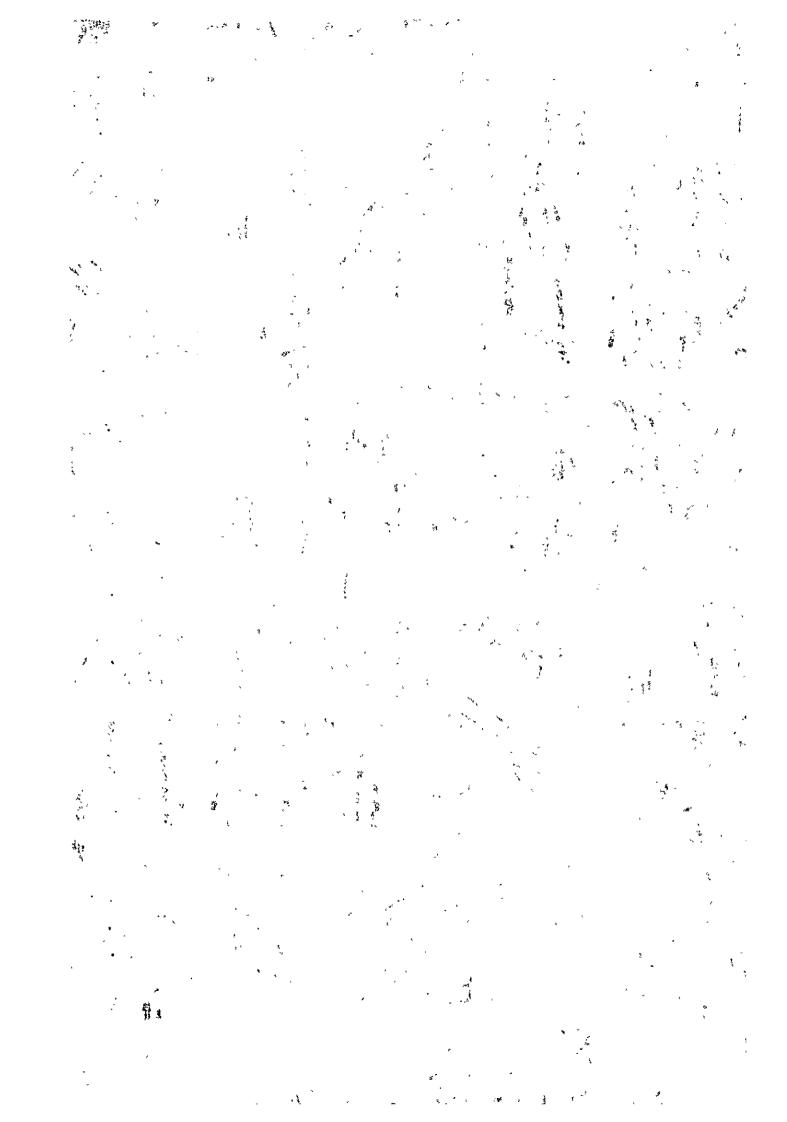
FEASIBILITY REPORT

0N

WADI JIZZI AGRICULTURAL DEVELOPMENT PROJECT


IN

THE SULTANATE OF OMAN
(APPENDIX-1)

JANUARY 1983

JAPAN INTERNATIONAL COOPERATION AGENCY

FEASIBILITY REPORT

ON

WADI JIZZI AGRICULTURAL DEVELOPMENT PROJECT

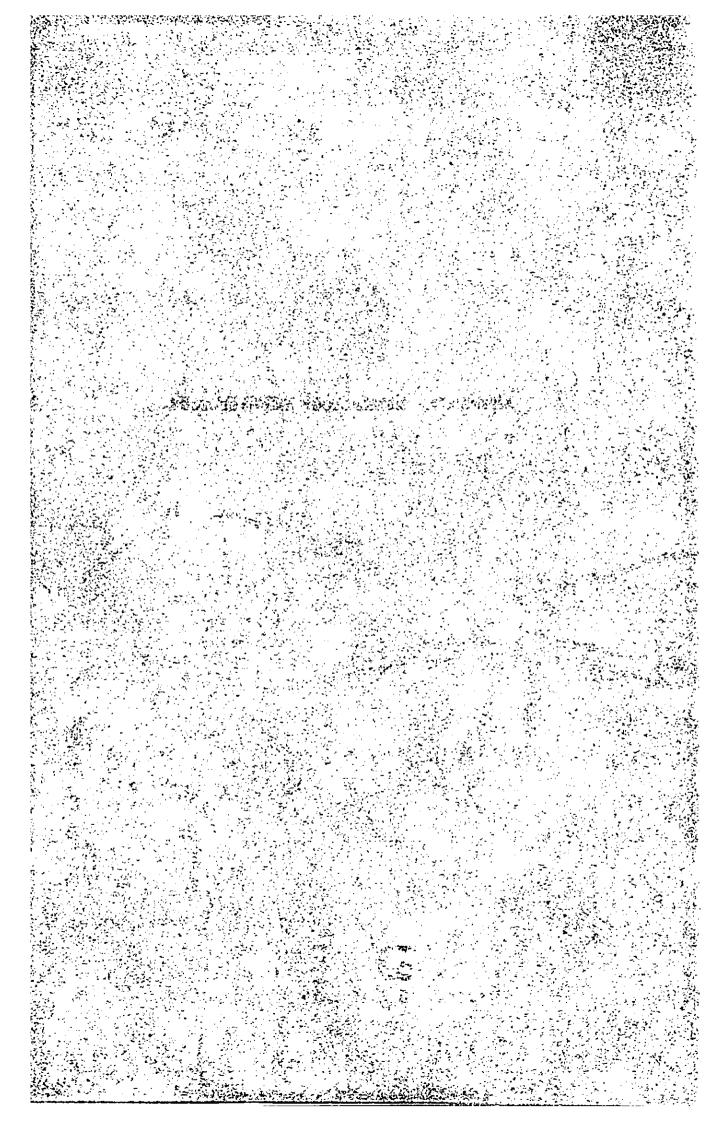
IN

THE SULTANATE OF OMAN (APPENDIX-1)

JANUARY 1983

JAPAN INTERNATIONAL COOPERATION AGENCY

A F T CR (5) 82-74


国際協力事業団 (A) 589. 8. 2/8 3/6 (287/2 全銀No.) 50/81/44 AFT.

APPENDIX I

Appendix	A.	Meteorology	and	Hydrology
			4114	111411111111

- B. Surface Water
- C. Ground Water
- D. Geology
- E. Soil

APPENDIX A. METEOROLOGY AND HYDROLOGY

- A-1. Profile of Wadi Jizzii
- A-2. Rainfall Observed in Wadi Jizzi Basin
- A-3. Meteorological Data in the Vicinity of Project
 Area
- A-4. Installation of Observation Gauges

Contraction of the second of t

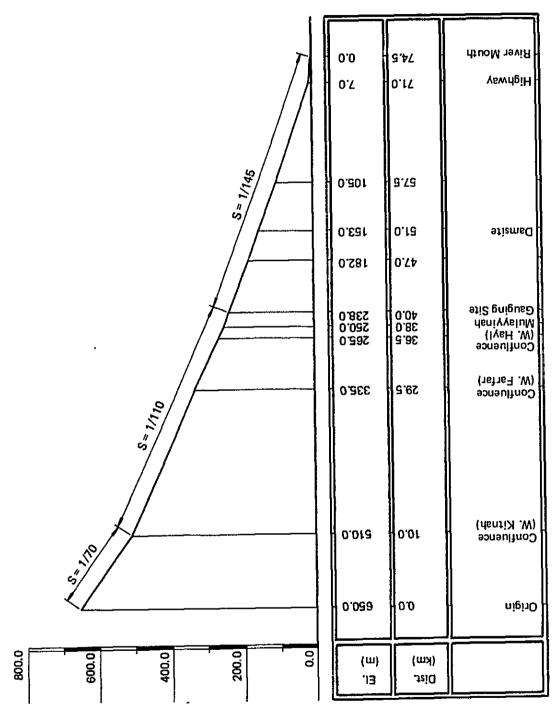


FIGURE 'A-1 PROFILE OF WAD! JIZZI

Table A-1 Site of Rain Gauge Station

Name	U T M	U T M Grid Reference	ference	Date o	Date of Installation	lation	Altitude (m)
Daqiq	DB	424	2664	DEC.	23	1973	*008
Kitnah	DB	420	2669	DEC.	23	1973	655*
Hayl (Wadi Jizzi)	DB	422	2677	OCT.	24	1973	200
Hayl (Wadi Hayl)	DB	432	2688	DEC.	20	1973	430
Farfar	DB	435	2676	DEC.	22	1973	260
Sohar	DC	471	2793	DEC.	18	1973	15

* Barometric Measurement

Table A-2 Monthly Rainfall in Wadi Jizzi Basin

STATION

INFALL		111 Y KA	A HITNOM	Y HILLOW
JUNE	1	ADK MAY JUN	ΗΑΥ	ADK HAV
3.			0.0	7.5 3.3 0.0
14.		0	0	7.4 0.0 0.0
18.3		0.0	0.0 C.88	734.8 89.3 O.O
20.4		17.1	42.0 17.1	0.0 42.0 17.1
C		C.	0.0	16,2 0,0 0,0
40.8		0.0	0.0 0.0	3.1 0.0 0.0
0.0		0.0 0.0 0.0	0.0 0.0	15.0 0.0 0.0
•		14. 3	7.7 14.5	14. 3
			7.4	

			ZOY.	PUNTHLY PA	HAINFALL		(MM)		,	; , ;		*!	1
7FAH	1 1 1	(1 1 2 2 1 1 1	#	Y V X	JIII.E	7111	AtJG	SFP	υCΤ	\ \ \ \ \ \	DEC	TOTA
1974	0-6	36.5	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		0.0	0.0	5.1	4.3	0.0	1.4	0*0	0.0	54.
1975	4.7	50.0) C			.O	0.0	3.4	5.5	بر. م•ر	Ñ.O.	0.0	74.
1976	24.9	110.7	0.75	7.70	0	0.0	0.0	35.5	0.0	0.0	5.5	25.5	353.
1477	75.0	5.5 5.5 5.5	· ·		16.0	c	0.0	c°c	0.0	0.0	0.0	0.0	72.
1979	0.0	75.2	 		0.0	C	18.8	4.5	o•0	0.0	0.0	0.0	53.
1979	34.1	5.0	c		ec •	5.2	14.7	0.0	0.0	0.0	0.0	27.5	85.
1980	0 0	22,0	11.0		0.0	0.0	14.4	0.0	o•c	၀ ၀	0 . c	0.0	67.
1981	11.0	10.	4	* * * * * * * * * * * * * * * * * * * *	74.1	î A 3	(0° <u>10</u>	Ñ.	0.0	0.0	0.0	0.0	84.
プレグコ	ر د	13,8	12.5										

STATION

~	
1 / 2	
2173	
PAYL (
ź	
=	
Ξ	
SIAT	
U;	
	1
	i

		;										Ì	1	!	. !					Pě	180	3 .	J	
t 1 1 1 1	TOTAL	51	(A)	œ	90	•	2	δ.	ι. •					ı	TOTAL	99	71.	4	73	4	٠.	+	•	
1 1	! 0	0		•		c	•		•] 	,	DFC	0.0	•	•			ċ	•	•	
1	100	0.0	•		•	•	•	•	•				!			0.0	0.0	31.0	17.7	0.0	° c	0.0	0.0	
	OC T	0.0	•	•	•			•	-			!	,				•	•		4		•	•	
	اسا	0.0	•	•	•	•		•	4			•	•			7.4	•	α	•	•	•		•	
 	AUG	C	0 ° W		•	•	•	•							5UV	C • C	15:3	6.0	0.0	7.0	o • c	u•u	O.C.	
(MM)	7,11,0	1.1	0.0	•	. •		•	•	•					(MM)	۰٫۱۱۲	0.0	: io ;	0.0	0.0	0.0	0.0	0.0	C	
) ! !	C,	0.0	٥-٥	11.0	2.0	٥.0	0.0	0.0				HAYI (HAYL.)		JINF	\$ C	o. O	0.0	32.5	C • c	0.0	ت . د	0.0	
2	[i	c c		•		•			•				14 A 4 1	11.	Σ	C . C	<i>-</i>	0.0	46.5	د ت	ء د	٥. ٥	c c	
Ą.	APR	χ. 	0.0	0.0	41.7	0.5	3.1)	0.0	0.0	,		; ; ;	FILON	THI Y	APP	0 0	4	***	•	•		0.0	4	
		6.2	, c	37.	4	•	a		•]	 . .	KOM	\ \ 	5	c				•	0 ° 0	•	•
. ! . ! ! ! !	F F B	 	5.4	55.	2	-	0						:		1 1 1 1 1	73.5	or.	ູ	•		•	•	; ·	131.5
	JAN	3.0	9.	~		c	•			•		! !			1 4 7	"	ਂ		_	•	•		ງ • ດ	•
1	L	74	6.5	97	76	6	76	α σ	č	 J		! :	(1 1 1 1 1 1 1 1	1974	6	97	67	47	6	98	ž	X,

RAINFALL MAY	24 C 4 C 2 C 2 C C C C C C C C C C C C C	
> 1 5	85.00 67.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
HONTH	2	

TOTAL

2 0.2

SFP

(MI)

FARFAR

STATION

JINE

JAN

YFAR

82.6 120.3 406.1 729.7 153.5 77.1 86.8

21.00

010 0 % 0 010

126.0 126.0 126.0 120.0 120.0 120.0 120.0

4 6 0 0 0 4 u

1974 1975 1976 1977 1978 1979 1980

Z
\mathbf{x}
v
Z O
ر
-
-
٤.
S

			2 2 5 1	SONTHLY RA	INFALL		(ML.)						
	11:11:1:				1 1 1 1 1 1 1			1 1 1 1 1 1		11111.		1 1 1 1 1 1	
TEAR	TEAH JAN FEB		MAK	APK	MAY	MAY JUNE JULY	JULY	AUG	SEP	OC.1	NOV	DEC	DEC TUTAL
11:11:1		1 1 1 1 1 1 1		1 1 1 1 1	1 + 1 + 1 1 1			1 1 1 1					
1982) ၁	1982 0.0 34.0 28.5	28.5										

•			<u> </u>		ralox.	<u>.</u> ,							
1	1 1 1		;		AITIFALL		(MM)	!			1 1 1	1 1 1	8 1 1 1
YFAP	i i	F F F F	1 2 V V	MAR APR	 	JUNE	JULY	VOG.	SFP	00.7	VON	DFC	TOTAL
1974	0.6	71.6	7.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2	7.77
1975	2,6	44 5	0.0	0.0	0°0	Ċ	0.0	. 2.9	0.0	0.0	0.0	0.0	53.3
9261	7.5	119.0	51.9	55.2	0.0	0.0	0.0	0.0	0.0	~ ac	0.0	17.3	253.1
1977	68.1	26.3	2.6	38.7	10.0	0.0	0.0	0.0	0.0	0.0	17.6	0.2	164.4
197R	O * D	34.2	6.5	٥,	0.0	c	3.6	c c	0.0	0.0	0.0	0.3	46.6
1979	21.4	0.0	1.5	2.3	0.0	0.0	0.0	0.0	o.c	36.6	0.7	58.4	120.9
1980	1.7	2.2	6	1.2	0.0	c.*c	0.0	0.0	0.0	0.0	O. A	0.0	9.8
1921	J 7	```	٦. ٢	15.2	12.0	0	0.0	o • 0	0.0	0.0	0.0	0.0	37.1
		; ;											

AREAL RAINFALL AT D2 SITE

STATION

1			:	<u>~</u>	INFALL	!	(MM)	 	1					!
ı > -	JAN	1 LL 1	MAR	<u>م</u>	Σ	JUNE	JULY	AUG	SEP	OCT	NON	DEC	TOTAL	
974	2.9	6	5 8 8	2.	i Ci i i	E • Q	2 * 0	0.4	2.1	9.6	0.0	0	68.6	!
ው	7.2	63.0	0.7	0.0	2.0	1,9	1.5	15.3	0,6	0.0	0.0	0.0	94.5	
Φ	•	8	142.5	3	0.0	1.7	7 • 7	29.5	4.1	0.0	13.5	6.3	420.8	
1977	25.5		_	39.0		22.9	0.0	0.0	0.0	3.9	8.9	0.0	160.7	
Ç	0.0	6		•	0.0	1.9	16.4	30.0	2.1	0.0	0.0	0.0	97.8	
O	21.6	1.2	•		•	4.6	0•9	0.0	3.7	5.6	1.7	19,5	6*69	
1980	6.1	20.5	21	0.0	1. 2.	0.0	10.7	0.1	0.0	0.0	0.0	6"6	70.5	
1981	e. L	0.0	1.1	•		7.4	12.5	0.0	0.0	0.0		0.0	47.2	•

AREAL RAINFALL AT RIVER MOUTH STATION

1	:	i	ı	THLY R	A INFALL		(WW)		1 1 1	; ; ; ;		1		
YFAR	1 Z 1 Z	E	MAR	APR	MA T	י ד	JULY	AUG	SFP	0CT	> ON	DEC	TOTAL	ì (
1 4	2.3	t L	5.0	1.7	•	0.0	1.3	2.9	1.7	7.9	0.0	9.0	71.8	
1975	6.1	59.0		0	1.5	1.2	6.0	13.5	1.9	0.0	0	0 0	84.5	Þ
1976	20.5	132.9	118.7	55.4	0.0	1.1	3.0	23.1	3.1	2.1	10.8	8.5	379.1	pe: Pa
1977	36.8	26.0	1.2	40.1	24.5	18.2	0.0	0.0	0.0	3.2	11.9	0.1	166.8	nd ge
1978	0.0	39,0	6.4	3.0	0.0	1.5	12,1	24.1	1.3	0.0	0.0	0.1	85.8	<u>ix</u>
1979	21.1	8 0	1.4	4.1	0.3	2.9	3.8	0.0	2.3	13.9	1.7	28.6	80.9	A
1980	4.7	15.4	17.0	0.3	1.2	0.0	7.9	0.1	0.0	0.0	0.2	8.0	54.8	-2
1981	3.8	0.0		12.4	16.3	1.5	10.7	0.0	0.0	0.0	0.0	0 0	45.8	

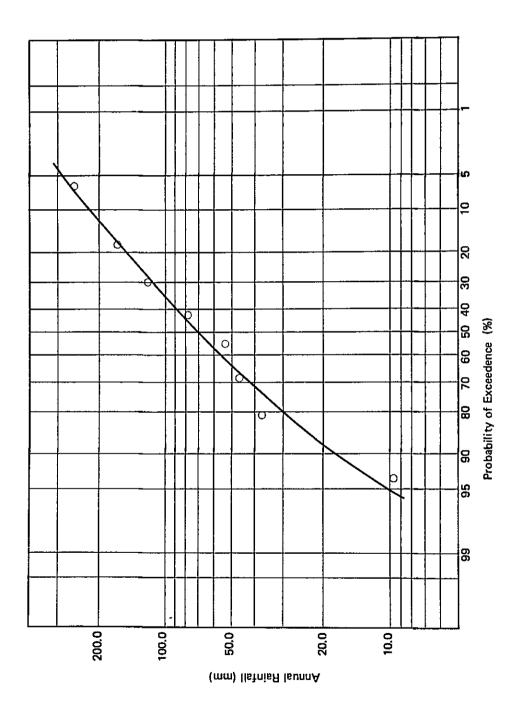


FIGURE A. 2 FREQUENCY OF ANNUAL RAINFALL IN SOHAR

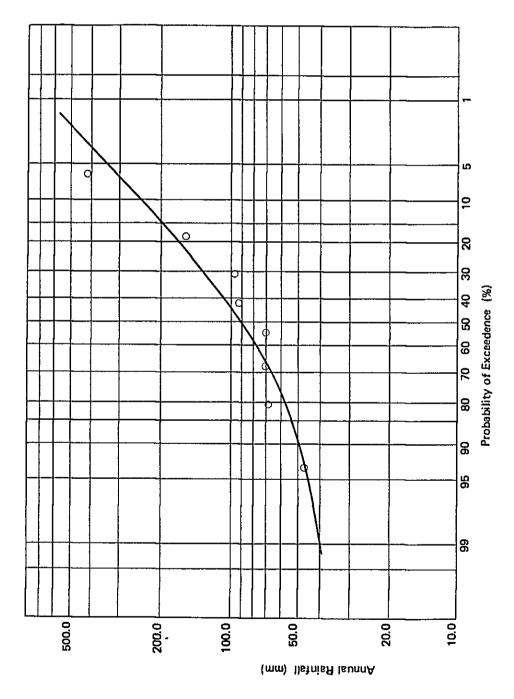


FIGURE A.3 FREQUENCY OF ANNUAL RAINFALL IN THE CATCHMENT

																		-	ppe F	endi lage	х А 9	<u>-2</u>	
			,						•		x (1) (2)	1.000 0.631	n*c	0.631 1.600 6.635 1.600	2,64.	: COF #ELATION COEFICIENT	FECHESSION LINE : VEARATH			25.00 50.00 75.00 160.00 125.00 150.00			N SOHAR AND MUSCAT
	0.631										STATION>	7 (1)	l	1 (2)		· +	<u>Y</u>			100.00	MUSCAT		MONTHLY RAINFALL BETWEEN
	MV) R #					*	*				•		•						4.	50.06	> x (1)		CORRELATION OF MONTH
	(+ 2,841 (+ 3,0(? (•			*				÷	*		•	_		*					FIGURE A-4 (
19741981	x = 0.635 x	(2)		 	80.00 ÷	 ,	-	63,00 4		A \		+ 00.04		-		20.60 ++	*		3.6				
																,							

Frequency Analyses of Seasonal Rainfall in Sohar

Seasonal rainfalls - winter (Nov. - April) and summer (May - Oct.) are shown as follows:

(Unit: mm)

Summer	Winter	Year
0.0	49.3	1974
6.2	227.6	1975
8.2	153.0	1976
10.9	60.5	1977
3.6	25.5	1978
36.6	68.1	1979
0.0	25.3	1980
12.6	171.5	1981
0.0	_	1982

A greater part of the annual rainfall falls during the winter. In summer season, no-rainfall appear with three year-frequency. A frequency curve is shown in Figure A-5.

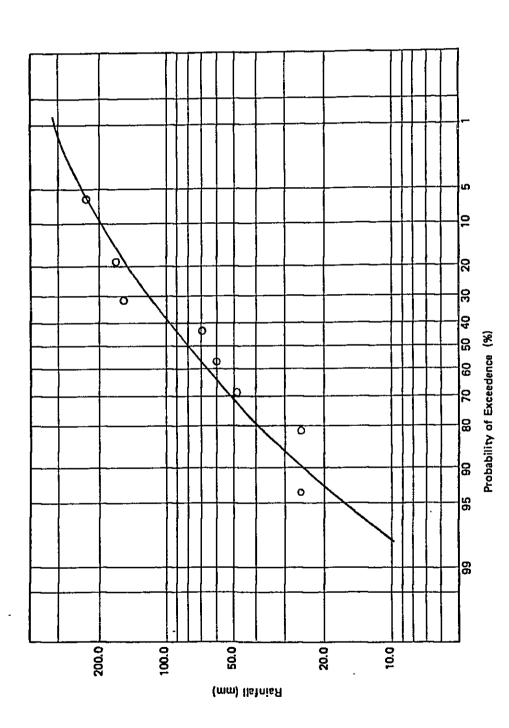
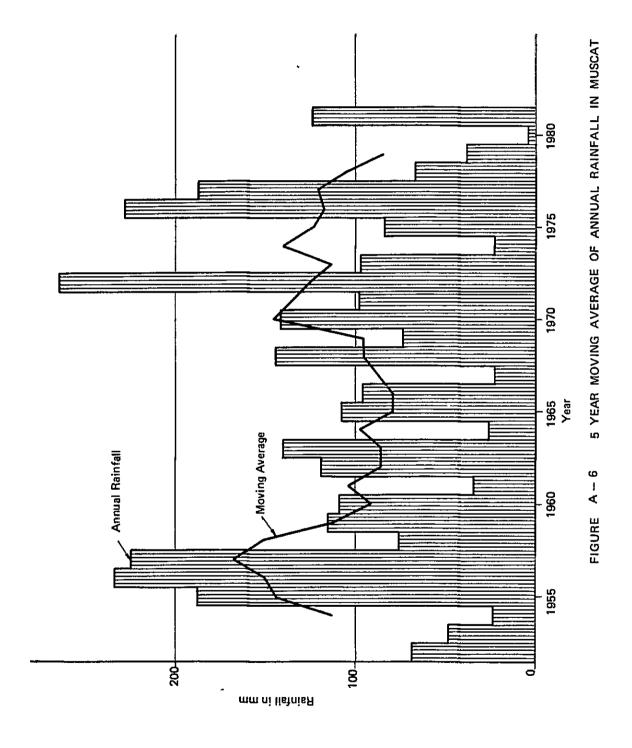


FIGURE A-5 FREQUENCY. OF RAINFALL IN SOHAR DURING WINTER SEASON (NOV.-APR.)

