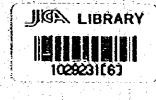
51107

City

TRANTAL TO POST CHIRDNINGS

MOOK II; RISTORY


Same a com

papers and their december compression in I am was

Mil

11

STUDY

ON

IRAN-JAPAN EXPORT REFINERY BOOK II: REPORT

March, 1979

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団 1 88.8215 302 全録No. 08183 MPI

CONTENTS

	CHAPTER 1	INTRODUCTION	ì
	CHAPTER 2	SUMMARY	2
	CHAPTER 3	STUDY BASES	15
		BASIC CONSIDERATION	18
		Product Sélection	18
•		Refinery Mathematical Model	25
	4.3	Maintenance Turnarounds and Intermediate Tankage	28
	4.4	On-stréam Factor	30
	4.5	Product Loading	35
	4.6	Pollution Preventation	38
•		PROJECT DESCRIPTION	40
	5.1	Crude Oil Pipelines	42
	5.2	Case 1: Hydroskinming Type Refinery	44
	5.3	Case 2: Hydrocracking Type Refinery	72
	5.4	Marine Pacilities	100
	CHAPTER 6	PROJECT EXECUTION	107
•	6.1	Preliminary Master Schedule	107
:	6.2	Presumed Manpower Mobilization	110
	6.3	Refinery Organization and Staffing	- 113
* * .	6.4	Training for Employee	126
. · ·	*	: -	

CHAPTER 7	INFRASTRUCTURES FOR PROJECT DEVELOPMENT	129
7.1	Definition of Infrastructures	129
7.2	Infrastructurés Available	130
7.3	Discussion and Recommendation	133
CHAPTER 8	SITE SELECTION	142
8.1	Planning of Candidate Sites	143
8.2	Comparison of Each Candidate Site	145
8.3	Recommendation of the Oil Refinery Site	158
CHAPTER 9	COSTS ESTIMATION	160
9.1	Capital Requirements	160
9.2	Operating Costs	170
CHAPTER 10	OCEAN PREIGHT AND COSTS OF CTS	178
10.1	Ocean Freight for Refined Products	178
10.2	CTS Planning and Facility Definition	188
10.3	Capital and Operating Costs of CTS	197
10.4	CTS Margin	203
CHAPTER 11	ECONOMIC ANALYSIS	211
11.1	Bases and Procedures	212
11.2	Case Definition and Results of Study	218
11.3	Sensitivity Analysis	Ž25
11.4	Ex-CTS Wharf Based Comparison	227
Apper	on Product Costs	

Appendix 2 Estimated Product Prices in Japan 1983

LIST OF TABLES

<u>Table</u>		Page
2.1	Product Yields	5
2.2	Annual Shipment Volume	5
2.3	Major Facilities	6
2.4	Costs Summary	8
2,5	Required Average Product Price	11
2.6	Sensitivity Analysis : Change in Required Gross Margin (Case 1 Hydroskimming)	12
2.7	Sensitivity Analysis : Change in Required Gross Hargin (Case 2 Hydrocracking)	12
441	Démand Pattern of Motor Gasoline (FY 1978-1982, Japan)	20
4.2	Démand and Supply Pattern of Petroleum Products (FY 1978/1982, Japan)	22
4.3	Product Specification Summary	23.
4.4	C Fuel Oil Demand Pattern by Sulfur Grade	26
4.5	Grounding for Scheduled Maintenance	29
4.6	Average Shutdown Period (1973-1977, Japan)	32
4.7	Berth Occupancy Time Classified by Tanker Size	37
5.1	Pipeline Size	42
5.2	Product Yields of Case 1 Refinery	44
5.3	Summary of Crude and Products: Case 1 Hydroskimming	45
5.4		47
5.5	그는 사람이 한학의 회가 있다면 되면 하게 되는 점점 점점 점점을 받아 가지만 하는 것이 되었다. 그는 것은 그는 것은 것은 것은 것이 없었다. 그런 말이 모르는 사람이 없다.	5ò
5.6		54
5.7		55
5.8	,这一个大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	56

able		<u>Page</u>
5.9	Tankage Summary: Case 1 Hydroskimming	59
5.10	Products Blending Table: Case 1 Hydroskimming	60
5.11	Installed Capacity of Product Shipping System	63
5.12	Installed Capacity of Solid Sulfur Handling System	63
5.13	Size of Place Stack	65
5.14	Waste Water Quality	66
5.15	Building Plan	67
5.16	Product Yields of Case 2 Refinery	72
5.17	Summary of Crude and Products: Case 2 Hydrocracking	73
5.18	Product Qualities Summary: Case 2 Hydrocracking	75
5.19	Installed Capacities of Process Units: Case 2 Hydrocracking	78
5.20	Utility Balance: Case 2 Hydrocracking 250,000 BPSD	82
5.21	Summary of Utility Requirements: Case 2 Hydrocracking	83
5.22	Installation Summary: Utility Facilities Case 2 Hydrocracking	85
5.23	Tankage Summary: Case 2 Hydrocracking	88
5.24	Products Blending Table: Case 2 Hydrocracking 250,000 BPSD	89
5.25	Installed Capacity of Product Shipping System	92
5.26	Installed Capacity of Solid Sulfur Handling System	92
5.27	Size of Flare Stack	93
5.28	Waste Water Quality	94
5.29	Building Plan	95
6.1	Presumed Manpower Mobilization	111
6.2	Surmary of Required Personnel	116
6.3	Surmary of Staffing for Production Départment	117
6.4	Summary of Staffing for Technical Service Department	117
6.5	Surmary of Staffing for Haintenance Department	119

Table		Page
6.6	Summary of Staffing for General Affairs Department	120
6.7	Summary of Required Personnel by Salary Grade	121
6.8	Summary of Staffing and Required Personnel Case: Hydroskimming 125,000/250,000 BPSD	122
6.9	Summary of Staffing and Required Personnel Case: Hydroskimming 500,000 BPSD	123
6.10	Summary of Staffing and Required Personnel Case: Hydrocracking 125,000/250,000 BPSD	124
6.11	Summary of Staffing and Required Personnel Case: Hydrocracking 500,000 BPSD	125
6.12	Required Number of Trainees	127
6.13	Manpower Summary of Trainees	127
6.14	Required Number of Trainers	128
6.15	Manpower Summary of Trainers	128
7.1	List of Social Infrastructure	130
7.2	Installation Summary of Crude Oil Pipelines	133
7.3	Estimated Utility Requirements in Refinery	139
7.4	Estimated Construction Costs of Industrial Infrastructures	139
7.5	Categories of Employee	140
7.6	Numbers of Employees by Categories	140
7.7	Summary of Housing Facilities	141
8.1	Construction Works Comparison	154
8.2	Work Volumé Comparison	155
8.3	Investment Cost Comparison (Huhammad Ameri as Base Cost)	156
9.1	Capital Requirements and Operating Costs Surmary	162
9.2	Construction Costs Surmary: Case 1 Hydroskipming	163
9.3	Construction Costs Summary: Case 2 Hydrocracking	164
9.4	Paid-up Royalties	166

<u>Tablé</u>		Page
9.5	Initial Catalyst and Chemicals Costs	166
9.6	Pre-operating Expenses	169
9.7	Working Capital	171
9.8	Salary Structure	172
9.9	Salary and Wages: Case 1 Hydroskimming	173
9.10	Salary and Wages: Case 2 Hydrocracking	173
9.11	Corporate Overhead Cost	175
9.12	Catalyst and Chemicals Cost	177
10.1	Ocean Freight by Tanker Size and Category	179
10.2	Ocean Freight of Refined Products	179
10.3	Freight Costs Relative to Yokohama	182
10.4	Changes in Tanker Freight Rates (For Kharg - Yokohama)	183
10.5	Freight Comparison of New and Existing Tanker in 1983 - Clean	186
10.6	Freight Comparison of New and Existing Tanker in 1983 - Dirty	187
10.7		190
10.8	Tankage Summary	191
10.9	Berth Occupancy Time for Loading and Unloading Operations .	193
10.10	Loading and Unloading Berths Requirements	193
10.11	Total Area Requirements: CTS in Japan	196
10.12	Total Permanent Staff: CTS in Japan	196
10.13	Capital Requirements and Operating Costs Summary CTS in Japan	198
10.14	Construction Costs Summary: CTS in Japan	200
10.19	Working Capital: CTS in Japan	201
10.16	Basis of Capital Expending Schedule	206
30.31	Paolo of CTC Warrin Calculations	200

ξ.

-		
Table	•	
	en de la companya de La companya de la co	Page
10.18	Réquired CTS Margins	209
10.19	ROE (DCF) versus CTS Margins	210
11.1	Basis of Capital Expending Schedule (125,000/250,000 BPSD)	217
11.2	Basis of Capital Expending Schedule (500,000 BPSD)	217
11.3	Case Definition: Base Case Refineries	219
11.4	Results of Economic Analysis: Base Cases	219
11.5	ROE versus Gross Margin: Case 1 Hydroskimming	220
11.6	ROB versus Gross Margin: Case 2 Hydrocracking	221
11.7	Capital Expending Schedule: Case 1 Hydroskimming 125,000 BPSD	222
11.8	Capital Expending Schedule: Case 1 Hydroskimming 250,000 BPSD	222
11.9	Capital Expending Schedule: Case 1 Hydroskimming 500,000 BPSD	223
11.10	Capital Expending Schedule: Case 2 Hydrocracking 125,000 BPSD	223
11.11	Capital Expending Schedule: Case 2 Hydrocracking 250,000 BPSD	224
11.12	Capital Expending Schedule: Case 2 Hydrocracking 500,000 BPSD	224
1	Sensitivity Analysis: Change in Required Gross Margin (Case 1 Hydroskimming)	226
11.14	Sensitivity Analysis: Change in Required Gross Hargin (Case 2 Hydrocracking)	226
11.15	Basis of Estimation: Product Prices, Ocean Freights & Import Tariffs	227
11.16	Economic Evaluations Summary: Case 1 Hydroskimming	231
11.17	Economic Evaluations Summary: Case 2 Hydrocracking	232
		232

ILLUSTRATIONS

Figure		Page
. 2.1	Site Location Map	3
4.1	Attainable On-stréam Factors Casé 1 One Year Between Major Maintenance	33
4.2	Attainable On-stream Factors Case 2 Two Years Between Major Maintenance	34
5.1	Frame of Project	41
5.2	Crude Oil Pipeline Route	43
5.3	Block Plow Diagram Case 1: Hydroskimming	46
5.4	Steam, Power and Water System Diagram	53
5.5	Tank Flow Diagram Case 1: Hydroskimming	58
5.6	Simplified Plow Diagram for Product Shipping Facility .	62
5.7	Flow Scheme for Configuration of Computer Hardware	68
5.8	Refinery Plot Plan Hydroskinning: 500,000 BPSD	71
5.9	Block Flow Diagram Case 2: Hydrocracking	74
5.10	Steam, Power and Water System Diagram	81
5.11	Tank Flow Diagram: Case 2 Hydrocracking	86
5.12	Simplified Flow Diagram for Product Shipping Pacility	90
5.13	Plow Scheme for Configuration of Computer Hardware	97
5.14	Refinery Plot Plan Hydrocracking: 500,000 BPSD	99
5.15	General Layout of Marine Facilities	102
5.16	General Plan of Sea Berth	104
5.17	General Plan of Harbor	105
5.18	General Section of Causeway	106
6.1	Preliminary Project Schedule (250,000 BPSD Case)	109
6.2	Construction Supervisory Force Mobilization Plan (250,000 BPSD Case)	112

Figure		Page
6.3	Construction Labor Mobilization Plan (250,000 BPSD Case)	112
6.4	Refinery Organization Chart	115
8.1	Candidate Site Location Map	146
8.2	Candidate Site - Farageh	147
8.3	Candidate Site - Chughadak	148
8.4	Candidate Site - Muhammad Ameri	149
8.5	Candidate Site - Ameri	150
8.6	Correlation Between Key Site Evaluation Item and Work Item	151
10.1	Tanker Size vs. Average Freight Rates	184
10.2	Block Flow Diagram of Waste Water Treatment for Products CTS in Japan	19S

CHAPTER I

INTRODUCTION

CHAPTER 1

INTRODUCTION

Book II covers the basic plan of the Iran-Japan Export Refinery Project and the findings of an economic analysis made on the basic plan. The study is made for several cases of possible refinery sites, refinery configurations, and refinery capacities. Namely, four potential sites were selected on the basis of site surveys; two refinery configurations, that is, the hydroskimming type and the hydrocracking type; and three refining capacities, that is, 125,000 BPSD, 250,000 BPSD, and 500,000 BPSD are considered.

