№###00348

ŘEASIBILITY REPORT

ON

····WADI: JIZZI: AGRICULTURAL DEVELOPMENT PROJECT

IN

THE SULTANATE OF OMAN

(APPENDIX-II)

JANUARY 19831

JAPAN INTERNATIONAL COOPERATION AGENCY

EA) FIT

8 2 7 4

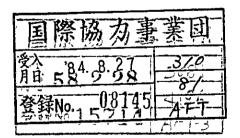
No.===

FEASIBILITY REPORT

ON

WADI JIZZI AGRICULTURAL DEVELOPMENT PROJECT

IN


THE SULTANATE OF OMAN

(APPENDIX-II)

JANUARY 1983

JAPAN INTERNATIONAL COOPERATION AGENCY

A F T CR (5) 82-74

APPENDIX II

Appendix	F.	Alternative	Study	/
----------	----	-------------	-------	---

- G. Irrigation
- H. Agriculture
- I. Structures and Facilities
- J. Cost Estimate
- K. Project Implementation
- L. Agro Economy
- M. Environment Assessment

APPENDIX F. ALTERNATIVE STUDY

APPENDIX F. ALTERNATIVE STUDY

- F-1. Estimation of Intake Volume to the Farmpound and Irrigable Area
- F-2. Storage Pound Plan, Cost Estimate and Implementation Schedule
- F-3. Economic Evaluation of the Alternative Study

•

ì			
د			

0.47 2.38 0.75 0.300.07 0.13 0.10 0.55 Tota1 0.21 0.03 Dec. Intake Volume to the Farmpond in MCM (Q=1.0 cu.m/sec) Nov. 0.05 0.01 Oct. Sep. 0.05 Aug. 0.05 0.03 Jul. 0.02 0.02 Jum. 80.0 0.22 May Apr. 0.27 Table F-1 0.10 Mar. į $\begin{array}{c} 0.28 \\ 0.22 \\ 0.49 \\ 0.99 \end{array}$ 0.03 Feb. 0.05 0.39 0.44 0.12 0.25 0.21 80.0 Jan. 0.13 0.04 1978 Year 1975 1976 1977 1979 1980 Mean 1974 1981

Table F-2 Intake Volume to the Farmpond in MCM (Q=2.0 cu.m/sec)

	Total	0.37	0.84	4.39	1.34	0.53	0.11	0.22	0.17	1.00
	Dec.	1	1	1	ı	1	0.05	ì	1	
ı.m/sec)	Nov.	ı	ţ	0.08	0.01	,	,	1	t	
j=2.0 cι	Oct.	1	1	1	1	į	į	ı	ı	
) MCM	Sep.	1	1	1	1	•	ŧ	ı	1	
Intake Volume to the Farmpond in MCM (Q=2.0 cu.m/sec)	Aug.	ı	0.05	$\binom{0.09}{0.05}$	1	0.08	i	1	1	
he Fari	Jul.	1	i	1	1	ì	ı	1	0.04	
me to t	Jun.	ı	ı	1	$\begin{pmatrix} 0.05 \\ 0.04 \end{pmatrix}$	1	1	•	t	
ike Volu	May	1	1	1	0.40	1	í	ı	0.13	
Inta	Apr.	1	r	(0.58) (0.04) 0.62	0.50	,	•	ı	,	
Table F-2	Mar.	1	1	$\begin{pmatrix} 0.19 \\ 0.45 \\ 0.89 \\ 1.53 \end{pmatrix}$	i	1	ı	0.17	1	
Tab	Feb.	0.37	$\binom{0.08}{0.71}$	0.50 0.40 0.89 0.89	0.20	0.45	ı	0.05	ı	
	Jan.	1	t	0.23	0.14	ì	90.0	ı	1	
	Year	1974	1975	1976	1977	1978	1979	1980	1981	Mean

0.23 1.38 1.16 6.05 1.83 0.76 0.16 0.30 0.52 Total 0.06 Dec. Intake Volume to the Farmpond in MCM (Q=3.0 cum./sec) 0.11 0.01 Nov. Oct. Sep. 0.06 0.11 Aug. 0.05 Jul. Jun. 0.18 0.55 May 0.68 Apr. Table F-3 0.24 Mar. 0.52 0.69, 0.553 1.23 2.47 0.27 0.65 0.06 Feb. 0.10 0.21 Jan. 0.31 ı 1978 Mean 1976 1977 1979 1980 Year 1975 1981 1974

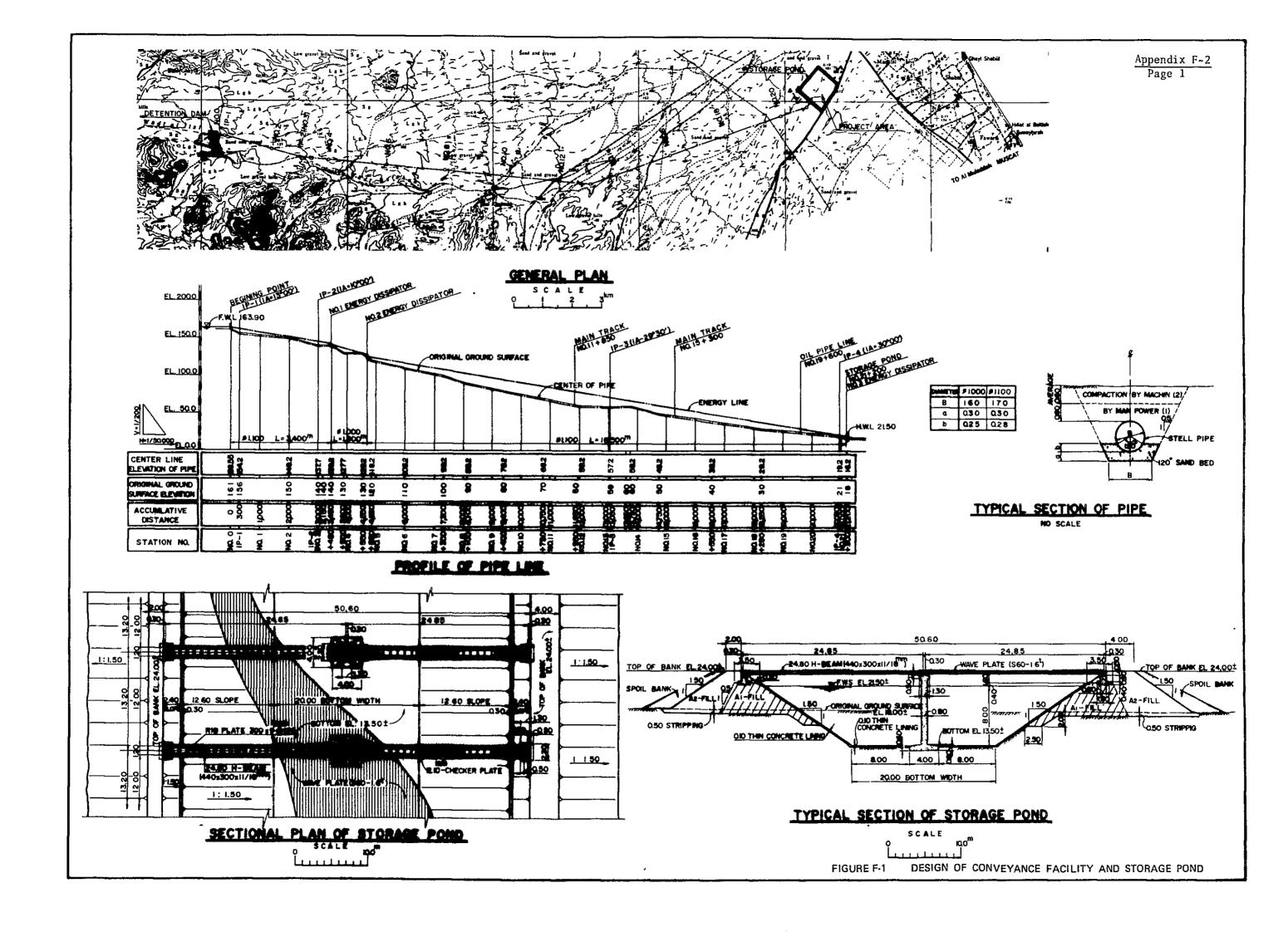

	Total	0.62	1.40	7.32	2.19	0.87	0.17	0.34	0.26	1.65
ં	Dec.	1	1	1	ı	ı	0.07	ι	ī	
Intake Volume to the Farmpond in MCM (Q=4.0 cu.m/sec)	Nov.	t	ı	0.12	0.01	ı	ı	ı	t	
(Q=4.0	Oct.	1	1	1	1	1	ı	ı	ì	
in MCM	Sep.	1	i	1	ı	ı	ı	ı	1	
rmpond	Aug.	1	0.07	$\binom{0.13}{0.07}$	ı	0.12	1	ı	•	
the Fa	Jul.	1	1	1	ı	t	ı	I	90.0	
lume to	Jun.	t	1	1	$\binom{0.07}{0.06}$	ι	l	I	1	
take Vo	May	ι	1	1	99.0	ı	I	ı	0,20	
	Apr.	1	1	(0.98) (0.06) 1.04	0.84	1	1	ı	ī	
Table F-4	Mar.	1	t	$\begin{pmatrix} 0.32 \\ 0.75 \\ 1.51 \\ 2.58 \end{pmatrix}$	ŧ	ı	ı	0.27	ı	
H	Feb.	0.62	$\binom{0.12}{1.21}$	$\{0.84\}$ $\{1.51\}$ 3.01	0.32	0.75	1	0.07	1	
	Jan.	ı	,	. 0.37	0.23	1	0.10	t	ı	
	Year	1974	1975	1976	1977	1978	1979	1980	1981	Mean

Table F-5 Annual Intake Volume and Irrigable Area

1	ا م ا									
Intake Discharge Q = 4.0 cu.m/sec	Irrigable Arca, A(%)	46.3	100.0	100.0	100.0	64.9	12.7	25.4	19.4	58.6
Intake Q = 4.0	Intake Volume V(MCM)	0.62	1.40	7.32	2.19	0.87	0.17	0.34	0.26	1.64
Intake Discharge Q = 3.0 cu.m/sec	Irrigable Area, A(%)	38.8	9.98	100.0	100.0	56.7	11.9	22.4	17.2	54.2
Intake Q = 3.0	Intake Volume V(MCM)	0.52	1.16	6.05	1.83	92.0	0.16	0.30	0.23	1.38
Intake Discharge Q = 2.0 cu.m/sec	Irrigable Area, A(%)	27.6	62.7	100.0	100.0	39.5	8.2	16.4	12.7	45.0
Intake Q = 2.0	Intake Volume V(MCM)	0.37	0.84	4.39	1.34	0.53	0.11	0.22	0.17	1.00
Intake Discharge Q = 1.0 cu.m/sec	Irrigable 1/ Area, A(%)	15.7	35.1	100.0	56.0	22.4	5.2	9.7	7.5	31.5
Intake $Q = 1.0$	Intake Volume V(MCN)	0.21	0.47	2.38	0.75	0.30	0.07	0.13	0.10	0.55
	Year	1974	1975	1976	1977	1978	1979	1980	1981	Average

Note: 1/: Annual percentage of irrigable area = Intake volume/Annual total demand

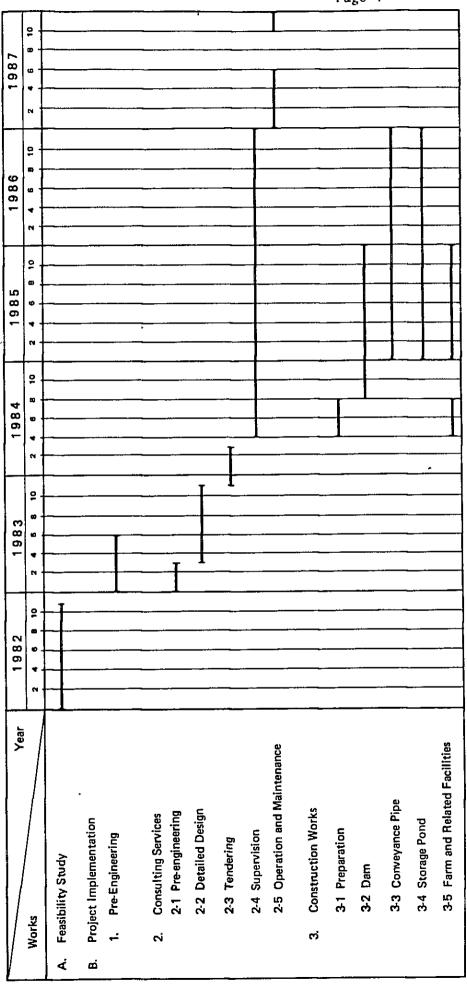
Annual total demand: Irrigation requirement for 85ha: 1.34 MCM

Investment Cost of Project (Alternative)

Table F-6

	Description	To:	Total	Foreign	Foreign Currenty	Local	Local Currency
		N.O. 000		N.O. 000		N.O. 000	(000 000)
1.	Construction Works						
	1-1. Preparation	692	2,023	570	1,667	122	356
	1-2. Dam	3,159	9,237	2,744	8,023	415	1,214
	1-3. Conveyance Facilities	2,422	7,082	2,391	6,991	31	16
	1-4. Storage Pond	7,234	21,152	6,631	19,389	603	1,763
	1-5. Farm and Related Facilities	1,186	3,468	1,014	2,965	172	503
	1-6. Overhead	2,939	8,594	2,670	7,809	269	787
	Sub-total	17,632	51,556	16,020	46,842	1,612	4,714
2.	Pre-engineering Works	177	518	152	444	25	74
ъ.	Administration Cost	49	143	0	0	49	143
4.	Consulting Services	1,400	4,094	1,115	3,260	285	834
	Sub-total (1 - 4)	19,258	56,311	17,287	50,546	1,971	5,765
5.	Contingency	2,887	8,442	2,593	7,582	294	860
	Sub-total (1 - 5)	22,145	64,753	19,880	58,128	2,265	6,625
9	Price Escalation	5,565	16,272	4,939	14,442	626	1,830
	Total (1 - 6)	27,710	81,025	24,819	72.570	2,891	8,455

table 1-7 Distinguement Schedule of Incestment Cost (Alternative)


(Unit: R O '000)

2	.c.				1,195 v	3,315 7 2		500	5,412 351		·: 0	135 35	5,547 +25	852 64	6,379 492	2.022 203	8,401
9861	Total 1.				1,211 1,			965	5,793 5,		12	170	5,975	896	6,871 6	2,225 2	9.00.6
	50:1			111	15	501	36	132	795		72	94	913	124	1,051	310	1,361
1985	F C.			2.0.3	1,196	5,316	496	1,415	8,479		0	370	8,849	1.215	10,176	2,163	12,639
	101.11			2,369	115,1	5,617	532	1,545	9,274		134	464	9,762	1,369	11,327	2,773	11,000
!	1:0:		1,1	=			1.36	7.4	436		13	45	493	69	564	106	0.49
1984	7.0		570	980			218	355	2,129		٥	176	2,305	318	2,651	427	3,078
	[ot.1]		69.2	Db7			654	429	2,565		17	221	2,798	387	3,215	533	3,748
	L.C.									25.	-	111	137	21	158	7	165
1983	Total P.C									152	0	434	586	88	674	27	701
	Total									177	-	545	723	109	832	34	866
	١. ٥. ځ		3	11.5	15	603	172	269	1,612	25	49	285	1,971	294	2,265	626	2,891
Jotal	1.0.1		570	117.7	2,391	6,651	1,014	2,670	16,020	152	C	1,115	17,287	2,593	19,880	5,565 4,939	24.819
	lotal		5	3,139	2,422	7,234	1,186	2,959	17,632 16,020	177	49	1,400	19,258	2,887	22,145 19,880	5,565	27.710 24.819
	Description	1 Construction Works	[-1, Preparation	1-2. Palm	1-3, Conveyance Pape,	1-4. Storage Pond	1-5. farm and Rilated Facilities	1-6. Overhead	Sub-total	2. Pre-engineering Works	3. Administration Cost	4. Consulting Services	Sub-total (1 - 4)	S. Contingency	Sub-total (1 - 5)	6. Price Escalation	Total (1 - 6)

Note: 1/ F.C.: Foreign Currency

2/ F.C.: Local Currency

FIGURE F-2 IMPLEMENTATION SCHEDULE OF THE PROJECT (ALTERNATIVE)

Net Production Value - Groundwater Recharge Method	(Unit: '000 R.O.)	1 1992 1993 1994 1995	4 394 394 394 394	3 103 103 103 103	1 291 291 291 291
ndwater Re	•	1990 1991	324 394	112 103	212 291
ue - Groun		1989	324	112	212
ion Valt		1988	276	66	177
roduct		1987	213	83	130
Net P		1986	133	06	43
Table F-8			Gross Production Value	Production Cost	Net production Value

Method
Pond
Storage
ı
Value
Production
Vet

									(Unit:	:: '000 R.O.)	R.O.)	
	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	
Gross Production Value	72	115	150	176	176	213	213	213	213	213	287	
Production Cost	49	45	54	61	61	26	26	26	26	26	26	
Net Production Value	23	70	96	115	115	157	157	157	157	157	231	

Note: Figures in the case of storage pond method are calculated using the ratio (0.542) of irrigable area 46ha to 85ha in the case of groundwater recharge method.

Gross Production and Gross Production Value

F-9

Table

-- Groundwater Recharge Method --

P.Q.: Production Quantities (ton) G.P.V.: Gross Production Value ('000 R.O.)

R.O.)	ام	0.0	2 0 2	0 0	90	8 14	កែ ស	50 10	Öω	ōй	00 83			9.5
(1000)	1996	120	400 237	130 19	200	125 31	75	S.L	150 15	90	1,200	1 1	, 1	2,540
Value (1995	80	200 119	130	200	125	75 15	50 10	150	90	1,200	1 (1 1	2,300 394
Production	1994	80 40	200 119	130	200	125	75 15	50	150	90	1,200	1 1	1 1	2,300 394
,	1993	80	200 119	130 19	200	125	75 15	50	150 15	90	1,200	i i	1 1	2,300
V.: Gross	1992	80	200	130 19	200	125	75 15	50 10	150 15	90	1,200	, ;	1 1	2,300
G. P.	1991	80	200	130	200	125 31	75 15	50 10	150	90	1,200	1 1	; l	2,300 394
	1990	1 1	80	130 19	200	125	75 15	50 10	150 15	90	1,200	108 32	6 06	2,298
	1989	, ,	80	130 19	200	125	75	50	150 15	90	1,200	108 32	6 06	2,298
	1988	t i	3 1	130 19	200	125	75 15	50 10	150 15	90	1,200	108 32	6 06	2,218
	1987	1 1	ı t	100	150	95	60	40 8	114	72 18	900	90	72	1,693
	1986	1 1	;]	1 1	100	65 16	40 8	25 5	78	48 12	600 41	60 18	48 5	1,064 133
		P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.
	Unit Price (R.O/ton)	494	593	. 148	197	247	197	197	86	247	69	296	98	
	Crop	Dates	Lime	Banana	Tomato	Cabbage	Watermelon (Winter)	Watermelon (Summer)	Eggplant	Redpepper	Alfalfa	Cauliflower	Onion	Total

	R.O.)						-A-		~	_ ~	α ~ !	C) 10			918
	(ton); ('000 R.	1997	65 32	217 128	70	108 22	68	41	27	818	12	650 45	1 1	1 1	1,376
	ies (to alue ('(9661	44 22	108 64	70 10	108 22	68	41	27 5	818	12	650 45	r r	1 1	1,181
	uantiti tion Va	1995	44 22	108 64	70 10	108 22	68	41 8	27	81	12	650 45	1 1	1 1	1,181
	Production Quantities (Gross Production Value	1994	44	108	70	108 22	68	41	27	81	49	650 45	3 1	1 1	1,181 213
		1993	44	108 64	70 10	108 22	68	41	27	8 8	49	650 45	; 1	! 1	1,181 213
יים יים יים יים	P.0. G.P.V.	1992	44 22	108	70	108	68	418	27 5	81 8	49	650 45	1 1	1 1	1,181 213
Oductio		1991	1 I	43 26	70	108	68	418	27 5	818	49	650 45	58 18	49	1,244
Gross Froduction value	ם מונים	1990	1 1	43 26	70 10	108 22	68	41 8	27	831	49	650 45	58 18	49	1,244
and		1989	1 1	1 1	70	108 22	68	41	27 5	81 8	49 12	650 45	58 18	49 5	1,201 150
Froduction - Storage B	2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1988	1 1	; ž	54 8	81 16	51	33	22 4	62	39	488 34	49 15	39 4	918 116
Gross FI		1987	i i	1 1	i 1	54	35	22 4	14	4 4	26	325 22	32 10	26 3	576 73
9			P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V.	P.Q. G.P.V	P.Q. G.P.V.
OT - 4		Unit Price (R.O/ton)	494	593	148	197	247	197	197	86	247	69	296	86	
Table		Crop (Dates	Lime	Banana	Tomato	Cabbage	Watermelon (Winter)	Watermelon (Summer)	Eggplant	Redpepper	Alfalfa	Cauliflower	Onion	Total

Appendix F-3 Page 4

1996	20 750 15.7	20 919 18.4	10 1,077 10.8	5 1,602 8.0	5 1,033 5.2	5 689 3.4	5 764 3.8	6 1,315 7.9	884 5.3	20 1,245 24.9			102 103.4
1995										20 1,245 24.9			
1994										20 1,245 24.9			
1993										20 1,245 24,9			
•		20 919 18.4								20 1,245 1 24.9			
			-							20 1,245 24.9			
	_									20 1,245 1,245			114
	_		•							20 1,245 24.9			
1988	•	(20) 354 7.1								20 1,245 24.9			
		_								20 999 1, 20.0			
		(20) 353 7.1		5 1,067 1,	843 4,2	5 540 2.7	5 594 3.0	2 W W	6 708 4.2	awn	9 20 20	שמש	4 4
ΣI.				0,1	24	2,14	u,	1,07		2, 1,411 28.	1,02	1,60	11 90.
	Cropped area (ha) Production cost (R.O./ha) Total Pro. cost ('000 R.O.)			-									
	4 E U	⊀ હે હ	⊀ ∺∪	∢່ ໝໍ ປ່	¥#:0	 	п С.	4.4.0	₹ 	4 m U	er A.	A.B.O.	⊀ં ડં
	Dates	Line	Banana	Тома со	Cabbage	Watermelon (Winter)	Watermelon (Summer)	Eggplant	Redpepper	Alfalfa	Cauliflower	Onion	Total

Nate: Figures in the parenthies are area of non-production trees.

