No. : 7

THE REPUBLIC OF TURKEY

THE STUDY ON ANKARA AIR POLLUTION CONTROL PROJECT

FINAL REPORT

JANUARY 1986

JAPAN INTERNATIONAL COOPERATION AGENCY

SDS CR(10) 85-181(1/2)

1029306[6]

15057

THE REPUBLIC OF TURKEY

THE STUDY ON

ANKARA AIR POLLUTION CONTROL PROJECT

FINAL REPORT

JANUARY 1986

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事	7 業団
受入 月日 '86. 8. 4~	314
	61.8
登録No. 15057	S₽S

PREFACE

In response to the request of the Government of the Republic of Turkey, the Government of Japan decided to conduct a Feasibility Study on Ankara Air Pollution Control Project and entrusted the Study to the Japan International Cooperation Agency (JICA).

The JICA sent to Ankara a preliminary survey team, headed by Mr. Masaaki Sakurai in March and July in 1983. The team had a series of discussions on the Study with the officials concerned of the Government of Turkey and agreed on the Scope of Work (S/W), which was signed in August 1984 between JICA and the General Directorate of Environment (GDE) of Turkey.

Based on the S/W, JICA dispatched to Ankara a survey team, led by Dr. Shigeru Ikai, which made a full-scaled survey, in consultation with the Turkish side from November 1984 to January 1986, and the present report has been prepared.

I hope that this report will serve for the development of the Project and contribute to the promotion of friendly relations between our two countries.

I wish to express my deep appreciation to the officials concerned of the Government of Turkey for their close cooperation extended to the team.

January, 1986

Keisuke ARITA

President

Japan International Cooperation Agency

TABLE OF CONTENTS

PREFACE		i
Chapter 1	INTRODUCTION	
1.1 BA	ACKGROUND OF THE STUDY	1
1.2 00	JTLINE OF THE STUDY	3
1.2.1	Scope of the Study	3
1.2.2	Study Work Flow and Time Schedule	4
1.2.3	Study Organization	4
1.3 GF	ENERAL DESCRIPTION OF THE STUDY AREA	9
1.3.1	Geography	9
1.3.2	Climate	9
1.3.3	Population	13
1.3.4	Industry	14
Chapter 2	ANALYSIS OF THE PRESENT STATE OF AIR POLLUTION	
2.1 OU	JTLINE OF THE FIELD INVESTIGATION STUDY	15
2.1.1	Items and Periods of the Field Investigation	. 15
2.1.2	Location and Characteristics of the Investigation Sites	16
	HARACTERISTICS OF CONCENTRATION VARIATION AND REQUENCY OF OCCURRENCE	19
2.2.1	Variation of Daily Mean Concentration	19
2.2.2	Hourly Variation Pattern	23
2.2.3	Distribution of Frequency of Occurrence of Daily Mean and Hourly Mean Values	23
	DNCENTRATION VARIATION BY ETEOROLOGICAL CONDITION	30
2.3.1	Meteorological Condition	30

2.3.2	Variation by Wind Direction and Speed	33
2,3,3	Variation by Atmospheric Stability	38
2.4 ST	TATISTICAL ANALYSIS OF THE OBSERVATION RESULTS	40
2.4.1	Correlation Between Observed Items	40
2.4.2	Concentration During the Periods of Upper-Layer Meteorological Observation and Influential Factors	46
2.5 At HI	NALYSIS OF THE OCCURRENCE OF IGH CONCENTRATION	50
2.5.1	State of High Concentration Occurrence	50
2.5.2	High Concentration and Meteorological Condition	54
2.5.3	Analysis of the Particular High Concentration Period	59
2.6 DI	STRIBUTION OF POLLUTANT EMISSION	62
2.6.1	Stationary Sources	62
2.6.2	Mobile and Other Sources	65
2.6.3	Geographical Distribution of Sulfur Dioxide Emission	67
2.7 RE UN	ESULTS OF THE AIR QUALITY SIMULATION NDER THE EXISTING CONDITION	70
2.7.1	Concentration Distribution	70
2.7.2	Contribution Factors of Emission Sources	72
2.7.3	Results of the Time-Dependent Simulation	72
2.8 SU	JMMARY	75
Chapter 3	PRESENT STATE OF AIR POLLUTION CONTROL	
	RGANIZATIONS RESPONSIBLE FOR OR RELATED AIR POLLUTION CONTROL	77
3.1.1	Central Governmental Bodies	77
3.1.2	Provincial Government of Ankara	80
3.1.3	Ankara Metropolitan Municipality	80
3.1.4	Non-Governmental Organizations	81

3	.2 PF	RESENT SOURCE CONTROL MEASURES	8
·	3.2.1	Measures Proclaimed by the Provincial Government of Ankara	8
	3.2.2	Building Construction Control	8
	3.2.3	Factory Control	8
3	.3 ÅI	R QUALITY MONITORING SYSTEM	8
٠	3.3.1	Monitoring Organization	8
	3.3.2	Monitoring Stations	9
	3.3.3	Methods of Sampling and Analysis	9
	3.3.4	Maintenance of Measuring Apparatus	9
Cha	apter 4	STUDY OF SOCIO-ECONOMIC CONDITIONS	
4	.1 TF	REND OF SOCIO-ECONOMIC INDICATORS	10
	4.1.1	Population	10
	4.1.2	Household and Type of Dwelling	
	4.1.3	Number of Establishments	11
	4.1.4	Land Use	11
	4.1.5		
	4.1.6	Car Ownership	12
4	.2 TF	REND IN DEMAND AND SUPPLY FENERGY SOURCES	12
	4.2.1	Total Primary Energy and Energy Mix	12
	4.2.2	Trend in Demand and Supply of Energy in Ankara City	13
	4.2.3	Projection of Energy Demand in Ankara City	13
Cha	apter 5	TECHNICAL AND ECONOMIC STUDY OF POLLUTANT SOURCE CONTROL MEASURES	
5	.1 PC	OSSIBILITY OF SWITCHOVER TO GHER OUALITY ENERGY SOURCES	17

5.2 LI	GNITE QUALITY IMPROVEMENT	143
5.2.1	Briquette	143
5,2,2	Rentan	155
5.2.3	Biocoal	
5,2,4	Comparison of the Improvement Techniques	169
5.2.5	Environmental Consideration	1.0
5.3 IM AF	PROVEMENT OF COMBUSTION AND HEATING PARATUS AND COMBUSTION METHODS	174
5.3.1	Types of Stove and Methods of Combustion	174
5.3.2	Maintenance of Boilers and Improvement of Combustion Method	181
5.3.3	Energy Saving in Hot-Water Central Heating System	189
5.3.4	Promotion of Energy Saving Action	196
5.3.5	Training of Boiler Operators	
5.4 IN SO	TRODUCTION OF SMOKE AND OT REMOVAL DEVICES	201
5.4.1	Methods of Flue Gas Desulfurization and Applicability in Ankara	201
5.4.2	Desulfurization by Alkaline Earth Metal Injection Method	205
5.4.3	Other Dry-Type Desulfurization Methods	213
5.4.4	Wet-Type Desulfurization Method	216
5.4.5	Dust Removal	219
5.5 IM IN:	PROVEMENT OF THERMAL SULATION OF BUILDINGS	227
5.5.1	Study Approach	227
5.5.2	Effect in Improvement of Insulation Capacity	227
5.6 IN	TRODUCTION OF DISTRICT HEATING SYSTEM	234
5.6.1	Study Approach	234
5.6.2	Heating Load	236
5.6.3	Selection of Applicable Area in Ankara	242

5.6.4 Effect and Cost	244
5.7 EVALUATION OF THE SOURCE CONTROL MEASURES	248
5.7.1 Characteristics of the Measures	248
5.7.2 Evaluation by Matrix	248
Chapter 6 SELECTION OF POLLUTANT SOURCE CONTROL PLAN	
6.1 METHOD OF SELECTION	252
6.2 SELECTED MEASURES	253
6.3 SELECTED PLANS	255
6.3.1 Mid-term Plan and Temporary Plan	255
6.3.2 Emergency Plan	259
6.4 EFFECTS OF THE CONTROL PLANS ON THE CONCENTRATION OF SULFUR DIOXIDE	260
6.4.1 Cases and Conditions for Simulation	260
6.4.2 Simulation Results and Evaluation	260
Chapter 7 PROPOSAL ON THE MONITORING SYSTEM AND ORGANIZATION	
7.1 IMPORTANCE OF MONITORING SYSTEM AND ORGANIZATION	267
7.2 RECOMMENDATION OF MONITORING SYSTEM	269
7.3 PROPOSAL OF FORECAST SYSTEM	270
Chapter 8 IMPLEMENTATION PROGRAM OF AIR POLLUTION CONTROL PLAN	
8.1 SOURCE CONTROL PLANS	272
8.1.1 Measures for Stoves	272
8.1.2 Measures for Lignite Boilers	273
8.1.3 Measures for Fuel Oil Boilers	273
8.1.4 Time Schedule for the Supply of Rentan and Biocoal	273

8.1	1.5 SO ₂ Emission Reduction by Implementation of the Plans	275
8.2	MONITORING SYSTEM AND ORGANIZATION	278
8.3	PUBLIC ENLIGHTENMENT	279
8.4	IMPLEMANTATION PROGRAM	280
Chapte	r 9 FINAL REMARK	281
ANNEX	Table for Conversion of Unit of SO ₂ Concentration	283

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND OF THE STUDY

The City of Ankara became the capital of the Republic of Turkey in 1923. Since then, the City has been undergoing a continual development as the administrative center of the Republic. The population of the City has grown from 120,000 in 1935 to about 2 million at the present. The remarkable development of the City, however, has been accompanied by the growth of air pollution. The extent of the pollution in winter has been pronounced especially since the late 1960's. Causes of the air pollution in Ankara can be summarized into the following three factors:

- (1) Lignite containing high levels of sulfur and ash is used as a major fuel for domestic heating.
- (2) Consumption of the lignite has been increasing corresponding to the increase in the city population.
- (3) Under the topographic and the meteorological conditions of Ankara which is situated in a basin on the Anatolian Plateau, a ground level inversion or a low-level inversion lid is apt to form in winter, that prevents a sufficient degree of dispersion of air pollutants over the upper atmosphere.

Public and private sectors in Turkey have been working in cooperation in order to abate the air pollution of Ankara as well as other environmental problems. In August 1978, the Undersecretariat of Environment (UE) was established under the Prime Minister's Office with the mandate of developing necessary regulations and policies for promoting rational use, protection, and improvement of air and water resources and for taking necessary measures for abatement of environmental pollution. In August 1983, Environment Law was enacted providing the legal basis to govern the arrangements to be made and the measures to be taken in order to protect and improve the environment; to protect and make optional use of land and natural resources in rural and urban areas; to prevent water, soil and air pollution; and to develop and guarantee the standard of health, civilization, and living of the present and future generations by preserving the nation's plant and animal life and its natural and historical wealth. In June 1984, the UE was

reorganized as the General Directorate of Environment (GDE) again under the Prime Minister's Office. As its mandate indicates, to develop and to implement necessary measures to abate air pollution in cooperation with the various governmental and non-governmental agencies and institutions is one of the major tasks of the GDE.

Combatting against the air pollution of Ankara, Turkey has been devoting itself to studying, developing, and implementing various control measures, at times accommodated with loans from abroad. However, the quality of ambient air in Ankara has not been improved yet to a satisfactory level, and the abatement efforts are being continued.

Under these circumstances, the Turkish Government requested a technical cooperation for the abatement of the air pollution in Ankara to the Government of Japan where great degrees of improvement were realized in the qualities of air that were once degraded to critical levels in some areas.

Accepting the request, Japan International Cooperation Agency (JICA), which is the official body to execute the overseas technical cooperation programs, dispatched a contact mission to Ankara in March 1983. JICA dispatched the second mission in July 1983 to discuss the content of the draft of "Scope of Work for the Study on Ankara Air Pollution Control Project in Turkey" (S/W) with the Turkish authorities coordinated by the UE. Since then, Turkish and Japanese governments fostered better understanding on the execution of this study through the diplomatic channel, and the S/W was formally signed between JICA and GDE in August 1984. JICA promptly organized an advisory committee and a study team (JICA team, collectively) to conduct the Study on Ankara Air Pollution Control Project (hereinafter called as "the Study"). The Turkish Government also set up the Turkish Technical Committee (TTC) mainly constituted by the staff of the GDE. In November 1984, the TTC and the JICA team discussed in Ankara on the content of the Inception Report prepared by the JICA team. The Study was started immediately following the agreement between both parties on the details of methodologies of the Study.

1.2 OUTLINE OF THE STUDY

1.2.1 Scope of the Study

The main purpose of the Study is to present a medium-term abatement plan against the air pollution problem in Ankara. To reach this goal, the following investigations and analyses were conducted:

- (1) Field observation and analysis of ambient air quality, meteorology, and related matters to evaluate the present state of air pollution
- (2) Investigation of sources and quantities of air pollutants
- (3) Study of the present state of air pollution control measures adopted in Ankara
- (4) Study of the present socio-economic conditions related to the air pollution in Ankara, and their future projection
- (5) Technical and economic study of various air pollution control measures that can be employed in Ankara
- (6) Selection of reasonable combinations of source control measures to constitute a mid-term and a temporary plans and an emergency plan considering the socio-economic conditions in Ankara
- (7) Evaluation of the effects of the control plans by air quality simulation models
- (8) Study and proposal of air quality monitoring system and organization

Air quality indicators considered in the Study are sulfur dioxide (SO₂) and particulate matter (PM).

The study area covered Ankara Metropolitan Municipality boundary placing emphasis on the central part of the City.

1.2.2 Study Work Flow and Time Schedule

The Study was conducted in three phases, i.e., Phase I (November 1984 -March 1985), Interim Phase (April - May 1985), and Phase II (June - December 1985). The study work flow and the time schedule are shown in Figure 1.2.1 and Figure 1.2.2, respectively.

1.2.3 Study Organization

The Study was carried out in close cooperation between JICA and GDE. JICA organized the Advisory Committee and the Study Team, and GDE organized the Turkish Technical Committee (TTC). Members of these teams are listed below.

(1) JICA Advisory Committee

Name	Field in Charge	Present Post
Mr. Tamotsu Tsuyuki	Chairman	Assistant to Director General of Air Quality Bureau, Environment Agency
Mr. Osamu Ikeda	Air Quality Monitoring and Analysis	Deputy Director of Planning Division, Air Quality Bureau, Environment Agency
Mr. Shozo Shibata	Air Pollution Control	Director of Pollution Control Division, Dept. of Living Environment, Hokkaido Government
Mr. Makoto Okazaki	Air Pollution Control Administration	Director of Pollution Control Division, Dept. of Environment and Health, Niigata Prefectural Government
Mr. Mitsuo Kinjo	Planning and Coordination	Senior Project Officer, Japan International Cooperation Agency

Note: Mr. Tokuhisa Yoshida was in charge of air quality monitoring and analysis until February 1985.

