A.6. Supporting Data

A.6.1. Results of Soil Profile Investigation

Descriptions of the representative soil profiles are summarized here in the order as follow;

Typic Salorthid (a) P-10, 17, 25, 27, 37 (b) P-2, 5, 6, 12, 18, 28, 31 (c) P-8, 11, 20, 24, 34 Typic Gypsiorthids P-1, 7, 13, 30, 33 Typic Torriothents P-14, 16, 35

The descriptions were made mainly in accordance with the FAO's guidelines. Soil colors were named according to the Munsell's color chart except for gley colors. Soil hardness indexes determined by Yamanaka's tester were classified into five categories as below;

Hardness		
Index	(kg/cm ²)	
Soft < 8	(0.98)	
Slighly hard 8 - 12	(1.93)	
Hard 12 - 17	(4.04)	
Very hard 17 - 23	(10.0)	
Extremely hard > 23	(10.0)	

And the columner sections of all soil profiles are shown in Figures A-20, following to the descriptions.

Profile No.:	P-10
Soil Name:	Typic Salorthids,
Date of Investigation:	November 3, 1983
Location:	Mohamad Mahoch, about 2.5 km southeast of the conjunction of Bahr Saft and Hadous drains
Elevation:	0.2 m
Landform and Slope:	Nearly flat
Vegetation and Land Use:	Rice cultivation

General Information on the Soil

Parent Material: Fluvio-lacustrine deposits

Drainage: Poor

Depth of Groundwater Table: 40 cm below surface

Presence of Stones, Shells etc.: None

Evidence of Erosion: None

Surface Features: No cracking

Profile Description

0 - 25 cm	Very dark brown (10YR 2/3) clay, moist, weak subangular blocky, sticky and plastic, common fine salt crystals, compacted, very hard (20.0), gradual merging boundary to;
25 - 72 cm	Very dark brown (10YR 2/3) clay, wet, weak subangular blocky, sticky and plastic, few fine roots, few fine pores, compacted, very hard (18.0), clear smooth boundary to;
72 - 200 ст	Olive gray *(2.5GY 5/1) clay, wet, very sticky and structureless, compacted hard (14.4) common pores, few fine roots, few manganese concretions, many iron mottling, many shell fragments (bivalves) at 120 - 140 cm, seepage from pores, coming up water rapidly.

-A-108-

Profile No.:	P-17
Soil Name:	Typic Salorthids
Date of Investigation:	November 22, 1983
Location:	About 1 km south of Ramsis canal and 5
	km northeast of Tell Sanhur
Elevation:	0.5 m
Landform and Slope:	Flat
Vegetation and Land Use:	No vegetation

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:PoorDepth of Groundwater Table:50 cm below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:NoneSurface Features: Weak Salt Crust

0 8 cm	Weak salt crusts (1 mm thick), dark brown (10YR 3/3) clay, water saturated below the crusts, no structure, sticky and plastic, many large salt crystals, abrupt smooth boundary to;
8 - 15 cm	Dark brown (10YR 3/3) silty clay, water saturated, no structure, slightly sticky and plastic, common gypsum flakes, slightly hard (10.6), abrupt smooth boundary to;
15 - 45 cm	Dark brown (10YR 3/3) silty clay loam, wet, no structure, slightly sticky and slightly plastic, soft (3.6), fe reddish brown motting, abrupt smooth boundary to;
45 - 150 cm	Very dark brown (10YR 2/3) silty clay, moist, dark greenish gray *(10GY 3/1) on the crack surface, coarse angular blocky sticky and plastic, few manganese mottling, compacted, very hard (19.0), water spring up from pores, gradual merging boundary to;
150 - 220 cm	Very dark brown (10YR 2/3) light clay, coarse angular blocky, sticky and very plastic, wet, compacted.

Profile No.:	P-27
Soil Name:	Typic Salorthids
Date of Investigation:	November 20, 1983
Location:	Wahedan Korba, about 3 km south of Skadel Azam
Elevation:	0.3 m
Landform and Slope:	Gently slope towards south
Vegetation and Land Use:	Salicornia, Paddy rice surrounded by fish ponds

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:RestrictedDepth of Groundwater Table:30 cm below surfacePresence of Stones, Shells etc.:NoneEvidence of Brosion:NoneSurface Features:

The lands along the Bahr El Baqar drain have been cultivated for 50 years.

0 - 20 сы	Dark grayish brown (10YR 4/2) light clay, wet, medium subangular blocky, slicky and plastic, hard (15.8), few pores, wide cracks up to 5 cm deep, clear smooth boundary to;
20 - 60 cm	Dark brown (10YR 3/3) clay loam, wet, weak subangular blocky, sticky and plastic, few pores, soft (4.6), clear smooth boundary to;
60 - 90 cm	Dark brown (10YR 3/3) clay, wet, weak fine platy structure, sticky and plastic, soft (4.2), abrupt smooth boundary to;
90 - 110 cm	Very dark brown (10YR 2/3) sand, wet, structureless non-sticky and non plastic, common large pores, permeable, few gypsum crystals, abrupt smooth boundary to;
110 - 200 cm	Greenish black *(5G 2/1) light clay, wet, massive, sticky and plastic, few pores.

Profile No.:	P-37
Soil Name:	Typic Salorthids
Date of Investigation:	November 24, 1983
Location:	About 2 km northeast of San El Hagar,
	between Ramsis drain and swamp
Elevation	0.5 m
Landform and Slope:	Almost flat
Vegetation and Land Use:	Paddy rice

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:PoorDepth of Groundwater Table:80 cm below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:NoneSurface Features:Wide Cracks

0 - 25 cm	Very dark grayish brown (10YR 3/2) clay, dry, coarse angular blocky, wide cracks up to 10 cm deep, hexagonal clods, few organic matter, hard (14.4), abrupt smooth boundary to;
25 - 55 cm	Dark brown (10YR 3/3) light clay, slightly wet, coarse angular blocky, common wide cracks, few gypsum crystals, hard (15.4), clear smooth boundary to;
55 - 110 cm	Very dark grayish brown (10YR 3/2) clay, wet, massive, very sticky and plastic, gradual smooth boundary to;
110 - 150 cm	Very dark grayish brown (10YR 3/2) silty clay, wet, massive, sticky and plastic, clear smooth bandary to;
150 — 200 ст	Very dark gray (N 3/0) mixed with very dark brown (10YR/2/3) clay, wet, massive, very sticky and plastic, diffuse boundary to;
200 - 260 cm	Very dark brown (10YR 2/2) clay, wet, massive, very sticky and very plastic

Profile No.: P-2 Soil Name: Typic Salorthids Date of Investigation: October 30, 1983 Location: About 5.5 km north of Bahr El Bagar drain Elevation: 1.0 m Landform and Slope: Almost flat Vegetation and Land Use: No vegetation General Information on the Soil Fluvio-lacustrine deposits Parent Material: Drainage: Poor Depth of Groundwater Table:1.0 m below surface Presence of Stones, Shells etc.:None Evidence of Erosion: Susceptible to wind erosion Surface Features: Thin wind blown silt on the salt crust (5mm thick) Profile Description

0 - 35 cm	Very dark grayish brown (10YR 3/2) silty clay loam, moist, massive, slightly sticky and plastic, few pores, few gypsum crystals,
35 - 55 cm	Dark brown (7.5YR 3/3) silty clay, wet, massive, sticky and plastic, few small pores, gradual smooth boundary to;
55 - 95 cm	Very dark brown (10YR 2/2) silty clay, wet, medium subangular blocky, few pores, few manganese concretions, clear smooth boundary to;
95 - 150 cm	Dark brown (7.5YR 3/3) silty clay loam with stratified fine sand layers, compacted few brown nodule and black manganese mottling, clear smooth boundary to;
150 - 170 cm	Brown (10YR 4/3) fine sand mixed with clay, wet, structureless, few manganese concretions, gradual smooth boundary to;
170 - 200 cm	Similar to the above layer except mottlings and concretions increase with depth.

Profile No.: Soil Name:	P-6 Typic Salorthids
Date of Investigation:	November 2, 1983
Location:	About 25 km southeast of Tell Sanhur, near Taimoor
Elevation:	1.0 m
Landform and Slope:	Flat
Vegetation and Land Use:	Cultivated lands, some Salicornia and Tamarix

General Information on the Soil

Parent Material:	Fluvio-lacustrine deposits
Drainage:	Poor
	able:1.2 m below surface
Presence of Stones, She	
Evidence of Erosion:	None
Surface Features:	Very thin wind blown silt, many salt crystals on the surface

Profile Description

0 - 5 cm	Very dark brown (10YR 2/3) clay, dry, weak platy, firm, hard (17.2), many fine salt crystals, clear smooth boundary to;
5 - 60 cm	Dark yellowish brown (10YR 3/4) silty clay, moist, structureless, friable, hard (15.5) few lime nodules, common gypsum crystals, very few reddish brown spotty mottling, clear smooth boundary to;
60 - 90 cm	Dark brown (10YR 3/3) silty clay loam, wet, structureless, many lime nodules, slightly hard (10.6), clear smooth boundary to;
90 - 160 cm	Very dark grayish brown (10YR 3/2) clay, moist, strong coarse angular blocky, compacted, very hard (21.6), few fine pores, common manganese concretions (3mm diameter), gradual smooth boundary to;
160 - 200 cm	Brown (10YR 4/3) silty clay, wet, massive, compacted, few manganese concretions,

-A-113-

Profile No.: P-12 Soil Name: Typic Salorthids Date of Investigation: November 5, 1983 Location: Along the Bahr El Baqar drain, about 6 km north east of the Hanon Project Elevation: 0.1 m Landform and Slope: Flat Vegetation and Land Use: Fish pond, no vegetation General Information on the Soil Parent Material: Fluvio-lacustrine deposits Drainage: Poor Depth of Groundwater Table:25 cm below surface Presence of Stones, Shells etc.:None Evidence of Brosion: None Surface Features: Surface cracks (1.5 cm wide, 3 cm deep) makes hexagonal clods **Profile Description** Very dark brown* (7.5YR 2/3), light clay, dry, 0 - 5 cm moderate medium subangular blocky, common white veins, clear smooth boundary to; 5 - 40 cm Dark brown (7.5YR 4/3) silty clay, wet, weak subangular blocky, sticky and plastic, soft common gypsum flakes, gradual smooth boundary to; 40 - 100 cm Dark brown (7.5YR 4/3) light clay, and silty clay, wet, porous sticky and plastic, soft, gradual smooth boundary to; 100 - 130 cm Dark brown (7.5YR 3/3) light clay with pockets of coarse sand, gradual smooth boundary to; 130 - 150 cm Very dark brown *(7.5YR 2/2) sandy clay, wet; 150 - 200 cm Very dark brown * (7.5YR 2/2) light clay, wet, structureless, very sticky and plastic

Profile No.:	P-18
Soil Name:	Typic Salorthids
Date of Investigation:	November 22, 1983
Location:	About 500 m north of Tanis Project
Elevation:	0.75 m
Landform and Slope:	Gentle slope with hummocky relief
Vegetation and Land Use:	Tamarix, non cultivated but levelled

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:PoorDepth of Groundwater Table:Deeper than 2 m below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:NoneSurface Features:Pluffy surface, few coarse sand on the
surface

0 - 15 cm	Yellowish brown (10YR 5/4) silty clay, dry, loose, common fine salt crystals, abrupt smooth boundary to;
15 - 35 cm	Dark yellowish brown (10YR 3/4) silty clay loam with a few stratified fine sand layer, moist, granular structure, slightly sticky and plastic, very hard (22.2), few manganese mottling, abrupt wavy boundary to;
35 - 43 cm	Light gray (10YR 7/2) sand, moist, structureless, hard (16.6), abrupt wavy boundary to;
43 - 60 cm	Brown (10YR 4/3) coarse sand mixed with silty clay, moist, compacted, very hard (19.6), gradual wavy boundary to;
60 – 150 cm	Dark brown (10YR 3/3) clay, moist, strong coarse angular blocky, very sticky and plastic, compacted, very hard (22.2), few salt spot, common manganese concretions, gradual smooth boundary to;
150 - 200 cm	Black (10YR 2/1) clay, slightly wet, friable, structureless, compacted, very hard (22.6), gradual smooth boundary to;
200 - 250 cm	Dark grayish brown (2.5Y 4/1) clay, moist compacted, extremely hard.

Profile No.:	P-28
Soil Name:	Typic Salorthids
Date of Investigation:	November 21, 1983
Location:	Tell El Ginn, about 5 km northeast of
	Bahr El Bagar drain
Elevation:	1,5 m
Landform and Slope:	Gentle slope
Vegetation and land Use:	Dwarf shrub of Salicornia, paddy rice

General Information on the Soil

Parent Material:	Fluvio-lacustrine deposits	
Drainage:	Restricted	
Depth of Groundwater Ta	able:52 cm below surface	
Presence of Stones, She	ells etc.:None	
Evidence of Erosion:	Susceptible to wind erosion	
Surface Features:	Salt crust and brownish black (7.5YR	
ile Description	2/2) wind blown silt loam	

Profile Description

0 - 20 cm	Very dark brown (7.5YR 2/2) silt loam, moist, friable, slightly hard (8.2), clear smooth boundary to;
20 - 70 cm	Dark brown (7.5YR 3/2) silty clay, moist, friable, few gypsum crystals, soft (3.5), gradual smooth boundary to;
70 - 90 cm	Very dark brown (7.5YR 2/1) silty clay, wet, massive, slightly hard (8.5), sticky and plastic, clear smooth boundary to;
90 - 200 cm	Dark brown (7.5YR 3/2) clay, wet, massive, very sticky and plastic, slightly hard (8.4), few manganese concretions, permeable layer between 100 and 115 cm.

•

.

· · ·

Profile No.:	P-31
Soil Name:	Typic Salorthids
Date of Investigation:	November 21, 1983
Location:	About 4 km southeast from El Slam
	Canal
Elevation:	0.2 m
Landform and Slope:	Flat
Vegetation and Land Use:	Scattered Salicornia

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:PoorDepth of Groundwater Table:70 cm (170 cm at the initial then
coming up)Presence of Stones, Shells etc.:NoneEvidence of Erosion:Susceptible to wind erosionSurface Features:Tin wind blown silt and salt crust

0 - 10 cm	Very dark grayish brown (10YR 3/2) clay, moist, friable, slightly hard (10.0), clear smooth boundary to;
10 - 40 cm	Very dark brown (10YR 2/3) silty clay, moist, many fine salt crystals, structureless, hard (14.2), clear smooth boundary to;
40 - 70 cm	Very dark brown (10YR 2/3) silty clay loam, moist, moderate subangular blocky, very fine salt crystals, very hard (21.2) slightly sticky and plastic, gradual smooth boundary to;
70 - 130 cm	As above layer except for common manganese concretions, gradual smooth boundary to;
130 - 200 cm	Very dark brown (10YR 2/2) clay, wet, subangular blocky, very sticky and plastic, very hard (20.0) few manganese concretions, black pylites (FeS)

Profile No.:	P-8
Soil Name:	Typic Salorthids
Date of Investigation:	November 2, 1983
Location:	About 4 km east of Tell San El Hagar, about 2 km south of Ramsis drain
Elevation:	0.5 m
Landform and Slope:	Almost flat
Vegetation and Land Use:	Paddy rice

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:ModerateDepth of Groundwater Table:1.1 m below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:NoneSurface Features:

Profile Description

0 - 5 cm	Dark brown (7.5YR 3/2) silty clay, moist, fluffy, few pores, few shell and gypsum, gradual smooth boundary to;
5 - 45 cm	Dark brown (7.5YR 3/2) silty clay loam, moist, medium subangualr blocky, friable, few organic matter, slightly hard (10.4), gradual smooth boundary to;
45 - 80 cm	Very dark brown (7.5YR 2/2) clay, moist, medium subangular blocky, very sticky and plastic, hard (17.6), clear smooth boundary to;
80 - 130 cm	Very dark brown (10YR 2/2) silty clay loam, wet, medium subangular blocky, hard (15.0), few manganese convertions, gradual smooth boundary to;
130 - 200 cm	Very dark brown (10YR 2/2) silty clay, wet several stratified sand layers between 130 and 160 cm, few manganese concretions.

-A-118-

-

Profile No.:	P-11
Soil Name:	Typic Salorthids
Date of Investigation:	November 5, 1983
Location:	Tell El Ginn, about 5 km north of Bahr
· ·	El Bagar drain
Elevation:	1.5 m
Landform and Slope:	Flat
Vegetation and Land Use	Reclaimed but abandoned sparse Tamarix

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:Moderately poorDepth of Groundwater Table:Deeper than 2 m below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:NoneSurface Features:Many gypsum flakes, no salt crust

0 - 8 cm	Yellowish brown (10YR 5/4) silty clay loam, dry, loose, many fine salt crystals, clear smooth boundary to;
8 – 40 cm	Dark brown (7.5YR 4/3) silty clay loam, slightly moist, moderate coarse angular blocky, friable, very hard (21.6), few gypsum flakes, few salt crystals, few fine pores, fine cracks (1 mm wide) up to 40 cm deep, clear smooth boundary to;
40 - 60 cm	Dark brown(7.5YR 4/4) silty clay loam, moist, weak subangular blocky, friable, few fine pores, extremely hard (24.2), common lime concretions and veins, few fine manganese concretions, abrupt smooth boundary to;
60 - 140 cm	Very dark grayish brown (10YR 3/2) silty clay, moist, moderate medium subangular blocky, friable, very sticky and plastic, very hard (22.0), few fine pores, common spotty lime, few gypsum flakes, few manganese concretions, plant roots at 95 cm below the surface, clear smooth boundary to;
140 - 160 cm	Very dark brown (10YR 2/3) clay, wet, medium coarse angular blocky, very sticky and very plastic, compacted, very hard (22.6);
160 - 200 cm	Dark gray (N 4/0) clay mixed with brownish black spots (10YR 2/3) wet, compacted, few large manganese concretions (2 mm diameter).

Profile No.:	P-24
Soil Name:	Typic Salorthids
Date of Investigation:	November 24, 1983
Location:	Ezeba Farag, near El Khalfi drain
Elevation:	0.75 m
Landform and Slope:	Flat
Vegetation and Land Use:	Berseem field

General Information on the Soil

Parent Material:Fluvio-lacustrine depositDrainage:Moderately wellDepth of Groundwater Table: 30 cm below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:NoneSurface Features:No cracks

Profile Description

0 – 15 cm	Dark grayish brown (2.5Y 4/2) silty clay, moist, firm, slightly hard (12.4), very few pores, many fine roots and organic matter) many brown cloudy mottling, gradual smooth boundary to;
15 - 65 cm	Dark brown (10YR 3/3) clay, moist, medium subangular blocky, firm, hard (14.0), very sticky and plastic, many fine roots, few brown cloudy mottling, gradual smooth boundary to;
65 - 80 cm	Brown (10YR 4/3) clay coated with yellowish gray (2.5Y 4/1) fine sand, few pocket of sand (0.5 – 1.0 cm thick), moist, coarse angular blocky, firm, hard (13.8), many pores, gradual smooth boundary to;
80 - 100 cm	Dark grayish brown (7.5Y 4/1) clay with many pocket of fine sand (Brown 10YR 4/3), wet, strong prismatic, few pores and holes, slightly hard (11.4), water coming from pores, gradual smooth boundary to;
100 - 120 cm	Dark greenish gray *(7.5GY 4/1) silty loam, wet, slightly hard (10.4), gradual smooth boundary to;
120 - 200 cm	Dark greenish gray *(lOGY 3/l) silty clay with some stratified fine sand layer, sticky and plastic, compacted, common yellowish brown cloudy mottling.

-A-120-

Profile No.:	P-34
Soil Name:	Typic Salorthids
Date of Investigation:	November 23, 1983
Location:	About 2.5 km south of Tell El Gabha, in the Hanon Project
Elevation:	1.5 m
Landform and Slope:	Artificially levelled
Vegetation and Land Use:	Upland crops, berseem

General Information on the Soil

Parent material:Fluvio - lacustrine depositsDrainage:PoorDepth of Groundwater Table:1.1 m below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:Susceptible to wind erosianSurface Features:Cracking

Profile Description

0 - 35 cm	Dark brown (10YR 3/3) silty clay loam, dry, strong coarse subangular blocky, cracks make hexaganal clods, very hard (22.8), few roots, abrupt smooth boundary to;
35 - 55 cm	Dark brown (10YR 3/3) silty loam, moist, massive slightly plastic, hard (17.4), few roots, clear smooth boundary to;
55 - 95 cm	Very dark brown (10YR 2/2) sandy loam, moist, massive, very hard (21.9), non-sticky and nonplastic, clear smooth boundary to;
95 - 150 cm	Very dark brown (10YR 2/2) silty loam, wet, platy structure very hard (22.6), clear smooth boundary to;
150 - 190 cm	Very dark brown (10YR 2/2) clay, wet, massive
190 - 220 cm	Very dark gray (N 3/0) clay wet, massive
220 - 230 cm	Similar to the above layer except for the color dark greenish gray * (10G 3/2)

.