Table F-12

Economic Project Cost — Groundwater Recharge Method —— (Unit: '000 R.O.)

	634	ŧ	634	357	330	16	45	561	0.988	554
1985 F.C. 1	4,166	1	4,166	2,367	2,225	647	324	3,701	ı	3,701
Total	4,800	1	4,800	2,724	2,555	738	369	4,262	~	4,255
L.C.	474	139	335	120	110	71	35	289	0.988	285
1984 F.C.	2,355	550	1,785	789	742	367	184	1,555	ı	1,555
Total	2,809	689	2,120	606	852	438	219	1,844	~	1,840
L.C.	132	ı	132	ı	ı	ì	1	Cost 132	0.988	130
1983 F.C.	561	ı	561	ı	t	ı	ı	l Labor 561	1	561
Total	693	ı	693	ı	1	ı	t	and Unskilled 982 693		691
L.C.	1,240	139	1,101	477	440	162	80		0.988	696
Total F.C.	7,062	550	6,512	3,156	2,967	1,014	207	Interest 5,816	1	5,816
Total	8,302	689	7,613	3,633	3,407	1,176	587	n Tax, 6,799		6,785
	 Financial Project Cost Excluding Price Esca- lation 	2. Resident Building Cost	3. (1 - 2)	4. Dam Cost - Financial	5. Economic	6. Overhead Cost - Financial	7 Economic	8. Project Cost Revised on Tax, Interest (3-4-6+5+7) 6,799 5,816	9. Standard Conversion Factor 0.988	10. Economic Project Cost

													pendia Page 6	
L.C.	492	ı	492		365	342		73	36			432	0.988	427
1986 F.C.	6,379	ı	6,379		5,187	5,015		1,037	519			5,689		5,557
Tota1	6,871	ı	6,871		5,552	5,357		1,110	555			6,121		5,984
I.C	1,050	1	1,050		721	299		152	76			920	0.988	606
1985 F.C.	10,176	ı	10,176		7,556	7,243		1,625	813			9,051	0	8,235
19 Total	11,226 10,176 1,050	ı	11,226		8,277	7,910		1,777	889			9,971		9,144
	565	139	426		120	110		83	42			375	0.988	370
1984 F.C.	2,650	550	2,100		789	742		408	204			1,849	J	1,637
Total	3,215	689	2,526		606	852		491	246	Cost		2,224		2,007 1,637
L.C.	158	ı	158		ı	1		ſ	1	Labor		158	988.0	156
1983 1 F.C.	tion 674	ı	674		ı	1		ı	1	killed		674	_	674
L.C. Total	scalat 832	1	832	ıst	I	1		1	ı			832		830
L.C.	rice E 2,265	139	2,126	ond Cc	1,206	1,120		310	155	est an		1,885	0.988	1,862
Total F.C.	1 guipr 19,879	550	19,329	rage F	13,531	13,000		3,070	1,535	, Inter		17,263		16,103
Total To	st Excluding Price 22,144 19,879 2,265	689	21,455 19,329 2,126	and Sto	14,737 13,531 1,206	14,120 13,000 1,120		3,380 3,070	1,690 1,535	on Tax	(5-2)	19,148 17,263 1,885		17,965 16,103 1,862
	 Financial Project Cost Excluding Price Escalation 22,144 19,879 2,265 832 67 	2. Resident Building Cost	(1 - 2)	4. Dam, Conveyance Pipe and Storage Pond Cost	4-1. Financial Cost	4-2. Economic Cost	5. Overhead Cost	5-1. Financial Cost	5-2. Economic Cost	6. Project Cost Revised on Tax, Interest and Uns	3-(4-1)-(5-1)+(4-2)+(5-2)		7. Standard Conversion Factor 0.988	8. Economic Project Cost
	j.	2.	3.	4.	4-	4-;	5.	5-	5-,	6.			7.	8

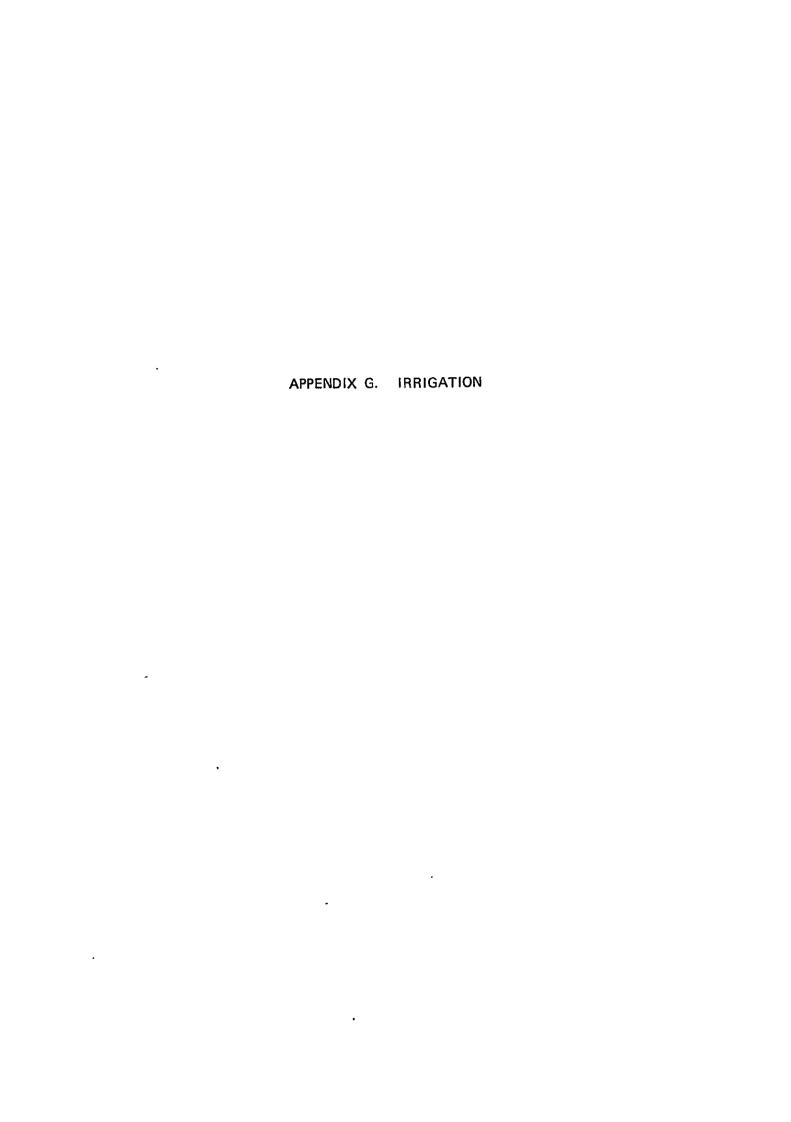
Appendix F-3
Page 7

				ra	age /	
11 55000	 200	 _	~	 	10	_

(Unit: '000 R.O.)

Economic Internal Rate of Return --- Groundwater Recharge Method

Table F-14


Worth	-617 -1,467 -3,029	394 375 351	313 308 275	246 220 140 14 213,213	55 24 27 37 39	18 126 6	35	-262
Present Worth Value	-623 -1,493 - -3,111 -	412 396 374	337 334 301	271 244 157 157 251,416	68 24 Σ499 32	24 34 52 176 42 8	44 253 50	243
Incremental Benefit	-691 -1,840 -4,255	694 741 776	776 855 855	855 855 611 993	749 993	749 993 749	993	34,376
Total Benefit	747	834 881 916	916 995 995	995 995 995 1,133	1,133	1,133	1,133	48,961
Water Supply	1 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	563 563 563	563 563 563	563 563 563 563	563	563	563	26,461
Salt Protect	σC	109 109 109	109 109 109	109 109 109 109	109	109	109	5,123
Flood			32 32 32	322 32 32 32 32 32 32 32 32 32 32 32 32	32	32 " 32	32	1,504
Agri- culture (85 ha)	1 1 1 4 A	130 177 212	212 291 291	291 291 291 429	429	429	429	15,873
Total Cost	691 1,840 4,255	140 140 140	140 140 140	140 140 384 140	 384 140	384 140 384	140	14,585
Replace- ment Cost	1 1 1 1	t 1 i	1 1 1	244	244	244 - 244) E	1,220
O & M Cost	1 1 1 1 1 0 4 1	140 140 140	140 140 140	140 140 140 140	140	140	140	6,580
Project Cost	691 1,840 4,255		1 1 1	1 1 1	1 I I	1 1 1	1 1	6,785
Project Year	1 (1983) 2 (*84) 3 (*85)	5 (*87) 6 (*88) 7 (*89)	8 (190) 9 (191) 10 (192)	11 ('93) 12 ('94) 13 ('95) 14 ('96)	23(2005)	33(2015) " 43(2025)	" 50(2032)	Total

1ERR = 0.11 + $\frac{243}{243+262}$ x 0.01 = 0.115 = 11.5 %

(Unit: '000 R.O.)

																			<u> </u>		endi age	x F	-3
Value 3 %	-806	-8,368	-5,317	200	525	531	530	515	531	516	501	486	373		4,056	277	3,018	206	2,246	154	1,163		-255
Present Worth V	-814	-8,616	-5,528	525	557	269	574	562	586	574	563	552	427		$\sum_{23}^{15} 4,875$	350	23,3,999	288	23,280 1,33,280	236	⁴ Σ 1,847		+3,477
Incremental Benefit	-830	-9,144	-5,984	580	627	653	672	672	714	714	714	714	564	788	:	564	788	564	788	564	788	788	16,577
Total Benefit				727	774	800	819	819	861	861	861	861	861	935	=	±	Ε	Ξ	=	:	Ξ	935	41,904
Water Supply	1 1	ι	1	563	563	563	563	563	263	563	563	563	563	563	Ξ	=	=	=	=	=	=	563	25,898
Salt	1 1	1	1	109	109	109	109	109	109	109	109	109	109	109	=	E	Ξ	=	=	Ξ	Ξ	109	5,014
Flood Project	ı (1	ı	32	32	32	32	32	32	32	32	32	32	32	=	=	<u>.</u>	Ξ	Ξ	=	Ξ	32	1,472
Agri- culture (46 ha)	1 7	ı	ı	23	20	96	115	115	157	157	157	157	157	231	E	=	=	=	:	:	2	231	9,520
Total Cost	830	9,144	5,984	147	147	147	147	147	147	147	147	147	147	147	=	297	147	297	147	297	147	147	25,327
O & M Replace- ment Cost	1 1	ı	ı	147	147	147	147	147	147	147	147	147	. 297	147	=	297	147	297	147	297	147	147	7,362
Project Cost	830	9,144	5,984	ŧ	ı	i	,	ŧ	,	,	1	1	,	J		ı		1		1		1	17,965
Project Year	1(1983) 2 ('84)	3 (185)	ت	5 (187)	ت	7 (189)	ت	9 (191)	٦	こ	12 ('94)	ت	ت	15 (197)	=	24(2005)	=	34(2015)	=	44(2025)	=	50(2032)	Total

1ERR = $0.02 + \frac{3,477}{3,477+255} \times 0.01 = 0.0293 = 2.9 \%$

APPENDIX G. IRRIGATION

- G-1. Present Irrigation Conditions
 - 1. Existing Irrigation System
 - 2. Present Irrigation Practices
 - 3. Irrigation Efficiency
 - 4. Present Irrigation Water Requirement
- G-2. Water Quality Analysis
- G-3. Estimation of Reference Crop Potential Evapotranspiration (ETPc)
 - 1. Modified Penman Method
 - 2. Modified Blaney-Criddle Method
- G-4. Estimation of Proposed Irrigation Water Requirement
- G-5. Hydraulic Calculation for Terminal Irrigation Facilities in Irrigation Unit
- G-6. Depth and Interval of Irrigation Application for Crops

Present Irrigation Conditions

1. Existing Irrigation System

The irrigation system in the area is predominantly basin irrigation. Each basin is either circular one meter to three meters in diameter and 10 centimeters to 60 centimeters deep holding one tree, or rectangular five square meters to 30 square meters in size and a few centimeters lower than the conveyance canal holding one or two trees and occasionally undergrown by feed crops. The latter may almost be called the border-strip irrigation.

There are three types of water conveyance systems to lead water to these basins.

- i) direct diversion from the main and lateral canals.
- ii) a series of basins used as a conveyance canal.
- iii) combination of i) and ii).

No. i) is the system where the water is directly diverted from the conveyance canal to the basin. A few farms adopt this system. However, seldom is the main canal straight or well kept for efficient conveyance of water, causing excessive seepage and evaporation losses from the canal. Yet this system has the potentiality to be most efficient of the three, as far as the water saving is concerned, because there is no intermediate conveyance losses before the cropping area. No. ii) is the system where water is fed directly into the first basin. After filling the first basin the water flows into the second one and then the third to the last basin. This is the most inefficient method of the three as the percolation loss at the beginning of the system is enormous and application rate towards the end of the system is insufficient. There are varying degrees of combination of the above two. If sensibly laid out this No. iii)

system proves to be the most economical of the three as this saves the expensive construction of the long main and lateral canals and also the spaces occupied by them. Most of the farm lands employ the last system. But the basin-to-basin conveyance distance is usually too much (30 meters to 60 meters) resulting in the deficiency described above for No. ii).

Apart from the basin irrigation on the border-strip and furrow irrigation seem to gain popularity especially among the newly developed large scale farms along the highway. The conveyance canals are generally straight and well kept. But there is still a lot of room for improvement in canal routing and quality as well as for introduction of other irrigation facilities.

2. Present Irrigation Practices

The procedure of irrigation in the survey area varies little from place to place, be it of different efficiency, i.e., pumped water is let to the crop area by gravity through ditches, furrows and basins. All the irrigation water in the area is presently supplied by well water including in the village of Falaj Al Awhi on the north-western corner where the irrigation water was formerly supplied by the Falaj. The pumps are usually installed singly or in a pair in a pit about five meters deep. Suction pipes extend into the adjoining well of 80 centimeters to 120 centimeters diameter. The depth to the water surface was observed to be about seven to 10 meters below ground surface. The pump sizes are mainly 3" x 3" and sometimes 4" x 3".

Water is first poured into a rectangular concrete basin of the size $1.2 \text{ m} \times 1.8 \text{ m}$ to $2 \text{ m} \times 3 \text{ m}$ and 20 centimeters to 50 centimeters deep. The top rim of the basin is 60 centimeters to 70 centimeters higher than the ground. Water is then let out through an elevated concrete ditch 15 centimeters to 20 centimeters wide and 10 centi-

meters to 15 centimeters deep. The length of this concrete ditch is usually less than 10 meters and from there on a crude earth ditch continues. The earth ditch is usually winding and not of a uniform shape. Water is diverted by breaking a side of the ditch and clogging the immediate downstream by filling mud into the ditch. This daily operation helped in deforming and deteriorating the ditch, such a ditch will cause more evaporation losses due to low speed of flow and much seepage due to constantly disturbed and softened ditch surfaces.

Farmers seem to know approximately the right way of irrigating each crop after many years or generations of experience. Basin irrigation is adopted for tree crops, border-strip for fodder crops and furrow irrigation for various vegetables. However, it was almost always the case that the conveyance route was arranged in a rather complicated and wasteful way with a lot of detours which could be simplified and rationalized. These detours are possibly the consequence of the efforts to achieve best results in uniform water distribution. By the time the purpose was achieved the conveyance route was apparently grossly elongated. It is therefore important to study the topography carefully when rectifying the canal route.

3. Irrigation Efficiency

The classification according to the crop condition described in previous paragraph is reconsidered here in terms of irrigation intensity.

In No. 1 (good condition) area it was observed that water was abundantly applied both in quantity and frequency. In some cases water was applied every day or every other day, where the quantity was estimated to be from 100 percent up to even 500 percent of the consumptive use. On these locations plant growth generally looked good. Possible reasons for it is ample application of fertilizers

and good leaching of hazardous salts coupled with sufficient supply of water and favourable soil conditions. Further study on harmful effect of over-irrigation should be made.

In No. 2 (moderate condition) area water application was estimated at between 50 percent to 100 percent of the consumptive use of water. On these farms the irrigation method and facilities were usually poor to fair. Only the beginning part of the irrigation system received ample to excessive supply of water and the end part of it suffered from water deficiency.

No. 3 (poor condition) area obtained only 20 percent to 50 percent of water compared to the consumptive use of the plants. In these areas the farmers attended the farm only occasionally or only part of the farm due to lack of sufficient available water.

The summary of water consumption of each of these areas is given below:

	Area	Water Application Percentage of	
Classification	Percentage (%)	Consumptive Use (%)	Average (%)
Good area	20	100 - 500	300
Moderate area	49	50 - 100	75
Poor area	31	20 - 50	35

Under these conditions the overall irrigation efficiencies are considered to be between 30 percent - 40 percent. Most of the losses occur through deep percolation and evaporation caused by inefficient and deficient conveyance canals and partly due to over-irrigation.

4. Present Irrigation Water Requirement

From the hydrogeological study, about 17 kilometers long coastal plain extending from the Wadi Khadaq to the Village of Majis was determined to be beneficial areas covered by the Wadi Jizzi river basin. The gross cultivated area within this coastal plain is about 3,830 hectares and its net cultivation area is 2,640 hectares. The water resources for irrigation in these areas are wells with a depth of 20 meters to 30 meters on average, and numerous small scale pumps are installed for lifting groundwater as irrigation water.

Since the estimation of present annual amounts used for irrigation by means of pumping operation during a year was found out to be difficult due to numerous pump installation as explained above, the amounts were estimated based upon the cropping areas and consumptive use of each crop.

a) Present Cropping Area and Cropping Pattern

According to the field survey and collected data on the existing land use, the existing cropping acreage is summarized as shown below and its cropping pattern is shown in Figure G-1.