(2) JICA Study Team

Name	Field in Charge	<u>Firm</u>
Dr. Shigeru Ikai	Team Leader/Heating System	JEAC
Mr. Hideo Ohmori	Sub-Leader/Regional Planning	PCI
Mr. Masao Kanekiyo	Sub-Leader/Source Control	JEAC
Dr. Akira Uchida	Air Pollution Control Planning	PCI
Mr. Kihachiro Urushibata	Energy Utilization Planning	PCI
Mr. Hiroshi Ueno	Combustion Facility Planning	JEAC
Mr. Motoji Katsuta	Measurement/Monitoring System	JEAC
Mr. Kazuyuki Yamakawa	Atmospheric Measurement	JEAC
Mr. Takamitsu Maida	Atmospheric Measurement	JEAC
Mr. Atsushi Aoki	Atmospheric Measurement	JEAC
Mr. Kunio Takeuchi	Measurement for Stationary Sources	JEAC
Mr. Kunitaka Nonaka	Economic Analysis & Evaluation	PCI
Mr. Shinji Wake	Air Quality Simulation Analysis	PCI
Mr. Eizo Ichikawa	Forecast System	JEAC
Mr. Minoru Hirao	Combustion Test	JEAC
Mr. Tsuyoshi Matsumoto	Socio-Economic Analysis	JEAC
Mr. Koichi Kitamura	Energy Development Analysis	JEAC
Mr. Reiji Niira	Lignite Quality Improvement	JEAC
Mr. Shozo Yatabe	Lignite Quality Improvement	JEAC

Note: PCI = Pacific Consultants International, Ltd.

JEAC = Japan Environmental Assessment Center, Ltd.

(3) Turkish Technical Committee (TTC)

Name	Field in Charge
Dr. Muzaffer EVIRGEN	Leader of TTC (Director General of GDE)
Dr. Ali Riza YILMAZ	Sub-leader of TTC (Head of the Department of Environmental Standards, GDE)
Dr. Kazim CEYLAN	Member of TTC (Head of the Department of Organization and Finance, GDE)
Dr. Tansu GURPINAR	Member of TTC (Expert of the Department of Research, Planning, and Coordination, GDE)
Miss A. Oznur OZER	Member of TTC (City Planner of GDE)
Miss Serpil GUNAY	Member of TTC (Physicist of GDE)
Mr. Mustafa YILDIRIM	Member of TTC (Mechanical Engineer of GDE)
Mrs. Canan YESILYURT	Member of TTC (the member from the Public Health Institute)
Mrs. Solmaz UTKU	Member of TTC (the member from the Ankara Metropolitan Municipality)
Mr. Alpastan ERTUNA	Member of TTC (the member from the State Meteorological Works)
Mr. Mahmut AKKAS	Member of TTC (the member from the State Meteorological Works)
Mr. Yekta KARABIYIK	Member of TTC (Biologist of GDE)
Mrs. Sema ACAR	Member of TTC (Chemist of GDE)
Mrs. Nevin PAMUKCU	Member of TTC (Pharmacist of GDE)
Miss Bilgi YUCEL	Member of TTC (Environmental Enginner of GDE)

Note: Mr. Mehmet OZGUN was the leader of the TTC until February 1985.

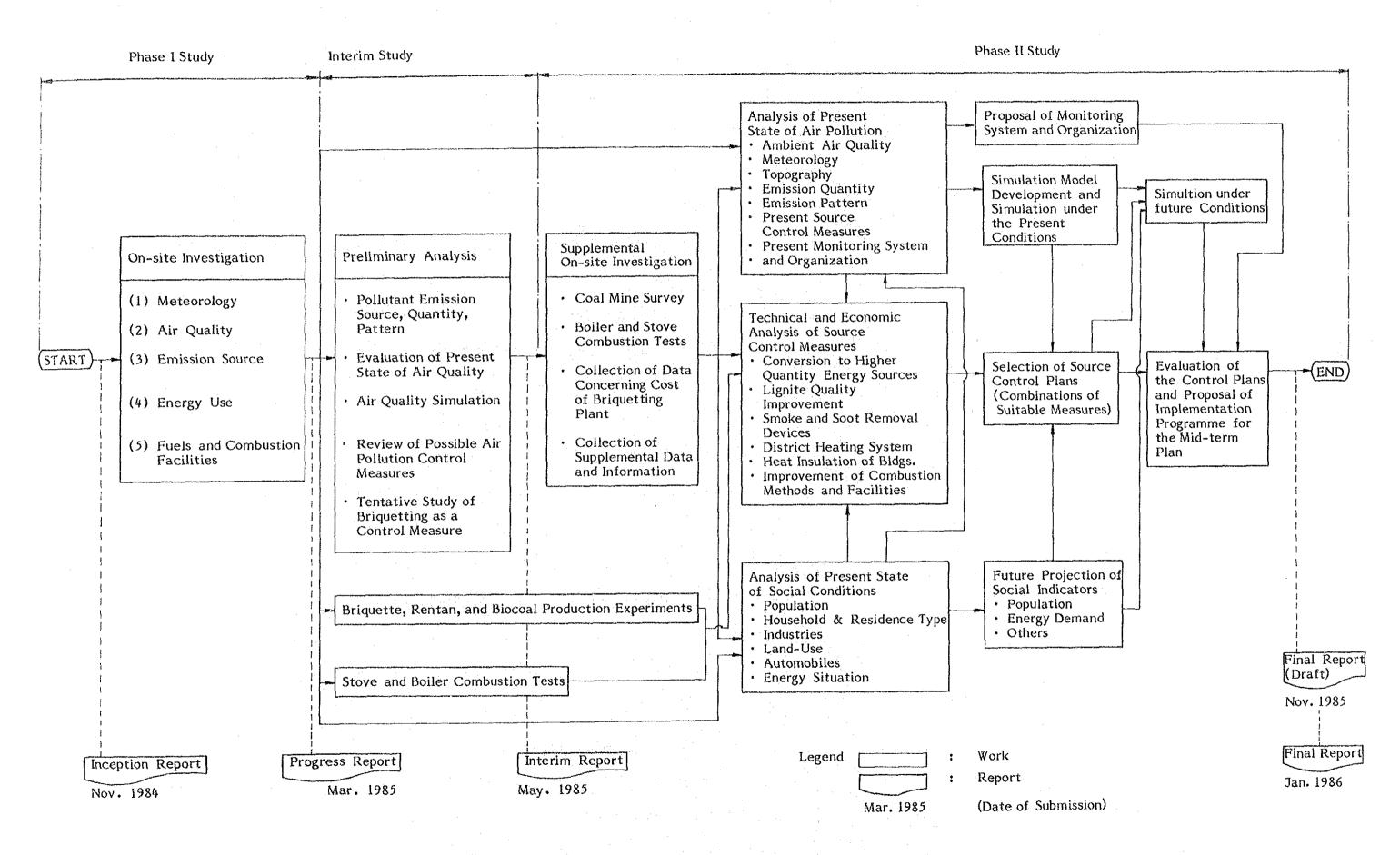


Figure 1.2.1 Study Work Flow

Figure 1.2.2 Time Schedule of the Study

		angene persistant or conserve the second of the second			and the second s		denocarramon in the	The state of the s		V	ork in Tu	The second secon		Work in Ja	pan	nanana open stationer mane
	Year	19	Pha:	se I		<u> </u>	Interi	m Phase		1985		Phase II				1986
	Items Month	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun,	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.
	Report Submission	Inception				Progress		Interim						Draft Final		Final
	Meeting in Ankara	23				14 18				2 8					4 11	
Air	Air Quality Monitoring (SO ₂ , PM)		12			13			· · · · · · · · · · · · · · · · · · ·							
Quality Monitoring	Maintenance of Monitoring System									E						
	Remodeling of Turkish System										=	,				
	Wind Speed/Direction at Ground Level		17			13										
Meteorological Observation	Insolation and Net Radiation		17			4										
	Vertical Profile of Temperature and Wind Speed/Direction		1921	16 21 28 17 25 29												
	Boiler Flue Gas Analysis				20 27				·							
Study of Emission	Automobile Exhaust Gas Analysis		25 27													
Source and	Traffic Volume Survey					14										
Emission Factor	Questionnaire on Boilers and Building Heating															
	On-site Investigation of Coal Mine									ģ						
Data Collection	Collection of Data and Information	E														
Socio-economic	Analysis of Existing Conditions															
Study	Projection of Future Conditions															
	Stove and Boiler Combustion Study															
Study of Pollutant Source	Lignite Quality Improvement							-								
Control Measures	Study of Other Measures							-								
	Selection and Evaluation of Control Plans, and Implementation Program															
Study of Monitori	ing System, Organization, and Forecasting								÷				<u> </u>			
Air Quality	Model Development and Simulation under Present Condition													<u> </u>		
Simulation	Analysis under Future Conditions							1								
Report	Preparation of Report				С				÷							

1.3 GENERAL DESCRIPTION OF THE STUDY AREA

1.3.1 Geography

The City of Ankara is situated in lat. 40°N. and long. 33°E. occupying a central area of the Province of Ankara which holds a north-western part of the Central Anatolian Region (see Figure 1.3.1).

The City lies in a basin surrounded by the highlands over 1000m above the sea level. Average altitude of the basin is about 900m and that at the lowest part is about 750m. The City is expanding largely toward the west along the basin (see Figure 1.3.2).

1.3.2 Climate

Ankara's climate is characterized by hot and dry summers, cold and medium-wet winters. Annual precipitation is relatively small being about 370mm. However, spring and fall rains may cause floods. Temperature variation is large during a day and a year. The highest and the lowest temperatures in record are 40°C and -25°C, respectively. (See Table 1.3.1)

Among monthly average temperatures in Ankara, the highest is 23.2°C in July, and the lowest is -0.2°C in January. Mean number of days with minimum temperature being -10°C or less is 10 in a year, and mean number of days with maximum temperature being 0°C or less is 15 in a year.

Annual frequencies of major wind directions in order of high frequency are NE(23.0 %), N(17.0 %), NNE(12.8 %), SW(11.5 %) and W(6.0 %). The directions between N and NE dominate during a year with the total frequency of 54%. Mean wind speeds in various directions are around 3m/sec.

As to humidity, annual mean relative humidity of 60 % and the winter average of about 75 % are rather high considering the relatively small quantity of precipitation. Foggs are prone to set in during winters with appearance on 5 days per month.

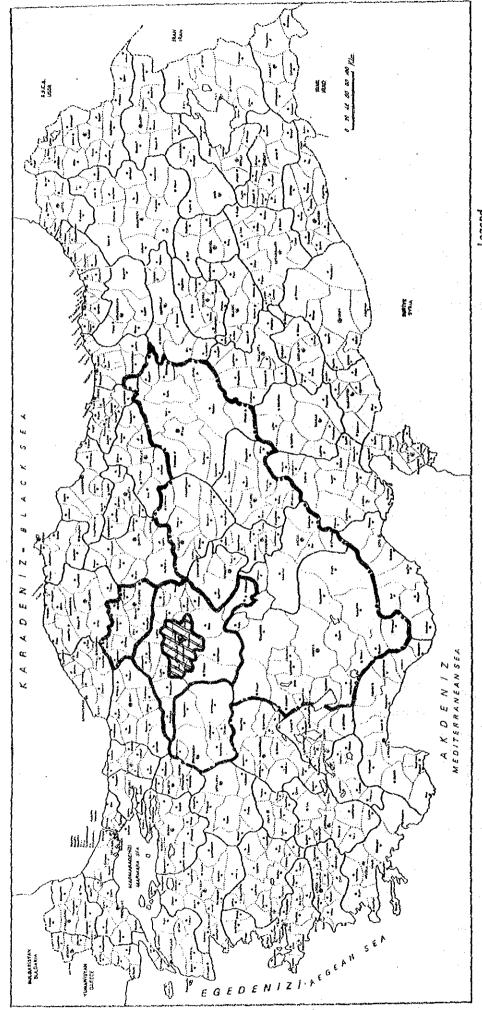


Figure 1.3.1 Location of Ankara

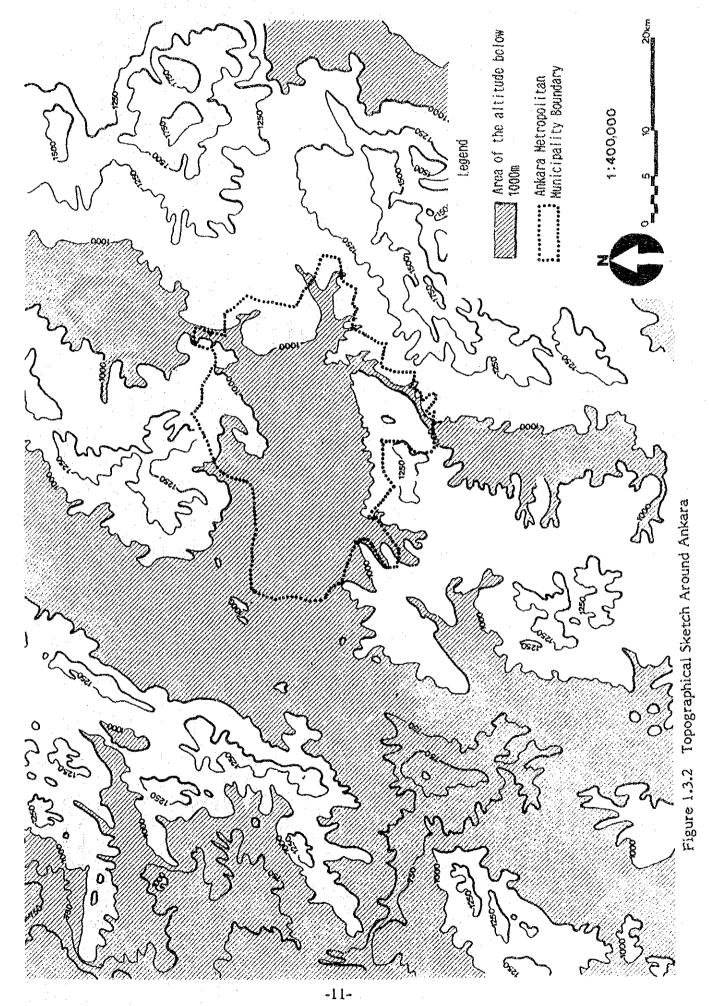


Table 1.3.1 Monthly Averaged Meteorological Data in Ankara

	Year	11.7 (mean)	40.0 (max)	-24.9 (min)	45.9 (total)	14.7 (total)	9.7 (total)	60 (mean)	371.6 (total)	102.4 (total)	22.3 (total)	7.25 (mean)	25.7 (total)	3.2 (mean)	빙
tm o 57'N. 20 53'E.		2.3	20.4	-24.2	-	0.3	1.5	78 (46.5	12.4	3.9	2.55	5.1	2.9	NE
Altitude: 894m Latitude: 39º 57'N. Longitude: 32º 53'E	Nov.	7.5	25.3	-17.5	1	0.2	0.2	70	28.7	7.8	4.0	5.15	3.9	2.7	NE
Alti Lati Lon	Oct.	12.9	33.3	-5.3	0.3	ı	ļ	57	23.1	4.9	ı	7.14	1.4	2.8	NE NE
	Sept.	18.3	35.7	-1.5	5.0	\$	-	47	18.5	4.2	1	9.37	ħ.0	3.1	NE
	Aug.	23.1	40.0	5.5	17.4	_		4.1	9.0	2.1	1	11.43	0.1	3.6	NE
	Jul.	23.2	38.8	4.5	16.1	ı	1	43	12.6	3.4	-	12.25	0.2	3.6	N.
	Jun.	19.9	36.4	3.8	5.7	1		50	31.7	8.1		11.04	6.0	3.2	Z
	May.	16.0	34.4	-1.6	1.2	ı	ı	22	52.1	12.2	•	6.04	0.4	3.1	NE
	Apr.	11.1	31.6	-7.2	0.2	1	•	58	38.4	10.6	0.2	6.59	1.8	3.6	N H
מייישנים:	Mar.	5.3	28.5	-16.3	•	0.7	1.0	65	35.6	10.9	1.8	5.31	2.9	3.6	NZ E
	Feb.	1.2	20.4	-24.4	1	4.7	3.1	74	35.5	11.6	6.8	†Q*†	3.7	3.4	Z
900	Jan.	-0.2	16.4	-24.9	ı	6.0	3.9	78	39.7	12.8	9.2	3,10	5.6	3.2	R
	Observation Period (yrs)	55	57	57	45	45	¢ 5	55	55	55	55	53	45	77	22
ייטיים ייטיים איסיים	Item	Mean Temperature (oC)	Extreme Maximum Temperature (°C)	Extreme minimum (oC)	Mean number of days with max. temp. 30°C or more	Mean number of days with min. temp0.1°C or less	Mean number of days with min, temp10°C or less	Mean relative (%)	Mean precipitation (m)	Mean number of days with precipitation	Mean number of days with snow	Average hours of sunshine (hr.min)	Mean number of days with fog	Mean wind speed (m/s)	Wind direction with highest frequency

Source: 1). Statistical Yearbook of Turkey 1983.
2). General Directorate of State Meteorological Works.

