第7章 概略設計

第7章 概略設計

7.1 概 説

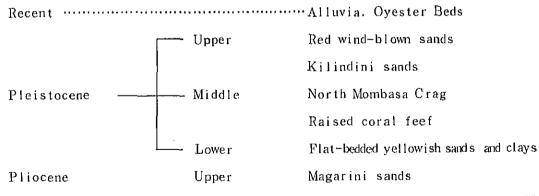
本章で当プロジェクト道路の工学的な解析検討と概略設計について記述する。

本調査に必要な測量及び土質調査は、ローカルの専門会社に委託して実施した。これらの調査と交通需要予測に基づいて、道路構造物の形式及び寸法諸元を決定し、プロジェクト道路の工事数量、建設費及び実施工程等を見積った。

7.2 土質調査と材料調査

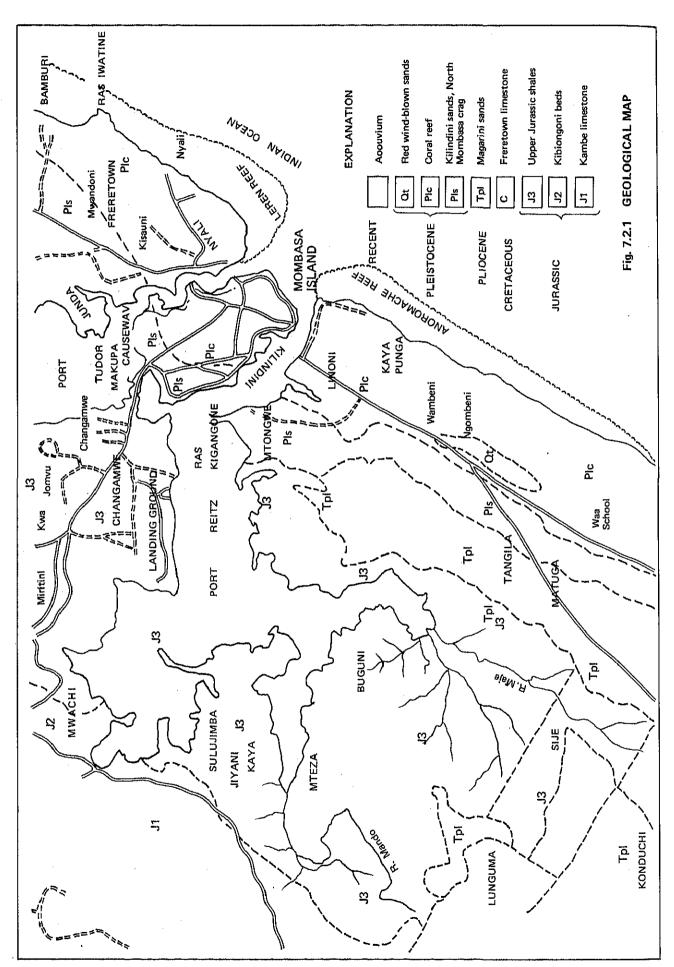
7.2.1 概要

これらの調査の目的は、道路の概略設計及び、構造物、盛土、舗装等の道路構造物の 建設費を見積るために必要な資料を得ることである。


土質調査は、モンバサの土質会社 Geodrill Ltd. により、1983年7月から1983年8月に実施した。土質調査の現場作業及び室内試験は、調査団の指導監督の下で行なわれた。

7.2.2 地質特性と土質調査

1) 地質特性


調査地域の地質は、ケニアの地質調査所が1953に出版した"モンバサークワレ地域の地質"に述べられており、これを図7.2.1に示した。

調査地域の地質は、鮮新世、更新世及び近代等新生代の地質から構成されており、 これらを以下に示す。

又、1977年10月の"東アフリカ港湾開発調査、ケニア港"にモンバサとその周辺の生成過程等に関する重要な記述があるので、以下に略記する。

- モンバサ島の両側にあるモンバサ港及ぎキリンディニ港は、更新世及び近代に自港として形成された。これ以前の海岸線は、現況から3~4 Km内陸にあった。旧い海岸線は、港の地質上顕著な境界を示している。この線の海側の土質は、砂、

7-2

固結砂及びコーラルであり、良好な地盤となっている。基盤岩の斜きは、きわめて 急で東南東に 8°である。

- 現在の海岸線の形状を決定した主要因は、更新世及び近代の大規模を氷河作用を伴った海面の上昇と下降によるものである。海図基準面上60mから始まった海上の上昇及び、波により形成された海岸段丘の端部にサンゴ礁が成長した。サンゴ礁の成長に伴って、その背後に砂やサンゴ塊がたまっていった。サンゴ礁の最高は、基準面上30mに達した。

引続き海面の低下が始まり、河川がよみがえり、コーラルや堆積土を洗掘し、今日の深い港を形成した。これらの海峡は、深さ50m以上に達している。

上記のような海面の上昇、下降及び堆積と洗塀が繰返された結果、堆積物は、その時代や内容において多様なものとなった。

プロジェクト橋梁は、キリンディーニ湾を中心にモンバサ島の南東端から南本土の 北東端を横断する。海峡の地形は、きわめて急峻であり、いくつかの段丘が形成されている。

当地域の基盤岩は、ローカルの土質調査会社が実施した井戸ボーリングから地盤下約130mにあると報告されている。

2) 土質調査

本調査では、図 7.2.2 に示す 8 本のポーリングを実施した。標準貫入試験は、いくつかのポーリング坑で 2 ~ 4 m の間隔で実施した。収集したサンプルは試験室に送られ、湿潤密度、粒度分析、含水比、一軸圧縮試験等の試験を行った。土質縦断図を図 7.2.3 に示した。

(1) BH - 1

土質は、地表面下 0~ 7 mで固いコーラル、7~ 2 8 mでコーラルと破砕コーラル、2 8~ 5 0 mで黄色のシルト混り砂であり、N値は、比較的大きな値を示している。ボーリングの実施深さは、長大橋の基礎計画であることから当初予定の 5 0 mを 7 0 mに延長した。この結果 5 0~ 7 0 mの深さで黄茶色の破砕コーラルを含む固結した砂層が表われた。収集したサンブルは、半固結状態であり、その相対密度は、きわめて高かった。以下に各層を詳述する。

- 表層部コーラル

表層部コーラルは、十分に固く、支持層として機能できるが、空隙が多く、一様でなくかつ砂層をかんでいるため、以下の点も含め、大規模基礎として不適当と判断した。

-コーラルは、雨水の浸入により風化が進んでおり、亀裂が多い。

Fig. 7.2.2 BOREHOLE LOCATION

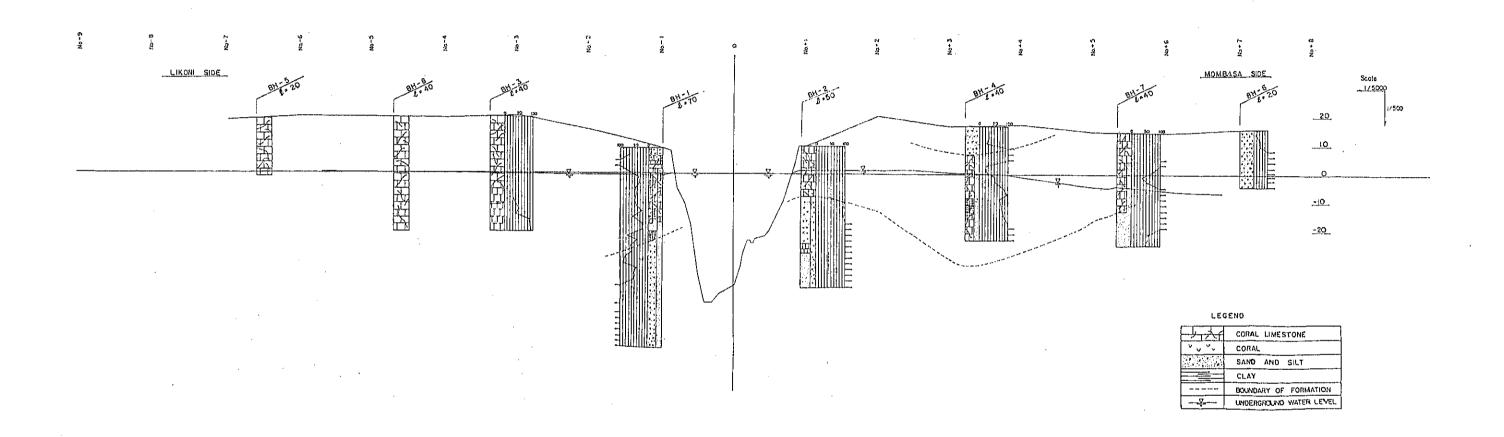


Fig. 7.2.3 GEOLOGICAL PROFILE

- 基礎は、コーラル層以深(層厚 7 m)の支持力の小さい層のために変形が生ずる。
- 中間破砕コーラルとシルト混り砂層

中間層は、N値が30程度あるが、固結度の高い層と柔かい層が粘土層も混り不均一に介在している。従って支力及び変形の面で問題があり、支持層とし 適当でない。

- 深部のシルト混り砂層

との部分の土質は、柔かい層を混在する中間層と異なり、非常に固いシルト混り 砂層である。サンブルは、水分を含むものの塊状を呈しており、又N値も50以 上であるため支持層として問題がないと判断される。

(2) BH-2

表土が約1m、その下に約15m厚のコーラル層がある。コーラル層は、さほど多孔質でないが、クラックが多数発達している。現場透水試験の結果、6×10⁻⁸ cm/sec と高い透水係数を示した。このコーラル層の下に約14m厚の細粒砂層があり、さらにその下に7.5m厚の堅い砂層がある。この砂層の内、地表から約35mでN値が50以上でており、大規模基礎として問題がないと判断される。

(3) BH-3, BH-5及75BH-8

リコニ側で実施したこれら3本のボーリングは、ほとんどがコーラルであることが判明したが、深さにより風化の度合に大きな差があることもわかった。以下に一般的土質特性を記述する。

- これら3本のポーリングから、沿岸部に近いコーラルほど、風化の度合が高く、 塊状を呈するものの比常に高い透水性を示している。
- 風化度は、深さによっても変化し、地表に近いものほど塊状を呈し深い所ほど風化が激しく砂状を呈している。
- コーラルは、空洞があり、不均一であり、場所により小さなN値を示す。 コーラルの一軸圧縮強度は、qu=11~75 kg/cm と高い値を示しているが、その 工学的特性は、未だ不明な部分が多い。従って基礎の設計に当っては、以上の判 明した条件を考慮して行うものとする。
- (4) BH-4, BH-6及びBH-7

モンバサ島側の土質は、一般にコーラル石炭岩とシルト混り砂から構成されているが、縦断方向の変化は、非常に複雑である。合計 4 本のボーリングを実施したがその全貌を明らかにするのは、困難である。以下に基礎形式選定の基本事項を述べる。

- 土質の支持力は、得られたN値に基づき判断する。

- 4本のポーリング杭から得られたコーラル石灰岩は、リコニ側に比べ空隙が少いとはいえ、場所により非常に柔かい。これは、風化の程度にるものと判断される。 又、粘性土の存在も判明しており、大きな荷重による沈下が懸念される。
- 3) 関連土質データ

ケニア港湾局が実施したキリンディーニ港の土質データを以下に述べる。

(1) キリンディーニ港の海底土質

1977年にケニア港湾局は、港の開発に関連し、当プロジェクトに近い所で5本のボーリングを実施した。これらのボーリングは、海底より25mと比較的浅いものであった。

調査結果によると、湾のN値は、一般に湾口近辺で高く、内湾に向りほど低い値を示している。土質は、内湾で粘土及びシルト質(粘土混り砂、砂質粘土等を含む)であり、湾口は、砂及び砂岩等堅い土質から構成されている。プロジェクトに近い所の土質例を以下に示す。

BH-12(リコニターミナルの西側)

海底からの深さ

土 質 特 性

0~5 m 貝がら、コーラル片を含む非常に緩い暗灰色の砂質シルト、 N値=0~39

5~8 貝がらや所々コーラル塊を含む固堅した灰色砂又は、粗砂及び 貝がらを含む破砕コーラル塊 N値=30~42

8~18 所々に堅いコーラルを含む低固結度の砂 N値=17~65

18~25 所々に青色粘土を含み、固結した白色石灰質砂岩又は、コーラル塊を所々に含む低固結度の明黄色砂 N値=50~58

(2) ムバラキバース拡張工事で実施したボーリング

1976年8月に、ケニア港湾局は、ムパラキバースの拡張工事のために15本のボーリングと6ケ所のサウンディングを実施した。この内2本のボーリング(B-114とB-115)がムパラキクリークに接する所で行なわれた。

これら2本のポーリング調査から、海底地盤は主に植物や砂利を含むシルト質砂及び砂層であることが判明した。N値は、深さで変化し、海底面近くでN=10から29m深さ(固結砂層)のN=70と変化している。さらに深い層は、固結砂であるがN値は、さらに高く120~150となっている。

7.2.3 材料調査

調査に当って、運輸通信省モンバサ建設局及び環境資源局の鉱物地質局等と打合せ、 土木材料の情報を収集した。これに基づき又、地形図や地質図を参考にしながら現地踏

査を行った。

1) 粗骨材と細骨材

図 7.2.4 に分布図を又、表 7.2.1 にそれらの調査結果を示している。採石物は、カンベ、カエデー、マブン、ダンジャル等にあり、モンバサに近い、国道ナイロピーモンバサ道路(A109)沿に立地している。

採石場は、マリアカーニとタルを除き質及び量に満足できる。

砂は4ヶ所調査した、その結果を以下に述べる。

- テイビ周辺

テイビ周辺には、陸砂と川砂の2種類がある。陸砂は、ルンガルンガ道路の西側に存賦している。この砂は、人力で採取されているが、有機物やシルト分を含むため骨材として不適である。

上記の西に位置するマブ川は、1.5 mほどの川巾であるが、骨材として最適の粒度である。とこも人力掘削され、トラックにより搬出されているが運搬道路は非常に悪い。

テイビの南、ムアチエマ地区は、やはり川砂であるが川巾は、10mと広く、砂 質も良好である。しかし未だ採取されていない。

ーキタンガニ

ことは、キリフィの北西約15mにあり、更新世又は洪積層の採取場であるが、 シルト分が多く粒形も小さい。

- ティンポニ

ティンポニは、マリンデイの北20 kmに位置し、海岸部から採取している。貝がらを含み、シルト分が少いが粒度が粗い。

7.3 道路の概略設計

7.3.1 本 線

1) プロジェクト道路の概要

航路クリアランスを考慮して決定したプロジェクト道路は、第6章 6.3 に述べている。以下に、道路の概要をリコニ側とモンバサ島側に分け説明する。

(1) リコニ地区

この地区の地形は、コーラルと石灰岩からなり、平坦である。内陸部及びキリンディーニ 湾沿は、集落として、又インド洋側の沿岸部は、リゾート と 高級住宅地 に利用されている。最近プロジェクト道路沿の内陸部は、民間会社により住宅地として開発されている。

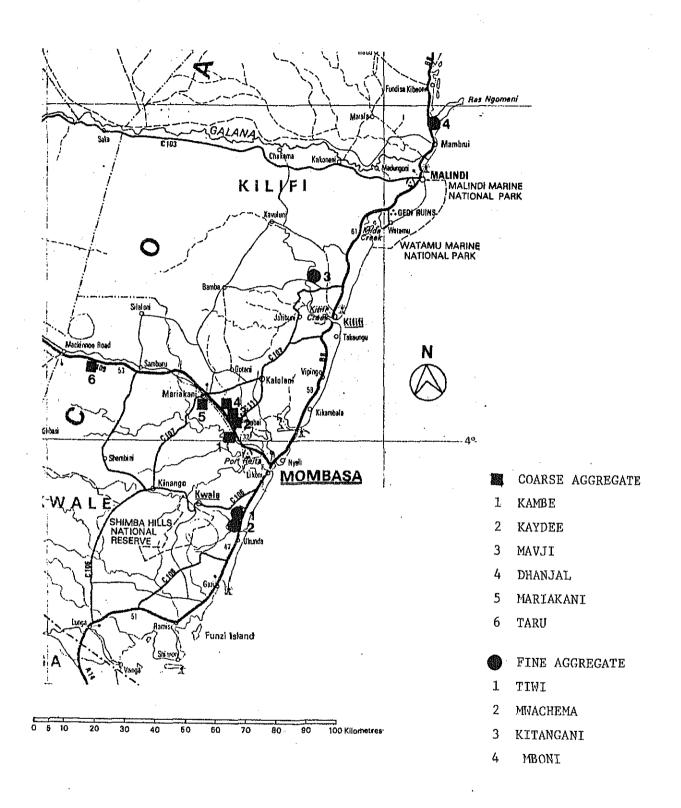


Fig. 7.2.4 LOCATION OF QUARRY SITES

Table 7.2.1 DESCRIPTION OF QUARRY SITES

(1) COARSE AGGREGATE

Quarry	Formation	Kind of Rock	Operation
Kambe	Kambe Limestone	Sandy Limestone	Under .operation
Kaydee	Mazeras Sandstone	Calcareous Sandstone	Under operation
Movji	Mazeras Sandstone	Calcareous Sandstone	Under operation
Dhanjal	Mazeras Sandstone	Calcareous Sandstone	Produced by Rod Mill
Mariakani	Mariakani Sandstone	Sandstone	Shutdown
Taru	Mariakani Sandstone	Sandstone	Shutdown

(2) Sand

Location	Occurrence	Deposit Volume	Remarks
Tiwi (Pit Sand)	Diluvial deposit	Abundant	Fine grained with organic matter and silt
Tiwi (River Sand)	River Deposit	Not Abundant	Good quality
Mwachema	River Deposit	Not Abundant	Good quality, but mining not started
Shimba	Diluvial Deposit	Abundant	Fine grained with silt
Kitangeni	Riverq Deposit	Abundant	Fine grained with silt
Tinboni	Coast Terrace Deposit	Abundant .	Very coarse

プロジェクト道路は、第一期施工時にルンガルンガ道路を起点とする第二期施工は、モンバサ交通マスタープランに合せ南へ延伸する。第一期施工の起点は、現況ルンガルンガ道路とムトンゲ道路との交差点とした。

ブロジェクト道路は、リコニ地区を地域分断することなく、プロジェクト道路上 の平面交差点を通じて、地域連絡が十分にできるようになっている。

(2) モンバサ島地区

この地区の地形は、コーラル、石灰岩及び砂からなり、平坦である。土地利用は ブロジェクト 道路の東側がリゾート及び高級住宅地として、又西側が工業及び住 宅地として利用されている。

第一期施工で、プロジェクト道路は、航路クリアランス55m及び45mの場合 ニエレレ道路に、又73.2mの場合、ニエレレ道路とムバラキ道路の交差点に取付く 計画となっている。第二期施工では、全てのクリアランス代替案が、ムバラキ道路 に延伸する計画である。

2) 本線の所要車線数

交通解析に基づき、本線の施工段階別の所要車線数を以下に示した。

フェーズ【(第一期施工)

航路クリアランス

H=73.2 m : 1992年まで主橋梁を除き2車線

H=55,45m:1992年まで全線2車線

フェーズ』(第二期施工)

全ての代替案に対し、2001年までに4車化し、ムバラキ道路へ延伸する。

3) 平面線形

プロジェクト道路の平面線形は、当プロジェクトで確立した 幾何構造基準に従い かつ以下のコントロールポイントを考慮して決定した。

- (1) リコニ側
 - ルンガルンガ道路とムトンゲ道路の交差点
 - ーモンバサ交通マスタープランに従う用地巾への延伸計画
 - ーシェリービーチホテルへの道路
 - キリンディーニ湾の最狭部の通過
 - 湾をクロスする電力ケーブル
- (2) モンバサ島側
 - 湾をクロスする電力ケープル
 - ーニエレレ道路とムバラキ道路の交差点(H=73.2m)

- ニエレレ道路 (H= 5 5, 4 5 mのフェーズ I)
- ムバラキ道路(全代替案、フェーズ [])
- アーチビショップマカリオス道路(H=73.2m)

4) 縦断線形

計画道路の縦断計画は、平面線形計画と同時に行った。以下に縦断計画上の基本事項を列記する。

- -リコニ地区での最小盛土高を、路肩部で50cmとした
- 道路表面排水を考慮し、最小勾配を 0.3 0 多と した
- -アプローチ区間の最急勾配は、4.3%とした。
- 平面線形と縦断線形の組合せに配慮した。

さらに、以下のコントロールポイントを考慮し、縦断線形を決定した。

- (1) リコニ側
 - ルンガルンガ道路との平面取付
 - シエリービーチホテルへの道路クリアランス
- (2) モンバサ島側
 - ーニエレレ道路とムバラキ道路の現況高さ及び隣接施設の出入口高さ
 - ニエレレ道路とムバラキ道路の平面交差点
 - STA 1+820の貨物線 (H=73.2m)

5) 側道の計画

側道設置上の基本事項は、幾何構造基準に述べてある。本プロジェクトで設置した区間は、主に現況道路上に計画道路が計画された区間である。すなわちH=55,45 mに対しては、ニエレ道路とムバラキ道路の交差点からデダンキマティ道路の交差点までと、全てのケースに対してムバラキ道路への延伸区間である。

一方、リコニ側では、現道と競合しないため側道を設置せず平面交差点で処理している。

6) 橋台の高さ

橋梁の終点を決定するために、高架と盛土を比較した。その結果、7mの盛土高さは、高架橋に対し60%安い結果となった。従ってリコニ側のアバットは、7mで決定した。一方、モンバサ側は、住宅地の環境に配慮し3mとした。

- 7) プロジェクトの工事範囲
 - (1) プロジェクトに必要な施設

工事に含まれる主要な施設を以下に示した。

		<u> </u>
Phase Navigation Clearance	Phase-I	Phase-II
73.2 M	Throughway:	Throughway:
	STA-3-586	STA-2-820 ∿ STA 2 + 160 √ L = 4,980 M
	Intersection: - Nyerere Ave. and Mbaraki Road - Lunga Lunga Road and Mtongwe Road	
55	Throughway: STA-3-582 ~ STA 1 + 708 L = 5,294 M Intersection: - Nyerere Ave. and Dedan Kimathi Ave Lunga Lunga Road and Mtongwe Road	Throughway: STA-2-820~STA1+520 L = 4,340 M
45	Throughway: STA-3-586 ~ STA 1 + 708 L = 5,294 M Intersection: Nyerere Ave. and Dedan Kimathi Road Lunga Lunga Road and Mtongwe Road	Throughway: STA-2-820~STA1 + 370 L = 4,190 M

これらは、第三編図面集の中で実線として表示した。

7.3.2 平面交差点計画

1) 概 要

プロジェクト道路は、現況街路網と深い関係がある。特にプロジェクト道路関係 の交差点は、交通の円滑処理に重要な機能をもっている。

都市街路の容量、速度及び安全性は、交差する街路の数、道路種別、及び間隔に支配される。平面交差点の構造や交通制御の方法は、幹線街路の交通安全と効率的な運用を企る上での基本条件である。交差点が都市道路交通の中できわめて重要な働きをするため、その設計と運用計画は、十分に検討されねばならない。

交通容量解析は、信号交差点の構造設計を支配する重要な手段である。本プロジェクト道路の関連交差点の解析手法は、日本の道路構造令に従って行った。以下に容量解析上の基本条件を列記する。解析目標年は、2000年と2010年である。

交差点解析基本条件

-車線容量 = 直進車線 = 緑1時間1,800台(乗用車)

左右折車線 = " 1,200台(乗用車)

- その他 ビーク率 = 11%

重方向率 = 60%

2) 平面交差点の概略設計

プロジェクト道路関連交差点を以下に列記する。

- -ニエレレ道路とムバラキ道路交差点(H=732mに対し)
- ーニエレレ道路とデダンキマテイ道路交差点(H=55,45mに対し)
- ルンガルンガ道路とムトンゲ道路交差点(全ケースに対し)

将来交通需要は、現況道路に改良計画のない場合(図 5.2.10~5.2.10参照)を使用した。

解析の結果、全ての交差点は、"資料編B"に示すように信号により交通処理が可能である。以下に説明を加える。

(1) ニエレレ道路とムバラキ道路の交差点

2000年では、ある余裕をもって交通処理できる。2010年では、流入車線を増加することで処理できるが、都市中心地区及びニエレレ道路が既に混雑しているため、さらに交差点を改良せず計画道路をムバラキ道路へ延伸すべきである。

(2) ニエレレ道路とデダンキマテイ道路の交差点

2000年では、信号交差点として余裕をもって交通処理できる。 2010年では、 周辺の施設のため拡張が困難であるため、計画道路は、ムバラキ道路へ延伸するも のとした。

(3) ルンガルンガ道路とムトンゲ道路の交差点

2000年では、信号交差点として交通処理可能である。2010年には、現道ルンガルンガ道路の容量(18,400台/日、乗用車換算台数)を越えるため、モンバサ交通マスターブランに沿って南へ延伸するものとする。

平面交差点計画図を第三編図面集に示した。

7.3.3 舗装設計

1) 概 要

舗装設計は、運輸通信省の設計基準に従って設計した。設計に使用した条件は、日 交通量、路床土の支持力値及び気象条件である。

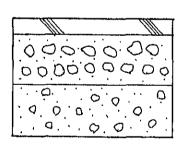
- 2) 舗装設計
 - (1) 交通量区分

車両の平均等値換算係数は、1977年7月運輸通信省、材料試験場が実施したルンガルンガ道路の観測値と同省設計基準を基に以下に示すように決定した。

Vah. Type	Buses	Medium	Heavy	0il
Factor		Goods	Goods	Tankers
Equivalent Factors	1.0	3.0	10.0	5.0

設計期間10年の累加標準軸数は、供用初年度の軸数と将来交通需要から37百万と計算した。この計算には、第10章で考慮した、タンザニア国境の再開と中型トラックの大型トラックへの変換を考慮した。同マニュアルから交通量区分は、T₁と判定した。

(2) 気 象


モンパサ地域の年平均降両量は、1,073mmである。同マニュアルから当地域は、 湿潤熱帯地域に分類される。従ってアスファルト表層を適用する必要がある。

(3) 路 床

土質調査によると、地域の地盤と路床に使用を予定した盛土材は、破砕コーラル 又は、石灰岩である。これらの材料の路床支持力は、同基準から、クラス S_6 に分 類される。しかし実際の地盤は、不均一であり、又盛土材料の信頼性を考え設計に 用いるクラスを1ランク落し S_5 ($CBR=15\sim30$)とした。

(4) 提案舗装構造

同マニュアルから2種類(タイプ12と15)の舗装構造が適用可能である。交通需要、路床、使用材料及び施工等の点から以下に示すタイプ12を選んだ。

Surfacing t = 50 mm (Asphalt concrete Type I)

Base Course t = 150 mm (Dense Bitumen Macadam)

Sub-Base Course t = 175 mm (Graded Crushed Stone, Class A)

7.3.4 料金所計画

1) 概 要

当プロジェクト道路は、プロジェクトの建設費、維持管理費を料金設定の対象とする標準的な有料道路ではなく、それらの一部分を対象とした有料道路である。

ことでは、工学的見地より、料金所の位置、所要車線数等について検討する。

2) 料金所の計画

(1) 位置の選定

料金所の位置は、交通の安全、用地取得、料金所要員の通勤の便及び工事費等か

ら決定される。

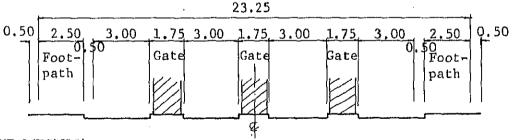
モンバサ島側では、プロジエクト道路周辺が高度に開発されていること、及び計画道路の構造がほとんど橋梁区間であるため、設置することが適当でない。従ってリコニ側に計画するものとした。

リコニ側の平面交差点の位置及びこれらの将来立体化の可能性及び線形条件(平面曲線半軽≥1,000 M及び縦断勾配≤2%)等を考慮し測点-2-200 に設置することとした。

(2) 料金システム

料金は、車種別均一料金とし、1ケ所の料金所で徴収するものとした。

(8) 料金所所要車線数


料金所の必要車線数は、交通量(到着間隔)、車両1台当りのサービス時間及び サービス水準(待車両の長さ)から決定される。

これらの要因は、日本の有料道路の設計基準により決定した。同基準によると、 1台当りのサービス時間を 5.5 秒/台とすると 1 車線 1 時間当り 650 台処理できる と算定される。

料金所の所要車線数は、上記処理能力を基に施工段階に応じ計算した。2001年では、両方向(出入車線)合計4車線、2010年には6車線必要である。一方料金プースは、1プースをリバーシブルにできるので2001年で3プース、2010年で5プース建設すればよい。

(4) 料金所の横断巾員構成

4 車線の横断巾員構成を以下に示す。

7.4 橋梁の概略設計

7.4.1 概要

本章で行う概略設計は、後述の経済評価、及び将来の工事実施のための詳細設計に不都合を生じさせない程度に、設計思想や基本的な構造諸元を明確にするとともに、施工数量、工事費を算定することを目的としている。但し、主橋の設計上、最も基本的な、主スパン長については、既に、6.3.7「主橋梁の比較検討」で決定しているので、それを参照されたい。

尚、 6.3.7では最適な主橋梁形式として斜張橋を提案しているが、プレストレストコ

ンクリート斜張橋か、鋼斜張橋かの結論を得るには至っていない。さらにクリアランスについても最終的な結論を得ておらず、H=73.2m,55m,45mの3種類が検討ケースとして提案されているにとどまっている。

主橋梁830 mを含めた各クリアランスH=73.2m,55m,45mの橋梁総延長は、それぞれ、3,835m,2.415m,2,045mとなっている。

7.4.2 斜張橋タワー基礎形式の決定

1) 概 要

一般的に、構築基礎形式は、直接基礎、ケーソン基礎、杭基礎の3種類に大別され それは、施工方法や材料の違いによってさらに表7.4.1のように多くの種類に分類さ れる。これらは、通常、地盤条件、構造特性、施工条件等に応じて使い分けられてい る。本節では、斜張橋基礎について基礎タイプ別に検討考察を行い、最適な形式を決 定する。

