Cellules	Bisagara	Gatongo	Rwamuhigi	Rusenyi	Bugarura	Kirehe	Kaduha	Rurenge	Gacumu	Mubuga	Ruhanga	Rugando	Rugarama	Rwagitura	Rusarabaga	Kagabiro	Mareba	
Sectors	Mushikili			Gitwe	Kirehe						Kigina			Nyabitare		Nyarubuye		
Communes	Rukira		•		Rusumo													Total
No.	:	2.	'n	≓	ņ	ę.	7.	æ	9.	10.	Ξ.	12.	13.	14.	5.	16.	17.	

TABLE IV-11

WATER SUPPLY PLAN (ZONE VII)

Zone VII.

No.	Communes	Sectors	Cellules	Population (1983)	Population Served (1990)	Water Demand (1/d)	Spring Supply ((/d)	Discharge Supplied (A/d)	No. of Wells Required	Type of Wells
	Rusumo	Gatore	Rwabutazi	N.A.	1		0	10.000	-	5
2.			Cyunuzi	N.A.	ı	î	0	10,000	- -	-
÷			Nyamiryaango	N.A.	ı	ı	0	10,000	· •	=
#			Kurugarika	N.A.	1	ı	0	10,000	- +-	F
ų.			Кашето	N.A.	ı	ı	0	10,000	• •	t
. 0			Muganza	N.A.	1	r	0	10,000	,-	=
7.		Kirehe	Mukaziba	425	582	8,730	0	10,000	-	z
ε. •			Rutobagu	199	910	13,650	0	10,000	•	2
9.			Murugando	308	422	6,330	0	10,000	-	E
10.			Nyabukokora	308	422	6,330	0	10,000	• •	æ
11.		Musaza	Rugarama	N.A.	ı	ı	0	10,000	•	=
12.			Nyagahama	N.A.	ı	ţ	0	10.000		F
13.			Kumurambi	N.A.	1	1	0	10,000	. ,_	=
14.			Nkwandi	N.A.	1	1	29,548	10,000	. 	=
15.		Kigarama	Kigarama	508	969	10,440	0	10,000	,-	: ##
16.		Kigina	Buhwaga	747	604	9,060	11,923	10,000	-	=
17.			Bugarura	844	612	9,180	32,140	10,000	,	Ħ
18.			Nyakibande	393	538	8,070	0	10,000		5
	Total			3,496	4,786	71,790	73,611	18,000	e t	=

Note: Rusumo/Gatore & Musasa have no data of No. of families. (total 11 cellules)

TABLE IV-11

WATER SUPPLY PLAN (ZONE VIII)

Zone VIII.

No. Communes	Sectors	Cellules	Population (1983)	Population Served (1990)	Water Demand (1/d)	Spring Supply (1/d)	Discharge Supplied (1/d)	No. of Wells Required	Type of Wells
Rusumo	Gisenyi	Kigonge	256	351	5,265	o	10,000	<u>-</u>	S
		Gisenyi	334	458	6,870	o	10,000	-	E
		Mahama	566	364	5,460	0	10,000	-	=
		Mwoga	339	191	096'9	0	10,000	,- -	=
		Mwizinga	339	191	096*9	0	10,000	-	E
Total			1,534	2,101	31,515	0	50,000	rv	

TABLE IV-11

WATER SUPPLY PLAN (ZONE IX)

Zone IX.

s Type of Wells	STS	=	=	z	ŧ	E	±	=	E	=	=	
No. of Wells Required	_	, -		-	-	-	,	-	, .	,	ę	
Discharge Supplied (\lambde{\lambda}\d)	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	
Spring Supply (A/d)	0	0	0	23,328	0	0	93,312	0	0	. 0	0	
Water Demand (X/d)	13,395	13,395	11,220	8,100	11,835	8,880	I	ı	ı	1	l	
Population Served (1990)	893	893	748	540	789	592	ŧ	t	ţ	ı	ı	
Population (1983)	652	652	945	а 394	576	432	N.A.	N.A.	N.A.	N.A.	N.A.	
Cellules	Kiyanzî	Kiremera	Kimesho	Nyacyerera	Gishenyi	Cyanya	Gatwe	Kagera	Gikenke	Mukiha	Rubona	
Sectors	Kigarama						Musaza			Gatore		
Communes	Rusumo											
No.	÷	2.	'n		ų	•	7.	φ.	6	10.	1.	

Note: Rusumo/Musaza & Gatore have no data of No. of families. (total 5 cellules)

TABLE IV-11

WATER SUPPLY PLAN (ZONE X)

Zone X.

No. (Communes	Sectors	Cellules	Population (1983)	Population Served (1990)	Water Demand ((/d)	Spring Supply ((/d)	Discharge Supplied (A/d)	No. of Wells Required	Type of Wells
<u>-</u>	Birenga	Sakara	Nyagataba	788	970	14,550	0	10,000		D1
2.			Kukarambi	549	675	10,125	0	10,000		=
.			Kukarenge	564	693	10,395	0	10,000		E
4.		Kibara	Nyamirindi	1,312	1,614	24,210	0	20,000	N	'n
5.			Nyagasozi	1,322	1,626	24,390	0	20,000	Q	=
••		Gahulire	Itambiro	736	903	13,545	57,542	10,000		=
7.			Rugenge	553	619	10,185	8,812	10,000	,	=
8.		Bare	Muzingira	395	484	7,260	0	10,000		=
9.			Rurenge	395	†8 †	7,260	188,679	10,000	-	Ħ
10.		Gashongora	Kabagera	608	247	11,205	0	10,000	-	=
1.			Rwimondo	1,520	1,869	28,035	0	20,000	7	¥
12.			Nyagasenyi	1,013	1,246	18,690	36,288	10,000	-	=
13.		Gahara	Nyakagezi	307	378	5,670	6,839	10,000	٦	=
	Total			10,062	12,368	185,520	298,060	160,000	16	

TABLE IV-11

WATER SUPPLY PLAN (ZONE XI)

Zone XI.

_																			
Type of Wells	S	E	z	E	=	=	r	=	=	=	£	=	=	n	· =	E	2	E	
No. of Wells Required	-	2	-	-	-	-	***	-	-	2	2	2	g	8	61	f		·	24
Discharge Supplied (1/d)	10,000	20,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	20,000	20,000	20,000	10,000	20,000	20,000	10,000	10,000	10,000	240,000
Spring Supply ((/d)	0	0	0	0	0	0	27,993	0	10,368	0	0	0	235,353	0	0	0	0	10,368	400,986
Water Demand (1/d)	1	18,225	11,640	12,645	6,780	11,640	6,660	6,660	16,080	22,155	23,970	18,810	15,480	19,125	19,725	5,070	7,635	8,685	230,985
Population Served (1990)	ı	1,215	776	843	452	776	ងកង	ឯកក	1,072	1,477	1,598	1,254	1,032	1,275	1,315	338	509	579	15,399
Population (1983)	N.A.	988	631	989	368	631	362	372	872	1,202	1,300	1,021	839	1,037	1,070	275	413	471	12,528
Cellules	Butezi	Mugogo	Taraye	Muhamba	Murangara	Butanga	Mutendeli	Karenge	Mukona	Kibaro	Кагwеша	Nyagasozi	Kinyonzo	Rugarama	Tunduti	Karenge	Rusebeya	Kazo	
Sectors	Gashongora	Gahara					Bare		Matongo				Kibimba			Birenga			
Communes	Birenga																		Total
No.	'.	2.	m	. #	5.	6.	7.	8.	9.	10.	1.	12.	13.	14.	15.	16.	17.	18.	