1.3.3 Population

Population of Ankara City, Ankara Province and the whole Turkey in the past census years are shown in Table 1.3.2. Population of the City had been increasing with accelerated rates until 1975. However, the rate of increase dropped after that through 1980. Present population of the City is considered to be about 2.1 million.

Table 1.3.2 Population (1935 - 1980)

Year	Ankara City	Ankara Province	Turkey
	(persons)	(persons)	(persons)
1935	122,270	534,025	16,158,018
1940	157,242	602,965	17,820,950
1945	226,712	695,526	18,790,174
1950	288,536	819,693	20,947,188
1955	451,241	1,120,864	24,064,763
1960	650,067	1,321,380	27,754,820
1965	905,660	1,644,302	31,391,421
1970	1,236,152	2,041,685	35,605,176
1975	1,701,004	2,585,293	40,347,719
1980	1,877,755	2,854,689	44,736,957

Source: (1) Population and Employment Projection for Ankara, 1976

(3) Census of Population - Social and Economic Characteristics, 12.10.1980

⁽²⁾ Census of Population - Social and Economic Characteristics of Population, Province: 06-ANKARA, 1970, 1975, 1980

1.3.4 Industry

Industrial characteristics of Ankara can be inferred from the sectoral distribution of employment shown in Table 1.3.3.

Table 1.3.3 Sectoral Distribution of Employment in Ankara in 1970

Sector	Employment	Percent
Agriculture	17,800	4.51
Manufacture	53,597	13.52
Construction	27,487	6.93
Communications	26,048	6.57
Trade	33,364	8.41
Services, etc.	238,112	60.05
Total	396,508	100.00

Sixty percent of total jobs in 1970 were in the sector of service and others, and about a half of them were in the government and related activities.

Major factories existing in Ankara includes a cement plant, a sugar factory, an agricultural tractor factory, a gunpowder factory, and two city-gas plants.

41.53.23.33.33.33.33.33.33.33.33.33.33.33.33							
	CHAPTER 2	ANALYSIS OI	THE PRESEN	IT STATE OF	AIR POLLUT	ION	
	egg.						
		E					
						en e	

2.1 OUTLINE OF THE FIELD INVESTIGATION STUDY

In order to understand, on the quantitative basis, the degree of air pollution in Ankara in the winter season and to clarify the primary causes of the pollution, field investigation study was carried out. Outline of the study is described below.

2.1.1 Items and Periods of the Field Investigation

Items and time periods of the investigation are shown in Table 2.1.1. The time schedule of the investigation was shown in Figure 1.2.2 in Chapter 1 as a barchart.

Table 2.1.1 Items and Periods of the Field Investigation

Gategory	Investigation Item	Time Period	Remarks	
Ambient	sulfur dioxide (SO ₂)	Dec.12, 1984 - Mar.13, 1985	7 stations	
Air Quality Monitoring	particulate matter (PM)	same as abobe	3 stations	
	wind speed/direction at ground level	Dec.17, 1984 - Mar.13, 1985	2 stations	
Meteorological Observation -	insolation and net radiation	Dec.19 - 21, 1984	l station	
	vertical profiles of air temperature and wind speed/direction (upper layer meteorological observation)	Dec.19 - 21, 1984 Jan.16 - 17, 1985 Jan.21 - 25, 1985 Jan.28 - 29, 1985	l station 4 times	
Emission	boiler flue gas analysis	Feb.20 - 27, 1985	10 heating boilers	
Source Survey	automobile exhaust gas analysis	Jan.25 - 27, 985	4 types 10 automobiles	

(to be continued)

Table 2.1.1 (continued)

Gategory	Investigation Item	Time Period	Remarks
Emission Source Survey	traffic volume survey	Mar.14, 1985 (16 hours)	5 stations 3 types 2 ways
	on-site questionnaire at boiler rooms	Dec.12 - 20, 1984	100 samples
	questionnaire on residential heating	Dec.24, 1984 - Mar.18, 1985	737 samples

2.1.2 Location and Characteristics of the Investigation Sites

(1) Location of the Investigation Sites

Locations for the ambient air quality monitoring, meteorological observation, and traffic volume survey were determined as shown in Figure 2.1.1 after consultation with GDE. Names of the stations and observation items are shown in Table 2.1.2.

Table 2.1.2 Station Names and Investigation Items

Station Name	Investigation Items
Yenimahalle	SO ₂
Tandogan	SO ₂ , WD/WS
Cebeci	SO ₂
Bahcelievler	SO ₂ , PM
Sihhiye	SO ₂ , PM
Kavaklidere	SO ₂ , PM, WD/WS
Cankaya	SO ₂
Meteorological Agency	Insolation, Net radiation, Vertical profiles of air temperature and WD/WS (upper-layer meteoro- logical observation)
① Dormitory	
② EGO	Trafic Volume Survey • 16 continuous hours
③ MENR	· classified into three types of cars
4 Opera House	· two-way traffic count
® GDE	

Note: WD/WS = wind direction and wind speed

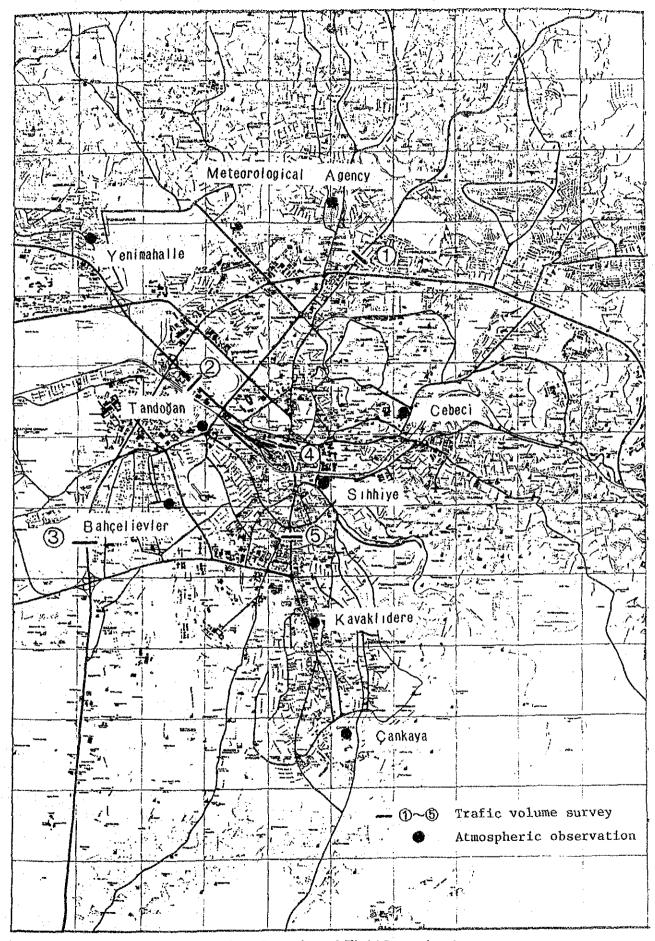


Figure 2.1.1 Location of Field Investigation

(2) Characteristics of Air Quality Monitoring Stations

Characteristics of seven stations for air quality monitoring selected from existing 15 stations within the City are as follows.

Cankaya station is situated in the southern part of the City at about 1000 m above the sea level.

Stations of Kavaklidere, Bahcelievler, Tandogan, and Sihhiye are located in the central part of the City along the bottom line of the basin. Altitudes of these stations are between 850 m and 950 m.

Yenimahalle station is situated in the residential area of about 6 km away in the north-east direction from the center of the City. There are no large stationary sources of pollutant emission except those of residential heating.

Cebeci station is located within the residential area at the western part of the City.

2.2 CHARACTERISTICS OF CONCENTRATION VARIATION AND FREQUENCY OF OCCURRENCE

2.2.1 Variation of Daily Mean Concentration

(1) Mean Concentration During the Monitoring Period

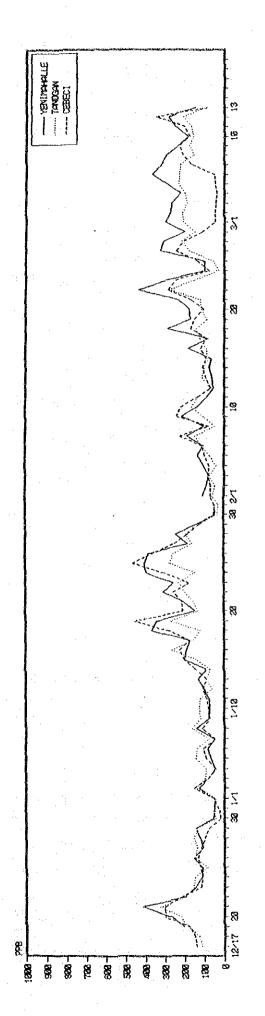
Arithmetic mean values of daily mean concentration of SO₂ and PM for the monitoring period are shown in Table 2.2.1. Daily mean concentration was computed averaging every one-hour value from 1 o'clock through 24 o'clock. When data were not obtained for more than 8 hours in a day, that day was excluded from the computation.

Table 2.2.1 Mean Concentration during the Monitoring Period

(unit: ppb)

Item	Station	Mean value	Standard deviation	Maximum	Minimum	Effective days
	YENIMAHALLE	176.8	102.9	431	42	85
	TANDOGAN	137.4	63.6	324	28	87
	CEBECI	146.3	91.6	458	18	87
so ₂	BAHCELIEVLER	355.4	139.4	757	103	87
	SIHHIYE	182.0	68.9	378	57	80
	KAVAKLIDERE	339.1	185.9	817	86	87
ĺ	CANKAYA	150.3	140.6	844	7	85
	BCHCELIEVLER	227.6	103.9	552	70	87
PM	SIHHIYE	159.4	84.4	488	60	76
	KAVAKLIDERE	175.0	109.5	535	43	79

Among the seven stations, Bahcelievler showed the highest mean concentration of SO₂ being 0.355 ppm, followed by Kavaklidere being 0.339 ppm. It was lower at Cankaya being 0.150 ppm, i.e., less than a half of those at the highest 2 stations. However, the overall maximum daily mean concentration of SO₂ occurred at Cankaya the value being 0.844 ppm. It is considered that the particular topographic characteristics of Cankaya station is responsible for the phenomenon.


(2) Variation of Daily Mean Concentration

Time variation of daily mean concentration of SO₂ by stations is shown in Figure 2.2.1, and that of PM is shown in Figure 2.2.2.

High levels of SO₂ were observed at all the stations during the period around December 20, the period from the middle to the end of January, and the period from the end of February to the beginning of March. In Cankaya, especially high levels were observed in the beginning of March. Since high levels were also observed in this period at Kavaklidere located at the southern part of the central area of the City, it is considered that the pollutants detained in the bottom of the basin were blown up by the northern winds to the Cankaya area where the altitude is higher.

Daily variation of PM shows the same pattern as that of SO2.

Figure 2.2.3 shows the daily variation of the ground-level air temperature observed at the Meteorological Agency, and indicates the occurrence of high SO₂ levels corresponding to the air temperature below 0°C.

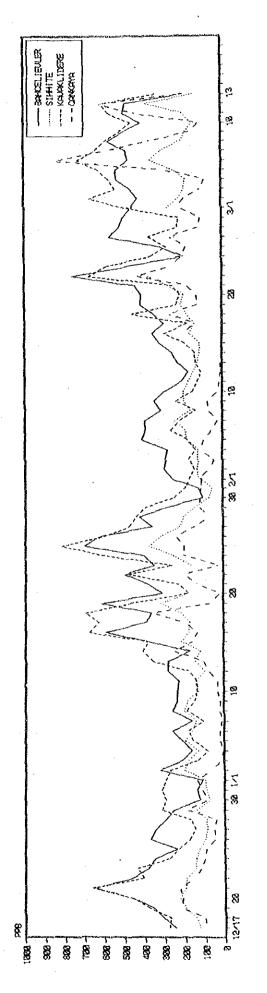


Figure 2.2.1 Time Variation of Daily Mean Concentration of 502

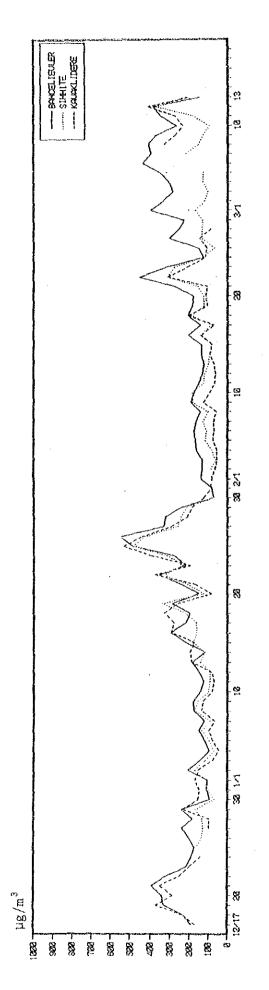


Figure 2.2.2 Time Variation of Daily Mean Concentration of PM

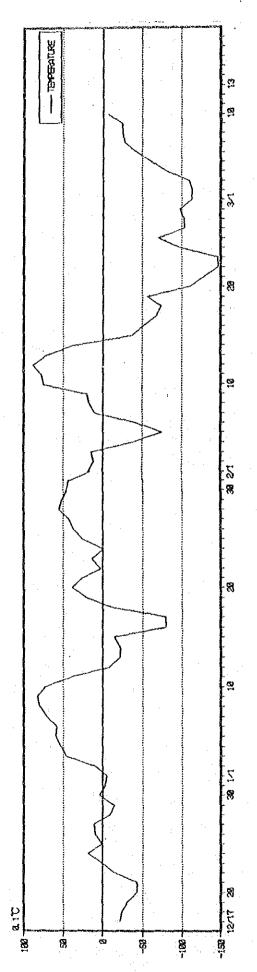


Figure 2.2.3 Time Variation of Daily Mean Air Temperature at the Ground Level

2.2.2 Hourly Variation Pattern

Hourly concentration of SO₂ averaged on each time of the day over the entire period of monitoring is shown in Figure 2.2.4, and that of PM is shown in Figure 2.2.5. The hourly variation patterns for both pollutants are similar having two peaks. This pattern corresponds well to that of time zones of combustion of boilers and stoves for heating indicating that exhaust gas emissions from these small-height sources are major causes of the air pollution. When primary sources of SO₂ emission are heigh stacks of factories as is the case in Japan, such a clear two-peak mode is not usually observed.

