

				幾為時	**************************************	
			ACDICULT	UDE		
	APPENDI	X H. Diggs of	MOKICULI	UKE		
					10.25	
veus V	med line				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Proposed (iga.	
343 A.D.	Harry Section		Ires de c			
H-2.	Labor Requ	irements b	y Farming	Practice	5	
			ture. Of the			
	Proposed I					in its
	0.		(<u>1</u> 2),	以下,		e e e e e e e e e e e e e e e e e e e
		A. A. A. C.		9.44 U %		
edpupper.	TV	**************************************	De t		π -	
			•			
Can age			1.			E.M
		- 340.34 - 60.2.33	. १५२२ - १ १६५१ - १			
Kateseelm						
Restaction Section	The state of the s	. -	(1) 454 (1) 13 (1) (1) 14 (1) 15 (1)	i de la Maria. La maria de la Maria		raidhean Taise le
			85 m			. (
The state of the s			100 mg			rolling jarin Julianista
>07597 (*)				No.		
decon .			Sign 3	er gal enter. Letter beter		ાર્ફિંગ (દેશ - હાંસન સ્ટ્રે
			Fut.	307 7) 16 0 23 3		1853 . Ki
			N T			
			10			in the second
	gradien in Francisco († 1921) 19 maai – Paris Mariero († 1921) 10 maai – Paris Mariero († 1921)					
			3.7			
	rest in the second					
	"我们"的"我们"					

Table H-1 Cropping Calendar

Crops	Variety	Nursery	Planting- Ripening	Harvesting
Tomato	E.V.	Aug. 1 - Sep.30	Oct. 1 - Nov.30	Dec. 1 - Jan.31
	M.V.	Sep. I - Oct.31	Nov. 1 - Dec.31	Jan. 1 - Feb.28
	L.V.	Oct. 1 - Nov.30	Dec. 1 - Jan.31	Feb. 1 - Mar.31
Eggplant	E.V.	Aug. 1 - Sep.30	Oct. 1 - Nov.10	Nov.11 - Jan.10
	M.V.	Sep. 1 - Oct.31	Nov. 1 - Dec.10	Dec.11 - Feb.10
	L.V.	Oct. 1 - Nov.30	Dec. 1 - Jan.10	Jan.11 - Mar.10
Redpepper	E.V.	Aug. 1 - Aug.31	Sep. 1 - Oct.31	Nov. 1 - Jan.31
	L.V.	Sep. 1 - Sep.30	Oct. 1 - Nov.30	Dec .1 - Feb.28
Cabbage	E.V.	Aug. 1 - Aug.31	Sep. 1 - Dec.31	Jan. 1 - Jan.31
	M.V.	Sep. 1 - Sep.30	Oct. 1 - Jan.31	Feb. 1 - Feb.28
	L.V.	Oct. 1 - Oct.31	Nov. 1 - Feb.28	Mar. 1 - Mar.31
Watermelon	E.V.	-	Jan.15 - Mar.31	Apr. 1 - Apr.30
Winter		-	Feb. 1 - Apr.15	Apr.16 - May 15
Season		-	Feb.16 - Apr.30	May 1 - May 31
Summer Season	E.V. M.V. L.V.	- 	Jul. 1 - Sep.15 Aug. 1 - Oct.15 Sep. 1 - Nov.15	Sep.16 - Oct.15 Oct.16 - Nov.15 Nov.16 - Dec.I5
Bean	E.V.	-	Sep. 1 - Nov.10	Nov.11 - Dec.31
	L.V.	-	Oct.11 - Dec.20	Dec.21 - Feb.10
Okra	E.V.	-	Feb. 1 - Mar.31	Apr. 1 - Jun.30
	M.V.	-	Mar. 1 - Apr.30	May 1 - Jul.31
	L.V.	-	Apr. 1 - May 31	Jun. 1 - Aug.31

E.V.; Early Variety.
M.V.; Medium Variety
L.V.; Late Variety

Labor Requirements by Farming Practices Table H-2

Crop: Tomato No.1 (Early Variety)

			Working 1	bur				Mont	Wonthly Labor (hr/ha)	bor (h	r/ha)					
Item	Freq.	Machinery	Machine Ma	Man Jan.	Feb.	o. Mar.	· Apr.		Jun.	Jul	Aug.	Sep.	Oct.	Nov.	Dec.	
Seed pot preparation		tiller, trailer or pick-up	7	160						160	- -					
Seeding		by hand		55							55					
Mursery management	20days	by hand		06							45		_			
Transporting of manure		pack-up	10	20								285				
Ridging		ridger	w	Ŋ								ùn S	- ·			
Fertilizing		tiller, trailer	73	10								225				
Manuring		tiller, trailer or pick-up	ហ	25								3				
Setting driphose		pick-up	ın	59								28		_		
Transplanting		pick-up	30	400									400			
Setting supports		pick-up	30	440									440	_		
Weeding				06									20			
Top dressing			9	30									-j w	2,5	E s	
Training Fruits thinning	ma.			200 10	_								30	80	80	
Irrigating	120days			240 50	vo \$								62	96		
Crop protecting	4	pick-up sprayer	20	80 10	206								10		Seg	
Harvesting Sorting		tiller, trailer	09	150 7		á									75	_
Farm cleaning		pick-up	6	34	- M	Z Z										
Total Machine			184	ន្លា		허				•••	7	티	3	듸	38	
Man				2,058 151		z i				91		134	967	230	282	

Note: The figures within blackets are shown working hours for the machines and this Note can be referred to all tables in Appendix H-2.

Crop: Tomato No.2 (Middle Variety)	le Variety	ζ,					•		(h= /h;	_				
			Working Hour	14	- 1	Mar	ADT.	Monthly Labour (nr/na)	Jul. At	Aug. Sep.	90t.	Yoy.		1 .1
Item	Freq.	Machinery	Machine		Jani.									
Seed not preparation		tiller, trailer or pick-up	7	160					Ŧ					
Seeding		by hand		\$5						ξς .				
Nursery management	20days	by hand		06						4 V	_	. S.		
Transporting of manure		pick-up	10	20								. G.,		
Ridging		ridger	ĸ	S							· ພ =	. c		
Fertilizing		tiller, trailer	7	01							, C &	. G.,		
Manuring		tiller, trailer or pick-up	Ŋ	25							100	\ G =		
Setting driphose		pick-up	Ŋ	59							i		_	
Transplanting		pick-up	30	400								(30)	_	
Setting supports		pick-up	30	440								30		
Weeding	,			8	8 E							:≘∽		2 2
Top dressing			9	30	ر د							9		92
Training Fruits thinning	ğı			200		5						9		Ŋ
Irrigating				234		_{දු} ල						වුදු		83 3
Crop protecting	4	pick-up sprayer	20	80	30 (30) (3	30 30 30								
Harvesting Sorting		tiller, trailer	99	150			(6)							
Farm cleaning		pick-up	6 1	34		•	Σ.							=
Total Manual			194		82	ig:	6			7				:l
101al machine				2,052	272	33	됢			160	의	134 1,005		212
Man						i								

Жaп

Dec.								30)	400 (30)	40	28	, v	09	62	10			3	7001
Nov. D			s 6	() () () () () () () () () ()] s [<u> </u>	(S)		, 4 ~	4								77	134 1.
Oct.		55	45	•			••												100
	160		•															7	160 1
1.	16																		Αl
ir (hr/ha Jul. Au																			
Labour Jun. Ju																			
귀																			
																6	34	၈	34
r. Apr.														95) e (5		,	33	
. Har.											30	ີດ	20		S 8 5			38	6 141
Feb.												20,	7 07	62 5		5,1		11	2 266
la Jan.	9	55	06	20	מו	10	25	29	400	440	5 06	30 2	200 7	236 6	80 3	150	34	i	54 212
B Hour	160	Ŋ	.	14		~	N	N	40	4	Ų.	.,	7	2.	-	ä	••		2,054
Working Hour Machine Man	2			30	ī	7	ĸ	Ŋ	30	30		9			20	9	6	184	
Machinery	ailer or pick-up					trailer	ailer or pick-up								strayer	trailer			4
Mach	tiller, trail	by hand	by hand	pick-up	ridger	tiller, trailer	tiller, trail	pick-up	pick-up	pick-up			-		pick-up strayer	tiller, trailer	pick-up		
Freq.			20days												4				
ഥ			7										Вu						
Item	Seed pot preparation	Seeding	Aursery management	Transporting of manure	Ridging	Fertilizing	Hanuring	Setting driphose	Transplanting	Setting supports	Weeding	Top dressing	Training Fruits thinning	irrigating	Crop protecting	Harvesting Sorting	Farm cleaning	Total Machine	Man

Grop. Tomato No.3 (Late Yarlet))

Table H-3 Labour Requirements by Farming Practices

Crop: Eggplant No.1 (Early Variety)

			Working !	lour				Z	nthly 1	abour	(hr/h	~		•		1
Item	Freq.	Machinery	Machine Man		Jan.	eb.	Har.	Apr.	May Jun. Jul. Aug	를 를	Jul.	١,,	Sep.	Oct.	Nov.	Dec.
Seed pot preparation		tiller, trailer or pick-up	7	160						ř	(2) 160					
Seeding				20								20				
Nursery management				06							•	45	45			
Manure transporting,		pick-up	10	20									ີ ຂ 🕃			
Ridging Fertilizing		tiller, ridger, trailer	₹	20									i SaS			
Setting driphose		pick-up	7	56										30)		
Transplanting		pick-up	30	375									, M C	375	8	
Setting supports		pick-up	30	440									, 143		110	
Weeding				06										20	2 2 2	30
Top dressing		pick-up or tiller trailer	9	33											22	
Training				100										70	20	30
Irrigating				198	14									62		62 (5)
Crop protecting		pick-up sprayer	10	40	9									_	20 [15]	36) 36)
Harvesting		pick-up or tiller trailer	09	200	ිදු ලි											30
Farm cleaning		pick-up or tiller trailer	o	34	S &											
Total Machinery			163		ബ						2					
Han				1,876	æ]					-1	91	25 L.		818	352	262

) | | | 40 (4) 22 22 22 50 62 (5) 20 (15) 80 354 32 (30) 375 (22) 330 호 오 123 20 316 8 2 00t. \$285828 111 91 Sep. 48 i 95 20 Monthly Labour (hr/ha)
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. (2) 160 160 7 868 18 14 52 28 120 120 120 4 262 30 30 1,876 375 90 160 440 33 Working Hour Machine Man 100 198 20 8 20 20 163 22 30 20 9 pick-up or tiller trailer tiller, trauler or pick-up pick-up or tiller trailer pick-up or tiller trailer tiller, ridger, trailer pick-up sprayer Machinery pick-up pick-up pick-up pick-up Freq. Seed pot preparation Manure transporting Ridging Fertilizing Nursery management Setting driphose Setting supports Crop protecting Total Machinery Farm cleaning Transplanting Top dressing Harvesting Irrigating Man Ite Training Weeding Seeding

ŧ

Crop: Eggplant No.2 (Middle Variety)

(30) 375 (22) 336 20 (2) 11 20 20 20 20 20 818 \$38**£**868 킈 읾 45 S ė 160 9 Honthly Labour (hr/ha) **8** 8 8 8 삐 7 56 (5) (36) 256 30 30 25 49 49 354 20 1,872 Morking Hour 20 90 20 20 163 10 60 30 30 pick-up or tiller trailer pick-up or tiller trailer tiller, trailer or pick-up pick-up or tiller trailer tiller, ridger, trailer pick-up sprayer Machinery pick-up pick-up pick-up Crop: Eggplant No.3 (Late Variety) 97days Freq. Seed pot preparation Manure transporting Ridging Fertilizing Nursery management Setting driphose Setting supports Crop protecting Total Machinery Farm cleaning Transplanting Top dressing Irrigating Harvesting Man 티 Training Seeding Weeding

» · · · · · · · ·

Table H-4 Labor Requirements by Farming Practice

Crop: Redpepper No.1 (Early Variety)

			Morking	Hour				웊	Monthly Labour (hr/ha)	Labour	. (hr/)	(Br				
Item	Freq.	Machinery	Machine Man		Jan.	Feb.	Mar.	Apr. P	Нау	Jun.	Jul. A	-1	Sep. 0	Oct.	Nov.	Dec.
Seed pot preparation		tiller	ы	300						47	300					
Seeding		by hand		90								06				
Mursery management		by hand		45							`	45				
Manure transporting		pick-up	10	20							-	20 (2)				
Ridging Fertilizing		tiller ridger	Ŋ	22								383				
Setting driphose		pick-up	8	30									(06,			
Transplanting		pick-up	20	320					•			(*)	320			
Weeding		by hand		30									919	01	26	
Top dressing	•	tiller cultivator ridger	Φ	36									9	3 2	9	
Irrigating				300	26								09	62	60	62
Crop protecting		pick-up	10	40	3									30,	<u> </u>	9
Harvesting Sorting		pick-up	12	120	€	9									36	(S)
Farm cleaning		pick-up	ĸ	20		S S										
Total Machinery			73		4	8					m					
Man				1,373	96	20				• • •	300	207	396	126	116	112

\$3 30 30 30 30 118 Dec. 3C8 124 Oct. Nov. 398 (20) 10 62 207 300 Monthly Labour (hr/ha) 300 Jan. Feb. Mar. Apr. 83 밁 404 8 20 8 3 112 62 1,369 Working Hour Machine Man 120 296 320 30 2 22 300 2 01 12 20 tiller cultivator ridger Machinery tiller ridger pick-up pick-up pick-up pick-up pick-up by hand pick-up by hand by hand tiller Crop: Redpepper No.2 (Late Variety) Freq. Seed pot preparation Manure transporting Ridging Fertilizing Harvesting Sorting Nursery management Setting driphose Crop protecting Total Machinery Farm cleaning Transplanting Top dressing Irrigating Weeding Seeding

Table H-5 Labor Requirements by Farming Practice

Crop: Cabbage No.1 (Early Variety)

Item	Freq.	Machinery	Working Hour Machine Ma	Man Jan.	Feb. Mar. Apr. Hay Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Seed bed preparation		tiller ridger	2	Ŋ	(2)
Seeding		by hand		ю	ю
Nursery management		by hand		45	45
Manure transporting		pick-up	10	40	(10) 40 40
Ridging Fertilizing		tiller ridger	w	41	(e) 41 41
Setting driphose		pick-up	ø	28	(b) 28
Irrigating	150day			300 56	60 62 60 62
Transplanting		tiller trailer or pick-up	20	320	(20) 320
Weeding		by hand		06	
Top dressing		tiller cultivator trailer	4	18	
Crop protecting	4	pick-up sprayer	20	80	20
Harvesting Sorting		pick-up	30	270 270	
Farm cleaning		Pick-up	9	18	18
Total Machinery			103	30	2 21 27 7 5 5
Mán				1,258 326	18 . 5 157 429 131 110 82

/ha)	Jun. Jul. Aug. Sep. Det. May. Dec.	P3	\$ 4	(10) 40 40	4.5	(e) 28	62 60 62	320		(2) 6	(5) (5) (5) (5) 20 20			ţ	7 7	5 157 431 129 112
Month	Jan. Feb. Max. Apr. Hay						62 50				(5)	20 (30)	270 (6)	18	12 130 142	R2 320 18
;	Working Hour	2	en j			5	6 28	}	р 20 320	06	r 4 18	20 80	30 270	6 18	103	736 1
	Machinery	tiller ridger	by hand	by hand	pick-up	tiller ridger	pick-up		tiller trailer or pick-up	by hand	tiller cultivator trailer	pick-up sprayer	pick-up	nick-up		
ddle Variety	Freq.							148days								
Crop: Cabbage No.2 (Middle Variety)	Item	Seed bed preparation	Seeding	Nursery management	Manure transporting	Ridging Fertilizing	Setting driphose	Irrigating	Tennenlantino	0	weeting To describe		Crop protecting	DAT VESTING SHEET STATES	Farm cleaning	Total Machinery

\$ (5° (5) \$ Oct. Nov. Dec. 133 60 (20) **3**20 429 28 6 1 5 1 5 8 6 8 157 Sep. 10 50 20 7 Feb. Mar. Apr. May Jun. Jul. Aug. 98 의 ബ (30) 326 읾 29 20 s. 2 28 Jan. 23 112 30 62 270 1,254 Working Hour Machine Man 320 8 18 80 103 20 20 30 10 tiller trailer or pick-up tiller cultivator trailer pick-up sprayer Machinery tiller ridger tiller ridger by hand pick-up pick-up pick-up by hand by hand pick-up Freq. Seed bed preparation Manure transporting Ridging Fertilizing Harvesting Sorting Nursery management Setting driphose Crop protecting Total Machinery Farm cleaning Transplanting Top dressing **Irrigating** Man Item Meeding Seeding

Crop: Cabbage No.3 (Late Variety)

Table H-6 Labor Requirements by Farming Practice

Crop: Watermelon (Winter Season), No.1 (Early Variety)

	•										1		
			Working Hour					2		Monthly Labour (nr/na)	nr/na		Sec
Item	Freq.	Machinery	Machine	Man U	Jan. 17. (10)	eb Si		Aur.	리 X	Jun. Jul.	· Vog.	ğ	
Manure transporting		pick-up	01	ر ح 8	. 20 5)								
Ridging		ridger	1.5	, C	, v <u>2</u>								
Secring Fertilizing		tiller, trailer	1.5	13) [2]								
Setting driphose		pick-up	7	=	Ê								
Irrigating				506	34	56	62	24					
Top dressing	ю	tiller, trailer	M	Ø.			М						
Training		by hand		160		06	20						
. Weeding		by hand		09	10	30	20	30)					
Harvesting Sorting		pick-up	30	300			- 173	300	2				
Farm cleaning		pick-up or tiller trailer	7	20					20				
Total Machinery			양		15	7		띪	77				
Man				108		182	155 3	354	2				

| | | | | Monthly Labour (hr/ha)
May Jun. Jul. Aug. Sep. S 23 (15) 150 24 Mar. Apr. 20 (15) 150 70 3 3 3 30 7.5 Feb. (1.5) 13 35 3 13 (10) 20 (1.5) 2 la E 13 Working Hour Machine Man 13 202 160 300 9 = 20 20 30 pick-up or tiller trailer Crop: Matermelon (Winter Season), No.2 (Middle Variety) tiller, trailer Machinery tiller, trailer by hand pick-up pick-up ridger pick-up by hand Freq. Seeding Fertilizing Manure transporting Harvesting Sorting Setting driphose Farm cleaning Top dressing Irrigating Training Ridging Weeding

Š

Kay La

Total Machinery

² | ²

303

52

9

S

797

잆

15

Nov. Dec. Monthly Labour (hr/ha)
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. (15) 150 20 20 170 (15) 206 26 828 156 2 23 3 (1) 185 80 20 (10) 20 (11.5) 2 (11.5) 13 13 11 <u>15</u> 10 Working Hour Machine Man 799 160 300 13 204 3 20 = 30 1.5 1.5 30 ~ 20 pick-up or tiller trailer tiller, trailer tiller, trailer Machinery by hand pick-up by hand pick-up ridger pic-up Freq. м Manure transporting Seeding Fertilizing Harvesting Sorting Setting driphose Total Machinery Farm cleaning Top dressing Irrigating Ites F Training Weeding Ridging

Crop: Matermelon (Winter Season), No.3 (Late Variety)

Table H-7 Labor Requirements by Farming Practice

Variety)
(Early
% %
•
Season)
(Summer
Watermelon
Crop:

			Working Hour					Month)	y Labour	(hr/h)			
Iten	Freq.	Machinery	Machine	1 1	Jan. Fe	Feb. Man	Mar. Apr.	· Max	Jun. Ju]. 	8. Se	Sep. Oct.	Yov.	Dec.
Manure transporting		pick-up	10	70					20 (1.5)					
Ridging		tiller, ridger	1.5	2					2 7	G,				
Seeding Fertilizing		tiller, trailer	1.5	13					, -i ~	[] []				
Setting driphose		pick-up	2	=					e sed	. .				
Irrigating	104days			208					ن ق	62 6		0 24	_	
Top dressing	м	tiller, trailer	ניו	6) (2)) r (j		
Plant protecting	7	pick-up sprayer	10	20						' =		٠.	,	
Training		by hand		160					ю	30 9	90	Q		
Weeding		by hand		9						er)	. C	30	æ	
Harvesting Sorting		pick-up	30	300							, 12	0 150	`~ ~	
Farm cleaning		pick-up	N	20								Ä		
Total Machinery			9]						11.5 4.5		9	27 17	<u>~1</u>	
Kan				823					22 119		195 293	194	-1	

Nov. Dec. (15) 150 20 20 17 194 5 30 (15) 150 62 3 3 10 10 40 [3 |S 85.85 193 90
 Monthing Hour
 Mar.
 Apr.
 May
 Jul.
 Jul.
 Jul.
 Jul.
 Jul.
 Aug.