Note: Bironga/Gashongora has no data of No. of families.

TABLE IV-11

WATER SUPPLY PLAN (ZONE XII)

Zone XII.

Type of Wells	S1	=	E	±	=	=	¥	F	Ė	=	E	t	=	£	
No. of Wells Required		-			-	-	•-	-	,	-	-	-	£		#1
Discharge Supplied (1/4)	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	140,000
Spring Supply (A/d)	29,548	0	0	0	122,342	0	38,361	0	0	0	0	0	0	a .	190,251
Water Demand (K/d)	11,085	11,085	5,985	7,020	12,900	15,285	15,285	6,060	13,950	12,585	10,935	6,900	8,985	006*6	147,960
Population Served (1990)	739	739	399	468	860	1,019	1,019	1101 1	930	839	729	460	599	099	9,864
Population (1983)	577	577	303	270	671	795	795	315	726	655	570	359	1468	515	7,596
Cellules	Mizibili	Ruyema	Rubumba	Giseso	Nyagasani	Kabare	Karenge	Kigoma	Mubaha	Akabande	Jarama	Irarire	Ihanika	Kiryama	
Sectors	Ruyema I		Ruyema II	Ngoma	Nshili II			Mbuye			Мигиа				
Communes	Sake														Total
No.	+	2.	m	.	ŗ,	6.	7.	8	9.	10.	-	12.	13.	14.	

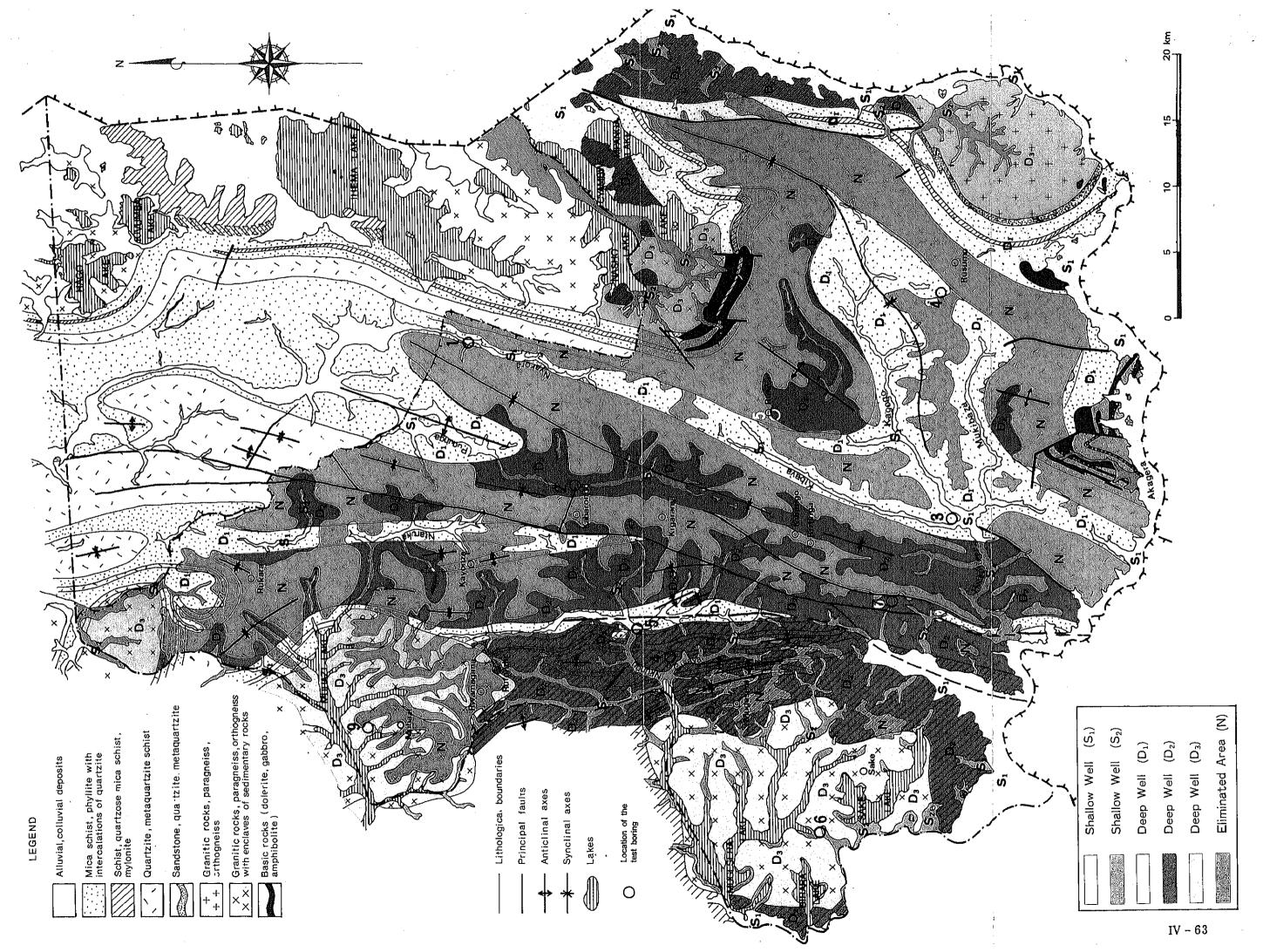
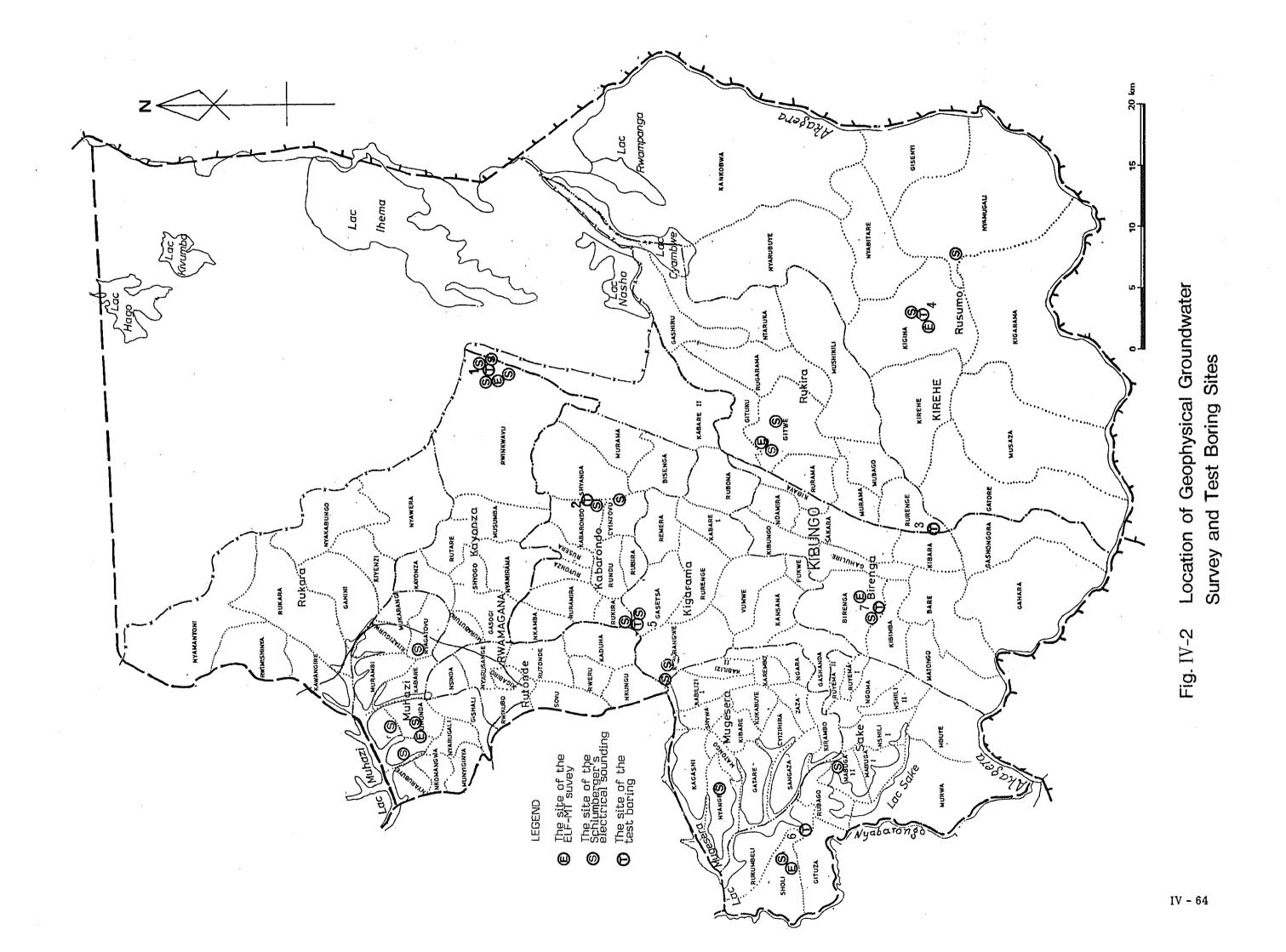
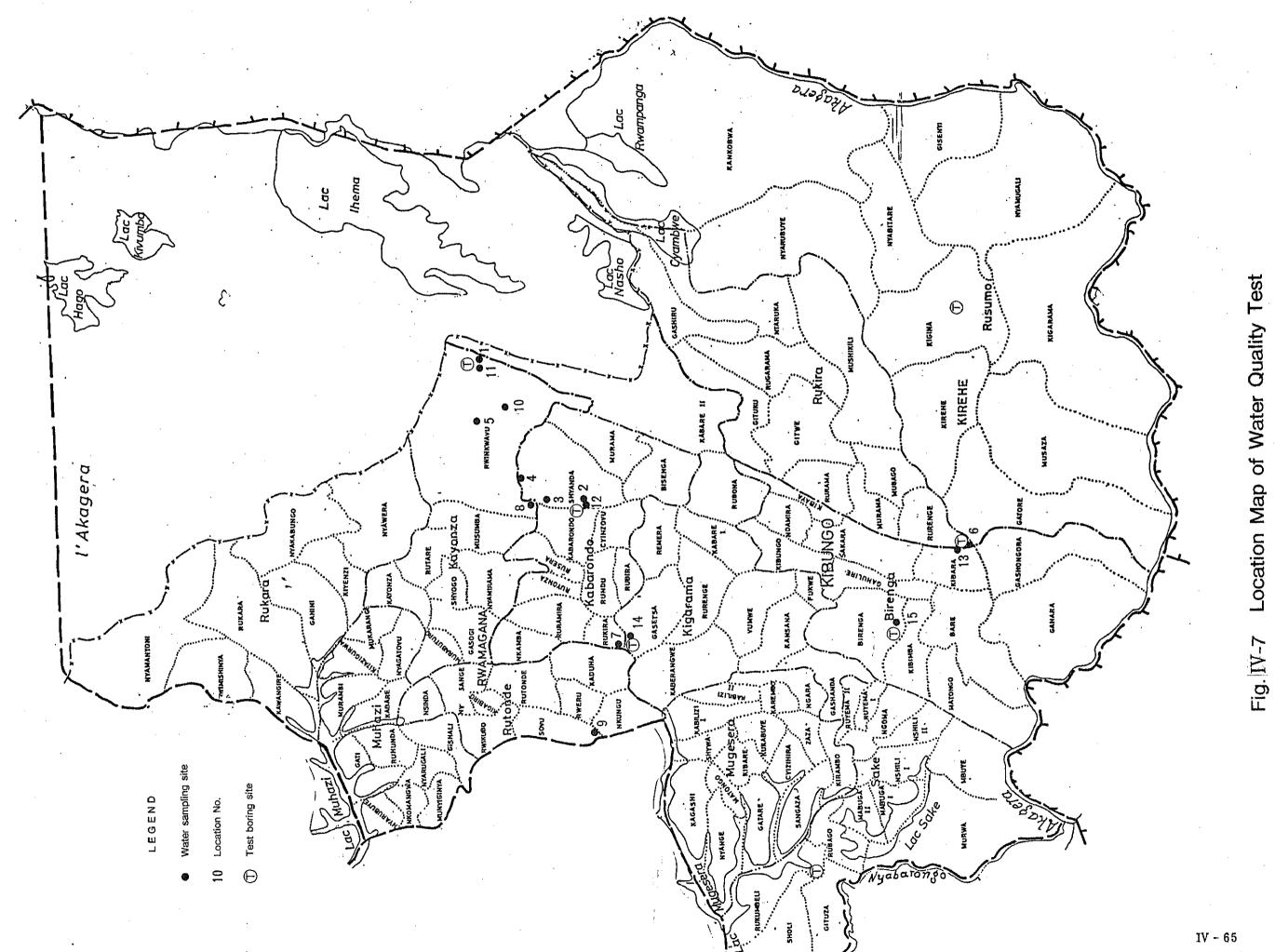




