

$$
\begin{aligned}
& 305 \\
& 341 \\
& 471 \\
& 13457
\end{aligned}
$$

|||ㅐㅆㅣIII $10 e s e 4233$

FEASIBILITY REPORT

 ON
KAHLAA RICE FARM PROJECT

IN

THE REPUBLIC OF IRAQ

(MAIN REPORT)

MARCH, 1980

A F \quad T
CR(7)
$80-29-1$

回察推力事業団	
合5 84.9888	30
	8
	A

pREFACE

In response to the request in December 1976 of the Government of the Republic of Iraq. the Government of Japan decided to conduct a survey on rice farming in Iraq.

The Japan International Cooperation Agency, entrusted by the Japanese Government to carry out the survey, dispatched to iraq a preliminary survey team in June 1977. The team surveyed the possibility of increasing rice production in the southern part of the country. It selected Najaf and Nisan Provinces as areas suitable for development and made a suggestion to conduct a feasibility study on a rice farm project there.

The Government of Iraq, recognizing the importance of a modern rice farm project, requested the Japanese Government in April 1978 fo conduct a feasibility study on a project to establish a mechanized rice farm in the Kahlaa District near Amara City, Nisan Province.

The JICA dispatched to Iraq in October 1979 a feasibility study team headed by Mr. Daizo.Iseno of Sanyu Consultants Inc. The present report is based on the results of the study as well as of the consultations with officials of the Government of Iraq.

I sincerely hope that this report will prove to be useful as a basie reference for development of the project.

I am particularly pleased to express my appreciation to the officials concerned of the Government of the Republic of Iraq for their close cooperation extended to the Japanese team.

March 1980

Keisuke Arista
President
Japan International Cooperation Agency

ISETTER OF TRANSMITTAE

Subject: Final Report of the Feasibility Study on Kahlaa Rice Farm Project in the Republic of Iraq

Dear Sir:
We have the honor of submiting herewith the captioned report, outcome of our three months' field survey from June 20 to September 14 and 80 days' home office study to establish a state rice farm of about $8,100 \mathrm{ha}$ located some 20 km south of Amara city, Missan province and to materialize an effective farm management system for paddy production supported by large-scaled farm mechanization.
This report has been prepared based on various discussions made between the Governmental agencies concerned and us.

This report is comprised of the two volumes as follows;
Volume 1. Main report
Volume 2. Appendix

We sincerely hope that this rice farm project would be helpfal in future agricultural development to be implemented in the lower Mesopotamian plain and could contribute to the social and economic development in the area involved as well as to promotion of friendship between the two countries.

Finally, we take this opportunity to express our deep gratitude to the both Governments' agencies concerned for their valuable assistance and cooperation extended to us throughout the survey period and in compilation of this report.

Respecifully yours,

Daizo Iseno
Team Leader for Kahlaa Rice Farm Project

PROJECT MAP FOR KAHLAA RICE FARM PROJECT

TABLE OF COMTEHTS

Page
SUMHARY, CONCLUSIOM AND RECOYHENDATIOHS - 1 -
CHAPTER 1. INTRODUCTION I-
CHAPTER 1I. ECOMOMIC BACKGROUID OF THE PROJECT II-1
A. National Land and Population 1I-I
B. Hational Econoza' 11-1
C. Agricultural Production II-2
D. Present Farn Hanagerent Systems II-3
E. Developest Plan II-3
CHAPTER III. THE PROJECT AREA III-I
A. Location and General Features 1II-1
B. Natural Conditions 15I-2

1. Topography and Eeology 111-2
2. Climate and Hydrology 111-3
3. Soils 115-6
C. Present Agriculture III-8
4. Land Use III-8
5. Earming Conditions III-8
6. Agricultural Input Katerials 111-10
7. Fam Kechanization 111-12
8. Livestock Farming III-13
9. Farm Household Economy 111-13
10. Processing and Yacketing of Agricultural Products 111-15
11. Research and Extension 111-16
12. Famers' Organizations 111-18
13. Credit III-18
D. Fresent Irrigation, Drainage and On-fars Conditions III-19
14. Irrigation and firainage 111-19
15. On-faria III-20
Page
CHAPTER IV. THE PROJECT 1V-1
A. Objectives and Components of the Project 1V-1
l. Objectives IY-1
16. Froject Components IV-1
B. Project Pian Formulation 1Y-2
17. Cropping Schedule IY-3
18. Yechanized Farving IV-4
19. Paddy Cultivation IV-4
20. Soring IV-5
21. Keed Control IV-6
22. Layout of the Farn 1V-6
23. Experimental Farm and Seed Faim 1Y-6
24. Stage Development of the Rice Farm IY-7
25. Environcental IEproverent IY-7
C. Proposed Agricultural Developsent 1v-7
26. Land Use Plan IV-7
27. Cropping Schedule IV- 10
28. Proposed Cropping Pattern IV-12
29. Population and Labor Forecast VI-18
30. Farn Mechanization Plan and Labor Requirement Iv-19
31. Agricultural Input Katerials IV-22
32. Agricultural Production IV- 25
33. Harketability of Agricultural Froducts IV-28
34. Farn Operation and Hanagewent IV-29
35. Experimental Farn IV-33
36. Farm and Related Facilities IV-35
D. The Project Plan 1v-38
37. Corparative Study on Irrigation and Drainage Systeas 1V-39
38. Irrigation Plan IV-42
39. Drainage Plan IV-53
40. Farn Land Developient Plan IV-59
41. Read Plan 14-63
42. Afforestation Plan 1v-72
E. Cost Estimate 1V-74
Chapier y. project implemektatlo:, operation and haimienance v-1
A. Executing Agency ard Coordination V-1
B. Construction V-3
C. Operation and Haintenance $v-6$
D. Consulting Services v-8Page
CHAPTER VI. PROJECT ECONOMIC EVALUATIOA VI-1
A. General VI-1
B. Method of Economic Evaluation VI-1
C. Economic Evaluation VI-I
43. Econoraic Evaluation of Comodities and
44. Evaluation of Benefit VI-6
45. Evaluation of the Project Cost VI-8
D. Econonic Internal Rate of Return VI-9
E. Sensitivity Analysis VI-11
F. Financial Analysis VI-12
G. Indirect Benefits of the Project Y1-16
Page
Table 2-1. nheat and Rice Production in the Fourth Five-year National Economic Developent Plan I I-4
3-1. Sumer Crops in the Project Area, 1977 III-9
3-2. Winter Crops in the Project Area, 1977/78 III-9
3-3. Input Materials for Paddy, Anber-33, and hiheat 11I-11
3-4. Yain Fam Yachines of Hissan Agricultural Hachinery Rental Station 111-12
3-5. Present Livestock Breeding 111-13
3-6. Net Fara Incone in Missan Province III-14
3-7. Fary Household Economy III-15
4-1. Froposed Land Use IV-9
4-2. Distribution of Labor Force IV-18
4-3. Fam Hachinery for Paddy, Barley and theat IV-20
4-4. Hachinery Cost IV-21
4-5. Agricultural Input Materials per Hectare IV-23
4-6. Agricultural Irput Haterials Required IV- 24
4-7. Target Yields of Paddy, Hheat and Barley IV-26
4-3. On-fare Development and Cropping Schedule IV-27
4-9. Result of Typical Design of On-fam Facilities in Sample Area IV-70
6-1. Demand and Supply Balance of Rice VI-2
6-2. Paddy Rice Frice Structure, 1979 and 1985 VI-2
6-3. Frice Structure of theat, 1979 and 1985 VI-4
6-I. Cropping Area in case of ryith the Project* VI-6
6-5. Incremental Met Production Value (Paddy Target Yield of 4.5 tons) VI-7
6-6. Project Econozic Cost VI-9
6-7. Econonic Intemal Rate of Return VI-9
6-8. State Fara Econozy in Full Benefit Stage VI-12
6-9. Financial Internal Rate of Return VI-13
6-10. Financial Forecast for the State Rice Fari VI-14

LIST OF rIGURES

PageFigure 4-1. PROPOSED CROPPING PATTERH IV-11
4-2. CROPPING CALENDAR FOR PADDY IV-13
4-3. CROPPIHG CALEYDAR FOR BARLEY AHD HHEAT IV-16
4-4. ORGANIZATION CHART OF THE RICE FAPM IV-32
4-5. ALTERNATIVE PLAN OF IRRIGATIOH AND DRAINAGE SYSTEH IV-10
5-1. PROPOSED ORGANIZATIOR CHART FOR PROIECT IHPLEKERTATION Y-2
5-2. CONSTRUCTIOA SCHEDULE OF THE PROEJCT V-5
5-3. PROPOSED ORGANIZATION FOR OPERATION AID HAIMTENANCE Y-7
6-1. ECOHOMIC IMTERHAL RATE OR RETUPH IV-10

LIST OF DPANINGS

Ho.

1. DESIGN OF KAhLAA INTAKE D-1
2. LaYOUT OF SEDIZENTATION BASIM D-2
3. Layour or IRRIGATION FUMPIHG STATIOR D-3
4 . LAYOUT OF DRAINAGE PUIPING STATIO: D-4
4. TYPICAL SECTION OF IRRIGATION AUD DRAIUAGE CAIALS D-5
5. TYPICAL DESIGY OF DIVERSION BOXES IN MAIN AYD D-6SECOIDARY IRRIGATIOL CANALS
6. TYPICAL DESIGY OF ROAD CROSSINGS (1) IN HAIN AMD D-7SECOMDARY IRRIGATIOU AND DRAITAGE: CAVALS
7. TYPICAL DESIGZ OF CHECKES AHD SPILL-HAYS (1) D-8
8. TYPICAL DESIGY OF CHECKES AHD SPILG-YAYS (2) D-9
9. DESIGU OF CHECK STRUCTURE I: DRAI:AGE CAlIALS D-10
10. Typical section of roads D-11
11. TYPICAL DESIG: OF DIKES D-12
12. LAYOUT OE ON-FARM FACILITIES (SAMPLE AREA) D-13
13. TYPICAG DESIGY OF TURN-OURS D-14
14. TYPICAI DESIGY OF IMLET AUD CHECK STRUCTURES D-15
15. TYPICAL DESIGZ OF ROAD CROSSIMGS (2) IM EERTIARY D-16IRRIGSTIOL CAVALS
16. TYPICAL DESIGY OF ROAD CROSSIBGS (3) If TERTIARY D-17IRRIGATIOA CANALS
17. TYPICAL DESIGI OF ROAB CROSSINGS (4) IN FAPM ROADS D-18
18. TYPICAI. LAYOUT OF EIELD DRAINS IH SAMPLE AREA D-19

ABBREVIATIOMS AHD GI,OSSARY

rem	: millimeter
ch	- Centimeter
m,	: meter
km	- kilometer
sq.cn, cm^{2}	: square centizeter
sq.m, m^{2}	: square meter
sq. $\mathrm{km}, \mathrm{km}^{2}$: sqaure kilometer
HSH, $10^{6} \mathrm{Er}^{3}$	= million square reter
Dorive	: Iraq unit of area, 1 Dorun $=0.25 \mathrm{ha}$
2, lit	- liter
cu.n, ma ${ }^{3}$	- cubic meter
$\mathrm{HCl}, 10^{5} \mathrm{~m}^{3}$	million cubic ceter
1it/sec	liter per second
cu.tsec	: cubic meter per second
lit/sec/ha	: liter per second per hectare
m/s	: reter per second
PPY	: part per million
rep/hr	: milliceter per hour
cn/d	: millimeter per day
m/ha	: Eeter per hectare
t/ha	: ton per hectare
kg/ha	: kilogran per hectare
$\mathrm{kg} / \mathrm{ca}^{2}$: kilogran per square centireter
maho/cn	: Rillinho per centimeter
g	: gram
kg	= kilogran
ton, at	: Eetric ton

Background of the Project

1. The Republic of Iraq has the national land of about 440,000 sq.en. Its population is about 12 rillion. The per capita incore is 942 USS equivalent as of 1974.
2. Iraq has a vast and flat cultivable area of 12 million hectares in total. Hosever, the present area under cultivation is 5.7 nillion hectares, that is, nearly a half of the cultivable area. Furthercore, the cropping area excluding fallow is 3.5 rillion hectares.
3. Wheat, Darley and paddy rice are the rajor crops in Iraq. Honever, Iraq is presently an importer of the tro major crops of wheat and paddy rice. hheat of 512,000 tons and paddy rice of 120,000 tons were inported in 1975 to neet the dorestic derand of these agricultural crops.
4. Agricultural production in Iraq Euch depends on irrigation and soil fertility. Salt accumalation on farm land is one of the rajor restrictive factors in agricultural production.
5. Farn land is classified, based on irrigation rethods, into a rainfed area, natural irrigation area adjacent to river courses and artificial imigation area by purp, etc. The statistic data indicate that about a half of the total fam land is rainfed, 30% is naturally and 20% is artificially irrigated as of 1976.
6. Agricultural production in Iraq has been carried out by private farters, cooperative farmers, group-fareers and state farrs. The number of state farms as of 1974 was eight, and totally farm land of 77,000 hectares belonged to the eight farms.
7. The Five-Year Mational Econonic Develoneent Plan, 1975 to 1080 , airs at the annual growth rate of 7.18 in the agricultural sector. The Govemment has planned a sharp increase of rice production
fron 60,000 tons to 480,000 tons during the five-year period.
8. The Governcent has positively started developeent in the apricultural sector, and various irmigation and drainage projects are on the way for an increased apricultural production through Eechanized farming to attain self-sufficiency of the najor crops.

Froject Area

9. The Project Area is located about 400 kn south-east of the capital city, Raghdad. In more detail, it is situated at 20 km south of Arara city, Hissan province, and it is a part of Arara irrigation project.
10. The Project Area is a part of the Amara delta forced by floods fros the Tigris and its tributaries. The Kahlaa river, a tributary of the Tigris, runs along the eastern boundary of the Project Area.
11. Amana city is located in the middle of the National road No. 6 connecting Baghdad and Rasra, the biggest port tom in Iraq.
12. The population in Missan province as of 1977 has been estinated at about 370,000. In general, the rural population bas decreasirg shereas the population in big cities in lrac is increasing.
13. Soils in the Project Area are Quaternary alluvial ones forred by sedicentation of suspended eaterials transported by the Tigris ard its river systea. The Project Area has a quite gentle slope of about $1 / 10,000$, and its elevation ranges in E.L. four to seven zeters.
14. Soils in the Project Area are rostly silty loan brown in color, and salinized, nore or less, due to continuous over-irrigation sifice old days and a great deal of evaporation of groundiater.
15. Clieate in the Project Area is of continental arid zone-type characterized by short and cold wirters and long and extrezely hot suriers. The averaged annual temperature is $23.9^{\circ} \mathrm{C}$, but the ronthly teaperature in uly when paddy grows is $35^{\circ} \mathrm{C}$ with the raxizia of nore than $50^{\circ} \mathrm{C}$. The averaged anmal precipitation
is 171 non, and it rains concentratedly in winter seasons. The averaged annual wind velocity is $4.3 \mathrm{~m} / \mathrm{sec}$. Burning winds core from the north-rest during Hay to September.
16. The Kahlaa discharge ranges in the maximum of $470 \mathrm{cu} \cdot \mathrm{m} / \mathrm{sec}$ to the minimun of $20 \mathrm{cu} . \mathrm{m} / \mathrm{sec}$. The Tigris discharge is controlled by Kut regulator and the Kahiza water by frara regulator, High vater seasons core in Harch to June whereas lon water seasons fron Septerber to Noverber. The electric conductivity of the Kahlaa water is in the order fron 0.47 to 1.27 Emo/cm.
17. Irrigation in the Project Area has a long history, but the facilities are prinitive and poor. The Project Area has no drainage facilities.
18. The averaged cropping area per fare household is about 6.0 ha. Mainly, barley, wheat, sorghur, broad bean and tosatces are gromn. Paddy is partially raised, but its cropping area is very small.

The Project

19. The Project aims to construct a state rice farm having the total area of 8,160 ha (with the cultivated area of 6,300 ha), and to establish an effective technical farm management systea for paddy production supported by large-scaled farm rechanization.
20. The first priority in the Project planning has been given to paddy cultivation, however, upland crops of wheat and barley will be partially raised as the second crops of paddy. The target yield of unhulled rice has been deterained at 4.5 tons. The gross production is estimated at 27,900 tons per year, accordingly. The total production of harley and hheat will be 5,300 tons.
21. All farm practices from plowing to havesting will be wechanized consistently and systematically. Fam eachinery of 453 units or 22 types will be introduced such as tractors, drill seeders, cozbines, etc.
22. The water source of the Project is the Xahlaa river, a tributary of the Tigris. The water of $27.0 \mathrm{cu} . \mathrm{m} / \mathrm{sec}$ required for the Project rill be diverted from the Tignis river to the Kahlaa river, and lifted to the Project area by purp. For silt treatrent of the river water, a desilting reservoiv of about 40 ha will be constructed.
23. As for irrigation, the flood irrigation has been planned for paddy cultivation. The peak net xater requireuent has been computed at $36.6 \mathrm{En} / \mathrm{day}$ or 4.24 lit/sec/ha. The total nater requirerent inclusive of necessary water for upland crops and trees in wind-breakers has been calculated at $3 l l$ million tons.
24. The construction of drainage facilities is prerequisite for agricultural developent in saline soil zones. Since the precipitation is extrerely scali, the drainage facilities in the Froiect will minly function to rerove leaching water, surplus irwigation rater and groundrater. The total drainage discharge of $5.4 \mathrm{cu} . \mathrm{m} / \mathrm{sec}_{\text {, or }} 0.81 \mathrm{lit} / \mathrm{sec} / \mathrm{ha}$ will be delivered to AlChikke marsh by pump.
25. Hind-breakers have been planed to protect agricultural crops from burning norih-sest winds prevailing around the Project Area.

2a. Farm plots for flood irrigation have been plarned for paddy cultivation. The size of a fars plot will be 1.5 ha of $150 \mathrm{n} \times 100 \mathrm{~m}$.
27. Farm managezent will be independently conducted in each of four fares oferation units.
28. The rice fark will require 139 officials, 60 skilled labovers, 110 unskilled iaborers and 20 to 70 Ean-days of seasonal laborers. The labon requiverent per amma is estinated at 44,600 man-days.
23. The construction of an expevicental fars with the area of 90 ha has been plamed to conduct various researches, experitentations and seed production required for the rice fars.
30. The proposed major facilities are as follous:

0	Irrigation canals:	Main irrigation canals	14 km
		Secondary irrigation canals	31 km
0	mainage canals:	Hain drainage canals	16 kn
		Secondary drainage canals	46 ken
0	Cesilting reservoir:	Hater depth (one unit)	1.5 m
		(Reservoír area	40 ha
0	Roads:	Hain roads	25 kn
		Service roads	173 km
o	Purp facilities:		
	Irrigation pump -	Total discharge	$27 \mathrm{cus} . \mathrm{m} / \mathrm{sec}$.
		Bore diaseter	\$1,000 ma
		Unit	11
	Drainage pump	Total discharge	$5.4 \mathrm{cu} . \mathrm{m} / \mathrm{sec}$.
		Bore diareter	\$900 rem
		Unit	- Three
O	Incidental structures to canals:	Diversion boxes	43 units
		Checks	4
		Spillways	6
		Road crossings	38
o	On-farm facilities:	Irrigation ditches	$65 \mathrm{~m} / \mathrm{ha}$
		Fara drains	56
		On-farm roads	100
		tondendrains	243
o	Hind-breakers:	Permanent	290 ha
		Supplenental	40

o Buildings:	Farn managerent office	2,000 sq.ta.
	Parn warehouse	2,500
	Experimental warehouse	300
	Horkshop	2,100
	Pest house	300
	Harchouses in farm nanagerent bases (two)	1,000

31. The construction of rice processing center, village for state fam erployees and bridge across the Kahlaa river has been planed in relation with the Project.

Project Cost and Benefit

32. The Froject cost has been estimated at $20,271,000$ I.D. or $68,516,000$ USS based on the prevailing price rates as of October 1979 disregarding the price escalation. The Project cost consists of the foreign currency portion of $12,221,000 \mathrm{I}$.D. on $41,307,000$ US $\$$ and the local currency portion of $8,050,000$ I.D. or $27,209,000$ USS.
33. The benefit accrued fron the Project will be an increrental production of paddy, sheat and barley. The target yields will be attained in the sixth year fron the correncersent of cultivation. The armual incremental benefit has been estimated at l, 901,000 I.D or 6,421,000 uS\$.

Project Evaluation

34. The project has zeen evaluated econcmically feasible fron the viewpoints of the prevailing investcent standard in Iraq, intemal rate of return and B / C vatio.