 10
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 (1.5) 13 13 14 12 13 35. 61 30 11.5 22 823 160 300 9 20 8 30 7 pick-up sprayer tiller, trailer tiller, trailer tiller, ridger Machinery by hand pick-up by hand pick-up pick-up pick-up 104days Freq. м Seeding Fertilizing Manure transporting Harvesting Sorting Plant protecting Setting driphose Total Machinery Farm cleaning Top, dressing Irrigating Man Training Weeding Ridging

Crop: Watermelon (Summer Season), No.2 (Middle Variety)

			Morking Hour	THO	Monthly Labour (hr/ha)				
Iten	Freq.	Machinery	Machine	tel	Jan. Feb. Mar. Apr. May Jun.		Sep. Oct.	Nov.	Dec.
Manure transporting		píck-up	10	20		20 (1.5)			
Ridging		tiller, ridger	1.5	7			_		
Seeding Fertilizing		tiller, trailer	1.5	13		13			
Setting driphose		pick-up	7	11		ส			
Irrigating	103days			206		60		9E	74
Top dressing	м	tiller, trailer	м	Ġ.		n	ა <u>ც</u>	(5)	
Plant protecting	7	pick-up sprayer	10	70			10	10	
Training		by hand		160		30	90	4	
Weeding		by hand		09			30	30 (15)	(15)
Harvesting Sorting		pick-up	30	300				150	150
Farm cleaning		pick-up	2	20					20
Total Machinery			9]			11.5 4.5	ا ه	디	17
Kan				821		22 117	195	293	194

Crop: Watermelon (Summer Season), No.3 (Late Variety)

Table H-8 Labor Requirements by Farming Practice

Crop: Dates			Working Hour	-	ļ	1			Monthly Labour (hr/ha)	ir (hr/	1.	Sep. 0	Oct.	Nov.	Dec
Iten	Freq	Machinery	Machine	Man Jan	i €:	il 2:									
Fertilizing	n	tiller, trailer	m	א ניי				30			30			30	
Weeding	4	by hand	•				09	62	9	62	62	9	62	09	62
Irrigating	365days				(3) (3) (3)	ନ୍ତି : ଜ									ි ස
Leave thinning		pick-up							13)	£8	(13) 100				
Harvesting Sorting		pick-up			(2) (3)	G									
Other		tiller, trailer	u E						13	*	13				ام. ا
Total Machinery			a	•	. •		5	92	160	162	192	8	62	8	<u>8</u> 2
Man			- i1	77. 015.1	원 기					1		l			
Crop: Line			Working Hour		101	Gob Mar.	. Apr.		Monthly Labour (hr/ha) May Jun. Jul. Aug	Jul.	ha)	Sep.	00t.	Yov.	Dec.
Item	Freq.	Machinery	Machine												(4) 35
Pruning		tiller, trailer	3.0	100	: ::::::::::::::::::::::::::::::::::::		3	3	_						<u> </u>
		tiller, trailer	м	30	01	-	0	7				1			
Fertitizing		hand vi		120	30	ы	30		30			30			
Weeding		Ly Lond		100		S	S0 .	٥ ((S)	3		
Fruit thinning			00	9			<u> </u>	36				15	15		
Crop Protecting		pick-up sprayer	3	2, 2	62	26	62 6	60 62			62	9	62	09	62
Irrigating			Š	3 5					(25) 200	202 200 200					
Harvesting Sorting		pick-up) ¥	3	7	P)	-	10	1 25	25		s	ᄱ		→
Total Machinery			al	1,540	137	-1				262	62	105	12	잉	<u>19</u>

			Morking	HOLL				_	(buth)	Labor	ir (hr.) 				
Item	Freq.	Machinery	Machine Man	7 23	Jan	Feb.	Mar.	Apr.	¥ay	Jun.	Sul.	Aug.	Sep.	Oct.	¥av.	ă١
•		;		;			3					Ξ,		(1)	3	
Fertilizing		tiller, trailer	4	10			2.5					2.5		2.5	2.5	
					(67)			9			(E)					ت
Plant protecting	4	pick-up sprayer	154	194	29			30			30					_
Weeding		by hand		06			30				30	30 30		30		
Irrigating	365days			730	29	26	62	09	62	9	62	62	0	62	99	_
							Ξ	3	3	3	(2)		(2)	3	3	
Harvesting Sorting		pick-up	11	204			12	24	24	54	24		24	24	24	
Total Machinery			175		29		7	12	7	74	12	κļ	7	m	m	Ψ,
Man			•	1,228	129	92	106.5	114	8	25	146		8	118.5	86.5	H

Crop: Banana

(67) 67

62

129

Table H-9 Labor Requirements by Farming Practices

Crop: Alfalfa (First Year)

Table M-10. Labor Requirements by Farming Practice

Crop: Bean, No.1 (Early Variety)

			Working	Hour				Month	ly Labor	ır (hr.	/ha)			ļ	ļ
Item	Freq.	Machinery	Machine Man		Jan.	Feb.	Har.	Apr. May	Max Jun. Jul. Aug	Jul.	-1	Sep.	Oct.	Nov.	Dec
											(10)				
Transporting of manure		pick-up	10	20							20 (2)				
Ridging		tiller, ridger	i/s	S							\ S &				
Fertilizing		tiller, trailer	7	10							329				
Kanuring		tiller, trailer	ъ	25							32				
Seeding				30							(5)	30			
Setting driphose		pick-up	rv.	29							29	(20)	[10]		
Setting supports		pick-up	30	160								110	20		
Meeding				96								25	35	35	
Top dressing		tiller, trailer	9	30) is	20,	, s	
Irrigating	119days			238								99 S	62 (5)	69	26
Crop protecting	ю	pick-up sprayer	15	9								5 0	5 0	3 20	(02)
Harvesting Sorting		pick-up	20	300	9									120	180
Farm cleaning		pick-up	O	20	SS										
Total Machine			137		6						27	92	61	J 8	2
Man				1,047	S)						83	245	187	240	236

Washir (hr/ha)	Sep.	10 20 , 20 , 20 (5)	5 5 (2)	2 10 (5)	5 25 25	30 30 (5)	5 29	30 160	90 35 (1)		240 62 14 42 60 (5)		50 300 180 60 (9)	;		105
	Machinery						pick-up	pick-up								
Crop: Bean, No.2 (Middle Variety)	Item Freq.	Transporting of manure	Rideine	Fertilizing	Leaning Inc.	Seeding	Setting driphose	Setting supports	Weeding	Ton dressing	Tricating	Crop protecting 3	Harvesting Sorting	Farm cleaning	Toos Landing	

Table H-11 Labor Requirements by Farming Practice

Crop: Okra, No.1 (Early Variety)

			Working H	our				-	bnthly	Labou	r (hr/1					
Iten	Freq.	Machinery	Machine Man		1	Feb.	Mar.	Apr.	Kay	Jun.	May Jun. Jul. Aug	٠ŧ	Sep. Oct.	ct.	Nov.	Dec.
Transporting of manure		pick-up	3.0	20	<u> </u>											
Ridging		tiller, ridger	w	ĸ	<u> </u>											
Fertilizing		tiller, ridger	2	10	<u> </u>											
Ma nuring		tiller, trailer	Ŋ	22	(c) S2											
Seeding				30		30										
Weeding				120			30	30	\$ 6	20						
Top dressing	м	tiller, trailer	9	30			19	2	10							
Irrigating				296		95	62	9	62	56						
Crop protecting		pick-up sprayer	10	9			20	283	5	(6)						
Harvesting Sorting		tiller, trailer	35	210	9			9	80	30						
Setting driphose		pick-up	Ŋ	53	20,02						9					
Farm cleaning		pick-up	ďη	34							34.9					
Total Machine			87		27		7	11	15	12	စ]					
Man				849	89	8	122	180	192	146	湖					

Š 빙 Apr. May Jun. Jul. Aug. Sep. 34.3 6 2 Monthly Labour (hr/ha) (12) 12 146 20 28 123 (13) 80 190 12 65 (10) 60 60 60 253 17 182 223 23.6 120 ^ Mar. 92 30 62 33 <u>27</u> 89 Jan. 300 210 853 Norking Hour Machine Man 120 30 40 34 23 33 29 6 87 10 35 2 tiller, trailer pick-up sprayer tiller, trailer tiller, ridger tiller, ridger Machinery pick-up pick-up pick-up pick-up Freq. Transporting of manure Harvesting Sorting Setting driphose Crop protecting Farm cleaning Total Machine Top dressing Fertilizing Irrigating Kan Ita Ridging Manuring Weeding Seeding

Crop: Okra, No.2 (Middle Variety)

Crop: Okra, No.3 (Late Variety)	Variety)												
	ı		Working Hour	Four Man Jan.	Feb.	Har. Apr.		Monthly Labour (hr/ha)	our (hr	ادا	Sep. Oct.	Nov. Dec.	
Item	red.	MACHINELY											
Transporting of manure		pick-up	10	20		(2 (2)							
Ridging		tiller, ridger	ហ	w		(2 5							
Fertilizing		tiller, ridger	7	10		5 5 5							
Manuring		tiller, trailer	иĵ	25									
Seeding				30		3 (5)	30						
Setting driphose		pick-up	υĵ	23		29							
Weeding				120			in A	30 30 -(2) (2)	5 5	20			
Ton Japanes		tiller, trailer	9	30			, m						
Irrieating		,		300		9	9 09	62 60	62	26			
Crop protecting		pick-up sprayer	10	40				(10) (10)	(13)	(12)			
Harvesting Sorting		pick-up	35	210				4			(6)		
Farm cleaning		pick-up	0 3	34							£.		
Total Machine			87			27		7 17	띪	12	၈		
				853		68	81	122 180	192	146	ঙ্গা		

Man

Table 11-12 tabor Requirements by Farming Practice

Crop: Onion

1 tem	Mehinery	Haching Han	Lin	Jan.	Feb. 11F.		Apr. : 10	Honthly Labour (hr/h1)	ahour ((hr/h-1	day.	1		900	
Mursery bed making	by hand		^ı							-	-				
Seeding	by hand		7												
Nursery management	by hand		100	_							30	30	30	10	
Manure transporting	pick-up	10	20									(2)	9		
Ridging Fertilizing	tiller ridger	7	09									33	33	€ 20	
Sctting driphose .	pick-up	9	28								(2) 8	8 (7)	8		
Irrigating			312	62	26	62	10						09	62	
Trunsplanting	by hand		200								170	250	80		
Weeding	by hand		120								40	70	10		
Top dressing	tiller cultivator trailer	4	22								£ 8	13	Ξ₹		
Harvesting .	by hand		450	150	200	100									
Farm cleaning	pick-up	9	15				12 12 13								
Total Machinery .		33					9				m	21	=		
Man		-,	1,634	212	256	162	ង្យ			- [258	407	227	86	

Table H-15 Tabor Requirements by Parming Practice

Crop: Cauliflower

Item	!lachinery M.	Machine	Nan	-ill	<u>:</u> 등:	Mar. A	Apr. May	iz Ju	May Jun. Jul. Aug.		1.	Sep. Oc	Oct. No	Nov. D	Dec.
Nursery bed making	hy hand		-7							٠,	٠,				
	by hand		7									_			
	by hand		Ŋ								1.0	7			
Nursery manugement	by hand		100							м	30 5		20		
Manure trunsporting	pick-up	10	70									1001	10		
Ridging Fertilizing	tiller ridger, trailer	ß	40									(2) (16 1	(2)	(E) 8	
Setting driphose	pick-up	9	28	•							_			£.5	
Irrigating			348	29	28	-					4				62
Transplanting	tiller trailer or pick-up	20	320								10	(7) (1 107 16	(01)	(3)	
	by hand		06									ю	30	30	30
Top dressing	tiller cultivator trailer	4	18									J		(2) 9	
Crop protecting	pick-up sprayer	20	80	(5)								~~	(2)	30	(5)
Harvesting Sorting	pick-up	24	216	(10) 86	(10) 86	£ ‡									
Farm cleaning .	pick-up	9	18			981									
Total Machinery		95		15	의	2					1	16	27	12	ω
Man			1,289	168	14.4	79				r)	36 239	9 341		185 1	112

FIGURE H-1

OPERATION SCHEDULE FOR PLOW AND SPRAYER

,:	0	0	0	0	0	_			0	0	0					0
DEC.																
NOV.	0	0		0		ı		0	0	0	0			0	:	0
OCT.	0	-			1		0 0		0	0	1		0	0		0
SEP.	1	•		1				ı	0	ı		0	0		0	0
AUG.							1		1		,	0			i	0
JUL														I		0
JUN.													١			0
MAY												ı				0
APR.															0	0
MAR.									-							0
FEB.						0					0					0
JAN.	0	0	0		0	0				0	0					0
	Ť			1	<u>, </u>	I	<u> </u>	!	•	<u></u>	_پ_		•	L	1	I
	E.V	N. <	ار د<	ы , , ш	₩.∨	۲	E.V	M. V	E. <	M.<	> 1	ы >	>.₩	۲		
Crops	Tomato,			Eggplant,			Red pepper,		Cabbage,			Watermelon,			Lime	Alfalfa

Plowing İ Note:

Sprayering 0

Table H-14 Required Number of Plow and Sprayer

(Unit : ha)

														A	pε	end	ix 2	H-3	<u>.</u>
- :1	0	0	0	0	0.	0.	<u>c.</u>		c	·	0.	0.	0.	0.		ige Ə		이	0.0
Total	5.0	0.9	9.0	5.0	5.0	5.0	32.0		ć	70.0	12	12.0	20	10.0	•	240.0	40.0	354.0	130.0
Dec.	ı	1	ı	1	ı	1	ı	1	1	2.00	4.00	1.50	5.00	1		20.00	ı	35.50	13
Nov.	1.66	2.00	ı	1	1	1	3.66	1.7	,	3.34	2.00	6.00	5.00	1.66		20.00	ı	38.00	14
Oct.	1.67	2.00	3.00	1.66	1	ι	8.33	4.0	,	1.67	t	4.50	3.34	7,77		20.00	10.00	42.84	16
Sep.	1.67	2.00	3.00	1.67	ı	1	8.34	4.0		1	ì	1	1.67	72 2		20.00	10.00	35.01	13
Aug.	1	ı	ı	1.67	1	1.66	3.33	1.6		1	ı		ı	1 67	1.0	20.00	1	21.67	8
Jul.	1	ı	1	1	1	1.67	1.67	8.0		1	1	,	ı			20.00	ŧ	20.00	7
Jun.	ı	ı	ŧ	ì	ı	1.67	1.67	8.0		ı	1	1	•		ı	20.00	ı	20.00	7
May	ı	1	ı	1	ı	1	ı	ı		ı	ı	1	1	1	ı	20.00	ı	20.00	7
Apr.	ı	1	1	ı	ı	ı	•	1		ı	ı	•		1	•	20:00	20.00	40.00	1.5
Mar.	,	ı	ı	;	1	t	ı	ı		1.66	ı	ı			ı	20.00	1	21.66	∞
Feb.	1	ı	ı	1	1.66	ı	1.66	0.8		3,33	00			_	1	20.00			
Jan.	ı	1	1	•	3.44	ı	3.34	1.6		5.00		3	ı t	5.55	1	20.00	ı	32.33	12
Item	lowing	ggolant	-ser-ra Rednenner	Cabbage ,	Watermelon	C Watermelon	Total	unit/day	prayer	Tomato	Tomaco Tomaco	Eggplanc	Kedpepper	Cabbage	S.Watermelon	Alfalfa	i me	Total	unit/day

Table H-15

Efficiency of Farm Operation

	(1)	(2)	(3)	(4)	(5)	{b}	
}lach nery	Operation width (m)	Operation Speed (km/hr)	(1)x(2)/10 Theoretic Operation Canacity (ha/hr)	Efficiency in Field (%)	(3)x(4) Operation Capacity in Field (ha/hr)	llours per ha (hr/ha)	Report
	(44)	(3)114 3	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• •			
* Trictor 60 ps							
Diskplow 26 x 4	1.00	5	0.50	70	0.35	2,9	
Disk arrow 18 x 24	1.05	5.5	0.58	70	0.41	3.4	
* Tiller							
Rı izer							
Watermelon	2.5	3	0.75	BS	0.64	1.5	
Eggpl int	0.8	3	0.24	85	0.20	5.0	
Tomato	0.9	3	0.27	8\$	0.23	4.3	
Cabbage	0.75	3	0.23	85	0.20	5.0	
Redpenper	0.7	3	0.21	85	0.18	5.6	
Cultivater							
Cabbage	0.75	4	0.30	85	0.26	3.8	
Redpepper	0.7	4	0.28	85	0.24	3.2	
By Hand							
* Manuring							
Waternelon	2.5	1	0.25	55	0.14	7.1	
Eggpl mt	0.8	1	0.08	55	0.04	25.0	
Tomato	0.9	1	0.09	55	0.05	20.0	
Cabbage	0.75	1	0.08	55	0.04	25.0	
Redpepper	0.7	1	0.07	\$5	0.04	25.0	
Dates	9	ı	0.90	55	0.50	2.0	
Lime	7	1	0.70	55	0.39	2.7	Only basic
							fertilizering
* Fertilizing	2.5	3	0.50	70	0.35	2 9	+1.5 4.4
Matermelon	2.5	2 2	0.16	70	0.11	9.1	11.0
Eggp1 int	0.8	2	0.18	70	0.13	7.7	+1.9 9.6
Tomato	0.9		0.15	70	0.11	9.1	33.0
Cabba ge	0.75	2	0.14	70	0.10	10.0	11.9
Redpc spor	0.7	2		70	0.13	7.7	
Dates	9.0	2	0.18 0.14	70	0.10	10.0	
Lime	7.0	2	0.14	70	0.42	2.4	
Banan i	3.0	2		70	0.42	2.4	
Alfalfa	3.0	2	0.60			1.9	
Covering soil	2.0	3	0.60	90	0.54		
" watermelon	2.5	3	0.75	90	0.68	1.5	
• Mk wer	2.0	1	0.2	80	0.16	6.3	

Table H-16 Machinery Cost per Year

Item	$\frac{No.}{(1)}$	Purchase Price (2) R.O.	Price (1)x(2) =(3) R.O.	Durable Period (4) Year	Peprici- ation Cost (3)x0.9 =(5) R.0.	Dep. Cost per Year (5) ÷ (4) = (6) R.O.	Repair Cost $\overline{(3) \times 0.03}$ = (7) R.O.	Other Cost (3)x0.01 =(8) R.O.	Machinery Cost per Year (6)+(7)+(8) =(9) R.O.	
Tractor	1	5,200	5,200	10	4,680	468	156	52	68 1/ (676)	(9)
Diskplow	7	1,000	1,000	15	006	09	30	10	$^{2/}$ (100	()
Sprayer	2	243	1,215	æ	1,093	137	36	12	56 ^{3/} (185)	(2)
Tiller	20	431	8,620	œ	7,758	970	259	86	1,315	
Redger	20	190	3,800	10	3,420	342	114	38	494	
Cultivator	. 20	34	680	10	612	61	20	7	88	
Handmower	20	154	3,060	8	2,754	344	92	31	467	
Trailer	20	198	3.960	10	3,564	356	119	40	515	
Pick-up	20	2,000	40,000	10	36,000	360	1,200	400	980 4/ (1,960)	(096
Total			67,535		182,09	3,098	2,026	929	3,993	
	<u>.</u>	Share of Project		farming 10%	676×0.1	= 68				
	: /7		Do	10	100×0.1	= 10				
	3/ :		Do	30	$185 \times 0.3 =$	= 56				
			Do	20	$1,960 \times 0.5 = 980$	5 = 980				