2.2.3 <u>Distribution of Frequency of Occurrence of Daily Mean and Hourly Mean Values</u>

In order to assess the degree and impact of air pollution it is necessary to know the frequency of occurrence of high pollutant levels which may affect human health even under the short-term exposure, as well as to know annual and seasonal average pollutant levels that may affect the health through the long-term exposure.

Figure 2.2.6 shows the cumulative frequency distribution curves (on logarithmic-normal probability paper) for daily mean values of SO₂ by stations, and Figure 2.2.7 shows the curves for hourly mean values of SO₂. Figure 2.2.8 shows those curves for PM. These curves are also called as P-C curves. If a P-C curve approximates to a straight line, distribution of occurrence of concentration is assumed to be logarithmic-normal distribution.

These Figures show that distributions of both daily mean and hourly mean values are approximately in logarithmic-normal at all the stations. In general, for the area where there are many small-height emission sources and few large factories the distribution of concentration levels corresponds relatively well to the logarithmic-normal, whereas the normal distribution or Weibull distribution conforms relatively well in the area where there are many large factories. From the fact that the monitoring results are in conformity with the logarithmic-normal distribution as seen above, it is obvious that the major cause of the air pollution in the winter in Ankara is a large number of small-height emissions from heating boilers and stoves.

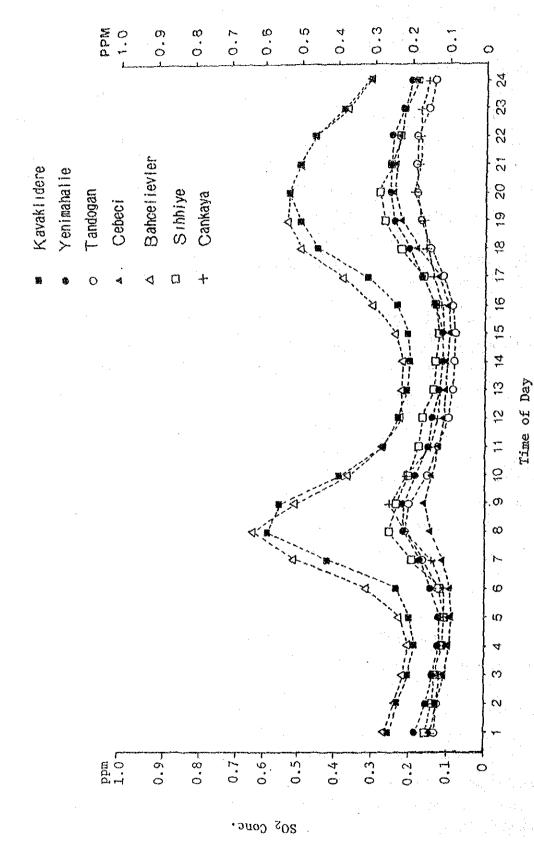


Figure 2.2.4 Daily Time-Variation Pattern of SO2 Concentration

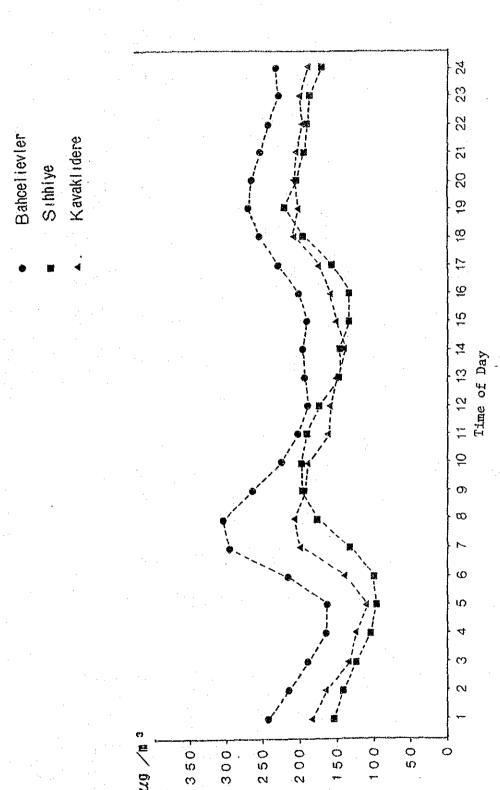


Figure 2.2.5 Daily Time-Variation Pattern of PM Concentration

PM Conc.

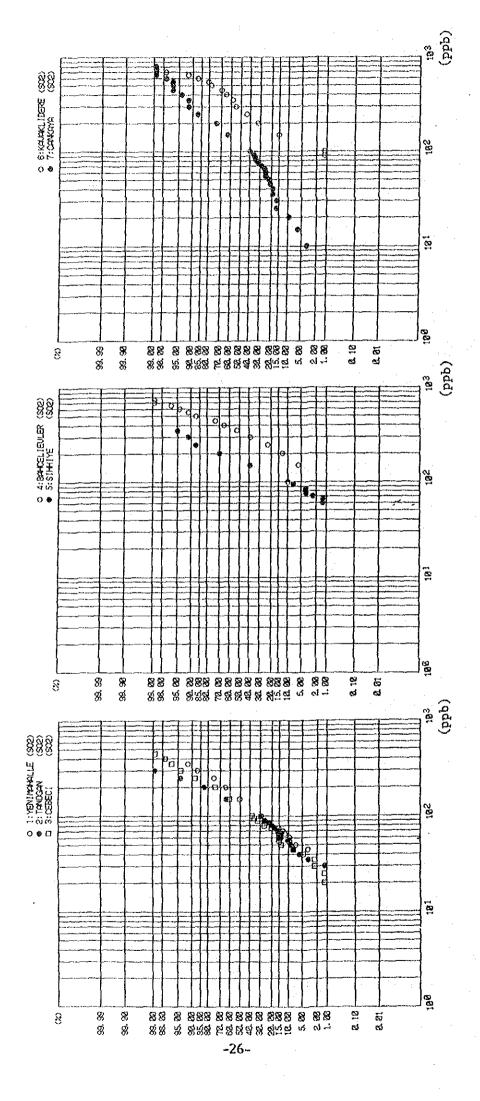
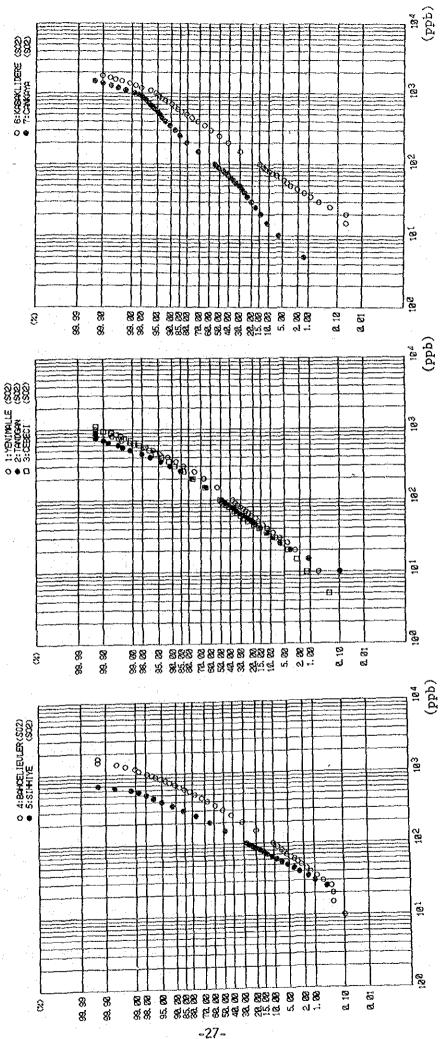
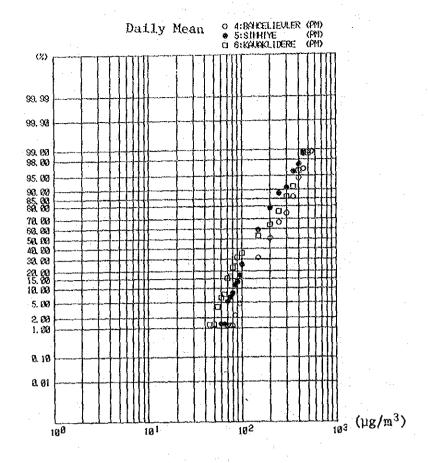




Figure 2.2.6 Cumulative Frequency Distribution Curve tor Daily Mean Concentration of SO2

Cumulative Frequency Distribution Curve for Hourly Mean Concentration of SO2 Figure 2.2.7

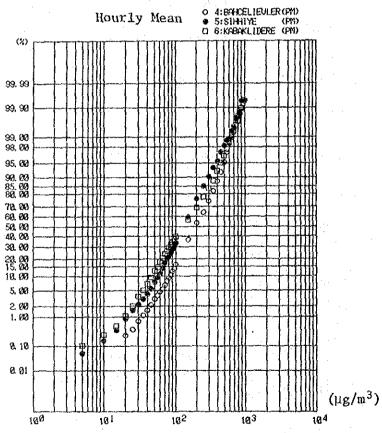


Figure 2.2.8 Cumulative Frequency Distribution Curve for PM

Slope of the P-C curve indicates the degree of scattering of concentration values. On the logarithmic-normal probability paper, the value obtained by deviding the 84% value by the 50% value corresponds to one geometric standard deviation. The station where this standard deviation is particularly large (slope of the straight line is small) is likely to be under influence of a particular emission source. Among the seven stations, the standard deviation is the largest at Cankaya. It may be caused by the convection of pollutants from the central part of the City at the time of particular wind direction.

2.3 CONCENTRATION VARIATION BY METEOROLOGICAL CONDITION

2.3.1 Meteorological Condition

Wind direction and wind speed were measured every hour at 2 stations, i.e., Tandogan and Kavaklidere. Data at Meteorological Agency in Ankara for the same period were also obtained. Wind roses at these three stations are shown in Figure 2.3.1.

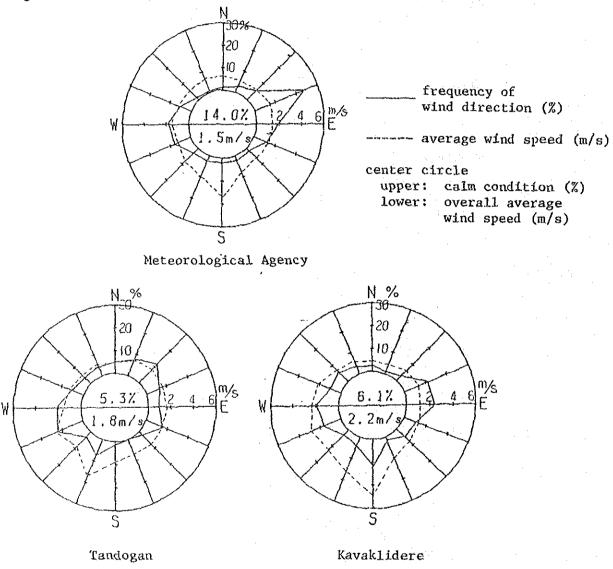


Figure 2.3.1 Wind Rose (Dec. 17, 1984 - Mar. 13, 1985)

Dominating wind direction is NE at Tandogan, E at Kavaklidere, and ENE at the Meteorological Agency. On the whole, eastern winds are dominating.

Average wind speed is relatively low in general. The speed tends to increase when S or SSW winds blow.

Based on the results of measurement of insolation and net radiation at the Meteorological Agency, atmospheric stability which indicates the dispersiveness of air pollutants in the atmosphere was classified according to the classification by Pasquill as shown in Table 2.3.1. The stability class A represents the extremely unstable condition of the atmosphere under which air pollutants can be dispersed extensively. Conversely, the stability class G represents the extremely stable condition under which air pollutants are not dispersed well.

	Insc	olation (T)	cal/cm ² ·h		Net Radia	ation(Q) ca	al/cm ² ·h
Wind Speed (m/s)	T≥50	50>T ≥25	25>T ≥12.5	12.5>T	Q>-1.8	-1.8 ≥Q> -3.6	-3.6≥Q
< 2	A	A-B	В	a	D	G	G
2 - 3	A-B	В	С	D	D	E	F
3 - 4	В	В-С	С	D	D	D	E
4 - 6	С	G-D	D	D	D	D	a
6 <	С	D	D	D	D	D	D

Table 2.3.1. Pasquill's Classification of Atmospheric Stability

Note:

- 1) Net radiation is positive when its direction is upward from the ground. Although it is usually negative during the night, it occasionally becomes positive.
- 2) Average values for 10 minutes before the designated time are to be taken for both insolation and net radiation.
- Insolation is used for daytime and net radiation is used for night-time in the classification.
- 4) Unit of cal/cm²·h is used for insolation and net radiation.

Generally, stability classes A - D prevail during daytime and the classes D - G prevail during night. The class A appears when insolation is large and wind speed is low, and the class G appears when a ground-level inversion is formed under the clear sky at night in winter.

Figure 2.3.2 shows the frequency of appearance of the stability classes. The class D (neutral) appeared most frequently at all the stations. Of other classes, frequency of appearance of B is high during the daytime and G is during the night.