Fig. IV-1 Classification of Water Sources(well types)

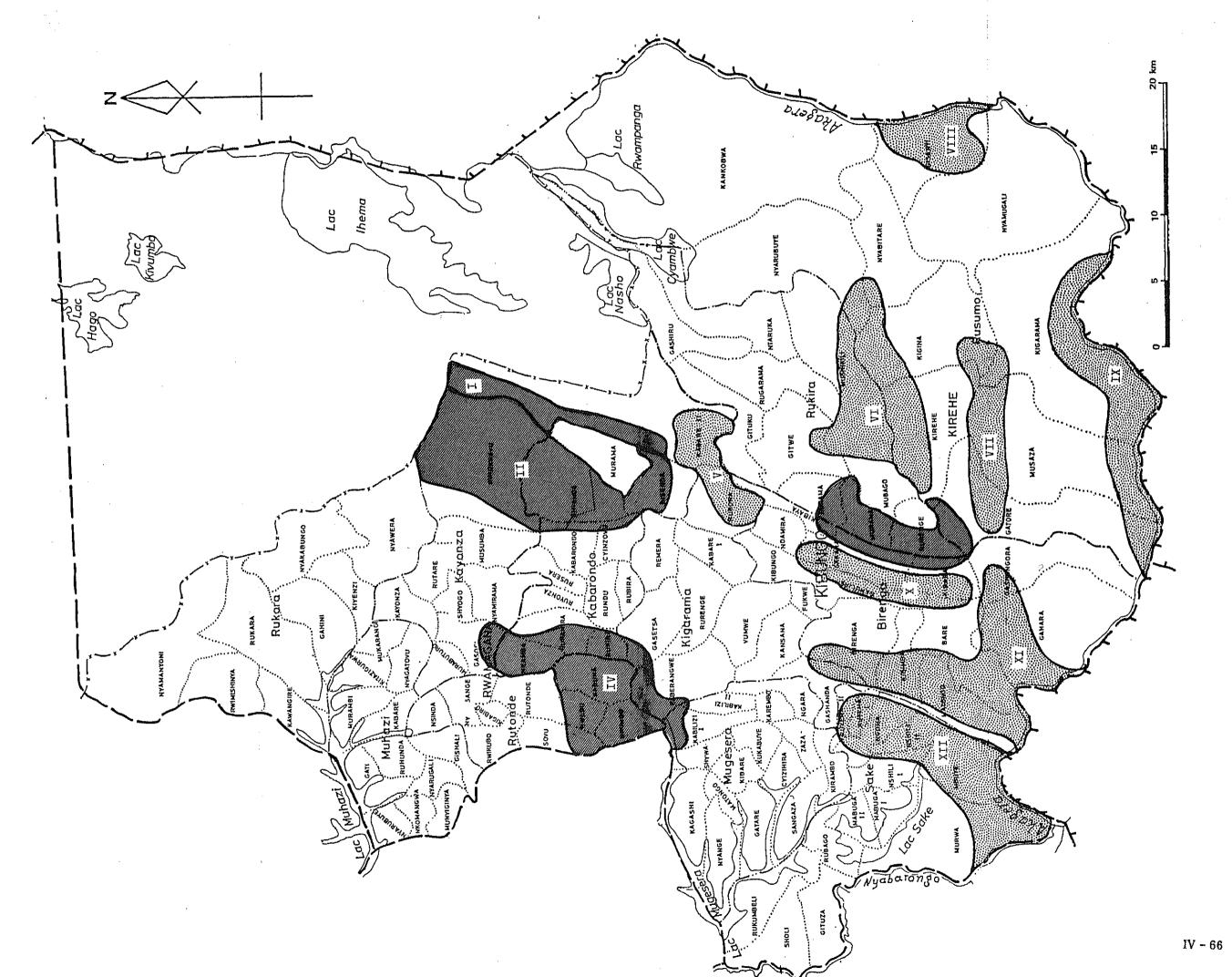


Fig. IV-8 Location Map of water Districts

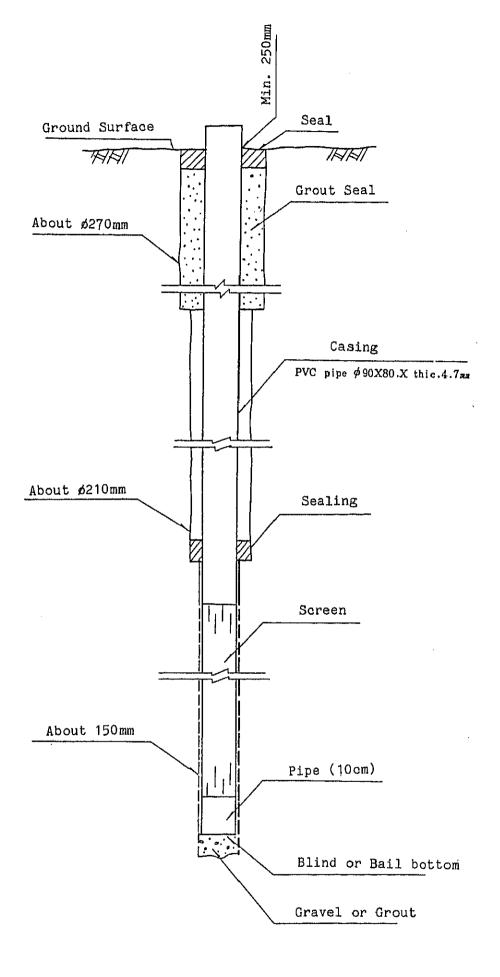


FIG. IV-9

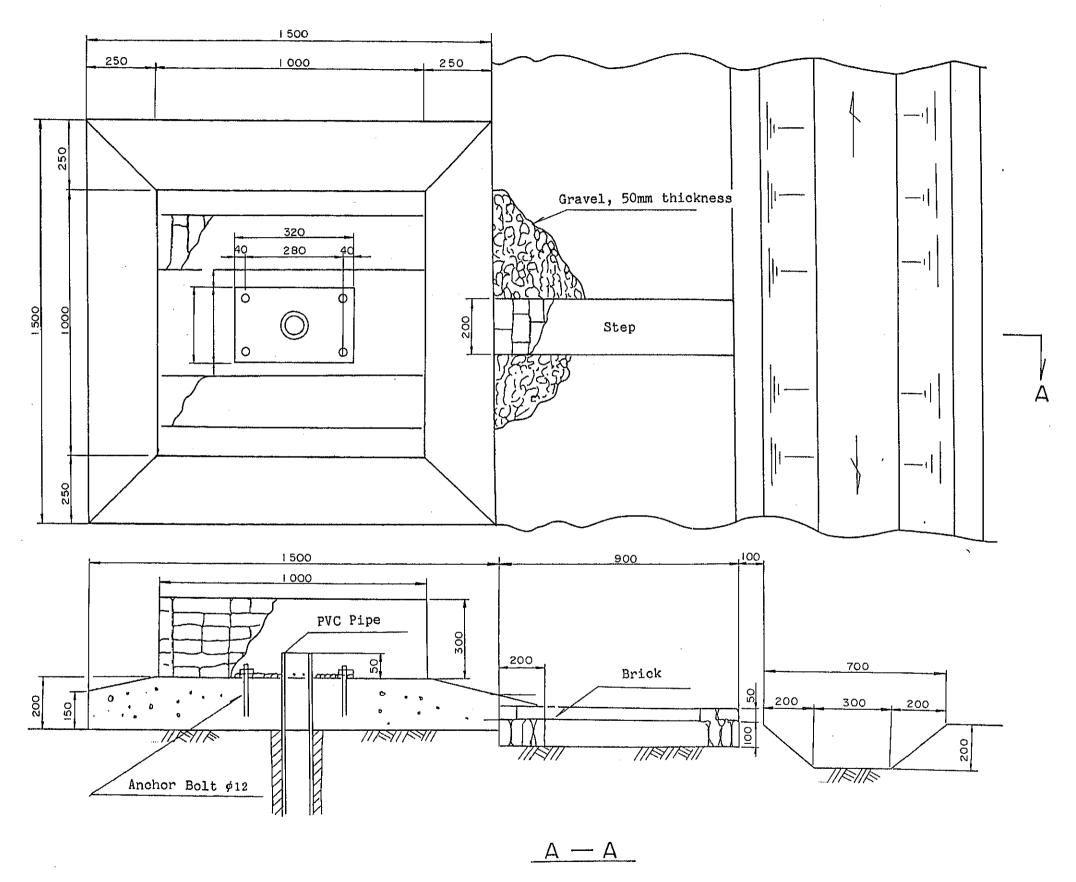
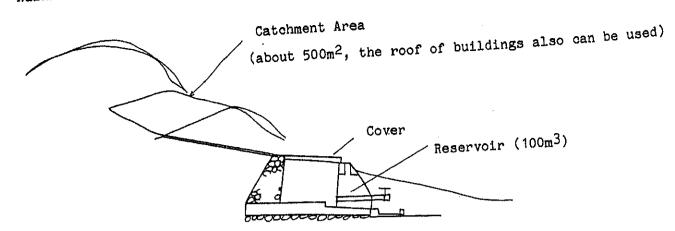



Fig. VI-10 Typical Design of Pump Platform

Note:

- 1. Fence radius is planned at 30m to prevent intrusion of cattle but can be modified in accordance with actual conditions at the site.
- 2. Regarding foundations refer to the "Pump Instruction Manual".