尚、第 7 章、 7.2 節で述べているように、架橋地点の地質は主として、コーラルと砂質土で構成されているが、その強度、均一性はよいとは言えず、又地層の連続性も低い。コーラルについては、工学的に未解明な点(不均一性、多孔性、風化等)が多くその対応を難しくしている。

Spread foundation Open calsson Caisson foundation Pneumatic caisson Hammer driving Steel pile Vibration Precast pile R.C. pile foundation Pressure P.C. pile. Composite pile Pre-boring, File foundation Structure foundation Manual boring (deep) Cast-in place Penetration concrete pile Benot foundation Machine boring Reverse circulation LEarth drill Sheet pile foundation Underwater Multi-column type foundation foundation Bell type foundation

Table 7.4.1 CLASSIFICATION OF FOUNDATIONS BY TYPE

2) 斜張橋のタワー基礎形式

新張橋のタワー基礎は、巨大な荷重を支持しており、上部工はその不等沈下に対して影響を受ける。この観点から言えば、高い剛性を有し、安定した基礎形式が望ましい。

タワー基礎の計画のために実施されたBH-1及びBH-2のポーリング柱状図から判断すると、直接基礎、ケーソン基礎及び、大口径場所打ち杭の採用可能性がある。 しかしながら、以下の理由で、前記2つの基礎形式は不適当である。

- 直接基礎

この形式は、支持層の深さが5~10mの場合は、経済的であるが、以下の理由 で、当橋梁には適さない。

モンパサ島側には約16mの厚いコーラル層がある。この層は、雨水により風化さされ、多孔質でクラックが発達しており、かつ非常に不均一である。実際モンバサ島において大規模基礎地盤をコーラルとするには問題のあることが報告されている。

リコニ側では、風化コーラル層の下位が砂層となっており、弱いシルト層が、複雑に混入している。このため、巨大荷重を支持するには、沈下の問題が考えられ確実な支持層としては地表面下50mとなってしまう。

以上の理由で直接基礎は不適当である。

- ケーソン基礎

この形式は、一般に杭基礎と比較して、剛性、支持面積ともに大きい。さらに施工の信頼性が高く、大規模橋梁基礎としての実績が多い等の利点がある。しかしながら一方では、工事費が高い、工期が長い、さらに、工事の安全性に問題がある等の欠点も有している。

この形式は、以下のような問題があり、当橋梁基礎には適さない。

モンバサ島側では、直接基礎のところで述べたコーラル層への沈下作業が困難と思われる。又、モンバサ島側、リコニ側とも海岸に著しく近接しており、透水性の高い地盤でもあるため、ニューマチックケーソン工法の採用が必要となる。しかしながら、この基礎形式の支持地盤が水面下35m程度にあるため、空気圧の限界3.0 Kg/cml 以上の工事となり施工は困難である。

これらの理由で、ケーソン基礎は適さない。

巨大な荷重を支持する最も効果的方法は、未知の要素をもつコーラル層や、軟弱シルト層を含む砂質土層をさけて、固い砂層を支持層とすることである。この場合、当地質の条件では、場所打ち杭工法一中でも深礎杭工法とリバースーキュレーション工法が適している。

深礎杭工法は、一般に、杭径の10倍が限度であり、孔内湧水量が50 l/minを超えると困難である。一方、リバースサーキュレーション工法にもゆるい砂層や地下水流により孔壁の崩壊等の欠点がある。しかしながら、転石等がないとして、ベントナイト液による慎重な施工管理を行えば、対処できる。ちなみに、類似土質条件下にある新ニアリ橋でもこの工法が採用された。

以上の考察より、リバースサーキュレーション工法が最も適していると判断した。

7.4.3 斜張橋の計画及び設計

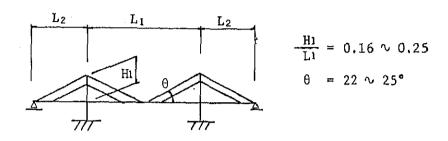
1) はじめに

主径間長460 mの斜張橋は、世界でも最大規模のものであり、その計画に当っては、十分な技術的検討を行う必要があった。特に、クリアランス高H=55 m案及びH=45 m案の場合には、段階施工を考えて、2車線の非常に細長い橋梁として計画されることになった。このため、耐風安定性や、架橋時の構造安定性等が問題となったが、現時点では、その実現可能性について、理論的確証を得るに至っている。但し、今後、詳細設計の段階へと進む場合には、風洞実験等による検証は必要と考えられる。

斜長橋の計画に当っては、径間割り、塔高、桁高等の基本寸法相互の関連性の他、 ケーブル配置、主塔形式、支承条件等に多くの選択可能性があり、最適構造系を決定 することは容易ではない。

本書では、種々の検討考察を経て、現時点では最良と判断される構造系で概略設計を行ったが、今後の技術進歩やより詳細な技術的検討を反映させた場合の若干の変更余地は残されている。

2) 斜長橋の計画及び概略設計


(1) 径間割り

斜張橋の主径間長は既に 6.3.7 で述べたように 460 m と決定されている。側径間を含めた斜張橋全体の径間割りは、下記理由で橋長 830 m の 5 径間連続斜張橋(93m+92m+460m+92m+93m)として計画した。

- 側径間長(の合計)の主径間長に対する比は、 $L_2/L_1=0.4\sim0.5$ 程度が経済的である。平面線形上からは、曲線の始点をできるだけ主橋側へ近づけた方が好ましいものの、一方構造上、曲線が斜張橋内に入ることは好ましくない。この点を配慮して、できるだけ側径間長を短く、その比を0.4とした。
- この場合、側径間部に、アップリフトが発生するし、張出し架設時、主塔に大きな曲げモーメントを発生させることとなる。これを避けるため、側径間中央に橋脚を設け、鉛直方向の変形を拘束することとした。これによって、5径間連続構造となる。

(2) 主塔の寸法及び形式

一般に、主塔の高さは、ケーブルの張力効果との関連性が高く、主張径間長との 比及び、斜材ケーブルの主桁との取付角度によって決められ、下図のような関係に ある。

ととでは、上段ケーブルの効果を有効に働らかせるため $H_1/L_1 = 0.25$ となるよう主塔高さを決定した。

主塔形状は、図 7.4.1 で示すように、各種の形式があるが、ことでは下記理由により、A型主塔を採用した。

- 横方向に対し、ねじり剛性が高く、最も安定した構造系である。
- 2 車線の場合、単柱式や、一面ケーブルシステムは、適用しにくい。

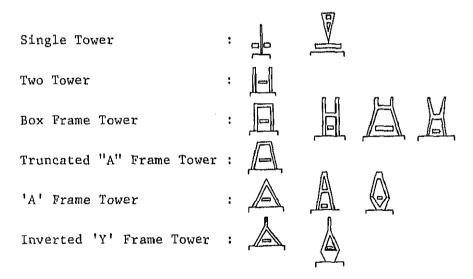


Fig. 7.4.1 SHAPE OF TOWER

(3) 斜材ケーブルの配置及びビッチ

斜張橋では、ケーブルの配置方法に種々の方法がある。長大橋の場合は、多段ケーブル方式となるが、その方法として、側面からみた場合、主にラジアル型、ファン型、ハーブ型の3種類があり、立体的にみた場合、一面吊り方式、又は二面吊り

方式の2種類がある。

本斜張橋では、下記理由により、ファン型の二面吊り方式を採用した。

- -主径間長が長い割に、主桁高を小さくすることができ、架設や、動的特性に対し ても優れている。
 - ラジアル型の場合、主塔の頂部で多段のケーブルを集中して取付けることは困難 である。
- -ファン型は、経済性の面で、ハーブ型よりも秀れている。
- -二面ケーブルは耐風安定性の面で、一面ケーブルより秀れており、又当然二面ケーブの方がケーブル径が小さくなり、施工はし易い。

ケーブルピッチは、桁高との関係及び架設工事におけるサイクルタイムを考慮して、プレストレストコンクリート斜張橋の場合8m、鋼斜張橋の場合18mとした。

(4) 主桁形状

主桁高と、主径間長との比は $d/L_1=1/180$ の範囲で採用できるが、主桁高を小さくすると、アプローチ延長が短くなり、経済的となる。この点を配慮して、桁高を 3.0m ($d/L_1=1/153$)と決定した。

プレストレストコンクリート斜張橋の場合、主桁形状は、耐風安定性、ねじり剛性及びケーブル定着の容易性を考慮して逆梯形箱桁断面とした。但し、ケーブルの主桁への定着位置は、別冊図面集で示すように、H=73.2mとH=55m(45m)とでは異なっている。

鋼斜張橋の主桁形状も、耐風安定性を考慮して、逆梯形箱桁断面を採用した。主 桁間長460 m、桁高30 mの場合、高いねじり剛度が必要であり、過去の風洞実験 の実績を反映した形状としている。4 車線断面の断面形状は、2 車線橋桁断面にプ ラケットのみを取付けたものとほぼ同じである。

(5) 境界条件

境界条件には、主塔と橋脚が一体構造か分離構造か、主塔とケーブルの定着構造が固定か可動か等の他に、主桁を連続構造とするか、主径間中央にヒンジを設ける構造とするか等の選択項目がある。

これらの方式にはそれぞれ長所、短所があるが、ここでは、主塔と橋脚とは一体構造とし、主桁は主塔とは分離構造とし、且つヒンジを設けない連続構造とした。 選択理由は次のとおりである。

- -端支点に生ずる上揚力を減らし、横方向剛性、滑らかな走行路面を確保するため に、連続主桁構造とする。
- 温度変化の影響や地震力を分散させ、桁端の大きな移動量の処理を容易にするた

Fig. 7.4.2 CORSS SECTION OF P.C. GIRDER

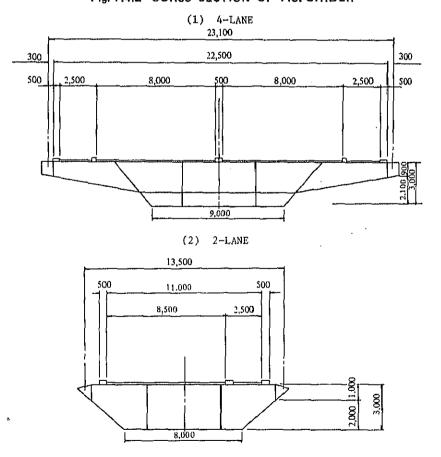


Fig. 7.4.3 CROSS SECTION OF STEEL GIRDER

めに、主桁中間支点に「フローティング」支持を採用する。

- 斜材の取付けが容易であるため、ケーブルの主塔への定着は固定する。

(6) 解析方法

構造解析は、完成系についてのみならず、架設途上の系についても行った。斜張 橋の構造系は、高次不静定構造であるため、電算を用いて解析した。

解析方法には、微小変形理論及び有限変形理論等があるが、そのどちらを適用するかは、要求される精度と、構造系の剛性によって判断するべきである。

本検討では、次の理由によりプレストレストコンクリート斜張橋と、鋼斜張橋とは別々の解析を行った。

- プレストレストコンクリート斜張橋は、微小変形理論により解析する。それは、 微小変形理論による場合と大変形理論による場合とで、結果の差が殆んどないか らである。
- 鋼斜張橋は、構造自体が軽量で、フレキシブルであることからサクの影響を無視できず、有限変形理論により解析した。

計算結果を表 7.4.2 に示す。

7.4.4 アプローチ橋梁の計画及び概略設計

1) 概 要

アプローチ橋梁は、クリアランス3種類について、モンバサ島側とリコニ側とがあり、それぞれ、上、下線が分離している。モンバサ島側は、上下線の縦断、平面線形が異なっている上に、ニーレレ道路への取付けランプもあり、計画ポリームは非常に多い。

ここでは、各クリアランスの詳細な記述はさけ、計画、設計上の基本的な考え方を 中心に述べるものとする。

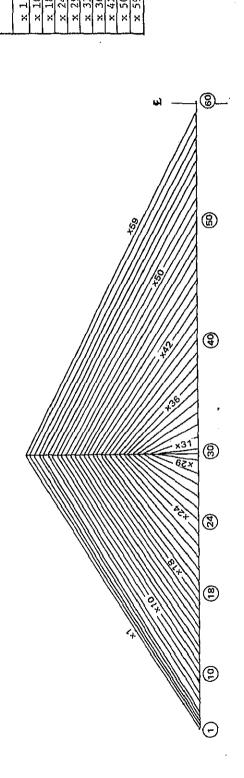
2) アプローチ橋梁の基礎及び下部工軀体形式選定

アプローチ橋梁の基礎形式を選定する場合、橋梁規模、上部工形式との関連で考慮 すべき点は、下記のとおりである。

- ーアプローチ橋梁とは言え、本橋接続部は、髙橋脚で、上部工反力は大きい。
- 上部工形式が、連続桁橋形式の場合、不等沈下への配慮が必要である。

いっぽう、当地盤には、下記のような問題点があり、基礎形式の選定が難しい。

- 縦断方向の地層の連続性が複雑である。
- コーラル層は、場所により、大巾な風化程度の差が認められ、非常に多孔質である。 コーラルの骨格自体は、一軸圧縮強度にして 70 Kg f /cm を超すものから、砂状に風化したものまであり、不均一性が著しい。


Number of Strands

Tensile force (Ton)

901 840 826 693 444 606 606 850

CABLE

(1) P.C CABLE-STAYED BRIDGE (73.2^M, 4-lane)

(Strand: 15.2 mm)

CROSS SECTION OF MAIN GIRDER

			10	18	24	30	07	05	09
	Bending	М (t.m)	6,642	7,664	5,224	2,231	1,877	4,066	4,867
3.0	(Max.)	N (t)	6,657	12,793	14,382	15,512	13,509	7,085	261
SED	Bending	М (с.ш)	-5,789	620.6-	-3,360	-1,580	-3,300	-1,711	-2,215
	(Min.)	N (t)	7,367	11,499	16,143	17,237	14,446	7,460	-10
	ومول منهستون	М (г.ш)	±4,876	+11,081	114,198	±1,912	±4,424	±3,255	±55
តី	110000	N (t)	÷ 622	1 298	∓272	7 652	+ 952	4 567	725
. H	Upper Slab	(m)	0.30	0.30	0.30	0.70	0.30	0.30	0.30
i i	Lower Slab	(m)	0.25	0.25	0.25	0.70	0.25	0.25	0.25
NA All	Outer Web	(ш)	0.355	0.355	0.355	0.827	0.355	0.355	0.355
in in	Innter Web	(E)	0.25	0.25	0.25	0.70	0.25	0.25	0.25
ı									

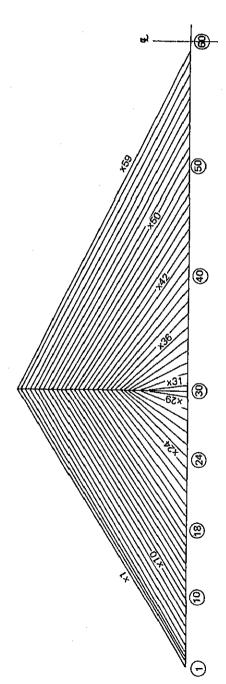
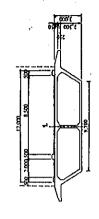

MAIN GIRDER

Table 7.4.2 RESULTS OF ANALYSIS

Tensile force (Ton)


CABLE

(2) P.C CABLE-STAYED BRIDGE (55 M, 45 M, 2-lane)

TION
SECT N G1
SAL
CROS OF M

(Strand: 15.2 mm)

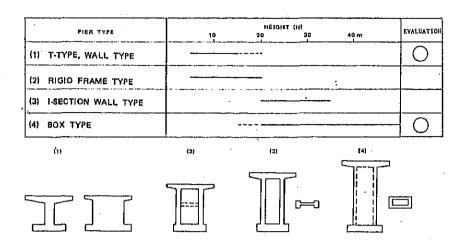
Bending M (t.m) -2,765 8,272 4,291 Moment M (t.m) 4,640 8,736 10,338 10 Moment M (t.m) -8,915 -1,097 -585 -2 Moment M (t.m) 5,106 7,875 10,876 11 M (t.m) 43,564 47,017 410,753 41 M (t.m) 6,30 6,30 6,40 M (t.m) 6,40 6,40 M (t.m) 6,40 6,40 M (t.m) M (t.m					01	18	24	30	40	50	9
Hower Stab Couter Web Cou			Bending	М (т.ш)	-2,765	8,272	4,291	-314	-282	2,414	3,246
Heading H (t.m) -8,915 -1,097 -585	ŧ		Max.)		079*7	8,736	10,338	10,952	9,076	4,947	192
C Monent N (t) 5,106 7,875 10,876 M (t.m) ±3,564 ±7,017 ±10,753 ±10,753 M (t.m) ±10,753 ±10,753 M (t.m)	ore		Bending	М (t.m)	-8,915	-1,097	-585	-2,464	-3,998	-1,777	-1,172
Seismic Case M (t.m) ±3,564 ±7,017 ±10,753 Seismic Case N (t) ∓350 ∓224 ∓51 Upper Slab (m) 0.40 0.70 0.40 Lower Slab (m) 0.40 0.80 0.40 Inner Web (m) 0.40 0.80 0.40	Lei	0	Min.)	N(t)	5,106	7,875	10,876	11,993	9,613	5,183	31
Seismic Case N (t) 7350 724 451 Upper Slab (m) 0.30 0.30 0.30 Lower Slab (m) 0.40 0.70 0.40 Outer Web (m) 0.40 0.80 0.40 Inner Web (m) 0.40 0.80 0.40	×ν		,	М (с.m)	+3,564	±7,017	±10,753	±1,098	±3,070	±2,531	0
Upper Slab (m) 0.30 0.30 0.30 Lower Slab (m) 0.40 0.70 0.40 Outer Web (m) 0.40 0.80 0.40 Inner Web (m) 0.40 0.80 0.40		Seist	nic Case	N(t)	- 350	∓ 224	∓ 51	∓417	∓ 681	±360	Ó
Lower Slab (m) 0.40 0.70 0.40 Outer Web (m) 0.40 0.80 0.40 Inner Web (m) 0.40 0.80 0.40		Upper	Slab	(ш)	0.30	0.30	05.0	05.0	05.0	05.0	0.30
Outer Web (m) 0.40 0.80 0.40 Inner Web (m) 0.40 0.80 0.40		Lower	Slab	(m)	0.40	0.70	0,40	0.70	0,40	0.25	0.25
Inner Web (m) 0.40 0.80 0.40		Outer	Web	(ш)	0.40	08.0	0.40	08.0	0.4σ	0.30	0.30
		Inner	Web	(m)	07.0	0.80	0.40	08.0	0.40	0.25	0.25

MAIN GIRDER

Number of Wires PUS CROSS SECTION OF MAIN GIRDER Tensile force CABLE 430 421 407 323 323 323 Ş 3023 Table 7.4.2 RESULTS OF ANALYSIS +3,064 12 12 77 12 +81 **+**51 +4,951 33 (%) 12 -2,767 -4,757 -3,372 -4,355 12 12 12 26 -5,482 72 12 12 12 -3,347 -6,725 -5,260 22 (8) -3,976 -7,819 -7,609 12 +2,003 16 77 12 17 STEEL CABLE-STAYED BRIDGE (73.2^M, 4-lane) -4,135 -7,818 12 12 12 12 -7,942 -10,125 -7,272 14 -5,299 -6,748 12 12 12 12 -5,527 10 (2) -3,547 -5,651 -5,404 -3,140 12 12 12 7 **(4)** М (т.п) M (t.m) N (t) N (t) 1 1 **1 1** (2) Ordinary Case Seismic Case Lower Flange Upper Flange Weg Outer Web <u>(3</u> Inner Dending Moment and Axial Force (B) Тһұскиева

Number of Wires PWS CROSS SECTION OF MAIN GIRDER Tensile force (Ton) CABLE 411 271 201 387 314 267 11.000 Table 7.4.2 RESULTS OF ANALYSIS +22 12 12 +27 +4,948 +3,405 -2,901 -399 -1,395 12 12 12 12 -1,950 21 -4,005 -1,278 -3,033 12 12 -2,124 12 12 18 -3,809 +2,353 14 14 14 +1,681 -3,953 12 (4) STEEL CABLE-STAYED BRIDGE (55 M, 45 M, 2-lane) 12 -4,554 -1,452 -5,144 -3,896 12 12 12 12 10 MAIN GIRDER 3 -3,019 -3,511 -3,583 -3,420 12 12 12 12 12 (2) -1,950 -2,927 -2,074 12 12 -3,239 (2) M (t.m) M (t.国) **(III)** 1 1 1 N (t) N (£) Bending
Moment and
Moment and
Axial Force
Seismin
Case Lower Flange Upper Flange Outer Web Inner Web <u>ල</u> дртскиева

- さらに、現在、岩状を呈していても、キレツの発達、多孔質で、大きた空洞の存在可能性もあり、雨水等により風化が進行すれば、沈下、陥没等の心配もある。現に、文献「ASCE、GEOTECHNICAL JOURNAL (August 1975) …… Failures in Limestones in Humid Subtropics by. George. F. Sowers. F. ASCE」でも、直接基礎とした場合の事故例が報告されており、長期に亘っての支持力が、どの程度、保障されるか不明である。今後の調査・研究が必要である。一砂層中に介在する非常に軟らかいシルト層は、大きな反力に対し、沈下の原因ともなる。


上記で述べたように、当地盤の不確定要素は消し難いものの、これらを考慮した上で、アプローチ橋梁形式を次のように計画した。

- (1) 本橋に接続する比較的高橋脚部の上部工は、キャンティレバー工法プレストレストコンクリート連続桁橋が提案されており、橋梁規模も比較的大きい。そこで、BH-3の厚いコーラル層やBH-4の10m深付近の硬質砂層を支持層とせずに、その下位にある硬質砂層を支持層とする杭基礎形式を採用する。杭種はリバースサーキュレション工法場所打ち杭で概略設計により43.0m、42.5m、42.0mの3種類を採用した。
- (2) アプローチ橋梁終点側は、上部工反力が比較的小さく、若干の不等沈下に対処すれば、経済的な直接基礎形式の採用が可能である。但し、地盤の局部的不良を考慮して、許容地耐力を常時20 t/m²程度に抑えた。ちなみに、架橋付近の中・高層ビルの基礎を調査した結果、地中梁形式直接基礎が用いられており、特別な問題は発生していないことが確認されている。

下部工軀体形式は、以下の理由で、壁式又は、箱形式を採用した。

- (1) 高橋脚を有するラーメン橋梁は、中空箱形式が適切である。
- (2) 既成市街地での計画であるため、視覚的乱立感を与えない配慮が必要である。このため、ラーメン橋梁以外は、睦式(T形式)で統一した。

Fig. 7.4.4 TYPES OF PIER AND ITS APPLICABLE HEIGHT

3) 上部工の構造形式選定方針

最適な上部工形式は、スパン長や、種々の条件を考慮して選定する必要がある。当橋梁の場合は、下記考察及び表 7.4.3 を参照して、3種の橋梁形式(鉄筋コンクリートホロースラブ、プレストレストコンクリート T 桁、プレストレストコンクリート連続箱桁ラーメン)を採用した。

- 地震荷重が比較的小さく、地盤も比較的良好なため、過去の実績から判断して、 鋼橋は不経済である。又異なった種類の橋梁を組み合せて用いることは施工性、 経済性で劣るばかりか、美観的にも好ましくない。
- 桁下空間の比較的小さい(15m程度)短小スパン橋(15m標準)については 経済性の面で秀れているステージング工法鉄筋コンクリートホロー桁が適してい る。
- 桁下空間 1 5~ 2 5 m程度で、スパン長 2 5~ 4 0 m程度の橋梁では、経済性、 施工性を考慮してポストテンション方式、プレストレストコンクリート - T桁橋 が好ましい。
- 髙橋脚を有し、スパン長50mを超える場合は、張出し工法によるプレストレストコンクリート箱桁ラーメン橋形式が好ましい。

尚、鉄筋コンクリートホロースラブ桁橋及び、プレストレストコンクリートーT桁については、一応単純桁を考えているが、今後の地質調査の結果をみて、できるだけ伸縮継手の少い連続桁形式とするのがよい。

Table 7.4.3 COMPARATIVE EVALUATION FOR TYPE OF SUPERSTRUCTURE AND ITS APPLICABLE SPAN LENGTH

	Application to Special Types 1:20	of Bridge	Curved Brid High Piers Tapered Ded Conomy in (Including s	A	O A O	A	8	В	B 0	ж	В	0	O 8 0	2 0 0	(
٥	}	T	idanistnisM	Æ	Ą	A	¥	A	Ą	¥	¥	Ą	¥	С	ບ
valuar	enance	ı	Ease of Con	щ	Д	В	В	В	B	၁	Ü	ပ	ပ	A	Ą
Comparative Evaluation	Execution & Maintenance	too gu	Disturbance Traffic duri atruction	C	၁	C	C	¥	¥	၁	C	C	ပ	A	Ą
mpara	tion &	botta94 n	Constructio	м	В	В	8	Ā	A	၁	၁	Ú	υ	A	Ą
ပိ	Execut	Znality	Control of	æ	В	В	Æ	B	В	В	В	А	м	A	¥
		ìo	Availability slaitetaM	V	¥	Ą	B	B	B	13	В	щ	æ	၁	၁
	Appear-	esnance	sqqA iilloZ	၁	Ą	c	¥	כ	C	¥	Ą	¥	Ą	c	В
	Api	uo	Side Elevati	м	¥	၁	₩	B	В	g	¥	₹	4	В	В
			Ride quality	æ	Y	А	A	В	B	В	¥	¥	¥	B	В
			70												
Applicable Span		ā	50 60												
licabl		משנו	40												
		Bridge Snan (m)	4	 											
Standard		À	30	i						!_					
			- 50		1				L_						
			10												
_	-														
		Type of Superstructure		R.C. Simple Girder	R.C. Hollow Slab	R.C. Rigid Frame	P.C. Hollow Slab	P.C. Simple Composite Girder	P.C. Simple T. Girder	P.C. Simple Box Girder	P.C. Continuous Box Birder (In-situ)	P.C. Box Girder (Incremental Launching)	P.C. Continuous Box Girder (Cantilever)	Steel Simple Composite Girder	Steel Simple Box Girder
				<u> </u>	ВС		<u>Б</u> 4	P3-4	- P-1	P.C.		LEC	I PH C	<i>0</i> 20	[99]

Note: A: Excelen
B: Normal
C: Inferior

4) スパン割りの決定及び概略設計

橋梁のスパン割り計画は、橋梁全体計画の中で最も重要かつ経済性に与える影響が 大きい。ここでは、下記のような諸条件の吟味、及び技術的考察を行いスパン割りを 決定した。

(1) 既存街路等の条件

- ーモンバサ島のニエレレ道路、ムバラキ道路、ムバラキバース道路及びリコニ側の シエリーピーチホテルへの道路については、現在の道路巾及び、所定のクリアラ ンスを確保する。
- ーニエレレ道路とムバラキ道路との交産点については、7.3 で述べた交差点計画に 従う。
- H = 73.2 m の場合については、貨物用鉄道引込み線のためのクリアランスを確保する。
- (2) 橋脚高さ(H)とスパン(L)との関係は、ラーメン橋の場合、L/H≒ 1.5 程 度が経済的であり、中、短スパン橋はその比が 1.0 程度が経済的である。しかしな がら 4.3 で述べてあるように、できるだけ形式をそろえる方が好ましい。
- (3) ラーメン橋の場合主径間長 (L_1) と側径間長 (L_2) との比 (L_2/L_1) は、0.5 \sim 0.8 程度が構造上、施工上好ましい。
- (4) 上下線分離の橋脚は、美観的配慮から、できるだけ、横方向をそろえるように配置する。
- (5) 平面線形上のノーズ位置には、橋脚を設け、上部工には伸縮継手を設ける。 概略設計による結果及び基礎(杭)の種類は表 7.4.4 及び 7.4.5 のとおりである。

Table 7.4.4 PROJECT BRIDGE LENGTH

(Unit: Metre)

	Navigat	ion Clear	ance
	73.2 M	55 M	45 M
Main Bridge (Cable-Stayed Bridge)	830 x 2 =1,660	1,660	1,660
Approach Bridge			
Likoni Side			
In-Bound	940	505	285
Out-Bound	940	505	285
Island Side			
In-Bound	1,545	695	635
Out-Bound	1,545	815	650
Access in Phase-I	1,040	650	575
Total Length	7,670	4,830	4,090

Note: The above figures indicate the length of 2-lane bridge.