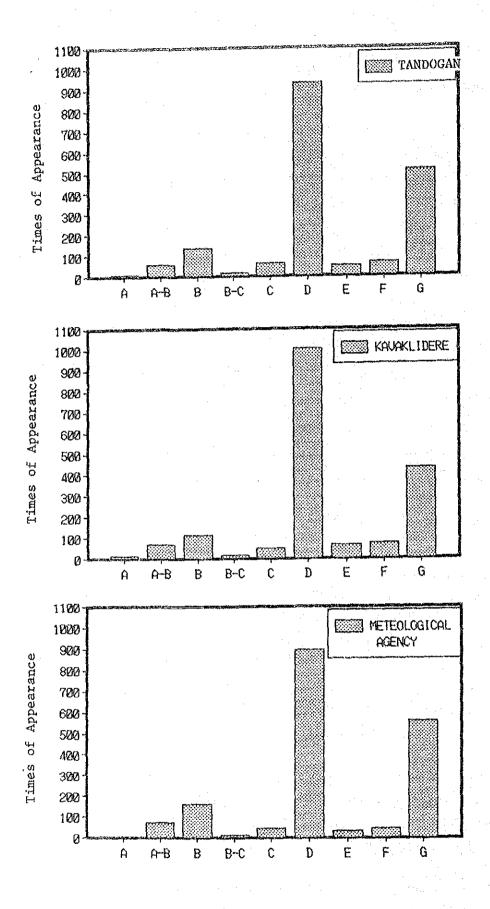
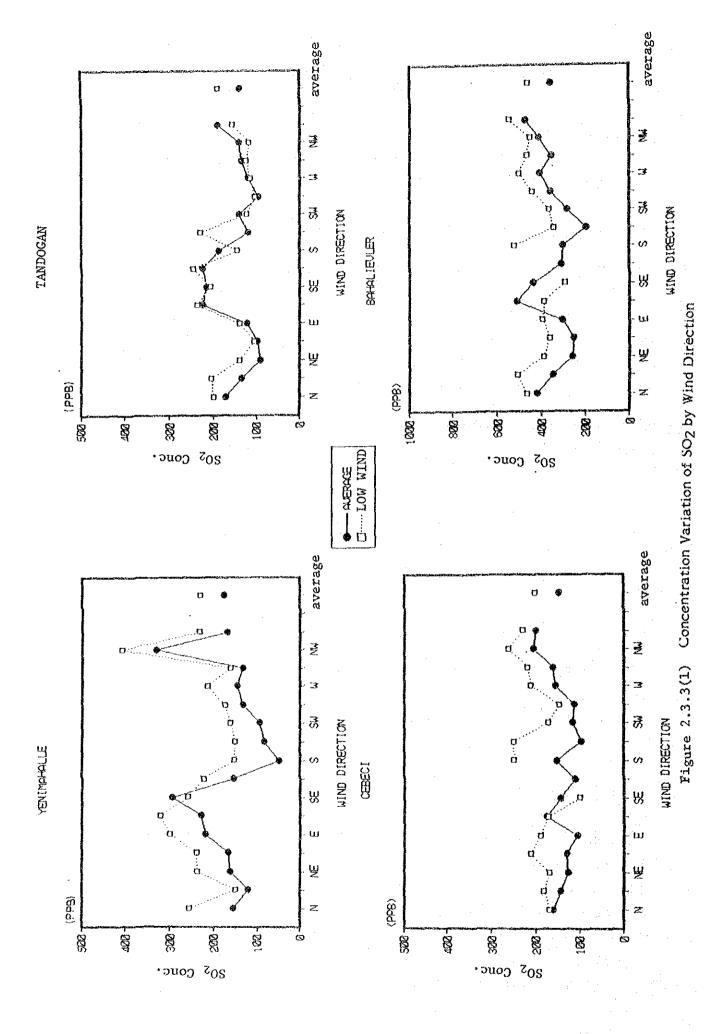


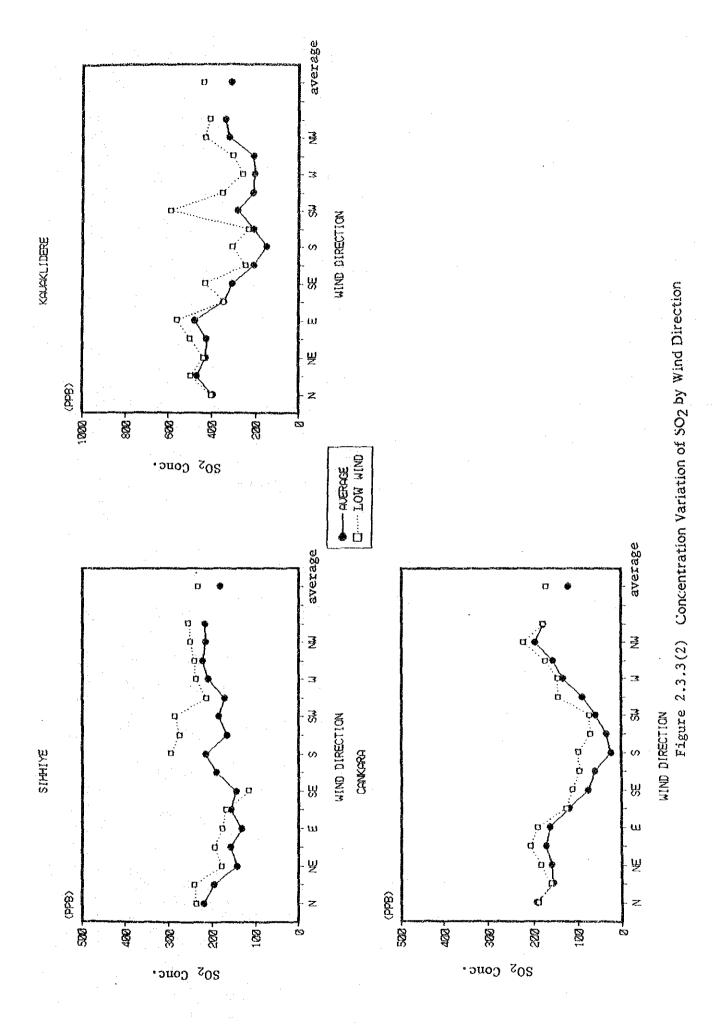
Figure 2.3.2 Frequency of Appearance of Stability Classes

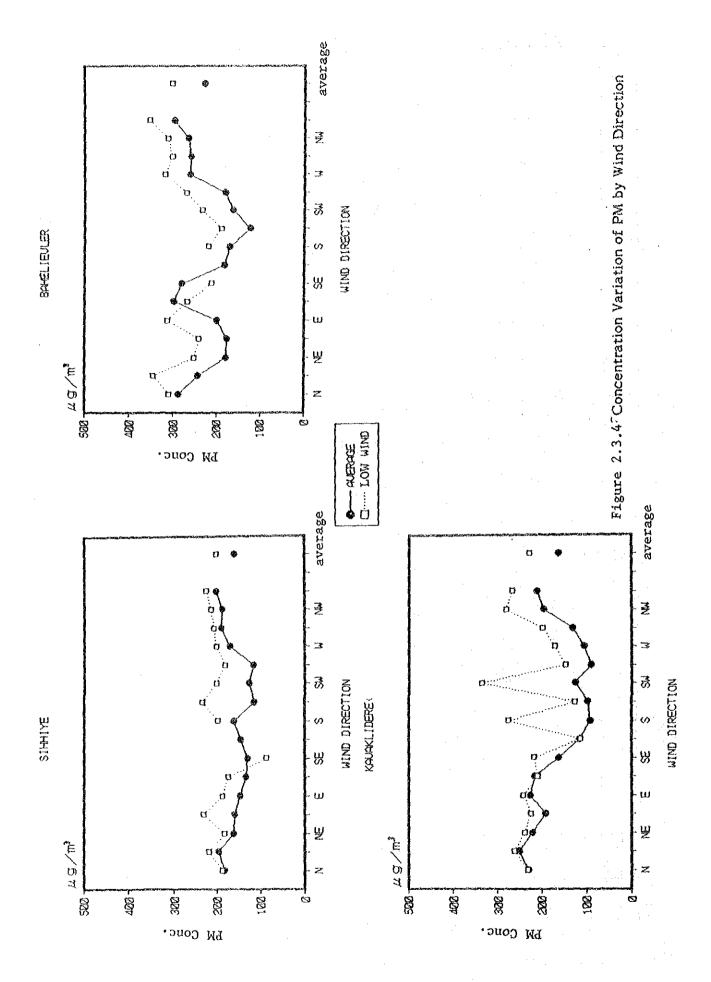
Frequent appearance of G (extremely stable) suggests that the ground level or low-level inversions were often formed under the low or no wind condition due to the topographic characteristics as basin.

2.3.2 Variation by Wind Direction and Speed


Through the analysis of concentration characteristics at a station in relation to wind directions and wind speeds, locations of emission sources that affect the concentration at that station can be detected. Concentration values of SO₂ at the seven stations and PM at the three stations were cross-checked against wind direction and wind speed. The meteorological stations whose wind data were used for the cross-check of pollutant concentration are shown in Table 2.3.2.

Variation in average concentration of SO₂ by wind directions at each monitoring station is shown in Figures 2.3.3 (1) and 2.3.3 (2). And that of PM is shown in Figure 2.3.4.


Table 2.3.2 Combination of Meteorological Station and Air Quality Monitoring Station for Analysis


Air quality monitoring station	Meteorological station	Monitoring item
Yenimahalle Tandogan Cebeci Bahcelievler Sihhiye Kavaklidere Cankaya	Meteorological Agency Tandogan Tandogan Tandogan Tandogan Kavaklidere Kavaklidere	SO ₂ SO ₂ SO ₂ , PM SO ₂ , PM SO ₂ , PM SO ₂

At the stations Yenimahalle, Bahcelievler, and Tandogan which are located to the northwest or west of the City center, high concentrations are observed when wind directions are between ESE and SSE. At Kavaklidere and Cankaya which are situated in the southern part of the City, high concentrations are observed when wind directions are between N and E. High concentrations appear at all the stations when winds blow from the direction of the City center. At Cebeci situated in the eastern part of the City, high concentration occurred also at the time of northwest wind. This is considered to be the influence of a large number of low-storied houses in Altindag located in the north-west of the station. At

-34-

Sibblye, in the center of the City, no significant change in pollutant concentration by wind direction is observed.

These Figures also show concentrations by wind directions at the time of low-speed winds (0.5 - 0.9 m/s). It is recognized that the relation between wind direction and high concentration is not altered significantly by the speeds of wind.

The concentration of PM is observed to occur in the same tendency with SO2.

Figure 2.3.5 shows concentration variation by different wind speeds. At the Bahcelievler and Kavaklidere stations, high concentrations of SO_2 occur especially at the times of no wind and low wind, indicating the influence of emission sources in their immediate vicinity. At Cankaya and Sihhiye, concentrations are higher at the times of low winds (0.5 - 0.9 m/s) than that of no wind (0 - 0.4 m/s) indicating the convective transport of pollutants from surrounding areas.

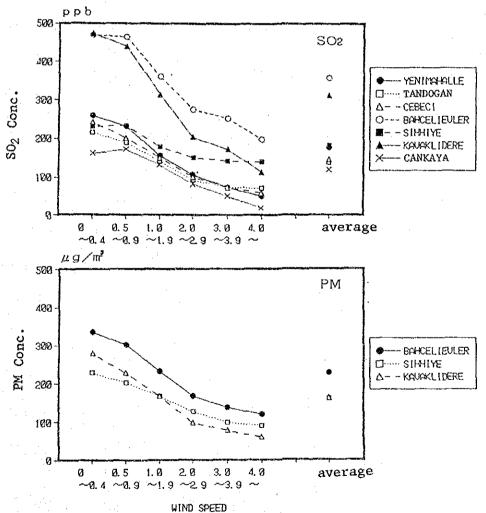


Figure 2.3.5 Concentration Variation by Wind Speed

2.3.3 Variation by Atmospheric Stability

As described before, the atmospheric stability classes represent the atmospheric dispersiveness of air pollutants. They are classified into 10 cases of A (extremely unstable) through G (extremely stable).

Frequency of occurrence of each stability class depends on the time zones of a day. As an example, average hourly concentrations of SO₂ corresponding to each class of the stability at Kavaklidere are shown in Table 2.3.3.

For the whole observation period, the class G in the stable cases and the classes A-B and B in the unstable cases coincide with occurrence of high concentrations. The high concentrations under the stability G occurred during the night time between 18:00 o'clock and 23:00 o'clock when emission of SO₂ is high. It is inferred also that since height of emission sources is low, pollutants are not dispersed upward and sustained near the ground level as a mass of smoke.

In general, the class G appears within a stable layer of inversion reaching the ground level. In case height of emission sources is above this layer, pollutant concentration at the ground level becomes low because the downward dispersion of pollutants is prevented.

Table 2.3.3 Concentration of SO₂ by Time and Atmospheric
Stability at Kavaklidere unit:

ppb

												·
		Co		racion	by St		у					
	Time	λ	8-A	3	8-C	С	C-D	0	Ε	F	G	Average
		-0	0	a	0	0	0	190	104	145	328	234
r	1	. 0	Û	0	ย	ŏ	ŏ	144	67	. 89	293	206
	2	Q.	ű	ő	ō	Ð	· . ŏ	121	63	74	235	175
i	21345678	ű	ō	ő	ŏ	ŏ	ŏ	99	68	95	220	146
	5	ő	ő	ō	ů.	ō	Ď	94	'68	89	201	130
	ธิ	ä	Ğ	ā	g,	ā	ŏ	114	106	174	278	179
) ž	Q	ū	ő	ō	Ū.	ō	360	216	244	508	382
Time	8	0	Ô	341	0	0	Ó	534	0	. 0	0	546
of	9	3	797	836	0	298	Q	464	.0	0	. 0	531
	10	0	700	468	217	284	0	320	0	0	0	385
day	11	424	393	307	164	185	0	220	0	Đ	Ð	273
	12	358	315	261	38	122	Q	197	9	Đ	0	(235.
1	13	281	241	246	192	124	0	179	. 0	0	Û	208
	1.4	9	245	229	85	1 16	Ø	178	0.	Đ	e	197
	1.5	134	253	240	156	139	0	20.2	G	Û	. 0	201
	16	0	178	375	0	1.48	0	218	0	0	. 0	218
	17 1	ŋ	c	256	0	ø	0	259	197	299	424	301
	1.8	0	0	0	0	. 0	0	326	324	536	526	429
	19	g.	O.	Q.	0	G	0	375	421	428	569	166
	20	0	0	0	. 0	0	0	377	294	377	639	483
	21	Đ	0	0	0	G.	Ð	353	349	432	637	471
	2 1 2 2 3	3	g	0	0	O	ũ	253	245	373	658	∔32
i	23	0	0	0	Ð	Ø	0	254	295	250	525	359
	24	9	0	đ	0	. 0	0	2:8	164	290	385	277
Whole	e period	340	380	360	173	170	0	267	215	315	424	311
m	id-aight	Đ	0	0	0	8	0	157	111	151	286	207
	morning	ũ	ā	ă	ă	ď	· ŏ	211	117	135	294	230
•	morning	ā	71Š	685	217	287	ŏ	458			ō	488
	daytime	355	307	255	150	144	. 0	194	ő.	õ	0	228
	evening	184	238	272	156	143	0	230	197	299	424	241
	night	9	0	ō	ø	- 0	· û	322	322	408	592	440
-	lecember ((32	489	383	366	203	, G	300	243	339	418	324
ŗ	January	328	424	380	144	146	Q O	258	258	322	475	336
ř	ebruary	184	162	213	143	179	0	238	182	296	310	247
^	March	383	461	617	0	0	a	603	182	394	565	539
	11077.013	100	401	921	v	, u	u	907	U	এল র	343	103

High concentrations under the stability classes A-B and B occurred in the time zone of 8:00 - 11:00 a.m. with a few hours delay from the morning peak of the emission. It is considered that the occurrences of high concentration were due to the formation of trap-type inversion layers that usually appear in the process of collapse of ground-level inversion layers developed during previous nights. This process is illustrated in Figure 2.3.6.

When a trap-type inversion is formed, the lower layer becomes unstable and promotes mixing of pollutants. The pollutants are trapped, however, within the layer because of the presence of the elevated inversion to result in high pollutant concentration, if a large number of low-height pollutant sources exist.

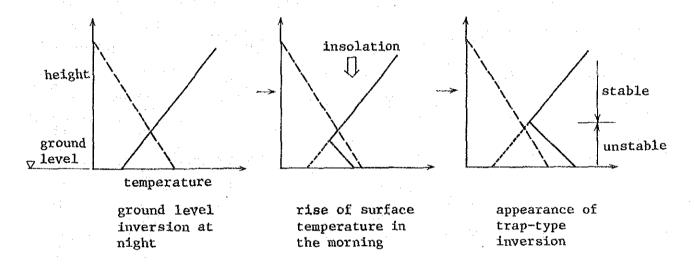


Figure 2.3.6 Formation of Trap-Type Inversion

It is considered also that because of the basined topography of Ankara City, the elevated inversion formed in the late morning functions as a lid thus causing high pollutant concentration in the lower layer even under the atmospheric stability of the classes A, A-B, and B.