The economic analysis in this study calculates the average Ex-CTS (Central Terminal System) product cost in Japan by evaluating all the venture activities involved, including the petroleum refining in Iran, the product transportation from Iran to Japan, and the product storage in Japan.

This book is supplemented with a separately compiled Book III,
"Supplement" which contains the study bases, such as surveys on site and
transportation, outline of the facilities planned, and market survey.

It also reports on the economic analysis made on various alternatives.

As is evident from the above, this study report covers studies of
external factors, ascertainment of the basic plan, and economic analyses,
thus covering a wide range of factors to provide technical and economic
information needed for realizing this venture on a commercial basis.

CHAPTER 2

SUMMARY

CHAPTER 2

SUMMARY

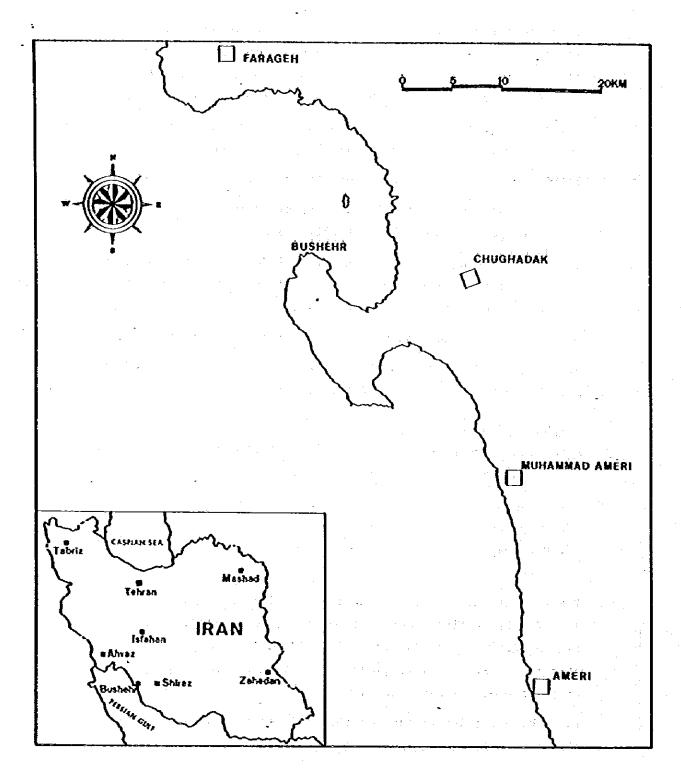
This chapter contains a summary of the study on the export refinery project to be implemented in Bushehr on the south coast of Iran, based on the target dates which are August 1, 1979 as the commencement of basic engineering works and 1983 as the commencement of commercial operation.

Further detailed report is presented in the subsequent chapters of this report and the separately compiled supplement volumes.

There are three main purposes of this study:

- (1) To investigate possible refinery sites in the Bushehr area and analyze them to recommend the most suitable site for this project.
- (2) To define all facilities to be included in this project in sufficient technical detail to enable the estimation of investment and operating costs to meet this study purpose.
- (3) To estimate the costs and clarify the economic aspects of the project. Some suggestions and recommendations are given at the end of this chapter for the further proceeding of this project.

REPINERY SITE


A detailed investigation is made on the following four candidate sites as marked on Figure 2.1, Site Location Map:

- Parageh
 - Chugadak
 - . Muhammad Ameri
 - . Ameri

The investigation comes out that Muhammad Ameri will be the most suitable site for the refinery construction among these candidates. This judgement is made from an overall evaluation of tangible factors convertible to construction costs and intangibles such as easy access to Bushehr city and wide space of the hinterland.

The subsequent description of this chapter is made on the basis that the refinery is located at Muhammad Ameri.

Figure 2.1
Site Location Map

PROJECT OUTLINE

Number of cases investigated in this study are the following six cases covering two different refinery configurations and three refining capacities:

No.	Refinery Configuration	Refining Capacity		
1.	Hydroskimming	125,000 BPSD		
2.	Hydroskimming	250,000 BPSD		
3.	Hydroskimming	500,000 BPSD		
4.	Hydrocracking	125,000 BPSD		
5.	Hydrocracking	250,000 BPSD		
6.	Hydrocracking	500,000 BPSD		

Outline of the project are as described below:

(1) Crude Oils and Products

50 percent Iranian light and 50 percent Iranian heavy crude oils are received at the Gurreh pump station and transported via separate pipelines to the refinery located at 165 Km far from the station. In the refinery, the crude oils are refined into the desired products for export to Japan.

Table 2.1 presents the salable products obtained from the refinery expressed in the percentage yields on crude. In addition, sulfur generated in the refining processes is recovered and shipped in a pelletized form.

Table 2.2 presents the annual shipment volume from the refinery.

(2) Installations

Installations of this project consist of crude oil pipeline, refinery facilities, and marine facilities. Major facilities planned for the respective six cases are shown in Table 2.3.

(3) Project Schedule

The time required for constructing these installations, from the start of basic engineering to mechanical completion, are estimated as follows:

Table 2.1

Products Yields

(Units: Volt on Crude)

Products	Hydroskimming	. Kydroczácking
Gasóline	10.0	10.0
Naphtha	9.9	12.5
Kerosene	14.1	17.4
Gas Oil	21.1	24.9
Low Sulfur Fuel 011	28.2	20.6
Medium Sulfur Puel Oil	7.0	5.1
Bunker Fuel Oil	3.0	3.0
Total	93.3	93.5

Table 2.2

Annual Shipment Volume

Case Descri	ption		1 2 2 2 2 2 2 2	
Configuration	Capacity BPSD	ー版ite Oil 106 _K 1	Black Oil 10 ⁶ Kl	Sulfur 10 ⁶ Ton
	125,000	3.4	2.4	0.06
Hydroskinaing	250,000	6.8	4.7	0.11
·	500,000	13.6	9.4	0.22
	125,000	4.0	1.8	0.05
Hydrocracking	250,000	8.0	3.5	0.11
	500,000	16.0	7.1	0.21

Table 2.3 Major Facilities

Configuration		ļ.	lydroskimming		H	lydrocracking	
Refining Capacity, BPSD		125,000	250,000	500,000	125,000	250,000	500,000
	Unit	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity
Major Process Units Atmospheric Crude Distillation Vacuum Plasher Naphtha Hydrodesulfurizer Catalytic Reformer Kerosene Hydrodesulfurizer Gás Oil Hydrodesulfurizer Vacuum Gas Oil Hydrodesulfurizer Vacuum Gas Oil Hydrodesulfurizer Vacuum Gas Oil Hydrocracker Atmos. Residue Hydrodesulfurizer Visbreaker Hydrogen Generator	BPSD BPSD BPSD BPSD BPSD BPSD BPSD BPSD	125,000 x 1 14,000 x 1 26,500 x 1 9,700 x 1 17,700 x 1 26,900 x 1 7,200 x 1 34,900 x 1	125,000 x 2 27,900 x 1 52,900 x 1 19,300 x 1 35,300 x 1 53,800 x 1 14,300 x 1	125,000 x 4 27,900 x 2 52,900 x 2 19,300 x 2 35,300 x 2 53,800 x 2 14,300 x 2 	125,000 x 1 19,300 x 1 26,500 x 1 9,700 x 1 17,700 x 1 28,900 x 1 30,300 x 1 9,400 x 1 0.55 x 2	125,000 x 2 38,500 x 1 52,900 x 1 19,300 x 1 35,300 x 1 57,700 x 1 19,700 x 1 60,600 x 1 18,800 x 1 1.10 x 2	125,000 x 4 38,500 x 2 52,900 x 2 19,300 x 2 35,300 x 2 57,700 x 2 19,700 x 2 60,600 x 2 18,800 x 2 1,10 x 4
Gas Treater/Sulfur Recovery Major Utility Systems Steam Generator Power Generator Desalinator Cooling Water System Sea Water Intake System	TPSD-S Ton/H Ton/D Ton/H Ton/H	90 x 2 170 x 3 14,000 x 3 2,400 x 3 18,000 x 1 5,000	310 x 3 16,000 x 4 4,700 x 3 17,000 x 2 10,000	180 x 4 400 x 4 19,000 x 6 9,100 x 3 17,000 x 4 20,000	90 x 2 170 x 3 15,000 x 3 2,700 x 3 20,000 x 1 6,000	310 x 3 17,000 x 4 5,200 x 3 19,000 x 2 11,000	180 x 4 400 x 4 21,000 x 6 10,200 x 3 19,000 x 4 21,000
Tankage Products Loading Pipeline	10 ³ /к1	1,667 Whi	2,577 te Oil Product able Water 4 i	4,279 Length s 32 in. x 3 l n. x 1 line, B	ines, Fuel Oil	2,676 42 in. x 1 lin 2 in. x 1 line	4,337 ne,
Sea Berth	-			Up to 200 th for 125,000 for 500,000 B	or 250,000 BP	SD capacity,	
Site Preparation	10 ⁶ m ³	1.5	1.8	3.0	1.6	1.9	3,2
Harbor				Up to 10,	000 DWT		
Crude Oil Pipeline	-	165 Km 16 in. x 2 lines	165 Km : 20 in. x 2 lines	165 Km 26 in. x 2 lines	165 Km 16 in. x 2 lines	165 Km 20 in. x 2 lines	165 Km 26 in. x 2 lines

- . Refinery
 - 125,000 BPSD and 250,000 BPSD : 44 months
 - 500,000 BPSD : 53 months
- . Sea Berth : 36 months
- . Harbor, Dredged Channel and Causeway: 33 months
- . Crude Oil Pipeline

This estimation is made on the basis that the access way to the refinery and the refinery site will have been developed before the commencement of refinery construction.

The refinery will enter into on-stream within six months after the mechanical completion, hence the refinery could start its commercial operation at the 51st month for 1250,00 or 250,000 BPSD refinery and at 60th month for 500,000 BPSD counted from the date of commencement of basic engineering.

(4) Refinery Staffing

The organization structures and the department functions for the refinery operation are examined and based on which the required number of refinery employee is estimated.

It is estimated that the refinery with 125,000 or 250,000 BPSD capacity will require the permanent employee of about 650 - 680, while about 880 - 930 for 500,000 BPSD capacity.

COSTS

Por the six base case refineries, the capital and operating costs are estimated. In the estimation, all costs are escalated and reflect economic conditions in Iran and expressed in US dollars.

Table 2.4 presents a summary of costs.

The above costs cover the refinery, products loading pipelines and sea berth. The costs for the following facilities which would be developed as social and industrial infrastructures to support the refinery's activities are separately discussed:

- . Crude Oil Pipeline
- . Site Preparation
- . Harbor, Dredged Channel and Causeway
- · Housing for Refinery's Employee
- . Access way connecting to the Refinery, etc.

Table 2.4
Costs Summary

Case Description		Capital Requirement	Operating Cost	
Configuration	Capacity	10 ⁶ 0\$\$	10 ⁶ US\$/Annum	
	125,000 BPSD	1,074	55.2	
Hydroskimming	250,000 BPSD	1,499	76.4	
	500,000 BPSD	2,446	129.6	
	125,000 BPSD	1,144	57.8	
Hydrocracking	250,000 BPSD	1,617	79.7	
	500,000 BPSD	2,658	135.3	

ECONOMIC ANALYSIS

In order to provide a guide information for further discussions and analysis, an economic analysis is conducted by means of a computer simulation and introducing a gross margin concept.

A required gross margin to ensure a certain level of profit is used as the criterion to evaluate various alternatives. The gross margin calculations are made for CTS to be located in Japan as well as for the refinery in Iran. The required average product price on an Ex-CTS in Japan 1983 basis is estimated as the summation of the following six items:

(1) Crude Oil FOB Price

Crude oil FOB price is based on the official sales price of Tranian light and heavy crude oils as of June 30, 1978. The average price is 12.65 US dollars per barrel.

(2) Refinery Margin

The required refinery margin to ensure ROB (DCF) of 11.8 percent is used. The margin is further broken down into the following four items for the purpose of presenting by what extent the individual element affects on the total gross margin:

. Operating costs: Direct operating costs per barrel of product on a mature year basis.