Table 7.4.5 LIST OF APPROACH BRIDGES

(1) 73.2^M

	Station (Km)	Type	Width (m)	Length (m)	Span Arrangements (m)	Foundation (m)
Likoni "Out"	-0.415 ∿ -0.860	PC Rigid Frame	11.0	445	60 + 5@65 + 60	Pile (RCD, $\phi = 2.0, 2.5$)
11	-0.860 v -1.130	PC T-Beam	11.0	270	30 x 9 spans	Spread Footing
11	-1.110 v -1.355	RC Hollow	11.0	225	15 x 15 spans	11
Likoni "In"	-0.415 v -0.860	PC Rigid Frame	10.5	445	60 + 5@65 + 60	Pile (RCD, $\phi = 2.0, 2.5$)
Ľ	-0.860 ∿ -1.130	PC T-Beam	10.5	270	30 x 9 spans	Spread Footing
	-1.130 v -1.355	RC Hollow	10.5	225	15 x 15 spans	11
Mombasa "Out"	0.415 ~ 0.775	PC Rigid Frame	10.5	360	75 + 2@105 + 75	Pile (RCD $\phi = 3.0$)
ш	0.775 ∿ 1.065	11	10.5	290	2@50 + 2@65 + 60	Pile (RCD, $\phi = 2.0, 2.5$)
11	1.065 ∿ 1.395	PC T-Beam	10.5	330	30 x 11 spans	Spread Footing
11	1.395 ∿ 1.800	RC Hollow	10.5	405	15 x 27 spans	to de
TT	1.800 ∿ 1.840	PC T-Beam	10.5	40	40 x 1 span	TI.
=	1.840 ∿ 1.960	RC Hollow	10.5	120	15 x 8 spans	11
Mombasa "In"	1.415 ∿ 1.775	PC Rigid Frame	10.5	360	75 + 2@105 + 75	Pile (RCD, $\phi = 2.5, 3.0$)
H	1.775 ∿ 1.155	::	10.5	380	60 + 4@65 + 60	Pile (RCD, $\phi = 2.0, 2.5$)
Ħ	1.155 ∿ 1.395	п	10.5	240	4@60	Spread Footing
#	1.395 ∿ 1.605	PC T-Beam	10.5	210	30 x 7 spans	11
11	1.605 ∿ 1.800	RC Hollow	10.5	195	15 x 13 spans	11
н	1.800 ∿ 1.840	PC I-Beam	10.5	40	40 x 1 span	11
11	1.840 ∿ 1.960	RC Hollow	10.5	120	15 x 8 spans	#

1) The location of STA 0+00 is in the middle of the existing channel.
2) The plus stations (length) are forward the Mombasa Island from STA 0+00
3) The minus stations (length) are forward the South Mainland from STA 0+00 Note:

Table 7.4.5 LIST OF APPROACH BRIDGES

(2) .73.2^M

	Station (Km)	Type	Width (m)	Length (m)	Span Arrangements (m)	Foundation (m)
Railway Cross, Frontage Road	1.650 % 1.800	RC Hollow	11.75	150	15 x 10 spans	Spread Footing
11	1,800 ∿ 1,840	PC_T-Beam	11.75	40	40 x 1 span	E.
11	1.840 ∿ 1.960	RC Hollow	11.75	120	15 x 8 spans	11
11	1.650 ∿ 1.800	RC Hollow	11.75	150	15 x 10 spans	11
11	1,800 ∿ 1,840	PC T-Beam	11.75	40	40 x 1 span	11
1.8	1,840 ∿ 1,960	RC Hollow	11.75	120	15 x 8 spans	н
Access to the Nyerere Ave.	0.415 ∿ 0.755	PC Rigid Frame	12.0	340	70 + 2@100 + 70	File (RCD, $\phi = 3.0$)
11	0.755 ∿ 1.095	11	12.0	340	70 + 2@100 + 70	Pile (RCD, $\phi = 2.5, 3.0$)
11	1,095 ∿ 1,215	PC T-Beam	12.0	120	40 x 3 spans	Spread Footing
11	1.215 ∿ 1.335	11	12.0	120	30 x 4 spans	1.1
11	1.335 ∿ 1.455	RC Hollow	12.0	120	15 x 8 spans	11

Table 7.4.5 LIST OF APPROACH BRIDGES

(3) 55^M

Foundation (m)	Pile (RCD, $\phi = 2.0, 2.5$)	Spread Footing	п	Pile (RCD, $\phi = 2.0, 2.5$)	Spread Footing		Pile (RCD, ¢ 2.0, ¢ 2.5)	Spread Footing	Pile (RCD, φ 2,0, φ 2.5)	Spread Footing	п	Pile (RCD, \$2,0, \$2.5)	Spread Footing	н	=	1)	n	11		11	=
Span Arrangements	+ 09	30 x 8 spans	15 x 5 spans	09 + 04 + 09	30 x 8 spans	15 x 5 spans	50 + 65 + 50	30 x 6 spans	40 + 3@60 + 40	30 x 2 spans	15 x 21 spans	50 + 65 + 50	30 x 5 spans	30 x 3 spans	25 x 2 spans	30 x 1 span	15 x 14 spans	30 x 5 spans	30 x 3 spans	40 x 2 spans	15 x 11 spans
Length	190	240	75	190	240	75	165	180	260	09	315	165	150	90	50	30	210	150	06	80	165
Width (m)	11.0	11.0	11.0	10.5	10.5	10.5	$\frac{11.0}{21.5}$	10.5	10.5	10.5	10.5	10.5	10.5 ∿ 16.75	10.5	10.5	10.5	10.5	11.0	17.25 ∿ 11.0	11.0	11.0
Type	PC Rigid Frame	PC T-Beam	RC Hollow	PC Rigid Frame	PC T-Beam	PC Hollow	PC Rigid Frame	PC T-Beam	PC Rigid Frame	PC I-Beam	RC Hollow	PC Rigid Frame	PC T-Beam	11	#	11	RC Hollow	PC T-Beam	#	11	RC Hollow
Station (Km)	-0.415 ~ -0.605	-0.605 ~ -0.845	-0.845 ~ -0.920	-0.415 ~ -0.605	-0.605 v -0.845	-0.845 ∿ -0.920	0.415 ∿ 0.580	0.580 ∿ 0.760	0.760 ∿ 1.020	1.020 ℃ 1.080	1.080 ∿ 1.395	0.415 v 0.580	0.580 ° 0.730	0.730 ∿ 0.820	0.820 ∿ 0.870	0.870 ∿ 0.900	0.900 ∿ 0.110	0.580 ∿ 0.730	0.730 0.820	0.820 ~ 0.900	0.900 ~ 1.065
	Likoni "Out"	11	=	Likoni "In"	E .	=	Mombasa "Out"	Е	ı	Mombasa "Out"	ш	Mombasa "In"	=	11	12	=	_	Access to the Nverere Ave.			11

Table 7.4.5 LIST OF APPROACH BRIDGES

(4) 45^M

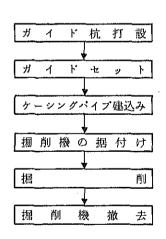
	Stati	Station (Km)	Туре	Width (m)	Length (m)	Span Arrangements (m)	Foundation (m)
Likoni "Out"	e" −0.415 ∿	-0.595	PC T-Beam	11.0	180	30 x 6 spans	Spread Footing
11	-0.595 ∿	-0.700	RC Hollow	11.0	105	15 x 7 spans	
Likoni "In"	" −0.415 ∿	-0.595	PC T-Beam	10.5	180	30 x 6 spans	п
	-0.595 ∿	-0.700	RC Hollow	10.5	105	15 x 7 spans	ıı
Mombasa "Out"	ε" 0.415 ν	0.580	PC T-Beam	11.0 v 21.5	165	33 x 5 spans	
ш	0.580 ∿	092.0	PC T-Beam	10.5	180	30 x 6 spans	
п	∿ 092•0	1.020	PC Rigid Frame	10.5	260	40 + 3@60 + 40	Pile (RCD, $\phi = 2,0, 3.0$)
11	1.020 ∿	1.230	RC Hollow	10.5	210	15 x 14 spans	Spread Footing
Mombasa "In"	ո" 0 415 ∿	0.580	PC T-Beam	10.5	165	33 x 5 spans	
	0.580 v	0.730		10.5 ℃ 16.75	150	30 x 5 spans	
18.	່ 0.730 ∿	0.820	11	10.5	90	30 x 3 spans	п
=	. 0.820 ∿	0.870	1	10.5	50	25 x 2 spans	TI.
	0.870 ∿	0.900	11	10.5	30	30 x 1 span	
11	∿ 006.0	1.050	RC Hollow	10.5	150	15 x 10 spans	11
Access to the Nyerere Ave.	0.580 ∿	0.730	PC T-Beam	11.0	150	30 x 5 spans	ıı .
£.	0.730 ∿	0.820	±	11.0 v 17.25	06	30 x 3 spans	
11	0.820 ∿	0.900	11	11.0	80	40 x 2 spans	u
11	∿ 006•0	066.0	11	11.0	06	15 x 6 spans	11

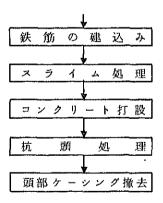
7.4.5 施工計画

1) はじめに

ここでは、プレストレストコンクリート斜張橋、鋼斜張橋及びアプローチ橋の施工 に関する基本的考え方について述べるが、次の事項については、今後の調整が必要で ある。

- 現存のフェリーを施工時、どの程度利用できるか(以下の計画では原則として、 資,機材の運搬手段に、専用船を考えている。)
- 資機材のストックヤード、及びバッチャープラントは、海峡の両サイドに設ける ものとする。


なお、言うまでもなく、主橋梁の施工計画に当っては、海底ケーブル、航路標識、 クリアランスの確保等の航路障害に対する配慮を前提としている。


2) プレストレストコンクリート斜張橋の施工

プレストレストコンクリート斜張橋の施工は、概略図 7.4.5 の流れに従って施工するものとし、リコニ側、モンバサ側とも平行作業とする。

(1) 基礎工

フーチング下面まで掘削が行われた後、杭の施工を行う。杭の掘削は、リバース サーキュレーション工法によって行う。この工法は、孔壁の安定を計るため、ベントナイト泥水の比重及び、ケーシングパイプ内泥水面レベルの管理が特に重要である。施工順序は、以下のとおりである。

掘削機械は、リコニ側、モンバサ側それぞれ1台とし、主橋タワー基礎杭完了後側径間部へ転用する。尚、リバースサーキュレーション工法の透水性の高いコーラル層への対応については、不確定な問題があり、試験施工が必要となろう。

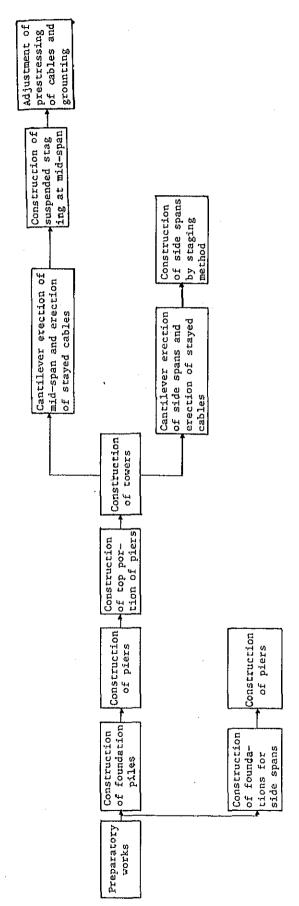


Fig. 7.4.5 WORK FLOW CHART OF P.C CABLE STAYED BRIDGE

(2) 橋脚及び柱頭部の施工

橋脚部は、支保工施工とするが、2本柱となる位置より上方は、ジャンピングフォーム工法により施工する。横梁は、型鋼を組立て、これを利用した吊支保工上でコンクリート打設を行う。側径間橋脚は、総足場を組み、大型パネルを用いて施工する。ジャンピングフォーム工法、大型パネル工法ともに、1ロッドの標準長は5mとし、コンクリートの打設はボンプ圧送による。

柱頭部は、横梁及び橋脚にアンカーしたプラケット上に支保工を組み、主桁を施工する。このとき、ワーグンによる張出し架設時の安定を確保するため、仮固定を行うと同時に、タワーとの間にテフロン沓を設置する。

(3) タワーの施工

タワーは、ジャンピングフォーム工法により施工する。資機材運搬にはタワークレーンを用いる。

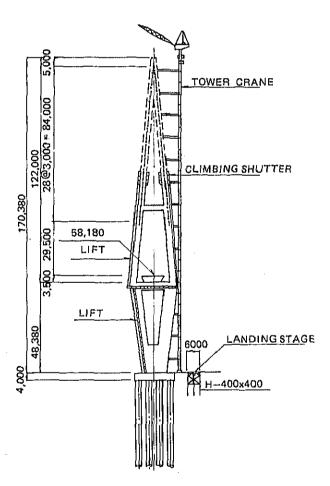


Fig. 7.4.6 CONSTRUCTION OF TOWER

(4) 主桁の施工

柱頭部側径間に中型ワーゲンを組立て、1プロック施工後、中央径間側にも同様にワーゲンを組立てる。中央径間側を1プロック施工後は、両サイド平行してバランスを保ちながら張出し施工する。施工プロックは、ワーゲンの能力より4mを標準とするが、側径間は中央橋脚に到達後3mとする。

ワークンによる1サイクルの施工要領は以下のとおりである。

- ワーゲン移動、据付け
- 型枠組立て
- 鉄筋、プレストレストコンクリート鋼材組立て
- コンクリート打設、養生
- プレストレストケーブル鋼材の緊張、脱型
- 斜材配置、緊張

主桁の張出し架設が終了し、ワーゲンを撤去した後、側径間最端部、及び、中央 スパン中心部を吊支保工により施工する。

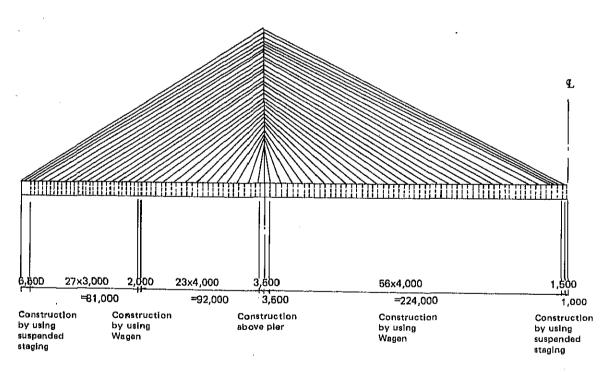


Fig. 7.4.7 CONSTRUCTION OF MAIN GIRDER

(5) 斜材工

ポリエチレン管をタワー部に予め取付けてある継手チューブまで吊上げ接続する。 その中に1本づつストランドを挿入する。斜材の緊張は、原則として設置直後及び 主桁施工中の2回行い、完成後応力チェックを行う。との後、グラウト注入を行う。

3) 鋼斜張橋の施工

橋脚の基礎工や軀体工の施工はプレストレストコンクリート斜張橋の場合と同じで ある。ことでは、主塔及び主桁の架設について述べる。

(1) 輸 送

工場製作を完了した橋梁部材は、架設工程に従って船で輸送される。1回の船便で輸送できる部材重量は、およそ3,000~6,000トンで、この輸送専用にチャーターされた重デリック付貨物船(6,000~20,000トン、デリック容量約40トン)により輸送される。

とのように運ばれてきた部材は、キリンディーニ港埠頭で直接トレーラートラックに移され、部材貯蔵場まで輸送される。貯蔵場に着くと、トラッククレーン又はクローラークレーンによって部材は荷むろしされる。リコニ側への運搬には専用船が使われる。

(2) 架設(上部工の施工)

全体的な作業の流れを図7.4.8に示す。

(8) 側径間の架設(図 7.4.9)

上部工の側径間は、クローラークレーンにより架設される。鋼部材の最大重量は40トン程度で計画してあり、架設高さも地上60mと高い。従ってこれに対処するため吊上げ最大許容荷重約300トンの大型クローラークレーンが必要となる。

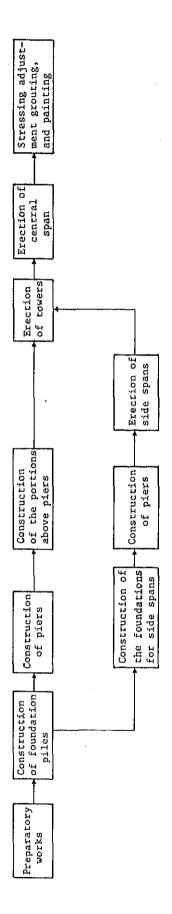


Fig. 7.4.8 WORK FLOW CHART OF STEEL CABLE-STAYED BRIDGE

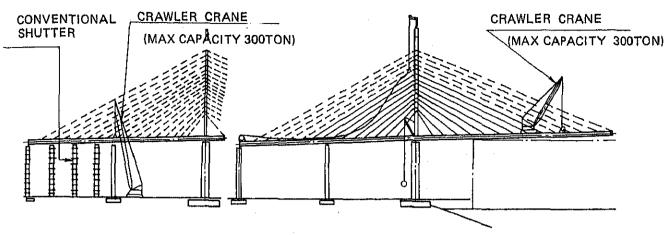


Fig. 7.4.9 ERECTION OF SIDE SPAN

(4) 主塔の架設

側径間の架設が完了すると、クローラークレーンはいったん解体され、主塔を架 設するために、既に架設された側径間上部工の上で再び組立てられる。

クローラークレーンの解体や再組立は、地上で稼動している127トントラッククレーンによって行われる。重量物の曳上げには、127トントラッククレーン2台による相い吊りが必要である。との場合、対岸に設置されている127トンクレーンはその必要に応じて、一時的に反対側に移動されるものとする。

主塔部材の最大重量は 4 0 トンにもなるため、300 トンクローラークレーンでは 橋面上約 9 0 mのケーブルソケット定着位置までしか吊り上げることができない。

主塔はA形をしているため、二本足の部分は架設中一時的に支材により支持される。90m以上の頂部は、全旋回ジプクレーンにより架設される。

ジブクレーンの能力は20トンで、主桁に取りつけられた電動ウインチにより自在に昇ることが出来る。このジブクレーンは又、ケーブルソケットをソケットアンカー部に取付けたり、附属品を主塔に装置したりするのにも使用することができる。

主塔のアンカーフレームは、橋脚の天端コンクリートを打設する前に据付けておかねばならない。アンカーフレームの据付には、そのレベルと位置に関して、極めて高い精度が要求される。主塔の下端部は、アンカーフレームのベースプレート上に据付けられ、アンカーボルトで固定される。

(5) 中央径間の架設

中央径間は、片持部先端に設けられたクローラークレーンを使用して、逐一片持 工法で架設されケーブルが固定されていく。

鋼部材の最大重量は主塔の場合と同じように40トンに制限されており、主塔の

架設に使われたクローラークレーンが引きつづき使用される。架設部材は、側径間の下方周辺の貯蔵場(部材置場)で、127トントラッククレーンを使用して(架設プロックに)予め組み立てられる。

地組後、架設ブロックは、塔付ジブクレーン(吊上げ能力 4 0 トン)により、側径間橋面上に曳き上げられる。そして、ひき上げられた架設プロックは、レール上の台車(能力 4 0 トン)に載せて、片持部先端まで運ばれる。

上記の片持工法架設は、中央径間の両端から同時に行われ、最終的には、中央径間中央で閉合される。

片持ち長が大きく、クローラークレーンが重いことから、鋼桁は通常、架設中の 一時的な応力に対し補強を要する。

(6) ケーブルの定着、調整及び張力導入

ケーブルは、リールに巻かれた状態で船輸送され、材料置場に保管される。巻かれたケーブルは、巻元し機にセットされ、ローラーを通して、橋面上にひきのばされる。

ケープルを、先ず最初に、主塔のソケット受けに引き込み、その後主桁のソケット受けにセットする。

主塔と主桁のソケット受けへは、ジブクレーンとクローラークレーンでそれぞれ一時的にケーブルが仮受けされる。仮受け後、主桁のソケット受けにセットされたジャッキによりケーブルにプレストレスが導入される。

ジャッキは、テンションジャッキとラムチェアから成り、プレストレス導入はオイルゲージにより管理することができる。

支間中央で閉合された中央径間上部工は、キャンバーと実際に作用しているケーブル張力とをチェックした結果により再びケーブルプレストレスを調整する。

(7) 残作業

中央径間の閉合後、ケーブルへのグラウトと現場継手部の塗装が行われる。

(8) 2 車線と4 車線の断面構成比較

7.4.3 で述べたように、2 車線、4 車線ともに断面構成では、同じ逆梯形箱桁である。更に箱桁の最大寸法も又、ほぼ同じとなる。その上、支間長が変らないので主塔の高さも変らない。

これは、2車線、4車線のどちらの場合でも、(架設用の)附帯設備や仮設備は 殆んど変らないことを示す。逆に2車線の場合の幅が制限されすぎて、橋面上の作 業の進ちょくがスムーズに行われず、従って4車線の場合に比較して作業能率が悪 いことを示している。 第8章 建設費、維持管理費及び運営費

第8章 建設費、維持管理費及び運営費

8.1 概 要

工事単価は、労力、材料、機械器具等の単価を使って工事項目ごとに積算した。積算 に当って以下に示す条件に従った。

- (1) 工事は、国際入札により選ばれた建設業者によって施工されるものとした。
- (2) 工事単価は、1983年7月の単価をもとに積算した。
- (3) 単価は、全ての代替案に対して算定され、外貨分(ケニアシリング表示)と内貨分(ケニッシリング表示)に分けた。

内外貨の区分は、以下に示す単価項目の分類に従った。

外貨分

- 一輸入機械器具、材料等
- -輸入した国内材の一部分
- 一国外技術者の給料
- -国外建設業者の経費及び利益

内貨分

- -輸出用国内材の一部分
- -国内の人件費
- -国内建設業者の経費及び利益
- 一諸 税
- (4) 工種別単価は、労力、機械器具、材料等の単価を積上げて算定し、最近ケニアで行なわれた工事単価と比較した。
- (5) 主要材料(燃料、鉄筋、ブレストレスケーブル、構造用鋼、細骨材、粗骨材、セメント、アスファルト及び鋼管杭等)は、材料別に分類し、単価を算定した。
- (6) 輸入資機材に課かる税金及び関税も別々に算定した。但し、関税は、ケニアでの最近の類似プロジェクトにならい課らないものとした。
- (7) 用地及び補償費は、モンバサ市から収集した単価をもとに算定した。
- (8) 予備費は、工事費と用地及び補償費の10%とした。
- (9) 詳細設計、工事管理費及び政府経費は、工事費の10%とした。 その内訳を以下に示す。
 - 一詳細設計費 = 5%
 - 一工事管理費、政府経費 = 5%

ケニアシリング、日本円及び米国ドル間の貨幣換算レートは、 K. Shs 13.06 = L/S \$ 1.00 = Yen 241 とした。

8.2 単 価

8.2.1 材料単価

材料単価を調査した。輸入材の単価は、 CIF モンバサ価格を基本とし、国内材は、モンバサにおける市場価格を基準に算定した。主要材料を表 8.2.1 と 8.2.2 に示した。

Table 8,2.1 UNIT COSTS OF DOMESTIC MATERIALS

Major Material	Description	Unit	Unit Cost
Fuel Gasoline		Lit	7.5
Diesel		Lit	5.5
Engine Oil		Lit	21.5
Sand		CU.M	58
Crushed Stone	Crusher dust	CU.M	31
	1/4"	CU.M	93
	1/2" ~ 2"	CU.M	97
	Boulder 6" x 9"	CU.M	70
Cement	Standard	Ton	1,143
	Portland	Ton	1,213
	Sulphate resisting	Ton	1,285.3
Timber	Cypress	CU.M	1,550
	Cedar	CU.M	1,720
	Hardwood	CU.M	6,360
Paint	Road marking paint	Lit	80
	Paint for metal	Lit	60
Asphalt	60-80, straight	Ton	2,866
	Emulsion	Lit	4.1
Concrete Block	5" x 10" x 36"	No.	30
Concrete Pipe	¢400	L.M	210
	ø600	L.M	400
	ø1,000	L.M	780

Table 8.2.2 UNIT COSTS OF FOREIGN MATERIALS (1)

Material	Description	Unit	Unit Cost
Steel Deformed Bar	JIS G3112 SD30	Ton	4,150
Steel Plate	JIS G3101 SS41	Ton	6,300
	JIS G3106 SM50Y	Ton	7,400
E	JIS G3106 SM58	Ton	9,500
High Strength Bolt	JIS B1186 F10T	Ton	13,500
Bearing Shoe (HTB)	Tefron	Ton	38,000
·	Roller	Ton	105,600
	B.P	Ton	8,800
	Rubber	L.M	19,500
Expansion Joint	Demag	L.M	184,900
}	Rubber	L.M	16,500
P.C Stranded Cable	JIS G3536 SWPR	Ton	18,700
P.C Rod Bar	JIS G3109 SBPR 95/120	Ton	17,600
Guard Rail.	Steel (Post ctc 4.0m)	L.M	268
Hand Rail	Steel (For Embankment)	L.M	2,400
	(For Bridges)	L.M	3,000
Street Lighting	Steel Taper Pole (H=12m) (For Embankment)	No.	11,000
	Ditto (For Bridges)	No.	13,000
Traffic Sign	Type A (1,000x2,000)	No.	4,500
	Туре В (\$600)	No.	650
Chatter Bar	L=300 (ctc 1,000)	No.	400
Back-hoe	0.3 m^3	No.	641,700
Tire-dozer	2.3 m ³ (530B)	No.	164,800
Dozer-shovel	D50S	No.	498,400
Reverse Circulation Drill	S-320	No.	1,794,100
Clamshell Bucket	2 ton (CH-1,000)	No.	4,105,400
Three-wing Bit	ø2.0 m ∿ ø3.0 m	No.	65,400
	ø2.0 m ∿ ø2.4 m	No.	64,200
Vibro Pile Hammer	60 Km	No.	520,800
Hoist	KME, PM-500	No.	778,700
Climbing Shutter		L.S	2,429,900
Crawler Crane	300 ton	No.	19,250,000

Table 8.2.2 UNIT COSTS OF FOREIGN MATERIALS (2)

Material	Description	Unit	Unit Cost
Crawler Crane	80 ton	No.	5,918,200
Truck Crane	127 ton	No.	8,890,000
	50 ton	No.	5,556,900
:	35 ton	No.	2,610,200
Climbing Tower-Crane		No.	5,382,400
	100 t-m H=80 m	No.	2,261,400
Climbing Crane	Cap. 20 ton	Mo.	2,490,000
(Universally operatable)			, ,
Tower Jib Crane	Cap. 40 ton	No.	2,803,000
Portal Crane	Cap. 100 ton	No.	2,055,800
Flat-Bed Trailer	Cap. 40 ton	No.	1,246,000
Truck	Cap. 20 ton	No.	748,000
Truck	Cap. 10 ∿ 11 ton	No,	424,900
Dump truck	Cap. 10 ∿ 11 ton	No,	477,200
Reefer truck	Cap. 4 ton	No.	623,000
Cargo truck	Cap. 4 ton	No.	343,000
Micro Bus	26 persons	No.	353,000
Wagon		No.	137,000
Sedan		No.	112,000
Jeep		No.	342,000
Fork-Lift Truck	Cap. 4 ton	No.	273,200
	Cap. 3 ton	No.	240,000
Trolley	Cap. 40 ton	No.	93,400
Rail	30 kg/m	Ton	6,850
Deck-Barge	Cap. 500 ton	No.	1,856,400
Tug-Boat	180 PS	No.	2,261,400
Winch	.35 KW		105,000
	50 н.Р		374,000
	30 н.Р		218,000
Concrete Plant	$3.0m^3x^2$ No. (360 m^3/hr)	No.	4,678,500
Crusher	50 ∿ 115 ton/hr	No.	485,900
Aggregate Screen	30 m³/hr	No.	623,000
Grout Mixer		No.	21,800

Table 8.2.2 UNIT COSTS OF FOREIGN MATERIALS (3)

Material	Description	Unit	Unit Cost
Grout Pump		No.	48,300
Vibrator	∮60, 1.2 Kw	No.	8,400
Concrete Bucket	1.5 m ³	No.	39,800
Generator	300 KVA	No.	735,100
	125 KVA	No.	521,000
	100 KVA	No.	238,000
	40 KVA	No.	200,000
Cubicle	50 ∿ 100 KVA	No.	169,400
Engine Compressor	50 H.P	No.	284,400
Cantilever Carriage	600 t-m	No.	3,344,500
	400 t-m	No.	2,455,300
	300 t-m	No.	2,010,600
	200 t-m	No.	1,566,000
Launching Girder	L = 100 m, Cap. 100 ton	No.	2,018,400
Electric Arc Welder	500A	No.	18,200
	300A	No.	12,500
Engine Welder	150A	No.	49,800
Impact Wrench		No.	8,940
Torque Wrench		No.	6,230
Nut Rummer		No.	21,800
Calibrator		No.	28,000
Freyssinet Jack	12ø 7 m/m E	No.	87,800
Dywidag Jack	Cap. 70 ton	No.	46,500
	Cap. 50 ton	No.	39,600
Oil Jack	Cap. 500 ton	No.	224,000
÷	Cap. 200 ton	No.	62,300
	Cap. 100 ton (Stroke 1,500 mm)	No.	93,400
	Cap. 50 ton	No.	18,700
Tension Jack (Cable)	Cap. 500 ton	No.	487,500
Pump for Tension Jack		No.	438,800
Electric-Motor Pump for Jack	0.75	No.	39,500

Table 8.2.2 UNIT COSTS OF FOREIGN MATERIALS (4)

Material	Description	Unit	Unit Cost
Electric-Motor Pump Unit		L.S	209,000
Hand-Pump Unit		No.	40,500
Bar Bender		No.	49,100
Lever Block	Cap. 3 ∿ 5 ton	No.	520
Dynamometer	Cap. 100 ton	No.	44,800
Cable Stranded Reel Set		L.S	872,000
Staging System		L.S	9,970,000
Stiffening Materials		L.S	868,000
Road Mat		L.S	1,760
Travelling Staging	(Under Main Girders)	L.S	623,000
Scaffolding Pipe	L = 6.0 m	No.	120
•	L = 3.0 m	No.	60
Scaffolding Board		No.	. 180
Surveying Instrument		L.S	324,000

8.2.2 労力単価

労力単価は、モンバサ及びナイロビにおける標準単価を使用した。労働者分類別の 単価を3つに分け以下に示した。

Class - I

Foreman, Heavy Equipment Operator 12.5 Shs/hr(100 Shs/8 hr)

Class-I

Carpenter, Steel worker, Mason, Truck driver

8.5 Shs/hr(68 Shs/8 hr)

Class-I

Commo labour

5.68 Shs/hr (45.5 Shs/8 hr)

8.2.3 機械使用料

時間当り機械使用料は、本プロジェクトの建設に使用されると考えられるものにつ いて算定し、時間単価を表8.2.3 に示した。

時間当り直接使用料は、モンバサ港における CIF 価格と、モンバサにおける市場 価格にもとづく油脂費(燃料、潤滑油等)から構成される。

8.3 工種別単価

工事の工種別単価は、モンバサにおける地域経済状況を考慮し、材料費、労力費、機 械使用料等から積算した。積算した結果を工種別に表 8.3.1、 8.3.2 及び資料編Dに示 した。

8.4 工種別数量

工種別の数量は、第7章概略設計に基づきアプローチ道路(土工区間)と橋梁(主橋 梁とアプローチ橋梁)に分け各々算出した。数量は、航路クリアランス及び主橋梁型式 (プレストレスコンクリートタイプと鋼タイプ)等を含む全ての代替案に対して算定した。 表841にアプローチ道路の数量を、又表842及び資料編Dにプレストレストコン クリート主橋梁(H=55m)を示した。