2.4 STATISTICAL ANALYSIS OF THE OBSERVATION RESULTS

2.4.1 Correlation Between Observed Items

Table 2.4.1 shows correlation between the sixteen items of meteorology and air quality observed, such as daily average insolation, wind speed, air temperature, and SO₂ and PM concentration at each station.

Regional similarity or difference in wind condition can be judged by examining correlation coefficients between daily mean wind speeds measured at the 3 stations.

The coefficient is largest between Tandogan (P2) and Kavaklider (P6) followed by between Tandogan (P2) and Meteorological Agency (ME). It is small between Meteorological Agency and Kavaklidere. Therefore, the analysis of air pollution in Ankara City in terms of wind condition requires separate treatment of the northern part represented by Meteorological Agency and the southern part represented by Kavaklidere.

As to the pollutant concentration in relation to meteorological parameters, there is a strong correlation with daily mean wind speed. Correlations with insolation, net ratiation, and daily mean temperature are weak. As an example, a scatter diagram of daily mean SO₂ concentration and wind speed at Kavaklidere is shown in Figure 2.4.1.

Correlation in pollutant concentration between stations is generally high. The correlation coefficients of SO₂ concentration show greater than 0.8 between the following pairs of stations, namely Yenimahalle and Bahcelievler, Yenimahalle and Sihhiye, Yenimahalle and Kavaklidere, and Tandogan and Bahcelievler. As an example of high correlation, a scatter diagram of SO₂ concentration at Yenimahalle and Bahcelievler is shown in Figure 2.4.2.

Between the following pairs of stations, the correlation coefficients of SO₂ concentration are less than 0.6; Cankaya and Tandogan, Cankaya and Cebeci, Cankaya and Bahcelievler, and Cebeci and Kavaklidere.

As shown above, correlation in SO₂ concentration between Cankaya and the central area of the City is low. It indicates that Cankaya area has different characteristics in meteorology and pollutant emission from those of the central area of the City. However, relatively high correlatin in SO₂ is found between

Table 2.4.1 Coefficients of Correlation Between Meteorological and Air Quality Parameters (Daily Mean Values)

		٠.																			62	1	
	1.	i i i																			1. 888	£ 50	
٠.	Tandogan	Kavaklidere		Agency	ᅓ	Agency							conc.						1	1. 888	4 821	PSPIT	
ų do	ion	<u>ရ</u> က	sed at	ogical	erature		[-	בירו		SVLER		ERE	líoxide						1: 888		825	P4PM	
insolation	net radiation wind speed at	wind speed	wind speed	Meteorological Agency	air temperature	Meteorological	11000	YEN LMAHALLE TANDOGAN	CEBECI	BAHCELIEV	SIHHIYE	KAVAKL IDERE	CANKAYA sulfur dioxide	PM conc.		-		1. 388	A 626		6 675	2051	
	 S		MEWS:	:	METM:	~	,		 . ლ	. 70	٠. ن		P7 :: (SO)				1.888	. a 789	. 80E		90 70 70 70 70 70 70 70 70 70 70 70 70 70	P6802	
SUN	RD P2	P6	ÿ		¥	•	,	-r4 h-	4 1-24		H-4	, page		i hai		1.888		Ø 61Ø	. 0. 782	9. 764	0 PC	P5502	
															1. 888	.d. 761	a. Tar			g 8, 595	956 98	P4S02	
10 T	station												 	1. 6889	4 673	a. 644	A 521	6.274	R 611	g. 82s	8 7 6	23302	
)	re corre	lation											1.806	A 624	9 8 8	Ø 718	20.67	8.373	1 828	a 657	089	2550	-
0000	ficant negative correlation	ificant correlation								<u>-</u>		1. 888	20 T38	9 70C	798 7	8 8	58 12	8,618	198 7 8 9	A. 745	E d	P1802	
olanificant tocitive commodution	ficant	mifican		-			٠			1		-8.452	-& 232	-B. B.S.S	-0.514	-8 323	-8. 452	-a. 475	-a.368	ର ଓୀଞ	-8 285 -	E.	
S. Con	signif	7 insign)]						1.000	100	4 18	965 B	-da -da	-8.456	-0.518	-a. 511	-a. 357	-8.362	-0.545	-8.519	e. 83	MENS	
			j					1. 880	0.572		6.4 (3	-8.556	4.386	-8.365	-2.477	-a. 254	-2.666	-a 529	-e. 555	-a . 469	853 6-	Stage	
•.	:						1. 888	ea. 8003		4	E	18 14	-6. 559	-g. 483	-8. 544	-a 426	-8, 555	-8. 442	-8 S41	-8, 576	-8. 597	Sass	
					1. 389		A 113	R 138	R 883			-6.258	-8.243	-a 898	-a 436	-a 296·	-g 2885	-tr 388	-8. 252 -	B. 835	-e 184	&	
				1. 888	-8,286		-8.879	-8.177	g. 0638	9	8	g. 15g	g. 150	-a 198	g. 228	8,983	B 224	a 118	B. 184	-8.077	82 B38	SIN	
				N.S.	S		SES	25. S. 15.	MEAS	i i		P1502	20824	2055	P4502	2089d	20894	20514	DAPP.	wdSd	Wd See		
										-4	+ 1 -												

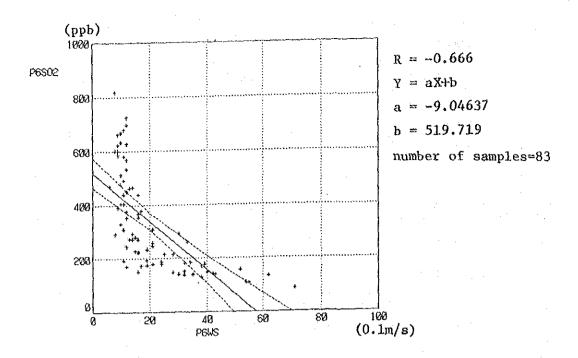


Figure 2.4.1 Relation between Wind Speed (WS) and SO₂
Concentration (SO₂) at Kavaklidere
(Daily Mean Values)

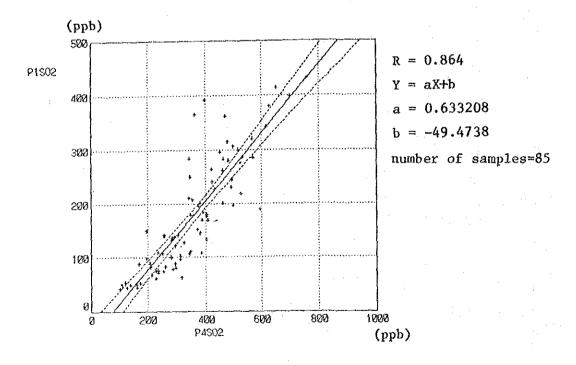


Figure 2.4.2 Relation between Yenimahalle (P1) and Bahcelievler (P4) in SO₂ (Daily Mean Values)

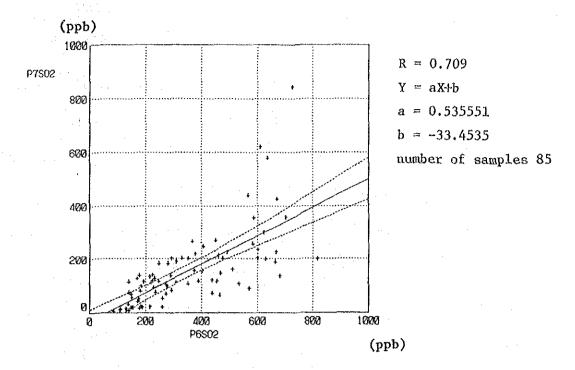


Figure 2.4.3 Relation between Cankaya (P7) and Kavaklidere (P6) in SO₂ (Daily Mean Values)

Cankaya and Kavaklidere the latter is situated adjacent to Cankaya in the north. A scatter diagram of SO₂ concentration at these two stations is shown in Figure 2.4.3.

Correlations are generally weak between Cebeci Station and the others. Cebeci is situated to the east of the City center, and the area is also considered to have different characteristics from the central areas in meteorology and pollutant emission.

From the correlation analysis described above, the City area can be broadly divided into three blocks in terms of meteorology and air quality. They are; (1) central and north-western block (Yenimahalle, Tandogan, Bahcelievler, and Sihhiye), (2) southern block (Kavaklidere and Cankaya), and (3) eastern block (Cebeci).

Correlations in PM concentration between the three monitoring stations are high.

Correlation between the concentration of SO₂ and PM is very high at each station. Scatter diagrams showing these correlations are shown in Figure 2.4.4. These high correlations indicate that SO₂ and PM are emitted from the same

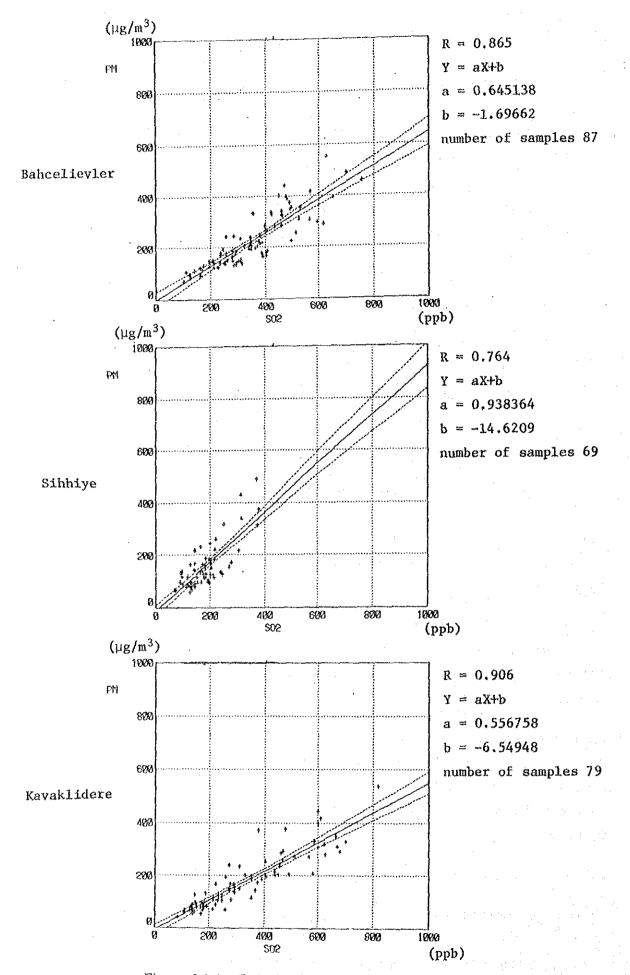


Figure 2.4.4 Relation between SO₂ and PM at Each Station
(Daily Mean Values)
-44-

sources, i.e., particulate matters also are discharged from the small-height emission sources such as stacks of stoves and heating boilers.

Gradients of regression equations for SO₂ and PM differ from station to station. The SO₂ levels at Sihhiye are low and their variation is limited within a relatively narrow range. Therefore, if the general relationship between the daily mean concentrations of SO₂ and PM in Ankara is to be drawn, the following expression based on the regression equations at Bahcellevler and Kavaklidere may be used:

$$Y = (0.56 - 0.65) X$$

where,

X = daily mean concentration of SO₂ (ppb)

 $Y = daily mean concentration of PM (<math>\mu g/m^3$)

2.4.2 Concentration During the Periods of Upper-Layer Meteorological Observation and Influential Factors

The upper-layer meteorological observation was made for 13 days or 80 hours in total measuring the vertical profiles of wind direction, wind speed, and air temperature using a pilot balloon and a radiosonde. From these results mixing depth was also estimated.

Table 2.4.2 shows the correlation coefficients between one-hour mean values of meteorological and air quality parameters.

Looking into mixing depth and pollutant concentration, there exists negative correlation in general (smaller mixing depth corresponds to higher concentration), but correlation coefficient values are small. As an example, scatter diagram of these two parameters at Kavaklidere is shown in Figure 2.4.5.

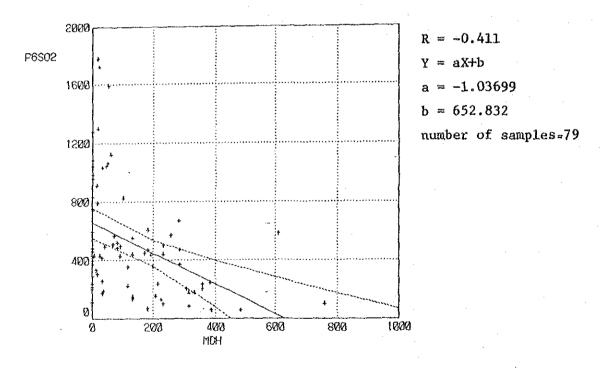


Figure 2.4.5 Relation between Mixing Depth and SO₂ Concentration at Kavaklidere (One-hour values)

Table 2.4.2 Coetficients of Correlation Between Meteorological and Air Quality Parameters (One-hour Values)

	υ .	a) _			٠.															
net radiation Wind speed air temperature	יים ביים ביים		wina speed of SO,	E PM															1.888	3258
ution ed erature	eyer epth	Jer tem	1	tion o			,					,						1. 833	ನ್ ಕ	<u>1</u>
net radiation Wind speed air temperature	sides fever mixing depth	per lay	concentration	concentration of							*						1. 888	R 383	42 888 889	臣
	· · ·		• ••	••					٠							1. 888	8.372	20.938	252 F	11.5
RW WIS	MON	MOT	SO_2	PM											1. 888	-B. 419	25 25 25 25 25 25 25 25 25 25 25 25 25 2	-8. 484	506 g	. 1
Meteorological Agency Yenimahalle Tandogan Cabeci														1. 888	-8. 427	***	8.373	SS 33		METM ME
sical le	er	, o	· .										1.888	-R 153	-8. BT7	-8 171	-8.316	-8.674	-8. 125	
Meteorologi Yenimahalle Iandogan Cabeci	Bahcelievler	Sinniye Kavaklidere	ıya									8		, ,	╁-	 	<u> </u>	ـــا	<u> </u>	1 8 1
Meteorol Yenimaha Tandogan Cabeci	Bahce	Sinniye Kavakli	Cankaya						٠		_	1.000	8 9 1 1 S	B 788	986 19	B 278	-e. 184	96E 13	-8.346	E.
ME	P4 :	۳. ۳. ت	P7 :	•							1.886	a 715	g. 556	4 128	-6.27B	-8 138	व्य क्र	-6. R5g	-c. 2365	Рарм
u uo										1.988	98.286	g. 113	85. A	-8. 12d	883 रू	-a 1837	-8.139	-a. 077	-a. 1982	2082
correlation correlation tion				-					1. 888	8.432	B 520	R 504	959 8	-6.248	R. 855	-8. 255	-8.411	-6, 137.	G. B639	P6502
ve cor ve cor elatio								1.000	OF PAGE	8 383		9 8 6	8.55 353	B. 181	-8.387	B. 287	-6.194	. 171 10. 171	-8.272	P5302
significant positive corr significant negative corr insignificant correlation						- 1 a - 1 a	1.088	2 69g	8 73Ø	62.2889	669 8	2.611	8.597	88 89	-6.16%	-a 281	-B.261	-a. 167	-8. 187	P4SO2
significant significant insignifican		•				1. 886	200 Z	128	85 SQ	& 124	97.5 B	68 12	R. 551	-8.076	-a 277	-a. 103	-6. 33B	O. 043	- 100 F 70	2005
signií signií insign	: "				1. 888	85.58 5	2 63 c	B. 558	B. 594	a 187	ß. 439	B 378	0.433	-8.319	-2. 894	-8.331	-8. 331	-8.226	-8 152	
				1. 2820	B. 574			2 67a	£ 758°	B. 273	53.		B. 590							20824
		٠	<u> </u>	<u> </u>		6					SÝ	හ		-a. 153	B. 171	-R 158	-8. 435	-8. 038	-8. 138	P1502
			1.688	-0.325	-B 137	-0.277	-a 298	-8. 155	-a 283	-8 178	-8.314	-6.354	PE 234	B 285	R 138	R. 189	1327	6.849	.9. 53	SmS
		1. 888	g. 231	-0.138	-a 135	-8.218	-8. 825	-a 218	. 198	-6. 084	-8.255	-6.383	4 12	-8 208	8.432	-8. 215	63 63	-8 283	g. 448	SASS
	1.886	g. 126	ब इन्ह	-8 234	-8.248	F 329	-8.415	4 B82	-8.216	e. 110	-8.247	-6 B43	-a 133	g 433	R. 168	B. 475	B. 351	8 336 8 336	g 232	8
	Ð.	Paks	Sign	20812	20822	23823	P4502	P5502	20894	DUSCE DUSCE	Мара	FASC O	Ecod Control	METM	MEWS	S.L	更		85.85	αl
	,	1	_,	; 1	1			-47	7		siL (14.1	u.i	~1	æił	ωI	Σ.]	7 2	까	

An attention must be paid to the mixing depth when a trap-type inversion is formed and pollutants are prevented from dispersing into the upper layer, which tends to appear in the morning. From the measurement data at the Kavaklidere station, the data during the time zone of 9:00 - 11:00 a.m. are extracted for the regression analysis. Result is shown in Figure 2.4.6. Correlation coefficient for mixing depth and SO₂ concentration being -0.645 indicates a significant degree of relation.