- B/C ratio

Internal Rate	Econcoic	Financial
$3(\%)$	1.39	1.08
5	1.11	0.81
8	0.81	0.68
ternal Pate of Return		
	6.2	6.0

Recomendations

Hide-ranged recomtendations have been made as follors:

1. Land acquisition for construction of the rice farm should start at the soonest possible.
2. The Project tea:s should be organized for implementation of the Project in the way to strengthen line-up of the Missan Agriculture office.
3. The major crop to be grom in the Project is paddy rice. Hainly Arber varieties will te raised. However, in order to elongate paddy cropping seasons, the other varieties inclusive of IR varieties will be grown in the Project for the tire-being. Efforts should be nade to separate the early, redium and latematuring lines of Amber so that only Arber will be raised in the Project in future.
4. Paying careful attentions to seed control and soil fertility, a rationalized cropping focusing upon paddy should be established.
5. Detailed soil survey should be further conducted covering the whole Project Area.
6. In parallel with the rice farf construction, an experirental farm should be installed to let it systematize farn managerent techniques, breed and maintain basic seed, conduct paddy yield trials, establish a leaching method and conduct education and training of paddy experts, etc.
7. Self-sufficiency of high quality seeds within the fam has heen planned. This plan has a special importance in the Project. Efforts in upgrading seed breeding techniques should be emphasized.
8. The rice fam staff and officials in charge of the water source ranagerent in the loner Tigris systen should always have close contact each other in order to secure, sith priority, a necessary quantity of imigation water in the Project (in relation with Amara Irrigation Project).
9. Special attention should be paid to afforestation.
10. As a related facility to the Project, Kahlaa bridge should be constructed as soon as possible for srooth construction in the Project.
11. As a related facility to the Project, a rice processing center should be constructed in parallel sith the progress in construction wonks in the Project.
12. As a related to the Froject, a village for farm staff sobilized from outside the Project Area and farrers presently living in the Froject Area should be constructed as soon as possible.
13. Consuitants with rice experience in agricultural developent for rice preduction should be employed for snooth execution of the Project.

CHAPTER I. INTRODUCTION

General Outline

The Republic of Iraq has achieved a remarkable developuent in its mining sector, specially in the petroleun industry. On the contrary, agniculture has been left behind in progress mainly due to difficulties in dealing with severe natural conditions. In order to attain a well-balanced economic developrent and to cope with an increasing population, agricultural development for self-sufficiency of rajor crops is one of the national target of Iraq. The Governrent of the Republic of Iraq (hereinafter called "the Governent") has taken it up in the Five-Year liational Economic Developent Plan (HEDP), 1975 to 1980, and energetically started various agricultural developrent projects. Above all, wice is one of the rain cereal foods in Iraq, and the Governeent has plamed to expand the present paddy cropping area of about 30,000 ha to 140,000 ha within the lifop period.

Background of the Project

In accordance sith the request of the Goverreent for technical assistance in establishment of a state rice farn, a long-cherishedagricultural developnent plan, the Governtent of Japan dispatched a prelininary survey mission for agricultural improvement headed by ifr. Yotonaga Ohto, and let it study possible says to increase rice production in Inaq. Based on the preliminary survey report, the Government nade a request to the Goverment of Japan for technical cooperation in execution of the feasibility study on establishrent of a mechanized state rice farn in Anara city, Missan province.

The Japan International Cooperation Agency, executing agency of the Japanese Goverreent for overseas technical assistance, rade a contract with Sanyu consultants Inc., for execution of the feasibility study, and disgatched two study teans lined up by engineers and experts of the said consulting firm, one tean for basic data collection and prelininary study and the other for plan formulation and technical/econonic studies on the feasibility of Kahlaa Rice

Farm Project.

Objective and Scope of the Yeasibility Study
The feasibility study on Kahlaa Rice Fam Project was conducted to establish a rice farm of about 8,160 ha in Avara, Mission. Since Fasic data collection ard pelininary study nere already carried out fros Cctober 1978 to felruary 1979 as a part of this feasibility study, the study this tire was focussed on supplemental data collection, survey on present land/rater utilization for agriculture in sumer seasons, soil survey and the Froject plan forrulation based on such studies and suryeys.

Sdvisory Group and Feasibility Study Tean
Tine feasibility study tean confucted field survey in Iraq for about incee-month period fron Jurie 20 to Septeater 14, 1979.

Two neebers of the advisory group to the tean visited Inaq together with the tex rerbers, and made, within the limited stay feriod of 11 days from June 21, 1979, frelininary arrangerents for srooth enecition of the study, and gave precious advices to the teara.

Merkers of the adisory group ard the study teaz are tabulated Eelor;

List of idvisory Group Herbers

Hare	Assigrent	Position
Hr. Eyotaro Sudo	Project Planning	Chief of Land Consolidation Divisien, Departeent of Construction Ingineering, Eureau of Structural Frivorezent, Ministry of Agriculture, Forestry and Yishery
Er. Hiroshi Ito*/	Agriculture	Professor of Ishikana frefectural College of Agriculture
Mr. Yoshikazu Yoshida	Irrigation	Chief of lio.l Construction Division, No. 1 Lepartrent of Construction Engineering, Water Resources Develoment Corparation

List of Feasibility Study Tear Hembers

Hane	Assigrment
Mr. Daizo Iseno	Project Plaming (Tean Leader)
Mr. Kazuo Nakabayashi	Soils
Ur. Tuminichi Obu	Irrigation ard Drainage
Sr. Masaki Hayashidani	Design of Structures
Pr. Seiji Takeuchi	Farm Land Developent
Mr. Osatu Suzuki	Construction Plamirg
Mr. Hirokaza Kohriki	Agronory
Mr. Katsuyuki Akagawa	Fars Yanagenent and Extension
Hr. Shoji Yanda	Agricultural Economics

Coordination

In addition to the above-zentioned tean merbers, Kr. Noboru Yoritani of Sanyu Consultants Inc., was dispatched to Iraq for coordination of the tea?.

Cooperation of the Iraqi Governsent

Ktole-hearted assistances and ccoperations were bestoned to the tean by the Governeent, directly by the following officials;
rate
Dr. Tarik A. J. Tabrah

Relonging
Director General of the General Body for Agriculture Applied Research, Ministry of Agriculture and Agrarian Reform

Mr. Kadhin Mohasad Al-Mustaf Assistant Director General of the Geneval Body for Agriculture Applied Research, Kinistry of Agriculture and Agrarian Reform

Nage
ar. Cran Ali Avzen

Dr. Yhalid Taka

Hr. Falnt Hessen

Yr. Yousa Xhalaf

Belonising

Director of the Cereal Crops Deparment, the General Eody for Agriculture Applied Reseanch, yinistry of Agriculture and Agrarian Reforia

Director of the General fatoratory, State Organization for Solls and land Reclanation, Ministry of Irrigation

President of Missan Agriculture Office, Ministry of Agriculture and Agrarian Reform

Vice-president of Missan Agriculture Office, Hinistry of Agriculture and Agrarian Reform

The field survey sas conducted mainly in Anara and Baghdad with the all-out cooperation of the folloning counterpart personnel;

Comiterpart Fersonel

liare	Assigrment	Position
otr. Grazi Al meghistani	Ceneral Coordination	Chief Officer, Departcent of Fublic Relations, Ministry of Agricilture and Agrarian Reform
Yr. Isani liajjar	Agriculture	Chief of Rice Section, the General Rody for Agriculture Applied Research, Miaistry of Agriculture and Agrarian Refort
Hr. Fead Hanid	Agriculture	Agricultural Fmgireer, Hissan Agricalture Gffice, Ministry of Agriculture and Agrarian Reforis.
Hr. Nocri Abed Ali	Ierigation	Irrigation Engincer, Rissan Irrigation Office, Hinistry of Irrigation
Th. Faker Salocay	Soils	Chief, Hissan Soil Office, State Orgarization for Soils and Land Reclaration, Kinistry of Irrigation

Name	Assgimment	Position
Hr. Rahih H. Segar	Soils	Soil Expert, State Organization for Soils and luand Reclanation, Ministty of Irrigation

Organization to which the tean contacted during the study period and data collected are listed in Appendices 1-1 and 1-2.

A. Hational Land and Population

Iraq has the national land of about 438,000 sq.ke inclusive of a huge desert of about $167,000 \mathrm{sq}$. ka (38告) and rountainous area of about $92,000 \mathrm{sq} . \mathrm{km}$ (21\%). The cultivated land is about $57,000 \mathrm{sq.km}$. It lorders on Iran, Saudi Arabia, Syria, Jordan, Yu*ait and Turkey.

The population as of 1977 sas about 12 million. Tre population increase in the seven years fros 1970 to 1977 was about 2.6 million. Therefore, the averaged annual increase of population is only 380,000 , but the increase rate is high around $3.3 \overline{\text { g }}$. The population in Baghdad, capital city of Iraq, and Basra, the biggest port town, is about 3 million and 0.9 million, respectively. Population in big cities are thickening.

B. Notional Econciay

The per capita incone increased from U.S. Dollar 458 equivalent in 1973 to U.S. Dollar 942 equivalent in 3974 due to a sharp escalation of oil price. This value arrived at U.S. Dollar 1,308 equivalent in 1976. Honever, the per capita incose in the agricultural sector increased only fron U.S. Dollar 240 equivalent in 1973 to U.S. Dollar 253 equivalent in 1976. The statistic data of $1963 / 72$ indicate that the agricultural sector contributed to 22% to 23% of the ammal incone of the whole nation, which clearly points out a lon growth in the agricultural sector. As for the dorestic gross product by sectors during 1973 to 1976 , the nining sector increased its share from 36.2% to 54.0%, and the construction sector also fron 3.6% to 7.7\%. On the contrary, the agricultural sector decreased its share froa 14.28 to 7.68 .

An averaged actual growth rate per year of the gross national product during the ten years from 1964 to 1974 is 5.4 . The same growth rate within the five years from 1969 to 1974 is 6.8\%. Contrarily, the actual gronth rate in the agricultural, sector during
the above-mentioned ten years is 4.5%, and that in the five years is vey lon as 0.8%. It indicates that agricultural production in Iraq fras not yet been stabilized.

Petroleum occupies an extemely hig portion in foreign trade of Iraq. The percentage of petroleum export out of the total export increased fron 94.5% in 1973 to 98% ir 1974 . The total export excluding petroleut is of only about 3 million dinar. A percentage of the export of agricultural products out of the non-petroleun sectors decreased frof 823 in 1964 to 53% in 1973 though the export of dates pala has been gradually increasing recently.

The foreign trade of Iraq shows a chronic excess of inport of agricultural products. The statistic data indicate that Iraq has been an irporter of wheat and rice since the early 1970 s. Iraq had a bad harvest in 1975, and the production of these agricultural crops decreased to 845,400 tons and 60,540 tons, respectively. In order to coren the shortage, wheat of 512,009 tons and rice of 120,000 tons nere inported.

C. Agricultural Production

The cropping area and yield per unit area of wheat, one of the najor crops in Iraq, have teen both retanded since 1970. The gross armal agricultural production goes up and dowt in every two years. The cropping area of rice, a surner crop, is decreasing, kut its yield fer heetare increased fron 2.4 tons in 1970 to 3.1 tons in 1077 ulue to the introduction of consercial fertilizers.

It is clear that agriculture in Irap basically depends upon irrigation and soil fertility. Soils in a huge area have been salinized. Reportedly, about 30% of arable land in Iraq has been already fallow due to high salinization of soils. In southean Iraq, about 60% of arable lam is under the influence of salinization. Arable land of 20 to 303 out of the total has been already abandoned ty farmers, which has resulted in a decline in agricultural productivity.

Restrictive facton in agricultural developsent in the central and southern Iraq is hardness in irrigation and drainage. On the other hand, agriculture in the northern Iraq has encountered with difficulty in water and soil management. Pump irrigation and leaching have a special importance in the central and southern Iraq, accordingly.
D. Present Farm Hanagement Systens

In accordance with the Agrarian Lans of No. 30 of 1958, No. 117 of 1970 and tio. 90 of 1976 , about 7.44 million donums sere distributed to about $\mathbf{2 3 5 , 0 0 0}$ farm families. The averaged instributed area per farm fanily is computed at 31.5 donums (7.9 ha). The Agrarian Lat Ho. 33 defines the upper linit of agnicultural land ownership, establisferent of a cooperative systers oriented torard fostering the interest of the state and peasantry, organizing agricultural relation and guararteeing fair right for agricultural workers.

The agricultural population and fara-households as of $\mathbf{1 9 7 4}$ are about 4 million persons and 617,000 failies, respectively. Since the land under cultivation in the shole Iraq is 23 zillion donuss, cultivated area per farm-household is conputed around 37 donus, that is, 9.3 ha. Hosever, cropping area is 14 willion domms, that is, about 22 donuss (5.6 ha) per farn-household.

Four farming systers have been adopted in Iraq, that is, private farming, cooperative faraing, collective farming and state faming. The nurber of agricultural cooperatives was 1,606 as of 1977. Agricultural cooperatives of 283 have been established in relation with agricultural developrent projects. The cooperative farming is made at 79 fams. The nuber of state fams as of 1974 was eight, and a farm land of 307,632 donums in total belongs to thea.
E. Develogenent Plan

Iraq has enforced four five-year national econoaic developeent plans since 1961. Presently, the fourth developxent plan is under
operation airing at a rapid econcmic development and strengthening of the socialistic structure. The fourth develofent plan airs to attain the averaged annual growth rate of $16.8 \%, 15.5 \%, 32.39$ and 7.1% in the national incose, petroleum resource, ranufacturing and agnicultural sectors, respectively. In the agricultural sector, the plan ains to attain the following wheat and patdy rice production, tho najor crops in Haq, in both irrigated and rain-fed areas.

Table 2-1 theat and Rice froduction in the Fourth Five-Year Econcsic Leveloprent Plart

	1975			1980		
		Yield/	Total		Yield/	Total
	Area	Unit Area	Yield	Area	Unit Area	Yield
(103 donva) (kg/domum) (103 ton) (103 donva) (kg/donus)						
Sheat	6,054	197.2	1,194	5,588	365	2,041
Paddy	120	506	60.5	560	850	476

In proroting the econosic develowent, the Goverment has put into focus strengthenirg of its public sector, specially the state enterprises. Effort has been rade, with special attentions, in agricultural develofaent airing to expand fare lard by constructing irrigation ard drairage facilities as sell as to attain a bigh prodectivity of lard ard labor through rechanized ard mationalized fercing as seen in orighoing agricultural develofent projects such as Khalis, Great Yishkhb, Tarthar, ete.

Kahlaa Rice Farn Froject Area is a part of Rama Impigation Froject Area mhich is on the way for rationalized distribution of the loser Tigris waters ard flow control in the semice area of about $\mathbf{3 3 0 , 0 0 0}$ the in the scuth of frara. The paldy production in Missan frozince is loner then that of liajah province due to its high soil salinity and lon farsing tecirigues. Yahlaz Rice Farm froject will contribute to the Five Year Levelopeent Plan through an increased rice production supported by a large-scaled fare nechanization.
A. Location and General Features

Kahlan Rice lam Project Area of about 8,160 ha is located about 20 ka south of Erara city, Hissan prosince, in the south-eastern part of the loner Yesopotarian plain. In more detail, it is located on the left bank of the Kahlaa river, one of the five biggest tributaries of the Tigris.

Topogeaphically, the froject Area is extremely flat though it inclines quite gently, with a slope of about $1 / 10,000$, torard the east, that is, to Al-Chikke narsh, repeating micro-relief of 0.5 to 1.0 n. Depressions are mostly salimized to a considerable extent.

Geologically, soils in the Project Area consist of silt or silty loaz. The land productivity is not high due to soil salinity and poor irrigation and drainage.

As for agriculture in the Froject Area, the winter crops of wheat and barley are the present major crops. Paddy and sorghaj are grom in sumer seasons, however, thein cropping areas aremuch swaller than those of the winter crops. Due to a swall annual precipitation of around 171 ro khich concentrates in sinter seasons, irrigation is prenequisite for crop cultivation, in other words, no crops can grox without artificial irrigation in the Project Area. A part of the froject Area is equipred with irrigation canals to which the Kahlaa sater is lifted. However, the capacity of existing purps is small. Canals are foor and mostly deterionated.

The Froject Area has no drainage systen. Irrigation without drainage has caused salt accuaulation on fam land, and presently rore than a half of the froject Area has been a sont of wasteland.

All farm practices are nade by nan-pover except plowing. About 270 fam touseholds live in the Froject Area of 8,160 ha. The
population is very thin, accordingly. Horeover, it is decreasing, year by year.
B. Hatural Conditions

1. Topography and Ccology

The Project Area is situated at the southern Eest of the Rmara deltaic plain, bordering on the Kahlaa river in the west and facing Al-Chikke warsh in the east, and has, as a shole, an extrenely gentle slope of about $1 / 10,000$.

The eleration of the river levee in the restern part ranges in 6.5 to 7.0 whereas that of the eastern most facing the rarsh is 4.5 to 5.0 m .

The Project Area refeats nicro-relief of less than 1.0 m forted ty natural floodings and also aged artificial canals developed in all directions. Various shafes of depressions surrounded by such ticro-relief are seen here and there.

Alorg the Kahlaz river there are several seall hills of tho to three zeters high, and also flat floodirg tasins. In the western falf of the Froject Area, a nicro-relief interval is relatively long. On the other hard, in the eastern talf, the nicro-relief repeats itself at a very narrci interval.

Soils of the Project Area consist of thick Quaternary alluvial deposits, and geologically fall in a category of recent alluviur in the Quaternary, nately, the deltaic plain has been originally formed ly sedinentation of suspended exterials, mainly silts brought into the ligge shallow lake by flows of the Tigris and its tributaries. It t:as been, then, nodified by irregular natural floodings and by river bed shiftirgs. Furthemore, it is still developing due to sedinentation of silts in irrigation water contiruously supplied by farzers.
2. Climate and Hydrology
(a) Climate

Climate in the Project Area is characterized by short and cold winters and long sumers with interse heat. Spring and auturn seasons are extrerely short. It is so called the "cortinental arid type" clinate.

Rainfall reconds observed at Amara during 1965 to 1978 indicate that the averaged annal rainfall is 171 mm out of which 80 falls in winter seasons froa hovember to farch. It hardly rains in suraer seasons fron June to September.

The annual termerature ranges froa $10.3^{\circ} \mathrm{C}$ in January to $35.1^{\circ} \mathrm{C}$ in July, and the mean temperature is $23.9^{\circ} \mathrm{C}$. The maximur and rininum tenperatures recorded in the past 14 years froa June 1965 to June 1979 are $51.0^{\circ} \mathrm{C}$ and $-4.0^{\circ} \mathrm{C}$ in Jaruary. The daily temperature range of $12^{\circ} \mathrm{C}$ during winter seasons is relatively low in comparison with that of $18^{\circ} \mathrm{C}$ in sumer seasons.

The observation records with class A gan shon that the annual evaporation is high at 3,231 nis with the eaximua evaporation of 489 na in July (16.3 rin/day) and the minimus evaporation of 83 ra in Jamary (2.7 mis/day).

Concerning winds, the observation data reconded at hara meteorological station shon that the daily mean velecity ranges from $3.0 \mathrm{n} / \mathrm{sec}$ in Decenber to $6.6 \mathrm{n} / \mathrm{sec}$ in June. The averaged annual wind velocity is $4.3 \mathrm{n} / \mathrm{sec}$. Strong instantaneous winds of 20 to $30 \mathrm{n} / \mathrm{sec}$ cose in sumer seasons fron Hay to Septenber. Generally, the north-mestem and western sinds prevail arourd the Froject Area throughout the year though the south-eastem and eastern winds sosetises blow in winter seasons.

Climatic ohservation data are shown in Appendix 3B-l.
(b) Hydrology
(i) The Siahlaa River

The kablaa river is the sole water source for the froject. The river discharge is artificially controlled by the regulator pecently constructed across the upper reaches of this river. The nater levels and fischarges have been observed at the irmediately upstrean and dornstrean of the regulator. Furthereore, water levels of the Kahlaa river has been observed, sirce 1974, at Kahlaa town located about 24 kn downstream of the regulator.

Observation records during January 1974 to June 1979 show that the raxirua saier level at the donnstrean of the regulator was 7.75 Th thereas the ninimut 4.00 n . At Kahlaa tomn no observation was nade shen these waximu and minimu nater levels sere reconded at the regulator.

Kegarding the river dischange, the daily naximu discharge of 470 curtisec was recorded in Agril 1574 shereas the minimun of 20 cu-n/sec in Roventer and Decesber 1975 and in lovenber 1978. As for runoff of the Kahlaa river, high water seasons coze from March to June, and lon sater seasons from Septener to Noventer. The river discharge stants to decrease in July every year. The regulator has teen operated in close cornection with Kut regulator installed arross the Tigris at about 200 kn north-west of kara city. The regulators release nater every siz days during sumer seasons.

(ii) Groundwater

In parallel with the soil surgey, the groundzater survey was conducted during the field survey periods of Decerber 1978 to February 1979 (winter) ard July to August 1979 (surzer). Hoxever, the nuser of observation points in the xinter is not enough to clarify groundwater distribution in the whole Project Area.