Table 8,2.3 EQUIPMENT DIRECT COST PER HOUR

	P.S/Weight	Purchase Price	Econor	Economical Life	Deprec	Deprecasion	Fuel/011	Local	Foreign
rdnypacut.	(non)		per Year	/Aours(days) used per Year	צעם רב פ	אשרה מוום בספר	per Hour (day)	FORLIGH	ror 1201
		K.Shs.	Year	Hours/days	×10-6	K.Shs	K.Shs	K.Shs	K.Shs
Bulldozer 15 t	141/14.6	. 000*026	9	1,100	352	324	115	62	377
Bulldozer 21 t	211/22.1	1,406,000	9	1,100	352	. 567	145	78	562
Bulldozer with ripper 21 t	160/5.2	239,000	9	1,100	359	675	169	Ľ6	753
Convertible Excavator 0.7 m ³	3 130/22.1	1,195,000	٧,	1,300	308	368	7.5	07	403
Dump Truck 6 t	160/5.2	239,000	*	1,500	367	88	42	23	107
Flat Red Truck 6 t	170/4.6	211,000	4	005,1	367	78	36	19	95
Flat Bed Truck wich	85/2.7	154,600	4	1,300	365	57	30	97	7.1
Semi-Trailar Truck 32r	320/20.5	901,000	٧	1,200	342	308	181	88	391
Concrete Mixer Truck 3.2 m3	195/7.5	326,700	Ŋ	1,000	360	118	20	27	141
Concrete Pump Truck 45 m ³	145/73	833,300	7	1,300	419	349	43	23	369
Water Tank Truck 5,500 ltt	160/11	313,000	w	1,200	333	104	86	4.5	145
Motor Grader 3.7 m	126/12	753,900	٩	1,000	353	256	נג	30	307
Tandem Roller 8210t	58/8	400,000	7	800	391	156	37	20	173
Macadam Roller 8~10t	8/88	391/000	~	900	348	136	37	20	153
Macadam Roller 12t	89/10.1	364,900	~	006	348	127	37	20	144
Type Roller 8v20t	85/8	472,800	7	006	348	165	31	17	179
Vibration Roller	49/6-7	491,300	9	750	471	231	37	20	248
Mechanical Broom	160/5.6	741,000	50	1,000	360	267	98	45	308
Rammer 60v100 Kg	4/0.078	15,590	n	140 day	4,167	65 day	5 day	3 day	67 day
Scone Crushing Plant Cone Crusher #1,500	150/42	3,245,600	σ	5,000	185	009	173	93	980
Concrete Plant 3 m ³ x 2 No,,360m ³ /hr	74 kw/230	\$,427,800		6,500	154.6	839	113	61	891
Rod Vibrator 60275 mm	1.2 ku/0.044	009'6	m	120 day	3,889	37	П	н	37
Asphalt Plant 50 t/hr	159 kw/40	4,312,500	9	1,000	362	1,561	137	7.4	1,624
Asphalt Distributor	84/3.5	245,000		009	533	131	176	95	212
Asphalt Finisher 3%m Asphalt Kettle 6,0002	78 kw/14 12.0	1,322,500 60,700	9 4	750 100	3,350	623 203	122 10	. 5 5	679 208
Tipoterio Constant				qay	day				-
NA 051	150kw/1.45	355,000	Ħ	170 day	1,016	361	133	72	422
Portable Belt Conveyer	3/0.23	1,710	1.5	125 day	. 8,667	15	ιŋ	m	17
Air Compresor 2 m ³ /min	28/0.67	82,500	<i>ب</i> ٥	140	2,500	206	39	77	224
1 day Marker	(0.12	38,350	4	840	417	16	iΛ	n	18

Table 8.3.1 UNIT COST FOR WORK ITEMS (APPROACH ROAD)

				U. K.SHS)	
Work Item	Description	Unit		Unit Cost	l
			L.C	F.C	Total
Clearing & Grubbing (A)	Common field	HA	2,180	8,220	10,400
(B)	Demolish of	N -	<u>,</u>	4.3	10
Demoved of Old Deserve	house	No.	4	14	18
Removal of Old Pavement		sq.M	7	29	36
Removal of Street Lighting Post		No.	510	1,110	1,620
Embankment with Borrow Material	Class-S2	CU.M	17	52	69
Excavation & Disposal	L=5km	CU.M	15	51	66
Top Soil for Slope Protection	t=0.2 m	L.M.	74	298	372
Earth Drain	0.5 x 0.5 m	L.M.	37	148	185
R.C Pipe Culvert	D=400	L.M.	510	75	585
Catch Basin W/cover	600x600x600	EACH	1,870	430	2,300
Concrete Curb	5"x10"x36"	L.M	53	5	58
Concrete Curb & Gutter	W=500	L.M.	81	19	100
Subgrade Preparation		SQ.M	20	5	25
Sub-base Course	t=175	CU.M	189	51	240
Base Course	t=150	CU.M	290	185	475
Asphalt Surface Course	t=50	TON	350	330	680
	t=80	TON	560	² 5 3 0	1,090
	Foot path t=30	TON	210	200	410
Bituminous Prime Coat	'	SQ.M	3.5	4.5	8.0
Chatter Bar	L=300	No.	12	15	27
Retaining Wall	H=2m	L.M.	21,700	960	22,660
Stone Masonry		SQ.M	520	230	750
Strip Sodding		sq.M	8	2	10
Guard Rail		L.M.	58	342	400
Road Sign Type A	ø600	No.	120	970	1,080
В	2,000x1,000	No.	190	4,670	4,860
Road Marking	w=150	SQ.M	134	33	167
Road Lighting:(A)Earth	H=12m	No.	1,800	14,200	16,000
(B)Bridge	H=12m	No.	1,900	28,600	30,500
Hand rail	H=1,500	L.M.	10	4,050	4,060
Traffic Signal		No.	500	88,900	89,400

Table 8,3.2 UNIT COST FOR WORK ITEMS

(1) P.C MAIN BRIDGE H=55M, PHASE-I

			61		Unit Coa	st (K.Shs.)	
	Work Item	Sub-Item	Class	Unit	L.C	F.C	Total
	Main Girder	Concrete	δck=350kg/cm ²	CU.M	930	750	1,680
] ,]		Form	Stee1	sq.M	68	232	300
Superstructure		Reinforce- ment	SD30	Ton	. 2,387	11,833	14,220
Į ří		P.C. Rod	SBPR 95/120	Ton	7,386	57,114	64,500
ers		P.C. Cable	SWPR	Ton	12,883	97,117	110,000
Sup	Stayed Cable	P.C. Cable	SWPR	Ton	16,150	122,550	138,700
·	Erection & Equipment	_	1	L.S.	3,368,000	20,351,000	23,719,000
	Tower	Concrete	δck=350kg/cm ²	CU.M	930	750	1,680
		Form	Stee1	SQ.M	. 80	270	350
Tower		Reinforce- ment	SD30	Ton	2,387	11,833	14,220
	Erection & Equipment	<u>-</u>	-	L.S.	1,050,000	6,150,000	7,200,000
	Body & Footin Footing	Concrete	δck=300kg/cm ²	CU.M	. 960	690	1,650
60			δck=240kg/cm ²	CU.M	900	650	1,550
tîn		Form ·	Steel	SQ.M	. 80	270	350
& Footing		Reinforce- ment	SD30	Ton	2,387	11,833	14,220
re	Pile Founda-	. 8					
structure	tion	Cast-in- place Pile	R.C.D \(\psi 3.0\text{m} \)	L.M.	13,800	53,900	67,700
bst:	Shoe	Tefron	800x800x150	No.	14,000	56,000	70,000
Sub		Roller		Ton	12,377	95,923	108,300
	Expansion Joint	Demag		L.M.	37,900	151,700	189,600
	Temporary & Other Work			L.S.	17,007,000	96,373,000	113,380,000

(2) APPROACH BRIDGE H=55M, PHASE-I

				·	Unit	Cost (K.Shs	.)
	Work Item	Sub-Item	Class	Unit	L.C	F.C	Total
	R.C. Hollow	Concrețe	δck=240kg/cm ²	CU.M.	900	650	1,550
		Form	Stee1	sq.M.	80	270	350
		Reinforce- ment	SD30	Ton	2,387	11,833	14,220
	Post Tension T-Girder	Concrete	δck=350kg/cm ²	CU.M.	930	750	1,680
ure		Form	Steel	sq.M.	75	245	320
Superstructure		Reinforce- ment	SD30	Ton	2,387	11,833	14,220
ers		PC Cable	SWPR	Ton	12,883	97,117	110,000
Sup	P.C Rigid	Concrete	δck=350kg/cm ²	си.м.	930	750	1,680
	Frame	Form	Steel	sq.M.	68	232	300
		Reinforce- ment	SD30	Ton	2,387	11,833	14,220
		P.C Rod	SBPR 95/120	Ton	7,386	57,114	64,500
	Erection & Equipment			L.S.	4,040,000	22,899,000	26,939,000
	Body & Foot- ing	Concrete	δck=240kg/cm ²	CU.M.	900	650	1,550
	-	Form	Steel	SQ.M.	80	270	350
		Reinforce- ment	SD30	Ton	2,387	11,833	14,220
	Pile Founda-						
	tion	Cast-in- piace pile	R.C.D \$3.0	L.M.	13,800	53,900	67,700
Substructure			ø2.5	L.M.	11,800	46,200	58,000
uct		<u> </u>	ø2.0	L.M.	9,860	38,540	48,400
str	Shoe	BP		Ton	3,250	13,001	16,251
Sub		Rubber	R75	No.	1,480	5,920	7,400
			R65	No.	1,400	5,600	7,000
			R55	No.	1,280	5,120	6,400
			R45	No.	1,160	4,640	5,800
	Expansion Joint	Rubber		L.M.	2,840	11,360	14,200
	Temporary & Other Work			L.S.	10,808,000	61,246,000	72,054,000

(3) APPROACH BRIDGE H=55 M, PHASE-II

					Unit	Cost (K.Sh	s.)
	Work Item	Sub-Item	Class	Unit	L.C	F.C	Total
	R.C. Hollow	Concrete	δck=240kg/cm ²	CU.M.	900	650	1,550
		Form	Stee1	sq.m.	80	270	350
		Reinforce-	d D 2 O] m			
	Post Tonadon	ment	SD30	Ton	2,387	11,833	•
l e	Post Tension T-Girder	Concrete	δck=350kg/cm ²	CU.M.	930	750	1,680
ctu		Form	Stee1	SQ.M.	75	245	320
Superstructure	. :	Reinforce- ment	SD30	Ton	2,387	11,833	14,220
upe		P.C Cable	SWPR	Ton	12,883	97,117	110,000
S	P.C Rigid	Concrete	δck=350kg/cm ²	си.м.	930	750	1,680
	Frame	Form	Steel	SQ.M.	- 68	232	300
<i>'</i>		Reinforce- ment	SD30	Ton	2,387	11,833	14,220
		P.C Rod	SBPR 95/120	Ton	7,386	57,114	64,500
	Erection & Equipment			L.S.	3,922,000	22,228,000	
	Body & Foot-						
	ing	Concrete		CU.M.		650	1,550
		Form	Steel	SQ.M.	80	270	350
		Reinforce- ment	SD30	Ton	2,387	11,833	14,220
	Pile Founda- tion	Cast-in- -place pile	R.C.D Ø3.0	L.M.	13,800	53,900	67,700
رو			ø2.5	L.M.	11,800	46,200	58,000
tur	,	ľ	ø2.0	L.M.	9,860	38,540	48,400
Substructure	Shoe	BP		Ton	3,250	13,001	16,251
ıbst		Rubber	R75	No.	1,480	5,920	7,400
Sı			R65	No.	1,400	5,600	7,000
		1	R55	No.	1,280	5,120	6,400
-			R45	No.	1,160	4,640	5,800
	Expansion Joint	Rubber	<u>.</u>	L.M.	2,840	11,360	14,200
	Temporary & Other work			L.S.	17,917	101,533	119,450

Table 8.4.1 QUANTITIES FOR ROAD CONSTRUCTION

		Quantities					
		H=7	73.2 m		35 m	He	45 m
Work Item	Unit	Phase-I	Phase-II	Phase-I	Phase-II	Phase-I	Phase-II
Clearing & Grubbing (A)	НА	6.6	2.0	8.1	1.4	8.8	1.1
(B)	No,	10	40	11	15	11	9
Removal of Old Pavement	sQ.M	114	644.	1,362	375	1,362	488
Removal of Street Lighting Post	EACH	62	6	44	4	44	4
Embankment with Borrow Material	CU.M.	37,671	25,037	25,898	19,126	28,557	18,673
Excavation & Disposal	си.м.	-	3,740	2,925	3,712	2,925	2,896
Top Soil for Slope Protection	CU.M.	1,372	1,187	1,531	1,347	1,562	1,377
Earth Drain	L.M.	5,080	300	5,310	300	5,750	300
R.C. Pipe Culvert	L.M.	341	424	389	294	417	311
Catch Basin W/Cover	No.	54	78	92	108	99	110
Concrete Curb	L.M.	4,420	9,980	4,251	9,120	3,956	9,705
Concrete Curb & Gutter	L.M.	2,660	3,870	4,761	5,317	4,981	5,442
Subgrade Preparation	sq.M.	39,750	39,200	52,160	34,980	52,160	31,800
Sub-base Course	CU.M.	6,148	6,228	8,298	5,565	8,298	5,060
Base Course	CU.M.	5,220	5,160	6,863	4,611	6,863	4,190
Asphalt Surface Course r = 50	TON	6,447 (4,872)	7,233 (7,233)	6,607 (5,795)	5,566 (4,802)	6,533 (5,723)	5,049 (4,285)
t = 80	TON	(3,131)	-	(1,603)	(1,527)	(1,603)	(1,527)
t = 30	TON	1,342 (1,113)	1,371 (1,371)	1,040 (925)	980 (866)	1,010 (895)	895 (780)
Bituminous Prime Coat	sq.M.	56,057	62,895	57,449	48,400	56,812	43,905
Chatter Bar	No.	1,777	-			-	-
Retaining Wall	L.M.	-	440	240	520	180	500 ·
Stone Masonry	sq.M.	180	60	60	60	60	60
Strip Sodding	SQ.M.	6,861	5,933	7,654	6,736	7,812	6,884
Guard Rail	L.M.	1,000	540	1,490	750	1,490	750
Road Sign (A)	No.	4	-	2	_	2	-
(B)	No.	4	4	4	4	4	4
Road Marking	sq.M.	2,022	2,353	1,549	1,477	1,549	1,388
Road Lighting (A)	No.	70	152	124	64	124	61
(B)	No.	71	91	57	83	57	78
Hand rail	L.M.	3,640	4,650	1,985	2,845	1,690	2,400
Traffic Signal	No.	7	3	7	3	7	3

Note: Figures in the blacket are the quantities for the main bridge in case of steel.

Table 8.4.2 QUANTITIES FOR BRIDGE CONSTRUCTION

(1) P.C. MAIN BRIDGE, H = 55, PHASE I & II

	Item	Sub-Item	Class	Unit	Quantities
	Main Girder	Concrete	δck=350 kg/cm ²	ÇU.M.	11,286
		Form	Stee1	sq.m.	39,743
ture		Reinforcement	SD30	Ton	1,354
truc		P.C Rod	SBPR 95/120	. Ton	225
Superstructure	:	P.C Cable	SWPR	Ton	151
	Stayed Cable	P.C Cable	SWPR	Ton	966
<u></u>	Erection & Equipment		_ 	L.S.	1
	Tower	Concrete	δck=350 kg/cm ²	CU.M.	5,558
৸		Form	Steel	SQ.M.	6,380
Tower		Reinforcement	SD30	Ton	389
	Erection & Equipment		 -	L.S.	1
	Body & Footing	Concrete	δck=300 kg/cm ²	CU.M.	10,104
		į	δck=240 kg/cm ²	CU.M.	5,552
Footing		Form	Stee1	sq.M.	13,994
		Reinforcement	SD30	Ton	1,607
cture &	Pile Foundation	Cast-in-place Pile	R.C.D \$3.0 m	L.M.	1,920
truc	Shoe	Tefron	800x800x150	No.	8
Substru		Roller	12 Nos.	Ton	23.2
	Expansion joint		Demag	L.M.	22
	mporary & her Work			L,S	1

(2) APPROACH BRIDGE, H=55M, PHASE I & II

				-	Quanti	ties
	Item	Sub-Item	Class	Unit	Phase-I	Phase-II
	R.C Hollow	Concrecte	δck=240kg/cm ²	CU.M.	3,031	5,063
		Form	Steel	SQ.M.	6,864	11,467
		Reinforcement	SD30	Ton	561	937
ure	Post Tension T-Girder	Concrete	δck=350kg/cm ²	CU.M	3,648	4,690
ruct		Form	Stee1	sq.m.	21,158	26,673
Superstructure		Reinforcement	SD30	Ton	421	563
Sup		P.C Cable	SWPR	Ton	183	246
	P.C Rigid Frame	Concrete	$\delta ck = 350 kg/cm^2$	CU.M.	4,511	6,032
		Form	Steel	sq.m	15,268	20,661
		Reinforcement	SD30	Ton	539	720
		P.C Rod	SBPR 95/120	Ton	324	423
	Erection & .Equipment			L.S	1	1
	Body & Footing	Concrete	δck=240kg/cm ²	CU.M	11,544	20,798
	TOOLING	Form	Steel	SQ.M.	13,597	24,273
		Reinforcement	SD30	Ton	1,159	1,571
!	Pile Foun- dation	Cast-in-place	R.C.D Ø3.0	L.M.	0	0
	dation	bire	" ø2.5	L.M.	280	210
Le L		}	" ø2.6	L.M.	420	840
Substructure	Shoe	ВР		Ton	15.6	9.6
bstr		rubber	R75t	No.	0	60
Su			R65t	No.	192	300
			R55t	No.	0	24
			R45t	No.	192	480
	Expansion joint	Rubber		L.M.	396	748
	mporary & her Work			L.S	1	1

8.5 用地及び補償費

用地及び補償費は、モンバサ市から得られた資料に基づいて算定し、以下に示した。

1) Land Price (Unit: Shs/M²)

-	Location	Residential	Commercial
(1)	Mombasa Island		
	Kizingo Area		
	1st Beach Row	200 - 250	*****
	2nd Beach Row	175 - 220	Ave. 250
	3rd Beach Row	150 - 200	_
	Ganjoni Area	Ave. 125	Ave. 250
(2)	South Mainland	·	·
	Inland Area incl. the area of A-14	25 -	- 45

2) Compensation Cost (Unit: Shs/M²)

		Island	South Mainland
(1)	Swahili House with electricity but no water service	-	1,400 Shs/M²
(2)	Same above with Makuti roof	_	1,000
(3)	Permanent House with electricity and water services,		
	Single Storey	2.000 Shs/M ²	1,800
	Double Storey	2,250	2,100
	Multi Storey	2.350	2,200

8.6 建設費の積算

建設費は、代替案別に概略設計で算出された数量及び工種別単価から算出した。費用 は、各々外貨分と内貨分に分けた。

ととで算出した建設費は、以下の工事項目について積算した。

- -現況フェリーターミナルの拡張に対する建設費
- ートンネル建設費(沈埋トンネル案、T2ルート)
- 橋梁建設費(航路クリアランス H=73.2、55及び45m)
- 一料金所建設費

以上の内、始めの2つの建設費は、資料編G及びIで積算した。

8.6.2 事業費

1) 事業費

航路クリアランス別、主橋梁タイプ(プレストレストコンクリートと鋼)及び段階施工別の事業費を表 8.6.1 及び 8.6.2 に示した。これらの総括を表 8.6.3 に示した。

Table 8,6,3 TOTAL PROJECT COST

(Unit: 1,000 K.Shs)

		· · · · · · · · · · · · · · · · · · ·	
	Phase I	Phase II	Total
P.C. Case			
$H = 73.2^{M}$	1,810,671	1,372,298	3,182,969
H = 55	1,076,958	1,248,819	2,325,777
H = 45	925,513	1,056,972	1,982,485
Steel Case			
$H = 73.2^{\mathrm{M}}$	1,844,710	1,372,298	3,217,008
H = 55	1,231,133	1,402,933	2,634,066
H = 45	1,088,065	1,219,462	2,307,527

主橋梁の橋種別建設費を資料編下で比較した。これを表 8.6.4 に示した。

アプローチ橋梁及び | 期、 || 期の工事費を含む鋼主橋梁の建設費は、プレストレスコンクリート主橋梁に比べて、航路クリアランス 7 3.2 m で 1.4 %、 5 5 m で 1.4 %、 5 5 m で 1.4 %、 4 5 m で 1.7 % いずれも高かった。

Table 8.6.4 BRIDGE CONSTRUCTION COST COMPARISON (P.C and Steel)

(Unit: 1,000 K. Shs.)

Navi.		P.C Case			Steel Case	
Clear- ance	Main Bridge	Approach Bridge	Total	Main Bridge	Approach Bridge	Total
73.2 ^M	861,376	1,643,987	2,505,363	896,260	1,643,987	2,540,247
55	1,133,802	686,132	1,819,934	1,386,340	686,132	2,072,472
45	1,102,708	450,433	1,553,141	1,369,092	450,433	1,819,525

Note: The figures above are the total of currency portion and phasing of the Project.

Table 8.6.1 PROJECT COST (P.C. MAIN BRIDGE)

	Navigation	Clearance Phase Phase-I	Fortion L.C. F.	Bridge 288,700 1,16	Approach Road 8,707 2	Cost (1)+(2) 297,407 1,19	Engineering Fee (3)x10% 29,741 11	Land Aquisi- tion & Com- pensation 9,700	Sub-Total (3)+(4)+(5) 336,848 1,30	Contingency 33,685 13	Sub-Total of Currency Portion 370,533 1,44	Phase (6)+(7) 1,810,671	Total Project Cost
	73.2M	Ph	F.C. L.C.	1,163,800 212,37	26,396 18,763	1,190,196 231,136	119,020 23,114	- 24,620	1,309,216 278,87	130,922 27,887	1,440,138 306,757	1,	3,182,969
,		nase-II	F.C.	849,490	33 31,123	880,613	14 88,061	- 0;	0 968,674	798,967	7 1,065,541	372,298	
		Phase-I	L.C.	168,949	15,109	184,058	18,406	10,590	213,054	21,305	234,359	1,076,958	
	5.	1−£	F.C.	675,796	20,567	696,363	989*69	ı	765,999	76,600	842,599	, 958	2,325,777
	55M	Phase-II	L.C.	195,038	19,091	214,129	21,413	18,090	253,632	25,363	278,995	1,248,819	777,
ļ		II-	F.C.	780,151	21,356	801,507	80,151		881,658	88,166	969,824	,819	
		Phase-I	r.c.	144,377	13,866	158,243	15,824	10,590	184,657	18,466	203,123	925,513	
)	WS4	I	F.C.	577,508	19,508	597,016	59,702	ı	656,718	65,672	722,390	13	1,982,485
(Unit: 1,000 K.Shs)	¥	Phase-II	L.C.	166,251	18,167	184,418	18,442	5,650	208,510	20,851	229,361	1,056	:85
3 K.Shs)		-1I	E.C.	665,005	18,971	683,976	68,398	ı	752,374	75,237	827,611	1,056,972	

Table 8.6.2 PROJECT COST (STEEL MAIN BRIDGE)

(Unit: 1,000 K.Shs)

//.	Navigation		73.2M	ZM			55M	×			45M	2	
	Clearance		Phase-I	Phas	Phase-II	Phase-I	I -e	Phas	Phase-II	Phase-I		Phase-II	11-
H T	e E	L.C.	F.C.	L.C.	F.C.	1.C.	F.C.	1.0.	F.C.	L.C.	F.C.	L.C.	F.C.
Ξ	Bridge	295,677	295,677 1,182,707	212,373	849,490	194,202	776,812	220,292	881,166	171,016	684,061	192,889	771,559
(2)	Approach Road	9,861	27,490	18,763	31,123	15,698	21,126	19,655	21,890	14,456	20,067	18,731	19,505
(3)	Construction Cost (1)+(2)	305,538	305,538 1,210,197	231,136	880,613	209,900	797,938	239,947	903,056	185,472	704,128	211,620	791,064
(4)	Engineering Fee (3)x10%	30,554	121,020	23,114	88,061	20,990	79,794	23,995	90,306	18,547	70,413	21,162	79,106
(5)	Land Acquisition & Compensation	9,700	1	24,620	,	10,590	ı	18,090		10,590	ı	5,650	
(9)	Sub-Total (3)+(4)+(5)	345,792	345,792 1,331,217	278,870	968,674	241,480	877,732	282,032	993,362	214,609	774,541	238,432	870,170
(7)	Contingency (6)x10%	34,579	133,122	27,887	96,867	24,148	87,773	28,203	96,336	21,461	77,454	23,843	87,017
(8)	Sub-Total of Currency Portion	380,371	380,371 1,464,339	306,757	1,065,541	265,628	965,505	310,235	1,092,698	236,070	851,995	262,275	957,187
	Phase (6)+(7)	1,84	1,844,710	1,37.	,372,298	1,231,133	,133	1,40	1,402,933	1,088	1,088,065	1,219	1,219,462
Total	Total Project Cost		3,217,008	, 008			2,634,066	,066			2,307,527	,527	
			}		7								

さらに、主橋梁を航路クリアランス別に比較したものが表 8.6.5 である。 鋼主橋梁は、プレストレストコンクリート主橋梁に比ベクリアランス 7 3.2 mで 4 %、5 5 m で 2 2 %、4 5 m で 2 4 % いずれも高い。

Table 8.6.5 MAIN BRIDGE COST BY BRIDGE TYPE (PHASE-I COST)

(Unit: Million K.Shs.)

Type & Clearance		P.C Bridge		Steel Bridge			
Major Work	73.2 ^M	55 ^M	45 ^M	73.2 ^M	55 ^M	45 ^M	
Superstructure	345	246.2	244.6	405.4	324.9	324.9	
Tower	36,6	24.3	23.8	100.6	89.0	89.0	
Substructure	328.3	183.0	172.6	211.0	140.6	133.7	
Temporary & Other Works	151.4	113.4	110.3	179.3	138.6	136.9	
Total	861.3	566.9	551.3	896.3	693.2	684.5	

Note: The total construction cost for 55 and 45 m must be doubled by adding the cost in Phase-II.

2) 料金所の建設費

料金所の計画は、第7章に詳述した。有料道路の料金は、ブロジェクトの建設費、運営費等をもとに決定する必要がある。

Ⅰ期工事では、舗装等の追加工事は、不要であり、料金所の建設費のみ計上した。 『期工事は、900 ㎡の追加舗装、料金収受ブース2つ、緑石等について追加工事が必要である。各期別の料金所関連工事費を表8.6.6 に示した。

Table 8.6.6 TOLLGATE CONSTRUCTION COST

(Unit: 1,000 K.Shs)

Phase	LC	FC	Total
Phase - I	210	210	420
Phase - II	325	264	589

8.7 維持管理費及び運営費

8.7.1 維持管理費

維持管理は、車線、路肩、構造物及び諸施設等の道路施設をできるだけ建設した状態又は、その後の改良工事の状態に保全し、道路の運用と相俟って交通の安全と円滑

に資するものである。

本プロジェクトは、有料道路である点を考慮して、維持管理費と運営費に分けて算出した。維持管理費は、以下の項目ごとに算定した。

(1) 電 気 料

道路の照明、信号機、橋梁タワー内のエレベーター(鋼主橋梁)等の諸施設の電 気料である。電気料は、各施設に必要な所要電力消費量をもとに算定した。

(2) 清掃費

路面、排水施設及び安全施設と照明器具、建物、衛生設備等の清掃費であり、ケニアにデータがないため、日本のデータを修正して見積った。

(3) 修繕費

Cost

修繕費には、路面、舗装、橋縁塗装、ガードレール、構造物の点検、伸縮継手、 照明、交通制御機器等の修繕、取換え等を含む。

舗装のオーバーレイは、5年に1回とした。鋼橋の塗装は、永久塗装としたが諸外国の例(サンフランシスコ湾橋)をも参考に再塗装を20年後とした。又20年以後は、現場塗装となるため5年に1回とした。

以上の諸条件から、橋梁代替案別に維持管理費を算出し、表8.7.1 に示した。

Table 8.7.1 MAINTENANCE COST

 (Unit: 1,000 K.Shs./year)

 Clearance
 73.2 M
 55 M
 45 M

1,490.6 Electricity Cost 1,636.2 1,536.2 2) Cleaning Cost 1,670.0 1,832.5 1,720.5 3) Repair Cost 8,563.0 6,533.0 6,014.0 (11,223.0)(9,743.0)(9,224.0)11,723.6 10,001.7 9,270.7 Total (14,383.6)(13,211.7)(12,480.7)

Note: The figures in brackets show the cost for steel main bridge case.