.

Profile No.:	P-1
Soil Name:	Typic Gypsiorthids
Date of Investigation:	October 31, 1983
Location:	About 5.5 km northeast from Bahr El Bagar drain
Elevation:	1.0 m
Landform and Slope	Scattering clay dunes, almost flat, gently slope to west
Vegetation and Land Use:	No natural vegetation

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:PoorDepth of Groundwater Table:Deeper than 2 m below surfacePresence of Stones, Shelis etc.:NoneEvidence of Erosion:Susceptible to wind erosion

Profile Description

offic beautiput	
0 - 15 cm	Brown (7.5YR 5/2) silty clay, dry, friable, porous, loose, soft (6.0), few organic matter, abrupt smooth boundary to;
15 - 40 cm	Brown (7.5YR 5/2) clay, moist, medium subangular blocky, friable, sticky and plastic when wet, few pores, few gypsum flakes, few white salt veins, common manganese concretions, hard (15.2), gradual smooth boundary to;
40 - 65 cm	Very dark brown (10YR 2/3) clay, moist, medium subangular blocky, firm, sticky and plastic when wet, compacted, extremely hard (23.8), common salt efflorescence, few manganese concretions, gradual smooth boundary to;
65 – 125 cm	Very dark brown (10YR 2/3) clay, most, firm massive, sticky and plastic, common white salt veins, compacted, extremely hard (24.0), gradual smooth boundary to;
125 - 200 cm	Very dark brown (10YR 2/2) clay, wet, massive, very sticky and very plastic, compacted, very hard (18.4).

-A-122-

Profile No.:P-7Soil Name:Typic GypsiorthidsDate of Investigation:November 1, 1983Location:About 1 km north of Tanis Project and
4 km south of Ramsis drainElevation:0.5 mLandform and Slope:Almost flat
Vegetation and Land Use:

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:PoorDepth of Groundwater Table:85 cm below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:Susceptible to wind erosionSurface Features:No cracks

Profile Description

0 - 5 cm	Very dark brown (7.5YR 2/2) clay, moist, friable, few fine roots, few pores, few white salt veins, clear smooth boundary to;
5 - 105 cm	Very dark brown (7.5YR 2/2) silty clay, moist, medium subangular blocky, firm, few fine roots, few pores, common gypsum flakes, soft (4.6), gradual smooth boundary to;
105 - 130 cm	Very dark brown (7.5YR 2/2) clay, wet, coarse subangular blocky, very sticky and plastic, slightly hard (10.8), clear smooth boundary to;
130 – 140 cm	Similar to the above layer except the texture is silty clay, gradual smooth boundary to;
140 - 200 cm	Very dark grayish brown (10YR 3/2) silty clay loam, wet, coarse subangular blocky, slightly sticky and plastic, few manganese concretions

;

Profile No.:	P-30
Soil Name:	Typic Gypsiorthids
Date of Investigation:	November 21, 1983
Location:	Near Tell Khaiwanet (about 1.5 km southwest)
Elevation:	0.5 m
Landform and Slope:	Scattering clay dunes, nearly flat
Vegetation and Land Use:	None

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:PoorDepth of Groundwater Table:80 cm below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:Susceptible to wind erosionSurface Features:

Profile Description

0 - 10 см	Very dark grayish brown (10YR 3/2) silty clay, dry friable, porous, many gypsum flakes, hard (13.8), clear smooth boundary to;
10 - 30 cm	Dark brown (10YR 3/3) silty clay, moist, friable, many pores, few gypsum flakes, hard (17.0), clear smooth boundary to;
30 - 60 cm	Dark brown (10YR 3/3) silty clay loam, moist, friable, hard (17.8), salt efflorescence between 40-90 cm, few gypsum, common pores, clear smooth boundary to;
60 - 90 cm	Very dark brown (10YR 2/3), silty clay loam, wet, massive, few fine pores, sticky and plastic, compacted, very hard (19.2), few manganese concretions, gradual/smooth boundary to;
90 - 170 cm	Very dark grayish brown (10YR 3/2) silty clay loam, wet, porous, massive, hard (16.6), few manganese concretions, gradual smooth boundary to;
170 - 230 cm	Black (10YR 2/1) clay, wet, massive, compacted, very hard (20.2), very sticky and plastic, few yellowish brown mottling (170 - 180 cm) and rich mottling (180 cm below);
230 - 300 cm	Black (N 2/O) clay, wet, massive, compacted, very hard.

-A-124-

Profile No.:	P-33
Soil Name:	Typic Gypsiorthids
Date of Investigation:	November 23, 1983
Location:	About 1 km north from Bahr El Baqar
	drain
Elevation:	0.2 m
Landform and Slope:	Flat, somewhat depressed land
Vegetation and Land Use:	Salicornia, uncultivated, near swamp

General Information on the Soil

Parent Material:Fluvio-lacustrine depositsDrainage:PoorDepth of Groundwater Table:1.1 m below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:NoneSurface Features:No cracking

Profile Description

0 - 15 cm	Very dark brown (10YR 2/3) silt loam, dry, friable, clear smooth boundary to;
15 - 70 cm	Dark brown (10YR 3/3) silty clay loam, moist, friable, medium subangular blocky, hard (15.3), common gypsum flakes, clear smooth boundary to;
70 - 150 cm	Very dark grayish brown (10YR 3/2) silt loam, wet, non-sticky and nonplastic, hard (14.7);
150 - 200 cm	Very dark grayish brown (10YR 3/2) clay, wet massive, very sticky and very plastic, compacted, very hard (19.2), few manganese concretions.

-A-125-

∠i

Profile No.:P-14Soil Name:Typic TorriorthentsDate of Investigation:November 21, 1983Location:Foothill portion of Tee Swid hill,
about 1 km northwest of the summitElevation:3.0 mLandform and Slope:Clay hummocky, undulatingVegetation and Land Use:Tamarix

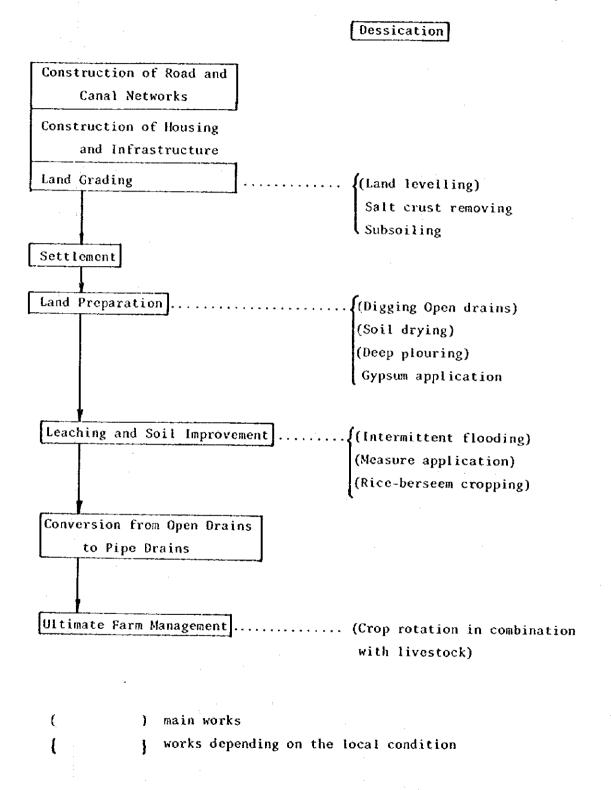
General Information on the Soil

Parent Material:Wind blown depositsDrainage:WellDepth of Groundwater Table:1.75 m below surfacePresence of Stones, Shells etc.:NoneEvidence of Erosion:Susceptible to wind erosionSurface Features:Wind blown (10YR 4/3) silty

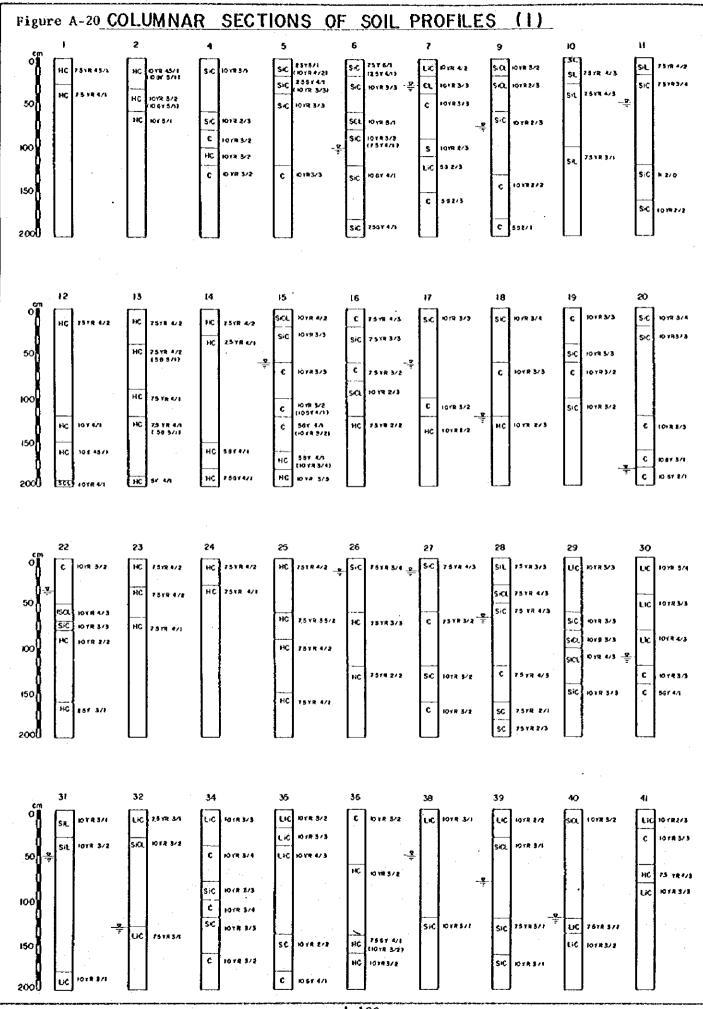
0 - 5 cm	Very dark brown (10YR 2/3) clay, dry, loose, fluffy structure, sticky and plastic when wet, common gypsum flakes and fine salt crystals, clear smooth boundary to;
5 - 25 cm	Dark brown (10YR 3/3) silty clay, moist, structureless, slightly sticky and plastic, many gypsum flakes, hard (15.0), abrupt wavy boundary to;
25 - 110 cm	Dark brown (10YR 3/3) Silty clay, moist, friable, structureless, sticky and plastic, hard (14.2), gradual smooth boundary to;
110 - 200 cm	Very dark brown (10YR 2/3) light clay, slightly wet, very weak subangular blocky, sticky and plastic, slightly compacted, extremely hard (29.2), few manganese concretions.

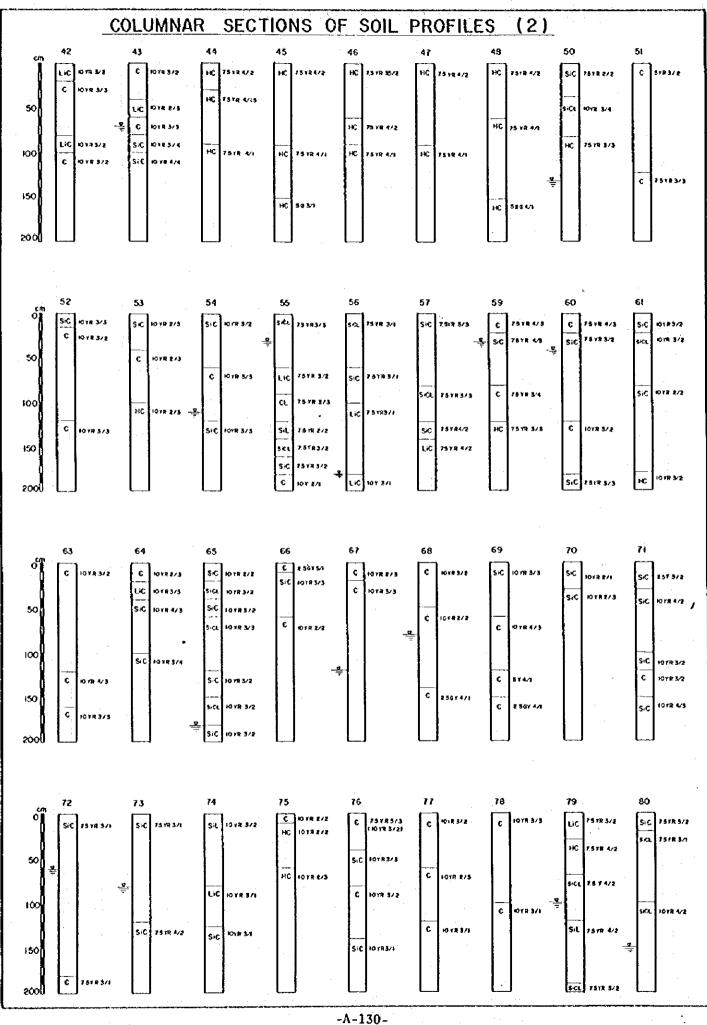
Profile No.:	P-35
Soil Name:	Typic Torriothents
Date of Investigation:	November 24, 1983
Location:	Foothill of Tell San El Hagar
Elevation:	2.0 m
Landform and Slope:	Flat
Vegetation and Land Use:	Newly reclaimed farm, vegetables and fodders cropping

General Information on the Soil

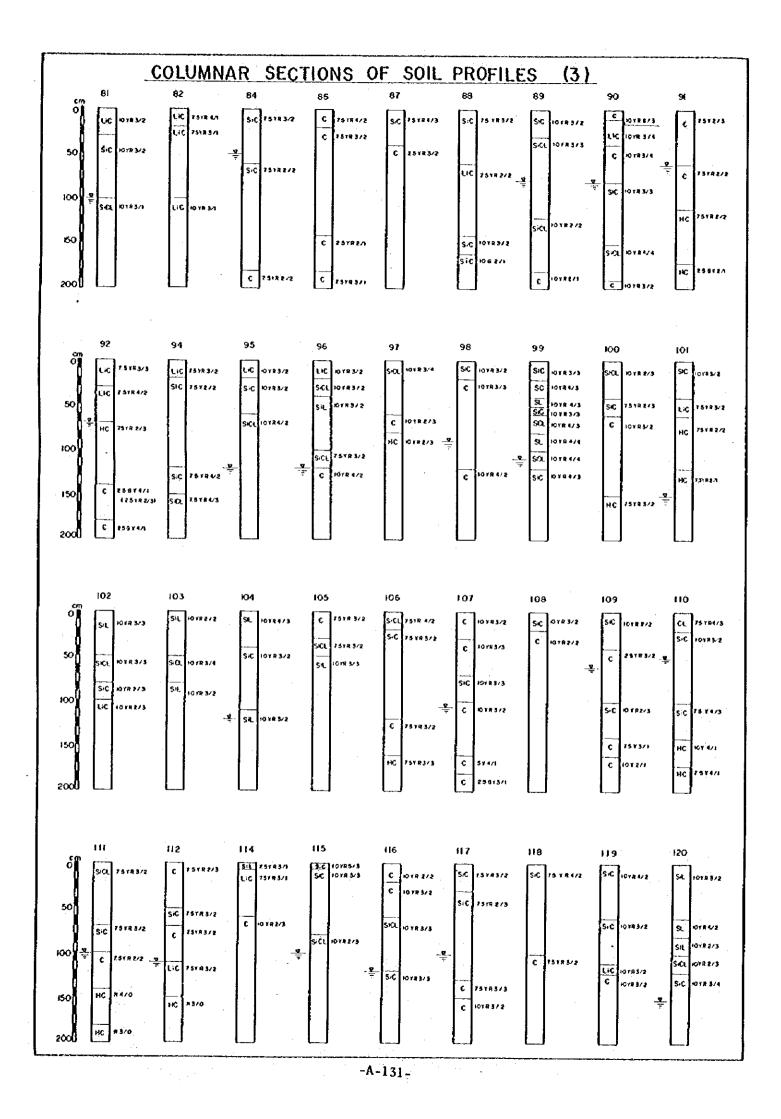

Parent Material:Fluvio - lacustrine depositsDrainage:WellDepth of Groundwater Table:80 cm below surfacePresence of Stones, Shells etc.:Scattering ancient ceramicsEvidence of Erosion:Susceptible to wind erosion