Existing Cropping Acreage

Vegetable		h	2			
Onion	:	51.0"	а			
Garlic	:	13.5				
Tomato	:	8.7				
Potato	:	8.1				
Okra	:	4.5				
Others	:	12.0				
Fruit Crop						
Dates	:	1,820				
Lime	:	309				
Banana	:	128				
Mango	:	83				
Feed Crop						
Alfalfa	:	112.2				
Sorghum	:	54.0				
Total		2,604.0	(excluding	fallow	land	of
			36 hectare			

Jun. May 4.5 ha Apr. Mar. 8.7 ha Feb. 13.5 ha 12.0 ha Jan. 309 ha 128 ha 83 ha 1.820 ha 54 ha 112.2 ha 8.1 ha Dec. 51 ha Nov. Oct Sep. Aug. Jul. Sorghum Onion Garlic Tomato Potato Okra Dates Lime Banana Mango Alfalfa Fruit Crop Feed Crop Vegetable

FIGURE G-1 PRESENT CROPPING PATTERN

b) Irrigation Water Requirement

Same procedures as used in the estimation of irrigation water requirement in the development plan (refer to paragraph 4.5.3 Irrigation and Appendix G-3, has been adoped to estimate the present annual amounts of irrigation water, so that references to the said paragraph shall be made, when details are need.

Potential Evapo-transpiration

Reference crop potential evapo-transpiration (ETPc) has been estimated by the both methods of modified Penman and Blaney-Criddle and their average values have been decided at the proposed one. Following table indicates the estimated potential evapo-transpiration.

Potential Evapo-transpiration (ETPc)

	Daa	D C	<pre>(unit: mm/month)</pre>
Month	Penman Method	B - C <u>Method</u>	Average
Jan.	74.4	97.0	85.7
Feb.	89.6	98.7	94.2
Mar.	120.9	138.6	130.0
Apr.	147.0	179.7	163.4
May	176.7	242.1	209.4
Jun.	189.0	260.0	224.5
Jul.	186.0	267.4	226.7
Aug.	170.5	243.8	207.2
Sep.	153.0	197.4	175.2
Oct.	127.1	171.9	149.5
Nov.	81.0	124.0	102.5
Dec.	74.4	110.3	92.4
Total	1,589.6	2,130.9	1,860.7

Note: Refer to Appendix G-3. .

Crop Water Supply Requirement

Crop water supply requirement has been estimated by applying the following equation:

$$V = \frac{10}{EP} \left[\frac{A(ETc - RE)}{1 - LR} \right]$$

where; A: area (ha)

ETc: crop evapo-transpiration (mm) = ETPc x crop coefficient

RE: effective rainfall (mm) (see Table G-1)

EP: irrigation efficiency, 0.35

LR: leaching requirement (referred to Table G-2)

$$= \frac{EC(W)}{2MAX.EC(E)} \cdot \frac{1}{LE}$$

EC(W): electric conductivity of irrigation water, 0.56 mm hos/cm (average of five sampled waters, see Table G-9)

Max.EC(E): maximum tolerable electrical conductivity of the soil saturation extract for crops, derived from FAO Irrigation and Drainage Paper No.24, Table 36 (see Table G-2 to G-5.)

LE: leaching efficiency, 0.8 (sandy loam)

Water supply requirements for each crop have been calculated by applying the above mentioned procedures and its result is shown in Table G-2 to Table G-5. Based upon these water supply requirements, present total consumption of irrigation water has been calculated at about 21.1 Million Cubic Meters as shown in Table G-8.

Estimation of Effective Rainfall

Table G-1

			Onton		i	Garli	U		Tonst	أ		Potate		ļ	Okra			Others	ļ		Dates	
Month	Rainfall	ET(C)	ET(C) R(E)	RER	ET(C)		R(E) RER	ET(C)	R(E)	RER	ET(C)	R(E)	RER	ET(C)	R(F)	RER	(C)	R(E)	RER	FT(C)	R(E)	RER
Jan.	12.7	37.1	37.1 0	0	68.6		8.8		8.7	9.0		9.6 10.0	10.0				72.8	8.	9.2	0.09	60	9.2
Feb.	37.1				75.4		27.2		27.5	28.6	58.9	12.8		18.8	11.6		75.4 26.3	26.3	27.4	6.59	25.7	26.7
Har.	8.8				104.0		6.3		s.	0.9				91.0	5.8		39.0	0	0	91.0	6.1	6.3
Apr.	14.8	-			114.4		11.9	114.4	11.3 11.8	11.8				138.9	11.8 12.3	12.3				114.4	11.3	11.8
May	2.9				104.7		0		0	0				167.5	o	0				146.6	0	0
Jun.	0													134.7	0	0				157.2	0	0
Jul.	0.5																			158.7	0	0
Aug.	0.8																			145.0	0	0
Sep.	0	175.2	0 ,	0	30.7	0	0	175.2	0	0										122.6	0	0
Oct.	5.6	149.5		Q	74.8	0	0	149.5	0	0										104.7	4	0
Nov.	2.4	71.8		0	71.8	0	0	46.1	0	0	46.1	0	0				41.0	0	0	71.8	0	0
Dec.	9.8	69.3	6.1 6.3	6.3	69.3	6.7	7.0	50.8	6.2	6.4	97.0	6.9	7.2				64.7	8.9	7.1	64.7	6.7	7.0
Total	95.4	95.4 502.9		6.3	713.7	58.9 61.2	61.2	881.6 59.5	59.5	61.8	317.7	29.3	30.5	29.3 30.5 550.9 29.2	29.5	30.4	6.262		43.7	41.9 43.7 1,302.6	58.1	60.4

Remarks:	ET(C): Reference Crop	Evapo-transpiration (mm/month)		<pre>R(E): Effective Mainials (mm/month)</pre>		KEK: Kevised Effective Rainfall (mm/month)	= RE x 1.04	1.04: Correction factor	Porosity (50%) x	cultivation depth	(400mm) = 130mm,	so, correction ration is 1.04		
 	RER	8.8	27.0	٥							٥	0	8.9	42.6
Sorghum	R(E)	8.8 8.8	26.0 27.0	0							0	0	6.5	46.2 42.6
}	ET(C)	85.7	70.7	39.0							26.2	61.5	92.4	60.0 62.5 375.5
.es	RER	9.3		6.3	12.2	0	0	Φ	0	0	0	0	6.9	62.5
Alfalfa	R(E)	8.9	26.7 27.8	6.1	11.7	0	0	0	0	0	0	0	9.9	60.0
ļ	ET(C)	72.8	80.1	110.5	138.9	178.0	140.8	192.7	176.1	148.9	127.1	87.1	78.5	60.4 1,581.5
	RER	8.6	7.92	6.3	11.8	0	c	0	0	0	0	0	7.0	4.09
Mango	R(E)	8.3	25.7	6.1	11.3	0	С	0	0	0	0	c	6.7	58.1
	ET(C)	0.09	6.59	91.0	114.4	146.6	157.2	158.7	145.0	122.6	104.7	71.8	64.7	63.2 1,302.6
	RER	9.4	28.3	6.3	12.3	0	0	0	0	c	0	0	6.9	63.2
Banan	R(E)	9.0	27.2	6.1	11.8	0	0	0	0	0	0	0	9.9	60.7
	RET(C) R(E) RER	17.1	82 8.	117.0	147.1	188.5	202.1	204.0	186.5	157.7	134.6	92.3	83.2	1,674.9
ļ	RER	8.2	25.5	5.4	11.1	0	0	0	0	0	0	0	6.1	56.3
Lime	R(E)	7.9	24.5	5.2	10.7	0	0	0	0	0	0	0		54.2
	ET(C) R(E) RER ET(42.9	47.1	65.0	81.7	104.7	112.3	113.4	103.6	87.6	74.8	51.3	46.2	930.6
	Rainfall	12.7	37.1	8.8	14.8	2.9	0	0.5	8.0	0	5.6	2.4	8.0	95.4
	Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Tota]

Note: Effective rainfall, R(E) is estimated based upon Figure G-4 Rainfall less than 8 mm is decided to be no effective rainfall (zero).

Tal·le	G- ?	Е	stimation o	F Water Suppl	y Requi	irement	per Hed	ctare			
i in i i	0.1							Cro	p:Onior	1	
Month	EI (mp)	_KC_	EC(W) (mmhos/cm)	MEC(E)	<u>LE</u>	EP	A (ha)	R(E)	ET(C)	LR	<u>γ</u> (π ¹)
Jan Feb Mar Apr May Jun Jul	57.1	0.65	0.56	8	0.8	0.35	1.00	0	37.1	0.044	1,108.9
Aug Sep. Oct. Nov.	175 2 149.5 102.5	1.00 1.00 0.70	0.56 0.56 0.56	8 8 8	0.8 0.8 0.8	0.35 0.35 0.35 0.35	0.10 0.10 1.00 1.00	0 0 0 6.3	175.2 149.5 71.8 69.3	0.044 0.044 0.044 0.044	523.5 446.7 2,143.8 1,882.4
Dec Total	92.4 <u>576.7</u>	0.75	0.56	8	0.8	0.55	1.00	6.3	502.9	0.22	6,105.3
									op : Garl ar :	ic	
<u>Hon th</u>	TT (mm)	<u>KC</u>	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>le</u>	EP	A (ha)	R(E) (mm)	ET(C)	LR	$\frac{V}{(m^3)}$
Jan. Feb. Mar. Apr. May Jun.	85.7 94.2 130.0 163.4 209.4	0.80 0.80 0.80 0.70 0.50	0.56 0.56 0.56 0.56 0.56	15 15 15 15 15	0.8 0.8 0.8 0.8	0.35 0.35 0.35 0.35 0.35	1.00 1.00 1.00 1.00 1.00	8.8 27.2 6.3 11.9 0	68.6 75.4 104.0 114.4 104.7	2.333 2.333 2.333 2.333 2.333	1,748.2 1,408.9 2,858.1 2,298.0 3,062.9
Jul. Aug. Sep. Oct. Nov. Dec	87.6 149.5 102.5 92.4	0.35 0.50 0.70 0.75	0.56 0.56 0.56 0.56	15 15 15 25	0.8 0.8 0.8	0.35 0.35 0.35 0.35	1.00 1.00 1.00 1.00	0 0 0 7.0	30.7 74.8 71.8 69.3	2.333 2.333 2.333 2.333	896.9 2,186.7 2,099.0 1,822.5
Total	1,114.7							61.2	713.7	20,997	18,381.2
									op : Toma ar :	ito	
<u> Mon th</u>	ET (mm)	<u>KC</u>	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>LE</u>	EP	A (ha)	R(E)	ET(C)	LR	<u>∀</u> (m³)
Jan. Feb. Mar. Apr. May Jun.	85.7 94.2 130.0 163.4 101.7	0.85 1.00 0.85 0.70 0.65	0.56 0.56 0.56 0.56 0.56	13 13 13 13 13	0.8 0.8 0.8 0.8	0.35 0.35 0.35 0.35 0.35	1.00 1.00 1.00 1.00 1.00	9.0 28.6 6.0 11.8 0	72.8 94.2 110.5 114.4 68.1	2.692 2.692 2.692 2.692 2.692	1,874.6 1,926.1 3,068.3 3,011.9 1,998.2
Jul. Aug. Sep. Oct. Nov. Dec.	175.2 149.5 102.5 92.4	1.00 1.00 0.45 0.55	0.56 0.56 0.56 0.56	13 13 13 13	0.8 0.8 0.8	0.35 0.35 0.35 0.35	0.10 0.10 1.00 1.00	0 0 0 6.4	175.2 149.5 46.1 50.8	2.692 2.692 2.692 2.692	514.4 439.0 1,354.3 1,304.3
<u>Total</u>	1,907.6							61.8	881.6	24,228	<u>15,491.1</u>
V = 1(E)	A(ETcz	DI.	$\frac{(m^3)}{m^3}$ (m ³)	/month)		LE EP		Irrigati	g efficiention efficient	-	
KC	: Crop	-		monen <i>j</i>		A Rí	: E1 :	Area (ha Effectiv	=	11 (mm/moi	nthj
EC(4)	: Lleci	ric con	ductivity o	f irrigation (mmho	water os/cm)	ET	(C) :	Reference	e crop e	vapo-tran	spiration (mm/month)
ML(F			rable elect ration extr	rical conduct act (mmh	tivity os/cm)	LR V			g require upply req		(m³/month)

Table	G-3	E	stimation of	f Water Suppl	ly Requi	rement					
								Crop :	Poteto		
Mon h	ET (mm)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	LE	ЕР	A (ha)	R(E)	ET(C)	LR	(W ₂)
Jan. Feb. Mar. Apr. May Jun. Jul. Aug.	85.7 47 1	1.35 1.25	0.56 0.56	10 10	0.8	0.35 0.35	1.00	10.0	115.7 58.9	0.035 0.035	3,129.4 1,349.4
Oct. Nov. Dec.	102.5 92.4	0.45 1.05	0.56 0.56	10 10	0.8 0.8	0.35 0.35	1.00 1.00	0.0 7.2	46.1 97.0	0.035 0.035	1,365.7 2,659.4
<u>Total</u>	<u>327.7</u>							30.5	<u>317.7</u>	0.140	8,503.9
								Crop Year	: Okra :		
Mon ' h	ET (nun)	KC	EC(W) (menhos/cm)	MEC(E)	LE	EP	(ha)	R(E) (mm)	ET(C)	LR	$\frac{(w_2)}{\Lambda}$
Jan. Feb. Mar. Apr. Mav Jul. Aug. Sep. Oct. Nov.	47.1 130 0 163.4 209.4 224.5	0.40 0.70 0.85 0.80 0.60	0.56 0.56 0.56 0.56 0.56	10 10 10 10 10	0.8 0.8 0.8 0.8 0.8	0.35 0.35 0.35 0.35 0.35	1.00 1.00 1.00 1.00 1.00	12.1 6.0 12.3 0.0 0.0	18.8 91.0 138.9 167.5 134.7	0.035 0.035 0.035 0.035 0.035	199.6 2,516.7 3,748.0 4,959.9 3,988.2
Dec. Total	774.4							30.4	550.9	0.175	15,412.4
								Crop Year	: Others		
Month	ET (mm)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>LE</u>	EP	(ha)	$\frac{R(E)}{(mm)}$	ET(C)	LR	$\frac{(m_1)}{\Lambda}$
Jan. Feb. Mar. Apr. Mav Jun. Jul. Aug. Sep.	85.7 94.2 65.0	0.85 0.80 0.60	0.56 0.56 0.56	10 10 10	0.8 0.8 0.8	0.35 0.35 0.35	1.00 1.00 1.00	9.2 27.4 0.0	72.8 75.4 39.0	0.035 0.035 0.035	1,884.4 1,420.0 1,154.7
Oct. Nov.	102.5	0.40	0.56	10 10	0.8	0.35 0.35	1.00	0.0 7.1	41.0 64.7	0.035 0.035	1,213.9 1,704.8
Dec. Total	92.4 439.8	0.70	0.56	10	0,0	,		43.7	292.9	0.175	7,337.8
ET KC EC (W)	: Crop co	ranspir efficie ic cond	ation (mm/mo nt uctivity of rable electi	month) irrigation w (munbos	ivity	ET (: Irri : Area E) : Eff (C) : Re : Leac	igation i (ha) fective eference thing re	quirement	(mm/mont) apo-trans	piration (mm/month)

of soil saturation extract (mmhos/cm)

V ; Water supply requirement (m3/month)

Table	G-4	Est	timation of	Water Supply	Requi re	ement pe	r Hects		Crop : Dat Year :	tes	
Month	ET (mm)		EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	LE 0.8	EP 0.35	A (ha) 1.00	R(E) (mm) 8.6	ET(C) (mm) 60.0	<u>LR</u> 0.011	V (m ³) 1,484.5 1,133.5
Jan. Feb.	85.7 94.2	0.70 0.70	0.56 0.56	32	0.8	0.35 0.35	1.00 1.00	26.7 6.3	65.9 91.0	0.011 0.011	2,446.8
Mar.	130.0	0.70 0.70	0.56 0.56	32 32	0.B 0.B	0.35	1.00	11.8	114.4 146.6	0.011 0.011	2,963.3 4,234.3
Apr. May	· 163 4 209.4	0.70	0.56	32 32	0.8 0.8	0.35 0.35	1.00	0	157.2	0.011	4,539.7
Jun. Jul.	224.5 226.7	0.70 0.70	0.56 0.56	32	0.8	0.35	1.00 1.00	0 0	158.7 145.0	0.011 0.011	4,584.1 4,189.8
Aug.	207 2	0.70	0.56 0.56	32 32	0.8 0.8	0.35 0.35	1.00	0	122.6	0.011 0.011	3,542.7 3,023.1
Sep. Oct.	175.2 149.5	0.70 0.70	0.56	32	0.8 0.8	0.35 0.35	1.00	0 0	104.7 71.8	0.011	2,072.7
Nov.	102.5 92 4	0.70 0.70	0.56 0.56	32 32	0.8	0.35	1.00	6.7	64.7	0.011	1,674.9
Dec. Total								58.1	1,302.6	0.132	35,889.4
100.12	<u> </u>								Crop : Li Year :	ime	
<u>Month</u>	ET	<u>KC</u>	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>LE</u>	<u>EP</u>	<u>A</u> (ha)	R(E)	ET(C)	LR	$\frac{V}{(m^3)}$
1en	(mm) 85.7	0.50	0.56	8	0.8	0.35	1.00	8.2	42.9 47.1	0.044 0.044	1,035.3 645.4
Jan. Feb.	94.2	0.50	0.56	8 8	8.0 8.0	0.35 0.35	1.00 1.00	25.5 5.4	65.0	0.044	1,780.8
Mar. Apr.	130.0 163.4	0.50 0.50	0.56 0.56	8	0.8	0.35 0.35	1.00	11.1	81.7 104.7	0.044 0.044	2,109.4 3,128.3
May	209.4	0.50 0.50	0.56 0.56	8 8	0.8 0.8	0.35	1.00	0	112.3	0.044 0.044	3,353.9 3,386.7
Jun. Jul.	224.5 226.7	0.50	0.56	8 8	0.8 0.8	0.35 0.35	1.00 1.00	0 0	113.4 103.6	0.044	3,095.4
Aug. Sep.	207.2 175.2	0.50 0.50	0.56 0.56	8	0.8	0.35	1.00	0	87.6 74.8	0.044 0.044	2,617.4 2,233.4
Oct.	149.5	0.50	0.56 0.56	8 8	0.8 0.8	0.35 0.35	1.00 1.00	0	51.3	0.044	1,531.3
Nov. Dec.		0.50 0.50	0.56	8	0.8	0.35	1.00	6.1	46.2	0.044 0.528	1,198.1 2 <u>6,115.4</u>
Total	1,860.7							<u>56.3</u>	930.6	0.328	20,2100
									Crop : Year :	Banan a	
Montl	ı ET	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>le</u>	EP	A (ha)	R(E)	ET(C)	LR	(m ³)
Jan	·	0.90		8	0.8 0.8	0.35 0.35	1.00	9.4 28.3	77.1 84.8	0.044 0.044	2,023.7 1,687.5
Feb Mar	. 94.2	0.90 0.90		8 3	0.8	0.35	1.00	6.3	117.0	0.044	3,307.6 4,026.4
Apr	163.4	0.90	0.56	8 8	0.8 0.8	0.35 0.35	1.00	12.3 0	188.5	0.044	5,630.9
May Jun		0.90 0.90		8	0.8	0.35	1.00	_	202.1 204.0	0.044	6,037.0 6,096.1
Jul	. 226.7	0.90		8 8	0.8 0.8	0.35 0.35		0	186.5	0.044	5,571.8
Au g Sep		0.90	0.56	8	8.0 8.0	0.35 0.35		_	157.7 134.6	0.044 0.044	4,711.3 4,020.2
Oct		0.90		8 8	0.8	0.35	1.00	0	92.3	0.044	2,756.3 2,278.5
No v De c		0.90		8	0.8	0.35	1.00		83.2	0.044	
Tota	1,860.7							63.2	1,674.9	9.020	
٧ =	10 [A(ETC	<u>rop - Ri</u> - LR	<u>E)</u>] (m³	/month)					ng efficie		
ET			piration (m	m/month)			:P :			crency	
KC .	: Crop	coeffi	cient				-		na) ive rainf	all (mm/m	onth)
EC(t	r) : Elec	tric co	nductivity	of irrigation	water os/cm)		ET(C) :				nspiration (mm/month)
MEC	(E) : Maxi	mum tol	erable elec uration ext	trical conduc		1	LR :	Leachi	ing requir	ement	(m³/month)
	01.5	,,,, 36L			-	,	, ,	acci	Dalky) ve		·