8.7.2 運営費

料金所の要員は、第7章の料金所計画に従って計画した。ととで算出する運営費は、

別節で算定した維持管理に含まない料金収受要員と施設の維持管理費を計上した。

運営費は、料金所プース1ヶ所当り収受員3人/日(8時間、3交代)とし又監督員は、料金所当り1人とし料金収受員と同じ労働条件で見積った。料金所の全体運営費は、電気料や施設修繕費を含んで算定し、表8.7.2 に示した。

Table 8.7.2 OPERATION COST FOR TOLLGATE

(Unit: K,Shs/Year)

Phase 1

265,680

Phase II

356,400

第9章 実施計画

第9章 実施計画

9.1 概 要

運輸通信省(MOTC)が、本プロジェクトの実施主体である。ケニア政府は、プロジェクトの遂行のために、建設業者を国際入札によって選定するものと考えられる。プロジェクトは、段階的(フェースー [と]]) に整備されるものと考えている。

9.2 実施計画

9.2.1 段階施工

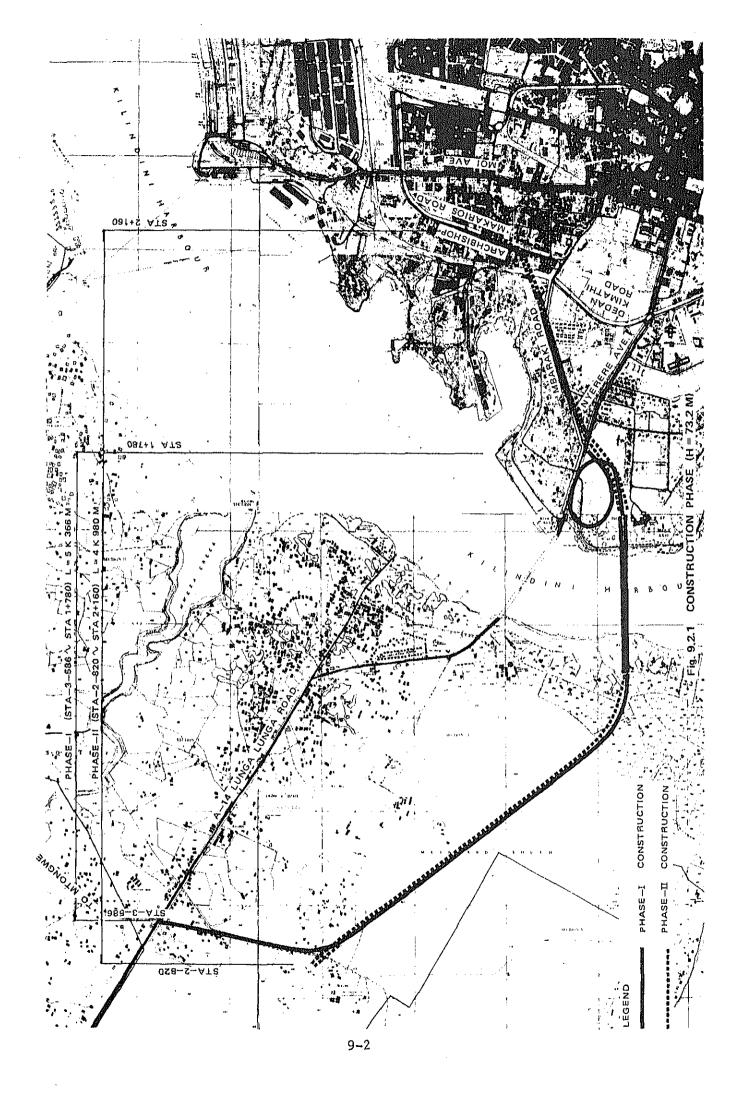
プロジェクト道路の建設は、高い航路クリアランスが要請されていることから、 莫大な投資が必要である。一般にこのような大規模プロジェクトでは、交通需要に 対応して段階的に整備することが望ましい。

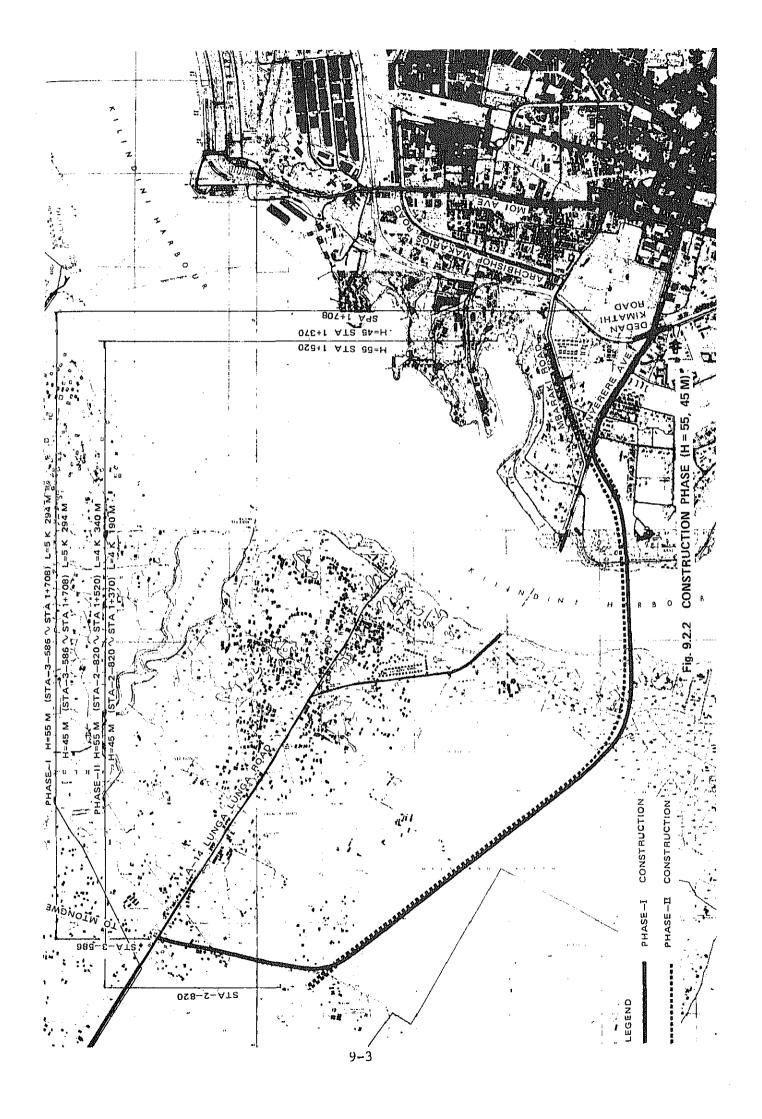
整備の方法として、全体一括施工と2期に分けた段階施工の2つのケースについて、第10章で比較した。その結果、段階施工が高い投資効率を示し好ましい方法である。又、プロジェクトの投資規模は、国際金融機関が適用する借款の大きさにも制限を受ける。

従って、本プロジェクトは、段階施工方式を適用し、上下線を段階的に整備する ものとした。これらを代替案別に図 9.2.1 及び 9.2.2 に示した。

1) [期工事

I 期工事は、リコニ側で、全ての代替案がルンガルンガ道路を起点とし、モンバサ島側は、航路クリアランス 7 3.2 mを除き、ニエレレ道路に連絡する。クリアランス 7 3.2 m 案は、ニエレレ道路とムバラキ道路の交差点に取付く計画である。


2) Ⅱ期工事


モンバサ島側では、全ての代替案が4車線でムバラキ道路へ延伸する。航路クリアランス55m及び45mでは、上り2車線を建設する。

クリアランス73.2m案では、主橋梁を除く2車線のアプローチ道路を建設する。

リコニ側での南への延伸計画及びモンバサ島での将来の幹線道路の整備計画は、 モンバサ交通マスタープラン又は、本調査(第6章)に従って策定されるべきで ある。

航路クリアランス55m及び45m案のニエレレ道路とデダンキマテイ道路の

交差点は、当プロジェクト期間中平面交差として残るものとした。

9.2.2 実施計画

プロジェクト道路の建設に先立って、風洞実験、地形測量、土質調査、詳細設計、 用地取得及び資金調達等の準備作業が必要である。この準備作業の所要期間は、代 替案に無関係に最少4年を見込んだ。

風洞実験等を含む詳細設計は、2.5年必要である。用地買収が完了するまでに、 資金調達交渉を完了し、工事契約を締結する。この過程には、1年必要である。

橋梁工事が当プロジェクト建設期間の主要部分を占める。各代替案の建設期間は、年平均実働日数と、各工事項目の平均作業速度を詳細に検討して見積った。主橋タイプ(プレストレストコンクリート及び鋼)代替案の建設期間は、資料編Hで詳細に検討し、実施計画として図9.2.3及び9.2.4に示した。鋼主橋梁案の建設期間は、プレストレストコンクリート主橋梁案に比べ表9.2.1に示すように1年短かい。

P.C Bridge Steel Bridge Navigation clearance Phase-II Phase-I Phase-I Phase-II 73.2^{M} 5 4 4 55 4 4 3 3 45 4 4 3

Table 9.2.1 CONSTRUCTION PERIOD

又、供用開始年は、代替案別に表 9. 2. 2 に示した。但し、II 期工事は、交通の情況を見て実施することが望ましい。

	P:C Ca	se	Steel	Case
Navigation clearance	Phase-I	Phase-II	Phase-I	Phase-II
73.2 M	1993	2002	1992	2002

2002

2002

1991

1991

2002

2002

1992

1992

55

45

Table 9,2.2 OPENING YEAR OF PROJECT ROAD

Fig. 9.2.3 IMPLEMENTATION SCHEDULE (P.C MAIN BRIDGE CASE)

Navigation Clearance: 73.2^M

Phase				P	hase-	1_		•				Pl	iase-l	[]		
Item	'84	'85	'86	'87	'88	'89	'90	'91	'92	'95	'96	'97	'98	'99	2000	2001
Loan Negotiation													:			
Detailed Design																
Land Acquisition				986048												
Construction & Supervision								ies p. se	2.92.332					1		
Loan Negotiation Land Acquisition																
Construction & Supervision								Ī.				_		n kate sa		

Navigation Clearance: 55^M

Phase				P	hase –	1				_		Pl	ıase –	II		-
ltem	'84	'85	'86	' 87	'88	'89	'90	'91	'92	'95	'96	'97	'98	'99	2000	2001
Loan Negotiation	(1302)21/23/35	i														Ì
Detailed Design			22 US (0.83)	2220												<u> </u>
Land Acquisition				april 1986												
Construction & Supervision												 				
Loan Negotiation Land Acquisition																
Construction & Supervision				1												

Navigation Clearance: 45^M

Phase				P	hase -	- [Ph	ase-	II		
Item	'84	'85	'86	'87	'88	'89	'90	'91	'92	'95	'96	'97	'98	199	2000	2001
Loan Negotiation																
Detailed Design			3883 KB													
Land Acquisition			i	Maria de la compansión de							l	i			Ì	
Construction & Supervision																
Loan Negotiation Land Acquisition												77 C.				
Construction & Supervision																

Fig. 9.2.4 IMPLEMENTATION SCHEDULE (STEEL MAIN BRIDGE CASE)

Navigation Clearance: 73.2^{M}

Phase	<u> </u>			P	hase-	-I						Ph	ase—	II		
Item	'84	'85	'86	'87	188	'89	' 90	91	'92	'95	'96	'97	'98	99'	2000	2001
Loan Negotiation	A SEA TOO															
Detailed Design		Sajos,	ayon sis	382												
Land Acquisition				आहो। व्यक्त						I						
Construction & Supervision					2000 an	1000000	pilitinesil	g.0118748								
Loan Negotiation Land Acquisition												Modera				
Construction & Supervision								·					sivisty);;	(EIANA)	1010W	(5) (1) (6) (1)

Navigation Clearance: 55^{M}

Navigation Clearance: 45^{M}

Phase				P	hase-	-1		•				Pl	ase-	I		
Item	'84	'85	'86	'87	'88	'89	'90	'91	'92	'95	'96	'97	,98	99'	2000	2001
Loan Negotiation								٠								
Detailed Design		ym Giorga	700 (MS)	(Sing				,								
Land Acquisition				0000000						, ,						
Construction & Supervision					1610/5020	0.0(2.00)	nie st		-					-		
Loan Negotiation Land Acquisition																
Construction & Supervision				, -										CW(6)		3K(())

第10章 経済評価と財務分析

第10章 経済評価と財務分析

10.1 概 要

経済評価は、本プロジェクトがケニアの国民経済に如何に寄与するかを、その費用と 便益を比較検討し、評価するものである。プロジェクトの費用は、プロジェクトの実施 により、資源(労働力も含む)の投入、消費を意味するものであるが、税金のような移 転費用は、含まない。なぜなら、この要素は、経済的属性というよりも、むしろ制度的 な属性だからである。移転費用の効果は、1011節で取扱う財務費用の検討で考慮し た。経済評価の作業プロセスを図1011に示した。

10.1.1 代替案

経済評価は、表1011に示すように整備の方法(フェーズ)を含め合計11(橋 梁案ープレストレストコンクリートと鋼主橋案及び沈埋トンネル案)の代替案に対し て行った。

Alter	native	Brid	ge Cleara	ince	Tunnel
Phasing		73.2 ^M	55 ^M	45 ^M	1 dittie
Single	PC	0	0	0	n
Construction	Steel	-	••		Ų.
Staged	PC	0	0	0	
Construction	Steel	n	0	0	n

Table 10.1.1 ALTERNATIVES FOR ECONOMIC EVALUATION

Note: Mark "0" means the alternative evaluated in the study.

財務分析は(外貨分の借款、有料道路の採算について)、プレストレストコンクリート主橋梁クリアランス 5 5 m 案に対して、1 0.1 1 節で行った。

10.1.2 便益の内容

プロジェクトが生むすべての便益を金銭的に定量化することは、不可能である。 本調査においては、次の5つの便益について定量化を行った。

- (1) 利用者便益(走行費と時間費の節約)
- (2) フェリーが廃止されるために節約される費用
- (3) プロジェクト投資に伴うフロー効果
- (4) 建設施設の残存価値
- (5) 地域開発による便益

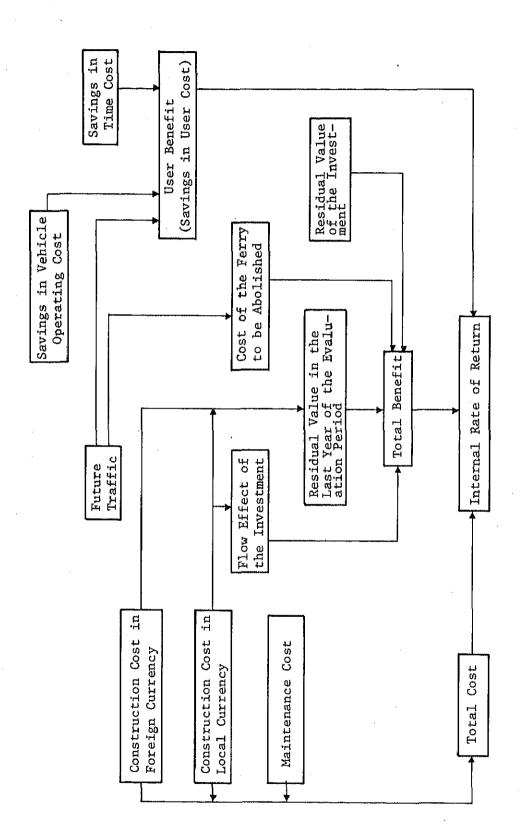


Fig. 10.1.1 WORK FLOW CHART OF ECONOMIC EVALUATION

最後の地域開発による便益は、定量化に不確実性が伴うため、感度分析の対象とした。 プロジェクトには、その供用に伴って上記以外の便益が考えられる。それらは、快 適性、利便性、確実性の増大及び安全性の向上、橋の観光資源性、等である。、いず れも定量化に困難が伴うので当プロジェクトの便益の対象外とした。

10.2 変換係数

プロジェクトコスト及び利用者コストは、財務コストで表現される。 しかし経済評価 のためには、全て移転項目を含まない経済コストに変換されねばならない。

本調査で用いた変換係数を表10.2.1 に示した。又、建設費の外貨分の変換係数は、コスト積算から約0.8 と見積られた。

Table 10.2.1 CONVERSION FACTORS

Standard Conv	ersion Factor (SCF)	0.92
Conversion Fa	ctor for Consumer Goods (CFC)	0.935
	Unskilled Labor Cost	0.935
	Local Materials	0.834
Conversion	Local Fuel Cost	0.167
Factor for	Local Other Cost	0.644
Domestic	Land Acquisition	0.920
Procurement	Compensation	0.920
	Local Engineering Fee	0.935
	Local Part of Contingency	0.676

Note: Detailed calculation of the above factors to be described in Appendix J.

10.3 プロジェクトコスト

プロジェクトコストは、第8章で見積られており、建設費、用地及び補償費、詳細設計及び施工管理費と予備費からなる。各費用は、内外貨に区分されており、移転項目も含まれている。

表 $10.3.1 \sim 10.3.3$ に航路クリアランス 55 m案に対し、各費目別、年次別に投資コストを示した。又その他の案に対しては、資料編 J に示してある。合計 11 の代替案の移転項目をまとめて表 1.0.3.4 に示した。

Table 10.3.1 PROJECT COST

Navigation Clearance = 55 Meters
 PC Bridge
 Stage Construction

(Unit : 1,000 Shs.)

ect Cost	Local Currency Portion + Foreign Currency Portion	24761 24761 24761 25761 201536 201536 1005384 1005384 10061 200083 10061 200081 200081 200081	27473 27473 36256 279868 254265 15004 15004 268533 316538 220680 118384
Total Project Cost	Local Currency Portion	7300 1300 18949 75349 41267 22420 19899 74167 80187 55944 36194 36194	5504 14288 5504 14288 55814 48586 31070 24444 15004 15004 55922 60461 42182 27290 387069
Contingency	Local Currency Portion + Foreign Currency Portion	3166 3166 3166 32197 20231 12683 18671 1869 36989 20338 21454 21454	2498 2498 3296 25443 23115 14765 10011 1364 24412 28776 20052 10762 167001
Cont	Local Currency Portion	400 110 100 100 100 100 100 100 100 100	500 500 1299 5165 4417 2825 2825 1364 5084 5084 5084 5084 5088 3835 3835 3835
Land Acquisition		1 0 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7985 0 0 0 13640 0 21625
ప	Local Currency Portion + Foreign Currency Portion	51691 31691 31691 11859 11859 11859 11859 11859 11859 11859	24975 24975 24975 9366 9366 9366 9366 9366 149853
Engineering Supervision	Local Currency Portion	6644 6646 6646 6646 6646 6646 6646 664	5004 5004 1876 1876 1876 1876 1876 1876 1876 1876
1 Road	Local Currency Portion + Foreign Currency Portion	0 17838 17838 17838 2022 2022 20224 76123	13923 13923 13923 13923 15740 15740 15740
Approach	Local Currency Portion	77 7 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5696 5696 0 5696 7197 7197 27197
lge	Local Currency Portion + Foreign Currency Portion	292282 2804582 2804582 7714862 97146 7276954 3552043 241847 1043445	231136 221136 221136 138281 76823 219015 278396 191253 82516 1439204
Bridge	Local Currency Portion	888 888 889 889 889 889 889 889 889 889	0 44076 42293 26369 14650 41765 53088 36471 15735 274446
	Year	10000000000000000000000000000000000000	385 1986 1986 1987 1989 1997 1997 1998 2000 2000 2001 Total
	Value	Financial Value	Economic Value

Table 10.3.2 PROJECT COST

Navigation Clearance = 55 Meters
 PC Bridge
 Non-stage Construction

	يد	ncy on on	69469400 1094690 1098	5 \$ 3 8 \$ 4 \$ 5 \$ 5
Shs.)	Total Project Cost	Local Currency Portion + Foreign Currency	28601 28501 50149 435090 691302 386061 164068 194320	22579 22579 46366 344357 54658 305274 129722 97809 1515343
(Unit : 1,000 Shs.)	Total Pro	Local Currency Portion	6068 6068 57616 97863 138469 77421 33022 35509 432037	
n)	Contingency	Local Currency Portion + Foreign Currency	2600 2600 2600 3468 39645 52846 35096 114915 174472	2053 2053 4215 51595 47696 27752 11793 1892 137758
	Соп	Local Currency Portion	552 552 3420 12588 7058 3002 3228 39276	416 2578 2578 6708 9491 2367 2263 29612
	Land Acquisition		28 89 28 89 28 89 28 89 28 89 28 89	21625 8 8 21625 21625
55 Meters	ring & Sion	Local Currency Portion + Foreign Currency Portion	26001 26001 26001 15600 15600 15600 15600 15600	20526 20526 20526 12316 12316 12316 12316 123157
⊪ g	Engineering Supervision	Local Currency Portion	0.000 0.000	4155 4155 4155 2493 2493 2493 2493 2493
Navigation Clearance PC Bridge Non-stage Constructi	h Road	Local Currency Portion + Foreign Currency	389622 9962 38962 76123	20 20 20 20 20 20 20 20 20 20 20 20 20 2
1. Navi 2. PC B 3. Non-	Approach	Local Currency Portion	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 12893 0 0 0 12893 25787
	Bridge	Local Currency Portion + Foreign Currency	0 0 0 0 0 0 12826 133536 133536 1483912 1483912	0 271070 0 484646 265206 105613 46939 1173478
	Bri	Local Currency Portion	6 6 6 122571 67073 26719 11871 296782	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
:		Year	1985 1986 1987 1989 1989 1990 1991 Total	1985 1986 1987 1989 1990 1991 1991
		Value	Financial Value	Economic Value

Table 10.3.3 PROJECT COST

Navigation Clearance = 55 Meters
 Steel Bridge
 Stage Construction

				3. Stage	Stage Construction	Ç.			,	(n)	(Unit : 1,000 Shs.)	Shs.)
		Bridge	959 -	Approach Road	Road	Engineering 6 Supervision		Land Acquisition	Cont	Contingency	Total Pro	Total Project Cost
/		Local Currency Portion	Local Currency Portion	local Currency Portion	Local Currency Portion	Local Currency Portion	Local Currency Portion		Local Currency Portion	Local Currency Portion	Local Currency Portion	Local Currency Portion
Value	Year		Foreign Currency Portion		Foreign Currency Portion		Foreign Currency Portion			Foreign Currency Portion		· Foreign Currency Portion
Financial Value	1985 1986 1987	ବଓଡ	999	ଷତ୍ର	ବ ତ ତ	7497 7497 7497	35847 35847 35847	0 0 10590	750 750 1809	3585 3585 4644	8247 8247 19896	39432 39432 51081
	1988 1989 1990	75350 80341 38510	576753 401708 192552	7849 0 7849	18412 9 18412	3749 3749 3749	17924 17924 17924	ବ ବ ବ	8695 8409 5011	41309 41963 22889	95643 92499 55119	454398 461595 251776
	1998 1999 2000 7001 Total	74943 93888 51460 414494	9 374716 469441 257301 2072472	985 885 985 985 985 985 985 985 985 985	20773 20773 20773 78369	5749 5749 5749 44985	0 17924 17924 17924 215084	18090 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1809 8852 9764 6504 52351	1809 41341 48737 29600 239460	19899 97372 107401 71540 575863	19899 454753 536102 325596 2634066
))))))))]]	 			
	1985	\$	0	\$	\$	5653	28333	\$	ამ	2833	6218	31166
Economic Value	1986 1987	99	© © 	9 9 (20(9653 9653	28333	7985	1365 1365	2833	6218	31166
•	1 7 8 8 0 8 9 8 5 9 8 9	00014 60077 70000	317671	0 17 E	14 10 10 10 10 10 10 10 10 10 10 10 10 10	2827	14100 14166 14166	S & &	6346 8776	33184 18081	69744 4156	365021 198886
	1998 1998	0.60.007	296325	7410	16166	2827	14166	13640	1364	1364	15004	15004 359324
	2999 2991 Total	70792 38801 312529	371234 203473 1638911	0 7410 26656	0 16166 61069	2827 2827 33918	14166 14166 169998	21625	7362 4904 39473	38540 23381 189160	80980 53941 434201	423941 257186 2080763

Table 10.3.4 AMOUNT OF TRANSFER PORTION

(Unit: 1,000 K.Shs.)

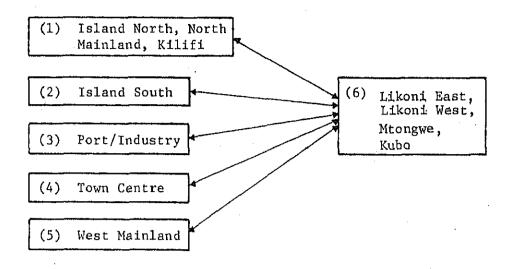
Alter	native	Bri	Bridge Clearance								
Phasing		73.2 ^M	55 ^M	45 ^M	Tunne1						
Single	P.C	667,749	403,847	333,657	007.000						
Construction	Stee1	_	_	-	921,383						
Staged	P.C	667,749	488,770	416,391							
Construction	Stee1	675,009	553,303	484,430	1,130,976						

10.4 維持管理費

第8章で見積った維持管理費も経済コストに変換し、表10.4.1に示す。

Table 10.4.1 MAINTENANCE COSTS

(Unit: 1,000 Shs. 1983 Price) Phase-I Phase-II Phase Value Finan-Econo-Finan-Econo-Alternative cial mic cial mic 73.2^{M} P.C 3,452 3,176 8,272 7,610 Bridge Clearance 9,602 Steel 4,782 4,399 8,834 P.C 3,205 2,949 6,797 6,253 55^M 4,275 3,933 8,222 Steel 8,937 45^M P.C3,085 2,838 6,186 5,691 Steel 4,154 8,326 3,822 7,660 Tunnel 10,500 9,660 16,000 14,720


Note: The conversion factor of 0.92 (SCF) to be used.

10.5 利用者便益

10.5.1 利用者便益算定のための諸前提

1) ソーニング

第5章交通需要推計では、29ゾーンを設定したが、便益計算には海峡を横切る ゾーンペアだけを対象にすれば、十分であることから、次の6ゾーンと5ゾーンペ アに収約し、分析した。

2) 大型車交通量の修正

1983年4月の交通量調査によれば、中型トラック(自重 1.5 トン以上)以上の中に占める大型トラック(三軸以上)の割合は、ほとんどゼロに近い。しかしなが 5、橋あるいは、トンネルができれば、大型トラックの割合は、増加する。

タンザニア国境は、本調査の実施中に再開されたが、閉鎖直前の1976年に、 25トントラックが1日平均60台観測されていた。

建設資材の輸送会社、ケナトコ(KENATOKO)等にインタビーした結果、橋梁ができれば、大型トラックへ買換える意向を表明した。

しかし、大型トラックの割合が結果としてどの位になるかは、予測困難である。 結局マクッパコーズウエイの比率を参考として、中型以上の45%が大型になるも のと仮定した。

利用者便益算定のための交通需要は、第5章の交通量を基礎に大型車を修正し、 表10.5.1 に示した。

3) リンクネットワーク

利用者便益算定のために用いたリンク ネットワークとリンク条件を資料編 Jに示した。

4) ルートリサーチ

ルートリサーチは、最短距離原則に基づいて行った。表 1 0.5.2 にゾーンペアどとに、現行フェリー経由の場合の距離と、新ルート経由の場合の距離を比較した。

Table 10.5.1 ESTIMATED TRAFFIC (AADT)

Table 10.5.2 SAVINGS IN DISTANCE

(Unit: Kilometers)

		···					
 		Zonal Pair	\bigcirc	2 -6	3-6	49-69	<u> </u>
Distance	via Existin	g Ferry	7.6	5.1	7.0	5.0	8.3
	H = 73.2 ^M	Phase I Phase II	10.2 8.8	7.7 7.7	9,6 8,2	7.6 7.6	10.9 9.5
Distance via	H = 55 ^M	Phase I Phase II	9.0 9.0	8.0 8.0	8.9 8.6	6,4 6.4	9.9 9.9
Proposed Crossing	H = 45 ^M	Phase I Phase II	9.0 9.0	8.0 8.0	8.9 8.5	6.4 6.4	9.9 9.8
	Tunnel		7.4	8.5	6.7	6.9	8.0
	H = 73.2 ^M	Phase I Phase II	-2.6 -1.2	-2.6 -2.6	-2.6 -1.2	-2.6 -2.6	-2.6 -1.2
Saving in	H = 55 ^M	Phase I Phase II	-1.4 -1.4	-2.9 -2.9	-1.9 -1.6	-1.4 -1.4	-1.6 -1.6
In Distance	H = 45 ^M	Phase I Phase II	-1.4 -1.4	-2.9 -2.9	-1.9 -1.5	-1.4 -1.4	-1,6 -1,5
	Tunnel		0,2	-3.4	0.3	-1.9	0.3

10.5.2 車両走行費

車両走行費は、項目ごとに資料編 J で見積った。見積の結果を表 1 0.5.3 に示した。中型及び大型トラックの走行費 4.7 km/shs 及び 1 2.6 shs /km の中には、各々 0.4 4 2 シリング /km 及び 2.0 7 0 シリング /km の金利が含まれておらない。従ってこれらは、それぞれの時間比の中に含めた。

車両走行費とその節約額を表10.5.4 に示す。同表は、走行距離と表10.5.2 に示す走行費から求めた。走行費の節約が全てマイナスとなっているが、これは表10.52 に示す距離がプロジェクト道路の場合、現行フェリーの場合より遠くなるためである。

Table 10.5.3 VEHICLE OPERATING COST (1983 price, Economic Value)

(Unit: Shs/vehicle/km)

	Vehicle	Ċar	Light Truck	Small Bus	Big Bus	Medium Truck	Big Truck
Varia- ble Cost	Fuel Oil Repair Sub Total	0.686 0.024 0.191	0.979 0.037 0.381 49*	0.979 0.037 0.381 1.397	1.603 0.078 0.852 2.533	1.640 0.067 0.577 2.284	3.055 0.084 1.050 4.189
Fixed Cost	Depreciation Interest Crew General Ad, Insurance Sub Total	0.411 0.258 - - 0.215	0.958 0.271 - 0.225	0.958 0.271 0.594 - 0.225 2.048	4.559 0.966 0.701 0.758 0.802 7.786	0.695 (0.442) 0.818 0.584 0.368 2.907	3.489
Gran	d Total	2.3	318*	3.445	10.319	4.749	12.598

Note: * indicates the average value of car and light truck.