Rainfall Storage Unit

Note:

- 1. Catchment Area is decided by topographic conditions.
- 2. Catchment area should be located where no contamination by drainage occurs.

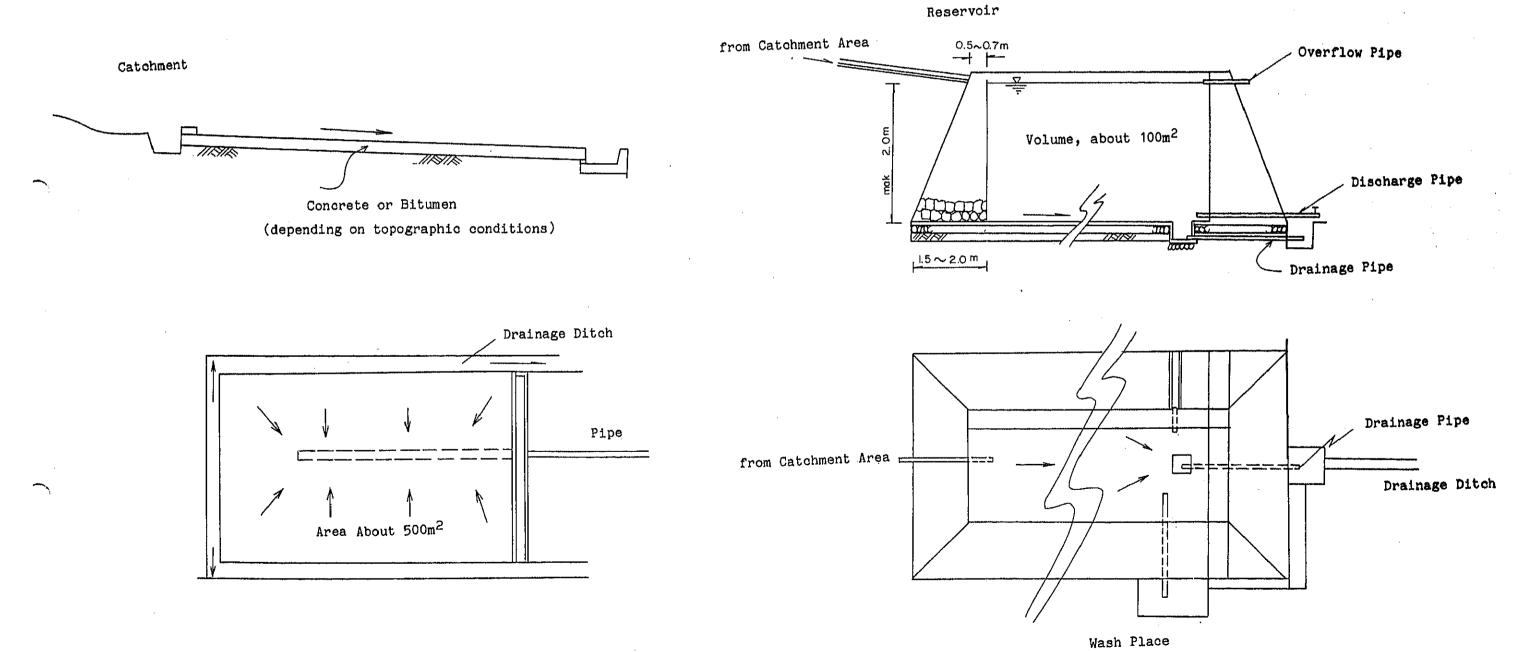


Fig. VI-11 Typical Design of Rainfall Storage Unit

	,		

CHAPTER V. PROJECT IMPLEMENTATION

CHAPTER V

PROJECT IMPLEMENTATION

5.1 Executing Agency

The Ministry of Public Works and Energy (MINITRAPE) is the executing agency for the project and the General Direction of Water, a department within the said Ministry, is in charge of actual project management and coordination.

5.2 <u>Implementation Program</u>

Implementation of the project is urgently required to solve water supply problems encountered in the project area, where a great majority of people rely solely on heavily contaminated surface water and springs for their daily water supply. At present, however, lack of financial and technical resources within Rwanda hinders prompt implementation.

As indicated in 2.6.4, all past water projects have been largely financed (85%) by aid from foreign governments. Boring machines required for well construction are unavailable from both government agencies and private companies. Moreover, local contractors have no actual experience in boring work, while only a few of the engineers employed by the Ministry of Industry, Mines and Artisans have such experience. Consequently, implementation of the project will be greatly affected by the availability of both financial and technical foreign aid.

Although a short implementation period is most desirable, a realistic schedule must be considered due to actual conditions and limitations in Rwanda. A five-year implementation period is proposed by the study team as most appropriate. The proposed period will consist of two phases; phase-1 covering two years and phase-2 covering three years.

In phase-1, implementation will mainly be undertaken with foreign grant aid and technical cooperation. During this period, the Government of Rwanda will obtain necessary machinery and equipment provided by foreign aid and at the same time, key Rwanda personnel will participate in project execution and receive as much technical training as possible.

In phase 2, implementation will be conducted by MINITRAPE with partial financial and technical aid provided by foreign countries. At least 3 years is necessary for phase 1 to ensure that MINITRAPE acquires the necessary equipment and knowledge to successfully continue the project in the second phase. The implementation schedule, TABLE V-1, was prepared on the basis of the above considerations.

Sixty-eight (68) wells in which, one is equipped with an electric driven pump and water distribution system, are scheduled to be built in phase 1 and 381 in phase 2. Rainfall storage units will be constructed concurrently with well construction; 3 in phase 1 and 9 in phase 2. Major equipment and machines required for boring work will be supplied by foreign grant aid consisting of one unit in phase 1. Also spare parts of equipment and machines, manual pumps and consumable materials for boring works will be supplied through foreign aid either in phase 1 or phase 2.

Priority in construction will be given to wells and rainfall storage units in districts with the greatest detected inadequacy in quality, quantity, and accessibility of water and where water-borne diseases are most prevalent. TABLE V-1 FIG. V-1 summarizes the project implementation program.

5.3 Implementation Plan

Implementation during phase 1 will be the responsibility of the foreign consultant and contractor hired by the Rwanda Government.

The Contractor will handle procurement, transportation and field construction. The consultant, on the other hand, will carry out electric sounding in the field and prepare all necessary detailed designs. The Consultant will also supervise all activities of the contractor on behalf of the Government of Rwanda. Rwandan counterparts will participate in the construction work as much as possible to ensure adequate on the job training. From phase 2, the Project will be solely under the jurisdiction of MINITRAPE with partial financial and technical foreign aid.

5.4 Construction Work

Construction work consists of preparatory works, well drilling, logging and pumping tests, pump installation and construction of platforms, drainage works and fences.

5.4.1 Preparatory Work

(1) Access Road Improvement

Generally access of the drilling machines to the work site by existing rural dirt roads is very difficult particulary during and after rainfall. Almost all existing access roads are unpaved, zigzagged and steeply sloped. In addition road width is often insufficient for passage of drilling equipment and supporting vehicles.