- . Refinery fuel and losses: Loss of product resulted from refining operations; priced at crude oil costs.
- . Cost of working capital: Interest on short-term loan covering working capital; expressed in US dollars per barrel of product.
- Capital recovery: Cost per barrel of product to recover the total fixed investment within the designated project life ensuring ROB (DCP) of 11.8 percent; defined to be the refinery margin less operating costs, loss, and cost of working capital.

(3) Bunker Fuel Oil Adjustment

Since bunker fuel oil is sold to product tankers directly in Iran and not transported to Japan as product, an adjustment is made to reach the required average price of products ex bunker fuel oil. The adjustment is made using bunker fuel oil price of 10.3 US\$/barrel.

(4) Ocean Freight

The freight is based on tankers newly built in 1983 and transport distance of Kharg/Yokohama. The sizes of tankers are 130,000 DWT and 200,000 DWT for white oils and black oils respectively.

(5) Refined Product Import Tariff

Import tariff is calculated based on the Japan's import tariff rates being in effect as of June 30, 1978.

(6) CTS Hargin

The required CTS margin to ensure ROB (DCP) of 11.8 percent is used. The margin is further broken down into the following three items and presented. The definition of each item is same as for the refinery margin discussed above:

- . Operating costs
- . Cost of working capital
- . Capital recovery

The calculated results for the six base cases are summarized in Table 2.5. Besides, a reference is made to the average product value of product mix from the subject refinery evaluated by the assumed exrefinery product prices in Japan, 1983.

SENSITIVITY ANALYSIS AND ALTERNATIVE STUDIES

In order to check the effects of changes in the major factors which are taken as bases to calculate required gross margins, sensitivity analyses are conducted for the following:

	Change Item	from	<u>to</u>
1.	Project Life	20 years	15 years
-2.	Crude oil cost	12.65 \$/ьы	45.0 \$/bbl
3.	Tax holiday	None	10 years
4.	Investment for	Not included	Included
	industrical infrastructures		(a_1,b_2,\ldots,a_n)
5.	Construction cost	Base	±10 percent

The results of study are shown in Tables 2.6 and 2.7.

An analysis is also made for the effect on the ex-CTS product cost resulting from lowering the crude oil through-put level of the refinery Appendix 1 of Chapter 11.

Alternative studies enclosed in the volume 4 of Book III, Supplement evaluate attractiveness of the technical alternatives for the refinery design compared with base case refineries with 250,000 BPSD crude capacity. The alternative studies cover the following:

- a. Utility Alternatives:
 - . Purchase electric power
 - . Purchase natural gas
 - . Purchase soft water
- b. Fuel Oil Sulfur Alternatives
- c. Process and other Alternatives:
 - . Mixed crude operation
 - . Different crude process ratio: IL: IH = 6:4
 - . Adoption of coker
 - . Less gasoline production: by 5% on crude
 - . Wo medium sulfur fuel oil production
 - . Utilize medium size tankers for product transport

The results of alternative studies show that the external utilities supply at an attractive price will have significant contributions on the refinery's economics.

Table 2.5
Required Average Product Price

(Unit : US\$/BBL)

						(Unite: US\$/BE
Configuration and Capacity	125,000 BPSD	Hydroskimming 250,000 BPSD	500,000 BPSD	125,000 BPSD	Hydrocracking	
Teens	125,000 8PSD	ZOV, UUU BYSD	OUNTURE OUNTERSO	125,000 8280	250,000 BPSD	500,000 BPSD
Crude Oil Cost (FOB)	12.65	12.65	12.65	12.65	12,65	12,65
Refinery Margin						
•			<u></u>	k ∴ ±		_
-Operating Costs	1,53	1.06	ò.90	1.59	1.10	0.93
-Refinery Fuel and Losses	0.91	0.91	0.91	0.88	0.88	0.88
-Cost of Working Capital	0.23	0.17	0.14	0.23	0.17	0.14
-Capital Recovery	4.16	2.89	2.47	4.45	3.13	2.70
Subtotal Refinery Margin	6.83	5.03	4.42	7.15	5.28	4±65
Bunker Fuel Oil Adjustment	0.30	0.25	0.22	0.31	0.25	0.23
Ocean Preight (Refined Products)	1.73	1.73	1.73	1.75	1.75	1.75
Refined Product Import Tariff	0.90	0.90	0.90	0.95	0.95	0.95
CTS Margin				·		
-Operating Costs	0.40	0.29	0.24	0.40	0.29	0.24
-Cost of Working Capital	0.39	0.38	0.37	0.39	0.38	0.37
-Capital Recovery	1.49	1.15	1.00	1.49	1.15	1.00
Subtotal CTS Margin	2.28	1.82	1,61	2.28	1.82	1.61
	<u> </u>		<u> </u>			
(A) Ex-CTS Required Av. Product Price	24.69	22,38	21.53	25.09	22.70	21.84
(B) Av. Product Value in 1983, Japan	17.83	17,83	17.83	17.93	17.93	17.93
(B) - (A)	-6.86	-4.55	-3.70	-7.16	-4.77	-3.91

Note

¹⁾ The average product value in 1983, Japan is calculated using the existing refinery based ex-refinery product prices. In estimating product prices in 1983, a certain cost escalation through 1978 to 1983 is taken into account.

Table 2.6 Sénsitivity Analysis Change in Réquired Gross Margin (Case 1 Hydroskimming)

Refining Capacity, BPSD	125,000	250,000	500,000
Required Gross Margin (US\$/BBL) of Base Cases	6.83	5.03	4.42
Change in Required Gross Margin (US\$/BBL)			
1. Project Life : 15 years	+0.43	+0.29	+0.28
2. Crude Cost 1 ±5 US\$/BBL	±0.42	<u>+</u> 0.41	±0.40
3. Tax Holiday : 10 years	-0.33	-0.24	-0.15
4. Scope : Including Infrastructure	+0.97	+0.59	+0.36
5. Plant Cost : +10%	±0.46	+0.34	±0.27

Table 2.7
Sensitivity Analysis
Change in Required Gross Margin
(Case 2 Hydrocracking)

Refining Capacity, BPSD	125,000	250,000	500,000
Réquired Gross Margin (US\$/BBL) of Base Casés	7 .1 5 /	5.28	4.65
Change in Required Gross Hargin (US\$/BBL)			
1: Project Life : 15 years	±0.46	+0.33	+0.30
2. Crude Cost ! ±5 US\$/BBL	±0.41	±0.39	+0.39
3. Tax Holiday : 10 years	0.36	-0.24	-0.16
4. Scope ! Including Infrastructure	10.97	+0.59	+0.37
5. Plant Cost i +101	±0.49	±0.36	+0.29

INFRASTRUCTURES

It will require the development of some industrial and social foundations to implement the refinery project in Bushehr area. The scope and schedule of such developments will be subject to concessive agreements between the Iranian government and a venture company.

In this respect, major elements may have to be discussed as infrastructures for the project are itemized and their requirements for the refinery to be constructed at Muhammad Ameri are discussed.

(1) Crude Oil Pipelines

- . For transportation of the 500,000 BPSD crude oils, two pipelines with a 165 Km distance and 26 inches diameter will be required.
- . The cost is estimated to be about 120 millions US dollars.
- The time required for the construction will be about 36 months and 6 months advanced completion to the refinery's startup will be required.

(2) Site Preparation

- For construction of the refinery with an ultimate capacity of 500,000 BPSD, approximately 4,000,000 m² of refinery area will be required and the earth work for developing the area will be about 3,000,000 m³.
- . The cost for the work is estimated to be about 20 millions US dollars.
- . The time required for the development will be about 21 months.

(3) Harbor, Dredged Channel and Causeway

- For shipment of solid sulfur and bunker fuel oil, a harbor and dredged channel capable of accommodation up to 10,000 DWT carriers and a causeway of 3.5 Km long to connect the harbor with the refinery will be required.
- . The total cost for constructing the facilities is estimated to be about 120 millions US dollars.
- . The time required for the construction will be about 33 months.

(4) Community and Access Way to the Refinery

. It will be advantageous to develop a community for the refinery employees in Bushehr City, for which the area of about 220,000 m² will be required for 500,000 BPSD.

- . Prior to the commencement of the refinery operation, an access way to reach the refinery branching from the existing trunk road to be developed. The asphalt paved road with eight meters width is estimated to cost about 15 millions US dollars.
- . Besides the above, improvement of other social infrastructures is considered to be essential for the successfull implementation of the project.

RECOMMENDATIONS

In order to achieve the efficient and rapid realization of the refinery and the most beneficial return from the project, it is recommended that the following items should be discussed and defined at the early stage from now:

- (1) Identification of policy issues to render the project economically attractive.
- (2) Type and capacity of the first stage refinery.
- (3) Réfinery operation aspects.
 - Service factor
 - Product quality
 - Plexibility
 - Location of shipping terminal
- (4) Product transportation
 - Secondary transportation
 - Contamination
 - Direct transportation
- (5) Joint venture company
- (6) Scope of investment
 - Infrastructure
 - Product carrier
 - CTS
- (7) Funds raising, supply and demand program.
- (8) Comparison with Japan's expanded and grass roots refineries etc., to be constructed in future.
- (9) Other items for project implementation.

STUDY BASES

STUDY BASES

This chapter describes the study bases that have been set for this study.

CRUDE OIL:

Type

- -. 50 percent Iranian Light and 50 percent Iranian Heavy.
 - . Crude oils will be made available either mixed or segregated.

Assay

. To be based on the following crude assays which are provided by NIOC for this study:

Iranian Light Crude: Exxon, August 1971 Iranian Heavy Crude: Exxon, December 1971

Pick-up Point

. Crude oils will be made available at Gurreh pump station at 900 psig pressure.

REPINERY:

Location

- Bushehr
- . Pour alternative sites in Bushehr area suggested by NIOC as some of the potential sites.
- Site comparison will be made including, but will not be limited to, those suggested by NICC.

Refinery Capacity

- . Three alternatives; 125,000, 250,000 and 500,000 BPSD.
- In calculating annual production rate, an overall on-stream factor of 85.0 percent will be used.

Configuration

- . Two alternatives, namely, hydroskimming and hydrocracking.
- . To maximize middle distillates for both cases.

Utilities

- . Self-supporting.
- Alternative investigations will be made for the cases of receiving such external utilities as electric power, fresh water and natural gas based on NIOC's suggestion.

Tankage

- . Crude oil tankage is set to have a capacity for 7 days.
- . Other tankage will be set by taking into account the operation and product loading schedule of the refinery.

Pollution Control

- . Intermediate abatement.
- . No stack gas scrubbing but handle ship's deballasting water.

Code and Standard

. Internationally acceptable ones will be used.

PRODUCTS:

Product specification and product slate will be set taking into account that the products will be exported mainly to Japan's market.

PRODUCTS LOADING AND TRANSPORTATION:

Tanker Size

- . Up to 200,000 DWT will be considered on the basis that a central terminal system (CTS) for products unloading will be built in Japan.
- . Alternatively, the case of direct transportation by medium size tankers will also be studied.

Location of CTS

- . Two alternatives, namely, northern and southern areas of Japan.
- . Freight differential to be estimated.

Tank Capacity of CTS

. Inventory capacity of storage tanks in CTS will be determined taking into account the applicable laws and regulations of Japan.

HOUSING FOR REPINERY'S EMPLOYEE:

The study will not cover the estimation of housing for refinery's employee.

COSTS ESTIMATION:

Investment Cost

- . Engineering and construction will be commenced on August 1, 1979.
- . Escalation through construction period to be included.
- . No import duties or sales tax on equipment.
- . A nominal figure of 5 millions US dollars will be used for land cost. .

Operating Costs

- . Based on the wages and salary schedule from NICC.
- . Minimum manpower for permanent employee by introducing outside contract maintenance force for covering turnaround peaks.

BASIC CONSIDERATIONS

BASIC CONSIDERATIONS

This chapter describes the basic considerations made in planning the study. The assumptions which have been set to supplement those defined in the study bases are also included. The following are the contents of this chapter:

- . Product Selection and Product Specifications
- . Mathematical Model
- . Maintenance Turnarounds and Intermediate Tankage
- . On-stream Factor
- . Product Loading
- . Production Prevention

4.1 Product Selection and Product Specification

4.1.1 Product Selection

In selecting suitable product mix for an export oriented refinery, particular attentions should be paid for transportation economics, especially in the case that the anticipated market is located far from the refinery, likely to this project.

The products from the refinery will be transported to Japan by very large product carriers and distributed to consumers via CTS to be constructed somewhere in Japan. It is to be noted that the CTS could have a function, if required, of further blending to obtain the other grades of products and therefore, the product mix from the refinery will not require to meet exactly with the demand pattern in the market.