Table 10.5.4 VEHICLE OPERATING COST AND THEIR SAVINGS

(Unit: Shs/vehicle, Economic cost, 1983 price)

					Phase-I					Phase-I	τ	
		Zonal Pair	Car & Light	Small Bus	Big Bus	Medium Truck	Big Truck	Car & Light	Small Bus	Big Bus	Medium Truck	Big Truck
U \ () Without Project Q \ () Q \ () Q \ () Q \ () Q \ () Q \ ()			18.2 12.2 16.8 12.0 19.9	25.8 17.3 23.8 17.0 28.2	78.3 52.5 72.1 51.5 85.5	35.7 24.0 32.9 23.5 39.0	95.8 64.3 88.2 63.0 104.6		se I			
	H = 73.2 ^M	<u>ගිහිටහට</u> මිමිමිමිමි	24.5 18.5 23.0 18.2 26.2	34,7 26,2 32,6 25,8 37,1	105.1 79.3 98.9 78.3 112.3	47.9 36.2 45.1 35.7 51.2	128.5 97.0 121.0 95.8 137.3	21.1 18.5 19.7 18.2 22.8	29.9 26.2 27.9 25.8 32.3	90.6 79.3 84.5 78.3 97.8	41,4 36,2 38,5 35,7 44,7	110.9 97.0 103.3 95.8 119.7
Project	11 = 55 ^M	<u> </u>	21.6 19.2 21.4 15.4 23.8	30.6 27.2 30.3 21.8 33.7	92.7 82.4 91.7 65.9 102.0	42,3 37,6 41,8 30,1 46,5	113.4 100.8 112.1 80.6 124.7	21.6 19.2 20.6 15.4 23.8	30.6 27.2 29.2 21.8 33.7	92.7 82.4 88.6 65.9	42.3 37.6 40.4 30.1 46.5	113.4 100.8 108.4 80.6 124.7
With Pr	11 = 45 ^M	<u> </u>		Same	as H ⇒	55 ^M		21.6 19.2 20.4 15.4 23.5	30.6 27.2 28.9 21.8 33.3	92,7 82,4 87,5 65,9 100,9	42.3 37.6 40.6 30.1 46.1	113.4 100.8 107.1 80,6 123.6
	Tunne1	ලමලමම ලමලමම						17.8 20.4 16.1 16.6 19.2	25.2 28.9 22.8 23.5 27.2	76.2 87.6 69.0 71.1 82.4	34.8 39.9 31.5 32.4 37.6	93.2 107.1 84.4 86.9 100.8
٧,	o.c M = 55)	90000 90000 90000	-3.4 -7.0 -4.6 -3.4 -3.8	~4.8 ~9.9 ~6.5 ~4.8 ~5.4	-14.4 -29.9 -19.6 -14.4 -16.5	-6.6 -13.6 -8.9 -6.6 -7.5	-17.6 -36.5 -23.9 -17.6 -20.2	-3.4 -7.0 -3.8 -3.4 -3.8	-4.8 -9.9 -5.4 -4.8 -5.4	-14.4 -29.9 -16.5 -14.4 -16.5	-6.6 -13.6 -7.5 -6.6 -7.5	-17.6 -36.5 -20.2 -17.6 -20.2

Note: * The other case of 73.2, 45 m and tunnel were also calculated.

10.5.3 時間費の節約

1) 時間と時間節約

ゾーンペアごとの所要時間とその節約時間を代替案別に計算し、表1 0.5.5 に示した。表中プロジェクト無しの所要時間とは、現行フェリーを利用した場合の所要時間である。現行フェリーの所要時間は、待時間、横断時間及び上下船時間の合計であり、これらを表1 0.5.6 に示した。

Table 10.5.5 TIME AND TIME SAVINGS

(Unit: Minutes/Vehicle)

					Phase-I			l	,	Phase-Il	[
		Zonal Pair	Car & Light	Small Bus	gig aug	Medium Truck	Big Truck	Car & Light	Small Bus	Big Bus	Medium Truck	Big Truck		
1	Trip Time Without Project	ලමලමම ලමමමමම		33,10 28,10 31,90 27,90 34,50		55.60 50.60 54.40 50.40 57.00	57.93 51.93 56.49 51.69 59.61	Same as Phase I						
		000000 000000 000000		9 13 9	.70 .70 .50 .50		18.40 12.40 16.96 12.16 20.08	0 11.60 0 9.70 6 10.40 6 9.20						
With Project		\$\$\$\$\$ \$\$\$\$\$ \$		10 12 7	.68 .68 .48 .48		16.06 13.66 15.82 9.82 18.22		10 11 7	. 68 . 68 . 80 . 48		16.06 13.66 14.88 9.82 18.22		
Trip Time W:	H = 45 ^M	000000 0000000000000000000000000000000		10 12 7	.77 .77 .57 .57		16,06 13,66 15,82 9,82 18,22		12.77 10.77 11.70 7.57 14.30					
	Tunnel	0 0 0 0 0 0 0 0 0 0 0 0 0			11 8 8					9.70 11.90 8.30 8.70 10.90				
'	Saving in Frip Time (H = 55 ^M)	0 0 0 0 0 0 0 0 0 0 0		20,42 17,42 19,42 20,42 42,52	4	42.92 39.92 41.92 42.92 42.52	41.88 38.28 40.68 41.88 41.40		42,92 39,92 42,60 42,92 42,52	41.88 38.28 41.61 41.88 41.40				

Table 10.5.6 ESTIMATED TOTAL CROSSING TIME

Vehicle Type	Crossing Time
Car and light vehicle	20 minutes/unit
Small bus	20
Big bus	20
Medium truck	40
Big truck	40

現行フェリーの所要横断時間は、コンピューターシミュレーションで求めた。シミュレーションモデルの外生変数としては、表10.5.7 に示す時間帯別交通量、表3.2.2 のフェリーの標準運行スケジュール及び表3.2.5 の実例データを用いた。表10.5.8 にこれらの結果を示した。

2) 時間費の節約

時間評価値は、資料編 J で計算し、表1 0.5.9 に示す。時間費の節約は、表1 0.5.5 (所要時間と節約時間)と表1 0.5.9 (時間評価値)を乗じて求め、表1 0.5.1 0 に示した。

Table 10.5.9 TIME VALUE
(Unit: Shs/hour; Economic Value, 1983 Price)

Type of Veh. Year	Car & Light	Small Bus	Big Bus	Medium Truck	Big Truck
1983 Before Adjustment	83	71.	166	40	150
After Adjustment	53	42	106	40	150
1990	63.0	49.9	126.0	40	150
2000	80.6	63.9	161.3	40	150
2010	103.3	81.8	206.5	40	150

Note: The annual growth rate of time value is assumed 2.5% except trucks. The 2.5% rate is referred to the rate of the national income per capita in the period 1970.

10.5.4 利用者便益

利用者便益の総額は、交通需要(表10.5.1)に利用者費用の節約額(表10.5.11.)を乗じて求めた。その結果を、クリアランス55m案に対して表10.5.12に示した。 誘致交通の便益は、図10.5.1に示すように、通常交通の便益の50%と見なすのが一般的である。

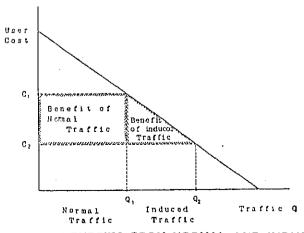


Fig. 10.5.1 CONCEPTION OF BENEFITS FROM NORMAL AND INDUCED TRAFFIC

Table 10.5.7 TRAFFIC VOLUME THROUGH LIKONI FERRY BY TIME BAND AND VEHICLE TYPE

	rom Mba	raki	to Likon	Ŀ		From Likoni to Mbaraki								
Car, Light, Matatu	Truck	Bus	Heavy Truck	Tota1	Time Band	Car, Light, Matatu	Truck	Bus	Heavy Truck	Total				
7	0	0	0	7	0-1	18	0 .	0	0	18				
6	0	0	0	6	1-2	7	0	0	0	7				
8	0	0	Q	8	2-3	2	0	0	0	2				
5	0	0	0	5	3-4	3	0	0	0	3				
8	0	1	0	9	4 ∽5	10	0	1	0	11				
7	0	7	0	14	5~6	16	2	2	0	20				
15	7	2	0	24	6-7	32	6	0	0	38				
26	19	0	0	45	7⊷8	78	16	2	0	96				
72	28	5	0	105	8-9	83	13	2	0	98				
54	18	0	0	72	9-10	126	20	0	0	146				
39	10	0	0	49	10-11	117	16	2	0	135				
105	28	1	0	134	11-12	89	18	2	0	109				
113	14	4	0	131	12-13	48	17	0	0	65				
42	20	10	0	72	13-14	62	24	0	0	86				
48	15	0	0	63	14-15	25	4	0	0	29				
57	16	0	0	73	15-16	68	21	1	0	90				
95	14	1	2	112	16-17	75	1.3	0 ·	0	88				
101	9	2	0	112	17-18	51	18	1 _	0	70				
57	2	0	0	59	18-19	51	6	1.	1	59				
39	0	0	0	39	19-20	45	0	5	0	50				
42	2	2	0	46	20-21	38	0	6	0	44				
28	0	0	0	28	21-22	21	0	1.	0	22				
21	0	0	0	21	22-23	19	0	0	0	19				
21	0	0	0	21	23⊢24	12	0	0	0	12				
1016	202	35	2	1255	Total	1096	194	26	1	1317				

Table 10.5.8 SIMULATED QUEUING VEHICLES FROM LIKONI AND MBARAKI

* ชา ซี ซี	_																			1										١
Vehicles Incoming after the preceding Ferry has	13	19	61	18	Ħ	ដ	ដ	11	11	11	11	7	п	23	23	80	φ	7	10	6	7	9								
Vehicles Left Over	7	60	ᆏ	0	0	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0								
Vehicles Walting for the Ferry	33	26	27	19	13	13	13	13	11	11	11	7	#	23	23	ω	ø	7	10	6	7	9								
Vehicles Actually Carried by the Ferry	25	1.8	26	19	13	13	13	13	Ħ	11	ជ	#	Ħ	23	23	æ	89	7	10	6	7	9								
No. of Ferry Trip	61	62	63	99	65	. 99	67	89	69	70	な	72	73	7.7	75	9,6	77	78	79	80	81	82								
Vehicles Incoming after the preceding Ferry has	29	29	29	28	27	53	29	29	14	14	14	14	15	19	19	19	19	17	7	89	8	10	20	20	20	20	33	31	33	27
Vehicles Left Over	30	38	36	44	7.5	51	13	75	50	38	34	22	ដ	12	S	9	Ó	0	c	0	0	0	~	0	H	0	e	4	Ŋ	14
Vehicles Waiting for the Ferry	. 61	59	29	99	7.1	17	80	80	88	64	52	48	37	8	31	24	25	17	7	8	8	10	20	77	20	21	83	34	35	32
Vehicles Actually Carried by the Ferry	31	21	33	20	53	20	29	26	18	26	18	56	26	18	26	18	25	17	7	8	89	10	19	23	19	21	30	30	ě	118
No. Perry Trip	31	32	33	34	35	36	37	38	39	40	41	42	43	77	45	95	47	87	49	20	51	52	53	54	55	56	57	58	89	09
Vehicles Incoming after the preceding Ferry has	ō	ដ	8	m	4	9	60	10	\$	8	8	œ	co	10	20	22	20	22	21	21	21	21	21	23	32	32	32	32	ır.	29
Vchicles Left Over	0	0	0	0	0	0	0	0	0	0	0	0	0	0	н	0	ĭ	0	0	0	0	0	0	0	ដ	12	23	77	24	32
Vehicles Waiting for the Ferry	δ	13	ις	m	4	9	80	10	9	80	8	89	œ	10	27	21	77	21	21	21	21	21	2,1	23	32	43	77	55	55	53
Vehicles Actually Carried by the Ferry	6	ដ	ıΛ	m	4	va	00	10	9	20	8	00	∞	10	25	22	20	22	21	21	11	2,1	21	23	21	31	21	33	31	2.1
No. of Ferry Trip	Н	2	m	4	\$	Ý	7	ω	σ	10	11	12	13	14	15	16	17	18	19	20	23	22	23	24	25	26	27	28	29	30

Table 10.5.10 TIME COST AND ITS SAVINGS FOR 55M CLEARANCE

(Unit; shs/vehicle, economic cost, 1983 price)

				
	Big Truck	145 130 141 129 149	40 34 25 46	105 105 105 103
	. Medium Truck	28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 7 8 8 10 10 1	23 23 28 28
2010	Big Bus	114 97 110 96 119	44 37 41 28 50	70 60 70 83
	Small Bus	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	17 15 16 10 20	8 7 7 7 7 8 7 7 8 4 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7
	Car and Light	52 84 85 85 85 86 86 86	22 18 20 13 25	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Big	145 130 121 129 149	0 7 8 8 8 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	105 96 104 105
2	Medium Truck	34 3 44 34 34 34 34 34 34 34 34 34 34 34 34 34 3	8 7 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10	22 23 28 28 28
2002	Big	93 79 79 79	36 30 33 21 41	58 4 4 9 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5
[Small Bus	33 34 34 34 34 34 34 34 34 34 34 34 34 3	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 22 23 23
	Car and Light	444W4 1-00000	211112 20113	29 25 28 29 29
	Big Truck	145 130 129 129	4 W 4 V 4 0 4 0 W R	105 96 102 · 105
	Medium Truck	3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ω ≻ ∞ ω Ο 1	23 27 28 29 28
1992	Big Bus	73 70 70 62 76	28 28 28 17 32	4 W 4 4 4 8 W 8 W 8 W 8 W 8 W 8 W 8 W 8
	Small Bus	23 28 30 30	# # C E	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Car and Light	331 331 331 331	4 W 4 0 0	23 19 23 23 22
Year	Vehicle Type Zonal Pair	11111	11111	11111 3333
	log i	Time Cost without Project	Time Cost with Project	Saving in Time Cost

Table 10.5.11 USERS' COST AND BENEFIT FOR 55M CLEARANCE

(Unit : Shs/Vehicle, economic cost, 1983 price)

	Big Truck	241 194 229 192 254	154 135 146 105 170	89 8 8 7 8 8 7 8 8 3 7 8 8 3 7 8 8 3 7 8 8 3 7 8 8 3 7 8 8 3 7 8 8 3 7 8 8 3 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8
	Medium Truck	73 58 69 57	12 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22 21 22 21
2010	Big Bus	192 149 182 148 204	136 119 129 92 152	330 330 52 52
	Small Bus	71 56 57 55	4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	23 22 23 22
	Car and Light	75 61 72 60 79	24 38 24 28 49	222 323 31 31
	Big Truck	241 194 229 192 254	154 135 146 105 170	837 833 833
	Medîum Truck	58 58 69 57	3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 13 21 22 22
2002	Big Bus	172 132 162 130 130	129 113 122 87 143	19 19 40 43 40
	Small Bus	0 4 N 4 N	4 % 4 % 8 % 8 % 8 % 8 % 8 % 8 % 8 % 8 %	4444 4444 4000
	Car and Light	52 52 53 53 54 54	4 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25 25 25 25
	Big Truck	241 194 223 192 254 254	154 135 152 105 170	8 8 7 8 8 8 7 8 8 8 7 8 8 8 9 9 9 9 9 9
	Medium Truck	58 58 69 77	20 8 8 9 9 10 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22 22 22 21 21
1992	Big Bus	411441 044440 40000	121 105 119 82 134	31 23 31 28
	Small Bus	2 4 2 2 4 2 2 4 2 2 4 2 4 2 4 2 4 2 4 2	2 K K L L L L L L L L L L L L L L L L L	13 11 13 12
	Car and Light	04040 00000	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	12 12 13 18
Year	Vehicle Type Zonal Pair	42 64 6 0 0 0 0	1 2 2 4 3 2 1 1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6 6 6	11 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
	> F/ N/	User Cost Without Project	User Cost with Project	User Benefit (Savings in User Cost)

Table 10.5.12 TOTAL AMOUNT OF USERS' BENEFIT: H = 55 Meters (Stage Construction)

(Unit : 1,000 Ksh, economic value, 1983 prices)

	Year	ļ.,		1992						2002						2010	0		
\$ 67 3	Vehicle Type Zonal Pair	Car & Light	Small	Big Bus	Hedium Truck	Big Truck	Total	Car & Light	Small Bus	Big Bus	Medium Truck	Big Truck	Total	Car ¢ Light	Small Bus	Bus	Hedium Truck	Big Truck	Totál
	1 - 6	4567	502.	2986	573	1322	10153	8711 878	1414	5974	827	1906	18833	13871	2317	9948	1045	2415	29596
Normal	0 0 1 7 M	4950		2770	808	1459	10501	10569	1678	7051	285	2314	22809	17853	2918	12481	1334	3123	37708
	4 - 5	7851		5099	983	2281	17452	15257	2462	10552	1436	3311	33029	25527	4213	18224	1938	4480	54382
	5 - 6			1797	357	833	6358 6358	5711	80	3790	523	1229	12161	9540	1540	6658	689	1543	20080
	Total		ſ	12771	2567	5015	45224	41137	6289	27772	3841	3951	88269	58354	11190	48134	5112	11919	144709
	1 - 6	٥	0	0	0	ō	o	3698	365	2377	410	506	7345	10079	934	6512	870	1232	19745
Developed	2 - 5	0	0	0	ō	o	٥	280	21	115	27	'n	478	831	57	403	29	88	1448
Traffic 3	3 - 6	٥	ō	Ö	0	0	0	3734	342	2259	392	593	7319	10702	957	6757	840	1458	20733
	- 1	0	0	Ö	Ф	o	0	4602	422	2873	468	784	9149	13225	1177	B567	1025	1847	25843
	5 - 5	0	0	ō	0	o	o	1861	160	1137	195	267	3620	5321	480	3376	419	714	10310
	Total	٥	٥	ō	0	0	0	14164	1310	8760	1492	2185	27912	40159	3635	25725	3211	5348	78079
	1 - 6	736		43B	151	29	1454	1597	160	1034	182	214	3187	2957	523	1934	254	357	5781
Induced	2 - 6	ň		0;	ග	1,	60	119	10	S	13	24	216	244	21	118	17	en en	432
Traffic	3 1 6	598		322	o o	122	1184	1598	147	970	168	259	3143	3142	278	1991	249	422	5081
	1 1	773		472	121	123	1569	1970	181	1221	205	340	3923	3888	344	2516	304	535	7584
	5 1 6			186	52	S B	645	800	67	485 205	90	118	1553	1587	138	588	124	217	3032
•	Total			1425	402	767	1911	6084	564	3766	652	326	12022	11796	1060	7544	948	1563	22911
	1 - 6	į		3421	704	1583	11507	13996	1939	9385	1419	2525	29365	26907	3550	18494	2159	4003	55124
Total	2 - 6	464		130	សួ	125	820	1277	138	523	108	249	2331	2638	291	4344	170	380	4822
	3 - 6	5548		3091	597	1580	11665	15901	2167	10291	1546	3167	33072	31697	4153	21239	2422	5012	64522
	4 - 6	8534	1308	5571	1104	2405	19021	21839	3064	14652	2109	4436	45100	42639	5734	29307	3257	5862	87809
	5 - 6			1983	409	889	7003	8371	1135	5412	802	1514	17334	16429	2158	11019	1242	2573	33421
	Total			14196	2969	6383	50135	61385	8443	40238	5984	12091	128202{:	120309	15886	81402	9270	18831	245698

10.6 フェリーの廃止に伴う節約便益

橋が実現すれば、現況フェリーは不要となる。従って、フェリーの運営費、将来必要となるであろう追加フェリーの購入費並びに追加バースの建設費は、節約できるため、 当プロジェクトの便益と考えられる。

10.6.1 フェリーの増強計画(橋梁が建設されない場合)

現行フェリーは、第5章で推定された交通需要に応じて、その施設を増強する必要 がある。

フェリーの増強は、現行フェリーのサービス水準を将来共一定として計画した。仮 に10年ごとに新規フェリー(サフィーナクラス)を1隻購入し、1パース追加建設 すると、表10.6.1に示すようにサービス水準を一定に保てることがわかる。

Year	Name of Ferry	No. of Ferry	No. of Trips per Day (2 way)	Capacity per day (PCU)	ADT in PCU	ADT/ Capacity
1983	Sofina Movita St. Michael Total	1 1 1 3	75 72 17 164	3450 2304 374 6128	- - - 3804	0.62
1990	Sofina Movita St. Michael Total	2 1 1 4	150 72 17	6900 2304 374 9578	- - - 4939	0.52
2000	Sofina Movita St. Michael Total	3 1 1 5	225 72 17	10350 2304 374 13028	- - 7171	0,55
2010	Sofina Movita St. Michael Total	4 1 1 6	300 72 17	13800 2304 374 16478	- - - 10410	- - 0.63

Table 10.6.1 FERRY SERVICE LEVEL

10.6.2 フェリーの費用

フェリーバースの建設コストは第8章で見積った。追加フェリーの購入コストは、 ケニアバスサービス会社より入手した。これら2つのコストは、標準変換係数を用い て経済コストに変換した。

フェリーの運営費は、次式で算定し、表10.6.2 に示した。

Table 10.6.2 FERRY COST SAVED BY THE PROJECT

	1.00	Cost of	Ferry (econom	ic cost, 1,000	shs)
Year	ADT (PCU, without Project)	Opera- tional Cost	Construc- tion Cost of New Ferry	Construction Cost of Additional Berths	Total
1990	4,939	9,481	13,500	6,992	29,973
1991	5,120	9,795	0	0	9,795
1992	5,321	10,142	0	0	10,142
1993	5,523	10,490	0	0	10,490
1994	5,733	10,855	0	. 0	10,855
1995	5,951	11,232	0	0	11,232
1996	6,177	11,623	o	0	11,623
1997	6,412	12,030	О	0	12,030
1998	6,656	12,452	. 0	. 0	12,452
1999	6,909	12,890	0	0	12,890
2000	7,171	13,343	13,500	6,992	33,835
2001	7,444	13,815	О	0	13,815
2002	7,727	14,305	0	0	14,305
2003	8,020	14,812	0	0	14,812
2004	8,325	15,339	0	0	15,339
2005	8,641	15,886	0	0	15,886
2006	8,970	16,455	0	0	16,455
2007	9,311	17,045	· 0	0	17,045
2008	9,664	17,656	0	0	17,656
2009	10,032	18,292	0	0	18,292
2010	10,410	18,951	13,500	6,992	39,443
2011	10,810	19,643	0.	0	19,643
2012	11,210	20,335	0	0	20,335
2013	11,610	21,027	0	0	21,027
2014	12,010	21,719	0	0	21,719
2015	12,410	22,411	0	0	22,411
2016	12,810	23,103	0	Q	23,103

 $TOCt = K_1 + K_2 \cdot ADTt$

上式において

TOCt = t年の運営費

ADTt = t年の交通量

 $K_1 \cdot K_2 = 0$ 帰係数 $(K_1 = 9 \ 3 \ 7, K_2 = 1.7 \ 3, 决定係数 <math>\mathbb{R}^2 = 0.87$)

10.7 地域開発による便益

ブロジェクトが実現した場合、一般に次のようなプロセスを通じて地域開発が進展する。 プロジェクトの実現→輸送費の低減→生産費の低減→需要の増大→生産の増大

→付加価値の増大

この過程を通じて、一方では開発交通量が発生し、他方においては、付加価値の増加があらわれる。このような付加価値の増加は、プロジェクトの最大の目的と考えられるが、如何なる部分がプロジェクトによる部分であるかを見積ることは大変困難である。

本調査においては、資料編 J に示すモデルを用いて付加価値を推計している。しかし とのモデルは、いくつかの仮定に基づいており、信頼性に欠ける面があるため、感度分 析の対象とした。

モデルによって推定した地域開発による付加価値の増加部分を表10.7.1に示す。

Table 10.7.1 NET INCREASE IN ADDED VALUE DUE TO REGIONAL DEVELOPMENT

(Unit: 1,000 Shs, 1983 Price)

Alternatives	year	2002	2010
	$H = 73.2^{M}$	34443	71564
Bridge	H = 55 ^M	34835	72312
	$H = 45^{M}$	34850	72324
Tunne1		34695	71367

10.8 フロー効果

公共投資の効果は、通常ストック効果とフロー効果の2つがある。前者は、社会資本 ストックとしての効果であり、その典型は、利用者便益である。

フロー効果は、建設投資の波及効果であり、これは建設期間中にのみ発生するものである。又、この効果は、国内調達分についてのみ発生するものである。この効果を表10.8.1に算定した。

Table 10.8.1 BENEFIT OF FLOW EFFECT

(Unit: 1,000 Shs, 1983 Price)

		В	ridge Clea	rance			
	H = .	73.2 M	H = 5	55 M	H = 1	45 M	
Year	P.C	Steel	P.C	Stee1	P,C	Steel	Tunnel
1985 86 87 88 89 90 91	6,503 6,503 13,663 35,003 72,920 68,018 39,888 14,545	6,603 6,603 13,763 56,097 77,426 68,761 33,158	4,899 4,899 12,716 50,564 43,242 27,653 21,755	5,534 5,534 13,352 64,182 62,072 36,988	4,216 4,216 12,033 44,000 33,127 25,027 20,980	4,885 4,885 12,703 55,080 56,826 32,331	16,265 37,303 33,969 59,477 59,477 59,477 79,425 79,425
97 98 99 2000 2001	18,174 44,052 76,788 43,397 15,050	18,174 .44,313 77,113 43,674 15,421	13,353 49,771 53,810 37,542 24,288	13,353 65,342 72,072 48,008	4,171 48,416 39,011 29,561 25,467	4,171 60,201 62,927 40,410	58,634 58,952 58,952 78,359 78,041

10.9 残存価値

橋梁の耐用年数を60年と仮定した。従って耐用年数の終りでその残存価値はゼロとなる。一方、プロジェクトライフ(経済評価期間)を30年としたので、プロジェクトライフ最終年では、まだ耐用年数が尽きていないため、減価償却額を直線法で推定した。

10.10 プロジェクトの費用と便益の比較

10.10.1 経済内部収益率

現在、ケニアの市場利子率は、約16%である。しかしこれには、インフレーションヘッヂが含まれているので、これを除けば、実質金利は、10%前後と見ることができる。従って、プロジェクトの経済的内部収益率が10%を越えれば、ケニアの国民経済的に一応ペイできるものと見做してよいと考えられる。

内部収益率の算定は、次の諸前提に基づいて行った。

- -計測期間は、建設工事開始(1988年)から30年間、全線供用開始から16年間とした。
- 一計測期間の最後の年度における残存価値を便益として計上した。
- -地域開発から生する便益は、考慮しない(感度分析の一部分としこれを含めたケースは、資料編 J に示した)。

以上の前提で算定した経済内部収益率を表10.10.2、10.10.3及び資料編 Jに

示した。又、これらをまとめたものが表10.10.1である。

Table 10.10.1 ECONOMIC INTERNAL RATE OF RETURN

(Economic IRR)

Alternative		Bridge		1
Staging	H = 45 M	H = 55 M	H=73.2M	Tunnel
Non-stage Construction	0.1025	0.0887	0.0585	0.0536
Staged Construction	0.1190	0.1055	0.0690	0.0561

Note: IRR of bridge alternatives are estimeted for P.C main bridges.

表 1 0. 1 0. 1 から橋梁 (クリアランス 5 5 m 及び 4 5 m) が内部収益率 1 0 %以上を示し、好ましい案である。

10.10.2 感度分析

感度分析は、プロジェクトの経済的妥当次を検証するために行うもので、一般に将来の不確実な要素である、プロジェクトの経済コスト、便益及び評価期間を変化させて行う。

本調査では、航路クリアランス 5 5 mのプレストレストコンクリート主橋梁案を対象に、次のケースについて感度分析を行った。

- ー建設費が10%増加した場合
- 便益が10%減少した場合
- ー計測期間を延長した場合(全線供用開始から16年に代えて25年とした場合) 感度分析の結果を表10.10.4 に示した。この結果、経済内部収益率は、ケースBを 除いて、いずれも10%前後と良好な値を示している。ケースBは、最悪の条件が重 なった場合で、非常にまれなケースと考えられる。

55 Meters (PC Bridge)

Navigation Clearance = 55 Meters (PC Bridge)
 Stage Construction
 Excluding item (3)
 Discount Rate (1) = I R R = 0.1055
 Residual Value (2) is considered as benefit in the last year only.

																															_					•	_
Diegonted	and Accumulat-	ed Cash Flow	(1)	-22574	-42994	-62256	-231977	-373261	-454875	-503286	-465049	-435829	-405203	-376512	-347032	-318488	-349453	-386307	-395644	-388712	-353946	-339046	-314259		-26579		-219736	-197844	-175122	-154944		#-	1	-83306	-67654		1357
Coak Flore	EOT 1 TOBO			-22574	-22574	-23540	-229304	-211023	-134759	-88367	77159	65187	73062	80920	88821	95111	-114050	-150078	-42033	34500	136254	151448	166662	181836	197152	212429	227727	243050	278888	273775	289154	304533	319912	335291	350670	365357	1485635
Total	Benefit			4899	m	12716	50554	43242	27653	21755	80108	68136	75011	83899	91800	113064	157421	169409	181596	155833	142507]	157701	172915	188149	203405	218682	233980	249303	285141	280028	295407	310786	326165	341544	356923	Β¥	1491888
Beerding	Value	•	(2)	27473	54488	89829	368176	616257	758246	865240	850275	835311	820346	805382	790417	790457	1043775	1340622	1536337	1625077	1595460	1564843	1534226	1503610	1472993	1442376	1411759	1381143	1350526	1319909	1289292	1258675	1228059	1197442	1155825	1136208	1105591
Flow	Effect		·	4839	4899	12716	50564	43242	27653	21755	0	0	0	0	0	13353	49771	53810	37542	24288	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Not Increase	in Added	Value due to Regional	Development (3)	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
Popula	Cost			O	0	0	0	0	0	0	29973	10490	10855	11232	11623	12023	12452	12890	33835	13815	14305	14812	15339	15886	18455	17045	17656	18292	39443	19643	20335	21027	21719	22411	23103	23103	23103
light	i;			0	0	0	0	0	0	0	50135	57646	65156	72667	80177	87588	95198	102709	110219	117730	128202	142889	157576	172263	186950	201637	216324	231011	245698	260385	275072	289759	304446	319133	333820	348507	363194
Total Cost				27473	27473	35756	279868	254265	162412	110123	2949	2949	2949	2949	2949	17952	271481	319486	223629	121332	6253	6253	5253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253
Investment Maintenance	Cost			C	C		0	_	C	0	2949	2949	2949	2949	2949	2949	2949	2949	2949	2949	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253	6253
Investment			-	27473	27473	36256	ű	'n] =	110123	!	0	0	0	0	8	853	316538	990	838		0	0	0	0	0	0	0	0	0	0	0			0	0	0
Year				1985	000	1007	. E	0 0	000	1991	1992	1993	1994	1995	1996	1997	1998	999	2000	2001	2002	2003	2004	2005	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2018	2017	2018

B/C= 1.001558

IRR= .1055

Navigation Clearance = 55 Meters (PC Bridge)
 Non-stage Construction .
 Excluding item (3)
 Discount Rate (1) = I R R = 0.0887
 Residual Value (2) is considered as benefit in the last year only.