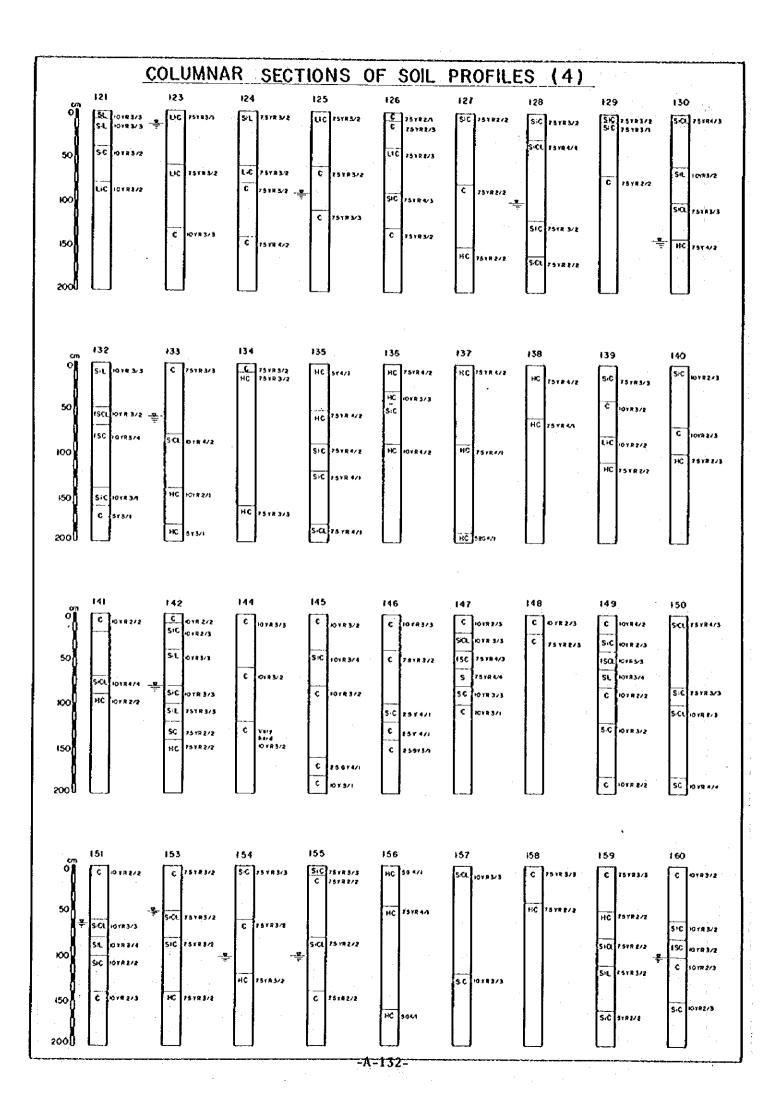
Profile Description

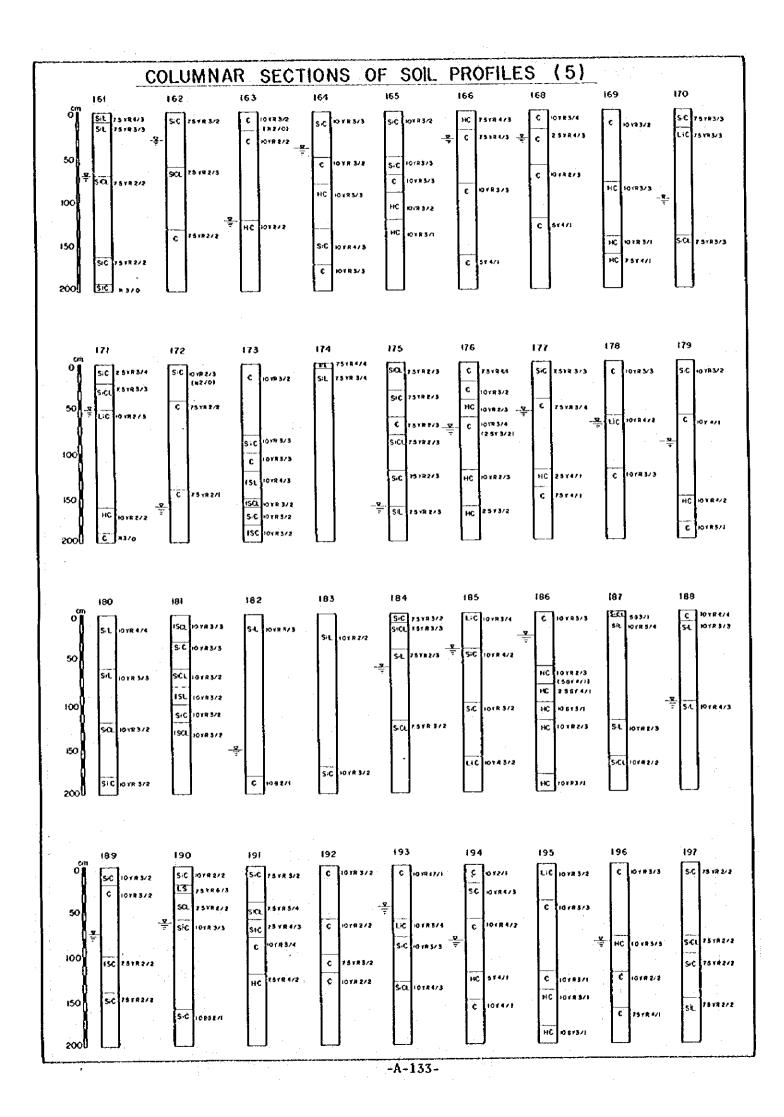

. -

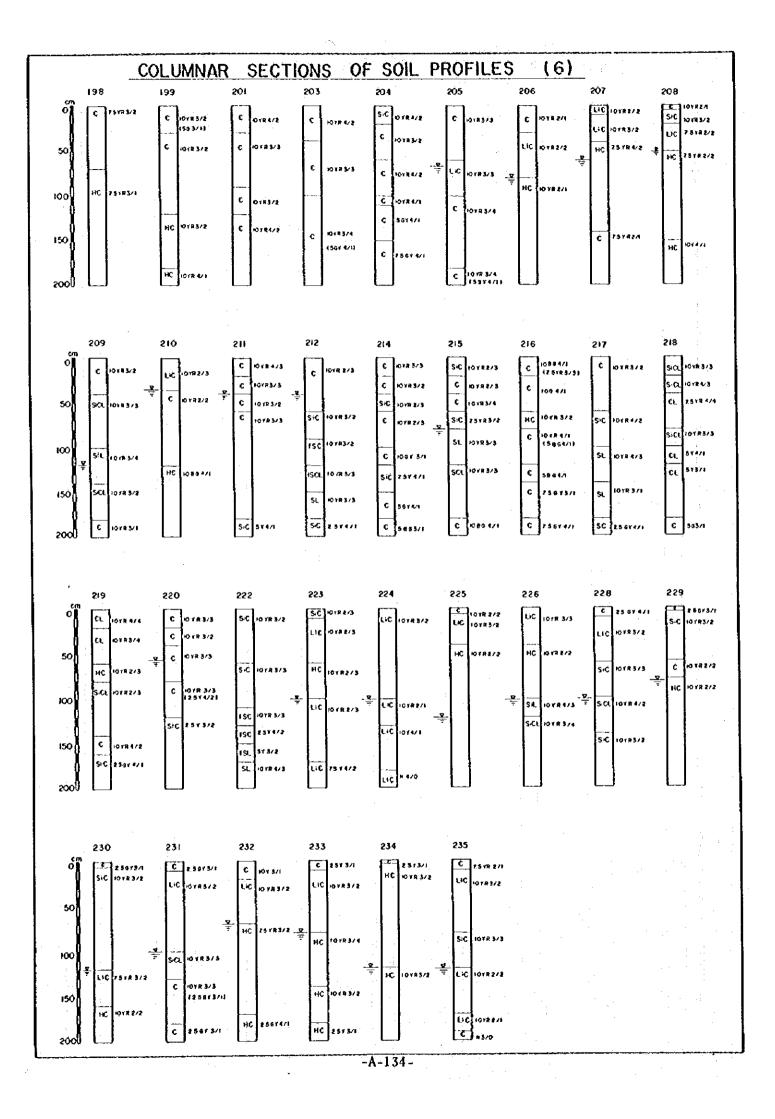

0 - 70 cm	Very dark grayish brown (10YR 3/2) silty clay loam, dry, friable, ancient ceramics, weak medium subangular blocky, slightly sticky and plastic, diffuse irregular boundary to;				
70 - 120 cm	Very dark brown (10YR 2/2) silty clay, wet, structureless, sticky and plastic, clear smooth boundary to;				
120 - 200 cm	Very dark gray (N 3/0) clay, wet, structureless, compacted.				

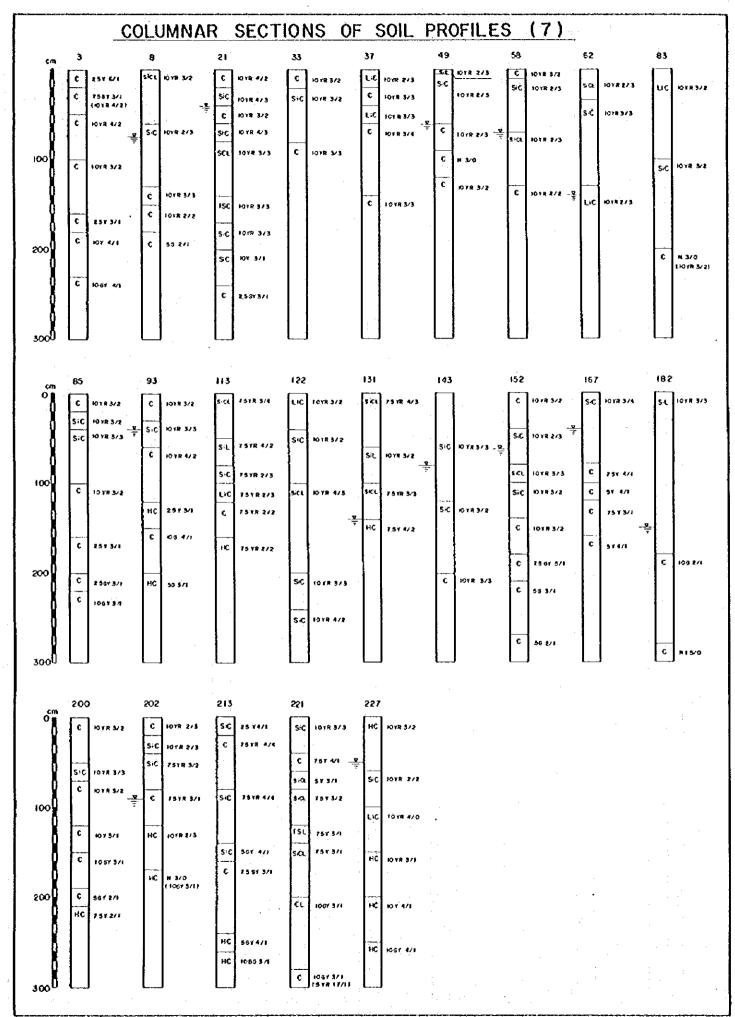
(Swamp and Inundated Lands)

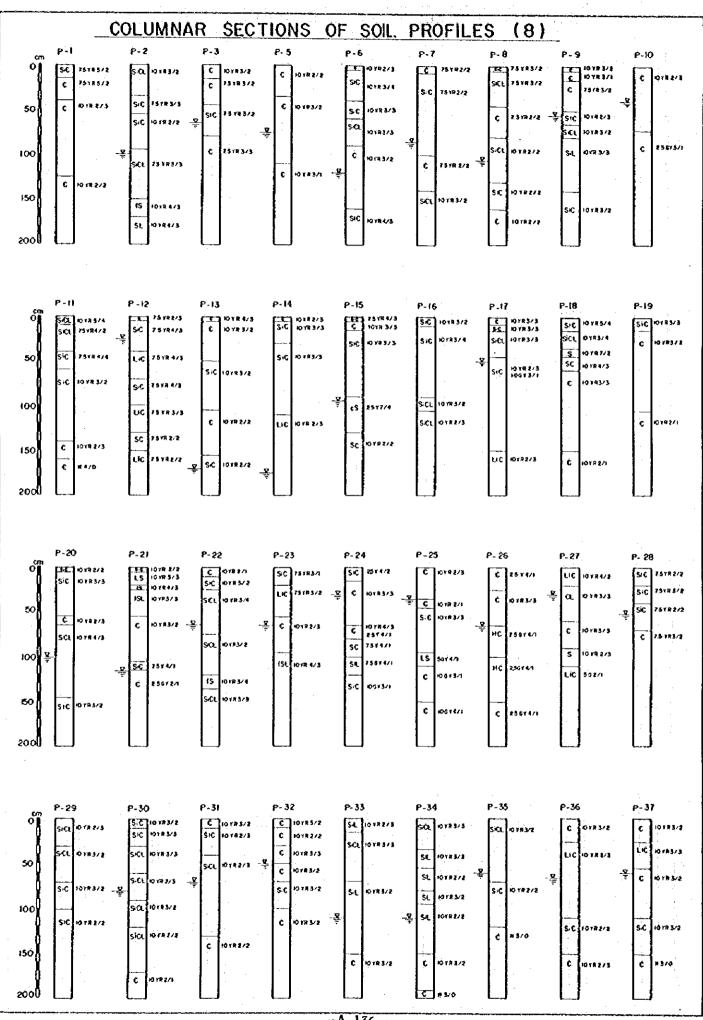


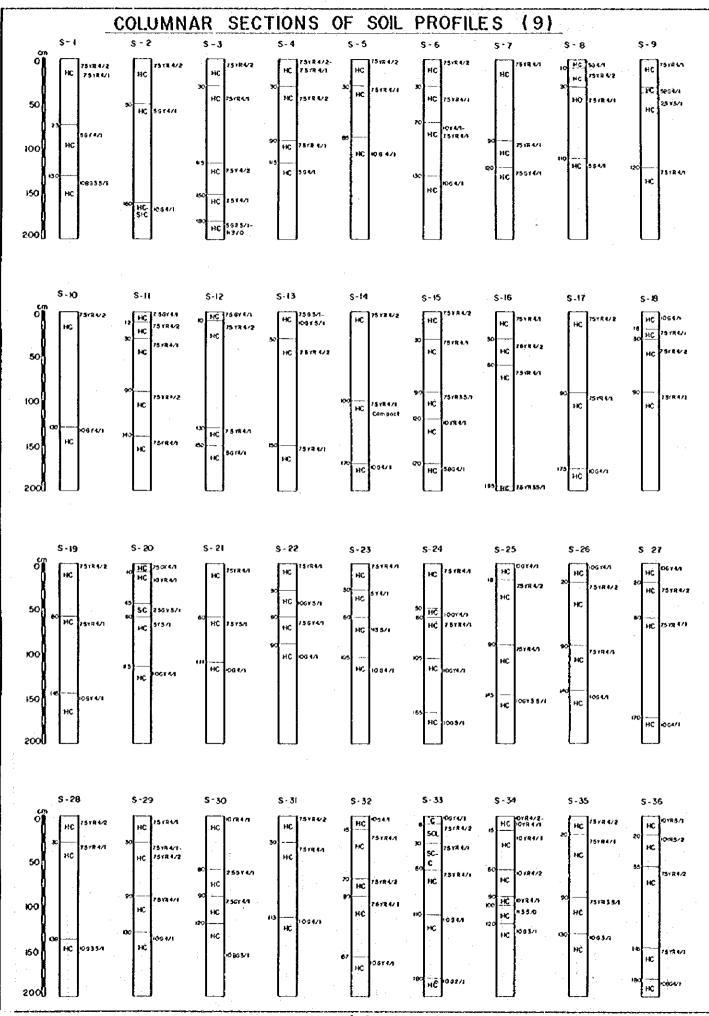

-A-128-

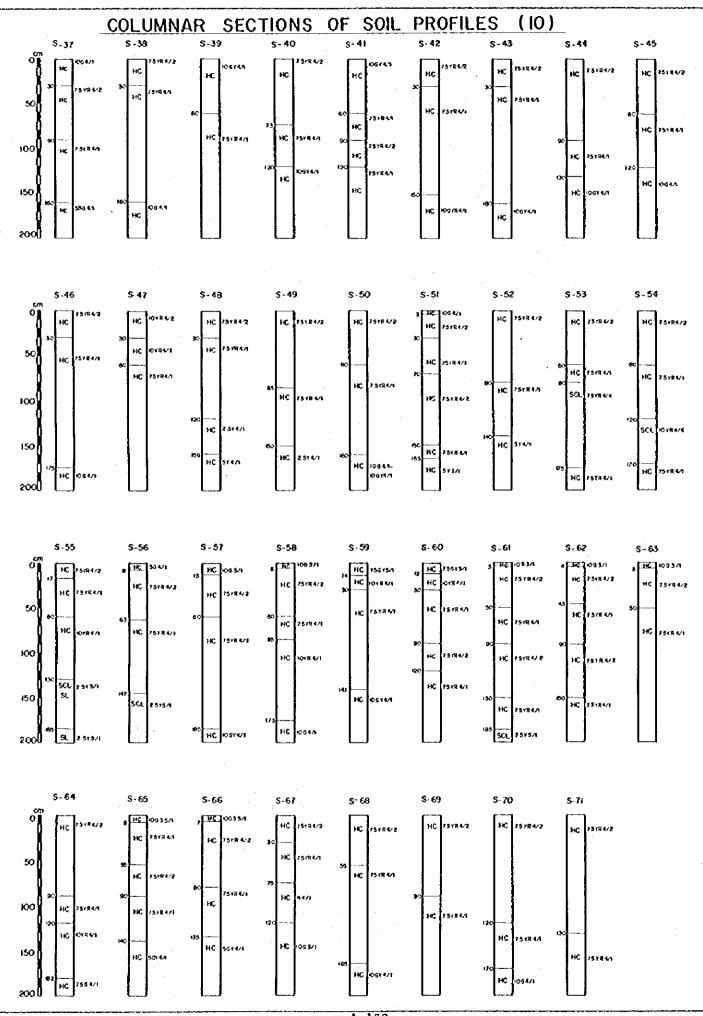





-A-130-




-A-135-


-A-136-

.

,

-A-137-

.

.

A.6.2. Results of Soil Analysis

The results of complete analysis are shown in Table A-9, and those of ECe and pH measurement in Table A-10. In addition, the results of soil analysis conducted during the Phase I Study are summarized in Table A-11. As regards soil physical properties, the results of three phase distribution and soil moisture content are shown in Figure A-21, Table A-12, and Table A-13, respectively.

In general, these results can be summarized as below;

- pH : Most soils show neutral or slightly alkaline reaction having the pH values within a range from 7.0 to 8.0.
- ECe : Most soils fall into a category of highly salinized soils, that is, the EC values of saturation extract are more than 16 mS/cm.
- Soluble Ions: The predominant cation and anion are sodium and chloride, respectively.
- CEC : Every soil shows high CEC value, more than 20 meq/100g

soil. The highest value is about 40 meq/100g soil.

ESP : The ESP values were calculated from the exchangeable sodium as a percentage of the CEC. Some soils fall into a category of alkali soils, that is, the ESP values exceed 15%.

Mechanical Analysis:

The

The textural class of all soils belongs to clayey.

percentages of clay fraction range from 44 to 76%.

CaCO3: The CaCO₃ content ranges from 0.8 to 5.6%

- Gypsum: The gypsum content varies widely from 0.2 to 8.6% with an exception of extremely high value (13.5%) of surface layer.
- Total-N: Total nitrogen contents are low. The highest value is still less then 0.1%.

Available-P:

Available phosphorus contents are moderately low; that is, 6 to 30 ppm P_2O_5 .

-A-139-

Organic Matter : Most soils contain scarce organic matter, that is, less than one percent. The values are ranging from 0.4 to 2.0%.

Bulk Density:

Average values of the bulk density range from 1.2 to 1.4 g/cm^3 .

Soil Moisture:

Moisture contents at saturation range from 55 to 75% and those at field capacity range from 30 to 40% in most dryland soils.

Most soils have large proportions of solid and liquid phases, that is, 40 - 50% and 30 - 40%, respectively. Vapor phase occupies only 10 - 20% in the surface layer (0 - 40 cm below the surface).

		-1		<i></i>				· 11	ათა	
		018.M.	2.00 0.57 0.75	0.50 0.50 0.72 1.04	0.95 0.45 0.38 54 0.58 54	0.50	0.77 0.76 0.76 0.77 0.72	0.76 0.89 1.37 1.285	0.99 1.23 0.745 1.285	0000
		Av-P (mgg)	14 6.5 16.5 22.5 5.5	51258¢ 51258¢	811.S 2.51 2.5	800 800	11000 40400 800	88408	5117 517 517 517 517 51 517 51 51 51 51 51 51 51 51 51 51 51 51 51	21.5 30 18.5 10
		1-N	0.099 0.030 0.031 0.038 0.038	0.025 0.025 0.050 0.052	0.0475 0.023 0.019 0.021	0.022 0.024 0.055	0.033 0.033 0.037 0.050	0.037 0.044 0.069 0.059	0.050 0.060 0.060 0.060	0.040 0.027 0.037 0.036
			80 2 2 2 0 0 8 2 2 2 8 2 0 8 2 2 2 8 2 9 0 8 2 2 2 8 2 9 0 8 2 2 8 2 9 0 8 2 7 2 8 2 8 2 9 0 8 2 7 2 8 2 8 2 9 0 8 2 7 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	10 s 8 s 7 0 4 1 9 0 5 9 0 0 5 9 0 0 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	801108 80108 805108	11 2 8 3 13 6	6.5 0.7 8.2 8.2	17.35 10.7 11.25 12.3	12.9	11 40 411
Exchangeable Contour		CEC neq/ 100g	233. 237.0 2004.00	23388 230888 270888	22.5 25.2 25.8	25 .8 28 .8 25 .2	86.00 86.00 86.00	22223 22223 22223 21423 21423 21423 21423 21423 21423 21423 21433 214 21433 21435 21435 21453 21453 21455 21455 21455 21455 21455 21455 21	10.00 10 10 10.00 10 10 10.00 100 1	51.51 54.55 54.55 55.55
		Ca+Mg 5011)	27.7 26.7 23.55 24.35 24.35	20.9 26.2 25.85 25.35 18.1	21.55 21.55 23.85 23.85	22.60 26.25 21.40	33.4 23.9 24.05 23.25 26.5	25.5 29.8 21.00 21.00	22.9 20.05 35.3	18 0 19 1
ngea	2		0.55	4000.4 200.15 255 255	0.15	0 3 0 15 4	0.25 0.25 0.55 0.55 0.55	0.15	0.1 0.15 0.15	1.0
ixcha	Acio	Na K (meq/100g								
1 11	1	zļē	NONOO NNNON	0,0,0,4 80 4 4 30 4 10 N	10.4 2.65 1.75	440 044	00014 00014	8.79.94 6.49 6.49 6.49 6.49	ычыл 4∞⊶4	51455 19.00 19.00 19.00 19.00
		¥I	1080N	4 N N Q N Q X Q N N		0 H 0 H N N N	N4 0 - 4	-04-0 10950	80140 9090	1140
•		Na	208 250 800 730	710 435 435 4900	400 450 455	500 500 710	490 430 860 1.275 1.275	3400 3400 3700 3700	600 360 340	200 270 290 270
	Cations	MR	6.6 33.6 109.2 253.8 119.6	148.6 132.0 148.8 180.6 56.8	53.1 9.2 10.8 69.9	87.0 72.6 248.0	153.0 120.6 288.1 157.4 90.4	96.6 79.8 628.9 138.2	193.5 83.2 78.8 188.6	202.0 60.1 151.3 189.4
	and	3	78.0 41.6 135.2 208.0 124.8	124 93.66 1114.68 93.68 93.69	82.3 98.8 83.2 104.0	72.8 124.8 104.0	119.6 114.4 187.6 171.6	78.1 25.9 215.7 91.2	119.4 50.8 86.8	162.8 28.28 36.8
	Soluble Anions	sod trer)	42.4 140.9 208.0 191.5 239.0	219.0 335.0 75.1 215.8 161.7	154.3 214.9 116.4 151.6	219.5 161.5 278.3	159.5 158.9 256.5 223.3 296.1	24.1 26.5 26.5 26.5	110.5 55.2 52.1 62.3	115.3 28.5 79.5 25.1
	Solub	C1 S04 (meq/litter)	245 184 537 1,056 1,739	768 672 624 1.018 480	0000 0000 4400	442 538 787	624 509 1,286 1,286	400 420 475 560 560	805 555 555 555	750 730 710
		ŝ	000000 09897	40495		n	84444 84444	0.59 0.59 0.59 0.98	0.39 0.98 0.59	0.98 0.78 0.59 98
		Gypsum (%)	24189	489994	2.1 0 8 0 8	4.0 2.5 2.5	44440 94994	44240	11.5 2.5 2.5 2.5	8008
		CaCO3	734104 1.4.6.80	44400 44484	4004 0881	199 199	101388	00000 00000	(10) () () () () () () () () () () () () () () () (88619
	lvsis	Texture	00000	00000	0000	υυυ	UUUUU	00000	UUUU	0000
	al Ana	Sand (1)	22828 22828	00000 11111	1888	202	19001 19001	44088 196088	4400 9400	0794 675
	Mechanical Analysis	Silt (3)	228870 22887 250	833333	4 2 8 8 2 8 8 8 2 8 8 8	28 23 29 23	1 1 1 1 1 1 1 4 4 1 3 8 8	055788 855888	8388	99999 99999
	ž	Clay (%)	2 2 4 2 4 8 4 4 2 4	8 2 8 2 5 S 2 5	4 V 4 4 8) (1 8) 69	5 4 4 8 8 4 9 0	0 0 4 8 0 0 4 0 8 10 0	0 9 8 1 4 9 4 0 9 8 1 4 4	\$ \$ \$ \$ \$ \$ \$	8 4 8 4
		(mS/cm)	222.5 252.5 87.1 68.0	68.0 69.5 84.0 45.1	58.58 25.0 45.0	47.0 49.2 72.9	54 5 88 54 0 473 6 5 25 5 7 0 7 5 7 0	32.2 35.2 42.6 42.8	57.5 24.9 38.1	53.53 53.53 5.53 5.54 5.54 5.54 5.54 5.5
		뇞	77778 27778	7.45	7.00	7.45	4.4.4. 4.4.4. 7.4.5 7.4.5 7.4.5	7.25 7.65 7.35 7.15	7.25	7.05
		S.P.	265 85 100 265 85 100	40 80 50 50 50 50 50 50 50 50 50 50 50 50 50	75 75 70	75 70 67	28.9.2 28.2 28.5 28.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	262 4 0 1 2 6 5 8 0 1	\$ \$ \$ \$ \$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		Cen)	0- 15 15- 40 40- 56 56-125 125-200	0- 35 35- 55 55- 95 95-150	0- 15 15- 45 45- 80 80-200	0- 25 25- 72 72+140	0- 20 20- 35 35- 70 70-110 110-200	0- 40 40- 60 60- 90 90-130 130-150	0- 5 5- 55 55-100 100-130	0- 5 5+ 45 45- 80 80+130
		8	1 - d	61 1 1	P5	P. 4	\$-4	9-d	P-7	2 2

