### 19.5.4 Rate of net income

The rate of net income which is the ratio of net income to the fixed assets in operation of the project is as follows:

> - For the first 10 years after completion of the project: 27.91 million R.O./3,707.18 million R.O. = 0.75%

> - For the whole service life of 20 years: 279.57 million R.O./4,481.89 million R.O. = 6.2%

### 19.5.5 Conclusion

There is no universal criteria on the rate of net income, but examples in some industrial countries and developing countries show that the rate of net income in the public utilities is generally ranged from around 2% to 4.4%.

Therefore, the rate of net income of 6.2% for the whole service life means that the Barka project, as far as it is operated under the new tariffs proposed on the cost basis, is very feasible from financial viewpoint.

### Table 19.1 Procurement of funds and repayment schedule

(Electric power and desalination)

|     |       |                     | nds procurem<br>nstruction c |        |          | <u></u>   |          | Repayment                   | schedule                              |           |         | · · · · · · · · · · · · · · · · · · · |
|-----|-------|---------------------|------------------------------|--------|----------|-----------|----------|-----------------------------|---------------------------------------|-----------|---------|---------------------------------------|
|     |       | (00                 | not action c                 |        |          | Foreign   | currency |                             | · · · · · · · · · · · · · · · · · · · | Local e   | urrency |                                       |
| No. | Year  | Foreign<br>currency | Local<br>currency            | Total  | Interest | Principal | Total    | Out-<br>standing<br>balance | Interest                              | Principal | Total   | Out-<br>standing<br>balance           |
|     | 1986  | 25.75               | 5.19                         | 30.94  | (0.88)   |           |          |                             | (0.21)                                |           |         |                                       |
|     | 1987  | 88.79               | 23.18                        | 111.97 | (5.12)   |           |          |                             | (1.35)                                |           | · .     |                                       |
|     | 1988  | 99.90               | 14.71                        | 114.61 | (12.00)  |           |          |                             | (2.85)                                |           |         |                                       |
|     | 1989  | 76.06               | 5.55                         | 81.61  | (18.43)  |           |          |                             | (3.67)                                |           |         |                                       |
|     | 1990  | 22.22               | 3.20                         | 25.42  | (22.01)  |           |          |                             | (4.01)                                |           |         |                                       |
|     | 1991  | 7.52                | 1.90                         | 9.42   | (23.10)  |           |          | 320.24                      | (4.20)                                |           |         | 53.73                                 |
| 1   | 1992  |                     |                              |        | 23.38    | 12.45     | 35.83    | 307.79                      | 4.30                                  | 3.71      | 8.01    | 50.02                                 |
| 2   | 1993  | · ·                 |                              |        | 22.47    | 13.36     | 35.83    | 294.43                      | 4.00                                  | 4.01      | 8.01    | 46.01                                 |
| 3   | 1994  |                     |                              |        | 21.49    | 14.34     | 35.83    | 280.09                      | 3.68                                  | 4.33      | 8.01    | 41.68                                 |
| 4   | 1995  |                     |                              |        | 20.45    | 15.38     | 35.83    | 264.71                      | 3.33                                  | 4.68      | 8.01    | 37.00                                 |
| 5   | 1996  |                     |                              |        | 19.32    | 16.51     | 35.83    | 248.20                      | 2.96                                  | 5.05      | 8.01    | 31.95                                 |
| 6   | 1997  |                     |                              |        | 18.12    | 17.71     | 35.83    | 230.49                      | 2,56                                  | 5.45      | 8.01    | 26.50                                 |
| 7   | 1998  |                     |                              |        | 16.83    | 19.00     | 35.83    | 211.49                      | 2.12                                  | 5.89      | 8.01    | 20.61                                 |
| 8   | 1999  |                     |                              |        | 15.44    | 20.39     | 35.83    | 191.10                      | 1.65                                  | 6.36      | 8,01    | 14.25                                 |
| 9   | 2000  |                     |                              |        | 13.95    | 21.88     | 35.83    | 169.22                      | 1.14                                  | 6.87      | 8.01    | 7.38                                  |
| 10  | 1     |                     |                              |        | 12.35    | 23.48     | 35.83    | 145.74                      | 0.60                                  | 7.38      | 7.98    | . <b>O</b>                            |
| 11  | 2     |                     |                              |        | 10.64    | 25.19     | 35.83    | 120.55                      |                                       |           |         |                                       |
| 12  | 3     |                     |                              |        | 8.80     | 27.03     | 35.83    | 93.52                       |                                       |           |         | · .                                   |
| 13  | 4     |                     |                              |        | 6.83     | 29.00     | 35.83    | 64.52                       |                                       |           |         |                                       |
| 14  | 5     |                     |                              |        | 4.71     | 31.12     | 35.83    | 33.40                       |                                       |           |         |                                       |
| 15  | • 6   |                     |                              |        | 2.41     | 33.40     | 35.81    | 0                           |                                       |           |         |                                       |
|     | Tota1 | 320.24              | 53.73                        | 373.97 | 217.19   | 320.24    | 537.43   |                             | 26.34                                 | 53.73     | 80.07   |                                       |

.

· 1

Note: Figures in parentheses are interest during construction.

### (Million R.O.)

### Remarks

Capital recovery factor:

- Foreign currency (interest rate of 7.3% and repayment period of 15 years):

### 0.11188

- Local currency (interest rate of 8% and repayment period of 10 years):

0.14903

### Details of operating revenues Table 19.2 (Electric power and desalination)

٠

| (Million R.        | $\sim$ |
|--------------------|--------|
| $\sim$ IMILIION R. | . ( ]  |

.

|     | 1     |              | Electric power      | ······           |                    | (Mil<br>Desalination | lion R.O.        |
|-----|-------|--------------|---------------------|------------------|--------------------|----------------------|------------------|
|     |       | Energy       |                     |                  |                    | Unit                 | <u> </u>         |
| No. | Year  | sold         | Unit price          | Revenues         | Water sold         | price                | Revenues         |
| -   |       | (GWh)<br>(A) | (Baizas/kWh)<br>(B) | (A)x(B)<br>x 0.8 | (1,000 m3)<br>(A)' | (Baizas/m3)<br>(B)'  | (A)'x(B)<br>x0.9 |
|     | 1988  | 415          | 28.0                | 9.30             | -                  |                      | +                |
|     | 1989  | 1,380        | н                   | 30.91            | 21,106             | 598                  | 11.36            |
|     | 1990  | 2,333        | 11                  | 52.26            | 24,603             | II                   | 13.24            |
| 1   | 1991  | 4,078        | 11                  | 91.35            | 30,686             | 11                   | 16.52            |
| 2   | 1992  | 4,209        | tr                  | 94.28            | 34,563             | 11                   | 18.60            |
| 3   | 1993  | 4,339        | TT                  | 97.19            | 38,442             | 17                   | 20.69            |
| 4   | 1994  | 4,469        | ar .                | 100.11           | 42,319             | . 11                 | 22.78            |
| 5   | 1995  | 4,601        | 11                  | 103.06           | 44,676             | 11                   | 24.04            |
| 6   | 1996  | 4,601        | 12                  | 103.06           | 44,676             | 11                   | 24.04            |
| 7   | 1997  | 4,601        | 11                  | 103.06           | 44,676             | u .                  | 24.04            |
| 8   | 1998  | 4,601        | n                   | 103.06           | 44,676             | fi .                 | 24.04            |
| 9   | 1999  | 4,601        | 18                  | 103.06           | 44,676             | 11                   | 24.04            |
| 10  | 2000  | 4,601        | 18                  | 103.06           | 44,676             | 11                   | 24.04            |
| 11  | 1     | 4,601        | 31                  | 103.06           | 44,676             | 11                   | 24.04            |
| 12  | 2     | 4,601        | 11                  | 103.06           | 44,676             | Ŧi                   | 24.04            |
| 13  | - 3   | 4,601        | TR                  | 103.06           | 44,676             | , IT                 | 24.04            |
| 14  | 4     | 4,601        | 11                  | 103.06           | 44,676             | 11                   | 24.04            |
| 15  | 5     | 4,601        | Ŧ                   | 103.06           | 44,676             | 11                   | 24.04            |
| 16  | 6     | 4,601        | f 11                | 103.06           | 44,676             | 11                   | 24.04            |
| 17  | 7     | 4,601        | , D                 | 103.06           | 44,676             | 11                   | 24.04            |
| 18  | 8     | 4,601        | 11                  | 103.06           | 44,676             | 11                   | 24.04            |
| 19  | 9     | 4,601        | n                   | 103.06           | 44,676             | 11                   | 24.04            |
| 20  | 2010  | 4,601        | 11                  | 103.06           | 44,676             | If                   | 24.04            |
|     | Total | 94,839       | 28.0                | 2,124.36         | 906,535            | 598                  | 487.83           |

19-21

# Table 19.3 Details of operating expenses

(Electric power and desalination)

-

.

|     |       |                  |                     | ·                                     |          |          | <b>****</b> ******************************** |       | ·            |                       |              | · · · · · · · · · · · · · · · · · · · |            |                  |               | 111ion R.O.)           |
|-----|-------|------------------|---------------------|---------------------------------------|----------|----------|----------------------------------------------|-------|--------------|-----------------------|--------------|---------------------------------------|------------|------------------|---------------|------------------------|
| [   |       |                  | Elect               | ric power s                           | sector   |          |                                              | ·     | Desalinati   | on sector             |              | ·                                     |            | Fixed asse       | ts account    |                        |
| No. | Year  | Operation<br>and | Adminis-<br>tration | Fuel cost                             | Depreci- | Total    | Steam                                        | Power | Chemicals    | Personnel<br>Adminis- | Depreci-     | Total                                 | Fixed asse | ts account       |               | assets                 |
|     |       | mainte-<br>nance | cost                |                                       | ation    |          | cost                                         | cost  | cost         | tration<br>Materials  | ation        |                                       | Yearly     | Accumu-<br>lated | Book<br>Value | Outstanding<br>balance |
|     |       |                  |                     | · · · · · · · · · · · · · · · · · · · |          |          |                                              |       |              |                       |              |                                       |            | (A)              | (B)           | (B)-(A)                |
| 1   |       |                  |                     |                                       |          | · · ·    |                                              |       |              |                       |              |                                       |            |                  |               |                        |
| 1   | 1988  | 2.47             | 0.33                | 6.20                                  | 4.13     | 13.13    | . –                                          | - ·   |              | <b></b> .             | -            | -                                     | 4.13       | 4.13             | 82.59         | 78.46                  |
| 1   | 1989  | 4,94             | 0.66                | 20.60                                 | 8.26     | 34.46    | 2.40                                         | 1.12  | 1.10         | 0.78                  | 3.54         | 8.94                                  | 11.80      | 15.93            | 235.91        | 219.98                 |
| Į   | 1990  | 790              | 1.06                | 29.40                                 | 13.22    | 51.58    | 4.40                                         | 1.30  | 1.30         | 1.25                  | 4.95         | 13.20                                 | 18.17      | 34.10            | 363.29        | 329.19                 |
| [ 1 | 1991  | 9.88             | 1.32                | 49.40                                 | 16.52    | 77.12    | 6.70                                         | 1.62  | 1.60         | 1.56                  | 7.07         | 18.55                                 | 23.59      | 57.69            | 471.80        | 414.11                 |
| 2   | 1992  | 9.88             | 1.32                | 49.50                                 | 16.52    | 77.22    | 7.50                                         | 1.83  | 1.80         | 1.56                  | 7.07         | 19.76                                 | 23.59      | 81.28            |               | 390.52                 |
| 3   | 1993  | 9.88             | 1.32                | 49.60                                 | 16.52    | 77.32    | 8.30                                         | 2.03  | 2.00         | 1.56                  | 7.07         | 20.96                                 | 23.59      | 104.87           |               | 366.93                 |
| 4   | 1994  | 9.88             | 1.32                | 49.60                                 | 16.52    | 77.32    | 9.20                                         | 2.24  | 2.20         | 1.56                  | 7.07         | 22.27                                 | 23.59      | 128.46           |               | 343.34                 |
| 5   | 1995  | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22.99                                 | 23.59      | 152.05           |               | 319.75                 |
| 6   | 1996  | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22.99                                 | 23.59      | 175.64           | ,             | 296.16                 |
| 7   | 1997  | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22.99                                 | 23.59      | 199.23           |               | 272.57<br>248.98       |
| 8   | 1998  | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22.99                                 | 23.59      | 222.82           |               | 225.39                 |
| 9   | 1999  | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22.99                                 | 23.59      | 246.41           |               | 223.39                 |
| 10  | 2000  | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22.99                                 | 23.59      | 270.00           |               | 178.21                 |
| 11  |       | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22,99                                 | 23.59      | 293.59<br>317.18 |               | 154.62                 |
| 12  | 2     | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22.99                                 | 23.59      | 340.77           |               | 131.03                 |
| 13  | 3     | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22,99                                 | 23.59      | 364.36           |               | 107.44                 |
| 14  | 4     | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30<br>2.30 | 1.56<br>1.56          | 7.07<br>7.07 | 22.99<br>22.99                        | 23.59      | 387.95           |               | 83.85                  |
| 15  | 5     | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9,70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22.99                                 | 23.59      | 411.54           |               | 60.26                  |
| 16  | 6     | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         | 2.36  | 2.30         | 1.56                  | 7.07         | 22.99                                 | 23.59      | 435.13           |               | 36.67                  |
| 17  | 7     | 9.88             | 1.32                | 50.00                                 | 16.52    | 77.72    | 9.70                                         |       |              | 1.56                  | 1            | 22.99                                 | 19.46      | 454.59           |               | 17.21                  |
| 18  | 8     | 9.88             | 1.32                | 50.00                                 | 12.39    | 73.59    | 9.70                                         | 2.36  | 2.30<br>2.30 | 1.56                  | 7.07<br>3.53 | 19.45                                 | 19.40      | 466.38           |               | 5.42                   |
| 19  | 9     | 9.88             | 1.32                | 50.00                                 | 8.26     | 69.46    | 9.70                                         | 2.30  | 2.30         | 1.56                  | 2.18         | 19.45                                 | 5.42       | 471.80           |               | 0                      |
| 20  | 2010  | 9.88             | 1.32                | 50.00                                 | 3.24     | 64.44    | 9.70                                         | 2.30  | 2.30         | 1.00                  | 2.10         | 10.10                                 | 3+42       | 471.00           |               |                        |
| ł   | Tota1 | 212.91           | 28.45               | 1,054.30                              | 330.34   | 1,626.00 | 193.70                                       | 47.90 | 46.80        | 33.23                 | 141.46       | 463.09                                | 471.80     | -                |               | 4,481.89               |

Note: Annual disbursement of fixed assets is as follows:

|                       |            |                 | (Mil1           | ion R.O.)        |
|-----------------------|------------|-----------------|-----------------|------------------|
|                       | 1988       | 1989            | 1990            | 1991             |
| Power<br>Desalination | 82.59<br>- | 165.17<br>70.74 | 264.27<br>99.02 | 330.34<br>141.46 |
| Total                 | 82.59      | 235.91          | 363.29          | 471.80           |

(Million R.O.)

19-23

# Table 19.4 Profit and loss statement

# (Electric power and desalination)

|     |       | T        |                   |          | 1        |                   |          | T         |                     |                   |        | 11ion R.O. |
|-----|-------|----------|-------------------|----------|----------|-------------------|----------|-----------|---------------------|-------------------|--------|------------|
|     |       | Oper     | ating reven       | ues      | Ope      | erating expe      | nses     | Operating |                     | ancial expen      | ises   | Net        |
| No. | Year  | Power    | Desalina-<br>tion | Total    | Power    | Desalina-<br>tion | Total    | income    | Foreign<br>currency | Local<br>currency | Total  | income     |
|     | 1988  | 9.30     | -                 | 9.30     | 13.13    | -                 | 13.13    | -3.83     | •                   |                   | · .    | -3.83      |
|     | 1989  | 30.91    | 11.36             | 42.27    | 34.46    | 8.94              | 43.40    | -1.13     |                     |                   |        | -1.13      |
|     | 1990  | 52.26    | 13.24             | 65.50    | 51.58    | 13.20             | 64.78    | 0.72      |                     |                   |        | 0.72       |
| 1   | 1991  | 91.35    | 16.52             | 107.87   | 77.12    | 18.55             | 95.67    | 12.20     |                     |                   |        | 12.20      |
| 2   | 1992  | 94.28    | 18.60             | 112.88   | 77.22    | 19.76             | 96.98    | 15.90     | 23.38               | 4.30              | 27.68  | -11.78     |
| 3   | 1993  | 97.19    | 20.69             | 117.88   | 77.32    | 20.96             | 98.28    | 19.60     | 22.47               | 4.00              | 26.47  | -6.87      |
| 4   | 1994  | 100.11   | 22.78             | 122.89   | 77.32    | 22.27             | 99.59    | 23.30     | 21.49               | 3.68              | 25.17  | -1.87      |
| 5   | 1995  | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 20.45               | 3.33              | 23.78  | 2.61       |
| 6   | 1996  | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 19.32               | 2.96              | 22.28  | 4.11       |
| 7   | 1997  | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 18.12               | 2.56              | 20.68  | 5.71       |
| 8   | 1998  | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 16.83               | 2.12              | 18.95  | 7.44       |
| 9   | 1999  | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 15.44               | 1.65              | 17.09  | 9.30       |
| 10  | 2000  | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 13.95               | 1.14              | 15.09  | 11.30      |
| 11  | 1     | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 12.35               | 0.60              | 12.95  | 13.44      |
| 12  | 2     | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 10.64               |                   | 10.64  | 15.75      |
| 13  | 3     | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 8.80                |                   | 8.80   | 17.59      |
| 14  | 4     | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 6.83                |                   | 6.83   | 19.56      |
| 15  | 5     | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 4.71                |                   | 4.71   | 21.68      |
| 16  | 6     | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     | 2.41                |                   | 2.41   | 23.98      |
| 17  | 7     | 103.06   | 24.04             | 127.10   | 77.72    | 22.99             | 100.71   | 26.39     |                     |                   |        | 26.39      |
| 18  | 8     | 103.06   | 24.04             | 127.10   | 73.59    | 22.99             | 96.58    | 30.52     |                     |                   |        | 30.52      |
| 19  | 9     | 103.06   | 24.04             | 127.10   | 69.46    | 19.45             | 88.91    | 38.19     |                     |                   |        | 38.19      |
| 20  | 2010  | 103.06   | 24.04             | 127.10   | 64.44    | 18.10             | 82.54    | 44.56     |                     |                   |        | 44.56      |
|     | Tota1 | 2,124.36 | 487.83            | 2,612.19 | 1,626.00 | 463.09            | 2,089.09 | 523.10    | 217.19              | 26.34             | 243.53 | 279.57     |

### Table 19.5 Cash flow sheet

(Electric power and desalination)

.

|     | <u> </u> |                           | Cash i        | nflou             | ·····    | Γ                 | Cae                 | h outflow         |                             | د چربی ۲۵۵۰ مست داد ادر م <u>ربع و برمی مسا</u> لب اسرام میرو |        | 11ion R.O.)<br>Lance |
|-----|----------|---------------------------|---------------|-------------------|----------|-------------------|---------------------|-------------------|-----------------------------|---------------------------------------------------------------|--------|----------------------|
|     |          | Ī                         | Cash J        |                   | 1        |                   | Repayment o         |                   | Interest                    | · · · · · · · · · · · · · · · · · · ·                         | Dai    |                      |
| No. | Year     | Funds<br>procure-<br>ment | Net<br>income | Depreci-<br>ation | Total    | Construc-<br>tion | Foreign<br>currency | Local<br>currency | during<br>construc-<br>tion | Total                                                         | Yearly | Accumu-<br>lated     |
|     | 1986     | 30.94                     |               |                   | 30.94    | 30.94             |                     |                   | 1.09                        | 32.03                                                         | -1.09  | -1.09                |
|     | 1987     | 111.97                    |               |                   | 111.97   | 111.97            |                     |                   | 6.47                        | 118.44                                                        | -6.47  | -7.56                |
|     | 1988     | 114.61                    | -3.83         | 4.13              | 114.91   | 114.61            |                     | ]                 | 14.85                       | 129.46                                                        | -14.55 | -22.11               |
|     | 1989     | 81.61                     | -1.13         | 11.80             | 92.28    | 81.61             |                     |                   | 22.10                       | 103.71                                                        | -11.43 | -33.54               |
|     | 1990     | 25.42                     | 0.72          | 18.17             | 44.31    | 25.42             |                     |                   | 26.02                       | 51.44                                                         | -7.13  | -40.67               |
| 1   | 1991     | 9.42                      | 12.20         | 23.59             | 45.21    | 9.42              |                     |                   | 27.30                       | 36.72                                                         | 8.49   | -32.18               |
| 2   | 1992     |                           | -11.78        | 23.59             | 11.81    |                   | 12.45               | 3.71              |                             | 16.16                                                         | -4.35  | -36.53               |
| 3   | 1993     |                           | -6.87         | 23.59             | 16.72    |                   | 13.36               | 4.01              |                             | 17.37                                                         | -0.65  | -37.18               |
| 4   | 1994     |                           | 1.87          | 23.59             | 21.72    |                   | 14.34               | 4.33              |                             | 18.67                                                         | 3.05   | -34.13               |
| 5   | 1995     |                           | 2.61          | 23.59             | 26.20    | 1                 | 15.38               | 4.68              |                             | 20.06                                                         | 6.14   | -27.99               |
| 6   | 1996     |                           | 4.11          | 23.59             | 27.70    |                   | 16.51               | 5.05              |                             | 21.56                                                         | 6.14   | -21.85               |
| 7   | 1997     |                           | 5.71          | 23.59             | 29.30    | {                 | 17.71               | 5.45              |                             | 23.16                                                         | 6.14   | -15.71               |
| 8   | 1998     | •                         | 7.44          | 23.59             | 31.03    |                   | 19.00               | 5.89              |                             | 24.89                                                         | 6.14   | -9.57                |
| 9   | 1999     |                           | 9.30          | 23.59             | 32.89    |                   | 20.39               | 6.36              |                             | 26.75                                                         | 6.14   | -3.43                |
| 10  | 2000     |                           | 11.30         | 23.59             | 34.89    |                   | 21.88               | 6.87              |                             | 28.75                                                         | 6.14   | 2.71                 |
| 11  | 1        |                           | 13.44         | 23.59             | 37.03    | Į                 | 23.48               | 7.38              |                             | 30.86                                                         | 6.17   | 8.88                 |
| 12  | 2        |                           | 15.75         | 23.59             | 39.34    |                   | 25.19               |                   |                             | 25.19                                                         | 14.15  | 23.03                |
| 13  | 3        |                           | 17.59         | 23.59             | 41.18    |                   | 27.03               | ·                 | -                           | 27.03                                                         | 14.15  | 37.18                |
| 14  | 4        |                           | 19.56         | 23.59             | 43.15    |                   | 29.00               |                   |                             | 29.00                                                         | 14.15  | 51.33                |
| 15  | 5        |                           | 21.68         | 23.59             | 45.27    |                   | 31.12               |                   |                             | 31.12                                                         | 14.15  | 65.48                |
| 16  | 6        |                           | 23.98         | 23.59             | 47.57    | ( · · .           | 33.40               |                   |                             | 33.40                                                         | 14.17  | 79.65                |
| 17  | 7        |                           | 26.39         | 23.59             | 49.98    |                   |                     |                   |                             |                                                               | 49.98  | 129.63               |
| 18  | 8        |                           | 30.52         | 19.46             | 49.98    | [                 |                     |                   |                             |                                                               | 49.98  | 179.61               |
| 19  | 9        |                           | 38.19         | 11.79             | 49.98    |                   |                     |                   |                             |                                                               | 49.98  | 229.59               |
| 20  | 10       |                           | 44.56         | 5.42              | 49.98    |                   |                     |                   |                             |                                                               | 49.98  | 279.57               |
|     | Total    | 373.97                    | 279.57        | 471.80            | 1,125.34 | 373.97            | 320.24              | 53.73             | 97.83                       | 845.77                                                        | 279.57 |                      |

#### 1.1. 1.1.1 $n \cap \lambda$

19-27

# ANNEX 1

### RESULTS

OF

SEA WATER QUALITY

AND

SEA BOTTOM SOIL ANALYSIS

| Sam<br>Samp1                     | pling Station          |        | (      | 8)     |         | (1)    |
|----------------------------------|------------------------|--------|--------|--------|---------|--------|
|                                  | Date                   |        | Fel    | b. 6   |         | Feb. 3 |
| Sampling Depth                   | <sup>;</sup> m         | 1.0    | 3.0    | 5.0    | 8.0     | 3.5    |
| Temperature                      | <b></b>                | 24.3   | 24.2   | 24.1   | 24.1    | ·      |
| Turbidity                        |                        | 2.2    | 1.4    | 1.4    | 2.1     | 0.5    |
| pH                               |                        | 8.13   | 8.17   | 8.1.   | 8.17    | 8.1.   |
| Electric Conductivity            | m S                    | 56.0   | 56.1   | 56.0   | 56.2    | 55.5   |
| Acid Consumption<br>(Alkalinity) | mgCaCO <sub>3</sub> /1 | 116    | 116    | 116    | 116     | 116    |
| Total Hardness                   | mgCaCO <sub>3</sub> /1 | 6,740  | 6,760  | 6,760  | 6.770   | 6.710  |
| Suspended Matter(SS)             | mg/1                   | 1.8    | 1.2    | 0.8    | 2.0     | ( 0.5  |
| TDS(110°C)                       | mg/1                   | 39,600 | 39,600 | 39,700 | 39,700  | 39,400 |
| TDS (480°C)                      | mg/1                   | 35.600 | 35,500 | 35,700 | 35,500  | 35,200 |
| CODyn                            | mg/1                   | 1.3    | 1.1    | 0.9    | 0.8     | 0.8    |
| СОДон                            | mg/l                   | 0.2    | 0.1    | 0.2    | 0.3     | 0.1    |
| TOC                              | mgC/1                  | 0.8    | 0.8    | 0.7    | 0.6     | 0.7    |
| Cl                               | X.                     | 20.44  | 20.42  | 20.50  | 20.50   | 20.36  |
| S04                              | mg/l                   | 2.940  | 2, 920 | 2,950  | 2,950   | 2.930  |
| NH 4-N                           | µg-at/1                | 2.4    | 2.7    | 2.9    | 3.0     | 4.9    |
| NO2-N                            | µg-at/l                | ( 0.05 | . 0.06 | ( 0.05 | ( 0.05  | 0.06   |
| NO3-N                            | µg-at/l                | 0.07   | < 0.05 | 0.06   | 0.07    | 0.13   |
| t-N                              | µg-at/l                | 16.7   | 15.6   | 15.8   | 14.5    | 16.1   |
| PO <sub>4</sub> -P               | µg-at/l                | 0.53   | 0.56   | 0.63   | 0.64    | 0.83   |
| T-P                              | µg-at/1                | 1.10   | 1.08   | 1.16   | 1.19    | 1.14   |
| Si04-Si                          | µg-at/1                | 5.0    | 4.8    | 4.5    | 3.7     | 4.2    |
| Na                               | ng/1                   | 10,700 | 11.700 | 12.300 | 12,400, | 12.100 |
| Ca                               | mg/l                   | 433    | 431    | 425    | 423     | 425    |
| Mg                               | mg/1                   | 1,370  | 1,380  | 1,380  | 1,390   | 1,370  |

Table 1 Result of Sea-Water Quality Analysis (1)

Note: Number of sampling station above shows in Fig. 6.4.

| Sam<br>Samp1                     | pling_Station          | ,                | 5      |         | 2      |
|----------------------------------|------------------------|------------------|--------|---------|--------|
|                                  | Date<br>nit            |                  | Feb. 3 |         | Feb, 3 |
| Sampling Depth                   | ţn.                    | 1.0              | 3.0    | 5.0     | 1.5    |
| Temperature                      | Ċ                      | 24.4             | 24.3   | 24.2    |        |
| Turbidity                        |                        | < 0.5            | ( 0.5  | < 0.5   | 0.9    |
| рĦ                               |                        | 8.1 <sub>8</sub> | 8.1s   | 8.17    | 8.1s   |
| Electric Conductivity            | mS                     | 55.8             | 55.4   | 55.9    | 55.8   |
| Acid Consumption<br>(Alkalinity) | mgCaCO <sub>3</sub> /1 | 116              | 116    | 116     | 116    |
| Total Hardness                   | mgCaCO <sub>3</sub> /1 | 6.730            | 6,720  | 6,740 . | 6,740  |
| Suspended Matter(SS)             | mg/l                   | ( 0,5            | < 0.5  | 0.6     | 0.6    |
| TDS(110°C)                       | mg/1                   | 39,200           | 39,400 | 39,300  | 39,200 |
| TDS(480°C)                       | mg/l                   | 35,200           | 35,100 | 35,200  | 35,200 |
| CODMn                            | mg/l                   | 0,9              | 0.6    | 0.9     | 0.9    |
| СОДон                            | mg/l                   | 0.2              | 0.1    | 0.1     | 0.2    |
| TOC                              | mgC/1                  | 0.7              | 0.7    | 0.9     | 1.0    |
| C1                               | %0                     | 20.36            | 20.37  | 20.35   | 20.42  |
| SO4                              | mg/l                   | 2,930            | 2,930  | 2,930   | 2,940  |
| NHN                              | µg-at/l                | 2.5              | 2.9    | 4.3     | 2.7    |
| NOz-N                            | µg-at/l                | 0.06             | 0.06   | 0.06    | ( 0.05 |
| NO3-N                            | µg-at/l                | 0.13             | 0.11   | 0.11    | 0.06   |
| T-N                              | #g-at/1                | 13.4             | 13.6   | 16.7    | 16.1   |
| PO4-P                            | µg-at/1                | 0,63             | 0.70   | 0.82    | 0.63   |
| T-P                              | µg-at/1                | 1.07             | 1.08   | 1.21    | 1.12   |
| Si04-Si                          | µg-at/l                | 4.2              | 4.3    | 4.6     | 4.6    |
| Na                               | mg/l                   | 10,700           | 10,500 | 10,500  | 10,500 |
| Ca                               | mg/1                   | 421              | 423    | 427     | 421    |
| Ng                               | mg/l                   | 1,380            | 1,380  | 1,380   | 1,380  |

.

•

### Table 1 Result of Sea-Water Quality Analysis (2)

.

.

|                         | Sampl<br>Samplin                             | ing_Station |                 | 4               | 8             | 1             |
|-------------------------|----------------------------------------------|-------------|-----------------|-----------------|---------------|---------------|
| I                       | tem Uni                                      | Date        | Feb, 3          | Feb. 3          | Feb. 3        | Feb, 3        |
|                         | Appearance                                   |             | Shell in Sand   | Sand            | Shell in Sand | Shell in Sand |
|                         | 0dor                                         |             | Non             | Non             | Non           | Non           |
| Co                      | lor Specification                            |             | Dark Olive Gray | Dark Green Gray | Olive Black   | Olive Black   |
| Wa                      | ter Contain Ratio                            | Wet         | 21.4            | 24.6            | 20.9          | 17.2          |
|                         | Ignition Loss                                | Drý         | 7.4             | 7.3             | 5.8           | 3.7           |
|                         | COD                                          | Dry         | 1.2             | 0.3             | 2.1           | 1.8           |
| 0                       | Free Sulfide                                 | Dry         | < 0.02          | < 0.02          | < 0.02        | 0,02          |
| Sulf                    | Total Sulfide                                | Dry         | < 0.02          | ( 0.02          | < 0.02        | . 0.04        |
| S                       | pecific gravity                              |             | 2.82            | 2.79            | 2.77          | 2.79          |
|                         | Conglomerate<br>2.0mm 以上                     | %           | 0.5             | 0.5             | 5.5           | 19.0          |
| Structure               | Co Sand<br>2.0 ~0.42mm                       | %           | 0.5             | 5.5             | 27.5          | 64.0          |
| Soil Stru               | Fine Sand<br>0.42~0.074mm                    | %           | 94.0            | 70.5            | 55.5          | 13.0          |
| Size and :              | Silt<br>0.074 ∼0.005mm                       | %           | E A             | 20.5            | 9.5           | 4.0           |
|                         | Clay,Colloidal<br>Matter<br>0.005mm and less | %           | 5.0             | 3.0             | 2.0           | 4.0           |
| 0 6                     | 60%                                          | <b>G</b> am | 0.120           | 0.105           | 0.30          | , 1.15        |
| e Size<br>bution        | 30%                                          | am .        | 0.092           | 0.080           | 0.110         | 0.58          |
| Particle S<br>Distribut | 10%                                          | idim.       | 0.078           | 0.044           | 0.067         | 0.22          |
| Par<br>Di               | 50%                                          | 010         | 0.110           | 0.095           | 0.21          | 0.90          |
| Unif                    | ormity Coefficient                           |             | 1.5             | 2.4             | 4.5           | 5.2           |
| Curn                    | ature Coefficient                            |             | 0.9             | 1.4             | 0.6           | 1.3           |

# Table 2 Result of Sea Bottom Soil Analysis

Note: Number of sampling station above shows in Fig. 6.4.

• .