The access road should be widened and improved for passage of trailers and vehicles before transportation is required; otherwise the progress of the work will be seriously affected by delayed deliveries.

(2) Extension and Leveling of the Site

A flat space of about 1,000m² is required for installation of the drilling equipment and extension and leveling work is to be performed by the beneficiaries.

5.4.2 Well Drilling

Main equipment required for well drilling are trailers or tractor-mounted-type direct rotary rigs and supporting equipment and vehicles.

Drilling will be performed by a direct-circulation rotary drilling rig which has such advantages as relatively rapid drilling speed in most formations, greater capacity in drilling depth, a screen and simple easing and screen installation. The rotary rig drills a hole by turning a fishtailed, toothed cone or similar bit at the bottom of a string drill pipe. The typical string consists of a bit, which scrapes, grinds, fractures, or otherwise breaks the formation drilled and a drill collar of heavy walled pipe, which adds weight to the bit and helps to maintain a straight hole.

Drill cuttings will be brought to the surface by flushing with a circulating fluid through an annular space between the hole wall and the drilling pipe. The circulated fluid also works to lubricate and cool the bit. Muddy water or compressed air are possible circulating fluids and one of the same should be carefully selected in accordance with field

conditions. When drilling is performed with muddy water, removal of muddy water which remains in the hole and the mud wall formed inside the hole during circulation is important. This may be carried out either with a water jet made with the strainer or by injecting compressed air into the hole.

5.4.3 Pump Test and Logging

(1) Well Test Procedure

Immediately before starting the test, water level in the well should be measured to determine the static water level upon which all drawdowns will be based. These data versus the time of measurement should be recorded. Pump discharge should be kept as constant as possible after the initial excess discharge has been stabilized.

During the well test to determine aquifier characteristics, water level in the well should be measured to give at least 10 observations of drawdown within each log cycle of time. The time schedule should not be adhered to at the expense of accuracy of the drawdown measurement.

A proposed measurement schedule is as follows:

0 to 10 minutes: 0.5,1, 1.5, 2.5, 3.0, 4,5,6,7,8,9 and

10 minutes

10 to 20 minutes: 10,12,14,16,18,20

20 to 100 minutes: 10,25,30,40,50,60,70,80,90 and

100 minutes

100 minutes to completion: 0.5 to 1 hour intervals

A flowmeter with totalizing register will be used to measure pump discharge when the discharge pipe is filled with water. The test period will be as long as required to obtain sufficient data in the form of curves obtained from plotting time versus drawdown.

(2) Recovery test

When the pump is stopped after running the pump-out test, measurement of water level in the well is immediately initiated and the manner in which water level recovers is recorded.

(3) Drill hole logging

Drill hole loggings are obtained by lowering an instrument connected to a surface-mounted recording device down the hole to obtain the surface record. Two types of logging will be applied (resistivity and self-potential, and temperature).

1) Electrical logging (resistivity and self-potential)

Electrical logging will be conducted according to regular procedure. The two electrodes applied yield two curves, a spontaneous potential (SP) and a resistivity curve, which are plotted on a two-pen recorder. The SP curve is a record of the variation in natural direct-current potentials which exist between sub-surface materials and a static electrode. This variation is plotted against depth. The resistivity curve is a record of the variation of the resistivity of the sub-surface materials.

The logging instrument consists of a sonde with two electrodes supported by double conductor cables leading to the two-pen recorder and grounded at the surface to complete the circuits; as well as of cable reels, winches, and other auxiliary equipment. The natural direct-current potentials which exist between subsurface materials vary according to the nature of the layers traversed. For example, the potential of an aquifer containing saline water is usually negative with respect to associated clay and shale, while that of a freshwater aquifer may be either positive or negative but of less amplitude than the saline water. This would be evident on the graphic record of the SP curve.

The resistivity of a material is a measure of the specific resistance. It is related to the nature of the material and the quantity, quality and distribution of contained fluid. These factors vary from one material to another, so resistivity measurements made between electrodes in a borehole can be used to determine formation boundaries and some characteristics of the individual layers.

The curve obtained by the normal method can usually be readily interpreted to show aquifer boundaries near to the correct levels, and the thickness of formations if greater than about 30cm. The true resistivity cannot be obtained; only the relative magnitude of the resistivity of each formation will be obtained. These relative magnitudes can sometimes be interpreted qualitatively regarding the quality of water in the various aquifers.

2) Temperature logging

Temperature logging uses a sonde in which a resistance-type theromocouple (thermister) is placed and calibrated to correlate resistance variations with temperature variations. Temperature logging is sometimes made at the same time as electrical logging. The loggings are valuable tools in investigating inter-aquifer migration of water, adequacy of grouting, geothermal activity, landslide and other similar studies.

5.4.4 Strainer Installation and Sealing

(1) Strainer Installation

The function and life of the well is significantly influenced by the strainer's quality. The strainer should preferably be installed in the second aquifer instead of the first and a blind tube should be attached at the lowest part. Where the first aquifer is directly adjacent to the foundation rock and the strainer cannot be installed in the second aquifer, it should be set as far below the first aquifer as possible. The structure of the strainer should be determined by actual data concerning size, shape and distribution of grit particles forming the aquifer.

(2) <u>Sealing</u>

To prevent downward percolation of precipitation or surface runoff along the outside of the well casing a seal is made at ground level. The seal can be of combined clay-cement grout material. To make a good seal, a bit should be dug at ground level

with sufficient diameter and a depth of about 1m. The pit is then backfilled with cement grout in the bottom and clay on top and compacted adequately. At ground level, backfill should be mounded up to form a small cone-like elevation around the extended casing to provide good surface drainage away from the well.

5.4.5 Well Construction Schedule

- (1) Preparatory arrangement for equipment and purchase of materials requires 5 days.
- (2) Estimated period required for the well construction is as follows:

17 days/hole (average depth D=50.0 m/hole)

Work	No. of Days
- Mobilization	2.0
- Preparation	2.0
- Drilling (10m/d)	5.0
- Logging	1.0
- Cleaning of drilled hole	0.5
- Installation of pump chamber-casing	0.5
- Well test	1.0
- Foundation concrete	1.0
- Removal	1.5
- Pump setting	0.5
- Demobilization	2.0
TOTAL	17.0

5.4.6 Pump Outlet and Washing Area

A concrete platform will be made for the pump outlet and washing area according to the following procedure.

- 1) First, the ground is scraped for a 2m area around the pump.
- 2) A slab form $(1.5^{M} \times 1.5^{M} \times 0.15^{M} \text{ high})$ is then assembled.

- 3) A concrete slab is poured in a slight dome shape if possible, to facilitate water drainage. (A 15cm thick slab requires 0.4M^3 of concrete or three 40kg bags of cement.)
- 4) The supplied anchor rods are then screwed into the sealing frame, down to the threading end.
- 5) This frame is sealed in the concrete platform, carefully centering the hole in relation to the pump.
- 6) Concrete is cured for 48 hours before installing the pump.