Table A-4 Monthly Rainfall at Muscat

(Unit: mm)


											(011441	224)		
<u>Year</u>	<u>Jan.</u>	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total	Remarks
1893	-	39	•	•	*	ŵ	•	•	•	*	1	13	•	British Emb.
1894	11	57	7	5	-	-	8	-	-	•	-	31	119	It .
1895	106	16	65	-	-	-	-	-	-	-	18	-	205	11
1896	63	4	39	-	-	-	-	-	-	4	77	-	187	11
1897	13	16	1	-	-	-	-	-	-	-	-	:	30	H
1898 1899	2	3 7	36 40	•	-	64	-	-	-	-	14	3	122	11
1999	- 64	34	17	-	-	-	-	-	-	-	23	1 63	48 201	11 11
1901	-	12	28	-	_	-	-	_	-		-	13	53	11
1902	•	7	-	7	_	-	-	-	_	25	_	13	52	10
1903	10	-	-	11	-	1	-	-	-	-	1	3	26	H
1904	-	3	3	-	-	-	-	-	-	-	18	1	25	U
1905	31	46	56	•	-	-	-	-	-	-	5	2	140	10
1906	15	33	37		-	6	-	1	-	-	-	40	132	н
1907	6	79	10	22	-	-	-	-	-	-	5	4	116	
1908 1909	6 115	-	10	3	-	-	-	-	-	-	-	S	24	11 11
1910	24	-	11	-	-	-	-	-	-	-	•	54 38	169 73	11
1911	67	3	7	-	_	-	-	-	_	_	18	6	101	11
1912	60	12	ò	97	_	~	-	7	_	_	5	25	206	11
1913	-	99	22	•	-	-	-	-	_	-	-	14	135	n
1914	3	42	2	-	-	9	3	1	_	14	45	22	141	11
1915	7	1	3	32	-	-	-	-	-	-	-	7	50	11
1916	98	30	5	98	-	-	-	15	-	20	-	-	266	19
1917	60	19	-	2	-	-	-	-	-	-	-	24	105	11
1918	4	-	10	8	-	-	-	-	-	-	-	39	61	11
1919	22	22	20	-	4	•	-	-	-	-		-	68	†1 †}
1920 1921	6 4	14	1 -	-	-	_	-	-	-	-	4 25	-	25	n
1922	6	6	-	-	-	-	-	-	-	-	43	15	44 12	17
1923	7	8	-	36	_	-	_	-	-	-	20	39	110	11
1924	3	6	-	_	_	_	-	-	_	-		19	28	H
1925	7	2	5	-	-	-	-	-	-	44	1	-	59	11
1926	25	-	9	6	-	-	-	-	-	-	-	32	72	NF
1927	-	17	-	10	-	-	4	-	-	•	10	9	50	H
1928	47	56	-	-	-	-	-	-	-	-	53	19	175	t1 t2
1929 1930	8 142	3 1	1	6	-	-	-	-	-	-	34	116	161	Ministry of
1930	142	•	1	U	_	-	-	•	-	•	-	-	150	Defence
1931						No	record	l						Detence
1932							n							
1933							11							
1934 1935							11 11							
1935	143	6	28	_							12		100	British Emb.
1937	29	45	-	-	-	<u>-</u>	-	-	-	-	12	27	189 101	British Emo.
1938		-	-	-	_	_	_	_	-	10	-	20	30	10
1939	-	75	_	-	-	-	_	-	-	-	_	23	98	tt
1940	21	-	10	-	-	-	-	-	_	-	-	55	86	11
1941	-	0.5	13.5	20	-	-	-	-	-	-	-	-	34	1t
1942	4	29	-	-	-	-	-	-	-	-	-	8.5	41.5	
1943	87	•	•	•	•	•	*	•	•		*	*	*	
1944 1945	1	•	-	•	•	•	*	•			•	166	•	
1945	-	-		-	-			*	•	•	•	•	-	
1947	_	2.5	14	_	_	-	-	*		-	•	14	*	
1948	29	44.5	25	2.5	-		•	*	•	•	•	•	•	
1949	•	*	*	•	•	*	*	*	•		•			
1950	16.5	4	1.5	1.5	2.5	-	0.5	•		•	*	•	•	
1951	-	-	62	-	-	-	-	-	-	1	•	6	69	
1952	52	-	-	1	-	-	-	-	-	-	-	16	69	
1953 1954	2	27	-	-	5	-	-	-	-	-	-	15	49	
1954 1955	11 97	10 7	1 70	2	-	-	-	-	-	-	-	1	25	
4333	21	,	70	•	-	-	-	-	-	•	-	14	188	

Remarks											P.D.O.	=							DAR SITE	Ξ	Ξ	=	=	=	=	Ξ
Total	234	225	2/2	115.5	108.9	34.6	119.1	141.0	26.9	107.7	96	22.6	144.8	74.2	141.7	97.6	265.4	8.96	23.3	83.6	228.6	187.9	66.8	39.2	3.7	123.7
Dec.	171	36	16	12.7	16	1.0	20.3	11.4	5.1	ı	ı	5.9	29.2	,	t	44.9	ı	1	20.0	1.0	2.0	ı	ì	32.3	J	,
Nov.	ı	6	, ,	68.6	24.1	1.8	ı	8.4	ï	2.0	ı	1	ı	:	ı	37.5	,	1	1	t	1	56.9	9.0	ı	J	1
Oct.	1	1	1	1	ı	1	ι	ı	1	ι	ı	ı	ì	1	t	1	1	1	1	1	1	1	•	ı	1	0.5
Sep.	1	1	1	ı	ı	1	1	1	1	ı	ı	1	1	1	ı	;	ı	1	ı	1	ì	ı	ţ	ı	ı	ı
Aug.	1	ı	1	ı	ı	ı	ı	1	•	1	1	0.1	;	1	110	ı	ı	ı	ı	ı	ı	1	ı	1	ı	,
Jul.	37.1	1	ις	1	3	0.5	72.1	1	:	ı	ı	1.9	1	ı	1	;	18.3	1	ı	1	10.0	1	ı	ı	1	ı
Jun.	j	,	,	ı	ı	,	,	i	t	,	ı	1	1	,	1	ı	ı	ı	1	ı	ı	6.8	ı	ı	1	ı
May	ı	O	7	,	36.8	14.5	ı	94	ı	ı	ı	6.2	ı	1	ı	1	1	1	1	,	1	1	ı	1	1	103
Apr.	0.5	62	ı	2.5	18.3	12.2	6.9	24.9	ı	83.1	7	7.9	ı		ı	ı	ı	1	0.3	1	43.3	32.0	1.0	1	ı	ı
Mar.	1	1	ı	21.8	ı	2.3	1	ı	10.4	,	-	9.0	2.2	12.2	ı	•	47.7	1		,	66.3	5.7	13.4	1	0.3	16.0
Feb.	13.2	1	ı	ı	ı	3	ı	2.3	ı	ı	88	1	90.3	5.6	1	1	95.5	ı	3.0	79.9	56.0	22.0	39.4	ı	2.6	1
Jan.	12.2	109.0	53.0	10.9	13.7	2.3	19.8	,	11.4	22.6,	•	ı	22.8	56.4	31.7	15.2	103.9	8.96	i	2.7	51.0	64.5	12.4	6.9	0.8	4.2
Year	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981

Source: Water Resources Department

Note:

no rainfall
 no data

Monthly Mean Temperature at Sohar Table A-5

	Average	ı	25.5	25.0	25.5	25.5	25.5	1		25.5
	Dec.	17.7	18.7	19.2	18.8	21.0*	19.8	20.0	1	19.6
္ပ်	Nov.	20.6	6.02	22.1	21.1	23.0*	23.4	20.9	ı	21.9
(Unit:	Oct.	22.8	24.5	26.3	27.6	26.1*	25.2	27.3	ı	26.2
	Sep.	1	30.4	23.2	29.6	28.9*	28.5	29.3	29.4	28.4
	Aug.	ı	31.7	31,1	31.9	*30.6	31.3	31.1	30.9	31.2
	Jul.	I	33.1	31,2	32.7	31.7	32.6	30.8	33.2	32.2
	Jun.	ı	33.3	33.2	31.6	31.6	31.8	30.6	32.3	32.1
	May	ı	30.3	31.5	30.6	30.4	29.4	28.3	31.5	30.3
	Apr.	ı	25.4	25.4	23.8	25.2	26.7	26.8	28.3	25.9
	Mar.	1	23.1	21.4	20.9	22.2	20.5	21.7	22.3	21.7
	Feb.	ı	17.3	18.3	19.4	18.0	18.7*	19.7	19.9	18.8
	Jan.	r	17.0	17.3	17.6	17.6	18.4*	18.2	18.0	e 17.7
	Year	1973	1974	1975	1976	1977	1978	1979	1980	Average 17.7

Source: Water Resources Department

figures indicate the average of 4 readings at 2:00, 8:00, 14:00 and 20:00 hrs. Note: 1.

*average of max. and min. 3. 5.

- no data.

Table A-6 Monthly Maximum (Mean and Absolute) Temperature at Sohar

Dec. Average									5.1 32.2				7.9 36.7					
Nov. De																		
Oct.													38.2 3					
Sep.	1	36.4	36.2	35.8	34.8	34.1	36.3	35.5	35.6				42.2					
Aug.	ı	37.1	35.2	37.4	35.1	36.0	37.1	36.2	36.3	i	43.6	39.5	46.1	42.8	40.5	42.0	43.6	42.6
Jul.	1	41.2	35.1	37.0	35,6	37.9	37.4	38.9	37.6	:	46.7	39.0	42.2	40.0	45.7	45.7	46.0	43,7
Jun.	1	40.4	39.2	38.4	37.4	38.4	38.0	38.8	38.7	1	47.2	47.3	44.3	43.5	44.9	45.0	47.2	45.6
May	1	38.1	38.8	36.0	38.0	37.2	37.6	39.6	37.9	1	46.5	41.5	42.8	43.0	44.3	45.3	44.0	43.9
Apr.	t	33.1	32.2	30.2	30.5	33.9	34.7	37.1	33.1	ī	42.5	36.4	37.0	40.7	40.4	39.9	44.5	40.2
Mar.	1	30.0	28.1	25.8	30.0	28.9	28.1	28.7	28.5	J	38.0	33.5	29.4	36.5	36.5	34.5	34.3	31.8
Feb.	1	23.9	24.0	23.2	24.6	•	27.5	25.4	24.7	1	27.0	28.9	30.0	28.2	30.4	33.7	29.6	29.7
Jan.	i	24.4	23.9	24.3	22.7	25.3	24.7	24.4	24.2	1			28.8	•	4	•	•	•
Year	Mean Max, 1973	1974	1975	1976	1977	1978	1979	1980	Average	Abs. Max. 1973	1974	1975	1976	1977	1978	1979	1980	Average

Source: Water Resources Department

Monthly Minimum (Mean and Absolute) Temperature at Sohar Table A-7

	Average	ı	19.2	19.4	18.9	19.7	19.0	18.9	•	19.3	1	15.0	14.8	14.6	14.9	14.5	14.7	ı	14.7
	Dec.	12.1	12.9	12.9	12.8	14.1	13.4	14.2	1	13.4	8.2	9.3	10.0	7.5	10.8	10.7	10.8	t	9.6
(၁့	Nov.	13.3	14.0	15.2	14.6	16.9	16.8	13.9	•	15.2	5.4	10.3	11.0	7.9	11.0	11.0	6.4	ı	0.6
(Unit:	Oct.	14.3	16.8	18.7	20.8	19.4	16.8	20.1	1	18.8	12.6	10.2	11.4	17.9	17.8	13.4	17.5	ı	14.4
	Sep.	1	24.6	23.2	23.9	23.0	22.5	23.0	23.5	23.4	1	22.0	19.1	19.9	16.3	19.5	16.9	20.3	19.1
	Aug.	ı	26.9	27.4	27.1	26.1	26.8	25.2	26.4	26.6	1	23.9	22.8	23.8	23.2	23.0	21.4	21.5	22.8
	Jul.	ı	26.2	28.1	24.7	31.0	28.1	26.4	27.5	27.4	,	21.6	25.0	21.7	21.2	23.3	23.4	23.0	22.7
	Jun.	:	25.2	25.7	24.7	25.6	25.1	27.6	25.7	25.6	1	20.6	22.6	22.1	21.5	20.2	24.7	21.0	21.8
	May	,	23.0	23.3	20.9	23.3	20.5	20.5	22.4	22.0	1	18.7	19.2	15.0	20.1	16.2	15.9	17.3	17.5
	Apr.	i	18.0	18.0	16.9	18.6	20.4	17.2	19.4	18.4	í	12.5	10.7	12.8	13.6	11.8	13.7	14.2	12.8
	Mar.	1				14.8					;		9,3						
	Feb.	•	12.8	13,8	13.6	11.1	12.9	11.7	14.3	12.9	1	9.0	8.3	8.7	7.2	9.4	8.3	8.0	8.4
	Jan.	ı	12.1	12.2	10.8	12.9	11.4	12.1	11.8	11.9	1	8.4	8.7	7.3	6.7	6.5	7.4	8.5	7.6
	Year	Mean Min. 1973	1974	1975	1976	1977	1978	1979	1980	Average	Abs. Min. 1973	1974	1975	1976	1977	1978	1979	0861	Average

Source: Water Resources Department

- no data Note:

		Average	,	70.1	71.3	ı	1	ı	73.2	:	72.8	
		Dec.	72.0	75.0	77.0	78.0	ı	80.0	84.0	ı	78.8	
	~	Nov.	70.0	73.0	72.0	70.0	1	77.0	83.0	1	75.0	
	(Unit:	Oct.	65.0	67.0	68.0	78.0	1	76.0	61.0	ı	70.0	
		Sep.	1	76.0	72.0	0.62	ı	83.0	78.0	75.0	77.2	
at Sohar		Aug.	ı	79.0	79.0	78.0	1	85.0	77.0	74.0	78.6	
umidity a		Jul.	ı	0.99	80.0	77.0	85.0	77.0	70.0	71.0	75.1	
Monthly Mean Humidity at Sohar		Jun.	1	59.0	70.0	74.0	71.0	71.0	74.0	79.0	71.1	
Monthl		May	:	58.0	58.0	53.0	52.0	67.0	0.09	58.0	58.0	
Table A-8		Apr.	1	0.69	57.0	•	0.99	75.0	72.0	65.0	67.3	
ľab]		Mar.	١	70.0	70.0	79.0	0.69	77.0	72.0	77.0	73.4	
		Feb.	:	75.0	78.0	78.0	68.0	1	72.0	79.0	75.0	
		Jan.	ı	74.0	74.0	73.0	73.0	ı	75.0	77.0	e 74.3	
		Year	1973	1974	1975	1976	1977	1978	1979	1980	Average 74.3	

Source: Water Resources Department

- no data Note:

Table A-9 Monthly Maximum (Mean and Absolute) Humidity at Sohar

	Average	1	94.9	94.4	95.7	95.2	95.9	97.5	,	95.9	1	6.66	99.4	100.0	100.0	99.3	100.0	1	8.66
(%)	Dec.	92.0	0.96	92.0	100.0	98.0	100.0	0.66	ı	97.6	100.0	100.0	100.0	100.0	100.0	100.0	100.0	ı	100.0
Unit:	Nov.	94.0	0.66	97.0	0.86	99.0	0.66	99.0	ı	97.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	ı	100.0
೮	Oct.	95.0	97.0	94.0	100.0	92.0	100.0	100.0	•	97.3	97.0	100.0	99.0	100.0	100.0	100.0	100.0	•	99.4
	Sep.	1	97.0	93.0	0.66	95.0	100.0	100.0	100.0	97.7	ı	100.0	96.0	100.0	100.0	100.0	100.0	100.0	99.4
	Aug.	ı	98.0	95.0	98.0	97.0	100.0	0.66	100.0	98.1	1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Jul.	•	95.0	97.0	96.0	98.0	97.0	92.0	97.0	96.4	1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Jun.	,	91.0	97.0	98.0	97.0	96.0	96.0	99.0	96.3	ı	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	May	ı	86.0	86.0	92.0	84.0	87.0	92.0	94.0	89.1	ı	100.0	98.0	100.0	100.0	100.0	100.0	100.0	2.66
	Apr.	ı	98.0	92.0	94.0	92.0	87.0	93.0	98.0	93.4	ı	100.0	100.0	100.0	100.0	95.0	100.0	100.0	99.3
	Mar.	ŧ	94.0	95.0	93.0	95.0	92.0	0.96	99.0	94.9	1	100.0	100.0	100.0	100.0	97.0	100.0	100.0	99.6
	Feb.	,	94.0	97.0	85.0	98.0	96.0	0.66	0.66	95.4	ı	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Jan.	ı	94.0	95.0	95.0	94.0	97.0	0.66	0.66	96.1	ı	0.66	100.0	100.0	100.0	100.0	100.0	100.0	6.66
	Year	Mean Max. 1973	1974	1975	1976	1977	1978	1979	1980	Average	Abs. Max. 1973	1974		1976					Average

Source: Water Resources Department

Table A-10 Monthly Minimum (Mean and Absolute) Relative Humidity at Sohar

	Average	1	39.3	41.5	42.1	39.7	36.1	31.8	ı	39.2	ı	17.8	19.0	17.4	17.7	10.6	6.9	1	14.8
	Dec.	46.0	44.0	44.0	48.0	40.0	47.0	53.0	1	46.0	32.0	21.0	23.0	24.0	24.0	22.0	27.0	ı	24.7
% -	Nov.	37.0	36.0	44.0	39.0	39.0	39.0	35.0	ı	38.4	17.0	14.0	18.0	17.0	23.0	23.0	10.0	ı	17.4
(Unit:	Oct.	32.0	29.0	36.0	42.0	40.0	20.02	30.0	1	32.7	20.0	15.0	19.0	17.0	18.0	4.0	2.0	,	13.6
	Sep.	1	44.0	39.0	46.0	43.0	53.0	41.0	53.0	45.6	1	25.0	13.0	15.0	16.0	25.0	0.6	8.0	15.9
	Aug.	1	51.0	54.0	49.0	53.0	51.0	36.0	67.0	51.6	1	16.0	13.0	18.0	17.0	5.0	2.0	3.0	10.6
	Jul.	ı	31.0	57.0	49.0	60.0	41.0	33.0	51.0	46.0	,	11.0	35.0	17.0	30.0	5.0	8.0	7.0	16.1
	Jun.	1	31.0	34.0	37.0	42.0	31.0	33.0	43.0	35.9	ı	9.0	9.0	13.0	15.0	2.0	2.0	3.0	7.6
	May	ı	29.0	30.0	23.0	25.0	14.0	15.0	22.0	22.6	ı	12.0	16.0	10.0	9.0	2.0	1.0	2.0	7.4
	Apr.	1	34.0	30.0	40.0	30.0	26.0	0.9	16.0	26.0	1	21.0	17.0	13.0	11.0	2.0	2.0	0	9.4
	Mar.	1	42.0	39.0	48.0	26.0	24.0	34.0	77.0	41.4	ı	17.0					4.0	•	•
	Feb.	ı	52.0	48.0	43.0	35.0	43.0	26.0	46.0	41.9	ſ	24.0	21.0	22.0	14.0	13.0	0.0	15.0	16.9
	Jan.	ľ	48.0	43.0	41.0	43.0	44.0	40.0	41.0	42.9	ı	28.0	27.0	22.0	23.0	17.0	7.0	18.0	20.3
	Year	Mean Min. 1973	1974	1975	1976	1977	1978	1979	1980	Average	Abs. Min. 1973	1974	1975	1976	1977	1978	1979	1980	Average

Source: Water Resources Department

Monthly Mean Wind Velocity at Sohar Table A-11

(Unit: km/day)

Average	1	72.9	9.69	60.4	65.5	70.6	74.4	ı	68.8	1	1	41.4	•	34.9
Dec.	54.7	42.8	45.0	40.5	46.8	46.3	53.5	1	45.8	20.1	24.7	30.2	1	25.0
Nov.	54.0	48.3	52.3	46.0	50.5	60.5	49.9	1	51.3	•	31.7	27.9	ı	29.8
Oct.	9.09	57.6	59.6	55.4	60.0	61.8	62.9	ı	60.1	20.8	31.2	39.9	1	30.6
Sep.	t	6.62	65.8	80.8	65.1	81.6	79.6	76.4	75.6	17.8	33.5	45.7	1	32.3
Aug.	1	92.5	86.1	84.5	91.7	87.1	85.5	94.0	88.8	5.8	26.5	48.7	52.1	33.3
Jul.	ı	81.6	106.3	71.7	96.3	92.1	95.0	87.9	90.1	25.8	38.0	51.5	49.5	41.2
Jun.	ı	93.4	71.2	62.0	, 94.0	75.2	0.06	62.9	78.8	47.1	27.8	50.8	43.4	42.3
May	1	87.3	78.8	57.7	79.1**	76.5	76.5	79.3	76.5	34.8	ı	43.2	41.9	40.0
Apr.	,	85.6	9.69	57.3	61.1*	78.6	78.3	74.2	72.1	39.5	41.0	44.4	39.9	41.2
Mar.	1	9.09	80.1	61.8	44.0	68.7	86.1	73.5	67.8	ı	37.8	50.1	34.6	40.8
Feb.	1	75.5	62.0	8.09	47.8	61.7	69.5	55.2	61.8	ı	ı	36.2	33.0	34.6
Jan.	1	69.5	58.4	46.5	49.9	56.7	63.2	54.1	57.0	ı	26.2	28.1	28.1	27.5
Year	2 m height 1973	1974	1975	1976	1977	1978	1979	1980	Average	1/2 m height 1977	1978	1979	1980	Average

Source: Water Resources Department

except 1.4 - 13.4 ***

Note:

except 21.5 - 29.5

Table A-12 Monthly Absolute Maximum Wind Velocity at Sohar

Ç	Average	1	129.2	138.2	,	112.4	103.1	109.7	ŗ	115.4	1	1	63.6	ı	57.0
(Unit: km/day)	Dec.	106.0	81.8	61.6	50.0	73.2	9.08	87.6	ı	77.3	32.4	43.4	50.5	1	42.1
(Unit	Nov.	91.1	91.0	96.4	6.79	68.0	83.2	74.1	1	81.7	ı	45.5	48.4	1	47.0
	Oct.	68.4	7.66	84.5	102.5	72.2	74.3	6.67	1	83.1	29.7	46.2	52.7	ı	42.9
	Sep.	ı	103.2	104.2	113.3	89.8	100.0	114.1	105.0	104.2	35.0	47.9	73.2	ı	52.0
	Aug.	ı	122.8	139.8	162.1	188.0	112.5	106.7	135.3	138.2	21.4	44.5	59.3	6.79	48.3
	Jul.	ı	145.7	145.3	96.2	124.0	158.1	153.2	119.7	134.6	54.8	61.5	84.1	65.1	66.4
	Jun.	ı	192.5	104.9	96.2	238.2	101.9	142.7	109.6	140.9	156.2	67.1	89.9	58.6	93.0
	May	ı	125.3	158.9	120.6	188.0	120.7	111.7	115.0	134.3	54.3	ı	56.1	57.2	55.9
	Apr.	ì	200.8	160.7	ı	81.5	99.2	113.9	93.9	125.0	76.8	59.6	62.9	54.5	64.2
	Mar.	ı	113.7	195.8	ı	59.8	110.0	131.9	139.2	125.1	ı	74.2	86.4	51.2	70.6
	Feb.	1	132.9	184.0	124.1	73.9	92.7	105.7	108.0	117.3	1	1	58.3	49.1	53.7
	Jan.	1	141.4	222.0	•	91.8	104.0	94.8	85.6	123.3	ı	44.3	38.6	60.0	47.6
	Year	2 m height 1973	1974	1975	1976	1977	1978	1979	1980	Average	1/2 m height 1977	1978	1979	1980	Average

Source: Water Resources Department

Table A-13 Monthly Absolute Minimum Wind Velocity at Sohar

											un)	(Unit: km/day)	'day)
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Average
2 m height 1973	1	1	ı	ı	ı	ı	1	ı	ı	50.5	36.0	39.9	ı
1974	41.5	47.7	37.5	55.3	67.8	63.3	62.7	70.8	57.3	31.9	33.8	17.2	48.9
1975	36.4	19.7	51.6	12.3	53.4	48.2	57.8	53.4	38.0	39.3	36.4	32.6	39.9
1976	21.3	4.6	32.7	22.9	38.6	47.0	52.5	59.3	55.8	32.2	20.9	30.4	34.9
1977	24.5	23.5	24.2	40.9*	62.1**	. 59,3	73.5	46.4	37.5	52.0	36.6	30.8	42.6
1978	40.6	38.0	12.5	62.6	57.3	43.3	62.7	57.7	51.9	46.1	0.05	47.6	43.4
1979	41.8	42.4	69.7	56.6	56.3	53.0	41.3	52.6	6.09	51.3	34.5	13.8	47.9
1980	12.9	51.0	5.3	60.4	45.8	48.0	62.7	62.7	62.5	•	ı	ŧ	1
Average	31.3	32.4	33.4	44.4	54.5	51.7	59.0	57.6	52.0	43.3	28.3	30.3	43.2
1/2 m height 1977	ı	1	1	11.3	22.2	28.1	5.9	0.3	0.4	11.0	r	7.3	•
1978	10.0	1	5.6	21.0	ı	6.3	17.2	8.6	8,6	6.5	20.0	8.2	ı
1979	13.9	18.8	36.6	29.1	33.1	25.7	35.5	27.0	31.2	29.9	13.2	11.8	25.5
1980	2.8	10.2	19.7	15.5	31.7	28.0	35.5	33.6	ı	ı	1	ı	1
Average	8.9	14.5	20.6	19.2	29.0	22.0	23.5	17.4	13.4	15.8	16.6	9.1	17.5

Source: Water Resources Department

Table A-14 Monthly Mean Evaporation at Sohra

(Unit: mm/day)

Average	1	5.78	5.60	5.95	l	3.0 5.72	2,086.7
Dec.	3.0	3.2	3.1	2.8	ı	3.0	93.0
Nov.	4.6	3.8	4.1	3.4	1	3.7	111.0
Oct.	1	5.3	5.3	5.1	t	5.2	161.2
Sep.	ı	6.4	6.0	6.9	5.2	6.1	183.0
Aug.	ı	6.9	9.9	7.1	6.4	6.8	210.8
Jul.	t	7.1	6.9	8.3	6.9	7.3	226.3
Jun.	t	8.1	7.9	8.5	7.0	7.9	37.0
May	1	9.2	7.8	8.2		8.	272.8
Apr.	ı	9.9	6.9	8.1	7.9	7.4	222.0
Mar.	ı	5.3	5.4	5.4	4.4	5.1	158.1
Feb.	1	4.0	3.6	4.3	3.5	3.9	109.2
Jan.	,-	3.1	3.6	3,3	3.2	3.3	102.3
Year	1976	1977	1978	1979	1980	Ave. (mm/day) 3.3	(mm/mon.)102.3

Source: Water Resources Department

Note: - no data

Table A-15 Monthly Maximum and Minimum Evaporation at Sohar

	Average -	9.6	7.9	8.3	ı	8.6	ı	3.0	3.2	4.1	1	3.4
	Dec. 3.7	5.2	5.2	4.7	1	4.7	1.4	1.7	1.9	0.5	1	1.4
Ç	Nov. 5.7	5.2	5.4	3.9	ı	5.1	2.7	2.0	2.9	2.5	1	2.5
: mm/day]	0ct.	12.2	6.7	6.5	ı	8.5	ı	3.7	4.0	2.2	1	3.3
(Unit:	Sep.	12.8	8.7	9.6	8.3	6.6	1	4.2	4.8	4.7	2.6	4.1
	Aug.	10.9	9.6	8.3	13.9	10.7	i	4.3	4.4	5.7	4.4	4.7
•	Jul.	12.2	9.7	10.5	9.1	10.4	ŧ	4.4	3.5	7.0	4.9	5.0
	Jun.	13.1	10.8	11.1	9.6	11.2	ı	5.2	5.0	6.5	4.4	5.3
	May	13.6	11.8	6.7	14.3	12.4	ı	5.3	5.2	7.0	7.4	6.2
•	Apr.	9.4	9.6	13.4	10.4	10.7	ſ	0.2	1.3	4.2	4.7	2.6
	Mar.	9.6	7.8	10.4	6.9	8.7	•	3.1	2.6	3.4	1.4	2.6
	Feb.	5.5	4.8	6.4	5.2	5.5	1	1.9	0.9	3.1	1.0	1.7
	Jan.	5.7	5.2	4.7	15.6	5.3	t	0.5	1.7	2.4	2.1	1.7
	Year Max. 1976	1977	1978	1979	1980	Average	Min. 1976	1977	1978	1979	1980	Average