· •

### ANNEX 2

### NATURAL CONDITION

### 2.1 RECORDED CLIMATE SUMMARY

## 2.2 GHUBRAH POWER STATION SEA WATER TEMPERATURE

### ANNEX 2.1

2.1 RECORDED CLIMATE SUMMARY

Observer : Directorate General of Meteorology, Ministry of Communication Station : Mina Quboos Buoy No. 1 Lat. 23°41'N, Long. 58°33'E Period : March 1983 - October 1983, 8 months January 1984 - April 1984, 4 months

A2-1

|                                                                                      |                      | -                      | •            |          |          |        | •       |       |          |          |             |              |             |              |          |          |              | ,      | •           |                |          |            |            |              |              | •            | • .   | •       |         |        |         | • .      |         |                      |                         |
|--------------------------------------------------------------------------------------|----------------------|------------------------|--------------|----------|----------|--------|---------|-------|----------|----------|-------------|--------------|-------------|--------------|----------|----------|--------------|--------|-------------|----------------|----------|------------|------------|--------------|--------------|--------------|-------|---------|---------|--------|---------|----------|---------|----------------------|-------------------------|
|                                                                                      |                      | B<br>E<br>B            |              |          |          |        |         |       |          |          |             |              | -           | •            |          |          |              |        |             |                |          |            |            |              | ŀ            |              |       | ļ       | •       |        |         |          |         | -                    | •                       |
|                                                                                      | an                   | បក្ខ                   |              |          |          |        |         |       |          |          |             |              |             |              | .  .     |          |              |        |             |                |          | •          |            | -            |              |              |       |         |         |        |         |          |         |                      |                         |
|                                                                                      | T' BC                | т<br>Хеп<br>Х          |              |          |          |        |         |       |          |          |             |              |             |              | .        | •        |              |        | Ì           |                |          |            |            |              |              |              |       |         |         | Ì      |         |          |         |                      | $\mathbb{N}$            |
| 2.4                                                                                  |                      | ă                      | .            |          |          |        |         |       |          |          | <br>        | <u> </u><br> |             | <br> <br>    |          |          | ·            |        |             |                |          |            |            |              |              |              |       |         |         |        |         | <br>.    |         |                      | $ \simeq$               |
| 23 <sup>0</sup> 41'1<br>58°33'1                                                      | T Sig                |                        |              | <u> </u> |          |        |         |       |          | <u> </u> | .           |              |             | <u> </u><br> |          |          |              |        | <u></u><br> |                |          |            |            |              | <u>.</u>     |              |       |         |         |        |         |          |         |                      | $\mathbb{N}$            |
| LONG:                                                                                | màx                  | i e a u                | 60           | 100.     | 6        |        | 5       | 9     | <u> </u> |          | 0.8         | ~            | 0           |              |          | -        |              | ~ 0    | <u>.</u>    | <u>-</u><br>[] | <u> </u> | <u>ا</u> و | - F        |              |              |              | 0.7   | 0.6     | 0.6     | 금      |         | <u> </u> |         |                      | <u> </u>                |
| <b>— —</b>                                                                           | 1                    | d<br>K                 | 2.2          | 2 4      | 2.0      | 8      | 2.3     | 2.61  | 2.2      | 9        | · · · ·     | 1.8          | 9           | ष            | 2        | 8        | -31          | 6.0    | 0           | 8              |          |            | ~          |              |              | 2.6          | -     | 0.9     |         | 1.2    | 2.0     | 1.2      | 171     | 2<br>8               | $\overline{\mathbb{N}}$ |
|                                                                                      | g (11)               | mean                   |              | -        | ,        |        |         |       |          |          |             | Ī            |             |              |          |          |              |        |             |                |          |            | •          | -            |              |              |       | Ì       |         |        |         |          |         |                      | <u> </u><br> <br>       |
|                                                                                      | H ST                 | -<br>Xeu               |              |          |          |        |         | ·     |          |          | <br> -      |              | <u></u><br> |              |          |          | <br> -       |        | <br>        |                |          | <u> </u>   |            | Ì            | 1            |              |       |         | -       | ·      |         |          | <br>    |                      | ľX                      |
|                                                                                      | ters)                | mcan                   |              |          |          |        |         |       |          |          |             | .            | Ì           |              |          | İ        |              |        |             |                |          |            | i<br>i     | Ī            |              |              |       |         |         |        |         |          |         | · · .                |                         |
|                                                                                      | (Nete                | i c                    |              |          | <br>     |        |         |       | 1        |          |             |              |             |              |          |          |              | .      |             |                |          |            |            | .            |              |              | -     |         | - (<br> |        |         |          |         | V                    | 1                       |
| soralogy<br>ition<br>R Y                                                             | Mean                 | Tu                     |              | -        | <br>     |        |         |       |          |          |             |              |             | <br> <br>    |          |          | -            |        | <br>  <br>  |                | <br>     |            |            |              |              |              |       |         |         |        |         |          |         | $\underline{\wedge}$ |                         |
| Directornic General of Netecorology<br>Ministry of Communication<br>CLINIATE SUMMARY | Ξ                    | шах                    |              |          |          |        |         |       |          |          |             |              |             |              |          |          |              |        |             |                |          |            |            |              |              |              |       |         |         |        |         |          |         |                      | <u>X</u>                |
| veneral<br>ATE SI                                                                    | (rix boot            | hfax.                  | 30027        | 29521    | 32512    | 11021  | 11027   | 11027 | 27520    | 31017    | 32014       | 32016        | 33511       | 32516        | 01200    | 3301     | 29515        | 02509  | 24,510      | 30023          | 29025    | 35511      | 12017      | <u>91501</u> | 37000        | 31020        | 02013 | 04509   | 12512   | 02014  | 1.2021. | 12516    | X       | 11027                | X                       |
| Ministry of CLIMATE                                                                  | Wind (Dir./peed kia) | Prov.                  | <u>91516</u> | 1513     | 1507     | 09011  | 13514   |       |          | 31513    | 22008       | 27000        | 13506       |              | 04 50 5  | <u> </u> |              | -      | 36002       | 31518          | 31514    | 27006      | 31505      | 03011        | 11517        | 27 008       | 09011 | 36005   | 12510.  | 02011  | 13512   | 13510    | CISIC   | X                    | X                       |
|                                                                                      |                      | mean                   | <u> </u>     |          | <u>}</u> |        |         |       | <u> </u> | 68       |             |              | 68          | İ            | 80       | <u></u>  | <u></u><br>1 |        | 99          | 72             | - 69     | 61         |            |              | <u>–</u><br> | -<br>        | ŀ     | 60      |         | -      | 28      |          | 75 -    | 6                    | 9                       |
|                                                                                      | t t y (%             | ŝ                      |              | 1        | .<br>    |        |         |       | -  <br>  |          |             |              |             |              |          |          |              |        |             |                | 1        |            | 4          | 1            | <u> </u>     | <br>         |       | .  <br> |         |        |         |          |         | <br>                 | <u> </u>                |
|                                                                                      | [lumidity(%          | ណរែ                    | 59           | 53       | 59       | 76     | 75.     | 86    | - 69     | . 62     | 25          | 51           | 49          | 59           | 62       | 84       | 73           | 76     | 95          | -61            | 66       | 49         | 58         | 2            | 2.5          | 60           | 44    | 46      | t ا     | - 56   | 24      | 72       | 64      | 50                   | 17                      |
|                                                                                      | Rel.                 | max                    | 67           | 23       | 20       | 84     | 90      | 100   | - 001    | 76       | 74          | 70           | 80          | - 66         | 92       |          | 96           | 100    | 100         | 100            |          | 71         | 82         | 001          |              |              | 72    | 66      | 24      | 91     | 96      | 98 .     | 86      |                      | -<br>-<br>-<br>-<br>-   |
|                                                                                      |                      | │<br>⋈ <del>⋶⋽⋺⋺</del> | 5            |          |          |        |         |       | 1        | -  <br>  |             | -            |             | -            |          |          | -            |        |             |                | -        |            |            | ÷            |              |              |       |         |         | 111    | 23.1    | 22.7     | 23.1    | <br>                 | -<br>-<br>-             |
| ;                                                                                    | Temp (C)             | a. Mean                | 22           | i        | 7 22.9   | 1      | .6 22.9 | i i   | Ī        |          | 6 22.8      | F            |             | <u> </u>     | <u> </u> |          |              |        |             |                | ÷        | Ť          | - <u>i</u> | Ť            | 1            | ī            |       | أمصب    |         |        | i       |          | 22.8 23 |                      |                         |
| I.                                                                                   | n Tem                | x. Mia.                | 0 22.8       | -        | <u>'</u> | 5 23.0 | 1 22.   |       |          | ÷        | <del></del> |              |             | ÷.           | 6 22.8   | ÷        | -            | 0 23.0 |             | <u> </u>       |          | Ţ          | - 1        |              | <u> </u>     | ÷            | -     |         | 6 23 0  |        | _       |          | 4 22    |                      |                         |
| SH YOU                                                                               | Se                   | Niax.                  | 7            |          | 23.0     | //<br> |         |       |          | 22.8     |             |              |             | -            | 23.6     |          |              |        |             | 2              | 1 1      |            | 1          | -            |              | 1            |       |         |         | عبدداح |         |          | 23      |                      |                         |
| 81<br>B1                                                                             | 0.)                  | Į<br>                  | 19.4         | ÷        | <u>.</u> |        |         |       |          |          | 22.3        | 23.2         | - 1         | 1            | 22.6     | -        |              | 22.9   | 1           | ÷              |          | ÷          | ÷          | 2.1.2        | ÷.           | <del>.</del> |       |         |         | - 1    |         |          | 22.4    |                      | -                       |
| HINA OABOO                                                                           | 11 rT cmpe nue       | hľa.                   | 18.4         | 19.2     | 20.3     | 20.5   | 21.7    | 22.1  | 22.3     | 20.6     | 21.3        | 22.7         | 22.0        | 22.1         | 21.9     | 22.4     | 22.3         | 22.4   | 22.8        | 21.5           | 20.6     | 21.3       | 21.9       | 22.3         | 22.0         | 20.7         | 21.2  | 22.3    | 22.1    | 23.2   | 21.6    | 21.0     | 21.0    |                      | - I                     |
|                                                                                      | hi rten              | ž                      | 20.7         | 21.1     | 21.1     | 23.3   | 22.8    | 23.8  | 23.0     | 22.2     | 23.5        | 23.8         | 23.4        | 7772         | 23.3     | 22.9     | 23.7         | 23.5   | 23.7        | 23.3           | 21.4     | 22.6       | 23.2       | 23.1         | C            | 21.4         | د.دد  | 23.4    | 25.1    | 25,9   | 24.4    | 22.9     | 23.1    |                      |                         |
| HOLTATION                                                                            |                      |                        | -            | 1        | -        | -      | -       | •     | ~        |          | ~           | 2            | =           | =            | 5        | ÷        | 2            | 16.    |             | =              | 9        | 8          | 2          | *            |              | 2            | 26    | 27      | Ę       | . 62   | 8       | Ā        | Nac     | Muz                  | Alla.                   |

|                                                                                                          |                      | e<br>E<br>E |         |         |               |        |          |         |       |              | -:    | ĺ                  |          |                | :     | e       |        |                |        | İ       | .          |       |              |          | .     |                 |       |                  | •••             |                         | ,<br>  .<br>       | 1 - <sup>1</sup> |
|----------------------------------------------------------------------------------------------------------|----------------------|-------------|---------|---------|---------------|--------|----------|---------|-------|--------------|-------|--------------------|----------|----------------|-------|---------|--------|----------------|--------|---------|------------|-------|--------------|----------|-------|-----------------|-------|------------------|-----------------|-------------------------|--------------------|------------------|
| OURS                                                                                                     | ຫຼະສາ                | aín         |         |         | ŀ             |        |          |         |       |              |       |                    |          |                |       | ļ       | Ì      |                |        |         | ŀ          |       |              | ·        |       | Ì               |       | $\left[ \right]$ |                 |                         |                    |                  |
| SYNOPTIC HOURS.                                                                                          | a<br>H               | шах         |         |         | +             |        |          |         |       |              |       |                    | <u> </u> | <u> </u>       |       |         | -      |                |        |         |            |       | -            |          |       |                 |       |                  |                 |                         | $\mathbb{N}$       |                  |
| таовт<br>ч,                                                                                              |                      | 1           |         | ,       |               |        | <u> </u> |         |       |              |       | <u>-  </u><br>.  . |          |                |       |         |        | <u> </u><br> - |        |         |            |       |              |          |       |                 |       |                  |                 | <br>  ·                 |                    |                  |
| 5ED ON 8 SYNC<br>LAT: 23 <sup>0</sup> 41'N<br>LONG:58 <sup>0</sup> 33'E                                  | T SIS                | 33 X   B    |         |         |               |        |          |         |       |              |       |                    |          |                |       |         |        |                |        | ľ       |            |       |              |          |       |                 |       |                  |                 |                         | $\mathbb{N}$       |                  |
| BASED ON B<br>LAT: 23 <sup>0</sup> 4<br>LONG:58 <sup>0</sup> 3                                           | m'a x                | max mean    |         | 6       |               |        | 10.7     | a<br>a  |       | 0.8          | 1 0   | <u> </u>           |          | <u> </u>       | 17    | 270     |        |                |        |         |            |       | 0.0          |          |       |                 |       |                  | 8.0             | 1 . 9                   | 0                  |                  |
| BAS                                                                                                      | <u> </u>             |             | I.I.    | - 2.0   |               | 2.0    | -        |         |       |              | 1.6   | -                  |          |                |       |         |        | 011            | 6.0    |         | 0.5        | 1.0   | 6.0          | 6-0      | 0.8   |                 | 2.3   |                  | -               | 2.5                     | $i \sim$           |                  |
| ALUES                                                                                                    | SLg(M)               | mean        |         |         |               |        |          |         |       |              |       |                    |          | ]              |       |         |        |                |        |         |            |       |              |          | -     |                 |       |                  |                 |                         |                    |                  |
| ALL VALUES                                                                                               | S H                  | nax         |         |         |               |        |          |         |       |              |       |                    |          | <br>           |       |         |        |                |        |         |            |       |              |          | .     |                 |       |                  | <br>  · .       |                         |                    | 4                |
| *                                                                                                        | ers)                 | mean        |         |         |               |        |          |         |       |              |       |                    |          |                |       |         |        |                |        | -       |            |       |              |          |       |                 |       |                  |                 |                         |                    |                  |
|                                                                                                          | Mean (Meters)        | nin         |         |         |               |        |          |         |       |              |       | <u> </u>           |          | <u>–</u> –     |       |         |        |                |        | •       |            |       |              |          |       |                 |       |                  |                 | $\overline{\mathbb{N}}$ | 1                  |                  |
| AN<br>carology<br>atton<br>RY                                                                            | Mean                 |             |         | <br>    |               |        |          |         | <br>  |              |       |                    | <br>     |                |       | <br>    |        | <br>           | _ <br> |         |            |       | <br>         |          |       |                 |       | <br>             |                 |                         | <br> \_/           |                  |
| OF OM<br>of Met<br>manufer                                                                               | -                    | max         |         |         |               |        |          |         |       |              |       |                    |          |                |       |         |        |                |        | -       |            |       |              |          |       |                 |       |                  |                 | <u>  .</u>              | X                  |                  |
| SULTANATE OF OMAN<br>Birectorate General of Meteorology<br>Multistry of Communication<br>CLIMATE SUMMANY | Wind (Dir/Ispeed ku) | Max.        | 11013   | 26512   | :             | 11019  | 29509    | 11512   | 31511 | 13517        | 28517 |                    |          | 28509          | 32013 | 12515   | 11013_ | 12015          | 32509  |         | 35008      | 30007 | 26508        | 11505    | 22509 | 11207           | 27019 |                  | X               | 30021                   | X                  |                  |
| SULTA<br>ctorate<br>Mlaistry<br>CLIM                                                                     | ad (Dir/)            | _           | 1.1     | _       |               | 09014  | T.       | 22008   | 1     | 1            | 1     |                    |          |                | T     | - 1     |        | 1              |        | 20-11   | ÷—         | 1     |              | NT.      | 27006 | 1               | 1     | 1                | 27008           | <u>A</u> · .            | Ň                  |                  |
| ď                                                                                                        | 1M                   |             | 5       | 5       |               | 6      | <u>7</u> |         |       | 10           | 2     |                    |          | <u>1</u><br>   |       | ič<br>I | ă      | 3              |        |         | <u>}</u>   | 2     | <u>2</u><br> | <u>ה</u> |       |                 | 12    | <u> </u>         | . ~<br> -<br> - |                         | 1                  | 31               |
| •                                                                                                        | y (%)                | mean        | 80      | 7       |               | 76     | 90       |         |       | 85           | 68    |                    |          | קק             | 79    | 20      | 5      | 84             | 56     |         | 9.6        | 65    | 59           | 53       | 62    | ۲. <del>۳</del> |       |                  | . 74            | 3                       |                    |                  |
|                                                                                                          | []um1d1ty            | c           |         |         |               |        |          |         |       |              |       |                    |          |                |       | 2       |        |                |        |         |            |       |              |          |       |                 |       |                  | e e             |                         |                    |                  |
|                                                                                                          |                      | min         | 7       |         | <u> </u>      | 84     | 1        |         | 585   | <sup>2</sup> | 74    |                    |          |                | 42,   | . 56    | 39     | 2              | 8      |         | 1          | ÷.    | 2            | 15       |       |                 | 187   |                  | 60              | 3. 8                    |                    |                  |
|                                                                                                          | Rel                  | max         | 81      | 32      |               | 001    | 66       | 22      | 00    | 66           | 100   |                    |          | à              | 86    | .85     | - 36   | 92             | 8      | 07 20   | 001        | 86    | ~            | 7        | 29    |                 |       |                  | . 88            | 001                     | 63                 | 70               |
| · · ·                                                                                                    |                      | hlean       | 23.1    | 23.7    |               | 23.7   | 24.4.    | 772     | 24.5  | <u></u>      | 24.4  |                    |          | 24.5           | 24.2  | 24.9    | 25.2   | 25.3           | 24.9   | 42 - 8- | 26.5       | 26.7  | 26.5         | 26.5     | 22.0  |                 | 26.4  |                  | 6 56            | 27 0                    | -                  | -<br>-<br>-      |
|                                                                                                          | Temp (°C)            | Nía.        | _       | 22.7 23 | <u> </u><br>- |        |          | 23.6 23 |       | _            | _     |                    |          | 87 <b>1</b> 76 |       |         |        |                |        | 22 1 22 |            |       |              |          |       | 77 77 77        | 1.    | _                | <u> </u>        |                         | 23 6 23<br>23 6 23 | <del></del>      |
| (r.of                                                                                                    | a                    |             | <u></u> | 25.2 2  |               | 23.7 2 |          | 2 6 12  |       | <u> </u>     |       |                    |          | 2 0 50         | _     | -       |        |                | _      | 20.02   | . <u>.</u> |       | _            |          | οj i  | 1,              |       | -                | Ø               | -                       | 1 .                | 7 1 3 1 7 7      |
| NINA GABDOS (DUOY NO.1)                                                                                  | Se                   | Mar         |         |         |               |        | 1        | <u></u> |       | تكريني<br>ا  | 1 1   |                    | T        | 1              | 6     | . 1     | -      | 1              | 1.     |         |            |       |              | 1        | 1     | Ť               |       | 1                | °               | <del>ني من</del> د<br>ا | <u>†</u>           | =                |
| BD05_583                                                                                                 | <b>-</b>             | 1           | 122,8   |         | -             | 23.0   | 1        | 122     | 1     | 1            |       |                    | 1        | 9.00           | 1     |         | Í      | 1              | _      | 22.4    | T          | Î.    | 1            | 1        | 1     | 23.5            | 1:    | T                |                 |                         |                    | 1                |
| HINA QABDOS                                                                                              | ามสาวนี้ ไว้         | Min         | 177     |         | <br>          | 22.1   |          |         | 27.0  | Τ.           | 1     |                    |          | 7 - 57         | 1     | 1       | 1      | Ī              | 1      |         | 1          | Ī     | 1            |          |       |                 | 9.07  | T                | 8 7C            | · 1                     | 1                  |                  |
|                                                                                                          | AL TT                | MEX         | 17      | 25.9    |               | 23.6   | 23.3     | 2       |       | 125 6        | 25.5  |                    |          |                |       |         |        |                | 22     | 2.02    | 28.8       | 29.5  | <u> 90.9</u> | 29.8     | 10.8  |                 |       | 3,               | ÷               |                         |                    |                  |
| лоплл.                                                                                                   |                      |             | _       | -       | -             | -      |          | - .     | •     | 101          | =     | 2                  | = =      | : =            | 2     | =       | =      | ≏              | :<br>ډ | 3 5     |            | ≂     | ភ            | *        | ≈ ;   | •               |       | 1                | Mara            | Me                      | a<br>a             |                  |

| •                                                                                                       |                       | aea.       |                   |                 | . (        | 1.                |          | •            | 17          | 6.3      | 6.5<br>1 | <u>, 3</u> | 200                | 201              | 13.1     | 14.5    | 14.5     |          | 1.2      | 10.1     | 12.7      |         |                                       | ~ ~ ~    |          | _        | 1.1      | 13.6          | 10.01          | كالل       | 6.1                     |
|---------------------------------------------------------------------------------------------------------|-----------------------|------------|-------------------|-----------------|------------|-------------------|----------|--------------|-------------|----------|----------|------------|--------------------|------------------|----------|---------|----------|----------|----------|----------|-----------|---------|---------------------------------------|----------|----------|----------|----------|---------------|----------------|------------|-------------------------|
| ours                                                                                                    | an                    | ainia      |                   |                 |            |                   |          |              | 0           | 5 5      | 5.5      | 4.0        | 5                  | 0 0              |          | . 1     |          |          | 0.0      |          | ÷         | ••••••• | 2 2 7                                 | י וי     | 3        |          |          |               | 0.4            |            | 4.0                     |
| SYNOPTIC HOURS                                                                                          | I' Bean               | тах        |                   |                 |            |                   |          | -            |             | 1        | 10.0     | _          |                    | 0 7              |          |         |          | 200      | <u></u>  |          | ᆔ         |         | <u></u>                               | <u> </u> | q        | <u> </u> | <u> </u> |               | ~              | 30.9       | -                       |
| ruopri<br>N' I<br>S' N' I                                                                               |                       | mear n     |                   |                 |            |                   |          |              |             | 10       | 5.5 10   | ~          | <u> </u> 0         | 6 0 12<br>6 0 15 | 10       | 8.1 25  | mi .     |          |          | I        |           |         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -        | i n      |          | 2        | 001           | <u>6.5 15.</u> | مرافع      | 5.2                     |
| 8<br>23<br>28                                                                                           | ទាន                   | u<br>TXE0  |                   | ·  ·<br>·       |            |                   |          | <br>         | <u>، ا</u>  |          | 0.7      | 5          | ا ب                | 0 0              |          | 0       | <u> </u> |          | <u>_</u> |          | 1         | 1       | 0.0                                   |          | 9        |          | 5        |               | 5              | <u> </u>   | $\overline{\mathbf{V}}$ |
| ED OH<br>LAT:<br>LONG:                                                                                  | max T                 | mean       | 6.0               | 0.6             | 6 C        | - 0<br>- 8<br>- 0 | 9.0      |              | <u>م بر</u> | 10       | 0        | 5          |                    | <u> </u>         |          | 0.31    | <u>.</u> |          |          | 70       |           |         |                                       |          | 9        | <u> </u> | Ť        | 3             | 0.5            | 0          | С<br>Г<br>С             |
| BASED<br>LAT<br>LON                                                                                     | Ħ                     | Xem        | 1.4               | 0.8             |            |                   | 6.0      | 5.9          |             | 0        | -        | Ó-6        | 0                  | 0 0              | 0        | 0.5     | 3        |          | 6.0      | 0.5      | 5         | 0       | 5 0                                   | 20       |          | 1        | 7.<br>0  | 0.5           | 0.8            | 1          | Х                       |
| VALUES                                                                                                  | (H)                   | mean       |                   | •               | 4          | •                 |          |              | ۰<br>۲      | 70       | 0.4      | 0.4        | •                  | 00               | С.<br>О  | 0       |          |          | 7 7<br>0 | 0.3      | 0.2       | 0       |                                       | 7 0      |          |          | •        | 0.3           | 0              | 0.5        | 0.2                     |
| ALL VA                                                                                                  | II SI                 | max        |                   | ·               | •          |                   |          | ſ            | ' c         | 0.6      | 0.5      | 0.4        | 0.5                | 7 0              | 0.4      | C.0     |          |          | 20       | 7.0      | 0.1       | 0       |                                       |          | 9        | -        |          | 0.4           | 0.4            | 0.6        | X                       |
| *                                                                                                       | ters)                 | mean       |                   | 1               |            | •                 | 1        | •            | 1 6         | 0.3      | 0.3      | 0.2        | 0.3                | ~ ~<br>0 0       | 0.3      | 0.2     | 0        |          | 0        | с<br>0   | 20        | 20      |                                       |          | 20       | - 1      | 0.2      | 0.2           | 0.2            | 0.4        | 0.2                     |
| b                                                                                                       | (Me                   | m in 1     |                   |                 |            |                   |          |              |             | 0.2      | 0.2      | 0.2        | 0.3                | 0.2              |          | 0.2     |          | 2.0      | 0.2      | 0.2      | 20        | 0.2     | 2.0                                   |          |          |          | 207      | 0.2           | 0.2            | X          | 0.2                     |
| SULTANATE OF OMAN<br>Directorate General of Meleorology<br>Milaisty of Communication<br>CLIMATE SUMMARY | II Mean               | шах.       |                   |                 |            | <br>_   ,         |          |              |             |          |          |            |                    | ~ ~              | <br>  ~  |         |          | 2 0      |          |          |           | 4       | 0 3                                   |          | <u> </u> | ,        |          |               | 0.3            | 0.4        | $\overline{\mathbf{V}}$ |
| E OF C<br>mi ol M<br>Commun<br>SUMM                                                                     |                       |            |                   |                 |            | - ~               |          |              |             | *****a   |          |            |                    |                  |          |         | <br>     |          | _        |          | <br> <br> |         | _                                     |          |          |          |          | 4             |                |            | / <u>\</u><br>\/        |
| SULTANATE OF OMAN<br>ectorate General of Meteorol<br>Mitidaty of Communication<br>CLIMATE SUMMARY       | Wind (Dir./speed kts) | Max.       | 31513             | <u>- [13013</u> | 20023      | -1212<br>10512    | 1 1      |              | 1013        | 1        | ,        | 1          | ī                  | 25015            | 4        | i - 1   | -1       |          | 25510    | 1 1      | 1         | 1       | 21513                                 | 1        | 27517    | _        |          | 12515         | $\overline{}$  | 20526      | Å                       |
| SULJ<br>Directora<br>Miluis<br>CLJ                                                                      | Wind (D               | Prov.      | 27009             | 27006           | 18011      | 100060            | 0000     | 22006        | 20072       | 27010    | 31506    | 02009      | 00008              | 00000            | 0000     | 23504   | 27006    | 27008    | 27006    | 09005    | 905EL     | 11506   | 22506                                 | 20200    | 27009    | 1        | 00000    | 00002         | 27007          | X          | X                       |
|                                                                                                         | (%)                   | mean       | 59                | <u>65</u>       | 63         | 89<br>89          | 94       | -12-         | 69          | 54       | 75       | 001        | 100                | 001              | 001      | 85      | 91       | 6)       | 57       | 65       |           | 54      |                                       |          | 56       |          | 89       | 61            | 72             | 100        | 53                      |
|                                                                                                         | Humidity (%           | min        | 43                | 25              | 26         | - 62              | 58       |              |             | 39       | 4.9      | 100        | 8                  | 001              | 100      | 9       | 48       | 22       | 46       | 50       | 38        | 52      |                                       |          | 11       |          | 26       | 9.0           | 60             | 100        | 25                      |
|                                                                                                         |                       | E          |                   |                 |            |                   |          | 1            | 1           |          |          |            | ٦<br>              | -<br>-<br>-      | 1=       |         |          |          |          |          |           |         |                                       |          |          |          |          | <br>-<br> -   | <br>           | -<br>      |                         |
|                                                                                                         | Rel                   | жеш<br>Хеш | 72                | 29              | 5          | 10                | 100      | a            | يو ليو<br>ا | .08      | 100      | a<br>T     | 8                  | 80               | 100      | 100     |          | 17       | 62       | 3        | 69        | 12      | <u> </u>                              | 0 0 9    |          | •        | 001      | 8             | 84             | 100        | 62                      |
| . 1                                                                                                     | C)                    | Mcaa       | 26.7              | 28 4            | 28.4       | 28.4              | 28.5     | 28.2         | 28-01       | 28.5     | 28.8     | 28.9       | 29.0               | 29 3<br>70 0     | 29.9     | 29.9    | 0.02     |          | 29.9     | 29.9     | معد       | 29.9    | 30.0                                  | 2.00     | 30.0     | ,        | 0 05     | 0. OC         | 29.2           | <u>0.0</u> | 26.7                    |
|                                                                                                         | Temp((                | Mia.       | 26.2              | 27.4            | 27.8       | 28.0              | 28.2     | 22.9         | 27.8        |          | 1        | 28.5       | 28.5               | 28 6             | 29.6     | 29.5    | 30.0     |          | 29 7     | 29 B     | 20.00     | 29.9    | 30.0                                  |          | 30.0     |          | معد      | <u> 30. 0</u> | 28.9           | <u>0.0</u> | 26.2                    |
| H OH                                                                                                    | Sea T                 | Max.       | 1                 |                 | _ <u>.</u> | 28.9              |          |              | 28.3        |          | <u></u>  |            | <u> </u>           | 29.7             |          |         |          |          | 30.05    | <u></u>  |           | _       | _                                     |          |          | 1        | 0.00     | 0.00          | 29.5           | 0.00       | 27.7                    |
|                                                                                                         |                       | ļ          | <del>ند. در</del> |                 | -          | 27.2              | in ni    | -            |             | È.       | 1        | _          | <del>- ce ia</del> | 28.5             | 4 0      |         |          | ~        | 33.4     |          | -         | ÷       | 34.2                                  | 1        |          | - 2-     | N        | 1-4           | 31.6           | 34.7       | 27.2                    |
| QABOOS<br>1983                                                                                          | - L                   | híin.      |                   | 4               |            | 26.6              | <u></u>  |              | 29.88       | <u> </u> |          |            | <u> </u>           | 28 . 2 2         | -<br>1 9 | <u></u> | _!_      | <u> </u> | 32.3     | <u> </u> |           |         |                                       | <u> </u> |          | 1        | a        | 31.2          | 30.2           | 33.3       | 26.6                    |
| MINA GABOOS DUOY<br>MAY 1283                                                                            | AI rTemperature       |            |                   | -+              |            | 1                 |          | - <u>†</u> - | -           | i -      |          |            | +                  | +                | +        |         | ╈        |          | ┿        |          |           | -       | +-                                    | i        | Ī        |          |          | 2             | $\neg$         | Ū.         |                         |
| th : No                                                                                                 |                       | NLX.       | 31.6              | 177             | Ī          | 27.9              | 28.9     | 12.9         |             | Ī        |          | 129        |                    | 28               | 12       | Ī       | 1        | 5 50     | Ì        | īī       | T         |         | 135.8                                 | Ī        | -        |          | 1        |               | в 32.8         | 8          | P    30,4               |
| - : ITTNOM                                                                                              | ļ                     |            | -                 | ~               |            | - ~               | <b>v</b> |              |             | 2        | 1 1      | ≃ <br>?4   | I                  | 2 2              | 2        | 12      | =        |          | 3        | 2        | 8         | ~       | 3 2                                   | 2        | R        | 8        | 2        | 7             | Non            | Mur.       | M.in.                   |

|                                                                                    | c .                   | min mea. | 5 13.4   | - 11     | 7.0 11.5 | 9.0 13.9   |                       | -<br>-    | 5 8                                     |                | - <u>-</u>        |     |              | -<br>-<br>-<br>-<br>- | ó          | 10.            | • ••    | . 5 . 9.0 | 0     | 5.5 7.2  | 3        | 2 10.   | <b>00</b> |             | <u> </u>  | 0        | 00             | <u>.</u> | 5.0 5.9    | s                | 5.0 5.6   |           | 8.8      |             |          |
|------------------------------------------------------------------------------------|-----------------------|----------|----------|----------|----------|------------|-----------------------|-----------|-----------------------------------------|----------------|-------------------|-----|--------------|-----------------------|------------|----------------|---------|-----------|-------|----------|----------|---------|-----------|-------------|-----------|----------|----------------|----------|------------|------------------|-----------|-----------|----------|-------------|----------|
| 2                                                                                  | T Bean                | max      | 20.4 8   | 7        | 5        | 5          | 6                     | Ť)        | 1                                       |                |                   |     | 1            |                       | 1          | 5.0 7          | 1.21    | 10.5 7    | 1.5 8 |          | ا<br>ب   | ।<br>टा | <u> </u>  | -  <br>211  |           | Į        | <u>]</u> .     |          | 8.5        | <u> </u>         | 5.5       |           | 2 ( 6    | <u> </u>    |          |
| и, 17<br>17                                                                        | <br>8h                | 2        | 9.5      |          | 7.4 ]    | <u> </u>   |                       |           | <u> </u>                                | <u> </u>       | 0,0<br>0,0        | 4   |              | 0 -                   |            | 7.7            | 6.5     | 7.4       | 7.7   |          | <u>ר</u> |         |           |             | <u>ما</u> | <u>م</u> |                | 01       |            |                  | 5.6       |           | 6.9      | - S         | V        |
| រ ៍ព័ន្ធ                                                                           |                       | LXET     | 1.1      | 9.0      | 8        | 10.5       |                       | 8.5       | 0.0                                     | <u>- 0-0</u> - | 10.5              |     | 0.0          | 2 5                   | 15         | 10.5           | 8.0     | 10.0      | 10.5  | 8.0      | 4        | 9.5     |           | <u>_  :</u> |           | 2.0      |                |          | <u>, 0</u> | <u>.</u>         | 6.5       |           | 8 4      | 1.5         |          |
| LAT:<br>LONG:                                                                      | max                   | nea      | 0        |          | 6        | 0          | <ul> <li>1</li> </ul> |           | 3                                       |                |                   |     | <u>ज</u> े द | নিক                   | 8          | 0              | 19<br>0 | 1         | না    | 5        | ন        | 5.0     | <u>a</u>  | с<br>0      | 8         | 0        |                |          | <u>-</u>   |                  | 0         |           | 0        | <u>†-</u> = | Y        |
|                                                                                    | =                     | n max    | 6.0      |          | 0.4      | 0          | 10                    | 0.8       | 0                                       | - I -          |                   |     |              | 2 2                   |            | 0.6            | 0.8     | 5         |       | 9,0      | 2.01-    | 10.2    | -         |             |           |          |                |          |            | -                |           |           | 0        | -           |          |
|                                                                                    | S1g(M)                | mean     | 0.3      | 0.2      | 0.3      | 0          | 2.9                   | 0         | 0                                       |                |                   |     |              |                       |            | 0              | 4.0     | 0         | 0     |          |          | 7.0     | 0.4       | 0           |           | 7-0      | 70             |          | و<br>0     | 0.6              | 0.5       |           | 0.4      |             | •        |
| 1<br>2                                                                             | =                     | max      | 0.3      | 0        | 0.3      | 50         | دا                    |           |                                         |                |                   |     |              | 3 0                   |            | 0.4            | 0.5     | 0.4       | 0.4   | 7-0      |          |         | 5         | -           |           |          |                |          | 8.0        | 0                | 0         |           | 0:5      |             | X        |
| -                                                                                  | ters)                 | mean     | 0.2      | 0.2      | 1 ak     | 0.2        | 20                    | 0.2       | 0.5                                     | 0 7            | 0                 |     | 7            | 7 0                   | 0.4        |                | 0.3     | 0.2       | 0.2   | 0.2      | 0.3      | 0.3     | 0         | · · ·       |           |          | <u></u>        |          | 7.0        | 0.4              | 0.4       | <br> <br> | 0:3      |             |          |
| 180                                                                                | an (Me                | mln      | 0.2      |          | 0.2      | 0.2        |                       |           |                                         | 0              | 0.2               | 2 0 | 2 ° 0        | <u>0 2</u>            | 0.3        | 1              | 0,2     | 0.2       | 0.2   | 0.2      | -        |         |           |             |           | 0.3      | 0.2            | 0.2      | 0.2        | 0.4              | 6.0       | •         | 0.2      | X           |          |
| celorate General of Meteorol<br>Ministry of Communication<br>CLMATE SUMMARY        | II Me                 | max      | 0.2      | 0 2      |          | 63         | · 4.                  |           | 60                                      |                |                   |     |              |                       |            | 0              | 6.0     | 0.0       |       | 0 3      | -        | 03      | · • I     |             |           |          |                | -        | 50         |                  | 0 4       |           | 0.0      | - I         |          |
| leneral of<br>of Comm<br>TE SUN                                                    | ocd ku)               | N.Y.     | 03511    | 11513    | 11010    | 28211_     | 26511                 | 26011     | 30509                                   | 34211          | 24011             |     | <u>42252</u> |                       | 10516      | 12008          | 00000   | 35011     | 12014 | 12018    | -        | 02013   | 29006     | 24510       | 32009     | 34.015   | 26007          | 7171     | 25013      | 31016            | 27516     |           | X        | 11521       | ĺχ       |
| Directorute General of Meteorology<br>Ministry of Communication<br>CLIMATE SUMMARY | Wind (Dir./speed kis) | Prev.    | 13505 0  |          |          |            |                       |           |                                         | · · · ·        | 09006 2           |     |              | 1.1                   | منتخب<br>ا | <u>i a a</u> i |         |           |       | <u> </u> |          |         |           |             | <u> </u>  | <u> </u> | 1              | 1        | -          | <u> </u>         | 27011 2   | <u> </u>  | 27006    | <u>×</u>    | X        |
| ă                                                                                  |                       | ean      | 87       | 84 0     | .        | 85 2       | Ť                     | - İ       | 1                                       | Ť              |                   | 1   | Ť            | 1                     | Ì          |                | 8       | }         | 8     | Î        | و ال     | Ì       | i         | İ           |           | <u> </u> | Ť              | i        |            |                  | 98        |           | 84       | Ì           |          |
| · .                                                                                | Humidity (%           | BG       | .  <br>  |          |          |            | <br> <br>             | <br> <br> |                                         | <br>-<br> <br> | -                 |     | -<br>        | -<br>                 |            |                |         |           |       | <br>     |          |         |           |             | <br> <br> |          |                |          |            | •                |           |           | <br>     |             | <br>     |
|                                                                                    | i lura i              | utu      | 64       | 20       | 78       | <u>5</u> 8 | 7                     | 56        | 43                                      | 67             | 57                |     | 9            | 100                   | 100        | 001            | 99      | 86        | 66    | 6.7      | 96       | 2       | 71        | 36          | 72        | 3        | 3              |          | 28         | 58               | ê         | . '       | 69       | ,           | 75       |
|                                                                                    | Rel.                  | max      | 98       | 96       | 100      | 001        | <u>_78</u> .          | 11        | 85                                      | 76             | 98                |     |              | 001                   | 001        | 100            | 100     | 100       | 100   | 100      | a        | 8       | 32        | . 18        | 66        | 38       | 100            | 69       | 90         | 56               | 001       |           | 95       | 001         |          |
| * ÷                                                                                | ) (                   | NGAD     | 0.00     | 10 O [   | 30 0     | ماعنون     | <u> </u>              | 30.0      | 30.0                                    | 00             |                   |     |              |                       | 28.3       | 29.0           | 29.7    | 0.0       | 30.0  | 0.0      | 30-0-    | 10 0    | 0.0       | 0 0         | 30.0      | 30 0     | 20 0           |          | 0.0        | 30.0             | 000       |           | 29.9     | 0.0         |          |
| ( I                                                                                | Temp (C)              | . a      | 30.0     | 1        | <u> </u> | 0.05       |                       |           | 1                                       | 1              |                   | T   | 1            |                       | 1          | 1              | 1       | i         | 1     |          | . 1      | - 1     | Ť         | <u> </u>    | -         | Ť        |                | Ť        | - 1        | 30 0             | ī         |           | 29 D     | -           | . •      |
| 01 10                                                                              | Sea T                 | ,        | 0.00     | <u> </u> | 30.0 3   | 20.05      | î                     | 1         | -                                       |                |                   | i   | ĩ            | 1                     |            | 1              | i       | -1        | ī     |          | ī        | 1       | 1         | - T         | . 1       | Ť        | ÷              | -        | í          | <u> 30.0</u>     | l second  |           | 30.02    |             | í        |
| 00 (BU                                                                             |                       | 1        | 1,15     | 1        | 1        | ען ריננ    | 1                     | -         | ~                                       |                | <u>32.9.  </u> 3( | 1   | 1            | <u> </u>              | 1          |                | 1       | 1         | ٦     | 1        |          | <br>I   | ī         |             | 1         | 1        |                | T        | 1          | <u> 34.4  </u> 3 |           |           | 32.8     | 1           | i        |
| <u>HINA QABOOS (BUOY</u> NO.I.)<br>JUNE 1983                                       | -                     |          | 30.5 131 | 16 0.05  |          | 21 - 12    | î                     | . 1       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | - <u>7</u> -   | <u> 32.9</u> 33   | 17  |              | 7                     |            |                | 1       |           | Ť     | ī        | - j-     | 1       | ÷         | T           | 1         | ÷ŕ.      | - <del>,</del> | 1        | -j         | T                | - <u></u> |           | 31.6 3:  | 1           | -        |
| MIN                                                                                | ALTEmperature         | N. N.    |          | I        | 1        | 16 1.91    | ī                     | 1         | - نيند<br>ا                             | T              | T                 | 1   | 1            | 1.                    | 1          | 1              | - i     | - i       | . 1   | - †      | 1        | 1       |           | 1           | -         | m        | -i-            | 1        | Т          | 80               | ī         |           | ~        |             |          |
| NOITAT2<br>Monthi :                                                                | IT IT                 |          | 1 32.1   | 1        | 1        | <u>जू</u>  | I                     | T         | T                                       | Ĩ              | 24-45<br>10       | T   | 1            | Ī                     | Γ          | Π              | 1       | 1         | 11 32 | l        | Ĩ        | 1       | Ì         | T           | 34        |          | <u>ភ</u> :     | T        | Ī          | T                | Ì         |           | Mcaab 34 |             | <u> </u> |