Judging only from observations made in the sutrer, groundsater in present irrigation areas along the Kablaa river stands high from
0.60 to 1.40 meters belod ground surface whereas it stands lon in and around the heart of the Project Area ranging from 2.20 to 3.00 neters below ground surface though it gets again high near Al-chikke marsh ranging from 0.60 to 1.00 belon ground surface. (See Appendix. 3B-2)

In general, the salinity of groundrater is high with the EC value of nore than 10 mho/ch, specially in sumar seasons, except linited areas along existing irrigation canals and the march.

(iii) Quality of the Kahlaa Hater

Judging from water quality neasuresents of the river water conducted during the field survey and also from analytical data of the Tigris water prepared by the Irrigation Office, Kissan, the EC value of the Kahlaa water ranges in 0.47 to $1.26 \mathrm{mho} / \mathrm{ca}$ with the averaged value of 0.8 mino/cas. In general, having a seasonal fluctuation, it stors a high value during lon water seasons from August to Decenber.

As for silt content of the Kahlaa river, no data are available at present. Based on the analytical data of the Kujar Al-Kahbir river sater which diverges fran the Tigris neav the Kahlaa, the silt content ranges in 0.01 to 2.30 gram/lit. The larger the river discharge, the higher the silt content, and vice-versa. 754 of the observation data show a higher silt content than 1 gray/lit.

Under the situlations, if such silty water is directly diverted to the irrigation systea without silt treatrent, a big volume of silt will be accumulated on canal bottoas and farm field sumfaces, which results in difficulties of operation and maintenance. Therefore, it rill be necessary to construct a desilting reservoir at the diversion goint of the Kablaa water to the Froject Area. The proposed desilting reservoir will be enough to cope with the estirated silt judging from discharges and silt accurulation observed at the desilting reservoir of Amara sugarcane faria.

The observation and analytical data reganding rater qualities
of groundwater, river waters, canal waters and marsh water are shown in Appendix 38-2.
3. Soils

Soils in the Froject Area are alluvial ones which have been forced hy sedimentation of suspended materials tmansported by the Tigris and its tributaries in advance of kmava inland delta developEent. In addition to natural floodings of rivers and river-bed shiftings in the process of the delta foreation, artificial irrigation has greatly affected to the soil formation.

All soils stom the stratified layers which are different in color, structure or texture. The groundrater conditions are closely related to the above-rentioned soil distribution. In general, salinity of soils is strong and natural land productivity is rather Foor.

Frara Mrigation Project Office and the State Organization for Soils and Land Reclamation, Hissan, have conjucted soil surveys in the Froject Area. In the Feasibility Study, 12 test pits and 32 auger holes were dug over the entire Project Area, and physical and ci:cmical analyses of soil and groundwater sarples collected fros these test pits and auger holes weve conducted at the Soil 6 Hater Testing Laboratory, Abu-Ghraib, State Organization for Soils and Lard Reclanation, Ministry of Irrigation.

The above-mentioned soil survey revealed that most of the Froject Rrea is covered by the silted basin soils shich mainly consist of silty clay, silty clay lcar, sandy clay loan and very fine sandy loaz. The fine alternation of clay, silt and very fine sand is observed here and there in the Froject Area as if it reappears the Kaleidoscopic changes of the sedizent accumblation in old days. And, in the slightly depressed area where its grourd surface is by 0.5 to 1.0 in leier than that of the surrounding area, the basin ε irrigation depression soils are distributed. The ground surface has developed peculiar takhyr-like cracks due to seasonal sutrergence.

Saretimes, strong salt crust formation is observed.
In general, the groundwater table is high and the drainage is poor. In addition, a narrow belt of the river levee soils exist in the sestern end of the Area along the Kahlaa river. On the ather tand, the silted Hor soils exist at the eastern corner of the Project Area along the lowest reaches of the Gasma river. The former has a nediun coarse texture and moderately well drainage so it is cultivated with dates pala or vegetables, and the latter has a rather fine texture and extrenely poor drainage so a part of it is cultivated with paddy rice.

Hain characteristics of the soils are outlined herein. The horizontal variations of soils are conplex due to the intricated micro-relief and groundwater conditions. In general, the coarse textured soils are fourd near the Kahlaa river or heads of irrigation canals, and the fine textured soils in the loser ends of irrigation canals. Alrost all soils in the Project Area have been cultivated before, horever, Eost of theal have been abandoned by farsers due to salinization. In such abandoned or fallon lands natural vegetation, mainly shok and agul, are seen.

Needless to say, the majon constraint factor of soils in the Project Area is salinity. Host of soils shows strong salt accumulatior. It appears that the soils near the earsh are relatively free from salt accuaulation because of the stagnant water for a long tine. On the contrary, salt accumulation by capillary riovenent of saline water is very sericus in the depression soils where the underflon of the groundwater is least.

Therefore, in the process of land reclaration in the Froject, an artificial field drainage systea should be installed in order to leach such soils with sufficient water. Furthermore, careful water eanagenent shall be undertaken during cropping period to grerent soils froa secondary salinization. The leaching reethods of these soils, introduction of legumious plants for soil improvenent as rell as optimum fertilization should be tested in the proposed
excerimental fama.
C. Present Agriculture

1. Land Use

The annual precipitation of 171 ro in frara is very small. furtherore, it rains concentratedly in winter seasons. Irrigation is, therefore, prereguisite for crop gronth in the Project Area throughout the year. The eajor restrictive factor in the land use is difficulty in securing imigation water and improvenent of saline soils.

The froject Area of 8,160 ta consists of the cultivated area of 3,469 ha, highly salinized fallos of $4,040 \mathrm{ha}$, marshy land of 500 ha , wich is sutmerged in rinter seasons, and the other area of 160 ha occupied by villages, canals, roads, etc.

In general the single cropping a year prevails in the Project Area thongh vegetables are paised trice a year in a swall acreage. The smeder crops of sorgtuan and paldy are grown in 284 ha (8z) rhereas the sinter crops of wheat and barley in 1,878 ha (54\%). The rest of 1,298 ha (38%) is fallos.

Stok ard agul, salt tolerart plants, grow irs sone saline soil areas, but even such plants cannot gron in highly salinized areas.

2. Faraing Conditions

Out of the present total cropping area of atout 3,460 ha in the Project Axea, the sumer crop cultivation area in the year 1977, winter crop cultivation area in the year 1977/78 and yields of such crops are tabulated below;

Table 3-1 Suraer Crops in the Project Area, 1977

Crop	$\begin{aligned} & \text { Area } \\ & \text { (ha) } \end{aligned}$	$\begin{gathered} \text { Yicld } \\ \text { (kg/ha) } \end{gathered}$	Total Pro~ duction (ton)	Cropping Period	Fecarks
faddy	37.5	952	35.7	Jul. to Ho\%.	(or to the end of liov.)
Sorghen	225.0	700	157.5	Jul. to Oct.	
Vegetabies	13.5	7,000	35.25	Apr. to sep.	
corn	6.25	-	-	Bay to Sep.	
Water Belon	1.25	-	-	Apr. to Aug.	
Total	283.75		285.45		
Source:	ta of x	Bissan Ag	icalture offic		

Table 3-2 finter Crops in the Project Arca, $1977 / 78$

Crop	$\begin{aligned} & \text { Area } \\ & \text { (ha) } \end{aligned}$	$\begin{gathered} \text { Yield } \\ \text { (kg/ha) } \end{gathered}$	Total Production (ton)	Croppirg Period Renarks
Hheat	750	800	600	Nov. to Apr.
Earley	1,000	1,000	1,000	Mid-iov. to Apr or Dee. to Apr.
Broad Pean	125	3,600	450	Sep, to Fnd-Exec.
Toratos	1.75	8,000	14	Cct. to Mar.
Onion (dry)	0.25	-	-	Oct. to Mar.
Vegetables	1.25	7,000	3.75	Cet. to Yar.
Total	1,978.25		2,072.75	

Soruce: Data of Missan Agriculture Office

All farn households in the Project Area are subscribers of AlMabale Agricultural Cooperatives, and one fam household, as aruie, cultivates 7.5 to 10.0 ha (30 to 40 conuss) of fart fields with surcer crops and 0.5 to 7.5 ha (2 to 30 donuzs) with winter crops under the agricultural production progran of this cooperative. Based on this production prograt, the cooperative allots a cultivatea area of rajon crops to each fam household. Reportealy, fertilizers have leen tardly utilized in the Project Area. Paddy seed of about 120 kg ,
rostly local varieties of "Graiba" is som to one hectare of pumpirrigated padly fields. The existing paddy fields have no underdrainage systen. The interaittent irrigation of five days, that is, four days' supply and one day's suspension of irrigation sater, is refeated three time imediately after the direct soring of paddy to sulrerged paddy fields, ard the continuous irrigation follows it until two neeks before harvesting.

Fresently, paddy fields in the Project Area have no drainage facilities, and the repeated irrigation plus raise of groundnater table plus a great deal of evaporation nith an extzerely high tenperature have incurred salt accumatation on soil surface. A severely salinized part of such paddy fields has been abardoned by farmers since crops do rot gron any wore.

The fertilizer application criteria published by the Directorate Genemal of Agricultural Guidance, Finistry of Agriculture and Agrarian Refors, suggest to apply amonius salphate of 800 kg and triple superphosphate of 180 kg to paddy during its croppirg season, and it is reported that A.S. of 290 kg and $T . S . P$. of 100 kg are, in general afplied to wheat. But such fertilizers are actually hardiy utilized in the Project Area as already eentioned above. Reportedly, soze fanders have the experience to suffer fror fertilizer danages, narely, fertilizers sonetires resulted in a decrease of crop yield due to unforeseen difficulty in water management though it seens to have happened in a quite linited area and cropping seasons when irrigation water was not sufficiently available.

3. Agricultural Input taterials

Al-Uabade cooperative takes charge of group purchasing of agricoltural imput naterials for fareers in the Froject hrea, hozever, quantity of such eaterials hardled by this cooperative has not been expessed in figure. The Goverresent has encouraged farmers to apply the folloning fertilizers to paldy and wheat.

Table 3-3 Input Materials for Paddy, Amber-33, ard Nheat

Material	$\begin{aligned} & \text { Quantity }{ }^{3 /} \\ & \text { (kg/ha) } \end{aligned}$	Unit Price \qquad (fils)	$\begin{aligned} & \text { Price } \\ & \text { (I.D/ha) } \end{aligned}$
Pardy cultivation:-/			
Seed	120	137.42	16.490
A. S.	600	17.6	10.560
T.S.P.	180	1,000.0	6.426
Stam-F34	10 lit	1,000.0	10.000
Arodran	6 lit	1,808.0	10.848
Total			54.324
Hheat cultivation: $2 /$			
Seet	120	65.74	7.888
A.S.	200	17.6	3.520
T.S.P.	100	35.7	3.570
Total			14.978

Sounce: 1/ "Amber Rice Cultivation in Middle Uphrates Area" by Dr. Sabri Sibahi, 1976.

2/ Data of Hissan Agriculture Office
3/ The quantity of seeds to be planted to a hectare should be detemined based on experitental mesults to be obtained at the proposed expericental farr. Furtherisore, experinentations should be conducted to deternine the optimus quantity of the other agricultural input raterials to be supplied.

The total agnicultural naterials cost in paddy cultivation is cotputed at I.D. 54,324 per hectare. It seers that nearly the sare quantity and kinds of fertilizers are applied to wheat and barley. According to the data of Hissan Agriculture Office, fertilizer application as suggested in the above-tentioned text book has been put into action in ten percent of the total paddy cropping area in Missan province, and neither fertilizers nor chemicals have been utilized in the reasining 908 .
fertilizer application should be planed in close relation with * xater managezent schedule during cropping seasons. As already mentioned, the present fam facilities are too poor to set up a sater managerent schedule, and it happens that fertilizer is hamful in
crop cultivation. Under the circurstances, in parellel with the Froject ieplementation, the technical guidance in fertilizer and chenical application will be indispensable.

4. Farti dechanization

Plowing and farroning are the major Eechanized fam practices in Iria. Host farm rachines are rent from agricultural machine mental stations to farters though some agricultural cooperatives or individual famers have their onn farm rachines.

In the Project Area, £ame rachines of Hissan Agricultural Hachine Rental Station are operated, on the vental basis, for plowing and farronirg. The Rental Station has totally 397 units of farm rachinery inclusive of tractor's attachents (see Table 3-4). These fam rachinevies are rostly used for plowing and farrowing though sore are for rarvesting. Under the situations, all farm practices except plowing and farroxirg are done by wan on animal power.

As described above, the single cropping a year is adopted. Therefore, farm mechines are needed twice a year in land preparation for wirter and suraer crops. Reportedly, it socetices occurs that faruers can not compte soaing in optinuz seasons due to the delay in land preparation. The Station has 70 wheat harvesters and three paddy karvesters, but the total capacity of thea is not erough to ceet the present requirerent.

Yachine	Gnit
Tractor	132
Cobine	73
Plon	121
Disk harrox	10
Drill seeder (with fertilizer)	20
Others	41
Total	397

5. Livestock Foming

The folloning table shows the present livestock farming in the entire Iraq, Hissan province and Al-Kahlaa.

Table 3-5 Present Livestock Breeding

Domestic Animal	Whole Irag	Missan Prov. (A)	$\begin{aligned} & \mathrm{A}-\mathrm{Kah}_{1}- \\ & \mathrm{laa}(\mathrm{~B}) \end{aligned}$	B/A $\times 100$
COH	1,804,235	218,067	16,308	7.5
Buffalo	145,535	22,832	2,395	13.1
Sheep	8,400,939	417,664	38,368	3.2
Goat	2,989,270	19,350	360	4.4
Carel	52,352	-	-	-
Horse	69,140	5,817	393	6.8
Donkey	459,244	15,139	679	4.5
Mule	27,979	13	-	-
Hen	13,934,705	246,515	18,442	7.5
Turkey	833,000	4,845	-	-
Sran \& Goose	451,520	38,925	-	-
Others	157,450	26,776	-	\sim
Source: $\quad \mathrm{H}$	Hhole Iraq: Armual Abstract of Statistics, 1976 Missan Province: Anmual Abstract of Statistics, 1976 Al-Kahlaa: Kissan Agriculture Office, 1978			

About 133 of buffalces, nine percent of sheep and seven percent of both hens and cons out of the total of Missan province are raised in Al-Kablaa area. It suggests that El-Kahlaa area has played an irportant mole in livestock farming of Missan province. It is expected that the livestock farning in this area will be further pronoted by the Project.

6. Farm Household Economy

The Annual Abstract of Statisties, 1976 , indicates that Iraq has a cultivable land of about 12 nillion hectares out of wich the land under cultivation is 5.75 million hectares. The cropped area is 3.5 nillion hectares which is equivalent to 60% of the total land under cultivation.

The present land use in the froject Area is more or less sinilar to the above-rentioned nation-wide land use. The cultivable land in the Project Area consists of the-Eropped area of 1,878 ha and fallow of 1,298 .

The cropped area of the Project Area in the sumser of 1977 is equivalent to 15% of that in the winter season of 1977/78, whereas the sare fercentage of Kahlaa gada arrives at 81%. This low percentage proves that the land use in the Project Area is still quite extensive. The total Project Area is 8,160 ha inclusive of wasteland. If this high saline land and the fallon with a relatively low salinity can be utilized for agriculture, the land use will becore intensive, and the farm econory would be much irproved. But, as a matter of course, such irproverent is beyond the capacity of individual fara household econory. According to the agricultural production cost survey by the Government, tie net income by crops are as follows:

Table 3-6 Ket Farn Income in Missan Province

Crop	Yield (kg/donus)	$\begin{gathered} \text { Unit } \\ \text { Price } \\ \text { (I.D./ton) } \end{gathered}$	Gross Incoze (I.D./donun)	Production Cost (I.b/donura)	Net Fars Incoze (I.D./donus)
Paddy	500 /1	64.213	32.1	$10.01 / 4$	22.09
rheat	$200 / 2$	39.6	7.92	4.1415	3.78
Barley	250 /2	31.8	7.95	$4.34 / 5$	3.61
Green Gram	169 /2	13.3	12.39	3.49 /6	8.90
Crop	Percent (\%)		POTE:	1: The year of 1977	
Paddy	(100)	(580)		12: The sinter of 3: Unit price re	$1977 / 78$
freat	(17)	(100)		- gate price	
Barle7	(16)	(34)		14: The year of 1	976
Green	a (40)	(235)		16: The year of 1	976

Under the situations, a rationalized irrigation systea will surely bring about a high profitability of paddy in the Project Area.

Fan housetrold emonsic investigation conducted in the study revealed that the fare household ircoze per day is 2.4 Dinars as shown in Table 3-7. Whereas, the prevailing Governcental farg wage is one Dinar. If the Kahlaa Rice Fars employs farmers, the above-mentioned incone vill be earned by about two fanily laborers.

Table 3-7. Yarm Household Economy

Item

Quantity

1) Faraily labor

Fanily rerbers:
12 persons
Yain family laborers:
3 "
2) Cropped area

Paddy - Anber varieties:		
Graiba varieties:	1	donun
Wheat	5	$"$
Barley	8	$"$
Broad bean	12	$"$
	4	$"$

3) Livestock farming

Horse	1	head
Cord	2	$:$
Sheep	50	$\%$

4) Fam incote
Gross incone
fam incone

1,100 dinars
5) Farm incorse fer day
$2.4 \quad 1=$
6) Fars incore per fanily remer per day
$0.200^{\prime \prime}$
7. Frocessing and Harketing of Agricultural Products

Anara has three centers of earketing, and famers in the Project Area sell their cereal products to one of them. In case of paddy, for instance, farmers pack threshed rice in sacks of 80 to 100 kg content, and bring it to a center of marketing by rental truck chartered by their group. Officers of the center inspect rice brought into by farmers, reasure its keight and roisture content, evaluate its quality and decide the grade and price of paddy rice for payment to fareers. The paddy rice handled by these centers of narketing is only Anber varieties. The purchasing price of the first guade Anber paddy is 95 I.D./ton, and that of the second grade is 80 I.D./ton.

Every paddy rice of 50 tons is packed in herp sacks with 60 kg content, and sent to a silo by truck or trailer. silos, processing center of rice, are located in the suburbs of Amara, and collect 150 tons of paddy per day from these three centers of marketing during the peak seasons. At a silo, grains of barnyand grass, dust and other impurities are rewoved. After that, paddy rice is stoned in the silo, keeping its roisture content at 14 to 15%. Totally, Arara has 132 units of silo rith storage capacity of 120 tons each. So the total storage capacity is about 16,000 tons. It was inforzed during the field survey that all the silos rere full with paddy rice brought from Missan, Al-Majah and Quadif provinces in 1978. A rice nill has been built near the silos. Its capacity is ten tons per hour with the naxicur capacity of 12 tons.

The processing and purchasing process of wheat and barley is sinilar to that of paddy rice described above.
8. Research and Extension

Iraq has nine agricultural expericental stations out of which Hishkhas Rice Expericental Station in Hajaf province is specialized in paddy-related'expericents, and furnished the teaw with useful information in plaming the nex rice farr in the Project.

The expericental farf of this station is 50 ha. The staff is lined up by one chief of the station, two plart breeding experts, one researcher, one plant protection expert, one weed control expert, one farm eachinery engincer and eight other personel. Out of 15 zenbers in total, five are graduates from agricultural colleges, three from the institutes of agricultural techrology and seven from agricultural high sctools.

Experiments are cainly focused on fertilizer response of paddy, mainly, Anter and partially lR, frerican and Chinese yarieties. basic seed of such varieties are raised in the seed field of 18 ha .

The experimental station leas adopted the dry soning rethod by seeder, and obtained a good yield of 2.8 tons per hectare on an average (1972 to 1974).
then this station accomplished a satisfactory result in its experimentation, such new method is taken up in extension services by the Directorate of Farder's Education and Extension.

The land productivity in Hajaf and Quadif provinces both located in the Euphrates zone is said more than tho tives of that in Missan province. The Station staff pointed out the major rensons as follors:

- Careful farm practices and eanagement such as harmoning, two tices' plowings and land levelling, etc;
o Farmers" willingness in fam wanagezent for an increased production;
- Lower soil salinity; and,
- Soil fertility.

Thirty-five extension workers of ten extension centers are in charge of extension services in Hissan province.

1) Extension Horkers

An agricultural branch office is lined up with one to six extension norkers, 2.6 norkers on an average, nostly graduates fron agricultural high schools on from the institutes of agricultural technology. In accordance sith an extension progran prepared by extension offices these extension workers nade guidance to sone selected farrers in fertilizer and agricultural chemical application. Based on the program, seeds, fertilizers and chemicals are accorrodated to the farrers. In harvesting, extension korxers reasure and compare grain weights of paddy harvested in fertilizer-applied fields and other fields in the presence of farcers, and let them understand the importance of scientific farsing. After harvesting, they collect loaned noney for agricultural input materials from such farmers.