•

Table A-9 Results of Complete Analysis (1)

-A-141-

	OTS M.	0.79 1.22 1.24 1.01	1.15 0.42 0.64	0.45 0.56 0.33 0.99	0.45 0.57 0.77 0.45	1.20 1.14 1.45	1.24 1.02	1.30 1.16	1.20	0.965 1.075 1.03	0.95 1.32 1.12	
	4-P	26.5 20.5 20.5	23.5 22.5 15	20 19.5 7.5 7.5	10.5 14 18 18 18	15 15 14, 5	18. 16	11.5	218 9 218	8 N 4	0 i 20	
	N-1	0.040 0.060 0.050	0.057 0.020 0.030	0.020 0.028 0.019 0.019	0.022 0.020 0.038 0.035 0.032	0.060 0.600 0.073	0.062 0.070 0.050	0.064 0.060 0.058	0.070 0.055 0.059	0.048 0.054 0.050	0.048 0.070 0.056	
16	ESP	11.85 11.2 15.8 12.8	9.5 13.0 10.1	20.8 20.3 12.0 12.0 12.0	10.1 11.8 10.6 14.7 11.6	16.6 15.5 13.4	15.0 14.0 10.1	11.8 15.8 12.4	10.4 13.6 11.8	10.7	15.J 11.6 8.9	
	33	27 0 22 8 31 2	31.4 26.4 29.8	27.8 25.8 25.8 25.8	25 8 25 8 25 8 24 0	25.8 29.0 29.8	28.4 30.0 25.8	31.8 29.0 29.4	25.8 37.6 36.4	23.1 29.9 28.0	27.4 32.4 31.4	
	Ca+Mg	23.6 20.1 26.95	28.25 22.65 26.45	21.8 20.4 22.9 22.55 22.55	22.05 22.6 21.9 21.9 21.9 21.9	21.35 25.35 25.6	24.05 25.75 23.05	27.75 24.1 25.4	22.9 32.15 31.8	37.1 23.95 24.2	22.9 28.35 28.15	
Exchangeable Cations	UI	0.25	0.15 0.35 0.35	00000 11111111111111111111111111111111	00000 110 10 10 10 10 10 10 10 10 10 10	0.15	0.2 0.15 0.15	0.0 2.5 2.5	0.35	4 2 4 2 4	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	
Excha Catio	×I	0000	040	0011-113	00000 00000 00000	пио	4 25 0 2 6 0 0 0 0 0 0 0	65	000 1:11	5 5 0 0 7 0 0 0	4.2 3.75 2.8 0 2.8	
	R.	N 4 4	10 M 10			0100 444	N 30 4 4 4 0	N 4 N	(11) 4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	41011	
	M	0000 0000	000	50055 11110	-00000	<u>ич</u> 4	ннй	400 400	4 N N 0 0 0	01 H2 10	63 CL 4	
		0000 5000 5000 5000	500 500 500	285 285 285 285 285 285 285 285 285 285	290 180 170	284 178 430	2300 330	315 200 265	500 370 350	200 245 245	270 270 460	
Cations		116.9 331.4 277.8 108.0	128.1 90.5 147.9	93.55 82.55 125.55 125.55 125.55 125.55	119.6 60.7 152.9 116.0	52.5 57.3 54.75	102.2 73.9 71.9	121.4 68.0 80.8	151.0 112.5 89.0	77.6 120.9 77.4	86.5 54.6 100.0	
	빙	59.7 206.2 238.7 32.6	54.5 22.8 82.5	4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7.75	72.8 52.0 114.0	90.5 62.4 83.2	57.2 26.0 31.2	46.8 52.0 52.0	72.8 62.4 26.0	73.0 67.7 83.2	
Soluble Anions and	ş	131.8 70.0 27.3	75.1 19.3 22.3	11.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	27.9 25.8 28.9 10.4 10.4	59.0 37.7 162.4	151.5 113.4 105.2	142.5 46.0 77.5	128.0 141.3 132.3	119.0 148.1 71.0	135.5 87.7 180.8	
Solub1	вI	275 290 305	509 405 710	390 320 2500 2500 2500	4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	380 230 476	322 354 400	351 248 300	572 395 360	332 438 276	300 305 464	
	ŝ	0.75 0.59 1 1.17 0.59	0.78 0.48 0.59	0.59 1.17 0.78 0.59 0.59	0.98 0.98 1.17 1.17	9 H D 4 H D	742	1.75	144	1.1.1	1957	
	Cypsum	4040	004 004	80004 90004	46400	400	4.0 4.6 4.4	2.0 1.0 0.6	0 0 0 0 0 0 0 0	0.2	107	
) 1	CaCO3	1011 1011	004 840	44400 N N N N N N N	NV808	480	11 11 11 20 40 40	1400 1400	600 1111	9.60 9.15	(14 (1 4 00 4	
Veis	Texture	άσυσ	000	00000	00000	000	συσ	បបប	υυυ	000	000	
Machanical Analysis	Sand	86.99 9	56 6 5	04990	4440 98440	004 004	404 404	828	30 10 10	នួនខ្ល	0990 1990	•
schani (Silt	58536	14 14 10 14 10 14 10 14 10 14 10 14 10 14 14 14 14 14 14 14 14 14 14 14 14 14	NNN48 NON68	N N N N N N N 4 N 9 8	4 9 0 7 9 0	16 16	100 100 100	6666 110	110 1000	0 9 9	
ž	C ak	4 8 8 9 4	84 84 40	S 2 8 1 5 6 8	N 4 0 4 N U 8 4 0 N	5 0 T 0	0 4 9 5 4 9	4 6 6 0 6 0 6	59 68 64	64 60	6 6 6 6 8 6	
	ដ្ឋ	21.0 21.0 21.0	41.2 31.2 47.6	33.6 33.6 26.5 27.7 21.5	34.2 36.6 25.5 130.1	32.4 20.7 45.7	35.0 34.5 37.0	36.2 23.0 28.6	49.1 38.8 36.0	33.5 42.4 26.5	32.6 30.1 45.9	
	핇	7.002	7 5 7 45 7 35	7.7 7.35 7.65	7.15	977	7.65 7.95 7.75	7.75 7.85 7.95	7.7	5 7 7 5 7 5 5 8 0	7.65 3.0 7.8	
. •	S.P.	6 S S 6	87 59 65	67 58 58 71 58 71	88819 88819 891	75 95 100	75 90 90	110	85 120 110	12.5 120 112.5	8 5 1 8	
	Depth	0- 15 15- 50 50- 80 80-140	0- 25 25- 72 72-140	0- 8 8- 40 80- 60 60-140 140-200	0- 40 40- 70 70-100 100-130	0 - 30 3060 60 - 90	0 - 30 30 - 60 60 - 90	0 - 30 30 - 50 60 - 90	0000 1 1 1 0000 0000	50 50 50 50 50 50 50 50 50 50 50 50 50 5	0 - 30 50 - 50 60 - 90	
	No.	6-d	0T-d	P-11	N 1 1 0	S-4	\$*\$	S-27	N 1 2 2	\$-35	S-44	

-A-142-

Results of Complete Analysis (2)

-A-143-

Table A-10 PH and Salinity

																				•																
EC mS/cm)	9.4	24.7	31.0	14.3	62.9	21.0	35.6	22.0	57.0	69.4	20.5	24.8	26.3	60.4	38.6	51.8	30.5	13.4	37.7	44.7	12.2	23.8	25.7	62.2	82.2	31.2	24.1	60.3	30.4	37.4	61.1	35.3	40.6	38.6	12.9	22.2
Ha	7.6	7.4	7.15	7.3	7.5	7.7	7.6	7.4	7.6	7.8	7.4	7.6	7.4	7.2	7.3	7.2	7.7	7.35	3.0	7.5	1.8	7.2	7.2	7.3	7.5	7.7	7.8	7.05	7.2	7.1	7.0	7.15	7.0	7.25	0. 8	7.3
(Z)	83	65	50	2	46	\$	61	55	60	46	66	62	63	61	68	24	80,	75	ŝ	45	95	85	47.5	77	- 75	72	60	57	99	53	53	66	60	66	65	63
Depth (cm)	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0~30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60 .	9-30 20	30-60
No.	151		152		153		1.54		1.55		157		158		159		160		161		162		163		164		165		166		167		168		169	
EC (<u>mS/cm</u>)	32.8	61.8	18,5	55.7	9-44	s. o	51.9	26.0	39.1	57.4	54.1	52.5	28.2	34.6	18.1	31.2	17.9	51.7	73.6	80.2	49.3	39.0	19.5	59.7	7.66	42.9	35.2	19.4	14.9	19.5	56.4	31.5	26.8	16.4	9.5	35.8
PH	7.3	7.2	7.2	7.1	7.3	7.2	7.0	7.5	7.3	7.35	7.35	7.25	7.25	7.4	7.2	7.4	7.3	7.3	7.2	7.1	7.0	7.1	7.8	7.6	7.0	7.05	7.35	7.0	7.1	7.45	7.2	7.4	7.25	7.0	7.4	7.6
the state	11	58.5	57	8	£9 .	58	68 [.]	69	88	74	78	78	74	. 98	72	55	62	79	45	07	55	64	80	85	67	41	56	72	85	88	46	80	75	83	۶ 2	55
Depch (cm)	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	030	30-60	0-30	30-60	0-30	30-60	0-30	30-60	030	30-60	0-30	30-60	0-30	30-60	0-30	30-60	030	30-60	0-30	30-60	0-30	30-60
No.	131		133		134		135		136		137		138		139		140		141		142		144		145		146		147		148		149		150	
3																																				
EC (mS/cm																																				
•	7.2																																			
65 25	67	62	20	55	20	85	60	6 6-	77.5	57	60	80	80	75	ŝ	8	75	62.5	65	67	55	5	70	8	70	65	75	67	8	80	67	51	65	70	24	59
Depth (cm)	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	030	30-60	0-30	30-60	0-30	30-60	0-30	30-60	030	30-60	0-30	30-60	030	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60
No	111		113		115		116		117		118		611		120		121		122		123		124		125		126		127		128		129		130	
jî			• -																																	
EC (<u>mS/cm</u>		•																1																		
Hd	•																																			
65 (2)	77.5	65	65	65	70	80	62.5	.65	67.5	20	65	65	. 66	67	60	19	20	62.5	6	75	65	7.5	55	ŗ	20	70	. 75	65	45	76	.66	60	66	63	56	67
Depch (cm)	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	030	30-60	0-30	30-60	0-30	30-60	8 5	30-60	030	30-60	0-30	30-60	0-30	30-60	0-30	30-60	9-30	30-60	9-30	30-60	0+30	30-60	0-30	30-60	0-30	30-60
<u>No.</u>	92		93		*		95		8		97		9 8		66		100		101		102		103		104	·	105		106		108		501		110	
																-4	\-1	44	-																	
																																				•
												,																			1					

· · ·

PH and Salinity (2)

	EC (mS/cm)																																				
	Hđ	7.IS	7.2	7.45	7.6	7.7	7.35	7.3	7.35	7.35	7.45	7.45	7.15	7.9	7.7	7.4	7.15	7.1	7.25	7.35	7.25	7.25	7.35	7.2	7.4	7.15	7.3										
	8 (<u>x)</u>	70	55	80	88	20	75	75	60	72	73	75	62	8	70	25	62	65	õ	80	65	9	67	57	75	60	25										
	Cepth (cm)	0-30	30-60	030	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	00-0	30-60	0=30	30-60	0-10 01	30-60	010	30-60	0-30	30-60	0-30	30-60										
	No.	223		224		225		226		227		22.8		229		230		231		232		233		234		235											
	EC mS/cm)	0.3	3.7	8.0	5.7	2.5	5.2	7.8	9.4	3.5	9.8	8.2	5.5	8. 4	7.4	7.7	4.3	40.8	0.9	9.3	1.5	4.8	8.4	7.0	4.6	9.8	2.2	2.0	6.9	317	6.8	21.6	14-1	12.6	15.8	32.0	5 J
÷	\sim																	7.5 4																			
	а С	75	02	75	65		20	65	72	72	72 .	67	92	60	75	·65	75	85	20	06	94	10	65	64	73	65	20	63	80	62	81	65	83	75	83	75	â
	Depth (cm)	0-30	0-60	0-30	10-60	0-30	09-00	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	01-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30~60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	030	3060	0-30	07 00
		204		205		206		207		208								212								217		218		219		220		221		222	
	Î																_			÷		_	<u>.</u>	~	~	•				•	`	4	0	5	.4		
	EC (ms/cm)		• •															5 13.1																			
	Hd		7.6															7.45																			
	45 45	63	60	52.	60	40	63	63	53	. 76	53	80	66	80	66 .	65	20	83	77.	71	6 6	S	55	53	54	80	100	\$3	82	57	09	80	65	62	8		
	Depth (cm)	00-30	30-60	0-30	30-60	0-30																												0-30	30-60		
	 1X0	187		188		189		190		191		192		193		194		195		196		197		198		199		200		201		202		203			
	EC (mS/cm)	5.9	16.4	38.2	61.1	19.8	70.3	15.6	55.7	35.4	1.44	53.9	103.6	36.2	68.5	64.3	1.06	59.6	59.7	36.3	34.6	79.9	12.9	33.9	10.3	107.2	15.3	16.5	26.9	8.84	24.0	39.7	30.5	36.6	11.7		
	Ha	8.1	7.9	7.8	7.6	7.5	7.3	8.1	7.6	7.1	7.7	1.1	5.2	7.0	7.1	7.05	7.0	4 8	7.0	7.7	7.15	7.5	7.45	7.9	7.25	7.7	7.35	7.4	7.3	7.1	7.3 .	7.2	7.25	8.0	7.15		
	(2) (2)																	55																			
	Cen Ch	0-30	0-60	0-30	0-60	0-30	0-60	0-30	0-60	0-30	0-00	0-30	0-60	0-30	0-60	0-30	0-60	02-0	09-01	0-30	09-01	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60		
	40. Vo.		• •																									183						186			
	-1									•	-							14																			

3	
Salinity	
and	
Нd	1

	EC (mS/cm)	32.9	30.0	24.0	0.6	28.2	63.4	33.3	2772	10.0	31.6	61.5	22.5	34.4	23.7	30.1	29.9	15.5	0.14																
	M	7.15	7.15	8.1	7.8	6.85	7.55	2.9	7.6	7.2	61 60	7.8	7.8	7.9	8.0	7.9	7.7	8.0	8.0					÷					•••		÷				
	63 3	88	66	80	8	65	80	8	25	80	63	65	65	80	70	75	60	69	65																
	(cm)	05-0	30-60	00-00	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30 0-30	30-60	0-30	30-60			·													
	No.	67-5		87-S		S-49		S50		S-65		S-66		S69		s-70		S71																	
	() Cent	30.9	. 2	8.	7	S.	5.2	.4	4	.6	6.	1.1	.4	80	5.5	6.9	6.1	4.0	3	5.3	5.5	6.6	8.9	7	8.0	5.5	3.5	5.4	3.7	3.5		5.8	٤.5	ۍ رو د رو	7.8
(†)	"ĕ	7.9 30											•																						
inicy																																	2	~	2
PH and Salinity	AS (F	85	85	8	02	80	100	53	63	16	87	87.	65	72	57	85	72.	83	82	60	8	ያ	70	92	80	5	66	88	6	72	. 76	66	60	77	99
PH a	Depth (cm)	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	30-60	0-30	3063	0-30	30-60	8-0						030	30-60	0-30	30-60
	21	S-20		S21		S-22		S-23		S-24		S-25		S-26		S-29		s-30		S-32		S-33		75-34		S-36		s-37		S-39		17-S		S-42	
	~	• .				•																													
	EC (ms/cm	.12.9	14.3	15.21	19.5	50.9	28.7	12.4	14.0	32.1	12.9	13.0	41.7	34.1	27.5	6.8	د. د	16.5	35.9	15.0	32.6	19.3	6.6	42.2	13.5	20.4	12.8	10.1	41.9	10.0	43.0	18.2			
	풘	8.0	7.9	7.4	7.3	8.3	8.2	ດ. ເ	7.3	7.9	7.2	7.15	7.15	7.25	6.7	8.0	7.25	7.15	8 2	8.3	7.3	7.25	7.15	7.9	7.25	8.2	7.3	7.3	8.0	7.2	7.05	7.2			
	S I	100	100	72	55	8	78	93	75	80	75	75	72	63	75	50	80	85	6	11	60	70	80	65	8	66.5	80	75	63.5	75	68	113			
	Depth (cm)	0-30	30-60	0-30	30-60	0-30	30-60	0-30	0-30	30-60	0-30	30-60	<u> </u>	30-60	0-30										8-0	30-60	6-30	30-60	0-30	30-60	0-30	30-60			
	 0	S-1		S-2	•	S-3		S-5	S-7		S-8		6-S		S~10	: ``	11-S		S-12		S-13	÷	5-14		S-15		S-16		S-17		S-18				