|                                                                                    | 1.                    | Hea.     | 8.      | בי     | 8     | - 0° C |       | 2.2      | 5.9   | 5.9   | <br> | 7.6     | 8.8       | 1.1      | 4.7   | 6.0     | 5.5   | 12.1     | 12-9   | •        | <u>, , , , , , , , , , , , , , , , , , , </u> | مار      | -<br>-<br>- | ો        | م           |             | 6, 1  | 4        |          | لمنظ     | 5<br>1       | ·<br>T        | •            | 7.3       | 12.9     | 4.7                   | •     |
|------------------------------------------------------------------------------------|-----------------------|----------|---------|--------|-------|--------|-------|----------|-------|-------|------|---------|-----------|----------|-------|---------|-------|----------|--------|----------|-----------------------------------------------|----------|-------------|----------|-------------|-------------|-------|----------|----------|----------|--------------|---------------|--------------|-----------|----------|-----------------------|-------|
| · .                                                                                | ue                    | a cia    | 6.0     |        | 7.5   | 6.5    | 2.0   | 4.5      | 5.0   | 6.0   | 1    | 6.5     | 7.5       | 4.5      | 4.5   | 4.5     | - ni  | 8.0      |        | 5.5      | 5.5                                           | لم<br>م  | 0.9         | 4        | 2           | 4           |       | 5        |          |          | 5.0          |               |              | 5 7       |          | 0.7                   |       |
|                                                                                    | นธรอ ส                | Хеп      | 10.0    | 9.0    |       |        |       | <u> </u> |       | 7.0   |      | 9.5     |           |          |       |         | _     |          | بل ا   | 10:0     | 0                                             | arra     |             | <u>-</u> | 2.0         | - 0-7-      | 6 5   |          | 4        |          | 2-0          | <br>. .       | <br>         | ۔<br>ح    | - 4.     | $\sim$                |       |
| य छ<br>                                                                            | Sig                   | ·        | 7.2 16  | 7 4 6  | 11    | 8      | 6 (   |          |       | -     |      | 6 7     |           |          | 4 6   | 53      | 77    | 8 4 2    |        |          |                                               | 1        | <u> </u>    | 1        | 4           | 1           | Ť     | Ť        |          | 4        |              |               | <u> </u><br> | 5 5       | 9.5 22   | 1                     | • •   |
| LAT: 23°41'N<br>LONG:58°33'E                                                       | T SI                  | XED      | 8.5     | 8.0    | u     | 8 5    | c     | 1        |       |       | . •  | 8.0     |           | 5        | 5.0   | 6.0     | 9.5   | 9.5      | 1      | 0        | - 1                                           | <u> </u> | 1           | Ч        | مینند.<br>ا | <u>منتب</u> | Ť     | <u> </u> | 1        | <u> </u> | 5            |               | •            |           | 0        | N                     |       |
| LONG                                                                               | ax                    | nea      | 8 0.6   | 9 0.7  | 10.2  | -      |       | 10.9     | 3     | 0 C   |      | 9 0.7   |           | <u> </u> |       | 8 0.6   | 5 0.5 | 50.4     | 20.4   |          | 2 0.6                                         | · · ·    |             |          | -           |             |       |          | i        | 800      | 1 <u>0.8</u> |               | <b>۱</b>     | 1 0 2     | 0, 1, 8  |                       |       |
|                                                                                    | н (м)                 | an max   | 0.8     | 5 0 9  | 9     |        |       |          |       |       | -    | 5 0.9   | 1 0 1     | 10.9     | 5 1.2 | 1.0.8   | 0     | <u> </u> | - †    | T        | 4 0.7                                         | 1        | i i         | 1        | 1           |             | 4 0.8 | 4 D B    |          |          |              | <u>' </u><br> | <u>'</u><br> |           | 6.8      |                       |       |
|                                                                                    | Sig (                 | c mean   | 5 0 4   | 0      | 0     | 0      | 0     |          | 0     | 9     | 1    | 5 0.5   | - 7       | j m      | 0     | _       | -7    | 0        | -<br>t | 0        | 3                                             |          | ÷÷          | _÷       |             |             | o     | þ        |          | 6 0.5    | 2.0 0.0      |               |              | 5         | 8 D      |                       | • 1 ° |
|                                                                                    | H (                   | an nax   | 0.5     | 6      |       | •      |       |          |       |       |      | 0.5     | 0         |          |       | 0.5     |       | 0        |        | <u></u>  | <u></u>                                       |          |             |          |             | +           | 1     | <u> </u> | 1        | 0        |              |               |              | 3         |          | Ľ                     |       |
| · .                                                                                | (Meters)              | mean     | 0       | 50     | 0 3   |        |       | 0        | 0 5   | 9.0   | 1    | 0 4     | 0         | 0.3      | 0.7   | 0.3     | 0 2   | 0        | 0_2    | 0        | 0                                             | 10       |             |          |             | 0           | 0     |          |          | 70       | 0.3          |               |              | C         | 0        | 1                     | • I - |
| logy<br>a                                                                          | an                    | min      | 0.3     | 5      | . 0   |        |       | 0        | 0.4   | 0.4   | 1    | 0.3     |           | 4 .      | 0.3   |         | 0.2   | 0.2      | 0.2    | 0.2      | 0                                             | -2-0-    | 0           | 20       | 7           | 6           | 0     | <u> </u> |          | 0        | ניט          |               | 1            | е<br>0    | Х        |                       | • 1 . |
| ui of Metcoro<br>domunicatio<br>SUMMARY                                            | II Me                 | max      | 0, )    | 0.4    | 0.4   | 0.5    |       | 0.4      | 0.5   | 1.6.0 |      | 0.4     | 0:0       | 0.4      | 0,4%  | 0.3     | 0.3   | 0        | 0.3    | C .0     | 0.3                                           | ردم      | 2           | للط      | 0.4         | 0.4         | 0.1   | <u> </u> | 0.4      | 0.4      | .0.6         |               | -            | 0.4       | ی<br>م   |                       | 7     |
| Directornte Generul of Meteorology<br>Miulstry of Communication<br>CLIMATE SUMMARY | נכין גנו)             | Niax.    | 29012   | 16512  | 29013 | 29014  | 10013 | 61000    | 26018 | 11012 | -    | 18509   | 01091     | 28517    | 3521  | 29018   | 30015 | 29009    | 31011  | 31015    | 25015                                         | 28014-   | 22512-      | 29012-   | 29016       | 22018       | 29014 | 28513    | 27015    | 21512    | 28018        |               |              | X         | 28521    | $\left \right\rangle$ |       |
| cctornte Generati of Meteorol<br>Miulstry of Communication<br>CLIMATE SUMMARY      | Wind (Dir./speed kin) | Prov.    | 22002 2 | 22007  |       |        |       |          |       | 1.1   |      | 27003 1 |           | 1        | 1     | 27013 2 | _     | 09005 2  | 1      | i        | 1                                             | 1        | 1           |          | -           | 1           |       | 1        | ī        | 1        | 27012 2      |               | <br>         | 27009     | 2        |                       | 1     |
| ä                                                                                  | WIL                   | -        |         | .27    | -     | 110    | 27    | 27       |       |       |      | 27      | 27        | 27       |       |         | 1     |          | 1      |          |                                               | <br>.    | 1           | Ì        |             |             |       | 1        | Ì        | Ì        | Ì            |               |              | 9         | <u> </u> |                       |       |
| ·                                                                                  | ty(%)                 | mean     | 16      | 16     | 95    | 96 .   | 6     | 100      | 100   | 100   | •    | 98      | 98        | 100      | 100   | 100     | 100   | 92       | 16     | 100      | 001                                           |          |             |          | 36          | 001         | 8     |          |          | 100      | 001          | -             |              |           | 1007     |                       | 76    |
|                                                                                    | llumidity (%          | mîn      | 88      | . 16   | 82    | 92     | 85    | 100      | 100   | 100   |      | 90      | 92        | 100      | 100   | 100     | 100   | 70       | 92     | 100      | 100                                           | 100      | 100         | 001      | 28          | 001         | 100   | 100      | 100      | 100      | 100          |               |              | . 56      | 007      |                       | 2     |
|                                                                                    | Rel. 1                |          | . g     | 0      | 0     | 00     | 100   | 1 00     | . 001 | Q     |      | 100     | 001       | 100      | 100   | 100     | 100   | 100      | 100    | 100      | 100                                           |          | 1           |          | 100         | 001         | 100   | - 00-    | 100      | 001      | 100          |               |              | 001       | 001      |                       | 100   |
|                                                                                    |                       | a<br>max | 100     | 001    |       | -      |       |          |       |       |      |         | <u>а.</u> | -        |       |         |       | _        | _      | <u> </u> | <br>                                          |          |             |          |             |             |       | 1        |          |          | _            |               |              | <u> </u>  |          | 1                     |       |
|                                                                                    | (c)                   | .   Meza | 10.0    | 0-01-0 | 130.0 |        |       | i        |       | 1     | 1    | 30.0    |           | <u> </u> |       | 1       | 28.1  | 29.5     | 1      | 1        | T                                             | -T       | ī           | 1        | Ť,          | 1           | - T   | T        | Ī        | 22.9     | 9 25 1       | <br> <br>     | .<br>        | 9 28 9    | 1        | i                     | 2     |
|                                                                                    | Temp                  | . Mia.   | 10.0    | 30.0   |       | 1      |       | 1        | 1     |       | •    | 30.0    |           | j .      | 1.    |         | 26.2  | 1        | ī      |          | 1                                             | . 1      |             | 1        |             | . 1         | 200   | 1        | - 25.6   | 24.8     | 2            |               | .<br> -      | 28.3      | 1.       | 1                     | 123.9 |
| н Хоца                                                                             | Sea                   | TTN      | 20.0    | 10:00  | 30.0  | 30:0   | 1     | 1        | 1     |       | 1    | 30.0    | 30.0      | 1        |       | 29.3    |       | 1        |        | 1        | Ĩ.                                            | 1        | 1           | 1        | 1           | 1           | 1.    | ī        | <u> </u> | 26.4     | 26.6         | <br> <br>     | -  <br>      | 29.3      |          | 1                     | 126.4 |
| ) <u>soon</u>                                                                      | 12                    | 1        | 132.0   | 32.0   | 32.8  | 32.9   | 133.3 | i        | 1.    | -     | •    | 31.0    | 32.3      | 3.5      | 1     | 1 : 1   | 1     |          | 31.0   | 1        | i                                             |          | . 1         | . 1      | 1           | T           | 1     | 972-     | 27.6     | 26.9     | 26.3         | ' <br>        | •            | 20°.<br>1 |          | T                     | 126.3 |
| нгиа дапоос (BUOY HO. 1.)<br>1111 X 1983                                           | A.I. I'T casperature  | Nî.      | 31.4    | 5,15   | 31.8  | 32.0   | 31.7  | 31.6     | 30.2  | 30.0  |      | 30.4    | 1.12      | 30.0     | 29.6  | 28.5    | 27.9  | 29.8     | 29.8   | 30.3     | 29.8                                          | 2.02     | 28-9        | 129-     | 29-0        | 27.5        | 27.2  | 77       | - 52 -   | - 26.5   | 52           | -             | <br> -       | 29.5      |          | 1                     | 125.3 |
|                                                                                    | Airte                 | Muz      | 12 5    | 32.5   | 33.6  | 34.6   | 34.2  | 32.9     | 31.0  | 31.0  |      | 31.5    | 33.6      | 8: 10    | 20.3  | 29.3    | 30.5  | 133.1    | 32.5   | 1.7      | 2                                             | مالال    | <u>-1</u>   | 9-12     | 2-12        | - 28 - 7    | 0     | 28.1     | 28.5     | 22.1     | 22.1         |               | •            |           |          |                       | 127.1 |
| зтатюм :<br>Номти                                                                  |                       | 1        | -       | ~      | "     | ₽.     | ~     | 9        | ~     | -     | 6    | 01      | =         | 2        | 1     | H       | 2     | ≥        | -      | =        | 61                                            | 8        |             | 57       | 8           | *           | ລ     | 36       | 2        | 58       | 58           | 8             | -            | Man       | ML       | Mie                   |       |

|                                                                                                                              | ·                     | aea       | 7.0            | 5.4      | 6.2                      | 6 4            | 6.7                          | 1.82             | . <u></u>   | 7.6                        | 10.4           | 11.4                 | 1.0            | 10.7     | 8.6<br>6.6   | 7.2         |             |                | 6.9      | 1.8     | 5.6            | 6.4            | 5.7      | 25       | 2           | 7.7            | 12.6           | ٦<br>ک                                  |   |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|----------------|----------|--------------------------|----------------|------------------------------|------------------|-------------|----------------------------|----------------|----------------------|----------------|----------|--------------|-------------|-------------|----------------|----------|---------|----------------|----------------|----------|----------|-------------|----------------|----------------|-----------------------------------------|---|
| URS.                                                                                                                         | 'n                    | n un      | 5.0 7          |          |                          | 1:1            | -                            |                  | -           | 1                          |                |                      | 1.1            |          | 5.5<br>6 0 6 | 11          | <u></u> -   | 1              | <u></u>  | Ī       | 2 2 2<br>2 2 2 | i              |          | - j      | 2           | <u>م</u>       | 2              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |   |
| IC IIC                                                                                                                       | T. mean               | max       | 9.0 5          |          | 7.0 6 5                  | $\rightarrow$  | <u>2,2,2,8,</u><br>2,2,15,01 | ∽┥╼╍┷            | سبنينه      | <u>9 5 6 0</u>             |                |                      | 18.4 8         |          | 12.0 5       | <del></del> | i L<br>ol v |                |          | 4       | ភ្ន            |                | 7.5 6.0  |          |             | 4              | <br> <br>      | $\overline{\checkmark}$                 |   |
| SYNOFTIC HOURS                                                                                                               |                       |           | 6.7 9          |          | 2.4                      | $\frac{1}{1}$  | 6.0<br>3 7<br>1 1            | <u> </u>         |             | 0<br>0<br>0<br>0<br>0<br>0 |                | 8-9 16-4<br>8-7 16 9 | 1.1            | 1        | 2            |             |             |                |          | 4       | 2 1 2          |                | 5.8 7    |          | 6.9 11.0    | 4              | 6 51           | $\sum_{n}$                              |   |
|                                                                                                                              | T Sig                 | aax imear | 7.5 6          | <u> </u> | v v<br>v v<br>v v<br>v v | <del>† †</del> | 200                          | <u></u>          | <del></del> | 0 / 0<br>0 / 0<br>0 / 0    | ÷÷             | 10.5                 | <u>.</u>       |          | 203          | ÷           |             |                | <u>.</u> |         | <u> </u>       |                | 6.5 5    | 4        | 8.5         | ه م م ه        | 14.5 9.9       | $\overline{\vee}$                       |   |
| 5ED ON 8 SYN<br>LAT: 23 <sup>°</sup> ¢1'N<br>LONG 58°33'E                                                                    | xe                    | mear      | 2.0            | <u> </u> | 8 6                      |                | 0.8                          |                  |             | <u> </u>                   |                | 0.4 20               | - <del>,</del> | 0.4      | 5 4 6        | 2           |             |                | <u> </u> | 9       | 8 0            | ╧┥             |          | ,<br>hvi | 0<br>2<br>8 | 8 8 0          | 4.5 [4         |                                         |   |
| 8<br>BÁS                                                                                                                     | Ξ                     | n max     | 0.7            | 0.8      | 0.1                      |                | 6 0                          | 2<br>7<br>7<br>7 | 5           | 7-7-                       |                | 300                  | 0              | 0.5      | 2.0          | 0.6         | 600         |                |          | - 0 -   |                | 0              | 0.7      | q        | 0.5         | 1.0            | 5              | X                                       |   |
| ALL VALUES BÁSED ON 8<br>LAT: 23 <sup>6</sup> 4<br>LONG 58 <sup>0</sup> 3                                                    | Sig(M)                | mean      | 70             | 0        | 000                      | 00             |                              | 0                | 2           |                            | 0              |                      | 0              | 0        | 00           | 0.3         | 7 0         | -   -<br>-   - | 0        | 4.0     |                | 0              | 0.4      |          | 0           | 0.0            | 2.8            | 0                                       |   |
| ALL                                                                                                                          | =                     | ) prax    | 70             | 10       | 00                       |                | 00                           |                  | 8<br>       | 80                         |                | 10.4                 | 0.4            | 0        |              | 0           | 0.0         |                | 0        | 0.4     |                | 0              | 0.5      | -10-4-   | 7           | 0.6            |                | X                                       |   |
| * *                                                                                                                          | (Meters)              | mean      | 00             |          | 0                        |                |                              | 0.2              | ~           |                            |                |                      | 0.2            | 0.2      | 00           | 0.2         | 0           |                | 0        | -       | 7 5            | 0              | 0.0      |          |             | 7              |                | 0.2                                     |   |
| logy -                                                                                                                       |                       | min       | 0.2            | 0.2      | 0 3                      | 0.2            | 0.3                          | 0.2              | .0.1        | 0.3                        | 0.2            | 0.2                  | 0.2            | 0.2      | 0.2          | 0.2         | 0.2         | 7 0            | 0.3      | 0.2     |                | C.0            | 0.2      | 0.2      | 0.2         | 6.0            | X              | 0.2                                     |   |
| <sup>†</sup> OMAN<br>Meteoro<br>surfation<br>MARY                                                                            | II Mean               | тах       | 0,3            | 20       | 000                      | 0.5            | 0.4                          | 0.2              |             |                            | ĪĪ             |                      | 0.9            | 0.0      |              | 0.3         | 0,4         |                | 0.4      | 6.9     | 9.0            | 0.4            | 0.3      | 6.0      | 0.3         | 0.4            | 2.3            | X                                       |   |
| SULTANATE OF OMAN<br>SULTANATE OF OMAN<br>ectorate General of Meleorol<br>Ministry of Communication<br>CLIMATE SUMMANY       | peed ktu)             | Max.      | <u>11205</u>   | 30520    | 29019                    | 29008          | 22511                        | 71060            | بمليك       | 28220                      | <del>èni</del> |                      | 11000          | 01090    | 26012        | 29015       | 29015       | 1000           | 3001     | - 51015 | 28217          | 30515          | 30511    | -22512-  | 27513       | $\sqrt{1}$     | 27025          | X                                       |   |
| SULTANATE OF OMAN<br>SULTANATE OF OMAN<br>Directorute General of Meteorology<br>Ministry of Communication<br>CLIMATE SUMMANY | Wind (Dir./speed kts) | Prov.     | 28009<br>20008 | 31512    | 22010                    | 1 1            | 04-205-                      |                  |             | 27016                      | <u> </u>       |                      |                | · · ·    | 22002        |             |             | 60072          | _        |         | 01000          | ÷              |          |          | 27008       | 27009          |                | X                                       |   |
| â                                                                                                                            |                       | mean      | 100            |          | 001                      |                | 001                          |                  | 1           | 001                        |                | · ]                  | 88             |          | 86           |             |             | 1              | j        |         | 100            |                | 001      |          | 99          | 98             | 100            | 73                                      |   |
|                                                                                                                              | Humidity (%)          | -         |                | 1-1<br>  | <u>-</u>                 |                |                              |                  | <u> </u>    | =  =<br> <br>              |                | <u>-</u><br>         |                |          | -<br>        |             |             |                |          |         |                | <u>   </u><br> | -<br>    |          | ·<br> -     |                | -<br>          |                                         |   |
|                                                                                                                              | Dumte                 | mlm       | 100            | 001      | 001                      | 100            |                              | 100              | 100         | 001                        | 100            | 001                  | 69             | 25       | 100          | 100         | 100         |                | 001      | 54      | 100            | 92             | 100      | 6        | 86          | 95             | 100            | 52                                      |   |
|                                                                                                                              | Rel.                  | max       | 100            | 001      | 100                      | 100            | 001                          | 100              | 100         | 100                        | 100            | 001                  | 100            | - 26     |              | 100         | 100         | 001            | 100      | 100     | 001            | 100            | 100      | 001      | 100         | 100            | 100            | 97                                      |   |
|                                                                                                                              | 7                     | N.<br>L   | 26.0           |          | 23.9                     | 22.5           | 25.2                         | 26.8             | 26.3        |                            | 25.4           | 22.8<br>28 5         | 29.0           | 29-6-    | 29.6         | 27 6        | 22.7        |                | 22.8     | 29.0    | 29.2           | 29.8           | 30.0     | - م مد   | 30.0        | 27.5           | 30.0           | 23.9 8                                  |   |
|                                                                                                                              | Temp (C)              | Mia.      | 25.4<br>25.0   | 1.1      | 23.4                     | 1 1            | 24 8 2                       | 1                |             | 2 4 12                     |                | 25.3.2               |                | 1        | 29.0 2       | 1           |             | -              | 1 1      |         | 29.0<br>29.0   |                |          |          | 30.0        | 26.6           | 30.0           |                                         |   |
| ( 1 0H Your)                                                                                                                 | Sea T                 | htax.     | 26.5 3         | 1 1      | 24 6 2                   | 1 7            | 26 5 2                       | <u>i i i</u>     | -†          | 25 1 2                     | 1 1            | 29.8.2               | T              | 1        | 30.0         | 1           | l l         | 28.4           | 1        | ii      | 30.012         | 1              | ī        |          | 20.02       | <u>28.1. 2</u> | 0.05           |                                         |   |
|                                                                                                                              |                       | 1         | 27.0 2         |          | 25.4.2                   | 1 1            | 26.5 2<br>36 8 7             | 1                |             | 25.2.2                     | 1              | 1                    | 1              | 1 1      | 30.6         | -           |             |                | 28.6 2   | 1       |                | T.             | <u> </u> |          | 30.6        | 28.4 2         | 32.4           |                                         |   |
| MINA QABOOS                                                                                                                  | 1. (°1                | Nía.      | 26.4 2         |          | 24-4-2                   | 1 1            | 25.6 21                      |                  |             | 22-1-22                    |                | 26.8 28              | : :            | 1        | 29 4 11      | 1           |             | 28.1 21        | <u> </u> | 1       | 29 4 30        | Ť.             | 1        | i        | 29.7 3(     | 27.4 28        | 30.4 3:        |                                         |   |
| MINA                                                                                                                         | (C°) Altragentier     | Max.      | 22.4 26        | TT       | 25.9 24                  | TT             | 22 - 2- 22                   | 1 1              |             | 26.0 23<br>26.8 26         | T I            |                      | Ť.             | <u> </u> | 33.0.125     |             |             | 29.6 28        |          | 1       | <u>30.9</u> 25 | i              |          | <u> </u> | 31.1 29     |                | 34.8           |                                         |   |
|                                                                                                                              | TV                    |           |                |          |                          | 11             | Ī                            |                  | Ī           | Ī                          |                |                      |                | Ī.]      | •            | Ī           |             |                |          |         | 1              | T T            | 1        | - 1      |             | Man 29         | Max. <u>34</u> | Mim. 25,                                |   |
| 5 TATION<br>MONTH                                                                                                            | 7                     | 5         | - ~            | -        |                          |                | ~ =                          | •  •             | 2           | = =                        | =<br>A2        | 1                    | 2 ≥            | -        | = ≏          | ି ମ         | 7           | 1              |          | 14      | " "            | 7              |          |          | <b>~</b>    | z              | ¥              | Σ                                       | ł |

| SEE        | SEPTENDER 198    | 1983        |            | j        |          |      |              |         | CLIN      | CLINIATE SU           | SUMIMARY  | ·        | ;          |              | •           | Ц<br>Ч           | LONG: 58                                      | 58 <sup>'</sup> 33'E |                   | ,        |        |
|------------|------------------|-------------|------------|----------|----------|------|--------------|---------|-----------|-----------------------|-----------|----------|------------|--------------|-------------|------------------|-----------------------------------------------|----------------------|-------------------|----------|--------|
| Les 1      | AIrTemperature ( | Ģ           | Sea        | Temp (C  | c)       | Rel. | umid1ty(%    | (%) (X) | Wind (Dir | Wind (Dir./speed kts) |           | Mean (Me | (Meters)   | II SI        | Sig (II)    | H max            | E-I                                           | Sis                  | £4                | ne an    | а<br>1 |
| Mex        | Min.             | 1           | NET        | , ei M   | Mcan     | max  | nim          | mean    | Prev.     | .xeld                 | · ×       | mln      | mean       | nax          | خضص و       | nay<br>Int       |                                               | mear                 | ШаХ               | min      | nea:   |
| 3.1        | 30.2             | 31.7        | 30.0       | 30.0     | 0<br>0   | 100  | 63           | 37      | 27003     | 01 509                | 0.3       | 0.2      | 0.2        | 0            | 0.3         | 0.40             | 0.214.0                                       | 6                    | 27.4              | 8.0      | 15.0   |
| 34.3.      |                  | 32.3        | 0.0C       | 30.0     |          | 100  | 62           | 80      | 22005     | 2 7 5 0 8             | 0.2       |          | 0.2        | 0.3          | <u> </u>    | 0.50             | 0.4 11.5                                      | 1.6                  | 21.9              | 7.0      | 12.17  |
| 30.0       |                  | 29.4        | 30 0       | 0.00     | معد      | 100  | 001          | 100     | 22010     | 220L6_                | - 6-0-    | 0.2      | 10         | . <u>.</u>   | 0.5         |                  |                                               |                      | <u> </u>          |          | 2.5    |
| 29.8       | 20-1-02          | 29.3        | 0.05       | 29.4     | 29.9     | סטר  |              |         | 21012     | بعسه                  | لللع      | 0.2      | 0          | 2.0          | <u> </u>    | 0 5 0            | 0.2 5 5                                       | _                    | Ļ                 | ŀ        | 20     |
| 30.1       | 29.1             | 29.6        | 0.00       | 29.3     | 29.6     | 00   | - 99         | 100     | 22006     | 28213                 | لللالم    | 0.2      | 6.0        | 0.4          | -           | تواتنو           | <u>9</u><br>                                  | Ϋ́,                  | 4                 |          | 9.9    |
| 30.3       | 29.4             | 29.2        | ممد        | 29.8     | 29.9     | 991  | 997          | 001     | 22002     | 21262                 | ل د م ا   | - ح م    |            | 7            | -           | 0 9 0            | <u>5 7.0</u>                                  |                      |                   | <u> </u> | 7      |
| 22.9       |                  | 2.9.5       | .0.0£      | 28.2     | 29.4     |      | 100          | 100     | 22010     | ZIOLE                 | -2-0-     | -0.2     | <u>с</u> а | ما           | 40          | -0   <u>0</u> -1 | 7                                             | 4                    | <u> </u>          |          | 10     |
| 29.3       | 2                | 28.9        | 29.6       | 28.4     | 28.9     | -    | 98           | 100     | 31511     | 20017                 | 0.5       | 0.4      | 0.4        |              | 0.6         | ، (عمر<br>جينت   | 1.                                            | ÷                    | Ļ                 |          |        |
| 29.5       | 4                | <u>29 0</u> | 29.7       | 28.1     | <u>+</u> |      | - 97         | 66      | <u> </u>  | 29012                 | 0         | 0.3      | 0.4        | ~            | -<br>9<br>0 |                  | 1                                             |                      |                   | <u> </u> |        |
| 28.8       | 4                | 28-6-       | ممد        | 28.9     | <u> </u> |      |              | 100     |           | 25510                 | 2.0       | - 5-0-   | 70         | 0            | -           | <u></u>          | <u>.</u>                                      |                      | 0 0               |          | 2      |
| 29.3       | 28.9             | 29.0        | 29.8       | 29.5     | +        |      | 100          | 100     | -         | 30015                 |           | 0.4      | 0          | ~            | 0           | <u></u>          | 20                                            | 4                    |                   |          | 0.0    |
| 28.9       | 28.3             | 28.6        | 0 0        | 29.5     | 29.8     | 001  | 100          | 100     | 27010     | 30020                 | 0.5       | 0.4      | 0.4        | 0.8          | 0.6         | 1.5 1.           | 1 6 0                                         | 4                    | 0                 |          | -5-4   |
| 29.1       | 28.2             | 28.4        | 30.0       | 29.1     | 29.6     | 100  | 98           | 66      | 27008     | 28012                 | 0.4       | 0.3      | 0          | 0.6          | ÷           | 1.00             | 0:7 6.0                                       |                      | -                 | 1        | 5.6    |
| 29.8       | Ĩ                | 29.1        | 20.0       | 29.6     |          |      | - 87         | 26      | 22006     | 24009                 | 10        |          | 0:3        | - 5.0        | ्र          | -                | -                                             |                      | 7                 |          | 8      |
| 30.2       | ~                | 29.7        | 30.0       | 29.8     |          | 1    | 81           | . 95    | 0000      | 09513                 | . 4       | 0.2      | 0.3        | 0            | . ,         | n)               | 5                                             |                      | <u> </u>          | <u></u>  | 6      |
| 31.1       | 29.6             | 30.4        | 0 00       | 2.9.9    |          |      | 90           | - 6     | 09005     | 29010                 |           |          |            | 5            | <u>,</u>    | _                | ~                                             | اه                   | 8                 |          |        |
| 29.8       | 29.7             | 29.8        | 30.0       | 30.0     |          |      | - 76         | - 59    | 27009     | 27013                 |           | 0.2      | 0.3        | 0.4          | ÷           |                  | 80                                            | اف                   | 2.11-             | 5        | 7      |
| 0-16       | 1                | 30.4        | 20.0       | 30.05    | <u> </u> |      | 77           | 24      | 13504     | 30012                 | - i -     | 0.2      | d<br>d     | <u>م</u> ر   |             | γ,               | 5                                             | 4                    | 2.6               | 0.0      | 78     |
| 33.9       |                  | 8 17        |            |          | -        |      | 62           | //      | 04 200    | 60000                 |           | 7 . O    |            |              |             |                  |                                               |                      |                   | 0 V      |        |
|            | 99               | 11.1        |            |          | 0.05-    | 55   | 74           | 202     | 80080     |                       |           | 0.2      |            |              |             |                  | <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u> |                      |                   | 1        |        |
| 3 6        | -                |             | 0 0        |          | <u> </u> |      |              | - 16    | 13504     | 28010                 |           | 0.2      |            | 0            | -           | i n              | 00                                            | 0                    | -                 | 0.7      | 8.9    |
| 32.1       | 30.3             | 1.41        | 30 0       | 30.0     |          |      | 84           | 91      | 18006     | 16510                 | 0.0       | 0.2      | 0.2        | 0.3          |             |                  |                                               |                      | 2.6               | 2.0      | 8.8    |
| 1) ()<br>L | 6                | 30.5        | 30.0       | 0.00     |          |      | 87           | 95      | 2,2008    | <b>J0020</b>          | ٢.0       | 0.2      | 0.2        | 0.4          | 103         | 0 8.0            | 2.8 2.0                                       | 5 6.5                | 21.4              | 5.0      | 11.0   |
| 31.9       | 29.8             | 30.6        | مەد        | 30.0     |          | 96   | - 6 <u>4</u> | 85      | -21215    | 21000                 | رم        | 20       | نام        | ۍ<br>د       | 0 4         | 0 6-0            | 2 9:0                                         | 9-4-2                | گ                 | 2        | 5.0    |
| 33.0       | 30.1             | 2.16        | ممد        | 0.00     | ס סנ     | 1 96 | - 60         |         | 21509     | -21205                | - 0       | 2 0      | -0-2       | 10           | 1           | 0 9 0            | 0.51 2.0                                      | D B L                | 263               | 1        | 16.1   |
| 33.4       | 0.16             | 31.8        | <u>0</u> 0 | 0.05     | 0.00     | Bb   | - 62         |         | 09002     | -6000-1               | ط         | -2-0-    | 50         | ٦            | e d         | ماكلم            | 2 9 2 0                                       | 27-5                 | 23.4              | 2        | 7-51   |
| 31.5       | 30.9             | 1.2         | 30.0       | 0 05     | 30.0     |      | 59           | 11      | סוגונ     | 29013                 | - 0       | 6.0      | 9          | <u>9.4</u>   | 0.4         | 0 2 0            | د اد م                                        | 79                   | 2                 | 2.9      | 2      |
| 31.4       | 20               | 30.9        | 30_0       | 30 0     |          |      | 63           | B       | 31507     | 08511                 | 0.4       | 10.1     | 0.3        | 2.6          | 0.5         | alar             | 0.2 6.                                        | 5.0                  | <u></u> δ. Β      | 6.0      | 7      |
| 21.3       | 29.8             | 30.7        | 30.0       | 30.0     |          |      | . 7.5        | 85      |           | 36010                 | C 0       | 0.3      | 0,3        | 0.4          | 0.4         | 0.9 0.0          | 6 9 0                                         | 2.9                  | 9.0               | 0.9      | 7.6    |
|            | -                | 1           |            | •        | _        |      | 1            | •       |           | •                     | 1         |          | ,          | ,            | •           | ·                |                                               |                      | ,                 |          | ·      |
| 1.         | 29.5             | 100         | 0.02       | 59.7     | 29.8     | 66   | 6            | 92      | 27008     | X                     | 03        | 0.2      | 0.3        | 0.5          | 0.4         | 0.80             | .6 8.1                                        | 6.5                  | 12.8              | 6.0      | 8.5    |
|            |                  |             |            |          |          |      |              | 001     |           | 00000                 |           | X        |            | , c          |             |                  |                                               | ۰<br>۰               | 6 6 7             |          | 191    |
| 7          |                  |             | 2          | <u> </u> |          |      | <u></u>      | -       |           |                       |           | 1        |            | $\mathbf{V}$ |             | معنوه            | <u>}</u>                                      | ~~~                  | $\langle \rangle$ | •        |        |
| 28.8       | 28.2             | 28.4        | 29.7       | 28.1     | 28.9     | 1 86 | (1)          | , J C   |           | X                     | $\langle$ | 0,0      | 0          | <            | 0.0         | Ŝ                |                                               | 4.8                  | $\langle$         | . 5      | 5.4    |