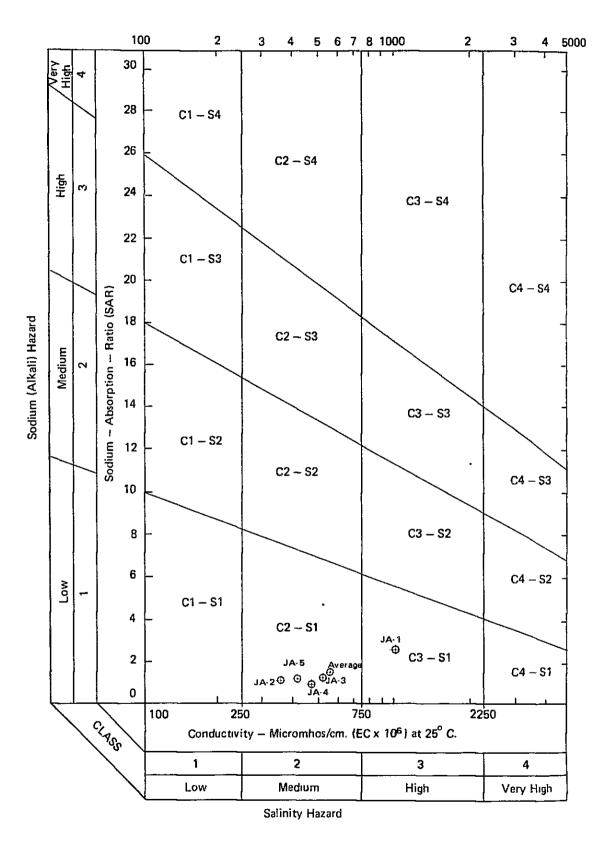
Table	G-5	Es	timation of	Water Suppl	y Requi	rement p	per llect	tare			
									p : Mango ir :		
Honth	<u>ET</u> (和用)	<u>KC</u>	FC(W) (mmho <td>MEC(E) (mmhos/cm)</td> <td>LE</td> <td>EP</td> <td>(ha)</td> <td>R(E) (ma)</td> <td>ET(C)</td> <td>LR</td> <td>V (m3j</td>	MEC(E) (mmhos/cm)	LE	EP	(ha)	R(E) (ma)	ET(C)	LR	V (m3j
Jaп. Feb. Mar.	85.7 94.2 130.0 163.4	0.70 0.70 0.70 0.70	0.56 0.56 0.56 0.56	8 8 8	0.8 0.8 0.8	0.35 0.35 0.35 0.35	1.00 1.00 1.00	8.6 26.7 6.3 11.8	60.0 65.9 91.0 114.4	0.044 0.044 0.044 0.044	1,535.5 1,172.4 2,530.7 3,064.9
Apr. May Jun. Jul. Aug.	209.4 224.5 226.7 207.2	0.70 0.70 0.70 0.70	0.56 0.56 0.56 0.56	8 8 8 8	0.8 0.8 0.8	0.35 0.35 0.35 0.35	1.00 1.00 1.00 1.00	0 0 0 0	146.6 157.2 158.7 145.0	0.044 0.044 0.044	4,379.6 4,695.4 4,741.4 4,333.6
Sep. Oct. Nov. Dec.	175.2 149.5 102.5 92.4	0.70 0.70 0.70 0.70	0.56 0.56 0.56 0.56	8 8 8	0.8 0.8 0.8 0.8	0.35 0.35 0.35 0.35	1.00 1.00 1.00 1.00	0 0 0 6.7	122.6 104.7 71.8 64.7	0.044 0.044 0.044 0.044	3,664.3 3,126.8 2,143.8 1,732.4
Total	1,860.7	0.70						58.1	1,302.6	0.528	37,120.8
									op : Alfai ar :	lfa	
Month	ET (mm)	KC	EC(W) (mmhos/cm)	MEC(E)	<u>LE</u>	EP	(ha)	$\frac{R(E)}{(mm)}$	ET(C)	LR	<u>(m))</u>
Jan. Feb. Mar.	85.7 94.2 130.0 163.4	0.85 0.85 0.85 0.85	0.56 0.56 0.56 0.56	16 16 16 16	0.8 0.8 0.8 0.8	0.35 0.35 0.35 0.35	1.00 1.00 1.00 1.00	9.3 27.8 6.3 12.2	72.8 80.1 110.5 138.9	0.022 0.022 0.022 0.022	1,856.2 1,526.8 3,043.7 3,700.7
Apr. May Jun. Jul.	209.4 224.5 226.7	0.85 0.85 0.85	0.56 0.56 0.56	16 16 16 16	0.8 0.8 0.8 0.8	0.35 0.35 0.35 0.35	1.00 1.00 1.00 1.00	0 0 0	178.0 190.8 192.7 176.1	0.022 6.022 0.022 0.022	5,199.2 5,574.1 5,628.7 5.144.5
Aug. Sep. Oct. Nov.	207.2 175.2 149.5 102.5	0.85 0.85 0.85 0.85	0.56 0.56 0.56 0.56	16 16 16	0.8 0.8 0.8	0.35 0.35 0.35 0.35	1.00 1.00 1.00 1.00	0 0 0 6.9	148.9 127.1 87.1 78.5	0.022 0.022 0.022 0.022	4,350.0 3,711.9 2,545.0 2,092.6
Dec. Total	92.4 1,860.7	0.85	0.56	16	0.0	0.55	•100	62.5	1,581.5	0.264	44,373.4
									rop : Sori	gh um	
Month	ET (mm)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>LE</u>	EP	(ha)	R(E) (mm)	ET(C)	<u>LR</u>	<u>v</u> (= ³)
Jan. Feb. Mar. Apr. May	85.7 94.2 65.0	1.00 0.75 0.60	0.56 0.56 0.56	18 18 18	0.8 0.8 0.8	0.35 0.35 0.35	1.00 1.00 1.00	8.8 27.0 0	85.7 70.7 39.0	1.944 1.944 1,944	2,240.7 1,271.9 1,136.4
Jun. Jul. Aug. Sep. Oct.	74.8	0.35 0.60	0.56 0.56	18 18	0.8 0.8	0.35 0.35	1.00 1.00	0	26.2 61.5	1,944 1,944	762.8 1,792.0
Nov. Dec.	102.5 92.4	1.00	0.56	18	0.8	0.35	1.00	6.B 42.6	92.4 <u>375.5</u>	1,944 11.664	2,494.2 9,698.0
Total	514.6										
V =	EP [ALETC			month)		L! Ei			g efficien ion effici		
ET			oiration (m	n/month)		A	:	Area (1	ha)		
EC(A		coeffic		of irrigation (mmh)	n water os/cm)		T(C):	Referen		/apo-tran:	oth) spiration (mm/month)
HEC (erable elec uration ext	trical condu		L V			g requires upply requ		(m ³ /month)

(Unit: cu.m/ha)

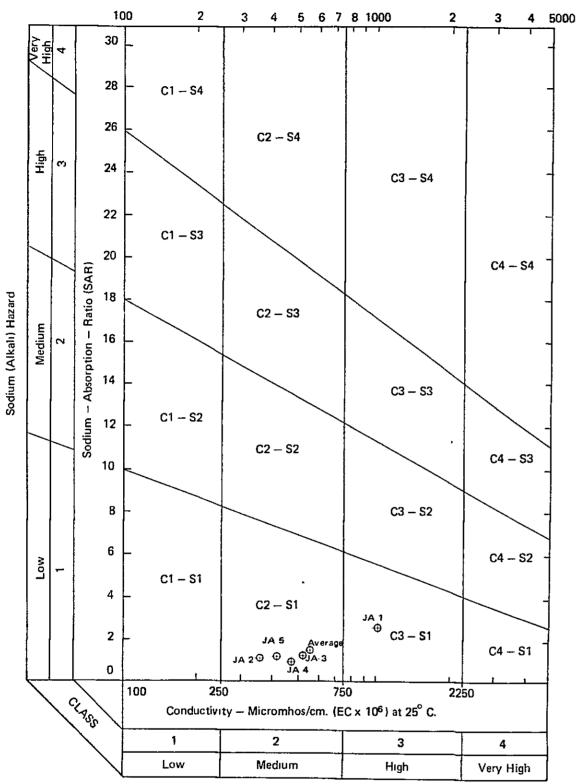
Chical Garile Chical Chi	Feed Crop	Alfalfe Sorghum Average 15.2ha 156.2ha 156.2ha 156.2ha 1556.2 2.240.7 1,981.2 1,526.8 1,271.9 1,444.0 5,092.7 1,136.4 2,423.8 3,700.7 2,498.0 5,199.2 3,509.5 5,574.1 3,762.5 5,628.7 3,700.7 3,700.4 5,1144.5 3,700.4 2,545.0 1,792.0 2,300.3 2,936.3 44,373.4 9,698.0 33,104.0	fa Sorghum Average 264ha 6.2 2,240.7 1,795.1	,526.8 1,271.9 1,154.2 1,043.7 1,136.4 1,868.3 1,700.7 1,136.4 1,868.3 1,853.1 2,516.1 2,5574.1 2,436.8 2,144.5 2,392.2 2,144.5 2,186.4 4,350.0 762.8 1,946.2 2,545.0 1,792.0 2,111.4 2,092.6 2,494.2 2,059.1 4,373.4 9,698.0 24,331.4
and was reported to the property of the proper		Vegetable Vegetable Verage Dates Vegetable Sanana Hango Average Lime Banana Baha Sha Sha	Table G-7 Average Monthly Water Supply Average Upland Crop Upland Crop Upland Crop Orchard Average Onion Garlic Tomato Potato Okra Ulime Banana Mango Average Onion 13.5ha 8.7ha 8.1ha 4.5ha 3.09ha 128ha 8.3ha 5.20ha 5.1ha 5.1	1,484.5 1,035.3 2,023.7 1,535.5 1,538.5 1,100.9 1,710.1 1,400.0 1,926.1 1,349.4 199.6 1,420.0 1,113.7 3,064.9 1,926.1 1,349.4 199.6 1,420.0 1,113.4 3,748.0 2,516.7 1,1154.7 3 2,516.7 1,1154.7 3,748.0 3,748.0 3,748.0 3,748.0 4,959.9 4,959.9 4,959.9 4,959.9 4,959.9 4,959.9 4,959.9 4,958.2 4,958.2 3,962.9 3,962.9 4,959.9 4,958.2 4,958.2 3,988.2 3,988.2 4,958.2 4,958.9 3,988.2 3,988.2 3,988.2 4,958.0 4,958.2 4,958.

Present Consumption of Irrigation Water Table G-8

	7	() ()	Matter Dogwest	Water	W + eV
Classification) ∢ (Application	per Hectare 2/	Appileation	Consumption 4/
	(na) (1)	(2)	(5)	(4)	(5)
1. Dates (1,820 ha)	a)			ä	
Good area	364	3.00	35,889.4	0.16 -	6.27
Moderate area	a 892	0.75	35,889.4	0.16	3.84
Poor area	564	0.35	35,889.4	0.16	1.13
Sub-total	1,820				11.24
2. Orchard (520 ha)	a)				
Good area	104	3.00	33,296.1	0.16	1.66
Moderate area	a 255	0.75	33,296.1	0.16	1.02
Poor area	161	0.35	33,296.1	0.16	0.30
Sub-total	520				2.98
3. Upland Crop (264 ha)	64 ha)				
Good area	53	3.00	24,331.4	1.00	3.87
Moderate area	a 129	0.75	24,331.4	1.00	2.35
Poor area	82	0.35	24,331.4	1.00	0.70
Sub-total	264				6.92
Total	2,604				21.14
Note: $\frac{1}{2}$ Cultiv	Cultivation area x Area percentage See Table G-7	rea percentage			
	Irrigation area rate:		0.16 (3.14 x 1.0 ² /5 x 4) (Dates and orchard)	orchard)	
$\frac{\mu}{4}$ (5) =	(5) = (1)x(2)x(3)x(4)	(Annual water requirement)	requirement]		


Table 6-9 Results of Water Quality Analysis

Sampling site : Sohar


Laboratory : Rumais Agricultural Research Station

Analyzed date: 24/March, 1982

							_
	Total	9.31	3.31	4.76	4.62	3.92	5.18
		0.60 2.80 4.25 1.66 9.31	0.16	2.30 1.80 0.66	0.60 2.30 1.30 0.42	0.42	0.55 2.14 1.94 0.66 5.18
•	s, те/ С1	4.25	1.10	1.80	1.30	1.25	1.94
	Anions, me/k HCO ₃ Cl SO ₄	2.80	0.60 1.45 1.10 0.16	2.30	2.30	0.40 1.85 1.25 0.42	2.14
	8	09.0	09°0	ı	09.0	0.40	0.55
	S.A.R.	2.70	1.05	1.23	0.97	1.05	1.40
	Total	99.6	3.73	4.82	5.02	4.47	5.54
	e/ % Mg	4.10	2.50	2.80	3.45	2.90	
	K Ca Mg	1.10	ţ	0.40	0.20	0.20	0.38
	K	4.35 0.11 1.10 4.10	90.0	1.55 0.07 0.40 2.80	1.30 0.07 0.20 3.45	1.30 0.07 0.20 2.90	1.93 0.08 0.38 3.15
	Na	4.35	1.17 0.06	1.55	1.30	1.30	1.93
	T.S.S.	643.8	234.9	331.5	313.2	264.5	357.6
EC.	umhos/cm at 25°C	1,005.9	367.0	518.0	489.4	413.3	558.7
	품	7.0	7.4	7.6	7.7	7.5	7.4
	Sample	JA-1	JA-2	JA-3	JA-4	JA-5	Average 7.4

Source: Agricultural Handbook 60, U.S. Dept. of Agriculture

Salinity Hazard

Source: Agricultural Handbook 60, U.S. Dept. of Agriculture

Appendix G-2 Page 2

Class

Salinity of Conductivity

Sodium-Absorption Ratio

Low 1 Low-Salimty Water (C1) can be used for irrigation with most crops on most soils with little likelihood that soil salinity will develop. Some leaching is required, but this occurs under normal irrigation practices except in soils of extremely low permeability.

Low-Sodium Water (S1) can be used for irrigation on almost all soils with little danger of the development of harmful levels of exchangeable sodium. However, sodium-sensitive crops such as stone-fruit trees and avocados may accumulate injurious concentrations of sodium

Medium

Medium-Sahnti Water (C2) can be used if a moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control

Medium-Sodium Water (S2) will present an appreciable sodium hazard in fine-textured soils having high cation-exchange capacity, especially under low-leaching conditions, unless gypsum is present in the soil. This water may be used on coarse-textured or organic soils with good permeability

High 3 High-Salimity Water (C3) cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected.

High-Sodium (S3) may produce harmful levels of exchangeable sodium in most soils and will require special soil management—good drainage, high leaching, and organic matter additions. Gypsiferous soils may not develop harmful levels of exchangeable sodium from such waters. Chemical amendments may be required for replacement of exchangeable sodium. except that amendments may not be feasible with waters of very high salinity.

Very High

Very High Salinity Water (C4) is not suitable for irrigation under ordinary conditions, but may be used occasionally under very special circumstances. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching, and very salt-tolerant crops should be selected

Very High Sodium Water (S4) is generally unsatisfactory for irrigation purposes except at low and perhaps medium salinity, where the solution of calcium from the soil or use of gypsum or other amendments may make the use of these waters feasible.

FIGURE G - 2 DIAGRAM FOR CLASSIFICATION OF IRRIGATION WATER

Estimation of Reference Crop Potential Evapo-transpiration(ETPc)

1. Modified Penman Method 1/

Penman has made the most complete theoretical approach, showing that consumptive use is inseparably connected to incoming solar energy.

His formula representing the potential evapo-transpiration (consumptive use) is as follows in the modified form:

Etp =
$$\frac{\Delta}{\Delta + \gamma}$$
 (Rn + G) + $\frac{\gamma}{\Delta + \gamma}$ 15.36 (w₁ + w₂u₂) (es - ea) (7.1)

where Etp = reference crop potential evapo-transpiration, wellwatered alfalfa in cal/cm² per day (langleys/day)

 Δ = slope of saturation vapor pressure-temperature curve (de/dT) in mbar/°C

 γ = psychrometric constant

Rn = net radiation in cal/cm² per day

G = soil heat flux in cal/cm² per day

 u_2 = wind movement in km/day at 2 m

es = saturation vapor pressure, mean of values obtained at daily maximum and daily minimum temperatures in mbar (This is a modification of the original Penman equation.)

ea = mean actual vapor pressure in mbar

w₁, w₂ = wind term coefficients, some empirically determined
 values are:

W 1	W2	Location	Reference Crop
1.10	0.0106	Mitchell, Nebraska	alfalfa
0.75	0.0115	Kimberly, Ibaho	alfalfa
1.00	0.0062	Penman	short grass

$$\gamma = cp_{(0.622\lambda)}$$
 (7.2)

where cp = 0.240

$$\lambda$$
 = latent heat of water in cal/g; estimated by λ = 595.9 - 0.55 T, T in °C (7.4)

^{1/} quoted from the Book of "Irrigation Principals and Practices"
 written by O.W. Israelsen and V.E. Hansen

$$\Delta = 33.86 [0.05904 (0.00738T + 0.8072)^7 - 0.0000342]$$
 (7.5)
for $T \ge 23^{\circ}C$, $\Delta = 10 \text{ mbar/}^{\circ}C$

$$Rn = 0.77 Rs - Rb$$
 (7.6)

where Rs = incident solar radiation in cal/cm² per day.

The 0.77 value is obtained by assuming a reflectivity of 0.23 for a green growing crop.

$$Rb = Rbo [(aRs/Rso) + b]$$
 (7.7)

where Rso = clear day solar radiation in langleys/day. If actual records are not available, Rso values may be estimated from Table G-12.

a,b = empirical constants, see table following equation 7.8.

Rbo =
$$(a_1 + b_1 \sqrt{ea}) 11.71 \times 10^{-8} (Ta^4 + Tb^4)/2$$
 (7.8)

where a_1 , b_1 = empirical constants, see following table

ea = mean actual vapor pressure in mbar

Ta = maximum daily temperature in °K

Tb = minimum daily temperature in °K

Values of a, b, a_1 and b_1 have been determined for various locations as:

a	<u>b</u>	aı	<u>b</u> 1	Location
0.90	0.10	0.37	-0.044	Mitchell, Nebraska ¹ /
1.35	-0.35	0.35	-0.046	Davis, California
1.22	-0.18	0.33	-0.044	Kimberly, Idaho
1,20	-0.20			Arid regions (suggested)
1.10	-0.10			Semihumid (suggested)
1.00	0.00			humid (suggested)
		0.39	-0.05	general

^{1/} The reported w₁, w₂, a, b, a₁, and b₁, valued for Mitchell, Neb. are adapted from Scheduling Irrigations Using a Programmable Calculator, D. C. Kincaid and D. F. Heerman, U.S.D.A., ARS-NC-12, February 1974. Reported values for other locations are adapted from the A.S.C.E. report.

An empirical equation for estimating the soil heat flux is:

$$G = [\overline{T}pr - \overline{T}] 9.1 \tag{7.9}$$

where $\overline{T}pr$ = mean air temperature for a previous time period, usually the previous three days when daily estimates of Etp are required

T = mean air temperature for the current time period, i.e. mean air temperature of the particula; day for which Etp is required.

Estimation of ETPc

Reference crop potential evapo-transpiration (ETPc) is estimated by applying the above mentioned method, based upon the observed meteorological data at Sohar and Rustaq Meteorological Stations, and the results are tabulated in Table G-10.

2. Modified Blaney - Criddle Method

Blaney - Criddle developed a simplified formula using temperature and daytime hours for the arid region as shown belows;

$$U = 25.4 \text{ K} \cdot \text{f}$$
 (7.10)

where;

U = Consumptive use of crop, in mm

K = Monthly crop coefficient

 $= Kc \times Kt$

Kc = Monthly crop coefficient

Kt = Climatic coefficient

= 0.0173t - 0.314

t = Mean air temperature, in °F

f = Monthly consumptive use factor

 $= (t \times p)/100$

p = Percentage of daytime hours of the year, see Table G-21.

Table G-21 shows the estimated consumptive use of crop by applying the Blaney - Criddle Method.