It will be advisable to reduce the numbers of product grades to be involved as far as practicable from the following viewpoints:

- a. Number of product grades to be loaded on a product carrier should be limited to two or three at maximum due to contamination and complexity of operation reasons.
- b. One shipment volume is very large and consequently required tankage to accommodate each grade of products to be loaded will become large.

- c. Installation of product loading pipelines for common use will be limited due to contamination reason. In the case that a common loading pipeline is used to load different grades of product, lot size of each product should be large enough to minimize effect of interface oil between two grades on product qualities.
- d. Therefore, the increase in numbers of product grades will result in the increase in requirements for tankage and loading pipeline installations.

In this respect, it will be advisable that the products selected for an export refinery will hold majority in the anticipated market.

The following grades of fuel products are presently marketed in Japani

- . Gasoline premium and regular
- . Naphtha
- . Jet Fuel
- Kéroséne
- . Gas Oil
- . A Fuel Oil
- . B Fuel Oil
- . C Fuel Oil

Of those, premium gasoline, jet fuel, and A and B fuel oils are planned to be not produced based on the following considerations:

Gasoline - Premium

It is anticipated that the demand for premium gasoline will decrease rapidly reflecting the strengthened regulations on automobile's exhaust gas qualities, (Refer to Table 4.1). Therefore, there is no positive reasons to produce a small quantity of premium gasoline in newly installed export refinery.

Jet Fuel

Since jet fuel is rather minor product in the market as shown in Table 4.2, jet fuel is not planned to produce. Of the two grades of jet fuels, namely, JP-4 (gasoline type) and JP-1 (kerosene type), JP-1 can be, if required, delivered from CTS in the expense of kerosene product.

Table 4.1

Demand Pattern of Motor Gasoline (PY 1978 - 1982, Japan)

Grade	Octane		Pis	ical Yea	r ,	
	Number	1978	1979	1980	1981	1982
Premium	94	16%	88	6%	5%	48
			<u> </u>		4. 3 * _	
Regular	90 - 1	908	92%	94%	95%	96%

- Note: 1) Octané number on à lead-free basis.
- 2) Source: The petroleum Supply Plan for PY1978 1982, prepared by the MITI.

A Puel Oil

In general, production of A fuel oil is carried out by blending straightrun or hydrotreated gas oil with 2-3 percent of atmospheric residue. Therefore, the demand for A fuel oil is treated as that for gas oil, from the refinery's production planning viewpoints. In this connection, it is planned that the refinery delivers gas oil and further blending to obtain A fuel oil, if required, is carried out in the CTS in Japan.

On the other hand, since the price difference between gas oil and A fuel oil is rather small, it will be advantageous from the viewpoint of import tariff difference to import gas oil as A fuel oil rather than as gas oil.

However, since the above import tariff difference can be neglected provided that the blending on a bonded condition will be allowed, it will be advisable from the standpoint of freight costs and flexibility that oils to be assigned for A fuel oil production be transported separately as gas oil and fuel oil and blended in CTS following the demand.

B Fuel Oil

B fuel oil is not planned to produce due to the following reasons:

- a. B fuel oil is rather minor product in the market and its demand is anticipated to decrease in future. (Refer to Table 4.2)
- b. Most of consumers of B fuel oil are minor industries and generally do not have fuel oil storage and handling facilities with heating devices. Therefore, B fuel oil is needed to be of low pour point, i.e. 0-5°C. Meanwhile, atmospheric residue from Iranian crudes is rather of high pour point, approximately 28°C, and is not suitable to produce low pour point B fuel oil within its viscosity specification limits.

As for C fuel oil, only two grades with differents sulfur levels are planned to produce taking into account the transportation and storage economics and possible further blending to obtain other grades of products having any intermediate sulfur level.

4.1.2 Product Specifications

There are two kinds of product specifications, from refiners veiw, namely, manufacturing and selling specifications.

In general, the manufacturing specification has a certain allowance over the selling specification to cope with possible quality deteriorations at distribution stage due to contamination, etc.

In this study, however, no attempt is made to such allowances provided that provision of such allowances will have no significant effect on the facility planning as well as on refinery's economics.

The Japanese Industrial Standards (JIS) specifies the minimum requirements for qualities of petroleum products. The prevailing refiner's specifications have certain margins over those of JIS generally. Taking into account such facts, the product specifications for this study are set as shown in Table 4.3.

The following describes briefly the considerations made in setting up the specifications:

Demand and Supply Pattern of Petroleum Products

(FY 1978/1982, Japan)

			1978	٠ • •		• .					-	
		Videns			Demand		Ś	Krďďns			Demand	
-	•	Fac Malla							1000	Domestic	Export	Total
	Production	Import	Total	Domestic	Export	Total	Production	THEORET	1000	200		
			:	: ::		•			12 24	12.22	0.02	12.24
	12.50		13.52	13.48	•	13.48	12.24		24.77			14 58
DITT-1000		•	.07	14.81	1	14.81	12.57	2.01	14.08	P		
Naphtha	₽ A - O - T	17.0) () () () () () () () () () (4	175	1-71	90.0	1.77	66.0	0.78	1.17
Jet Fuel	1.66	90-0	7/5	א ה ה	> 0	1	i d	-	4	65.6	ı	9-59
Verosene.	9.83	ı	9.83	10-13	10.0	10.14		l	1	4	0.00	7,50
ACA (0.10	4	'n	7.69	7.80	0.01	7.81	7.50	i.	00.) (0
CAS 011	20.07				0 62	9,23	7.82	7.08 7.08	8 8	8.28	70.0	2
A Fuel Oll	7.81	1-28	л Э* Э	6				•	2,53	2.51	0.0	2-53
B Puel Oil	3-24	1	3-24	. 76 	0-02	9.0))	00	42 44	35, 98	6.46	42.44
c ruel oil	37.77	4.76	42.53	35.95	6.64	42.59	3634	25.5				
	62 50	18.6	102.31	95.03	90*8	103.09	92.50	7.05	99.55	91.63	7.92	99.55
Total ruers					-							
	Crude Th	rough-pu	Crude Through-put: 4,180,700	700 BPCD		٠	Crude Th	Crude Through-put:		5,138,700 BPCD		
	- 44 - 44 - 44 - 44 - 44 - 44 - 44 - 44	Sanda Denand:					Naphtha Demand:	Demand			# VVV -003	maa.
	Petro	Petrochemical use	r use	497,400 BPCD	950 100 100 100 100 100 100 100 100 100 1		Petro	Petrochemical use	1.767 1188		1 008,96 96,800 H	88
	Gases	Gases & Fertilizer		use 77,300 BPCD	98CD		Fuel use	. a . c . c . c . c . c . c . c . c . c		·	44,700 E	Ode
	Fuel use	985		619.400 BPCD		•	E1	Total			749,500 BPCD	S S
	_	TOTAL		くってくりょう			_					ı

Note.

^{1.} Figures shown in this table indicates supply/demand values in percentages on crude oil processed in refineries.

^{2.} Source: Petroleum supply plan for FY 1978 - 1982, prepared by the MITI.

Table 4.3
Product Specification Summary

Products	Properties	Specification
	RON, F-1 Clear RVP 037.8 C ASTM Distillation (D-86)	Min. 90 0.45 - 0.63 Kg/cm ²
Gasoline	10% 50%	Max. 65 °C Max.120 °C
:	90% 97%	Мах. 180 °С Мах. 205 °С
	RVP 837.8°C	Max. 0.63 Kg/cm ²
Naphtha	Sulfur Content EP	Max. 0.01 Wt. 8 Max. 200 C
	Plash Point (Tag)	мin. 40 °С
Kerosene	Smoke Point Sulfur Content	Min. 24 mm Max. 0.005 wt.%
	ASTH Distillation (D-86)	0-
·	1BP 95%	Hin. 150 °C Max. 235 °C
	Flash Point (P-X)	Hin. 50°C
	Pour Point Cetane No.	Max7.5°C Min. 50 °C
Gas Oil	Sulfur Content	Max. 0.1 wt.%
	ASTM Distillation (D-86) 90%	жах.350 ^О С
	Flash Point	Hin. 60 °C
L/S Fuel Oil	Sulfur Content Viscosity #50°C	Max.0.1 wt.8 Max.150 cSt
	Plash Point	Min. 60 °C
M/S Fuel Oil	Sulfur Content Viscosity 050 C	Max.1.5 wt.8 Max.150 cSt
	Sulfur Content	Max.3.5 wt.8
Bunker Fuel Oil	C.C.R. Viscosity 050°C	Max. 12 wt.% Max.250 cSt

Motor Gasoline - Regular

Lead free gasoline with research octane number of 90 is presently marketed in Japan and the octane rating requirement is anticipated to remain unchanged in near future.

The JIS specification for motor gasoline allows alkyl-lead addition by 0.3 ml/1. However, automobiles equipped with catalyst type exhaust gas converter are prevailing recently and they do not allow alkyl-lead.

In this connection, the octane rating requirement of RON 90 on a lead-free basis is set.

As for vapor pressure limit, 9.0 psi (0.63 kg/cm) max. is used taking into account that the refinery is located in a hot zone.

On the other hand, a target of aromatics and olefins contents in motor gasoline has been setup recently in connection with the automobiles exhaust gas control program as follows:

Aromatics

35 vol. % max.

Olefins

10 vol. % max.

Reformate based notor gasoline with research octane number of 90 would contain aromatics slightly exceed 35 vol. % and, in such a case, FCC unit with relatively small capacity will have to be installed to satisfy the requirement.

However, no attempt is made to this aspect in this study, provided that motor gasoline containing aromatics slightly exceed the above limit would be acceptable and provision of FCC unit; if installed, will not have significant effect neither on refinery's economics nor product slate.

This will be subject to further discussion at an early stage of execution.

Naphtha

No special consideration is made for the naphtha specifications. Reid vapor pressure limit is set taking into account the storage in hot climate.

Kerosene

Smoke point specification is set as 24 mm minimum against the JIS specification of 23 mm minimum. A target figure of 25 mm is prevailing in Japan's refiners, but it is difficult to obtain kerosene with 25 mm smoke point from 50%/50% mixture of Tranian light and Tranian Heavy crude oils without

医大大 机工程线机 化甲烷苯二甲基 医脑畸形

installing a smoke point improver. Therefore, only 1 mm margin against the JIS specification is considered. No additional specification required to meet the jet kerosene (JP-1) specifications is considered at this stage, although there is a possibility to deliver kerosene as JP-1.

Gás Oil

Gas oil specifications are set referring the prevailing figures in the current market. The lowest side figure is used for sulfur content. Many grades of gas oil in terms of pour point are marketed in Japan. Gas oil with lower pour point is appreciated in the market. In this study, a pour point limit of -7.5°C max. is used taking into account that this grade of gas oil hold a majority in the market.

C Fuel Oil

Many grades of C fuel oil with sulfur contents ranging 0.1 wt.% to 3.0 wt.% with the pitch of as small as 0.1 wt.%. It is thought that growth in demand for 0.1 - 0.3 wt.% S low sulfur fuel oil and 1.5 - 2.5 wt.% S medium sulfur fuel oil will be high in the future market compared with the other grades of fuel oil. In this study, 0.1 wt.% for low sulfur fuel oil and 1.5 wt.% S for medium sulfur fuel oil are set taking into account the anticipated ease of marketing in fugure, although these are rather extreme side figures compared with those prevailing in the present market.

The final selection of sulfur grades for fuel oil will be subject to a venture company's judgement with due consideration of the market conditions and economics.

A reference is made in Table 4.4 for C fuel's demand by sulfur grades.

Bunker Fuel Oil

The bunker fuel oil specifications are set referring those for 1,000 seconds viscosity (Redwood-I, 850°C) bunker fuel oil.

4.2 Refinery Mathematical Model

There are two alternative refinery configurations in this study, which are hydroskimming and hydrocracking.

In the course of establishment of these refinery configurations, a mathematical model using linear programming techniques is developed to obtain suitable refinery balances.