-A-146-

	018.X. (I)									
	Sol-P (mdd)	5.5 5.5	- 2° - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	2. 2. 2.	7.5	1.9 1.9	044 044	5111	4 	5.11
	Sol-N Sol-N	33.8 41.2 1	27.9	52.9	70.6 64.7	1 + 1 7 + 1 7 + 1	1,44 1,55 1,05 1,05 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	57.4	7	52.9 + - +
	ESP (2)									
	CEC meq/ 100g	21.5 21.5	28.5 1.0 1.0	0.11 11	18.5 19.5	26.5	31.0 42.0	80 10 10 10	ອງ ເຊິ່ງ ເ	0.111
Exchangeable Cacions	Na K Ca+Mg (meq/100g soil)						·			
	MI	9.0 H	0115 0115	0000 0000 000	1.1	0004	19990	0000 0000	0000	4401
	Na	1,040 130 290	1,328 725 662 375	280 375 192 192	1,365	350 483 561 739	404 404 404 404 404 404 404 404 404 404	495 1160 310	197 37 37 37	1,300 710 1,000
CALLOUS	Mg	450 165 200	920 665 121	230 83 196 147	356 192	110 155 202 245	57328	335 72 84 112	181 36 29 29	745 627 348 379
) pus su	3	134 75 85	583 265 180 74	83 83 83	192 114	88 95 768 768 768 768 768 768 768 768 768 768	2624	185 185 185 185 185 185 185 185 185 185	2005	373 263 201
Soluble Anions and Carions	tter)	334 139 193	622 516 337 180	218 127 139 200	414 320	345 346 342	23805 23805 23805	326 80 120	163 33 26 26	589 345 431 431
Solub	(meq/litter)	1,290 230 381	2,210 1,140 930 388	350 250 220 220	1,499 1,078	392 588 790 1.065	4 1 4 4 4 9 4 4 2 4 4 2 4 4 4 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7	687 137 183 321	294 50 42	2,361 1,364 1,217 1,079
	HCO3	ಗಾ ಐ ಐ ಕ ಕ ಕ	6 8 6 9 7 0 0 0	4004 4004	55		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			4444 4440
-	Cypsum (Z)	0.4 4.7 10.8	210837 21083	4 0 1 1 • • 1 1 • • 1	1.6	100	7.0 2.0 9.9	028 0111	1.5 0.8 6.6	10 10 10 10 10 10
	(z)	440 204	0444 V 2 2 8	0040 V 840	4.4 4.5	0.040 0.080	0044 4894	2400 2424	0404 0404	1000 480 280 290
ysis	Texture	000	S S S S S S S S S S S S S S S S S S S	88 88 80 80 80 80 80 80 80 80 80 80 80 8	00	ამაყ	UUUU	បបបដ្ឋ	υσύσ	0000
Mechanical Analysis	Sand (X)	ດ ເ	ທ່າງທາງ	វុភ្សរ	ងង	22 7 0 7 7 7 0 7 7 0	នុងខ្លួនដ	ก้องก	~~ ~~	0022
chanic	Silt (%)	288	2385	8888 8888 8888 8888 8888 8888 8888 8888 8888	S S	8213	<u> </u>	\$3555 \$	3383	3838
Me	C1 ay (Z)	350	260 255 255 25	4400 NNN0	83	8 8	0.000	2228	8 4 8 8 8 4 8 8 8 4 8 8	8 4 4 N
	EC (mS/cm)	81.4 19.2 28.7	146.6 87.9 63.5 28.6	28.7 24.9 31.6 21.1	95.8 69.9	27.3 36.7 56.6 70.5	314	22.03	24.9 6.7 6.7 6.7	147.0 85.5 80.8 66.5
	Ha	8 8 8 8 1 0 1	8888 1100 1100	7 7 7 8 8 0 8 1 8	7.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000 1414 1414	7 7 7 7 8 7 8 9	2 8 8 8 9 4 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7777
	s p.	860 84 1	8000 8000 8000	885¢¢	12	78 78 78 78	88 89 18 87	82 87 80 19 80	80 80 80 7 4 4 5 7 4 4 5	54 67
	Depth (cm)	0- 15 15- 36 36- 30		0-12 40-57 57-90 57-90	01 -01 01 -01	0- 8 8- 17 8- 17 17- 37 37- 78	8- 25 25- 25 55- 55 55- 55 80 55- 80 55- 80 50 50 50 50 50 50 50 50 50 50 50 50 50	0- 10 10- 45 60- 85 85-100	1- 18 18- 44 44- 78 78-110	0- 8 8- 42 42- 65 65-100
	No.	34	ส	36	37	58	ຮ	33	4	Ś
				-A-	147-					

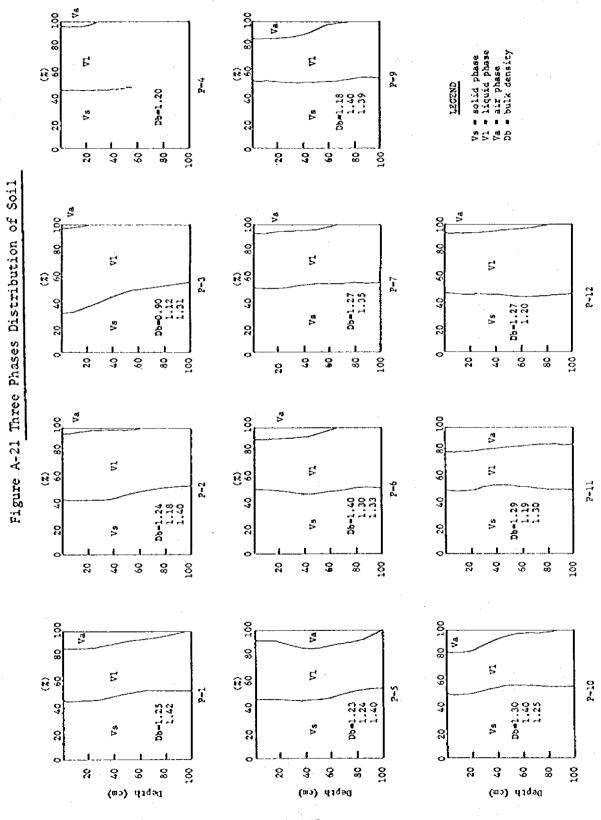
Table A-11 Summary of Soil Analysis(Phase I Study) (1)

		Org.N. (Z)		-							
		a-los		1 · · · 1 1 · · · 1	2,5	0 111	00	1 4 20 1 1 1	1 1 1 1 1 1 1 1 1 1 1	22.5	
		Sol-1 (ppa)	47.1 	321 321	0 50 £ 1	63.2	2221 2221 2251	17111 4.111	38 I 38 I 3	60.3 38.2 97.0	
·		(x)									
		CEC meq/ 100g	17.5	16615 16615	23.0	6111 0	14.5	32.5	- 0 • 1 + 1 • 1 •	225.5	
(2)	Exchangeable Cacions	Na K Ca+Mg (meq/100g soil)									
		21	0.902	4646	404	0000 0000	40000 25688	00000 00000	00100	04000 4001-0	
Study)	ų	NB	1,800 1,425 900 928	1,774 1,080 1,025 1,025	920 480 1.000	680 2,160 1,275 1,155	1,500 450 510 480	29055 29055 29055	284 1 008 409 120	1,800 1,084 760 760	·
(Phase I	Carion	9	797 272 391 339	761 738 748 306	323 223 223	288 500 662 632	632 834 261 261	270 371 128 128	226 226 296 296	626 664 716 439	
	Soluble Anions and Cations	S	563 514 109 120	403 185 142	251 218 296	142 318 558 627	368 480 153 153 153	233 233 95 85 85 85	71 126 154	583 313 313 212 212	
Analysis	ole Ani	itter)	690 456 371	814 2129 265	403 269 392	229 459 255 223	567 3674 3674 3674 3674 3674	1632 1932 1632 1632 1632 1632 1632 1632 1632 16	194 349 47	599 546 558 558 558 558 558 558 558 558 558 55	
	Solut	(meq/litter)	2,470 2,055 1,170 1,015	1,964 1,274 1,078 990	1,160 833 1,225	880 2,518 1,940 2,191	1,413 1,920 637 588 588	1,176 470 321 290	245 980 383 155	2,410 1,520 960 1,215	
of Soil		HCOJ	4476 4476 4476	6046 6466	306	2 1 1 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	48995	48448 90668	22280	00000 01000	•
		Cypaum (2)	12.2	8304 8376 8276	9 0 0 1 9 1	15.7 13.0 7.7 6.3	20140 19002	00000 44400	2440 Nato	8440 4474	
Sumary		CaCO, (Z)	2000 4990	0000	0-8 0.5 1-2	0000 2450	00000	04444 91089	00000	00000	
·	ilysis	Texture	- 115 555 555 555 555 555 555 555 555 555	000 ¥ 8 9	υúυ	840 840 841 841	-22223	Sich Sich Sich Sich Sich Sich Sich Sich	ပ်ပ္ပိုင်ပ	០០០ម <u>ក</u> ្ត	
	Mechanical Analysis	Sand (II)	85283 28533	501 801 8	i∿ (°i 00	80048 44	22825	83381	40000	252395	
	echani	Silt (1)	6228 6228	38 38 18 38 18	*22 2	1978 H	33232	5 8 8 8 8 8 8 8 8 9 8 8 8	8466	488886	
	£		55 17 17 17 17 17 17 17 17 17 17 17 17 17	25250	59 59 69	3323	882558	448888	8228	42245	-
		EC (mS/cm)	128.0 111.6 69.6 69.7	144.4 85.5 66.5 62.8	78.9 55.1 76.0	55.1 150.0 124.8 124.8	250.7 51.6 51.6 51.6 51.6 5 4 5 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5	26.4 28.2 22.6	22 25 25 24 24 24 24 24 24 24 24 24 24 24 24 24	150.4 103.4 61.1 89.3 79.9	
		HG	0440 0440	11010	7.8	5505 4444	8040H	N04402	20014	74044 74044	
	•	S.P. (Z)	255 255 14	5666 6666 6666	573	2 2 4 4 2 2 3 4 2 3 3 8	65 9 7 8 9 65 9 7 8 65 9 7 8	44468	88887 8885	88888 8	
··· ,		Cepth (CB)	0- 25 6- 25 6- 25 6- 55 7- 55 7- 55	1- 4 4- 25 25- 65 65-110	14 51 18 18 80	1- 18 18- 43 43- 70 70-100	2- 7 7- 19 7- 19 47- 47 80-120	2-1-7 7-17 17-40 60-60 60-85	2- 6 6- 27 27- 45 45-140	1- 7 7- 37 37- 55 55-100 100-120	
		No.	16	г .	en L	vo	17	50	t-	21	
					-	A-148-					
			1		÷	• .		i.	. • .		

		<u>org.X.</u> (2)										
		Sol-2 (ppu)		°	7.5 2.5	1 . 1 . 1	горин 1 обрани	4 0 2 0 4 0 2 0	101		90 11 84	
		Sel-N (ppm)	36.8 16.2 23.5	0 0 1 1 1 1	52.9	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S. t⊗;1t	77.9 52.9 58.8	- 29.4 -	6. 9.111	20.11	
		(X) 451										
		neq/ 100g	24.0 21.5	32.5	35.5 1 - 5	30.5	34.5	11.5 20.5 24.0	18.5	0°9111	1 1 8 1 1 0 5	
	ble	Ca+Mg 011)								-		
(3)	Exchangeable Cations	Na K Ca+Mg (meq/100g soil)			• .							
Study)	ן י ן	×I	4444 9849	004400 100440	1010.6 1.8 1.7	0.8 0.8 0.8	0.000 0.000 0.000	0.0	онн Фил	4400 1400	4444 4	
н		Na	700 800 810 925	1,080 490 355 355	307 475 555	1,580 1,285 770 400	1.491 509 410 610	290 290 170	510 2,011 1,200	1,280 959 350 370	1,100	
(Phase	Cations	80 20	202 250 251 251 251	1,071 413 292 141 161	26601 26601 36601	551 217 217 217	295 260 306	397 169 117	330 2070	182 173 73	353 373 226 256	
	Soluble Anions and (3	218 250 374	229 218 218 209 209	169 191 272 272	495 590 115	845 275 154 154	193 98 82	174 390 212	242 87 92	254 376 298 254	
Analysis	le Anio	SC SC	193 374 376 571	803 362 152 280	216 245 211 292	576 405 339 151	651 263 249 238	298 177 158	257 396 318	211 190 114 91	425 380 469 414	
Soil /	Solub	Cl SQ (meq/litter)	925 926 735	1,579 731 927 400 729	520 880 633 880	2,050 1,944 878 509	1,980 675 780 831	792 378 210	490 2,332 1,300	1,492 410 441	1,281 517 1,517 1,517 1,517	
о F S		52		84448 86978	0000	0444 0444	<u>6666</u> 6666	1.3 2.6	6 6 6 7 7 9 9 7 9 7 9	0440 0440	4044	
Summary		Cypsum (X)	4440 N84N	44404 04822	12.4 0.5 1.8	13.8		1160	440	86644 86644	4000 4000 700	
Su		CaCO3	010.8	6.11.86 7.1.86	4 M M M M	20110 2012	4.00 4.0 7	0.8 3.8 8.8	0.7	0480 9490	9000 9979	
	ysis	Texture	0000	ដូចចចច ស្ត	0000	Stor Stor Stor	i u u u	000	υυυ	υυυυ	HUUUU HUUUU	
	al Anal	Sand (X)	8894 8944	44998	1445 1445 1445	2833	52555	51 51 5 55	ማ ማ ወ	425 1985 10	6 6 6 8 8 5 8 5 8 8	
	Mechanical Analysis	(X)	0.15	822280 827880 827880	8.5.5	8558	39.19	2025	18 27 27	222.00	9449	
	a. S	C14y (7)	87 74 43	862460 86240	57 28 28 28 28 28	ងម្ភងង	8888 8888 8888 8888 8888 8888 8888 8888 8888	25 S	73 64 70	8 5 6 F	2444	
	·	EC (mS/cm)	55.8 55.8 93.0	119.6 50.6 64.4 27.6 50.6	32.5	131.6 117.5 61.1 33.0	131.6 47.0 56.6 53.7	54 6 27 8 19 2	37.5 135.9 80.8	85.5 60.8 26.8	85.5 95.0 121.6 76.0	
		칭	~~~~ ~~~~~	77777	0101	0001	4001	1 1 1 1 1 0 0 1	7.6	7007 1007	68. 	
		S. P.	58833 51883 51	46 56 70 70 70 70 70 70 70 70 70 70 70 70 70	8 8 8 8 A	5 6 6 5 2 6 6 6	36 36 36 36	65 75 80	122	25 25 25 25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
		Cem)	4+ 15 15- 28 28- 63 63-100	80-110 80-120 80-120 80-110 80-110	0.5- 11 11- 35 35- 60 60- 90	2- 15 15-34 34- 63 63-100	1111 1111 2225 2255		2- 16 16- 46 46- 80	24- 26 26- 50 50- 95	10- 25 25- 45 45- 60 60-100	
·		<u>%</u> .	4	18	52	27	29	43	м ,	1	21	
		· .			÷.	A-149						
• .								•	· · ·	· .		

		.:I			-					
		ودي.٨. (<u>ت</u>)							- - -	
		(udd) d-los	4110 8	4 1 (‡ • 5	2 0 0 1 1 2 0 0 1 1	9 4 4	°	1 ⁵⁵ 1 1	00 I I	• • • • •
		N-los	26.5 	64.7	62.2 70.0 1	7 7 7 7 7 7 7	6 7 7	vi 1 80 t I 7	32 192	77.9
		ESP (X)								
		cec meq/ 100g	50.0	28.5 	11.0 19.5 -	29.0 1 1 1	4 0.111	27.5	17.5	5. 11.5
	Exchangeable Cacions	CA-ME SOLL)								
. 1		× I	иичч Иофо	агач	42000 44240	4044	4000 1000	H 0 0 0	1000	0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6
+) (+)	8	8) N	860 1.790 1.350 1.355	1,198 1,198 998 812	2,280 214 392 395	68 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3460 3455 3455 3455	500 210 512	915 450 660 605	1,902 1,220 1,000 1,122 1,225
(FIIdSC	Cation	8 <u>3</u> F	92 97 286 286	776 216 118 178	399 282 122 122	627 373 196 424	704 260 39	564 312 155 415	452 181 174 336	223999 273999 273999
- F	ns and (C	134 272 2212	1702 1722	1113 15379 647	2239 2239 2239	111 1016 1016 1016	11 12 12 12 12 12 12 12 12 12 12 12 12 1	120 94 17 44 17	23112 1720 1720 1720 1720
ATAATOIN	Soluble Anions and Cations	r ter)	126 126 162 162 162 162 162 162 162 162	606 225 225 225	508 508 1585 1585 1586 1586	432 233 295 295 295	417 269 128 68	368 255 136 262	365 224 278 134	411 449 414 414
	Solub	cl (meq/litter)	929 1,517 1,656 1,699	1,600 1,360 960 880	2, 330 537 537 420	1,070 780 620 735	961 420 3419 3419	811 472 315 790	1,121 500 640 980	2,361 1,300 1,2121 1,256 1,266
й Н С		HCO.	8 4 9 9 9 8 4 9 9 9	<u>8888</u>	0000 00000	41404 4140	8008 8008	8444 8984	0 2 C 0	44444
	•	uneday)	0040 8640	0,4,40 0,4,40 0,4,40	2010 2010 2010 2010	1 1	13.7	2007 1000 1000	440 944	00440 44899
		(z)	1177 1777	9949	44444 69079	2.000 2.280	0000 9009	2.88	0001	00004
	lysis	Texture	υυυυ	Stor Stor Stor	លលល អ្នក លលល់ អ្នក	Ston Ston	ับบบบ	0000	Stor Stor Stor	30000 10000
	ul Ana	Sand (*)	2333	2220	822223	2222		รูรุกง	80101 771 8	141241
	Mechanical Analysis	<u>silt</u> (2)	89999 1111	8884	14 19 1	ទំនួតត្ត	8828	2222	53 74 74	6 6 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	Mec	CLAX (E)	65 84 83 83	56 58 38	14440 14440 14440	2055 2055 2055	2 2 8 7 5 2 5 5 5 5	55 25 25 25	18135	847 847 847
	I	(mS/cm)	57.0 99.8 93.0	110.4 90.1 64.5 55.2	141-9 23-5 41-4 29-1 29-1	75.2 50.7 52.3	69.0 24.5 20.4	59.1 26.4 52.7	74.4 26.3 25.8	144 0 93.0 79.1 74.4 83.7
		뇞	7.77	でていい	24000 24000	1414	8444 8798	77.7	8 8 8 8 8 0 0 0 0	*****
	۰.	S. P.	61 661 188 83	42 72 76 75 76	<u> </u>	6755 675 56	3525	8 8 8 6 5	8888 8888	788533 788533
		Depch (cm)	400 401 400 400 400 400 400 400 400 400	2- 18 18~ 35 35- 67 67- 85	0.5- 4 4+ 13 13- 30- 30- 55	1- 44 14- 38 38- 60 60- 85	20 20 50 50 50 50 50 50 50 50 50 50 50 50 50	0- 10 23- 23 70-120 70-120	2.5- 15 15- 38 38- 55 55- 80	85-110 85-137 85-185 85-110 85-110 85-110
		<u>%</u>	13	19	ង	56	32	33	00	12
						-A-150)			

Summary of Soil Analysis (Phase I) (4)


	078.X. (3)			
·	Sol-P (ppm)	11.05	1 0 1 4	4.44 1.00 1.00
	N-Tos	79-4 2,5-1-1	1 - 1 - 1 - 1 2 - 1 - 1 2 - 1	38.2 17.7 14.7
	ESP (Z)			
	CEC Beq/ 100g	225 23.50 23.50	11911	19.0 21.5 -
eable	Ca+Mg soil)			·
Exchangeable Cations	Na X (meq/100g			
	*1	84444 99994	000110	n.040
	NA		1,200 375 240 266 566 566	
Cacions	8 X	1,145 573 330 320 144	458 275 1173 115 152	254 313 148 148
ns and	C	414 386 230 270	402 285 106 127	140 1119 1665
Soluble Anions and Cacions	(meq/litter)	562 758 435 169	485 288 311 168 207	1001 2467 2466
sotul	5 () () () () () () () () () () () () ()	2,350 931 784 730	1,575 243 280 637	301 250 684
	RCO	4549 4	P 0 D 0 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0	4499
•	Cvpsum (Z)	6	88040 44944	2.5 2.5 1.5
	CaC03 (2)	90000 44444	00004 4 2 4 4 9 0	4000 4000
vsis	Texture	00000	លប ^{ង្គ} លប	211 212 212 212 212 212 212 212 212 212
il Anal	Sand (2)	000000 11111	2009938 200938	N 10 10 10
Mechanical Analysis	Silt (3)	545 545 545 545 545 545 545 545 545 545	82388	79 64 68 68
Å		285088 285088	8888999 888	5 H 9 L 5 H 9 C
	EC CI	145.7 84.6 74.3 61.1 45.0	103.0 75.2 32.9 22.5 42.3	20-2 19-0 116-3 46-5
	치	8 7 7 7 S	~~~~~	41.110
	4.5 (2)	44800 74866	22422	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Depth (cm)	4- 13 30- 46 46- 46 52- 90 52- 90	0111100 0111100 0111100 011100 011100 000	8- 16 16- 27 27- 55 55- 85
	<u>%0.</u>	23	4	음 _A_15

Summary of Soil Analysis (Phase I) (5)

.