			_																																
Discounted and Accumulat- ed Cash Flow (1)		-18511	-35514	-50000	-26939R	-592287	-757914	-822512	-863322	-823275	-791619	-758919	-725550	-691835	-658042	-624405	-585390	-552615	-520486	-487683	14040000	-421285	-388193	1900442	-323192	-291577	-258255	-228210	-199062	-170865	-143657	-117465	-92303	-68223	2446
Cash Flow		-18511	-18511	-21127	-278687	-453740	-2533322	-107564	-73983	79039	68019	76494	84980	93481	102008	110544	139588	127666	136254	151448	166662	181896	197152	212429	227727	246000	278888	273775	289154	内の中の内の	319912	335291	350670	365557	1167355
Total Benefit	1	8004	4068	25239	65670	92919	51952	22157	23826	85292	74272	82747	91236	99734	108262	116798	145841	133919	142507	157701	172915	188149	203405	218682	233980	1490001	285141	280028	295407	3107B6	326165	041044	356923	571610	1173608
Residual Value		5/02X	44781	90393	433226	972620	1261518	1369776	14439009	1418703	1393448	1368192	1342936	1317681	1292425	1267169	1241913	1216658	1191402	1166146	1140891	1115635	1090379	1065123	1039868	1014612	989326	964101	938845	913589	888553	863078	837822	812566	787311
Flow		4004 7004	4068	25239	65670	97919	51952	22157	23826	\$	Ð	0	ø	8	Ġ	\$	Ø	Ø.	'S'	0	5	\$	\$	8	\$	·S·	S	8	8	6	S	S.	জ	S	\$
Net Increase in Added Value due to Regional Development (3)		9	S	·S·	\$	S	S	\$	•	©	•	\$	9	S	S	0	S.	S	\$	S	Ś	•\$	·\$	·\$	\$	œ,	S	S	S	6	S	S	©	\$	\$
Saved Ferry Cost	,	\$	S.	G.	6	S	Ġ	0	20	29973	10800	11232	11623	12023	12452	12890	0.0800	13815	14300	14812	15339	15886	16493	17045	17656	18292	1044400	19643	20000	21027	21719	22411	23103	25103	23193
User Benefit		s.	8	8	8	\$	0	S	Ś	55519	63417	71515	79613	87711	95810	103908	112006	120104	128202	142889	157576	172263	186900	201637	216324	231011	245698	260385	275072	289759	000444B	010100	533820	348507	461194
Total Cost	i Li	F/037	22579	46366	700440	546658	305274	129722	97809	6253	6253	6253	6253	6253	62263	6253	6253	6253	62253	6253	6255	6236	6253	6253	6223	907.0	6253	6253	6253	6233	6253	6253	6253	6253	6253
Maintenance Cost							Ø	0	Ø.	6253	6253	6230	6223	6253	6253	6253	6253	0.00 0.00 0.00	6253	6253	6253	67.0 10.1	0 10	6230	90 (0 (0 (0 (0 (0 (0 (0 (0 (0 () 	6255	6253	6253	6253	6253	6253	6253	6000	6253
Investment		77077	22579	46366	344357	546658	305274	129722	0.000.0	ଟ	<u>@</u>	\$	·S·	450	5	-S-	©	•	<u>.</u>	·©	S	©	S	\$	\$.	2.	\$	\$	•	•	Ġ	<u>.</u>	S	6	69
Year	1000	000	1986	1987	1988	1989	0,00	1001		10 00 00 1	1000	គ្រា () () ()	1000	0.0	0) 0) 0)	0. 0. 0.	ଓ ଓଡ଼ ଓଡ଼	2001	N00N	10 00 01 1	+ I	0 8 8 8 7 8 8 7	0 1	/ 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 (0 0 0 0 0 0 (0 0 1 0 1	1001		2011	۳- ای	8	Š	91	≓	ار	2018

IRR= 8.870001E-02 B/C= 1.002215

Table 10.10.4 SENSITIVITY ANALYSIS (EIRR)

	Case	Cost +10%	Benefit -10%	Evaluation + 9 Years	EIRR
ı	Λ .	0	_		0.098
1	В	0	o ·	_	0.088
	C	→	· · · · · · · · · · · · · · · · · · ·	0	0.112
Į	D	0 .	•	0	0.104

Note: "O" means the case conducted for sensitivity analysis.

以上の分析から、橋梁案(クリアランス 5 5 m 案)が、現況港湾条件を考え合わせると最も好ましい結果を示していると云える。

10.11 財務分析

10.11.1 資金調達

プロジェクトコストの約80%(外貨部分)は、国際金融機関から調達することになろう。仮に、年利4.0%、据置期間10年、償還期間20年、元利合計均等償還とした場合、表10.11.1に示すように年間償還額は、2013年頃最高となり、133.4百万シリングとなる。

10.11.2 プロジェクトの維持管理費を対象とした有料橋会計

一般的な有料道路は、プロジェクトの建設費をも対象とした場合であるが、ケニアでは、維持管理費のみ対象とした有料橋が一般的である。

参考として、55mクリアランス案(プレストレストコンクリート主橋梁)を対象 に、有料橋会計の財務状態を以下の条件で検討してみることとする。

(1) 通行料金は、一般に車種別の便益と道路に与える損傷度を勘案して決定するが、 ここでは、次のように仮定した。

乗用車と小型トラック : 1シリング

小型バス : 1

大型バス : 3

中型トラック : 2

大型トラック : 3

- (2) 費用、便益比算定のための割引率、累積剰余金(欠損金)及び減価償却引当金に 対する金利を10%とした。
- (3) 評価期間は、1991年から30年とした。
- (4) 料金所建設費は、第8章で1991年に420,000シリング、2001年に600,000 シリングと見積った。

料金所の建設費は、年利16%、1年据置の10年償還とし、耐用年数を30年 とし、30年後の残存価値をゼロとした。

- (5) 料金所の維持、運営費は第8章で見積り、以下の通りである。
 - ープロジェクト道路に対し

2001年まで

3,205,000 シリング /年

2002年から

6,797,000

Table 10.11.1 ANNUAL AMORTIZATION FOR FOREIGN CURRENCY LOAN

(Unit: 1,000 Shs. 1983 Price, Financial Value)

				
1		TOTAL		TOTAL
1	LOAN	LOAN RE-	LOAN	AMORTIZA-
YEAR	RESIDUAL	DEMPTION	INTEREST	HOIT
1	TALOT DOTIC	DE(1) 11011	THILKEST	11014
1985	207454		_	
	27461	0	Ο.	. 0
1986	54922	0	1098	1098
1987	82383	0	2197	2197
1988	361201	o	3295	3295
1989	618299	ا ة	14448	14448
1990	782476	Ĭ	24732	24732
1991				
	889573	0	31299	31299
1992	889573	0	35583	35583
1993	89573	0	35583	35583
1994	889573	Ö	35583	35583
1995	888651	922	35583	36505
1996	886770	1881	35546	37427
1997	883891	2879		
1998			35471	38349
	1137297	12357	35356	47713
1999	1435908	21485	45492	66977
2000	1631173	27858	57436	85294
2001	1712471	32569	65247	97816
2002	1678600	33871	68499	102370
2003	1643373	35226	67144	102370
2004	1606738	36635	65735	
2005	1568637			102370
		38101	64270	102370
2006	1529012	39625	62745	102370
2007	1487802	41210	61160	102370
2008	1435019	51783	59512	111295
2009	1371415	64604	57441	122045
2010	1296735	74681	54857	129537
2011	1215243	81492	51069	133361
2012	1130491	84752		
2013			48610	133361
,	1042350	88142	45220	133361
2014	950683	91667	41694	133361
2015	857369	93313	38027	131341
2015	762344	95025	34295	129320
2017	665539	96806	30494	127299
2018	585377	80152	26622	106783
2019	520927	64451	23415	87866
2020	465979	54948	20837	75785
2021	416713	49266		
2022			18639	67905
	365476	51236	16669	67905
2023	312191	53286	14619	67905
2024	256773	55417	12488	67905
2025	199139	57634	10271	67905
2026	139200	59939	7966	67905
2027	76863	62337	5568	67905
2028	31589	45275	3075	ľ
2029				48350
	8056	23533	1264	24796
2030	0	8056	322	6379
2031	0	0	. 0	0
2032	0	0	0	0
2033	0	0	0	0
2034	0	0	. 0	ō

一料金所に対し

2001年まで

266,000 シリング/年

2002年から

3 5 6,0 0 0

- (6) 所得税は、考慮しない。
- (7) 料金徴収しても交通量は減少しないものとした。
- (8) 累積余剰金およびそれに対する金利は、全て有料橋会計内に留保され、外部に流出しないものとした。

以上の前提に基づいて計算した結果表 10.11.2 に示すように、損益比率は、1.49 と高率を示した。表 10.11.3 損益計算書から次のことが判る。

- 純利益は、供用開始(1992年) 当初から発生する。
- -累積剰用金に対する金利が2014年に通行料収入を上回る。

貸借対象表(Table 1 0.1 1.4)は、料金所建設のためのローンをスケジュール通り に返済するに当って、つなぎ資金の導入を考える必要がないことを示している。

10.11.3 プロジェクトの内貨分を対象とした有料道路会計

前節10.11.2 で維持費と料金徴収費を通行料金収入でまかなり場合について財務分析を行った。ここでは、さらに同じ55mクリアランス案に対して、建設費の内貨分、維持費及び料金徴収費を通行料金でまかなり場合に対して財務分析を行う、分析の前提条件は、以下の通りである。

(1) 車種別料金は、以下のように現行フェリー料金より安く設定した。

乗用車と小型トラック : 5 シリング

小型バス : 5

大型バス : 40

中型トラック : 20

大型トラック : 40

- (2) 建設費の内貨分及び料金所の建設費を調達するためのローン条件は、年利8%、 5年据置、20年の元利合計均等償還とした。この条件であれば、国際金融市場で 資金調達する場合困難はないと考えられる。又、つなぎ資金の支払金利、累積剰余 金及び減価償却引当金に対する受取金利等もまた、8%を仮定した。
- (3) その他の条件(料金所の建設費、維持費、料金徴収費、所得税、交通需要の料金 弾性値及び累積剰余金の内部留保等)は、前節 1 0.1 1.2 と同じとした。

分析の結果、表 1 0.1 1.5 に示すように財務的内部収益率は、 1 3.8 %と高率を示した。表 1 0.1 1.6 損益計算書によれば純益は、供用開始初年度から発生し、累積欠損は、1996年に消滅する。又、 2 0 19 年には、受取利息が料金収入を越える。

Table 10.11.2 CASH FLOW FOR TOLL BRIDGE (H = 55 M, P.C Bridge)

ial value)	Cash Accumulated Flow Cash Flow in Present Value	-420	32	786	1643	2709	3898	5180	6527	7917	9551	10521	10648	10928	11552	11835	12417	13058	13744	14460	15195	15941	16689	17432	18165	18885	19586	29267	20926	21561	22185
rice, financ	Cash Flow	-420	497	852	1206	1561	1916	22270	2625	2979	3334	0800	361	878	1000	1912	2430	2947	3464	1981	4408	5016	5533	6050	6567	7085	7602	8110	8636	9153	10066 6
(Unit : 1,000 shs., 1983 price, financial value)	Total Revenue	ø	3968	4323	4677	5032	5387	5741	9699	6459	6805	7160	7514	8031	8540	9066	9583	10100	19617	11135	11652	12169	12686	13204	13721	14238	14755	15272	15790	16307	17058
nit : 1,000	Residual Value	420	400	692	378	400	900	929	322	1000	294	889	946	812	778	744	710	676	642	698	574	04°0	980	472	8104	404	370	SHOW	202	268	234 4
n)	Toll Revenue	Ø	3968	4323	4677	5000	5387	5741	6696	6400	6890	7160	7514	8951	8540	9066	9080	10100	10617	11133	11652	12169	12686	13204	13721	14238	14755	15272	15799	16307	16824
	. Total Cost	420	3471	3471	3471	3471	3471	3471	3471	5471	3471	4071	7153	7155	7155	7153	7153	7103	7153	7153	7153	7153	7153	7153	7153	7153	7155	7153	7188	7153	7153
	Investment Maintenance and Admini- stration Cost	6	3471	3471	5471	3471	3471	6471	3471	3471	3471	3471	7155	2188	7100	7153	7100	71001	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153
	Investment	420	S	0	8	S.	0	0	S	0,	S	600	S.	Ø.	S	S	S	©,	\$	\$	9	S	জ	œ.	\$	<u>©</u>	S	S	œ.	9	છ
	Year	1991	1992	1993	1.004	1000	1006	1997	٠ را ا	0.0	2000	1001	2007	2003	2004	2005	2006	2007	2008	1000 1000 1000	2018	2011	2012	2013	2014	N@101	2016	2017	2018	2019	2020

B/C = 1.492467

Discount Rate = 0.1

Table 10.11.3 ESTIMATED PROFIT AND LOSS STATEMENT FOR TOLL BRIDGE (H = 55 M, P.C Bridge)

r value)	Surplus Accumula-	ted	Surplus		\$	396	1188	2416	4 51	6304 4004	9166	12615	16765	21685	27454	30417	34196	38873	44000 000	51292	59241	68505	79217	91520	105574	121678	139914	160493	183651	209646	238760	271307	307628	348103
, ilnancial value	Surplus				S	960	792	1227	1706	2233	2812	0440	4150	4921	5769	2962	3779	4677	5666	6753	7949	9264	10711	12303	14054	16104	18235	20579	23158	20094	29114	52547	36322	40475
1983 price,	Net	Profit			8	416	815	1254	1737	2268	2853	3497	4206	4985	5844	2000	3812	4715	5710	6804	8008	9999	19791	12395	14161	16104	18235	20579	23158	25994	29114	32547	36322	40475
1,000 shs.,	Total	Cost			S	3552	0400	00400	1400	9239	3531	3524	3516	3507	3497	7283	7279	7274	7268	7261	7252	7243	7232	7219	7205	7187	7187	7187	7187	7187	7187	7187	7187	7187
Unit:	Income	Tax			\$	Ø	S	0	9	©	S	S	S	\$	Ø	8	S	S	S	S	\$	©.	8	S	S	S	\$	S.	S	S	0	Ġ	\$	8
	Deprecia-	tion Cost			©.	4	14	4	14	14	14	4	14	14	#	46	4	10 4	4 4	40	4	40	4	10 4	刊) 4	10 4	10 4	**************************************	4 4	前	40 40	ю 4	4	34
	Maintenan-	ce and	Administr-	ation cost	Ø	3471	3471	3471	3471	3471	3471	3471	3471	3471	3471	7155	7153	7153	7153	7153	7153	7153	7153	7153	7155	7153	7153	7153	7153	7153	7153	7153	7153	7153
	17	Payable			9	67	40	6.0	'n	21	4	90	10	22	12	96	0.	86	88	73	63	ດິ	4 10	32	17	S.	S	9	Ś	8	00	\$	জ	69
	Total	Revenue			8	8968	4364	4700	5278	5804	6384	7021	7722	8493	9341	10274	11091	11989	12977	14005	15260	16576	18023	19615	21366	23292	25423	27767	10年10年10日	53182	20292	39734	43000	47662
	Interest	on Accumu-	lated	snitzine	S	S	9 7	119	242	412	0.00 0.00	917	1261	1676	2169	2745	G0400	3420	3887	4044	9129	5924	6851	7922	9152	10557	12168	16651	16049	18365	2000	23876	27131	30763
	Interest	rec-		Allowance	0	8	٧Ħ	19	4	ú	<u></u>	03	10		19	14	17	21	47	28	М М	10) 4	(1)	4	N.	4 0	55	100	ეც 8	62	65	68	72	75
	Salvage	Value			<u> </u>	8	S	Ø	\$	S	S	8	S	\$	8	Ø	0	0	S	S	\$	0	8	ক্র	জ	S	©.	S	S	S	\$	\$	\$	\$
	Toll	Revenue			S	3968	4323	4677	5032	5387	5741	5695	0.40 80,40	6805	7160	7514	8031	0.400	9966	00000	10100	10617	11135	11652	12169	12686	15204	13721	14238	14755	15272	15790	16307	16824
	Year				1991	1992	1990	1004	1995	1996	1997	1998	1999	2000	2001	2002	2003	7004	2002	2006	2007	2008	2009	2010	2011	2012	201조	2014	2015	2016	2017	2018	2019	2020

Table 10.11.4 ESTIMATED BALANCE SHEET FOR TOLL BRIDGE (H = 55 M, P.C Bridge)

Credit side Total (Unit : 1,000 shs., 1983 price, financial value) 420 420 420 4062 6234 8277 16405 216405 216405 34038 34153 58912 58982 58982 58915 58940 78496 126215 138297 158657 158657 384702 389364 Net Profit of This Year 416 1207 1 Capital Surplus 396 1188 2416 91426 91554 12615 12615 227685 227685 34177 34177 5685 571292 10557 10557 10557 118365 118365 118365 118365 118369 118365 118365 118365 118365 118365 118365 118365 118365 118365 118365 118365 118365 118365 118365 118365 118365 118365 11836 1183 Short Term Debt Depreciation Allowance Long Term I 8458 224 2227 2227 2227 2227 22227 Debit Side Total 20215 138297 158697 181655 207425 256290 268559 304571 344702 Deficit of This Year 000000000000000000000000 Current 181217 237621 258323 364223 564263 3644434 112010 12010 120 03894 19675 37791 58225 821 2017 3684 5870 8627 Fixed Asset Iear

Table 10.11.5 CASH FLOW (H=55 M, P.C BRIDGE)

								٠.												•																					
Accumulated Cash Flow In Present Value	-7300	-28344	-79457 -117865	-139446	-154549	-140753	-127437	-114555	-91105	-84537	-88238	-91199	-87721	-80620	-73902	-67580	-51657	-50984	-46215	-41804	-37736	-30552	-27398	-24513	-21875	-17278	-15284	-13471	-11825	0868-	-7755	-6648	-5647	13928	-3193	-2530	-1933	-1396	-913	217	
Cash Flow	-7300	-18949	-75349 -5443B	-41207	-32820	34120	37480	44198	47557	31018	-19891	5051	27560	54031	56935	73839	76743 83548	88552	93456	98350	103265 108169	113073	117977	122881	127785	137594	142498	147403	152307	162115	167020	171924	176828	185535	191541	196445	201349	206253	211158	393354	JRR= 1381
Total Revenue	00	0	0 0	0	٥	37591	40951	44310	51028	54388	57747	64455	67825	71184	76088	80883	90801	95705	100610	105514	110418	120226	125131	130035	134939	144748	149652	154556	159450	169269	174173	179077	183981	193790	199694	203598	208503	213407	218311	400508	
Residual Value	7300 1447B	33184	107974	208915	238159	234037	229914	221668	217546	233322	303035	426448	455283	446710	438138	429565	420333	403847	395275	386702	378130	350985	352412	343840	335267	318122	309549	300977	282404	275259	266686	258114	249541	232336	223824	215251	206679	198105	189533	172389	11
Toll Revenue	00	0 1	0 0	0	0	37591	40951	44510	51028	54388	57747	54455	67825	71184	75088	80383	90801	95705	100510	105514	110418	120226	125131	130035	134939	144748	149652	154556	159460	169269	174173	179077	183581	193790	198694	203598	208503	213407	218311	228120	BVC
Total Cost	7300	18949	75349	41207	32820	3471	3471	3471	3471	23370	77638 83558	59415	40265	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	1153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	1153	7153	
Maintenance and Admini- stration Cost	00		0 0	0	0	3471	3471	3471	3471	3471	3471	3471	3471	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7.53	7153	7153	7153	7153	7153	7153	
Investment	7300	18949	75349	41207	32820	0	0 (00	0	19899	74157	55944	35794	0	0	0 0	50	Ö	0	0	00		0	٥٠	00	0	0	0 (o c	0	0	0	0 0	0	0	0	0 1	0 (5 C	0	
Year	1985 1986	1981	1988	1990	1991	1992	1003	1995	1936	1997	1998	2002	2001	2002	2003	2004	2002	2007	2008	2009	2010	2012	2013	2014	2015	2017	2018	2019	2020	2022	2023	2024	2025	2027	202B	2029	2030	2031	2032	2034	

Table 10.11.6 ESTIMATED PROFIT AND LOSS STATEMENT (H=55 M, P.C BRIDGE)

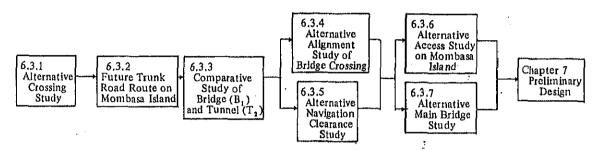
					_									_													_			_			_								_	
Accumulated Surplus	0 -706	-2164	-5551	115448	-57824	-52239	-44163	-33161	-18490	17C	52035	78495	103134	128258	151714	2161015	25010	310080	370632	441519	523874	619044	728161	1002187	1174892	1371202	1592148	1836361	2402178	2727963	3085401	3479051	3917337	4404443 4941900	5531494	6173948	6873389	7634375	8461829	9351070	11398340	12549270
Surplus	904-	-1458	-3387	110837	-23365	5586	8075	11002	14671	24011	27697	25459	24639	25124	25455	23302 35484	42500	50891	60552	70587	82228	95170	71101	148850	172705	196309	220947	244213	79540	325785	357438	393650	438286	48710b	589689	642454	699441	750986	827455	839241		1150932
C:Net Profit	0 -706	-1458	-3387	-10897	-23033	6358	10556	15090	19986	58602	35229	34594	33424	34612	34157	11445	5115	71633	82954	95180	108384	122645	130047	177545	192047	213000	235631	250071	714974	345762	379013	414924	453708	440040 040040	589689	642454	699441	760985	827455	999241	1050502	1150932
Total Cost	0 706	1411	3243	10527	20725	27343	27282	27083	26756	75814	27180	33747	40848	45553	52033	50178	48849	47372	45713	43921	41985	39835	00/0	33032	31118	29571	28236	27061	20/93	22943	21344	19618	17916	16583	15775	15726	15726	15725	15726	15725	15775	15725
Income Tax Total Cost E.Net Pro	00	0	0 0	9 0	0	0	0	0	00	- C		0	0	0 0	0 (o C	0	0	0	0	٥	0 (<u> </u>	0 0	0	0	0	0 0	> c		0	0	0	00	C	0	0	0	0 (٥٥	0	,0
	122	243	800 c	2886	3576	4123	4123	4123	4123	4123	4454	5690	7027	7959	2000	8573	9573	8573	8573	8573	8573	8573	2000	2720	8573	8573	. 8573	8573	60,000	8573	8573	8573	8573	8573	8573	8573	8573	8573	8573	8573	8573	8573
Maintenance Deprecia- and Admini- tion Cost stration	00	Ö	0 0	C	0	3471	3471	3471	3471	3471	3471	3471	3471	3471	7133	1133	71.0	7153	7153	7153	7153	7153	7100	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153	7153
Interest Payable	584	1158	2584	71/2	17151	19750	19688	19489	19162	18737	19255	24586	30350	34123	20202	20407	34100	31545	29987	28195	26259	24169	17517	13537	15393	13845	12510	11335	1005	7217	5618	3892	2130	200	9 0	0		0	0 (0 0	0 0	, 0
Total Revenue	0	-47	144	1070	-2307	33702	37838	42173	46742	201000	62409	58341	74272	80165	66170	10000	1100001	119005	128666	139101	150370	162540	1/0/44	20052	223165	242572	263866	287132	232225	368705	400358	434543	471625	512278	505415	658180	715167	776712	843181	914957	1075778	1166658
Interest on Accum- ulated Surplus	0	-56	-173	1444	-2757	-4625	-4179	-3533	-2653	14/1	1947	4163	6280	8251	10261	14481	17320	20735	24805	29651	35330	41910	470074	58282	80175	93991	109595	127372	158458	192174	218237	246832	278324	313387	395344	442520	493916	549871	510750	575945	748885 827027	911867
Interest on Depreci- ation Allo- wance	00	10	53	4, 6	450	736	1066	1396	1725	2000	2715	3072	3527	4089	47.25	2417	100 H	7459	8155	6841	9528	10212	ביי ביי ביי ביי ביי ביי ביי ביי ביי ביי	17284	12955	13641	14327	15013	15544	17070	17756	18442	19128	19813	21120	21871	22557	23242	23928	24514	750505 750505	25671
Salvage Value	0	0	0 (> (0	• •	0	0	00) c	0	ō	0	0 0	5 6	5 6) C	0	0	0	٥	0 (5 () C	0	0	0	0	- C	0	0	0	0	00	c	0	0	0	0	5 C	5 C	, 0
Revenuc	0	0	0 (-	0	37591	40951	44310	47659	0107g	57747	51106	54465	67825	71184	00000	2000	90801	95705	100510	105514	110418	113322	125131	130035	134939	139943	144748	15455	159460	164365	169269	174173	179077	18886	193790	198694	203598	208503	213407	218311	228120
Year	1985	1987	1988	200	1991	1992	1993	1994	1,995	1000	1998	1999	2000	2001	2002	2002	2005	2006	2007	2008	2009	2010	2017	2017	2014	2015	2016	2017	2010	2020	2021	2022	2023	2024	202F	2027	2028	2029	2030	2031	2032	2034

表10.11.7 償還計画は、初期を除く全計測期間を通じて、料金収入が支出(償還額、維持費及び料金徴収費)を上回ることを示している。つなぎ資金は表10.11.8 に示すように、1995年まで必要であり、1991年に最大57.824.000シリングである。以上、仮定に基づいて有料道路の財務状態を検討し、良好な結果を得たが、仮定条件が変更になる場合には、新しく設定された条件で再検討すべきである。

Table 10.11.7 AMORTIZATION SCHEDULE (H=55 M, P.C BRIDGE)

Year	Loan Residual	Total Loan Redemption		Total Amortization	Haintenan- ce Cost	Total Expenditure
1985	7300	0	0	0	0	٥
1986	14600	ŏ	584	584	ŏ	584
1987	33549	ŏ	1168	1168	ŏ	1168
1988	108898	ĭ	2684	2584	ŏ	2684
1989	173336	l ŏ1	8712	8712	ŏ	8712
1990	214383	15ŏ	13867	14026	ŏ	14025
1991	246872	332	17151	17482	ŏ	17482
1992	246099	772	19750	20522	3471	23993
1993	243519	2481	19688	22169	3471	25640
1994	239531	4087	19489	23577	3471	27048
1995	234216	5315	19162	24477	3471	27948
1996	227759	6457	18737	25194	3471	28565
1997	240685	6974	18221	25194	3471	26665
1998	307320	7532	19255	25786	3471	30257
1999	379373	8134	24586	32720	3471	36191
2000	426532	8785	30350	39135	3471	42606
2001	453838	9488	34123	43610	3471	47081
2002	443157	10682	36307	46989	7153	54142
2003	430000	13157	35453	48609	7153	55763
2004	414038	15962	34400	50362	7153	57515
2005	395577	18461	33123	51584	7153	58737
2006	374835	20742	31646	· 52388	7153	59541
2007	352434	22401	29987	52388	7153	59541
200B	328241	24193	28195	52386	7153	59541
2009	302112	26129	26259	52308	7153	59541
2010	274636	27476	24169	51645	7153	58798
2011	245706	28930	21971	50901	7153	58054
2012	216392	29315	19657	48971	7153	56124
2013	192406	23985	17311	41297	7153	48450
2014	173065	19341	15393	34733	7153	41987
2015	156374	16691	13845		7153	37690
2016	141690	14684	12510	27194	7153	34347
2017	125832	15858	11335	27194	7153	34347
2018	108705	17127	10067	27194	7153	34347
2019	90208	18497	8696	27194	7153	34347
2020	70231	19977	7217	27194	7153	34347
2021	48656	21575	5618		7153	34347
2022	27381	21274	3892	25167	7153	32320
2023	11959	15422	2190		7153	24766
2024	3470	8499	957	9446	7153	16599
2025	o o	3470	278		7153	10901
2026	0	0	0		7153	7153
2027	٥	0	0		7153	7153
2028	0	0	0		7153	7153
2029	0	0	Q		7153	7153
2030) <u>°</u>	0	0		7153	7153
2031	0	္ခ	0		7153	7153
2032	٥	0	0		7153	7153
2033	. °	º	0		7153	7153
2034	<u>0</u>	<u> </u>	0	0	7153	7153

Table 10.11.8 ESTIMATED BALANCE SHEET (H=55 M, P.C BRIDGE)


			_		_						_					_	_						-	-	_		_	_	_	_		_		_										_
Net Profit Credit Side of This Total	7300	36078	115373	192523	254471	_					771672						729690			-7-12			1052023	•		H		+1 (2705677					4530571							•		14042170
Net Profit of This Year	0		0	0	0	0	6358	10555	15090	19985	47757 470004	20000	14450 14450 14450 14450	33424	34612	34137	42458	51445	51151	71633	82954	95180	108384	138047	154681	172645	192047	213000	730631	250071 285457	314974	345762	379013	414924	453708	140000 040000	589584	642454	699441	750985	827455	899241		1150932
Capital Surplus	0	0	0	0	0	<u> </u>	0	0	0 1	0 0	725	42035	78495	103134	128258	151714	181016	216499	259189	310080	370632	441519	523874	728151	853527	1002187	1174892	1371202	1032148	2105701	2402178	2727963	3085401	3479051	3917337	4941805	5531494	6173948	5873389	7634375	8451829	9351070	10337840	12549270
Short Term Debt	0	2164	5551	16448	34460	57824	52239	44163	33161	18490	0) C	•			0	0	0	0	0	0	0 (0 0	0	0	0	0	0 (5 (0	0	0	0	0	0 0	O	0	0	0	0	0	0	0	00
Depreciation Short Term	122	365	924	2739	S628	9204	13326	17449	21572	25695	71857	2000	7400A	51112	59071	57544	76216	84789	93361	101934	110507	119079	127652	144797	153369	161942	170515	179087	787997	704805	213377	221950	230523	233035	247558	254817	273385	281958	290531	299103	307876	316248	324821	341966
Long Term Bebt	7300	33549	108898	173335	214383	245872	246099	243619	239531	234216	207077	307320	300300	42E532	453838	443157	430000	414038	395577	374835	352434	328241	302112	245706	215392	192405	173065	158374	141640	108705	90208	70231	48656	27381	11959	2 6) C	0	0	٥	0	0	0	50
Debit Side Total	7300	36078	115373	192523	254471	313900	318023	315787	309354	298387	7,1587 320047	440047	132377 135745	514202	675779	596552	729690	766772	809279	858482	916527	984119	1062023	1255711	1377968	1529180	1710519	1919653	217612	2705677	3020737	3365906	3743592	4160451	4630571	5747451	5394569	7098360	7863360	8694463	9595360	10576560	11639430	14042170
Deficit of This Year	0	1458	3387	10897	17852	23033		0	0	0	5 C) C	o c	S C	0	0	0	0	٥	0	0	0	0 0	0 0	0	0			5 6	50	0	٥		0	00	000) C	0	0	0	0	0	0	50
Current Asset	0	1436	4012	11029	27704	52708	83985	85873	83563	75718	65631	77000	120014	187754	220496	249941	291553	337206	388286	445052	512679	588844	675320	987153	1016984	1175758	1356580	1584396	1830455	739617B	2719760	3073502	3459761	3885192	4363985	5/47004	5153500	5865954	7639536	8479212	9390282	10378450	11449900	12811280
Fixed Asset	7300	33184	107974	170597	208915	238159	234037	229914	225791	221658	71,7346	222222 222222 2520505	155555	425.44B	455283	446710	438138	429565	420993	412420	403847	395275	385702	36950	350985	352412	343840	335267	226644	309549	300977	292404	283832	275259	256585	249541	240989	232336	223824	215251	206679	198106	189533	172388
Year	1985	1987	1988	1983	1990	1991	1992	1993	1994	1995	177	000	0 0	000	2001	2002	2003	2004	2005	2006	2007	Z008	2009	200	2012	2013	2014	2015	2016	2017	2019	2020	2021	2022	2023	2024	2025 2025	2027	2028	2029	2030	2031	2032	2034

第11章 総合評価

第11章 総合評価.