Table H-17 Agricultural Input Material

Omit (2)	ı	1	10	ŧ	ı	•	1	ı	ı	1	10	1	ı	1	의	
Pirimor (2)	ı	1	7	4	ı	1	ı	1	ı	1	디	ស	1	ωļ	16	
Kafil (2)	10	ı	1	15	12	r	ı	I	1	1	37	18	ı	18	55	аде
Diathane (kg)	45	ı	ı	ı	ı	ı	1	ſ	ı	ı	45	•	ı	ı	45	At full development stage
Dimethoate (2)	9	ı	ı	ı	24	, 24	,	144	ŧ	576	774	,	i	ı	774	At full de
Seed (kg)	м	18	18	18	ស	5	(2,960)	(4,900)	unit (16,000)	720 ^{kg}	1	11	09	ı	٠}	years $\frac{3}{4}$
Fertilizer (t)	3.6	3.6	3.6	2.4	4.32			14.4	13.0	9.52	73.16	2.9	3.0	5.9	79.06	Lift time 6 years stage (for 5 years)
Manure (t)	75	. 22	75	75	06	06	300	300	1	300	1,380	06	06	180	1,560	$\frac{2}{\text{opment}}$
Area (ha)	S	rv	ស	ī,	9		20	20	10	20	102	9	9	12	114	Only fast year $\frac{2}{2}$
Crops	Tomato	Watermelon (Winter S.)	Watermelon (Summer S.)	Cabbage	Eggplant	Redpepper	Dates	Lime	Banana	Alfalfa $^{2}/$	$Sub-tota1^{\frac{3}{2}}$	Cauliflower	Onion	Sub-total	$Total^{4}$	Note: $\frac{1}{4}$ Or $\frac{4}{9}$

Table H-18 Agricultural Input Material

Light Oil	380	130	123	221	405	257	129	1	ı	1	1,645	265	405	670	2,315
Gasoline (R)	35,542	11,180	14,053	21,600	30,566	16,552	53,040	72,852	88,946	125,415	469,746	25,920	30,566	56,486	526,232
Support (unit)	21,000	ı	ı	ı	20,000	1	ı	1	l	ı	41,000	1	ı	ı	41,000
Pot (unit)	111,000	1	1	ı	129,000	ı	1	ı	ì	1	240,000	1	ı	1	240,000
Nemacur (kg)	l	ı	ı	ı	I	1	I	I	680	ı	680	ı	ı	l	089
41		ı	ŧ	ı	1	ı	74	1	1	1	74	ı	ı	ı	74
Furadan (kg)	1	ı	ŧ	1	ı	1	1	ı	400	ı	4 00	1	1	1	400
Area	ស	Ŋ	Ŋ	S	9	9	20	20	10	20	102	9	9	12	114
Crops	Tomato	Watermelon (Winter S.)	Watermelon (Summer S.)	Cabbage	Eggplant	Redpepper	Dates	Lime	Banana	Alfalfa	$Sub-tota1^{1/2}$	Cauliflower	Onion	Sub-total	$Total^{2/}$

 $\frac{2}{}$ Pre-full development stage (for 5 years) Note: 1/ At full development stage

Table H-19 Crop Production

Crops	Area	Yield	lst Year	2nd Year	3rd Year	3 S	6 - 10 Year	11 - 20 Year	21 · Year
Dates		t/ha p.t	00	00	00	00	80	6 120	6 120
Lime	20	t/ha p.t	00	00	00	80	10 200	20 400	20 400
Banana	10	t/ha p.t	00	10 100	13 130	13 130	13 130	1 1	1 1
Tomato .	S	t/ha p.t	20 100	30 150	40	40 200	40 200	40 200	40 200
Cabbage	Ŋ	t/ha p.t	15 65	19 95	25 125	25 125	25 125	25 125	25 125
W.Watermelon	ស	t/ha p.t	8 40	12 60	15 75	15	15 75	15 75	15
S.Watermelon	Ŋ	t/ha p.t	5 25		10 50	10	10	10 50	10 50
Eggplant	9	t/ha p.t	15	19 114	25 150	25 150	25 150	25 150	25 150
Redpepper	9	t/ha p.t	8 8	12 72	15 90	15 90	15 90	15 90	15 90
Alfalfa	20	t/ha p.t	30	45 900	60 1,200	60 1,200	60 1,200	1 I	3 1
Cauliflower	9	t/ha p.t	10 60	15 90	18 108	18 108	1 1	1 1	1 1
Onion	9	t/ha p.t	8 8 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	12	15 90	15 90	1 1	1 1	1 1

Note: 1/ p.t; Production (ton)

Farm
per
Requirement
Labor
H-20
Table

	Total	514	198	317	469	347	1,310	1,540	614	1,019	6,533	492	388	880	7,413	
, ,	Dec.	126	1 1	27	120	59	92	26	65	88	099	26	34	91	720	
(112:4:	Nov.	114	1 5	56	106	31	06	9	43	83	623	68	56	124	747	
	Oct.	100	1 1) s (85	99	62	77	29	85	651	122	102	224	875	years)
	Sep.	32	1 C	20	30	76	60	105	42	98	531	77	72	149	680	(for 5
per ratiii	Aug.	21	1 0	28 14	21	64	192	62	44	85	531	1	11	12	543	stage
lelik per	Jul.	13	י כ	1 17	13	38	162	262	73	85	629	,	7	-1	099	Pre-full development
ranoi negairement	Jun.	1	16	7 1	1	ı	160	290	42	98	296	ı	1	•	596	11 deve
ranor	May	1	33	1 1	1	1	92	72	43	85	325	ı	ı	٠	325	Pre-fu
07-11	Apr.	153	29	. 2	t	,	09	140	57	83	412	Ø	ı	∞1	420	77
an na i	Mar.	15	42	. 29	7	ы	95	152	53	88	481	49	19	89	549	stage
	Feb.	36	30	35	28	14	136	98	28	80	473	77	43	120	593	opment
	Jan.	54	10	- 8	59	26	112	137	65	85	591	64	50	114	705	At full development
	8	0.25	0.25	0.25	0.30	0.30	1.00	1.00	0.50	1.00	$\frac{5.10}{}$	0.30	r 0.30	0.60	5.70	At ful
	Crops & Area (ha)	Tomato	Watermelon Winter	Summer Cabbage	Eggplant	Redpepper	Dates	Lime	Banana	Alfalfa	Sub-total ¹ /	Onion	Cauliflower	Sub-total	Total 2/	Note: $1/$

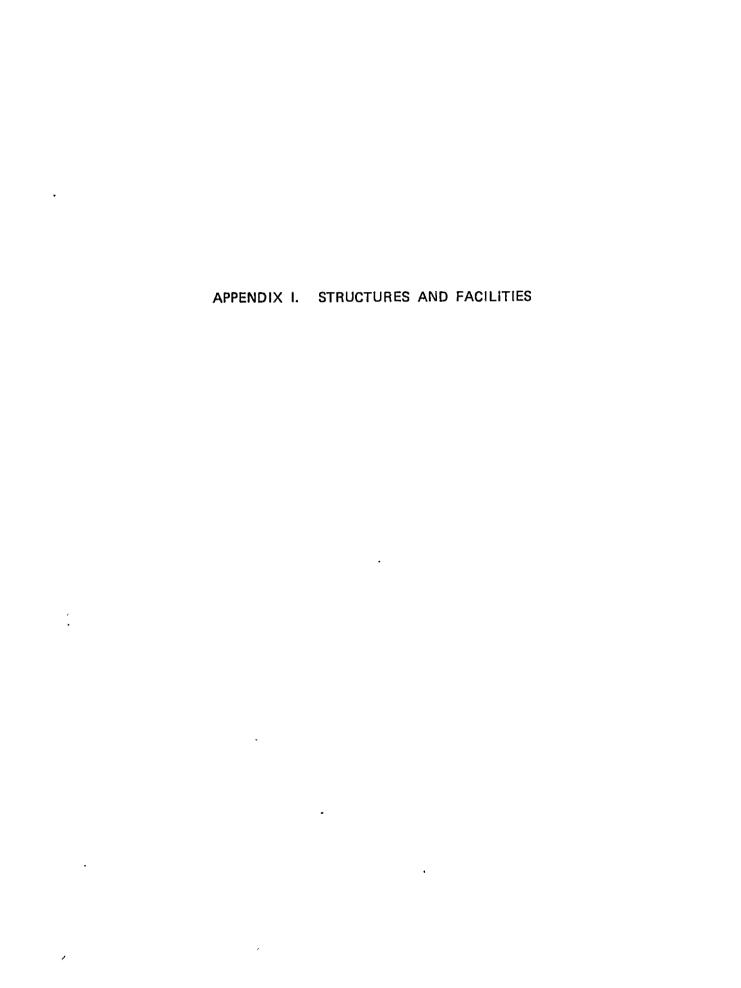
Table H-21 Labor Requirement

(Unit: hr)

Total	10,280	3,960 4,100	6,340	9,380	6,940	26,200	30,800	12,280	130,660	9,840	7,760	17,600	148,260	
Dec.	2,520	320	540	2,400	530	1,840	1,940	1,300	13,200	520	680	1,200	14,400	
Nov.	2,280	800	1,120	2,120	620	1,800	1,200	860	12,460 1	1,360	1,120	2,480	14,940]	
Oct.	2,000	1,140	1,200	1,700	1,320	2,240	1,540	1,180	13,020	2,440	2,040	4,480	17,500	rs)
Sep.	640	1,000	1,000	009	1,520	1,200	2,100	840	10,620	1,540	1,440	2,980	13,600	Prc-full development stage (for 5 years)
Aug.	420	560	280	420	1,280	3,840	1,240	880	10,620	20	220	240	10,860	age (fo
Jul.	260	240	20	260	760	3,240	5,240	1,460	13,180	1	20	20	13,200	ment st
Jun.	i	320 40	ı	ı	ı	3,200	5,800	840	11,920	ı	1	1	11,920	develop
May	ı	099	1	ı		1,840	1,440	860	6,500	1	ı	1	6,500	c-full
Apr.	09	1,340	40	1	:	1,200	2,800	1,140	8,240	160	ı	91	8,400	2/ Pr
Mar.	300	840	580	140	09	1,840	3,040	1,060	9,620	980	380	1,360	10,980	tage
Feb.	720	009	700	560	280	2,720	1,720	260	9,460	1,540	860	2,400	14,100 11,860 10,980	pment s
Jan.	1,080	200	860	1,180	520	2,240	2,740	1,300	11,820	1,280	1,000	2,280	14,100	develo
Area (ha)	ល	សស	ιυ	9	9	. 20	20	10	102	9	9	12	114	At full
Crops	Tomato	Watermelon Winter Summer	Cabbage	Eggplant	Redpepper	Dates	Lime	Banana	$Sub-total^{1/2}$	Onion	Cauliflower	Sub-total	$Total^{2/}$	Note: 1/ At full development stage

Incremental Production of Existing Date Plam Orchards

The existing date plam orchards in the Project Area stretch in $3-4\ km$ wide strip land along the sea shore.


The groundwater in the sea shore area, holding water table ranging from 1.5m to 0m, has a salinity concentration of 1,000 to 3,000 ppm. The recent rapid increase in groundwater consumption suggests that the salinity concentration of the groundwater in this area will grow higher. The higher salinity concentration in the groundwater will result in lower quality of dates and decrease in their production (refer to Figure C-28, -29 and -36, Appendix-I). The Project, however, will alow to recharge the groundwater and prevent the sea water from intrusion to result in saving date production from yield decrease as well as from degrade the quality. The estimation of the benefits to be generated there from will require a time-consuming work, and the current study, being short in survey period, has made an estimation as follows.

The date production was presumed at 1.5 ton/ha for the high class and 1.3 ton/ha for the low class in production, respectively.

Based on these assumptions, the future production of date with sea water intrusion has been computed at 1.3 ton/ha for the high class and much lower than 1.3 ton/ha for the low class.

The existing acreages of the date orchards developing in the Project related area were estimated at 1,100 ha by measurement on the map. And the incremental production by Project realization was estimated at 220 ton.

 $[(1.5 \text{ ton/ha} - 1.3 \text{ ton/ha}) \times 1,100 \text{ ha} = 220 \text{ ton}]$

APPENDIX I. STRUCTURES AND FACILITIES

I-1. Detention Dam

- 1. Dam Site and Dam Axis
 - 1.1 Dam Site
 - 1.2 Dam Axis
- 2. Dam Site Geology
- 3. Embankment Materials
 - 3.1 Terrace Deposits
 - 3.2 Talus Deposits
 - 3.3 Filter and Concrete Aggregate Materials
- 4. Dam Type
- 5. Dam Dimension
 - 5.1 Dimension of Reservoir
 - 5.2 Dam Crest Elevation
 - 5.3 Extra Banking
- 6. Stability Analysis
 - 6.1 Design Value
 - 6.2 Stability Analysis
 - 6.3 Seepage Analysis
- 7. Foundation Treatment
- 8. Spillway
 - 8.1 Type and Alignment
 - 8.2 Design Flood Discharge
 - 8.3 Overflow Head
 - 8.4 Hydraulic Design
 - 8.5 Ultimate Outflow Capacity
- 9. Outlet Facilities
 - 9.1 Outlet Conduit
 - 9.2 Emergency Conduit

- I-2. Alternative Study on Irrigation Networks
 - 1. Alternative Plan
 - 2. Hydraulic Calculation Method and Criteria
 - 3. Hydraulic Calculation
 - 4. Required Pipe and Facilities
 - 5. Selection of Optimum Pipeline Network

I-1. Detention Dam

1. Dam Site and Dam Axis

1.1 Dam Site

Five potential detention dam sites have been picked up and the comparative study has been made for the Wadi Jizzi Agricultural Development Project during early stage of the feasibility study. They are site A, B, C, D and E located along the Wadi Jizzi as shown in Figure I-1.

Judging from the topographical map and site investigations, the dam sites of A, B and C have rather small catchment areas and comparatively thin river-bed deposits with less than 10 meters in thickness compared with the dam sites of D and E. Since the detention dam mainly aims to store temporarily flood discharge and to recharge groundwater through infiltration along the existing water routes at the wadi course into aquifers with the stored water by the dam, the detention dam site should be located in the downstream reaches in order to command the river basin as large as possible taking into account the full utilization of the water resources, and the infiltration capacity into aquifers at the reservoir area formed by the dam and along the wadi course on the adjacent downstream of the detention dam site.

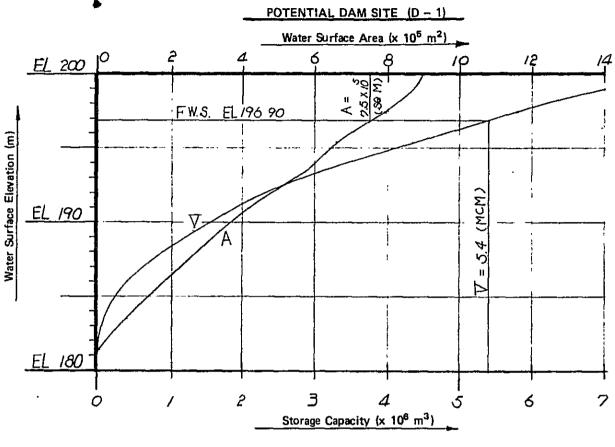
Consequently, the dam sites of A, B and C have been rejected through the study. In order to obtain the basic data on the potential dam site E, a brief topographical survey was carried out and the result was made clear that the length of the dam may exceed five kilometers.

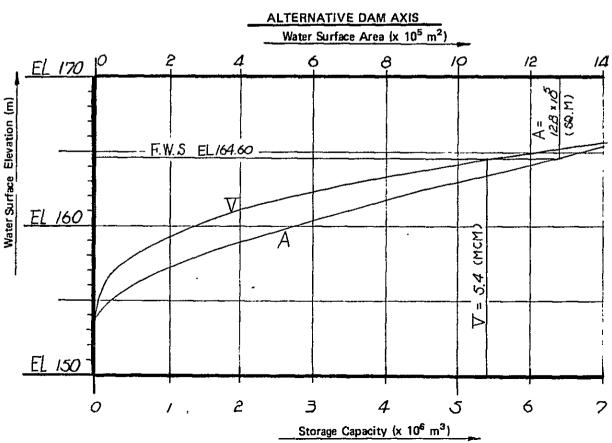
As a result of survey, this dam site is not suitable to construct the detention dam from the economic point of view.

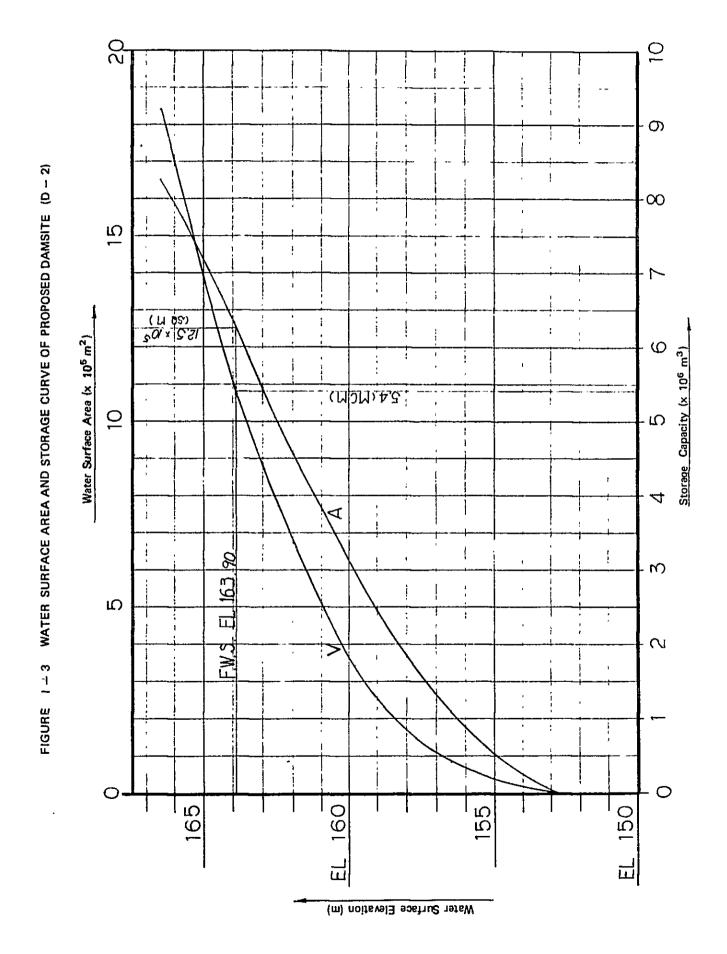
On the other hand, the potential dam site D has an enough water storage capacity more than 3.0 MCM and the river-bed consists of thick layer of the sand and gravel deposits, however, the right bank

abutment is covered with thick talus deposits originated from siliceous limestones which are disunited with many block joints and disrupted materials.

According to the careful site investigations which were made around the potential dam site D, two alternative dam sites of D-1 and D-2 are examined as the detention dam site. The D-1 dam site is located at about 1.0 km upstream from the potential dam site D and the D-2 is about 2.5 km downstream from the dam site D.


The relations between the water surface elevation and area, and the sotrage capacity in the reservoir for two alternative dam sites (D-1 and D-2) are shown in Figure I-2 and I-3, respectively.


For each alternative dam site, the comparative study has been made on the dam height, embankment volume, direct construction cost dam decorresponding rate to water cost. The results are tabulated below.