5.5 Scope of Work

- (1) Phase 1 works will be conducted primarily by the foreign Consultant and contractor. The items described below are expected to be carried out by the Government of Rwanda but these will be confirmed later by mutual discussion.
 - 1) Mobilization of "UMUGANDA" to build new access roads and to repair and maintain existing access roads during the construction period.
 - 2) Heavy machinery, equipment and operators required to build large access roads will be supplied by MINITRAPE free of charge.
 - 3) Wages and allowances for Rwandan counterparts will be borne by the Rwandan Government.
 - 4) Expropriation of land and compensation for crops, if any, will be borne by the Rwandan side.
- (2) Works for phase 2 will be solely the responsibility of the Rwandan Government; however, the following machinery and equipment will preferably be supplied by foreign aid.
 - 1) Boring machine and supporting equipment 1 unit
 - Consumable materials for boring work

sufficient quantity for 114 wells

3) Manual pump sufficient quantity for 114 wells

4) Parts required to repair boring machines supplied during phase 1 and phase 2.

5.6 Recommendations for Future Maintenance of Facilities

It is strongly recommended that daily maintenance work be carried out by the users themselves. To facilitate this, an appropriate maintenance system should be organized in every Cellule. At present, existing protected springs are maintained by the "fountainers" from the Commune office. There is also a plan to establish a new section within the prefectural office which will be in charge of management and coordination of the individual activities of the "fountainers". These measures, however, may be insufficient to handle maintenance work required for newly installed wells and facilities in the project. Additional independent caretakers should also be assigned at the Cellule level and integrated into the above existing organization.

Necessary spare parts and consumable materials for repairs should be managed by MINITRAPE at the initial stage but should be shifted gradually to administrators in the prefectural office. Actual repair work should be performed by the proposed caretakers and other concerned beneficiaries in the Cellules under the instruction of engineers from MINITRAPE. It is recommended that MINITRAPE hold regular lecture classes and give practical instruction and training to caretakers to increase their technical level. Exchange of information through meetings may also be helpful to all parties concerned. An intensive monitoring program of actual well utilization is also required.

The proposed organization is outlined in FIG. V-2.

5.7 Project Cost and Financing

(1) <u>Cost Estimate</u>

As aforementioned, implementation of the project is divided into two phases. Although only tentative at this preliminary stage, the total investment cost required for the project was estimated at US\$5,902,000 of which US\$3,271,000 would be in foreign exchange and US\$2,631,000 in local currency. The foreign exchange cost of materials and equipment to be imported was estimated using

1985 mid-October CIF prices. An anticipated price escalation during the implementation period, 1986 - 1991 in Rwanda, amounting to about 10% (annual) of the sum of the base cost, has also been included in the estimates.

(2) Financial plan

Considering the large project investment cost anticipated and the present financial situation of the Government of Rwanda, formation of a program for financing the project through external assistance from several multilateral or bilateral donor agencies is indispensable. Grant aid of foreign governments will be requested to cover the entire foreign exchange cost and a portion of the local currency cost of the project.

Anticipated investment cost for the project is as shown in TABLE V-2.

		·	

TABLE V-1
IMPLEMENTATION PROGRAM

					<u> </u>	
	First Stage (For			Second Stage (by Rwanda)		
Year	1986	1987	1988	1989	1990	TOTAL
Zone	I(1), II(13), III(12)	III(6), IV(40)	V(8), VI(18), VII(12)	VII(6), VIII(5), IX(11), X(16)	XI(24), XII(14)	
No. of Wells	26	46	38	38	38	186
No. of Boring Machine	2	2	2	2	2	2
Water Supply Facilities						
Manual Pump	25	46	38	38	38	185
Electric Pump	1	. 0	(depending on the elec	etrification programme in rural a	area)	1
Rainfall Storage Unit					•	
(for public health facilities)	1 .	0	ц	4	3	12
Foreign Aid						
Consultant	Detailed Design					
	Geological/ Topographic Survey		Foreign Experts			
	Supervision					
Contractor	Supply & Constructi	on	Trainir	ng in Host Country		
Equipment & Materials						
Boring Equipment	1	Series.	-	-	-	1
Boring Materials	(for 72 wells)		38	38	38	182
Mannual Pump	(for 72 wells)	-	38	38	38.	181
Electric Pump	(for Nyankola C.C	-	_	-	-	1
Rainfall Storage Unit	(for 1 storages)	-	3	3	3	12

TABLE V-2

SUMMARY OF PROJECT COST

					į.	Unit: US\$
	Phe	Phase 1		Phase 2		
	1987	1988	1989	1990	1991	Total
No. of Wells	25	911	38	38	38	co C
No. of Electric Pumps	****	0	0	. 0	, 0	0 -
No. of Rainfall Storage Units		0	#	4	m	. 12
 Civil & Boring Works Equipment & Machinery Engineering Service Contingency Administration & Land Compensation Total Foreign Aid Rwanda Final Portion 	977,000 571,000 123,000 275,000 20,000 1,946,000	1,019,000 0 81,000 225,000 53,000 1,378,000 1,325,000	341,000 242,000 71,000 77,000 58,000 789,000	375,000 254,000 78,000 77,000 64,000	413,000 267,000 86,000 85,000 70,000 921,000	3,125,000 1,334,000 439,000 739,000 265,000 5,902,000 3,271,000
						• • • • • • • • • • • • • • • • • • • •

Note: estimate in Oct, 1985

1 US\$ = \pm 240, 1 FRW = \pm 2.4

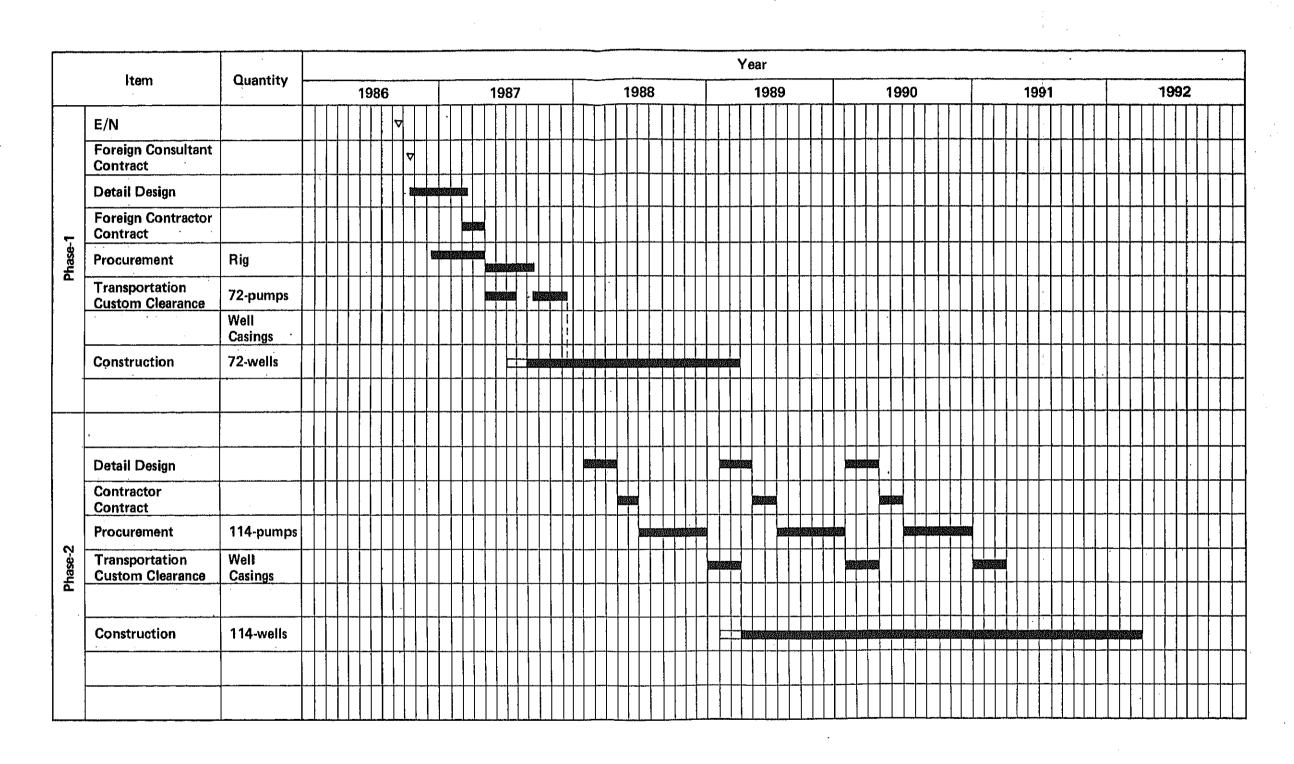


Fig. V-1 Schedule of Project Implementation

PROPOSED MAINTENANCE SYSTEM

Maintenance Engineer Commune Fountainers Prefectural Office Proposed System Commune Fountainers Existing System MINITRAPE