Source: Water Resources Department

Note: - no data

Table A-16 Monthly Mean Sunshine Hours at Sohar

hrs/day)
2,
Ţ
Uni
C
5
ᠸ,

Average	,	8.90	8.60	8.60	8.50	8.50	l ø	8.63
Dec.	8.50	7.70	7.70	7.01	7.19	7.50	ı	7.60
Nov.	•	9.30	8.50	8.29	8.17	7.91	ı	8.43
Oct.	•	9.40	9.52	8.77	90.6	8.93	ı	9.14
Sep.	ı	9.30	9.38	9.58	9.42	9.00	1	9.34
Aug.	ı	9.00	7.76	8.77	8.55	8.60	ı	8.54
Jul.	ı	06.6	8.50	9.33	8.18	7.76	ı	8.73
Jun.	,	10.60	10.00	10.78	9.16	9.00	;	9.91
May	ı	10.10	10.70	10.75	10.05	10.12	9.97	10.28
Apr.	ı	9.20	8.10	8.80	8.06	8.33	9.58	8.68
Mar.	1	7.40	9.20	6.75	8.00	9.10	7.94	8.07
Feb.	i	7.50	7.00	6.67	8.99	7.40	8.54	7.68
Jan.	i	7.00	6.80	7.31	6.70	7.75	7.46	werage 7.17
Year	1973	1974	1975	1976	1977	1978	1979	Average

Source: Water Resources Department

Note: - no data

Table A-17 Monthly Maximum and Minimum Sunshine Hours at Sohar

(Unit: hrs/day)

	Average	1	10.60	10.60	10.40	10.60	10.10	3	10.40	ı	3.40	3.80	4.00	2.30	3.70	;	3.60
	Dec.	9.10	9.50	8.77	8.92	8.40	8.63	t	8.90	7.20	2.40	1.50	3.30	1.17	4.23	r	3.30
	Nov.	ı	06.6	9.50	8.93	14.63	9.42	•	10.50	ı	0.20	6.50	5.47	2.77	4.00	,	3.80
	Oct.	ŧ	10.40	10.35	10.00	10.25	9.50	1	10.10	ı	4.30	8.03	7.00	1.83	7.75	,	5.80
,	Sep.	1	10.40	10,97	10.50	10.40	10.00	1	10.50	ı	5.30	6.30	6.86	5.85	6.25	1	6.10
	Aug.	ı	10.50	10.58	10.77	10.40	10.40	ı	10.50	ı	4.00	0.40	5.25	2.03	1.50	1	2.60
	Jul.	ţ	11.80	11.33	11.42	10.47	10.37		11.10		5.70	6.08	7.60	0.85	2.13	1	4.50
	Jun.	1	11.90	11.19	12.00	11.25	10.88	1	11.40	1	7.00	8.55	0.25	2.75	5.25	ı	4.80
	May	1	11.90	12.05	12.35	11.42	11.57	11.42	11.80		5.50	5.53	7.17	6.75	6.47	5.28	6.10
	Apr.	1	11.00	12.00	11.67	10.58	10.63	10.88	11.10	1	4.30	0.20	2.33	00.0	1.80	3.53	2.00
	Mar.	1	10.50	10.80	10.10	10.33	10.17	10.42	10.40	1	00.00	2.40	1.15	0.13	3.10	0.50	1.20
	Feb.	•	10.20	10.10	9.50	10.35	10.00	9.25	9.90	1	1.00	00.00	00.00	1.65	0.07	5.08	1.30
	Jan.	1	9.20	9.50	8.50	9.15	9.05	89.8	00.6	1	0.90	00.00	1.10	1.42	1.30	4.68	1.60
	Year	Max. 1973	1974	1975	1976	1977	1978	1979	Average	Min. 1973	1974	1975	1976	1977	1978	1979	Average

Source: Water Resources Department

- no data Note:

List of Water Level Recorder and Rainfall Recorder in the Basin Table A-18

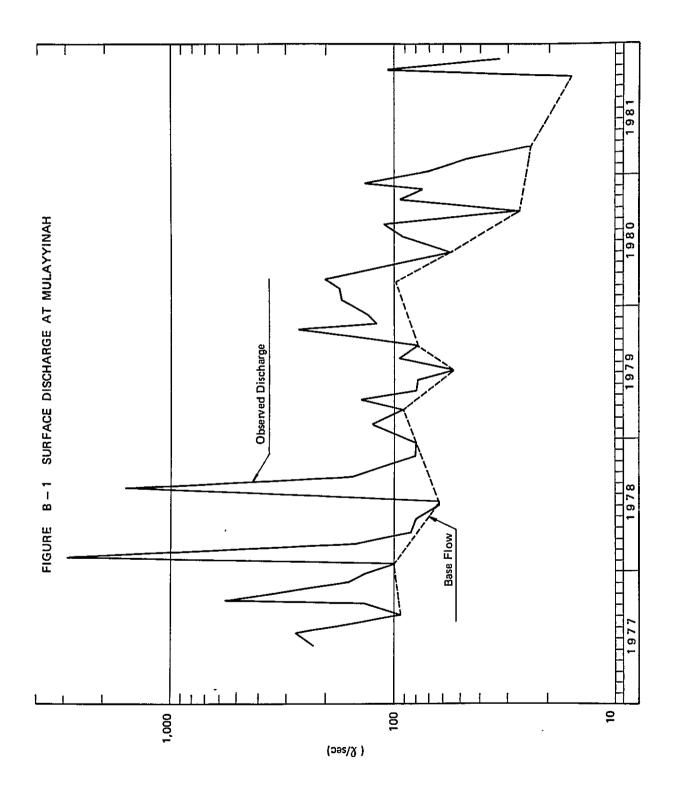
Note	Three Month	÷	z	=	Ξ	Ξ	=	Ξ	£
Name of Station	Mulayyinah No.1	., 2	Irish Bridge of Wadi Jizzi	Mouth of Wadi Jizzi	Daqiq	Kitnah	Hayl (Wadi Jizzi)	Hayl (Wadi Hayl)	Khan
Date Installed	Dec. 1981	Ξ	=	Ξ	=	=	Jan. 1982	=	Feb. 1982
Equipment No.	215888	215880	215884	215886	207538	207536	207546	207547	207548
	: No.1	No.2	No. 3	No.4	No.1	No.2	No.3	No.4	No.5
Gauge No.	Water Level Recorder No.1	~=	**	Σ	Rainfall Recorder	=	=	=	=

The location of these gauges are shown in Figure 3-2. The meteorological data of the Sohar Royal Farm have not been collected. Note:

APPENDIX B. SURFACE WATER

APPENDIX B. SURFACE WATER

- B-1. Discharge Observation in Wadi Jizzi Basin
- B-2. Runoff Analysis in Wadi Jizzi Basin
- B-3. Hydraulic Calculation of the Conduit

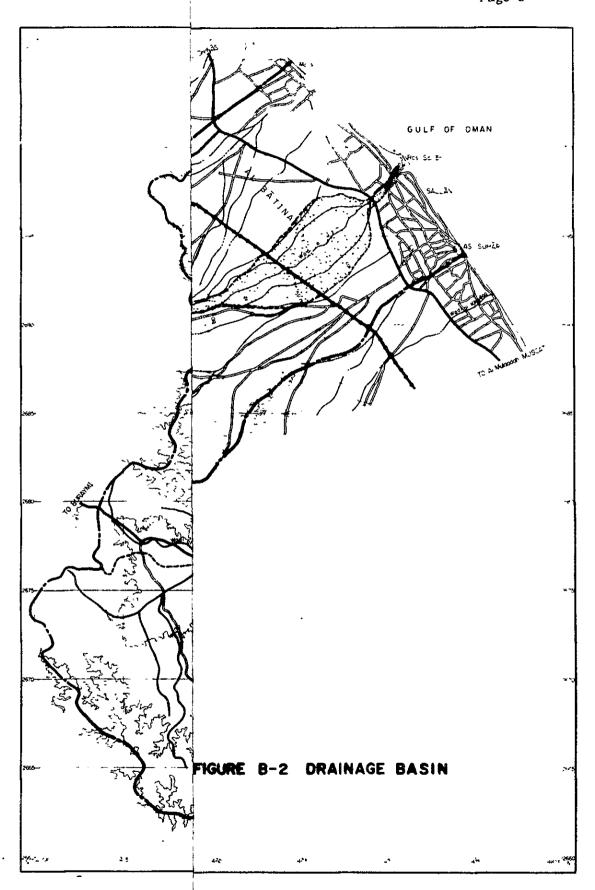

Table B-1 Falaj Discharge in the Basin

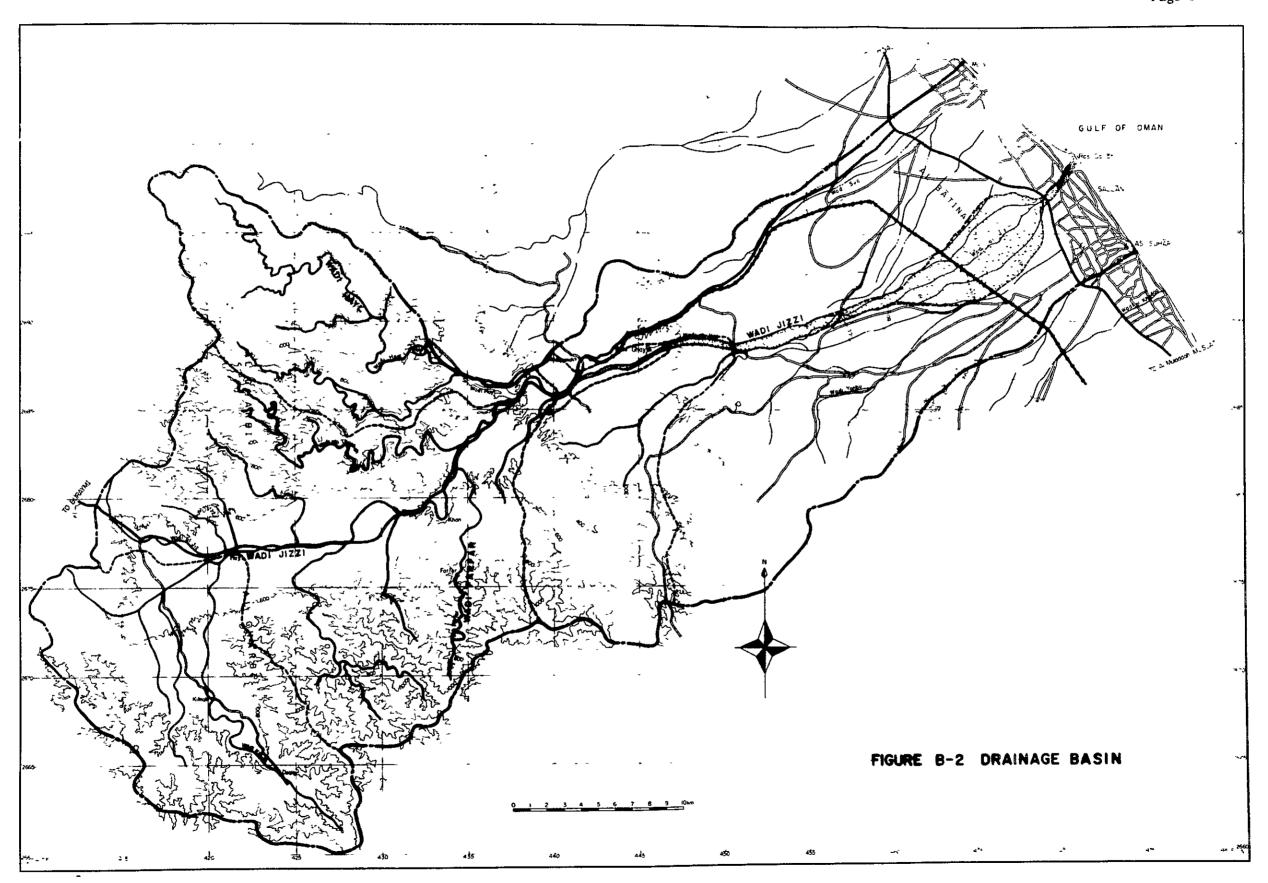
Nam	e of Village	$\frac{\text{Gross Area}}{\text{(ha)}} \frac{1}{}$	Net Area 2/(ha)	Falaj Discharge 3/(1/s)
1.	Daqiq	14	9.1	7.28
2.	Kitna	10	6.5	5.20
3.	Hayl (W.Jizzi)	30	19.5	. 15.60
4.	Wasit	24	15.6	12.48
5.	Sahban	10	6.5	5.20
6.	Farfar	5	3.2	2.56
7.	Bani Hina	10	6.5	5.20
8.	Hansi	5	3.2	2.56
9.	Ghurfah	4	2.6	2.08
10.	Ath Thuqbah	7	4.6	3.68
11.	Ays	9	5.9	4.72
12.	Jebba Gebba	2	1.3	1.04
13.	Hayl (W.Hayl)	20	13.0	10.40
	Total	150	97.5	<u>78.00</u>

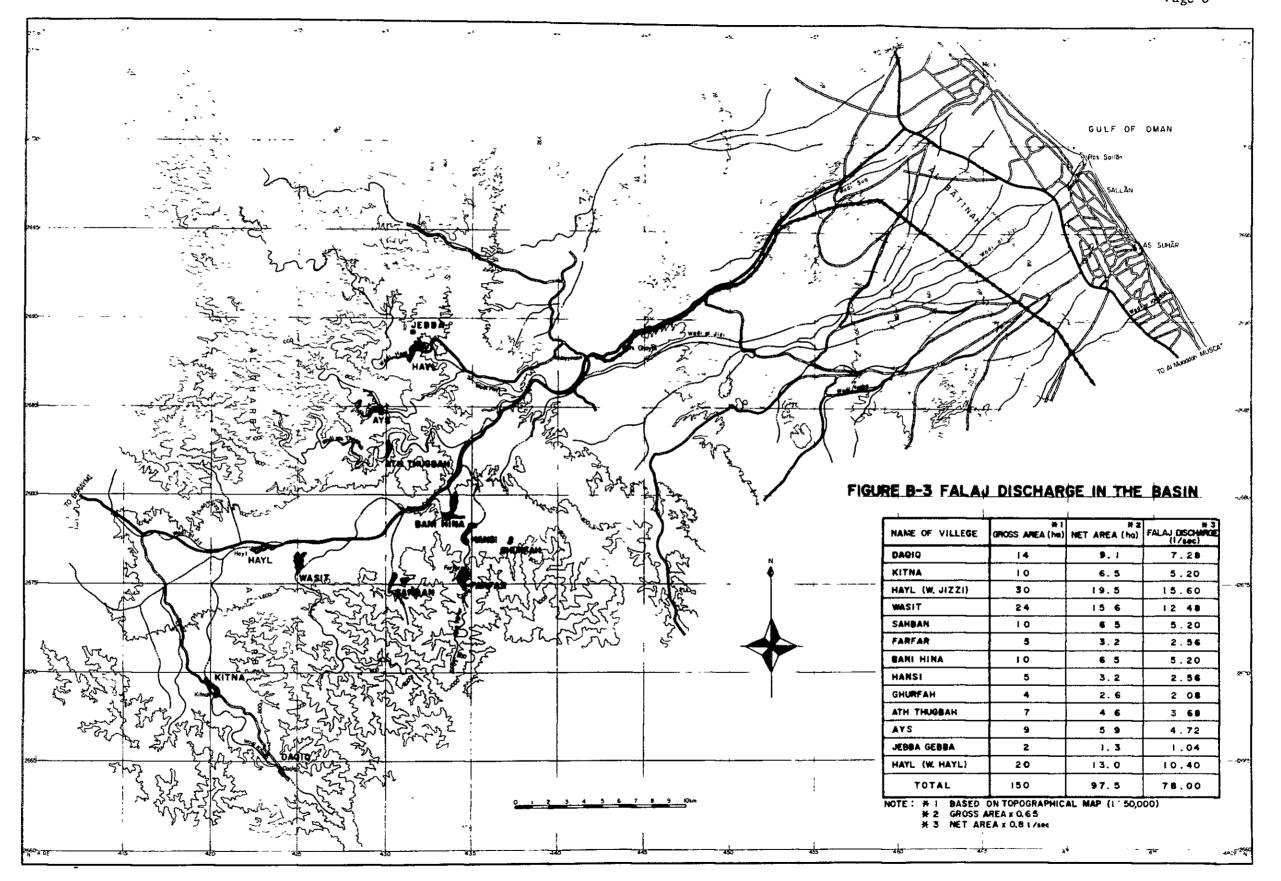
^{1/}; Topographical map (1:50,000)

^{2/;} Gross area x 0.65

^{3/}; Net area x 0.8 ℓ/sec




Year Jan. Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total Mean 1977 * * * * * * * 96 98 99 * (97) 1978 100 94 88 83 77 71 65 68 71 74 78 81 950 79 1979 84 87 90 81 75 64 55 68 80 83 87 90 942 79 1980 93 97 100 88 76 64 52 40 28 27 26 26 717 60 1981 25 24 52 40 28 7 7 7 67.2 1981 25 22 22 22 22 24 7 7 7 7 7 7 7 7 7 <th></th> <th></th> <th></th> <th></th> <th>Table</th> <th>B=2</th> <th>Base</th> <th>Base Flow Discharge at Mulayyinah</th> <th>scharge</th> <th>at Mul</th> <th>ayyinah</th> <th></th> <th></th> <th>(Uni</th> <th>(Unit: 1/sec)</th>					Table	B=2	Base	Base Flow Discharge at Mulayyinah	scharge	at Mul	ayyinah			(Uni	(Unit: 1/sec)
* * * * * * * 99 99 100 94 88 83 77 71 65 68 71 74 78 81 9 84 87 90 81 75 64 55 68 80 83 87 90 9 93 97 100 88 76 64 52 40 28 27 26 26 7 25 24 23 22 21 20 18 17 16 * * * *	Year	<u>'Jan'</u>				May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total	Mean
100 94 88 83 77 71 65 68 71 74 78 81 9 84 87 90 81 75 64 55 68 80 83 87 90 9 93 97 100 88 76 64 52 40 28 27 26 26 7 25 24 23 22 21 20 18 17 16 * * * *	1977	*	* .	*		*	*	*	*	95	96	98	66	*	(62)
84 87 90 81 73 64 55 68 80 83 87 90 9 93 97 100 88 76 64 52 40 28 27 26 26 7 25 24 23 22 21 20 18 17 16 * * * *	1978	100	94	88		77	71	65	89	71	74	78	81	950	79
93 97 100 88 76 64 52 40 28 27 26 26 7 25 24 23 22 21 20 18 17 16 * * *	1979	84	87	06		73	64	55	89	80	83	87	06	942	79
25 24 23 22 21 20 18 17 16 * * *	1980	93	97	100	88	92	64	52	40	28	27	56	56	717	09
	1981		24	23	22	21	20	18	17	16	*	*	*	*	(21)
	erage													(0.10	67.2


Note : no available data

Observed Flood Volume at Mulayyinah (Catchment Area 654 sq.km) Table B-3

Date	Flood Volume (cu.m '000)	Area Rainfall (mm)	Runoff Ratio (%)
15 Feb, '74	160	32.4	0.8
18 - 19 Feb.'74	140	7.0	3.1
2 Oct.'74	190	2.5	11.6
6 - 7 Oct.'74	910	0.9	23.2
11 Feb.'75	2,300	49.2	7.1
24 - 25 Jan. 179	160	15.4	1.6
2 Apr.'79	20	3.0	2.5
Average			7.1

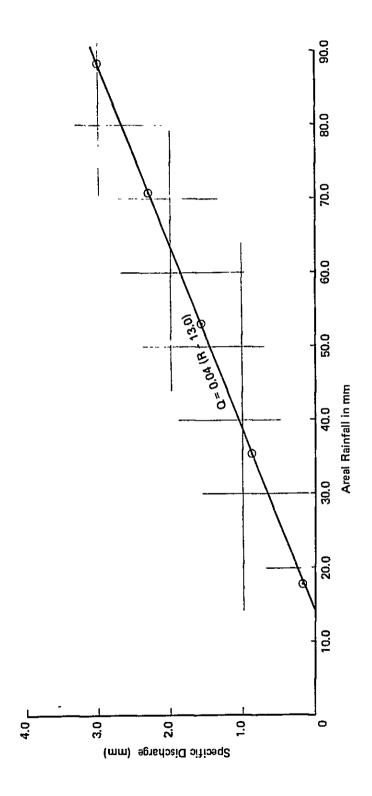
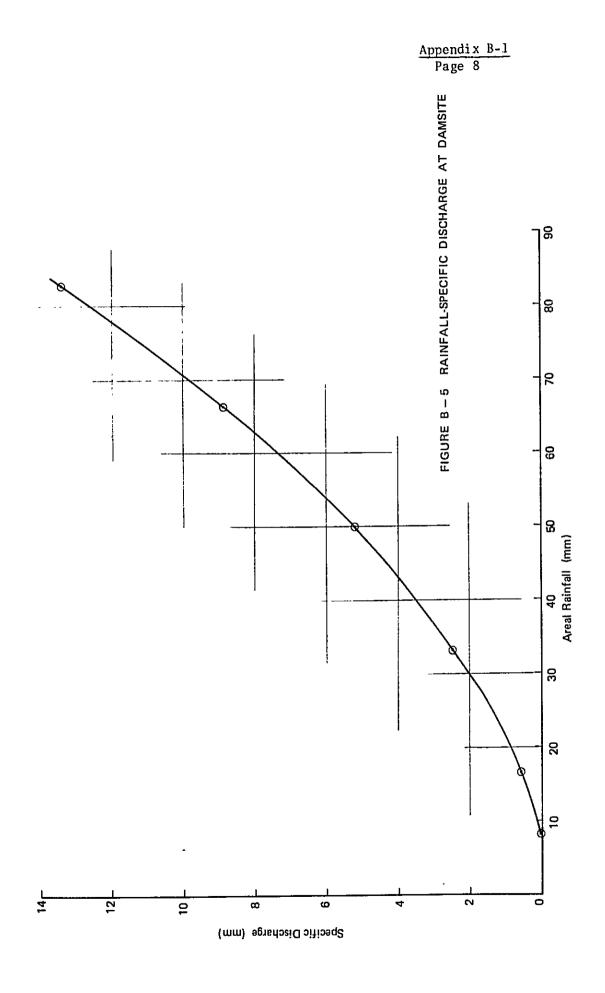



FIGURE B--4 RAINFALL-SPECIFIC DISCHARGE AT RIVER MOUTH

Runoff Analysis by the Multiple Regression Method

This method is applied to analyze the rainfall-runoff, in placing the catchment area as black box, by solving the response function of input-output by multiple regression analysis. Herein, the method developed by Shiraishi, Onishi and Ito of the Agricultural Engineering Research Station, Ministry of Agriculture, Forestry and Fisheries, Japan, was applied, although there is a variety of approaches available.

The method used herein is to explain the runoff by linear part of the rainfall and the non-linear second order terms on the part that cannot be given by the linear expression, and no higher terms than the third order shall be out of consideration. In particular, the runoff will be given in a statistical unit hydrograph when only the linear part is obtained.

1. Theory of Runoff Analysis by Multiple Regression Method

When the observation values of runoff (Q) and rainfall (R) are available, the runoff (Q) in general can be given as function of the rainfall (R).

$$Qi = f(Ri_1, Ri_2, Ri_3, ------(1))$$

Where, Ri₁ = Rainfall on the day when runoff takes place

Ri2 = Rainfall one day before runoff takes place

Ri3 = Rainfall two days before runoff takes place

If runoff can be given as the first order combination of rainfall, the equation (1) can be expressed as follows:

$$Qi = \beta_0 + \beta_1 Ri_1 + \beta_0 Ri_2 + ----- \beta n Rin + \epsilon i --- (2)$$

Where, β_0 , β_1 --- βn = Unknown parameters $\epsilon i \ = \ The \ residues \ that \ cannot \ be \ expressed \ by \ Ri_1 \ --Rin$

The multiple regression analysis is to obtain the best available universal estimates of these known parameters, β_0 , β_1 --- βn , by the method of the least squares.