Items	D-1 dam site	D-2 dam site
Catchment area (sq.km)	665.0	812.0
Detention capacity (MCM)	5.4	5.4
Full water surface area (MSM)	0.75	1.25
Design flood discharge (cu.m/sec)	1,550.0	1,890.0
Dam height (m)	23.7	17.0
Crest length (m)	510.0	1,005.0
Corde-height ratio	22.0	59.0
Dam volume ('000 cu.m)	545.7	491.6
Direct construction cost (million	R.O.) 2.059	2.013
Corresponding rate to water cost (R.O./cu.m)	0.3814	0.3728

^{1/} Direct construction cost consists of the costs for dam body, spillway and outlet facilities.

FIGURE 1 - 2 WATER SURFACE AREA AND STORAGE CAPACITY CURVE OF RESERVOIRS

As is indicated in the above table, the D-2 dam site is more economical than the D-1 dam site, consequently, the D-2 dam site is finally selected as the proposed dam site after due consideration on the following technical points.

- The capacity of reservoir at the D-2 dam site to aim flood control is larger than that of D-1 dam site.
- ° Since the D-2 dam site is located at about 3.5 km downstream from the D-1 dam site, the effective utilization of the water resources can be expected due to the commanded area of the river basin.
- The embankment materials to be used for sand and gravel fill can be easily obtained from any places and the borrowing conditions are more suitable than that of D-1 dam site.
- The height of detention dam to be constructed on the riverbed deposits is desirable as lower as possible due to the safety of the dam body against sliding and piping failures.

1.2 Dam Axis

Two dam axes shown in Figure I-1 were examined at the proposed dam site (D-2) and the comparative study has been made based on the major dimentions and required dam body costs. The results are summarized as follows:

Items	Proposed dam axis	Alternative dam axis
Detention capacity (MCM)	5.4	5.4
Full water surface area (MSM)	1.25	1.281
Dam height (m)	17.0	17.7
Crest length (m)	1,005.0	915.0
Corde-height ratio ·	59.0	52.0
Dam volume ('000 cu.m)	491.6	518.0
Direct construction costs of dam body (million R.O.)	766.8	808.0

^{1/} Refer to Figure I-2.

Resulting from the comparative studies, the downstream axis is selected as the final dam axis for the detention dam from the economic point of view.

2. Dam Site Geology

According to the results of geological investigations executed around the proposed dam site, both the abutments are mainly composed of roundish gravel and sand, and they have the facies with variety of the horizons prevailing in well-sorted sand and pelitic materials. The gravel and sand have been well developed in conglomeration: particulary, conglomerates with calcareous matrix can be found in the lower part of this horizon. The gravels mainly composed of basic rocks, however, some rocks of diabase and gabbro are very much weathered and soft.

The Quaternary deposits existing in the river-bed can be classified into the recent wadi deposits and higher terrace deposits. The recent wadi deposits are formed with unconglomerated layers containing many roundish and subangular gravels, and these layers are developed evidently independent from the conglomerated lower formation which abounds in calcareous matrix.

The higher terrace deposits below the recent wadi deposits are composed mainly of the roundish to angular gravels, and the same as horizons of both abutments, although they have the facies with variety of the horizons prevailing in well-sorted sand and pelitic materials.

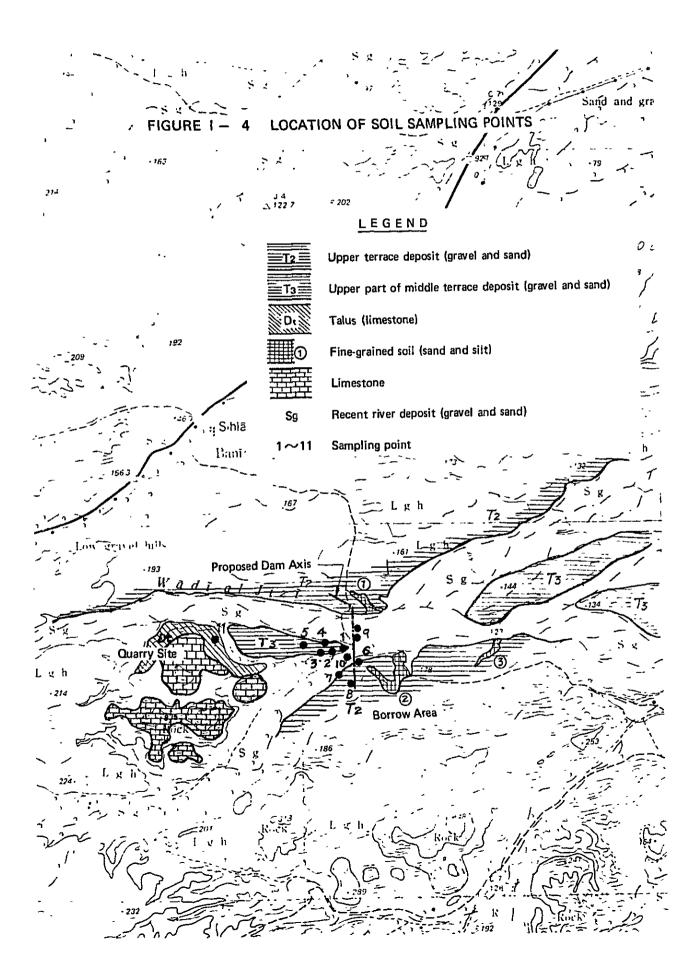
The permeability test conducted within an extent of the horizon shows ranging from n x 10^{-1} to n x 10^{-2} cm/sec. The horizons have been well developed in conglomeration in the whole extent.

The bed rocks are observed 10 to 30 m below the recent deposits and the facies seems to be composed of limestone and chart of Hawasina group. These rocks are hard and siliceous, and have many crucks, however, shear zone and fault are not expected around the dam site.

The geological map around the dam site and geological profiles along the dam axis are shown in Drawing D-1002 and the detail descriptions of geological investigations refer to Appendix D.

3. Embankment Materials

Embankment materials of the detention dam will mainly be obtained from terrace deposits composed of sand and gravel material on the spillway site and from the quarry site consisting of talus rock as described below:


3.1 Terrace Deposits (Sand and Gravel Materials, for Semi-pervious zone)

Terrace deposits are widely distributed all over the dam site, however these materials are deemed usuable as semi-pervious materials for the embankment of dam body. Therefore, the sampling of totally 10 materials have been executed at the dam site as shown in Figure I-4.

As to embankment materials of semi-pervious zone, the spillway site is selected as the borrow area taking into account the excavation volume at the spillway, physical properties of these materials and the borrowing condition.

Terrace deposits at the spillway site mainly consist of sand and gravel materials belonging to the well consolidated upper terrace deposits with a small quantity of cobble, and these materials can be easily borrowed from any places nearby the spillway site; moreover, the borrow area can be enlarged to any extent and to any depth, if required.

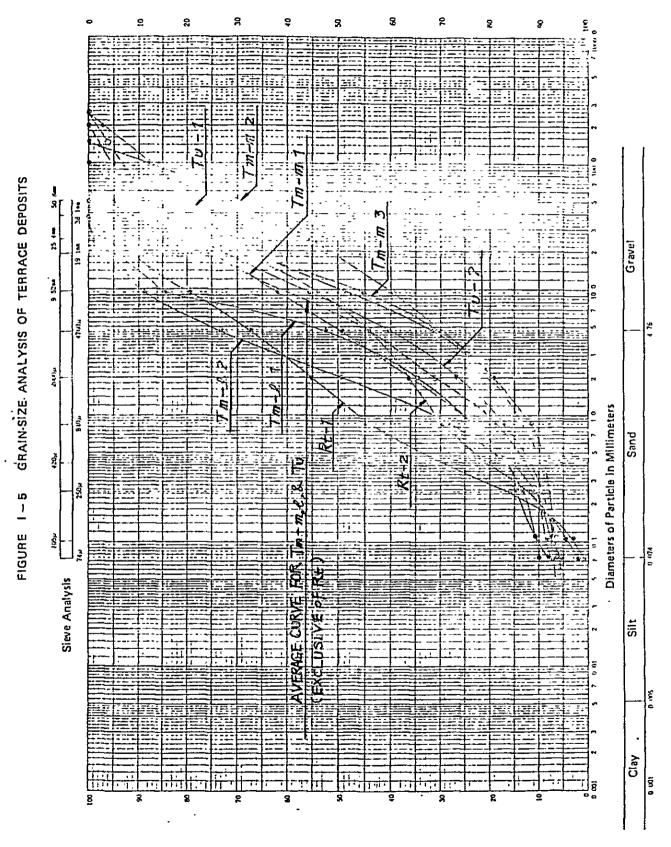
An outline of soil mechanical properties of the coarse materials such as sand and gravel can be assumed from the gradation analysis curve. Table I-1 and Figure I-5 show the results of soil tests of the samples of terrace deposits obtained around the dam site.

Rock Rip-rap

- op -

- op: -

- op -


Classification Semipervious

- op -

		Unified Soil Classi-	Apparent Specific	Water ab-	Grain S	Grain Size Distribution	fbution	
Group Symbols	Geological Formation & Lithology	fication System	Gravity (+4.76mm)	sorption (\$)	-0.074	(£)	-50.8	Uc
۵	Upper part of middle terrace deposit Gravel and sand. Well consolidated. Gravel partially weathered. Assumed thickness 4.0 m.	*	2.80 2.90 (2.85)	2.4 (2.4)	0.5 4.0 (1.5)	20.2 36.9 (28.0)	47.3 73.9 (62.6)	57.1 87.2 (78.2)
E - E	Middle part of middle terrace deposit Gravel and sand. Consolidated. Assu- med thickness 3.0 m.	YG ' YG	2.74 2.91 (2.92)	1.4 3.1 (2.2)	6.9 7.4 (7.1)	30.1 49.5 (36.6)	67.8 90.2 (80.1)	42.5 53.3 (56.7)
Tm - 1	Lower part of middle terrace doposit Gravel and sand. Consolidated. Assu- med thickness 1.0 m and lenticular.	HS - MS	2.44	7.3	8.1 10.1 (9.1)	52,1 73,0 (62.6)	100.0	30.0 78.6 (50.0)
Tu - 1.2	Upper terrace deposit Gravel and sand. Well consolidated. Gravel partially weathered. Assum- ed thickness 20.0 m.	ND - ND	2.54 2.61 (2.58)	5.0 5.7 (5.4)	5.8 5.9 (5.9)	31.9 40.2 (36.1)	79,1 92.6 (85.9)	28.6 50.0 (29.2)
£	Recent wadi bed deposit of main stream Gravel and sand. Loose. Grain size distribution poorly sorted.	8	2.79 3.00 (2.92)	ı	1.8 2.1 (2.0)	17.1 47.6 (32.4)	66.0 100.0 (83.0)	19.0 136.7 (44.0)
¥	Recent wadi bed deposit of tributary stream Gravel and sand. Loose. Grain size distribution poorly sorted.	ds	2,69 3,00 (2.85)		1,0 2,1 (1.6)	44.1 67.1 (55.6)	94.2 98.8 (96.5)	17.6 73.7 (29.5)
Ę	Talus deposit Gravel With sand and clay. Subangu- lar to angular. Limestone.	¥ 5	2.72 2.74 (2.73)	0	1	r	•	•
Fine Grained Soil	Talus and recent wadi bed deposit Sand, silt and clay. Distributed in small area and then deposit.	ช	ı		90	,		ı

Uc : Coefficient of Uniformity
Uc': Coefficient of Curvature
Figures in parentheses show an average value.

Percent Retained (%)

Percent Passing (%)

Judging from results of the gradation analyses of terrace deposits at the spillway site (Tu-1 and Tu-2), the coefficient of uniformity of these materials is about 29, which indicates that they are well-graded semi-pervious materials and, (classified into GW-GM under the Unified Soil Classification System), although they contain about six percent of fine materials.

The data of the similar soil tests conducted in the past suggest that these materials are suitable for embankment because of a dense compacted weight, a high shearing strength and an enough workability.

From the above-mentioned soil mechanical properties of the terrace deposits at the spillway site, it is desirable that these materials would be used as embankment materials of detention dam in maximum from the view-points of abundant distribution, borrowing condition, physical and dynamic properties, purpose of dam construction and economical embankment.

Since the detention dam aims to store temporarily flood discharge and to recharge groundwater through infiltration along the existing water routes at the wadi course into aquifers with the stored water by the dam, a relatively large quantity of seepage water can be permitted to flow-out through the dam body. However, the inner shell of sand and gravel fill should be constructed as a semi-pervious zone of less than 1×10^{-4} cm/sec in permeability coefficient in order to ensure the temporary storage of flood discharge and the stability of the dam body.

3.2 Talus Deposits (Rockfill Materials, Riprap and Rock Zone)

Talus deposit materials located about 2.0 km away from the dam site will be mainly used for the rock zone embankment and the riprap fill. Such materials consist of mainly siliceous limestone which are disunited with many block joints and disrupted materials, however, the rock pieces have good lithologic characteristics such as hardness, soundness and durability.

The results of rock tests for the quarry rock and boulder materials are shown in the following table.

Specimen	Specific gravity	Absorption (%)	Durability by sodium sulfate (%)	Compressive strength (kg/cm²)
Quarry rock (Limestone)	2.705	0.38	1.14	895
River-bed boulder (Diabase)	3.047	0.40	0.31	809
Terrace boulder (Diabase)	2.960	0.27	0.26	1,346

Judging on the above-mentioned table, these materials can be utilized in the rock zone and for the riprap fill from the view point of geotechnical properties. Moreover, these materials will be easily quarried by heavy dozzer without using of explosive, and the quarry site can be enlarged, if required.

3.3 Filter and Concrete Aggregate Materials

The materials to be used for the filter zone and concrete aggregates are obtainable in the sand and gravel deposit at the riverbed by using the screening plant to be installed near the dam site for the arrangement of grading.

4. Dam Type

In general, the dam type is classified into two types, concrete and fill. At the detention dam site, the most recommendable dam type is a zone type of fill dam taking into account the following items.

A relatively large quantity of seepage water is allowed to flowout through the dam body since the detention dam only functions to store temporarily flood discharge by means of cutting the peak of floods which flows down uselessly into the sea in a short time and to recharge ground water through infiltration along the existing water routes at the wadi course into aquifers with the stored water by the dam.

- The embankment materials are easily obtained from terrace deposits (for sandy and gravelly materials) and talus deposits (for rocky materials) around the dam site.
- The whole dam foundation consists of sandy and gravelly terrace deposits where no construction of the barrier structure is required.
- o The corde-height ratio (dam length/dam height ÷ 59) at the dam axis is extremely large.
- The required bearing capacity and shearing strength of the dam foundation are not good enough, if concrete dam is adopted, and which shall be safe against normal and tangential component forces transmitted by the dam body.
- The construction of fill dam is economical in comparison with the concrete dam in this project.

A zone type dam with sand and gravel, rock and riprap fills is planned in taking the resistance against piping, erosion, protection, structural stability and economical execution of the embankment works into consideration. The sand and gravel to be obtained from terrace deposit will be used to construct the semi-pervious zone of which the permeability coefficient is less-than 1×10^{-4} cm/sec.

The upstream outer shell will be constructed with the rock materials to be obtained from the quarry.

Between the rock zone and sand and gravel zone, the filter zone should be constructed in order to prevent the fines contained in the sand and gravel zone from movement. And also, in the downstream of sand and gravel zone, the intersepter with horizontal drain is planned in order to reduce the seepage water pressure and to allow the seepage water to flow safely out of the zone.

The surfaces of both the slopes should be protected by the handplaced riprap in order to prevent the fine materials in the sand and gravel zone from movement and suction by wave action at upstream slope and from erosion by rainy water at downstream slope.

Along the axis of dam, a trench should be provided in order to obtain a good bond between the embankment material and the dam foundation, to reduce the hydraulic gradient of seepage water through the foundation, and thereby to increase the safety against piping. The typical section of the detention dam is shown in Drawing D-1003.

At the toe of the dam body and both abutment at downstream side, the counter-weight fill is planned for stabilizing the dam against the seepage water pressure through its foundation and both abutments.

And also, the slope in front of approach channel of the spillway should be protected by a counter-weight fill for stabilizing the slope against the residual pressure of seepage water through the mountain mass, it may occur when the reserved water will be hastily drawn down.

5. Dam Dimensions

5.1 Dimension of Reservoir

According to the results of Alternative Studies as shown in Appendix F, the relevant dimensions of reservoir are determined as follows:

Catchment area 812 sq.km
Detention capacity 5.40 MCM

Specific sediment volume 100 cu.m/sq.km/year

Full water surface (F.W.S.) EL 163.90 m Reservoir water surface 1.25 MSM

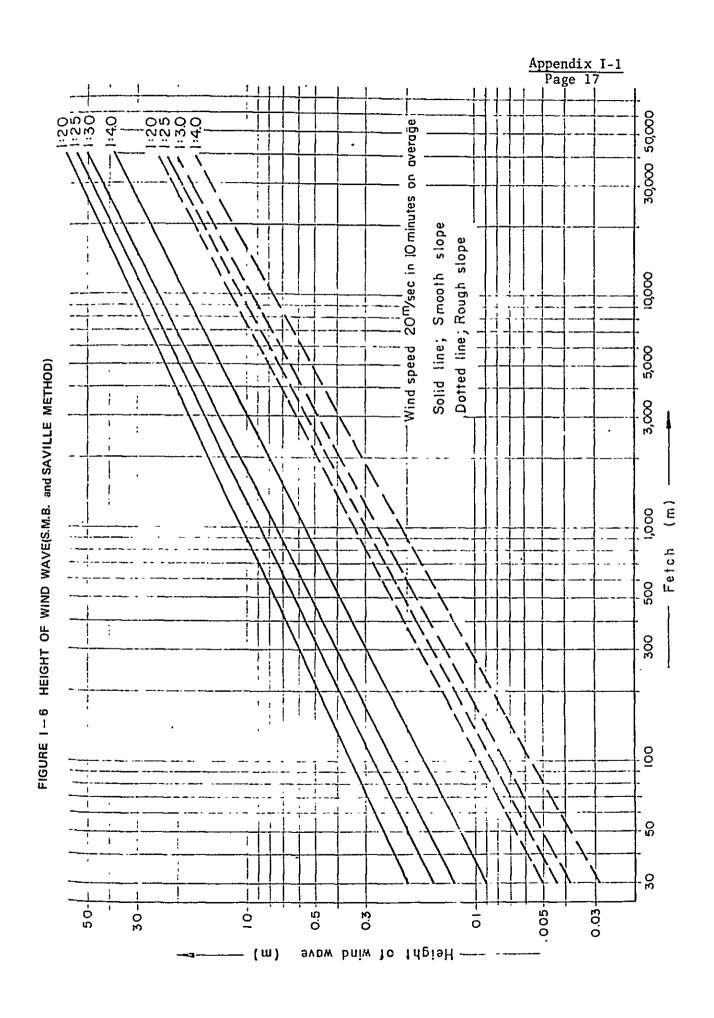
area at full water level

Design flood discharge 1,890 cu.m/sec Water level at design EL 167.20 m

flood discharge (H.W.S.)

5.2 Dam Crest Elevation

The crest elevation of non-overflow section of the detention dam is determined by adding a height of wave due to the wind to the maximum water surface level of a reservoir.


5.2.1 Height of wave caused by wind

The height of wave caused by wind is considered to be deep-water wave. The height of significant wave is related to the factors such as fetch and wind speed and can be estimated with S.M.B. (Sherdrup-Munk-Breschneider) method.

On the other hand, since uprushing height varies in accordance with the gradient and roughness of embankment slope, height of significant wave should be corrected adequately with Saville method to obtain height of wave due to the wind.

The estimates under the different conditions of slope and fetch are shown in Figure I-6.

In order to obtain the height of wave caused by wind in the detention dam site, the wind speed of 20 meter per second in 10 minutes on an average is to be assumed taking into account the observed data of maximum wind movement in Sohar meteorological station (observed maximum value is 238.2 km per day).