-A-151-

•

-A-152-

		<u> </u>	e Phases of	Soil	Void	Bulk	Moisture
Pit No.	Depth	Solid	Liquid	Vapor	Ratio	Density	
	cm	%	×.	%	%		×.
P-1	15- 40	47.3	42.8	9.9	52.7	1.3	32.9
	56-125	52.9	39.3	7.8	47.1	1.4	28.1
P-2	0- 35	44.6	51.0	4.4	55.4	1.2	42.5
	35- 55	40.9	57.2	2.3	59.1	1.1	52.0
	55- 95	51.5	46.2	2.4	48.5	1.4	33.0
P-3	0-15	34.0	64.6	1.9	66.0	0.9	71.8
	15- 45	42.5	59.0	0	57.5	1.1	53.6
	45~ 80	47.9	53.6	Ő	52.1	1.2	44.7
P-4	25~ 72	45.2	54.9	1.7	54.8	1.2	45.8
1 -4	23 12	4312	5405	T • 1	2440	115	
P-5	0- 20	41.9	34.9	23.2	58,2	1.1	31.7
	20- 35	46.7	35.5	17.8	53.3	1.2	29.6
	35- 70	52.4	32.7	14.9	47.6	1.4	23.4
P-6	0- 40	51.2	38.5	10.3	48.8	1.6	24.1
	40- 60	47.6	44.2	8.3	52.4	1.3	34.0
	60- 90	50.3	50.9	0	49.1	1.3	39.2
P-7	5- 55	50.6	41.9	7.5	49.4	1.4	29.9
	55-100	50.6	46.4	3.1	49.4	1.3	35.7
P~9	15- 50	54.6	29.1	26.4	45.5	1.4	20.8
. ,	50- 80	52.3	42.0	5.7	47.7	1.4	28.0
	80-140	55.4	44.1	1.6	44.5	1.5	29.4
P-10	0- 25	49.4	28.9	21.7	50.6	1.3	22.2
1 10	25- 72	53.0	42.5	4.6		1.4	30.4
	72-140	54.5	34.3	11.3			26.4
P~11	8- 40	50.9	28.3	20.9	49.1	1.3	21.8
1 . 11	40- 60	53.9	7.5	38.6	-		6.3
	60-140	49.1	31.6	19.4	50.9		24.3
P-12	0- 40	47.6	46 6	5 8	52.4	1.3	35.8
r-12	0- 40 70-100	47.0	40.0 51.4	5.8 3.4	54.8		33.8 42.8

Table A-12 Results of Soil Physical Test

-A-153-

.

.

Table A-13 Soil Moisture Content

		Mois	ture			Moist	ure
Pit	Depth	Conte	nt (%)	Pit	Depth	Conten	nt (%)
No.	(cm)	S.P.	F.C.	No.	(cm)	S.P.	F.C.
		<u> </u>				<u></u>	
P-1	0- 15	100	39	P- 7	0- 5	55	27
	15- 40	75	35		· 5~ 55	- 55	29
	40- 56	65	34		55-100	65	33
	56-125	62	31		100-130	60	31
	125-200	70	37				- ,
P-2	0- 35	65	32	P- 8	0- 5	55	28
	35- 55	70	37		5- 45	65	27
	55- 95	75	37		45~ 80	55	27
	95-150	80	39		80-130	55	27
	150-200	65	32		· ·		
P-3	0- 15	67	33	P- 9	0-15	60	32
	15- 45	75	36		15- 50	55	27
	45-80	70	36		50- 80	55	28
	80-200	70	34		80-140	60	32
P-4	0- 25	75	36	P-10	0- 25	87	39
	25- 72	70	36		25- 72	59	29
	72-140	67	34		72-140	65	32
P-5	0- 20	70	36	P-11	0- 8	67	34
-	20- 35	70	35		8- 40	64	31
	35- 70	62	33		40- 60	61	32
	70-110	55	28		60-140	58	28
	110-200	75	34		140-200	71	36
P-6	0- 40	71	36	P-12	0- 40	59	30
- ~	40-60	80	39		40- 70	71	36
	60- 90	54	28		70-100	59	29
	90-130	62	33		100-130	56	28
	130-160	55	27		130-200	61	32

•.

A.6.3. Results of Hydraulic Conductivity Measurements

The hydraulic conductivities of soils in the dryland and swamp areas was measured by the auger-hole method, and the results are shown in Table A-14, on the other hard, those in the inundated area was measured by the laboratory method and the results are shown in Table A-15.

Most soils in the dryland and swamp area have low hydraulic conductivity ranging from the order of 10^{-4} to 10^{-5} cm/sec with a few exception of the order of 10^{-3} cm/sec. According to the present measurement, it is not clear the hydraulic conductivity in the inundated area, but it can be supposed to be very low.

Table A-16 show the result of vertical and horizontal hydraulic conductivity of dry land soils measured by the Desert Institutes' laboratory.

Table A-14 Hydraulic Conductivity of Dry Land and Swamp Soil (1)

허																												
Conductivity (m/day)	0.268	0-190	0.579	0.432	0.086	0.095	0.138	0.086	0.372	0.389	0.328	0.337	0.337	0.553	0.415	0-346	0.052	0.016	0.046	010'0	600*0	0.024	0.020	0.016	110-0	0-060	0.028	0.017
	3.1 × 10 ⁻⁴	2.2 × 10-4	6.7 × 10-4	5.0 × 10-4	9-9 x 10-5	1.1×10^{-4}	1.6 × 10 ⁻⁴	1.0 × 10 ⁻⁴	4.3 × 10 ⁻⁴	4.5 × 10 ⁻⁴	3.8 × 10-4	3.9 × 10 ⁻⁴	3.9 × 10 ⁻⁴	6.4 × 10-4	4.8 × 10 ⁻⁴	4.0 × 10-4	6.0 × 10 ⁻⁵	1.8 × 10 ⁻⁵	5-3 × 10 ⁻⁵	1.2 × 10-5	1.0 × 10 ⁻⁵	2-8 × 10-5	2.3 × 10 ⁻⁵	1.8 × 10 ⁻⁵	1.3 × 10 ⁻⁵	7.0 × 10 ⁻⁵	3.2 × 10-5	2.0 × 10 ⁻⁵
Depth of Zone Tested (m)	0.2 - 0.9	0.2 - 1.5	0.4 - 1.1	0.4 - 0.5	0.8 - 1.5	0.8 1.5	0.8 - 1.0	0.8 - 1.5	0.7 - 1.4	0.7 - 1.4	0.7 - 1.0	0.7 - 1.5	0.4 - 1.6	0.4 - 1.6	0.4 - 1.0	0.4 - 1.6	1.8 - 2.4	0.6 - 2.4	0.5 - 2.0	0.5 - 2.5	0.6 - 2.1	1.4 - 2.2	0.5 - 1.2	0.5 - 2.2	0.4 - 2.2	1.7 - 2.2	0.5 - 1.3	0.5 - 2.2
Measure- ment No.	1-1-8	8-1-2	8-2-1	8-2-2	1-1-6	9-1-2	9-2-1	9-2-2	10-1-1	10-1-2	10-2-1	10-2-2	1-1-1	11-1-2	1-2-11	11-2-2	12-1-1	12-1-2	12-2-1	12-2-2	13-1-1	13-1-2	13-2-1	13-2-2	エーエーケビ	14-1-2	14-2-1	14-2-2
Hole No.	-1-8	1-8	8-2	8-2	1-6	9-1	9-2	9-2	10-1	10-1	10-2	10-2	1-11	1-11	11-2	11-2	12-1	12-1	12-2	12-2	13-1	13-1	13-2	13-2	14-1	14-1	14-2	14-2
Site No.	117				122				66				98				203				200				199		·	
84													,															
onduc fivit (m/day)	0.190	970-0	0.121	0,040	0.190	0.259	0.138	0.164	0.048	0.042	0.037	0.033	0.743	0.372	1.555	0.346	0.406	0.311	144.0	0.423	0.173	0.156	0.164	0.138	0.492	0.467	0.484	0.406
Wydraulic Conductivity (cm/sec) (m/day)							10-4							10_4									10 4					4.7 x 10 ⁴⁴ 0.406
Depth of Zone Tested (m)	10-4	x 10 ⁻⁵	× 10-4	10-5	10.4	1074	10-4	10_1	10 ~ 5	10-5	10-5	10 <mark>-</mark> 5	10-4	1.6 4.3 × 10 ⁻⁴	10-3	x 10-4	× 10-4	3.6 × 10 ⁻⁴	101	× 10 ⁻⁴	1.8 2.0 × 10 ⁻⁴	× 10 4	× 10 4	× 10 4	x 10 ⁻⁴	x 10 ¹⁴	× 10 4	x 10 4
•	- 1.1 2.2 × 10 ⁻⁴	- 1.5 5.3 × 10 ⁻⁵	- 0.9 1.4 × 10 ⁻⁴	-1.8 4.6 × 10 ⁻⁵	2.2 × 10 ⁻⁴	4 3.0 x 10 ⁻⁴	0.5 - 1,0 1.6 × 10 ⁻⁴	1.9 × 10 ⁻⁴	5.6 x 10 ⁵	0.7 - 1.8 4.9 × 10 ⁻⁵	4.3 × 10 ⁻⁵	0.6 - 2.0 3.8 × 10 ⁻⁵	0.4 - 1.1 8.6 × 10 ⁻⁴	0.5 - 1.6 4.3 × 10 ⁻⁴	0.6 - 1.0 1.8 × 10 ⁻³	4.0 × 10-4	0.6 - 1.1 4.7 x 10 ⁻⁴	0.6 - 1.5 3.6 × 10 ⁻⁴	0.7 - 1.2 5.1 × 10 ⁻⁴	-1.5 4.9 × 10 ⁻⁴	1.0 - 1.8 2.0 × 10 ⁻⁴	1.1 - 2.1 1.8 × 10 ⁻⁶	1.5 I.9 × 10 4	1.0 - 2.0 1.6 × 10 ⁻⁴	5.7 × 10 ⁻⁴	2.2 5.4 × 10 ⁻⁴	-1.8 5.6 × 10 ⁻⁴	2.2 4.7 x 10 ⁻⁴
Depth of Zone Tested (m)	0.5 - 1.1 2.2 × 10 ⁻⁴	1-1-2 0.6 - 1.5 5.3 × 10 ⁻⁵	1-2-1 0.5 - 0.9' 1.4 × 10 ⁻⁴	0.5 - 1.8 4.6 × 10 ⁻⁵	0.5 - 1.0 2.2 × 10 ⁻⁴	0.6 - 1.4 3.0 x 10 ⁴⁴	2-2-1 0.5 - 1.0 1.6 x 10 ⁻⁴	0.5 - 1.8 1.9 × 10 ⁻⁴	0.7 - 1.3 5.6 × 10 ⁻⁵	3-1-2 0.7 - 1.8 4.9 × 10 ⁻⁵	0.6 - 1.2 4.3 × 10 ⁻⁵	3-2-2 0.6 - 2.0 3.8 × 10 ⁻⁵	4-1-1 0.4 - 1.1 8.6 × 10 ⁻⁴	0.5 - 1.6 4.3 × 10 ⁻⁴	4-2-1 0.6 - 1.0 1.8 × 10 ⁻³	4-2-2 0.6 - 1.3 4.0 × 10 ⁻⁴	0.6 - 1.1 4.7 x 10 ⁻⁴	5-1-2 0.6 - 1.5 3.6 x 10 ⁻⁴	5-2-1 0.7 - 1.2 5.1 × 10 ⁻⁴	0.8 - 1.5 4.9 × 10 ⁻⁴	1.0 - 1.8 2.0 × 10 ⁻⁴	6-1-2 1.1 - 2.1 1.8 x 10 ⁻⁶	6-2-1 1.0 - 1.5 1.9 x 10 ⁻⁴	1.0 - 2.0 1.6 × 10 ⁻⁴	1.5 - 1.9 5.7 × 10 ⁻⁴	1.6 - 2.2 5.4 x 10 ⁻⁴	7-2-1 1.3 - 1.8 5.6 x 10 ⁻⁴	7-2-2 1.6 - 2.2 4.7 x 10 ⁻⁴
Measure- Depth of Zone ment No. Tested (m)	1-1-1 0.5 - 1.1 2.2 × 10 ⁻⁴	1-1-2 0.6 - 1.5 5.3 × 10 ⁻⁵	1-2-1 0.5 - 0.9' 1.4 × 10 ⁻⁴	1+2-2 0.5 - 1.8 4.6 × 10 ⁻⁵	2-1-1 0.5 - 1.0 2.2 × 10 ⁻⁴	2-1-2 0.6 - 1.4 3.0 x 10 ⁻⁴	2-2-1 0.5 - 1.0 1.6 x 10 ⁻⁴	2-2-2 0.5 - 1.8 1.9 × 10 ⁻⁴	3-1-1 0.7 - 1.3 5.6 × 10 ⁻⁵	3-1-2 0.7 - 1.8 4.9 × 10 ⁻⁵	3-2-1 0.6 - 1.2 4.3 × 10 ⁻⁵	3-2-2 0.6 - 2.0 3.8 × 10 ⁻⁵	4-1-1 0.4 - 1.1 8.6 × 10 ⁻⁴	4-1-2 0.5 - 1.6 4.3 × 10 ⁻⁴	4-2-1 0.6 - 1.0 1.8 × 10 ⁻³	4-2-2 0.6 - 1.3 4.0 × 10 ⁻⁴	5-1-1 0.6 - 1.1 4.7 x 10 ⁻⁴	5-1-2 0.6 - 1.5 3.6 x 10 ⁻⁴	5-2-1 0.7 - 1.2 5.1 × 10 ⁻⁴	5-2-2 0.8 - 1.5 4.9 × 10 ⁻⁴	6-1-1 1.0 - 1.8 2.0 × 10 ⁻⁴	6-1-2 1.1 - 2.1 1.8 x 10 ⁻⁶	6-2-1 1.0 - 1.5 1.9 x 10 ⁻⁴	6-2-2 1.0 - 2.0 1.6 × 10 ⁻⁴	7-1-1 1.5 - 1.9 5.7 × 10 ⁻⁴	7-1-2 1.6 - 2.2 5.4 x 10 ⁻⁴	7-2-1 1.3 - 1.8 5.6 x 10 ⁻⁴	7-2-2 1.6 - 2.2 4.7 x 10 ⁻⁴

-A-156-

-

Hydraulic Conductivity of Dry Land and Swamp Soils (2)

.

						-				. 1		
	Site No.	Hole No.	Measure- ment No.	Depth of Zone Tested (m)	Rydraulic ((cm/sec)	Rydraulic Conductivity (cm/sec) (m/day)	Site No.	Site No. Hole No.	Measure- ment No.	Depth of Zone Tested (m)	HYdraulic Conducti (cm/sec) (m/day)	onductivity (m/day)
	202	15-1	15-1-1	0.6 - 1.7	5.8 × 10 ⁻⁴	0.501	12	22-1	22-1-1	0.7 - 2.0	1.5 × 10 ⁻³	1.296
		15-1	15-1-2	0.6 - 1.7	7.1 × 10 ⁻⁴	0.613		22-1	22-1-2	0.7 - 2.0	8.5 × 10 ⁻⁵	0.073
		15-2	15-2-1	0.6 - 1.2	6.3 x 10 ⁻⁴	0.544		22-2	22-2-1	0.7 - 2.0	1.7 × 10 ⁻⁴	0-147
		15-2	15-2-2	0.6 - I.8	4.9 × 10 ⁻⁴	0.423		22-2	22-2-2	0.7 - 1.5	2.2 × 10 ⁻⁴	0,190
	164	16-1	16-1-1	0.2 - 1.7	2.2×10^{-4}	0.190	85	23-1	23-1-1	0.7 - 3.4	3.1 × 10 ⁻⁴	0.268
		16-1	16-1-2	0.3~- 1.7	3.2 × 10 ⁻⁴	0.276		23-1	23-1-2	0.7 - 3.4	2.3 x 10 ⁻⁴	661.0
		16-2	16-2-1	0.3 - 1.2	4.1×10^{-4}	0.354		23-2	23-2-1	0.6 - 2.1	4.0 × 10 ⁻⁴	0.346
		16-2	16-2-2	0.3 - 2.0	2.3 × 10 ⁻⁴	0.199		23-2	23-2-2	0.6 - 3.0	2.9 × 10 ⁻⁴	0.251
	173	17-1	17-1-1	0.6 - 1.6	3.2 × 10 ⁻⁴	0.276	107	24-1	24-1-1	1.1 - 2.0	6.8 x 10 ⁻⁴	0.588
		1-11	17-1-2	0.6 - 2.1	2.9 x 10 ⁻⁴	0.251		24-1	24-1-2	1.1 - 2.0	5.2 × 10 ⁻⁴	677.0
-A		17-2	17-2-1	0.5 - 1.2	3.8 × 10 ⁻⁴	0.328		24-2	24-2-1	0.8 - 1.5	7.1 × 10 ⁻⁴	0.613
-15		17-2	17-2-2	0.5 - 2.2	2.2 × 10 ⁻⁴	0.190		24-2	24-2-2	0.8 - 2.0	6.1 x 10 ⁻⁴	0.527
7-	212	18-1	18-1-1	0.4 - 1.9	2.4 × 10 ⁻⁴	0.207	132	25-1	25-1-1	0.6 - 2.0	1.7 × 10 ⁻⁴	0.147
		18-1	18-1-2	0,4'-'1.9	3.4 × 10 ⁻⁴	0.294		25-1	25-1-2	1.1 - 2.0	2.7 × 10 ⁻⁴	0.233
	·	18-2	18-2-1	0.4 - 1.2	3.9 × 10 ⁻⁴	0.337		25-2	25-2-1	0.5 - 1.2	3.1 × 10 ⁻⁴	0.268
		18-2	18-2-2	0.4 - 2.1	3.0 x 10 ⁻⁴	0.259		25-2	25-2-2	0.5 - 2.0	2.6 × 10 ⁻⁴	0.225
	222	1-61	1-1-1	0.7 - 1.8	6.2 × 10 ⁻⁴	0.536				·		
		19-1	19-1-2	0.7 - 1.8	5.2 × 10 ⁻⁴	0.449						
		19-2	19-2-1	0.6 - 1.1	6.6 × 10 ⁻⁴	0.570						
		19-2	19-2-2	0.6 - 2.0	5.1 × 10 ⁻⁴	0.441						
	181	20-1	20-1-1	0.2 - 2.0	3.9 × 10 ⁻⁴	0.337						
		20-1	20-1-2	0.2 - 2.0	3.8 × 10 4	0_328			-			
	• .	20-2	20-2-1	0.3 - 1.2	4.3×10^{-4}	0.372		·				
		20-2	20-2-2	0.3 - 2.1	4.0 × 10 ⁻⁴	0.346						
	ŝ	21-1	21-1-1	2.1 - 2.4	2.6 x 10 ⁻⁴	0.225						
		21-1	21-1-2	2.1 - 2.5	2.5 × 10 ⁻⁴	0.216						•
	:	21-2	21-2-1	1.9 - 2.2	3.0 × 10 ⁻⁴	0.259						
		21-2	21-2-2	1.9 - 2.5	2.1 × 10 ⁻⁴	0.181						·

-A-157-

· .	Hydraulic Conductivity of Inundated Land Soils Table A-16 Vertical By Laboratory Test Dry Land	Hydraulic Conductivity (m/day) Sample No. Conductivity (cm/hr) Class	A - 1 Not dropped P-13-H (1) - INDERNEABLE	2 P-13-K (2) - "	4 P-13-V (3) "	A - 16		18 P=15-H (6) 0.0334 "	A = 26 P=15-V (8) 0.03384 "	28 P=17-H (9) 0.01692	۲۰ Colo Colo Colo Colo Colo Colo Colo Col	1 - 1 0.0126 μ-17-4 (II) 0.0126 μ-17-4	2 P-17-V (12) 0.0162 "	ч Р-20-н (13) 0.0324 "	A - 11 . P-20-H (14) D.0162 "	12 P-20-V (15) 0.1018 "	", P-20-V (16) 0.1191 "	K ~ 21 P-23-H (18) 0.4050 SLOW	23 P-23-V (19) 0.4050			
	Table A-15	Site No.	S = 4			s - 6	•		/7 - 2 - A - 1			s = 28			S - 35			44 L M			·	-

A.6.4. Results of Water Analysis

The results of water quality analysis (pH and EC) for groundwater and surface water are shown in Table A-17. In addition, the results of groundwater analysis carried out during the Phase I Study are shown in Table A-18.