In order to obtain the b_o, b₁, --- bn as the estimates of β_o , β_1 --- βn , the quadratic sum of the residues,

$$E = \Sigma \{Qi - (b_0 + b_1Ri_1 + ---- bnRin)\}^2$$
 -----(3)

shall be minimized. In other words, the following equation can be obtained.

$$\frac{\partial E}{\partial b_o} = -2\Sigma \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ----bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Ri}_1 \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Ri}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Rin}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Rin}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Rin}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Rin}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Rin}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Rin}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Rin}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Rin}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_o + b_1 \text{Rin}_1 + ---bn \text{Rin}) \} = 0 - \frac{\partial E}{\partial b_o} = -2\Sigma \text{Rin} \{ \text{Qi} - (b_$$

These equations shall be arranged to obtain a first order simultaneous equation, so-called normal equation, with b_{\circ} , b_{1} , -- b_{1} by as unknowns.

$$nb_{o} + (\Sigma Ri_{1})b_{1} + (\Sigma Ri_{2})b_{2} + ---- + (\Sigma Rin)bn = \Sigma Qi$$

$$(\Sigma Ri_{1})b_{o} + (\Sigma Ri_{1}^{2})b + (\Sigma Ri_{1} Ri_{2})b_{2} + -- + (\Sigma Ri_{1} Rin)bn = \Sigma Ri_{1} Qi$$

$$(\Sigma Ri_{2})b_{o} + (\Sigma Ri_{1}Ri_{2})b_{1} + (\Sigma Ri_{2}^{2})b_{2} + --+ (\Sigma Ri_{2} Rin)bn = \Sigma Ri_{2} Qi$$
(5)

$$(\Sigma Rin)b_0 + (\Sigma Ri_1Rin)b_1 + (\Sigma Ri_2Rin)b_2 + -- + (\Sigma Rin^2)b_1 = \Sigma Rin Qi$$

The second order term expressing the non-linear runoff shall be given by the following second order regression model so as to express the residue (e) between observation values and the linear estimated discharges.

ei = Qi - EQi
=
$$\alpha_0$$
 + $\sum_{j=i}^{i+n} \sum_{k=j}^{i+n} \alpha_{jk} R_{jk} R_{k} + \epsilon_{i}$ -----(6)

In the same manner that was applied to the case of the linear part of runoff, the quadratic sum of the residues shall be minimized to determine α_0 , α ij. When the best available universal estimates are taken as a_0 and aij, the quadratic sum of the residues which can be expressed by

$$E = \Sigma \{ei - (a_0 + \sum_{j=i}^{i+n} \sum_{k=j}^{i+n} Qjk Rj Rk)\}^2$$
 ----- (7)

requires to establish the following equation for minimizing the value of the equation (7).

$$\frac{\partial E}{\partial a_o} = -2\Sigma \{ei - (a_o + \sum_{j=i}^{i+n} \sum_{k=j}^{i+n} qjk Rj Rk)\} = 0$$

$$F$$

$$\frac{\partial E}{\partial qem} = -2\Sigma Re Rm \{ei - (a_o + \sum_{j=i}^{i+n} \sum_{k=j}^{i+n} qjk Rj Rk)\} = 0$$
(8)

The above is a simultaneous equation with a and Jjk as unknowns, and this is arranged to give the following equations.

$$na_{o} + \sum_{j=i}^{i+n} \sum_{k=j}^{i+n} qjk \ Rj \ Rk = \Sigma ei$$

$$(\Sigma \operatorname{Re} \ \operatorname{Rm}) a_{\circ} + \Sigma \{\operatorname{Re} \ \operatorname{Rm} \ \ \overset{\mathbf{i}+\mathbf{n}}{\underset{\mathbf{j}=\mathbf{i}}{\sum}} \quad \underset{\mathbf{k}=\mathbf{j}}{\overset{\mathbf{i}+\mathbf{n}}{\sum}} \quad \operatorname{djk} \ \operatorname{Rj} \ \operatorname{Rk}\} = \Sigma \ \operatorname{Re} \ \operatorname{Rm} \ \operatorname{ei}$$

	, mm }	Total	2.35	5.65	34.70	8.10	3.25	0.50	1.10	0.80	7.05
	(Unit: mm)	Dec.	1	1	1	ı	1	0.20	ı	ı	
	Flood Flow Runoff at Mulayyinah '(Catchment 654 \mbox{Km}^2)	Nov.	1	1	0.35	0.05	ı	J	ı	ı	
	chment 6	Oct.	1	ı	1	1	t	1	1	ı	
	.(Cato	Sep.	1	1	1	ı	1	I	ı	1	
	ıyyinah	Aug.	1	0.20	(0.20) 0.20	1	0.35	ı	1	ı	
	at Mula	Jul.	1	1	ı	i	;	1	ı	0.15	
	Runoff	Jun.	ı	ı	1	$\binom{0.20}{0.15}$	ı	1	į	ì	
	od Flow	May	ı	1	1	2.55	1	ı	,	0.65	
	Floc	Apr.	1	1	$\binom{4.00}{0.15}$	3.30	ı	1	•	l	
	Table B-4	Mar.	r	1	$\begin{bmatrix} 1.05 \\ 2.90 \\ 9.85 \\ 13.80 \end{bmatrix}$	1	t	ı	0.90	t	
	Tal	Feb.	2.35	$\binom{0.35}{5.10}$	(2.55) (8.60) (4.50)	1,10	2.90	i	0.20	1	
		Jan.	1	ŧ	1.30	0.75	ı	0.30	1	ı	
-		Year	1974	1975	1976	1977	1978	1979	1980	1981	Mean

Table B-5 Runoff at the River-mouth (Catchment 1,283 Km²)

		Total	1.140	1.360	9.006	2.668	0.908	0.242	0.108	0.112	1.954
	_	Dec.	ı	i	ı	ı	•	0.212	1	ı	
•	it: mm	ot. Nov.	ı	ı	ı	ı	1	,	ı	ı	
	(Cm	Oct.		ľ	ı	ı	ı	ı	ı	ı	
			1								
		Aug.	ı	ı	ı	r	ı	ı	ı	ı	
		Jul.	ı	1	1	ı	ı	1	ľ	ì	
		Jun.	1	Ī	ı	1	ı	ı	ı	r	
		May	ı	t	ı	0.616	ı	t	1	0.112	
		Apr.	ı	1	1.236	1.100	ı	1	•	1	
		Mar.	ı	ı	3.356	ı	t	ı	0.108	ı	
		Feb.	1.140	1.360	4.272	0.440	0.908	1	1	ı	
		Jan.	1		0.232	0.512	ı	0.032	•	•	
		Year	1974	1975	1976	1977	1978	1979	1980	1981	Mean

Table B-6 Daily Maximum and Three Days Consecutive Rainfall

Three Days Maximum	(Date)	(Feb. 14)	(Feb. 8,9,10)	(Mar. 24,25,26)	(Apr. 1,2,3)	(Feb. 9,10,11)	(Jan. 24)	(Mar, 16,17)	(May 2,3,4)	(Feb. 12,13,14)
Thr	(mm)	32.6	47.8	70.3	38.7	36.2	12.7	20.3	16.9	83.3
Daily Maximum	(Date)	(Feb. 14)	(Feb. 10)	(Feb. 22)	(Feb. 25)	(Feb. 11)	(Jan. 24)	(Mar. 17)	(May 3)	(Feb. 13)
Dail	(uu)	32.6	23.2	31.1	18.8	14.2	12.7	11.7	15.8	40.2
Year		1974	1975	1976	1977	1978	1979	1980	1981	1982

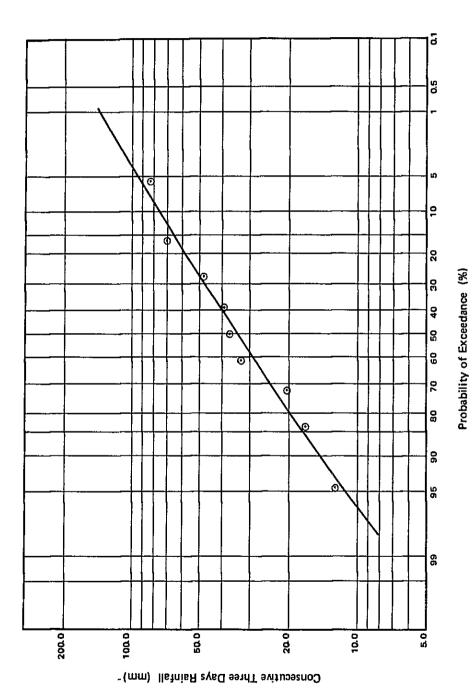


FIGURE B - 6 FREQUENCY OF CONSECUTIVE THREE DAYS RAINFALL

Peak Flood Estimate by Rational Formula

$$Q = \frac{1}{3.6}$$
 frA

where Q : Peak discharge (cu.m/sec)

f : Runoff coefficient

r : Rainfall intensity (mm/hr)

A: Catchment area (sq.km)

Runoff coefficient $\frac{D-2 \text{ Site}}{0.5}$

Rainfall intensity 90.8/5.44=16.7 mm/hr

Catchment area 812 sq.km

Peak discharge 1,883.4 cu.m/sec

Design peak discharge 1,890 cu.m/sec

The estimated peak discharge of 1,890 cu.m/sec will be reasonable in due consideration of that the aforesaid peak discharge is equivalent to about three times as much as 654 cu.m/sec of the peak discharge at 1/100 probability which is estimated by the Channel Geometry method in the Water Resources Field Document, No.7, FAO.

On the other hand, the maximum possible flood discharge was estimated at 1,900 cu.m/sec for the catchment area of 1,600 sq.km in the Wadi Al Khawad Aquifer Recharge Project, and the specific discharge was found at 1.2 cu.m/sec/sq.km. The catchment area commanded at the proposed dam site for the Wadi Jizzi covers 812 sq.km and the specific discharge can be estimated at 2.3 cu.m/sec/sq.km which is deemed reasonable in comparison with that of the Wadi Al Khawad.

Probability of Daily Maximum Rainfall

Probability rainfall of 1/10,000 exceedance has been estimated by Gumbel method. The equation is given as follows.

$$P = 1 - e^{-e-b}$$
 ----(1)

$$b = \frac{1}{0.7797\sigma} (X - \overline{X} + 0.45\sigma)$$
 ----(2)

where P: Probability of exceedance

e : Base of natural logarithms

X : Magnitude with probability P

 \overline{X} : Arithmetic average in the series

 σ : Standard deviation

From the equation (1) and (2), the rainfall magnitude with recurrence interval of 10,000 year is calculated at 90.78 mm.

Lag Time

The lag time was calculated using the following formula.

$$Lg = C \left[\frac{0.186LxLca}{\sqrt{s}} \right]^{x}$$

where Lg : Lag time (Hour)

L: Length of the largest water course from the point of interest to the drainage divide.

Lca: Length of the water course from the point of interest to the intersection of a perpendicular from the centroide of the basin to the stream alignement

S : Slope in meters per kilometer of the length

C: Constant 1.2 was used

X : Constant 0.33 was used

From the topographic map with scale of 1/50,000, following values were obtained.

$$L = 65 \text{ Km}$$
 $Lca = 33 \text{ Km}$
 $S = (1040 - 155)/65 = 13.6$

Lg = 5.44 hours is calculated.

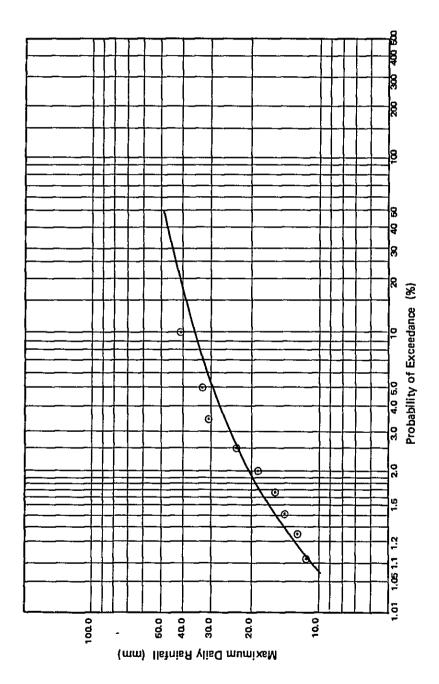


FIGURE B - 7 FREQUENCY OF MAXIMUM DAILY RAINFALL

Discharge Capacity from the Conduit

Dimensions of the Conduit are as follows.

Length (L) : 115 m

Diameter (D): 1.4 m

Roughness coefficient (n): 0.015

Discharge capacity from the conduit is given in the following formula.

$$Q = \frac{\sqrt{2g} \cdot A}{\sqrt{fy + fe + fr}} \cdot \sqrt{H}$$

where fv: exit loss = 1.0

fe : entrance loss = 0.5

fr : friction loss

124.5 x n^2/D_3^4 x L = 2.057

g : gravity acceleration = 9.8

A : flow area

 $\pi \cdot (\frac{D}{2})^2 = 1.539$

 $Q = 3.613 \sqrt{H}$

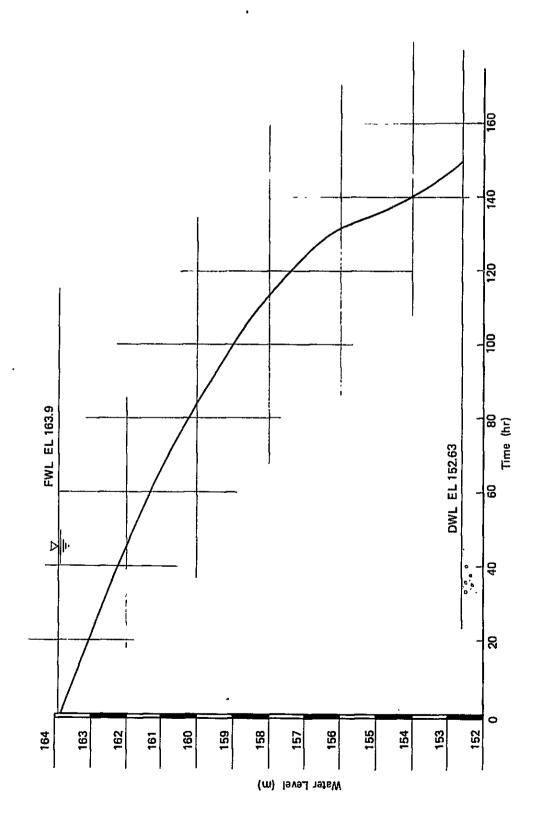


FIGURE B-8 RESERVOIR EMPTYING TIME IN WATER LEVEL

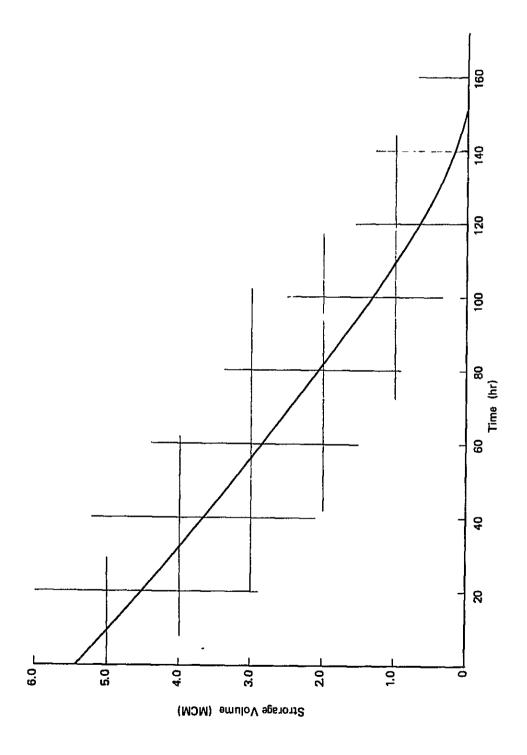


FIGURE B - 9 RESERVOIR EMPTYING TIME IN VOLUME

APPENDIX C. GROUNDWATER

APPENDIX C GROUNDWATER

- 1. Field Investigation
 - 1.1 Drilling and Completion of Exploration Wells
 - 1.2 Aquifer Tests
 - 1.3 Chemical Analysis of Well Samples
 - 1.4 Infiltration Test
 - 1.5 Measurements of Groundwater Level
 - 1.6 Conductivity Logging
- 2. Hydrogeology
 - 2.1 Hydrogeological Units
 - 2.2 Aquifer Characteristics
 - 2.3 Hydrogeological Structure
- 3. Groundwater Hydrology
 - 3.1 Occurrence and Movement of Groundwater
 - 3.2 Recharge and Runoff
 - 3.3 Groundwater Balance at the Coastal Plain
 - 3.4 Groundwater Chemistry
- 4. Groundwater Development
 - 4.1 Basic Concept
 - 4.2 Development Plan
 - 4.3 Recharge Method
- 5. Physical Plans for Groundwater Extraction
 - 5.1 Alternative Plan of Groundwater Development Facilities
 - 5.2 Location of Production Wells
 - 5.3 Design Yield of Production Wells
 - 5.4 Specifications of Production Wells and Pumps
- 6. Bibliography
- 7. Annex

1. Field Investigation

1.1 Drilling and Completion of Exploratory Wells

Six exploratory wells were drilled on the gravel plain of Wadi Jizzi basin to examine aquifer characteristics and groundwater potentials (see Figure C-1). Furthermore, in locating of wells, confirmation of hydrogeological structure, especially a form of groundwater basin was taken into consideration.

Following specifications were applied for drilling of the wells.

Rig type : D-40K (US made) and RD-1500 (India made)

Drilling method : Rotary method

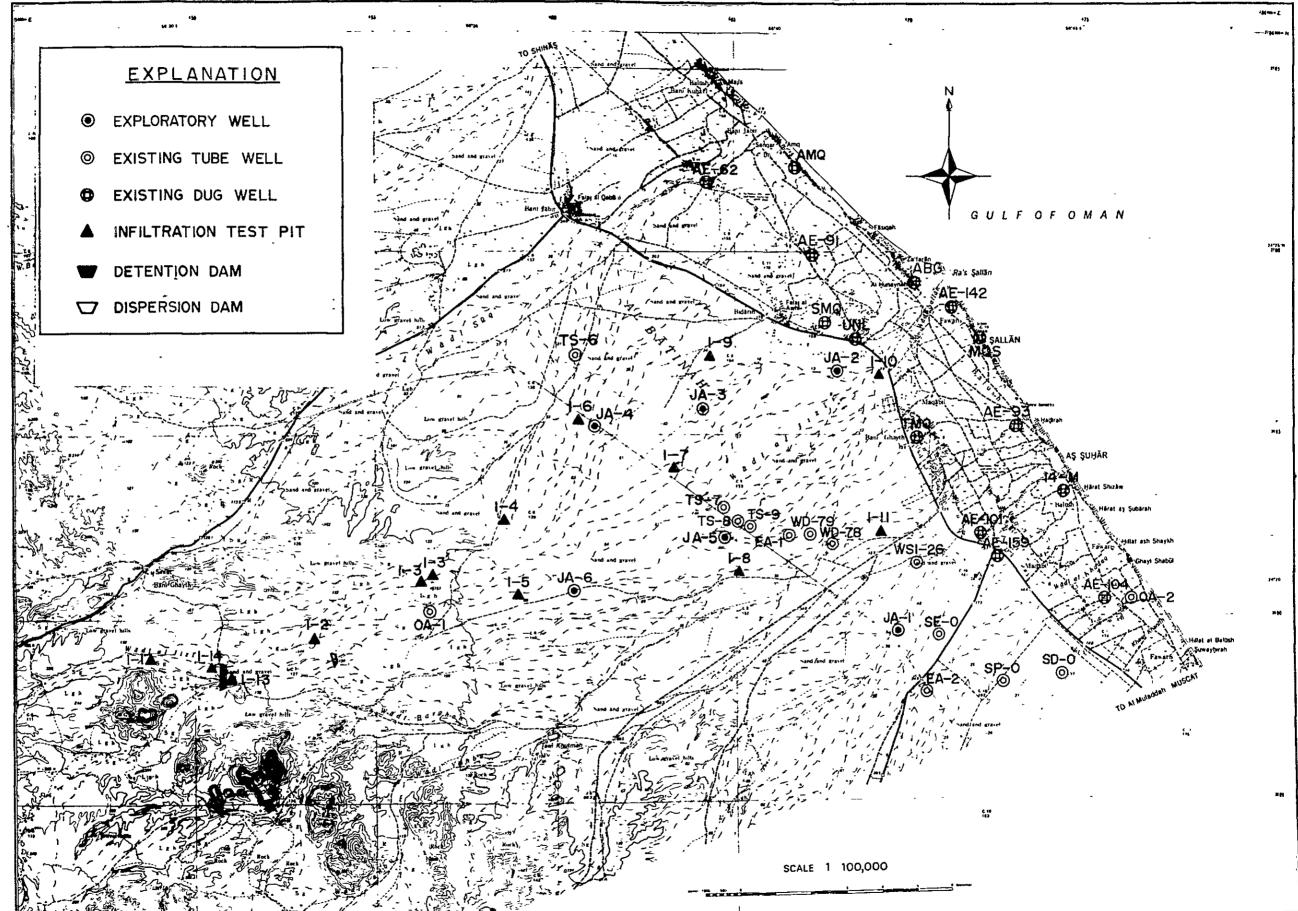
Bit type : Three cutter rock bit

Bit size : 375 mm

Casing material : Polyvinyl chloride (Durapipe)

Casing diameter : 250 mm

Screen type : Perforate 3mm x 110mm


Opening rate : 3.2%

Annula space : Gravel packing

Development : Air lift method with minimum 6 hrs

The results including geologic column with borehole loggings are show in Figure C-2 to C-7.

Impervious formations were found at depth of 34 and 45 mbgs in the wells of JA-4 and JA-5 respectively which were drilled on more than 40 mamsl of the plain. Impervious formations were not found in remaining wells. Sand and gravel at the wells of JA-1 and JA-2 are deposited at the recent age in spite of that sand and gravel in the other wells are considered to be of Pleistocene judging from the aquifer potential. Data summary for exploratory wells are shown in Table C-1.

FI	GURE	C	_	2
	17 (100	~		_

EXPLORATORY	ツアエエ	エヘク
DA EDUARIONI	24 12 1114	[IL J] T

Name of well	JA-1	Altitude of site	24.0/ (memsl)
Location, UTM	469550 2689580	Date of completion	Feb. 1982
Depth drilled	82.0 (m)	Borehole diameter	3 <i>75</i> (mm)
Casing diameter	250 (mm)	Casing material	PV
Type of screen	slotted	Screen schedule	32.9 ~ 18,6 m
Static water level	20.9 (mbgs)	Yield	825.2 (lit/min)
Maximum drawdowm	0.75 (m)	specific Capacity	1,100 (lit/m.n/m)

	<u></u>	· .	<u> </u>	
Depth (m)	Geological	Lithology	Hydrogeo- logical unit	Spontaneous potential, millivolts Conductivity, MU/cm
20 30 40 60 64.0		Sand & gravel Sand & gravel Sand & gravel with carbonate materials With Carbonate materials partially cemented	Recent	
82.0	J V B	Currors and		

FIGU	IRE C - 3	EX	PLORATORY	WELL LOG
Name of	well	JA+2	-	Altitude of site (mamsl)
Locatio	on, UTM	467850 26	96740	Date of completion Mar. 1982
Depth d	lrilled	40.0	(m)	Borehole diameter 375 (mm)
Casing	diameter	250	- (mm)	Casing material PV
Type of	fscreen	Slotte	d···	Screen schedule //.5 ~ 34.3 m
Static	water level			Yield 9577 (lit/min)
Maximu	n drawdown	1.67	(m) <u>-</u>	specific Capacity 573.5 (lit/min/m
			<u> </u>	
Depth	Geological	Lithology	Hydrogeo- logical unit	
(m)		Sand, medium.	Sand dune	10 my EC MUS/cm
7.0	0.0.00	Sand & gravel	S-W-L	1 50 g Sa: 100 cm 400 500
30		Sand & grave(with carbonale	cent Wad bed screen	
		,	,	1

FI	GI	JRE	С	-	4
1.7	17L	"		_	-

FIGURE C - 4	EXPLORATOR	RY WELL LOG
Name of well	TA-3	Altitude of site 30 (mamsl)
Location, UTM	464030 2695700	Date of completion Jan. 1982
Depth drilled	45.0 (m)	Borehole diameter 375 (mm)
Casing diameter		Casing material PV
Type of screen	Slotted	Screen schedule 22.0~39./
Static water level	25.46 (mbgs)	Yield 252 (lit/min)
Maximum drawdowm	7.37 (m)	Specific Capacity - 34,2 (lit/min/m)
<u> </u>	· · · · · · · · · · · · · · · · · · ·	1 '
Depth Geological	logica	
(m) ;	unit	Conductivity, MT/cm 200 300 400 ΩM
5,0 0 0 0	Sand & gravel with clay	
10 0.00	Sand, coorse	Sp Suesoem
8.0 · · · · · · · · · · · · · · · · · · ·	3	0.100cm
19,0 0,000	Sand & gravel 5 2	
0 70.0	Sand 8 SWL P	EC NO/cm 500 600
30	with carbonate	
0,00	Partially Comented	
	Pos	
0 0		
45 45.0 0		
· · · · · · · · · · · · · · · · · · ·		

FIGURE C - 5	EXPLORATOR	Y WELL LOG	
Name of well	JA+4	Altitude of site	(mamsl)
Location, UTM	46/080 2695200	Date of completion	Jan. 7982
Depth drilled	55,0 (m)	Borehole diameter	375 (mm)
Casing diameter	-250 (mm)	Casing material	PV
Type of screen	Slotted -	Screen schedule	10.0 = 32.8 m
Static water level	23.92 (mbgs)	Yield	480 (lit/min)
Maximum drawdowm	-2./2 (m)	Specific capacity	226,4 (lit/min/m)
	· - !		-1 :
	f - f	_	
Depth Geological log		Spontaneous	_potential,millivolts
(m)	unit	100	tivity, MT /cm 200 300 ΩM
.0,00	Sand & Recent wedi	SP	a-so cui
7.0 0,00,0			Ja=100cm
10 0 00		1	
0.0	Sand &		المساوات المساوات المساوات
,0 ,-0	with Carbonate		
20 0 -	Partially 5		EC AND ICAN
1000	cemented SWL 0		600200
, 0 0	<u> </u>	- The state of the	- immi
10-1-1	S		
, 30 . 0. 0.		- 	·
34:0 0 - 0 0	<u> </u>	· \	
	Mudstone of		
40	weathered 3		
	Yellowish . 22		
	brown 35	·	
	pervia		
50 50,0	uleathored \$		
	weatherezi mudstone		
55	very soft		
	-	==	1
		 	
	1		
	,		
	•		•
	1 : 1	i i	•
<u> </u>			

FIG	URE C - 6	<u>E</u>	XPLORATOR	Y WELL L	OG		
Name o	f well :	JA-5-	-	Altitude	e of site	42	(mamsl)
Locati	on, UTM	464660 - 2	692200	Date of	completion	Feb. 19	82
Depth	drilled	55,0	(m)	Borehole	e diameter	375	(mm)
Casing	diameter -	250	- (mm)	Casing :	material	P\$	· :
Type o	f screen	Slotted		Screen	schedule	32. /·a	54.9 m
Static	water leve	37.28	(mbgs)	Yield	·	18	(lit/min)
Meximu	m drawdowm	2,28	(m)	Specific	capacity	34.2	(lit/min/m)
<u></u>	· 			· · · · · · · · · · · · · · · · · · ·			
-							
Depth	Geological	ithology	Hydrogeo- logical		stivity, ohm Spontaneous		l,millivolts
(m)	1	-	unit	- 1		tivity, MZ	5/cm
3.0	0 0 0	Sand & gravel.	Recent Wadi beds	10 :m∇			R=50cm
·[- 	0.0.0.		ļ	spa	1 1	<u>-</u>	Sa=100cm
10	0/0-0/			}			
	1.0 0 0	Sand & grave					
,	0,0,	with carbonate	72	- 1 1			<u></u>
20 19.0	-0-00	<u> </u>	- 3				
	0.0.0.0	- 					
	0.0.0	Sand I gravel	d's	,			<u> </u>
	0-0	with Carbonate			i	7-	
30	6 70	Partially .		 -) [2	** -
	0.9.	cemented	SKL			400	450 500
	0.		<u>목</u> .	-_	. >		
40 :	0.10		ix	•			
45.0			3	- - i	1		!
		Limestone	1 - 1.7	7.	ر در در می می می است می از در		
50		silvified	formation	}	}		i
52.0		Mulatone Softened	Ary Stions		,		
55 53.0	-	sottenea	1-2-	1			
		<u> </u>					
		: -		; -		= • • • · · · · · · · · · · · · · · · ·	
		[
	*	÷					• •
	5		1	l .			