The upstream surface of the detention dam is formed with handplaced riprap using the materials mainly obtained from quarry. Therefore, an intermediate value of 0.80 meter at the smooth slope and rough slope in the above-mentioned figure was adopted as the height of wave caused by wind.

5.2.2 Dam crest elevation

According to the hydraulic study of spillway, a rise of water from the full water surface level is estimated at 3.3 m when the design flood discharge is released through the spillway.

The crest elevation of detention dam without extra banking can be obtained by adding the height of wave due to wind to the maximum water surface level in the reservoir as follows:

Dam crest elevation, EL 167.20 + 0.80 = EL 168.00 m

5.3 Extra Banking

The settlement of dam body which may be caused by the weight of embankment materials and the storage water pressure should be considered in the design of a fill dam. The settlement of dam body is presumed by the following experimental formula

$$\Delta H = 0.001 \cdot H^{3/2}$$

Where, ΔH ; settlement of the dam body

H; height of the dam adopted by 17.0 m

The settlement after construction of the dam is computed to be about 0.1 m from the above equation, and another 0.2 m is added to this value taking the settlement of dam foundation and the sightly condition into consideration.

The total presumed settlement, therefore, reaches 0.3 m, and it corresponds to about 1.8 percent of the dam height. The height of extra banking is determined at zero mater on both abutments and

0.3 m on riverbed portion, and the profile of dam crest forms in trapesoidal shape.

6. Stability Analysis

In general, the stability of detention dam will be studied from their structural and hydraulic viewpoints as shown below:

Structural stability: Stability of dam slopes by the slip

circle method

Hydraulic stability: Study on the seepage water through the

dam body and piping in the dam body

6.1 Design Values

Design values of the sandy, gravelly and rockfill materials to be used for the stability analysis of a dam body should be usually decided according to the results of soil test. However, since effective tests of these materials have not been conducted, the estimations are made refering to the data which have been obtained through various past soil test in the similar nature.

6.1.1 Sandy and gravelly materials

Soil test of sandy and gravelly materials of terrace deposits have been conducted regarding those auxiliary items of gradation analysis, specific gravity and absorption, and the respective results are shown in Figure I-5 and Table I-1.

Generally, the soil mechanism of those coarse materials is comparatively well correlated with the grain-size distribution.

The results of soil test for sandy and gravelly materials in various grain-size distribution are tabulated as follows:

^{1/} Data obtained through past soil tests in Japan

Max.size (mm)	D10 (mm)	(mm) De 0	<u>Uc</u>	Gs	(t/m^3)	<u>e</u>	(°-¹)	$\frac{K}{(cm/sec)}$
120	0.25	36.7	146.8	2.64	2.07	0.354	36°-52†	1 x 10 ⁻⁴
150	0.56	42.0	75.0	2.60	2.17	0.275	39°-00'	5 x 10 ⁻⁴
150	1.70	22.0	12.9	2.64	2.04	0.320	40°-001	10 ⁻¹ ∿10 ⁻²
200	0.28	10.5	37.5	2.70	2.25	0.250	35°-00¹	-
200	0.80	38.0	47.5	2.66	1.94	0.400	39°-00‡	1 x 10 ⁻³
200	1.30	34.6	26.6	2.70	2.35	0.227	35°-001	-
250	0.70	33,0	47.1	2.90	2.25	0.330	37°-00'	1 x 10 ⁻¹
300	0.16	2.5	15.6	2.64	2.25	0.257	40°-00'	6 x 10 ⁻⁴
300	0.25	8.6	34.4	2.64	2.08	0.320	40°-00'	3×10^{-4}
350	0.70	75.0	107.1	2.45	1.95	0,289	36°-00¹	-

Uc; coefficient of uniformity, Uc = D_{60}/D_{10}

Where, D_{10} , D_{60} ; grain-size of materials finer than respective percentage by weight of total volume of materials

Gs; specific gravity

γt; wet density

e; porocity

φ; angle of internal friction

K; coefficient of permeability

Sandy and gravelly materials of terrace deposits around the spillway site are of good mixture with large and small particles with the coefficient of uniformity of about 29 which indicates that they are the well-graded semi-pervious materials for the fill type dam.

The shearing strength of sandy and gravelly materials is well correlated with the degree of compaction which represents by the relative density! as shown in the following table.

Where, ymax.; density in the most compact state

ymin.; density in the loosest state

γ; density in-situ

^{1/} Relative density = $\frac{\gamma \text{max.} (\gamma - \gamma \text{min})}{\gamma (\gamma \text{max} - \gamma \text{min})} \times 100 (\%)$

Grain-size and gradation	R	elative dens	sity
distribution	>70% (dense)	70∿50%	<50% (loose)
Uniform mixture of fine and coarse size materials	35° ∿ 38°	32° ∿ 34°	28° ∿ 30°
Well-graded coarse sand and poor-graded mixed materials of sand and gravel	37° ∿ 45°	33° ∿ 36°	30° ∿ 33°
Well-graded mixed materials of sand and gravel	40° ∿ 45°	36° ∿ 41°	33° ∿ 36°

In general, the value of relative density of sandy and gravelly materials will be obtained easily more than 70 percent in compacted fill and it corresponds to about 93 percent of the maximum dry density in dry weight of the materials.

Judging by the above data, the design values of sandy and gravelly materials to be used for the detention dam are presumed as follows:

					Shearing	strength
Gs	е	\mathtt{Dr}	γt	γsat	ф	C
		(%)	(t/m^3)	(t/m^3)	$\frac{(\circ - 1)}{(\circ - 1)}$	(t/m^2)
2.78	0.35	70	2.11	2.32	35°-00¹	0

Where, Gs; specific gravity, adopted by 2.78 obtained from data

e; porocity, assumed to be 0.35

Dr; relative density, assumed to be more than 70%

γt; wet density

 γ sat; saturated density, γ sat = (Gs+e)/(1+e)

φ; angle of internal friction, assumed to be 35°00'

C; cohesion

In order to ensure the permeability coefficient of sand and gravel fill to be less than I \times 10⁻⁴cm/sec, those materials should contain more than seven percent of finer particles by weight passing through the No.200 sieve.

6.1.2 Rockfill materials

The geotechnical test for quarried rock has not been specially conducted except for the rock tests for the limestone and diabase rocks at the dam site as tabulated below:

	Quarry rock (Limestone)	River-bed boulder (Diabase)	Terrace boulder (Diabase)
Apparent specific gravity	2.705	3.047	2.960
Absorption (%)	0.38	0.40	0.27
Durability by sodium sulfate (%)	1.14	0.31	0.26
Compressive strength (kg/cm²)	895	809	1,346

As to the design values of rockfill materials, the presumption is made based on the data obtained from the past geotechnical tests in Japan taking the results of rock tests into consideration. The result is shown in the following table.

Gs	е	Dens	ity	Shearing strength		
		γt	γsat	ф	C	
		(t/m^3)	$\overline{(t/m^3)}$	(°-')	(t/m^2)	
2.71	0.40	1.96	2.22	37°-001	0	

Where, the notes in the table are the same as is in the former paragraph for sandy and gravelly materials.

6.1.3 Filter materials

The materials to be used for the filter zone are obtained from the excavated river-bed deposits with arrangement of grading. Since the procedure of the embankment of filter materials is mostly same as the procedures of the sand and gravel fill, the design values of filter materials can be quoted completely from that of sand and gravel materials. Design values of the above-mentioned sand and gravel fill rock fill and filter materials are summarized as follows:

	Dens	ity	Shearing strength		
Materials	$\frac{\gamma t}{(t/m^3)}$	$\frac{\gamma sat}{(t/m^3)}$	φ (°-')	$\frac{C}{(t/m^2)}$	
Sand and gravel	2.11	2.32	35°-00¹	0	
Rock	1.96	2.22	37°-00'	0	
Filter	2.11	2.32	35°-00'	0	

Where, the notes in the table are same that in the former paragraph of sandy and gravelly materials.

6.2 Stability Analysis

6.2.1 Stability analysis against sliding failure

Fill dam has a sufficient resistivity against the sliding failures through the dam body itself and the foundation in consideration of the properties of embankment materials and the condition of the foundation of dam.

Since the foundation of detention dam consists of sandy and gravelly materials having a sufficient resistivity, the stability of dam body will be herein studied assuming the following conditions:

Reservoir condition	Slope	<u>K</u> 1/	Water surface elevation	Pore pressure
Full water level	Upstream Downstream	0.10	EL 163.90m	Steady flow
Immediately after completion of fill	Upstream Downstream	0.05	Ni 1	Nil
Middle water level	Upstream	0.10	EL 159.0m	Steady flow
Rapid drawdown	Upstream	0.10	F.W.L. to L.W.L. 2/	Unsteady flow
Flood water level	Upstream Downstream	Ni1	EL 167.20m	Steady flow

Stability analysis against sliding failure has been carried out by applying the slice method to the slip circle surface shown in Figure I-7 and the safety factor is obtained by the following formula:

$$S.F. = \frac{\Sigma \{C \cdot \ell + (N-Ne-U+Np+Wn) \times \tan \phi\}}{\Sigma (T+Te-Tp+Wt)}$$

Where, S.F.; safety factor

C; cohesion of materials on slip circle of each slice

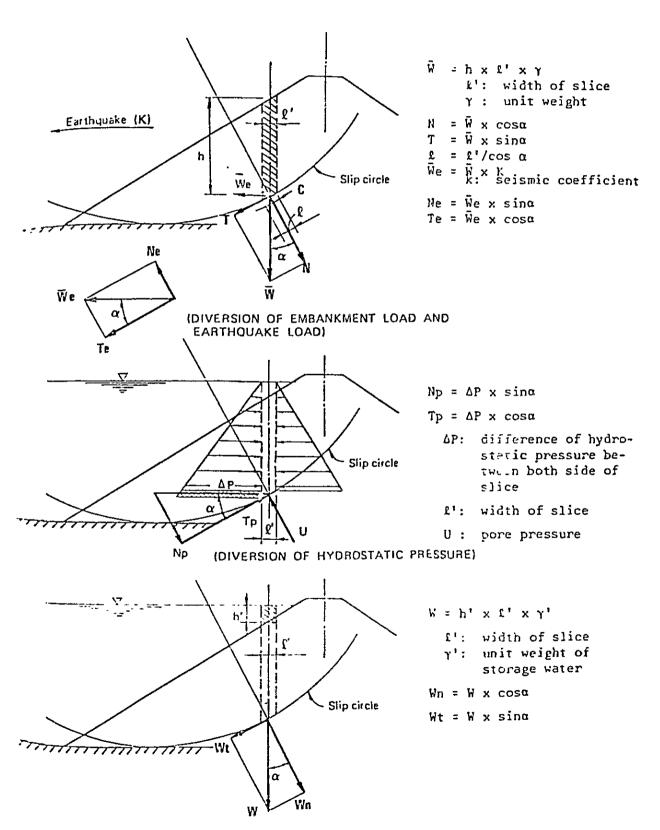
£; arc length of slip circle of each slice

N; normal force acting on slip circle of each slice

Ne; normal force of earthquake load acting on slip circle of each slice

U; pore pressure acting on slip circle of each slice

Np; normal force of hydrostatic pressure acting on slip circle of each slice


Wn; normal force surcharge water acting on slip circle of each slice

φ; angle of internal friction of materials on slip circle of each slice

^{1/} From the observed data of earthquake around the Arabian peninsula, there were no epicenters in Oman. However, in the southern part of neighbouring Iran approx. 250 km away from the Sohar, a number of big earthquakes have occurred in the past. In this case, it seems to be reasonable that the intensity of 0.10 is to be adopted as horizontal seismicity to design the dam body owing to the attenuation of the shock wave over those distance from the epicenters.

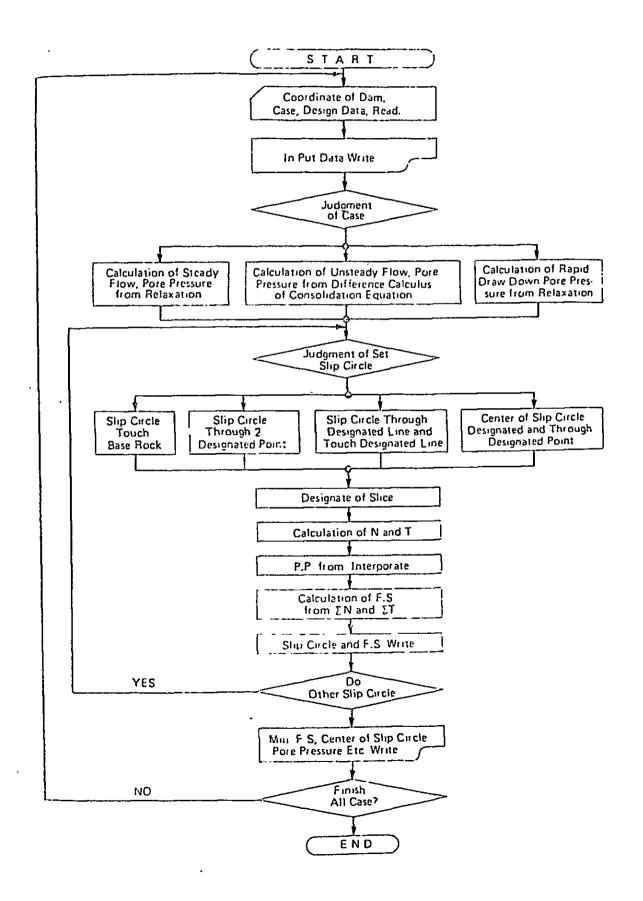
^{2/} Low water level EL 154.0m.

FIGURE 1-7 STABILITY ANALYSIS WITH SLIP CIRCLE METHOD

(DIVERSION OF SURCHARGE WATER)

- T; tangential force acting on slip circle of each slice
- Te; tangential force of earthquake load acting on slip circle of each slice
- Tp; tangential force of hydrostatic pressure acting on slip circle of each slice
- Wt; tangential force of surcharge water acting on slip circle of each slice

Allowable minimum safety factor is decided in conformity with the Design Criteria For Dams authorized by Japanese Government, that is to say, it must not be less than 1.2 in any case. The repeat computation should be made by using the above equation to seek the minimum value of the safety factor for a different sliding surfaces. The computation procedures, the so-called trial and error, can be advantageously carried out by an electronic computer operation according to the flow chart shown in Figure I-8.


The following table shows the results of the stability analyses under the above-mentioned conditions.

Case	Reservoir condition	Water surface elevation	<u>K</u>	Slope	Safety factor
1-1 1-2	Full water level	EL 163.90m	0.10	Upstream Downstream	1.331 1.329
2-1 2-2	Immediately after completion of fill	Ni1	0.05	Upstream Downstream	1.883 1.531
3	Middle water level	EL 159.0m	0.10	Upstream	1.343
4	Rapid drawdown	F.W.L. to L.W.L. <u>1</u> /	0.10	Upstream	1.448
5 .	Flood water level	EL 167.20m	Nil	Upstream Downstream	2.115 1.759

The dam body will have a sufficient stability since the safety factor is more than the allowable minimum safety factor of 1.2 under the various conditions as mentioned above. Besides, the value of the above-mentioned safety factor in each case will be increased taking the counter-weight fill at the toe of the dam into account.

^{1/} Low water level EL 154.0m

FIGURE 1-8 FLOW CHART OF STABILITY ANALYSIS

The contour of safety factors for the critical case of upstream and downstream slopes, and distributions of pore pressure are shown in Figure I-9.

6.2.2 Surface slope stability

It may sometimes happen that critical slip circle approaches to the surface of dam body in case that dam body is constructed with cohesionless materials. In this case, the safety factor can be obtained with the following formula.

For upstream slope:
$$S.F = \frac{(1-k \frac{\gamma sat}{\gamma sub} \cdot tan\alpha)}{K \cdot \frac{\gamma sat}{\gamma sub} + tan \alpha} \times tan \phi$$

For downstream slope: S.F =
$$\frac{1 - K \cdot \tan \alpha}{K + \tan \alpha} \times \tan \phi$$

Where, S.F; safety factor

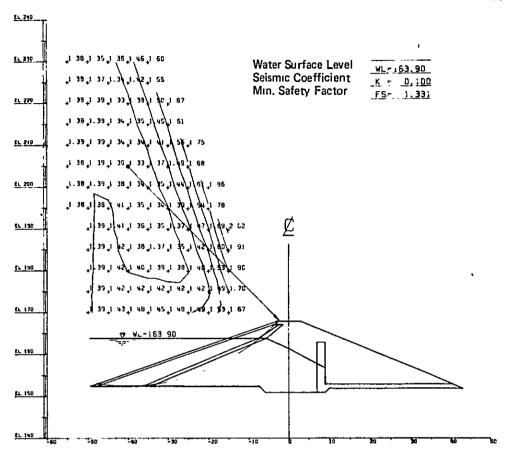
K; seismic coefficient, adopted by 0.10

ysat; saturated density of outer shell material

 γ sub; submerged density of outer shell material (γ sub = γ sat - 1)

α; tangential value of slope

φ; angle of internal friction of outer shell material


Safety factor for the surface sliding is 1.375 in upstream with slope of one vertical to 3.0 horizontal and 1.344 in downsrream with slope of one vertical to 2.5 horizontal.

6.3 Seepage Analysis

6.3.1 Seepage through dam body

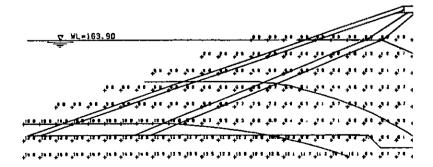
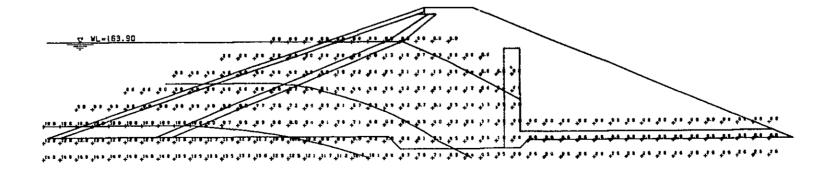

The permeability in horizontal and vertical directions of embanked sand and gravel zone is quite different. In this case the embankment should be considered as an anisotropic medium with the permeability depending on the direction of flow. The raio of vertical coefficient of permeability (Kv) to horizontal one (Kh) at the compacted sandy and gravelly materials varies depending on


FIGURE I - 9 CONTOUR M/

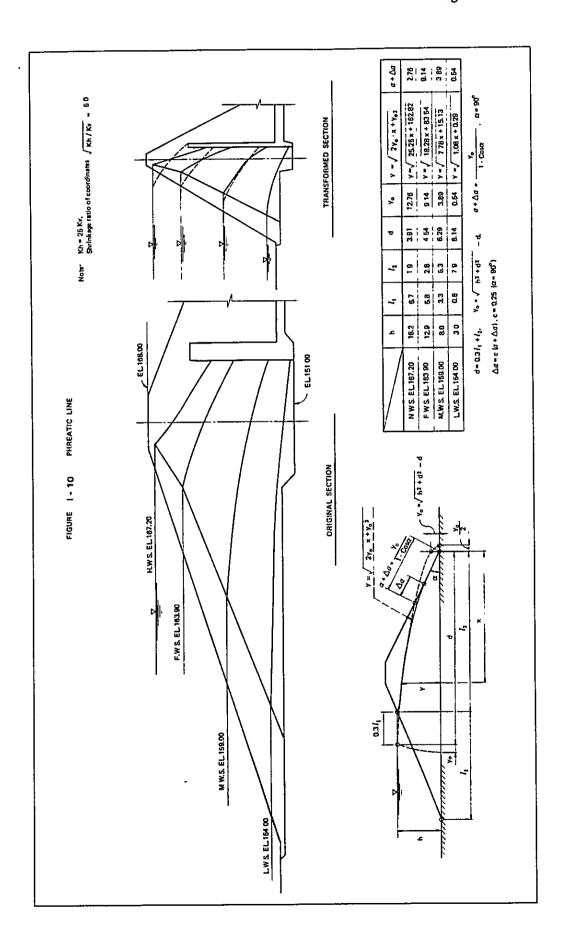

Upstream slope

Distributio (Full '

Distribution of Pore Pressure (Full Water Condition)

the method of compaction. Generally, in case that compaction is made by flat type vibrating rollers, Kh may nearly be equal to 25 times of Ky.