Estimation of Reference Crop Potential Evapo-transpiration (Modified Penman Method) G-10 Table

MSL	
Ħ	
0	١
13	ĺ
	١
ion	۱
vat	١
Ele	١

	U ₂		Rs	es	e	ŀ₩	Tmax	Tmin	ы	ETPc
	(km/day)	(langleys/day) (cal/cm ² /day) (mbar)	(cal/cm²/day)	(mbar)	(mbar)	(0,0)	(3)	(0,)	(mm/day)	(mm/month)
Jan.	57.0	461	346	22.1	14.4	17.7	24.2	11.9	2.4	74.4
Feb.	61.8	009	375	23.0	15.4	18.8	24.7	12.9	3.2	9.68
Mar.	67.8	632	4 52	28.3	16.9	21.7	28.5	15.4	3.9	120.9
Apr.	72.1	720	5 35	35.6	17.0	25.9	33.1	18.4	4.9	147.0
May	76.5	740	576	46.2	24.0	30.3	37.9	22.0	5.7	176.7
Jun.	78.8	777	588	50.8	30.0	32.1	38.7	25.6	6.3	189.0
Jul.	90.1	743	533	50.7	37.4	32.2	37.6	27.4	6.0	186.0
Aug.	88.8	702	521	47.6	30.8	31.2	36.3	26.6	5.5	170.5
Sep.	75.6	. 663	205	43.5	27.3	28.4	35.6	23.4	5.1	153.0
Oct.	60.1	266	455	37.2	22.8	26.2	33.8	18.8	4.1	127.1
No v.	51.3	493	341	29.4	19.3	21.9	29.6	15.2	2.7	81.0
Dec.	45.8	430	345	24.6	17.3	19.6	26.1	13.4	2.4	74.4
Average	68.8	627	463	35.6	22.7	25.5	32.2	19.3	4.35	1,589.6

Wind velocity at 2 m above ground (Sohar Station, 1974 - 1980), see Table G-11. U2 RSO RS es ea Note;

Clear day solar radiation, see Table G-12 Solar radiation (Rustaq Station, 1974 - 1981), see Table G-13.

Saturation Vapor Pressure, see Table G-15.

Actual Vapor Pressure, see Table G-16.

Mean temperature (Sohar Station, 1974 - 1980), see Table G-18.

Mean maximum temperature (Sohar Station, 1974 - 1980), see G-19. Mean minimum temperature (Sohar Station, 1974 - 1980), sec G-20. Tmax Tmin

	day)	Average		72.9	9.69	60.4	65.5	70.6	74.4		68.8
	(unit : Km/day)	Dec.	54.7	42.8	45.0	40.5	46.8	46.3	53.5		45.8
	(un	Nov.	54.0	48.3	52.3	46.0	50.5	60.5	49.9		51.3
		Oct.	9.09	57.6	9.69	55.4	60.09	61.8	62.9		60.1
;y <u>1</u> /		Sep.	ı	79.9	65.8	80.8	65.1	81.6	9.62	76.4	75.6
Monthly Average Wind Velocity $\overline{1}/$		Aug.	ı	92.5	86.1	84.5	91.7	87.1	85.5	94.0	88.8
ge Wind		Jul.	ı	81.6	106.3	71.7	96.3	92.1	95.0	87.9	90.1
Averag		Jun.	;	93.4	71.2	62.0	94.0	75.2	0.06	62.9	78.8
Monthly		May	1	87.3	78.8	57.7	79.1	76.5	76.5	79.3	76.5
		Apr.	,	85.6	9.69	57.3	61.1	78.6	78.3	74.2	72.1
G-11		Mar.	1	9.09	80.1	61.8	44.0	68.7	86.1	73.5	67.8
Table G-11		Feb.	ı	75.5	62.0	8.09	47.8	61.7	69.5	55.2	61.8
		Jan.	ı	69.5	58.4	46.5	49.9	56.7	63.2	54.1	57.0
		Year	1973	1974	1975	1976	1977	1978	1979	1980	Average

Source : Sohar Meteorological Station

1/: 2m height about ground

Table G-12 Clear Day Solar Radiation (Rso)

	Rso (N24°20')	743 702 663 566 493	430
leys/day)	R25 (N25)	745 703 660 561 486	423
(Unit: langleys/day	R20 (N20)	729 697 680 597 537	474
	Month	Jul. Aug. Sep. Oct.	Dec.
	Rso (N24°20')	461 600 632 720 740	777
24°20'	R2 5 (N25)	455 595 629 720	780
Latitude : 24	R20 (N20)	500 634 652 720	, 760
	Month	Jan. Feb. Mar. Apr.	Jun.

Note; R20 and R25 are referred to Table G-14.

Table G-13 Solar Radiation (Rs) (Unit: cal/cm²/day)

Dec.	325	337	328	1	1	388.5	1	1	345
Nov.	396	371	389	ı	314	235.5	1	ı	341
Oct.	469	(440)	1	ı	:	1	t	1	455
Sep.	1	505	,	,	,	1	1	1	505
Aug.	1	207	535	1	ţ	ı	t	,	521
Jul.	1	543	523	1	•	ı	1	ı	533
Jun.	1	577	•	598	1	ı	1	1	588
May	1	595	ı	557		ı	ı	ı	576
Apr.	,	531	554	521	J	ı	ı	ι	535
Mar.	1	526	,	496	,	345.3	ı	361.5	432
Feb.	1	410	1	417	1	353.9	ı	320	375
Jan.	1	323	329	349	ı	354	1	1	346
Year	1974	1975	1976	1977	1978	1979	1980	1981	Average

Source; Rustaq Meteorological Station

Table G-14 Total Daily Solar Radiation at the Top of the Atmosphare

Ć	Dec.	35	74	126	190	248	313	371	423	474	519	265	909	619	677	710	739	761	777	793	806	813	813	806	794	787
lays/day	Nov.	87	133	193	260	323	380	437	486	537	580	617	650	089	727	727	747	753	767	167	167	760	747	727	707	200
(Unit: langlays/day)	Oct.	197	252	313	371	426	474	519	561	297	623	648	999	684	069	069	687	677	665	648	629	603	571	535	497	455
(Uni	Sep.	377	430	480	527	267	603	637	099	089	697	707	710	707	693	680	657	630	009	267	530	477	447	400	343	283
	Aug.	539	577	919	648	674	269	703	703	269	684	665	645	623	290	558	519	481	439	390	342	290	235	177	123	74
	Jul.	069	206	729	748	755	761	755	745	729	206	681	645	616	577	526	497	445	406	358	310	261	203	148	97	52
	Jun,	763	780	790	797	800	800	793	780	260	733	700	663	627	587	543	497	447	400	353	300	243	183	127	77	33
	May	671	069	716	729	742	742	742	742	726	206	684	652	623	590	571	516	474	419	384	335	281	229	174	123	77
	Apr.	533	558	617	650	229	200	713	720	720	713	707	200	680	663	640	610	573	533	497	453	407	357	307	250	187
	Mar.	319	377	429	477	529	268	009	629	652	671	681	069	694	069	681	999	645	979	009	268	529	490	445	397	348
	Feb.	152	219	290	365	432	496	549	595	634	673	701	722	740	758	772	279	779	779	772	754	729	704	699	630	588
	Jan.	58	100	155	216	284	345	403	455	200	545	584	623	652	648	710	729	748	761	171	774	774	774	761	748	729
Latitude	N _o	9	55	50	45	40	35	30	25	20	15	10	ល	0	5,	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	-60

values obtained temperature in mbar	emax.+ emin. (cs - ea)	(mbar) (mbar)	22.1	23.0 7.6	28.3 11.4	35.6 18.6	46.2 22.2	50.8 20.8	50.7 13.3	47.6 16.8	43.5 16.2	37.2 14.4	29.4 10.1	24.6 7.3
mean values obtained inimum temperature in	es=													
ssure, daily mi	emin.	(mbar)	13.9	14.9	17.5	21.2	26.4	32.8	36.5	34.9	28.8	21.7	17.2	15.4
Saturation Vapor Pressure, mean at daily maxmum and daily minimum	ешах.	(mbar)	30.2	31.1	39.0	50.6	62.9	68.8	64.9	60.4	58.1	52.6	41.5	33.8
uration daily ma	Min.2/ Tem.	(0,)	11.9	12.9	15.4	18.4	22.0	25.6	27.4	26.6	23.4	18.8	15.2	13.4
es: Sat at	$Max, \frac{2}{2}$.	(°C)	24.2	24.7	28.5	33.1	37.9	38.7	37.6	36.3	35.6	33.8	29.6	26.1
ea: Mean	Actual Vapor 1/ Pressure	(mbar)	14.4	15.4	16.9	17.0	24.0	30.0	37.4	30.8	27.3	22.8	19.3	17.3
	Month		Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.

Note: 1/: Observed at Rustaq Station (1974-1981), see Table G-16. $\underline{2}/:$ Observed at Sohar Station (1974-1980), see Table G-19. emax. and emin. are computed with using Table G-17.

Table G-16 Actual Vapor Pressure (ea)

(Unit: mbar)

Dec.	16.0	18.0	20.0	18.7	ı	15.7	15.6	ı	17.3
Nov.	17.7	16.8	24.0	25.9	19.4	14.7	16.4	t	19.3
Oct.	15.3	1	32.0	31.8	23.9		18.0	1	22.8
Sep.	ı	22.6	31.0	32.8	32.0	19.7	25.9	ı	27.3
Aug.	ι	28.5	26.7	33.2	29.0	41.2	25.9	1	30.8
Jul.	1	33.7	ı	35.6	37.9	47.1	32.8	1	37.4
Jun.	13.6	22.8	44.5	28.6	36.2	34.5	1	1	30.0
May	14.3	24.7	1	22.7	41.1	17.2	1	1	24.0
Apr.	11.5	20.8	ı	17.6	25.6	14.0	12.9	1	17.0
Mar.	12.5	16.6	1	16.0	20.3		18.8	17.8	16.9
Feb.	ı	14.4	,	13.6	19.1	13.9	16.2	15.1	15.4
Jan.	t	13.7	ı	15.0	16.2	14.1	13.1	14.0	14.4
		•							t
Year	1974	1975	1976	1977	1978	1979	1980	1981	Average

Source; Rustaq Meteorological Station

Table G-17 Saturation Vapor Pressure

(Unit: mbar)

T	Saturation	Tomponeturo	Saturation
Temperature (°C)	Vapour Pressure (mbar)	Temperature (°C)	Vapur Pressure (mbar)
0	6.1	20	23.4
1	6.6	21	24.9
2	7.1	22	26.4
3	7.6	23	28.1
4	8.1	24	29.8
5	8.7	25	31.7
6	9.3	26	33.6
7	10.0	27	35.7
8	10.7	28	37.8
9	11.5	29	40.1
10	12.3	30	42.4
11	13.1	31	44.9
12	14.0	32	47.6
13	15.0	33	50.3
14	16.1	34	53.2
15	17.0	35	56.2
16	18.2	36	59.4
17	19.4	. 37	62.8
18	20.6	38	66.3
19	22.0	39	69.9

Table G-18 Monthly Average Air Temperature

(Unit: °C)

Year	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1974	17.0	17.3	23.1	25.4	30.3	33.3	33.1	31.7	30.4	24.5	20.9	18.7	25 .5
1975	17.3	18.3	21.4	25.4	31.5	33.2	31.2	31.1	23.2	26.3	22.1	19.2	25.0
1976	17.6	19.4	20.9	23.8	30.6	31.6	32.7	31.9	29.6	27.6	21.1	18.8	25.5
1977	17.6	18.0	22,2	25.2	30.4	31.6	31.7	30.6	28.9	26.1	23.0	21.0	25.5
1978	18.4	18.7	20.5	26.7	29.4	31.8	32.6	31.3	28.5	25.2	23.4	19.8	25.5
1979	18.2	19.7	21.7	26.8	28.3	30.6	30.8	31.1	29.3	27.3	20.9	20.0	25 .4
1980	18.0	19.9	22.3	28.3	31.5	32.3	33.2	30.9	29.4	-	-	-	
Average	17.7	18.8	21.7	25.9	30.3	32.1	32.2	31.2	28.4	26.2	21.9	19.6	

Table G-19 Monthly Maximum Mean Air Temperature

(Unit: °C)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1974	24.4	23.9	30.0	33.1	38.1	40.4	41.2	37.1	36.4	33.8	29.6	25.6	32.8
1975	23.9	24.0	28.1	32.2	38.8	39.2	35.1	35.2	36.2	33.5	28.9	26.2	32.6
1976	24.3	23.2	25.8	30.2	36.D	38.4	37.0	37.4	35.8	33.8	28.4	25.5	31.3
1977	22.7	24.6	30.0	30.5	38.0	37.4	35.6	35.1	34.8	32.8	29.1	27.9	31.5
1978	25.3	24.5	28.9	33.9	37.2	38.4	37.9	36.0	34.1	34.0	30.7	27.0	32.3
1979	24.7	27.5	28.1	34.7	37.6	38.0	37.4	37.1	36.3	35.0	30.6	24.2	32.6
1980	24.4	25.4	28.7	37.1	39.6	38.8	38.9	36.2	35.5	•	•	-	
Average	24.2	24.7	28.5	33.1	37.9	38.7	<u>37.6</u>	36.3	35.6	33.8	29.6	26.1	

Table G-20 Monthly Minimum Mean Air Temperature

(Unit: "C)

Year	Jan.	<u>Feb.</u>	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1974	12.1	12.8	17.3	18.0	23.0	25.2	26.2	26.9	24.6	16.8	14.0	12.9	19.2
1975	12.2	13.8	14.5	18.0	23.3	25.7	28.1	27.4	23.2	18.7	15.2	12.9	19.4
1976	10.8	13.6	16.4	16.9	20.9	24,7	24.7	27.1	23.9	20.8	14.6	12.8	18.9
1977	12.9	11.1	14.8	18.6	23.3	25.6	31.0	26.1	23.0	19.4	16.9	14.1	19.7
1978	11.4	12.9	13.3	20.4	20.5	25.1	28.1	26.8	22.5	16.8	16.8	13.4	19.0
1979	12.1	11.7	15.2	17.2	20.5	27.6	26.4	25.2	23.0	20.1	13.9	14.2	18.9
1980	11.8	14.3	16.1	19.4	22.4	25.7	27.5	26.4	23.5	-	•	-	
Average	11.9	12.9	15.4	18.4	22.0	25,6	27.4	26.6	<u>23.4</u>	18.8	<u>15.2</u>	13.4	

Source ; Sohar Meteorological Station

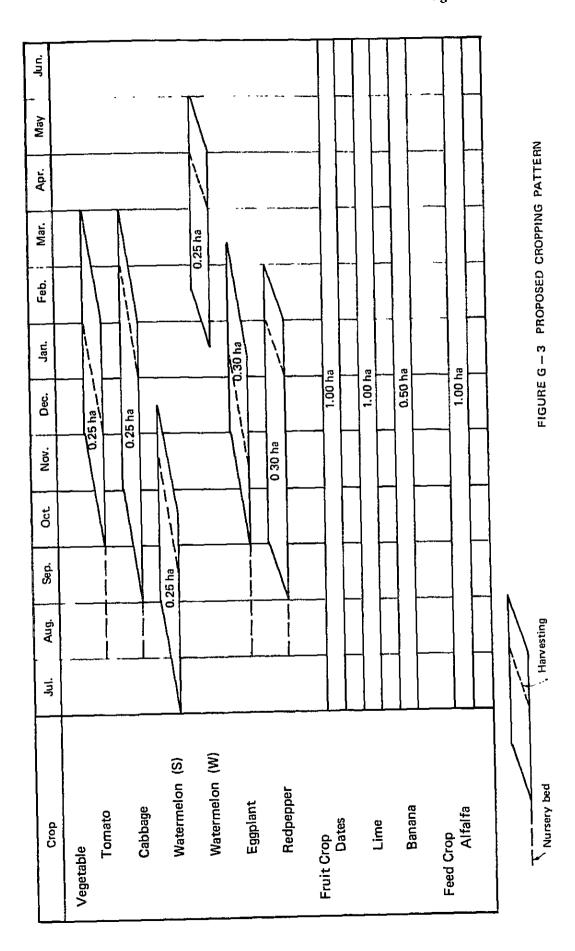
2,130.9

124.0 110.3

98.7 138.6 179.7 242.1 260.0 267.4 243.8 197.4 171.9

97.0

2. Consumptive Use of Crop ETcrop (mm/month) $\frac{3}{4}$


- Criddle Method)
(Modified Blanev
Evapo-transpiration
ديس
Estimation o
G-21
Tah le

Average		25.5	8.16
Dec.		19.9	7.45
Nov. Dec.		21.9 19.9	39 8.60 9.31 9.20 9.42 8.99 8.32 8.10 7.42 7.45
Oct.		26.2	8.10
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct.		17.7 18.8 21.7 25.9 30.3 32.1 32.2 31.2 28.4 26.2	8.32
Aug.		31.2	8.99
Jul.		32.2	9.42
Jun.		32.1	9.20
Мау		30.3	9.31
Apr.		25.9	8.60
Mar.		21.7	ထ ံ
Feb.		18.8	7.56 7.15
Jan.		17.7	7.56
Item	1. Climate Element	Mean Temperature, $T({}^{\circ}C)^{\frac{1}{2}}/$	Percentage of daytime hour $(\%) \frac{2}{}$

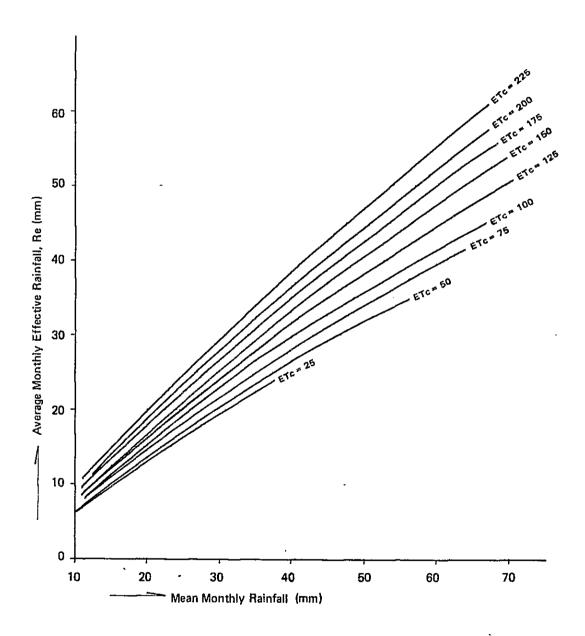
Monthly average for the periods of January 1974 - September 1980 : ; ;; !\delta : Note;

Percentage of daytime hour: N 24° 20'

Monthly crop coefficient is assumed to be Kc = 1.0

(unit. num)

Table G-22


	l les	[eu		m									O	52			ET(C): Reference Grop	Evapo-transpiration (mm/month)		Errective Kaintall (mm/month)	1 4 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Rainfall (mm/month)	= R(E) x 1.04	1.04: Correction factor		Soll moisture (35%) x Cultivation denth	(400mm) = 130mm,	so, correction factor is 1.04		
	RER	9.2	27.1	6,3		,	•	,	,	•	0	0	7.0	49 6		••	Refer						= R(E	Corre	Por	Culti	(400m	15 1.04		
	R(E)	8.8	26.1	6.1	1	•	٠	•	•	٠	0	0	6.7	47.7	,	Remarks:	ET(C):		į	(2) x	000			1.0						
	ET(C)	69.4	74.4	75.4	•	•	•	•	•	,	149.5	41.0	64.7	474.4	,	æ														
i	RER	8.8	26.1		ı	٠	•	•	•	0	0	0	7.0	41.9			RER		23.9	6.4	13.3	0	,	1	1	•	•	•	•	43.6
Cabbage	C) R(E)	8.5	25.1	,	•			1		0	0	0	6.7	40.3	,		C) R(E)		23.0	6.2	12.8	0			,				•	42.0
Ü	ET(C)	67.7	54.6	ı	ı	,	ı	ı	,	175.2	59.8	71.8	74.8	503.9	;	rater Meion (Hinter)	ET(C)	,	22.1	83.2	134.0	150.8	•	,		1	ı			390.1
	띪	8.3					1	٠	0	0	0	0	7.0	15.3 5	:	Heron.	RER	8.3	26.4	6.3	11.8 1	-	ı	,	1	,	1			52.8 3
	C) R(E)	8.0	,	,		ı	ı	1	0	0	0	0	6.7	14.7	3	Vaniato	R(E)	8.0	25.4	6.1	11.3	•	ı	,			,	,		50.8
	ET(C)	49.7	1				1	ı	207.2	70.1	104.7	83.0	73.0	587.7		Early	ET(C) 1	20.2	60.3	106.6	117.7	•	,	ı	1	1	1		,	304.8 5
	RER	8.6	29.0	6.3		1			25		0 10	8 0	6.1 7	50.0 58) 	RER	- 2		01 -	- 11	,	,	1		_	_	_	6.0	6.0 30
		8.3	27.9 2	6.1	,		,	,	,				5.9	48.2 50		200						,				٥	0	0	6.7 6	6.7 6
	C) R(E)						,				5.0	.5				Jate Variety	R(E)						·		·	1 0	9	0 0		
1	H	4 61.7	2 96.1	107.9	Ţ		•	•		•	149.5	102.5	0 42.5	5 560.2	7		H	,	'	•	•	•	•	•	1	91.1	116.6	80.0	32.3	320.0
	A B	9.4	27.12	'	•	٠	•	1	•	0	0	0	7.0	43.6	,	riot v	E E	1	•	•	•	1	•	•	0	0	0	0	•	0
Tomato	C) R(E)	0.6	20.2	1	•	•	•	1	'	0	0	0	6.7	41.9	Water Halos (Common)	Medium Variety	R(E)	•	,	1	•	1	,	,	0	0	0	0	;	0
	ET(C)	87.4	78.2	•	•		•	4	•	175.2	149.5	47.2	66.5	604.0	Wa + 0%	Mer	ET(C)	1	1		•	1	1	•	107.7	136.7	116.6	35.8	,	396.8
	E E	9,3	1	,	•	•	•	1	0	0	0	0	6.9	16.2		12	RER	•	٠		•	,	ı	0	0	0	0	,	•	0
į	(C) R(E)	8,9	•	1	•	•		•	0	٥	0	0	9.9	15.5		Early Variety	R(E)	ı	٠	•	•		٠	0	0	0	0	1	1	0
	ET(C)	1.17	•	1	,	1	•	1	207.2	175.2	8.89	73.8	94.2	690.3		Earl	ET(C)	•	•	i	ı		1	117.9	9.191	136.7	52.4	,		468.6
	Rainfall	12.7	37.1	8.	14.8	2.9	0	0.5	8.0	0	5.6	2.4	8.6	95.4			Rainfall	12.7	37.1	89 89	14.8	2.9	0	0.5	9.0	0	5.6	2.4	9.8	95.4
	Month	Jan	leb	Har.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total			Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total

Note: Effective rainfall, R(E) is derived from ligure G-4. Rainfall less than 8mm is decided to be no effective rainfall (zero).