In addition to the atove-rentioned, various trainings are conducted rot only for farmers but also extension norkers therselves and cooperative officials for upgrading their technology. The audiovisual training ky rovies has obtained a good result.
9. Fareers' Organizations

The Agrarian Reform of 1958 made active moverent toward cooperatives. The rumber of agricultural cooferatives expanded fron 17 in 1961 to 1,606 in 1977. At present, Missan province has 103 agricultural cooperatives, and in Al-Kahlaa gada, one compound agricultural comperative and nine agricultural coopevatives have been organized. Al-Kahlaa branch office of Amara Agriculture office has the cooperative section lined up by ten persomel. Che cooperative officer is responsible for guifance of two cooperatives in agricultural technology, administration, credit, etc. An opinion or a request of co= operative recbers is discassed at the council reetings of the provincial and national levels, and abopted in the policy and progranging when it is approved. There is another farzens' organization called the General Federation of Cooperative Society Parrers. Hissan province has 18 branch offices of this organization. At present, eight urits of purg are operated in the Proiect Area out of which six are for profit-making. Farmers who use hater froe such pups have organized privately a group to collect water ckarge.
10. Credit

Gereral rural credit is extended by the Agricultural Bank in the public sector and by agricultural cooperatives in the private sector. The Agricultural Bank has been estallished uncer the Agricultural Bank La; of 10i6. With the inception of July 14 pevolution in 1958 , the lan was revised to reet the requirecents in the agrarian reform, and rural loan fund has teen increased. Loans have been extended from the Eank to the agricultural cooperatives for agricultural supplies, rachines ard ifplecents, cooperative rarketirg, aniral wealth, agricultural services and other purposes.

The Agricultural Cooperative Bank for the purpose of loaning to agricultural cooperatives was established in 1956, and the Goverment had invested 51% and the other rember the rest of 49%. The procedure in obtaining an agricultural loan for purchasing agricultural inputs such as fertilizers, seeds, puops, etc., is described below;

A subscriber's request for loan is reparted to the cooperative Section of Kahlaa Branch, Hissan Agriculture Office, in rriting, by the agricultural cooperative to which the subscriber belongs through the Compound Agricultural Cooperative, and the Cooperative Section formards this document to the Agricultural Bark, Hissan. For loan negotiation, the head and cashier of the compound fgricultural cooperative visit the Bank together with a cooperative officer-in-charge, and if the Bank approves it, the requested loan of money is directly paid to eanufacturers or dealers of agricultural input raterials in check. The interest of tho percent a year is paid to the Bank by the subscriber through the Compound Cooperative after harvesting of crops.

D. Present Irrigation, Drainage and On-Fara Conditions

1. Irrigation and Drainage

Starting from intake facilities installed along the left bank of the Xahlaz river, present irrigation canals exterd torard the east through the Project Area, but the canals thewselves are very pricitive in structure and old as local people call these artificial earth canals the "rivers", and the irrigation follows a tire-honored traditional rethod.

As for the irrigation rethod, the furror irrigation is adopted in cultivation of barley, sheat, broad beans, com and tonatces. Irrigation water is intemitently supplied to these crops throughout the year. For paddy cultivation, the bonder imigation is adopted.

The existing imigation facilities in the froject Anea are only canals and purp stations. Along the left bank of the Kahlaa viver, ten puap stations have been installed for irrigation of about 4,000 ha.

All the purps are of volute-type driven hy diesel engines, and have a lift of three to four reters. Out of the present irrigation canals, the Gasma river, the biggest canal in the Project Area having the length of 18 km and capacity of one cubic meter per second, runs along the northerm boundary of the Project Area from the west to east, and empies itself into Al-Chikke rarsh. The irrigation water through this canal conveys a great deal of silt eaterials. In consequence, the function of this canal sas paralyzed, and improverent has been undertaken by Arava Imigation office.

The Nualaya river (canal) with 13 ks long delivers the Kablaa nater lifted at Al-Bahatha pump station to northern part of the Project Area, and flors in parallel mith the Gasma river near Halit Assayhul village.

The Al-Bahatha river (canal) with 12 km long runs across the southern part of the Froject Area. This river is deterionated at present due to silt accuralation and poon maintenance. The ljiayil and Hajiya rivers (canals) ruming near the southern boundary of the Project Area are also deteriorated.
2. On-farm

Almost all the present cropping lands are located on the westem part of ite Project Area to which the Kahlaa water can be easily supplied by parps. In cultivated areas, fary plots of various shapes and scales are seen, but rostly have a rectangle shape with the length of run (long side) of 300 to 400 a and the ridth of plot (short side) of 30 to 50 n . A Eain canal runs along the short side of such farn plots, and a fart ditch to the direction of the long side. Poads of 30 to 50 co wide runs along vain canals. Tractors with harrow, which are operated for plowing, travel across other farm plots to aruive at a fars plot. Ho drainage facilities sere provided at all.

In order to realize the nechanized agriculture with heavy fars machines, one of the pre-requisite project components, the Project will require the folloring:

- Inprovement of irrigation facilities;
- Construction of drainage facilities;
- Improverent of soils specially of saline soils by leaching;
o On-farn developrent inclusive of construction of terminal facilities; and,
- Construction of roads.

A. Objectives and Components of the Project

1. Objectives

The Kahlaa Rice Farm Project has been taken up to attain an increased production of paddy rice to contribute to the national food policy. In addition, it is expected that this rice farn will function as a rodel pilot fam for future agricultural developent projects in Iraq, and that this Project nill bring about a big irpact on the rural ecorony of hissan province and its vicinity, increasing the farn labor derand through deployment of the rodernized rice farm operation.

For this purpose, land consolidation, construction of irrigation and drainage facilities and installation of farr facilities have been planned.
2. Project Corponents

The Project will include the following components:
i) Construction of the State Rice Fars
a) Irrigation and drainage facilities: Construction of pumping facilities, desilting reservoiv, irrigation and drainage system and on-fartifacilities.
b) Fart facilities: Installation of a farm , $a r e h o u s e$, a rachinery/ieplezent warehouse, workshop and aincraft murnay.
c) Pelated facilities: construction of a bridge across the Kahlaa river and housing for the village.
d) Rice processing facilities: Consisting of milling, drying and storage facilities.
ii) Establishrent of Yechanized Technical Systen for Fam Operation/Managerent
e) Kechanized rice cultivation techniques: Introduction of rechanized rice cultivation techniques with rellcontrolled water ranagetent.
f) Managerent of the state rice fam: Establishrent of farn Eanagerent organization for sropoth operation/ managerent of this rice farm.

iii) Fstablishrent of an Expevivental Fars

Establisheent of an experirental farm of about 90 ta for various researches, experimentations, trainings and deronstration.
B. Project Plan Fommatica

Kahlaa Fice Fars Project is a national agricultural developtent project aining to attain the self-sufficiency of rice, one of the nain crops in Iraq, and to function as a pilot farn for future agricultural cevelopant in the say of large-scaled and fully rechanized faraing.

In formblating the Project plan, studies were conducted from various angles on every reguisite for oferation of this rice farm under the natural conditions of the Froject Area in the arid zone ctaracterized by extrenely high terperature, quite a fen rainfalls and saline soils as well as the social conditions prevailing in Iraq. Selection of crops to be grom, cropping scherlule in relation with rotatioral cropping, fart practices, fara sechanization, keed control ard desalinization of saline soils, etc., are, therefore, put into focus in the study.

The Project still involves various unkrom factors. Sone of then should be decided based or exferirental cultivation results before or in the initial stage of the rain fam operation whereas farsoing envimonrents with high soil salinity, poor soil fertility and seasonal burning wincs, etc., should te irproved by repeated fertilizer application,
leaching and provision of wind-breakers in a relatively long period. The long-termed farm managerent plan should be formulated based on expericental results to be obtained in the experirental farm taking into consideration various factors inclusive of the international ard domestic denarid trend of agricultural probucts.

Under the situations, the study has been conducted based on the folloning concepts:

1. Cropping Schedule

The first priority in scheduling has been given to paddy production for the folloring reasons:
i) The Governeent has taken up this Project for an increased rice production through establishrent of an effective farm eanageEent system with full eechanization;
ii) Paddy is the rost profitable arong the others; and,
iii) The intraduction of second crops has been plamed in this study for effective utilization of land, machinery and labor during off-seasons of paddy cultivation. However, taking into account the econonic mumber of fara cachinery and labor as rell as salt accumulation on soil surface caused by continuous cultivation, the second crops nill be cultivated ir a limited area.

The rotational cropping of paddy and other crops such as sugarcane, sorghuy, green gram, berseea and vegetables is effective to control paddy weeds and intensify the land use. Honever, labor-consuming cultivation of surfer crops, except paddy, night be handly possible due to very high terperature in the Project Area. Furtherrore, no crops can be introduced to the Project if thein cropping seasons overlap the paddy growth period. Careful attention should be paid to salt accumblation on soil surface in deteraining the cropping schedule. In this connection, it is important to leave fara land as fallo; for a period in onder to recover its soil fertility.
2. Sechanized Faming

Heavy fam machines will be utilized due to the folloning reasons:
i) Soils in the Project Area become solid when dry because their organic mater content specially hurus is very small. Moreover, it will be difficult to mobilize sufficient laborers to conduct farm practices without such machines;
ii) Only a fer varieties of paddy can ke grown in the froject Area. Therefore, an optirum period for fario practices is quite short, which rakes it indispensable to introduce farm rachines with a high operation efficiency; and,
iii) Land levelling to keep level tie farm plot water has a special infortance in paddy cultivation. Sufficient puddling should be practiced for direct sowing of paddy to submerged fields by secter.
3. Paddy Cultivation

For paddy cultivation, various varieties and sowing rethods should be introduced to elongate the paddy cropping season. The paddy grouth perion under the natural conditions of the Project Area is fron March to loverber. Experimental paddy cultivation inclusive of the tro croppings a year should be conducted in the experitental farm by irtrolucing loth transplanting and direct sowing to dry fields, etc.

A-ber varieties shose production has been encouraged by the Governcent will be mainly cultivated in the Froject. Hosever, 1 R varieties will te also partially cultivated for the tice-being in order to elongate the paddy cropping season. In parallel sith irproverent of Hiber seed, IR varieties* cultivation area will be decreased, and only trber with high corercial value will te raised in the Project in future.

The direct sowing to subrerged fields will be nainly conducted to grox early-zaturing, mediu-waturing and late-maturing varieties though the direct sowing to dry fields and transplanting are also expericentally adopted. The eajor reasons why the direct sowing to subrerged fields has
been put into focus are as follows:
i) The direct souing to subrerged fields is the traditional way in planting local varieties of paddy to saline soil in the Project Area;
ii) Paddy seed planted directly to dry fields does not gerninate uniformly. On the other hand, stabilized germination can be expected in the direct soning to subzerged fields;
iii) Suitable seedling breeding rethods required for transplanting. have not yet rell develoced in the Project Area; and,
iv) In case of soning to submerged fields, levelling should be corpletely rade in the course of puddling, and percolation is controlled to a satisfactory extent.
4. Sowing

Introduction of a riding-type multi-drilling seeder has been proposed, with the first priority, for direct soring to paddy to subverged fields, taking into account the operation efficiency of this rachine, labor requirement in planting, specially a high yield expectable in this sosing and easy field ranagement inclusive of water Eanagerent, weed control, prevention and fertilizer application.

The broadcasting by light aircraft is quite effective in paddy soning to a vast area in a limited period, and it is expected that a yield of paddy planted in this cethod will gradually increase, rith sore irproverent, in future. Therefore, this sowing rethod is given the second priority in this study.

Experimental transplanting of young seedlings of eariy-raturing varieties and throuing transplanting of sheaves of paddy seedlings (veryearly eaturing and late-raturing varieties) will be conducted in the expericental farm to be constructed so that the paddy cropping season will be elongated to the maximun extent possible.

5. Weed Control

Careful puddling will be conducted tho tives prior to soring and rechanized seeding to control paddy reeds to the maximun extent possible. Supplerentally, chemicals will be utilized. For transplanted paddy, the ondinary reeding with M-0 Satan, etc., is considered sufficiently effective to neet the requirerent.

In future, paddy needs should be exteminated by the rotaional cropping of paddy and upland crops as practiced in Kediteraman paddy areas so that paddy can be cultivated mithout herbicide.
6. Layout of the Farn

Only indispersable facilities for paddy cultivation in the Project frea tave been planned as follows:
i) Irrigation systen to supply the Kahlaa nater to the Project Area;
ii) Drainage systen inclusive of underdrain required for leaching;
iii) Land reclamation to construct farm plots to keep irrigation sater at an optiwn depth on its surface;
iv) Wind-breaks to protect crops fron prevailing north-sest dmy and buming kinds; and,
v) Rest places with shadon for labovers and fam eachines.

7. Expericental Farm and Seed Fam

In expericental fari with a laboratory and a korkstrop will he irstalled for experitentations and researches required in the Project. In order to produce seed sith a high quality, the experirental farn will be equipped with a seed fare, refrigerator, workshop, etc., required for test cultivation of various varieties, rainterance and propagation of basic seed. An basic seed fara and certified seed fara sill be installed in future to zeet the seed requirezent not only in the Project Area but also in the whole Missan province.

8. Stage Developicent of the Rice Parm

Rice cultivation in Iraq has remained still primitive, and rost farts practices are made by man on animal porer. Under the situations, the stage development of cultivation techriques and education/training of experts and skilled laborers, etc., should be planned.

In the first stage, a rosque, houses for officials and laborers, a pricary school and a clinic will be constructed. Garage for wachines, workshop, neteorological station, warehouses and so forth will be also built in parallel with the land reclanation and construction of the wajor facilities such as the purp station for irrigation, main irrigation and drainage canals.

In the second stage, operation of the experimental farm inclusive of caltivation and leaching tests and the construction of on-fam facilities will start.

In the thind stage, operation of the shole main farm will be cozrenced. In order to establish a Eechanized rice production systen, fars techniques to be developed in the experitental farm should be introduced to operation of the main fare.

9. Environmental Isprovesent

The environmental improsement should be plamed to let laborens fermanently settle in the Project and willingly engaged in operation and managerent of this rice farm. The rajor farn facilities will be located adjacent to the village. Houses for rice farm officials aill be located a little apart froa these for laborers.
c. Proposed Agricultural Developrent

1. Land Use Plan

The land classification has been made, based on soil survey, as follows:

	Area	
Land classification	(hal)	0
First class	0	0.0
Second class	158	2.0
Third class	4,647	56.9
Fourth class	2,182	26.7
Fifth class	1,173	14.4
\quad Total	8,160	100.0

Lands have been classified taking into consideration the folloning;

1. Topographic constrairts;
2. Soil constraints specially soil salinization; and,
3. Necessity of counterseasures against the above-mentioned constraints in on-farn developrent.

In the othen fords, the first class reguires no special measures; the second class land requires some preventive countermeasures against re-salinization of soils caused by irrigation; the thind requires general zeasures to prevent soils from salinization; the fourth requires derse facilities for leaching and the last requires ceasures for drainage.

As seen in the above-table, almost the whole cultivated area requires sone measures against soil salinization. sbout 14 of it is the sarshy depression so the drainage rill be necessary.

A land use plan for the rice farn of 8,160 ba in total has been forsulated taking into account the topographic, soil, hydraulic and environcental conditions for gronth of agricultural crops. The cultivated area inclusive of the experirental fara of 90 ha is $6,300 \mathrm{ha}$, which is equivalent to 77 多 of the gross Project Area. The eain irrigation and drainage canals and fara roads will occupy 420 ba or 5.1 of the gross area, and on the on-farn facilities, 960 ta or 11.8 q. The windbreaks of 330 ha or 4.8 has been plarined to protect crops froa burning north-sest winds prevailing in the lower Mesopotanian plain. The desilt-

[^0]Table 4-2 Proposed Land Uso
ing reservir will occupy 40 ha of 0.5 . For the village and farn facilitics, an area of 110 ha 1.4 has been allotted.

The whole cultivated area will be developed to paddy fields. Paddy sill be grown in sumeer seasons whereas upland crops of barley and sheat in rinter seasons. The proposed land use is tabulated as follows (see Toble 4-1).
2. Cropping Schedule
a) Introduction of Crops

Paddy will be mainly raised in the Project, and supplewentally upland crops of barley and wheat nill be introduced as secondary crops because they are advantageous in salt tolevance, marketability and rechanized farning. Horeover, these crops are traditional crops in the Project Area. Paddy of manly Amer varieties will be cultivated whose production has been encouraged by the Goverment and has a high conemrial value in Irag. (see Appendix 4C-1 and Figure 4-1)

FIGURE 4.i PROPOSED CROPPING PATTERN

b) Cropping Schedule

Out of the total paddy cultivation area of $6,210 \mathrm{ha}$, early-maturing, redium-maturing and late-maturing lines rill be grom in $1 / 4,2 / 4$ and $1 / 4$, respecdtively, in order to elongate-l the paddy cultivation period by 40 days. (Paddy is planted from the end of Hay to the end of June, and harvested from ectober to llovenber) so that the peak derand of labor force in preparation for sowing, soring and havvesting will be kept at the lowest possible. The cropping schedule should be made out to intensify the land use. The introduction of barley and wheat in 2,000 ha in total is meaningful in this sense. It increases the cropping rate to 130\%. It also contributes to the best use of labor force of the permanent emplojees and farm eachinery. Horever, paddy harvesting seasons and wheat sowing season overlap in Octoker and loverber in case of rotational cropping of paddy and wheat. Therefore, the cropping area of wheat sill be linited. At present farn land of about 2,000 ha is cultivated sith wheat and barley. Taking this into consideration, barley and rheat cultivations in 1,000 ha each have been planned in order to elongate the cropping season of minter crops. The lest suited rotaticnal cropping of paddy and upland crops should be detemmined taking into account salt tolerance of crops, need control, soil fertility, labor distribution, water requirerent, profitability and the national policy, etc. Further study sill be required in future on the rotational cropping not only of paddy and wheat/barley but also of paddy and sorghus, aillet, Eesseen or irdustrial crops for this purpose. Six types of rotational cropping with estinated grass inco:e are shown in Appendix 4C-2.
3. Froposed Cropping Pattern
a) Paddy Cultivation

The cropping calendar of paddy is shom in Figure 4-2. Input naterials per hectare in paddy cultivation are tabulated in Appendix 4C-3. Il -- The paddy cultivation seasen can be expanded not only by introduction of different varieties but also by introduction of different cultivation exthois such as transplanting. The experirental cultivations should be conducted inclusive of two paddy croppings a year. The experimentations will be useful in detervining the cropping schedule.
FIGURE 4.2 GROPPING CALENDER FOR PADOY

1V-13

Varieties

Painly Arter varieties whose cultivation has been encouraged by the Covemment will ke introduced. Host Amber varieties are of the redium-raturing lines, but sore are of the other lines. Therefore, their early-maturing and late-maturing lines will be separated in experirental seed breeding in order to elongate the cropping season of paddy. If a single line of paddy is raised in a vast area, the optimum cultivation season is showt, and once an insect or pest breaks out, its darmge is serious. An operational nistake of a fam also brings about severe damages to paddy yield.

Seed Screaning

In order to secure purified seed of a high quality, seed screaning will be nade at the seed center.

Cospost Spreading
Compost-1 will be produced in the sind-breaker zones, and spread to the whole rain fare before ploning in order to suply organic catters to soils.

Plouing, Fertilizer Agplication and Harronirg

In fanm field where wheat or barley is raised after harvesting faddy, paddy strain will be nixed with soils in the course of plowing in Auturn prior to wheat soring. In the single cropping fields, corpost will be spread in Spring. Botton plon will be operated for plozing in the above-mentioned tho cases $/ 2$ con-ercial fertilizers such as Urea and T.S.P. will be sprajed by broadcaster after plowing. Disc-haros will be operated for harroxing.

אOIES: II -- If has been planmed to produce compost in the five-ronth period from Deceiter to April. However, further study on the necessary period and ways, such as watering, etc., for corpost production should be fade in future since huaidity is very low in the Project Area.
12 --- Bottos plow will te operated for plowing tecause soils, having a feri organic ratters, are solid and its operation is effective to nix straw with soils. Hasever, motary, which can make simplaneously compost mixing, plowing and harrowing, will be operated in future when physical conditions of soils are improved in the course of organic matter application and careful repeated cultivation of crops.

Puddling is practiced two tines by puddling rotors after irrigation water supply mainly in order to keep level fars plot surface and to control the percolation of irripation hater as sell as for weed control, that is, the first puddling about two neeks ahead of soring, and the second one three days before sowing. The flood irrigation will be continued after the second pudfiling.

Soning

Three ways of paddy sowing are considered, that is, drill seeding in to upland, direct soding to subrerged fields by drill-seeder and aircraft broadcasting. In addition, transplariting is also considered for paddy planting. In the Project, the direct soning to subzerged fields is deemed the rost suitable in paddy planting by ridding-type multi-drilling seeder. (see Appendix 4C-3)

Yeeding and Top-dressing

Herbicide will be sprayed by aircraft about three weeks after sowing. Paddy reeders hill be operated by 30 to 35 days after soxing. In addition, keeding rainly of bamyard is humanly conducted in July and filpust. The majonity of needs is barmyard and chufa.