An anisotropics in permeability shall be converted to an isotropics by the reduction of the horizontal dimensions of the coordinates. Namely, transformed section can be obtained by reduction of horizontal dimensions of coordinates by the rate of $1/\sqrt{Kh/Kv} = 1/5.0$. In the transformed section, the phreatic line can be obtained by using Casagrande method in the respective cases of EL 167.20 m, EL 163.90 m, EL 159.0 m and EL 154.0 m of reservoir surface levels. The phreatic lines in original section are shown in Figure I-10.


Since the embanked sand and gravel zone is an anisotropic media, the computation of a quantity of seepage water is made on the isotropic media in using transformed coordinate system mentioned above. It is also required that the coefficient of permeability in anisotropic media should be converted to modified permeability coefficient of $\sqrt{\text{Kv} \cdot \text{Kh}}$. On the assumption that the flat type vibrating rollers are used for compaction of sand and gravel zone and the permeability coefficient of these materials are controlled at 1 x 10⁻⁴ cm/sec, the modified permeability coefficient is computed as follows:

$$\vec{K} = \sqrt{25} \times (1 \times 10^{-4}) \times 864 = 4.32 \times 10^{-1} \text{ m/day}$$

A quantity of seepage water through the dam body is calculated in the following equation.

$$Q = \overline{K} \cdot Y_0 \cdot L = 4.32 \times 10^{-1} \times 9.14 \text{m} \times 1,005 \text{m}$$

= 3,968.2 cu.m/day = 0.046 cu.m/sec

Where, Q; quantity of seepage water through the dam body \overline{K} ; modified coefficient of permeability Y_0 ; height of discharge face, $Y_0 = \sqrt{h^2 + d^2} - d = 9.14m$ L; crest length of dam, adopted by 1,005m

6.3.2 Piping in dam body

The detention dam body mainly consists of the sand and gravel zone with a permeability coefficient of 1×10^{-4} cm/sec, and the zone will be affected by the seepage water pressure. When the seepage water pressure exceeds a certain limit, it causes to collapse the dam through the piping phenomenon, etc. In general, the following formula for computing the critical hydraulic gradient is employed to study the stability against piping.

٦,

$$ic\frac{1}{L} = \frac{H}{L} \le \frac{Gs - 1}{1 + e}$$

Where, ic; critical hydraulic gradient

H; difference of water head within the creep length

L; creep length

Gs; specific gravity of embankment materials

e; porocity of embankment materials

Computation of the critical hydraulic gradient is made for the contact face of the sand and gravel zone and the foundation assuming the full water level of the reservoir.

ic =
$$\frac{H}{L} = \frac{14.7}{60} = 0.245$$
, $\frac{GS - 1}{1 + e} = \frac{2.78 - 1}{1 + 0.35} = 1.319$
ic = 0.245 < $\frac{GS - 1}{1 + e} = 1.319$

The computation result suggests that the sand and gravel zone has a sufficient resistivity against piping.

^{1/} In general, critical hydraulic gradient (ic) of 0.5 to 0.8 is employed in case of sand and gravel materials having no cohesion.

7. Foundation Treatment

The detention dam aims to store temporarily the flood discharge that appears once or twice a year and to recharge groundwater through infiltration along the existing water routes at the Wadi course into aquifers with the stored water by the dam as well as aims for flood control in the downstream area by means of cutting the peak of flood.

Being different from ordinary storage dam, the detention dam will require no barrier structures in its foundation. In other wards, the detention dam will require the foundation treatment to secure a sufficient bearing capacity to free the dam body itself from unsuitable settlement caused by a weight of the embankment and the stored water as well as to secure the stability against the collapse due to piping failure.

Excavation of the dam foundation is classified into two parts, one is for the whole of dam body base and the other for the trench base along the dam axis. In the former excavation objectionable materials such as top-soil, loose deposits, mud, organic materials, plants and roots shall be removed. The excavation depth of the dam base is different in places; however, is assumed to reach 0.5 m on an average. A trench along the dam axis shall be excavated to obtain a good bond between the materials embanked and the dam foundation. The excavation shall be performed not to create an extremely irregular surface and very steep slope.

For the trench base, the excavation depth is assumed to reach two meters on an average; however, the maximum depth may be less than four meters in consideration of the deposit condition at the river course and both the abutments.

8. Spillway

8.1 Type and Alignment

In general, open-type spillway should be adopted to the fill dam from viewpoints of nonresistance against over topping caused by unexpected flood and hydraulic characteristics of itself.

The non-control type spillway, i.e. the overflow type spillway having no gate, is selected compared with the other type of spillway taking into account the design flood discharge, topography and surrounding environment of the spillway site and possible dangerousness in gate operation if provided.

As for the alignment of spillway, the site at terrace plain with a tributary of the wadi at the right bank is more advantageous than the left abutment because of the applicability of topographical feature and connection with existing wadi course at the downstrdam of spillway through a tributary of the wadi. The spillway is composed of four main elements such as approach channel, control weir, chute and tailrace.

8.2 Design Flood Discharge

For the spillway design purpose, a 10,000 year probability flood discharge of 1,890 cu.m/sec 1 / is employed taking into account the lack of hydrological data and the precedent in Gulf Countries.

A peak discharge to be released through the spillway may be less than the design flood discharge by the effect of extra storage above full water surface level in reservoir, however, decreasing from the design flood discharge is negligible taking into account the unavailability in observe flood hydrograph, shortness in arrival time of peak flood and comparative smallness in flood water surface area. Such neglect of decrease is in safety side in designing spillway.

^{1/} Refer to Appendix B Surface Water

8.3 Overflow Head

The following table shows the relationship between varying overflow head $\frac{1}{2}$ on the crest and excavation volume of the spillway, embankment volume of the dam body and direct construction costs. $\frac{2}{2}$

	Overflow head (m)								
	2.30	3.30	4.30						
Water surface elevation in reservoir (EL m)	166.20	167.2	168.2						
Dam crest elevation (EL m)	167.00	168.00	169.00						
Crest length of spillway (m)	298.70	169.20	112.00						
Excavation volume of spillway ('000 cu.m)	663.5	490.6	391.3						
Embankment volume of dam body ('000 cu.m)	429.7	491.6	552.5						
Direct construction cost ('000 R.O.)	3,060	2,700	2,800						

The above table suggests that the figure of 3.3 m is reasonable as the most suitable overflow head of the spillway with the crest length of 169.2 m in consideration of the construction costs, appropriation of excavated materials to embankment and topographic restriction of the spillway and dam sites.

8.4 Hydraulic Design

The dimensions of a weir under the complete overflow condition have a close relation with a shape of the weir. Provided that a board crested weir type shown in the following figure is employed for the overflow crest, the coefficient of discharge and length of crest can be obtained from the following Beresinski's formula:

^{1/} Overflow head = Water surface elevation in reservoir - EL 163.90(m)

^{2/} Direct construction costs of spillway and dambody.

$$C = 1.973 - 0.222 (B/h) = 1.864$$

 $L = Q/CH^{3/2} = 169.14m \div 169.20m$

Where, C; coefficient of discharge

B; width of crest, adopted by 1.5m

h; overflow depth (H - hv), assumed to be 3.05m

L; effective crest length

Q; design flood discharge, adopted by 1,890 cu.m/sec

H; overflow head, adopted by 3.3m

The water depth at chute and tailrace is estimated by applying the following Bernoulli's theorems setting up the two control points at the crest and 288.513 m downstream from the crest along the center of spillway.

$$D_1 \cos\theta + \frac{{V_1}^2}{2g} + \Delta X \cdot \tan\theta = D_2 \cos\theta + \frac{{V_2}^2}{2g} + \frac{n^2 \cdot V_m^2 \cdot \Delta x}{Rm^4/3}$$

Where, D_1 , V_1 ; depth and velocity at the previous section

D2, V2; depth and velocity at a section under consideration

 θ ; angle of bottom slope at the chute and tailrace

g; gravitational acceleration

ΔX; increment of distance

n; coefficient of roughness, adopted by 0.03

Vm; mean velocity of flow, $Vm = 1/2 (V_1+V_2)$

Al; increment of distance measured along the bottom of chute and tailrace

Rm; mean hydraulic radius, Rm = 1/2 (R_1+R_2)

The results of estimation of water depth at the chute and tailrace are shown below;

Distance1/	Bottom elevation (EL m)	Bottom width (m)	Water surface elevation (EL m)	Water depth (m)	Velocity (m/sec)	<u>Fr2</u> /
0.0	163.90	169.20	166.22	2.32	4.72	1.00 (0.99)
4.0	161.90	163.20	163.21	1.31	8.75	2.44
44.0	161.90	163.20	163.63	1.73	6.60	1.60
94.0	160.20	131.60	162.13	1.93	7.27	1.67
119.0	159.35	115.80	161.47	2.12	7.48	1.64
144.0	158.50	100.00	160.89	2.39	7.64	1.58
183.513	158.50	100.00	162.80	4.30	4.13	0.64
218.513	158.50	100.00	162.63	4.13	4.31	0.68
253.513	158.50	100.00	162.39	3.89	4.59	0.74
288.513	158.50	100.00	161.75	3.25	5.55	1.00(0.98)

Judging from velocity and Froude number in the above table, there is no possibility of definite hydraulic jump occurring in the spillway, except disorder of water vein accompanied by surface turblance at the end of chute. However, the running water through the spillway possesses some energy to bring about erosion and scouring.

Since the spillway is constructed on the terrace deposit which has no sufficient resistivity against erosion and scouring, the protection works with gabion should be executed at the chute and tailrace of the spillway.

8.5 Ultimate Outflow Capacity

Supposing the occurrance of an unexpected flood discharge more larger than the design flood discharge of the spillway, a flow-out capacity is roughly estimated by using the following formula in

^{1/} Distance is measured from the crest along center of spillway

^{2/} Froude number, $Fr = V/\sqrt{g \cdot d}$

consideration of a storage effect of the reservoir.

$$\Delta H = \frac{2}{3} \cdot \alpha \cdot \frac{H}{1 + \frac{A \cdot H}{Od \cdot T}}$$

Where, ΔH; height of the reservoir water surface raised by an unexpected flood discharge

- α; increased rate of an unexpected flood discharge in comparison with the design flood discharge
- H; design overflow head, adopted by 3.30m
- A; reservoir water surface area with the design flood discharge, adopted by 1.74 MSM
- Qd; design flood discharge, adopted by 1890.0 cu.m/sec
- T; continuation hours of an unexpected flood of more than the designed flood discharge, adopted by 2 hours

From results of the calculation, the relationship between an increase in water surface and flow-out peak discharge is shown below:

	α	(Increase	rate an	unexpected	flood	discharge)
	_	0.1	0.2	0.3	0.4	0.5
(1+α)Qd	(cu.m/sec)	2,079	2,268	2,457	2,646	2,835
ΔН	(m)	0.15	0.31	0.46	0.62	0.77

If it is defined that the ultimate outflow capacity of the spillway is equivalent to the discharge to be released through the spillway when the reservoir water surface reaches the dam crest elevation, the said capacity counts about 2,850 cu.m/sec. Judging from the above-mentioned fact, the reservoir formed by the detention dam will play a great role in flood control.

9. Outlet Facility

Temporary storage water by the detention dam which will be released through the outlet facility flows into the downstream of existing Wadi. Moverover coping with the requirement of quick lowering of the reservoir water level in case of emergency after completion of the dam, the emergency outlet with slide gate is considered at the left bank of the dam site.

9.1 Outlet Conduit

An outlet conduit is to be embedded beneath the dam body in consideration of the existing condition of the water route, effective recharging of groundwater in the downstream river deposits, and necessity to flush-out the fine sediments around the entrance of the outlet conduit.

A circular shape reinforced concrete conduit with the inner diameter of 1,400 mm is planned for the outlet facilities of the detention dam. At the entrance of outlet conduit, trush-rake is equipped in order to prevent the objectionable materials flowing into the conduit.

On outlet discharge of this conduit at the varying reservoir water levels can be obtained as a pipeline flow by the following equation.

$$Q = \frac{\sqrt{2g} \cdot A}{\sqrt{\text{fv} + \text{fe} + \text{fr}}} \cdot \sqrt{H} \text{, } A \approx 0.7854D^2$$

Where, Q; outlet discharge of conduit as a pipeline flow

g; gravitational acceleration

A; flow area

D; inner diameter of outlet conduit pipe, adopted by 1.40m

fv; coefficient of changing velocity loss, adopted by 1.0

fe; coefficient of the entrance loss adopted by 0.5

fr; coefficient of friction loss, fr = $124.5xn^2/D^{4/3}xL$

n; coefficient of roughness, adopted by 0.015

L; length of conduit, adopted by 115.0 m

H; total head, measured from top surface at the end of conduit

Based on the results of the above-mentioned computation, the relationship between an outlet discharge and a reservoir water level can be estimated as follows:

				e level (
	155.0	158.0	161.0	163.9	167.2
Outlet discharge (cu.m/sec)	5.60	8.40	10.47	12.15 <u>1</u> /	13.81

The running water flowing out of the outlet conduit has a relatively high velocity, therefore, the protection work with stone pitchings should be executed at adjacent downstream of the dam body in order to prevent the toe of dam from excessive erosion and scouring.

Around the entrance of outlet conduit, the preventive gabion dike with about two meters in height is provided in order to prevent the blockade of the outlet conduit caused by flowing into the objectionable materials such as plants, trunks and roots in case of the lowest water in the reservoir.

9.2 Emergency Outlet

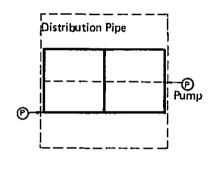
Provided as the emergency outlet are a tower structure of intake equipped with trush-rack, slide gate and operation bridge, and a conveyance conduit with the inner diameter of 1,400 mm which are to be at the left abutment of dam. In case of blockade at the outlet conduit caused by unexpected accident, the slide gate will be operated by manpower and the stored water will be released through the emergency outlet.

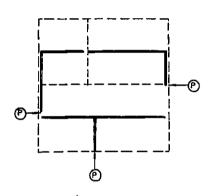
The intake sill is set at elevation of 158 m to keep the facilities free from the sediment trouble.

Flow-out discharge of the emergency outlet at the relevant reservoir water levels is calculated as follows:

	Reservo	ir water	surface	1evel	(EL m)
_	160.0	162.0	163.0	165.5	167.2
Flow-out discharge (cu.m/sec)	3.45	7.18	9.45	11.00	12,44

^{1/} The figure corresponds to the allowable maximum flow-out capacity of 13.6 cu.m/sec quoted from Appendix C.


The stone pitching is provided at downstream of the conduit in order to protect adjacent toe of the dam from excessive erosion and scouring.


Alternative Study on Irrigation Networks

1. Alternative Plan

The following two alternative irrigation networks in the new extension farm land have been formulated taking into account the location of the proposed wells, in order to determine the most optimum pipeline networks.

Case - 2 (Open System)

Details are given in Figure I-11.

2. Hydraulic Calculation Method and Criteria

The hydraulic calculation in pipeline networks was made by applying the modified Hardy-Cross Method, and the calculation criteria are shown below;

° Velocity formula:

Harzen-Williams Formula: $V = 0.84935 \cdot C \cdot R^{0.63} \cdot I^{0.54}$ (m/sec)

C: Velocity coefficient, 140 - 150 (VP)

R: Hydraulic radius (m)
I: Hydraulic gradient

° Design velocity:

D = 75 - 150 mm : 0.7 - 1.0 m/secD = 200 - 400 mm : 0.9 - 1.6 m/sec

FIGURE 1.11 ALTERNATIVE PIPELINE SYSTEM

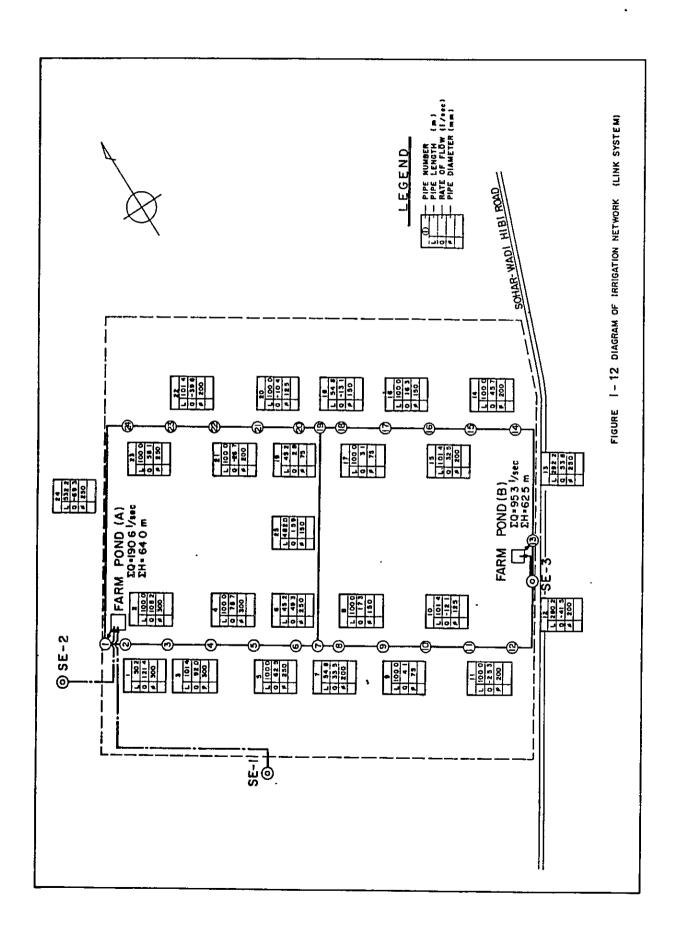
° Maximum manifold capacity and presure

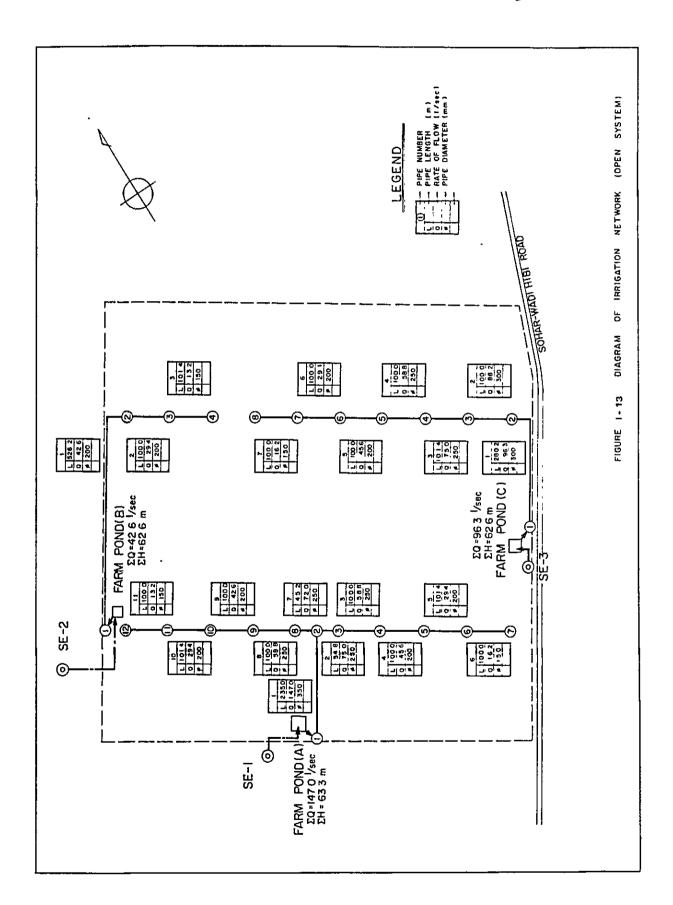
Capacity : $q_1 = 8.1 \text{ $\ell/\text{sec}}$

 $q_2 = 6.6 \text{ l/sec}$

Presure : h1 = 40m

 $h_2 = 24m$


° Type of Pipe : Vinyl chloride pipe (VP)


3. Hydraulic Calculation

Based upon the above mentioned criteria, the hydraulic calculation of pipeline networks has been made in the both cases of link and Open systems, and the results are indicated in Figure I - 12 and Figure I - 13. The following shows the estimated maximum discharge and required water head at pump station.