1	
į	

1	REA	8.8	10.1		1	1	,	1	1	0	0	0	7.0	1.9												•			
	RE	8.5				ŧ		١.		0	0	0	6.7	40.3 4															
Jer.	ETIC	67.7	54,1	1	,	•	,	,	,	175.2	59.8	71.8	74.8	503.9															
Rednepper	RER	8.3	,	١	,	1	ı	ı	0	0	0	0	7.0	15.3		RER	9.3	27.8	6.3	12.2	0	0	0	0	0	0	0	6.9	62.5
	RE	8.0		ı	,	•	•	•	0	0	0	0	6.7	14.7	1 fa	R(E)	8.9	26.7	6.1	11.7	0	0	0	0	0	0	0	9.9	0.09
	11011	49.7	•	ı		ı	ı	ı	207.2	70.1	104.7	83.0	73.0	587.7	Alfa	ET(C) R(E	72.8	80.1	110.5	138.9	178.0	190.8	192.7	176.1	148.9	127.1	87.1	78.5	,581.5
	RER	9.0	a 1,	5.3	•	1	•	ı	ı	ı	٥	0	6.9	48.2		RER	9.4	28.3	6.3	12.3	0	0	0	0	0	0	0	6.9	63.21
	RE	8.7	40.0	5.1	,	1	•	•	,		0	0	9.9	46.4	Вапапа	R(E)	0.6	27.2	6.1	11.8	0	0	0	0	0	0	0	9.9	60.7
	ET(C)	9.89	9 (62.4	١	1	ı	ı	1	•	149.5	102.5	44.35	498.9		1.	77.1	84.8	117.0	147.1	188.5	202.1	204.0	186.5	157.7	134.6	92.3	83.2	66.31,674.9
		8.7	4.00	١	•		•	1	1	0	0	a	7.0	41.3		EE.	8.2	25.5	5.4	11.1	0	0	0	0	0	٥	0	6.1	56.31
Eggplant	R(E)	8.4	74.4	•	•	•	•	•	٠	0	0	0	6.7	39.5	Line	R(E)	7.9	24.5	5.2	10.7	0	0	0	0	0	0	0	5.9	54.2
ij	ET(C)	65.1	44	1	1		•		ı	175.2	149.5	49.2	73.9	558.1		ET(C)	42.9	47.1	65.0	81.7	104.7	112.3	113.4	103.6	87.6	74.8	51.3	46.2	930.6
	CC RER	8.2	,	ı	1)	1	,	0	0	O	0	7.0	15,2		RER	8.6	26.7	6.3	11.8	0	0	o	0	O	0	0	7.0	60.4
	R(E)	7.9	٠	,	ı	•	•	•	0	0	0	0	6.7	14.6	Date	R(E)	8.3	25.7	6.1	11.3	0	0	0	0	0	٥	0	6.7	58.1
	ET(C) R(E) R	41.1	1	1	•	•	•	•	207.2	175.2	71.8	82.0	70.2	647.5		· ET(C)	60.0	62.9	91.0	114.4	146.6	157.2	158.7	145.0	122.6	104.7	71.8	64.7	1,302.6
	Rainfall	12.7	7.70	8.8	14.8	2.9	0	0.5	8.0	0	5.6	2,4	8.6	95.4															95.4
	Month	Jan.) el.,	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total		Month	Jan.	Feb.	Mar.	Apr.	Hay	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total

FIGURE $\,G-4\,$ AVERAGE MONTHLY EFFECTIVE RAINFALL AS RELATED TO AVERAGE MONTHLY ET CROP AND MEAN MONTHLY RAINFALL

Source: Crop Water Requirement, FAO Irrigation and Drainage paper, No.24, Table 34

Table	G= 24		Estimation o	f Water Supp	ly Requ	ıi rement	per llec	ctare			
					. ,					Tomato (Early Variety)
Montl	ET (mm)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	_LE_	EP	A (ha)	R(E)	Year : ET(C) (mm)	LR	
Jan. Feb Mar. Apr. Hay. Jun. Jul.	85 7	0.83	0.56	13	0.8	0.81	1.00	9.3	71.1	0.027	784.5
Aug Sep. Oct. Nov.	207 2 175 2 149 5 102 5	1.00 1.00 0.46 0.72	0.56 0.56 0.56 0.56	13 13 13 13	0.8 0.8 0.8	0.81 0.81 0.81 0.81	0.10 0.10 1.00 1.00	0 0 0	207.2 175.2 68.8 73.8	0.027 0.027 0.027 0.027	262.9 222.3 872.5 936.3
Dec.	92 4	1.02	0.56	13	0.8	0.81	1.00	6.9	94.2	0.027	1,108.2
Tota)	812 5							16.2	690.3		4,186.7
									Crop : Year :	Tomato (i	Medium Variety)
Honth	ET T	_KC_	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>LE</u>	EP	A (ha)	R(E)	ET(C)	<u>lr</u>	$\frac{V}{(\overline{m}^3)}$
Jan Feb Mar Apr. May Jun Jul	8'.7 91.2	1.02 0.83	0.56 0.56	13 13	0.8	0.81 0.81	1.00	9.4 27.2	87.4 78.2	0.027 0.027	989.8 646.9
Aug. Sep. Oct. Nov Dec. Total	175.2 149.5 102.5 92.4 69 5	1.00 1.00 0.46 0.72	0.56 0.56 0.56 0.56	13 13 13 13	0.8 0.8 0.8 0.8	0.81 0.81 0.81 0.81	0.10 0.10 1.00 1.00	0 0 0 7.0 43.6	175.2 149.5 47.2 66.5	0.027 0.027 0.027 0.027	222.3 189.7 598.2 755.2 3,402.1
									Crop : Year :	Tomato (Late Variety)
<u>Hon th</u>	(m ^r)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	_LE_	EP	A (hB)	R(E)	ET(C)	LR	<u>v</u> (m ³)
Jan. Feb. Mar. Apr. May Jun. Jul. Aug.	8°.7 91.2 13°0	0.72 1.02 0.83	0.56 0.56 0.56	13 13 13	0.8 0.8 0.8	0.81 0.81 0.81	1.00 1.00 1.00	8.6 29.0 6.3	61.7 96.1 107.9	0.027 0.027 0.027	673.7 851.1 1,289.0
Sep. Oct. Nov. Dec.	149.5 102.5 92.4	1.00 1.00 0.46	0.56 0.56 0.56	13 13 13	0.8 0.8 0.8	0.81 0.81 0.81	0.10 0.10 1.00	0 0 6.1	149.5 102.5 42.5	0.027 0.027 0.027	189.7 130.0 461.9
Total	651.3							50.0	560.2		3,595.4
	•••		<u>RE)</u>] (m³						hing requ		ent (m³/month)
KC	: Стор со	efficie		nth) f irrigation	water	(mmhos/			- anhhil	- o year t CH	Car y more than

MFC(E) · Maximum tolerable electrical conductivity of soil saturation extract (mmhos/cm)

LE : Leaching efficiency

A : A ca (ha)

EP: Protect irrigation efficiency

R(E) : ! ffective rainfall (mm/month)

FT(C) Reference crop evapo-transpiration (mm/month)

Table	G 25

Estimation of Water Supply Requirement per Hectare

- "	•		DECIMALION (or mater bull	pry neq	at i chich i	. per ne	CLBIE	Cron :	Cabbase	(Early Variety)
									Year :		(,,
Month	_ <u>ET</u>	<u>kc</u>	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>LE</u>	EP	A (ha)	R(E)	ET(C)	LR	<u>V</u> (m³)
Jan. I eb. Har. Apr. Hay Jun.	85.7	0.58	0.56	12	0.8	0.81	1.00	8.3	49.7	0.029	526.5
Jul. Aug. Sep. Oct. Nov. Dec.	207.2 175.2 149.5 102.5 92.4	1.00 0.40 0.70 0.81 0.79	0.56 0.56 0.56 0.56 0.56	12 12 12 12 12	0.8 0.8 0.8 0.8 0.8	0.81 0.81 0.81 0.81 0.81	0.10 1.00 1.00 1.00	0 0 0 0 7.0	207.2 70.1 104.7 83.0 73.0	0.029 0.029 0.029 0.029 0.029	263.5 891.2 1,330.8 1,055.8 839.2
Total	812.5							<u>15.3</u>	587.7		4,907.0
									Crop : Year :	Cabhage	(?Medium Variety)
Mon th	ET (mm)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>LE</u>	EP	A (ha)	R(E)	ET(C)	LR	
Jan. Feb. Mar. Apr. May Jun. Jul.	85.7 94.2	0.79 0.58	0.56 0.56	12 12	0.8	0.81 0.81	1.00	8.8 26.1	67.7 54.6	0.029 0.029	749.0 362.9
Aug. Sep. Oct. Nov. Pec. Total	175.2 149.5 102.5 92.4 699.5	1.00 0.40 0.70 0.81	0.56 0.56 0.56 0.56	12 12 12 12	0.8 0.8 0.8	0.81 0.81 0.81 0.81	0.10 1.00 1.00 1.00	0 0 0 7.0	175.2 59.8 71.8 74.8	0.029 0.029 0.029 0.029	222.8 760.5 912.4 862.7
iotal	199.5							41.9	503.9		<u>3,870.7</u>
									Crop : Year :	Cabbage	(Late Variety)
Month	ET (mm)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	LE	_EP	A (ha)	R(E)	ET(C)	_LR_	$\frac{V}{(n^3)}$
Jan. Feb. Har. Apr. May Jun. Jul. Aug. Sep.	85.7 94.2 130.0	0.81 0.79 0.58	0.56 0.56 0.56	12 12 12	0.8 0.8 0.8	0.81 0.81 0.81	1.00 1.00 1.00	9.2 27.1 6.3	69.4 74.4 75.4	0.029 0.029 0.029	765.8 601.7 878.7
Oct. Nov. Dec.	149.5 102.5 92.4	1.00 0.40 0.70	0.56 0.56 0.56	12 12 12	0.8 0.8 0.8	0.81 0.81 0.81	0.10 1.00 1.00	0 0 7.0	149.5 41.0 64.7	0.029 0.029 0.029	190.1 521.4 733.5

 $V = \frac{10}{EP} \left[\frac{A(ETcrop - RE)}{1 - LR} \right] \quad (m^3/month)$

ET : Evapo-transpiration (mm/month)

KC : Crop coefficient

Total 654.3

 $\mathrm{EC}(\mathbf{W})$: Electric conductivity of irrigation water (mmhos/cm)

Mac(E): Maximum tolerable electrical conductivity of

soil saturation extract (mmhos/cm)

LI : Leaching efficiency

EP : Protect irrigation efficiency

49.6

A : Area (ha)

R(E) : Effective rainfall (mm/month)

ET(C): Reference crop evapo-transpiration (mm/month)

474.4

3,691.2

LR : Leaching requirement

V : Water supply requirement (m3/month)

Crop : Water Helon -- Summer (Early Variety)

1	
Year	•

								Yea	ar:			
Honth	ET (mm)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>LE</u>	EP	A (ha)	R(E)	ET(C) (mm)	<u>18</u>	<u>V</u> (m²)	
Jan. Feb. Mar. Apr. May												
Jun.		0.53	0.56	10	0.8	0.81	1.00	0	117.9	0.035	1,508.1	
Jul.	226.7 207.2	0.52 0.78	0.56 0.56	10	0.B	0.81	1.00	0	161.6	0.035	2,067.6	
Aug Sep.	175.2	0.78	0.56	10	0.8	0.81	1.00	Ö	136.7	0.035	1,748.3	
Oct.	74.8	0.70	0.56	10	0.8	0.81	1.00	0	52.4	0.035	669.9	
Nov Dec.												
Total	683.9							<u>o</u>	468.6		5,993.6	
								Crop Year		lelon S	Summer (Medium	Variety)
<u>Hon th</u>	TT (mm)	KC	EC(W) (mmhos/cm)	(mmhos/cm)	LE	EP	A (ha)	R(E)	ET(C)	LR	$\frac{V}{(\mathbf{m}^3)}$	
Jan. Feb. Mar Apr May Jun												
Jul	207.2	0.52	0.56	10	0.8	0.81	1.00	0	107.7	0.035	1,378.4	
Aug Sep	175.2	0.78	0.56	10	0.8	0.81	1.00	0	136.7	0.035	1,748.3	
Oct	149.5	0.78	0.56	10	0.8	0.81	1.00	0	116.6	0.035	1,491.8	
Nov Dec.	51.2	0.70	0.50	10	0.8	0.81	1.00	0	35.8	0.035	456.7	
Total	583.1							<u>0</u>	396.8		5,075.2	
								Crop Year		Helon	Summer (Late V	ariety)
Honth	ET (mm)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	LE	EP	(ha)	R(E)	ET(C)	LR	<u>v</u>	
Jan Feb Mar Apr May Jun Jul Aug												
Sep	175.2	0.52		10	0.8	0.81	1.00	0	91.1 116.6	0.035 0.035	1,165.5 1,491.8	
Oct	149.5	0.78		10 10	0.8 0.8	0.81 0.81	1.00	0	80.0	0.035	1,022.8	
Nov. Dec	102.5 46.2	0.78	0.56	10	0.8	0.81	1.00	6.0	32.3	0.035	337.0	
000	7014								***		4 017 1	

 $V = \frac{10}{EP} \left[\frac{A(ETcrop - RE)}{1-LR} \right]$ (m³/month)

ET : Evapo-transpiration (mm/month)

KC : Crop coefficient

Tota 473.4

EC(W) : Flectric conductivity of irrigation water (mmhos/cm)

MEC(E) : Maximum tolerable electrical conductivity of soil saturation extract (mmhos/cm)

LE : Leaching efficiency

6.0

EP : Protect irrigation efficiency

320.0

A : Area (ha)

R(E) : Effective rainfall (mm/month)

ET(C) : Reference crop evapo-transpiration (mm/month)

4,017.1

LR : Leaching requirement

V : Water supply requirement (m³/month)

Table G-27 Estimation of Water Supply Requirement per Hectare

Crop : Water Melon -- Winter (Early Variety)

Year :

Montl Jan Feb	ET (mm) 42.9 94.2	0.47 0.64	EC(W) (mmhos/cm) 0.56 0.56	MEC(E) (mmhos/cm) 10 10	0.8 0.8 0.8	EP 0.81 0.81 0.81	A (ha) 1.00 1.00 1.00	R(E) (num) 8.3 26.4 6.3	ET(C) (mm) 20.2 60.3 106.6	<u>LR</u> 0.035 0.035 0.035	V (m ³) 151.8 433.5 1,283.2	
Mar Apr Hay Jun. Jul Aug	130.0 163.4	0.82 0.72	0.56 0.56	10 10	0.8	0.81	1.00	11.8	117.7	0.035	1,354.2	
Sep Oct. Nov. Dec. Total	430.5							52.8	304.8		3,222.7	

Crop: Water Melon -- Winter (Late Variety)

4,455.3

Year :

Montn	ET (mm)	KC_	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	LE	EP	A (ha)	R(E)	ET(C)	<u>lr</u>	<u>V</u>
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.	47.1	0.47	0.56	10	0.8	0.81	1.00	23.9	22.1	0.035	0(-22.6)
	130.0	0.64	0.56	10	0.8	0.81	1.00	6.4	83.2	0.035	982.5
	163.4	0.82	0.56	10	0.8	0.8i	1.00	13.3	134.0	0.035	1,544.0
	209.4	0.72	0.56	10	0.8	0.81	1.00	0	150.8	0.035	1,928.8

 $V = \frac{10}{LP} \left[\frac{A(ETcrop - RE)}{1 - LR} \right] \qquad (m^3/month)$

LE : Leaching effectency

ET : Evapo-transpiration (mm/month)

EP : Protect irrigation efficiency

43.6 390.1

Et . Evapo-transpiración (...