The top-dressing will be practiced trice by aircraft, the first one in the niddle to the end of June and the second one in the early July to the siddle of August.

Harvesting:

Combines uill be utilized for harvesting. Unhulled rice is hauled to rice rills by trailer. Rice straw will be cut by chopper and buried in soils in the course of plowing in case that the second crops are to be cultivated in the relevant farm plots. Straw in the other farm plots will be piled up in the wind-break zones to produce compost.
b) Earley and wheat Cultivation

The cropping calendar of banley and wheat is shom in Figure 4-3. The fam practices for these crops are sentioned in detail in Appendix $4 c-3 / 5$.
figure 4.3 CROPPING CALENDER FOR BARLEY \& WHEAT

Seed Screaning

Barley and hrieat seeds of a high quality will be secured by seed screaning at the seed center as sare as that for paddy.

Plowing and Haruowing

Plowing will he practiced inecdiately after havesting paddy. After disc-harroning, tooth harrows will be operated for harroning and levelling.

Soring and Fertilizer Application

Seed nixed with fertilizers is spread by broadcaster. After spreading, seed is covered with soils by tooth harron, and cultipacker operation follows it.

Irrigation

For easy irrigation ridges sill be put in farm plots at an adequate interval in parallel with the direction of the width of plot (short side) of farn fields. The border irrigation will be intervittently conducted at eight days' interval. (see Appendix 4B-2)

Top-dressing

Top dressing will be practiced by broadcaster at the end of December.

Harvesting

Barley and wheat will be harvested by co-bine, and their grains will be hauled to the nill by trailer. It wight be possible to sell baled stran to livestock farmers outside the Froject Area.
c) Compost

Paddy straw will be used for production of cozpost. Such strak kill be heaped in the wind break zones. Calciun cynaride equivalent to about two percent of the stras weight and an adequate voluce of water will be added to piled straw in onder to accelerate its fercentation. About one month after straw heaping, yater and calciun cynamide equal to about one percent of the straw weight will be additionally supplied, and heaped stran will be upset. Cozpost producing seasons will be from Decerber to April. The total compost production per annus is estinated about 34,400 tons.
4. Population and Labor Forecast

Statistic data of this country indicate that the annual increased rate of population in Iraq is 3.25% from 1960 to 1970 , and 2.8% from 1971 to 1975. In the year 1975, about 36% of the total population belonged to the rural population whereas the rest of 64% in the urban population. The rural population has increased at the rate of 0.2% during these five years thile the increased rate in the urban area is high at $4.3 \frac{3}{3}$, shich indicates that population are increasing in the big cities. Hosever, the percentage of agricultural laborers out of the total population is still not decreasing.

Table 4-2 Distribution of Labor Force
(Unit: ${ }^{1000}$ persons)

| | Total
 Laborers | Laborers in
 Agric. Sector | | Laborers in the
 Non-Agric. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Year | | | | |

Source: Data issued by Xinistry of Plaming, Labor Fonce Departcent.

Missan province is a typical raral area having the agricultural population rate of 60%. The population tendency in Kissan province night be sinilar to the natiorside tencency as Eentioned above. By applying the above annul population gronth rate, the populations in the whole lraq and Kissan province in the year 1935 are forecast as follows:

Population Forecast

(Gnit: '000 fersons)

	1975	1985
Whole Iraq	11,124	14,652
Hissan Province	370	454

Agnicultural lakor has been constantly short in Iraq due to the $10 H$ growth rate of rual population and also shortage of farem machines. To cope with such situations, the Goverment has already taken up the large-scaled mechanized agriculture in its agricultural developrent policy.

The Kahlas Rice Fam will require many skilled and unskilled laborers as nell as farm operation and management officers. It is expected that this rice farm will erplof, with the first priority, farcers now living in the Project Area. Statistically, the nuber of farra households in the Project Area is 270. Horever, the actual nurber sems a little smaller than that of the above judging fros the distribution of houses.

After the completion of the Project, a part of these laborers nould be exployed as skilled on unskilled laborers such as drivers and operators. Based on the labor requirenent plan shown belos, the permnent labor of about 170 persons and temporary seasonal labor of about 70 persons will be nequired. It seezs that labor shortage in both agricultural and industrial sectors will not concur for the tire-being. It is expected that famers in the Project Area will be perranently employed by the rice fam as a ceasure to secure pernanently necessary labor force.
5. Fams Hechanization Plan and Labor Requireatnt
a) Famm Machines

A large-scaled fara rechanization has been planned in the Project taking into consideration the follosing:
o Farm operation area is vast. Moreover, soils in the Project Area get solid when dry.
o It wight be difficult to mobilize a sufficient number of paddy fars laborers. A high efficiency in fara operation with a linited labor force will be prerequisite for this rice fam.

```
Table 4-3 Fam Hachinery (Paddy, Barley and Wheat)
```

Equipent	Unit
Motor Car	4
Sursey Cas	14
Fick-up	10
Wheel iractor	85
Crasler Tractor	8
Bottos Plon	26
Disk Hapron	16
Tooth Harron	10
Puddling Rotor	31
Broadcaster	4
Culti-Facker	8
carbine	37
Trailer	56
Motorcycle	50
Grain Puep	2
Tank Lorry	2
Hater Purp	30
Ridger	8
Secder \& Keeder	40
Mamure Spreader 3t	8
Hay Baler	9
Front loader	4
Total	452
Konkstop	l
Seed Center	1

- A fer paddy varieties could be introduced due to various restrictions. Therefore, an optimum season of each fara practice is short.

Fammachines will be introduced to all farm practices fron land preparation to harvesting. Therefore, 462 fam nachines of 22 types such as tractors, sceders, etc, will be utilized (see Table 4-3, Page IV-19) The major farm machines will be tractors of 70 to 110 Hp with necessary attachrents. Airchaft rill be operated for top-tressing, reeding and prevention and control in paddy caltivation. Harvesting will be nade by 120 lip conbine. The eachinery cost required for paddy and wheat/barley is esticiated at $\mathbf{1 6 6 , 0 9 2}$ I.D. (26.4 I.D/ha) and 43,230 I.D. (21:6 I.D./ha), respectively, (see Table 4-4).

Check and overhaul of a machine should be, in general, nade before and after its operation, but the maintemance works for the fam rachinery of this fam will be made during the six months from January to Harch and fron July to Septenber when such machinery are not busy. Operators will take part in check and overinaul of the pachines under the guidance of norkshop staff. Farm nachinery will be shedded in the garage of the Farm Managezent office during off-seasons, but during busy seasons fara nachines will be depasited to the farm operation base to be located irt each fart operation unit in order to save the travelling tine.

The operation efficiency of each fam nachine is showt in spendix $4 \mathrm{c}-5$.

Table 4-4 Machinery Cost

> (Unit: I.D.)

| Items | Paddy | Banley | Hheat |
| :---: | ---: | ---: | ---: | ---: |
| Annal Depreciation Cost | 126,897 | 16,688 | 16,688 |
| Fuel Expenses | 11,644 | 1,183 | 1,183 |
| Repair Cost | 27,551 | 3,744 | 3,744 |
| Total | 166,092 | 21,615 | 21,615 |
| L.D/ha | 26.4 | 21.6 | 21.6 |

b) Ialor Requiverent

Onder the fam mechanization systen rentioned in the above paragraph, the lator requiretent is estinated as follows:

Labor Requirerent in the Fars

$$
\frac{\text { Labor Requiresent }}{\text { (Yan-day/year) (Man-day/ha) }} \quad \frac{\text { Cropping Area }}{\text { (ha) }}
$$

Paddy (one cropping)	33,647	5.4	-	6,210
hheat \& barley				
(one cropping)	7,713	3.9	2,000	
Expericental fams	2,030	22.5	90	
Production of compost	752	0.2	4,300	
\quad Total	$\underline{44,142}$			

The peak dexand for labor will appear tuice a year for sowing and tarvesting. The required labor force is 190 to 240 man-days (see Appendix 4r-5.) Such laion force will be constantly required fron plowing to harvesting seasons. 170 laborers will be permanently employed, and the rest will be seasonally recruited. Seasonal laborers required are estirated at 20 man-days in paddy soning and about 70 candays in paddy harmesting.

Fxcept special occupational types. such lator force will be sufficiently supplied in f=ara area. Farmers presently living in the Project hrea sould be, in principle, eoploged by the rice fars. Under the situations, sufficient training for paddy cultivation nill be needed.
6. Agricultural Input Naterials

For stabilized agricultural production, srooth supply of agricultural iriput naterials is ieportant. A quantity of agricultural input raterials to he supplied to the farm las beer determined taking into account the target yield of each crop. In this study, such quantity has leen deterbined lased on experifental data obtained in Iraq inclusive of data of the text bock "Arber Paddy Cultivation in Hiddle Euphrates". Anmual input eaterials requirerent per bectare by crops is

Table 4-5. Agricultural Input Haterials Per Hectare

Crops	$\frac{1986}{8 t h}$	$\frac{1987}{9 t h}$	$\frac{1388}{10 t h}$	$\frac{1929}{11 t h}$
Paddy M				
Seed (kg/ha)	100	100	103	100
Urea (kg/ha)/1	145	204	230	260
T.S.P. (kg/ha) /2	98	135	154	174
Granular phlazorate-	15	15	15	15
Punder Kitajin	30	30	30	30
Yachinery cost/3	(6.2)	(5.2)	(6.2)	(8.2)
dachinery costa	26.4	26.4	20.4	26.4
Hheat				
Seed (kg/ha)	120	120	120	120
Urea (kg/ha)	209	235	260	260
T.S.P. (kg/ha)	70	78	87	87
	(4.9)	(4.9)	(4.9)	(4.9)
Machinery cost (I.D./ha)	21.6	21.6	21.6	21.6
Earley				
Seed (kg/ha)	120	120	120	120
Urea (kg/ha)	133	357	174	174
T.S.P. (kg/ha)	70	78	37	67
- -	(4.9)	(4.9)	(4.9)	(4.9)
Hachinery cost (1.b./ha)	21.6	21.6	21.6	21.6

T1 Urea of 260 kg is applied two tires, 90 kg for basal dressing and 170 kg for top-dressing. Experimentations on effects of Urea hasal dressing in cation soils wili be req̧uired.
I2 -- Effectiveness of the herbicide "Sunbind" has been already tested during these tho years in Japan, but application of pylazorate has been planned in this study since the aboverentioned herbicide has not yet been put on sale.
13 -- The nachinery cost covers the depreciation cost, fuel cost and repaiv cost. Figures in parenthesis show the cost exciuding the depreciation cost.

Supply of seed with a high quality has a special irportance in fario operation and management. Therefore, it has been planred to install an basic seed farm and a seed fars for seed breeding within the Froject.
Remarics
$120 \mathrm{~kg} / \mathrm{ha}$
$120 \mathrm{~kg} / \mathrm{ha}$
$120 \mathrm{~kg} / \mathrm{ha}$
For threc erope
-do-
For paddy
-do-
Eon تhree crops

262.472都 $\begin{array}{ll} & 1986 \\ \text { (ton) } & 278 \\ \text { (ton) } & 55.2 \\ \text { (ton) } & 55.2\end{array}$ (ton) 563.28

Granuiar pydnaorate(ton) 42.7
\pm
EO (a.I)
(1027)
Powler kituain
Machinery cont

As for fectilizers, urea and T.S.P. will be applied to attain the target yields. For maintenance of land productivity, compost will be groduced of paddy stras нith calciun cyranide (totally E4s kg) to recover organic matter content of soils.

Paddy weeds decrease the paddy yield to a great extent. Therefore, in addition to pudding and mechanized weeding, herbicide of low towicity will be supplerentally utilized. Careful attentions fave been paid in weeding planning to avoid the destruction of the natural ervironrental systea.

Taking into consideration the scale of cultivated area in each year and a required fertilizer volume, the agricultural input raterial supply urtil the full benefit year of 3991 has been schedrled (see Table 4-6).

The target yield of paddy will be attained in the sixth croppirg year from the cormencerent of cultivation in the farm. The agricultural input raterials required in the full benefit stage are as follows:

Iters	Area (ha)	Total Weight	Remarks
Paddy seed	6,210	621	
Theat seed	1,000	120	
Barley seed	1,000	120	
trea	8,210	2,048.6	Three crops
T.S.P.	8,210	1,254.54	-do-
Granular pyrazorate	6,210	93.15	Paddy
Powder Kitajin	6,210	185.3	Faddy
Yachinery cost	8,210	207,144 1.D.	Tiree crops

7. Agricultural Production

a) Target Yield

The construction of this rice fam has been plomied to feet the nimirum requirenent for paddy cultivation in the farw such as elioination of soil salinity and irnigation water supply. With rationalized farm nanagezent inclusive of self-sufficiency of high quality seed, appropriate fertilizer application and careful need control, the yield of crops will increase to a great extent. The target yields of paddy,
wheat and barley have been determined as shown in Table 4-7. In determining the target yield of paddy, reference was rade to experirental data of Hishkhab Rice Experimental Station and the State Organization for Soils and Land Reclamation, Missan as well as data of the textbook "Anber Paddy Cultiviation in Middle Euphrates Area", Dr. Sabri Sibahi, Engineer of Agriculture, 1976, whereas, in determining the target yields of wheat and barley, to data of the Central Research Station, Abu-Ghraib, Baghdad.

Table 4-7. Target Yields of Paddy, Theat and Barley
(Unit: ton/ha)

	Present		Future					
	Frojegl Area	$\begin{aligned} & \text { Whole } \\ & \text { Inag } / 2 \end{aligned}$	1986	1987	1988	1989	1990	1991
Paddy	0.952	2.24	2.5	3.5	4.0	4.5	4.5	4.5
rifeat	0.8	0.789	2.4	2.7	3.0	3.0	3.0	3.0
Barley	1.0	0.931	1.8	2.1	2.3	$\underline{2.3}$	$\underline{2.3}$	2.3
10T	The target yields are underlined.							
Source: /1 --- Data of Hissan Agriculture, 1977/78. I2 ... Eata in the National Levelopent Plan, 1976 to 1980. (The yields as of 1975 are abstracted above.)	Source: /1 --- Data of Hissan Agriculture, 1977/78. I2 ... Eata in the National Eevelopent Plan, 1976 to 1980.							

b) Production Prograa

On-farn developient in the Project will be corpleted in three years. Annual production of crops should be cosputed for each construction block until the target yield is attained accordingly. The cropping area and on-faris developent program up to 1991 (the 13 th year) are tabulated (see Table 4-8).

Gross Production of Crops by Year

Crops/Year				(Unit: ton)		
	1986	1987	1988	1983	1990	1991
Paddy	6,950	14, 880	21,755	25,545	27,260	27,945
hineat	1,104	2,010	2,772	2,934	3,000	3,000
Barley	828	1,542	2,126	2,256	2,300	2,300
Total	8,882	18,432	28,653	30,735	32,569	33,245

Table 4-8 on-farm Divelopment and Croppine schedule

As seen in the above table, the target yield of paddy will be attained in 1991, that is, the 13th year flom the feasibility study in 1979 and the sixth year from the conmencenent of cultivation in 1986. The gross yield of paddy, wheat and barley is 27,945 tons, 3,000 tons and 2,300 tons, respectively. After the sixth year from the cormencecent of cultivation in 1991, the production of crops nill be stabilized, or gradually increase as a result of progres in rationalization of farm nanagerent and introduction of ner farm techniques, etc.

8. Harketability of Agricultural Products

Comparison is made betreen the agricultural products accrued from the Project in the full benefit stage and the present products from the whole Missan province as follows:

Target Production in the Froject and Present
Production in the Hhole Hissan Frovince
(thit: ton)

Crops	Target Production in the Project	Present Production the Fhole Missan	
Paddy Rice	27,900	51,000	(1977)
Hheat	3,000	15,860	$(1977 / 78)$
Barley	2,300	28,958	$(1977 / 78)$

As seen in the above table, wheat and barley to be produced in the Project are seall in conparison with their gross production in the hhole Hissan province. Therefore, the inpact brought about by the increased production of wheat and barley hould not be so big. It is considered that such products will te consured sithin the province.

Hissan province, one of the eajor paddy producing provinces in Iraq, is an exporter of padiy rice to the other provinces. The rice cultivation area in the province is equivalent to about 203 of the total in Ireq as of 1977.

Paldy rice to be produced in the Froject will be also exported to the other provinces. The following table shows dezand and supply
of paddy rice in Missan provirce in cases of "with the Project" and "uithout the Project".

Demand and Supply of Paddy Rice, Hissan

(Unit: '000 tons)

Year	Eemand 11	Supply ${ }^{\prime 2}$	Surplus Pice	
			Mith Project	Rithout Project
1975	16.3	31-51	-	14.7 to 34.7
1985	26.0	$51+27.9$	52.9	-

71-- The figures are corputed based on population forecast and amual per capita consurstion of paddy rice.
/2 --- Paddy of 31,000 tons was produced in 1976 whereas that of 51,000 tons was recorded in 1977. The estieated paddy rice production of 78.9 tons is computed as follows: $51,000+27,900$ - Hhere paddy rice of 27,900 tons is increased in production with the Project.

The above table shows that the Missan province will export the surplus rice of about 53,000 tons to the other provinces.
9. Fara Operation and Hanagerent
a) Rasic Plans for Fan Operation

Tho fara managerent plans have been formulated. One is a shorttern plan for the initial stage of establishment of the rice fara (about 13 years), and the othev is a long-tera plan for the full benefit stage of the Project. Strategically, the basic plans for each stage are described as follows:

1) Farn operation plans in the initial stage
i) Line-up of adninistrative officers, engineers and laborers in an early stage (person/organization in charge: Director General);
ii) Construction of houses and office buildings in an early stage (Director General and the Departrent of General Affairs);
iii) Construction and operation of the experimental faxm so that experimental results will be introduced to the main farm operation (Department of Experirentation).
iy) Construction of irrigation and drainage facilities on schedule (Departeent of Facilities).
v) Construction of farm facilities and introduction of farm machinery (Departrent of Experiventation and Departments of Field Crops);
vi) Construction of the rice processing center on schedule (the Grain Board and Director Gereral);
vii) Careful scheduling of farm practices (Departeents of Field Crops, Departcent of Experimentation and Department of Managesent);
viii) Preparation and supply scleduling of agricultural eaterials (Departent of Management);
ix) Hater mangetent scheduling based on cropping schedule, ireclusive of cortact to the Ministry of Irrigation for Water Distribution (Departcent of Facilities);
x) Sale of agricultural products (Departeent of Kanagement);
xi) Iabor managerent (Eeparttent of Eeneral Affairs);
xii) Coordination arong related departcents for the best farm nanagerent (Director Ceneral).
2) Fariz operation in the full benefit stage
i) To attain the target profit under the independent profit systea (Director Ceneral);
ii) Labor ranage:zent (Departrent of General Affairs);
iii) Coordination arong departents (Director General, Deputy Director Ceneral and Adivisors);
iv) Frocurement of agricultural input materials and sale of agricultural products (Departrent of Hanagerent);
```
            v) Operation and mairtenance of farr rachinery arg instrurents
                (Departnent of Hachinery);
            vi) Experimentation, research ard techmical guidance (Department
                of Exycrimentation);
vii) Fart piactices scheduling (Departrent of Field Crops)
viii) Operation and mainterance of sater utilization facilitics
        (Departrent of Facilities);
    ix) Establishrent, operation and rainterance of the seed center
        (Department of Experimentation)
```

b) Organization

The oferation and ranagement of this rice fard will be rainly made by one Director General, one Deputy Director Ceneral, three Advisors with the support of about 130 officials of 24 sections under nine departeents, 60 skilled laborers and general laborers of about 30,000 san-days per year.

The organization for operation and namagement of the rice fare will be headed by the Director Ceneral. Deputy Director cereral will support the birector Ceneral with close contact rith three ABvisors. The organization Chart is shown in Fig. 4-4.
c) Characteristics of the Rice Farr Operation

The rice fara will have the follozing special ctaracteristics for swoth farm ranagenent.

- Farming dnit Systea

Taking into consideration the proposed irrigation systen in the shole Froject Area and operation efficiency of farre rachines to te introduced, the Project Area will be divided into four farning units so that farm Eanagecent will be indegendently carried out in each farning unit.

This farring unit systea airs to define responsibilities of the fielö crops departbent to be organized for each farring unit, to let it practice a scrupulous farm operation in each wite and to level-up
figure 4.4 organization chart of the rice farm

Note: The porenthesized figures show numbers of staff.
The totol number is 130 perzons.
Hood Quartor
Missen
Agri-Office
farm practices and ranagenent through rutual efforts of the four farming units.

Block	Main Parm	Seed Farss	Total
Mo. 1 Famming Unit	1,420	-	1,420
Ho. 2 Farming Unit	1,300		1,300
\%o. 3 Faming Unit	1,510	$300-1$	1,910
No. 4 Tarming Unit	1,580	-	1,580
-Total	5,910	300	6,210

Tl-The sced fare of 300 ha is located in the Ho. 3 raraing unit. However, its operation and ranageent rill be conducted b; the Departwent of Experimentation.