11.1 計画のプロセス

本プロジェクトで実施した調査プロセスを図 1.1.1 に示した。又、調査内容を本編末に添付してある。本調査で実施した代替案の検討は、多岐にわたっており、理解を容易にするためにフローチャートを図 1.1.1 に示した。

Note: The figures in the boxes indicate paragraph number in the Report.

Fig. 11.1.1 ALTERNATIVE STUDY PROCESS

各代替案の検討結果は、第6章に記述されているが、それらを要約して以下に列記する。

- ーモンバサ島上の将来幹線道路の路線は、ナイロビ〜モンバサ鉄道敷を通過するルートを提案した。提案したルートの利点は、土地利用の境界(港湾、工業地区と住宅地区の境界)であり、かつマリンディへの幹線ネットワークの形成及び島ローカル幹線への交通分散に大きなメリットがあった。
- -山トンネル(T₂ルート)は、トンネルに不適な土質条件(シルト質砂及び固結砂)、モンバサ島への交通サービス、建設費及び環境への影響等の諸点で劣っており、 代替案から除外した。
- 橋梁代替案(B₁)は、キリンディーニ湾の最狭部を通過するルートであるが、車両の走行コスト、地域(リゾート及び高級住宅地)への環境条件等の観点から好ましく、提言ルートとなった。
- 海峡を横断する主橋梁は、最も経済的であり、美観的に秀れている830m の斜張橋(スパン割92+93+460+92+93m)を提案した。
- -プロジェクトの実施は、2つの段階からなる段階施工を提案した。取付け代替案は、航路クリアランスに対応し、3案検討した。フェーズ I では、交通の分散効果と道路計画の観点より、最高クリアランス案(H=73.2m)は、ムバラキ道路とニエレレ道路の交差点に、又低いクリアランス案(H=55m,45m)は、ニエレレ道路へ、各々取付く計画とした。フェーズ II では、全ての代替案がムバラ

キ道路(将来幹線道路の方向)に延伸する計画とした。

リコニ側では、フェーズ I で、全ての代替案は、ルンガルンガ道路(A14)とムトング道路の交差点を起点とし、フェーズ II でモンバサ交通マスタープランに従って南へ延伸する計画とした。

1 1.2 総合評価

沈埋トンネル案及び橋梁案(プレストレストコンクリート及び鋼タイプ斜張橋)については、地域開発、交通分散、航路クリアランス、コスト及び経済評価等の観点から総合的に評価された。沈埋トンネルは、橋梁案と同じ計画条件(交通量、歩行者等)を用い、資料編Ⅰで詳細に検討した。

1) 地域開発効果

過去のマスタープランで南本土の開発が最優先であると提言されている。最優先の 開発地区として、ドンゴクンドウ地区(ムトング含む)とインド洋沿の沿岸部の2 つが提案されている。

これらの開発地区に対してトンネル案(T₂ ルート、ルンガルンガ道路取付)と橋 梁案(B₁, ルンガルンガ道路から東へ700m取付)を比較すると、沿岸部の開発に 対し、トンネル案は、若干橋梁案に劣る。又、ドンゴクンドウ地区に対し、距離が 各々6 Km及び6.7 Kmであり、両案とも大差はない。

2) 交通分散

このテーマでは、南本土よりもモンバサ島への交通分散問題の方がより大きな課題である。橋梁代替案(航路クリアランスH=55m及び45m)は、フェーズ | でニエレレ道路へアクセスし、フェズ | でムバラキ道路へ延伸する。これらの案は、交通分散上きわめて実情に則していると評価できる。

トンネル案(沈埋トンネル、T₂ルート)は、橋梁案に比べ長いアクセスが必要であり、アーチビショップマカリオス道路へ到達する。このため、フェーズ I で都市中心への交通サービスの点で橋梁案に劣り、かつトンネル中の歩行者へのサービスに難点がある。

3) 航路クリアランス

キリンディーニ湾の航路条件は、基本的に高さ73.2 m (240フィート)、巾1100フィート及び水深 4 5 フィートである。プロジェクトの建設コスト低減のため、さらに低いクリアランス (H=55 m及び 45 m)についても検討を加えた。

トンネル案では、基本条件を十分に満足しており、問題はない。橋梁案(H=73.2 m)は、全ての船舶の通行を許容するクリアランスであり、これも問題がない。

H=55mは、キリンデーニ港の商船及び客船を対象としたものであり、又H=45mは、商船のみを対象としたクリアランスである。

4) コスト

表 1 1.2.1 に全ての代替案の用地及び補償費等を含むプロジェクトコストを示した。又、表 1 1.2.2 に各々の維持管理費を示した。

両コスト積算の結果、トンネル案のコストは、代替案中最も高く、橋梁案(H= 4 5 m)は、最も安かった。

主橋梁の材料別では、プレストレストコンクリート橋がプロジェクトコスト及び 維持管理費の両方に対し最も安いものとなった。

Table 11.2.1 ALTERNATIVE PROJECT COSTS

(Unit: 1,000 K.Shs.)

Phase & Currency Portion		Phase-I			Phase-II		
Alternatives	L,C	F,C	Sub-total	L.C	F,C	Sub-total	Total
P.C Main Bridge					-	•	
73,2 M	370,533	1,440,138	1,8,10,67,1	306,757	1,065,541	1,372,298	3,182,969
55	234,359	842,599	1,076,958	278,995	969,824	1,248,819	2,325,777
45 .	203,123	722,390	925,513	229,361	827,611	1,056,972	1,982,485
Steel Main Bridge				,	1		
73.2 ^M	380,371	1,464,339	1,844,710	306,757	1,065,541	1,372,298	3,217,008
55	265,628	965,505	1,231,133	310,235	1,092,698	1,402,933	2,634,066
45	236,070	·851,995	1,088,065	262,275	957,187	1,219,462	2,307,527
Tunnel (Immersed Tube Tunnel)	607,684	2,179,936	2,787,620	521,510	2,086,040	2,607,550	5,395,170

Table 11,2.2 MAINTENANCE COSTS

(Unit: 1,000 Shs, 1983 Price)

		Phase	Pha	se — I	Phas	e-II
	Alternative	Value	Financial Cost	Economic Cost	Financial Cost	Economic Cost
v	73.2 ^M	P,C Steel	3,452 4,782	3,176 4,399	8,272 9,602	7,610 8,834
Bridge Clearance	55 ^M	P.C Steel	3,205 4,275	2,949 3,933	6,797 8,937	6,253 8,222
C	45 ^M	P,C Steel	3,085 4,154	2,838 3,822	6,186 8,326	5,691 7,660
	Tun	nel	10,500	9,660	16,000	14,720

Note: The conversion factor of 0.92 (SCF) to be used.

5)運用

現況の交通状況を考えると、橋梁又は、トンネルのいずれのクロッシング型式に対しても、交通の安全と円滑を実現するためには、車両の十分な維持管理と交通規則の遵守が基本的要件である。特にトンネルにあっては、事故による、トンネル構造物への損傷や長期間の交通停止等への危険度が高い。

さらにトンネルでは、橋梁と異なり、多数の施設が設備され、日常の運用を保証 している施設であるため、電力の安定供給が不可欠である。

6) 経済評価

プロジェクトの経済評価は、実施計画、プロジェクトロスト及び便益により行った。 便益には、車両の走行、時間便益、建設投資の波及効果、等を考慮したが、地域開発便益は無視した。

評価は、段階施工、航路クリアランスを含む橋梁及びトンネルからなる8つの代替案について評価した。感度分析は、クリアランス55mのプレストレストコンクリート主橋梁代替案に対して、コスト、便益及びプロジェクト評価期間を変化させて行った。

現在、ケニアの市場利子率は、約16%であり、これには、インフレーションが 含まれている。従ってこれを除いた実質利子率は、約10%とみることができる。

経済評価の結果を表1 1.2.3 及び1 1.2.4 に示した。表1 1.2.4 によれば、ケースBは、殆んど起りえない条件での計算結果なので、これを考慮外とすれば、他のケースは全て1 0 %以上となっている。このため、当プロジェクトはフィージブルである。

Table 11.2.3 ECONOMIC INTERNAL RATE OF RETURN

(Economic IRR)

Alternative		Bridge Clearance		
	H = 45 M	H = 55 M	H = 73.2 M	Tunnel
Non-staged Construction	0.1025	0.0887	0.0585	0.0536
Staged Construction	0.1190	0.1055	0,0600	0.0561

Note: IRR of bridge alternatives are estimated for the cases of P.C main bridge.

Table 11.2.4 SENSITIVITY ANALYSIS FOR 55 M CLEARANCE, P.C MAIN BRIDGE

	Case	Cost +10%	Benefit -10%	Evaluation + 9 Years	EIRR
	A	0	_		0.098
١	В	0	ο .	****	0.088
1	С	_		0	0.112
	D	0		0	0.104

Note: "O" means the ease conducted for sensitivity analysis.

7)総合評価

以上の評価項目に対し、代替案を評価し、表 1 1.2.5 に示した。評価は、A, B, C, D, により行った。

Table 11.2.5 TOTAL EVALUATION

Alternative		Bridge Alternative			
Item	H=73,2M	H=55M	H=45M	Tunnel	
1) Regional Development	A	A	A	A	
2) Traffic Distribution	В	A	A	С	
3) Navigation-Clearance	Α·	В	С	A	
4) Cost '	С	В	A	D	
5) Operation	С	В	Α	D	
6) Economic Evaluation	D	В	Å	D	

Note: Mark "A" is evaluated as the highest value, and "D" the lowest.

評価の結果、橋梁案(航路クリアランス 5 5 m 以下)が、平均的に好ましい結果を示した。但し、橋梁案の中では、P C 橋案が鋼橋案に比較して、若干、安くなってているものの、その差は決定的なものではない。

11.3 提 营

- 1) 航路クリアランス 5 5 m以下の斜張橋が、技術的にも経済的にもフィーシブルである。
- 2) 政府の財政事情を考慮し、有料制を積極的に導入すべきである。通行料金は、ケニア政府の決定に妥ねられている。仮に通行料金をプロジェクトの内貨分及び維持管理費を対象に小型車5シリング、大型車40シリングとした場合、プロジェクトは、財務内部収益率13.8%を示し、財務的に健全であると言える。
- 3) プロジェクトの実施に際し、投資規模及び交通需要を考慮し、段階的に整備する ことを提案する。
- 4) 本プロジェクト道路は、将来国際幹線道路及び国道の一部となるものである。円滑な交通流により地域活動を活発化させるためには、将来の幹線道路区間及び関連道路の整備が必要である。これらの整備には、幹線道路上の立体交差(モンバサ駅裏の立体道路を含む)や内環状線の建設が含まれるが、当プロジェクトとは別に実施することを提案する。
- 5) 本プロジェクトの第一期工事として、2.0 kmの橋梁を含む全長 5 kmの2 車道路の 建設が当面の課題である。第2期工事は、交通量の推移及び関連道路(幹線道路及 び内環状線等)の進捗状況を見て実施することが望ましい。

11.4 今後の課題

当プロジェクトには、将来の港湾機能を制約するクリアランスの問題と、高度の技術的判断が要求される主橋梁の問題との、2つの特異でかつ大きな課題があった。本調査では、これらの課題についての最終的な結論を得るに至らなかったが、今後、当プロジェクトの具体化に際し、大前提となる問題であるため、詳細設計に先立って十分に検討する必要がある。

1) 航路クリアランスの問題

本調査で港湾の将来見通しや過去に入港した船舶データを基に航路クリアランス について検討を行った。航路クリアランスは、ケニア政府の政策に関わる問題であ るため、十分な検討を行った上で決定される必要がある。

2) 主橋梁に関する問題

本調査で提案した斜張橋は、世界で最長クラスにランクされ、技術的に高度である。従って、橋梁の材種(PC又は鋼)の決定に当っては、各々の、構造特性、耐風安定性(風洞実験に基づく)、経済性、信頼性、維持管理等について、さらに十分な検討を行う必要がある。

一方、主橋梁についての暫定施工の採否は、本来、交通需要と経済性によって決定すべきであるが、径間長の長い当主橋梁(特に鋼)の場合、その構造性、経済性に与える影響が非常に大きい。このため、主橋梁の材種(PC又は鋼)の決定に当っては、暫定施工についての再評価が必要となる。

付属資料

リコニクロッシング建設計画調査.参加者名簿

1) Ministry of Transport and Communications

1.	Mr. W.P. WAMBURA	Permanent Secretary
2.	Mr. J.K. KIRIKA	Engineer-in-Chief
3,	Mr. S.M. KIGURU	Chief Engineer (Roads & Aerodromes)
4.	Mr. S. ASFAW	Chief Engineer (Planning)
5.	Mr. D.M. MWASI	Chief Executive Engineer
6,	Mr. G. WABUKE	Chief Superintending Engineer (Construction)
7.	Mr. S.N. OTONGLO	Chief Superintending Engineer (Design)
8.	Mr. C.M. KAMAU	Provincial Engineer, Coast Province
9.	Mr. T. KAI	Senior Superintending Engineer (Bridges)
10.	Mr. T. KNOTTEN	Senior Superintending Engineer (Bridges)
11.	Mr. L. BLOM-BAKKE	Senior Superintending Engineer (Bridges)
12.	Mr. J.M. WANYOIKE	Senior Superintending Engineer (Design)
13.	Mr. Y. MAEKAWA	Superintending Engineer (Bridges)
14.	Mr. O. MOKRID	Superintending Engineer (Design)
15.	Mr. P.M. WAKORI	Superintending Engineer (Planning)
16.	Mr. M.E. AGALOCHIENG	O/ic Traffic Engineering Unit
17.	Mr. J.P. MURAGURI	Assistant Engineer (Counterpart Staff) (Bridges)
18.	Mr. F.D. KARANJA	Assistant Engineer (Planning)
19.	Mr. P.M. OJWAKA	Assistant Engineer (Bridges)
20.	Mr. V.B. OCHIENG	Assistant Engineer (Planning)

Material Branch

2) ケニア国鉄

21. Mr. KLEM

 $\langle \bigcirc \rangle$

Mr. IKAMBA Traffic Section
 Mr. M. ARSHAD District Civil Engineer

3) ケニア港湾局

1.	Mr. B.A.O. ONGOLA	Chief Planning Officer
2.	Mr. A.O. ROGO	Chief Engineer
3.	Mr. A.P. BURNARD	Chief Engineer (Special duties)
4.	Mr. E.T. WAIYAKI	Secretary & Leagal Officer
5.	Mr. A.C. MUMBA	Principal Planning Officer
6.	Mr. E.A. KARANGA	Operations Manager
7.	Mr. A.J. KENTOYO	Senior Harbour Master

4) モンバサ空港

1.	Mr. E.N. NYARANGI	Airport Manager
2.	Mr. P.B. YATICHI	Airport Assistant Manager
3.	Mr. S. MAGALASIA	Senior Meteorological Officer

5) モンバサ市

1. Mr. P.C. PATEL

2. Mr. KIAYE

3. Mr. T. MBOGHOLIO

4. Mr. H. SINGH

Municipal Engineer

Chief Planner

Chief Evaluer

Road Engineer

6) 日本側参加者

(1) 監理委員会

1 委員長 中山武志 本州四国連絡橋公団 向島工事事務所 所長

2 委 員 松 浦 仡 建設省 計画局建設業課 建設専門官

3 〃 大志万 和 也 建設省 土木研究所構造橋梁部基礎研究室 室長

4 " 熊 谷 恒一郎 建設省 道路局地方道課 課長補佐

5 〃 村 岡 憲 司 日本道路公団 東京湾横断道路調査室 室長代理

(2) 日本大使館

萩 尾 隆 吉 一等書記官

(3) 國際協力事業団

- 1 柳 井 進 ナイロビ事務所長
- 2 長島俊一 ナイロビ事務所 次長
- 3 小 松 哲 郎 社会開発協力部 開発調査第一課

(4) 調 查 団

- 1 団 長 片 岡 儀 一 総括(株) パシィフィックコンサルタンツインターナショナル
- 2 団 員 野村 義 信 交通計画 "
- 3 " 郡 司 勇 交通調査 "
- 4 " 有 川 英 夫 交通解析 "
- 5 " 小 林 八 一 経済評価 "
- 6 "野島秀太道路計画"
- 7 " 大賀康晴橋梁計画 "
- 8 " 荻原武治 基礎構造 "
- 9 " 大 井 浩 司 施設計画 "
- 10 " 伊藤昌介 土質調査 "
- 11 " 大和田 正 雄 トンネル計画 '

MINUTES OF DISCUSSIONS BETWEEN MINISTRY OF TRANSPORT AND COMMUNICATIONS STAFF AND JAPANESE PRELIMINARY SURVEY TEAM CONCERNING THE PROPOSED KILIFI BRIDGE AND LIKONI CROSSING STATES IN KENYA

1. PREAMBLE

- i) The Japanese Government, on the request of Kenyan Government dispatched a preliminary survey team to Kenya from October 31st to 12th November, 1982 through programme arranged by Japan International Cooperation Agency (JICA); in order to carry out preliminary survey for the planned study of KILLIFI BRIDGE and LIKONI Crossing.
- 11) The team carried out field surveys and had a series of discussions with the Kenyan Authorities concerned during their stay in the country. The main items on which understandings were reached by both sides were shown in the following paragraphs:

2. ITEMS CONCERNING THE SCOPE OF WORK:

- i) Draft Scope of Work proposed by the Team was discussed in detail and agreed upon as attached herewith.
- ii) The Japanese Government will dispatch two teams for the full scale studies. One team is for KILIFI Bridge and the other one is for LIKONI Crossing.
- iii) Concerning article VI.3 of the attached scope of work, offices with telephone will be provided for each Study Team in NAIROBI and MOMBASA during the Teams' stay in Kenya.
- iv) The Kenyan Team asked the Japanese Team to consider two alternatives for the Likoni Crossing feasibility study namely; a high level bridge with a clearance of 76.2m above high water tide and a tunnel. Both sides agreed upon this issue.
- v) Kenyan Team and Japanese Team agreed that as the study progresses more attention will be forcused on the alternative which appears to be technically and financially more feasible.

3. TRAINING OF ENGINEERS

On the request of the Kenyan Team the Japanese Team agreed to convey to the Japanese Authorities concerned to accept Kenyan counterparts in Japan for training scholarships on related courses.

4. LIST OF PARTICIPANTS

Japanese Team

Leader. 1. Mr. Takeshi NAKAYAMA Director of the Second Engineering Division

First Engineering Department Honshu Shikoku Bridge Authority

Road Planner 2. Mr. Kolchiro KUMAGAI

Deputy Director of the Local

Road Division Road Bureau

Ministry of Construction

3. Mr. Kenji WURAOKA

Bridge Planner

Deputy Head of the Tokyo Crossing Bridge & Turnel Planning Section Planning & Research Department Japan Highway Public Corporation

4. Mr. Kimiaki YAMAGUCHI Coordinator

Japan International Cooperation

Agency (JICA)

5. Mr. Takayoshi HAGIO First Secretary of Japanese

Embassy

6. Mr. Toshikazu NAGASHIMA Deputy Resident Representative

JICA NAIROBI OFFICE

Kenyan Team

Chief Engineer (Roads and Aerodra 1. Mr. W.P.WAMBURA

2. Mr. S.N. OTONGLO Chief Superintending Engineer

(Design)

Senior Superintending Engineer 3. Mr. T. KNOTTEN

(Bridges)

4. Mr. T. KAI Senior Superintending Engineer

(Bridges)

Chief Engineer (Planning)

5. ADOPTION OF MINUTES

5. Mr. S. ASFAW

The minutes were reviewed thoroughly after which they were adopted as reflecting the true record of the understandings reached by both sides.

Jobeshi Nohayama _ _ _ _

TAKESHI NAKAYAMA Leader of Japanese Preliminary Survey Team

Date. NOV. 11, 1982

W.P. WAMBURA

Chief Engineer (Roads and Aerodrom Ministry of Transport& Communicati

Republic of Kenya.

Date . Now. . 11 1982 ...

SCOPE OF WORK

FOR

THE FEASIBILITY STUDY ON

PROPOSED KILIFI BRIDGE & LIKONI CROSSING

CONSTRUCTION PROJECT

IN

THE REPUBLIC OF KENYA

AGREED UPON BETWEEN

MINISTRY OF TRANSPORT AND COMMUNICATIONS

AND

JAPAN INTERNATIONAL COOPERATION. AGENCY

DATED : NOVEMBER 1982

S.J. MBUGUA
PERMANENT SECRETARY
ENISTRY OF TRANSPORT & COMMS.
P.O. BOX 52692
MIROBI

TAKESHI NAKAYAMA LEADER OF THE PRELIMINARY STUDY TEAM

COUNTERSIGNED

PERMANENT SECRETARY MINISTRY OF FINANCE TREASURY NAIROBI

I. INTRODUCTION

In response to the request of the Government of the Republic of Kenya, the Government of Japan has decided to conduct feasibility studies on the KILIFI BRIDGE AND LIKONI CROSSING CONSTRUCTION PROJECTS (hereinafter referred to as "the Studies"), in accordance with laws and regulations in force in Japan and Kenya. The Japan International Cooperation Agency (hereinafter referred to as "JICA") the official agency responsible for the implementation of the technical cooperation programs of the Government of Japan, will carry out the Studies in close cooperation with the Ministry of Transport and Communications (hereinafter referred to as MOTC) of the Republic of Kenya.

This Scope of Work was set forth in accordance with the results of the JICA's preliminary studies on the captioned projects in November 1982.

II. OBJECTIVE

The objective of the Studies are

To carry out feasibility studies for the construction of KILIFI BRIDGE and LIKONI CROSSING including their approaches and connecting roads.

III. SCOPE OF THE STUDIES

In order to achieve the above objective the JICA will carry out following studies taking alternatives into consideration.

- 1. Traffic and Socio-Economic Studies
 - (a) Traffic data collection, traffic survey and analysis
 - (b) Socio-economic data. collection and analysis

- (c) Review of population and socio-economic conditions
- (d) Forecast of future traffic demand
- 2. Engineering Studies
 - (a) Topographic map tollection
 - (b) Engineering data collection and analysis
 - b-l soil and geological data
 - b-2 hydrological and hydrographic data
 - b-3 materials data
 - b-4 meteorological data
 - (c) Surveying
 - c-l soil and geological surveying including drilling & testing.
 - c-2 Hydrographic surveying (cross-sectional surveying, etc.)
 - (d) Design criteria
 - d-l geometric design standards
 - d-2 structural design standards
 - (e) Engineering works
 - e-1 design works
 - e-2 quantity estimation
 - (f) Construction Program
 - f-1 construction method
 - f-2 construction schedule
 - (g) Cost estimates
 - q-1 right-of-way aquisition cost
 - q-2 construction cost
 - q-3 maintenance cost
- 3. Economic Evaluation
 - (a) Estimates of benefit
 - (b) Estimates of NPV, IRR, and B/C
 - (c) Sensitivity analysis

- 4. Budgetal and Financial Studies
- 5. Implementation Program

An implementation program will be prepared based on the construction program and the study of budgetal and financial aspect.

IV. STUDY SCHEDULE

The survey will be conducted according to the tentative schedule attached hereto as Appendix I, II.

1. REPORTS

JICA will prepare and submit to the Government of Kenya the following reports in English.

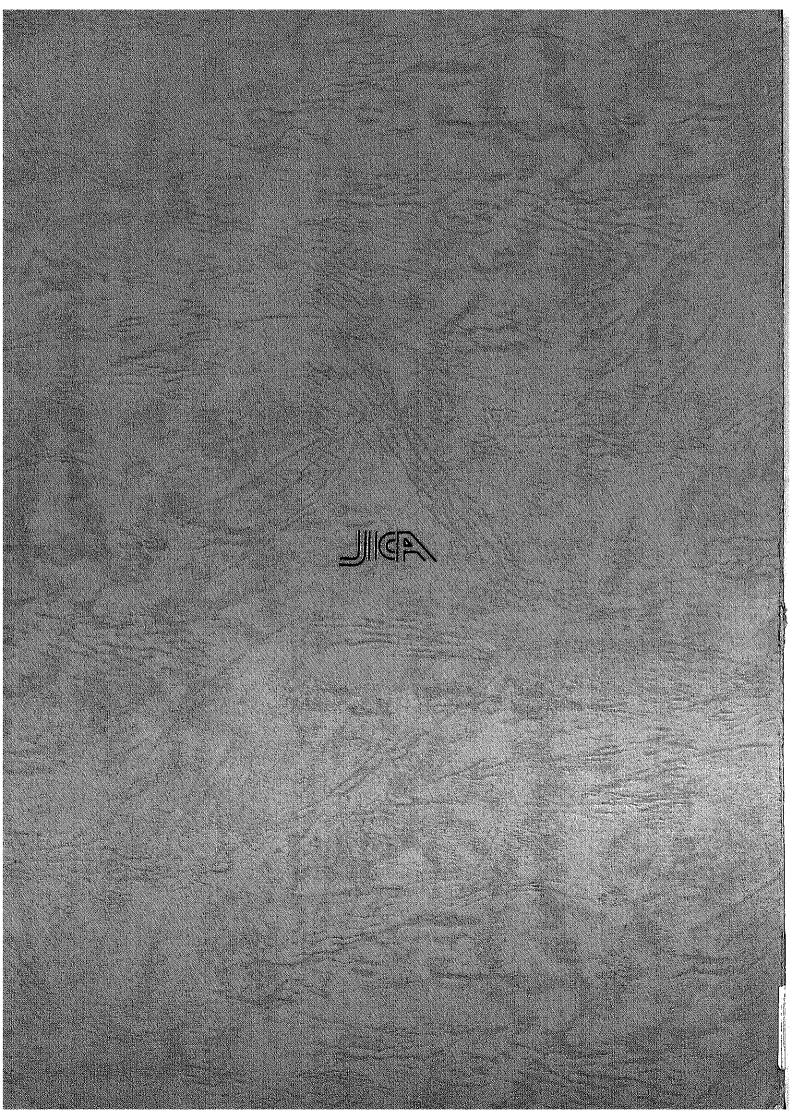
- Inception Report (30 copies)
 within one month after the outset of the study in Kenya
- Progress Report (30 copies) every three months during course of the study in Kenya
- 3. Interim Report (30 copies) at the end of the study in Kenya
- 4. Draft Final Report (30 copies)
 within four months after presentation of Interim Report
- 5. Final Report (100 copies) within two months after receiving comments by the Government of Kenya on the said Draft Final Report.

VI. UNDERTAKINGS BY THE GOVERNMENT OF KENYA.

 To furnish the Study Team with available relevant data, information, materials and conveniences of availing data processing devices for execution of the Studies.

- To exempt the Study Team from any taxation or duty on the income and any other emoluments as well as equipment, materials and personal effects which are to be brought into Kenya in connection with the Studies.
- 3. To provide the Study Team with appropriate office space, office equipment and clerical services for the Studies.
- 4. To appoint counterpart personnel for execution of the Studies well as effective transfer of expertise.
- 5. To secure the security of the Study Team when and as it is required.
- 6. To assist the Study Team in securing other facilities and conveniences which are deemed necessary for the accomplishment of the Studies.
- 7. To provide identification card to the members of the Japanese Study Team for the execution of their activities.

I. UNDERTAKINGS OF THE GOVERNMENT OF JAPAN


- To delegate a full-scale Study Team to Kenya to conduct the Studies and to bear all expenses for the Studies.
- 2. To bear travel expenses and fares between Japan and Kenya and those necessary for moving in Kenya as well as charges of accommodation and living expenditure for the members of the Study Team.
- 3. To bear expenses necessary for the telecommunications between Japan and Kenya which stem from the Studies.
- 4. To transfer to Kenya counterpart personnel the technology and expertise related to the Studies.
- 5. To provide the Study Team with transport (vehicles & drivers).

TENTATIVE WORK SCHEDULE OF LIKONI BRIDGE

]
	~			Final Report
	e .			
1984	2	I		Draft Final Report
	1			I I
	12	·		
	11			ogress Interin Report(II) Report
	10			International In
	6.			Progress Report (I
	8	<u> </u>		Progr Ref
	<u>.</u>			î
	9			Progress Report(I)
1983	5			Çoură BE
	4			g .
	3		, ,	Inception Report
	23			← ŭ a
,	-		<u>I</u> .	
		WOUK IN KENYA	WORK IN JAPAN	REPORT PRESENTATION

TENTATIVE WORK SCHEDULE OF KILIFI BRIDGE

				15	1983								1984	
	-	2	3	4	5	9	7	8	6	10	11	12		2
WORK IN KENYA		Ţ										ΙΙ		
WORK IN JAPAN	Ĭ				1	·								,
REPORT PRESENTATION	·	Ince	f Inception Report		Prox Rej	Proyress Report		f Interin Report	rim ort		25%	f Draft Final Report	Final Report	ial ort