| MONTH : OCTORER |                       | 1981            | · .      |       | <br>1    |           |      |                         |         | 5        | CLINIATE SU           | CLINIATE SUMMARY | e .        |        | •     |        |                | LONG     | 58°33, E  | ்.<br>உம்  |           | •        |
|-----------------|-----------------------|-----------------|----------|-------|----------|-----------|------|-------------------------|---------|----------|-----------------------|------------------|------------|--------|-------|--------|----------------|----------|-----------|------------|-----------|----------|
|                 | U rTemperature        | ()-) an         |          | Sea T | Temp (C) | c)        | nel. | <pre>[]umfdity(%)</pre> | . (%) K | Wind (Db | Wind (Dir./speed kis) | II Me            | ean (Me    | eters) | IS II | 1g (M) | ll max         |          | Sig       | [4]        | ncan      | •        |
|                 | Nur. Min.             |                 | 1        | Nax.  | Nin.     | hices     | max  | ntn                     | mean    | Prov.    | Max.                  | max.             | mln        | mean   | nax   | mean   | mea            |          | TaX meal  | I max      | ulm /     | gea      |
| 16              | 1.2 29.8              | 1 -             | 30.4     | 30.0  | 30.0     | 30.0      | 97   | 73                      | 89      | 00002    | 1                     | 0.3              | 0.2        | 0      | 7 0   | 0.3    | 0.5 0.5        | 5 9.0    | -<br> -   | 0.11       | 8.5       | 9.6      |
| 2 33            | ~                     |                 | - 1      |       | 30.0     | 30.0      | 76   | 53                      | 60      | 00060    | 12511                 | . C 0            | 0.2        | 0.2    | 0     | 0.3    | 0.5.0          | 4 11.0   | - 1       | $\sim$     |           | 101      |
| .               | 33.2 31.7             | .7 33           | <u>.</u> | 30.0  | 30.0     | 30.0      | 66   | 53                      | 60      | 09007    | -                     | 0.3              | 0.2        | 0 2    | 7 0   | 0      | 0 0            | 4 8.0    | 0 6 7     | 11.5       | 6.5       | 8.6      |
|                 | 3.16 2.66             | <u> </u>        |          |       | 30.0     | 30.0      | 64   | <u> </u>                | - 54    | 02006    | ÷                     | 0.3              | 0.2        | 0.3    | 0.4   | 0      | 0 7            | .5 8.0   | 6.4       | 1.7.4      |           | <u>-</u> |
| ה<br>ק          |                       | <u>-</u>        |          |       | 30.0     | ممدود     |      |                         | -32     | -11504   | 0.2512                | 0.2              | 0.2        | -0.2   | 0.3   | 0.3    | 0.4 0          | 3 9:5    | 1-1-1     | - 14.5     | 8.5       | _        |
|                 | ·                     |                 | -        | ,     | 20:00    | 30.0      | 8    | 35                      | 58      | 02005    |                       |                  | 0.2        |        | 0.0   | 0.2    | 0.50           | •        | <u>ri</u> |            | 0         |          |
| 1               | æ                     |                 |          |       | 30.0     | 30.0      | 89   | - 24                    | 71      | 22505    |                       | 0                | 0          | 0 2    | 0     |        | <u> </u>       |          | 5         | ÷,         |           | 21:0     |
|                 | ~                     | -÷              |          | ÷     | 30.0     | 30.0      | - 76 | 64                      | 81      | 18005    |                       | 0                | 0.0        | -      | 0     | 0.2    | <u>oi</u> ;    | 4        | -         | 28.4       | -         | 8        |
| Ī               | -                     |                 | - 1      |       | 000      | 30.0      | 89   | 41                      | 69      | 00000    |                       |                  | 0.2        | 0      | 70    |        | <u> ∞</u><br>∞ | 2        | -         | ÷          |           | _        |
| 瞐               |                       |                 |          | 1     | 30.0     | 30.0      | - 82 | 4.9                     | 67      | 0000     | ÷                     |                  | 0.2        | 0.7    | 7     | 0.3    | 0              | 4 8.0    | 0 6 6     | مینید<br>ا |           | du       |
|                 | 21.2 29.4             |                 | 30.6 3   | 30.0  | 30.0     | 30.0      | 72   | - 54                    | ()      | 09005    | 07511                 | 0.2              | 0.0        | 0.2    | 10    | 0.2    | 0.3 0.2        | 2        | 5 6.7     | 50.8       | 0.0       | 1        |
| 12 23           | 32.0 30.2             | -               | 31.1     | 30.0  | 30.0     | 30.0      | - 66 | - 34                    | 52      | -31506   | 12510                 | 0.2              | 0.2        | 0 2    | 0.2   | 0.2    | 0.2.0          | .2 12.0  | 0 8.2     | 52.8       | 9.0       | 30.5     |
| 131             | 31 2 29.9             |                 | 30.7     | 30.0  | 30.0     | 30.0      | 66   | 39                      | 56      | 00000    | 08015                 | 0 4              | 0 2        | 0 3    | 0.5   | 0.4    | 0 6 0          | 6 6 0    | 0.5.0     | 7.5        | 5.0       | s.       |
| 10              | -                     |                 |          |       | 30.0     | 30.0      | 82   | 48                      | 65      | 0000     | _                     | 0 3              | 0.2        | 0 3    | 0.4   | 0 4    | 0.9.0.6        | 6 6.0    | 9 4 9     | 8 0        | 1 4.0     | J.       |
| 1               |                       |                 | -        |       | 30.0     | 30.0      | 71   | 36                      | 59      | 00000    | 16512                 | 0 2              | 0.2        |        | 0 3   | 0.2    |                | <u> </u> |           | ••••       |           | 12       |
| 16 30           | 30.6 29.0             |                 | 29.8.    | 20.05 | 29.9     | 30.0      | B0   | - 61                    | -10-    | DISEL    |                       | 0- <u>4</u> -    | 0.2        | 6.0    | 0.6   | -0-4   | 1-1 0-         | 2.2 3.   | 5 4 8     |            | 9-2-1     | 5.9      |
| 17 30           | 30.4 28.2             |                 |          | 30.0  | 29.7     | 29,9      | 2    | 62                      | 68      | 13508    | 15012                 | 0.3              | 0.2        | 0.2    | 0.4   | 0.3    | <u> </u>       | 4 6.0    | 1 5.3     | 12.5       | 1 5.0     | 0        |
| 11 29           | i i i                 |                 | 28.7     | 1     | 29.6     | 2.9.8     | 82   | 68                      | 36      | 31510    |                       | 0.4              | 0.2        | 0.2    | 0.5   | 0.3    | 1.0            | 4 13.0   | 0.6.3     | 49.8       | 4.5       | 2        |
| Ī               | ;<br>-<br>-<br>-<br>- |                 | 6        | 5     | 29.6     | 29.7      | 22   | 58                      | 67      | 71214    |                       | 0                | <b>í</b> - | 0      | 0 6   | 0      | 1 3 0          |          | -+        | 6.0        |           |          |
| 57<br>8         | 29.6 22               | <u>-5</u><br>28 | 4        | 29.9  | 29.4     | 29.6      | 2    | 44                      | 59      | 27010    | 29015                 |                  | 0.2        | 0 %    | 0.4   | 0      | 0              | 5 6 0    | 12.2      |            | <u>~ </u> |          |
| <br>            | <br> <br>             | -               |          |       |          | -         |      |                         | -       |          |                       | •                |            |        | <br>ا |        |                | · <br>   |           |            |           |          |
| Ĩ               | 29.5 28.3             | 1               | 28.8.2   | 29.4  | 29.0     | 29.1      | 68   |                         | 62      | 22006    | 22502                 | 0.2              | 0.2        | 0 2    | 4     | 0.0    | 0 7 0          | 3 2.0    | 9 6 4     | - 10.5     | 9         | 8        |
| ī               |                       |                 | 4        |       | 28-8     | 29.0      | - 76 | . 60                    | 69      | 22008    | -+                    | 9                |            | 0 2    | 0 2   | 0.2    | 0.3            | 0.11 0   | و         | 42.4       |           | 13.0     |
|                 | 31.6 27               | 27.6 29.        | 2        | 30.0  | 28.8     | 29.3      | 73   | 53                      | 66      | 0060     | ÷                     | 0 2              | 0.2        | 0.2    | 0.7   | 0.2    | 0.4 0          | 2 8.0    | 9.0       | 51.3       | 1 7:5     | 15.5     |
| 200             | 30 1 22.2             |                 | 28.5 3   | 1     | 28.9     | 22.1      | 2    | - 58                    | 68      | 09002    | <u> </u>              | 0 2              | 0.2        | 0 2    | 0     | 20     | 0.10           | 0 91 E   | 2 2 7     | 29.9       | 0.7       | 1        |
|                 | 28.7 27.8             | 1               | 28.2 2   | 29.4  | 28.9     | 29.2      |      | 63                      | 2       | 02002    | ÷                     | 0.2              | 0.2        | 0 2    | 0.0   | 0 2    | 0.50           | 4        | 5 2       |            | 5         |          |
| 57<br>57        | 29.2 22.1             | 7 1             | ما       | . 1   | 29.1     | 29.3      | 32   | - 61                    | 67      | 22007    |                       |                  |            |        | 03    | -      | 0.5 0          |          | 5 2 6     | 25.9       | _         | 7        |
|                 | 28.6 26.6             | .6 27           | 4        | 29.4  | 28.8     | 29.0      | 2    | - 62                    | 6       | 21502    | - est                 | 0.2              | 0.0        |        | 0.2   | 0 1    | 0.2 0.1        | 1 10.0   | 1 7       | 76.8       | 0         | 2        |
|                 | 29.6 27               | 27.2 26         | 28.4 2   | 28.9  | 28.5     | 28.6      | 5    | 15                      | 59      | 01060    | C1060                 | 0.2              | 0.2        | 0.2    | 0.4   | 0,3    | 0.50           | 4 9.5    | 5 5 6     | 16.0       | 4.5       |          |
| ন্ন             | 127                   | þ               | 28.0.2   | 28.6  | 28.3     | 28.5      | 28   |                         | -29     | 03010    | -                     |                  | 0.2        | 02     | 10.3  | 0 3    | 0.5 0.5        | 5 8 0    | 2 9       | 0 01       | 2.9       | -        |
| 31 27           | 9                     | 26.5 27         | .2       | ŝ     | 28.0     | 28.3      | 85   | 64                      | 11      | 27010    | 29515                 | 0.3              | 0.2        | 0.2    | 0 4   | 0.3    | 0.7.0          | 5 8.0    | 0 6.3     | 9 5        | 4         | ~        |
| Mcao 10         |                       |                 | 99.8     | _     | 29.5     | 9.66      | 77   | 52                      | 65      | 090060   | X                     | 0                | 0.2        | 0      | 0 3   | 0.3    | 0.5 0.         | 4 8 6    | 0         | 24.5       | 6.7       | 10.9     |
|                 | <u>i</u>              | Ì.              | ÷        |       |          |           |      |                         |         |          |                       |                  |            |        |       |        |                |          | ÷         |            |           |          |
| 35              | 5.9 31                | 52              | <u> </u> | 2     | 2        | 50.0<br>0 | 7    |                         | 4 R     |          |                       |                  |            |        | •     |        |                |          | 0<br>0    |            | 2         |          |
| زد   .alki      |                       | -<br>-<br>-     | e        | <br>  |          | , ac      | 27   |                         | ç       |          | X                     | X                |            |        | X     | . 0    | Š              | X        | 2.6       | X          | . c       |          |

|                                                                                   |                       |            |                |        | -      | •       |           | Ţ          |         |          |          |        |                                                                                                                 |           |             |          | Ţ            |           |         |          |             |          |               |                   |            | ~      |          |         |       |         |         |          |        | •            |           |            |                         | •         |
|-----------------------------------------------------------------------------------|-----------------------|------------|----------------|--------|--------|---------|-----------|------------|---------|----------|----------|--------|-----------------------------------------------------------------------------------------------------------------|-----------|-------------|----------|--------------|-----------|---------|----------|-------------|----------|---------------|-------------------|------------|--------|----------|---------|-------|---------|---------|----------|--------|--------------|-----------|------------|-------------------------|-----------|
|                                                                                   |                       | E<br>S     | 6              | 23.5   | 5.3    | 10      | 0         | 8.2        |         | 1        | 6.4      |        | • •                                                                                                             |           | • 1         | 0        | 11           |           | - 1     | 6.9      | <u>ا</u> !  |          | 0             | <u>'</u>          | 1          | 5      | .e       | 24.6    | 21:0  | 53      | 11.8    | 6.4      | 5      | 4            | 8.9       | 24.6       |                         | 2         |
| 241<br>331<br>331<br>80                                                           | acan                  | nla.       | 4.5            | 5.0    | 4.5    | 5.0     | 5.0       | 19.9       | 6.0     | -        | 0.9      | 6      | 19                                                                                                              |           |             | 0        |              | - 1       | 4.5     | 6.0      |             | 6:5      | 4             |                   | •          | 4.5    | 5 5      | 2.01    | 0.0   | 6.9     | 0.0     | 4.5      | 4.5    | 4.5          | 5.2       | 10.5       |                         |           |
|                                                                                   | н<br>Н                | max        | 9.5            | 61.8   | 8      | 0.2     | 0.6       | 5          | 13.0    | 1        | 6.5      |        |                                                                                                                 |           |             | ?;       | •            | 10.5      | 20.4    | 8 0      |             | 8.0      |               | •                 |            | 7.5    | 12.0     | 50.8    | 42.4  | 12.5    | 43.4    | 10.0     | 00     | 3            | 15.5      | 6 B.       | 4 V                     | 7         |
| 23 <sup>0</sup> 41 N<br>58 <sup>0</sup> 33 E                                      | 58                    | mear       |                | 9.9    | 6.4    | 2       | 5         | 6.6        | 0.9     |          | 6 0      | 9      |                                                                                                                 |           |             | -        |              | -   '     | 5       | 5        | 1           | 9        | 2             |                   |            | 5.3    | 61       | 2.9     | 2     | 23      | 4.5     | 5 4      | 5.3    | 54           | 5 8       | 7.5        | 1                       | 4.5       |
| · · · · · · · ·                                                                   | T SIG                 | Xra        | 6.0            | 10.01  | 0.9    | 5.5     | 6.0       | 8          | 0.7     | 1        | 0.2      | 10     |                                                                                                                 |           |             | <u>;</u> |              |           | 10.5    | 5.5      | •           | 0.9      |               | •                 |            | 6.0    | 57       | 10.9    | 2.51  | 10.01   | 0.7     | 5.9      | 3.3    | 6.0          | 7.3       | 12.5       |                         | 7         |
| LONG                                                                              | ax                    | a e e      | 0.0            | 0.4    | 0      | 6       | 0         | 0          | 10      | 1        | [-       | ľ      |                                                                                                                 |           | • 1         | 5        |              |           | -       | ai<br>ol | ~~          | <u> </u> | ~             | •                 | <u>ا</u> ر | 6      | 3        | 0 2     | 201   | 7       | 0       | 0.7      | 2      | 2            | 8         | 2 3        |                         | 10.4      |
| LAT                                                                               | =                     | n max      |                | 0<br>1 | 0<br>1 | <br>    | 10<br>1   | 0          | 10      | <br> -   | 5 1      | 1-     |                                                                                                                 | <u></u>   | <u>.</u>    | -        |              |           | -       | م!<br>م  | ΞÎ          | 익        | 2             |                   | <u> </u>   | 6 0    | 5        | 0 4     | 20-   | 0       | 6.<br>0 | <u> </u> | 20     | <u>0.</u> (] | -         |            |                         |           |
|                                                                                   | Sig(M)                | mean       | 7.<br>0        | 0.2    | 0.5    | 0       | 0         | 0          | 0.4     | ſ        | 0        | c      |                                                                                                                 |           |             | 0        | •            |           |         | 10.4     | ·           | 0        |               |                   | '          | 4.0    | 1-0-     | 0 2     | 9     | 0.0     | 0       | 2.0-1-   | 0.7    | כיון         | 0.5       |            | • C                     | 10.2      |
|                                                                                   | H                     | aax        | 9              | 5.0    | 0.5    | 0.6     | 0.4       | 0.4        | 9       | 1        | 0        |        |                                                                                                                 |           |             |          | 1.           |           |         | <u>.</u> | 1           |          |               |                   |            | 0.5    | 10.4     | 0       | 0.2   | 0.4     | 0       | 0.8      | 215    | 11.6         | 0.7       | 9          | V                       | 1         |
| •                                                                                 | (Meters)              | ພະອນ       | <u>. 0</u> . 3 | 0.2    | 0.3    | 6.9     | 0.2       | 0.2        | Г.<br>0 | •        | s 0      | 0      |                                                                                                                 |           | J .         | 5        | •            | -1        |         | 0        | •           | 0.2      | <u> </u>      |                   | 1          | 0.0    | 50       | 0.2     | 0.2   | 0.2     | 0.2     | 1.0      | 0.5    | 0.8          | 0,0       | •          | 4                       | 0,2       |
| 18                                                                                | ŀ                     | ala        | 0.2            | 0.2    | 0.3    | 0.2     | 0.2       | 0.2        |         |          | 7 0      |        |                                                                                                                 |           |             | -        |              | - 1 -     | .1      | <u>.</u> | •           | 0.2      | 0.2           | -                 | -          | 0.3    | 0.2      | 0.2     | aa    | 0.2     | 0.0     | 0.2      | 0.3    | 0.6          | 0.2       | 1 1        | 1                       | 0.0       |
| Directorate General of Meteorology<br>Ministry of Communication<br>CLMATE SUMMARY | II Nean               | max        | 0.4            | 0.4    | 0.4    | 0.4     | <u> </u>  | -<br>      | 4.0     | :        | 0        |        |                                                                                                                 |           |             | ~        |              | •         | 0.4     | <u> </u> |             | 0.2      |               | ,                 | ,          | 0.4    | 10.0     | 0 2     | 0.2   | 0.3     | 0.3     | 0.5      | 2.0    | 1.0          | 0.4       | 0          | $\overline{\mathbb{N}}$ | 7         |
| comu<br>Comu                                                                      | 1 ku)                 | 4          | -              | -      | 1      | ي بينية | -         | de la como | -       |          |          |        | de la colora de la colora de la colora de la colora de la colora de la colora de la colora de la colora de la c | e je      | <u>م</u> لع |          |              | 00011     |         | _        | ÷           | 16509    |               |                   |            | 29515  | 02012    | 11512   |       |         | _       | 30523    |        |              | V         | 11525      | Ň                       |           |
| cclorule General of I<br>Ministry of Commu<br>CLINATE SUMI                        | Wind (Dir./speed kts) | Mux        |                |        | *****  | _       |           |            | 5 17512 |          | ÷        | ÷      |                                                                                                                 |           | 1 27213     |          |              | 1         | ÷       | 1        | <del></del> | ÷        |               |                   |            |        |          | 1       |       |         |         |          |        |              | $\square$ | N          | V                       |           |
| Director<br>Min<br>QI                                                             | Niad ()               | Prov.      | 15005          | 0090   | 1800   | 000     | 1200      | 0000       | 12006   |          | 3300     | 0000   | 12005                                                                                                           |           | 10071       | 2200     | •            | 00000     | 30010   | 00002    |             | 1 8005   | 12017         |                   | •          | 30010  | 06007    | 20072   | 03004 | 1 06006 | 0000E   | 01000    | 115012 | 12018        | 12010     |            | Ň                       |           |
|                                                                                   | (%)                   | mean       | 59             | 61     | 62     | 66      | 53        | 57         | 60      |          | 59       |        |                                                                                                                 |           |             | 50       | i I          | 69        | 2       | 74       | i .         | 2        | 62            | 7 1               |            | 63     | 62       | 63      | 62    | 69      | 74      | 67       | 64     | 60           | 64        | 74         |                         | ٤ĵ        |
|                                                                                   | llumidity (%          | nin        | 53             | 59     | 57     |         | 65        | 23         | 55      |          | 21       |        |                                                                                                                 |           | ~ ~ ~       | 62       |              | 66        | 26      | 19       |             | 90       | 2             | •                 | -          | 61     | ,<br>Jà  | 52 .    | 60    | 63      | 72      | 62       | 54     | 56           | 59        | 22         |                         | 1         |
|                                                                                   |                       | . 5        |                |        |        | <br>    | <br> <br> | <br>       | <br>]   | .<br>    |          | <br>   | <br>                                                                                                            | <br> <br> | `.<br>      |          | <u> </u><br> | <br> <br> |         | 1        |             | <br>     | <u> </u><br>] | <br>              |            |        | -  <br>- | ·       |       |         | uro ha  | -        |        | <br> :       |           | :<br> <br> | <br>                    | _         |
|                                                                                   | Rel                   | тал<br>Хеш | -99            | 67     | 65     | 69      | 74        | 60         | 64      | 1        | 63       | 70     | 6                                                                                                               |           |             | ö        |              | 76        | 62      | 87       | 1           | 22       |               | '                 |            | 64     | BO       | 62      | : 65  | 36      | 78      | 73       | 17     | 94           | 1~        | 82         |                         | 60        |
| -<br>-<br>-                                                                       | 0                     | Nicko      | 24.3           | 24.2   | 24 1 1 | 24.1    | 24.1      | 24.1       | 24.1    |          | 24.1     | 0 76   | 0                                                                                                               |           | 2 2 2       | 27.8     | •            | 24.0      | 23.8    | 23.9     |             | 23.8     | 23.6          |                   | ,          | 23.5   | 23.4     | 23.4    | 23.5  | 23.4    | 23.3    | 23.4     | 21.3   | 23.1         | 23.8      | 6 96       |                         | 23.1      |
| ا ل                                                                               | Temp (C               |            | 24.2           | 24.2   |        | ī       | -         | 1          | 1       |          | 24.0     |        | 1                                                                                                               | 1         | 1           | 53.4     | - T          | 23 8      |         | 23.8     | 1           | - 1      | 23.6          |                   |            | 23.3   |          | - 1     | 1     | 23.2    | 23.2    | 21.2     |        | 23.0         | 23.7      | 24 2       | 1                       | 23.0      |
| BUOY 10.1                                                                         | Sea T                 | N zz.      | 24.5           | 4 3 2  |        | 4 2     |           | 1          |         |          | 24 3     | L      | 1                                                                                                               | 1         | . 1         | 2        | 1            | 54.1      | -       |          | · · ·       | 24 0     |               | -                 | <br>       | 23.6   | 23.8     | 23.6    |       | 23.5    | 23.6    | 23.16    | 1      |              |           | 1          | T                       | 1 1 1 2   |
| 1                                                                                 |                       | ł          | 2.7 2          | 7 12   | 104    | 22.6 2  |           | -          |         | 4<br>    | 1        | 33 6 3 |                                                                                                                 | 1         |             | 7.1.7    |              | 22.5      |         |          |             | 22.3     |               |                   |            | 21.2 2 | 21.2 2   | 21.2.12 | i     | 6       | 22.0    | 22.2 22  |        | _            |           | i i        | T ·                     | 20.2.12   |
| 1984                                                                              | 5                     | klia.      | 5              |        |        | 22.3 22 |           | 1          | 1       | ÷-       | 23.3 23  | 1      | -i                                                                                                              | ÷         | <u>.</u>    | آم       |              |           | 22.4 27 | 1        |             | 6        | 2             |                   |            | 21.0 2 | İ        | 20.7 2  |       | · · ·   | 20.9 2  | 21.2 2   |        | 19.2         | 9         | -          | ÷                       | 19.2 2.91 |
| HINA QABOOS<br>JANUARY 198                                                        | L rT emperature       |            | 6. 21.         | 4 21.5 |        | 1       | 1         | 1          | 1       | '<br>  · | <b>~</b> | 1      | -                                                                                                               |           |             | 7        | -            |           | - 1     | 1        |             | • ÷ †    |               | <u> '</u><br>     | '<br> 1    | . 1    | - Ť      | ì       | . 1   |         | i       | i i      |        |              | 9 21      | 1 ~        | 1                       | -         |
|                                                                                   |                       | Niez       | 23.6           | 23.    | 23.    | 22.8    | 22.       | 12         | 22      | 1<br>    | 23.      |        |                                                                                                                 |           |             | 22       | 1            | 1.53.1    |         | 1        | - 1         | 22.7     | Ī             | <u> </u><br> <br> |            | 21.4   | 21.5     | 22.2    | 22.6  |         | 22.6    | 24.5     | 22.6   |              | a 22.     | 5          | ]                       | 121-0     |
| STATION :<br>HONTH :                                                              |                       |            | -              | ~      | ^      | 4       | -         | 0          | -       |          | 6        | 9      | : =                                                                                                             | : :       | -           | 1        | - 1          | ≈ <br>2:  | ł       | -        | 7           | ≏        | ຊ             | 7                 | 2          | 2      | ž        | 2       | ង     | 2       | ~       | 5        | 2      | ᅯ            | Mcan      | MLX.       | , i<br>N                |           |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                            | NINA KABOC    | MINA KABOOS (AUOX 110<br>HARCH 1984 | 01770 | (1                | •                  | •    |            |       | SULTANATE OF OMAN<br>Directorate General of Meteorology<br>Milojstry of Communication<br>CLIMATE SUMMARY | SULTANATE OF OMAN<br>sciencie General of Merceorof<br>Miolstry of Communication<br>CLIMATE SUMMARY | E OF OMAN<br>at of Meteoro<br>communication<br>SUMMARY | f<br>Balagy      | *     | ALL V       | VALUES BASED | BASEI<br>LL | io                    |              | SYROPTIC F              | HOURS  |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|-------|-------------------|--------------------|------|------------|-------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------|-------|-------------|--------------|-------------|-----------------------|--------------|-------------------------|--------|-------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                            | ante a contra | Ģ                                   | . 1   | Temp (C           |                    | Rel. | ilumi di t | y (%) | Wind (Dir.)                                                                                              | (apeed kus)                                                                                        | E E                                                    |                  | ters) |             | ig(И)        | Ξ           | દ્વ                   | SLe          | ંલ                      | can    |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                             | , ei M        | ž                                   | NLL   |                   | Ness               | шах  | min        |       | Prov.                                                                                                    | Max.                                                                                               | max.                                                   | min              | mean  | na x        | mean         | रहता -      | <u></u>               |              |                         |        | nea.        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                            | 21.3          | 22.                                 | 23.6  | -                 | 23.2               | 63   | 59         |       | i i                                                                                                      | 04511                                                                                              | 10                                                     | 0.2              | 0.2   | 7-0         | 10           |             | 9                     | ÷            |                         | 9      | 1 1         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                            | 8             | [                                   | 23.4  |                   | 23.1               | 88   | 62 .       | - 7   | ÷                                                                                                        | <u>09013</u>                                                                                       | 0                                                      | 0.2              | 0.2   |             | E            |             | 4                     | ٥            | 107                     | 6.0    | 9.9         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                            | 8 4           |                                     | 27.1  |                   | 1.12               | 83.  | 53         | C /   |                                                                                                          | 16013                                                                                              | ( )                                                    | 0.3              | 0     |             |              | - 4         | <u> </u>              | si v         | 8 4                     | 2      |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                             | 2.2           |                                     | 6 7C  |                   |                    | o o  |            |       |                                                                                                          |                                                                                                    |                                                        | 200              | 7 0   |             |              |             |                       | _            |                         | 200    |             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                            | 2.4           |                                     | 24.0  |                   | 23.5               | 66   | 54         | 2     |                                                                                                          | 11060                                                                                              |                                                        | 0.0              | 0.2   | -<br>-<br>- | 0.2          | 0.010       | 7<br>7<br>7<br>7<br>7 | <u></u>      | 28.4                    |        | 12.6        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                              | 22.8          | 24.                                 | 24.2  |                   | 22.6               | 84   | 61         |       |                                                                                                          | 28509                                                                                              | 0.2                                                    | 0 0              | 1 0   |             | 0 1          |             |                       |              | 42 4                    | 0 0    | 17          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                             | 23.2          |                                     | 24.8  |                   | 23.9               | 100  | 25         | 60    |                                                                                                          | 28510                                                                                              | 6.0                                                    | 0.2              | 0.2   | 0.0         | 0.2          | 0.5         | 3 15.                 | -            |                         | 14.0   | 21.0        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                            | 0.45          | 25.2                                | 25.0  |                   | 24.4               | 93   | 63         | 82    |                                                                                                          | 19507                                                                                              | 0.2                                                    | 0.2              | 0.2   | 0 3         | 0 2          | 0.1         | 2 27                  |              | 89.2                    | 17.9   | 35.5        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                            | 24.7          |                                     | 26.3  | *                 | 25.1               | 76   | 58         |       | _                                                                                                        | 12505                                                                                              | 0.2                                                    | 0.0              | -     | 0.2         | 0 1          | 0<br>2<br>0 | 1. 28.                | i            | 24.3                    | 0.0    | 25.2        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                            | 2.0           |                                     | 25.8  | _                 | 24.2               | -100 | 10         |       |                                                                                                          | 31012                                                                                              | 0.2                                                    | 0,2              | 0     | <u> </u>    | 0 2          |             |                       | 1            | 20.5                    | 0 6    | 14.0        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                              | 8.17          | <u> </u>                            | 25.0  | ŝ                 | 24.5               | 00   | 25         |       | ÷                                                                                                        | 31513                                                                                              | 0.2                                                    | 0.2              | 0.2   | 0.3         | 2-2-         | 1 70        | 2 11                  | 1            | 21.9                    | 11.5   |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                             | 24.9          | 1                                   | 25.1  | ŝ                 | 24.2               | 100  | 44         | 11    |                                                                                                          | 25513                                                                                              | 0.2                                                    |                  | · • I | <u>( )</u>  | •            | 0.50        |                       |              | 47.9                    | 0.4    | 23.4        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                            | 24.6          | <u>1</u> .                          | 25.1  |                   | 24.6               | - 36 | - 17       | 76    |                                                                                                          | 03519                                                                                              | 0.4                                                    | 0.2              | 0.3   | 0.5         | 7 U          | <u>-</u>    |                       | 5            | 26                      | 4.5    | 2.9         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                            | 23.9          |                                     | 24.4  |                   | 24.0               | 95   | 42         |       | مرنيت<br>1                                                                                               | 04524                                                                                              | 2                                                      | 0.3              | 10    |             | 9            | -           | <u> </u>              | - أي<br>ا    | 60                      |        | 2           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                            | 7             |                                     | 24.8  | _                 | 24.2 -             | 001  | 5          |       |                                                                                                          | -71016-                                                                                            | 3                                                      | 0.2              |       | 0.8         | ٩            |             | <u>- -</u><br>        | اڭ           | 2                       | 0.0    | ہ ان<br>ان  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                              | 34.4          | 1                                   | 872   | and a spin of the | 24.8.              |      |            | 87    | 12002                                                                                                    | 10215                                                                                              | 6.0                                                    | 0-2-0            | 0.2   | - H         | -            |             | 4                     |              | 14.0                    |        | 7<br>7<br>7 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                            |               | 1                                   | 244   |                   |                    |      |            |       | -17071                                                                                                   | 12211                                                                                              |                                                        |                  |       | 4-10-       |              |             | י א<br>ה ה            |              | 104                     | 4 4    | d v         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                             | 4460          | 1                                   | . %   |                   |                    | a b  | 17         |       | 110000                                                                                                   | 21251                                                                                              |                                                        |                  |       | 20          |              |             | م<br>و                |              |                         | 2 2    |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                             | 26.6          | 24                                  | 26.3  | N V               | 24.0               | 001  | 001        | 001   | 0000                                                                                                     | 01060                                                                                              |                                                        |                  |       |             | 0            |             | 1                     | 1.0          | -                       | 0      | 6           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                            | <b>;</b>      |                                     | }     | -                 |                    |      |            |       | - ·                                                                                                      |                                                                                                    | <br> <br>                                              |                  |       |             |              | 4<br>4<br>1 |                       | <br><u>v</u> |                         | 1      |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                             |               |                                     | 1     |                   |                    |      | 1          | 1     | ,                                                                                                        |                                                                                                    | ·<br>                                                  | 1                |       |             |              |             |                       |              |                         |        |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                             |               | •                                   | '     |                   |                    | •    |            | 1     | 1                                                                                                        |                                                                                                    |                                                        | •                |       | •           | -            | •           |                       | •            |                         | . 1    |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                              | ,             | •                                   | ,     | 1                 | 100<br>1           | 1    | -          |       | 1                                                                                                        | i                                                                                                  | •                                                      |                  | .1    |             |              |             |                       | (            | •                       |        | - 1         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                             | 2.92          | 0.72                                | 2.95  |                   | 25.9 -             | 76   |            |       | 30012                                                                                                    | 30015                                                                                              | 0.2                                                    | 0.2              | 0 2   | 0 4         | 0.0          | 0.5 D       | 3 7                   | 5            | 16.0                    | 4.5    | 8.1         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                              | 22.5          |                                     | 26.1  |                   | 25.6               | 100  |            | 87    | 30000                                                                                                    | 30514                                                                                              | 0.2                                                    | 0.2              | 0 2   | 70          | 0            | 0.5 0       | 4                     | м            | 8<br>5                  | d      | 6.6         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                              | 242           |                                     | 26.92 |                   | 26.1               | 100  | B2         | 94    | 00030                                                                                                    |                                                                                                    | 2.0                                                    |                  | 0.1   | <u>- 0</u>  | 0.2          |             | 2 7                   | 1            | 54.8                    |        | 2-94        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                              | 2.92          |                                     | 26.6  | _                 | 26.3               | 20   | 69         | 80    | 06007                                                                                                    | 27514                                                                                              | 2.0                                                    | 0.2              | 0.2   | 0           | 0            | 0.5 0       | <u>ه</u>              | 2            | 17-1                    | 4      | 2           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                            | 26.8          |                                     | 22.8  | _                 | 26.5               |      | 24         | J     | 06005                                                                                                    | 07009                                                                                              | 2.0                                                    | 0.2              | 0 2   | 03          | 2.0          |             | 5                     | ٩            | 7 7 7                   |        |             |
| 0     25.2     25.3     24.2     24.2     24.2     24.2     24.2     59     80     09006     0.3     0.2     0.4     0.3     0.6     1.6     7.2     25.2     5.3     12       8     28.3     27.8     26.1     26.1     26.0     100     100     100     100     100     100     100     50.5     5.2     11.1     0.6     1.6     1.1     28.9     17.9     35.2 |               |                                     | 22.4  |                   | 26.2               | 100  | 69         | 18    | 10000                                                                                                    | 12007                                                                                              | 0.2                                                    | 0.0              | 0.2   | 0 0         | 0 2          | 0.30        | 2 9                   | .            | 25.4                    | 6.6    | ` ₹.        |
| 8 28.3 27.8 26.1 26.7 100 100 100 X 04524 0.7 0 0.4 1.1 0.6 1.6 1.1 28.9 15.2 89.2 17.9 35                                                                                                                                                                                                                                                                         | 24:0          |                                     |       | _                 | - 7<br>2<br>6<br>7 | 76   | 6,5        | 08    | 00006                                                                                                    | X                                                                                                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                 |                  |       |             |              | 9           | ÷                     | 6 7 2        |                         | ~~<br> |             |
|                                                                                                                                                                                                                                                                                                                                                                    | 0.00          | 1                                   | -t    | - 1               |                    | 001  | 001        | 001   |                                                                                                          |                                                                                                    | 0.7                                                    | 4 X              | ł.    |             | 9 0          | <u></u>     |                       |              | 89.2                    |        | · · •       |
|                                                                                                                                                                                                                                                                                                                                                                    | 10.0          |                                     | •     | -                 |                    |      |            |       |                                                                                                          | 104224                                                                                             |                                                        | $\left  \right $ |       |             |              | <u>.</u>    | Ļ.                    | 1            | $\overline{\mathbb{V}}$ |        | 4           |
|                                                                                                                                                                                                                                                                                                                                                                    | •             |                                     | •     |                   |                    |      | -          | ·     |                                                                                                          | ·                                                                                                  |                                                        |                  |       |             |              |             |                       |              |                         | •      |             |
|                                                                                                                                                                                                                                                                                                                                                                    |               |                                     |       |                   |                    |      |            |       |                                                                                                          |                                                                                                    |                                                        |                  |       |             |              |             |                       |              |                         |        |             |