These data proved a high groundwater salinity except for some shallow groundwater having connection with stagnant water in the inundation area. Table A-17 Results of Water Quality Analysis

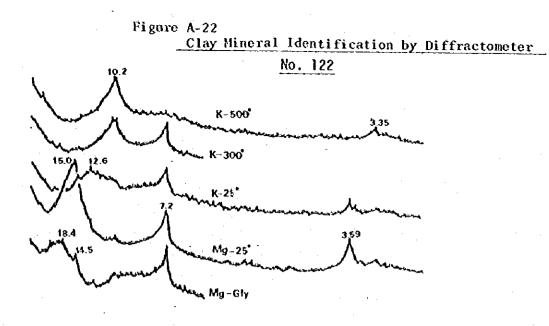
(1) Groundwar	Groundwater Quality			(2) Canal and Surface Water Quality	uality		
Sampling No.	Нď	EC at 25°C mS/cm	Total salts pm	Sampling Place	Hq.	EC at 25°C mS/cm	Total salts ppm
р-2 С	7.5	128	82,000	1. Lake Manzala	7.5	2.8	1,900
p-3	6.7	201	118,400	2. Lake Manzala	8.5	3.1	2,000
ъ-5	7.0	63	40,300	3. Bahr Baqar at Shadel Azam	7.4	2.0	1,300
6-d	7.2	44	28,200	4. Bahr Baqar at Bridge	7.9	3.2	2,000
p-10	6.8	160	102,400	5. Bahr Hadus drain	7.7	2.0	1,300
p-12	7.4	165	105,000	6. Bahr Hadus drain	7.8	2.4	1,300
p-13	7.3	63	40,300	7. Bahr Saft drain	7.8	2.9	1,900
p-15	7.1	235	150,400	8. Ramses drain	7.4	13.0	8,300
p-20	1-2 .	156	008 66	9. Khalig el Safla drain	7.6	2.8	1,800
p-21	6.7	214	137,000	10. Inundation near El Salam	8.3	58.5	37,400
P-22	7.0	240	153,600	11. Inundation near Bahr Baqar	6°8	58.0	37,100
p-23	7.5	4	4,500	12. Fish pond near Bahr Baqar	7.5	7.8	5.000
p-24	7.3	6	3,800	13. Inundation near P-13	7.9	18.0	11,500
p-25	7.5	33	21,100	14. Inundation near 7-11	7.7	46.0	29,400
.p-26	7.1	38	24,300	15. Inundation near P-19	6.9	245.0	156,800
·				16. Inundation near P+20	8.1	70.0	44,800
	·			17. Inundation near P-20	8.1	87.0	55,700
				18. Inundation near Ramses drain	7.7	18.0	11,500

9,600

15.0

7.6

19. Inundation near P-10


-A-160-

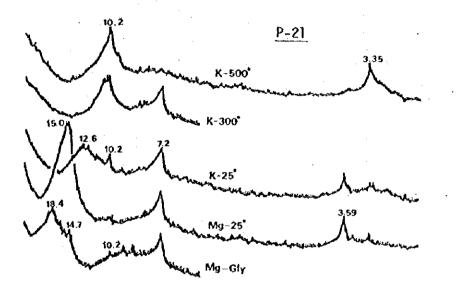
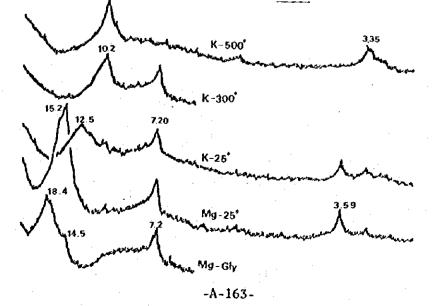
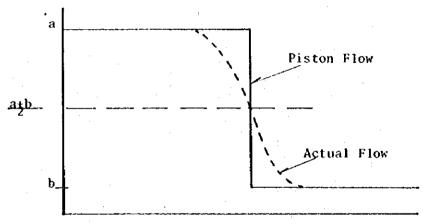

			Table /	A-18 <u>Gr</u>		Analysis	-			
it No.	Dèpth cm	pH	EC mS/cm	HCO3-	Anions <u>Cl-</u>	<u>\$04</u> meq/	Ca++	Mg++	<u>Na+</u>	<u>X+</u>
34	36	7.2	82.7	5.9	1,270	378	122	639	892	1.0
31	55	7.1	103.7	2.2	1,617	449	143	503	1,420	2,0
47	58	6.7	160.0	4.4	2,630	556	153	1,075	1,965	2.5
28	78	7.0	139.1	4.4	2,290	488	98	1,004	1,678	2.2
30	60	7.2	35.7	5.3	441	268	119	192	402	0.8
42	78	7.3	32.0	5.2	343	292	131	98	410	0.7
5	83	6.7	137.0	3.3	2,101	636	403	824	1,510	1.5
14	95	7.1	74.3	4.0	1,012	467	272	320	900	1.0
18	85	6.8	126.0	4.8	2,154	365	287	361	1,894	1.7
22	82	6.7	103.5	3.9	1,797	270	240	539	1,290	1.5
27	85	6.9	73.3	3.7	1,029	433	165	335	965	1.3
29	85	7.0	137.2	5.5	1,960	778	176	658	1,908	2.4
2	85	6.9	165.0	4.4	2,675	625	349	1,003	1,950	2.0
11	80	7.3	57.0	4.4	980	198	87	294	800	1.0
19	87	7.2	57.0	4.6	970	169	87	296	760	1.0
26	85	6.9	92.1	3.1	1,372	467	186	542	1,112	1.5
32	82	7.5	55.5	6.2	836	268	9 9	235	775	1.2
33	85	6.7	134.4	4.4	2,103	581	219	822	1,645	2.2
39	86	7.1	95.9	4.2	1,470	444	164	450	1,300	1.5
16	90	7.0	134.0	4.4	2,000	659	283	528	1,850	1.5
46	90	7.2	75.2	3.3	1,225	276	122	400	980	1.5
20	100	6.5	190.0	2.1	2,863	939	566	785	2,450	2,5
					ta. Ali se					
			•	* . •	•					
	•				-A-161-					•
					.					

Table	A-18	Groundwater	Analysis


A.6.5. Result of Clay Mineral Identification

The results of clay mineral identification by a diffractometer are shown in Figure A-22. As shown in this figure, there is no significant difference in clay minerals composition among three samples. A considerable amount of montmorillonite is contained. Montmorillonite shows a marked peak at the wave-length of 18.4Å under the condition of Mg-glycerol and the peak is shifted to at 15Å, 12Å, and 10Å under the conditions of Mg-air dry, K-air dry, and K-300°C, respectively. Vermiculite and halloysite are also contained in some degree, but there is little fact to corroborate the evidence of illite. In the coarser fraction, quartz and feldspar are dominant.

<u>S-25</u>



A.6.6. Results of Laboratory Leaching Experiments

The laboratory leaching experiments were started on December 3, 1983 and terminated on January 9, 1984 when all eC values of the leachate reached below 4 mS/cm.

The leaching curves were made as shown previously, based on the results obtained from the large scale and the small scale leaching apparatus(Table A-19).

The leaching process is referred to as the miscible displacement. Theoretically, the plots of the outflowing solution's solute content versus time or versus cumulative discharge show a so-called breakthrough curves as shown below;

a: initial solute contentb: solute content of incoming solution

-A-164-

Table A-19 Results of Laboratory Leaching Tests

	Ì	¥		ş.6	6.8	\$	6.9	1.15	0	,	6.95	6.8	<u>و</u> و	-	6.85	-		• •	7.1	6.85	7.05	¢. ¢	6 9	•	6.95	0	•	۰. ۲	6.95	•		6.95	6.95 1		6.95	6.95 2	6.95	•	6.95	6.95	6.95
	201120001102	່ມ	nS/cm	185 5	140 6	-1	142 6		128 7	,				-+	-t	۔ چ	1	~-	÷1	76 (· ·	۔ چ	47	,	- 60		59			ខ្ល	۰	-+		ł	-+	2	14	•	•	~ ()	
			2 B		27.5 4 2		44.5 L	 -	64.5 1 1	-1	•.		-		102.5	-	÷	120.5			-	_	2. 		0.5	 0		4	~				-	234.5	242.5	251.5	260.5	-	269.5	279.5	289.5
		30.00	y at	3	_		_	*	79 	_		_			1	11	-	_	5 130	138	146	1 154	51 162.	•	0	5. 178	1.86	194	1 202	210	<u>'</u>	218	226	- 5 53	7	ิส 	2	-	-	-ł	
	2	ž	kab/daj	11	1 12.5	-	9.5	2	2	•	•	_				1.5	•	1.5	9.5	8	8	8 0	8		8 0	1 7.5.	8	 8	8	80 	_	8	*) 	80	•• 	¢ -	ð		6	_	
	Seutoment (P=7) Small-Scale	5H		6.7	6.9	¢.9	7.15	17.2	1.1	<u> </u>	7,0	6.85	6.95	6.9	<u>.</u>	<u>.</u>	•	6.95	7.1	6.9	6.95	6.85	6.9	. t 	7.0	6.9	17.0	6.9	1.0	-	<u>-</u>	6.9	16.9	1.1	6.93	6.95	16.95		16.95	-	6.95
	1 TO BOAL	3	ms/cm	165	197	119	152	128	136	۱	143	\$	3	3	R	2	i 	12	67	29 :	75	47	52	י 	9 7	ร	32	121	52	ដ		2	71	61	11	- 2	5	<u>'</u>	-		_
		DV. nevenutered	m,	11	24	32	40.5	48.5	5.05	ų	79	72	8	87 -	\$1.3	202.5	•	108.5	118.5	127	2.461	142	150.5	,	159	166	173.5	181	108.5	196	•	203.5	211	11	229	236.5	244		251.5	259.5	268.5
	Small-Scale	3	m1/day			- - 9	8.5		8	•	7.5		_	~	. 5	- 6	•	1	9	5.5	7.5	7.5	8.5 -	•	8.5	~	7.5	7.5	7.5	7.5	•	. 5	7.5 1	3	8	7.5	7.5	•	2.5		۰ ۲
· Ł.	S 1(S-2)	pK	3	651	6.6 13	6.7	6.9	7.0	6.8	•	9 9	7 15		7.0 	6.9	7.1	•	1 0.7	7.15	6 8 J	6.85	9.95	6.9		6.9	1.0	9.9 	7.15	7.2	,	•	7.1	7.1	7.0	7.05	7.0 1	7.0	1	7.05	7.05	7.05
		4 23	a3/ca	5	132 6	135 6	9 171	119 7	103 6		143 6	77 7	- 2	-	2	91 7	*	46	76	133 16		1.15 1.0	107	•	100	-	5	33	69	54	•	87	65	12	92	25	21	*	17	۴	t.
	Equipment	DV/ sources	<u>.</u> 				5	52.5. 1	62.5 1	•	5	_			-	114.5		120.5	130.5		5	wn,		[-			187.5	15.5	9	4	•	: :	2	239	248	257	266	-	275	285	562
	Equipment (P-12) Small-Scale		<u> </u>	[] 	12	7	1 42.	52	62		70		8	-	1 107			121	Ĩ	5 139	-	154.	5 163	[17	179	⊢		5 206	214	_	- 222	8	22	1 24	1	5	-	5	$\left - \right $	—
	Small	30	144V	12	1=	2	8.5	5	9	•	8	9.5	9	8	6	7.5	•	و ==		1 8 5		**	8.8 2.6	•	¢.	80	8.5		10.5	8		8	80 	6	6 5	5 0	5 9	•	5 9	5	3
	c (2-12)	Ъ.		1.	9:9	-: :		7.0	6.95	٠	7.1	17.15	7.0	6.9	6.7	7.1		7 05	7.1	6.8	6.95	6.9		•	7.0	0	7.0	7.05	1.1	•	•	7.1	17	7.0	6.95	6.95	\$6.95	•	6.95	6.95	6.95
	umodro	ដ		120	4	191	142	116	129	•	177	8	108	100	\$	87	•	9 <u>9</u>	8	ទ្ធ	68	8	8	-	3	8	3	8	- 37	28	-	1	[ສ 	6; 	2	11	16	 	×	-	
		Dur Marine	7	2	ģ	29.5	42	50.J	63	ŧ	69	- 62	89	96.5	105.5	711	•	121.5	133.5	142.5	55	158	166.5		174.5		C61	201.5	510	219	•	227	52	245	ž	263	1 272	ŀ	281	162	10C
	Val.1.1-Scale	3	hel/10	12	20	2.9	12.5	8.5	12.5	1	<u>م</u>	2	10	7.5	6	8.5	ŕ	7.5	6	•	2.5	60	6.8		4	8.5	2	8.5	8.5	6	•	8	0	2	6	•	0	ŀ	•	10	2
- 1	(9-d)	ЪК		;; ;;	0		1.0.7	7.1	1 2.0		7.05		7.05	7.1	\$6.6	7.15	•	7.2	7.15	6.85	•	0.1	•		0.2	1 7		7.15	7.5		•	2.5	2.5	7.5	6.95	6.9	6.9	•	6.9	6.95	6.95
	2cuipment	S S	m5/cm	195	14	121	149	3	1 621		5	3	H	86	82	98	í	84	8		101	13	18		40	5	67	21	41	8	۰	52	2	61	ដ	18	5	•	=	~	4
		Ţ		Γ	2	1	1-	5	19		68.5	7.5	86.5	 8	104.5	111.5		119.5	129.5	1 3 2 4	1 5.53	2 (5)	29			181	161	8	209	216.5	Γ.	224.5	232.5	242.5	251.5	260.5	269.5	,	278.5	288.5	298.5
	Il-Scale	3			-	┢	-		_		5	-		2				-	╞	-	-	1-	5	-		1-			-	<u>ب</u>	_:	┞╴	-			-					
	1∎ws įk'	20	a1/4~	- C	1-	2	¢ 			Ē	-	6	6 	6	8	*	-	8	-			_							-	Ĺ	-	8				Ô	-		6.95	6.95 1 10	2
	11-2)31	Ä	_		+			1.1	- ·		7.05	+	6.9	6.95		7.1		1 2	-1			- I		-1-	-			8 6.9		₽-	<u> </u>	٦.					I_	Ľ	12		
	JINDERFL	2 2	16	Ĭ					1		1	1.1	1	í	*	1_		Ľ			1		1	_							'	1								Ι.	[']
	Cale To		ษ	0.5			2110	5692	3195	•	3735	5	552.4	5255			•	Ľ		776.	9228	8715	9285	-	2000	11		11325	520 11845	12325	•	12825	13305	13795		14775	15275		157751	4	
÷	Arge-S	3	at/dev	9	2057	53	909	585	995	ŀ	3		8		689	470		470	Ş	ŝ	181	e e		;			2	ŝ	ន្ត	83		1~		8	689	9	ğ	•	8	8	Š
	Kil-4/2-20416 Equipment(P-11)	Days		-	1	, 	4	~		-		0	9	=	9	2	2	:			.] ×	2	; ;	3 5		3 2	1 7	5	R	5	58	62	9	: :	2	2	2			a	8

A.6.7. Plan of Approach for Small Scale Field Leaching Experiment

Introduction

The small scale field leaching experiment has been proposed in the Minutes of Meeting dated August 27, 1983 in order to improve the practicability of the result of the laboratory leaching experiment. As for the initial leaching practices, the ponding will be used and the leaching water of 100 mm to 200 mm per treatment will be applied to the test plots. The water will be added to test plots in successive increments until the total amount for leaching is attained.

Test Plot and Water Supply

Leaching experiment on different treatment will be conducted at least in duplicate plots. Dimensions of the plot are 40 m by 20 m (See Figure A-23). After the levelling work to eliminate the surface irregularity, the plots will be ploughed. A vinyl sheet shall be laid vertically at the boundary between the plots to prevent the water from horizontal movement. A low dike shall be constructed around the plots to control water application, which permits impounding the water leaching and estimating the infiltration rate.

A minimum allowable depth of groundwater table in the test plots should be maintained in order to permit adequate leaching and prevent the root zone from salt accumulation accompanied with capillary movement of water. For this purpose, a subsurface drainage system shall be provided in the test plots. Depth of drains depends on the full consideration of such factors as the depth to poorly permeable barrier, the hydraulic conductivity of the soil, the required depth of soil aeration for plant growth, and the effects of irrigation practice on deep percolation etc. A pump shall be used at an outlet of the subsurface drainage system because the drain effuluent should be lifted up to dispose it into the gravity outlet.

For water supply to the test plots, a pump will be required to lift water from the anticipated source of water. A low pressure pipeline for the leaching water distribution shall be used. This system allows the accurate control and the measurement of water inflow. the pumping rate is determined not only by the leaching requirement but also by the operational decisions such as water distribution hours per day and days per week.

Observation

Change in Soil Properties: Soil samples will be taken to measure ECe and pH at the different depths; 10, 20, 40 and 60 cm, before and during the leaching process. Bulk density should be measured.

Groundwater Table: depth of groundwater table will be observed before and during the leaching process at two sites; one is 2 m from the drain and another is midway between drains.

Hydraulic Conductivity: by auger-hole method, hydraulic conductivity will be performed at two sites per plots and two measurement at different depths per site.

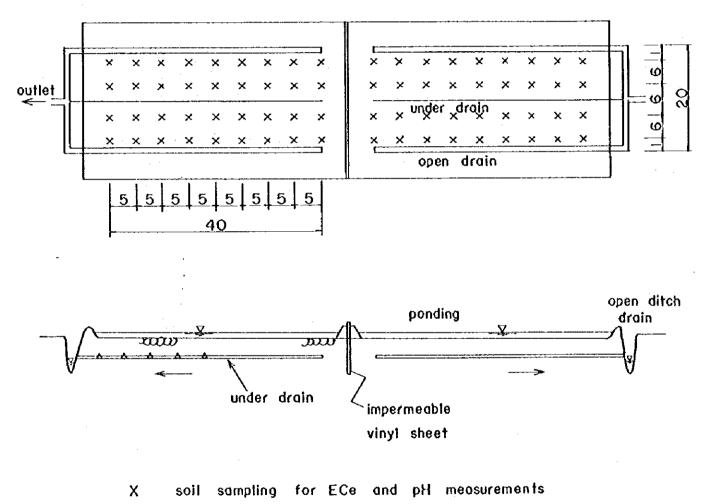
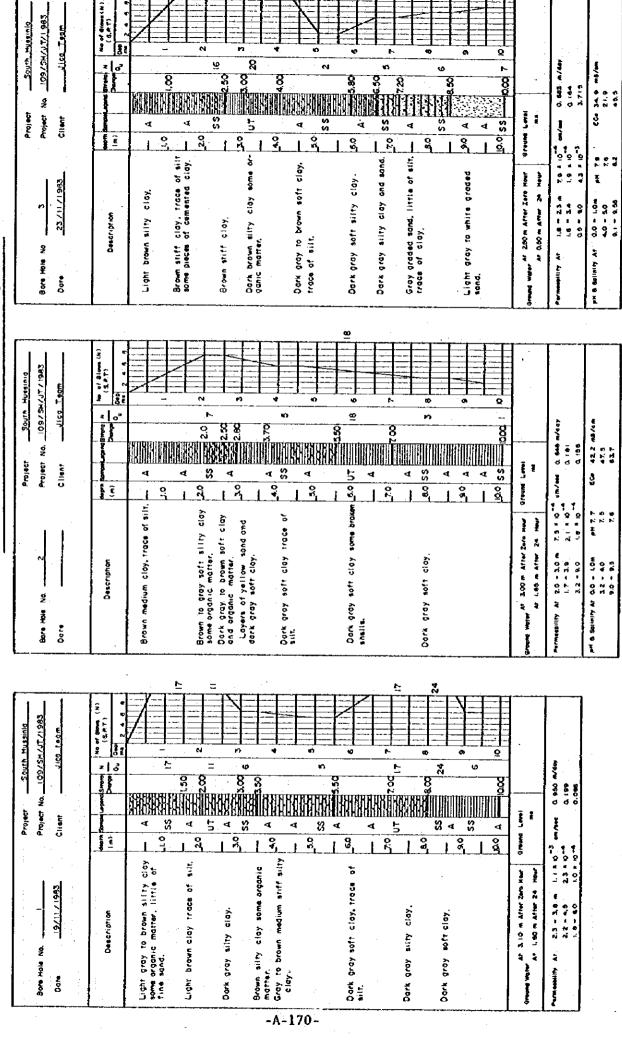
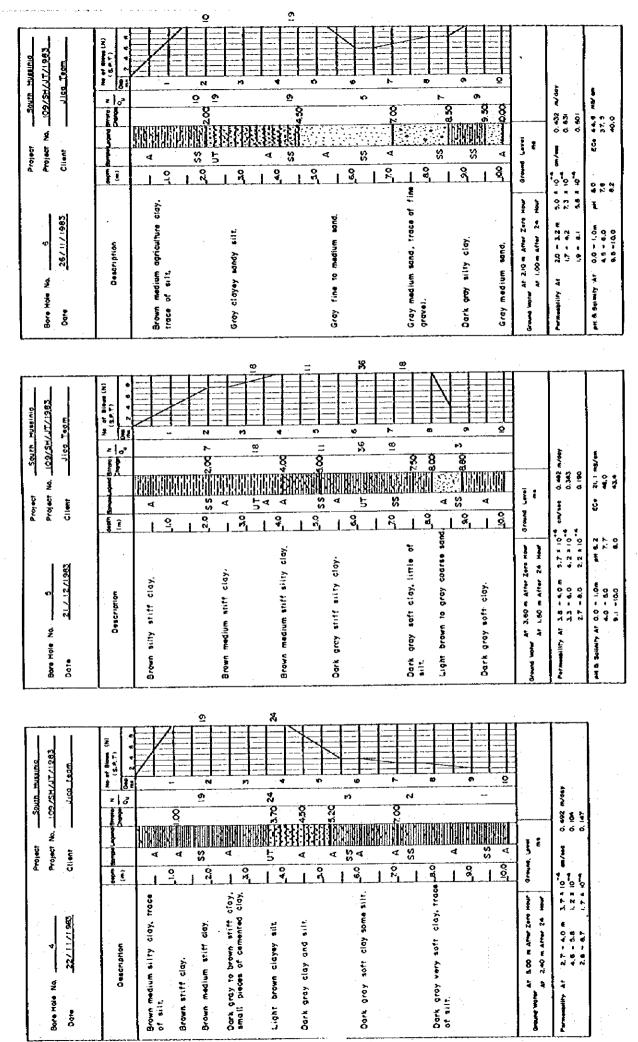

Water Quantity and Quality: amount of the water applied to the plots should be recorded and EC and pH of the water shall be measured periodically during the experiment. Also, amount of the drain flow should be measured. Samples of the water flowing out of the drains will be collected to make the chemical analysis.