- The Exgerimental Farm and Self-sufficiency of Seeds

There are many subjects to be studied in operation of this rice farm. For this purpose, various researches and experibentations will be conducted in the experimental fave. Nen faring techniques develofed in researches and expericentations will be introduced elastically to the rain farn operation. Furthermore, abasic seéd farn rill be located in the experimental fans, and, with the seed fay to be constructed in No. 3 Farming Unit adjacent to the experirental farr, plays a role to supply necessary seeds for the Project.
10. Experimental Fara
a) Gojectives

Advanced techniques will be required for management of the largesealed rice farm in Arara since the Project Area has the folloning natural and social restrictive factors in farm management because the Project Area is situated in the arid zone.
i) Saline soils peculiar to the arid zones;
ii) Poor envimoncent for labor with high terperatures and heat rinds;
iii) Cropping environment in which no crops can grow without irrigation;
iv) Absence of a large-scaled rice fame operation systen.

The experimental farm will be operated to improve the on-farm conditions and establish a rice production system so that a high yield of paddy will be attained under the social and natural conditions as already described.

A relatively large area of 90 ha has been allotted to the experirental farm presising that a large-scaled wice farm operation is carried out in the cultivated area of 6,210 ha. The experimental fam includes a basic seed farm. A seed fang has been planned adjacent to the experivental farn for self-sufficiency of seeds.

The expericental fam will hande only subjects directly involved in the froject as follows:
b) Test Iters Expected
i) Breeding korks and varietial trial: Screaning of eary-raturing, nefine-mituring and late-raturing lines as well as salt tolerant varieties;
ii) Soring test: Soring nethods, critical soring season, seed requirezent and seed preparation for planting;
iii) Cultivation test: Transplanting, direct soxing and two crops a year cultivation.
iv) Fertilizer application test: Fertilizer requiresent and response, and application period in relation with-the groith of crops;
v) Heeding test: heeding by the rotational cropping of paddy and upland crops;
vi) Control and prevention test: Kind and quantity of necessary agricultural chenicals;
vii) Cgerational test of farm machines: Farm eachine operation in actual fara practices and improvezent of machines;
viii) Leaching test: Yethodological test for leaching and water requiresent for this purpose;

```
    ix) Hater managerent test: Optimun irrigation methods and irri-
                gation water requirererts;
    x) On-farm test: Relation betreen a scale of farm plots and water
                        ranagement in imrigation and drainage inclusive of the
                        influence of winds;
            xi) Soil fertility test: Effect of compost application and
            application methodology;
xii) Hind-breaking test: Effect of wind-breakers;
xiii) Others: Fish culture, etc.
```

In experirentation, priority should be given to i), ii), iii), vii), and viii) as itenized above.
c) Field Training for Paddy Cultivation

The experimental farn will be utilized for practical training of agronomists in charge of paddy cultivation, machine-operators, skilled laborers. Training for tractor operation plowing, etc., rill be able to conduct during winter seasons, i.e., off-seasons of paddy cultivation.
d) Self-sufficiency of Seed

For self-sufficiency of paddy seed rith a bigh quality, the rice fem sill be equipped sith basic and funtational sed fares of 18 ha and a comencial seed fard of 300 ha. It is reccrendable to secure a cormercial seed within the Project selected by theaselves. For this Furpose, experts in breeding should be assiged to the Departrent of Experirentation which will be responsible for ranagement of the seed center. Further details are explained in Appendix $4 \mathrm{C}-8$.

11. Fam and Related Facilities

The major facilities such as a farn managezent office and farn facilities as kell as a village for the rice farm staff will be located in the niddle of the Froject boundary facing the Kahlaa river.

The cultivated area of 6,300 ha will be divided into four faming mits of about $1,500 \mathrm{ha}$, and farm operation will te independently conducted in each faming unit. Tho farm operation bases equipped with a pool for input naterials and farm machines and rest roon will be constructed in the froject. The farm nanagerent office will be responsible for integrated ranagerent of fam operation in the yhole Project.

The farn operation and related facilities proposed are as follons:
a) Sam operation facilities

i)	Fame Yanagesent Office	One building (2,000 sq.m)	Office work
ii)	Harehouse (Fam)	One building (2,500 sq.n)	Storage of seeds, fertilizers and chenicals
iii)	Warchouse (Yaterials)	Gre building (300 sq. m)	Storage of research materials, farm instruaent, etc.
iv)	Horkshop	One building $(2,400 \text { sq. } \mathbf{n})$	Suilding: l,200 sq. m Concrete floor: l,200 sq.a
v)	Garage \& Gas Station	One building ($6,500 \mathrm{sq}$.曰)	for tractors, trucks and combines, etc.
-i)	Horkers' Rest House	Gne building $(300 \mathrm{sq} \cdot \mathrm{~m})$	
vii)	Rumbay	$\begin{aligned} & \text { Tro places } \\ & (180,000 \mathrm{sq} . \mathrm{m}) \end{aligned}$	40 n ¢ $1,000 \mathrm{n} \times 2$ places
viii)	Fam operation Base	Tho places ($6,000 \mathrm{sq} . \mathrm{r}$)	```3,000 sq.ri x }2\mathrm{ places Farbing warehcuse and pool: 500 sq. n Pool for machines: 2,500 sq::```
ix)	Seed Center	One building (300 sq .57)	¢

b) Pelated Facilities

Related facilities required for fart operation are as follors:
i) Ore village for the rice fars staff;
ii) Rice processing facilities for the Project and rice cultivated farcers in the south of Arara City;
iii) Kahlaa bridge for transportation of agricultural inputs and outputs and for traffic of inhabitants in the Kahlaa left bank tract. (Also for the oil compary.)

These facilities will be located in the niddle of the Project boundary facing the Kahlaa river.

The outline of each facility is described below:
i) One village for rice fare workers
(1) Housing 330 houses (Population: 1, 600 persons)
Farm official 130 houses

Laborers 170 houses
Fara fanilies presently $\quad 30$ houses
living in the Project
Area and seasoral laborers
(2) Public facilities

Educational facilities (one primary school and one training center)
Social relfare facilities (one nosque, one clinic, one Eeeting hall and one swall park)
Recreation facilities (one playground, one tennis court and one novie theater, etc.)
Harketing facilities (one grocery store and one market, etc.)
Drinking water supply system and seaerage (lump-sur)
Road and drainage systers in the village (lump-sun)
(3) Sites

Housing Area: 30 ha (About $1,000 \mathrm{sq}$. n for each household with kitchen garden
Fublic facilities: 20 ba
Educational facility: 2 ha
Social nelfare facility: l ha
Recreation, marketing and drinking water supply facilities and sererage - 2 ha
Village road and drainage systens 5 ha
Unallotted land for future use 10 ha
Ornamental forest for the village 35 ha
ii) Processing facilities

In onder to process paddy rice of about 28,000 tons and wheat and barley of 5,300 tons in total, processing facilities uill be installed adjacent to the village.

If the facilities have a surplus capacity, these will be operated for fatsers in the southern area of Arsara (rainly for paddy cultivating farmers).
iii) Kanlaa bridge

Kahlaa bridge uill be constructed across the Kahlaa miver at Al-Bahatha, the middle point of the Project boundary facing to the Kahlaz;

Bridge length: $L=300 \mathrm{n}$ (Nidth: 7 m)
Acces road: $\quad \mathrm{L}=400 \mathrm{n}$ (Hidth: 3 n)

D. The Project Plan

Kahlaa Rice Farm Project airs to construct a mechanized state rice farg with a high probuction efficiency so that the rodernized agriculture focusing upon rice production will be developed in Arsara area. For this purpose, necessary infrastructural irprovezent will be icplerented in the Project.

Ho agricaltural plants can grod in the arid zone without irrigation. Therefore, irrigation is, needless to say, prerequisite for agriculture in seara area. In addition, the special irportance of drainage in the arid zone has been recognized recently, that is, the great effect of drainage as a counterreasure against salt accusulation on soil surface shich l:as been brought about by repeated irrigation without deainage, and caused a decline in agricultural production in Iraq.

Apart fron the irportance of irrigation and drainage, the codernized agriculture requires fam irprovezent for srooth nanagerial practices, wead control and water managezent. Furtherwore, unforgetable is a
counterneasure against north-sest burning wirds prevailing in surer seasons.

The infrastructural ieprovement in the Project has been planned to coven the ninimua requirenents of the rice farm.

1. Comparative Study on Irrigation and Drainage Systems

In deteraination of irrigation and drainage systems, topographic conditions of a given project area, available water resources, present irrigation and drainage canals and proposed farming are the sajor factors to be taken into consideration.

The Project Area has a quite gentle slope of about $1 / 30,000$ from the Kahlaa river levee to Al-chikke marsh. The water source for the Project is the Kahlaa river running along the sestem boundary of the Froject Area. With such topographic conditions, the Project Area is very advantageous in constructing an irrigation syster.

The purp irrigation will be adopted since the rater source level ranges in $\boldsymbol{K} .1 .6 .95$ to 3.40 whereas the elevation of cultivated area in EL 6.5 to 4.5 m . Present impigation systew is, as rentioned in 3.D.1. irregular and extrecely prinitive. Except the Gasra river whose renabilitation has been just coripleted (discharge quantity: Q=1.0 cu.n/sec), none of the present canals night be available in the froject as they are.

Skeleton of the proposed irmigation and duainage systeas has been studied in consideration of the most appropriate locations of main fam roads, fara facilities, wind-breakers and so forth. As a result, the folloring three alternative plans have been proposed.

Alternative Plan A

In the Altemative Plan A, Hater sounce facilities are located in the niddle of the western Froject boundary facing to the Kahlaa river, and main imigation and drainage canals at the wight angle with northwest winds. This plan has the following advantages;

Figure 4-5 ALTERNATIVE PLAN OF IRRIGATION AND ORAINAGE SYSTEM

- The 0/: of facilities and fan mangerent will be rationalized since farn facilities can be loeated adjacent to yater source facilities.
- Roth banks of main irrigation and drainage canals will be afforested. Therefore, crops in the Project Area will be effectively protected from the north-west winds.
- The skeleton of the proposed irrigation and drainage systens will coincide with the course of ail pipeline ruming through the heart of the Project Area. Therefore, canal enbankients and roads rill ke laid to protect the pipeline.

Alternative Plan B

The skeleton of irrigation and drainage canals is designed at the right angle with the Kahlaa river course as sare as existing irrigation conals. This plan is helpfut ir the folloring:

- The nater source facilities mill be roved a little way to the east. However, the site is also appropriate from all angles.
- The skeleton of irrigation and drainage canals rakes the best use of the topographic conditions in the Project Area. However, the wind-breakers do not fully nork because they do not squarely face north-west.
- The direction of irrigation and drainage canals does not coincide rith that of the oil pifeline. Therefore, nany farm plots nill be irregular in shape. Noreover, a total length of rain and secondary canals will be long.

Alternative Plan C

In this plan, the existing Gasma river will be improved, and its water will be utilized for irrigation in addition to the direct lifting of the Kahlaz water. The plan has the following chamacteristics:

- The proposed skeleton of irwigation and drainage canals in this plan has the sinilar dinection to that of the existing eajor
canals. Honever, in onder to irprove the existing Gasma river to have a required capacity and canal structure, the construction volume sill be so big as required for a new canal construction along the same course.
- If the Gasna water is utilized for irrigation, the gravity irrigation is not ayailable since the elevation of cultivated land ranges in 6.5 to 4.5 m shile the water level in KL 6.95 to 3.40 m . Therefore, many purps will be required along the Gasma river.
- In tine Alternative Plans A and B, silt treatrent of the Kählaa nater can be rade at one desilting reservoir. One the other hand, such reservoir should be additionally constructed at the upper rost of the Gasra river in the Plan C, and a supply tank has to be constructed for each purp station.

As a result of the above-rentioned comparative study, the Plan A has been proposed for the Project taking into account its advantage in rind-breaking effect, laycut of water source and fare facilities, and water managezent, etc.

It is important to modernize irmigation systees for agriculture in Iraq, but it is also clear that leaching and drainage have a special importance for land reclaration in saline soil zone.

Irs addition to construction of irrigation and drairage systeas, a drainage purp station will be installed near the Al-Chikke narsh to release surface and sub-surface drainage water to that narsh. Furtherrore, the main urainage will be equipped sith two drainage regulating gates to control groundwater (percolation) during the paddy ixrigation period.

2. Irrigation Plan

a) Easic Concept in Planning

Irrigation and drainage plans for the Project should be formulated in close relation with Amara irrigation project since the net cultivation
area of 6,300 ha in the Project comesponds to ter percent of the total paddy area of 67,500 ha proposed in Arama irrigation project.

The proposed cropping pattern suggests to cultivate the whole cultivated area of 6,300 ha with paddy fron Hay to Noverber, and 2,000 ha with wheat and barley from Hoverber to April.

The Kahlas river, a tributary of the Tigris river, is sole water source for the Project Area. The Kahlaa sater will be lifted from the desilting reservoir to be constructed near the river bark to settle silt before its distribution to on-fara irrigation systers trrough main and secondary canals.

At present, soils in the Project Area have been salinized due to lack of drainage networks and absence of reasures to control soil salinity. Therefore, as rentioned in relation with the drainage plan, leaching will be inevitably required in the reclaration stage of farm land. Even after the initial leaching, careful control of soil salinity rill be essential for crop cultivation before or after imigation periods. Leaching water should be supplied in addition to irrigation water.

As for the irrigatior, rethod, continuous irrigation of flooding type fill te applied for paddy cultivation in order to avoid crop damage caused by high terperature and to prevent salt accumulation in the root zone soils. In case of wheat and barley, internittent ixrigation with border is favourable for farn practices after paddy havvesting and to suppress desalinization of the top soil as seen in furnow imrigation.
b) Irrigation Hater Requiresent

i) Crop Kater Requirecent

Potential evapotranspiration (Efo), generally recognized as fairly reliable index in calculating crop sater requirerent, can be detemined by a number of methods, such as the evaporation ceasurement fron
evaporatien pari and the application of empirical equation based on the cliratological data. In this study, evapotranspiration of the proposed crops is estinated by applying the following equation based on the recosacndations made by the faO Group. This equation defines clearly the effect of clinate on crop water requiretent, but still employing the thaney-Criddle terperature and day length related to the consumptive Lise factor:
$\mathrm{ITO}=C[P(0.46 T+8)]$
Were, F.To: Potential evapotranspiration in ma/day for the month considered.
T : The rean daily terperature in ${ }^{\circ} \mathrm{C}$ in the ronth considered.
P : The rean daily percentage of the total annula day-tire-hours for the given ronth and latitude.
c: Adjustment factor which degends upon the minimun relative huadity, sunshine hours and day-tice hind estinate (refer to "Guidelines for predicting crop water requirerents", FAO, 1977, p.7).

Eased on the cbserved data at Anara sugancane factory and at Amara reteorological station, the Fean monthly ETo during the period of 1966 to 1978 is calculated as follors:

Fotential Evapotranspiration

(Unit: ris)

After the detemination of ETo, crop evapotranspiration (ETcrop) can be predicted by applying the appropriate crop coefficient (Kc). The Kc values vary depending upon a growing period of crops and locality. No data on such values, however, are available in the vicinity of the Froject Area, so that following values are selected, taking into account the characteristics of propesed crops, tices of planting or sowing and the stage of crop develogrent and clicatic conditions prevailing in the

Area, in addition, referring to values adorted in Iraq or data collected by fAO.

> Selected (Kc) Values for Proposed Crops

Month Crop.	Jan.	Feb.	Har.	Ag	3	Ju	Jul.	Aug.	Sept.	Oct	nov.	Eec.
Paddy	-	-	-	-	1.05	1.05	1.1	1.35	1.35	1.0	1.0	-
Wrieat	1.1	1.1	1.1	1.1	0.2	-	-	-	.-	-	0.5	1.1
Barley	1.1	1.1	1.1	0.2	-	-	\sim	-	-	0.5	1.l	1.1
Trees	0.3	0.9	0.9	0.3	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

The ETcrop valles are, thus, predicted by applying ETo and Kc as Eentioned above. The folloning table shoss the rean ETcrop for the period of 1966/78.

$$
\frac{\text { Crop Evapotranspiration (ETcrop) }}{\text { (Unit: Em) }}
$$

Month

Crop	Jan.	Feb.	Yar.	Apr.	Yay	Jun.	Jul	Aug.	Sept	Ot	Iov.	Dec
Paddy	-	-	~	-	9.1	11.6	12.2	14.0	12.4	5.2	4.3	-
Hheat	2.2	3.2	4.4	5.9	1.8	-	-	-	-	-	2.2	2.3
Earley	2.2	3.2	4.4	1.1	-	-	-	-	-	2.6	4.7	2.3
Trees	1.8	2.6	3.6	4.9	7.8	9.3	10.0	9.4	8.3	4.7	3.3	1.9

Honthly crop evapotranspiration in the period of 1966 to 1978 is shom in Rppendix $4 \mathrm{D}-1$.

ii) Leaching Hater Requirerent

The leaching water requirement reans the minirus water necessary to leach the moot zone soils of crops during the irrigation period after initial leaching rade in reclaired fieid.

After corpletion of initial leaching salts are accumulated on lower layers of soils on dissolve in the groundwater. Once sater fron the upper soil layer is interrupted in a non-impigation or imigation period, accusulated salts in the lower layer ascead by reans by capillary attraction, consequently, resalinization of soils in the mot zone are apt to occur.

Therefore, the effect of leaching on the root zone will not be appeared frovided that only water corresponding to the consumptive use of crops is applied. To keep the soil salinity of the root zone within the tolerable linit of each proposed crop, at least the minimun water volure for leaching should be supplied in addition to the imigation nater.

Frovided that the surfice irrigation is applied, the following equation is availabie for computing the leaching sater requirerents in case of sandy loam to clay loan soils under good drainage condition with a srall rainfail.

$$
\begin{aligned}
& \text { LR = } \frac{E c r}{5 E c e-E c h} \times \frac{1}{\text { Le }} \\
& \text { Where, LR: Leaching watew requirerent } \\
& \text { Ecs: Electric conductivity of the imigation } \\
& \text { Ece: Electric in conductivity of the soil saturation } \\
& \text { Extract in Eho/cn } \\
& \text { Le: Leaching efficiency }
\end{aligned}
$$

Acconding to the water anslysis result, the electric conductivity of the imigation water is 0.8 rho/co on an average.

Frovide: that the leaching efficiency is 60%, the leaching requirement to lower the soil salinity to the salt tolerance level of a crop is obtained and expressed in the percentage to the crop water requirerents as follons:

Leaching Yater Requirerents for Eack Crop

fii) Irrigation Efficiency

A part of irrigation water conveyed from the yater source to the farn plots will be lost in the course of conveyance, distribution and fan application. In calculating the project irrigation requirements, those losses, i.e., an efficiency factor, should be taken into account to compensate.

The project imigation efficiency (F) is defined as the ratio of a moter volure directly made available to a crop and the water volume released from the nater source, and generally subdivided into tho stages as follows:
$E p=E a x E d$
Where, Ep: Froject imigation efficiency
Ea: Field application efficiency Ed: Distribution efficiency inclusive of the conveyance efficiency.

In consideration of soil conditions in the Project Area and applied irrigation vethods and structures, the following value is selected:

Efficiency	Paddy	Mieat, Rarley \& Tree
Ea	0.39	0.70
Ed	0.85	0.85
Ep	0.80	0.60

iv) Irrigation Sater Requirerents

Based on the proposed cropping cattern and intensity, the irrigation requirecents for 6,300 ha of faddy, each 1,000 ha of wheat and barley and 330 ha of trees in yind-hreaking green belts are calculated, in consideration of the leashing and estinated irrigation efficiency, by applying the follosing equation:

$$
v=\frac{10}{E p}\left(\frac{A(E \operatorname{TcIOP}+P e) \times n-R e}{1-L R}\right)
$$

Ricrop: Crop evapotranspination in a/day

Fe: Percolation rate during paddy enving season in ro/dy, 15 m/day
Pe is taken into consideration only for paddy.
N : Nurber of days in each month
Po: Konthly effective rainfall in m
I,R: Leaching requirerent (ratio) excluding paddy

Fean monthly water nequirements of each crop (averaged values observed mind the feriod of 1966 to 1978) are as follons:
fon paddy vater requirerents, a requirerent during land soaking Eriods is taven into account, and the tree irrigated area is esti-nted at $\frac{\geq}{} 70 \mathrm{ha}$, a half of the proposed area.

Hothly atev requirerents in each year are shom in fopendix 4D-1.