Total 549.9

A : Area (ha)

KC : Crop coefficient

R(E) : Effective rainfall (mm/month)

EC(h) : Electric conductivity of irrigation water (mmhos/cm)

ET(C) : Reference crop evapo-transpiration (mm/month)

MEC(E) : Maximum tolerable electrical conductivity

LR : Leaching requirement

of soil saturation extract (mmhos/cm)

Table	G-28	į	Stimation o	f Water Suppl	ly Requ	Irement	per Hec	tare				
									Crop : E	ggplant	(Early Variety)	I
Month	FT (mm)	KC	EC(W) (mmhos/cm)	NEC(E) (mmhos/cm)	LE	EP	A (ha)	R(E)	ET(C)	<u>lr</u>		
Jan Feb. Mar. Apr May Jun. Jul.	85.7	0.48	0.56	g	0.8	18.0	1.00	8.2	41.1	0.039	423.1	
Aug	207.2	1.00	0.56	9	0.8	0.81	0.10 0.10	0	207.2 175.2	0.039	266.2 225.0	
Sep. Oct.	175.2 149.5	1.00 0.48	0.56 0.56	9 9	0.8 0.8	0.81 0.81	1.00	0	71.8	0.039	921.8	
Nov.	102.5	0.80	0.56	9	0.8	0.81	1.00	0	82.0	0.039	1,053.3 812.1	
Dec.	92.4	0.76	0.56	9	0.8	0.81	1.00	7.0	70.2	0.039		
Total	726.8							<u>15.2</u>	<u>647.5</u>		3,701.5	
									Crop : E Year :	ggplant	(Medium Variet;	y)
<u> Month</u>	ET (mm)	_KC_	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>LE</u>	EP_	A (ha)	R(E) (mm)	ET(C)	LR	<u>(m³)</u>	
Jan. Feb Mar. Apr May Jun.	85.7 94.2	0.76 0.48	0.56 0.56	9 9	0.8	0.81 0.81	1.00	8.7 25.6	65.1 45.2	0.039 0.039	724.9 252.0	
Jul. Aug.												
Sep.	175.2	1.00	0.56	9	0.8	0.81	0.10	0	175.2 149.5	0.039 D.039	225.0 192.0	
Oct. Nov.	149.5 102.5	1.0D 0.48	0.56 0.56	9 9	0.8 0.8	0.81 0.81	0.10 1.00	0	49.3	0.039	632.0	
Dec.	92.4	0.80	0.56	9	0.8	0.81	1.00	7.0	73.9	0.039	859.6	
<u>Total</u>	699.5							41.3	558.1		2,885.5	
									Crop : E	ggplant	(Late Variety)	
Month	ET (mm)	KC	EC(W)	MEC(E) (mmhos/cm)	<u>LE</u>	EP	A (ha)	R(E)	ET(C)	LR		
Ĵan.	85.7	0.80	0.56	9	0.8	0.81	1.00	9.0		0.039	765.1	
Feb.	94.2	0.76	0.56	9 9	0.8 0.8	0.81 0.81	1,00	27.0 5.3	71.6 62.4	0.039 0.039	572.8 733.5	
Mar. Apr Hay Jun. Jul. Aur. Sep.	130.0	0.48	0.56	y	V.0							
Oct.	149.5	1.00	0.56	9	0.8	0.81	0.10	0 0	149.5 102.5	0.039	192.0 131.7	
Nov. Dec.	102.5 92.4	1.00 0.48	0.56 0.56	9 9	0.8 0.8	0.81 0.81	0.10 1.00	6.9	44.35	0.039	481.1	
Total	654.3	01.0	5150	·	• • • • • • • • • • • • • • • • • • • •	,		48.2	498.9		2,876.2	
			•	•								
$V = \frac{1}{\pi}$	O [A(ETc:	rop - Ri	<u>:)</u>] (m³/1	nonth)		LE	: Lead	hing ef	ficiency			
			ation (mm/mo			EP	; Prot	ect in	rigation e	fficienc	у	

A : Area (ha)

R(C) : Effective rainfall (mm/month)

V : Water supply requirement (m3/month)

LR : Leaching requirement

ET(C): Reference crop evapo-transpiration (mm/month)

ET : Evapo-transpiration (mm/month)

EC(W) : Electric conductivity of irrigation water

MEC(E): Maximum tolerable electrical conductivity

of soil saturation extract (mmhos/cm)

(mmhos/cm)

KC : Crop coefficient

Crop : Redpepper (Early Variety)

Table G-29 Estimation of Water Supply Requirement per Hectare

					Year :						
<u> Month</u>	ET (mm)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	<u>LE</u>	EP	A (ha)	R(E) (mm)	ET(C)	LR	<u>V</u> (m3)
Jan. Feb. Mar. Apr. May Jun.	85.7	0.58	0.56	9	0.8	0.81	1.00	8.3	49.7	0.039	531.9
Jul.	207.2	1.00	0.56	q	0.8	0.81	0.10	0	207.2	0.039	266.2
Aug.	175.2	0.40	0.56	9 9	0.8	0.81	1.00	Õ	70.1	0.039	900.2
Sep. Oct.	149.5	0.70	0.56	ğ	0.8	0.81	1.00	Ö	104.7	0.039	1,344.3
Nov.	102.5	0.70	0.56	9	0.8	0.81	1.00	Ō	83.0	0.039	1,066.5
Dec.	92.4	0.79	0.56	9	0.8	0.81	1.00	7.0	73.0	0.039	847.7
Total	812.5							15.3	587.7		4,956.8

Crop : Redpepper (Late Variety)
Year :

Month	ET (mm)	<u>KC</u>	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	LE	<u>EP</u>	A (ha)	R(C) (mm)	ET(C)	LR	<u>V</u> (m ³)
Jan.	85.7	0.79	0.56	9	0.8	0.81	1.00	8.8	67.7	0.039	756.6
Feb.	94.2	0.58	0.56	9	0.8	0.81	1.00	26.1	54.6	0.039	366.6
Mar.											
Apr.											
May											
Jun.											
Jul.											
Aug. Sep.	175.2	1.00	0.56	9	0.8	0.81	0.10	0	175.2	0.039	225.0
Oct.	149.5	0.40	0.56	้อ	0.8	0.81	1.00	Ŏ	59.8	0.039	768.1
Nov.	102.5	0.70	0.56	9	0.8	0.81	1.00	0	71.8	0.039	921.6
Dec.	92.4	0.81	0.56	9	0.8	0.81	1.00	7.0	74.8	0.039	871.4
Total	699.5							41.9	503.9		3,909.3

 $V = \frac{10}{EP} \left[\frac{A(ETcrop - RE)}{1 - LR} \right] \quad (m^3/month)$

ET · Evapo-transpiration (mm/month)

KC Crop coefficient

EC(W : Electric conductivity of irrigation water

(mmhos/cm)

MEC() : Maximum tolerable electrical conductivity

of soil saturation extract (mmhos/cm)

LE : Leaching effeciency

EP : Protect irrigation efficiency

A : Area (ha)

R(E) : Effective rainfall (mm/month)

ET(C): Reference crop evapo-transpiration (mm/month)

LR : Leaching requirement

Estimation of Water Supply Requirement per Hectare Table G-30

							-				
									Crop : Year :	Date	
<u>Hontl</u>	ET (mm)	<u>KC</u>	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	LE	EP	A (hg)	R(E)	ET(C)	<u>LR</u>	V (F)
Jan	85.7	0.70	0.56	32	0.8	0.81	1.00	8.6	60.0	0.011	641.5
Feb	94.2	0.70	0.56	32	0.8	0.81	1.00	26.7	65.9	0.011	489.8
Мат Арт	130.0 163.4	0.70 0.70	0.56 0.56	32	0.8	0.81	1.00	6.3	91.0	0.011	1,057.2
Hay	209.4	0.70	0.56	32 32	0.8 0.8	0.81	1.00	11.8	114.4	0.011	1,280.4
Jun	224.5	0.70	0.56	32	0.8	0.81 0.81	1.00	0	146.6	0.011	1,829.6
Jul	226.7	0.70	0.56	32	0.8	0.81	1.00	Ö	157.2 158.7	0.011 0.011	1,961.6
Aug	207.2	0.70	0.56	32	0.8	0.81	1.00	Ö	145.0	0.011	1,980.8 1,810.4
Sep Oct	175.2 149.5	0.70 0.70	0.56 0.56	32	0.8	0.81	1.00	0	122.6	0.011	1,530.8
Nov	102.5	0.70	0.56	32 32	0.8 0.8	0.81	1.00	0	104.7	0.011	1,306.3
Dec	92.4	0.70	0.56	32	0.8	0.8I 0.81	1.00	0 6.7	71.8	0.011	895.6
Tota!	1,860.7			_		5.02	*****		64.7	0.011	723.7
1000	2,00011							58.1	1,302.6		15,507.7
									Crop : Year :	Lime	
Mont 1	ET (num)	KC	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	1E	EP	A (ha)	R(E)	ET(C)	<u>LR</u>	<u>v</u>
Jan	85.7	0.50	0.56		0.6	0.41			(mm)	_	(**)
Feb	94.2	0.50	0.56	8 8	0.8 0.8	0.81 0.81	1.00	8.2	42.9	0.044	447.3
Мат.	130.0	0.50	0.56	8	0.8	0.81	1.00	25.5 5.4	47.1 65.0	0.044 0.044	278.9
Apr	163.4	0.50	0.56	8	0.8	0.81	1.00	11.1	81.7	0.044	769.5 911.5
May	209.4	0.50	0.56	8	0.8	0.81	1.00	0	104.7	0.044	1,351.7
Jun Jul.	224.5 226.7	0.50 0.50	0.56	8	0.8	0.81	1.00	0	112.3	0.044	1,449.2
Aug	207.2	0.50	0.56 0.56	8 8	0.8 0.8	0.81	1.00	0	113.4	0.044	1,463.4
Sep.	175.2	0.50	0.56	8	0.8	0.81 0.81	1.00	0	103.6 87.6	0.044	1,337.5
Oct	149.5	0.50	0.56	8	0.8	0.81	1.00	Ď	74.8	0.044 0.044	1,131.0 965.1
Nov.	102.5	0.50	0.56	В	0.8	0.81	1.00	0	51.3	0.044	661.7
Dec. Total	92.4 1,860.7	0.50	0.56	8	0.8	0.81	1.00	6.1	46.2	0.044	517.7
1011	1,000.7				٠			56.3	930.6		11,284.5
									Crop : i	Banana	
Month	FT (mm)	KC	EC(N) (mmhos/cm)	MEC(E) (mmhos/cm)	_LE_	EP	(ha)	R(E)	ET(C) (mm)	LR	<u>(₽³)</u>
Jar.	85.7	0.90	0.56	8	0.8	0.81	1.00	9.4	77.1	0.044	874.4
Fel. Ma:.	94.2	0.90	0.56	8	0.8	0.81	1.00	28.3	84.8	0.044	729.2
Ap.	130.0 163.4	0.90 0.90	0.56 0.56	8 8	0.8	0.81	1.00	6.3	117.0	0.044	1,429.2
May	209.4	0.90	0.56	8	0.8 0.8	0.81 0.81	1.00	12.3	147.1 188.5	0.044	1,739.8
Jui.	224.5	0.90	0.56	8	0.8	0.81	1.00	Ö	202.1	0.044 0.044	2,433.1 2,608.6
Jul.	226.7	0.90	0.56	8	0.8	0.81	1.00	Ö	204.0	0.044	2,634.1
Auf.	207.2	0.90	0.56	8	0.8	0.81	1.00	0	186.5	0.044	2.407.6
Se;. Oct.	175.2 149.5	0.90 0.90	0.56 0.56	8 8	0.8	0.81	1.00	0	157.7	0.044	2,035.7
No.	102.5	0.90	0.56	8	0.8 0.8	0.81 0.81	1.00	0	134.6 92.3	0.044	1,737.1
Det .	92.4	0.90	0.56	8	0.8	0.81	1.00	6.9	83.2	0.044 0.044	1,191.0 984.6
Total	1,860.7								1,674.9	0.011	20,804.4
v 10	A(ETero	p - RE)] (m³/mo:	nth)		t F	lanch:	ing off	iciency		
ĘΡ	1 -	rk.	, (m. y 1100)			PD :	. Беаси:	riik ett	reteuch		

ET : Evapo-transpiration (mm/month)

KC : Crop coefficient

EC W) : Electric conductivity of irrigation water (mmhos/cm)

MFF(E) : Maximum tolerable electrical conductivity of soil saturation extract (mmhos/cm)

EP : Protect irrigation efficiency

A : Area (ha)

R(E) : Effective rainfall (mm/month)

ET(C): Reference crop evapo-transpiration (mm/month)

LR : Leaching requirement

Tab'e G-31 Estimation of Water Supply Requirement per Hectare

Crop : Alfalfa

Honti	ET (mm)	<u>KC</u>	EC(W) (mmhos/cm)	MEC(E) (mmhos/cm)	LE	EP	A (ha)	R(E)	ET(C)	LR	<u>V</u>
Jan.	85.7	0.85	0.56	16	0.8	0.67	1.00	9.3	72.8	0.022	969.6
Feb	94.2	0.85	0.56	16	0.8	0.67	1.00	27.8	80.1	0.022	797.6
Mar.	130.0	0.85	0.56	16	0.8	0.67	1.00	6.3	110.5	0.022	1,590.0
Apr.	163 4	0.85	0.56	16	0.8	0.67	1.00	12.2	138.9	0.022	1,933.2
May	209.4	0.85	0.56	16	0.8	0.67	1.00	0	178.0	0.022	2,716.0
Jun	221 S	0.85	0.56	16	0.8	0.67	1.00	0	190.8	0.022	2,911.8
Jul	22t 7	0.85	0.56	16	0.8	0.67	1.00	0	192.7	0.022	2,940.4
Aug	207.2	0.85	0.56	16	0.8	0.67	1.00	0	176.1	0.022	2,687.4
Sep.	175.2	0.85	0.56	16	0.8	0.67	1.00	0	148.9	0.022	2,272.4
Oct.	149 5	0.85	0.56	16	0.8	0.67	1.00	0	127.1	0.022	1,939.1
Nov.	102 5	0.85	0.56	16	0.8	0.67	1.00	0	87.1	0.022	1,329.5
Dec.	92 4	0.85	0.56	16	0.8	0.67	1.00	6.9	78.5	0.022	1,093.2
<u>Total</u>	1,860 7							62.5	1,581.5		23,180.2

 $V = \frac{10}{LP} \left[\frac{A(1 \text{ Terop -RE})}{1 - LR} \right]$

ET : Evapo-transpiration (mm/month)

KC : Crop coefficient

EC(N) : Electric conductivity of irrigation water (mmhos/cm)

MEC(E) : Maximum tolerable electrical conductivity

of soil saturation extract (mmhos/cm)

LE : Leaching efficiency

EP : Protect irrigation efficiency

A : Area (ha)

R(E) : Effective rainfall (mm/month)

ET(C): Reference crop evapo-transpiration (mm/month)

LR : Leaching requirement

Hydraulic Calculation

for Terminal Irrigation Facilities (Manifold) in Irrigation Unit

- a) Calculation Conditions
 - 1) Size of Farm

Irrigation unit: $4.25 \text{ ha} (45.2 \text{m} \times 235 \text{m} \times 4)$

Area covered by one manifold: 2.125 ha

2) Cropping Area and Intensity

Vegetable

Tomato : 0.25 ha
Cabbage : 0.25
Watermelon (s) : 0.25
Watermelon (w) : 0.25
Eggplant : 0.30
Redpepper : 0.30

Fruit Crop

Dates : 1.00 Lime : 1.00 Banana : 0.50

Feed Crop

Alfalfa : 1.00

Total 5.10 (Cropping Intensity = 120%)

3) Irrigation

Irrigation method:

Vegetable, Fruit Crop : Drip irrigation (I-day interval)

Feed Crop : Sprinkler irrigation

(3-day interval)

Max. crop evap-transpiration (ETC):

Vegetable (Tomato) : $3.58 \text{ mm/day} (4.42 \text{ mm/day})^{\frac{1}{2}}$

Dates : 5.30 mm/day (6.54 mm/day)
Lime : 3.91 mm/day (4.83 mm/day)

Banana : 7.05 mm/day

Alfalfa : 6.51 mm/day (9.71 mm/day)
Windbreak : 5.30 mm/day (6.54 mm/day)

1/: Inclusive of losses (see Table G-32)

4) Pipe Materials

Manifold : Vinyl Pipe (VP) · · · · underground

Driphose : Polyethylene Pipe

b) Required Capacity and Pressure

Hydraulic calculations for each crop has been made based upon the above conditions, and their results are summarized in Figure G-5. As the results, the total capacity and required pressure at distribution point of each manifold are estimated as shown below:

Distribution point No.1 : $q_1 = 8.1 \text{ l/sec}$ ($P_1 = 39.9\text{m}$) Distribution point No.2 : $q_2 = 6.6 \text{ l/sec}$ ($P_2 = 24.8\text{m}$)

Nonthly Kater Supply Requirement by $\operatorname{Crops}^{1/}$ Table 6-32

(Unit : mm/day)

	Average	0.42 1.88 3.92 3.11							
(5.88%)	Variety	3.43 5.71 6.22							
Farly	Variety	0.83 2.75 4.40 5.02				(120.0%)	2.90 3.28 3.79 4.67	5.58 5.59 5.24 5.52 5.24 5.14 7.47 7.14	4.52
	Average		1.62 3.71 5.18 3.93 1.64 0.44	£ 60	(a)	Alfalia (23,53%)	3,59 4,36 7,06	8.76 9.49 9.49 7.57 7.57 3.87	
(Summer 18%)	Variety		3.89 4.81 3.41 1.33	, G	,	-1			
Water melon (Summer) (5.88%)	Variety		4.45 5.83 1.52		- 1	Banana (11.75%)		7,85 8,70 8,50 7,77 7,77 5,60 3,97	
	Early		4.86 5.67 2.16		Fruit Crop	[23.538]	1.78 2.37 2.71 3.52	4.36 4.47 4.31 3.77 2.21 1.92	
	Average	2,56 1,95 1,03	0.28 1.22 2.41 2.71 2.90			Dates (23.53%)	2.42 2.94 3.66 4.76	5.90 6.54 6.39 5.84 5.10 7.10 7.10 7.10 7.10	
age 8.)	Late Variety	2.85 3.38 3.09	0.60 1.71 2.65	İ		Average	2.44	0.43 1.88 3.32 3.06	
Cabbage (5.88*)	Medium	2.78	0.73 2.41 2.98 3.07		Red pepper (7.06%)	Late Variety	2.81	0.75 2.48 3.07 3.10	
	Early Variety	2.04	0.84 2.92 4.22 3.45 2.99			Early Variety	2.06	0.86 3.00 3.56 3.02	
	Average	3.01 2.63 1.47	0.28 0.49 1.34 1.85	Vegetable		Average	2.41 1.78 0.86	0.29 0.50 1.40 2.02	
1to .	Late	2.53 4.35	0.61 0.43 1.74		lant Osti	Late	2.84 3.28 2.59	0.62 0.44 1.84	
Tomato (5.88%)	Medium	3.58 3.54	0.74 0.61 1.99 2.72		Eggplant	Medium	2.70	0.75 0.62 2.11 3.06	
	Early Variety		0.85 0.74 2.82 3.12 3.86			Early Variety	1.70	0.86 0.75 2.97 3.51	
	Month	Jan. Feb. Mar. Apr.	Hay Jun. Jun. Aug. Sep. Oct. Dec.			Month	Jan. Feb.	Apr. May Jun. Jul. Sep. Oct. Nov.	Average

inclusive of required water losses

Drip irrigation (vegetable and fruit crop): 0.81

Sprinkler irrigation (feed crop): 0.67

Underlined figures show the maximum water requirement of crops. ä Note:

FIGURE G - 5. TYPICAL LAYOUT OF IRRIGATION UNIT AND TERMINAL IRRIGATION SYSTEM

Crop : Vegetable

Spacing : 0.9m x 2m (Emitter)

Max ETcrop : 3.58 mm/day (Tomato)

Irrigation Efficiency : 81 %

Irrigation Interval : 1 day

Water Application : $3.58 \text{ mm/day} \div 0.81 \times 0.9 \text{m} \times 2 \text{m}$

= 7.96 litres per day per emitter

Model Selection and EMJ 10

Operating Condition : 3.98 lph at 15.1m head

Time per Irrigation : 7.96 litres : 3.98 lph = 2.0 hr/day

Nos of Irrigation Set : 7 sets per day

Nos of Emitter per Set : 1,350 emitters per set

Total Flow per Set : 89.6 1pm

Required Pressure : 16.2m head at section inlet

Crop : Dates

Spacing : 9m x 9m (Tree)

Max ETcrop : 5.30 mm/day

Irrigation Efficiency : 81 %

Irrigation Interval : 1 day

Water Application : 5.30 mm/day ÷ 0.81 x 9m x 9m

= 530 litres per day per tree

Model Selection and 2 x EMTB 6

Operating Condition : 76.5 1ph at 14.5m head

Time per Irrigation : 530 litres : 76.5 lph = 6.9 hrs/day

Nos of Irrigation Set : 1 set per day

Nos of Emitter per Set : 120 emitters per set

Total Flow per Set : 153 1pm

Required Pressure : 23.3m head at section inlet

.