	Link Sys	tem	Open System				
Pumps	Discharge (%/sec)	Water Head (m)	Discharge (1/sec)	Water <u>Head</u> (m)			
Pupm No.1	190.6	64.0	140.7	63.3			
Pump No.2	95.3	62.5	42.6	62.6			
Pump No.3	-	-	96.3	62.6			

Detailed hydraulic calculation is given in Table I-2 to I-4.

		(pump No.1)				(pump No.2)	
	Discharge (1/sec)	-190.6 13.2 16.2	13.2	13.2 0.0 16.2	13.2 16.2 13.2 16.2	-95.3 8.1 13.2 16.2 13.2	16.2 0.0 13.2 16.2 13.2 15.2
•	Area (ha)	0.0	4.4	4.3 0.0 5.4	4 4 4 4 w w w w	0.0 1.2.4.4 2.3.5.1	404444 6022222
1	Actual Pressure (m)	45.400 44.928 44.129	43.529	42.619 42.415 42.096	41.531 40.248 41.102 41.346	44.000 43.935 42.761 42.190 41.694	41.102 41.422 41.228 41.766 42.088 42.777
	Elevation (EL.m)	18.600 18.700 18.900	19.050	19.100 19.150 19.200	19.100 19.050 19.050 19.100	18.500 17.400 17.700 17.800	17.500 17.400 17.300 17.400 17.400 17.500
	Total Water Head (EL.m)	64.000 63.628 63.029	62.579	61.719 61.565 61.296	60.631 59.298 60.152 60.446	62.500 61.335 60.461 59.990 59.394	58.602 58.822 58.528 59.166 59.488 60.177
	Point No.	~ C F	4 W .	9 1 8	9 10 11	13 14 15 17	18 19 20 22 23 24

Note; The figures with minus symbol indicate the flows from right to left, while the other figures without minus indicate the flows from left to right.

(1)+(2)	9.12	9.11	9.09	9.08	9.07	9.07	9.06	9.07	9.07	9.07	9.07	9.13	9.24	9.24	9.21	9.21	9.22	9.24	9.24	9.25	9.24	9.24	9.24	9.23	9.24
Water Hammer Pressure(2) (kg/sq.cm)	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50
Hydraulic Pressure(1) (kg/sq.cm)	4.62	4.61	4.59	4.58	4.57	4.57	4.56	4.57	4.57	4.57	4.57	4.63	4.74	4.74	4.71	4.71	4.72	4.74	4.74	4.75	4.74	4.74	4.74	4.73	4.74
Friction Coefficient	0.01478	0.01504	0.01540	0.01576	0.01593	0.01650	0.01697	0.02050	0.02322	-0.02109	-0.01769	-0.01644	0.01629	0.01621	0.01705	0.02068	0.02420	-0.02134	0.02459	-0.02156	-0.01756	-0.01654	-0.01619	-0.01569	0.02075
Hydraulic Gradient (m/1,000m)	7.062	5.703	4.222	3.168	5.025	3.239	4.680	6,335	12.698	-8.026	-2.797	-6.983	3.798	8.322	4.425	5.676	7.546	-3.822	6.187	-6.077	-3.070	-6.456	-4.103	-6.071	5.421
Loss Head (m)	0.372	0.599	0.450	0.333	0.528	0.154	0.269	0.665	1.333	-0.854	-0.294	-2.054	1.165	0.874	0.471	0.596	0.792	-0.220	0.294	-0.638	-0.322	-0.688	-0.431	-3.392	2.744
Velocity (m/sec)	1.717	1.530	1.301	1.114	1.274	1.005	1.065	0.977	0.919	-0.989	-0.807	-1.322	1.095	1.454	1.034	0.921	0.694	-0.743	0.623	-0.851	-0.848	-1.268	-1.142	-1.411	868.0
Discharge (2/sec)	121.4	108.2	92.0	78.7	62.5	49.3	33.5	17.3	4.1	-12.1	-25.3	-41.5	53.8	45.7	32.5	16.3	3.1	-13.1	2.8	-10.4	-26.7	-39.8	-56.1	-69.3	15.9
ပ	150	150	150	150	150	150	150	140	140	140	150	150	150	150	150	140	140	140	140	140	150	150	150	150	140
Pipe <u>Length</u> (m)	50.20	100,00	101.40	100.00	100.00	45.20	54.80	100.00	100.00	101,40	100.00	280.20	292.20	100.00	101.40	100.00	100.00	54.80	45.20	100.00	100.00	101.40	100.00	532.20	482.00
Pipe Dia.	300	300	300	300	250	250	200	150	75	125	200	200	250	200	200	150	75	150	75	125	200	200	250	250	150
No.	2	м	4	Ŋ	9	,	∞	Ģ	10	11	12	13	14	15	16	17	18	61	20	21	22	23	24	~	61
Point No. From To	1	7	17	4	Ŋ	9	7	x 0.	6.	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	7
Pipe No.	74	'N	₩7	4	ın	9	7	αO	61	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Note; The figures with minus symbol indicate the flows from right to left, while the other figures without minus indicate the flows from left to right.

		(pump No.1)		(pump No.2)	pump No.3)
	Actual Pressure (m)	43.450 () 42.963 42.503 42.125 41.291 40.893	42.963 42.699 42.222 41.492 41.244 41.033	44.000 (j 40.998 40.706 40.289	44.100 (1 43.829 43.113 42.254 41.877 41.193 41.000
	Total Water Head (EL.m)	63.300 62.113 61.703 61.225 60,341 59.943	62.113 61.799 61.322 60.542 60.144 59.733	62.600 58.498 58.106 57.689	62.600 61.229 60.813 60.054 59.577 58.693 57.699
ystem)	Loss Head (m)	1.187 0.410 0.477 0.884 0.398 0.601	0.314 0.477 0.779 0.398	4.102 0.393 0.417	1.371 0.416 0.759 0.477 0.884 0.393
works (Open S	Hydraulic Gradient (m/l,000m)	4.810 7.131 4.546 8.420 3.738 5.724	6.612 4.546 7.424 3.738 3.919	7.424 3.737 3.919	4.660 3.961 7.131 7.131 8.450 3.738 5.724
Pipeline Net	Velocity (m/s)	1.538 1.539 1.207 1.463 0.944	1.478 1.207 1.367 0.944 0.754	1.367 0.944 0.754	1.372 1.257 1.539 1.207 1.463 0.944
Hydraulic Calculation of Pipeline Networks (Open System)	Discharge (1/sec)	147.00 75.00 58.80 45.60 29.40	72.00 58.80 42.60 29.40 13.20	42.60 29.40 13.20	96.30 88.20 75.00 58.80 45.60 29.40
Hydraulic Ce	Pipe Dismeter (mm)	350 250 250 200 200 150	250 250 250 200 200 150	200 200 200 150	300 300 250 250 200 150
Table 1-4	Difference of Elevation (m)	.0.70 0.05 0.05 0.05 0.05 0.00	-0.05 -0.00 -0.05 -0.15 -0.20	-1.10 -0.10 0.0	-1.10 0.30 0.30 0.10 -0.10 -0.20
•	Pipe Length (m)	235.00 54.80 100.00 100.00 101.40	45.20 100.00 100.00 101.40 100.00	526.20 100.00 101.40	280.20 100.00 101.40 100.00 100.00 100.00
	Elevation (EL.m)	19.85 19.15 19.20 19.20 19.05 19.05	19.15 19.10 19.10 19.05 18.90 18.70	18.60 17.50 17.40 17.40	18.50 17.40 17.70 17.80 17.70 17.50 17.30
	Point No. 3	No.1 Block 1 2 3 4 4 5 6	2 8 8 10 11 12 12 12 12 12 13 13 13 13 13 13 13 14 14 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1 2 2 3 4 4 Wo. 3 Block	

4. Required Pipe and Pump Facilities

The major features of required pipe and delivery pumps are summarized as shown below;

Pipeline:

Pipe Length											
Pipe	Link System	Open System	Remarks								
(m)	(m)	(m)									
ф 350	~	240	Dip								
Ф 300	360	390	VP								
Ф 250	1,070	510	VP								
ф 200	840	1,230	VP								
ф 150	740	410	VP								
ф 125	210	-	VР								
ф 100	-	_	VP								
ф 75	250	-	VP								
Total	3,470	2,780	<u>VP</u>								

Dip: Ductile iron pipe
VP: Vinyl chloride pipe

Delivery Pumps:

Calculation of Total Head

	Link S	System	. 0	m	
Item	Pump No.1	Pump No.2	Pump No.1	Pump No.2	Pump No.3
Suction Water Level (m)	EL.15.5	EL.15.5	EL.16.9	EL.15.6	EL.15.5
Delivery Water Level(m) $\frac{1}{}$	EL.64.0	EL.62.5	EL.63.3	EL.62.6	EL.62.6
Actual Head (m)	48.5	47.0	46.4	47.0	47.1
Pump Loss (m)	2.0	2.0	2.0	2.0	2.0
Total Head (m)	50.5	49.0	48.4	49.0	49.1

 $\underline{1}/$: Equivalent to total water head (see Table I-2 to I-4)

Calculation of Motor Capacity

	Link S	ystem	0)	oen System	
	Pump	Pump	Pump	Pump	Pump
Item	No 1	No.2	No.1	No.2	<u>No.3</u>
Peak Discharge (1/sec)	190.6	95.3	147.0	42.6	96.3
Peak Discharge per Unit (cu.m/min)	2.859	2.859	2.940	2.556	2.889
Pump Diameter (mm)	150	150	150	150	150
Pump Efficiency (%)	65	65	65	65	65
Total Head (m)	50.5	49.0	48.4	49.0	49.1
Motor Capacity (Kw) $\frac{1}{}$	41.6(45)	40.4(45)	41.0(45)	36.1(45)	40.9(45)
Pump Units	4	2	3	1	2
Pump Type	Horizonta Volute Pur		Holizontal	Volute Pi	ump

$$\underline{1}/: Pump Capacity (P) ;$$

$$P = \frac{0.163 \cdot Q \cdot Ht}{\eta p} (1+R)$$

Q : Peak discharge per unit (cu.m/min)

Ht: Total head (m)

R : Allowance, R = 15 %

ηp: Pump efficiency, ηp = 65 %

5. Selection of Optimum Pipeline Network

Comparison of the both plans in the terms of the annual costs for pumps as well as the operation of facilities has been made as shown in Table I - 5 and I - 6, and as the results the link system was selected as the most optimum pipeline networks in the project.

Table I-5 Comparison of Annual Cost in Alternatives

Items	Link System	Open System
1. Construction Cost (R.O)		
Pipeline System	54,500	54,800
Delivery Pumps		
No.1	54,000	40,500
No.2	31,000	17,800
No.3	-	31,500
Lifting pump	30,000	30,000
Total	169,500	174,600
2. Annual Cost (R.O)		
Depreciation cost $\frac{1}{2}$	19,746	20,340
Replacement cost of pumps $\frac{2}{}$	6,532	6,804
Operation and maintenance cost		
Maintenance cost 3/	5,080	5,238
Pump operation cost $\frac{4}{}$	10.342	10.347
Total	$\frac{41,700}{(100)}$	$\frac{42,729}{(102)}$

Note:
$$\underline{1}$$
 : Initial cost (IC) x $\frac{n=40}{1} \frac{1}{(1+i)^{40}} = 0.1165$ IC (i = 11.5%)

2/: Cost (C)
$$\times 1/(1+i)^n \times 1/\sum_{n=1}^{n=40} \frac{1}{(1+i)^{40}}$$
 (i = 11.5%)

Useful lives of pump: n=10: 0.0392

n=20 : 0.0132

n=30 : 0.0044

3/: Initial cost (IC) x 3 %

4/: Consumed electric power (P) x 0.02 R.O. Kwh.

Table I-6	Merit and Demerit between Link and Open System	n System
Item	Link System	Open System
l. Formation of farm	Favorable for wide area	Favorable for long strip area
2. Topography	Favorable for areas with flat topography or with gentle slope in one direction	Favorable for areas with undulation and large difference in elevation.
3. Pipe length	Long	Short
4. Pipe diameter	Smal1	Big
5. Correspondence to accident	Easy with limited area under influence	Difficult with the influence to whole area
6. Increase of discharge	Relatively easy	Difficult
7. Operation	Easy to obtain constant water pressure	Easy to control water distribution.

 ~ 1

APPENDIX J. COST ESTIMATE

- J-1. Estimation of Project Cost
- J-2. List of Required Construction Equipment
- J-3. Disbursement Schedule of Investment Cost

Table J-1 Investment Cost of the Project

Description	Total R.O.'000 (U	al (US\$ '000)	Foreign R.O.'000	Foreign Currency 0.'000 (US\$'000)	Local (R.O. 1000	Local Currency .'000 (US\$'000)
1. Construction Works						
1-1 Preparation	505	1,477	420	1,228	85	249
I-2 Dam	3,159	9,237	2,744	8,024	415	1,213
1-3 Water Supply Facilities	49	196	62	181	ī	15
1-4 Farm and Related Facilities	1,383	4,044	1,183	3,459	200	585
1-5 Overhead	1,023	2,991	882	2,579	141	412
Sub-total	6,137	17,945	5,291	15,471	846	2,474
2. Pre-engineering works	146	427	125	365	21	62
3. Administration Cost	26	76	0	0	26	76
4. Consulting Services	910	2,661	725	2,120	185	541
Sub-total (1 - 4)	7,219	21,109	6,141	17,956	1,078	3,153
5. Contingency	1,083	3,166	921	2,693	162	473
Sub-total (1 - 5)	8,302	24,275	7,062	20,649	1,240	3,626
6. Price Escalation	1,688	4,936	1,406	4,111	282	825
Total (1 - 6)	066,6	29,211	8,468	24,760	1,522	4,451

Table 3-2

					Total		Foreign Currency	urrency		Loc	Local Currency	>	
Item No.	Description	Quantity	Unit	Rate (R.0)	Cost (R.0'000)	(R.0'000)	Material (R.0'000)	Lahor (R.0'000)	Total (R 0'000)	Materi (R.O'O	Labor (R.0'000)	Total (R.0'000)	
1-1. Preparation	naration												
	Access Road	5,000	E	14	70.0	50.4	2.1	7.0	59.5	1 b	1.4	10.5	
	Nobilization of Equipment and Plant	L.S			15.0	9.5	0.5	5.5	12.5	2.0	0.5	r: S	
	Contractor's Facilities Camp, Office, Wearhouse, etc.	1,300	sq.m	130	169.0	1.7	42.3	84.5	128 5	23.7	16.8	10.5	
	Water and Power Supply	L.S			20.0	3.5	37.5	7.5	48.5	c	1.5	1.5	
	Safety Precautious	.; S:			72.0	C	0	57.6	57.6	c	14.4	14.4	
	Facilities for Site Operation Furniture, Equipment, etc.	L.S			. 0.02	0	20.0	c	20.0	c	c	0	
	Setting Out and Shop Draw-ings	L.S			10.0	0	C	0.6	9.0	0	1.0	1.0	
	Site Test Equipment and Testing Services	L.S			15.0		5.0	9.0	14.0	÷	0.1	1.0	
	Miscellaneous	L.S			84.0	13.0	21.5	35.4	c 69	e.'	7.1	13.1	
	Total				505.0	78.1	128.9	212.5	419.5	11.8	15.7	* 5 5	
					(505,0)	(78.0)	(129.0)	(213.0)	(420.0)	(12.0)	(15 0)	(85.0)	

									_	~ !!
cò	Total (R.O. '000		150.8	200.2	24.6	15.1	4.8	19.7	415.2	(415.0)
Local Currency			44.0	81.4	5.5	3.4	1.5	6.7	142.5	(142.0)
	Material (R.O. '000)		106.8	118.8	1.61	11.7	3.3	13.0	272.7	(273.0)
	Total (R.O. '000)		786.7	1,582.9	127.0	6.08	ر د د د د	130.7	2,743.7	(2,744.0)
urrency	Labor (R.O. '000)		242.5	414.2	29.6	15.7	7.6	35.5	745.1	(745.0)
Foreign Currency			27.9	632.5	70.0	48.6	10.2	39.5	828.7	(829.0)
	Equipment Material (R.O.'000)		516.3	536.2	27.4	16.6	17.7	55.7	1,169.9	(1,170.0)
Total	Cost (R.O. '000)		937.5	1,783.1	151.6	0.96	10.3	150.4	3,158.9	(3,159.0)
	Unit Rate (R.O.)									
	Quantity						ñ	(5\$)		
	Description		1-2-1. Dam Body	1-2-2. Spillway	1-2-3. Conduit	1-2-4. Emergendy Outlet	1-2-5. Dispersion Facilities	1-2-6. Miscellaneous Works (5%)	Total	
	Item No.	1-2. Dат	1-2-1.	1-2-2.	1-2-3.	1-2:4.	1-2-5.	1-2-6.		