Yean Wonthly Nater Requirerents

Crop Yrth Jani.		Feb	83r.	Apr.	㫨易	Jun.	Unit: ni		illion cu.n)	
		Jul.					Aug.	Sep.		
F9\%\%	-		-	-	-	13.45	52.59	¢6. 32	70.36	59.77
F-\%	0.59	1.20	2.14	2.78	0.17	-	-	-	-	
ganieg	0.53	1.19	2.11	0.21	-	-	-	-	-	
Trees	0.07	0.15	0.23	0.37	0.53	0.83	0.92	0.35	0.74	
Total	1.24	2.55	4.53	3.35	14.32	53.46	67.22	71.21	69.50	
(f)/sec)	0.45	1.05	1.69	1.30	5.35	20.63	25.10	26.53	23.34	
Crop	hect.	Rov.	Dec.	Anm						
Pajay	24.23	2.63	-	289.						
freat	-	0.83	0.68							
Eanley	0.41	2.27	0.67							
Trees	0.41	0.32	0.07							
Total	25.05	6.26	1.42	311.						
$\left(\mathrm{n}^{3} / \mathrm{sec}\right)$	9.35	2.38	0.53							

v) Peak hater Fequirerent

The peak water requirement appears in the latest period of puddling, for paddy cultivation which has been plamed over the whole area, $6,30 y$ ha.

Land soaking, i.e., pudding ircluding pre-irrigation in the stole area is proposed to te stanted four days ahead of soning, ard cropleted within 40 days from May 14 to June 29.

Paddy fields are dry before puddling, and have well-developed cracks. Provided that pudding is made rithout pre-irrigation waterunder such conditions, a great deal of water would be required in its initial stage as verified in water requirement reasurecents at test fields (see Appendix 40-1). In consequence, on-fam facilities of a big capacity nill be required, which results in ar extrese increase of construction cost.

Therefore, pre-irrigation and groundater control should ke rade after completion of land preparation and levelling in order to decrease the percolation. At least, the forocity of plowing layers with 15 cm deep should be saturated.

To reduce the capacity of a tertiary irrigation canal, pre-irrigation should be executed for tho days before pudding.

The total water requirenent for land soaking, incluaing preirwigation, puddling and maintenance water after pujding arounts to 250 rm (see Appendix 4D-1).

Land soaking will be finished in Jure 24 to 29 . The peak water requiretent in paddy fields occuss on June 24 , and the volute is estinated at $29.3 \mathrm{~m} / \mathrm{day}$, i.e., $3.39 \mathrm{lit} / \mathrm{sec} / \mathrm{ha}$, on the basis of reighted average of irrigation water requirecent in consideration of the area under sowing and growing in a unit block. In case the impigation efficiency of 80%, the gross irrigation water requirerent is computed at $36.6 \mathrm{ma} / \mathrm{day}, \mathrm{i} . e ., 4.24 \mathrm{lit} / \mathrm{sec} / \mathrm{ha}$. Therefore, the gross irrigation requiresent over the paddy area is $26.7 \mathrm{cu} . \mathrm{m} / \mathrm{sec}$.

Ir addition to this paddy requirement, trees planted in the green belt area of 170 ha, that is, a half of the total green belt area require irrigation rater and their water requiverent is $0.3 \mathrm{cu} . \mathrm{m} / \mathrm{sec}$.

Therefore, the peak water requirerent in the Project arrives at 27.0 ex. $2 / \mathrm{sec}$ in total.
c) Ireigation Facilities
i) Irwigation Canals

Irrigation canal netrorks yill be laid from the north-east to south-iest in parallel mith the existing oil pigeline in orden to decrease conals to man across the pipeline to the maxirsla extent possible and to protect crops fron north-rest winds by afforesting along canals. Further fotail on irrigation facipities is shown in Appendix $4 \mathrm{D}-3$.

Irrigation carals will be provided with concrete lining in consiceration of the folloning:

- The irrigation area is extrerely flat. Canals will have a ouite gentle slope, accordingly. In order to keep the nater level at the donistrean end of canals at an appropriate height for irrigation, concrete lining to keep soall the friction loss will be necessary.
- Panking will be rade for all min and secondary canals. Therefore, concrete lining will be useful to prevent leakage and to protect the banks frut erosion.

Classificatior of Irrigation Canals

Tine proposed irxigation canals are classified into main, secondary and tertiary canals and fara ditches by their functions. The nain irrigation canals will be aligned along the Kahraa river, water somree for the Project, and the southern boudary of the Project Area. The secondary irrigation canals convey irrigation water froa the tain canals to tertiary irrigation canals. Therefore, secondary canals have been planmed to run ift parallel with the oil pipeline. Further detail on the secondary and tertiary canals is described in $4,0,4$.

Typical Cross-Section of Irrigation Canals

The proposed imigation canals will be paved with concrete of 10 ca thick, and take a trapezoid shape with the canal slope of 1:1.5. The hydraulic dirension and corputation in detail are shosh in Appendix 40-3.

Discharge and length of Canals

Canals
Hain Irrigation Canal
Secondary Irrigation Canal
Total

Quantity of Discharge
13.87 to $6.27 \mathrm{cu} . \mathrm{m} / \mathrm{sec}$
7.60 to $2.22 \mathrm{cu} . \mathrm{m} / \mathrm{sec}$

Lergeth
13.6 km
31.0 kE

Pelated Facilities

Diversion boxes, checks, spillways, road crossings are the related facilities to nain and secondary irrigation canals as follows:

- Diversion boxes

The installation of diversion toxes of the double-gate type with a constant head has been planned to deliver irrigation water fron main irrigation canals to second irrigation canals. Sore diversion boxes rill be provided to secondary irrigation canals, too, where requized. The total nurber of diversion koxes will be 43.

- Checks

Checks will be used to paise water level in inrigation caral when the water level is low. The total number of checks will te 4.

- Spillways

Six spilluays of the overfloz type will be installed on main and secondary irrigation canals for ecergent release of surplus water in these canals. This facility will be placed where canals have different cross-sections.

- Road crossing

Totally 11 concrete box culverts will be installed to convey imigation water across roads.
ii) Irrigation Purp

The water source for the Project is the Kahlaa river, rbich runs along the westem boundary of the Project Area. Puaping facilities will be reeded for irrigation rater supply to the Project Area. Since the Kahlaa river has a quite gentle bed slope near the froject Area, the purp station can be located at any place along the Kahlaa river. Hosever, based on careful studies on the proposed irrigation and drainage networks as rell as topographic conditions oí the Froject Area, the purping station site has been proposed in the niddle of the nestern Project Area boundary. The irrigation systea with one irrigation purp station is rore econowical and technically advantageous in operation ard naintenance thon that with plural one. Therefore, single puop station will be adopted to the froject.

The najor dirensions of putp are as follons: (see Appendix id-4)

Iter
Type:
Eure diareter:
thit:
Design discharge:
Total purp head:
Prire rover:
Power fer unit:

Description

```
Vertical mived flow purp
& 1,000 ma
Eleren (11)
2.43 cu.0/sec/unit
5.6m
Hotor
200 kw/unit
```


iii) Lesilting Reservoir

Proction
The Kahlaa water, water source for the Project, has a silt content of $500 \mathrm{~g} / \mathrm{sq}$.a on an average. If such silty water is directly released to the Froject Area without any treatrent, silt of 200,000 tons is esticated to accurulate in each year, on fara fields and canals, etc. Therefore, the construction of a desilting reservoir has been planned to cake silt treatrent prior to diversion of the Kamada water to the Project Area.

Ditensions
The desilting reservoir will be constructed in tie inidde of the western Project Area boundary racing the Kahlad river. It is estirated that silt of about $154,000 \mathrm{cu}, \mathrm{n}$ will be anmually deposited in the reservoir. A purp dredger will be contimulisly operated to remove deposited silt. Taking into consideration the anmal silt deposit and operation depth of the pump dredger the reservoir has been designed to have an area of 40 ha and a depth of 1.5 in .

Further details in detemination of the reservoir dirensions are described in Appendix 40-6.

The necessary excavation in constructing the reservoir will be about 4.0 m deep from the present ground surface. Slope of the reservoir will be 1:1.5.

3. Erainage Plan

Drainage is essential for successful irrigation. Specially in the Project Area, irrigation hithout proper drainage results in rapid raise of groundrater tables as sell as soil salinization.

To avoid crop danages due to sait accurulation in the root zone, first of all, leaching water shall be sufficiently supplied in the reclanation stage. Secondarily, salinity control on the farm land shall Fe regularly made by supplying leaching rater as a part of irrigation requirerents before or after cropping seasons.

Excess rainy water may be preferable to be retained on the field surface and to be gradually discharged by installed under-duainage systen, taking into consideration the following points:

- Rainfall concentrates in the winter season and is negligibly samal. Therefore, surface dnainage facilities for rainy water will not be required.
- Retained water will be effective to leach salts in the root zone soils.
- Capacity of drainage facilities can be reduced.
a) Leaching, in the Initial Stage

Leaching shall be practiced over the whole field in order to obtain a target yield of paddy rice as understood fron the result of soil investigations. Reganding leaching in the initial stage, the folloring neasures are proposed on the basis of leaching progrars made at Amara sugarcane EAm adjacent to the Project Area, where soil texture and quality of leaching sater are sinilar to those of the area. (Refer to Appendix $40-6$)

- After reclaiaing the land, ponds are prepared by ridges with 100 m ridth and 150 m length and underduains are placed with 50 m interval. Before conmencerent of leaching sorks, fields shall be plozed in order to raise the leaching effect.
- The 1,000 rem water volume in total way be sufficient to leach, although the volure will vary depending on the soil depth. The favorable period to apply leaching water falls Jaruary to June shen salinity of the river water descends.
- In case of lon saline fields (less than 40 ton/ha), leaching practices will te made continuously for 60 days. On the other hand, in case of high saline fields (tore than 40 ton/ha), intertittent leaching, 20 days' sater supply and 20 days suspension sill be rade three times.
~ To swise the collecting-efficiency of leached salts, underdrains are provided at one reter depth, and drain pipes are placed, filling with rice chaffs up to the surface of the field. This type of underdrains is so-called "underdrains with rice chaffs-sall". (See Appendix 4D-7)

In irplerentation of the Froject, leaching tests shall be practiced in the experizental fam furnishing the sare size of fields with irrigation and drainage facilities as proposed for the main fare.

Studies will be rade on the cethod and period of leaching and on type, interval, depth of underdrains, etc. With the progress in experirentations, appropriate gractices will be applied to the whole area.
b) Drainage

Drainage in the Project ains to colleci and revove salty water used for leaching in onder to prevent soils from resalinization during irrigation period.

During paddy cultivation in sumer seasons, percolation of 15 men/day has been taken into account in irrigation water requirement conputation. This percolation will be enough to have a function of leaching though underdrainage systen will be required to facilitate the percolation.

Wo salt accuralation will cccur in the root zone of paddy field during irrigation periods since the standing naters suppress a rise of salt from loner layers. Hosever, irmigation is interrupted tho neeks before harvesting, and the absorption of salts accualated in loner layers will occur by capillary action.

To intercept this capillary action, drainage of excess water retained in soils is inevitably required. Underdrains of rice chaffs will be effective in this regard.

In the present stage, typical layout of underdrains is made at 50 m interval with one reter depth.

In lonlying lands of the Project Area adjacent to the rarsh where groundrater table is high, dense arrangement of underdrairs will be necessary.

According to the proposed cropping pattern, 30 percent of the whole area is cultivated with wheat and barley in winter seasons. On the other hand, rainfall records observed at Arara City for 14 years reveal that rean annual value amounts to 171 ma of which 80 percent concentrates in sinter seasons, and daily maximum rainfall is 45 tim. Once this maxiena rainfall occurs, nost of rainfall will infiltrate and be retained to the anderground, considering that 70 percert of the whole area is under mon-cultivation and fields are ory, noreover, having well-developed cracks.

Soils under imigation for ninter enops are keeping het conditions. Although rainfall will be retained at one tice on the surface of the fieid, sost of rainfall will infiltrate to subsoil. Generally, as the proundwater table is descending, rapid drainage of retained water may not be requined.

Consicering the above rentioned natters, drainage arount is determined at 7 ma day equivalent to to $0.81 \mathrm{lit} / \mathrm{sec} / \mathrm{ha}$.
c) Duanage Facilities
i) Drainage canals

Earth canals have heen proposed for drainage in the Project. Excavated soils in construction of drainage canals will be used for erdankrent of roats to ke constructed along the both sides of such canals for transportation and canal protection. The drainage canal retworks have been pianned in close relation with the proposed irrigation system for drainage of surface and subsurface waters as nell as for remol of surplus water.

The proposed drainage canals are classified into main, secondary and tertiary carals and farm drains. The main drainage canal will be located in relatibely lowlying land in the rorthern part of the project Area, rostly along the Casma river mhich runs from the Kahlaa river to Al-Chikke Eirsh. It conveys drainage naters to the proposed drainage punp station. Seconday drainage canals xill collect drainage water from tertiary canals and fam drains, and convey it to the rain drainage canals. The farn drains are shown in 4-D-5.

Typical Cross-Section

The proposed cross-section of drainage canals is a trapezoid in shape and has the side slopes of 1:1.5.

One of the rajor functions of drainage in the Project is to rerove groundrater for saline soil irproverent. Therefore, drainage canals to collect sub-surface witer from undendrains should have a discharge level
lower than the outlet of drain-pipes. Pain water as well as raters fro: a spillway will be allowed to flow whthen canal capacities.
lydraulic computations and the diagram system of drainage is stom in Appendix $4 \mathrm{D}-4$.

Discharge Quantity and Length of Canals
The proposed discharge quantity and length of canals are as follows:

	Discharge	Length
The main drainsge canal	3.02 to $5.37 \mathrm{cu} . \mathrm{n} / \mathrm{sec}$ (7.69 cu.n/sec)	15.7
Scoondary drainage canals	1.17 to $0.07 \mathrm{cu} . \mathrm{m} / \mathrm{sec}$ (7.69 to $1.23 \mathrm{cu} .5 / \mathrm{sec}$)	46.0 kn
Total		61.7 kri

ROTE: The figures in parenthesis show a discharge from spillways.

Felated Facilities

Concrete box culverts will be installed at 27 places to convey érainage vater across roads and impation canals. The description on read crossings is given in $\mathrm{p}-4$ of Crapter IV.
ii) Drainage Fusp Facilities

The proposed drainage systen preaises the delivery of drainage water to Al-Cnikke Earsh whose rater level ranges in two to three reters with the eaximun water level of 4.8 n . Under the circurstances, the ratural gravity drainage is not available during the early stage of faddy cultivation.

The location of this drainage purg station has been decided at the rorthern end of the present oil comany's road which is in a low-lying area facing Al-Chikke marsh.

Yajor Dirensions of Prainage Pump

Item

Type:
Bore diareter:
Unit:
Hesigned dischange:
Total purs head:
Price mover
Poren per unit

Description

Yertical nix flow
$\$ 900 \mathrm{ra}$
Three
$1.79 \mathrm{cu} . \mathrm{m} . / \mathrm{sec} / \mathrm{unit}$
2.2 m

Yotor
$60 \mathrm{~km} / \mathrm{unit}$

Cetails in deternination of the major dimensions of drainage pump ame described in Appendix 40-5.

iii) Dike

The eastern fart of the Froject Area from the oil corpany's nad is located in the siampy Al-Chikke marsh with the minimum elevation of EL. 4.50 n , and is subzerged during high water season in winter. Under the circurstances, the construction of dike along the Project Area houndary facing Al-Chikke narsh has been proposed to protect that part of the Project Area from intrusion of marshy water.

Scale
Taking into consideration the maximur narshy water level of 4.80 m , the elevation of this dike surface has been determined at. EL 5.80 n , wich is the sare elevation of the oil cozpany's road. The total length of this dike sill be 10.3 km out of which the portion of 6.2 km riil be placed on a real foundation. The top width of dike will be seven reters, and paved by ccarse raterials for transportation.

Typical Cross-Section

Brbankrent materials for dike should have an appropriate bearing capacity and a perreability. Sandy silt materials forming the foumation of the Project Area are favorable in this aspect. In this case, a dike slope of $1: 2.0$ seems sufficient to protect the dike fron outer strength. To protect the dike from rmshy waves, riprap will be placed on the dike slope facing Al-Chikke marsh. The dike top surface rill be paved nith gravels for transportation purpose. The northern and eastern parts of the proposed dike have neak foundations, so foundation soils of about ore reter deep on an average and partially of two thee reters deep nill be replaced with soil materials having an adequate soil roisture ratio, wich are available in the Project Area.
4. Farm Land Developsent Plan
a) Strategies in Land Peclamation Planning

Land reclamation in the Project airs to construct modernized fara fields equipped with rationalized on-farn facilities required for farta operation and ranagenent in order to attain an increased production of agricultural crops. In plannirg the land reclamation, various factors to be involved in production and operation/ranagerent of the state rice farn should be comprehensively taken into consideration. For this purpose, basic strategies for future developent shoula be set up, and cropping pattern and fara mechanization syster, etc., should be deternined based on the strategies as follows:
i) Fully rechanized fare maragerent: For the fara practices to grow paddy and upland crops, an integrated and fullscaled fam eechanization should te established in the Project.
ii) Paddy cultivation: Paddy of conercial varieties, A-ber and 1 R should be grom in the Froject Area during surfer seasons.
iii) Hater and faws ranagenents: The rotational irrigation systen should be establisted during land preparation period, based on a rationalized irrigation schere, for effective
water use. The water and fam management should be smoothly carried out in each farming operation unit to be organized in the Project.
b) Iand Reparcelling Plan

1. Principles in Land Reparcelling Plaming

In onder to paterialize a farm land reparcelling covering all the reguirements rentioned in item (a) above, due attentions have been paid to the following:
i) To plan it in close relation with the proposed farn rechanization plan;
ii) To plan it to meet requirerents in the proposed farm nanagenent plan; and,
iri) To plan it to raterialize the cost effective irrigation and drairage sater control.

Further details on the above enntioned are as follozs:
i) To cetexnine the location of main and service noads, the skeleton in land reparcelling, to reet the requirements in the proposed farm eanagerent plan as kell as public facilities glan;
ii) To deteraine the location of irmigation and drainage canals paying careful attentions to the necessity of separating imigation ard drainage carals, a rational length of terninal canals, notation irrigation during land preparation and cherical supply for heed control by aircraft. The separation of irrigation and drairage canals is prerequisite for drainage irproverent and leaching. By this way, the farm managecent and innigation water control are sirplified and rationalized. In onder to simplify the irrigation sater supply and to systeratize drainage, a cosmanding area of one tum-out is planned to correspond to one puddling rotation unit (18 ha).
iii) To provide all farn plots with the same width for simplifyin? the extension of nen technical systers for paddy cultivation. To the fam plot of the save size, a certain quantity of chemicals can be sprayed for control of discases and harnful insects. The sare can be said in fertilizer application. Furthemmore, planning and execution of pidding ky tractor and the imigation water managerent for pudding becone simple and easy for the same reason as above rentioned.
2. Size of Plots and Land Reparcelling Plan

The size of plots should be detemined by paying careful attentions to the technical systers to be introduced for crops cultivation, crops to be grom, fara machinery to be operated as mell as cultivation capacity per day. Being a very flat area rith a slope of about 1/10,0000, the Froject Area has no restrictions in feternining the direction of the length of mun (long side of a fare plot) froa the vienpoint of earth norks.

The width of plot (stiort side) and the length of run (long side) of plots should be determined in consideration of the follonirg facts:

Length of run

- The longer is the length of run, the more advantageous is the tractor opevation for land preparation. Furtherrore, with a long length of run, the deduction ratio of land and construction cost can be kept srall. If the length of ron is too long, the irrigation water control becomes difficult because it takes a long tire to subrerge such fam plot. In addition, land levelling in a plot will ze also difficult. Ir general, it is said that the maximun suitable length of run is 100 a to 150 n from the stand point of water managerent, altkough the water managerent will be influenced by the distance fron the fara ditch and farn drain, soil texture, depth of groundinter table, degree of land levelling and existence of field drain.
- As a matter of course, the size of fara plots should be designed in consideration of fam practices to be conducted. For the convenience in farm practices, the length of run and size of fam plots should be detemined at a multiple of the units of length and acreage currently used in Iraq. "Donum" is used to express acreage in Iraq.

Taking into consideration carefully all of the above mentioned, and also based on inspection results of the Lower Khalis Project-l, the length of run is detemined at 150 m .

On the other hand, the widh of plot should be determined based an the follening:

Fidth of Plot

The ridth of plot should be deterined in consideration of the allewabie length of a farn ditch for the pudding rotation block. A tensth of the farr ditch is one of the najor factors in determining the seale of its comanding area, comanding plot number, water manageFent to surply evenly irrigation sater to farm plots, densities of tertiary irrigation canals and on-fam roads along such canals as wel: as the construction cost of on-fam facilities. A long farn ditch makes the water nanagezent difficult and the construction cost high, shezeas, a short ditch leads to high densities of tertiary conals and service mads, a high construction cost and a large reductien rate of land.
chder the situations, the desixed length of a farm ditch is, in Fincoul, from 500 n to 600 m . In the Project, the length of a farm ilitch is decided at 600 n . Consequently, an acreage of one pudding rotation block is 18 ha ($300 \mathrm{n} \times 600 \mathrm{n}$) on an average.