|                                                       | دي<br>  د د <b> </b> | nean   | 24.5     | <u>م</u> ان | []<br>[]    | 20            | 10        | 0.0      | د ا            | 6.3        |                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 9. 5                                  | 8.5             | 6.9       | 8-4       | 8                |              |         | 11.6               | 38.7       | 28.6    | 51.4     | 37.1     | 4             | C          | 5.3      | 9.5            |     | ን      | 1        | i<br>I d     |     |
|-------------------------------------------------------|----------------------|--------|----------|-------------|-------------|---------------|-----------|----------|----------------|------------|-------------------|-----------------------------------------|---------------------------------------|-----------------|-----------|-----------|------------------|--------------|---------|--------------------|------------|---------|----------|----------|---------------|------------|----------|----------------|-----|--------|----------|--------------|-----|
| .su                                                   |                      | ain ae | _        |             |             |               | Ŀ         |          | 0.0            | 1.4        | <u> </u> .        |                                         |                                       | l               |           |           | [                |              | L.,     | 0.0                |            |         | 5        |          | 0.0           |            | 100      |                | ľ . | 14     | -0       |              |     |
| 1011                                                  | nean.                |        | -        |             | 010         |               | <u> </u>  |          |                |            |                   |                                         |                                       |                 | -         |           |                  |              |         |                    |            |         |          | <u> </u> | <u> </u>      | 1          |          |                |     | 7 5.   | ,<br>,   |              |     |
| SYNCFTIC HOURS                                        | É1                   | ai max | 5 73 8   | ÷           | 6 70        | <u> </u>      |           |          | 8              | <u> </u> ~ |                   |                                         | _                                     | i               |           |           | -+-              | -+.          | -       | 29.62              |            |         | 91.2     |          | 62            |            | ·        | 21.            |     | 32     | ā        | X            |     |
| . 00,                                                 | 88<br>15             |        | 9 10 5   | - t         | 0<br>9<br>0 | - <del></del> |           |          | 2              | <u> </u> ~ |                   | 1                                       |                                       |                 |           | <u> </u>  |                  | · I.         |         |                    | 1          | 6.010   | 5.       | <u></u>  | 8             |            | 10,7     | _              |     | 7.1    |          |              |     |
| ie ie                                                 | <u></u>              | (a)    |          |             | 5 12.5      | <u> </u>      |           |          |                | 2.0        | <u> </u>          | <u> </u>                                | <u>0-6</u> L                          | <u>م</u>        |           |           | _                |              | <br>    |                    |            | 2 15.0  | 2        | 2 21     | 2 20.9        |            | <u>ا</u> | 1              |     | 4 11 1 |          | $\mathbb{N}$ |     |
| BASED<br>LON                                          | ll max               | maxmea |          |             | 0.2         | 0.60.4        | i m       | CI       | 0.3 0.2        | 0.6 0.5    |                   |                                         | لبواديو                               | 0.50            | 5         |           | -                | <u>)</u><br> | 7       | <u>0.3</u> 18.2    | _          | 0.3 0.2 | 0:3      |          | 0.40          | _          | 1.30.9   | 0.70.4         |     | 0,60.  |          |              |     |
| VALUES 1                                              | g (M)                |        | 1        | 0.2         |             | 1-            | <u> </u>  |          | ~              | 0          | 1                 | 1-1                                     |                                       |                 |           | <br>!     | مر <u>ن</u> مہ ا |              | x  -    | 1 2 0              | ÷          | 1       |          | -1       | 0.2           | <u> </u>   | 10       |                |     | 0.3    | 0        |              |     |
|                                                       | II SI                | nax n  | с<br>0   |             |             | <u> </u>      | <u> </u>  |          | 0 2            | - 7        | <u> </u>          | <u> </u>                                | 0.2                                   |                 | 0.4       | ~         |                  |              |         |                    | - <u> </u> | 0.3     | 0.3      |          | <u> </u>      | - v        | <u> </u> | <u> </u>       |     | 0.4    | <u> </u> | -iV          |     |
| * ALL                                                 | ters)                | mean   | 1        | 1           | 1           |               |           | 0        | 0 5            | 0.7        | ~                 | 2                                       |                                       |                 | ~         |           | -                | ~ `          | 1       | 100                | 2          | 0.2     | 0.2      | ~        | 1.0           | -          | j<br>n   | <u>.</u><br> ~ |     | . 2    |          | <u>, (</u>   |     |
|                                                       | (Me te               |        |          | <u> </u>    | 1           | <u></u>       | <br>      |          |                | ~          |                   |                                         |                                       |                 | <br><br>  |           | <u>.</u><br>1    | <br><br>     |         |                    | <br>       | 0       | .2       | <br><br> | 0             | .   c      |          | .<br>          |     | 0      | <br> \   |              |     |
| .N<br>rology<br>lou<br>Y                              | Mean                 | utu    | 0        | 0.2         |             | 0.2           | 0.0       | 0.0      | 0              | 0          |                   |                                         | 0.0                                   | o<br>I          | j         | 0         | 0.0              | 0<br>0<br>   |         | * 0<br>7<br>7<br>0 | 0.2        | 0       | Ö        | 0        |               | <u> </u>   |          |                |     | 0      | <u> </u> | 0.0          |     |
| E OF OMAN<br>al of Meteor<br>ommunicatio<br>SUMMAAAY  | Ĩ                    | max    | 0 2      | 2 0         | •1          |               | 2.6       | 0.2      | 0 2            | 0          | 4 -               | 0                                       | 2.0                                   | 0.2             | 0.2       |           |                  | •            |         | 20                 | 7-0        | 0.2     | 0.0      |          | 0             | '  ~       | 7.0      | 0.0            |     | 0.3    |          | X            |     |
| (                                                     | (Dir./speed kis)     | N=K    | 12011    | 13509       | 9013        | 07513         | 27009     | 22509    | 36007          | 27012      | 06518             | 27010                                   | 1.1515.                               | 10513           | 09016     | 12512     | 30510            | 23507        | הזכור   | 210015             | 01007      | 29509   | 30009.   | 21010    | 16511         | 125        | 61080    | 09021          |     | X      |          |              | •   |
| SULTANAT<br>clotate Gene<br>Nliutsity of C<br>CLIMATE | d (Dir./)            | P tov. | _        | 12006       | _           | 12007         |           |          | 2700.7         | 27008      |                   | -                                       |                                       | 12007           |           | ÷         |                  |              | _       | 20005              |            |         |          |          | 00000         |            | 11060    |                | _   | 12008  | ÷        |              | 1   |
| 10                                                    | Wind                 |        |          | 1           |             | 1             | <br>      |          |                | 1          | <br>              |                                         |                                       |                 | 1         | .         |                  |              | 1.      | <br>               |            |         |          |          | i.            | 1          | 1        | 1              |     |        | 1        | 1            | , ÷ |
| :                                                     | (%) (;               | mea    | 56       | 7           |             |               | 72        | 80       |                | 100        | 100               | 001                                     | 8                                     | 2               | <u>62</u> | 63        | 65               | 25           |         | 19                 | 60         | 11      | 27       | 5        | 54            | •  ¥       | 13       | 35             | 1   | 69     |          |              | •   |
| •                                                     | Number ty (%         | mln .  | 87       | 56          | 46          | 47            | 55        | 65 .     | 66             | 100        | 00                | 100                                     | 60                                    | 37              | 51        | 45        | 48               |              |         | 10                 | 4 5        | 42      | 16       | 50       | 76            | 107        | 16       | 22             |     | 53     |          | 16           | l   |
|                                                       | 1. Ilu               | E      |          | -           |             |               | <br> <br> |          |                |            | 1-                |                                         |                                       | .               |           | ·  <br> - |                  | .            |         | <br> <br>          |            |         | ·  <br>  | ·  <br>· | <u> </u><br>- |            |          |                |     |        |          |              | -   |
| •<br>• •                                              | Re                   | тах    | 100      | 8           | 20          | 3 75          | 6         | 86       | 8<br>          | 001        | 001               | 001                                     | 100                                   | 68              | 78        | - 76      | 8                | 24           |         | 6                  | 84         | 98      | 26       | 2        | 62            | - 3        |          | 2              | 1   | . 8    |          | 25<br>25     |     |
|                                                       | C)                   | Mcao   | 5.3      | 27.4        | 26.8        | 26.3          | 26.8      | 22.2     | 2.2            | 26.5       | 25.9              | 26.8                                    | 22.2.                                 | 27.6            | 22.8.6    | 32.2      | 28.2             | 28.1.        |         | 28.2               | 28.2       | 28.6    | 2.2.2    | 29-0     | 29.1          |            | 28.5     | 28.9           |     | 27.7   |          | 25,9         | 1   |
| 1                                                     | Temp (C              | Nfia.  | 1        | <u> </u>    |             | 6 5 6         | 1         |          | 26.9           | 25.7       | <u> </u>          |                                         | i i i i i i i i i i i i i i i i i i i | 27.2            |           |           | <u> </u>         |              | 1       | 27.6               |            |         | 1        |          | 2             | 1 0<br>1 0 | ÷        | ,<br>in        |     | 27.2   |          | 24.18        | 1   |
| (\$001                                                | Sea T                | N LA.  | 27.7 2   | · · ·       | 2.1         | 0.0           | 1         | <u>-</u> | 28.0 3         | 27.0       | -                 |                                         |                                       |                 | ,         |           | ÷                | ÷            | 7 7 7 7 |                    | ·          |         |          |          | q             | 1 0 0 0    |          | 29.62          |     | 28.3 2 | ·<br>  ( | 26.6 2       |     |
| ( SOOGA O ABOOS )                                     |                      | 1      |          | 28.3 2      |             | 2 3 2         | 1         |          | 4              | 1-         | а <u>нан</u><br>1 |                                         |                                       | 30.3            |           | <u></u>   |                  |              | 1       | 29.7.62            | 1          |         | 1        |          | 9             | مسجد       | 30.4     | 1              |     | 29.1 2 |          | 26.7 12      | -   |
| 1 984                                                 |                      | NIA.   | 1 -      | <u> </u>    | 26.9 27     |               |           | 2        | <u>26.0 28</u> | · · · ·    | <u>.</u>          | i and                                   |                                       | <del>، در</del> |           |           |                  | 4            |         | 28.4 29            | -          | 9       | <u> </u> |          | Ч             |            | 28.2 3(  | ÷              |     | 0      |          | 1 1          |     |
| BUOY NO                                               | T L cabcaine         |        | <u> </u> | ÷           |             |               | ÷         | <u> </u> | <u> </u>       | 4 26.4     | 1                 |                                         | _                                     |                 |           |           |                  | <u> </u>     | -       |                    |            |         | <u> </u> | -        | -2            |            | <u> </u> |                |     | 6 28   | 6        |              |     |
| NO BI                                                 |                      |        | 27.5     |             | 28 e        |               | 28.8      | 29.8     |                | 27.4       | 27 6              | 27 6                                    | 20.9                                  | 1.1             | 30.9      | 30.8      | 9.12             |              |         |                    | 32         | 32.2    | 33.8     | 33.4     | 32            |            |          | Ī              |     |        | 1        | <b>1</b>     | -   |
| : нтион :<br>Монтис                                   |                      | 140    | -        | ~           | - -         | -   ~         | ~         | ~        | -              | 2          | =                 | 2                                       | 2                                     |                 | ב <br>-13 | '         | <b>~</b>         |              |         | 1                  | 2          | ຊ       | ž        | 2        | 8             |            | ង        | 1 8            | Ä   | Man    | N IN     | Mlb          |     |

# 2.2 GHUBRAH POWER STATION

### SEA WATER TEMPERATURE

. ...

· .

,

|             | 1984                  |             | 1983                  |
|-------------|-----------------------|-------------|-----------------------|
| MONTH, DATE | S.W. TEMPERATURE (°C) | MONTH, DATE | S.W. TEMPERATURE (°C) |
| 1. 4        | 23.7                  | 1982.12.27  | 22.3                  |
| 1.12        | 23.8                  | 1.9         | 23.3                  |
| 1.18        | 23.5                  | 1.12        | 23.0                  |
| 2.4         | 22.2                  | 1.19        | 22.9                  |
| 2.MIDDLE    | 23.6                  | 1.25        | 22.4                  |
| 2.25        | 22.5                  | 2.5         | 21.6                  |
| 3.5         | 24.4                  | 4.15        | 25.0                  |
| 3.11        | 24.0                  | 4.MIDDLE    | 25.5                  |
| 3.18        | 25.5                  | 4.END       | 27.5                  |
| 3.END       | 25.5                  | 5.19        | 30.0                  |
| 4.3         | 27.0                  | 6.5         | 32.4                  |
| 4.18        | 28.2                  | 7.4         | 33.5                  |
| 5.11        | 29.0                  | 7.12        | 31.4                  |
| 5.END       | 30.5                  | 7.19        | 31.0                  |
| 6.7         | 32.1                  | 7.26        | 24.1                  |
| 6.20        | 33.7                  | 8.4         | 21.5                  |
| 6.25        | 32.2                  | 8.11        | 22.3                  |
| 7.5         | 30.5                  | 8.18        | 26.5                  |
| 7.17        | 27.2                  | 8.27        | 27.0                  |
| 8.14        | 27                    | 9.5         | 27.0                  |
| 8.26        | 28.4                  | 10.18       | 30.0                  |
| 2.END       | 23.6                  | 10.END      | 29.0                  |
|             |                       | 11.MIDDLE   | 27.0                  |
|             |                       | 11.MIDDLE   | 26.8                  |

Ghubrah Power Station Sea Water Temperature - 1/2

|             | 1982                  |             | 1981                  |
|-------------|-----------------------|-------------|-----------------------|
| MONTH, DATE | S.W. TEMPERATURE (°C) | MONTH, DATE | S.W. TEMPERATURE (°C) |
| 2.2         | 23.3                  | 1980.12.26  | 23.4                  |
| 4.17        | 28.3                  | 2.25        | 22.6                  |
| 4.26        | 28.7                  | 4.25        | 28.5                  |
| 5.5         | 28.5                  | 7.18        | 30.5                  |
| 5.10        | 30.4                  | 7.28        | 32.0                  |
| 5.18        | 30.3                  | 9.5         | 29.4                  |
| 6.26        | 32.2                  |             |                       |
| 7.17        | 32.5                  |             |                       |
| 7.28        | 27.5                  |             |                       |
| 8.4         | 31.2                  |             |                       |
| 8.11        | 31.3                  |             |                       |
| 8.20        | 30.2                  |             |                       |
| 8,28        | 27.6                  |             |                       |
| 9.3         | 27.3                  |             |                       |
| 9.11        | 30.5                  |             |                       |
| 9.17        | 30.4                  |             |                       |
| 9.25        | 30.6                  |             |                       |
| 12.11       | 23.4                  |             |                       |
| 12.19       | 23.8                  |             |                       |

Ghubrah Power Station Sea Water Temperature - 2/2

. .

-

.

### ANNEX 3

### REVERSE OSMOSIS PROCESS

FOR

### POWER AND DESALINATION COMPLEX PLANT

IN

THE SULTANATE OF OMAN

. •

.

, **A** 

.

• . .

#### 1. OUTLINE OF REVERSE OSMOSIS PROCESS

#### (1) · Principle

In general, it is said that a membrane, which allows water to pass through and retards the passage of dissolved ions and molecules, is a semipermeable membrane. A tank is devided into two parts with this semipermeable membrane. And pure water and aqueous solution, which contains ions and molecules are fed into each side of the tank respectively. This produces a force to eliminate the concentration difference, thus allowing the pure water to permeate into the aqueous solution through the semipermeable membrane (osmosis phenomenon). This flow continues until the pressure difference between two sides developed by the above permeation reaches the pressure (force) produced by the concentration difference. This pressure difference is called "osmotic pressure". If a pressure higher than the osmotic pressure is applied to the aqueous solution side in the above system, the flow is from the aqueous solution to the pure water which is in the opposit direction to the osmosis phenomenon.

This is called reverse osmosis.

(2) Features of Reverse Osmosis (RO) Process

RO process has following advantages.

a) Less energy consumption

Because of non-phase-change property, which is shown above, RO is less energy consumption process.

b) Cheaper construction cost

- c) Smaller required space and shorter construction period
- d) Easier operation and shorter start up time

(3) Application of RO Process

The process such as Evaporation, RO, electrodialysis (ED) and freezing are applied for a process to produce potable water from sea water and brackish water. And each rough market share in land based desalination plant is 76% for evaporation, 20% for RO, 4% for ED.

And in the view point of raw water source, evaporation process is mainly applied for sea water desalination and RO/ED process are mainly applied for brackish water desalination.

There are easily understood with the differences in principles between evaporation and RO, and the most effective application, which can realize the features of RO process, is for a desalination of brackish water which contains salt between 2000 and 5000 ppm.

However, recently, RO process has been rated as a competitive process against evaporation, because RO membrane, which has high salt rejection and high permeability, and which can realize the single stage desalination from sea water, has been developed and been operated more than five years.

Especially in countries difficult to get cheap energy source and in single purpose desalination plant, RO process has been adopted widely.

These can be clearly understood with the event that the RO process occupied 6 plants among 8 of more than 1 MGD desalination plants contracted in 1984.

#### 2. PLANT DESCRIPTION

(1) Plant Specification

| System                   | : | Single stage desalination by RO  |
|--------------------------|---|----------------------------------|
| Production capacity      | : | 180,000 m <sup>3</sup> /day      |
| Nos. of Unit             | : | 15,000 $m^3/day \times 12$ Units |
| Quality of product water | : | WHO Guideline                    |

| Water balance                | ; | Sea water intake                         | 540,000 m <sup>3</sup> /day      |
|------------------------------|---|------------------------------------------|----------------------------------|
|                              | : | RO module feed                           | 515,000 m <sup>3</sup> /day      |
|                              | : | Product water                            | $180,000 \text{ m}^3/\text{day}$ |
|                              | : | Brine & waste                            | 360,000 m <sup>3</sup> /day      |
|                              |   |                                          |                                  |
| RO module                    | : | for Single stage se                      | ea water desalination            |
| Module operating condition   | : | Raw sea water TDS                        | 39,600 ppm                       |
|                              | : | Operating pressure                       |                                  |
|                              | : | Recovery ratio                           | 35%                              |
|                              | : | Feed FI                                  | 4 and less                       |
|                              |   |                                          | n of Fouling Index and           |
| •                            |   |                                          | very small solids &              |
|                              |   | · · · ·                                  | e feed water in RO pro-          |
|                              |   | cess.)                                   | p                                |
|                              | : | Feed pH                                  | 6 - 6.5                          |
| •                            | : | Feed Chlorine                            | 1.0 mg/1 and less                |
|                              | : | Feed temperature                         | 22 - 35 °C                       |
|                              |   | *                                        | · · ·                            |
| Electric power supplied      | : | 38,700 kW                                |                                  |
| Required overall space       |   | 48,000 m <sup>2</sup> (160 m x           | 200 m)                           |
| Required Overall space       | : | 48,000 lu- (100 m x                      | 500 m/                           |
| Building                     | : | 11,950 m <sup>2</sup>                    | · ·                              |
|                              |   |                                          |                                  |
| for RO operation             | : | 5,000 m <sup>2</sup> (50 m x 10          |                                  |
| for Pump station             | : | 1,350 m <sup>2</sup> (30 m x 45          |                                  |
| for Waste water treatm.      | : | $250 \text{ m}^2$ (10 m x 25             |                                  |
| for Substation               | : | 400 m2 (20 m x 20                        |                                  |
| for Office                   | : | 500 m2 (20 m x 25                        |                                  |
| for Warehouse & work<br>shop | : | $1,200 \text{ m}^2 (30 \text{ m x } 40)$ | ) m)                             |
|                              |   |                                          |                                  |
| Organization                 |   |                                          |                                  |
|                              |   | . · ·                                    |                                  |
| Plant manager                | : | 1                                        |                                  |
| Administration section       | : | 9                                        |                                  |
| Operating section            | : | 48                                       |                                  |
| Maintenance section          | : | 26                                       |                                  |
| Total                        | : | 84 persons                               |                                  |

A3 - 3

Construction period

Annual operating days

Plant life

(2) System Configuration

Pretreatment section

RO section

Post treatment section Membrane cleaning section

Chemical dosing section

Waste water treatment section

: 24 months (excluding design and engineering period) : 330 days

20 years

:

Coagulation & sedimentation basin Gravity dual media filter 48 filters (8 filters x 6 units)

Safety cartridge filter High press. pump & power recovery turbine RO module (12 units)

Lime dosing unit

Ferric chloride dosing unit

Sulfuric acid dosing unit (Sodium hypochloride will be dosed in the sea water intake section)

Polyelectrolyte dosing unit (for waste water treatment)

Coagulation clarifier Thickener Dewatering Decanter

(3) Process Description

a) Pretreatment section

Raw sea water is transferred to flocculation basin after dosage of ferric chloride. In the basin, the flock of ferric hydroxide is formed, and colloidal and suspended solids in raw sea water will be caught in the flock. And flocculated sea water is introduced into gravity dual media filter, and filtrated completely and then stored in filtered water basin. Each dual media filter will be backwashed once a day using raw sea water and scouring air, and backwash waste water is transferred to waste water treatment section.

And chlorine to prevent the growth of microorganisms in raw sea water is expected being doesd in raw sea water intake section, and the residual chlorine concentration at the inlet of pretreatment section will be expected to remain in the level of 1 through 2 mg/1.

b) RO Section

Filtered sea water, which is stored in filtered water basin, is transferred by booster pump to the suction side of high pressure pump after it is polished by safety cartridge filter.

In the piping just before the filter, sulfuric acid is dosed in order to control automatically the pH value of raw sea water between 6 and 6.5.

Polished raw sea water is pressurized by high pressure pump in the level between 60 and 65 kg/cm<sup>2</sup> and fed to RO module after the feed flow rate is controlled in the predetermined level.

In RO module, raw sea water is separated into desalinated water (product water) and concentrated sea water. The concentrated sea water, which still has residual pressure of 58 through 63 kg/cm<sup>2</sup>, is transferred into power recovery turbine and the energy contained in it is recovered. After that, concentrated sea water is discharged together with the effluent of waste water treatment section.

c) Post treatment section

Slaked lime is doesed to product desalinated water from RO section in order to control the pH value and to add minerals for it, because the value of pH and minerals of product water is in relatively low level.

d) Membrane cleaning section

RO membrane is cleaned once per 6 months in maximum using citric acid and aqueous ammonia. e) Waste water treatment section

Backwash waste water from pretreatment section is stored in backwash waste basin in order to uniform the concentration of suspended solids in it, and then transferred to coagulation clarifier.

In the clarifier, anionic polyelectrolyte is dosed and suspended solids concentration of over flow is reduced to less than 20 ppm.

After that, over flow of clarifier is discharged together with concentrated sea water from RO section.

Sludge drain of clarifier is transferred to thickener in order to concentrate the sludge and then transferred to dewatering decanter. In the piping, cationic polyelectrolyte is dosed in order to improve efficiency of dewatering in decanter.

And over flow and filtrated water from decanter is returned to coagulation clarifier.

(4) Materials for Major Part

RO process has a feature of non-phase-change, which can be understood with principles of the process, and all part of the plant can be operated under the normal temperature. Therefore, it is not necessary in RO process to apply high grade materials like titanium or copper-nickel alloy, which is applied to the high temperature part of evaporation process.

Materials to be applied for RO process are as follows.

Equipment (Contact to sea water) : 316 SS/CS + rubber lining

Equipment (Contact to fresh water): 304 SS or C.I.

Piping (Contact to sea water)

| [Large size / High pressure] | : CS + PE lining (Sch.80) |
|------------------------------|---------------------------|
| [Large size / Low pressure]  | : CS + PE lining or FRP   |
| [Small size / High pressure] | : 316 SS                  |
| [Small size / Low pressure]  | : FRP                     |
|                              |                           |

Piping (Contact to fresh water) : FRP

A3 - 6

(5) Chemicals list

| Ferric chloride     | ;  | 37% sol.   | [Coagulant for pretreatment]    |
|---------------------|----|------------|---------------------------------|
| Sulfuric acid       | :  | 98% sol.   | [pH control]                    |
| Slaked lime         | :  | 100% powd. | [Post treatment]                |
| Polyelectrolyte (A) | :  | 100% powd. | [Coagulant for waste treatment] |
| Polyelectrolyte (C) | `: | 100% powd. | [Coagulant for waste treatment] |
| Citric acid         | ;  | 100% powd. | [Membrane cleaning]             |
| Aqueous ammonia     | :  | 25% sol.   | [Membrane cleaning]             |
| Formalin            | :  | 40% sol.   | [Membrane preservation]         |

(6) Maintenance Items

Following periodical maintenance items shall be considered.

a) Daily items

Patrol and visual check for equipment Check for chemicals quantity

b) Monthly items

Replacement of cartridge filter elements Replenishment of chemicals

c) Annual items

Replacement of spare parts and overhaul for equipment Membrane cleaning and replacement

A3 - 7

# 3. CONSTRUCTION COST

[Overall construction cost] : 95.760 MRO

| (Items)          |            |
|------------------|------------|
| CIF              | 47.606 MRO |
| Erection         | 10.944 MRO |
| Civil & Building | 37.210 MRO |

4. OPERATING COST

[Overall operating cost] : 0.1557 RO/m<sup>3</sup> product

|     | (Items)          | (Consumption)           | (Unit price)  | (Operating cost)         |
|-----|------------------|-------------------------|---------------|--------------------------|
| (1) | Electricity      | 4.27 kWh/m <sup>3</sup> | @0.020 RO/kWh | 0.0854 RO/m <sup>3</sup> |
| (2) | Chemicals        |                         |               | 0.0393 RO/m <sup>3</sup> |
|     | Ferric chloride  | 33.2 g/m <sup>3</sup>   | @0.182 RO/kg  | 0.0060                   |
|     | Sulfuric acid    | 171.4 g/m <sup>3</sup>  | @0.176 RO/kg  | 0.0302                   |
|     | Slaked lime      | 26.0 g/m <sup>3</sup>   | @0.0715 RO/kg | 0.0019                   |
|     | Polyelectrolyte  | 0.266 g/m <sup>3</sup>  | @0.266 RO/kg  | 0.0001                   |
|     | Citric acid      | 1.21 g/m <sup>3</sup>   | @0.847 RO/kg  | 0.0010                   |
| -   | Aq. Ammonia      | 0.364 g/m <sup>3</sup>  | @0.364 RO/kg  | 0.0001                   |
| (3) | Cartridge filter | 0.0066 $pcs/m^3$        | @1.5 RO/pc    | 0.0099 RO/m <sup>3</sup> |
| (4) | RO membrane      | <br>                    |               | 0.0211 RO/m <sup>3</sup> |
|     |                  |                         |               | 0.1577 00/~3             |

Total

0.1577 RO/m<sup>3</sup>

ANNEX 4

### CALCULATION FOR

### AIR POLLUTION IN ENVIRONMENT PROBLEM

|         | Type-A So 1%                                                                           | Chimney 80 m | L                      |                                   |
|---------|----------------------------------------------------------------------------------------|--------------|------------------------|-----------------------------------|
| 1.      | Fuel Consumption<br>Basic Specification                                                | Abbreviati   | on/Unit                | Applying value<br>of this project |
| 1.      | Output at Generator end                                                                | Ро           | MW                     | 120                               |
| 2.      | Power plant thermal efficiency                                                         | Чр           | %                      | 25                                |
| 3.      | Fuel combustion ratio                                                                  | ರ            | %                      | 100                               |
| 4.      | High heat value of fuel                                                                | Hh'          | kcal/kg                | 10,700                            |
|         | Calculation Form                                                                       |              |                        |                                   |
| 0       | Fuel consumption                                                                       | Fo           | т/н                    |                                   |
|         | Fo = $\frac{Po \times 860 \times \frac{d}{100}}{\frac{q_{4}p}{100} \times \text{Hh'}}$ | · · · · ·    |                        | 38.6 T/H                          |
| 2.      | Combustion Gas Volume                                                                  |              | •                      | •••                               |
|         | Basic Specification                                                                    |              |                        | •                                 |
| 1.      | Hydrogen                                                                               | ho '         | %                      | 12.5                              |
| 2.      | High heat value of fuel                                                                | Hh'          | kca1/kg                | 10,700                            |
| 3.      | 0 <sub>2</sub> content in flue gas                                                     | 02           | %                      | 4.0                               |
|         | Calculation Form                                                                       |              | ×                      |                                   |
| • •     | Low heat value of Fuel H1'                                                             | н1 '         | kca1/kg                |                                   |
| · · · . | H1' = Hh' - 6 (9 x ho')                                                                |              |                        | 10,025                            |
| o       | Excess air ratio m                                                                     | a            | <b>→</b>               |                                   |
|         | $m = \frac{21}{21 - 0_2}$                                                              | ·            |                        | 1.24                              |
| ٥       | Combustion Gas Volume                                                                  |              | •                      |                                   |
|         | . Theorethical air volume                                                              | Ao*          | Nm <sup>3</sup> /kg-fu | e1                                |
|         | Ao' = $0.85 \times H1' \times 10^{-3} + 2.0$                                           | . <b>.</b>   |                        |                                   |
|         | . Theorethical combustion gas volume                                                   | Go'          | Nm <sup>3</sup> /kg-fu | el                                |
|         | $Go' = 1.11 \times H1' \times 10^{-3}$                                                 |              |                        | 11.13                             |

# Calculation for Air Pollution in Environment Problem

|    |                                                                                  | <b>a</b>     |                    |                     |
|----|----------------------------------------------------------------------------------|--------------|--------------------|---------------------|
|    |                                                                                  | G            | -                  |                     |
|    | at Wet gas condition                                                             | G'w          |                    |                     |
|    | $G^{\dagger}W = GO^{\dagger} + (m-1)AO^{\dagger}$                                | ·            |                    | 13.65               |
|    | at Dry gas condition                                                             | G'd          |                    |                     |
|    | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$                                |              | n an an Arth       | 12.25               |
|    |                                                                                  |              |                    | · · ·               |
| 3. | Flue Gas Volume at Boiler End                                                    | QЪ           | Nm <sup>3</sup> /H |                     |
|    | at wet condition                                                                 |              |                    |                     |
|    | $QwB = (Fo \times G'w) \times 10^3$                                              | QwB          | Nm <sup>3</sup> /H | 527x10 <sup>3</sup> |
|    | at dry condition                                                                 |              | •<br>•             | 1 - E.              |
|    | $QdB = (Io \times G'd) \times 10^3$                                              | QdB          | Nm <sup>3</sup> /H | 473x10 <sup>3</sup> |
| 4. | Effective Height of Chimney                                                      |              | •                  |                     |
| •  | (apply equation of Bosanquet)                                                    |              |                    |                     |
|    | Basic Condition                                                                  |              |                    |                     |
| 1. | Flue gas volume                                                                  | QwB          | Nm <sup>3</sup> /H | 527x10 <sup>3</sup> |
| 2. | Ambient temperature                                                              | ta           | °C                 | 30                  |
| 3. | Flue gas temperature                                                             | tg           | °C                 | 135                 |
| 4. | Diameter of Chimney                                                              | D            | W                  | 2.16                |
| 5. | Wind velocity                                                                    | U            | m/s                | 6                   |
| 6. | Temperature reducing rate                                                        | $d\theta/dz$ | °C/m               | 0.0033              |
| 7. | Design height of chimney                                                         | Но           | m                  | 80                  |
|    | Calculation of effective chimney height                                          |              |                    |                     |
| ٠  | exhaust gas volume                                                               | Qt           | m <sup>3</sup> /s  | 162                 |
|    | $= \frac{QwBx (273 + ta)}{3,600 \times 273}$                                     |              |                    |                     |
| ٠  | exhaust gas velocity at chimney nozzle                                           | Vg           | m/s                | 60                  |
|    | $= \underline{Qw \times (273 + tg)}_{3,600 \times 273 \times \frac{\pi}{4} D^2}$ |              |                    |                     |

• Raising height of flue gas by flue gas energy (momentum)

$$= \frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}$$
$$= \frac{0.795 \sqrt{Qt \times Vg}}{1 + \frac{2.58}{Vg}}$$

 Raising height of flue gas by temperature difference between flue gas and ambient

= 6.37 x g x  $\frac{Qt (tg - ta)}{U^3 (273 + ta)}$  x (LnJ<sup>2</sup> +  $\frac{2}{J}$  - 2)

Hm

Ht

He

WL.

TĤ

m

47

56.3

14.4

165

= 1.91 x 
$$10^{-3}$$
 x Qt (tg-ta) x (2.3 logJ +  $\frac{1}{J}$  - 1)

$$J = \frac{U_2}{\sqrt{Qt \ x \ Vg}} \ x \ 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}}$$
$$- 0.28 \ \frac{Vg \ (273 + ta)}{g \ (tg - ta)} + 1$$

$$= \frac{1}{\sqrt{Qt \times Vg}} (1,498 - \frac{312 \times Vg}{tg - ta}) + 1$$

. Effective height of chimney

= Ho + 0.65 (Hm + Ht)

5. Calculation of air polutant

Basic Specification

Fo т/н 38.6 1. Fuel consumption % 2. Sulphur component 1.0 So Nm<sup>3</sup>/H  $473 \times 10^3$ 3. Flue gas volume at dry state QdB 165 4. Effective height of chimney He m 5.  $0_2$  content in flue gas 02 % 4.0 Calculation of  $SO_{\mathbf{X}}$  emission  $^{\circ}$  SO<sub>x</sub> volume at boiler end q' Nm<sup>3</sup>/H 270.2 = 7 (Fo x So)  $^{\circ}$  SO\_x density at chimney nozzle 570 qc ppm

$$= \frac{q'}{QdB} \times 10^6$$

- 6. Maximum  $\mathrm{SO}_{\mathbf{X}}$  Landing Density and Distance
- 6-1 Maximum SO<sub>x</sub> landing density (apply equation of Sutton)

$$= 1.72 \times \frac{q'}{Hc^2}$$

÷

6-2 Maximum  $SO_x$  landing distance (apply equation of Sutton)

= 20.8 x He<sup>1.143</sup> x  $10^{-3}$ 

Cmax ppm 0.017

Xmax km 7.1

A4--4

. 20

|       | carculation for All Pollution in Environment Problem                                     |                |                        |                                   |  |  |  |
|-------|------------------------------------------------------------------------------------------|----------------|------------------------|-----------------------------------|--|--|--|
|       | Type-A So 1% Chimney 100 m                                                               |                |                        |                                   |  |  |  |
| 1.    | Fuel Consumption Basic Specification                                                     | Abbreviati     | on/Unit                | Applying value<br>of this project |  |  |  |
| 1.    | Output at Generator end                                                                  | Po             | · MW                   | 120                               |  |  |  |
|       | Power plant thermal efficiency                                                           | γp             | %                      | 25                                |  |  |  |
| · · · | Fuel combustion ratio                                                                    | d i            | %                      | 100                               |  |  |  |
|       |                                                                                          |                |                        |                                   |  |  |  |
| 4.    | High heat value of fuel                                                                  | Hh'            | kcal/kg                | 10,700                            |  |  |  |
|       | Calculation Form                                                                         |                | • •                    |                                   |  |  |  |
| o     | Fuel consumption                                                                         | Fo             | T/H                    |                                   |  |  |  |
|       | Po x 860 x $\frac{\partial}{100}$                                                        |                |                        | 38.6 T/H                          |  |  |  |
|       | $F_0 = \frac{P_0 \times 860 \times \frac{\Delta}{100}}{\frac{\gamma P}{100} \times Hh'}$ |                |                        | · · ·                             |  |  |  |
| 2.    | Combustion Gas Volume                                                                    |                |                        | ··· .'                            |  |  |  |
|       | Basic Specification                                                                      |                |                        | . •                               |  |  |  |
| 1.    | Hydrogen                                                                                 | ho'            | %                      | 12.5                              |  |  |  |
| 2.    | High heat value of fuel                                                                  | Hh '           | kcal/kg                | 10,700                            |  |  |  |
| 3.    | 0 <sub>2</sub> content in flue gas                                                       | 0 <sub>2</sub> | %                      | 4.0                               |  |  |  |
|       | Calculation Form                                                                         |                | *                      |                                   |  |  |  |
| o     | Low heat value of Fuel H1'                                                               | H1'            | kcal/kg                | · .                               |  |  |  |
|       | H1' = Hh' - 6 (9 x ho')                                                                  |                |                        | 10,025                            |  |  |  |
| 0     | Excess air ratio m                                                                       | . m            | <b></b> .              |                                   |  |  |  |
|       | $m = \frac{21}{21 - 0_2}$                                                                |                |                        | 1.24                              |  |  |  |
| · 0   | Combustion Gas Volume                                                                    |                |                        |                                   |  |  |  |
|       | . Theorethical air volume                                                                | Ao'            | Nm <sup>3</sup> /kg-fu | e1                                |  |  |  |
|       | Ao' = $0.85 \times H1' \times 10^{-3} + 2.0$                                             | · •            |                        |                                   |  |  |  |
|       | . Theorethical combustion gas volume                                                     | Go'            | Nm <sup>3</sup> /kg-fu | e1                                |  |  |  |
|       | $Go' = 1.11 \times H1' \times 10^{-3}$                                                   |                |                        | 11.13                             |  |  |  |
|       |                                                                                          |                |                        |                                   |  |  |  |

# Calculation for Air Pollution in Environment Problem

|         | • Actual combustion gas volume                                                      | G              |                                                                                                                                                                                                                                     |                     |
|---------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|         | at Wet gas condition                                                                | G'w            |                                                                                                                                                                                                                                     |                     |
|         | G'w = Go' + (m-1)Ao'                                                                |                |                                                                                                                                                                                                                                     | 13.65               |
|         | at Dry gas condition                                                                | G'd            |                                                                                                                                                                                                                                     |                     |
|         | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$                                   |                | a de la composición de la composición de la composición de la composición de la composición de la composición d<br>Este de la composición de la composición de la composición de la composición de la composición de la composición | 12.25               |
| 3.      | Flue Gas Volume at Boiler End                                                       | Qb             | Nm <sup>3</sup> /H                                                                                                                                                                                                                  |                     |
|         | at wet condition                                                                    |                |                                                                                                                                                                                                                                     | -<br>-              |
|         | $QwB = (Fo \times G'w) \times 10^3$                                                 | QwB            | Nm <sup>3</sup> /H                                                                                                                                                                                                                  | 527x10 <sup>3</sup> |
|         | at dry condition                                                                    |                |                                                                                                                                                                                                                                     |                     |
|         | $QdB = (Io \times G'd) \times 10^3$                                                 | QdB            | Nm <sup>3</sup> /H                                                                                                                                                                                                                  | 473x10 <sup>3</sup> |
| 4.      | Effective Height of Chimney                                                         |                |                                                                                                                                                                                                                                     |                     |
|         | (apply equation of Bosanquet)                                                       |                |                                                                                                                                                                                                                                     | · .                 |
|         | Basic Condition                                                                     |                | •                                                                                                                                                                                                                                   |                     |
| 1.      | Flue gas volume                                                                     | QwB            | Nm <sup>3</sup> /H                                                                                                                                                                                                                  | 527x10 <sup>3</sup> |
| 2.      | Àmbient temperature                                                                 | ta             | °C                                                                                                                                                                                                                                  | 30                  |
| ,<br>3. | Flue gas temperature                                                                | tg             | °C                                                                                                                                                                                                                                  | 135                 |
| 4.      | Diameter of Chimney                                                                 | D              | m                                                                                                                                                                                                                                   | 2.16                |
| 5.      | Wind velocity                                                                       | U              | m/s                                                                                                                                                                                                                                 | 6                   |
| 6.      | Temperature reducing rate                                                           | d <i>θ</i> /dz | °C/m                                                                                                                                                                                                                                | 0.0033              |
| 7.      | Design height of chimney                                                            | Но             | D.                                                                                                                                                                                                                                  | 100                 |
|         | Calculation of effective chimney height                                             |                |                                                                                                                                                                                                                                     |                     |
| ٠       | exhaust gas volume                                                                  | Qt             | m <sup>3</sup> /s                                                                                                                                                                                                                   | 162                 |
|         | $= \frac{QwBx (273 + ta)}{3,600 \times 273}$                                        |                | · .                                                                                                                                                                                                                                 |                     |
| •       | exhaust gas velocity at chimney nozzle                                              | Vg             | m/s                                                                                                                                                                                                                                 | 60                  |
|         | $= \underline{Qw \times (273 + tg)}_{3 - 600 \times 273 \times \frac{\pi}{10} p^2}$ |                |                                                                                                                                                                                                                                     |                     |