FIGURE C - 7	EXPLORATO	RY WELL LOG
Name of well	JA-6	Altitude of site 75 (mamsl)
Location, UTM	460450 2690750	Date of completion Feb. 1982
Depth drilled	/8.0 (m)	Borehole diameter 375 (mm)
Casing diameter	- 250 - (mm)	Casing material PV
Type of screen	Slotted	Screen schedule 7.9 15.6 m
Static water leve	1 /6./3 (mbgs)	Yield (lit/min)
Maximum drawdowm	(m)	
	1	
Depth Geological	Inthology Hydrogeo logica unit	Spontaneous_potential,millivolts
(m)	Sand 8 gravel Recent	
	Sand & gravel of a with Carbanate of a cemented of a cemen	SP
18 18.0	Mudetone Tertiary softened formation	
		1 1

Data Summary of Exploratory Wells

C - 1

Table

Trans- missivity (m ² /day)	16,900	4,300	150	3,200	09	1
Specific Capacity (%/sec/m)	16.9	9.2	0.58	3.8	0.57	1
Drawdown (m)	0.75	1,71	7.25	2.12	2.28	ı
Tested Discharge (%/sec)	12.7	15.8	4.2	8.0	1.3	1
Static Water Level (mbgs)	20.49	6.51	24.44	24.14	36.06	į
Height to Static Top of Water Casing Level (mags) (mbgs)	1.62	1.85	1,48	1.36	1.82	1.16
Altitude of Site (mamal)	24.04 1/	11 2/	30 2/	50 2/	42 2/	75 2/
Screen Schedule (m~m)	32.9.78.6	11.5.34.3	22.0-39.1	10.0.32.8	32.1.54.9	9.9~15.6
Diameter of Casing (mm)	250	250	250	250	250	250
Depth Drilled (m)	82	40	45	55	55	18
Name of Well	JA-1	JA-2	JA-3	JA-4	JA-5	JA-6 3/

/ : Surveyed by optical method

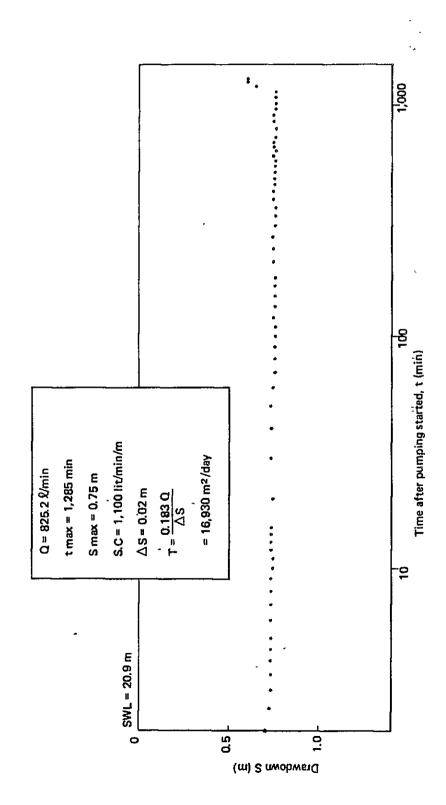
2/: Based on Contour lines of 1:50,000 topo-map

No available water because formation consists of cemented sand and gravel of pleistocene. Automatic water level gauges are installed on JA-1,2,3,4 and 5. 3/ :

1.2 Aquifer Tests

Two kinds of aquifer test; step-drawdown and constant discharge tests for each wells were conducted after completion of well development, however the test at JA-6 was not conducted because of no available groundwater.

Four steps increasing discharge with each three hours pumping and twenty four hours continuous pumping with constant discharge were conducted at each wells. Results of test are shown in Table, and relations between drawdown and pumping times are shown in Figure C-8 to C-20. Summarized aquifer and well characteristics are shown in Table C-2. Specific capacity for JA-1 and JA-2, which is one of quantitative indicator for well potentials are 1,100 and 570 lit/min/m respectively, however it shows less than 40 lit/min/m at JA-3 and JA-4 by reason of hydrogeological structure. Transmissivity for alluvial deposits and terrace deposits are calculated at 16,900 sqm/day at JA-1 and 60 at JA-5. As is shown in Figure C-21, relationship between specific capacity and transmissivity have good correlation. Storativity was not obtained by the tests because of no suitable observation wells around the wells.


1.3 Chemical Analysis of Well Samples

Water samples for chemical analysis taken at the end of constant discharge test were analysed at Rumais Agricultural Research Station. (Table C-3) Water quality of JA-2, 3, 4 and JA-5 which have 250 micro mho/cm at 25 C is considered excellent for irrigation use in contrast with 1,000 micro mho/cm at JA-1. Irrigation water containing conductivity of more than 1,000 micro mho/cm is required special attentions for the water managements.

In connection with limit of sodium at the water, SAR is calculated for each samples as indicates in the table. The values of SAR is calculated for each samples as indicated in the table. SAR values less than 10 can be considered as excellent category of irrigation water.

FIGURE C - 9 JA - 1, CONSTANT DISCHARGE TEST

Sr - t/t' curve

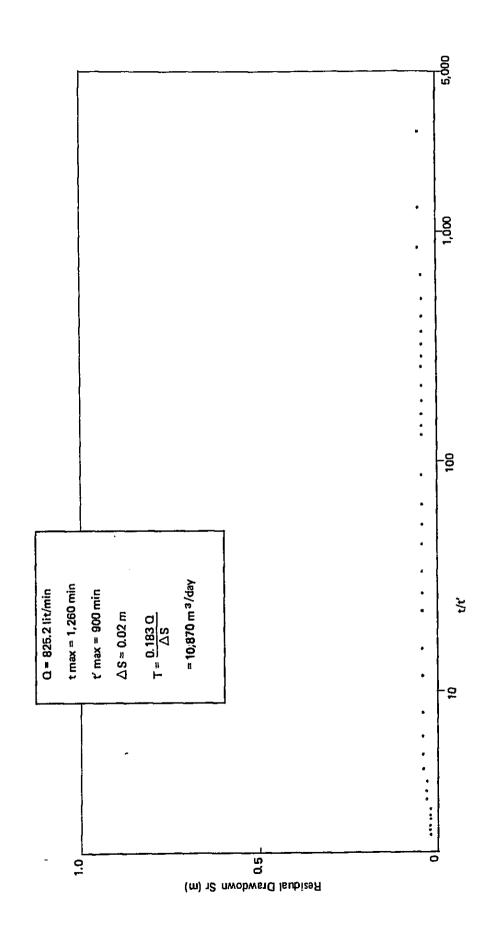
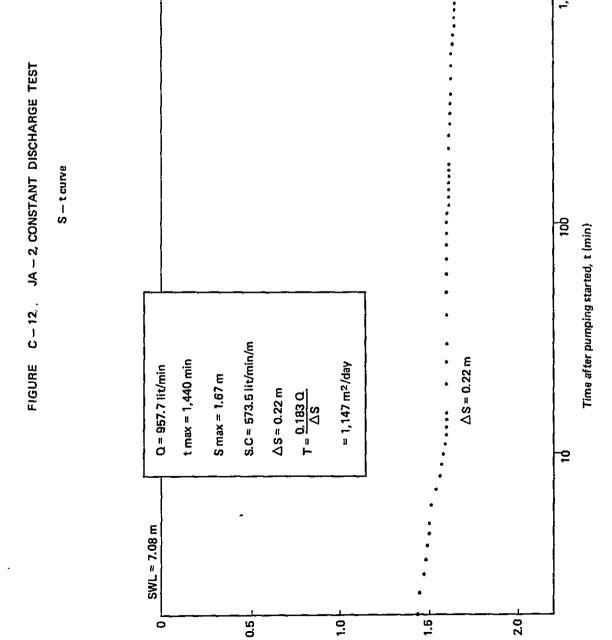
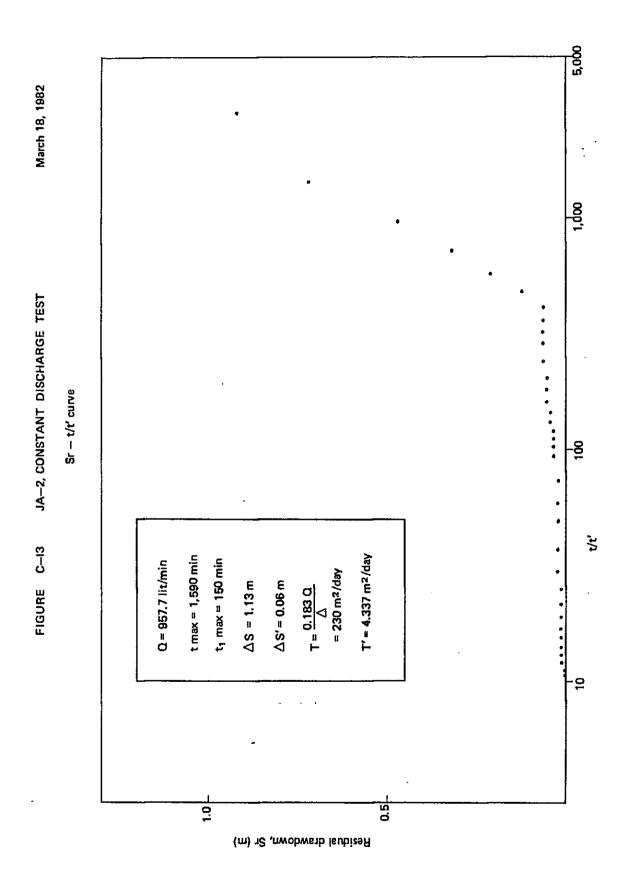
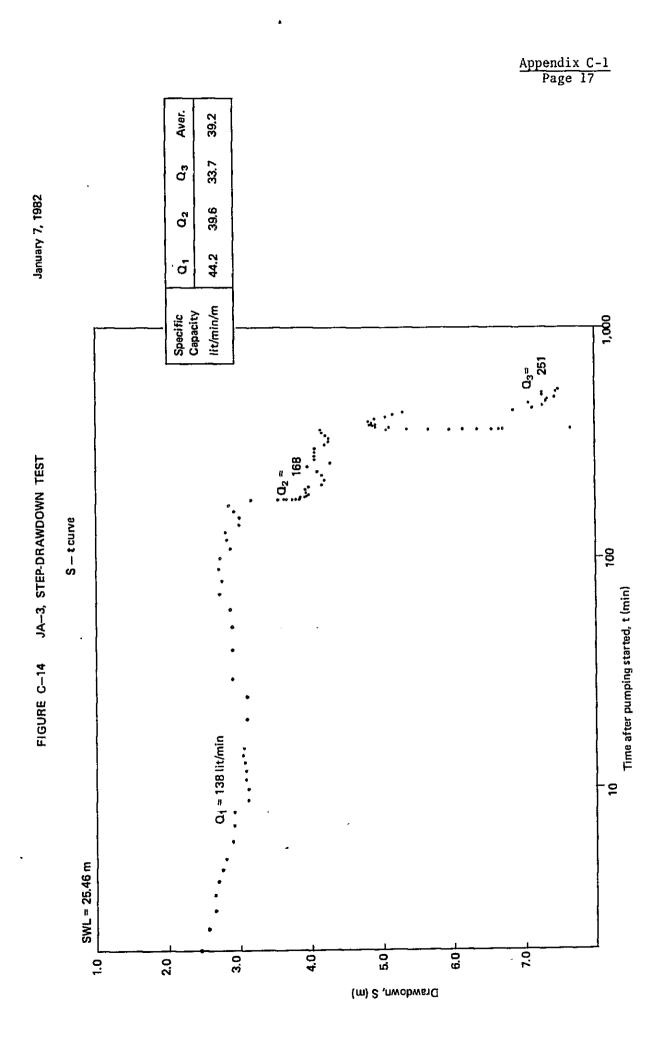



FIGURE C-11, JA-2, STEP-DRÁWDOWN TEST


S - t curve


	63	Specific	o,	02	o ₃	Aver.	
		capacity (lit/min/m)	612.9	587.9	588.2	596	
0	0 SWL = 7.07 m	į					
•							
0.5	Q ₁ = 396.1 lit/min						
	. 498.7	ŧ					
1.0		. 03= . 711.7					
		ì					
1.5	·						
	1001		1,000	8			
	Time after pumping started, t'(min)				> -		

Drawdown, S (m)

(m) S nwobws10

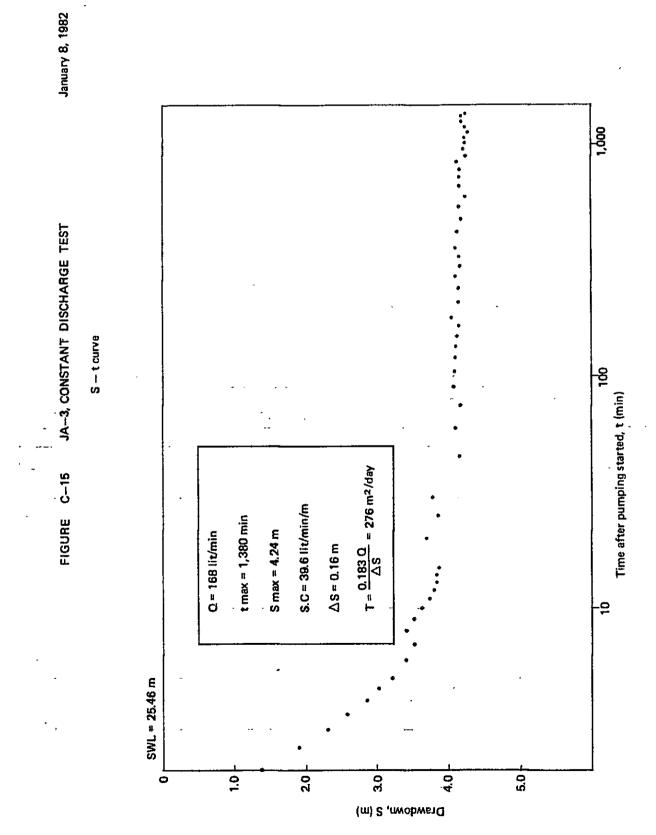
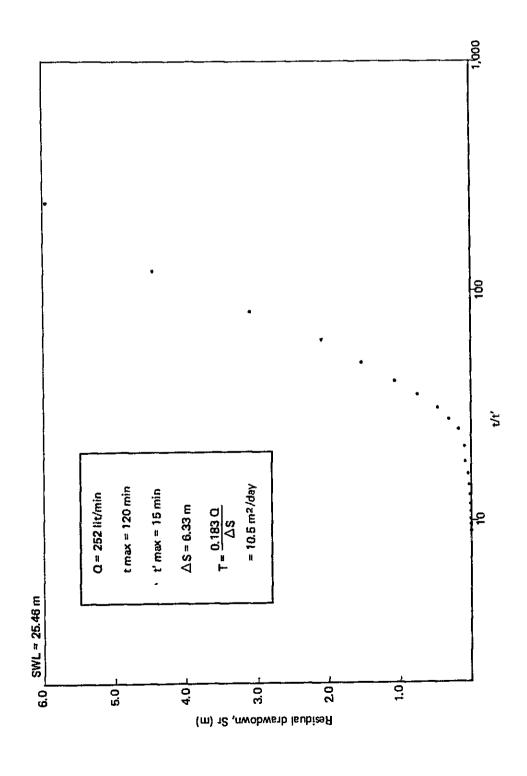



FIGURE C-16

February 26, 1982 Aver. 262 232 Q₃ 293 ۵ 2 261 ą O₃ = 360 Specific Capacity (lit/min/m) $O_2 = 240$ JA-4, STEP.DRAWDOWN TEST S - t curve Time after pumping started, t (min) FIGURE C-17 $Q_1 = 120 \text{ lit/min}$ SWL = 23.91 0.5 0.1 .5

Drawdown, S (m)

FIGURE C - 18 JA - 4, CONSTANT DISCHARGE TEST

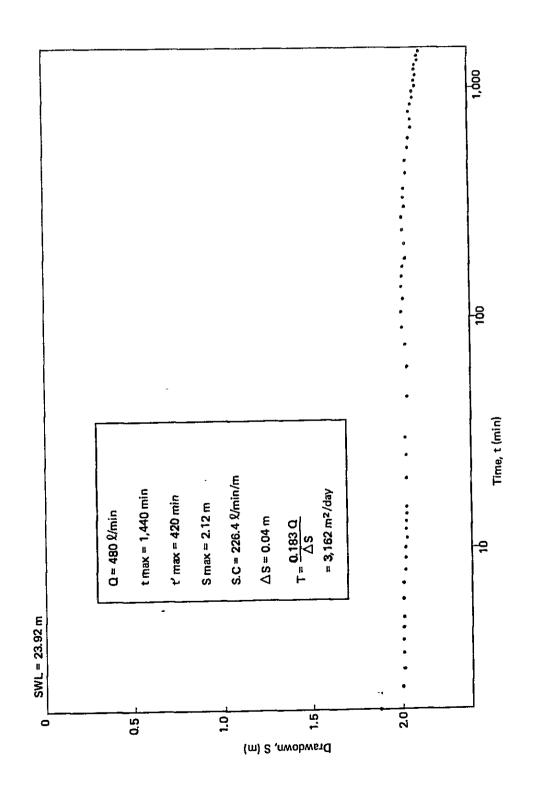
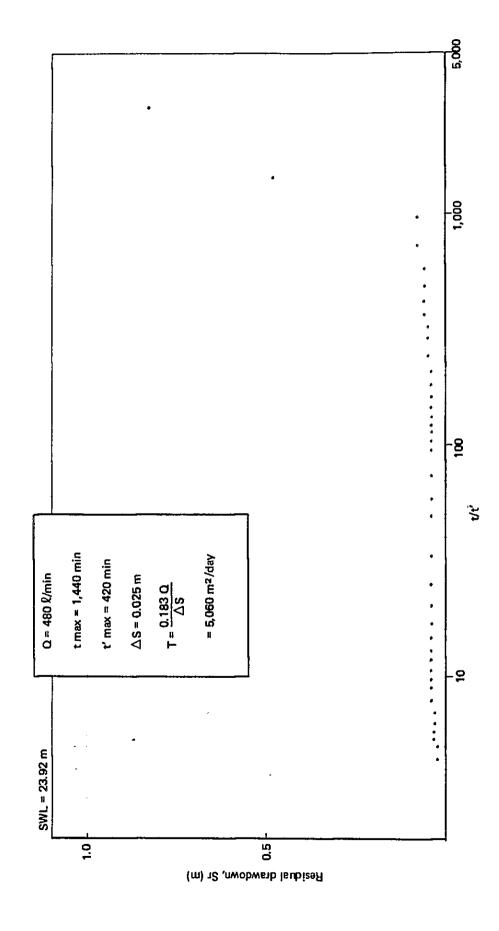



FIGURE C-19 JA-4, CONSTANT DISCHARGE TEST

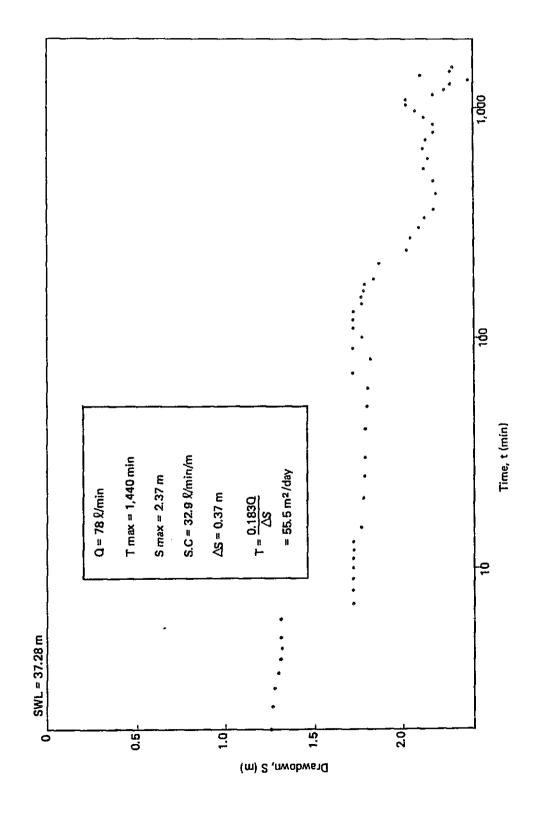


Table C - 2 Data Summary of Aquifer Tests

		ບ	(\min^2/m^5)	4 0 5	1.UXIU	4-0120 5	3,0410	2-01-2	o.oxiu	6) 1 1	4.5X10		ı
		B	(m) (ℓm) (m)	4-01-0	16,900 8.2XIU 1.UXIU	4 240 1 5210 3 2 0210 -4	OTYCOT	2-01-2 2 2-01-2 1 000	1.5X1U	E 1	3,160 1.5X10 4.5X10		J
Test		T	'(m ² /day)	, ,	10,900	7 240	1,040	Ċ	780	1	3,160	``	9
Constant Discharge Test		s.c	(&/min/m)	-	001,1	177	4/6	7	40	ò	977	į	55
tant D		S	Ē		67.0 679	1 67	1.07	,	47.4	•	7.17	1	7:37
Cons		C,	(%/min)	i.	c79	050 1 67	000	975	907		480	C I	× /
		s.c	(2/min/m)		625 0.75 1,160	707	000	,	40	0	760		ı
	tep	S	E	r C	0.75		ì		1		1		ı
	4th Step	ď	(%/min)	r c	c70		ı		1		ı		ì
Test	1st Step 2nd Step 3rd Step	တ	E	•	0.04	נכ	17.1	,	7.44	i.	1.55		ı
Step Drawdown Test		ò	(%/min)	1	10/	21.2	71/	,	107	t	360		3
Step D		S	Ē		40.0	0	.0	7	4.24	ć	0.87		ı
03		0	(2/min) (m) (2/min)		CTO	200	200	160	901	9	240		ı
		တ	Œ	2	0.30	27 0	20.0	7	21.0		0.46		ı
	1st S	ď	(%/min)		410	702	200		120		170		ı
		S.W.L.	Œ	0	70.90	14.2 7.00	00.	77	04.C7 C-WD		23.92	1	JA-5 57.28
	Well			• •	JA-1	7. 7	727	7.47	JA-5	;	JA-4		JA-5

Remark:

Q : Discharge S : Maximum Drawdown

S.C : Specific Capacity

T : Transmissivity

S.W.L : Water level before test

B : Aquifer loss constant C : Well loss constant

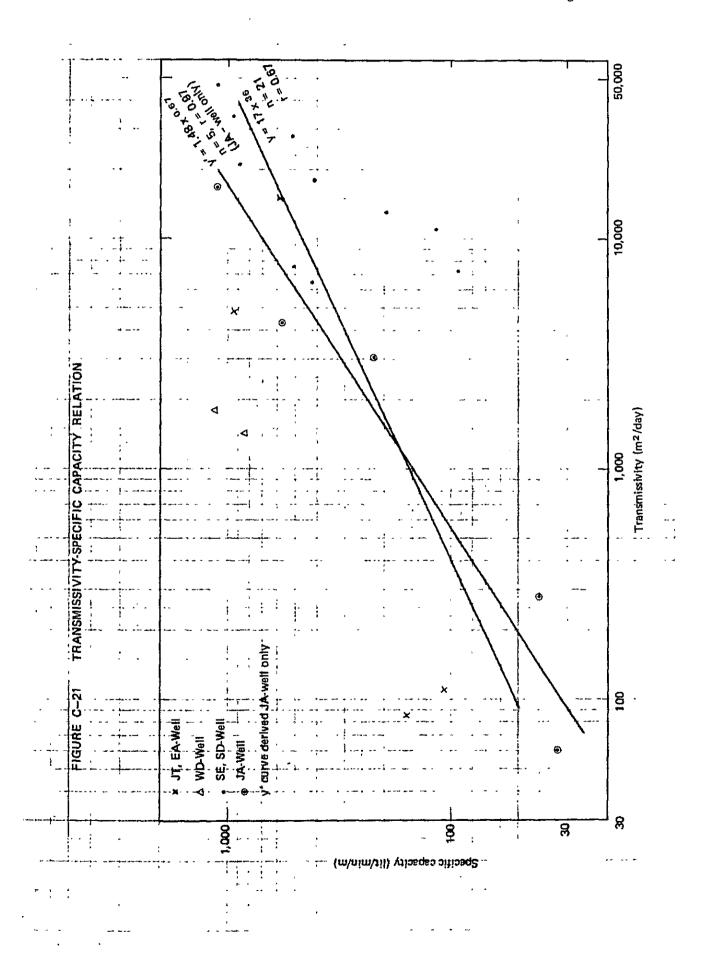


Table C - 3 Result of Chemical Analysis for Exploratory Wells

	Total	9.31	3.31	4.76	4.62	3.92
(L)	\$0°	1.66	0.16	99.0	0.42	0.42
au) sı	ָם בי	4.25	1.10	1.80	1.30	1.25
Anio	HCO3	2.80	1.45	2.30	2.30	1.85
:	CO3 HCO3 C1 SO4 Total	9.0	9.0	trace	9.0	4.0
	SAR	2.70	1.05	1.23	0.97	1.05
:	[ota]	99.66	3.74	4.83	5.02	4.48
/L)	¥ Ng	4.10	2,50	2.80	3,45	2.90
s (me,	Ça ‡	1.10	trace	0.40	0.20	0.20
Cation	K+ Ca+ Mg+ Total SAR	0.113	0.061	0.074	0.066	0.074
	+ eN	4.350	1.174	1.552	1,304	1.304
v v L	(p.p.m)	643.80 4.350 0.113 1.10 4.10 9.66 2.70 0.6 2.80 4.25 1.66 9.31	234.91 1.174 0.061 trace 2.50 3.74 1.05 0.6 1.45 1.10 0.16 3.31	331.50 1.552 0.074 0.40 2.80 4.83 1.23 trace 2.30 1.80 0.66 4.76	313.20 1.304 0.066 0.20 3.45 5.02 0.97 0.6 2.30 1.30 0.42 4.62	264.49 1.304 0.074 0.20 2.90 4.48 1.05 0.4 1.85 1.25 0.42 3.92
EC /mhos/rm	(at 25°C	7.0 1,005.96	367.04	518.00	489.38	413.26
	H	7.0	7.4	7.6	7.7	7.45
4	Analyzed	24/3/1982	24/3/1982	21/1/1982 7.6	24/3/1982	24/3/1982 7.45
Sample No.	Well	JA 1	JA 2	JA 3	JA 4	JA 5

Note: Analyzed by Rumais Agricultural Research Station.

1.4 Infiltration Tests

Infiltration tests are conducted on the Wadi Jizzi basin to get basic data of recharge rate. Location of the tests is shown in Figure C-1, the location map of hydrogeology.

Iron cylinder with 30 cm in diameter and 40 cm in height, is plunged into the ground to a depth of about 20 cm and hook gauge is applied for measuring water levels. Dike was made around the cylinder to prevent lateral seepage from the cylinder. Within the dike water level was kept at the same level as inside the cylinder.

The results are listed in Annex Tables. The value of infiltration rate in 14 tests range from 0.3 to 12.0 mm/min and it lead to 3.0 mm/min in an average for recent river beds.

1.5 Measurements of Groundwater Level

Groundwater level measurements have been conducted by the WRD of MAF, Sultanate of Oman since 1973, not only on the Wadi Jizzi basin but also on the Batinah coast. Observed intervals had been once a month at initial year but it was reduced to twice or thrice a year because of shorthandedness in recent years.

Observation network on the coastal plain of the Wadi Jizzi basin was constructed for the Project at the end of December, 1981, and observation of water levels at the newly assigned wells have been continued to the end of March, 1982. Location and inventory of observation wells are shown in Figure C-1 and Table C-5 respectively.