Table 4.4

C Fuel Oil Demand Pattern by Sulfur Grade
(FY 1976 - 1981, Japan)

Pisical Year	1976	1977	1978	1979	1980	1981
Under 0.15 wt% S	1.2%	3.3%	3.1%	3.6%	3.9%	5.1%
0.15 - 0.25 wt% S	0.6%	0.5%	0.3%	0.3%	0.8%	0.3%
0.25 - 0.30 wt% S	14.48	19.6%	17.8%	16.2%	15.8%	16.0%
0.3 - 0.5 Hts S	7.28	8.6%	9.18	8.78	8.6%	8.9%
0.5 - 1.5 wt% S	18.0%	12.5%	11.98	8.78	11.78	11.4%
1.0 - 1.5 wt% S	10.4%	6.7%	6.8%	10.0%	6.9%	7.0%
1.5 - 3.0 wt% S	48.2%	48.8%	51.0%	52.5%	52.3%	51.3%
Average Sulfur	1.49	1.46	1.52	1.56	1.54	1.52
e e e	Gt% S	wt% S	wt& S	wt% S	wt% S	wt% S

Source: The investigation carried out by the MITI.

The major considerations made in establishing the configurations are briefly discussed below:

Crude Oils

Taking into account the two alternatives of crude oil supply conditions, namely, segregated and mixed bases, crude oil data are prepared for the three different crude oils which are 100 percent of Iranian light crude oil, 100 percent of Iranian heavy crude oil and 50/50 percent mixture of both crude oils.

The cutting ranges of these crude oils are selected so as to meet the requirements stated in Chapter 3, Study Bases, as follows:

- . The naphtha/kerosene cut point is set at 154°C to maximize kerosene within flash point limit.
- The kerosene/gas oil cut point is set at 235°C in view of smoke point limit for kerosene.
- . The gas oil/residue cut point is set at 371°C to maximize gas oil.

Products

The product slate is obtained from the solution of the computer program which is processed under a consistent set of the following premises:

- This figure is tentatively set based on a preliminary market forecast referring the Petroleum Supply Plan for PY 1978 1982 prepared by the MITI. Sensitivity analysis will cover the case for a different gasoline production rate.
- . The production rate of bunker fuel oil is fixed at 3 percent on crude based on the estimated bunker fuel oil consumption of VLCC for round trip from Iran to Japan.
- . The production ratio of low sulfur (0.1%) and medium sulfur (1.5%) fuel oil is fixed at 4:1. The sulfur level of C fuel oil pool (0.38%) will meet the SOx control program in Japan after 1985 without help of stack gas scrabbing. Therefore, this case is considered to represent an extreme case. The cases for producing C fuel oils with different sulfur levels will be examined in alternative studies.
- . The yields of other products are defined from the computer output so as to maximize middle distillates.

Process Units

All of the process units considered for this study have a proven record with several plants in successful connercial operation. No contact with process licensors, such as for catalytic reforming, residue hydrodesulfurizing, and hydrocracking processes, was made specific to this study.

The technical and economic data for these processes are based on those from our accumulated data file. The major process considerations are as follows:

a. Atmospheric Residue Hydrodesulfurizer

Since the atmospheric residue from Iranian heavy crude oil is of high in metal contents and deteriorates HDS catalyst rapidly, its minimum processing for the unit is considered.

By high-pressure hydrogen treating, the residue is desulfurized to be 0.1 weight percent fulfur. Reactors for the unit are considered to be designed on semi-annual basis.

In the range of 9 percent on feed of cracked gas oil produced from the unit is planned to be used as flushing oil for the fuel oil loading submarine pipeline when it is not in service.

Since the flushing oil requirements are almost equivalent to the cracked oil produced and the flushing oil is eventually shipped as fuel oil, the refinery balances are developed on the basis that no cracked as oil is routed to product gas oil pool.

The properties of cracked gas oil are estimated as follows:

Nominal Cut Point	190 ~ 343°C
Gravity, OAPI	36
Sulfur, wt.%	0.05
Cetane No.,	40 - 42
Color, ASTM	2

As is observed from the above, the cracked gas oil alone does not meet the specification in terms of cetane number and is needed to be blended with the majority of high cetane number component when it is planned to deliver as specification gas oil.

b. Hydrocracker

The hydrocracker is designed to be for the maximum middle distillates. The extensive recycle of fractionator bottom is made to extinguish it.

c. Catalytic Reformer

Hydrotreated heavy naphtha is processed to produce high octane number reformate for gasoline blending. The design octane number of RON 98 is used.

4.3 Maintenance Turnarounds and Intermediate Tankage

A grouped maintenance with the following operating schedule is considered in view of reducing peak time maintenance force:

a. Major maintenance shutdown

Once a year and for 30 days.

b. Catalyst replacement of atmospheric residue HDS (AR HDS)

Twice a year and for 15 days each; once of the twice replacement can be performed during major maintenance shutdown period.

- c. Catalyst regeneration of catalytic reformer At reasonable intervals and for a week.
- d. Decoking and catalyst replacements for the units other than AR HDS

 To be performed during major maintenance shutdown period.

e. Operating level

When one group is shutdown for maintenance, the other group is to be operated basically at 60 percent load.

f. Grouping for scheduled maintenance

The grouping as shown in Table 4.5 is considered. For 500,000 BPSD crude capacity, there are four groups.

Gas treating and sulfur recovery units have two trains each for one crude processing train.

Table 4.5

Grouping for Scheduled Maintenance

Group A	Group B
No.1 & 2 Atmos. Crude Units	Kerosene HDS
Vacuum Plasher	Gas Oil HDS
Gas Recovery	AR HÓS
Naphtha Hydrotreater	No.1 H2 Generator
Catalytic Reformer	No.1 Gas Treater
VGO HDS	No.1 Sulfur Recovery
No.2 Gas Treater	
No.s Sulfur Recovery	
Foul Water Stripper	
(VGO Hydrocracker)*	effective and property of the extension
(Visbreaker)*	
(H2 Generator No.2)*	

Note: * For Case 2 Hydrocracking: VGO HDS will be eliminated.

Based on the above maintenance and operating schedule, tankage criteria for process intermediate services are set as follows:

AR HDS Charge	18 days
Kerosene HDS Charge	18 days
Gas Oll HDS Charge	18 days
VGO HDS (or Hydrocracker) Charge	7 days
Visbreaker Charge	7 days

A 15 percent safety factor is provided for all tanks.

No intermediate tankage specific to catalytic reformer charge is provided, because sufficient storage capacity to cover catalyst regeneration and re-startup is secured by the tanks provided for heavy naphtha before blending.

At 500,000 BPSD crude capacity, kerosene and gas oil HDS charge tanks can be reduced to one-half capacity, provided that kerosene and gas oil HDS units for another 250,000 BPSD train will not be shutdown for maintenance simultaneously.

While, AR HDS charge tanks could scarcely be reduced, because a certain space has always to be kept to cover shutdown for catalyst regeneration and unbalance between normal output from crude unit and AR HDS design capacity.

4.4 On-Stream Pactor

The major governing factors of on-stream factors for process units will include, among others, the losses in operation due to the following:

- a. Scheduled shutdown for major maintenance.
- b. Unscheduled shutdown due to troubles or minor maintenance, etc.
- c. Forced shutdown or reduced operation due to the intermediate tankage limits.
- d. Reduced operation due to having excess capacity against the demand.

Of those, items a through c above are taken up and attainable on-stream factors from the technical standpoints are briefly examined below.

The definition of on-stream factor used in this text is as follows:

On-stream Pactor (%) = Annual Av. Through-put (BPCD) x 100

Design Capacity (BPSD)

Average Shutdown Periods

Table 4.6 presents the average shutdown periods due to technical reasons for the 1973-1977 period, Japan.

As is observed from the above table, average shutdown periods for the scheduled maintenance of distillates treating processes fall in one month and in the range of 4-5 days shorter for atmospheric crude unit.

However, in the case of adopting a flow scheme that unstabilized whole straight-run naphtha from an atmospheric crude unit is routed directly to a naphtha hydrotreater, shutdown period for scheduled maintenance of the crude unit will have to be governed by the downstream unit.

In this connection, the scheduled maintenance period of one month for the crude units and distillates processing units is used.

An allowance of 4 days per annum for unscheduled shutdown is also used.

Meanwhile, the scheduled and unscheduled shutdown periods for atmospheric residue hydrodesulfurizer are set for 40 days and 10 days respectively.

Attainable On-stream Factors

On the basis of the shutdown periods setup above and the grouped maintenance schedule and intermediate tankage as discussed in paragraph 4.3, the attainable on-stream factors are examined taking the atmospheric crude unit as the representative of one group, while the atmospheric residue hydrosulfurizer for the other.

Additional assumptions used are:

- a. Atmospheric residue from the crude unit is totally routed to the atmospheric residue hydrodesulfurizer (AR HDS) and is not routed to the others except for AR HDS charge intermediate tanks.
- b. The space of AR HDS charge tanks is totally usable for balancing feedstock including the additional space provided for safety. Then, the usable space becomes for 21 days' normal output of the crude unit.

18 days / 0.85 = 21 days

c. The AR HDS is oversized by 6.3 percent against the normal output of residue from the crude unit based on assumed on-stream factors of 85 percent and 80 percent for the crude unit and AR HDS respectively.

85% / 80% = 1.063

Table 4.6
Average Shutdown Period (1973-1977, Japan)

(Unit: days/year) Scheduled Maintenance Unscheduled Shut-down Иİп. Hax. Average Min. Max, Àverage Crude Unit - Atros. 19.0 33.3 27.2 1.0 4.4 2.6 Crude Unit - Vacuum 25.3 34.6 31.3 1.4 9.6 4.2 Catalytic Reformer 23.9 36.0 32.1 2.3 5.8 3.9 Naphtha HT 20.2 37.5 31.4 1.2 4.6 3.1 Distillate HDS 27.1 34.5 31.1 2.8 7.7 4.8 VGO HDS 30.1 42.6 38.4 2.8 19.8 9.8 Atmos. Residue BDS 42.8 54.5 48.1 0.2 38.3 11.9

Source: The investigation by the Petroleum Association of Japan.

d. Unscheduled shutdowns occur dispersally throughout operating period. Two cases, namely, one year and two years between major maintenance shutdown are examined as presented in Figures 4.1 and 4.2.

The resulting on-stream factors are as follows:

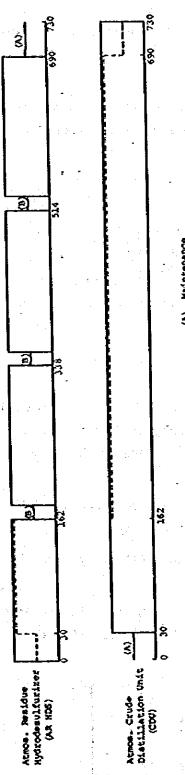
	One Year Continuous Operation	Two Years Continuous Operation
Crude Unit	83% (303 days)	90% (648 days)
AR HDS	78% (285 days)	83.5% (610 days)

Based on the above results and provided that a few percent improvement in on-stream factors will be possible by shifting a portion of atmospheric residue assigned for AR HDS to the vacuum flasher during the AR HDS's maintenance and vice versa, technically attainable on-stream factor of 80 percent for AR HDS and 85 percent for others are adopted taking a maintenance schedule of once a year as base.

Figure 4.1

Attainable On-stream Factors : Case-1 One Year Between Major Maintenance

Atmos. Residue Mydrodesulfurizer					ê		=				3	
(AR KDS).)°°				135	0/X				e e	325	
Atmos. Crude Distillation Unit (CDU)	3				\$\$1			7 5 5 8 8	\$ 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		225	1 1%
						38	Maintenanco Cotalyst Rej	Meintenanco Cotalyst Replacement (15 days)	ant (115 d	(6.4%		
1	Max. Operabl	able Days	Tonkade Li	toan in Operation Due to kede timit Unached, Shutd	Coar in Operation Due to	Not Operable Days.	ble Days.	Atmon.]	Atmon, Residue Balance Supply	Ralance Unes	·	
	COC	AR RDS	COU AR MDS	os cou	AR HDS	2000	AR HDS	AR HDS to AR HDS to Tank from CDC	to Tank	from CD0	from Tonk	


	Max. Operable Days	SPIC DAYS		IR IN OP	toam in Operation Due to		Not Opera	Net Operable Days		Atmos. Residue Balance	Balance	
period	W/O Tenkede Limit	oe Limit		io Cimit	Unached.	Tankade timit Unached, Shutdown		Attainable	Arddas	Ą,	Deen	¥
	coo	AR HDS	ğ	COC VR NDS	CDC	AR HDS	Ω C	AR IIDS	AR HDS to AR HDS to Tank	to Tank	from CDO	Crom Tonk
1 - 155th day	125	165	•	*	N	v	23	144	123	o	ន	ส
1.56 - 365th day	612	165	30	6	м	•	780	159	159	23	159	ò
Mole Period	33,5	330	30	(25) 26	₹	ττ (οτ)	303	(285) 303	262	12.	282	ដ

200

Migures shown in this table indicate the cummulative through-puts represented by SD equivalent of CDD at its design capacity. The figures with parenthesis indicate those represented by 60 equivalent of AR MDS design copecity.