The width of glot, a length obtaiced by dividing equally the ahowerentioned 600 m , should be decided taking into account the following factors:

[^1]- A wide width of plot is convenjent for diversification of crops and intensive land use whereas a narcow width of plot is suitable for intensive cultivation of facidy, if only pardy is grown in the farm plots.
- In general, a ridth of plot ranging from 1/3 to $1 / 5$ of the length of mis the rost effective fron the vigronint of tractor operation.
- If the sidth of plot is determined at 50 m , the acreage of one farm plot corresponds to the rultiple of "dorur".
- Acconding to the calculation of earth-moving works fearth moving volume \times hauling distance) in the sample area, the Figures in case that the width of plot is short becore seail corpared with those in case of long, when the length of run is 150 m . The folloning table indicates the earth-rovirg sorks in the folloning tho cases in alternative plans: (i) land levelling within the plot without lard adjustrent in elevation, and (2) land levelling within block with lard adjusterent in elevation of 5 cm .

Pesult of Coparison Siuty on Canth-Moving Horks

Alternat tive	$\begin{aligned} & \text { Size of } \\ & \text { riot } \end{aligned}$	L.and Adjustment Nithin Plot		Iand Adjustment Nithin Block	
		Farth Hoving, Morks $\left(10^{6} \mathrm{~m}^{3}\right)$	$\begin{aligned} & \begin{array}{l} \text { Earth yoving } \\ \text { Volure per } \\ \text { Ha } \\ \text { (n } \left.{ }^{3} / \mathrm{ha}\right) \end{array} \end{aligned}$	$\begin{aligned} & \text { Earth } \\ & \text { Yoving } \\ & \text { Horks } \\ & \left(10^{6} n^{4}\right) \end{aligned}$	Earth Hoving Volure per ha-l $\left(a^{3} / h a\right)$
S	150×600	13.63	658	13.63	658
B	150×300	5.48	484	19.22	866
?	150x? 20	3.24	416	18.28	782
If	150×150	2.24	371	18.55	806
?	150x100	1.68	327	15.57	686
T	150×50	1.45	282	13.95	610

is is seen in the above table, flternative Plans E and F reveal riative low figures in the earth-Goving works out of the otners.

Fri- results of the aboverentioned studies, the sidth of plot is anides at $109:$. Trexefore, an acreage of one farm plot is 1.53 ha $\{50=x 100 \mathrm{n}$) and one padding rotation block of 18 ha is to Fe diviced into 12 plots.
©) Cn-fam Hatev Manazerent Systen
ミ) Irrigation Syste:
The water distribution systers of on-fam level is discussed herein. Xater of secondary canals will te distributed to tertiary canils through division toxes to te provided on the secondary zanals, Eid then, water of tertiany canals will be released to fam aitches, terninal irrigation canals in fields, through turn-outs eroviesi on the tertiary canals. In orver to divert irrigation water fro on-fam ditches to fam plots, inlets will be installed to farm plots (seefigure 4p-7 in Appendix 4p-8). As stated previously, the
length of faren ditch is decided at 600 n (109n\%rylots). Therefore, one fam ditch supplies irrigation vater to the area of 10 ha (one rotation block). Since two farn ditches are placed to stretch out to opposite directions each other fron one turn-out, orie turn-out diverts and delivers irrigation nater to the area of 36 ha (irrigation unit) through these two fam ditches.

One tertiary canal is planned to comband five irrigation birits of 180 ha (puddling rotation block), so the length of a tertiary canal sill be about 1.7 km .

Irrigation rater supply during the land preparation season of 40 days fros May 16 to Jure 26 will be rotationally rade (rotational irrigation) in one rotation unit of 18 ha per day, that is, the acreage of 720 ba is cesigned as one unit of irrigation erea (irrigation block) from the vienpoint of water ranagezent. This irgigation block rill coincide with one faming unit (operation unit) in the aspect of fam ranagement in the field. As for irrigation except the pudding period, 24 hours continuous flood irmigation will be rade.

The design capacity of teriazy irrigation canals and farm
ditches is 5.42 lit/ha and 7.72 lit/seche ${ }^{\prime \prime}$, respectively. outline of the on-fars irrigation facilities are described velon.

Tertiary Irrigation Canals

Irrigation canals without lining to convey sater fron secondary canals to farin ditches. The tertiary irrigation canals are classified into two types depending upon the cesign capacity, that is, tertiary irrigation canals (1) and (2). The design discharges of the are $q_{1}=0.98 \mathrm{cu} . \mathrm{n} / \mathrm{sec}$ and $q_{2}=0.59 \mathrm{cu} . \mathrm{F} / \mathrm{sec}$, respectively.

Turn-outs
A device to divert water fron a tertiary irrigation caral to fam ditches.

```
f1-- 41=35.8 E. }\times1\mp@subsup{0}{}{-3}\times1.0 ha \times1\mp@subsup{0}{}{4}\times1\mp@subsup{0}{}{3/86,400(1-0.10)(1-0.15)
        = 5.42 1it/sec/ha.
```


Sevice roads

Poads are provided along tertiary irrigation canals for operation and maintenance of facilities and transportation. The width of service roads is seven meters. No pavement.

Fant ditches

The terminal irrigation canals made of eartb to convey hater from a tertialy canal to fam plots through turn-outs. The design capacity is $0.1^{4} \mathrm{cu} . \mathrm{m} / \mathrm{sec}$.

Inlet

A device to divert irrigation water from a farn ditch to farm plots. A pipe sith the diereter of 250 ran and 2.5 m long will be utilized.

Cherk

The facilities to raise water level in the lower reaches of fam ditches for water magezent.

Roaz crossing

Type A: The facilities irstalled under the seven teters service roads, and ca-faris wads to let tertiary irrigation canal (1) water go cross above roads. Box culverts rill be used for this purpose.

Type B: The facilities installed under the on-farn road to let tertiary irrigation canal (2) water go cross the road. Box culverts nill be used for this purpose.

Tyce C : The facilities installed unfer the rad along fam ditch to let tertiary irrigation canal (1) water po cross the road. Box culverts will be used for this purpose.

Type 0 : The facilities installed under the road along farm ditch to let tertiary irwigation canal (2) water go cross the read. Box culverts will be used for this purpose.

The typical design of the related facilities is given irt Drasing Hos. 5, 11,13 to 17.

Grainage Systea:

ii) Fam drains, that is, terminal rrainage canals constructed in fields, rill be provided in parallel with the ridth of plot at the nidde of tro farn ditches, and its length is $1,209 \mathrm{r}$. Excess mater or drainage water in fields will be drained to the fam drains through outlets installed for every form plots. Therefore, one farn drain comands the area of 36 ha . The other drainage nater to be released to the farm drains is subsurface frainage rater. Subsurface drainage rater is delivered to the farm drains fron field drains to be provided for saline soil itproverent by leaching. The depth and standard interval of faren drains are designed at 1.0 belon the ground surface and 50 m , respectively.

Drainage water in the farm drains is conveyed to a tertiary drainage canal as shom in Figure $4 \mathrm{D}-7$ in Appendix 4D-8.

Outine of the on-fam drainage facilities are explained belch:

Fars drain

Earth drainage canals to convey excess weter fron outlet, Eielid onain and secondary frainage canals.

On-fars road

The teminal roads provided along the both sides of a fam drain for transportation into or out from fare plots. The width of these roads is seven reters.

Gutlet

A device to drain water fron a fam plot to a fam drain.

Road crossing
Type E: The facilities installed under the service road to let fam drain discharge go eross the mads. Box culverts will be used for this purpose.

Type F: The facilities installed under the service road along a secondary drainage canal to let fam drain discharge go cross the roads to the secondary drainage canal. Box culverts will be used for this purpose.
The typical design of the related facilities is given in Dexing los. 5, 11, 17 and 18.

The reduction ratio only in relation with on-farm facilities is estimated at 14.3 percent.
d) Land Levelling

The land levelling in land reclanation works is important for both paddy growth and fars mangerent. The folloring procedure has been adopted in planning land levelling norks; that is, (1) as the first step, land levelling worss will be carried cut sithin the plot ($150 \mathrm{n} \times 100 \mathrm{n}$), and (2) after checking the obtained elevation of the plot, land adjusticent ir elevation within a block ($150 \mathrm{n} \times 600 \mathrm{n}$) will be carried cut, when the reversed elevation of plot rore than five centireters are observed arong the estirated plot elevation in the block.

Based upon the above procedure, the calculation of land levelling work has been made in the selected sarple area and its result is shown in Table 4D-22 ard Figure 40-8 in Appensix 4D-8. As is found in the Appendix, revarkable reversed elevation of plot is observed in the block Nos. 4, 5, 6 and 7, then the land adjustrent in elevation will be reeded in those blocks. As the results of land levelling and land adjustrent in elevation, earth-moving volure fer hectare has been estinated at $686 \mathrm{cu} . \mathrm{m} / \mathrm{ha}$.
e) Hodel Design of On-Farm Facilities in Sarple Area

1) Purpose of Kodel Design

In orden to give shape to the conceptionsl proposed on-fasa facilities, the model design of roads, irrigation and irainage carals as kell as land parcelling have been actually carried out for the sanple area. Furthermore, the required land levelling norks and hauling distance, etc. here estirated in order to apply their results to the design of on-farn developrent works in the whole Project hrea.

2) Selection of Sarple Area

Since the Froject Area is located in the lo:-lying alluvial plain forfed by the tigris river and there exist topographically no sloping area and hilly land, one sample area is consicered enough for the rodel design of on-farm facilities. Tre sample area covering dbout 100 ha has been selected in Tel. El-Ahavar located near the Kahlea river.
3) Land Refarcelling and Typical resign

The land reparcelling in the sample area has been carried out based on the typical design of fars plot (150rax 100 n). Estiration of earth-roving voluse and design of facilities have been also nale in accordance rith the criteria. The result of calculation is shom in the folloxing table. Typical layout for the sarple area is shom in Draring so. 13. Average density of on-fare facilities has been estimated at 64.7 m/ha for imigation carals, $56.0 \mathrm{~m} / \mathrm{ha}$ for drainage canals and $100.3 \mathrm{n} / \mathrm{ha}$ for on-fare rosd.
5. Road Plan
a) Classification of Reads

The proposed roads in the froject are are classified as follows:

Main roads

The main roads function as trunk roads for transportation of agricultural input and output within the Project Area, and also function

Thale t-3. Result of Typical besign of On-form Facilities in Sarple Area

Eescription

1. Not irripation area (ha)
2. innd levelling:

Total earth moving volure $\left(10^{3} \mathrm{cu} . \mathrm{m}\right)$	59,547	$824 \mathrm{cu} . \mathrm{m} / \mathrm{ha}$
Arerage hauling distance (m)	314.2	

3. Irrigation canal:

Tertiary impigation canal(1) (m)	578	8.0
Teriary irnigation canal2) (m)	330	4.6
Farm ditch	3,763	52.1
Sus-total	4,671	64.7

4. Trainace caral:

Faven frain (-i) $\quad 4,042.0$
s. Foad

Service read -
Along teritary irrigation canal(1) (n)

375
Along tevtiazy irvigation cansl(2) (m) 330

On-face mead (r)
Sub-total
o. Eield orain (t)
7. Green belt (sq. x)

6,035
7,241
17,551
5, 060
B. Poã crossing (place)

Tyre A 4
TyFe 3
2
TyEe
2
Tyfe D
2
TyFeE
Tyer
4

Sus-total
4
18
9. Tura-out (place) 5
10. Inlet (place) 35
11. Cteck (place)

6
12. Mutlet (place) 59
as comecting roads to the lational lligtray llo. 6, which muns alorg the right bank of the kahlan river. In principle, each operation unit will be provided, at least, rith ono to two min roads crossing each other. In addition, the existing oil corpany's road rurnirg from the north to south in the castern part of the Project frea nould be utilized as a main road. For this purpose, sore irproverert and base coarse naterial pavenent have keen planed. Furtherrore, the existing pipeline dill be protected by emarkuent, ard this crbarkeret rill be utilized as a main road.

These rain roads nill have the ridth of seren reters (effective sidth: five reters), and nill le faved by base coarse saterials.

Service rouds

The service roads will be provided along main, secondary and tertiary irrigation and drainage canals for operation and rairitenance of constructed facilities as rell as for transportation of input and output. No pavement is planned for these service roads.

On-farm roads

On-farn reads, wich are ternimal roads in fields, lizve been planted to be located at the interval of every 300 re along the sidth of plot; narely, at the both sides of fare drain. The roais will have the ridth of seven reters. The roses will re used to let farm rachines enter into field plots. Ho pavenent is planned for on-farm roads.

b) Typical Cross-Section

Side slope

The proposed roads along the canal hive a height of about 0.65 a to 0.85 m , so that necessary hear of the inrigation canal หaters can te secured. Therefore, a side slope of road ezbanksent has been cecided at 1:1.5.

Road width
Hidth of the groposed roads has been planned to be seven meters with the effective width of five reters, taking into account farm rachinery to be introduced into the Project.

Cross-grade
In general, a cross-grade of base coarse pavement rouds ranges fron three to six percent. So all the proposed roads in the Project hea will te given the cross-grade of four percent on average.

Follaning table shors the rajor features of the proposed roads:
Najor Features of the Roads

Type of Roads	$\frac{\text { Hidth }}{(n)}$	$\frac{\text { Proposed Length }}{(\mathrm{km})}$	Remarks
Gin raxds	7.0	25^{11}	Base coarse pavement
Service roads	7.0	17.3	Ho paverent
On-fater roads	7.0	632	Ho paverent

fl-- inclusive of 1.7 kia of the itpnoved oil company's noad.

The road intersity in the Project is estimated at 131 m/ha. Typical cross-section of the roads is shom in Daning mall herein attached.

6. sfforestation Plan

The north-nest ninds during the hot surrer season bring about the severe problers to crop groath and living environcent. In order to protect the cnops to te introuced from such winds and to make the fam livable and confort as much as possible during climatic extrenes, the wirdbreaks have been proposed.

Three types of windbreaks are planned from vierpoints of their lecation and function, that is 1) windoreaks along the Kahlaa river, 2) nindbreaks along the boundary of the Project Acea, secondary
dminage canals provided at the right angles to the north-nest divection winds and nain road in the area and 3) nind-breaks along secondary and tertiary irrigation canals. The descriptions of these wind-breaks are given hereinafter.

Hind-breaks along the Kohlwa Yiver
The pertanent nind-breaks having the ridth of about 100 n have Leen planed at the nestern part of the Project Area along the Yohlaz river taking into account the folloning facts; it is desirous to provide the wind-breaks there to protect agricultural crops fron hot winds and to improve living enviroment, since rost inhabitants live alorg the Kahlaa river, and outside areas of the levee of the river are topegraphically complicated with depressiors which were the borron pits in constructing the Kahlaa bank.

Date paln, casuarina and eucalyptus, etc., conld ke grom in such ... wind-breaks since they have the folloning advantageous characteristics:

1) High resistance against saline soils;
2) High resistance against drought;
3) High gronth rate;
4) High adaptability to severe natural conditions; ard,
5) Easy propagation.

Kind-breaks along the Boundary of the Proiect Area, Secondary Drainage Canals and Nain Roads

As Eentioned above, the north-rest winds prevail during the hot suizser season in the Froject Rrea. In order to cope rith such winds, the permanent wind-breaks having 30 n wide, which will te provided at the wight angles to the north-xest direction wind with about $2,500 \mathrm{n}$ interval on average have been proposed. The rind-breaks for the sare purpose will be provided along the Doundary of the Project Area and main roads.

The sare kind of trees, which have been proposed for the windheaber alonti, the Kahlaa river will re planted.

Hind-rueaks along the Secondary and Tertiary Irrigation Canals

In order to expect the supplemental rind-breaks in the Project Area terponary wind-breaks with the width of five meters have been suggested along the secondary and tertiary irrigation canals, at the interval of abolit 600 n. Seshania will be planted for this purpose.

The total acreage of each type of wind-breaks rentioned above are as follors:

Type
Tyce 1
Tyce 2200
Type $3 \quad 40$ Total

Area (ha)
90 339

BOTE: Further study on effects of wind-breaker will be required in the deterination of the width of wind-breakers.

E. Cost Estirate

The tōal investrent cosi exclusive of the price escalation during the construction period is estirated about 20.3 nillion I.D. (USS68. 5 milIion) out of ritich 12.2 nillion I.D. (US\$4l.3 rillion) fall into the foreign currency portion, and the rest of 8.1 nillion I.D. (OS\$27.2 million) into the local currency portion.

The following table stows the lreakdon of this investrent cost, and further details are giver in mppenix it-E-1.

Investwent Cost of the Project
(Onit: '000 I. D.)

Iters	Foreign Currency	Incel Cumency	Total
1. Civik works	6,081	4,755	10,335
2. Construction and lsaintenance Equiprent	2,791	-	2,79i
3. Vare facilities	-	683	6 E3
4. Farm machinery and equipment	1,778	-	1,778
5. Operation and maintenance cost	-	795	795
6. Project facilities	9	221	230
7. Project administration	-	645	546
8. Consulting, services	451	212	¢63
Sub-total (1 to 8)	11,110	7,318	18,428
3. Contingency	1,111	732	1,843
Sub-total (1 to 9)	12,221	8,050	20,271
10. Price escalation	4,316	3,512	7,828
Total (1 to 10)	16,537	11,562	22,699

 in the following rays: (i) the depreciation cost of constriction rachines and equipaent is involved in the urit cost of civil works; and (ii) the price escalation is rot included in this corrutation (see Table 4 E-3 in Appendix 4 E-2).

The anmal disburserent schedule for the investrent cost is shom in Table 4 E-2 in Appendix if E-1. The cost estimate of the Froject have been rade in the following ranners:

1) Civil Horks

This iten covers the construction cost for engireering norks, construction raterial cost, fuel and oil cost, repair cost of equipzent and lator cost. The construction cost fow engireering morks has been corputed based on current related unit costs in Iraq, and it covers the depreciation cost of construetion eachines ard equiptent. The Eajor engineering rorks are as follows:

Pump: Tc inclule the cost of earth and concrete works and the equiprent cost for purps, rotors and accessovies, etc.

Desilting reservoir: To include the cost of dan body embankent and the costs of spillway gates and intake facilities. Irrigation canals: To include the cost of earth sorks for main and secondary canals, the cost of concrete sorks for canal lining and the cost of related structures.

Erainage carals: To include the cost of earth works for eain and secondary drainage canals and the cost of related stmetures.

On-farm: To include the cost of land levelling and construction of on-farm facilities such as tertiary irrigation canals, service roads, fam ditckes, fars drains, on-fann roads and field drains.

Foass: To include the cost of construction of main and service roals with seven reters nide.

Dike: To include the cost for foundation treateent and emankment of the dike.
2)

Construction Equiprent
It is a preaise in estinating this iten that the construction and mintenance equipent and spareparts sill be purchased by the covernFent in the lump-sun except ssall equipment available in Iraq. Such purchasing costs have been estinated based on c.i.f., Baspa, and the custon duty and other local taxes to be irposed in Irap are excluded in estimate. Unloading and transportation costs fron Easra to the construction site in Arara are added to the above-rentioned purchasing costs.

3) Fara Facilities

This itea covers the construction costs of all facilities which are deezed directly required for faraing; nazely, fam karehouse,
equiphent marchouse, rest houses foy the rice fan staff, wrishop, machinery garage and aircraft rumby, etc.

4) Farm Hachinery and Equipront

This iten covers the necessany costs of farm rachirery and equipment for operation of the main ard experinertal farms ard also the labovatory.
5) Operation and Uaintenarce cost

This item involves the operation ard mintenare cost for project facilities during the construction period of four years fron the fiscal years 1984 to 1987, and also the salary and rage for governmental personmel to be assigned to the Project and skilled labor to be erployed.
6) Project Facilities and Project Adminstration

Project facilities: This iten covers the required cost for project facilities such as buildings, furniture and equipert.

Project administration: This iter covers the local overhead charge for governtental persomel in charge of meragezent in the Project.
7) Corsulting Services

This iten covers the engineering fee in final design, construction supervision and farsing guidance.
8) Contingency

The contingency is appropriated, on total hasis, to cope rith minor quantitative difference, unforeseeable difficulties in construction, possible azendrent of plans because, for irstarce, changes of site conditions and uncertainty of foundation conditions, ete. The adopted rate for this itea is ten percent.
9) Price Escalation

The price escalation of nine percent fer annun is allowed both for the foreign and local currency portions.
10) Unit Costs

Tie unit costs of construction natevials applied to this estimate are the prevailing prices as of 1979 informed by the Ministry of frriculture and Agravian Reform. The labor cost has been estimated based on the aige rate by job type being applied by the said Ministry.
11) Foneign and Local Procurement of haterials

All the construction equiprent, norshop, other isported equiprent and miterials such as deformed bar, etc., are erployed by the foreign currency componert, whereas the local cumency component consists of the costs for laber, operation and raintenance of equipront and local materials.

[^0]: 1/ The parenthesized figures show the cesbania planted area.
 Public Facilities

[^1]: 11-- A state rice farm under construction by the Xinistry of
 Agriculture and Agrarian Reform.