Figure A-23 Layout of Field Leaching Experiment Plot

(Unit : meter)

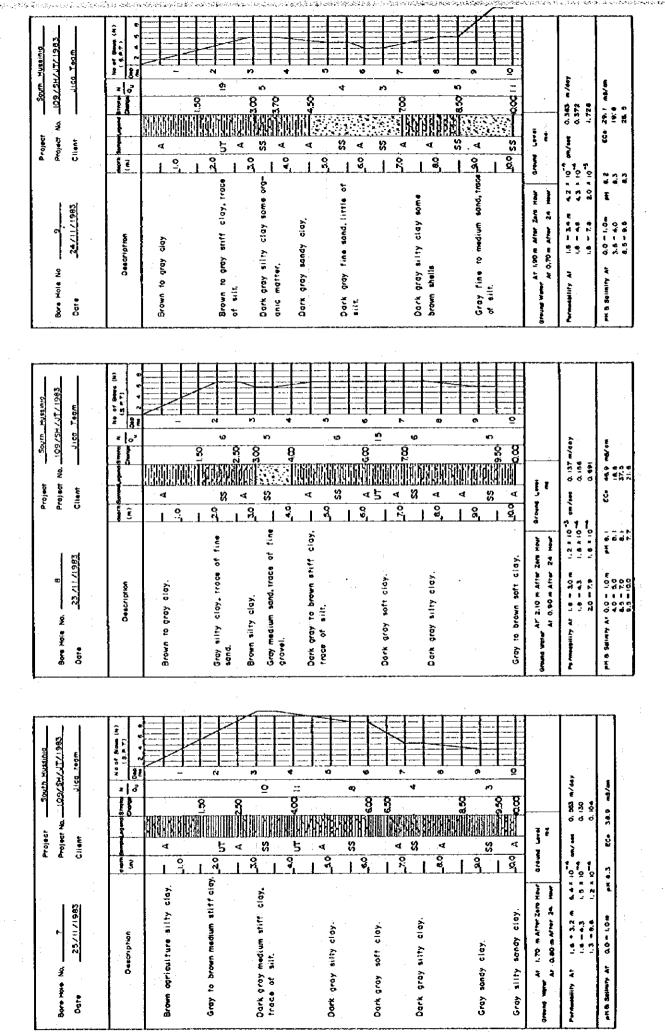
Plot B

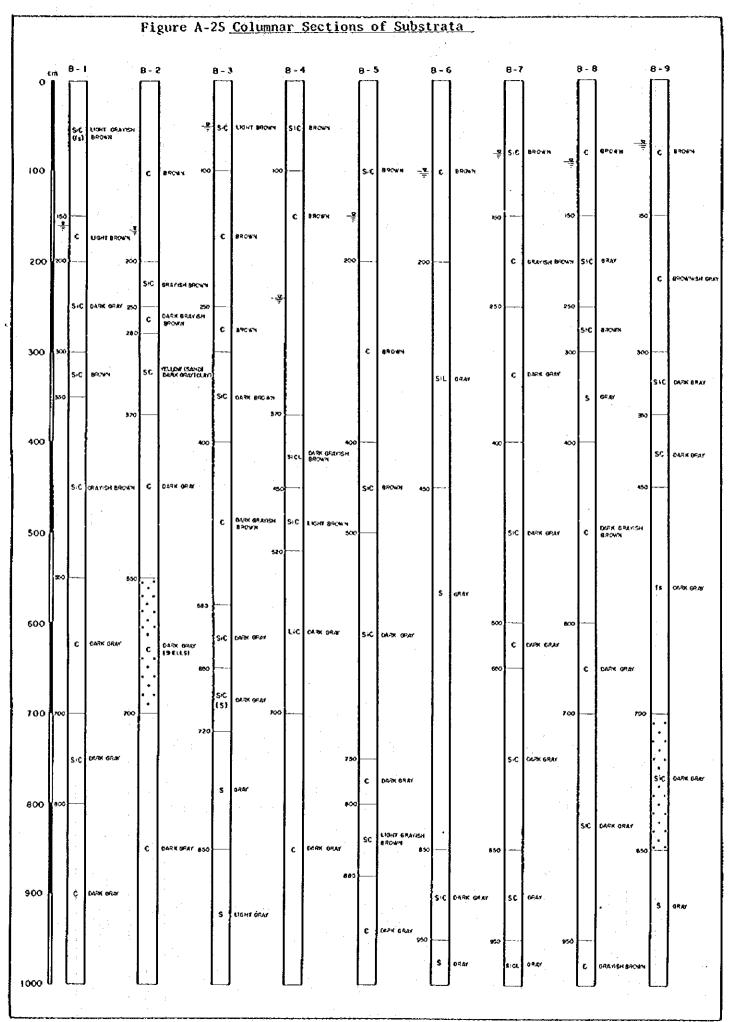

(sampling soil layer is 0-30 cm)


A.6.8. Results of Geotechnical Investigation (Deep Boring)

Drilling logs and the results of standard penetration test and permeability test as well as ECe and pH measurements are summarized in the data sheets as shown in Figures A-24 and the columnar sections of substrata profiles are shown in Figure A-25. The columnar section show the fact that various types of sedimentation process had took the place.

Clay and silty clay layers occupy the predominant profiles. In some boreholes, stratified sandy layer has been deposited in the substratuns. Boreholes 2 and 9 contain the shell-rich layer at 5 or 7 meters below the surface. The groundwater tables appeared at 2 to 5 meters below the surface at the time of drilling, but they ascended up to shallow depth less than 1.5 meter from the surface. The results of permeability test ranges from the order of 10^{-4} to 10^{-3} cm/sec, and of standard penetration tests (N-values) ranges from 15 to 35.


The substrata at 9 - 10 meters deep show the high salinity, that is, all ECe values exceed 20 mS/cm. The result agrees with the fact of high groundwater salinity in the Project Area. Figure A-24 Data Sheet of Geotechnical Investigation


-A-171-

.

-A-172-

.

-A-173-

A.6.9. Diagnostic Horizons for Soil Classification

Salic Rorizon

A salic horizon is a horizon 15 cm thick or more that contains a secondary enrichment of salts more soluble in cold water than gypsum. It contains at least 2 percent salt, and the product of its thickness in centimeters and salt percentage by weight is 60 or more.

Natric Horizon

The natric horizon (NL. natrium, sodium; implying presence of sodium) is a special kind of argillic horizon. It has, in addition to the properties of the argillic horizon:

1. Either

- a. Prisms or, more commonly, columns in some part, usually the upper part, that may or may not break to blocks; or
- b. Rarely, blocky structure and tongues of an eluvial horizon, in which there are uncoated silt or sand grains, extending more than 2.5 cm into the horizon; and

2. Either

- a. The SAR is ≥ 13 (or 15 percent or more saturation with exchangeable sodium) in some subhorizon with 40 cm of the upper boundary; or
- b. More exchangeable magnesium plus sodium than calcium plus exchange acidity (at pH 8.2) in some subhorizon within 40 cm of the upper boundary if the SAR is \geq 13 (or ESP \geq 15) in some horizon within 2 m of the surface.

-A-174-

Subhorizons in the upper 40 cm of the natric horizon may have calcium as the dominant exchangeable cation if the lower subhorizons in the upper 40 cm have the necessary SAR or sodium. Or, some subhorizons of the upper 40 cm may have more exchange acidity and calcium than magnesium and sodium if (a) the lower subhorizons in the upper 40 cm have a dominance of magnesium and sodium and (b) some horizon within 2 meters of the surface has an SAR \geq 13 (or ESP \geq 15).

The effect of sodium on dispersion of clay and on formation of a B horizon of illuvial clay has long been recognized. the importance of special recognition of an illuvial horizon that is strongly affected by sodium has not been seriously questioned.

The effect of magnesium ions on dispersion of clay is still disputed. Laboratory studies seem to show only slight difference between the effects of magnesium and of calcium. Yet it is common to find poor physical condition in a clay that has a large amount of exchangeable magnesium. The reasons for the poor physical condition are uncertain. Magnesium is considered in the definition of the natric horizon because, as sodium is removed, magnesium follows in the leaching sequence if chlorides are low and sulfates high. If leaching continues, the magnesium is eventually replaced. When replacement reaches the point that the amount of exchangeable sodium is < 15 percent and the amount of magnesium and sodium is less than that of calcium and exchange acidity in upper subhorizons that have a total thickness of 40 cm or more, the horizon is no longer considered natric. One sees remains of such former natric horizons in which the columnar form is clearly evident but all other properties have been altered because of a greatly changed environment or continued leaching.

Gypsic Horizon

The gypsic horizon is a noncemented or weakly cemented horizon of enrichment with secondary sulfates that is 15 cm or more thick, it has at least 5 percent more gypsum than the C horizon or the underlying stratum, and is one in which the product of the thickness in centimeters and the percentage of gypsum is ≥ 150 .

Gypsum may accumulate uniformly throughout a matrix of sand and finer textured material or as nests of crystals. In gravel or in stony material it may accumulate in pendants below the pebbles or stones.

Sulfuric Horizon

The sulfuric (L. sulfur) horizon is composed either of mineral or organic soil material that has both a pH 3.5 (1:1 in water) and jarosite mottles (the color of fresh straw that has a hue of 2.5Y or yellower and a chroma of 6 or more).

A sulfuric horizon forms as a result of artificial drainage and oxidation of slufide-rich mineral or organic materials. Such a horizon is highly toxic to plants and virtually free of living roots.

Sulfidic Materials

Sulfidic materials are waterlogged mineral or organic soil materials that contain 0.75 percent or more sulfur (dry weight), mostly in the form of sulfides and that have less than three times as much carbonate (CaCO₃ equivalent) as sulfur. Sulfidic materials accumulate in a soil that is permanently saturated, generally with brackish water. The sulfates in the water are biologically reduced to sulfides as the soil materials accumulate. Sulfidic materials are most common in coastal marshes near the mouths of rivers that carry noncalcareous sediments, but they may occur in fresh-water marshes if there is sulfur in the water. If the soil is drained, the sulfides oxidize and form sulfuric acid. The pN, which normally is nearly neutral before drainage, may drop below 2. The acid reacts with the soil to form iron and aluminum sulfates. The iron sulfate, jarosite, segregates and forms the bright-yellow mottles that characterize a sulfuric horizon. The transition from sulfidic materials to a sulfudic horizon normally only requires a few years. A sample of sulfidic materials, if air dried slowly in shade for about 2 months with occasional remoistening, becomes extremely acid. A.6.10. Determination of Gypsum Requirement (By USDA Handbook 60)

When a soil containing an excess of Na is shaken with a gypsum solution, Na is exchanged for Ca. The gypsum requirement of the soil is calculated in function of this exchange.

Weight 5 g of air-dried soil into a 150 ml bottle. Add 100 ml of saturated gypsum solution and shake for 30 minutes. Filter part of suspension and determine the Ca + Mg concentration of a suitable volume of the clear filtrate using EDTA (Versanate) method by titration.

Gypsum requirement (meq/100g) = { Ca conc. of added gypsum
solution (meq/lit.) - (Ca + Mg) conc. of filtrate (meq/lit.)}
x 2

-A-178-

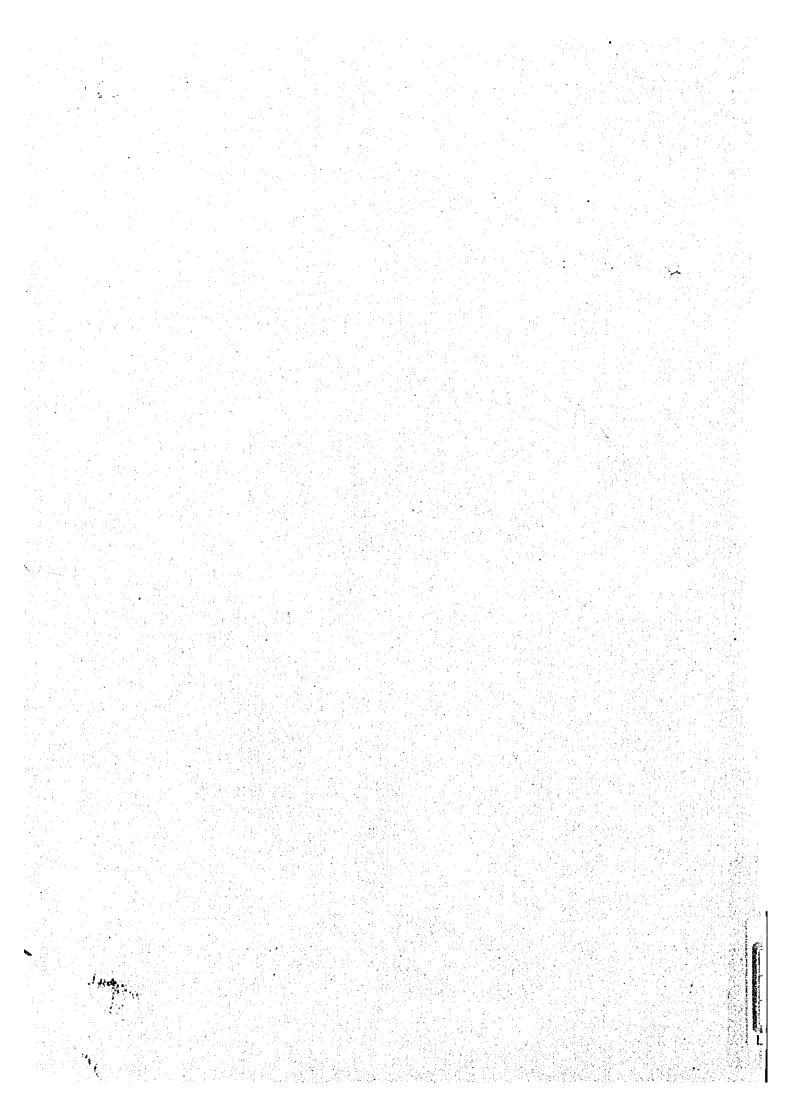
- JICA/Min. of Irrigation (1981). Feasibility Study for the South Hussinia Valley Agricultural Development Project Vol.2 Annex C. Soil
- UNDP/FAO (1963) High Dam Soil Survey, UAR, Vol. III. (Semi-Detailed Soil Survey)
- UNDP/Min. of Development & New Communities (1979). Suez Canal Region Integrated Agricultural Development Study EGY/76/001-6
- 4. UNDP/Min. of Development & New Communities (1980). Lake Manzala Study, Vol. 7 ANNEX B. SOILS
- 5. UNDP/Min. of Housing & Reconstruction (1976). Ismailia Master Plan. Vol. 6 Agriculture and Land Reclamation
- Said, R. (1962). The Geology of Egypt . Elsevier Publ. Co.
- 7. FAO/UNESCO (1977) Soil Map of the World. Vol. VI Africa
- 8. Dregne, H.E. (1976). Soil of Arid Regions, Elsevier Sci. Publ. Co.
- 9. FAO/UNESCO (1973). Irrigation, Drainage and Salinity, An International Source Book
- Yaron, B, et al (eds) (1973). Arid Zone Irrigation, Ecological Studies Vo. 5, Springer-Verlag
- MAB/Univ. of Arizona (1980). Draft Environmental Profile on Egypt

-A-179-

- USDA/Min. of Agriculture (1976) Egypt Major Constraints to Increasing Agricultural Productivity. Foreign Agri. Economic Report No.120.
- FAO/World Bank (1983). Report of the Egypt. Lake Manzala South Hussinia Agricultural Project Identification Mission.
- 14. UNDP/FAO (1967). Pilot Project for Drainage of Irrigated Land, UAR, Final Report.
- Afifi, M.Y. et al (1977). Response to Leaching on Potentially Reclamable Soils in the North Eastern Part of A.R.E., Desert Inst. Bull. 27, No.2, 149 - 162.
- Soil Survey Staff, USDA (1975). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, USDA Agric. Handbook 436.
- Soil Survey Staff, USDA (1951) Soil Survey Manual, USDA Handbook 18.
- FAO (1979). Soil survey Investigation for Irrigation, FAO Soils Bulletin 42.
- 19. FAO (1977). Guideline for Soil Profile Description, Land and Water Development Div., FAO.
- 20. U.S. Salinity Lab. (1969). Diagnosis and Improvement of Saline and Alkali Soils, USDA Handbook No.60.
- 21. FAO (1976). Water Quality for Agriculture, Irrigation and Drainage Paper 29.
- 22. FAO (1979). Land Evaluation Criteria for Irrigation, World Soil Resources Reports 50.

-A-180-

- 23. USBR(1953). Land Classification Manual for Irrigated Land Use
- 24. USBR (1960). In-Place Permeability Tests and Their Use in Subsurface Drainage
- 25. Soil Conserv. Serv., USDA (1973). Drainage of Agricultural Land
- 26. FAO (1971). Drainage of Heavy Soils, Irrigation and Drainage Paper 6
- 27. FAO (1973). Drainage of Salty Soils, Irrigation and Drainage Paper 16
- 28. Bishay, B.G. et al (1979). The Effect of Different Drainage and Amelioration Techniques on the Chemical and Physical Properties of a Salt Affected and Heavy Textured Soil in Egypt, Intern. Comm. Irrig. and Drainage 10th Cong., R.9.
- 29. Bishay, B.G. et al (1979). Economic Analysis of Improving a Salt Affected Heavy Soil by Means of The Drainage and Amendment in Egypt, ibid, R.10.
- 30. Dieleman, P.J. (ed) (1972). Reclamation of Salt Affected Soils in Iraq, IILRI Publ. No.11.
- 31. Moltchanov. E.N. et al (1977). Studies on Salt Movement by Capillarity in Stratified Mesopotamian Alluvial Soils, SOSLR Tech. Bull. No.48, Republic of Iraq
- 32. Nagmoush, S.R. (1982). Soil Salinity Control. Part C -Effect of Leaching Requirements on Salinity Control on Different Soil Types


-A-181-

- Framji, K.K. (ed) (1975). Irrigation and Salinity A World-Wide Survey, I.C.I.D.
- 34. Terazaghi(1948). Soil Mechanics in Engineering Practice, John Wiley & Sons, p 56-78
- 35. CEKOP Poland(1965) Irrigation Improvements in the Amarah Area, Republic of Iraq

.

_**

,