Observed water levels including records from automatic level recorder at the wells of JA-3 and JA-4 are shown in Annex Table. Water table rising caused by the flood dated February 14, 1982 is shown in Table C-6. As is shown in table, average rising of water tables at wells locating on lower area of less than 12 mams1 on the coastal plain shows at 0.66 m which estimate to 33 mm of net water

Table C - 4 Data Summary of Infiltration Tests

Site No.	Site Altitude (mams1)	Topographic Condition	Rate of infiltration (mm/min)	Remarks
1	190	Wadi bed	3.5	n = 13
2	130	Wadi bed	3,5	$\bar{x} = 3.2 \text{ mm/min}$
3	115	Wadi bed	4.0	
31	103	Wadi bed	12.0	
4	80	Old wadi bed	2.0	
5	90	Wadi bed	2.0	
6	50	Old wadi bed	6.0	
7	40	Alluvial ter.	2.0	
8	40	Wadi bed	2.0	
9	25	Alluvial ter.	3.0	
10	8	Wadi bed	0.3	
11	18	Wadi bed	2.0	
12	2	Wadi bed	4.5	
13	155	Dam site Wadi bed	4.0	
14	155	Dam site Wadi bed	3.0	

Table C - 5 Inventory of Water Level Measurement Wells

Well No.	Location U TM Grid	Depth (m)	Diameter (mm)	Height to W.L.Measur-ing Point (mags)	Elevation of Well Site (mams1)
JA-1	469550 2689580	82.0	250	1.597	$24.04\frac{1}{}$
JA-2	467850 2696740	40.0	250	1.85	11.003/
JA-3	464050 2695700	45.0	250	1.48	$30.00\frac{3}{}$
JA- 4	461080 2695200	55.0	250	1.36	$50.00^{3/}$
JA-5	464660 2692200	55.0	250	1.82	$42.00^{3/}$
JA-6	460450 2690750	18.0	250	1.16	
0A-1	456400 2690100	23.0 (150)	100	1.13	$110.00\frac{3}{}$
0A-2	476000 2690800	(105)	100	1.17	$6.411\frac{1}{}$
EA-1	466500 2693000	77.20 (200)	240	1.20	$30.00\frac{3/}{}$
EA-2	470800 2687500	38.11 (130)	240	0.85	$27.43\frac{1}{}$
WSI-26	469100 2692800	58.40 (60)	360	0.10	13.68 <u>2/</u>
SP-0	472500 2688150		200	0.24	$21.00\frac{3}{}$
AE-49 AE-62 AE-91 AE-93 AE-101 AE-142 AE-159 AMQ UNL ABG MQS 14/M SMQ TMQ	448400 2686300	12.62 10.70 9.20 9.30 11.10 3.70 11.81 10.75 9.15 7.80 3.93 5.00 11.60 9.35	1,450 800 800 1,400 800 800 800 800 1,300 800 800 800 800	0 0.25 0.15 0.10 0.10 0.40 0.20 0.20 0.30 0 0.50 0.09	$156.00\frac{2}{2}/$ $9.96\frac{2}{2}/$ $10.53\frac{2}{2}/$ $2.76\frac{1}{1}/$ $12.68\frac{1}{1}/$ $13.59\frac{1}{3}/$ $6.00\frac{1}{3}/$ $4.00\frac{3}{3}/$ $4.00\frac{3}{1}/$ $13.06\frac{1}{1}/$ $10.49\frac{1}{1}/$

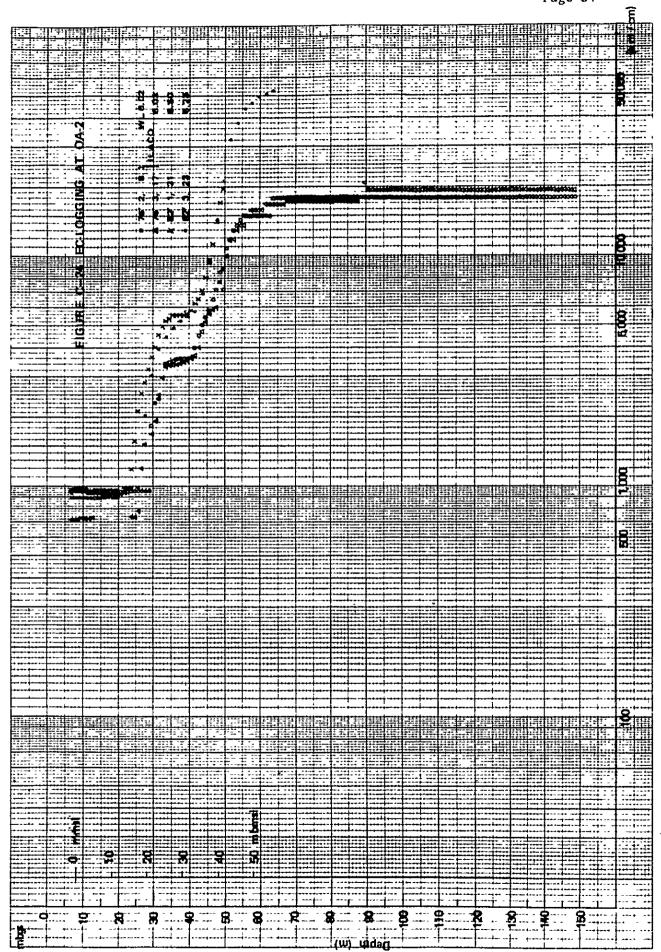
Note: $\frac{1}{2}$; Surveyed by JICA $\frac{2}{3}$; Surveyed by ILACO $\frac{3}{2}$; Based on contour lines of 1:50,000 map

Table C - 6 Rate of Water Table Increasement at the Flood, Feb. 14, 1982

Name of	Attitude of Well	Distance	Water	Table at Fe	Differences Rate			
Well	Site (mams1)	to Sea (km)	Date	Mams1	Date	Mams1	<u>m</u>	m/day
AE-49	156.00	22.0	2-16	145.79	3-21	152.38	6.59	0.20
AE-62	9.96	2.5	2-14	0.32	3- 1	1.76	1.44	0.10
AE-91	10.53	1.8	2-14	1.29	3-22	2.50	1.21	0.03
AE-93	2.76	0.7	2-14	0.96	3- 1	0.96	0	0
AE-101	12.68	3.2	2-14	1.98	3- 1	3.18	1.20	0.04
AE-142	2.98	0.5	2-14	0.38	3-20	0.98	0.60	0.02
AE-159	13,59	3.1	2-14	2.08	3-20	2.57	0.49	0.01
OA-1	110.00	17.5	2-17	97.28	3- 2	101.25	3,97	0.31
OA-2	6.41	0.7	2-14	1.08	3-20	1.36	0.28	0.01
JA-1	24.04	6.6	3- 2	3.40	3-22	3.51	0.11	0.01
JA-2	11.00	4.1	2-21	4.03	3-15	4.545	0.52	0.02
JA-3	30.00	7.0	2-14	5.16	3-24	5.56	0.39	0.01
JA-4	50.00	9.5	2-14	26.05	2-21	26.17	0.12	0.02
JA-5	42.00	9.3	2-14	4.37	3-21	5.85	1.48	0.04
AMQ	6.00	0.3	2-14	9.59	3- 1	9.40	0.19	0.01
ABG	4.00	0.7	2-14	3.26	3- 1	2.68	0.58	0.04
14-M	3.00	0.6	2-14	5.74	3-22	2.38	3.36	0.01
MQS	4.00	0.2	2-14	3.61	3-22	3.52	0.09	0.003
SP-0	21.00	5.0	2-14	18.90	3-15	18.57	0.33	0.01
TMQ	10.49	3.1	2-14	1.87	3-20	2.78	0.91	0.03
UML	10.11	3.0	2-14	2.40	3-20	3.12	0.72	0.03
WSI-26	13.68	5.2	2-14	1.85	3- 1	2.42	0.57	0.04
EA-1	30.00	7.7	2-14	5.12	3-22	6.375	1.26	0.03
EA-2	27.43	6.9	2-14	2.58	3-15	5.50	2.92	0.10

or 19% to the total amount of 170 mm rainfall untill the end of March, 1982, if applied 0.05 storativity.

1.6 Conductivity Loggings

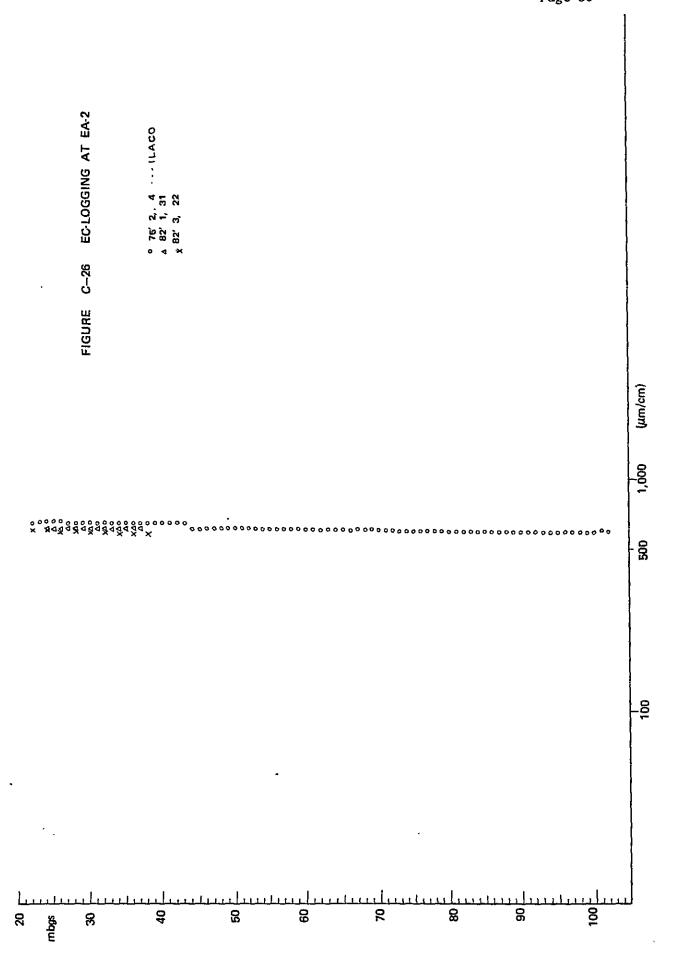

Electric conductivity loggings at the existing wells were conducted for detection of sea water intrusion into the aquifer.

Loggings are conducted twice, at drought period, January, 1982 and wet period, March, 1982 after the big flood.

Tested data are listed in Annex Table and loggings of deep wells is shown in figures in comparison with results of previous logging conducted by ILACO. EC logging at JA-wells are drawn in the exploratory well logs. In general, EC loggings at west of the highway could not detect salt water of more than 700 micro mho/cm even at the depth of 60 mbgs except logging at JA-1 where EC was detected 1,000 micro mho/cm at surface layer of water.

Chemical analyses show that those items as the content of salinity and ionic composition fall within criteria of irrigation uses except JA-1.

Appendix C-1 Page 33



100

8

8 % 8 8 8 8 8 8 8 8 mm

25 mbgs 30

2. Hydrogeology

2.1 Hydrogeological Units

The Project area consists of following three hydrogeological units; the impervious formations, the terrace deposits, and the alluvial deposits.

a) The Impervious Formations

The impervious formations consist of Hawsasinah group, Basic volcanic rocks, and the tertiary sedimentary formations forming main central ranges and their flanks.

Hawsasinha Group consists of silicified limestone, mudstone and chert with well stratified beds of several ten centimeters. Basic volcanic rocks are composed almost entirely of Oman Ophiolite forming main central ranges in a middle stream of Wadi Jizzi. The tertiary sedimentary formations consists of mudstone and limestone forming besement of the terrace deposits and low hill in the west edges of gravel plain. The formations were found by the exploratory well drillings beneath the gravel plain at depth of 40 to 50 mbgs with weak consolidated condition. Depth to the tertiary formations which was confirmed by drillings are 34 mbgs (16 mamsl) at well site of JA-4 and 44 mbgs (6 mbmsl) at well site of TS-8, along the gas pipe line. Precise geologic informations in the coastal plain are still few. Clay layers with 100 m in thickness is correlative with tertiary mudstone starting depth of 118.7 mbgs which was confirmed by the bore hole of Sohal Expansion Farm.

The evidence that depth to basement of Alluvial deposits is revealed at 100 mbmsl is consistent with the opinion that regression along Gulf Bay at Wurm glacial age is estimated more than 100 m (H. Felber 1978) $\frac{1}{}$.

^{1/} H. Felber, H. Hötzl, V. Maurin, H. Moser, W. Rauert, J.G. Zötl "Quaternary Period in Saudi Arabia" Springer-Verlag, 1978

b) Terrace Deposits

The Terrace deposits have a large exposure in a middle stream of the Wadi Jizzi and the west edge of the gravel plain but their distribution are restricted in an upper stream of the Wadi. The deposits are divided into four kinds of sediments based on height of their platform. Three of them are distributed in the Wadi Jizzi basin and the lowest one is distributed in a mouth of catchment of the Wadi Bani Umar forming alluvial fan.

The deposits are composed of partially cemented sand and gravel of fluvial origin with various size of grains of basic volcanic and sedimentary rocks.

The deposits seem aquifuge, however occasionally their uncemented thin layers of sand and granule among the deposits take a function of aquifers, therefore they act a part of aquifer in terms of hydrogeology. Thickness of each deposits and estimated height of their platform at the mouth of river compared with recent sea level are shown in following table.

Name of Terrace	Height of the mouth (mams1)	Thickness (m)
Terrace dep. I	110	5 +-
Terrace dep. II	60	15 +-
Terrace dep. III	40	35 +-

The Terrace deposits III, lowerest one with 5 m height to the recent wadi course in the gravel plain is exposed in the right bank of the Wadi, whereas the left bank was eroded and filled by the recent wadi deposits. The distribution is restricted to the area in the edge of gravel plain, where altitude is more than 40 mamsl.

c) Alluvial Deposits

The Alluvial deposits are exposed in limited area along the wadi course in the catchment however, they have a large exposure in the coastal plain. The deposits consist of sand and gravel with partially cemented beds of alluvial origin. Thickness of the deposits range from few meters at the river beds in the catchment to 10 m in the mouth of catchment and finally it comes more than 80 m in thickness in coastal plain where the deposits are achieving the excellent unconfined aquifer.

2.2 Aguifer Characteristics

The main aquifers in the Project are restricted to the terrace deposits and alluvial deposits. Aquifer characteristics in the coastal plain, especially alluvial aquifers beneath the gravel plain have been obtained by the aquifer tests since 1973, however their characteristics in the terrace deposits weren't obtained except few data. Summarized well data including existing wells is shown in Table C-7. As is shown in table, specific capacity and transmissivity of the alluvial aquifers in the east edge of gravel plain are ranging from 30 to 60 cu.m/hr/m and from 4,000 to 50,000 sq/day respectively. Storativity which was obtained aquifer tests at production well No.1 of Sohar Expansion Farm is calculated 0.05 in an average showing reasonable value for alluvial unconfined aquifer.

2.3 Hydrogeological Structure

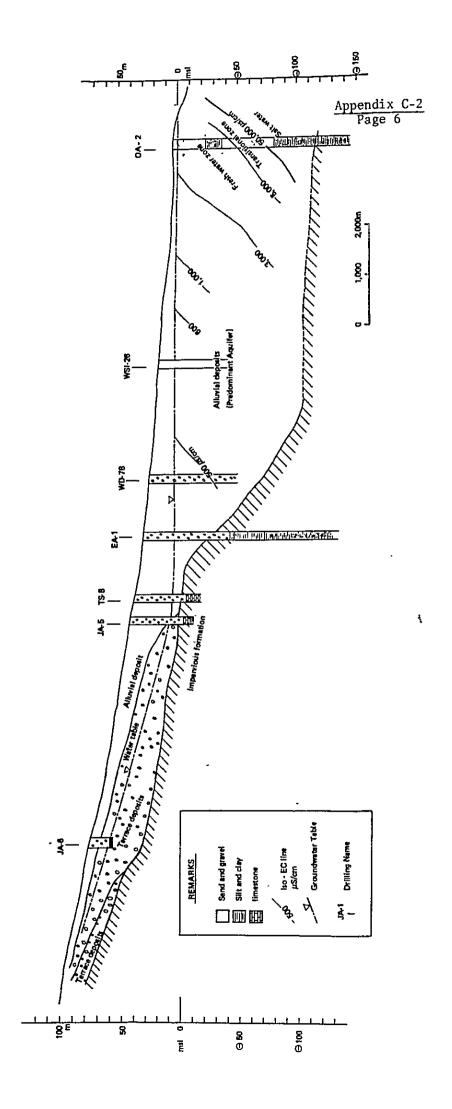
The groundwater basin comprising the terrace deposits and alluvial deposits coincides with depth of the impervious formations beneath the gravel plain.

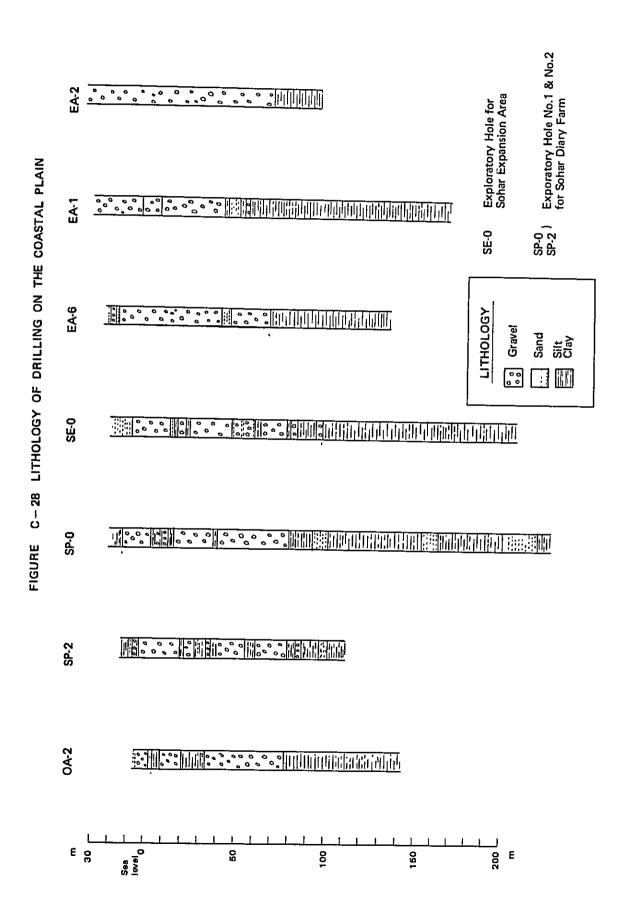
The groundwater basin is enclosed by the Impervious formations at the north and west edges with depth of less than 80 m and it thickens to the east up to more than 100 m at the coast. The basin ends near Qabail and Majis where the Impervious formations crop out near the sea. Location of the south end of the basin is estimated at the

Summary of Well Data at Wadi Jizzi Basin Table C - 7

Well Effici- ency (%/m³/d)	86/2,000 77/2,000	1 1	(1 1	72/4,000	75/4,000 75/4,000	82/4,000 57/2,000 74/2,000	63/2,000 63/2,000 78/2,000	90/4,000
S	j t 1 i	i (1 ()	0.05	f I	1 1 1	: 1 1	1 1 1
T (m²/day)	16,900 4,300 150 3,200	09	$\frac{85}{110}$	1,440	18,700 34,000	28,000 11,000 13,000	6,400 7,200 7,500	21,000 15,050 4,800
Specific Capacity (m³/hr/m)	60.9 33.1 2.1 13.7	2.1 108.9	9.5 6.5	50.4	25.1 56.5	30.5 7.2 11.8	25.3	52.7 35.4 56.3
Draw- Down (m)	0.75	2.28	3.00 4.40 1.16	1.64	3.84	7.06 11.54 7.75	3.70 11.97 3.15	4.08 0.89 0.56
Tested Yield (m³/hrs)	45.7 56.9 15.1 28.8	49.0	28.5 28.5 79.1	82.6	215.0 217.0	215.0 82.8 91.4	93.7 68.5 95.3	215.0 31.5 31.5
S.W.L (mbgs)	20.5 6.5 24.4 24.1	36.1	11.8 13.1 20.0	21.1	14.3 14.4	13.6 12.3 11.1	13.2 13.1 12.4	23.46
Screen Depth (m - m)	33-79 12-34 22-39 10-33	32-55 42-55	23-34 24-35 33-69	24-60 44-56	41-50 43-46 49-55	47-56 23-35 23-34	30-44 27-36 30-44	46-55 50-75 42-104
SCI	Slot Slot Slot	Slot	Slot Slot	Johnson Johnson	Johnson Johnson	Johnson Slot Slot	Slot Johonson Slot	Johonson Slot Slot
Casing <u>Dia.</u> (mm)	250 250 250 250	370	240 240 200	255 273	273	273 244 244	273 273 273	324 240 240
Depth (m)	82 40 45 55	80 80	35 35 73	70	50 55	35 35 35	44 36 44	55 200 130
Alti- tude of Site (mamsl)	24.04 11.00 30.00 50.00		75.63	27.17	18.60 18.40	17.50 15.70 14.40	17.20 17.10 16.80	17.10 30.00 27.40
Location UTM	4696, 26896 4679, 26967 4641, 26957 4611, 26952		4746,26888 4741,26889 4672,26928		4704,26904 4715,26900	4712,26959 4743,26887 4749,26885	4742,26881 4745,26879 4748,26877	4745,26879 4665,26930 4708,26875
Well No.	JA-1 JA-2 JA-3	JA-5 WST-26	JT-64 JT-65 Wn-78	WD-79 SE-1	SE-2 SE-3		SD-7 SD-8 SD-9	SD-10 EA-1 EA-2

SD, SE-Well: Tested by IRI EA-Well: Tested by ILACO WD-Well: Tested by Macdonald JA-Well: Tested by JICA WSI-Well: Tested by ILACO JT-Well: Tested by Gibbs Remarks :


south of Wadi Ahin where the Impervious formations are croped out near the sea. An entire area of the groundwater basin mainly developing in the downstream of Wadi Jizzi extends about 20 km in length along the coast with 8 km width. Furthermore, depth of it is estimated 50 to 60 m at the west edge of the basin and it deepens to the sea up to more than 100 m. Depth of the basin, especially at the west edge is verified by the exploratory drilling at JA-5 and 6, the production well for Mining Co., TS-6, 7, 8 and 9, and geo-electric survey at lines ES-1 and ES-V4.


The groundwater basin in the west edge of the gravel plain is composed aquifers of the terrace deposits with depth ranging 40 m in maximum to less than 20 m at an outlet of catchment and it extends to the wadi beds in the catchment decreasing thickness of aquifer.

The impervious formations which underlay the minor groundwater basin forms one or two steps of platform caused by Pre-Wurm glacial regressions. Schematic hydrogeologic profile along the Wadi Jizzi is shown in Figure C-27. The figure is drawn based on data of the drillings which was carried out in the survey and the pervious studies.

The lithological logs for existing drillings around the coastal plain for Wadi Jizzi basin are also drawn in Figure C-28. As is shown in figure, extraordinary thickness of silt and clay are overlain by the wadi alluvial of sand and gravel at the depth of eighty (80) meters below mean sea level in the coastal drillings, OA-2, SE-0, SP-0 and SP-2.

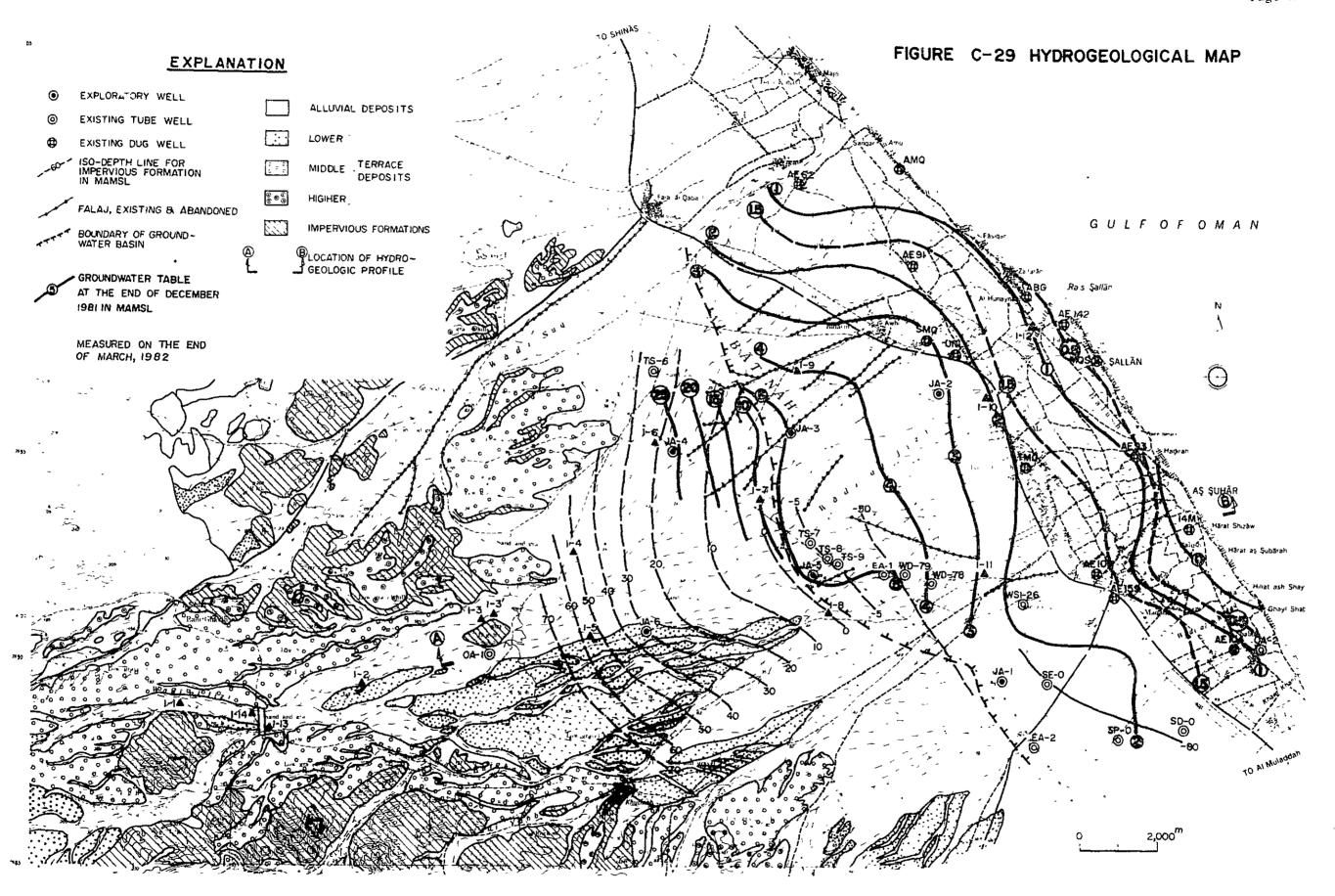
The deposits of silt and clay which play a part of the aquiclude can be correlated with the Tertiary. Extraordinary thickness of silt and clay is incompatible with the commonly expressed concept of the fluvial origin.