 $3,600 \times 273 \times \frac{\pi}{4} D^2$ 

. Raising height of flue gas by flue gas energy (momentum)

$$= \frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}$$
$$= \frac{0.795 \sqrt{Qt \times Vg}}{1 + \frac{2.58}{Vg}}$$

. Raising height of flue gas by temperature difference between flue gas and ambient

$$= 6.37 \times g \times \frac{Qt (tg - ta)}{U^3 (273 + ta)} \times (LnJ^2 + \frac{2}{J} - 2)$$

$$= 1.91 \times 10^{-3} \times Qt (tg-ta) \times (2.3 \log J + \frac{1}{J} - 1)$$
56.3

Hm

Ηt

He

m

m

m

75

14.4

185

$$J = \frac{U_2}{\sqrt{Qt \ x \ Vg}} \ x \ 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}}$$
$$- 0.28 \ \frac{Vg \ (273 + ta)}{g \ (tg - ta)} + 1$$

$$= \frac{1}{\sqrt{Qt \times Vg}} (1,498 - \frac{312 \times Vg}{tg - ta}) + 1$$

Effective height of chimney
= Ho + 0.65 (Hm + Ht)

5. Calculation of air polutant

### Basic Specification

| 1. Fuel consumption                         | Fo             | T/H                | 38.6                |
|---------------------------------------------|----------------|--------------------|---------------------|
| 2. Sulphur component                        | So             | %                  | 1.0                 |
| 3. Flue gas volume at dry state             | QdB            | Nm <sup>3</sup> /H | 473x10 <sup>3</sup> |
| 4. Effective height of chimney              | Не             | m .                | 185                 |
| 5. O <sub>2</sub> content in flue gas       | 0 <sub>2</sub> | %                  | 4.0                 |
| Calculation of SO <sub>x</sub> emission     |                |                    |                     |
| ° SO <sub>x</sub> volume at boiler end      | q'             | Nm <sup>3</sup> /H | 270.2               |
| = 7 (Fo x So)                               |                |                    |                     |
| ° SO <sub>x</sub> density at chimney nozzle | qc             | ppm                | 570                 |

$$=\frac{q'}{QdB} \times 10^6$$

6. Maximum  $\mathrm{SO}_{\mathbf{X}}$  Landing Density and Distance

6-1 Maximum SO<sub>x</sub> landing density (apply equation of Sutton)

$$= 1.72 \times \frac{q'}{Hc^2}$$

6-2 Maximum SO<sub>x</sub> landing distance (apply equation of Sutton) Cmax ppm 0.014 Xmax km 8.1

 $= 20.8 \times \text{He}^{1.143} \times 10^{-3}$ 

# Calculation for Air Pollution in Environment Problem

• • • • •

# Type-A So 1% Chimney 120 m

| 1. | Fuel Consumption                                                                |                 |                         | A                                 |
|----|---------------------------------------------------------------------------------|-----------------|-------------------------|-----------------------------------|
|    | Basic Specification                                                             | Abbreviati      |                         | Applying value<br>of this project |
| 1. | Output at Generator end                                                         | Po              | MW                      | 120                               |
| 2. | Power plant thermal efficiency                                                  | ųp              | %                       | 25                                |
| 3. | Fuel combustion ratio                                                           | д.              | %                       | 100                               |
| 4. | High heat value of fuel                                                         | Hh'             | kcal/kg                 | 10,700                            |
|    | Calculation Form                                                                |                 | ,                       |                                   |
| o  | Fuel consumption                                                                | Fo              | т/н                     |                                   |
|    | $Fo = \frac{Po \times 860 \times \frac{\Delta}{100}}{\frac{4}{100} \times Hh'}$ | н<br>           |                         | 38.6 T/H                          |
| 2. | Combustion Gas Volume                                                           |                 |                         | •••                               |
|    | Basic Specification                                                             |                 |                         |                                   |
| 1. | Hydrogen                                                                        | ho'             | %                       | 12.5                              |
| 2. | High heat value of fuel                                                         | Hh'             | kcal/kg                 | 10,700                            |
| 3. | 0 <sub>2</sub> content in flue gas                                              | 02              | %                       | 4.0                               |
|    | Calculation Form                                                                |                 | an grande gr<br>Maria   |                                   |
| •  | Low heat value of Fuel H1'                                                      | H1 '            | kcal/kg                 |                                   |
|    | $H1' = Hh' - 6 (9 \times hb)$                                                   |                 |                         | 10,025                            |
| 0  | Excess air ratio m                                                              | , <b>D</b>      | -                       |                                   |
|    | $m = \frac{21}{21 - 0_2}$                                                       |                 |                         | 1.24                              |
| 0  | Combustion Gas Volume                                                           |                 |                         |                                   |
|    | . Theorethical air volume                                                       | Ao'             | Nm <sup>3</sup> /kg-fue | 1                                 |
|    | Ao' = $0.85 \times H1' \times 10^{-3} + 2.0$                                    | ,               |                         |                                   |
|    | . Theorethical combustion gas volume                                            | Go <sup>1</sup> | Nm <sup>3</sup> /kg-fue | 1                                 |
|    | $Go' = 1.11 \times H1' \times 10^{-3}$                                          |                 |                         | 11.13                             |
|    |                                                                                 |                 |                         |                                   |

| ÷., | • Actual combustion gas volume                         | G              |                    |                     |
|-----|--------------------------------------------------------|----------------|--------------------|---------------------|
|     | at Wet gas condition                                   | G'w            |                    |                     |
|     | G'w = Go' + (m-1)Ao'                                   |                |                    | 13.65               |
|     | at Dry gas condition                                   | G'd            |                    |                     |
|     | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$      |                |                    | 12.25               |
|     |                                                        |                |                    |                     |
| 3.  | Flue Gas Volume at Boiler End                          | QЪ             | Nm <sup>3</sup> /H |                     |
|     | at wet condition                                       |                | ÷.                 |                     |
|     | $QwB = (Fo \times G^{\dagger}w) \times 10^3$           | QwB            | Nm <sup>3</sup> /H | 527x10 <sup>3</sup> |
|     | at dry condition                                       |                |                    |                     |
|     | $QdB = (Io \times G'd) \times 10^3$                    | QdB            | Nm <sup>3</sup> /H | 473x10 <sup>3</sup> |
| 4.  | Effective Height of Chimney                            |                |                    | · · ·               |
| 4.  | •                                                      |                |                    |                     |
|     | (apply equation of Bosanquet)                          |                | · · · · · .        | 1. S. S.            |
|     | Basic Condition                                        |                |                    |                     |
| 1.  | Flue gas volume                                        | QwB            | Nm <sup>3</sup> /H | 527x10 <sup>3</sup> |
| 2.  | Ambient temperature                                    | ta             | °C                 | 30                  |
| 3.  | Flue gas temperature                                   | tg             | °C                 | 135                 |
| 4.  | Diameter of Chimney                                    | D              | Щ                  | 2.16                |
| 5.  | Wind velocity                                          | U              | m/s                | 6                   |
| 6.  | Temperature reducing rate                              | d <i>θ</i> /dz | °C/m               | 0.0033              |
| 7.  | Design height of chimney                               | Но             | m                  | 120                 |
|     | Calculation of effective chimney height                |                |                    |                     |
|     | exhaust gas volume                                     | Qt .           | m <sup>3</sup> /s  | 162                 |
|     | $= \frac{Qw \times (273 + ta)}{3,600 \times 273}$      |                |                    |                     |
| •   | exhaust gas velocity at chimney nozzle                 | ٧g             | m/s                | 60                  |
|     | = QwBx (273 + tg)<br>3,600 x 273 x $\frac{\pi}{4} D^2$ |                |                    |                     |

· · ·

. Raising height of flue gas by flue gas energy (momentum)

Hm

Ht

He

m

m

m

75

56.3

14.4

205

$$= \frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}$$
$$= \frac{0.795 \sqrt{Qt \times Vg}}{1 + \frac{2.58}{Vg}}$$

. Raising height of flue gas by temperature difference between flue gas and ambient

 $= 6.37 \text{ x g x} \frac{\text{Qt } (\text{tg} - \text{ta})}{\text{U}^3 (273 + \text{ta})} \text{ x } (\text{LnJ}^2 + \frac{2}{\text{J}} - 2)$ 

= 1.91 x 10<sup>-3</sup> x Qt (tg-ta) x (2.3 logJ + 
$$\frac{1}{J}$$
 - 1)

 $J = \frac{U_2}{\sqrt{Qt \ x \ Vg}} \ x \ 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}}$  $- 0.28 \ \frac{Vg \ (273 + ta)}{g \ (tg - ta)} + 1$ 

$$= \frac{1}{\sqrt{Qt \times Vg}} (1,498 - \frac{312 \times Vg}{tg - ta}) + 1$$

Effective height of chimney
Ho + 0.65 (Hm + Ht)

5. Calculation of air polutant

### Basic Specification

- T/H 38.6 1. Fuel consumption Fo % 2. Sulphur component So 1.0  $Nm^3/H$ 473x10<sup>3</sup> 3. Flue gas volume at dry state QdB 205 4. Effective height of chimney He щ 5. 0<sub>2</sub> content in flue gas % 4.0 02 Calculation of SO<sub>x</sub> emission Nm<sup>3</sup>/H  $^{\circ}$  SO<sub>x</sub> volume at boiler end 270.2 q' = 7 (Fo x So) ° SO<sub>x</sub> density at chimney nozzle 570 qc ppm
  - $=\frac{q'}{QdB} \times 10^6$

# 6. Maximum $SO_X$ Landing Density and Distance

6-1 Maximum  $SO_X$  landing density (apply equation of Sutton)

$$= 1.72 \times \frac{q'}{Hc^2}$$

÷

6-2 Maximum  $SO_x$  landing distance (apply equation of Sutton)

 $= 20.8 \times \text{He}^{1.143} \times 10^{-3}$ 

| Cmax | ppm | 0.011      |
|------|-----|------------|
|      |     |            |
|      |     | . <u>.</u> |

| Xmax | km | 9.1 |
|------|----|-----|

|    | Calculation for Air Pollutio                                                             |            | <u></u>                | - 103                             |
|----|------------------------------------------------------------------------------------------|------------|------------------------|-----------------------------------|
|    | <u>Type-F So 1% (</u>                                                                    | Chimney 80 | <u>n</u>               |                                   |
| 1. | Fuel Consumption Basic Specification                                                     | Abbreviat  | ion/Unit               | Applying value<br>of this project |
| 1. | Output at Generator end                                                                  | Po         | MW                     | 60                                |
| 2. | Power plant thermal efficiency                                                           | Чр         | %                      | 19                                |
| 3. | Fuel combustion ratio                                                                    | d          | %                      | 100                               |
| 4. | High heat value of fuel                                                                  | Hh'        | kca1/kg                | 10,700                            |
|    | Calculation Form                                                                         |            |                        |                                   |
| 0  | Fuel consumption                                                                         | Fo         | т/н                    |                                   |
|    | $F_0 = \frac{P_0 \times 860 \times \frac{\partial}{100}}{\frac{\psi_P}{100} \times Hh'}$ |            | -<br>-<br>-            | 25.4 T/H                          |
|    |                                                                                          |            |                        |                                   |
| 2. | Combustion Gas Volume                                                                    |            |                        |                                   |
|    | Basic Specification                                                                      |            |                        |                                   |
| 1. | Hydrogen                                                                                 | ho'        | %                      | 12.5                              |
| 2. | High heat value of fuel                                                                  | Hh'        | kcal/kg                | 10,700                            |
| 3. | 0 <sub>2</sub> content in flue gas                                                       | 02         | %                      | 4.0                               |
|    | Calculation Form                                                                         |            |                        |                                   |
| 0  | Low heat value of Fuel H1'                                                               | H1'        | kcal/kg                |                                   |
|    | $H1' = Hh' - 6 (9 \times ho')$                                                           |            | . · · ·                | 10,025                            |
| o  | Excess air ratio m                                                                       | m          | <del></del>            |                                   |
|    | $m = \frac{21}{21 - 0_2}$                                                                |            |                        | 1.24                              |
| o  | Combustion Gas Volume                                                                    |            |                        |                                   |
|    | . Theorethical air volume                                                                | Ao'        | Nm <sup>3</sup> /kg-fu | 21                                |
|    | Ao' = 0.85 x H1' x $10^{-3}$ + 2.0                                                       |            |                        |                                   |
|    | . Theorethical combustion gas volume                                                     | Go †       | Nm <sup>3</sup> /kg-fu | e1                                |
|    | $Go' = 1.11 \times H1' \times 10^{-3}$                                                   |            |                        | 11.13                             |

# Calculation for Air Pollution in Environment Problem

|    | • • •                                             |       |                    |                     |
|----|---------------------------------------------------|-------|--------------------|---------------------|
| •  | . Actual combustion gas volume                    | G     |                    |                     |
|    | at Wet gas condition .                            | G'W   |                    |                     |
|    | G'w = Go' + (m-1)Ao'                              |       |                    | 13.65               |
|    | at Dry gas condition                              | G'd   |                    |                     |
|    | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$ |       |                    | 12.25               |
|    |                                                   |       | · · · · · · ·      |                     |
| 3. | Flue Gas Volume at Boiler End                     | Qb    | Nm <sup>3</sup> /H | . · · · · .         |
|    | at wet condition                                  |       |                    |                     |
|    | $QwB = (Fo \times G'w) \times 10^3$               | QwB   | Nm <sup>3</sup> /H | 347x10 <sup>3</sup> |
|    | at dry condition                                  |       |                    | C                   |
|    | $QdB = (Io \times G'd) \times 10^3$               | QdB   | Nm <sup>3</sup> /H | 311×10 <sup>3</sup> |
| 4. | Effective Height of Chimney                       |       |                    | ··· ·               |
|    | (apply equation of Bosanquet)                     |       |                    |                     |
|    | Basic Condition                                   |       |                    | · · · ·             |
| 1. | Flue gas volume                                   | QwB   | Nm <sup>3</sup> /H | 347x10 <sup>3</sup> |
| 2. | Amblent temperature                               | ta    | °C                 | 30                  |
| 3. | Flue gas temperature                              | tg    | °C                 | 135                 |
| 4. | Diameter of Chimney                               | D     | m                  | 2.16                |
| 5. | Wind velocity                                     | U     | m/s                | 6                   |
| 6. | Temperature reducing rate                         | dØ/dz | °C/m               | 0.0033              |
| 7. | Design height of chimney                          | Ho    | m                  | 80                  |
|    | Calculation of effective chimney height           |       |                    |                     |
| •  | exhaust gas volume                                | Qt    | m <sup>3</sup> /s  | 107                 |
| ·  | $= \frac{Qw_{Bx} (273 + ta)}{3,600 \times 273}$   |       |                    |                     |
| •  | exhaust gas velocity at chimney nozzle            | Vg    | m/s                | 39                  |
|    | $= Qw \times (273 + tg)$                          |       |                    |                     |

.

3,600 x 273 x  $\frac{\pi}{4}$  D<sup>2</sup>

. Raising height of flue gas by flue gas energy (momentum)

$$= \frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}$$
  
=  $\frac{0.795 \sqrt{Qt \times Vg}}{1 + \frac{2.58}{Vg}}$ 

• Raising height of flue gas by temperature difference between flue gas and ambient

 $= 6.37 \times g \times \frac{Qt (tg - ta)}{U^3 (273 + ta)} \times (LnJ^2 + \frac{2}{J} - 2)$ 

Hm

Ήt

He

m

m

m

= 1.91 x 10<sup>-3</sup> x Qt (tg-ta) x (2.3 logJ + 
$$\frac{1}{J}$$
 - 1)

$$J = \frac{U_2}{\sqrt{Qt \ x \ Vg}} \ x \ 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}}$$
$$- 0.28 \ \frac{Vg \ (273 + ta)}{g \ (tg - ta)} + 1$$

$$= \frac{1}{\sqrt{Qt \times Vg}} (1,498 - \frac{312 \times Vg}{tg - ta}) + 1$$

Effective height of chimney
= Ho + 0.65 (Hm + Ht)

5. Calculation of air polutant

#### Basic Specification

T/H 25.4 1. Fuel consumption Fo % 2. Sulphur component So 1.0 Nm<sup>3</sup>/H 311x10<sup>3</sup> 3. Flue gas volume at dry state QdB 141 4. Effective height of chimney He m 5.  $0_2$  content in flue gas 02 % 4.0 Calculation of  $SO_{\mathbf{X}}$  emission Nm<sup>3</sup>/H  $^{\circ}$  SO<sub>x</sub> volume at boiler end q' 177.8 = 7 (Fo x So)  $^{\circ}$  SO<sub>x</sub> density at chimney nozzle 570 · qc ppm

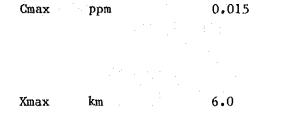
$$=\frac{q'}{QdB} \times 10^6$$

48

46.1

22.4

141


# 6. Maximum $\mathrm{SO}_{\mathrm{X}}$ Landing Density and Distance

6-1 Maximum SO<sub>x</sub> landing density (apply equation of Sutton)

$$= 1.72 \times \frac{q'}{Hc^2}$$

6-2 Maximum SO<sub>x</sub> landing distance (apply equation of Sutton)

$$= 20.8 \times \text{He}^{1.143} \times 10^{-3}$$



|    | Types F So 1% (                                                                      |               |                         | <u>em</u>       |
|----|--------------------------------------------------------------------------------------|---------------|-------------------------|-----------------|
|    | Type-F So 1% C                                                                       | nituney 100 m | •                       |                 |
| 1. | Fuel Consumption                                                                     |               |                         | Applying value  |
|    | Basic Specification                                                                  | Abbreviatio   | n/Unit                  | of this project |
| 1. | Output at Generator end                                                              | Ро            | MW                      | 60              |
| 2. | Power plant thermal efficiency                                                       | ур            | %                       | 19              |
| 3. | Fuel combustion ratio                                                                | d i           | %                       | 100             |
| 4. | High heat value of fuel                                                              | Hh'           | kca1/kg                 | 10,700          |
|    | Calculation Form                                                                     |               | :                       |                 |
| 0  | Fuel consumption                                                                     | Fo            | т/н                     |                 |
|    | $F_{0} = \frac{P_{0} \times 860 \times \frac{Q}{100}}{\frac{Q_{P}}{100} \times Hh'}$ |               |                         | 25.4 T/H        |
|    | $\frac{40}{100}$ x Hh'                                                               |               |                         | • .             |
| 2. | Combustion Gas Volume                                                                |               |                         |                 |
|    | Basic Specification                                                                  |               |                         |                 |
| 1. | Hydrogen                                                                             | ho '          | oy<br>10                | 12.5            |
| 2. | High heat value of fuel                                                              | Hh'           | kca1/kg                 | 10,700          |
| 3. | 0 <sub>2</sub> content in flue gas                                                   | 02            | %                       | 4.0             |
|    | Calculation Form                                                                     |               |                         |                 |
| 0  | Low heat value of Fuel H1'                                                           | H1'           | kca1/kg                 |                 |
|    | $H1' = Hh' - 6 (9 \times h\delta)$                                                   |               |                         | 10,025          |
| ۰  | Excess air ratio m                                                                   | . n           |                         |                 |
|    | $m = \frac{21}{21 - 0_2}$                                                            |               |                         | 1.24            |
| 0  | Combustion Gas Volume                                                                |               | •                       |                 |
|    | . Theorethical air volume                                                            | Ao '          | Nm <sup>3</sup> /kg-fue | 1               |
|    | Ao' = $0.85 \times H1' \times 10^{-3} + 2.0$                                         | ,             |                         | · ·             |
|    | . Theorethical combustion gas volume                                                 | Go'           | Nm <sup>3</sup> /kg-fue | 21              |
|    | $Go' = 1.11 \times H1' \times 10^{-3}$                                               |               |                         | 11.13           |

# Calculation for Air Pollution in Environment Problem

•

|    |                                                                            |       |                          | 1                                                                                                               |
|----|----------------------------------------------------------------------------|-------|--------------------------|-----------------------------------------------------------------------------------------------------------------|
|    | . Actual combustion gas volume                                             | G     | •<br>• • • • • • • • • • |                                                                                                                 |
|    | at Wet gas condition                                                       | G'w   |                          | •<br>•                                                                                                          |
|    | G'w = Go' + (m-1)Ao'                                                       |       |                          | 13.65                                                                                                           |
| ·  | at Dry gas condition                                                       | G'd   |                          |                                                                                                                 |
|    | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$                          | <br>  |                          | 12.25                                                                                                           |
| 3. | Flue Gas Volume at Boiler End                                              | QЪ    | Nm <sup>3</sup> /H       |                                                                                                                 |
|    | at wet condition                                                           |       | and the second second    | e george de la composition de la composition de la composition de la composition de la composition de la compos |
|    | $QwB = (Fo \times G'w) \times 10^3$                                        | QwB   | Nm <sup>3</sup> /H       | 347x10 <sup>3</sup>                                                                                             |
|    | at dry condition                                                           |       |                          |                                                                                                                 |
|    | $QdB = (Io \times G'd) \times 10^3$                                        | QdB   | Nm <sup>3</sup> /H       | 311x10 <sup>3</sup>                                                                                             |
| 4. | Effective Height of Chimney                                                | ·     |                          |                                                                                                                 |
|    | (apply equation of Bosanquet)                                              |       |                          |                                                                                                                 |
|    | Basic Condition                                                            |       |                          |                                                                                                                 |
| 1. | Flue gas volume                                                            | QwB   | Nm <sup>3</sup> /H       | 347x10 <sup>3</sup>                                                                                             |
| 2. | Ambient temperature                                                        | ta    | °C                       | 30                                                                                                              |
| 3. | Flue gas temperature                                                       | tg    | °C                       | 135                                                                                                             |
| 4. | Diameter of Chimney                                                        | D     | m                        | 2.16                                                                                                            |
| 5. | Wind velocity                                                              | U     | m/s                      | 6                                                                                                               |
| 6. | Temperature reducing rate                                                  | d0/dz | °C/m                     | 0.0033                                                                                                          |
| 7, | Design height of chimney                                                   | Ho    | ш                        | 100                                                                                                             |
|    | Calculation of effective chimney height                                    |       |                          |                                                                                                                 |
| •  | exhaust gas volume                                                         | Qt    | m <sup>3</sup> /s        | 107                                                                                                             |
|    | $= \frac{Qw_{Bx} (273 + ta)}{3,600 \times 273}$                            |       |                          | •<br>•                                                                                                          |
| •  | exhaust gas velocity at chimney nozzle                                     | Vg    | m/s                      | 39                                                                                                              |
|    | $= \frac{Qw \times (273 + tg)}{3,600 \times 273 \times \frac{\pi}{4} D^2}$ |       | ·• .                     |                                                                                                                 |

- Raising height of flue gas by flue gas energy (momentum)
  - $= \frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}$  $= \frac{0.795 \sqrt{Qt \times Vg}}{1 + \frac{2.58}{Vg}}$
- Raising height of flue gas by temperature difference between flue gas and ambient
  - $= 6.37 \text{ x g x} \frac{\text{Qt (tg ta)}}{\text{U}^3 (273 + ta)} \text{ x (LnJ}^2 + \frac{2}{\text{J}} 2)$  46.1

Hm

Ht

He

m

m

т

48

22.4

161

= 1.91 x 
$$10^{-3}$$
 x Qt (tg-ta) x (2.3 logJ +  $\frac{1}{J}$  - 1)

 $J = \frac{U_2}{\sqrt{Qt \times Vg}} \times 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}} - 0.28 \frac{Vg (273 + ta)}{g (tg - ta)} + 1$ 

$$= \frac{1}{\sqrt{Qt \times Vg}} (1,498 - \frac{312 \times Vg}{tg - ta}) + 1$$

Effective height of chimney
= Ho + 0.65 (Hm + Ht)

5. Calculation of air polutant

### Basic Specification

т/н 25.4 1. Fuel consumption Fo % 2. Sulphur component So 1.0 Nm<sup>3</sup>/H 311x10<sup>3</sup> 3. Flue gas volume at dry state QdB 4. Effective height of chimney 161 He m 4.0 5. 02 content in flue gas 02 % Calculation of  $SO_x$  emission  $Nm^3/H$ ° SO<sub>x</sub> volume at boiler end 177.8 ٩' = 7 (Fo x So) °  $SO_x$  density at chimney nozzle 570 qc ррш

$$= \frac{q'}{QdB} \times 10^6$$

# 6. Maximum $\mathrm{SO}_{\mathbf{X}}$ Landing Density and Distance

6-1 Maximum SO<sub>x</sub> landing density (apply equation of Sutton)

 $= 1.72 \times \frac{q'}{Hc^2}$ 

6-2 Maximum  $SO_x$  landing distance (apply equation of Sutton)

=  $20.8 \times \text{He}^{1.143} \times 10^{-3}$ 

| Cmax     | ppm | 0.012 |
|----------|-----|-------|
| 4.1<br>1 |     |       |
|          |     |       |
| Xmax     | km  | 6.9   |

|    | Calculation for Air Pollution                                                       | in Environ     | ment Proble             | em                                |  |  |  |  |
|----|-------------------------------------------------------------------------------------|----------------|-------------------------|-----------------------------------|--|--|--|--|
|    | Type-F So 1% Chimney 120 m                                                          |                |                         |                                   |  |  |  |  |
| 1. | Fuel Consumption                                                                    |                |                         |                                   |  |  |  |  |
|    | Basic Specification                                                                 | Abbreviatio    |                         | Applying value<br>of this project |  |  |  |  |
| 1. | Output at Generator end                                                             | Ро             | MW                      | 60                                |  |  |  |  |
| 2. | Power plant thermal efficiency                                                      | ųр             | 8                       | 19                                |  |  |  |  |
| 3. | Fuel combustion ratio                                                               | $\beta$ .      | %                       | 100                               |  |  |  |  |
| 4. | High heat value of fuel                                                             | Hh'            | kcal/kg                 | 10,700                            |  |  |  |  |
|    | Calculation Form                                                                    |                |                         |                                   |  |  |  |  |
| o  | Fuel consumption                                                                    | Fo             | Т/Н                     |                                   |  |  |  |  |
| ·  | $Fo = \frac{Po \times 860 \times \frac{Q}{100}}{\frac{4}{100} \times Hh^{\dagger}}$ |                |                         | 25.4 T/H                          |  |  |  |  |
|    | 100                                                                                 |                |                         |                                   |  |  |  |  |
| 2. | Combustion Gas Volume                                                               |                |                         |                                   |  |  |  |  |
|    | Basic Specification                                                                 |                |                         |                                   |  |  |  |  |
| 1. | Hydrogen                                                                            | ho '           | %                       | 12.5                              |  |  |  |  |
| 2. | High heat value of fuel                                                             | Hh'            | kcal/kg                 | 10,700                            |  |  |  |  |
| 3. | 0 <sub>2</sub> content in flue gas                                                  | 0 <sub>2</sub> | %                       | 4.0                               |  |  |  |  |
|    | Calculation Form                                                                    |                | • · · ·                 |                                   |  |  |  |  |
| 0  | Low heat value of Fuel H1'                                                          | H1'            | kcal/kg                 |                                   |  |  |  |  |
|    | H1' = Hh' - 6 (9 x ho')                                                             |                |                         | 10,025                            |  |  |  |  |
| 0  | Excess air ratio m                                                                  | m              |                         |                                   |  |  |  |  |
|    | $m = \frac{21}{21 - 0_2}$                                                           | • ·            |                         | 1.24                              |  |  |  |  |
| o  | Combustion Gas Volume                                                               |                |                         |                                   |  |  |  |  |
|    | . Theorethical air volume                                                           | Aoʻ            | Nm <sup>3</sup> /kg-fue | 1                                 |  |  |  |  |
|    | Ao' = $0.85 \times H1' \times 10^{-3} + 2.0$                                        |                | · · · ·                 |                                   |  |  |  |  |
|    | • Theorethical combustion gas volume                                                | Got            | Nm <sup>3</sup> /kg-fue | 1                                 |  |  |  |  |
|    | $Go' = 1.11 \times H1' \times 10^{-3}$                                              |                |                         | 11.13                             |  |  |  |  |
|    |                                                                                     |                |                         | •                                 |  |  |  |  |

# Calculation for Air Pollution in Environment Problem

|    | • Actual combustion gas volume                         | G .            |                                          |                     |
|----|--------------------------------------------------------|----------------|------------------------------------------|---------------------|
|    | at Wet gas condition                                   | G'w            |                                          | · · · · · ·         |
|    | G'w = Go' + (m-1)Ao'                                   |                |                                          | 13.65               |
|    | at Dry gas condition                                   | G'd            | an an an an an an an an an an an an an a |                     |
|    | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$      |                |                                          | 12.25               |
|    | 18                                                     | an the         |                                          | ·                   |
| 3. | Flue Gas Volume at Boiler End                          | Qb             | Nm <sup>3</sup> /H                       |                     |
|    | at wet condition                                       |                | : · · ·                                  |                     |
|    | $QwB = (Fo x G'w) x 10^3$                              | QwB            | Nm <sup>3</sup> /H                       | 347x10 <sup>3</sup> |
|    | at dry condition                                       | •              | •                                        |                     |
|    | $QdB = (Io \times G'd) \times 10^3$                    | QdB            | Nm <sup>3</sup> /H                       | 311x10 <sup>3</sup> |
|    |                                                        |                | •<br>• • • • • • • •                     |                     |
| 4  | Effective Height of Chimney                            | · •            |                                          | •                   |
|    | (apply equation of Bosanquet)                          |                | ·                                        |                     |
|    | Basic Condition                                        |                |                                          |                     |
| 1. | Flue gas volume                                        | QwB            | Nm <sup>3</sup> /H                       | 347x10 <sup>3</sup> |
| 2. | Ambient temperature                                    | ta             | °C                                       | 30                  |
| 3. | Flue gas temperature                                   | tg             | °C                                       | 135                 |
| 4. | Diameter of Chimney                                    | D              | m                                        | 2.16                |
| 5. | Wind velocity                                          | U              | m/s                                      | 6                   |
| 6. | Temperature reducing rate                              | d <i>θ</i> /dz | °C/m                                     | 0.0033              |
| 7. | Design height of chimney                               | Но             | <b>m</b>                                 | 120                 |
|    | Calculation of effective chimney height                |                |                                          |                     |
| •  | exhaust gas volume                                     | Qt             | m <sup>3</sup> /s                        | 107                 |
|    | $= \frac{Qw \times (273 + ta)}{3,600 \times 273}$      |                | 4 4 1 <sup>4</sup> 1                     | <sup></sup>         |
| ٠  | exhaust gas velocity at chimney nozzle                 | Vg             | m/s                                      | 39                  |
|    | = QwBx (273 + tg)<br>3,600 x 273 x $\frac{\pi}{4} D^2$ |                |                                          |                     |
|    | 2 600 272 19 54                                        |                |                                          |                     |

- . Raising height of flue gas by flue gas energy (momentum)
  - $= \frac{4.77}{1 + \frac{0.43 \times U}{V_{\infty}}} \times \frac{\sqrt{Qt \times Vg}}{U}$  $= \frac{0.795 \sqrt{\text{Qt x Vg}}}{1 + \frac{2.58}{\text{Vg}}}$

. Raising height of flue gas by temperature difference between flue gas and ambient

= 6.37 x g x  $\frac{Qt (tg - ta)}{U^3 (273 + ta)}$  x  $(LnJ^2 + \frac{2}{J} - 2)$ 

= 1.91 x 
$$10^{-3}$$
 x Qt (tg-ta) x (2.3 logJ +  $\frac{1}{J}$  - 1)

 $J = \frac{U_2}{\sqrt{Qt \ x \ Vg}} \ x \quad 0.43 \sqrt{\frac{(273 \ + \ to)}{g(d\theta/dz)}}$  $-0.28 \frac{\text{Vg}(273 + \text{ta})}{\text{g}(\text{tg} - \text{ta})} + 1$ 

$$=\frac{1}{\sqrt{Qt \ x \ Vg}} (1,498 - \frac{312 \ x \ Vg}{tg - ta}) + 1$$

. Effective height of chimney = Ho + 0.65 (Hm + Ht)

- Calculation of air polutant 5. **Basic Specification**
- 1. Fuel consumption 2. Sulphur component
- 3. Flue gas volume at dry state
- 4. Effective height of chimney
- 5.  $0_2$  content in flue gas Calculation of SO<sub>x</sub> emission
- ° SO<sub>x</sub> volume at boiler end = 7 (Fo x So)
- ° SO<sub>x</sub> density at chimney nozzle

$$= \frac{q'}{QdB} \times 10^6$$

He

Fo

So

QdB

He

02

q'

qc

Ηt

m

Hm

48

46.1

m

T/H

 $Nm^3/H$ 

Nm<sup>3</sup>/H

ppm

%

m

%

181

25.4

1.0

 $311 \times 10^{3}$ 

4.0

177.8

570

181

# 6. Maximum $\mathrm{SO}_{\mathbf{X}}$ Landing Density and Distance

6-1 Maximum  $SO_x$  landing density (apply equation of Sutton)

$$= 1.72 \times \frac{q^{1}}{Hc^{2}}$$

.