Figure 4-2

Attainable On-stream Factors: Case-2 Two Years Between Major Maintenance

Maintenance Catalyst Replacement (15 daym) 3€

Period Hex. Operable Days Limit Transchol Une WO World W/O Transchol Markeys Wimit Unsched, Shutdown CDU AR NDS CDU AR NDS CDU AR NDS CDU AR NDS 1-162th day 132 172 0 16 2 5 5 163-339th day 176 171 8 0 2 5 5 5 55-730th day 216 171 0 0 0 2 6 6			!			
CDU AN HOS 132 272 176 171 276 171 216 171	Acta Acta	Attainable	ZYDDYX	Α,	Ď	UROE
216- 171 6 0 2 216- 171 6 0 2 216- 171 28 0 2	The same of	SON MY	SOH MA OS	to Tank	from COO	from TANK
132 172 0 16 2 176 171 8 0 2 176 171 0 0 2 216 171 28 0 2	, and the second				V E 2	5
176 171 8 0 2 176 171 0 0 2 216 171 28 0 2	2 130	131	130	0	25.	;
216 171 6 0 2	5 166	766	166	•	166	6
216 171 28 0 2						
216 171 28 0 2	5, 166	798	166	Ċ	166	6
216. 171. 28 0 2						·
	6 186	165	165	#	163	>
					1,	
(645).	21 648	648	627	72	627	21
	$\frac{1}{2}$					

rigures shown in this table indicate, the cummulative through-puts represented by 50 equivalent of CDC at its design capacity. The Expures with perenthesis indicate those represented by 5D equivalent of AR NDS design capacity.

4.5 Product Loading

The bases required for determining the product loading facilities are setup as follows:

Annual Operable Days of Sea Berth

It is said that large tanker's berthing and off-berthing operations and loading and unloading operations at sea berth are restricted under the following climatic and tidal conditions:

- . Wind velocity over 10 m/second
- . Wave height over 1.0 m
- . Dense fog with visible distance of less than 1 km
- . Tidal current of lateral direction over 0.5 knot

Based on the climatic data for Busher published by the Meteorological Office of Iran, number of days with wind velocity over 22 knot (11.3 m/second) and fogs are as follows:

No information regarding waves is available. Then, it is assumed that the number of days not operable due to strong winds and high waves would be same as those wind velocity of 22 knot or more is observed taking into account the following:

- a. It will be very rare case that the wind strong enough to restrict the tanker operation blows throughout the day.
- b. High waves to restrict tanker operation will occur even when the wind velocity is rather low.
- c. Based on a record of strong winds and high waves in the Setouchi sea area of Japan, the distributions of those to restrict tanker operation are as follows:

Strong wind alone	33 %
High wave alone	51 8 .
Both wind and wave	16 %

^{*)} Based on observations of 12 times/day

Then, annual operable days of sea berth in Busher area is calculated as follows:

$$365 - (41 + 5) = 319$$
 days

Based on the interview to a tanker operating company, the tanker operating conditions in the Gulf is much better than those in the Tokyo Bay and almost same as those in the Setouchi sea area of Japan.

The number of operable days in these areas are thought to be:

Tokyo Bay 250 - 270 days/year Setouchi 300 - 330 days/year

Therefore, the annual operable days of sea berth of 319 days as calculated above is considered to fall in reasonable range.

Operating Factor of Sea Berth

The maximum operating factor of berth is assumed to be 60 percent at which it is thought that operation is most effective.

Berth Occupancy Time

The berth occupancy time by tanker size is established as shown in Table 4.7 from results obtained in Japan.

The occupancy time shown in the above table includes allowance for tanker's waiting time to depart during daytime, although normal practice in the Gulf area is that tanker's arrival and departure are made during day and night.

In determining the required number of berths, a 20 percent allowance will be provided against those calculated based on the largest tankers to cover possible shipment by smaller size tankers.

It is considered that loading of various materials necessary for navigation including fuel, drinking water and foodstuffs be made during the loading time.

Shipping Schedule

A mixed cargo based shipping is adopted taking into account the increase in tankage requirement resulted from single product loading to large tankers.

The products are assumed to be loaded to a tanker with the following combinations:

Table 4.7

Berth Occupancy Time Classified by Tanker Size

	Ta	Tanker Operation Time (Hrs)	tion Time (F	irs)	-	Working Ta	me at Sea	Working Time at Sea Berth (Krs)	()	
Tanker Size (DWT)	Arrival	Departure Wa	Waiting for Depart.	Total	Prepara- tion Work	Deballast-Loading ing	Loading	Prepara- tion for Depart.	Total	rotal Occu-
200,000	63	rt	ਜ	4	S	8	24	ý	43	42
130,000	ام ا	rl	v	∞	'n	ý	18	4	33	4
000,06	Ŕ	н	H	4	s v	и	12	7	24	58
80,000	⊢ 1	н	-1	m	W	'n	7	Ŋ	39	22
					-					<u></u>

change-over of on-shore facilities and equipment on the tanker in the case of multi-1. Time required for preparation work shown in the above table includes 3 hours for grade loading.

2. It is assumed that tankers can arrive and depart during daytime.

3. Docked quarantine is assumed, and the time for it is included in the working time.

Note

- .a. Gasoline and naphtha
 - b. Kerosene and gas oil
 - c. L/S and H/S fuel oils

The above products will be loaded to tankers via submarine pipelines, while bunker fuel oil and sulfur will be shipped by barges and general cargo boat respectively at the separately provided harbor due to their less fluidity and relatively small quantity to be shipped.

Simply from the technical point of view, the maximum size of full-loaded tankers havigable through the Malacca Straight is 250,000-280,000 DWT depending upon their design. However, the governments of Malaysia and Indonesia insist that the size of tankers be limited to 200,000 DWT. Therefore, the maximum size of tanker allowed for this study is considered to be 200,000 DWT.

In general, optimal size of tanker is determined based on the balance that freight costs decrementals, and tankage and other related costs incrementals resulted from the increased tanker size, and consequently, the larger the refining capacity, the larger the economical tanker size becomes.

In this study, however, the following tanker sizes are adopted for all refining capacities without detail study on such aspects:

> White Oils 130,000 DWT Black Oils 200,000 DWT

The larger size of tankers for white oil may be economical for 500,000 BPSD crude capacity.

4.6 Pollution Prevention

As for water pollution prevention, such facilities as will be needed to meet the following requirements for effluent water qualities are assumed to be provided:

PH 5.8 - 8.6
COD 60 ppm max.
Oil 5 ppm max.
SS 30 ppm max.

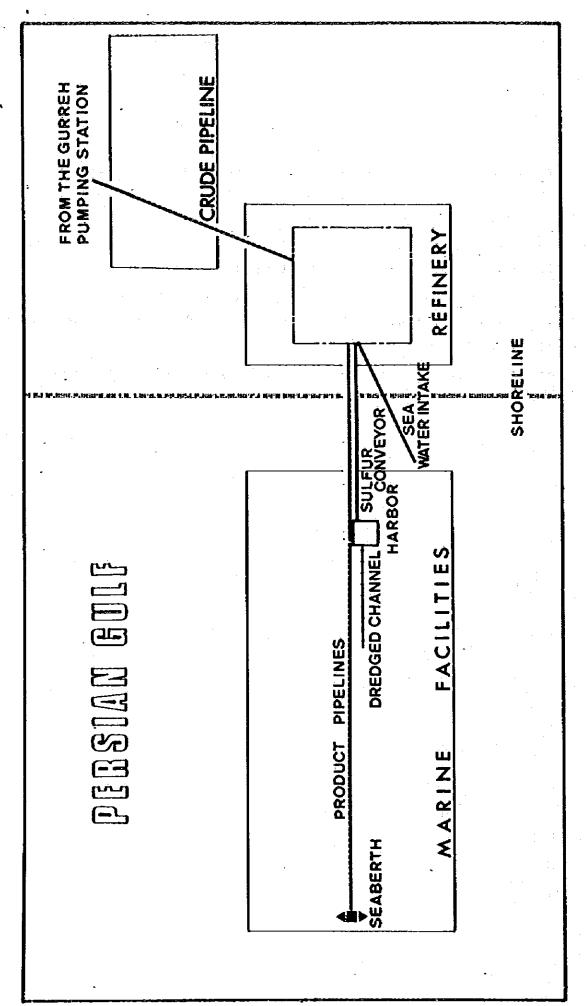
These figures are conforming to the minimum requirements for environments in Japan.

Facilities to handle ship's deballasting water is also assumed to be provided. However, there is a possibility to eliminate deballasting water handling facilities judging from the following facts:

- a. Large tankers in service today, in general, are equipped with skimming devices to lessen oil content in ballast water during voyages to loading ports. Therefore, the ballast water held in vessels will be clean enough to discharges into sea directly, after such a long voyage as Japan to Iran.
- b. The obligatory plan of equipping a separate ballast tank (SBT), as adopted by the February 1978 IMCO Tanker Safety and Ocean Pollution Control Pact Conference, will result in the reduction of loading terminals requirements in treating ship's deballasting water.

No special device for air pollution prevention, such as stack gas scrubbing, is considered in view of that the predominant wind direction and a distant location from the residential area would not cause any significant air pollution problem.

PROJECT DESCRIPTION


PROJECT DESCRIPTION

This chapter describes the plans on facilities of the subject export refinery project located at Muhammad Ameri which is designated as the base site among the selected four candidate sites.

The project is constituted by crude oil pipeline, refinery and marine facilities as shown on the frame of project in Pigure 5.1.

Description is made for the project each having the refining capacity of 125,000 BPSD, 250,000 BPSD, and 500,000 BPSD with the refining configurations of hydroskinming and hydrocracking.

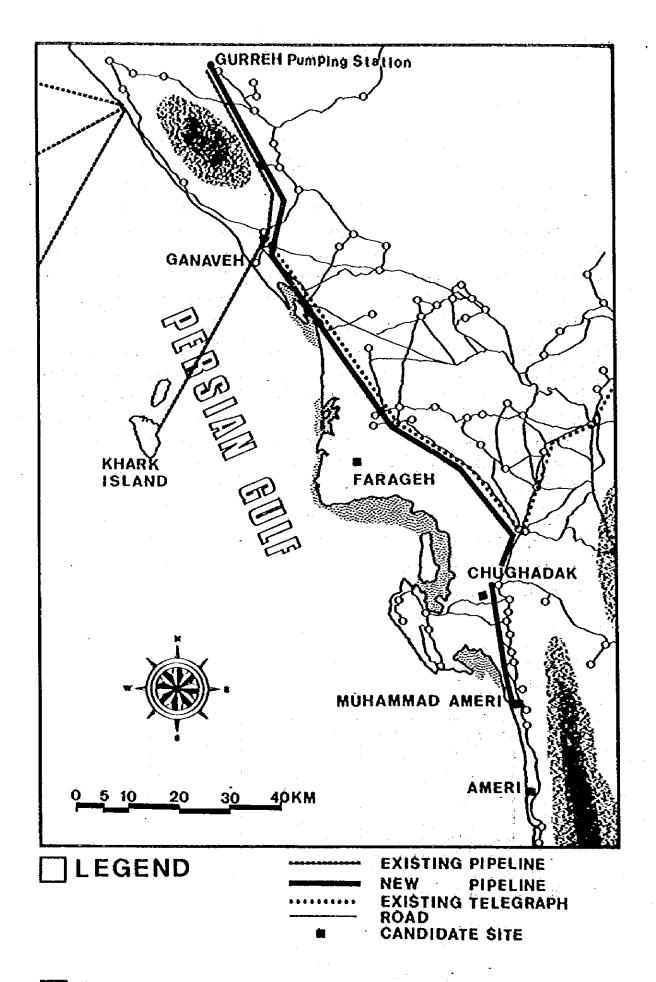
Effects on the project of locating the refinery at the alternative sites are discussed in Chapter 8, Site Selection.

CRUDE OIL PIPELINES

5.1 Crude Oil Pipelines

The crude oils to be refined in the refinery are picked-up at the existing Gurren pump station which is connected to the crude oil shipping terminal on Rhark Island.