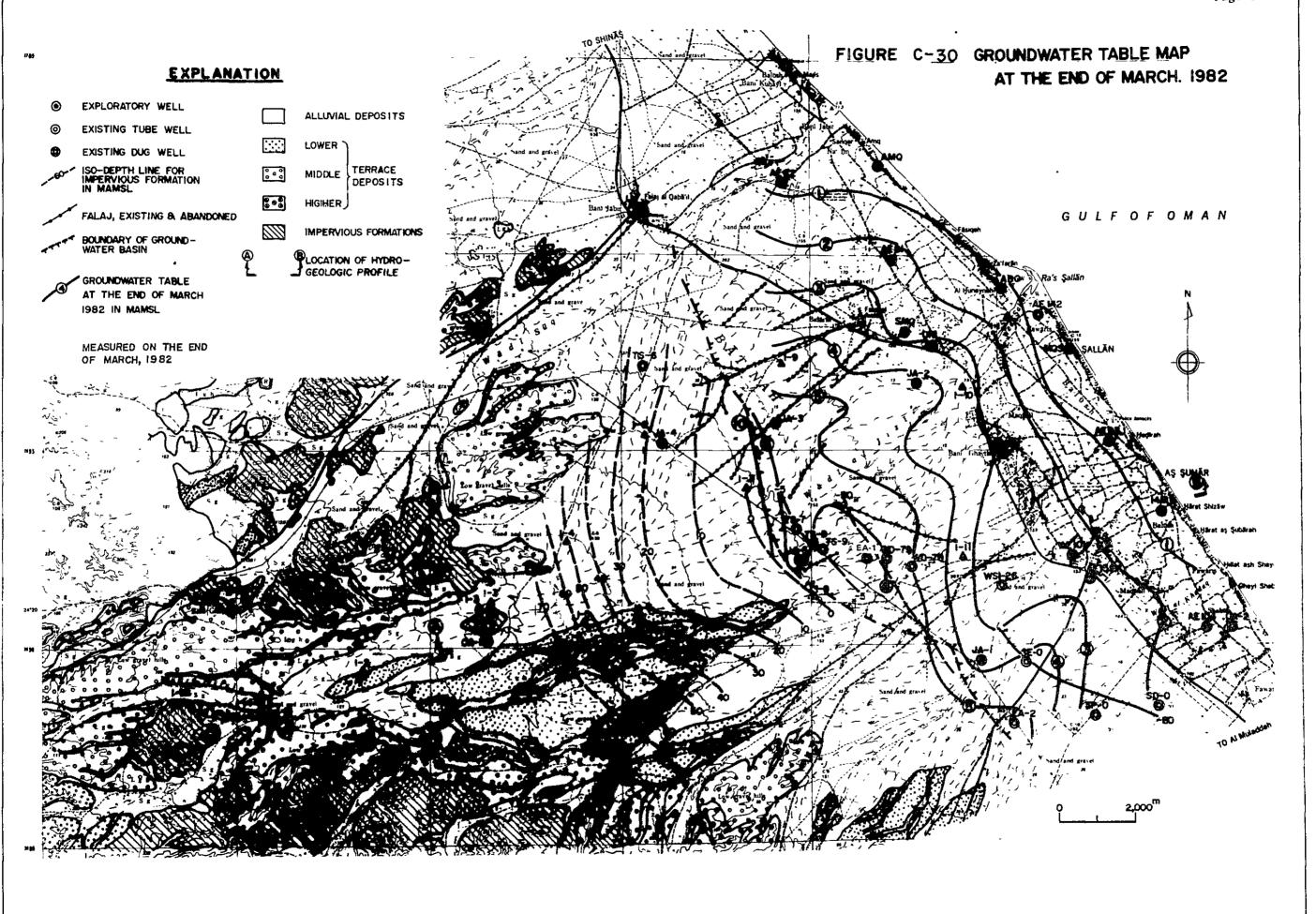
3. Groundwater Hydrology

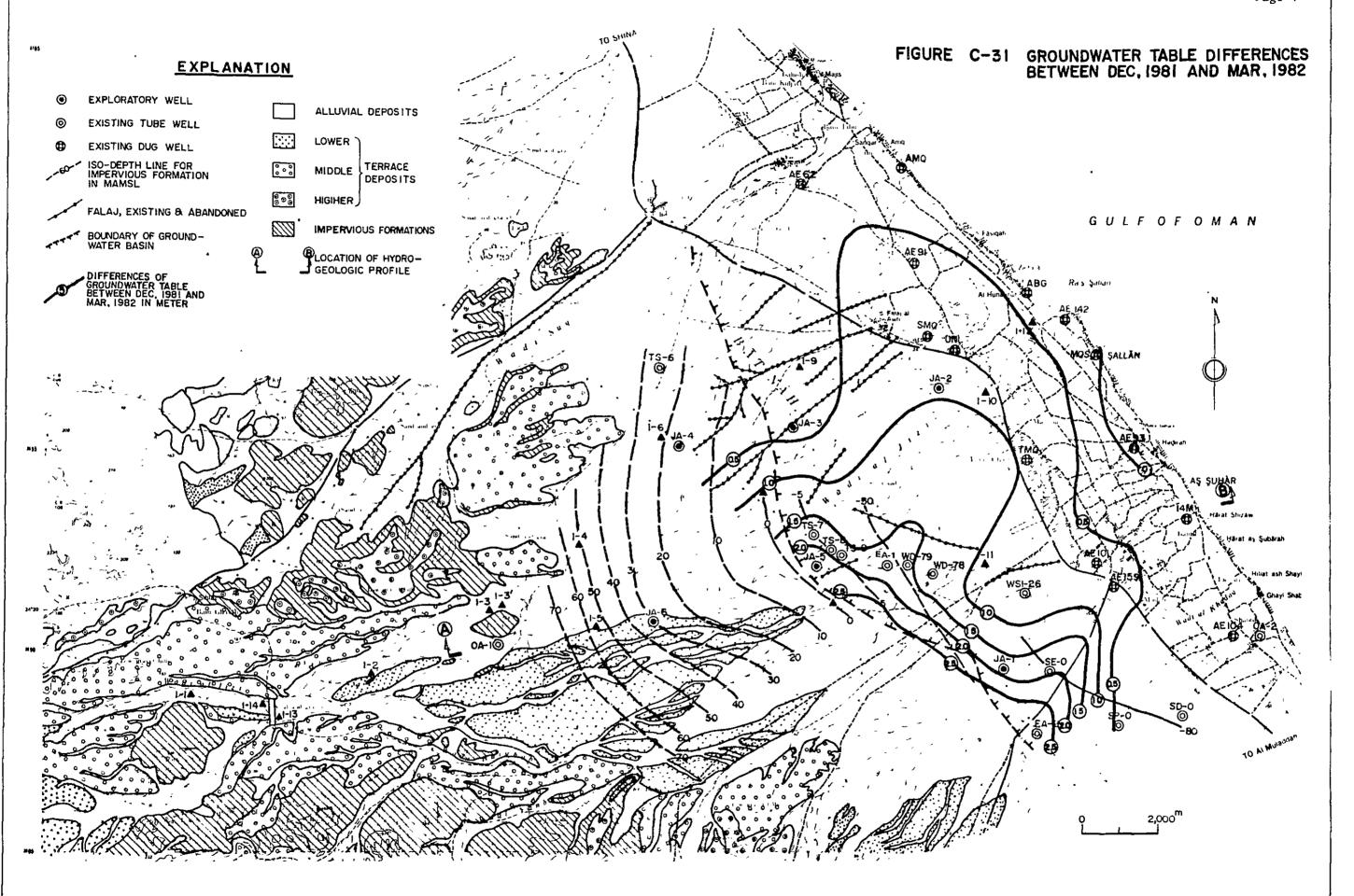
3.1 Occurence and Movement of Groundwater

Groundwater in the Project area is basically recharged by rainfall. Recharge take place in various manners from place to place. In the catchment, groundwater flows in wadi beds as an under flow with same hydraulic gradient as a gradient of river courses. Under flow turns to surface flow where basement rocks upheave to river bed.

Groundwater in the minor basin at the west edge of the gravel plain flows following comparatively steep under flow courses in contrast with the main groundwater basin in the coastal plain where it flows with moderate gradient. Under flow take a course where sediments deposited recently along eroded river beds during glacial age regression.


Hydraulic gradient at the west edge of gravel plain which calculated by water levels of OA-1 and JA-5 at drought month is about 1:100.


Groundwater in the major basin in the coastal plain is stored with comparatively moderate flow having 1:2000 of hydraulic gradient. Quantity of groundwater flow is estimated at several times of under flow because of large scale of flowing section.


Iso-depth contour lines to the Impervious formations and ground-water table contour lines on the coastal plain are drawn in the hydrogeological map in Figure C-29 and C-30. As is seen from the figure, groundwater flows at the coastal plain are summarized as follows:

Groundwater flow in drought month (the end of December, 1981)

Groundwater with 5 mams1 water table at the west end of the basin flows to the coast having 1:2000 hydraulic gradient.

- Groundwater flow lines make almost right angle with a coastal line which extends from the mouth of Wadi Sallan to town of Sohar.
- Estimated northern end of the basin can be delineated by the line following JA-4, TS-6 and Majis.
- ^o Zero mamsl groundwater contour line intrude to Amq and the south of Sohar city with 1 km width from the coast respectively.
- Oroundwater table trench extending from Sohar city to WSI-26 and JA-1 are intensified in the wet month showing conspicuous boundary to the Wadi Hilti groundwater basin. Location of groundwater table trench is corresponding to the trench of Iso-EC lines.

Groundwater flow in wet month (March 20, 1982)

- General flow patterns of groundwater are same as flows at drought month except hydraulic gradient of 1:1500.
- ° Groundwater table at the west end of the basin is one meter higher than in drought month.
- Pumping at TS-wells of Copper Mining effects groundwater table depression to 6 km distance towards the coast.
- ° Groundwater table trench is formed along the wells of WSI-26 and JA-1, which is caused by differential flows raised by the Wadi Jizzi and Wadi Hilti groundwater flows.

3.2 Recharge and Runoff

The groundwater basin in the coastal plain is extending downstream of the Wadi Jizzi and Wadi Hilti with 8 km width, 20 km length and more than 100 m depth. Northern part of the basin is formed by the Wadi Jizzi groundwater sub-basin which extend from Amq to the Wadi Khadaq with 13 km length.

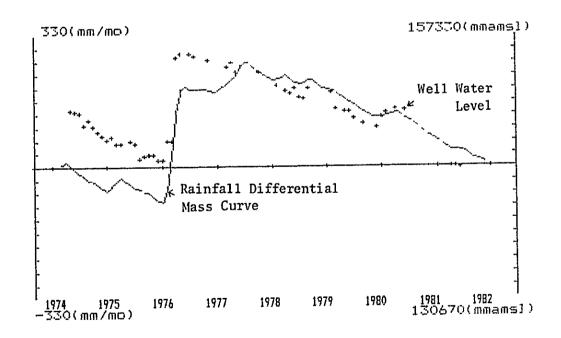
Estimated groundwater flow in the basin based on groundwater table contours and EC lines is summarized as follows:

- The main groundwater flow take course corresponding to the course of the Wadi Jizzi.
- ° A minor groundwater branch is flowing to the direction of Amq.
- The main flow is extending to the Wadi Khadaq where the Wadi Hilti groundwater flow is encountered.

Quantity of groundwater storage in the basin is estimated by following assumptions.

Storage for the basin = $8 \text{km} \times 20 \text{km} \times 80 \text{m} \times 0.05$ (Storativity) = 640 MCM

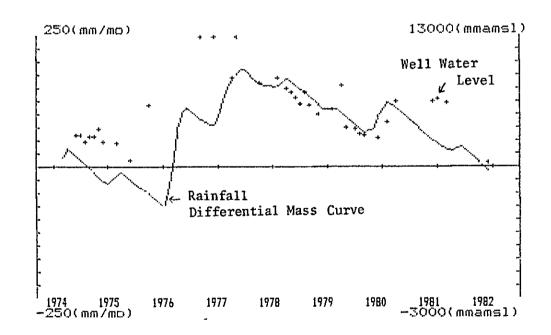
Storage for Wadi Jizzi sub-basin


 $= 8km \times 13km \times 80m \times 0.05$

= 416 MCM

Groundwater recharge is basically attained by rainfall. Relationship between rainfall and groundwater levels is plotted in Figure C-32 and C-33. Rainfall curves in figures are derived from cumulating three months moving average.

Source of groundwater at the gravel plain is depended upon groundwater inflow from the catchment. Groundwater inflow is composed of perennial under flow or base flow and inflow caused by flood. Surface water measurement by current-meter has been carried out since 1977 at Mulayyinah with a catchment of 654 sq.km. Observed base flow discharge is 67.2 lit/sec in an average, which corresponds to 0.10 lit/sec/sq.km. Single flood discharge ratio at Mulayyinah is varying depend on rainfall intensity.


WELL NAME	EA-49
MOVING AVERAGE FOR RAIN IN MONTH	3
FULL SCALE FOR RAIN	330
SCALE AMPLITUDE FOR RAIN	0.3
FULL SCALE FOR WATER LEVEL	13330
SCALE AMPLITUDE FOR WATER LEVEL	.75E-02
WATER LEVEL mmams1 AT BASE LINE	144000
LOSS OF RAIN	0
INFILTRATION RATE	1
SELECT(SOHAR=1,E-SITE=2)	2
AVERAGE OF RAIN	10.7

Rainfall

FIGURE C - 33 RAINFALL-WELL WATER LEVELS RELATIONSHIP IN EA-1

WELL NAME	EA-1
MOVING AVERAGE FOR RAIN IN MONTH	3
FULL SCALE FOR RAIN	250
SCALE AMPLITUDE FOR RAIN	0.4
FULL SCALE FOR WATER LEVEL	8000
SCALE AMPLITUDE FOR WATER LEVEL	0.0125
WATER LEVEL mmams1 AT BASE LINE	5000
LOSS OF RAIN	0
INFILTRATION RATE	1
SELECT(SOHAR=1.E-SITE=2)	1
AVERAGE OF RAIN	7.9

As mentioned in Appendix B, ratio ranges from 16% at 83 mm rainfall to 7.4% at 33.2 mm. Recharge rate of flood to the groundwater is analyzed based on the flood at February 14, 1982. (Table C-8) As is shown in table, rate of recharge is estimated 76% in an average though it varies according to rainfall intensity.

Water balance studies to determine the groundwater runoff is made on the coastal plain applying well hydrographs of EA-1, AE-104, AE-142 and DA-2.

Commanding areas for the wells of EA-1 and the rest wells are 56.6 an 317 sq.km respectively.

Applied groundwater balance equation is as follows:

$$P = (Ro - Ri) + E + (Go - Gi) \pm dH$$

Where:

P : Rainfall at plain

Ro: Surface outflow

Ri : Surface inflow

E : Evapotranspiration

Go: Groundwater outflow

Gi: Groundwater inflow

dH: Change groundwater storage

The values and ratios of parameters applied to the calculation of the water balance are explained as follows:

Rain (P):

Observed rainfall at Sohar from 1974 to 1981.

Surface outflow (Ro):

It is comprising flood runoff (FO) from the catchment and surface runoff (SG) caused by direct rainfall. A calculation of flood

Calculation for Recharge Rate Based on Hydrological Analysis

Table C - 8

Areal Rainfall at Mulayynah in mm (Pm)	83.0	66.4	49.8	33.2	16.0
Areal Rainfall at River mouth in mm (Ps)	88.4	70.7	53.0	35.4	17.7
Analized Discharge at Mulayynah in MCM (Dm)	8.777	5.789	3.394	1.615	0.392
Run-off Coefficient at Mulayynah in percent (C)	16.2	13.3	10.4	7.4	3.6
Expected Discharge at outlet to plain in MCM (DE = $893 \text{ km}^2 \text{ x}$ Pm x C)	12.007	7.886	4.625	2,194	0.514
Expected Discharge at River mouth in MCM (DS) = $1,283 \times Ps \times C$)	18.374	12.064	7.072	3.361	0.818
Analized Actual Discharge at River mouth in MCM (DS ₂)	3.85	2.94	2.04	1.13	0.23
Infiltration at plain in MCM Rp = (Ds1 - DE) - Ds2	2.517	1.238	0.407	0.037	0.074
Recharge from catchment in MCM Ru = Ds1 - Ds2 - Rp	12.017	7.886	4.625	2.194	0.514
Total Recharge at plain in MCM Rt = Rp + Ru	14.534	9.124	5.032	2.231	0.588
Recharge Rate in percent $Cr = Rt / Ds_1 \times 100$	79	76	71	99	72

runoff (RI) at the catchment is conducted based on the relationship curve of rainfall and specific discharge at dam site which was analyzed by the multiple regression method. (refer to Appendix B-1, Figure B-5) As a matter of convenience, the relationship curve can be separated into two straight lines. Formulas for calculation of flood runoff (RI) applying said straight lines are as follows:

RI =
$$(F - 29) \times 0.26 \times AR$$
 $F \ge 50$
RI = $(F - 8) \times 0.19 \times AR$ $F < 50$
 $AR = A1/A2$

Where;

F: Sequential areal rainfall over 13 mm which probably bring flood.

Al: Area of catchment (893 sq.km)

A2: Commanding are of respective wells at the plain.

Well EA-1 (56.6 sq.km) AE-104, 142 and OA-2 (317.0 sq.km)

Flood runoff into the plain (FO) can be obtained the subtraction recharge caused by flood (RF) from flood runoff at the catchment (RI).

$$FO = RI - RF$$

 $RF = RI \times PR$

Where;

PR: Recharge ratio of flood at the plain. The ratio are estimated applying previous flood records. (see Table C-8) As is shown in table, average ratio is estimated 76% to flood runoff.

It is applied to the calculation.

Surface rumoff caused by direct rainfall at the plain (SG) is also applied by relationship of rainfall and specific discharge at river mouth which analyzed by multiple regression methods. (refer to Appendix B-1, Figure B-4)

Applied formula for calculation of surface runoff based on above relationship curve is as follows;

$$SG = (P - 13) \times 0.04$$

In the calculation for the coastal plain,

$$SG = (P - 13) \times 0.04/PR$$
 can be applied.

Surface inflow (Ri):

Surface inflow to the well EA-1 is equivalent to flood runoff (FO). And surface runoff (SG) caused by direct rainfall shall be added to (FO) for the coastal wells.

Groundwater outflow (Go):

Groundwater outflow can be calculated by the balance equation. It is difficult to discriminate consumptive use and net groundwater runoff to the sea. Estimation for consumptive use of groundwater is attempted by applying analyzed essential groundwater runoff to the sea. In contrast with the coastal wells, groundwater outflow for the well EA-1 can be calculated by the equation:

$$Go = P - (Ro - Ri) + Gi - E \pm dH$$

Groundwater inflow (Gi):

Baseflow runoff (RB) and recharged flood (RF) are counted into groundwater inflow (Gi) for the well of EA-1. Recharge caused by direct rain (RG) shall be added to RB and RF for the rest coastal wells. Following formulas and values are applied for calculation of baseflow runoff (RB) and recharge (RG).

$$RB = (ES \times R2) - RZ$$

 $R2 = AR \times DR$

$$RG = (SG \times PR) - LO$$

 $LO = D \times EV$

Where;

- ES: Areal rainfall for the catchment calculated by observed rainfall records of Hayl Wadi Hayl, Kitnah, Hayl Wadi Jizzi,
 Daqiq and Farfar stations.
- DR: Discharge ratio for baseflow at the catchment. The ratio is calculated by observed records of surface discharge at Mulayyinah where impervious rocks are exposed at the surface. Observed average specific baseflow discharge per annum is 6.9 mm in depth. The total potential baseflow discharge is estimated at 0.22 lit/sec/sq.km. (refer to Appendix B-1) Consequently, ratio of baseflow discharge to annual rainfall is applied 5.7% for the calculation.
- RZ: Water use by the villages in the catchment. Water use is in the catchment is estimated 0.12 lit/sec/sq.km as equivalent as falaj discharge. (refer to 3.3.1 Surface Water) The ratio of water use at the catchment to annual rainfall is applied 2.0% for the calculation in consequence of the above estimation.
- LO: Loss probably caused by soil detention. If rainfall (P) is smaller than calculated loss (LO), rainfall can be put into loss.
- D: Sequential rain days among five stations.
- EV: Potential evapotranspiration calculated by the modified Penman and modified Blaney-Cridle methods. (refer to Appendix G-2)

For the coastal wells, "Go" from the well EA-1 can be put into "Gi" for the coastal wells of AE-104, 142 and OA-2.

Evapotranspiration (E):

Evapotranspiration comprises evaporation and loss. If rain is equal or smaller than loss rain (= 13 mm), rain is put into evaporation. If rain is exceeded loss rain, evaporation is calculated

by following formula:

Evaporation = Rain(P)-(Surface runoff(SG)+Recharge(RG)+Loss(LO)

Change groundwater storage (dH):

Change of storage can be calculated by change of groundwater table multiply storativity. Applied storativity 0.05 is analyzed by aquifer tests at Sohar Expansion Farm.

Calculated monthly water balance for each well is shown in Table C-9 to C-12.

Results summarized in an average of seven hydrological years from 1974 to 1981, are shown in Table C-13.

As is shown in the table, groundwater inflow to the gravel plain is calculated 17.6 MCM/annum comprising 6.7 MCM from baseflow and 10.9 MCM from flood. In comparison with groundwater inflow, groundwater outflow at the coastal plain is calculated 17.5 MCM including a part of consumptive use at the plain.

Groundwater recharge at the plain caused by direct rainfall does not counted by means of calculation.

Minimum essential groundwater runoff to the sea is estimated at 8.0 MCM/annum as is mentioned in the latter part. Calculated groundwater runoff must be shared to essential groundwater in proportion to water tables. Minimum runoff of 8.0 MCM can be shared to the sea because average water tables through calculated years is observed almost zero meter above mean sea level.

Consumptive use by crops in the project area is estimated at 21.1 MCM/annum. (refer to Appendix G-1) Calculated losses at the coastal plain comprising mostly soil detention, can be shared consumptive use with groundwater extraction as far as losses plays effective rainfall

Table C-9 Calculation for Water Balance, Well EA-1 (56.6 $\ensuremath{\text{km}}^2)$

(Unit : mm)

	Ground water runoff (Go)	243.5	565.7	312.6	660.2	195.5	27.1	129.0	304.8
	Change G.W storage (ds)	-75	200	180	-490	-100	06	-70	Ŋ
	Surface outflow (Fo+Sg)	31.3	264.2	94.8	23.0	7.7	18.8	7.1	63.8
	Evapo- transpiration (Et)	47.6	224.1	166.7	59.4	28.7	101.1	37.4	95.0
	Recharge direct rain (Rg)	0	0	0.2	0	0	0	0.2	ol
vater	Flood (Gif)	93.5	805.7	283.4	68.5	23.0	48.1	21.4	191.9
Ground water	inflow Baseflow F (Gib)	75.0	260.0	209.0	101.9	72.5	0.69	37.4	117.8
	Surface inflow (Fo)	29.6	254.5	9.68	21.7	7.3	15.2	8.9	60.7
	Rain (P)	49.3	233.8	172.1	60.5	29.1	104.7	37.9	98.2
	Year	1974/75	75/76	76/77	77/78	78/79	79/80	80/81	Average

Table C-10 Calculation for Water Balance, Well AE-104 (317 km²)

(Unit : mm)

Ground water runoff (Go)	51.7	76.0	63.1	121.3	43.5	-30.0	6.69	56.5
Change G.W. storage (ds)	-7.5	25.5	-6.5	-3.0	-8.0	35.5	-46.0	-1.4
Surface outflow (Fo+Sg)	7.3	56.9	22.1	5.4	1.8	6.9	1.6	14.6
Evapotranspiration Total Loss (Lo)	13.8	129.4	68.6	25.9	3.0	58.8	12.6	44.6
Evapotra Total (Et)	47.6	224.1	166.7	59.4	28.7	101.1	37.4	95.0
Recharge direct rain (Rg)	0	0	0.2	0	0	0	0.2	01
Ground water inflow (Gi)	44.2	101.5	56.4	118.5	35.5	5.5	23.7	55.0
Surface inflow (Fo)	5.6	47.2	16.9	4.1	1.4	3,3	1.3	11.4
Rain (P)	49,3	233.8	172.1	60.5	29.1	104.7	37.9	98.2
Year	1974/75 49,3	75/76	76/77 172.1	77/78 . 60.5	78/79	08/62	80/81	Average

Table C-11 Calculation for Water Balance, Well AE-142 (317 km²)

(Unit: mm)

								•
Ground water runoff (Go)	39.7	79.2	62.1	123.3	33.5	-46.5	84.9	53.7
Change G.W. storage (ds)	4.5	22.3	.5.5	-5.0	2.0	52.0	-61.0	+1.3
Surface outflow (Fo+Sg)	7.3	56.9	22.1	5.4	1.8	6.9	1.6	14.6
Evapotranspiration Total Loss (Et) (Lo)	13.8	129.4	68.6	25.9	3.0	58.8	12.6	44.6
Evapotral Total (Et)	47.6	224.1	166.7	59.4	28.7	101.1	37.4	95.0
Recharge direct rain (Rg)	0	0	0.2	0	0	0	0.2	01
Ground water inflow (Gi)	44.2	101.5	56.4	118.5	35.5	ນ ຮ	23.7	55.0
Surface inflow (Fo)	2.6	47.2	16.9	4.1	1.4	3.3	1.3	11.4
Rain (P)	49.3	233.8	172.1	60.5	29.1	104.7	37.9	98.2
Year	1974/75	75/76	76/77 172.1	77/78	78/79	79/80	80/81	Average

Table C-12 Calculation for Water Balance, Well OA-2 (317 $\mbox{km}^2)$

(Unit : mm)

Ground water runoff (Go)	47.2	103.0	45.6	127.8	13.5	21.5	30.4	55.6
Change G.W. storage (ds)	-3.0	-1.5	11.0	-9.5	22.0	-16.0	-6.5	-0.5
Surface outflow (Fo+Sg)	7.3	56.9	22.1	5.4	1.8	6.9	1.6	14.6
Evapotranspiration Total Loss (Et) (Lo)	13,8	129.4	68.6	25.9	3.0	58.8	12.6	44.6
Evapotra Total (Et)	47.6	224.1	166.7	59.4	28.7	101.1	37.4	95.0
Recharge direct rain (Rg)	0	0	0.2	0	0	0	0.2	01
Ground water inflow (Gi)	44.2	101.5	56.4	118.5	35.5	5.5	23.7	55.0
Surface inflow (Fo)	5.6	47.2	16.9	4.1	1.4	3.3	1.3	11.4
Rain (P)	49,3	233.8	172.1	60.5	29.1	104.7	37.9	98.2
Year Rain (P)	1974/75	75/76 233.8	76/77 172.1	77/78	78/79	79/80 104.7	80/81	Average

Table C-13 Data Summary for Water Balance on Plain (1974-1981)

(Unit: MCM/ann.)