Cellule Well Caretaker\$

CHAPTER VI. PROJECT IMPACT AND RECOMMENDATIONS

CHAPTER VI

PROJECT IMPACT AND RECOMMENDATIONS

6.1 Project Impact

- (1) Rwanda is comparatively rich in ground water resources compared with other African countries. Furthermore geographical features and the settlement pattern of the rural population make utilization of ground water suitable for daily domestic water supply. However, ground water resources have not yet been developed and fundamental exploration has not yet been undertaken. Implementation of the proposed project would thus represent an important turning point towards ground development in Rwanda. During project implementation, key Rwandan personnel will obtain valuable technical experience for future development conducted by the Government of Rwanda.
- (2) At present, existing protected springs are supplying relatively clean water to the rural inhabitants but service coverage is limited to approximately 45% of total demand. The remaining half of the population, which has no access to protected springs, is forced to rely on heavily contaminated surface water.

Upon project completion a safe drinking water supply will be provided to the latter and the level of per capita consumption will increase to 15 l.c.d. For inhabitants living in areas where ground water is unavailable, the project will consider supplying the minimum drinking water requirement of 2 l.c.d., through rainfall storage units (12 units for 12-hospitals and dispensaries).

(3) The project will also provide safe ground water to rural inhabitants at easy access points. The beneficial impact upon domestic hygiene and public health through increasing domestic water consumption is obvious particularly when it is noted that 8.7% of all sickness in Rwanda is attributable to inadequate water supply. Diseases related to poor water supply and sanitation which are prevalent in the project area at present will be markedly

reduced and the amount of money spent per household on health care will decrease.

(4) Generally, existing springs are not conveniently located and it is very common for users to spend several hours a day in hauling water. The project will facilitate supply of safe ground water at easily accessible points reducing the amount of time spent per day in obtaining water by 2 to 4 hours. The available time resulting from this decrease in water hauling hours may be utilized for more productive purposes.

6.2 Project Constraints

(1) The main constraint anticipated in project implementation is the present lack of technical ability in Rwanda, particularly in the essential fields of ground water development such as electrical sounding and well drilling. To solve this problem the project provides an opportunity for Rwandan engineers and technicians to receive special training from foreign experts during project implementation. Without successful technology transfer the project would not achieve its ultimate objectives and maintenance of the wells, facilities, and boring machines after completion would be inadequate.

6.3 Recommendations

- (1) As described above, ground water development has not been attempted in Rwanda before and thus there is a shortage of experienced personnel. Consequently, in order to continue with long-term ground water development in the future, sufficient technology transfer is essential during the initial development stage, with cooperation of the foreign counterparts. Technology transfer will consist of the following items:
 - a) On-site training provided during project implementation;
 - b) Training of Rwandan engineers in the country of the foreign counterpart; and,
 - c) Stationing of a foreign technical instructor in Rwanda for a certain number of years to assist Rwandan personnel.

(2) The plan prepared and submitted by the study team consists of installation of many small point water sources without any distribution systems, excluding one in Kayonza, the most practical and realistic solution to the water supply problem in the project area considering the present prevailing settlement pattern and technical and financial limitations encountered in Rwanda.

Obviously, however, adoption of many small point sources as water supply sources in the project area is not necessarily justified from a long-range perspective. Point sources have their own limitations due to relatively narrow service coverage. In the future, when the Project area is more socially and economically developed and concentration of population occurs in many areas in the Communes, small point sources equipped with small manual pumps will no longer be able to supply the increased water demand. From a long-term perspective, a more effective and advanced water supply and distribution system must be formulated.

One such plan is installation of a main water pipe line along the existing main road which runs through the prefecture from north to south.

In addition, a plan to distribute water from the main header line to each small water district using gravity flow must be investigated. As a water source, surface water from Akagera River or Lake Sake may be suitable considering their relatively large capacity. In this case, water treatment will be required but simple filteration and disinfection utilizing slow sand filtration may be sufficient. On the other hand, a small size, independent water works with a deep tubewell and a power operated pump may be useful for those areas where the underground aquifer is too deep for manual pump operation, particularly if there is a considerable population concentration.

In either case, however, a considerable large investment cost will be required implmentation the above and as well as a considerable operation cost upon completions. A cautions, comprehensive study is therefore required before adoption of either plan.

- (3) In spite of many financial and technical restrictions which prevent the Rwandan Government from improving water supply in the rural area, there are still several practical measures which would alleviate the situation to some extent at relatively low cost and effort as discussed below.
 - 1) Usually rural inhabitants carry water in traditional bottle gourds or dirty kerosene cans. Contamination occurs in transport or in storage thus off-setting possible benefits from a clean water supply source.

An apropriate campaign to enlighten the rural population on domestic hygiene should be carried out in rural communities to maintain clean water sources and, if possible, new, clean containers should be supplied to the rural people free of charge.

- 2) A considerable number of people obtain water from the lake nearby. The access to the shore is also usually used by cattle. Shallow water is taken from the shore which is naturally heavily contaminated. If a simple wooden pier to be used by people only is provided extending several meters over the lake, cleaner water can be obtained.
- 3) The rural population is often unaware or misinformed about the benefits of improved water supply, while at the same time they appreciate convenient access. Therefore proper education is necessary in recognizing the health benefits of safe water usage. When such benefits are widely appreciated among the rural population, new water supply points installed under the project will be fully utilized and their practical significance as a water source will be greatly increased.

ATTATCHMENTS

LIST OF STUDY MEMBERS

DOCUMENT COLLECTED IN RWANDA

LIST OF STUDY TEAM MEMBERS

Assignment	Name	Company
Team Leader Water Supply Plan	Mr. Hiroatsu Narita	Chuo Kaihatsu Corporation (CKC)
Socioeconomy	Mr. Seishiro Ogita	n
Hydrogeology	Mr. Shigemi Kimura	11
Implementation Schedule/cost estimation	Mr. Toshinori Toda	tt.
Organization/system	Mr. Wataru Shiga	Ħ
Geophysical		
exploration (A)	Mr. Takashi Aoyama	11
" (B)	Mr. Sadao Sakunaga	n
Well boring (A)	Mr. Kazutoshi Nakamura	11
" (B)	Mr. Masao Ohtsuki	Ħ
Interpreter	Mr. Fumio Matsuzawa	11
	Mr. Kenichi Takahashi	tt.