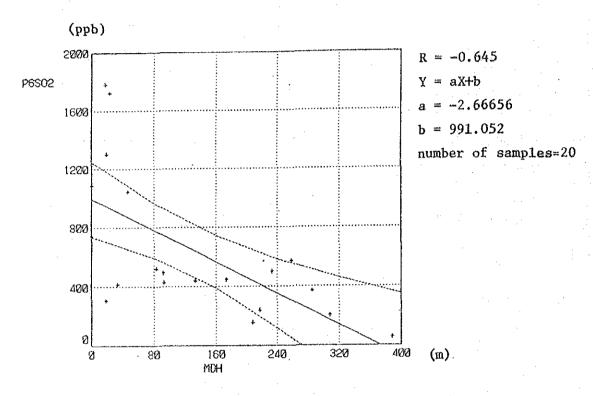
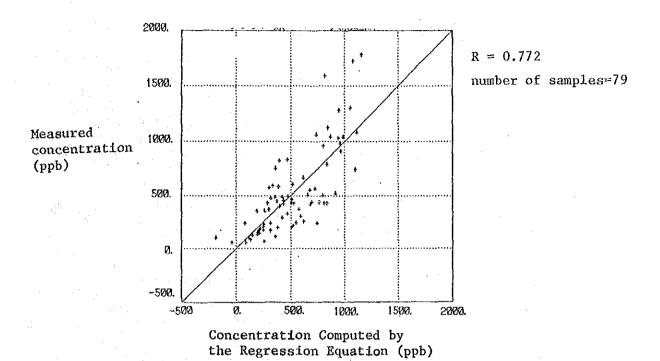



Figure 2.4.6 Correlation Between Mixing Depth and SO₂ Concentration at Kavaklidere (One-hour values)

Among factors affecting ambient concentration of SO₂, source strength (represented here by time-zone), wind direction, wind speed, atmospheric stability, and mixing depth are considered to be important. In order to evaluate the degree of influence of these factors, a multiple regression analysis was made using the data at Kavaklidere during the period of the upper layer meteorological observation. The results are shown in Figure 2.4.7. It reveals that time zone (source strength) is the most influential factor on the concentration of SO₂, followed by mixing depth. It is shown that mixing depth is more influential than wind direction, wind speed, and atmospheric stability.

No.	Factor	Degree of influence of factor	Coefficient value	Co-factors	Degree of influence of co- factors
1	Time zone		-2.572E+02	mid-night & early morning	
		!	3.813E+02	morning	27.50.500
		·	-8.035E+01	afternoon	I E
			2.364E+02	night	3 1 13
2	Wind direc-		-4,242E+01	eastern	1.7.7.0
	tion		4.578E+01	western	
			4.683E+01	northern	1.4.1917.
			2.534E+01	southern	
			6.072E+01	calm	1,785,938
3	Atmospheric		4.984E+01	neutral	1 1943
	stability		-3.199E+01	stable	
			-7.002E+00	unstable	
4	Wind speed	****	-8.896E+00		
5	Mixing depth	***************************************	-1.053E+00		
6	Constant	: : :	7.590E+02		

Figure 2.4.7 Results of Multiple Regression Analysis on the Concentration of SO₂ at Kavaklidere (One-hour values)

2.5 ANALYSIS OF THE OCCURRENCE OF HIGH CONCENTRATION

2.5.1 State of High Concentration Occurrence

Daily mean concentration values of SO₂ and PM during the whole monitoring period are shown in order of high concentration with the dates of their occurrence in Table 2.5.2.

Emergency levels of SO₂ and PM specified by the Turkish Government are shown in Table 2.5.1 (1), and WHO's guideline values for SO₂ and SPM (suspended particulate matter) are shown in Table 2.5.1 (2).

Table 2.5.1 (1) Emergency Levels of SO₂ and PM in Ankara

	SO ₂		PM
Warning level	(μg/m ³)	(ppb)	(µg/m ³)
lst	700	272	400
2nd	1,000	389	600
3rd	1,500	583	800
4th	2,000	777	1,000

Note: SO₂ values in the ppb unit are converted from those in the unit of g/m³ under the condition of 0°C and 0.9 atmospheric pressure.

Table 2.5.1 (2) WHO's Guideline (1979)

	SO	2	SPM
Category	(µg/m ³)	(ppb)	(µg/m ³)
24-hour mean Annual mean	100 - 150 40 - 60	39 - 58 16 - 23	100 - 150 40 - 60

Note: Same conversion was applied as with Table 2.5.1 (1) for SO_2 .

Table 2.5.2 (1) Daily Mean Concentration of SO2 and PM in Order of High Value (1st - 50th)

						100		100				ra Tie																	
[7	0	ig a		EE	88	8	322	188	38	M W	38.5	18	ន្ទីន	222	22	22	20.0	8	5.6	86 8		201	44.5	385	18	32	<u> </u>	[]
	0		গ্নপ্ন	22	প্রভ্র	줘	ख	প্রা	<u> </u>	35	<u> </u>	छ्	1⊠:	ខ្ល	R R	-32	ង្គ	<u>1₹</u> 8	연호	<u> </u>		1 K	4 25 8	44.	ള്ക്ക	ភេយ	요 왕	ន្តស្តី	Z.
		MAYAN		m	그업	더 ~	~~ (*	ა ი -		<u> </u>	ကက	- 5	12	n 23	~ ~	(m (v)	i G	> ·-) i	٠ - ب		7 27 -	- Z	721	v	- 67	C1	200	٠
	1	2 2	l . (⊣)i					3 53 5	ម្ពុក្ត	0 k	g g	388		22	3 63	888	2 23 c	223	- F	हिंह	388	388	18	958	27	252	21 22 C	3
		ن د	क्ष स	বিজ গল					តិស៊ី ឯបស						~-			300 %			. — -	35.5		·	77			<u> </u>	-
	- 12		~~	~ ~		~~			63 ¢		63		v	_ ~~	e== \$17	.00		c	່ ໄຕ ⊷	. 00	} ¢	1010	100	700	3171	i m	ი ⊶	~ ~ ~	_
1	ľ	″≥	•			نسسي				4 24		100	31-76 4	C=134	125 27	ند ند حادت	i I XX K	25.17			· • • • • •	۰ : . د کام د د	 वि र	10 A 1	~- ****	- 74		io io e	, 1
l	ć	ž O	488	3.04 2.04 3.04	414	දිසි දිසි	88	28.5	3 33 5	18	888	38	38	င်္ကြွဲ ကြွ	ži ži	188 8 8	525	2 22 2	24.	388	ង្កែន	18	122	222	889	<u> </u>	<u>කු ස</u>	888	0
ļ	- 10	20	88	1 w	æ-	21	N	កក្កា	" ?	3 24	27	200	121	4.6	91	. w 2	22.5	222	প্র	35°°	: ₩ <u>-</u>	3 ខ្ល	<u> </u>	22.71	285	0	24	891	7
		SA#CE	yang gard (.4 m	(C)	8 2	(m)	c.	ນເກັ	1 m	<u> </u>	٠ د	۷ <u>۲</u>	m M	prod \$500	(1)	.00	3 CV -		121	34-	٠	727	2	72.	→ 77	22	22.4	→
	┪	9	844 619	2 <u>0</u>	35 25 25 25 25 25 25 25 25 25 25 25 25 25	308	201	128	232	ig.	0 K	88	38	222	88	00.0	888	3 19 8	155	155	188	200	35	25		18	<u> </u>	<u> </u>	Ĭ,
		¥ ~	ळळ	==	2 8	ळाळ	ळ ऱ	927	<u>क्</u>	7	ಶ್ವದ್ಧ	सुर	281	सु ल	ЩĒ	লুং	ह्म	ुकाष्ट	ន្ត្រ	1 7 7	<u> </u>	28	<u>n</u> '	នុង	กล	2 2	작류	ळ्ळ	<u> </u>
		ANKAY	m m	ကက်	~	ოო	٠، د	v 67 -		<u> </u>	ដ្ឋ	ċ	4 —	c3 W	, p	٠ <u>۵</u> ~	2010	4 m -	- 27		· (1) -	⊣ તઃ લ	70	<u> </u>		~ ~	~ 7	0 m -	- -
			<u>0</u> @	(2 8	<u>ම</u> ්ස	<u>्</u> ()	 	<u> </u>	इठ्ठ	3 50	3 8	m:	- - -	ভূত	38	10 G	900	2 6 8 6 8 8	383	E 8	द्ध	383	20	ო <u>ო</u>	7 7	<u> </u>	ලල	ಭರ್ಷ	7
1	2	၂ပ	-1 w	क्रक कर	७.छ सम	क्ष चार	क्ट स्टब्स	ত তেও কেন্দ্ৰ	क्षेत्र इ.स्टुट	ମଧ୍ୟ : ପ୍ରମୁ	ਲਿਲੇ ਵਾਜ	is u	<u>છ≃ા</u> છહ્યું	यह किस	ਬਾਬ ਨਾਟ	(ক)ক	्र इंद्रुव	किस् तिस्रू	. e. e	in a	100 s	००० इस्ट	32	සු <u>ක</u> පැහැ	- M	7 C 2 T	ळठ	ण ल ह	7
		20	° ~		01 C1			~ · · · ·		200	 m m	്: . ജ ദ				100	1 — c	4 c		4 C	1 c	4 m	761	00	- 01	20	~ ~	0 – c	7
	7	₹ 3	⊚ _						@									7 5	\odot	- 	5 EEG E	* == 7	7 A	ണ	or er	-1 -11 00	_ _ _	ਜ਼ਾਨਾ ਹ	2 4
1		00	378 373	328	316	330	22	325										2 5 4 2 5 4								200	9 9	152	7
			ដូង	Q G	<u> </u>	(⊂ ==	12.5	÷ to t	9,5	32	∞ N	iti o	ညှထ	~ X	72	3 00 5	354	n <u>01</u> 0	, 5	3 co =	rcau	n on (2 2		===	2 2	ผ๛	221	4
	Č	^ ≥	(m c4		~ ~	9 9 9) () -	(r) (400	<u>y</u> '	m	مد ز	400		ເດ ເ	}.~ c	· ~ -	-21	1 co 5	7 44) C	1 m	7-		CV (20		w 41 č	7
		5 C	757	7 97 9 79 10 79	616 594	288	120	22.0	300	492	428 428 438	£2;	<u> </u>	461	252	ឌូនូន	385	1 000	98	88	888		38	35/2	348	346	344	313	510
	- 1.		ន្តន	7 %	ದ್ಷದ	ळ छ	in s	गह्न ह	385	ത	75	क रू	វន	মুল	7	8 5	1015	ဒ္ကကင္က	25.	- <u>C</u>	ខ្ល	7 53 6	400	25.2	24 E	25	യ് ര	প্রমূ	3 . j
	i c	SAICE M	7 -	2 -		m ~	ကြ	უ იკ-	- ~ ~	ာ် က	ധ ന	ကင	۷ <u>۲</u>	27 80	ლ ი	4 → 6	9.67.6	3676	4 → €	4 — L	٠2-	→ ;	7	72	72.5	12	20	- 22	7
	2		458 449	পু মু	ල සු	E 50	ख्र	# 150 (पुट्टा ह	នុខា	82	कु ह	38	ខេត្ត	88	882	5 – 5	# EF E	33	(9) (9)	ខ្លា	4 4 C	ग्रह	ខ្លួន	ဥ္ကဏ္ဏ	প্ৰক্	<u> </u>	77	<u> </u>
	8	Ū	25 P	-	ਲਨ ਵਿੱਚ	ন্দ্ৰ ভুতু	100	त्रहरू १८१	५०० नुख्य	সত সংক্র	ला कार	র	a ~ ⊇ ≂	ଷପ୍ତ ଷ୍ଟର	~ - ===	 !!= %	<u> </u>		र जार खुट	36.4	र क्र	य व ा	55	ភ្លួ	or yr	<u> </u>	222	ಹಹ್ಳ	D G
	S	3 2 2 0	1		(2	00		C	700	 باست	നേഭ	 	√ · · ·	" ~~ ⇔	<i>(</i> ?) ~	· (V)	· // -	~ ભ ⊷	· (1) (۱ m -	- ~ .	V (24	ผผ	- 7	ឧដ	22	62 6	v (c
		Σ	@				Θ	d.	- 12	25 ' 191				-Circ	-মান		****	~~~	י	101	127	 ਵਾਨਾ	्र सन्दर्भः	ক≍-	മത		~ ~ ~	ळ रू-र	ַ ס
١		OO	1 -	- 1			2	216																				222	
		AND CO	ដង	शुक्	98	æ ro	ख्य	31-E	7 6	45	ক প্র							ខ្លា					2,6	83(4	22	X 53	~ <u>=</u>	ឧឧ	~
	Ē	ĮΣ	27.77	<u> </u>					4000									27:					- 7		24	22	87		7
		00	431	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	33 SQ	362	8	985	388	38	# X	88	123	55 55 56 56 56 56 56 56 56 56 56 56 56 5	245	383	218	385	200	8 8	8	3 8	3.0	<u>888</u>	149	145	141	588	35
			នគ	1		യവ	8	-ងរ	<u>च</u> न्नप	o ∞ (<u>ස</u> සු	ट्युट	4 Q	ত্ৰ প্ৰ	Ξ8	क ट्र	नुचार	200	នេះ	383	<u> </u>	3≿;	28	<u> </u>	82	ឧ	ದ್ದ	ទុស្ត	n
	1	MDD	ᄱဌ	·	- -	<u>ده</u> –	~	n (4000	ာ က	~ ~	200	ខ្ម	ന. —	en	· 00 C	1000	۷ <u>2</u> 1-	- 23 -	- CI -	~ C~2 C	n ~-	1919	~ ~	ជ្ជក	22		લંન	7
	٤	ريا	-0	% €	ਯ ਹ	ा ल	ക	<u> </u>	ব্যাহ	<u> </u>	2 E	Θ		ភ្ល	श्र	प्रथ	15.8	តុក្ខាទ ក្រុ	355	1 es é	٠ چ بې ځ	g (;	<u> </u>	410	ದ್ವರ್ಷ	ਰੂ ਨੂੰ ਹ	4.66 47	<u> </u>	3
ı		RAN		÷										, . •			-												!