6-2 Maximum SO<sub>x</sub> landing distance (apply equation of Sutton)

 $= 20.8 \times \text{He}^{1.143} \times 10^{-3}$ 

Cmax ppm 0.009 Xmax km 7.9

|      | Calculation for Air Pollutio                                                       | n in Enviro | onment Proble            | m                                |  |  |  |  |
|------|------------------------------------------------------------------------------------|-------------|--------------------------|----------------------------------|--|--|--|--|
|      | Type-A So 1.6% Chimney 80 m                                                        |             |                          |                                  |  |  |  |  |
| 1.   | Fuel Consumption Basic Specification                                               | Abbreviati  |                          | pplying value<br>of this project |  |  |  |  |
| 1.   | Output at Generator end                                                            | Ро          | MW                       | 120                              |  |  |  |  |
| 2.   | Power plant thermal efficiency                                                     | Чp          | %                        | 25                               |  |  |  |  |
| 3.   | Fuel combustion ratio                                                              | d           | %                        | 100                              |  |  |  |  |
| 4.   | High heat value of fuel                                                            | Hh'         | kca1/kg                  | 10,700                           |  |  |  |  |
|      | Calculation Form                                                                   |             |                          |                                  |  |  |  |  |
| 0    | Fuel consumption                                                                   | Fo          | т/н                      | : <del>.</del>                   |  |  |  |  |
|      | $Fo = \frac{Po \times 860 \times \frac{cA}{100}}{\frac{\gamma P}{100} \times Hh'}$ |             |                          | 38.6 T/H                         |  |  |  |  |
|      | $\frac{4P}{100} \times Hh'$                                                        |             | · . :                    |                                  |  |  |  |  |
| 2.   | Combustion Gas Volume                                                              |             |                          |                                  |  |  |  |  |
| 2. • | Basic Specification                                                                |             |                          | •                                |  |  |  |  |
| •    |                                                                                    |             | ¢/                       | 10 5                             |  |  |  |  |
| 1.   | Hydrogen                                                                           | ho †        | %                        | . 12.5                           |  |  |  |  |
| 2.   | High heat value of fuel                                                            | Hh'         | kca1/kg                  | 10,700                           |  |  |  |  |
| 3.   | O <sub>2</sub> content in flue gas                                                 | 02          | %                        | 4.0                              |  |  |  |  |
|      | Calculation Form                                                                   |             |                          |                                  |  |  |  |  |
| o    | Low heat value of Fuel H1'                                                         | H1'         | kcal/kg                  |                                  |  |  |  |  |
|      | $H1' = Hh' - 6 (9 \times h6)$                                                      |             |                          | 10,025                           |  |  |  |  |
| ٥    | Excess air ratio m                                                                 | , n         | ***                      |                                  |  |  |  |  |
|      | $m = \frac{21}{21 - 0_2}$                                                          | · .         |                          | 1.24                             |  |  |  |  |
| . 0  | Combustion Gas Volume                                                              |             |                          |                                  |  |  |  |  |
|      | . Theorethical air volume                                                          | Ao '        | Nm <sup>3</sup> /kg-fuel | L .                              |  |  |  |  |
|      | $Ao' = 0.85 \times H1' \times 10^{-3} + 2.0$                                       |             | •                        |                                  |  |  |  |  |
|      | . Theorethical combustion gas volume                                               | Go'         | Nm <sup>3</sup> /kg-fue] | L                                |  |  |  |  |
|      | $Go' = 1.11 \times H1' \times 10^{-3}$                                             |             |                          | 11.13                            |  |  |  |  |
|      |                                                                                    |             |                          | •                                |  |  |  |  |

# Calculation for Air Pollution in Environment Problem

A4-25

|    | • Actual combustion gas volume                                           | G     |                               |                           |
|----|--------------------------------------------------------------------------|-------|-------------------------------|---------------------------|
|    | at Wet gas condition                                                     | G'W   |                               |                           |
|    | G'w = Go' + (m-1)Ao'                                                     |       |                               | 13.65                     |
|    | at Dry gas condition                                                     | G'd   |                               |                           |
|    | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$                        |       | $(x,y) \in [0,\infty,\infty)$ | 12.25                     |
|    | 18                                                                       | ·· .  |                               |                           |
| 3. | Flue Gas Volume at Boiler End                                            | Qb    | Nm <sup>3</sup> /H            | and<br>Anna an an Airtean |
|    | at wet condition                                                         |       |                               |                           |
|    | $QwB = (Fo \times G'w) \times 10^3$                                      | QwB ' | Nm <sup>3</sup> /H            | 527×10 <sup>3</sup>       |
|    | at dry condition                                                         |       |                               |                           |
|    | $QdB = (Io \times G'd) \times 10^3$                                      | QdB   | Nm <sup>3</sup> /H            | 473x10 <sup>3</sup>       |
|    |                                                                          |       |                               |                           |
| •  | Effective Height of Chimney                                              |       |                               |                           |
|    | (apply equation of Bosanquet)                                            |       |                               | · · · · ·                 |
|    | Basic Condition                                                          |       |                               |                           |
| 1. | Flue gas volume                                                          | QwB   | Nm <sup>3</sup> /H            | 527x10 <sup>3</sup>       |
| 2. | Ambient temperature                                                      | ta    | °C                            | 30                        |
| 3. | Flue gas temperature                                                     | tg    | °C                            | 135                       |
| 4. | Diameter of Chimney                                                      | D     | Ш.                            | 2.16                      |
| 5. | Wind velocity                                                            | U     | m/s                           | 6                         |
| 6. | Temperature reducing rate                                                | d∂/dz | °C/m                          | 0.0033                    |
| 7. | Design height of chimney                                                 | Но    | m                             | 80                        |
|    | Calculation of effective chimney height                                  |       |                               | - 、 -                     |
| •  | exhaust gas volume                                                       | Qt    | m <sup>3</sup> /s             | 162                       |
|    | $= \frac{0 \text{wBx} (273 + \text{ta})}{3,600 \times 273}$              |       |                               |                           |
| •  | exhaust gas velocity at chimney nozzle                                   | Vg    | m/s                           | 60                        |
|    | $= Qw \times (273 + tg)$<br>3,600 x 273 x $\frac{\pi}{4}$ D <sup>2</sup> |       |                               | •<br>•                    |
|    | Υ<br>                                                                    |       |                               | • :                       |
|    |                                                                          |       |                               |                           |

A4-26

. Raising height of flue gas by flue gas energy (momentum)

$$= \frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}$$
$$= \frac{0.795 \sqrt{Qt \times Vg}}{1 + \frac{2.58}{Vg}}$$

. Raising height of flue gas by temperature difference between flue gas and ambient

 $= 6.37 \text{ x g x} \frac{\text{Qt } (\text{tg - ta})}{\text{U}^3 (273 + \text{ta})} \text{ x } (\text{LnJ}^2 + \frac{2}{\text{J}} - 2)$ 56.3

Hm

Ηt

He

m

m

m

= 1.91 x 
$$10^{-3}$$
 x Qt (tg-ta) x (2.3  $\log J + \frac{2}{J} - 1$ )

$$J = \frac{U_2}{\sqrt{Qt \times Vg}} \times 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}} - 0.28 \frac{Vg (273 + ta)}{g (tg - ta)} + 1$$

$$= \frac{1}{\sqrt{Qt \times Vg}} (1,498 - \frac{312 \times Vg}{tg - ta}) + 1$$

. Effective height of chimney = Ho + 0.65 (Hm + Ht)

5. Calculation of air polutant

#### Basic Specification

1. Fuel consumption T/H 38.6 Fo % 1.6 2. Sulphur component So Nm<sup>3</sup>/H  $473 \times 10^3$ 3. Flue gas volume at dry state QdB 4. Effective height of chimney He m 165 4.0 5.  $0_2$  content in flue gas 02 % Calculation of  $SO_{X}$  emission  $Nm^3/H$ ° SO<sub>x</sub> volume at boiler end q' 432.3 = 7 (Fo x So) 914 ° SO<sub>x</sub> density at chimney nozzle ppm qc

$$= \frac{\mathbf{q'}}{\mathbf{QdB}} \times 10^6$$

A4-27

75

14.4

165

## 6. Maximum $\mathrm{SO}_{\mathbf{X}}$ Landing Density and Distance

6-1 Maximum SO<sub>x</sub> landing density (apply equation of Sutton)

$$= 1.72 \times \frac{q'}{H_0^2}$$

6-2 Maximum  $SO_x$  landing distance (apply equation of Sutton)

|      | •  |     |
|------|----|-----|
|      |    |     |
| Xmax | km | 7.1 |
|      | •  |     |

0.027

.

ppm

Cmax

 $= 20.8 \times \text{He}^{1.143} \times 10^{-3}$ 

| туре-                                                                           | -A 50 1.0        | % Chimney 10       | <u> </u>                |                                   |
|---------------------------------------------------------------------------------|------------------|--------------------|-------------------------|-----------------------------------|
| • Fuel Consumption<br>Basic Specification                                       |                  | <u>Abbreviat</u> : |                         | Applying value<br>of this project |
| l. Output at Generator end                                                      |                  | Ро                 | MW                      | 120                               |
| 2. Power plant thermal efficient                                                | ncy              | 2p                 | %                       | 25                                |
| 3. Fuel combustion ratio                                                        | х <sub>а</sub> . | d                  | %                       | 100                               |
| 4. High heat value of fuel                                                      |                  | Hh '               | kca1/kg                 | 10,700                            |
| Calculation Form                                                                |                  |                    | . *                     |                                   |
| ° Fuel consumption                                                              |                  | Fo                 | T/H                     |                                   |
| $Fo = \frac{Po \times 860 \times \frac{c}{100}}{\frac{\psi p}{100} \times Hh'}$ |                  | ·                  | •                       | 38.6 T/                           |
| Combustion Gas Volume                                                           |                  |                    |                         | ••                                |
| Basic Specification                                                             |                  | ÷ .                | •                       | •                                 |
| l. Hydrogen                                                                     |                  | ho'                | %                       | 12.5                              |
| 2. High heat value of fuel                                                      |                  | Hh'                | kcal/kg                 | 10,700                            |
| 3. O <sub>2</sub> content in flue gas                                           |                  | 02                 | . %                     | 4.0                               |
| Calculation Form                                                                |                  |                    |                         |                                   |
| ° Low heat value of Fuel H1'                                                    |                  | H1'                | kcal/kg                 |                                   |
| $H1' = Hh' - 6 (9 \times ho')$                                                  |                  |                    |                         | 10,025                            |
| ° Excess air ratio m                                                            |                  | Ð                  | -                       |                                   |
| $m = \frac{21}{21 - 0_2}$                                                       |                  |                    |                         | 1.24                              |
| ° Combustion Gas Volume                                                         |                  |                    |                         |                                   |
| . Theorethical air volume                                                       |                  | Ao '               | Nm <sup>3</sup> /kg-fue | 1                                 |
| Ao' = 0.85 x H1' x $10^{-3}$ +                                                  | 2.0              |                    |                         |                                   |
| . Theorethical combustion ga                                                    | as volume        | Goʻ                | Nm <sup>3</sup> /kg-fue | 1                                 |
| $Go' = 1.11 \times H1' \times 10^{-3}$                                          |                  |                    |                         | 11.13                             |

## Calculation for Air Pollution in Environment Problem

.

A4-29

| ·                 |                                                                 |          |                    |                                                                                                 |
|-------------------|-----------------------------------------------------------------|----------|--------------------|-------------------------------------------------------------------------------------------------|
| . Act             | ual combustion gas volume                                       | Ģ        |                    | ant an an                                                                                       |
| at We             | t gas condition                                                 | G'W      |                    | •<br>•                                                                                          |
| Gʻw               | u = Go' + (m-1)Ao'                                              |          |                    | 13.65                                                                                           |
| at Dr             | y gas condition                                                 | G'd      |                    |                                                                                                 |
| G'd               | $= Gw' - \frac{0.224}{18} (9 \times ho + W')$                   |          | an aga ata         | 12.25                                                                                           |
|                   |                                                                 |          | <u>~</u>           |                                                                                                 |
| . Flue            | Gas Volume at Boiler End                                        | QЪ       | $Nm^3/H$           | $\delta_{1}=\delta_{2}\delta_{1}+\delta_{1}\delta_{2}\delta_{2}+\delta_{2}\delta_{3}\delta_{3}$ |
| at we             | t condition                                                     |          |                    |                                                                                                 |
| QwB =             | (Fo x G'w) x 10 <sup>3</sup>                                    | QwB      | Nm <sup>3</sup> /H | 527x10 <sup>3</sup>                                                                             |
| at dr             | y condition                                                     | • .      | · .                |                                                                                                 |
| QdB =             | · (Io x G'd) x 10 <sup>3</sup>                                  | QđB      | Nm <sup>3</sup> /H | 473x10 <sup>3</sup>                                                                             |
| . Effec           | tive Height of Chimney                                          |          |                    |                                                                                                 |
| (appl             | y equation of Bosanquet)                                        |          |                    |                                                                                                 |
| Basic             | Condition                                                       |          |                    | •<br>•                                                                                          |
| 1. Flue           | gas volume                                                      | QwB      | Nm <sup>3</sup> /H | 527x10 <sup>3</sup>                                                                             |
| 2. Ambie          | nt temperature                                                  | ta       | °C                 | 30                                                                                              |
| 3. Flue           | gas temperature                                                 | tg       | °C                 | 135                                                                                             |
| 4. Diame          | ter of Chimney                                                  | D        | m                  | 2.16                                                                                            |
| 5. Wind           | velocity                                                        | U        | m/s                | 6                                                                                               |
| 6. Tempe          | rature reducing rate                                            | dθ/dz    | °C/m               | 0.0033                                                                                          |
| 7. Desig          | n height of chimney                                             | Но       | M                  | 100                                                                                             |
| Calcu             | lation of effective chimney height                              | <u>.</u> |                    |                                                                                                 |
| . exhau           | st gas volume                                                   | Qt       | m <sup>3</sup> /s  | 162                                                                                             |
| $=\frac{Qw}{3}$   | x (273 + ta)<br>,600 x 273                                      |          |                    | e<br>Northean an Araba                                                                          |
| • exhau           | st gas velocity at chimney nozzle                               | Vg       | m/s                | 60                                                                                              |
| ≕ <u>Q</u> w<br>વ | $\frac{Bx (273 + tg)}{600 \times 273 \times \frac{\pi}{4} D^2}$ |          |                    |                                                                                                 |
| З,                | 000 x 2/3 x 4 D                                                 |          | · ·                | ·                                                                                               |

. Raising height of flue gas by flue gas energy (momentum)

$$= \frac{\frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}}{\frac{0.795 \sqrt{Qt \times Vg}}{1 + \frac{2.58}{Vg}}}$$

. Raising height of flue gas by temperature difference between flue gas and ambient

 $= 6.37 \times g \times \frac{Qt (tg - ta)}{U^3 (273 + ta)} \times (LnJ^2 + \frac{2}{J} - 2)$ = 1.91 x 10<sup>-3</sup> x Qt (tg-ta) x (2.3 logJ +  $\frac{1}{J}$  - 1)

Hm

Ηt

He

Fo

So

QdB

He

02

q'

qc

m

T/H

Nm<sup>3</sup>/H

 $Mm^3/H$ 

ррш

%

m

%

m

75

56.3

14.4

185

38.6

1:6

 $473 \times 10^{3}$ 

4.0

432.3

914

185

 $J = \frac{U_2}{\sqrt{Qt \times Vg}} \times 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}}$ - 0.28  $\frac{Vg (273 + ta)}{g (tg - ta)} + 1$ =  $\frac{1}{\sqrt{Qt \times Vg}} (1,498 - \frac{312 \times Vg}{tg - ta}) + 1$ 

. Effective height of chimney = Ho + 0.65 (Hm + Ht)

- Calculation of air polutant
   Basic Specification
  - 1. Fuel consumption
- 2. Sulphur component
- 3. Flue gas volume at dry state
- 4. Effective height of chimney
- 5. O<sub>2</sub> content in flue gas Calculation of SO<sub>x</sub> emission
  - ° SO<sub>X</sub> volume at boiler end = 7 (Fo x So)
  - ° SO<sub>x</sub> density at chimney nozzle

$$=\frac{q'}{QdB} \times 10^6$$

## 6. Maximum $\mathrm{SO}_{\mathbf{X}}$ Landing Density and Distance

6-1 Maximum SO<sub>X</sub> landing density (apply equation of Sutton)

$$= 1.72 \times \frac{q^{1}}{Hc^{2}}$$

6-2 Maximum SO<sub>x</sub> landing distance (apply equation of Sutton)

| Xmax | km | <br>8.1 |
|------|----|---------|

0.022

ppm

Cmax

= 20.8 x He<sup>1.143</sup> x 10<sup>-3</sup>

|                                                                             |           |                         | em              |
|-----------------------------------------------------------------------------|-----------|-------------------------|-----------------|
| Type-A So 1.6%                                                              | Chimney 1 | <u>20 m</u>             |                 |
| • Fuel Consumption                                                          |           |                         | Applying value  |
| Basic Specification                                                         | Abbreviat | ion/Unit                | of this project |
| 1. Output at Generator end                                                  | Ро        | MW                      | 120             |
| 2. Power plant thermal efficiency                                           | ųр        | %                       | 25              |
| 3. Fuel combustion ratio                                                    | d ·       | %                       | 100             |
| 4. High heat value of fuel                                                  | Hh'       | kcal/kg                 | 10,700          |
| Calculation Form                                                            |           |                         |                 |
| ° Fuel consumption                                                          | Fo        | т/н                     |                 |
| Fo = $\frac{Po \times 860 \times \frac{Q}{100}}{\frac{UP}{100} \times Hh'}$ |           |                         | 38.6 T/H        |
| • Combustion Gas Volume                                                     |           |                         |                 |
| Basic Specification                                                         |           |                         | •               |
| 1. Hydrogen                                                                 | ho '      | %                       | 12.5            |
| 2. High heat value of fuel                                                  | Hh'       | kcal/kg                 | 10,700          |
| 3. 0 <sub>2</sub> content in flue gas                                       | 02        | %                       | 4.0             |
| Calculation Form                                                            |           |                         |                 |
| ° Low heat value of Fuel Hl'                                                | H1 '      | kcal/kg                 |                 |
| $H1' = Hh' - 6 (9 \times ho)$                                               |           | •                       | 10,025          |
| ° Excess air ratio m                                                        | . m       | —                       |                 |
| $m = \frac{21}{21 - 0_2}$                                                   |           |                         | 1.24            |
| ° Combustion Gas Volume                                                     |           | . *.                    |                 |
| . Theorethical air volume                                                   | Ao'       | Nm <sup>3</sup> /kg-fue | 21              |
| Ao' = $0.85 \times H1' \times 10^{-3} + 2.0$                                |           | •                       |                 |
| . Theorethical combustion gas volume                                        | Go'       | Nm <sup>3</sup> /kg-fue | 21              |
| $Go' = 1.11 \times H1' \times 10^{-3}$                                      |           |                         | 11.13           |

## Calculation for Air Pollution in Environment Problem

.

A4-33

| ·  | • Actual combustion gas volume                                        | G              |                    |                     |
|----|-----------------------------------------------------------------------|----------------|--------------------|---------------------|
|    | at Wet gas condition                                                  | G'w            |                    |                     |
|    | G'w = Go' + (m-1)Ao'                                                  |                | $(1, \dots, p)$    | 13.65               |
|    | at Dry gas condition                                                  | G'd            |                    |                     |
|    | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$                     |                |                    | 12.25               |
|    | 10                                                                    |                |                    |                     |
| 3. | Flue Gas Volume at Boiler End                                         | QЪ             | Nm <sup>3</sup> /H |                     |
|    | at wet condition                                                      |                |                    |                     |
|    | $QwB = (Fo \times G'w) \times 10^3$                                   | QwB            | Nm <sup>3</sup> /H | 527x10 <sup>3</sup> |
|    | at dry condition                                                      | •              |                    |                     |
|    | $QdB = (Io \times G'd) \times 10^3$                                   | QđB            | Nm <sup>3</sup> /H | 473x10 <sup>3</sup> |
| 4. | Effective Height of Chimney                                           |                | · · ·              |                     |
|    | (apply equation of Bosanquet)                                         |                |                    |                     |
|    | Basic Condition                                                       |                |                    |                     |
| 1. | Flue gas volume                                                       | QwB            | Nm <sup>3</sup> /H | 527×10 <sup>3</sup> |
| 2. | Ambient temperature                                                   | ta             | °C                 | 30                  |
| 3. | Flue gas temperature                                                  | tg             | °C                 | 135                 |
| 4. | Diameter of Chimney                                                   | D ·            | m                  | 2.16                |
| 5. | Wind velocity                                                         | U              | m/s                | 6                   |
| 6. | Temperature reducing rate                                             | d <i>θ</i> /dz | °C/m               | 0.0033              |
| 7. | Design height of chimney                                              | Но             | m                  | 120                 |
|    | Calculation of effective chimney height                               |                |                    |                     |
| •  | exhaust gas volume                                                    | Qt             | m <sup>3</sup> /s  | 162                 |
| ·  | $= \frac{0 \text{w x } (273 + \text{ta})}{3,600 \text{ x } 273}$      |                | -                  |                     |
| •  | exhaust gas velocity at chimney nozzle                                | Vg             | m/s                | 60                  |
|    | $= \frac{QWBx (273 + tg)}{3,600 \times 273 \times \frac{\pi}{4} D^2}$ |                |                    | •                   |

• Raising height of flue gas by flue gas energy (momentum)

$$= \frac{\frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}}{\frac{0.795 \sqrt{Qt \times Vg}}{1 + \frac{2.58}{Vg}}}$$

• Raising height of flue gas by temperature difference between flue gas and ambient

= 6.37 x g x  $\frac{Qt (tg - ta)}{U^3 (273 + ta)}$  x  $(LnJ^2 + \frac{2}{J} - 2)$ = 1.91 x 10<sup>-3</sup> x Qt (tg-ta) x (2.3 logJ +  $\frac{1}{J} - 1$ )

$$J = \frac{U_2}{\sqrt{Qt \ x \ Vg}} \ x \ 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}}$$
$$- 0.28 \ \frac{Vg}{g} \ (273 + ta)}{g \ (tg - ta)} + 1$$
$$= \frac{1}{\sqrt{Qt \ x \ Vg}} \ (1,498 - \frac{312 \ x \ Vg}{tg - ta}) + 1$$

• Effective height of chimney = Ho + 0.65 (Hm + Ht)

5. Calculation of air polutant

#### Basic Specification

| 1. Fuel consumption                         | Fo             | т/н                | 38.6                |
|---------------------------------------------|----------------|--------------------|---------------------|
| 2. Sulphur component                        | So             | %                  | 1.6                 |
| 3. Flue gas volume at dry state             | QdB            | Nm <sup>3</sup> /H | 473x10 <sup>3</sup> |
| 4. Effective height of chimney              | Не             | m                  | 205                 |
| 5.0 <sub>2</sub> content in flue gas        | 0 <sub>2</sub> | %                  | 4.0                 |
| Calculation of SO <sub>x</sub> emission     |                |                    |                     |
| ° SO <sub>x</sub> volume at boiler end      | q'             | Nm <sup>3</sup> /H | 432.3               |
| = 7 (Fo x So)                               |                |                    |                     |
| ° SO <sub>x</sub> density at chimney nozzle | qc             | ррт                | 914                 |

 $= \frac{q'}{QdB} \times 10^6$ 

Hm

Ht

He

m

m

m

-75

56.3

14.4

- 205

6. Maximum  $\mathrm{SO}_{\mathbf{X}}$  Landing Density and Distance

- 6-1 Maximum SO<sub>x</sub> landing density (apply equation of Sutton)
  - $= 1.72 \times \frac{q'}{Hc^2}$
- 6-2 Maximum  $SO_x$  landing distance (apply equation of Sutton)

Xmax km 9.1

ppm

Cmax

0.018

= 20.8 x  $He^{1.143}$  x  $10^{-3}$ 

## Calculation for Air Pollution in Environment Problem

## Type-F So 1.6% Chimney 80 m

| 1. | Fuel Consumption                                                                  |                |                        |                                   |
|----|-----------------------------------------------------------------------------------|----------------|------------------------|-----------------------------------|
| I  | Basic Specification                                                               | Abbreviatio    | on/Unit                | Applying value<br>of this project |
| 1. | Output at Generator end                                                           | Ро             | MW                     | 60                                |
| 2. | Power plant thermal efficiency                                                    | Чр             | %                      | 19                                |
| 3. | Fuel combustion ratio                                                             | d              | %                      | 100                               |
| 4. | High heat value of fuel                                                           | Kh'            | kcal/kg                | 10,700                            |
|    | Calculation Form                                                                  |                |                        | · .                               |
| o  | Fuel consumption                                                                  | Fo             | т/н                    | н                                 |
|    | $Fo = \frac{Po \times 860 \times \frac{O}{100}}{\frac{\gamma P}{100} \times Hh'}$ |                |                        | 25.4 T/H                          |
| 2. | Combustion Gas Volume                                                             |                |                        |                                   |
|    | Basic Specification                                                               |                |                        |                                   |
| 1. | Hydrogen                                                                          | ho'            | %                      | 12.5                              |
| 2. | High heat value of fuel                                                           | Hh'            | kcal/kg                | 10,700                            |
| 3. | 0 <sub>2</sub> content in flue gas                                                | 0 <sub>2</sub> | %                      | 4.0                               |
|    | Calculation Form                                                                  |                |                        |                                   |
| o  | Low heat value of Fuel H1'                                                        | Hl'            | kcal/kg                |                                   |
|    | H1' = Hh' - 6 (9 x ho')                                                           |                |                        | 10,025                            |
| 0  | Excess air ratio m                                                                | . <b>m</b>     |                        |                                   |
|    | $m = \frac{21}{21 - 0_2}$                                                         |                |                        | 1.24                              |
| 0  | Combustion Gas Volume                                                             |                | . · · ·                |                                   |
|    | . Theorethical air volume                                                         | Ao'            | Nm <sup>3</sup> /kg-fu | e1                                |
|    | Ao' = $0.85 \times H1' \times 10^{-3} + 2.0$                                      |                | <u>.</u>               |                                   |
|    | . Theorethical combustion gas volume                                              | Go'            | Nm <sup>3</sup> /kg-fu | e1                                |
|    | $Go' = 1.11 \times H1' \times 10^{-3}$                                            |                |                        | 11.13                             |
|    |                                                                                   |                |                        |                                   |

A4-37

| •  | . Actual combustion gas volume                    | G     |                          |                     |
|----|---------------------------------------------------|-------|--------------------------|---------------------|
|    | at Wet gas condition                              | G'w   |                          |                     |
|    | G'w = Go' + (m-1)Ao'                              |       |                          | 13.65               |
|    | at Dry gas condition                              | G'd   |                          |                     |
|    | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$ |       | ·                        | 12.25               |
|    | 18                                                |       | the second second second |                     |
| 3. | Flue Gas Volume at Boiler End                     | QЪ    | Nm <sup>3</sup> /H       |                     |
|    | at wet condition                                  |       |                          | •<br>•              |
|    | $QwB = (Fo \times G'w) \times 10^3$               | QwB   | Nm <sup>3</sup> /H       | 347x10 <sup>3</sup> |
|    | at dry condition                                  |       |                          |                     |
|    | $QdB = (Io \times G'd) \times 10^3$               | QdB   | Nm <sup>3</sup> /H       | 311x10 <sup>3</sup> |
|    |                                                   |       |                          |                     |
| 4. | Effective Height of Chimney                       |       | · <u>-</u> · .           |                     |
|    | (apply equation of Bosanquet)                     |       |                          |                     |
|    | Basic Condition                                   |       | ••<br>• • •              |                     |
| 1. | Flue gas volume                                   | QwB   | Nm <sup>3</sup> /H       | 347x10 <sup>3</sup> |
| 2. | Ambient temperature                               | ta    | °C                       | 30                  |
| 3. | Flue gas temperature                              | tg    | °C                       | 135                 |
| 4. | Diameter of Chimney                               | D     | m                        | 2.16                |
| 5. | Wind velocity                                     | U     | m/s                      | 6                   |
| 6, | Temperature reducing rate                         | dθ/dz | °C/m                     | 0.0033              |
| 7. | Design height of chimney                          | Но    | m                        | 80                  |
|    | Calculation of effective chimney height           |       |                          |                     |
| •  | exhaust gas volume                                | Qt    | m <sup>3</sup> /s        | 107                 |
|    | $= \frac{Qw \times (273 + ta)}{3,600 \times 273}$ |       |                          | . : .               |
| •  | exhaust gas velocity at chimney nozzle            | Vg    | m/s                      | 39                  |
|    | $= Qw_{BX} (273 + tg)$                            |       |                          |                     |

 $\frac{QWBx (2/3 + tg)}{3,600 \times 273 \times \frac{\pi}{4} p^2}$ 

• Raising height of flue gas by flue gas energy (momentum)

$$= \frac{\frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}}{\frac{1}{1 + \frac{2.58}{Vg}}}$$

. Raising height of flue gas by temperature difference between flue gas and ambient

= 6.37 x g x  $\frac{Qt (tg - ta)}{U^3 (273 + ta)}$  x  $(LnJ^2 + \frac{2}{J} - 2)$ 

Hm

- Ht

He

m

m

m

= 1.91 x 10<sup>-3</sup> x Qt (tg-ta) x (2.3 logJ + 
$$\frac{1}{J}$$
 - 1)

$$J = \frac{U_2}{\sqrt{Qt \ x \ Vg}} \ x \ 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}}$$
$$- 0.28 \ \frac{Vg \ (273 + ta)}{g \ (tg - ta)} + 1$$

$$=\frac{1}{\sqrt{Qt \times Vg}} (1,498 - \frac{312 \times Vg}{tg - ta}) + 1$$

Effective height of chimney
= Ho + 0.65 (Hm + Ht)

5. Calculation of air polutant

#### Basic Specification

- T/H 1. Fuel consumption Fo 25.4 2. Sulphur component % 1.6 So Nm<sup>3</sup>/H  $473 \times 10^{3}$ 3. Flue gas volume at dry state QdB 4. Effective height of chimney 141 He m % 4.0 5. 02 content in flue gas 02 Calculation of  $SO_X$  emission °  $\mathrm{SO}_{\mathbf{X}}$  volume at boiler end Nm<sup>3</sup>/H d, 284.5 = 7 (Fo x So)  $^{\circ}$  SO<sub>x</sub> density at chimney nozzle 601 qc ppm
  - $=\frac{q'}{0dB} \times 10^6$

48

46.1

.

22.4

141

## 6. Maximum $\mathrm{SO}_{\mathbf{X}}$ Landing Density and Distance

6-1 Maximum  $SO_x$  landing density (apply equation of Sutton)

= 1.72 x 
$$\frac{q'}{Hc^2}$$

÷

6-2 Maximum SO<sub>x</sub> landing distance (apply equation of Sutton)

 $= 20.8 \times \text{He}^{1.143} \times 10^{-3}$ 

|      |    | :<br><br>-          |     |
|------|----|---------------------|-----|
| Xmax | km |                     | 6.0 |
|      |    | а <sup>л</sup><br>А |     |

ppm

Cmax

0.025

|     | Type-F So 1.6%                                                             | Chimney 1  | <u>00 m</u>             | · · ·           |
|-----|----------------------------------------------------------------------------|------------|-------------------------|-----------------|
| 1.  | Fuel Consumption                                                           |            | :                       | Applying value  |
| `   | Basic Specification                                                        | Abbreviat  |                         | of this project |
| 1.  | Output at Generator end                                                    | Ро         | MW                      | 60              |
| 2.  | Power plant thermal efficiency                                             | Чр         | - %                     | 19              |
| .3. | Fuel combustion ratio                                                      | d,         | %                       | 100             |
| 4.  | High heat value of fuel                                                    | Hh'        | kcal/kg                 | 10,700          |
|     | Calculation Form                                                           |            | . •                     |                 |
| 0   | Fuel consumption                                                           | Fo         | т/н                     |                 |
|     | $Fo = \frac{Po \times 860 \times \frac{2}{100}}{\frac{2}{100} \times Hh'}$ |            |                         | 25.4 Т/Н        |
|     | $\frac{100}{100}$ x Hn                                                     |            |                         |                 |
| 2.  | Combustion Gas Volume                                                      |            | ·<br>·                  |                 |
|     | Basic Specification                                                        |            |                         |                 |
| 1.  | Hydrogen                                                                   | ho'        | %                       | 12.5            |
| 2.  | High heat value of fuel                                                    | Hh'        | kcal/kg                 | 10,700          |
| 3.  | O <sub>2</sub> content in flue gas                                         | 02         | %                       | 4.0             |
|     | Calculation Form                                                           |            |                         |                 |
| o   | Low heat value of Fuel H1'                                                 | H1 '       | kcal/kg                 |                 |
|     | H1' = Hh' - 6 (9 x ho')                                                    |            |                         | 10,025          |
| o   | Excess air ratio m                                                         | . <b>m</b> | <del>-</del> .          |                 |
|     | $m = \frac{21}{21 - 0_2}$                                                  | <b>.</b> . | •                       | 1.24            |
| · 0 | Combustion Gas Volume                                                      | ·          |                         |                 |
|     | . Theorethical air volume                                                  | Ao'        | Nm <sup>3</sup> /kg-fue | 21              |
|     | Ao' = $0.85 \times H1' \times 10^{-3} + 2.0$                               |            | •                       |                 |
|     | . Theorethical combustion gas volume                                       | Go '       | Nm <sup>3</sup> /kg-fue | 21              |
|     | Go' = 1.11 x H1' x $10^{-3}$                                               |            |                         | 11.13           |
|     |                                                                            |            |                         |                 |

## Calculation for Air Pollution in Environment Problem

| •  | . Actual combustion gas volume                                             | G              |                    |                     |
|----|----------------------------------------------------------------------------|----------------|--------------------|---------------------|
|    | at Wet gas condition                                                       | G'W            |                    |                     |
|    | G'w = Go' + (m-1)Ao'                                                       |                |                    | 13.65               |
|    | at Dry gas condition                                                       | G'd            | e e s              |                     |
|    | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$                          |                |                    | 12.25               |
|    | 10                                                                         |                | · · · · ·          |                     |
| 3. | Flue Gas Volume at Boiler End                                              | Qb             | Nm <sup>3</sup> /H |                     |
|    | at wet condition                                                           |                | •                  |                     |
|    | $QwB = (Fo \times G'w) \times 10^3$                                        | QwB            | Nm <sup>3</sup> /H | 347x10 <sup>3</sup> |
|    | at dry condition                                                           | •              |                    |                     |
|    | $QdB = (Io \times G'd) \times 10^3$                                        | QdB            | Nm <sup>3</sup> /H | 311x10 <sup>3</sup> |
| 4. | Effective Height of Chimney                                                |                |                    |                     |
|    | (apply equation of Bosanquet)                                              |                |                    |                     |
|    | Basic Condition                                                            |                |                    |                     |
| 1. | Flue gas volume                                                            | QwB            | Nm <sup>3</sup> /H | 347x10 <sup>3</sup> |
| 2. | Ambient temperature                                                        | ta             | °C                 | 30                  |
| 3. | Flue gas temperature                                                       | tg             | °C                 | 135                 |
| 4. | Diameter of Chimney                                                        | D              | m                  | 2.16                |
| 5. | Wind velocity                                                              | U              | m/s                | 6                   |
| 6. | Temperature reducing rate                                                  | d <i>θ</i> /dz | °C/m               | 0.0033              |
| 7. | Design height of chimney                                                   | Но             | n                  | 100                 |
|    | Calculation of effective chimney height                                    |                |                    |                     |
| •  | exhaust gas volume                                                         | Qt             | m <sup>3</sup> /s  | 107                 |
|    | $= \frac{Q_{W} \times (273 + ta)}{3,600 \times 273}$                       |                |                    |                     |
| •  | exhaust gas velocity at chimney nozzle                                     | Vg             | m/s                | 39                  |
|    | $= \frac{Qw \times (273 + tg)}{3,600 \times 273 \times \frac{\pi}{4} D^2}$ |                |                    |                     |

• Raising height of flue gas by flue gas energy (momentum)

$$= \frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}$$
  
=  $\frac{0.795\sqrt{Qt \times Vg}}{1 + \frac{2.58}{Vg}}$ 

. Raising height of flue gas by temperature difference between flue gas and ambient

= 6.37 x g x 
$$\frac{Qt (tg - ta)}{U^3 (273 + ta)}$$
 x (LnJ<sup>2</sup> +  $\frac{2}{J}$  - 2)

= 1.91 x 
$$10^{-3}$$
 x Qt (tg-ta) x (2.3 logJ +  $\frac{1}{J}$  - 1)

$$J = \frac{U_2}{\sqrt{Qt \times Vg}} \times 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}} - 0.28 \frac{Vg (273 + ta)}{g (tg - ta)} + 1$$

$$= \frac{1}{\sqrt{Qt \times Vg}} (1,498 - \frac{312 \times Vg}{tg - ta}) + 1$$

. Effective height of chimney He m
= Ho + 0.65 (Hm + Ht)

#### 5. Calculation of air polutant

#### Basic Specification

.

| 1. Fuel consumption                         | Fo             | т/н                | 25.4                |
|---------------------------------------------|----------------|--------------------|---------------------|
| 2. Sulphur component                        | So             | %                  | 1.6                 |
| 3. Flue gas volume at dry state             | QdB            | Nm <sup>3</sup> /H | 473x10 <sup>3</sup> |
| 4. Effective height of chimney              | Не             | Ш                  | 161                 |
| 5. O <sub>2</sub> content in flue gas       | <sup>0</sup> 2 | %                  | 4.0                 |
| Calculation of SO <sub>x</sub> emission     |                |                    |                     |
| ° SO <sub>x</sub> volume at boiler end      | d i            | Nm <sup>3</sup> /H | 284.5               |
| = 7 (Fo x So)                               | •.             |                    |                     |
| ° SO <sub>x</sub> density at chimney nozzle | qc             | ppm                | 601                 |

$$=\frac{q'}{QdB} \times 10^6$$

Hm

Ήt

m

щ

48

22.4

161

46.1

## 6. Maximum $\mathrm{SO}_{\mathbf{X}}$ Landing Density and Distance

6-1 Maximum SO<sub>x</sub> landing density (apply equation of Sutton)

$$= 1.72 \times \frac{q^{*}}{Hc^2}$$

:

÷

6-2 Maximum  $SO_x$  landing distance (apply equation of Sutton)

| Xmax | km | 6.9 |
|------|----|-----|

ppm

0.019

Cmax

 $= 20.8 \times \text{He}^{1.143} \times 10^{-3}$ 

|     | <b>Type-F</b> So 1.6%                                                                            | Chim                   | ney 12         | <u>0 m</u>              |                                   |
|-----|--------------------------------------------------------------------------------------------------|------------------------|----------------|-------------------------|-----------------------------------|
| 1.  | Fuel Consumption<br>Basic Specification                                                          | Abbr                   | eviati         | on/Unit                 | Applying value<br>of this project |
| 1.  | Output at Generator end                                                                          | 400 <b>4</b> -34-66-68 | Po             | MW                      | 60                                |
|     |                                                                                                  | ÷ •                    |                | %                       |                                   |
|     | Power plant thermal efficiency                                                                   |                        | l p            |                         | 19                                |
|     | Fuel combustion ratio                                                                            |                        | d              | %                       | 100                               |
| 4.  | High heat value of fuel                                                                          |                        | Hh'            | kcal/kg                 | 10,700                            |
|     | Calculation Form                                                                                 |                        |                |                         | ·                                 |
| ٥   | Fuel consumption                                                                                 |                        | Fo             | т/н                     | •                                 |
|     | $F_{0} = \frac{P_{0} \times 860 \times \frac{\Delta}{100}}{\frac{q_{P}}{100} \times \text{Hh'}}$ |                        |                |                         | 25.4 Т/Н                          |
| 2.  | Combustion Gas Volume<br>Basic Specification                                                     |                        |                |                         |                                   |
| 1.  | Hydrogen                                                                                         |                        | ho'            | %                       | .12.5                             |
| 2.  | High heat value of fuel                                                                          |                        | Hh'            | kcal/kg                 | 10,700                            |
| 3.  | O <sub>2</sub> content in flue gas                                                               |                        | 0 <sub>2</sub> | %                       | 4.0                               |
|     | Calculation Form                                                                                 |                        |                |                         |                                   |
| 0   | Low heat value of Fuel H1'                                                                       |                        | H1'            | kca1/kg                 | •                                 |
|     | $H1' = Hh' - 6 (9 \times ho')$                                                                   |                        |                |                         | 10,025                            |
| ٥   | Excess air ratio m                                                                               |                        | ,<br>M         | _                       |                                   |
|     | $m = \frac{21}{21 - 0_2}$                                                                        |                        | · .            | · .                     | 1.24                              |
| · ò | Combustion Gas Volume                                                                            |                        |                |                         |                                   |
|     | . Theorethical air volume                                                                        |                        | Ao '           | Nm <sup>3</sup> /kg-fue | <b>e1</b>                         |
|     | Ao' = $0.85 \times H1' \times 10^{-3} + 2.0$                                                     |                        |                |                         | · · ·                             |
|     | . Theorethical combustion gas volume                                                             |                        | Goʻ            | Nm <sup>3</sup> /kg-fue | <b>e1</b>                         |
|     | $Go' = 1.11 \times H1' \times 10^{-3}$                                                           |                        |                |                         | 11.13                             |

# Calculation for Air Pollution in Environment Problem

.