Crop : Lime

Spacing : 7m x 7m (Tree)

Max ETcrop : 3.91 mm/day

Irrigation Efficiency : 81 %

Irrigation Interval : 1 day

Water Application : 3.91 mm/day ÷ 0.81 x 7m x 7m

= 236.5 litres per day per tree

Model Selection and EMTB 6

Operating Condition : 38.3 lph at 14.5m head

Time per Irrigation : 236.5 litres + 38.3 lph = 6.2 hrs/day

Nos of Irrigation Set : 1 set per day

Nos of Emitter per Set : 180 emitters per set

Total Flow per Set : 137.7 1pm

Required Pressure : 18.9m head at section inlet

Crop : Banana

Spacing : 2.5m x 3m (Tree)

Max ETcrop : 7.05 mm/day

Irrigation Efficiency : 81 %

Irrigation Interval : 1 day

Water Application : $7.05 \text{ mm/day} \div 0.81 \times 2.5 \text{m} \times 3 \text{m}$

= 65.3 litres per day per tree

Model Selection and EMJ 20

Operating Condition : 9.27 1ph at 18.9m head

Time per Irrigation : 65.3 litres + 9.27 lph = 7.0 hrs/day

Nos of Irrigation Set : 1 set per day

Nos of Emitter per Set : 648 emitters per set

Total Flow per Set : 100.1 1pm

Required Pressure : 21.3m head at section inlet

Crop : Alfalfa

Spacing : 12m x 18m (Sprinkler)

Max ETcrop : 6.51 mm/day

Irrigation Efficiency : 67 %

Irrigation Interval : 3 days

Water Application : 6.51 mm/day + 0.67 x 3.days x 12m x 18m

= 6.296 litres per set per sprinkler

Model Selection and Rain Bird 30H

Operating Condition : 35.7 1pm at 28m head

Time per Irrigation : 6.296 litres : (35.7 lpm x 60 min/hr)

= 2.94 hrs per set

Nos of Irrigation Set : 2 sets per day

Nos of Emitter per Set : 8 sprinklers

Total Flow per Set : 285.6 lpm

Required Pressure : 37.6m head at section inlet.

Crop : Wind Breaks

Spacing : 2m x 3m (Tree)

Max ETcrop : 5.30 mm/day

Irrigation Efficiency : 81 %

Irrigation Interval : 1 day

Water Application : 5.30 mm/day ÷ 0.81 x 2m x 3m

= 39.3 litres per day per tree

Model Selection and EMJ 15

Operating Condition : 5.61 lph at 13.6m head

Time per Irrigation : 39.3 litres ÷ 5.61 lph = 7.0 hrs/day

Nos of Irrigation Set : 1 set per day

Nos of Emitter per Set : 156 emitters per set

Total Flow per Set : 14.6 lpm

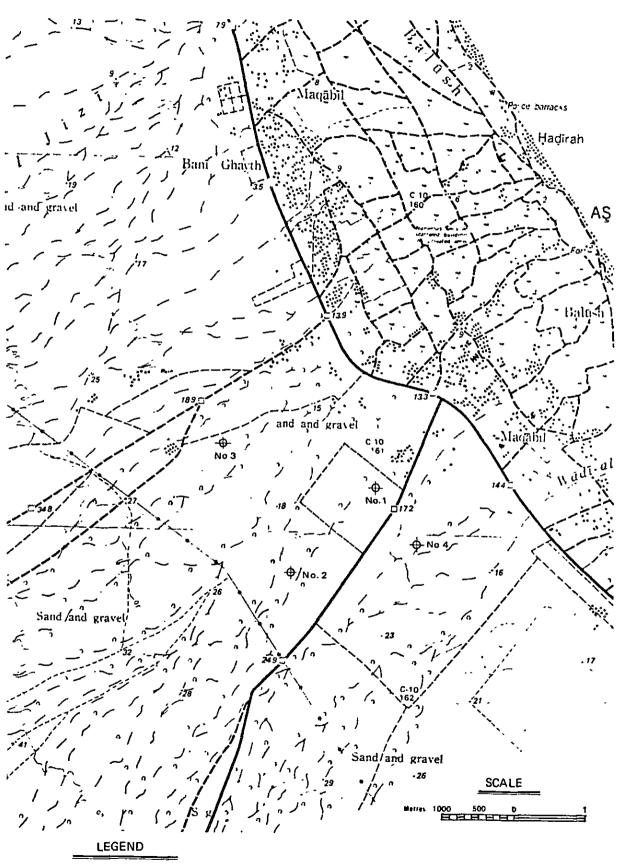
Required Pressure : 15m head at section inlet

Depth and Interval of Irrigation Application for Crops

1. Measurement of Intake Rate

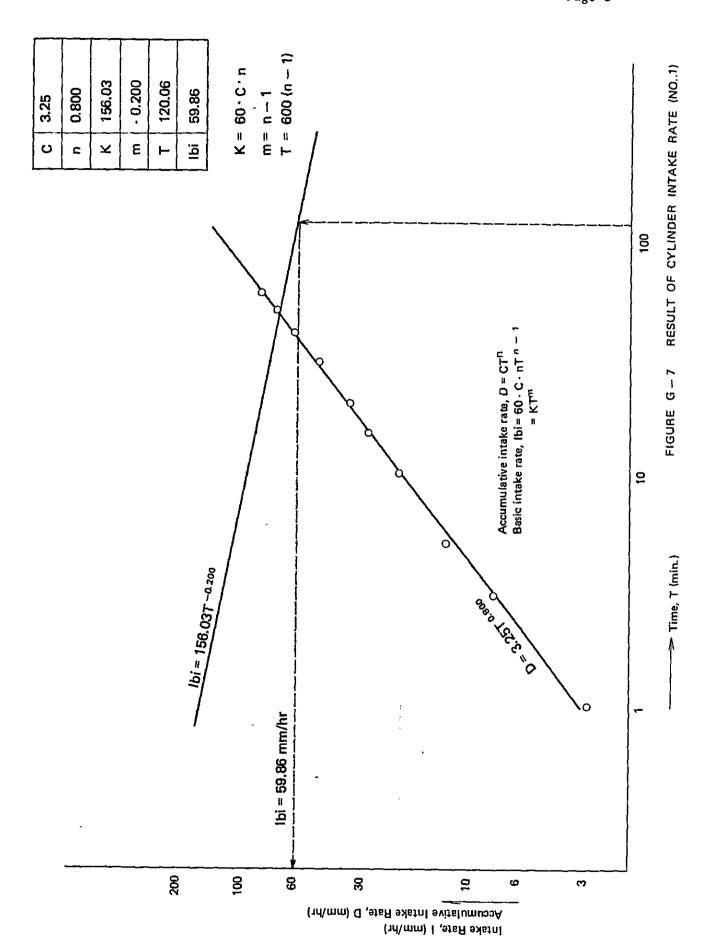
During the field survey, intake rate measurements were made at four sites in the Project Area (see Figure G-6), under wet conditions, in order to pursue an adequate irrigation method and water amounts to be applied to the crop. The wet conditions mean the field keeping the water holding capacity after 24 hours of soil saturation.

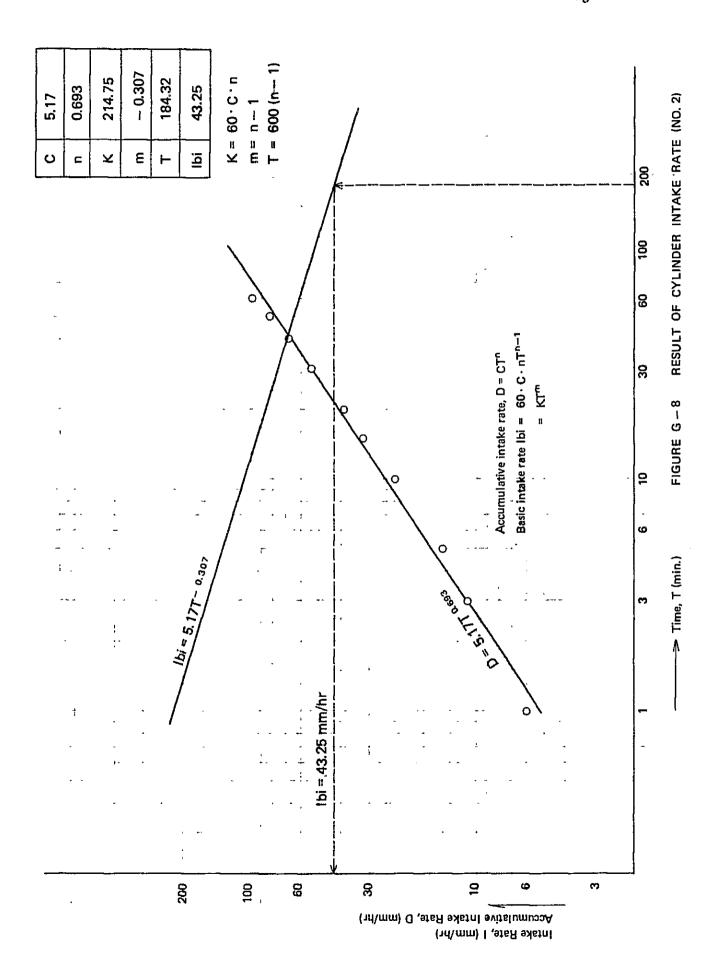
To measure the intake rate, a cylinder infiltrometer was used and the reading of the water depth within the cylinder was made at the interval of every five to 10 minutes at the initial stage and 30 minutes intervals from one hour later.

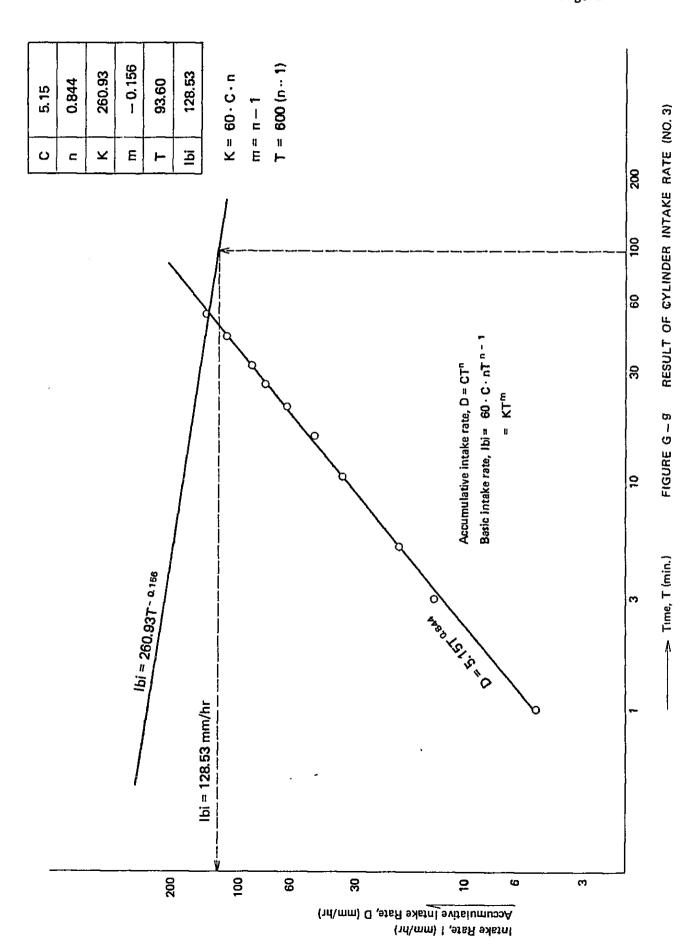

Results of intake rate measurements are plotted on a logarithmic paper (see Figure G-7 to Figure G-10). Usually, the intake rate plotted against time on logarithmic scale shows a straight line, and therefore, can be presented by the equation of $D = CT^n$. When the observation of intake rate extends over long time, a better representation of the data can usually be obtained by using the equation of $D = CT^n + b$. Since n is negative, an accumulative intake rate (ΣD) decreases with an increase in time of T. Therefore, the intake rate (D) will approach a constant value of b as time increase. Generally, the intake does approach a constant rate, which will be referred to as basic intake rate (D). Caution should be observed in using the basic intake rate for irrigation design such as irrigation method.

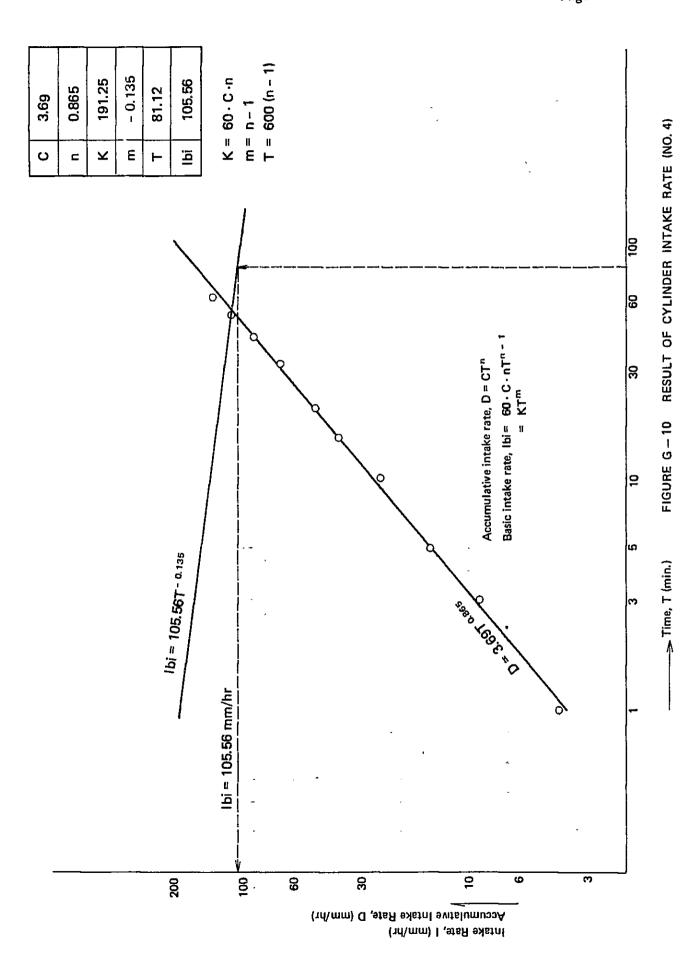
The following table gives the obtained basic intake rate, based upon each observation of the intake rate.

Obtained Basic Intake Rate (Wet Conditions)


Site	Ibi (mm/hr)
No.1	59.9
No.2	43.3
No.3	128.5
No.4	105.6
Average	84.3


FIGURE G - 6 LOCATION OF INTAKE RATE MEASUREMENT AND SOIL SAMPLING




- MEASUREMENT AND SAMPLING SITES

PROPOSED FARM LAND AREA

From the above figures, it could be considered that drip and sprinkler irrigation methods would be suitable for water supply to the crop.

In the parallel with such measurements of the intake rate, soil samples in the depth of 50 cm with an interval of 10 cm depth were taken to analyze the physical properties of the soils in the field, such as specific gravity, porosity, field capacity, and wilting point.

The analysis results of soils under the wet conditions are summarized as shown in Table G-33.

2. Depth and Interval of Irrigation Application

Depth and Interval of irrigation application are determined in accordance with the following procedure:

- i) Determination of effective root zone
- ii) Determination of moisture extraction pattern
- iii) Calculation of available moisture of each soil layer within effective root zone
- iv) Calculation of total readily available moisture (TRAM), and
- v) Determination of depth and interval of irrigation application

i) Depth of Effective Root Zone

The depth of effective root zone (restricting layer) was on the basis of field survey and collected data as shown below:

	Depth of Effective
Crops	Root Zone (Restricting Layer)
	(cm)
Vegetable	30
Fruit Crop	80
Feed Crop	40

Table G-33 Physical Features of Soil (Wet Condition)

Location	Soil Depth (cm)	Real Specific Gravity(Sr) (g/cm ³)	Aparent Specific Gravity(Sa) (g/cm³)	1/ Porosity (P) (%)	Field 2/ Capacity (Fc) (%)	Wilting 2/ Point (Wp) (%)
No:1	10	2.65	1.37	48.3	26.7	7.9
	20	3.14	1.40	55.4	26.7	7.9
	30	2.43	1.37	43.6	26.7	7.9
	40	2.72	1.56	42.6	26.7	7.9
	50	2.81	1.64	41.6	26.7	7.9
No:2	10	2.85	1.61	43.5	26.7	7.9
	20	2.87	1.47	48.8	26.7	7.9
	30	2.94	1.67	43.2	26.7	7.9
	40	2.99	1.67	44.1	26.7	7.9
	50	2.78	1.54	44.6	26.7	7.9
No:3	10	2.67	1.69	40.1	26.7	7.9
	20	2.66	1.67	37.2	26.7	7.9
	30	2.71	1.63	40.2	26.7	7.9
	40	2.76	1.84	33.3	26.7	7.9
	50	2.70	1.78	34.0	26.7	7.9
No:4	10	2.85	1.64	42.5	26.7	7.9
	20	2.77	1.65	40.4	26.7	7.9
	30	2.44	1.75	28.3	26.7	7.9
	40	3.28	1.55	52.7	26.7	7.9
	50	2.67	1.42	46.8	26.7	7.9
Average		2.78	1.60	42.6	<u>26.7</u>	7.9

Note: $1/P = (Sr - Sa) \times 100 / Sr$ (%)

2/ Derived from soil analysis data described in the report of "Water Resources Development Project", North Oman, Interim Report, Volume 2 prepared by ILACO, January 1975.

Field capacity: PF 2.0 Wilting point :: PF 4.2

Above soil tests are made at Rumais Agricultural Research Station.

ii) Moisture Extraction Pattern

Consumptive use of soil moisture by crop evapo-transpiration will vary depending on the depth of soil. This consumptive rate of soil moisture is the so-called "moisture extraction pattern" which will be determined based upon the field investigation.

Due to the lack of such data concerned, the following pattern was applied.

	Ratio of Moisture				
Percent of Depth	Extraction				
(%)	(%)				
0 - 25	40				
25 - 50	30				
50 - 75	20				
75 - 100	10				

iii) Available Moisture in Each Soil Layer within Effective Root Zone

Available moisture (A.M.) is obtained from the following equation:

A.M. =
$$\frac{1}{100}$$
 · $\Sigma(Fc - Wp)$ · D (mm)

Where:

Fc: water holding capacity after 24 hours of soil saturation (%)

Wp: moisture ratio at wilting point (%)

D: depth of soil in each soil layer (mm)

iv) Total Readily Available Moisture (TRAM)

In the soil layer concerned, Consumed Moisture Ratio of Moisture Extraction

The layer presenting the minimum value obtained from the above equation is the restricting layer of moisture and its value becomes Total Readily Available Moisture (TRAM), that is, net amount of water to be replaced is given in Table G-34.

v) Interval of Irrigation Application

The interval of irrigation application is obtained by dividing the TRAM by the maximum crop evapo-transpiration as shown below:

Estimation of Irrigation Interval

Crops	TRAM (mm)	Max. ETcrop (mm/day)	Irrigation Interval (day)
Vegetable	()	(,,	(,)
Tomato	35.3	3.58	9
Cabbage	35.3	3.42	10
Watermelon ((s) 35.3	5.40	6
Watermelon ((w) 35.3	5.04	7
Eggplant	35.3	2.84	12
Redpepper	35.3	3.52	10
Fruit Crop			
Dates	94.0	5.30	17
Lime	94.0	3.91	24
Banana	94.0	7.05	13
Feed Crop			
Al fal fa	47.0	6.51	7

Note: Detailed estimation is given in Table G-34.

Table G-34 Net Amount of Water to be Replaced for Crops

Vegetab1	<u>e</u>					
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Depth (cm)	Available Moisture (AM) (mm)	Ratio of Moisture Extraction	(2)/(3) (mm)	Restrictin Layer of Moisture	rg <u>TRAM²</u> / (mm)	Net Amount of Water to be Replaced (mm)
0-7.5 7.5-15. 15.0-22. 22.5-30.	0 14.1 5 14.1	0.4 0.3 0.2 0.1	35.3 47.0 70.5 141.0	*	35.3	35.3
Fruit Cr	ор					
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Depth (cm) 0-20 20-40 40-60 60-80	Available 1/ Moisture (AM) (mm) 37.6 37.6 37.6 37.6 37.6	Ratio of Moisture Extraction 0.4 0.3 0.2 0.1	(2)/(3) (mm) 94.0 125.3 188.0 376.0	Restrictin Layer of Moisture *	g TRAM ² / (mm) 94.0	Net Amount of Water to be Replaced (mm) 94.0
Feed Cro	2					
(1)	(2)	(3)	(4)	(5)·	(6)	(7)
Depth (cm)	Available 1/ Moisture (AM) (mm)	Ratio of Moisture Extraction	(2)/(3) (mm)	Restrictin Layer of Moisture	g TRAM ² / (mm)	Net Amount of Water to be Replaced (mm)
0-10 10-20 20-30 30-40	18.8 18.8 18.8 18.8	0.4 0.3 0.2 0.1	47.0 62.7 94.0 188.0	*	47.0	47.0

Note: $\underline{1}/: AM = \frac{1}{100} (Fc - Wp) \cdot D$

Fc: Field Capacity (%)
Wp: Wilting Capacity (%)
D: Depth (mm)

2/: TRAM: Total Readily Available Moisture