Note: (1), (2), (3) = 1st, 2nd, and 3rd warning levels M D = month and day

Co = concentration in ppb for 50_2 and ug/m^3 for PM

-51-

Table 2.5.2 (2) Daily Mean Concentration of SO₂ and PM in Order of High Value (51st - 87th)

ſΤ			ਨਿਨ	- E	- w	ਨੂੰ	0	gs.	ញ	<u>~</u>	표	===	8	8	Ö	ক্ত	Ty	Ŋ	හු	တ္တ	92	<i>1</i> 22	6	100	8	8	B	K	in in	5	٠ .	46 4	N- 4	+ +	. 4	+ +	+ +4	15 E	
	မွှု	ပ	<u> </u>	n o	, G)	0	ĊΣ	œ 		ω			·	02		1~	126				_		·		79	-	125	63	63ª	en	757	137 S	ত্ত	ব্য	5 <	F G	, E		
1	등 등		200	7 6	1 200	2	~	27	8	ന	\sim		6.5	유	ΕŢ	ശ	17.3	·	-	ω		<u></u>	(==	• •	H		• •		- 1	~	N C	7					A ×	1
	KAVAK	Σ.	4	3.5	.	ć	~	N	gad	r(2	- 1	·4	~		7	~		~	2	~		2	~	~	~1	2	2		2	ដូ	7 6	, ,		ን የላ	3 63		
	3		8	Į.		TA	햜	ह्य	8	g,	or Or	, 80	6	œ	8	22	on on	ర్ణ	(X)	2		8	7	Č,	8	10	g	*	*	31	# ,	44 4	+ +	+ +	t +	÷ 41	+ 4+	83.6	1
Ų	w	U	चार चार	~ ~ ~ ~	5 75	L-6-2	 W	, 75	듄	'65°	r s	-25	LT3	0	r÷-	N	100			च	ļ.	v	<u> </u>	ģ	Ŋ	e	\$62	F -4	00	on i	×	. 78	3.5	35	7 6	-	ب ب	3. 3.	1
PM	SIE		,					••	613	~1	~1	_		~ ~	_	_	~1		~	~	~	~		0	~		~	~	~	~	N (C4 9	9 0	75	<u> </u>	٠,	4 62	≪ ≈	1
	S	Σ	e~4 \$	46	4 (1)			513	==															_									~~	7477	* F	# 7 5	5 25	00 15	
	3	ဒ	8	2 5	2 (4		172	8	8	6	152	150	143	148	143	147	57	7	(2)	140	130	133	135	134	132	13	2	129	ä	23	2	-	= ?	3 6	δò		38	, ·	1
	롸	0	හද	₹ 6	5 (0	Ş	Ŋ	i75	1	स्म	Š	Ξ	ਲ	প্ৰ	<u> </u>	R	77	তে	1	0	=	T/S	7	77	77	4	2,2	-	C)	72.	-	= ;	5	E	3	7	; R	γ ×	
	BAHCEL		C	۷	٠,	1 (4	2	N	~	~	~	2			က	_		N	N	-	~	~	N	~	~	~	~		ผ	•	pred., 1	٠ (7.	٠ د	7 ~	-	ميند د		
	-+	2	175 7	5 6	กเล	ক	<u> </u>	75	o	מז	Te Y	75	o	ਣ	tz\$	כטו	.	0	7	Č.	ল	-	কু	ट्य	ম	N	₹	ī	S	<u> </u>	<u> </u>	es e	43	<u> </u>	7. T	=75	,	F 8	3
	A	ပ	105	20	n on	0	∞	∞	လ	<u>ر</u>	~	~	~		9	2	-75	TX		- 62	73		7775		~		775	7.5°	755		— 1	r7	ሃን (d.s	5 E	r e	e in	L	1
	CANKAY		82.5	4.0	2 12	33	€,7	8	3	80	Ç3	8	(7)	N	63	7	· w	28	N	(1)	Ξ.	-		,-	તં	∺		~	-,	N			•			-	4	AVE	
	S	Σ	23	7 (10		m	2	~-1	(1	C/I	-	~	~	 (⊃)	2	~	12	12	į c	-			N		(7)	1		*1		∾.	٠.	٠٠ د	. V C	٧ -	ન જ	4 ~		
	4	_	<u></u>	9 c	3 0	Ä	77	ន	<u>ش</u>	Ö	5	ස	8	8	8	8	65	82	2	74	72	71	27	23	22	49	5	142	7	<u></u>	5	8	3	3	3.5	2 6	3 8	88 2	1
	DERE	ပ	200	n a	e it.	[전	(7	Σ,	т Т	N S	=======================================	Ŋ	∞	เก	w	~		8		8		የ ን	(r)	0	23	හ	रध	C5	<u>-</u>	O :	()	= :	<u>.</u>	95 -	77	- 6	ৰ ব	ω	1
1 1							~	~	^1	~		~		~1			~	_		101	<u>ا</u>	~	_	. ~	CI		c ·	7	ď	:	∾.				v -	→ 6	۷	AVE	=
	KAVAK	Σ		4.	* :::	-		• •	•	• •		•		•						12					_												(3)	ISC	
	1		2.5	7 5	1 6	7	100	23	52	141	134	7	88	131	ध	28	23	127	28	5	1.7	1 4	101	99	8	8	33	9	7.7	2	Ö.	46 4		H 4	+ 4	+ +	e 41·	8 8	5
	E)		∞ ;	₹T-	75	OS CS	6.2	25	<u>س</u>	Ξ	ਵਾ	0	ম	~	3	3	-	J	757	=	~	T/	77	20	=	×	7	3	g	贸	33	77	33	36	¥ Ç	35	38	AVE.	
	SIE		23	7 -	٠.	مبم إ		S	ო		_		۲3	12	~	2]	(3	~	N	2		7		12		2	2	7	2				(70	۱ د	46	v <		
	_	Σ	75.7	n e	म रत		প্ৰ		<u>~</u>		ত্য	ত	তে	<u>ত</u>	w	าเฮ	72		- Pos	700	· (~	יאו	ट्य	ත	ংক	ন	ळ	ফু	্র যে		25	99	3	5 (- -	- 72	18 C	
	Ę,	ខ	<u> </u>	કુંદ	3 2	83	83	ន	88	8	8	88	2	56	23	23	23	53	2	2	2	2	22	2	7	212	× 	<u></u>	==		=	<u></u> ;	<u> </u>	<u> </u>	:: = 7		٠.		1
	3		ळ	۵۲	4	্ব	88	10	es.	83	S	12	4	မ	ധ	53				(C)	2	2	Ξ	===	ц,	6.3	Ξ	Ñ	ä	===	≃`			ر د	? ?	4	~ Ki	A VE	_
	BAHCE	Σ	ω <u>;</u>	<u>"</u> –	٠ <\	1 ~	12	2	N		-		\sim	-		2	N	N	12		. –	2		2	_	174	ત્યં	~	ᡣ	~		'	٦:	7 -	~ €	7 -	~~ (2)		
	-		8	5 6	58	8	96	섫	G G	6	<u>တ</u>	8) 	88	8	엻	Ę0	F	1	32	7	12	6	99	8	83	없	S.	<u></u>	<u>.</u>	Ö.	ζ.,	∃ 7	25	<u> </u>	ģ	1 ×	5 K	3
0.5	_	의	 स्ट्रा	⊣ बट्	i co	কুর্	ភ	ক	<u>(-</u>	<i>(</i> 2)	-	IA.	ത	ল	ল	0	ठ्य	কে	8	₹	4	Ø	N	, 	ঝ		G	혅		_	r	<u> </u>	গ	5 =	3 . E	* *	: 7	LL3	+
100	BEC			 ⊶ €	. 4	~			~-		-			_			, v	۰,	. 01	. ~ 1	·	_	~		~1	L	m			~		m i	י מי	· ••••	C			AVE.	5
	٥	Σ	C4 -	٦,	4 ~~	. 27	"	(A	"		_	. 4		,	,	_	-	• •					• •		3		•	•		•				•	•	_	3 5		
	1	8	124	70	5 02	8	116	114	<u> </u>	2	0	100	102	8	98	8	8	8	တ်	8	6	6.	72	7	2	6	8	25	ñ	Š	25	Ω.	3 6	33 %				133	1
	3		ᇊ	==	7.7	<u>α</u>	2	ত্য	r-	Œ	ল	හ	ey H	ণ	ন্ত	ব	Φ	~	07	Ŋ	r	T/	শে	ट	4	শ্ৰ	Ŋ	31	,	Ŋ	00	N	3		3, 5	3 5	,	AVE	1
	A		c	4	- 2	!	~		2	C:	7	N	C3	'n			N		C)	2	_	~	~	2	+4	C4		2	۲۷	C/J	cv .	~	7.	٠, د	v -	¢	٧	₹ 2	1
		Σ.				***		R	775	-XY			~~	7=-	Zeec.	~×	795	755		~~	76	75	70	-1	751	795	3		725	77 (*	<u> </u>	257	757	/5 1	***			 	3
	يرا	ខ	131	3 6	1	100	<u>.</u>	10	100	10.																			ïή	iń	്റ്	ا				٠,		ł	٥
	YEN MAHALLE		लुट	4.6	12	ध्	=	(O	5	65	₹'	17	ਵਾਂ ਨਾ	2	Ξ	=	रूप	ক	හ	Ë	.542.	705		Ţ	ဌ	U.S	ņ	찜	ğ	ZI.			ž.	Ť	3 6	316	- 60	AVE	
1		Σ		- 5	2 2	2	C)	64	2	63	~)		~	C/3	N	-	N			7	N			N		_	~	. 1	2	€4,		(7	. → •	٠.	÷ ;	3 52	•	
μ			ເລີຍ	1.5	₹ }	ZZ.	ळ	<u> </u>	တ္က	ğ,	Ö		মু	33	₹ 65	ਨ੍ਹ	g g	75	. 233	ģ	Ö	7.	ĘQ	ল	₹	ক্র) وي	3	æ	<u>ල</u>	8		78	20 6	# L	ក្តស្ត	g K		-
	,	RANK		. U.	, ,								_		_							,			_		, -		· 						- •			L	

Note: (1) = 1st warning level, (4) = WHO's guideline

M D = month and day

Co = concentration in ppb for SO₂

and µg/m³ for PM

Numbers of days are shown in Table 2.5.3 when the pollutant concentration exceeded the emergency levels for Ankara and the upper limit of the 24-hour mean in the WHO's guideline.

Table 2.5.3 Number of Days Exceeding Emergency Levels and WHO's Guideline

· · ·						
C+-+i	Eme	rgency leve	ls in Anka	ara	WHO	Effec-
Station	4	3	2	1	LINE	tive day
Specified conc. (µg/m ³)	2000	1500	1000	700	150	
YENIMAHALLE	0	0	4	18	77	85
TANDOGAN	0	0	0	3	76	87
CEBECI	0	0	2	9	74	87
BAHCELIEVLER	0	6	33	62	87	87
SIHHIYE	0	0	0	8	79	80
KAVAKLIDERE	1	14	31	47	87	. 87
CANKAYA	: 1	2	5	8	64	85
Specified conc. (µg/m³)	1000	800	600	400	_	
BAHCELIEVLER	0	0	0	6		87
SIHHIYE	0	0	0	3		76
KAVAKLIDERE	0	0	0	3		79
	(μg/m ³) YENIMAHALLE TANDOGAN CEBECI BAHCELIEVLER SIHHIYE KAVAKLIDERE CANKAYA Specified conc. (μg/m ³) BAHCELIEVLER SIHHIYE	Station 4 Specified conc. (μg/m³) 2000 YENIMAHALLE 0 TANDOGAN 0 CEBECI 0 BAHCELIEVLER 0 SIHHIYE 0 KAVAKLIDERE 1 CANKAYA 1 Specified conc. (μg/m³) 1000 BAHCELIEVLER 0 SIHHIYE 0	Station 4 3 Specified conc. (μg/m³) 2000 1500 YENIMAHALLE 0 0 TANDOGAN 0 0 CEBECI 0 0 BAHCELIEVLER 0 6 SIHHIYE 0 0 KAVAKLIDERE 1 14 CANKAYA 1 2 Specified conc. (μg/m³) 1000 800 BAHCELIEVLER 0 0 SIHHIYE 0 0	Station 4 3 2 Specified conc. (μg/m³) 2000 1500 1000 YENIMAHALLE 0 0 4 TANDOGAN 0 0 0 CEBECI 0 0 0 BAHCELIEVLER 0 6 33 SIHHIYE 0 0 0 KAVAKLIDERE 1 14 31 CANKAYA 1 2 5 Specified conc. (μg/m³) 1000 800 600 BAHCELIEVLER 0 0 0 SIHHIYE 0 0 0	Specified conc. (μg/m³) 2000 1500 1000 700 700 YENIMAHALLE 0 0 4 18 TANDOGAN 0 0 0 0 3 CEBECI 0 0 0 2 9 BAHCELIEVLER 0 6 33 62 SIHHIYE 0 0 0 8 KAVAKLIDERE 1 14 31 47 CANKAYA 1 2 5 8 Specified conc. (μg/m³) 1000 800 600 400 BAHCELIEVLER 0 0 0 6 SIHHIYE 0 0 0 3	GUIDE-LINE Specified conc. (μg/m³) 2000 1500 1000 700 150 YENIMAHALLE 0 0 4 18 77 TANDOGAN 0 0 0 3 76 CEBECI 0 0 2 9 74 BAHCELIEVLER 0 6 33 62 87 SIHHIYE 0 0 0 8 79 KAVAKLIDERE 1 14 31 47 87 CANKAYA 1 2 5 8 64 Specified conc. (μg/m³) 1000 800 600 400 - BAHCELIEVLER 0 0 0 6 - SIHHIYE 0 0 0 3 -

The situation of occurrence of high concentration is summarized as follows.

- i) Number of days on which concentration of SO₂ exceeded the first emergency level was largest at Bahcelievler being 62 days or 71% of the observation period of 87 days, followed by Kavaklidere being 47 days (54%).
- ii) Number of days exceeding the 4th emergency level for SO₂ appeared once at Kavaklidere and Cankaya. Those exceeding the third level were 6 at Bahcelievler, 14 at Kavaklidere, and 2 at Cankaya. Occurrence of high concentration was more frequent in the western and southern zones than in others.