.

,

A4-45

|          |                                                                                  |                | ,                                      |     |                     |
|----------|----------------------------------------------------------------------------------|----------------|----------------------------------------|-----|---------------------|
|          | . Actual combustion gas volume                                                   | G              | 1 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - |     |                     |
|          | at Wet gas condition                                                             | .G'w           |                                        |     |                     |
|          | G'w = Go' + (m-1)Ao'                                                             | · . ·          | ÷                                      | ÷ . | 13.65               |
|          | at Dry gas condition                                                             | Gʻd            |                                        |     |                     |
|          | $G'd = Gw' - \frac{0.224}{18} (9 \times ho + W')$                                |                | •                                      |     | 12.25               |
| <b>~</b> | Blass Ose Walsons at Dadlen Wal                                                  | <b>Ob</b>      | Nm <sup>3</sup> /H                     |     |                     |
| 3.       | Flue Gas Volume at Boiler End                                                    | Qb             | мш~/ н<br>«                            |     |                     |
|          | at wet condition                                                                 |                | 3 /                                    |     |                     |
|          | $QwB = (Fo \times G'w) \times 10^3$                                              | QwB            | Nm <sup>3</sup> /H                     |     | 347x10 <sup>3</sup> |
|          | at dry condition                                                                 |                | 2                                      |     | ·. 3                |
|          | $QdB = (Io \times G'd) \times 10^3$                                              | QdB            | Nm <sup>3</sup> /H                     |     | 311x10 <sup>3</sup> |
| 4.       | Effective Height of Chimney                                                      |                | ·.                                     |     |                     |
|          | (apply equation of Bosanquet)                                                    |                |                                        |     |                     |
|          | Basic Condition                                                                  |                |                                        |     | • • •               |
| 1.       | Flue gas volume                                                                  | QwB            | Nm <sup>3</sup> /H                     |     | 347x10 <sup>3</sup> |
| 2.       | Ambient temperature                                                              | ta             | °C                                     |     | 30                  |
| 3.       | Flue gas temperature                                                             | tg             | °C                                     |     | 135                 |
| 4.       | Diameter of Chimney                                                              | D              | m                                      |     | 2.16                |
| 5.       | Wind velocity                                                                    | U              | m/s                                    |     | 6                   |
| 6.       | Temperature reducing rate                                                        | d <i>θ</i> /dz | °C/m                                   |     | 0.0033              |
| 7.       | Design height of chimney                                                         | Но             | m                                      |     | 120                 |
|          | Calculation of effective chimney height                                          |                |                                        |     |                     |
| •        | exhaust gas volume                                                               | Qt             | m <sup>3</sup> /s                      | •   | 107                 |
|          | $= \frac{Qw \times (273 + ta)}{3,600 \times 273}$                                |                |                                        | ÷   |                     |
| ٠        | exhaust gas velocity at chimney nozzle                                           | ٧g             | m/s                                    |     | 39                  |
|          | $= \underline{Qw \times (273 + tg)}_{3,600 \times 273 \times \frac{\pi}{4} D^2}$ |                |                                        |     |                     |

- . Raising height of flue gas by flue gas energy (momentum)
  - $= \frac{4.77}{1 + \frac{0.43 \times U}{Vg}} \times \frac{\sqrt{Qt \times Vg}}{U}$  $= \frac{0.795 \sqrt{Qt \times Vg}}{1 + \frac{2.58}{Vg}}$
- . Raising height of flue gas by temperature difference between flue gas and ambient
  - $= 6.37 \text{ x g x } \frac{\text{Qt } (\text{tg } \text{ta})}{\text{U}^3 (273 + \text{ta})} \text{ x } (\text{LnJ}^2 + \frac{2}{\text{J}} 2)$  46.1

Hm

Ht

He

m

m

m

48

22.4

181

= 1.91 x 
$$10^{-3}$$
 x Qt (tg-ta) x (2.3 logJ +  $\frac{1}{J}$  - 1)

 $J = \frac{U_2}{\sqrt{Qt \ x \ Vg}} \ x \ 0.43 \sqrt{\frac{(273 + to)}{g(d\theta/dz)}}$  $- 0.28 \ \frac{Vg \ (273 + ta)}{g \ (tg - ta)} + 1$ 

$$=\frac{1}{\sqrt{Qt \times Vg}} (1,498 - \frac{312 \times Vg}{tg - ta}) + 1$$

Effective height of chimney
= Ho + 0.65 (Hm + Ht)

5. Calculation of air polutant

#### Basic Specification

1. Fuel consumption Fo T/H 25.4 2. Sulphur component So % 1.6  $Nm^3/H$ 473x10<sup>3</sup> 3. Flue gas volume at dry state QdB 4. Effective height of chimney 181 He W 5.  $O_2$  content in flue gas % 4.0 02 Calculation of  $SO_X$  emission Nm<sup>3</sup>/H ° SO<sub>x</sub> volume at boiler end q' 284.5 = 7 (Fo x So) ° SO<sub>x</sub> density at chimney nozzle 601 ppm qc

$$= \frac{q'}{QdB} \times 10^6$$

## 6. Maximum $\mathrm{SO}_{\mathbf{X}}$ Landing Density and Distance

6-1 Maximum  $SO_x$  landing density (apply equation of Sutton)

$$= 1.72 \times \frac{q'}{Hc^2}$$

6-2 Maximum SO<sub>x</sub> landing distance (apply equation of Sutton) Xmax km 7.9

 $\mathbf{ppm}$ 

0.015

Cmax

### $= 20.8 \times \text{He}^{1.143} \times 10^{-3}$

ANNEX 5

#### STUDY ON FUELS

#### APPLICABLE TO GAS TURBINES

.

ANNEX 5 Study on Fuels Applicable to Gas Turbines

Generally, gas fuel and liquid fuel are used for gas turbines. Also, either single type fuel or multi-fuel is used. In this section, impacts of three types of fuel - gas fuel, distillate fuel and heavy oil fuel - on equipment design and fuel changeover on load condition were studied.

condition.

Gas Turbine - Application of multi fuel

Case - one

- (1) Fuel
- (2) Type of combustion chamber
- (3) Operation mode

Case - two

(1) Fuel

(2) Type of combustion chamber

(3) Operation mode

Distillate - Heavy oil are available Respective type at proven design Fuel changeover are available on load condition.

Distillate - Gas are available

Respective type at proven design

Fuel changeover available on load

Case - three

 Fuel
 Gas - Heavy oil are available.
 Type of combustion chamber
 Operation mode
 Fuel changeover are available on load condition.

#### Case - four

| (1) | Fuel                       | Gas - Distillate - Heavy oil are |
|-----|----------------------------|----------------------------------|
|     |                            | available                        |
| (2) | Type of combustion chamber | Respective type peculiar design  |
| (3) | Operation mode             | Fuel changeover are available on |
|     |                            | load condition.                  |

A5 - 1

#### ANNEX 6

## OPERATION OF POWER

#### STATIONS AT LIGHT LOAD

. . . . . . . . .

. **.** 

Operation of Power Stations at Light Load

When the Barka P.S. (740 MW) goes into operation in 1989, the output of the MEW power stations will increase from 1,008 MW to 1,748 MW and the number of generators from 30 to 40. These generators must be operated in a highly reliable way coping with fluctuations of the network demands in the season and hourly. Studies were made on the operating methods of the generators to satisfy the power and water demands of the MEW's Capital area and Batinah coast area and to minimize the frequency drop even if a generator should fail and drop out of the system. The investigation period is for 1988 - 1992 and two stages in every year, June (peak demand) and February (lowest demand).

The preconditions for the investigation were set as follows:

- In April 1989, the Capital area and Batinah coast power systems will make an unified system.
- (2) Capital area and Batinah coast area should maintain their own supply and demand balance by each area in principle.
  - (3) For the Barka P.S., No.1 and No.2 generators are scheduled to go into operation in July 1988, and the peak demand in June 1988 will be covered by the power generated through the trial operation of these generators.
  - (4) As a rule, the output of the single generator will be limited to less than 10% of the total demand. But the generator output of the Rusail P.S. and Barka P.S. will be decreased to 40 MW (about 50% of the rating).
  - (5) At the time of low-load, the load share by the large-capacity generators will be minimized as much as possible. However, each power station should have at least one generator connected to the system.
  - (6) The generators provided with the desalination plant should be operated in accordance with the water demand.

- (7) The supply and demand adjustment should be made by these method in principle:
  - When the generator output of the Rusail and Barka Power Stations is limited to 40 MW at the time of low-load, the supply and demand adjustment should be made by Ghuborah's 27.5 MW and 17.5 MW units.
  - 2) In such a demand scale where the generator output of Rusail and Barka can be more than 40 MW, balance in the supply and demand should be made by Rusail's generators.
  - 3) The gas turbine generators of 30 MW or more in summer and 10 MW or more in winter should be operated governor-free.

Table 1 and Table 2 respectively show the maximum demand (June) and the minimum demand (February) of each power station.

Table 3 shows the generator output at each power station to satisfy the demands described in Table 1 and Table 2. If each power station is carried out the operation as shown in Table 3, the conditions for water demand can be satisfied as well as the conditions for electric power demand.

The output of each generator shown in Table 3 is just one example. It is therefore necessary to make further consideration on 1) performance of generator, 2) operation expenses, and 3) system conditions (regulation of voltage, loss of electric power-transmission, and distribution of demands).

If the maximum output generator should trip at the minimum demand, the frequency will decrease to 47.52 Hz in 1989. After that time, the frequency drop will be gradually decreased in the inverse proportion to the demand's increase. Decreasing value of frequency after 1993 can be maintained within 1.5 Hz, a tolerance limitation value of continuous operation.

At the off-peak period from 1989 to 1992, frequency can not be maintained within a tolerance limitation (48.5 Hz) only by controlling the output per generator. Therefore, a partial load shedding by a frequency relay has to be carried out to maintain a supply - demand balance of the system.

|  | • |  |
|--|---|--|
|  |   |  |
|  |   |  |
|  |   |  |
|  | • |  |

.

•

•

Table 1 Demand Forecast at Each Substation in June

| • •              |       |       |       |         |         |       |                                       |       |      |         |      |          |          |      |      |       | (MW).                         |
|------------------|-------|-------|-------|---------|---------|-------|---------------------------------------|-------|------|---------|------|----------|----------|------|------|-------|-------------------------------|
| Year             |       |       |       | Peak Lo | ad (100 | %)    | · · · · · · · · · · · · · · · · · · · |       |      | · · · · | Min  | imum Loa | ad (53.5 | %)   |      |       | Remarks                       |
| Substations      | 1988  | 1989  | 1990  | 1991    | 1992    | 1993  | 1994                                  | 1995  | 1988 | 1989    | 1990 | 1991     | 1992     | 1993 | 1994 | 1995  | Remarks                       |
| Al Falaj         | 84    | - 94  | 105   | 114     | 122     | 129   | 136                                   | 143   | 45   | 50      | 56   | 61       | 65       | 69   | 73   | 77    |                               |
| Wadi Khabir      | 84    | 94    | 105   | 114     | 122     | 129   | 136                                   | 143   | 45   | 50      | 56   | 61       | 65 /     | 69   | 73   | 77    |                               |
| Wadi Adai        | 83    | 94    | 104   | 114     | 121     | 129   | 135                                   | 143   | 44   | 50      | 56   | 61       | 65       | 69   | 72   | 77    |                               |
| Qaboos           | 76    | 81    | 95    | 110     | 120     | 131   | 136                                   | 141   | 41   | 43      | 51   | 59       | 64       | 70   | - 73 | 75    |                               |
| Khuwair          | 50    | 65    | 85    | 105     | 120     | 131   | 136                                   | 141   | 27   | 35      | 45   | 56       | 64       | 70   | 73   | 75    |                               |
| Ghubrah          | 89    | 96    | 103   | 110     | 115     | 120   | 125                                   | 130   | . 48 | 51      | 55   | 59       | 62       | 64   | 67   | 70    |                               |
| Air Port Heights | 40    | 80    | 95    | 110     | 117     | 124   | 132                                   | 141   | 21   | 43      | 51   | 59       | 63       | 66   | 71   | 75    |                               |
| Rusaíl           | 187   | 191   | 196   | 203     | 211     | 220   | 228                                   | 237   | 100  | 102     | 105  | 109      | 113      | 118  | 122  | 127   |                               |
| Seeb Palace      | 48    | 50    | 53    | 56      | 59      | 62    | 65                                    | 69    | 26   | 27      | 28   | 30       | 32       | 33   | 35   | 37    |                               |
| Barka            | 40    | 46    | 50    | 55      | 61      | 68    | 76                                    | 84    | 21   | . 25    | 27   | 29       | 33       | 36   | 41   | 45    |                               |
| Musanna          | 17    | 19    | 22    | 25      | 29      | 33    | 38                                    | 44    | 9    | 10      | 12   | 13       | 16       | 18   | 20   | 24    |                               |
| Rustaq           | 21    | 24    | 27    | 32      | 36      | 42    | 48                                    | 55    | 11   | 13      | 14   | 17       | 19       | 22   | 26   | 29    |                               |
| Suwaiq           | 21    | 24    | 28    | 32      | 37      | 42    | 49                                    | 56    | 11   | - 13    | 15   | 17       | 20       | 22   | 26   | . 30  |                               |
| Khabourah        | 13    | 16    | 18    | ,20     | 24      | 27    | 31                                    | 36    | 7    | 9       | 10   | 11       | 13       | 14   | 17   | 19    |                               |
| Saham            | 23    | 27    | 32    | 37      | 43      | 49    | 56                                    | 65    | 12   | 14      | 17   | 20       | 23       | 26   | 30   | 35    |                               |
| Sohar            | 30    | 37    | 44    | 50      | 57      | 66    | 76                                    | 87    | 16   | 20      | 24   | 27       | 30       | 35   | 41   | 47    |                               |
| Shinas           | 8     | 10    | 11    | 13      | 15      | 17    | 20                                    | 23    | 4    | 5       | 6    | 7        | 8        | 9    | 11   | 12    |                               |
| Copper Mine      | 17    | 17    | 17    | - 17    | 17      | 17    | 17                                    | 17    | 9    | 9       | 9    | 9        | 9        | . 9  | 9    | 9     | -                             |
| Buraimi          | 56    | 66    | 75    | 83      | 95      | 106   | 116                                   | 131   | 30   | 35      | 40   | 44       | 51       | 57   | 62   | 70    |                               |
| Ibri             | 44    | 52    | 61    | 68      | 78      | 87    | 96                                    | 109   | 24   | 28      | 33   | 36       | . 42     | 47   | 51   | 58    |                               |
| Capital Area     | 840   | 958   | 1,068 | 1,180   | 1,270   | 1,360 | 1,440                                 | 1,527 | 449  | 512     | 571  | 631      | 681      | 726  | 772  | 818   | (Including<br>Musanna, Rustaq |
| Batinah Area     | . 191 | 225   | 258   | 288     | 329     | 369   | 412                                   | 468   | 102  | 120     | 139  | 154      | 176      | 197  | 221  | 250   | Suwaiq)                       |
| Grand Total      | 1,031 | 1,183 | 1,326 | 1,468   | 1,599   | 1,729 | 1,852                                 | 1,995 | 551  | 632     | 710  | 785      | 857      | 923  | 993  | 1,068 |                               |

(MW).

.

A 6 – 3

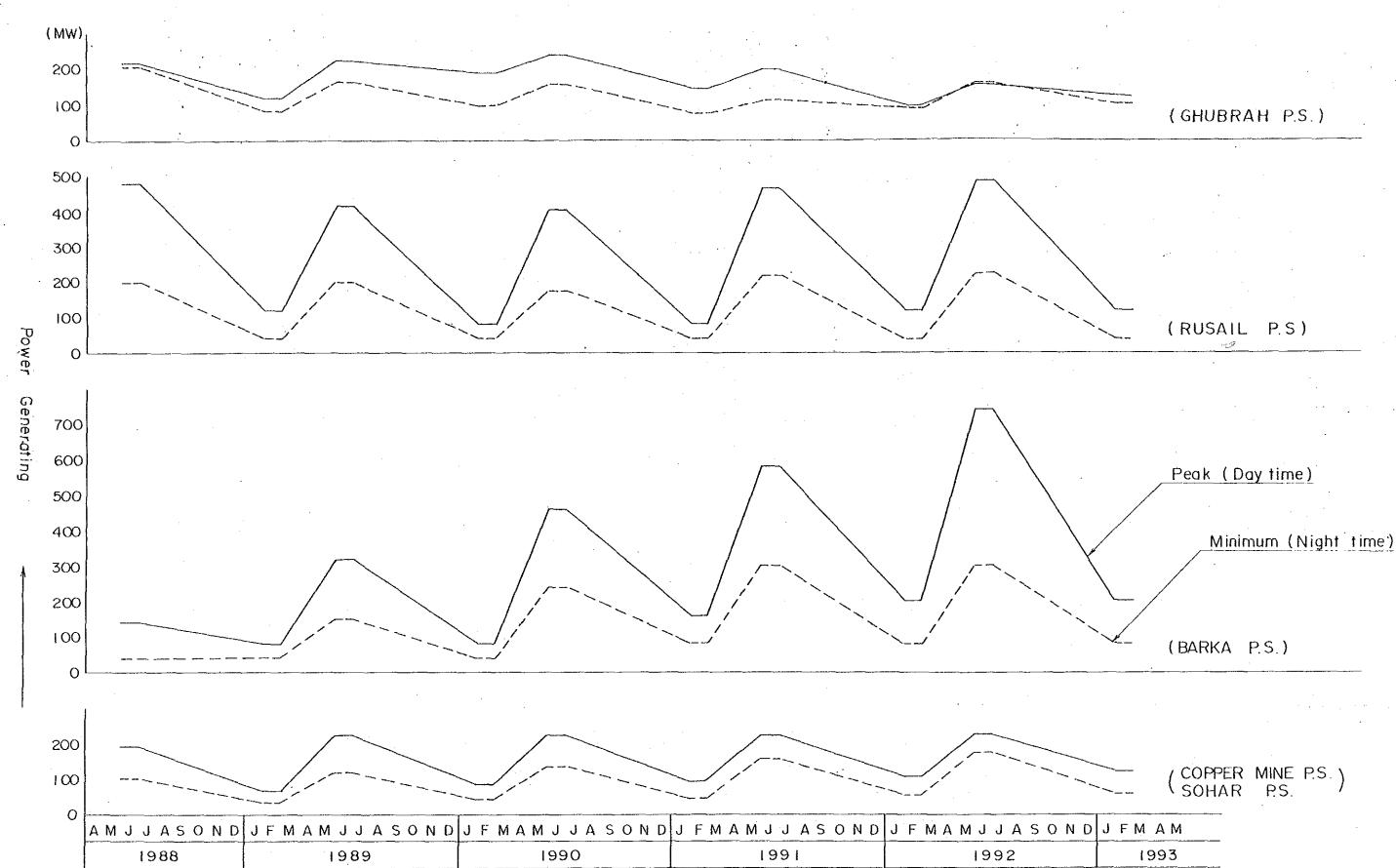
\*

.

| Year             | • •  | <u></u>             | ]    | Peak Loa | ad (32.8 | 8%)  |      |      |      |              | Mini | imum Loa | id (16. | 5%)  |      |
|------------------|------|---------------------|------|----------|----------|------|------|------|------|--------------|------|----------|---------|------|------|
| Substations      | 1988 | 1989                | 1990 | 1991     | 1992     | 1993 | 1994 | 1995 | 1988 | 1989         | 1990 | 1991     | 1992    | 1993 | 1994 |
| Al Falaj         | 28   | 31                  | 34   | 37       | 40       | 42   | 45   | 47   | 14   | 16           | 17   | 19       | 20      | 21   | 23   |
| Wadi Khabir      | 28   | 31                  | 34   | 37       | 40       | 42   | 45   | 47   | 14   | 16           | 17   | 19       | 20      | 21   | 22   |
| Wadi Adai        | 27   | 31                  | 34   | 37       | 40       | 42   | 44   | 47   | 14   | 15           | 17 · | 19       | 20      | 21   | 22   |
| Qaboos           | 25   | 27                  | 31   | 36       | 39       | 43   | 45   | 46   | 12   | 13           | 16   | 18       | 20      | 22   | 22   |
| Khuwair          | 16   | 21                  | 28   | 34       | 39       | 43   | 45   | 46   | 8    | 11           | 14   | 17       | 20      | 22   | 22   |
| Ghubrah          | 29   | 31                  | 34   | 36       | 38       | 40   | 41   | 43   | 15   | 16           | 17   | 18       | 19      | 20   | 21   |
| Air Port Heights | 13   | 26                  | 31   | 36       | 38       | 41   | 43   | 46   | 7    | 13           | 16   | 18       | 19      | 20   | 22   |
| Rusail           | 61   | 63                  | 64   | 67       | 69       | 72   | 75   | 78   | 31   | 31           | 32   | 33       | . 35    | 36   | 38   |
| Seeb Palace      | 16   | 16                  | 17   | 18       | 19       | 20   | 21   | 23   | . 7  | 8            | 9    | 9        | 10      | 10   | 11   |
| Barka            | 13   | 15                  | 16   | 18       | 20       | 22   | 25   | 28   | 7    | 8            | 8    | 9        | 10      | 11   | 13   |
| Musanna          | 5    | 6                   | 7    | . 8      | 10       | 11   | 12   | 14   | 3    | 3            | 4    | 4        | 5       | 5    | 6    |
| Rustaq           | 7    | 8                   | 9    | 11       | 12       | 14   | 16   | 18   | 4    | 4            | 5    | 5        | . 6     | 7    | 8    |
| Suwaiq           | 7    | 8                   | 9    | 11       | 12       | 14   | 16   | 18   | 4    | 4            | 5    | 5        | 6       | 7    | 8    |
| Khabourah        | 4    | 5                   | 6    | 7        | 8        | 9    | 10   | 12   | 2    | 3            | 3    | 3        | 4       | 4    | 5    |
| Saham            | 7    | 9                   | 10   | 12       | 14       | 16   | 18   | 21   | • 4  | 4`           | 5    | 6        | 7       | 8    | 9    |
| Sohar            | 10   | 12                  | 14   | 16       | 19       | 22   | 25   | 29   | - 5  | 6            | 7    | 8        | 9       | 11   | 13   |
| Shinas           | 3    | 3                   | 4    | 4        | 5        | 6.   | . 7  | 8    | 1    | 2            | 2    | 2        | 2       | 3    | 3    |
| Copper Mine      | 6    | 6                   | 6    | 6        | 6        | 6    | 6    | 6    | 3    | 3            | 3    | 3        | 3       | 3    | 3    |
| Buraimi          | 18   | 22                  | 25   | 27       | 31       | 35   | 38   | 43   | 9    | 11           | 12   | 14       | 16      | 17   | 19   |
| Ibri             | 14   | 17                  | 20   | 22       | 26       | 29   | 31   | 36   | 7    | 9            | 10   | 11       | 13      | 14   | 16   |
| Capital Area     | 275  | <u>314</u><br>(319) | 348  | 386      | 416      | 446  | 473  | 501  | 140  | 158<br>(161) | 177  | 193      | 210     | 223  | 238  |
| Batinah Area     | 62   | (319)<br>74<br>(69) | 85   | 94       | 109      | 123  | 135  | 155  | 31   | 38<br>(35)   | 42   | 47       | 54      | 60   | 68   |
| Grand Total      | 337  |                     | 433  | 480      | 525      | 569  | 608  | 656  | 171  | 196          | 219  | 240      | 264     | 283  | 306  |

Table 2 Demand Forecast at Each Substation in February

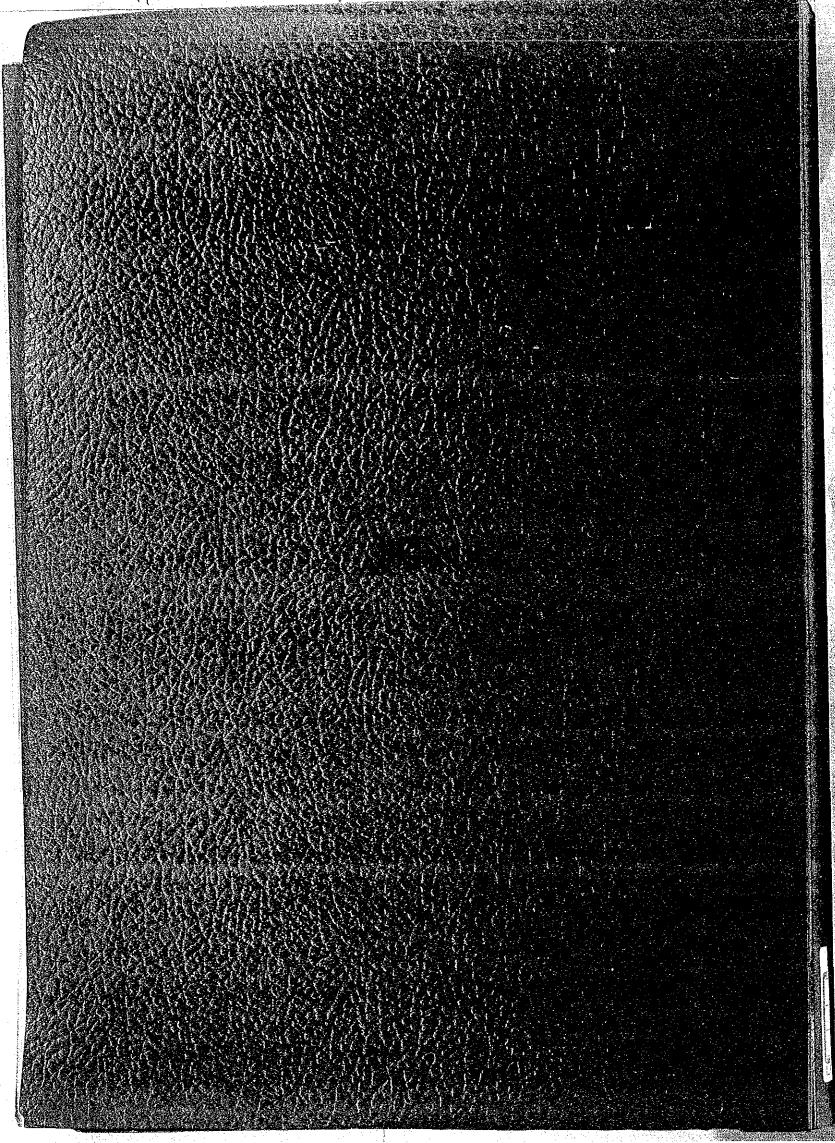
.'


(MW)

| -    |                             |
|------|-----------------------------|
| 1995 | Remarks                     |
| 24   |                             |
| 24   |                             |
| 23   |                             |
| 23   |                             |
| 23   |                             |
| 21   |                             |
| 23   |                             |
| 39   |                             |
| 11   |                             |
| 14   |                             |
| 7    |                             |
| 9    |                             |
| 9    |                             |
| 6    |                             |
| 11   |                             |
| 14   |                             |
| 4    |                             |
| 3    |                             |
| 22   |                             |
| 18   | (Including                  |
| 250  | Musanna, Rustaq,<br>Suwalq) |
| 78   | ( ): Khabourah              |
| 328  |                             |
|      |                             |

|                                       |                                                                   |                      |                                                    |                                                    |                 | Table 3  | LOMG                                         | er Gener                         | ation F                                | rogram         |                                                      |                       |                                  |          |                                                    |                             |                       |                 |                                         |                       |                 | (WW)            |                                        |
|---------------------------------------|-------------------------------------------------------------------|----------------------|----------------------------------------------------|----------------------------------------------------|-----------------|----------|----------------------------------------------|----------------------------------|----------------------------------------|----------------|------------------------------------------------------|-----------------------|----------------------------------|----------|----------------------------------------------------|-----------------------------|-----------------------|-----------------|-----------------------------------------|-----------------------|-----------------|-----------------|----------------------------------------|
| · · · · · · · · · · · · · · · · · · · |                                                                   | hand                 | 1988                                               | Jun,                                               | 1989            | Feb.     | 1989                                         | Jun.                             | 1990                                   | Feb.           | 1990                                                 | Jun.                  | 1991                             | Feb.     | 1991                                               | Jun.                        | 1992                  | Feb.            | 1992                                    | Jun.                  | 1993            | Feb.            |                                        |
| P.S.                                  | (Car                                                              | oital)               | Peak                                               | Min.                                               | Peak            | Min.     | Peak                                         | Min.                             | Peak                                   | Min.           | Peak                                                 | Min.                  | Peak                             | Min.     | Peak                                               | Min.                        | Peak                  | Min.            | Peak                                    | Min.                  | Peak            | Min.            | Remarks                                |
|                                       |                                                                   |                      | 840                                                | 449                                                | 319             | 161      | 958                                          | 512                              | 348                                    | 177            | 1,068                                                | 571                   | 386 -                            | 193      | 1,180                                              | 631                         | 416                   | 210             | 1,270                                   | 681                   | 446             | 223             |                                        |
| GHUBRAH<br>(285 MW)                   | 1 Steam<br>1 Gas<br>2 "<br>3 "<br>4 "<br>5 "<br>6 "<br>7 "<br>8 " | 50 MW<br>17.5        | 50<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 50<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 40<br>17<br>17  | 40<br>17 | 50<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 50<br>17<br>17<br>17<br>17<br>17 | 40<br>17<br>17<br>17<br>17<br>17<br>17 | 40<br>17<br>17 | 50<br>17<br>17<br>17<br>17<br>17<br>17<br>*17<br>*16 | 50<br>17<br>17<br>17  | 40<br>17<br>17<br>17<br>17<br>17 | 40<br>17 | 50<br>17<br>17<br>17<br>17<br>17<br>17<br>10<br>10 | 50<br>17<br>17              | 40<br>17<br>17        | 40<br>17<br>17  | 50<br>17<br>17<br>17                    | 50<br>17<br>17<br>17  | 40<br>17<br>17  | 40<br>17        | Except ste<br>7.5 MW x 3<br>* to Batin |
|                                       | 9 "<br>1 Gas<br>2 "<br>Total                                      | 27.5                 | 27<br>24<br>220                                    | 20<br>20<br>209                                    | 27<br>18<br>119 | 24<br>81 | 27<br>27<br>223                              | 27<br>162                        | 27<br>19<br>188                        | 23<br>97       | 27<br>27<br>239                                      | 27<br>27<br>155       | 21<br>146                        | 16<br>73 | 27<br>199                                          | 27<br>111                   | 22<br>96              | 16<br><u>90</u> | 27<br>*24<br>152                        | 27<br>27<br>155       | 27<br>25<br>126 | 27<br>19<br>103 |                                        |
| RUSAIL<br>(498 MW)                    | 1 Gas<br>2 "<br>3 "<br>4 "<br>5 "<br>6 "                          | 83 MW<br>"<br>"<br>" | 80<br>80<br>80<br>80<br>80<br>80<br>480            | 40<br>40<br>40<br>40<br>40<br>200                  | 40<br>40<br>40  | 40       | 83<br>83<br>83<br>83<br>83<br>83<br>415      | 50<br>50<br>50<br>50<br>50       | 40<br>40<br>80                         | 40<br>40       | 83<br>83<br>83<br>83<br>70<br>402                    | 60<br>60<br>56<br>176 | 40<br>40<br>80                   | 40<br>40 | 83<br>83<br>83<br>83<br>69<br>*63<br>464           | 60<br>60<br>60<br>40<br>220 | 40<br>40<br>40<br>120 | 40              | 83<br>83<br>83<br>83<br>83<br>67<br>482 | 60<br>60<br>46<br>226 | 40<br>40<br>40  | 40              |                                        |
|                                       | Total<br>1 Gas<br>2 "                                             | 80 M₩<br>            | 70<br>70<br>70                                     | 40                                                 | 40<br>40        | 40       | 80<br>80<br>80<br>80                         | 50<br>50<br>50                   | 40<br>40                               | 40             | 80<br>80<br>80                                       | 60<br>60              | 40<br>40                         |          | 80<br>80<br>80                                     | 60                          | 40<br>40              |                 | 80<br>80<br>80                          | 60<br>60              | 40<br>40        |                 |                                        |
| BARKA<br>(740 MW)                     | 4 "<br>5 "<br>1 Steam                                             | <br>80               |                                                    |                                                    |                 |          | 80                                           |                                  |                                        |                | 80<br>80                                             | 60                    |                                  | ·        | 80<br>80                                           | 60                          |                       | ·               | 80<br>*80<br>80<br>80                   |                       | 40              |                 | -<br>                                  |
|                                       | 2<br>1 "<br>2 "<br>3 "                                            | 60<br>"              |                                                    |                                                    |                 |          |                                              |                                  |                                        |                | 60                                                   | 60                    | 40<br>40                         | 40<br>40 | 60<br>60<br>60                                     | 60<br>60<br>60              | 40<br>40              | 40<br>40        | 60<br>60<br>60                          | 60<br>60<br>60        | 40<br>40        | 40<br>40        |                                        |
|                                       | Total                                                             |                      | 140                                                | 40                                                 | 80              | 40       | 320                                          | 150                              | 80                                     | 40             | 460                                                  | 240                   | 160                              | 80       | 580                                                | 300                         | 200                   | 80              | 740                                     | 300                   | 200             | 80              |                                        |
| Demand                                | (Batinah)                                                         |                      | 191                                                | 102                                                | 69              | 35       | 225                                          | 120                              | 85                                     | 42             | 258                                                  | 139                   | 94                               | 47       | 288                                                | 154                         | 109                   | 54              | 329                                     | 176                   | 123             | 60              |                                        |
| COPPER<br>MINE<br>(165 MW)            | 1 Gas<br>2 "<br>3 "<br>1 "<br>2 "                                 | 17 MW<br>"<br>27     | 17<br>17<br>13<br>27<br>27                         | 17<br>25 ·                                         | 17<br>12<br>20  | 10<br>10 | 17<br>17<br>17<br>27<br>27                   | 15<br>15                         | 25                                     |                | 17<br>17<br>17<br>27<br>27                           | 17<br>17<br>27<br>18  | 17<br>17                         |          | 17<br>17<br>17<br>27<br>27                         | 10<br>27<br>27              | 11<br>11<br>27        |                 | 17<br>17<br>17<br>27<br>27              | 17<br>17<br>27<br>27  | 17<br>23<br>23  | -               |                                        |
|                                       | 1 "                                                               | 30                   | 30                                                 | 30                                                 |                 |          | 30<br>30                                     | 30                               | 30                                     | 21             | 30<br>30                                             |                       | 30                               | 23       | 30<br>30                                           | 30                          | 30                    | 2.7             | 30<br>30                                | 28                    | 30              | 30              |                                        |
| SOHAR<br>(60 MW)                      | 1 Gas<br>2 "<br>Total                                             | 30 MW<br>"           | 30<br>30<br>191                                    | 30<br>· 102                                        | 20<br>69        | 15<br>35 | 30<br>30<br>225                              | 30<br>30<br>120                  | 30<br>85                               | 21<br>42       | 30<br>30<br>225                                      | 30<br>30<br>139       | 30<br>94                         | 24<br>47 | 30<br>30<br>225                                    | 30<br>30<br>154             | 30<br>109             | 27<br>54        | 30<br>30<br>225                         | 30<br>30<br>176       | 30<br>123       | 30<br>60        |                                        |
| Frequency [<br>Drop (HZ)              | Largest ge<br>unit drops<br>120 MW dro<br>in June                 |                      |                                                    | 49.11<br>47.33                                     | 48.75           |          | <u>.</u>                                     | 49.21<br>48.10                   |                                        | 48.17          | 49.37<br>49.10                                       |                       | 49.17                            |          | 49.43<br>49 <sup>.</sup> 18                        |                             | 49.24                 | 48.48           |                                         | 49.30<br>48.60        | 49.30           | 48.59           | reference                              |
| T                                     | 60 MW drop<br>in Februar                                          |                      |                                                    |                                                    | 48.12           | 46.27    |                                              |                                  | 48.61                                  | 47.26          |                                                      |                       | 48.75                            | 47.50    |                                                    |                             | 48.86                 | 47.73           |                                         |                       | 48.95           | 47.88           | 1.01.00                                |

A6-7


#### Fig. 1 POWER GENERATION PROGRAM





A6-9

.