The crude oils, 50 percent of Iranian light crude and 50 percent of Iranian heavy crude, are transported through the segregated pipelines from the station to the refinery site at Muhammad Ameri, which is 165 Km far from the station. The pressure of the crude oils at the station is 900 psig (63 Kg/cm²G) which enables to transport the crude oils to the refinery without further pumping.


The pipeline route map is presented in Figure 5.2. The pipelines begin at Gurreh pump station and first run toward south in parellel to the existing crude oil pipelines that reach Khark Island. At the northern part of Ganaveh, they change their direction to the south east and then go along the existing communication cables and reach Chughadak after about 125 km. From Chughadak, they follow to the road running straight toward south and reach Muhammad Ameri.

The pipelines are buried under ground for the entire distance of 165 Km including intersections with rivers, wadis, and main roads.

The piping size for each flow rate which corresponds with the three cases of refining capacities is given as follows:

Table 5.1
Pipeline Size

Refining Capacity (BPSD)	Piping Size (Inches)	Number of Pipes
125,000	16	2
250,000	20	2
500,000	26	2

REFINERY

CASE 1 : HYDROSKIMMING TYPE

5.2 Case 1: Hydroskimming Type Refinery

This section outlines the planned hydroskimming type refinery with three different capacities, namely, 125,000 BPSD, 250,000 BPSD, and 500,000 BPSD.

5.2.1 Process Units

As shown in the refinery flow scheme presented in Figure 5.3, this case represents a refinery with a combination of the skimming processes (crude distillation) and the hydrogen-treating processes (desulfurization). Thus the refinery produces the desired products in such a slate as crude natural yield allows without cracking.

The percentage yield of each salable products from this refinery is shown below:

Table 5.2
Product Yields of Case 1 Refinery

Products	Yields, Volt on Crude
Gasoline	10.0
Naphtha	9.9
Kerosene	14.1
Gas Oil	21.1
Low Sulfur Fuel Oil	28.2
Medium Sulfur Puel Oil	7.0
Bunker Puel Oil	3.0
Total	93.3

Purther, production volumes of products for the three refining capacities are shown in Table 5.3 and a comparison between product specification and estimated actual properties of products obtained is shown in Table 5.4.

Refinery Scheme

The Iranian light and Iranian heavy crude oils are fed to the respective atmospheric crude distillation units, and distilled at the following separation temperatures:

Table 5.3

Summary of Crude and Products

Case 1 Hydroskimming

	125,000 BPSD	250,000 BPSD	500,000 BPSD
	BPCD	8900	BPCD
1.Crude Oil		ļ	
Irahian Light Crude	53,125	106,250	212,500
Iranian Beavy Crude	53,125	106,250	212,500
Total	106,250	212,500	425,000
2.Products			
(1) Salable Products			
Gasoline	10,625	21,250	42,500
Naphtha	10,470	20,940	41,880
Kerósene	14,980	29,980	59,920
Gas Òil	22,405	44,810	89,620
L/S Fuel Oil (0.115)	29,965	59,930	119,860
M/S Fuel 011 (1.515)	7,490	14,980	29,960
Bunker Fuel Oil	3,190	6,380	1,2760
Total	99,125	198,250	396,500
Sulfur	150 TPCD	300 TPCD	600 TPCD
(2) Refinery Use			
Off Gas	980 EFO	1,960 EFO	3,920 EFO
Propane	890	1,780	3,560
Butane	960	1,920	3,840
Refinery Fuel Oil	€,905	9,810	19,620

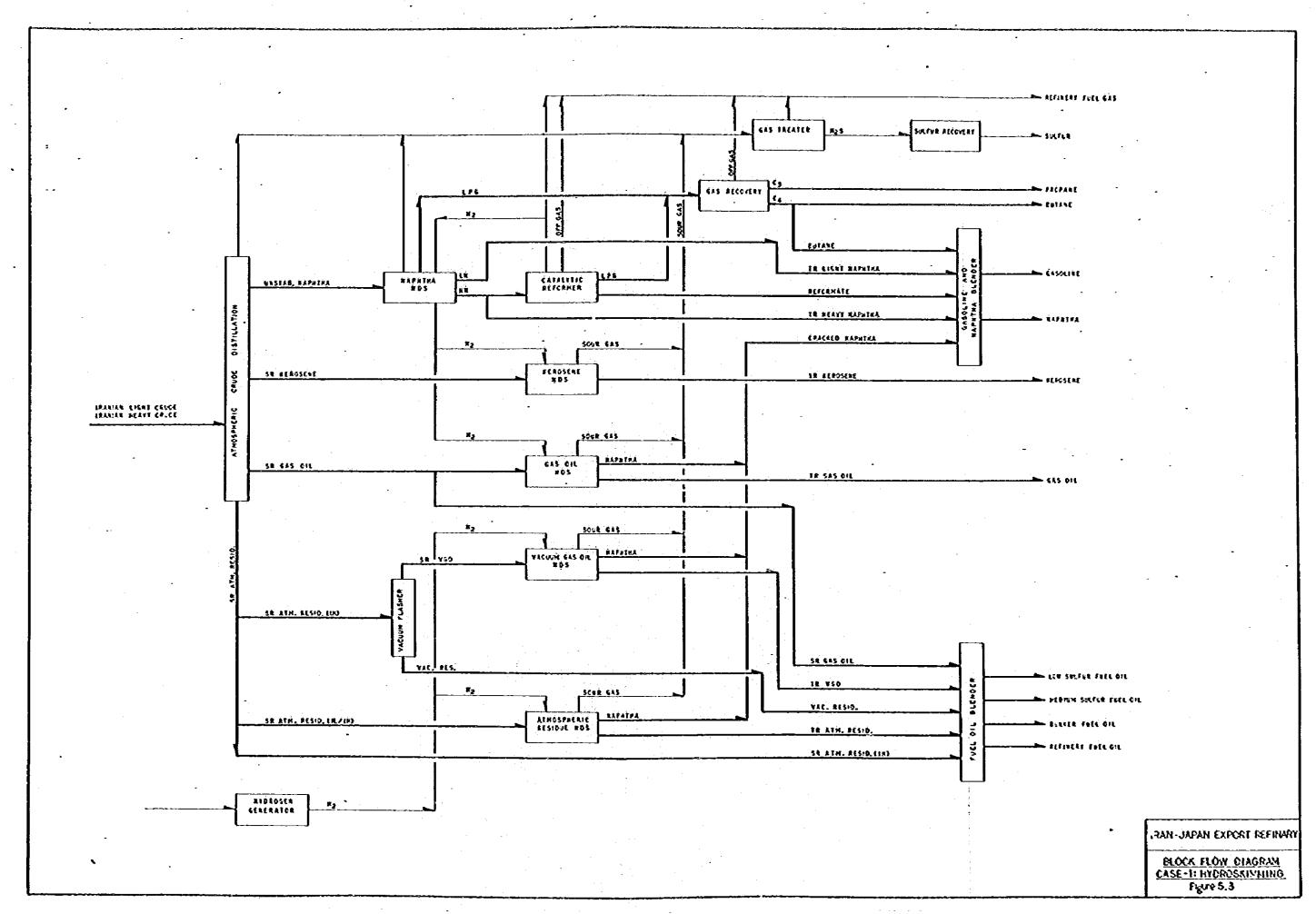


Table 5.4

Product Qualities Summary

Case 1 Hydroskimming

Products	Properties	Specification	Estimated Actual Value
asoline	Specific Gravity (15/4°C) PON, F-1 Clear RVP \$31.8 C ASTM Distillation (0-86), C	Min. 90 0.45 - 0.63	0.746 90 0.63
asorthe	108 508 908 978	Нах. 65 Нах. 120 Нах. 189 Нах. 205	44 76 145 166
aphtha	Specific Gravity (15/4°C) RVP 837.8 C Sulfur Content LP , C	Иах. 0.63 Мах. 0.01 Иах. 200	0.725 0.63 0.01 190
erôsene	Specific Gravity (15/4°C) Flash Point (7ag) , C Sacke Point , m Sulfur Content , vt.1 ASTM Distillation (D-86), C 18P 951	Kin. 40 Min. 24 Max. 0.005 Min. 150 Max. 235	0.801 45 24 0.005
as Oil	Specific Gravity (15/4°C) Plash Point (P-X) Pour Point Cetain No. Sulfur Content ASTM Distillation (D-86), C	Min. 50 Max7.5 Min. 50 Max. 0.1	0.855 110 -9.0 55 0.05
√s Puel Oil	Specific Gravity (15/4°C) Flash Point , C Sulfur Content , vt.1 Viscosity #50°C , cst	Min. 60 Max. 0.1 Max. 150	0.918 60 0.1 40
VS Fuel Öil	Specific Gravity (15/4°C) Plash Point , C Sulfur Content , vt.1 Viscosity \$50°C , cSt	Min. 60 Max. 1.5 Max. 150	0.942 60 1.5 150
Bunker Fuel Oil	Specific Gravity (15/4°C) Sulfur Content , wt. t C.C.R. , wt. t Viscosity 850°C , cst	Kax. 3.5 Kax. 12 Hax. 250	0.951 2.4 9.2 250

Note: The estimated value of aromatics content in gasoline is 38 vol. %.

 Naphtha
 Less than 154°C

 Kerosene
 154 - 235°C

 Gas Oil
 235 - 371°C

 Residue
 Over 371°C

The overhead distillate from the atmospheric crude distillation units is treated in the naphtha hydrodesulfurizer and separated into LPG, light naphtha and heavy naphtha.

The separated light naphtha is run down to storage tanks and is blended into questione and product naphtha.

A part of the heavy naphtha is processed in the catalytic reformer into reformate with octane number of RON 98, while the remaining heavy naphtha is run down to storage tanks and blended into the product naphtha together with the light naphtha and cracked naphtha.

The LPG fraction from the naphtha hydrodesulfurizer and catalytic reformer is fed to the gas recovery unit where propane and butane are separately recovered.

of the recovered LPGs, all the propose is consumed as refinery fuel, and butane is partly blended into gasoline and product naphtha within the vapor pressure specifications limit. The remaining butane is entirely consumed as a fuel in the refinery, while no shipment as product.

The kerosene fraction from the atmospheric crude distillation units is directed to product kerosene tanks after being treated in the kerosene hydrodesulfurizer.

Most of the gas oil fraction is sent to product gas oil pool after desulfurizing, while a small portion of it is used without further treatment as blending stock for bunker fuel oil.

The atmospheric residue from Iranian light crude oil is entirely hydrodesulfurized into fuel oil with a sulfur content of 0:1 wt.%. While, the residue from Iranian heavy crude is routed to the following:

- . Atmospheric residue hydrodesulfurizer together with Iranian light residue.
- . Vacuum gas oil hydrodesulfurizer after vacuum flashing.
- . Fuel oil blending.

The sour gas streams from distillation and hydrodesulfurization units are amine washed for H₂S removal and sent to the refinery fuel system, while the recovered H₂S is fed to the sulfur recovery unit.

The hydrogen necessary for the naphtha, kerosene and gas oil hydrodesulfurizers is supplied from the catalytic reformer, while from the hydrogen generator for the vacuum gas oil and atmospheric residue hydrodesulfurizers. The feedstock of hydrogen generator is refinery off-gas.

Installed Capacity

The capacity and number of units of the individual process units are defined for each refinery scale, i.e., 125,000, 250,000 and 500,000 BPSD taking into account the operation and maintenance schedule. The number of refining trains for each refinery scale is determined to be one for 125,000 and 250,000 BPSD and two for 500,000 BPSD.

Despite the above, the gas treating and sulfur recovery units are defined to have two independent units per refining train to enable continuous service when one group is in maintenance, while the other group is in operation.

In defining the installed capacity of each process units, the following bases are used:

- . An on-stream factor of 80 percent for the atmospheric residue hydrodesulfurizers.
- . An on-stream factor of 85 percent for the other units.
- . To cover peak loads of hydrogen consumed and sour gas generated for hydrogen generator, gas treater and sulfur recovery.

The installed capacity of the process units is summarized in Table 5.5 for each refining scale.

5.2.2 Utilities System

One of the major factors essential to the successful operation of a grass-roots refinery is the reliable supply of the necessary utilities.

Based on the prevailing local conditions of Muhammad Ameri, the integrated system and facilities for supplying these services are investigated and defined.