;		•	:		Total		ł	urrency		Loc	Local Currency	
Item No.	hescription	Quantity	<u>*</u>	(R.0)	Cost (R.0'000)	(R.O'000)	(8.0.000)	(R 0'000)	(R.0'000)	(R.0.010)	(R.0'000) ((R.0'000)
1-2-1. D	Dam Body											
	Stripping	33,100	Cu.m	1.34	14.4	31.8	1.3	4.6	37.7	0.0	0.7	h.7
	Excavation of Sand and Gravel	34,800	CU. m	0.94	72.7	23.3	1.4	3.5	28.2	4.2	0.3	£.5
	Excavation of Terrace	24,800	Cu.13	1.25	31.0	24.2	9.0	2.6	27.4	3.5	0.3	3.6
	Embankment of Sand and Gravel	347,400	כה. ש	1.00	347.4	216.2	13.0	52.5	281.7	59.1	9.9	65.7
	Embankment of Rock	69,800	Œ.u⊃	1.85	129.1	94.9	3,5	13.3	111.7	15.1	2.0	17.4
	Embankment of Filter	52,400	cu.a	2.15	112.7	83.3	3.1	12.6	0.66	11.5	2.2	13.7
	Riprop	21,000	CL.B	9.66	202.9	22.9	0.8	146.2	169.9	7.7	30.3	53,0
	Stabilizing Fill	74,000	a. a.	0.31	22.9	16.3	0.7	2.2	19.2	3.0	0.7	3.7
	Plain Concrete	200	CL.II	28.45	5.7	2.0	1.2	0.8	4.0	1.5	0.2	1.7
	Formworks	1,200	E. DS	5.7	6.8	0	2.2	4.0	6.2	0	9.0	9.0
	Gravel Paving	1,000	Cu.m	1.85	1.9	1.4	0.1	0.2	1.7	0.1	0.1	0.2
	Sub-total .				937.5	516.3	27.9	242.5	786.7	106.8	44.D	150.8
1-2-2. 5	Spillway											
	Stripping	44,100	en.no	0.89	39.2	30.4	6.0	3.5	34.8	0 1	0 4	4.4
	Excavation of Sand and Gravel	446,500	Cu. m	0.95	424.2	330.4	8.9	35.7	375 0	11.7	4.5	49.2
	Empankment of Sand and Gravel	34,600	Eu. m	1.00	34.6	21.5	1.3	5,3	28.1	e. 5	9.0	6.5
	Stabilizing Fill	13,700	er.no	0.31	4.2	3.0	0.1	0.4	3.5	0.5	0.2	0.7
	Rıprap	14,400	cu.m	99.6	139.1	15.7	9.0	100.2	116.5	1.9	20.7	22.6
	Gabton	37,500	EL.II	25.0	937.5	77.0	567.6	234.4	879.0	5 6	49.3	38.5
	Masonry	100	cu.m	26,30	10.5	2.3	5.5	2.8	æ. •	۱ <u>۰</u>	5	
	Boulder Concrete	800	Cu.B	31,78	25.4	9.5	e. +	4.1	18.2	۱۳. خ	0.7	7.2
	Reinforced Concrete	1,900	CU. M	80.0	152.0	46.7	36.5	21.0	101.2	÷.	5.2	47.8
	Formworks	1,500	m.ps	5.7	8.6	0	2.7	5,0	7.7	c	6.0	0.9
	Reinforcing Bar	20,500	X S	0.38	7.8	С	5.7	1.8	7.5	E	0.3	0.3
	Suh-total				1,783.1	536.2	632.5	414.2	1,582.9	118.8	×	200.2

;				į	[ota]		- 1				Local Currency	
I ten vo.	Description	(Unantity		(R.0)	(R.0'000)	(R.0'000)	(R.0'000)	Lahor (R.0*000)	(R.0'000)	(R.0'000)	Labor (R.0'000)	Total (R.0'000)
1-2-3.	Conduit											
	Stripping	1,600	cn.	1.34	2.1	1.5	0.1	0.2	1.8	0.2	0.1	0.3
	Excavation of Sand and Gravel	2,000	CU.m	1.38		1.9	0.1	0.4	÷.	0.3	0.1	0.4
	Embankment of Sand and Gravel	400	Cu. 11	1.00	0.4	0.2	0	0	0.2	0.2	0	0.2
	Riprap	200	cu.m	99.6	1.9	0.2	0	1.4	1.6	0	0.3	0.3
	Gabion	2,000	€.uo	25.0	50.0	4.1	30.3	12.5	46.9	9.0	2.5	3.1
	Masonry	300	G. D.	26.30	7.9	1.7	5	2.1	6.3	1.1	0.5	1.6
	Reinforced Concrete	700	G. 33	80.0	56.0	17.1	13.5	7.7	58.3	16.5	1,2	17.7
	Formorks	700	E. P.	5.7	4.0	0	1.3	2.3	3.6	O	0.4	0.4
	Reinforcing Bar	25,900	540 _4	0.38	9,8	0	7.3	2.3	4	c	0.2	0.2
	R.C.Pipe, 6 = 1,400mm	120	e	139.4	16.7	0.7	14.9	7.0	16.3	0.2	0.2	0.4
	Sub-total				151.6	27.4	70.0	29.6	127.0	19.1	5.5	24.6
1-2-4.	Emergency Outlet					•	į					
	Excavation of Sand and Gravel	3,300	E. 30	1.38	4.6	3.1	0.1	0.7	3.9	0.5	0.2	0.7
	Embankment of Sand and Gravel	300	cu.m	1.0	0.3	0.2	0	6	0.2	0.1	0	0.1
	Masonry	006	CG.33	26.30	23.7	5.2	7.5	6.2	18.9	3.4	1.4	4.8
	Reinforced Concrete	300	Cu.≡	80.0	24.0	7.3	5.8	5.4	16.5	7.1	0.4	7.5
	Formworks	300	sq.m	5.7	1.7	0	0.5	1.0	1.5	c	0.2	0.2
	Reinforcing Bar	12,400	\$	0.38	4.7	0	3.5	1.1	4.6	0	0.1	0.1
	R.C.Pipe, \$ = 1,400mm	20	E	139.4	7.0	0.3	6.2	0.3	8.9	0.1	0.1	0.2
	Gate, Screen, Bridge		r.s		30.0	0.5	25.0	3.0	28.5	0.5	1.0	1.5
	Suh-total				96.0	16.6	48.6	15.7	80.9	11.7	3.4	15.1

Item No.	Description	Quantity	Unit	Rate .	Total Cost	Equipment (R.O'000)	Foreign Currency Material Labor (R.O'000) (R.O'00	Labor (R.0'000)	Total (R.O'000)	Loca Material (R.O'000)	Local Currency al Labor 001 (R.O'000) (Cy Total (8.0.000)
1-2-5. 0	1-2-5. Dispersion Facilities			•								
	Stripping	700	cu.m	1.34	٥.٥	0.7	o	0.1	0.8	0.1	D	0.1
	Excavation of Sund and Gravel	13,300	Gu.n	0.94	12.5	6.8	0.5	1.3	10.7	1.6	0.2	 8.
	Excayation of Trench	\$,900	S.	1.38	8.1	5.6	0.2	1.2	7.0	e. e	0.2	11
	Embankment of Sand and Gravel	1,000	er.no	1.26	1.3	1.0	0.1	9.3	F1	- c	C	0.1
	Riprap	300	cu.m	99.6	2.9	0.3	0	2.1	2.4	0.1	0.4	5.0
	. Cabion	400	G. S.	25.0	10.0	0.8	6.0	2.4	9.2	0.2	9.0	8.0
	Masonry	20	CU.13	26.30	1.3	0.3	0.4	0.3	1.0	0.2	0.1	0.3
	R.C.Pipe, #1,000mm	40	Е	83.64	3,3	0.1	3.0	0.1	3.2	0.1	C	0.1
	Sub-total				40.3	17.7	10.2	7.6	35.5	10	1.5	4.8

						Total		Foreign Currency	urrency		Loc	Local Currency	צ
I tem No.	Description	tion	Quantity	unit T	Rate (R.0)	Cost (R.0'000)	Equipment (R.O'000)	Material (R.0'000)	Labor (R.0'000)	Tota) (R.0'000)	Material (R.D'000)	Labor (R.0'000)	Total (R.0'000)
1-3. Wate	1-3. Water Supply Facilities	itnes											
	Rehabilitation of Well	of Well	м	Set	5,000	15.0	80 80	7.0	4.0	13.5	7.0	0.8	1.5
	Pump Facilities 5100 · #125mm, 7.5 · 18.5 kw	5 · 18,5 km	м	Set	10,000	30.0	0	21.0	7.5	28.5	٥	1.5	1.5.
	Pipeline	3200mmVP	850	E	15.0	12.8	3.1	8.8	2.0	11 9	0.3	9.0	6.0
		÷150mmVP	240	E	12.0	2.9	0.7	1.5	0.5	2.7	0.1	0.1	0.2
	Miscellaneous (10%)	(101)	L.S			6.1	1.3	3.0	1.4	5.7	0.1	0.3	0.4
	Total					66.8	13.9	33.0	15.4	62.3	1.2	3,3	4.5
						(67.0)	(14.0)	(33.0)	(15.0)	(62.0)	(1.0)	(4.0)	(2.0)

	11 00		21.4	58.6	120.3	200.3	(200.0)
,	Total (R.0'000)		21	ŭ	130		
focal Currency	Labor (R.O'000)		#; ri	17.2	30.6	70.2	(70.0)
loc	(R.O'000)		19.0	-	7.69	130.1	(130.0)
]	Total (R.0'000)		133.7	560.3	489.2	1,183.2	(380.0) (1.183.0)
urrency	Labor (R.O'000)		13.8	107.6	258.9	580.3	"
Foreign Currency	(R.0'000)		23.2	599.7	217.9	640.8	(641.0)
	(R.0'000) (R.0'000)		96.7	53.0	12.4	162.1	(162.0)
	(R.0'000)		155.1	618.9	\$.609	1,383.5	(1,383.0)
	(R.0)						
:	Unit						
;	()uantity						
	Pescrintion	1-4. Farm and Related Facilities	1-4-1. New Extension Farm	1-4-2. Irrigation System	1-4-3. Buildings	Total	
:	I ten No.	1-4. Farm	1-4-1.	1-4-2.	1-4-3.		

				1	[otal		Foreign Currency	= 1		<u> </u>	Local Currency	
I tem No.	Pescription	Quantity	la it	R:10 (R:0)	R.O.O.O.	quipment	Material (R.O'000)	Labor (R.0.000)	(R.O'000)	Material (R.O'end)	Lahor (R.0'000)	Total (R.O'000)
-4-1.	1-4-1. New Extension Farm											
	Land Cleaning and Leveling	88	ha	20.0	1.7	1.2	0.1	0.2	1.5	0.2	0	0.2
	Wain Road (w=5,0m)	7,000	E	8.0	26.0	40.3	1.7	2.6	47.6	7.3	1.1	8.4
	Farm Road (w=4.0m)	8,500	e	3.0	35.5	18.4	8.0	5.6	21.8	3.3	0.4	3.7
	Flood Protection Works and Fence	1,000	Ħ	14.0	26.0	28.0	18.5	3.9	50.4	5.0	9.0	5.6
	Wind Break	6,100	trees	0.3	 80	0	0	0.2	0.2	1.5	0.1	1.6
	Miscellaneous (10%)	L.S			14.1	8.8	2.1	7.3	12.2	1.7	0.2	1.9
	Sub-total				155.1	36.7	23.2	13.8	133.7	19.0	13.4	21.4
1-4-2.	Irrigation System											
	Farm Pond (1)	3,100	a. 55	44.0	136.4	21.8	54.6	35.5	111.9	20.5	4.0	. 24.5
	Farm Pond (2)	1,600	cu.B	52.0	83.2	13.3	33.3	21.6	68.2	12.5	2.5	15.0
	Pump Facilities (1) #150mm, 45kw x 4 units .	L.S			54.0	0	37.8	11.9	49.7	2.2	2.1	4.3
	Pump Facilities (2) \$150mm, 45kw x 2 units	L.S			31.0	. 0	21.7	8.9	28.5	1.2	1.3	2.5
	Pipeline ¢300mmVP	260	E	25.0	0.6	2.2	8.8	₩. 	8.4	0.2	0.4	9.0
	\$250mmVP	1,070	E	19.0	20.3	4.9	10.8	3.2	18.9	0.4	1.0	1.4
	\$200mmVP	840	E	15.0	12.6	3.0	6.7	2.0	11.7	0.3	9.0	6.0
	\$150mmVP	740	E	12.0	8.9	2.1	4.7	1.4	8.2	0.2	0.5	0.7
	:125mmVP	210	E	0.01	.:	0.5	1.1	0.5	1.9	0.1	0.1	0.2
	97SmmVP	730	E	6.5	1.6	0.4	8.0	0.3	1.5	0	0.1	0.1
	Terminal Facilities Sprinkler, Drip	85	h3	1,530	130.1	0	117.1	10.4	127.5	c	3.6	3.6
	Operation System of Mater Supply	lS			77.4	c	70.0	3.0	73.0	•	÷ c	- 7.
	Miscellaneous (18%)				56.3	4.8	36.3	9.8	50.9	80 15	9.1	5.1
	Sub-total				618.9	53.0	399.7	107.6	560.3	41.4	17.2	58.6

Local Currency	(R.0'000) (R.0'000) (R.0'000)		12.0 100.8	1.0 4.6	9.1 8 0	1.7 1.7	0.5 0.5	
Loc	Material (R.O'000)		58.8	3.6	1.0	0	0	6.3
	Total (R.0'000)		319.2	15.4	48.2	48.3	13.6	44.5
Currency	(R.0'000)		210.0	7.0	8.0	9.9	3.7	23.5
Foreign Currency	(R.0'000)		105.0	8.0	35.2	40.0	6.6	19.8
	Equipment (R.O'000)		7	0.4	5.0	1.7	0	1.1
Total	Cost (R.0'000)		420	20	20	20	14.1	55.4
	Rate (R.O)		sq.m 140.0	0.001		10,000		
	Unit T		5Q.B	sq.n		E X		
	Quantity		3,000	200	L.S	ហ	L.S	
	Description	1-4-3. Buildings	Settler's house 150m· x 20	Sorting and Packing Center	Water Supply Well, Water Tank, etc.	Power Transmission Line	Power Connecting Line	Miscellaneous (10%)
	I tem No.	1-4-3.						

. S.	Description	Quantity	thit	Rate (R.0)	Total Cost (R.O'000)	Equipment (R.O'000)	Foreign Currency Material Labor (R.O'000) (R.O'00	Labor (R.0'000)	Total (R.0'000)	Loc Material (R.0'000)	Local Currency al Labor (0) (R.0'000) (Total (R.0'000)	
Pre-e	Pre-engineering Works		•										
	Longitudinal and Cross Section Survey	21		1,300	27.3	0	1,4	22.0	23,4	0	3.9	٥. د	
	Topographic Survey for Reservoir Area, 1/2,666	250	다. 함	001	25.0	0	1.3	20.1	21.4	0	3.6	3.6	•
	Geological Investigation Bore-hole Drilling and Test	r.s			20.0	19.5	4.5	19.0	43.0	17 17	3.5	7.0	
	Embankment Material Test	r.s			10.0	0	0.5	8.1	9.6	0	1.4	1.4	
	Topographic Survey for New Extension Farm Land; 1/1,000	200	ž	100	20.0	۰ .	1.0	16.1	17.1	0	2.9	2.9	
	Miscellaneous (10%)				13.2	2.0	6.0	80 L	11.4	4.0	7:1	1.8	
	Total				145.5	21.5	9.6	93.8	124.9	3.9	16.7	20.6	
					(146.0)	(22.0)	(10.0)	(93.0)	(125.0)	(4.0)	(17.0)	(21.0)	

4. Consulting Services

Item

4-1.

														Appe Pa	end age	ix . 12	<u>J-1</u>	
Cost	Currency (R.O)					-							2,160	000,9	340	009	910	10,010
Total Foreign	Currency (R.0)				16,200		3,600	1,980	000'6	3,080	33,860							
	Rate (R.O)				2,700		1,200		4,500				12	1,000				
	Unit				month		trip	L.S.(10%)	unit	L.S.(10%)			day	month	L.S.	L.S.	L.S. (10%)	
	Quantity				9		3		2				180	9				
	Description	Consulting Services	Pre-engineering Stage	a) Foreign Currency	Consultants Remuneration	Out-of-pocket Expenses	International travel expense	Reimbursable cost item and other	Vehicles	Miscellaneous	Sub-total	b) Local Currency	Consultants per Diem	Living Allowance and Quarters	Local Communication	Printing of Report	Miscellaneous	Sub-total

																	Appe Pa	ndix J-l ge 13
Total Cost Foreign Local	(R.0)											000'6	25,000	3,100	10,000	24,000	7,110	78,210
Foreign Currency	(R.0)			216,000		20,400	23,640	22,500	25,890	308,430								
⊼ 24 4	(R.0)			2,700		1,200		4,500				12	1,000			3,000		
÷:				month		trip	L.S.(10%)	unit	L.S. (10%)			day	month	L.S.	L.S.	month	L.S.(10%)	
Onantity	(dailer c)			80		17		S				750	25			ø		
Description		Detailed Design Stage	a) Foreign Currency	Consultants Remuneration	Out-of-pocket Expenses	International travel expense	Reimbursable cost item and other	Vehicles	Miscellaneous	Sub-total	b) Local Currency	Consultants per Diem	Living Allowance and Quarter	Local Communication	Printing of Report	Office	Miscellaneous	Sub-total

Item 4-1-2.

																<u>Ap</u>	pendi Page	х J- 14	<u>-1</u>
Total Cost	Currency (R.0)										1,800	4,000	280	4,000	066	10,840			
Total Foreign	Currency (R.0)			16,200		3,600	1,980	2,180	23,960										245,700
	Rate (R.O)			2,700		1,200					12	1,000		1,000					2,700
	Unit			month		trip	L.S.(10%)	L.S.(10%)			day	month	L.S.	month	L.S. (10%)				month
	Quantity			9		ы					150	4		4					91
	Description	Tendering Stage	a) Foreign Currency	Consultants Remuneration	Out-of-pocket Expenses	International travel expense	Reimbursable cost item and other	· Miscellaneous	Sub-total	b) Local Currency	Consultants per Diem	Living Allowance and Quarter	Local Communication	Office	Miscellaneous	Sub-total	Construction Supervision	a) Foreign Currency	Consultants Remuneration
	Item	4-1-3.															4-1-4.		

															<u>A</u>	pper Pag	ndix ge I	J. 5	· <u>1</u>	
Total Cost	Currency (R.0)							32,760	9,100	2,910	10,000	20,000	7,480	82,250						
Total	Currency (R.0)		16,800	26,250	40,880	329,630											21,600		2,400	2,400
	Rate (R.O)		1,200					12	100			1,000					2,700		1,200	
	Unit		trip	L.S.(10%)	L.S.(10%)			day	month	L.S	L.S.	month	L.S.(10%)				month		trip	L.S.(10%)
	Quantity		14					2,730	91			20					∞		2	
	Description	Out-of-pocket Expenses	International travel expense	Reimbursable cost item and other	Miscellaneous	Sub-total	b) Local Currency	Consultants per Diem	Living Allowance and Quarter	Local Communication	Printing Report	Office	Miscellaneous	Sub-total	Operation and Maintenance	a) Foreign Currency	Consultants Remuneration	Out-of-pocket Expences	International travel expense	Reimbursable cost item and other

Item

Cost	Local Currency (R.O.)		184,510		2,880	800	440	200	4,320	185,630
Total	Foreign Loca Currency Curren (R.O) (R.	2,640	29,040							724,920
	Rate (R.O)				12	100				
	Unit	L.S.(10%)			day	month	L.S.	J.S.		
	Quantity				240	∞				
	Description	Miscellaneous	Sub-total Total	b), Local Currency	Consultant per diem	Living Allowance and Quarter	Local communication	Miscellaneous	Sub-total	Total

Item

Table J-3 List of Required Construction Equipment

Equipment	Specification	Number
Bulldozer	21 ton	11
Ripper	32 ton	3
Vibrating Roller	11 ton	4
Tractor-Shovel	4 m ³	6
Dump Truck	32 ton	13
Bakhoe Shovel	1.2 m ³	1
Water Truck	6 ton	10
Truck Crane	13 ton	1
Screening Plant	1.8 m x 4.8 m	1
Concrete Mixing Plant	0.5 m ³	1
Agitator Truck	3 m ³	3
Generator	75 KVA	1

Table J-4 Disbursement Schedule of Investment Cost

	1985	L.C.			311	S	80	79	475		12	64	551	83	634	187	821
(Unit: R.O.'000)		F.C.			2,058	62	694	563	3,377		0	246	3,623	543	4,166	1,008	5,174
		Total			2,369 2	67	774	642	3,852 3		12	310	4,174 3	626	4,800 4	1,195 1	5,995 5
Ū)		L.C.		85	104		120	62	371		12	29	412	62	474	89	563
	1984	н.С.		420	989		489	319	1,914		0	116	2,030	305	2,335	376	2,711
מור כספר		Total		202	790		609	381	2,285 1		12	145	2,442	367	2,809 2	465	3,274 2
IV CS CIIIC	1983	L.C.								21	2	92	115	17	132	9	138
10.		F.C.								125	0	363	488	73	561	22	583
יכוופתמז		Total								146	2	455	603	06	693	28	721
DISCULLS CHICAGA OF THE COST	Total	L.C.2/		85	415	ĸ	200	141	846	21	26	185	1,078	162	1,240	282	1,522
or south		F.C. 1		420	2,744	62	1,183	882	5,291	125	0	725	6,141	921	7,062	1,406	8,468
+ C - C - C - C - C - C - C - C - C - C	- 1	Total		505	3,159	67	1,383	1,023	6,137	146	26	910	7,219	1,083	8,302	1,688	066,6
laute		Description	1. Construction Works	1-1 Preparation	1-2 Dam	1-3 Water Supply Facilities	1-4 Farm and Related Facilities	1-5 Overhead	Sub-total	2. Pre-engineering Works	5. Administration Cost	4. Consulting Services	Sub-total (1 - 4)	5. Contingency	Sub-total (1 - 5)	6. Price Escalayion	Total (1 - 6)

Note: 1/ F.C.: Foreign Currency 2/ L.C.: Local Currency