Name of Well	<u>EA-1</u>	AE-104	<u>AE-142</u>	<u>DA-2</u>	Average
Catchment Area (sq.km) Areal Rainfall (mm) Input Discharge Baseflow Flood Total		1	0		
Plain Area (sq.km) Rainfall (mm) Input	56.6 5.6		7 98 51.1		
Recharge Baseflow Flood Total	6.7 10.9 17.6	17.4	17.4	17.4	17.4
Surface Inflow Total Surface Outflow Flood Rain	3.4 3.4 0.2 3.6	3.6 3.6 1.0 4.6	3.6 1.0 4.6	3.6 3.6 1.0 4.6	3.6 1.0 4.6
Total Evapotranspiration Evaporation Losses Total Change Grounwater	5.4 +0.3	16.0 14.1 30.1 -0.5	16.0 14.1 30.1 +0.4	16.0 14.1 30.1 -0.2	16.0 14.1 30.1 -0.1
Groundwater Runoff	<u>17.3</u>	<u>17.9</u>	17.0	17.6	<u>17.5</u>
Consumptive Use Groundwater Rain (Loss) Total		$ \begin{array}{r} 10.4 \\ \hline 10.7 \\ 21.1 \end{array} $	8.6 12.5 21.1	9.8 11.3 21.1	9.6 11.5 21.1
Essential G.W. Flow Coastal G.W. Balance		$\frac{8.0}{-0.5}$	8.0 +0.4	<u>8.0</u> <u>-0.2</u>	<u>8.0</u> <u>-0.1</u>

for the crops. Consequently required groundwater extraction for consumptive use is obtained the balance of calculated groundwater rumoff (Go) and essential groundwater rumoff plus change of groundwater storage.

Total surface runoff on the coastal plain is calculated at 4.6 MCM/annum, however most of it especially caused by direct rain would not join to the wadi courses in view of the topographic condition. Only the surface runoff which caused by flood at the catchment can be counted as the loss to the sea.

Consequently, the loss to the sea is estimated by 3.6 MCM/annum in contrast with 2.5 MCM analyzed by hydrological manners.

In reference to this calculation, results of previous studies of the water balance calculation on the Wadi Jizzi basin which have been conducted since 1978, are summarized in Table C-14.

3.3 Groundwater Balance at the Coastal Plain

a) Groundwater Balance

Groundwater balance at the plain can be estimated by the use of time series records of well water levels, and the results are shown schematically in Figure C-34. Changes of groundwater level at a certain period are resulted from difference of quantity between groundwater recharge and groundwater rumoff. As is described previously average changes of groundwater levels at the coast from 1974 to 1981 are calculated 12 mm in defect and it is equivalent to 0.1 MCM in defect.

Groundwater defect at the coast seems small in comparison with total quantity of storage, however groundwater levels should be kept at least one meter above mean sea level to prevent sea water intrusion into the aquifers. Permissive drawdown at the coastal plain based on the concept of sea water intrusion, seems small because average water levels for the last eight years for wells of AE-104, AE-142 and OA-2 are 1.1, 1.1 and 1.5 mams1 respectively. (Figure C-35)

Table C-14 Data Summary Water Balance for Wadi Jizzi by Previous Studies

(Unit: MCM/ann.)

Item	FAO ¹ / (1979)	Ministry of 2/ Communication (1978)	Ministry of Electricity & Water (1980)	JICA (1982)
1) Rainfall				
Annual Rainfall (RF) (mm Area (sq.km) Total Input (IT	650	156 770 120	160 770 123	130 893 116
2) Catchment				
Gross Yield (YCC Consumptive (CC) Net Runoff (DN/IT) (% Ratio Runoff (DN/IT) (% Net Flood Runoff (DE) Ratio Flood (DF/DN) (% Ratio Baseflow (DB/DN)	4.7 25.3 3) 17 7) 17.8 3) 7.5 5) 70	42.8 8.3 34.5 29 24.5 9.9 71 29	24.8 2.8 22.0 18 13.5 8.5 61	23.5 2.5 21.0 18 14.3 6.7 68
3) Groundwater Input				
Baseflow+Nonflood (GI Recharge/Flood (GI Recharge/Direct Rain (GI Total Groundwater (GI Ratio Recharge Flood	(i) 14.2 (i) 0 (ii) 21.7	9.9 14.7 0 24.6	8.5 10.1 0 18.6	6.7 10.9 0 17.6
Ratio Groundwater (GT/IT)(9	á) <u>14</u>	21	15	15
4) Coastal Water Balance				
Total Groundwater (G' Consumptive Use (CU Essential Flow (GS Net Balance (GI	J) 34.1 3) 4.0	24.6 22.1 +2.5	18.6 9.6 +9.0	17.5 9.65/ 8.0 -0.1
Flood Loss to Sea (LI Ratio Loss (LF/OF)(S		9.8 40	3.4 15	$\frac{3.6}{17}$

Note: 1/ Water Resources of the Batinah.FAO Field Document No.10 1979.

4/ Including coastal Areas of Sug, Yanbu and Hilti.

^{2/} Water Supplies to Sohar, Water Resources Evaluation, Preliminary Report, 1978 Preece Cardew & Rider, Sir M. Macdonald & Partners, Rendel, Palmer & Tritton.

^{3/} Water Development Program, Town and Villages Vol.2 Hydrology, 1980 Preece Cardew & Rider, Sir M. Macdonald & Partners, Rendel, Palmer & Tritton.

^{5/} Total Consumptive is 21.1. 9.6 is only groundwater contribution to consumptive use.

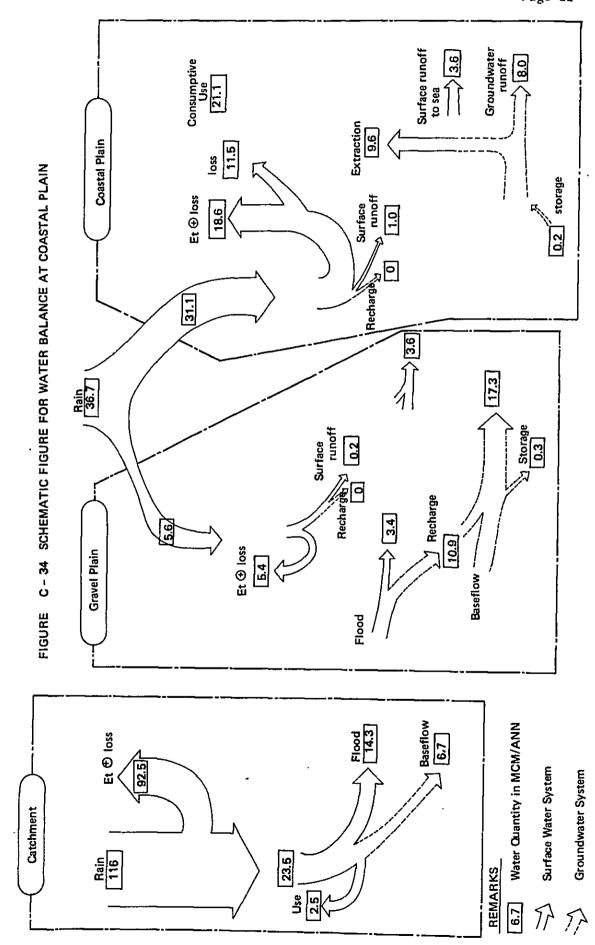
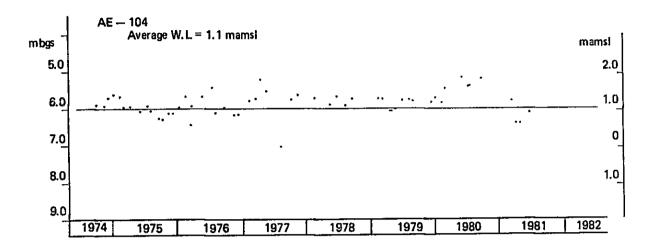
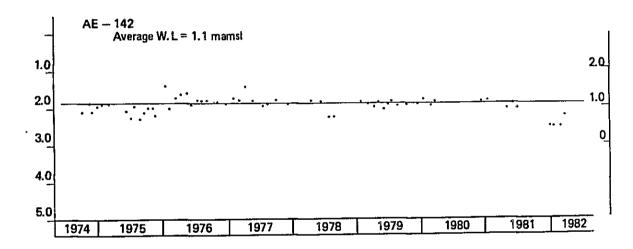




FIGURE C - 35 WELL WATER LEVELS AT COASTAL PLAIN

Minor defected change of groundwater level of 12 mm mentioned above should not assess underestimated.

Essential quantity of groundwater runoff to the sea should be assessed by means of hydrological ways. Following considerations are applied for estimation of it. Quantity of groundwater runoff when annual change of water levels shows zero mamsl is assumed minimum essential runoff, and quantity obtained by recession curve for coastal wells at dry month is also assumed minimum essential runoff. Estimated annual essential groundwater runoff by means of above manners are about 8.0 MCM in an average.

b) Sea Water Intrusion

Qualitative assessment of the coastal groundwater can be carried out by means of comparison of EC logging with of ILACO. (Figure C-22 to C-26)

As a results of the comparison with them, EC has not changed since 1974 at WSI-26, the west of national highway, representing almost stabilized conductivity with 600 - 700 micro mho/cm to the depth of 60 mbgs. EC logging at OA-2, which is located only 600 m far from the coast, detects interface between 900 micro mho/cm of surface layer and 5,500 of second layer at 24 mbgs (16 mbmsl), furthermore transgressional zone to the third layer of 50,000 micro mho/cm is detected at 42 mbgs (34 mbmsl). As is shown in Figure C-24, the former interface shifts to 5 m upwards compare with 1974, and third layer was detected 18,000 micro mho/cm instead of 50,000 at the same depth.

Depth to interface between fresh water (less than 1,000 EC) and brackish water shifts 5 m upwards during years from 1974 to 1982. It is estimated that groundwater level has been lowered about 13 cm since 1974, if Ghyben-Herzberg assumption is applied.

EC loggings at the wells of EA-1 and EA-2 on the gravel plain, which are located more than 7 km far from the coast shows almost

stabilized conductivity up to 80 mbgs with 500 - 600 micro mho/cm. Change of EC with depth is summarized in Table C-15.

Ghyben-Herzberg assumption is expressed as follows:

 $Z \neq 40 h$

Where densities of fresh and salt water are 1.000 and 1.025.

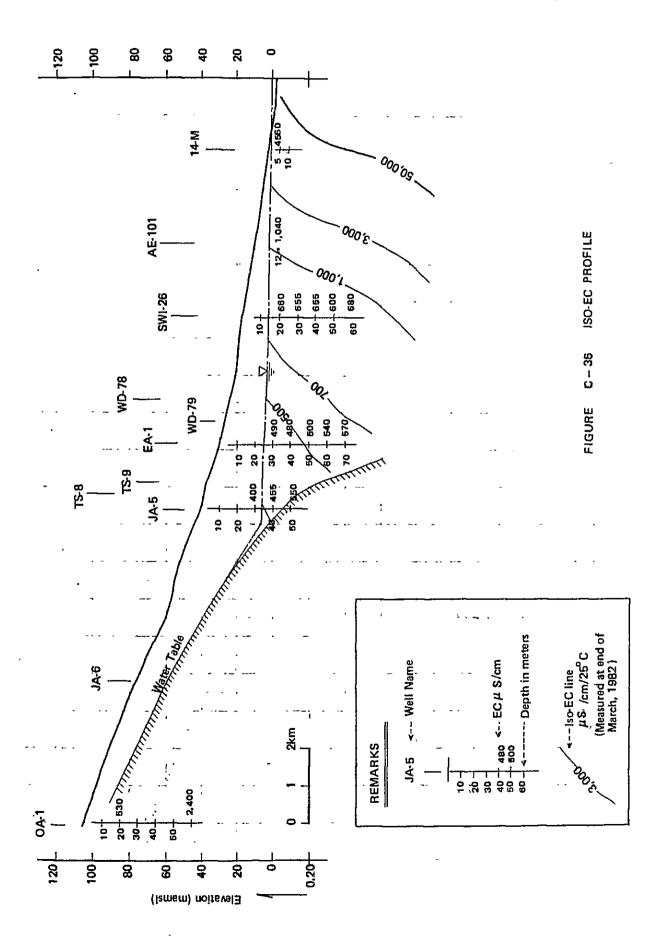
Z: Depth to interface between fresh and salt water from mean sea level

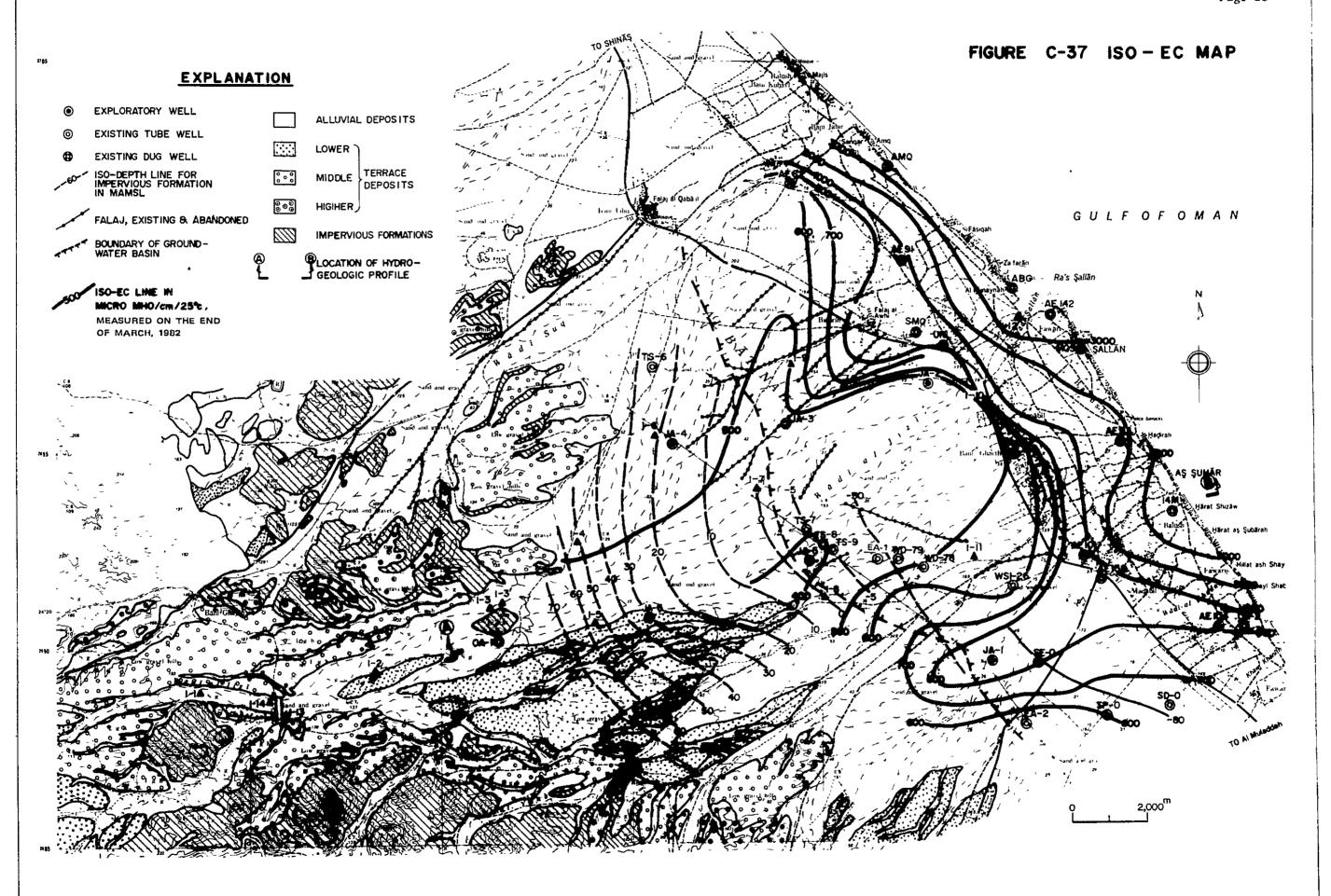
h: Height to fresh water table from mean sea level.

It can be assumed that shifting of interface was caused by lowering of groundwater table in accordance with above assumption, however water table at 1982 was 20 cm lower than 1974 in spite of 13 cm. So that increasement of EC is considered more serious than shifting of interface,

c) Groundwater Flow in View of Iso-EC Contour Lines

Distribution of EC at surface layer of groundwater along the Wadi Jizzi river courses and their idealized section are drawn in Figure C-36 and C-37.


Iso-EC map is drawn by based on the data at the end of March, 1982 after the big flood dated February 14, 1982.


As easily visualized from the figure, Iso-EC contour lines are consistent with groundwater table contour lines, and groundwater with 470 micro mho/cm/25 C at the upper stream of Wadi flows downwards solving saline materials. Also it is clear that areas where moderate EC increasement is consistent with areas where excellent groundwater potentials.

0+1

Table C - 15

+ 32,000 + 2,000 EC (nm/cm) + 180 Di fferences цр + 2 Top of Layer (m) down - 1 ç g ⁺ 5,500 - 32,000 900 - 5,500 EC (nm/cm) 50,000+ 900 5,500 Change of EC During 1974 - 1982 At 0A-2 Mar. 82 - 16 Depth (mbms1) 16 - '28 34 - 55 28 - 34 52 3,500 - 17,000 880 ~ 3,300 EC (nm/cm) 880 3,500 18,000 Feb. 74 55 - 141+ Depth (mbms1) ~ 21 21 - 26 34 - 55 26 - 34 Transitional Layer Transitional Layer lst Layer 2nd Layer 3rd Layer

3.4 Chemical Quality of Groundwater

Result of chemical analysis of groundwater for the basin are shown in Table C-3 and C-16.

Results are plotted on the key diagram of hydrochemistry. As is shown in Figure C-38, cations for all JA-Wells are plotted on Calcium-Sodium field, however plotted anions are spread to Chloride-Sulfate-Bicarbonate field for JA-1 and JA-3 and to Bicarbonate-Chloride-Sulfate field for JA-2, JA-4 and JA-5. In general, groundwater plotted on Chloride-Sulfate-Bicarbonate field have a hydrochemical signs of contamination with sea water or of fossil water. In case of JA-1, sign of contamination with sea water at the deeper part of aquifers may be considered.

Furthermore, chemical qualities of the production wells for Sohar Expansion Farm are also summarized as follows:

- ° Cation of No.2 plotted on Sodium-Calcium field, however the rest wells of it is on Calcium-Sodium field.
- Anion of whole wells plotted on Chloride-Sodium-Bicarbonate field, and
- ° Only the well of No.2 has a sign of contamination with sea water.

Chemical Analysis for Production Wells at Sohal Expansion Farm Table C - 16

į	3/1	88.8	88.8		1.7		99.4		1.2	
	C1_				5.40 191.7			•	2.85 101.2 2.85 101.2	1978)
	ше1	2.50	2.50		5.4(2.80	6	2 . %	IRI
Constituent in Mel. and Mg/1.	mg/1	72.5	72.5		2.20 105.6		52.8		55.7	(After IRI 1978)
	SO4	1.51	1.51		2.20		1.10		1.16	_
	HCO ₃	3.80 231.8	3.80 231.8		3.70 225.7		3.10 189.1	•	3.40 207.4	
	H me1	3.8	3.8		3.7		3.10	1	3.4	
	13 mg/1	ı	1		ı		ı	6	0.20 6.00	
	CO ₃	t	a		ı		ı			
	K+ mg/1	2.34	2.34		3.51		2.34		1.95	
	meI	90.0	0.06		0.09		90.0		0.05	
	Na ++ 1 mg/1	3.06 70.4 0.06	70.4		7.10 163.3		63.9		64.4	
	mel		3.06				2.78	c	2.80	
	Mg ++ 1 mg/1	43.1	43.1		34.0		41.9		43.1	
	mel	3.55	3.55		2.80		3.45		3.55	
	Ca ++ mel mg/l	1.15 23.0 3.55	23.0		26.0		19.0		24.0	
		1.15	731 1.15		1,30		0.95	5		
נו כ	125°C	731	731	925	1150	472	685	74	736	
	Well No. Date	Production Well No.1	Mar.3, '78	Production	Well No.2 Feb.28, '78	Production	Well No.3 Mar.7, '78	Production	Well No.4	Mar.23, '/8

Well No.1, No.2 and No.3 are expected to be used for production wells in the project. Remarks:

Source : IRI 1978

																	, ag	5 31	
		: :			1111	15.1			_ .·	. ,		7	1111111						
			:::::i			ļ <u>i</u> .		· !-: {-											
	1		-::		<u> </u>	İ			<u> </u>			- 1-		71111					
	1 .44 :		H. 4:	:	- :	٠,	:	. :	:	, .	: *:,	Т							
 	:::: <u>::::</u>		 		·	33		::-!-	~ ~	•:•••		٠٠ŀ٠		· ;; ·					
	1 ::: ::	FIGUI	3F (:- . 38	1	'אענ	TH	R_A	NA	YSI	ות.	۵Ļ	RAM	EOR -	XPLO	2 V Y ()	Y WE	:::::::::::::::::::::::::::::::::::::::	
T :: :::::::::::::::::::::::::::::::::	1	::::::::	:::::		. 1		. 1		:-[:::::	:::::::::::::::::::::::::::::::::::::::						44P	
-:::- -:::- -:::-					! : ::	 -		- ::: :											
						::::		-:::	η	:- :-:	: :.	·:: ·	:::1:::::						
									. ; ::			:: .	:::::::::	.1::1:::::					
					1													::::::::::::::::::::::::::::::::::::::	
			∺ :::																
		::::	::::		:::::	:::::		:-: -				•							
			:		1	<u>::::</u> :		==:					- 4 - 11						
				::: ::::						. Ţ. :	::.	·:::			₽₩₽₽₽	₩₩	=11==		
									[- : .						====:		
				:::::::::::::::::::::::::::::::::::::::		<u> </u>	<u> l</u>				- :-:	<u>.</u> [-	.: ::::						
									.: .	.1.	;								
			·				: 	;;								=======================================			
		<u> </u>	. ::	:: ::::		- :-	1		-	;	. :	-	-: -	: = = =		-====	====		
					: <u>:</u>		,				-:-						=======================================		
	 			 					٠.,		-::-	-	-						
	1::::		:::::::	::: :::		:::i	- 1	. ::		: [-::	1	:::	-:::::::!						
:::: :::: :::: ::::				== ::::			:::	::::	::::::	:::::::		:::	:::1:::::		====				
							==				1.	+		======					======
	=====					1:::	==	===		::I/\	. ;				===				
				== ==	###	: ::		12221	:::	:X;	ان ن	- :							
	1	:	:::::				::-	<u> :</u>	/	'د: ک	\overline{T}					====	=1==		= ====
	-		:::::		ļ::	::::I.	- 1	=:7	7Y::	:ij/\	\	1-1					=:::::	:::::::::::::::::::::::::::::::::::::::	
	 					 = =	==		/	·/-	/- <i></i> /	7							
			====			1 :::::::	::::	::::;	/: ' . 'y	1.1 :	$\sqrt{\cdot}$	7,7	-11						
<u> </u>			:==:	- : : : :	11.	1 :::]	N.Y.	ΞV-	::::-:-	3	٠.۲	Q		====	====	ا≡≡≡		==== :::
					===	 		7/:	-j ::		: ` `	<u></u> 1	_ <u>`</u> ,		====		===		
	1:::1:::		:.=::	:::	i::	f::::i	اح	∤ ∷ii	<i>(</i> ::::::::::::::::::::::::::::::::::::	:: <u>[</u> :::		.	15	====			=====	51 23 23 	
				-:-:	-1	EE	G,	=:: <i>)</i> :	À-1:=		:::::	ŹΝ	- 10				===		<u> </u>
							-/	;/-	<u>`N</u>		1		\ <u>=</u> !}=			====			
							/.=	7=1		• 3 III	-: /: <u>-</u>		:/:=:/						
						1.57			116	77 :::	<i>1</i> ::		- 1	T			====		
	I	=====		==	: :	X.	7			- A	:			<i>;</i> }==					
				==	#=	YEN	/	===	25:		1:1:	=		·}==	### #	===			=:
			-			N; ≠	\		==	-∤∴		==		·/					
				= =:	Λ	=X-	=√!	===	=:==	· / /	\ . !·			/-::/\`	:::::::::::::::::::::::::::::::::::::::				***
	:	-=-==		====	<i>y</i> ::	(= <u>:::</u>)		\ <u></u>		/ 1	17	=1	- / - /	′ ::/ ≟	\= <u>=</u>		===:=		
				==-/	<u>'</u>	N-11	\mathbf{x}	\rightarrow			 `		1.1	. /	7				
F. J. 45-74-5	. :	:	•	V	- 1 :: _ :		÷٧	:: Z,	. 7	. : -	-	Œ	' /Q	/	:/:				
	-		!	4/1	====	4.]	77	77			У.	121		<i>J-</i> F				
	1		<u> </u>	7		 -	7-:	~\	- 		! - : .	/ :	/*/		· · · · \ · ·	إنيني			
17 4 T : 120	- HEEL!	- 1 - 1	1: 7	1.	• :	• ذ أ	\	~\	ો.	٠.	i	7	∕° ?/∃		::: \	Ö			=======================================
1 1 1 1	:=:::::		%\ `					<i>ነ</i> ተነ	\ 		7	7	تــــــــــــــــــــــــــــــــــــ			λ P			
		-:-:	/ `	`	2 *	<u></u>	19.7	Δ ::	<u> </u>	7 .—	/:	/4	/``			\			
							:;/.	$ \cdot $	14.1	X			·	-	·	-:'\:::			
		<u> </u>		<u> </u>	·	1	/	i)	4.17	4.7	ΓŹΓ	1			/	X	=== ===		== ======
1 1 1 1 1 1 1 1	1 1	::::/ <u>.</u>	· :	1	•	11	<u></u>	77.	ΔĽ	<u>\(\' \' \</u>	V.:	/:	::-	V 11:	77::::	:-!-: : }\		<u> </u>	
		::: / :::	· · · · · · · · · · · · · · · · · · ·	. 1 1	,	17.	-::			: N /	(-		\3 2 \		[::: <u>:</u> :::]	N		
 		7	 		~	<u>}'</u> -			 ∖	7	 		4		Y		1		
1 1 i		/			· \'Z	1			·· ·	$\Delta ! : : :$	/ :			2:1			:::\\::::		<u> </u>
	1::1::		1	: <u>: -:.</u>	:i:::	1::::	::-1	i isali	:::[.i		:	:=1	- 1-1-1-1	CL.					
		 	1:1.		÷FC	4	===		== =		 -			::\eb-:					
1			<u> </u>		11	1: 7	<u>: "</u>	!	:			_:		<u> </u>					-1.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	::: :::							1 ::	T	···						:::
		1::-:	::::::		::::::	1						4	- 1						
					-i. ^	-	-			1.1.1	···	i	-			1			
	: i: .:i		1		: :					_	 			,					
			1 :-:	_==		i 1	ائے۔	<u> _</u>	<u>l</u> .	<u>. :</u>	1 .							_: <u> </u>	 -
<u> </u>						•	i	i	1	•	!	į		:		1	1.		*
		1.1.		- ! ^	•	:						-+		<u> </u>	1			 	
		;"-				!						•					1	[: Titamalania	111
		11.77.				 					<u> </u>				:::::::::::::::::::::::::::::::::::::::				
		;"-			: 					:							1 - 2 1 1 - 2 2 - 2 - 1 - 1		
	***				: 					;							1.1.1	***************************************	
						i			- 1	;									
						<u> </u>				·									
						<u></u>		:	-										
						<u> </u>													
							•••	:											
						<u> </u>	•••												