Particular attentions are given to the reliability of the system, and the stable supply of the utilities on a self-supporting basis.

rable 5.5

Installed Capacities of Process Units

Case 1 Hydroskinming

	4)***	125,000 BPSD	- ପ୍ରଥଣ :	250,00	250,000 BPSD	asaa 000'00s	asas c
Prop de 400x7	2100	Capacity	No. 8	Capacity	No.a	Capacity	No.s
Atmospheric Crude Distillation	SAS	125,000 *)	-	125,000	2	125,000	4
Vacuum vilanen	BPSD	14,000	н	27,900	ส	27,900	~
Cas Recovery	apso	3,800	A	7,500	- 4	7,500	N
Naphtha Hydrodesulfurizer	BPSD	26,500	a	52,900	: #4 : 3	52,900	71
Catalytic Reformer	assa	9,700	-	19,300	; ret	19,300	~
Kerosene Mydrodesulfurizer	DPSD	17,700	-	35,300	– 4	35,300	71
Gas. Oil Hydrodesulfurizer	BPSD	26,900	-	53,800	- 4	53,800	71
Vacuum Gas Oil Hydrodesulfurizer	DPSD	7,200	rl	14,300	ب	14,300	'n
Vacuum Cas Oil Hydrocracker	BPSD		•	•		. 1	1
Atmospheric Residue Hydrodesulfurizer	cer bpsp	34,900	A	69,800	н	.008*69	Ċ,
Visbreaker	3950	•	•	•		1	•
Hydrogen Generator	10 6Nm 3/SD	0.83	ส	1.66	<i>-</i> 4	1.66	~
	TPSD (AB H,S)	001	ű	200	ัล	500	4
Sulfur Recovery	TPSD (as S)	8	. n	180	άŧ	180	4
Foul Water Stripper	TOSO	066		1,980	4	1,980	N

*) Dual Flasher Type

e, Salvet e

Overall Supply System

The overall system diagram for steam, power, and water is presented in Pigure 5.4.

The refinery generates and consumes steam at three pressure levels as follows:

- . High pressure steam 43 kg/cm²G, 400°C
- . Redium pressure steam 15 Kg/cm²G, 270°C
- . Low pressure steam 3.5 Kg/cm²G, Saturate

High pressure steam generated in the oil fired boilers is consumed in steam turbines for power generation and as motive steam for the major gas compressors in the catalytic reformer, vacuum gas oil hydrodesulfurizer, and atmospheric residue hydrodesulfurizer as well as for driving refinery air compressors.

The medium pressure steam is generated from waste heat boilers equipped in the catalytic reformer and hydrogen generator and also is extracted from the power generation turbines.

It is consumed as motive steam for small drivers and as heating and atomizing steams.

Low pressure steam is generated from waste heat boilers and exhausted from steam turbines, and is consumed as deaeration steam for boiler feed water and also as heating and stripping steam for various equipment.

The extracting-condensing turbines are adopted for electric power generation. The balance of medium pressure requirements can be adequately supplied by controlling the rate of extraction, while the supply of power demand can be kept easily by controlling the rate of steam to be condensed. Steam condensate is collected where practicable, and recirculated after being filtered.

Two kinds of cooling water system are provided, one is the sea water cooling for the services where applicable to the maximum extent and the other is the fresh water cooling system.

Both systems are designed to save the make-up waters by adopting a recurculating system through the individual cooling towers.

The refinery uses the three types of fuels as follows:

- . Refinery off gas
- LPG
- . Heavy fuel oil

Gases from various process units are collected and sweetened in the amine gas treating unit and then sent to the mixing drum. LPG from storage is also sent to the mixing drum through the LPG vaporizer to sustain the mixed fuel gas at a predetermined heating value. While, home fuel oil normally used is a vacuum residue of Iranian heavy crude. The oil is drawn from the storage tank and pumped to boilers and process furnaces after being heated up to 160°C. Provision is made for the system to recirculated the fuel oil to attain stable supply.

The air compressors to supply the instrument and plant air are provided as required. Furthermore, inert gas generators of air separation type are provided to supply the entire refinery's demand.

Utilities Balance

Table 5.6 shows the utilities balance in the case of a refinery capacity of 250,000 BPSD on a calendar day basis (yearly average). This table indicates the consumption and generation rates of utilities such as electric power, fuel, three persoure level steams, sea water, fresh water, steam condensate, pure water, boiler feed water for each units in the refinery. Positive values indicated in the table represent consumption, while negative values for generation. Utilities requirements for each refinery capacity are summarized in Table 5.7.

Installed Capacity

The capacities of the individual utility facilities are defined on an operating day basis taking into account the peak loads (normal maximum). For the major facilities shown below, one unit is provided for standby service:

- . Steam boiler
- . Electric power generator
- . Sea water desalinator
- . Polisher
- . Cooling water circulation pump
- . Air compressor

The installation summary of the utilities system for each refinery capacity is presented in Table 5.8.

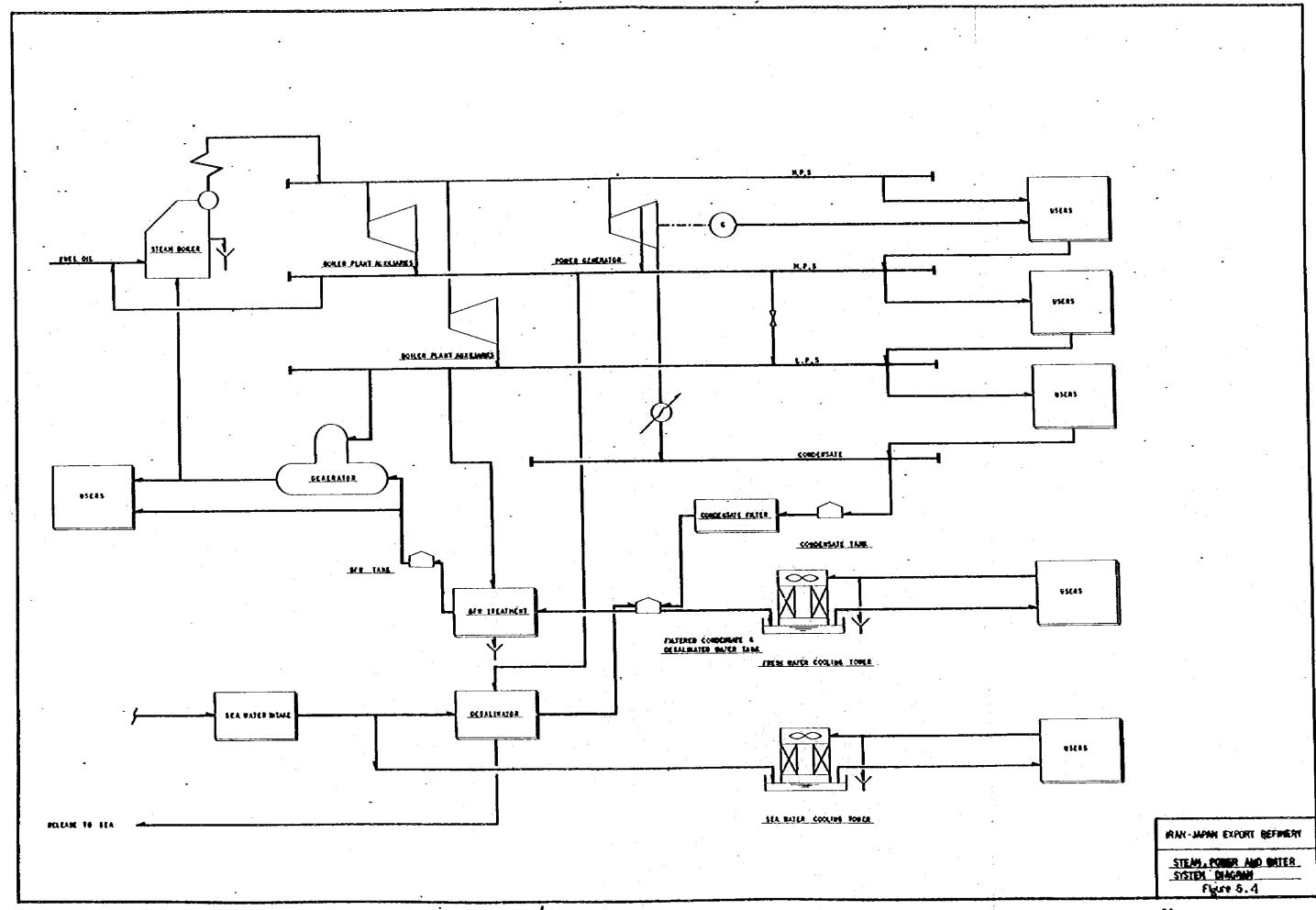


Table 5.6 Utility Balance (Case 1 Hydroskimming 250,000 BPSD)

	Elec.	Fuel		Steam		Water	er	Steam Cond.	8	8_F_W_
		:	т. Б.	W.P.	r.P.	Sea	Fresh		Cold	Hot
-	KW	106 Kcal/CD	Ton/CD	Ton/CD	Ton/CD	103 ron/co	Ton/CD	ap/voz	Ton/CD	Ton/CD
Atmos. Crude Distillation	4.480	2,801		970	327	40.8	1,224	857-		
Vacuum Flasher	089	504		168	ទា	ដូ	581	}		를 8
Gas Recovery	06				147	2000	153	-146		156
Naphtha HDS	720	1.178	377	-319	-377	30.00	113	•	÷	360
Kerosene MDS	1.400	576		72		40.4	391			125
Cas Off NOS	3,120	1,063		120		67.2	299			202
WCO KOS	980	211	122	47	25	4.7	468			67
Atmos. Residue HDS	12,790	1,272	867	46 -	-737	109.9	3,485	-274		979
Gas Treating	330			7.4	1,193	18.9	9	-1,267		D. 1
Sulfur Recovery	740	264			-749	7.4	84	-149	,	925
Hydrogen Plant	1,210	1,932		-192	173	10-4	100 100 100 100 100 100 100 100 100 100	- 38	1,891	
Foul Water Stripper	180			•	483	16.0		-461		
On-Site fotal	27,840	11,174	1,366	883	379	407.4	8,294	-2,793	1,891	2,904
Off-Site Total	3,000		216	480	672	2.6	552	-120		
Total Control of the		7.826	-9.125	-903	-773				·	11,196
Desperantor) }			2,069		-	.*	12,031	-14,100
Dover Generator	-33,810	-	5,856	-2,123		187.0		-3,734		-
DFW Trestment	290				ŝ			14,024	-13,922	
Desalinator	570			920				-8,482	•	
Sea Water Intake	1,140		-			2				
SW Cooling Tower	096		7001		70017	0.770	2000	905		
FW Cooling Tower	요		44	:	# *		04070	1		
Utility Total	-30,840	7,826	-1,582	-2,076	-338	-410.0	-8,846	2,913	-1,891	-2,904
Refinery Grand Total	0	19,000	Ö	-713	713	0.40	0	Ö	0	•

Notes: 1) Sea water Intake: 156,000 Ton/CD: 2) Positive flgures for production.

Cable 5.7

Summary of Utility Requirements Case 1 Hydroskimming

Reguirement	Unit	125,000 BPSD	250,000 BPSD	2500,000 BPSD
Electric Power	KW	006'91	33,800	67,600
rotal Fuel	10 Kcal/CD	9,500	19,000	38,000
Steam	TON/CD	5,500	10,900	21,800
Cooling Sea Water	TON/CD	298,500	597,000	1,194,000
Cooling Fresh Water	TON/CD	4,400	8,800	17,600
Net Boiler Feed	TON/CD	3,800	7,500	15,000
Net Sea Water Intake	TON/CD	78,000	156,000	312,000

Table 5.8

Installation Summary: Utility Facilities

Case 1 Hydroskimming

		125,000 BPSD	ò	250,000 BPSD	6	500,000 BPSD		Remarks
Machine		Capacity	No.6	Capacity	No. B	Capacity	0 N	
1. Steam Cenerator	1	170 TOWKE	m	310 Ton/Hr		400 Ton/Hr	4	44 Kg/cm ² G, 410 C One unit for stand-by
		14,000 KW	'n	16,000 KW	4	19,000 KW	.	Extracting-condensing one unit for stand-by
		2,400 Ton/day		4,700 Ton/day	m	9,100 Ton/day	m	One unit for stand-by
4. Dry Incention Condensate Wilter		130 TON/HK 220 TON/HK	04 to	240 TON/HI 410 TON/HI	01 m	310. Ton/Kr 540 Ton/Hr	m 4	One unit for stand-by
- Water Tanks a) Condensate Tank b) Tiltered Cond. 4 Desal.W. Tank	Tank	1,500 Kt 10,000 Kt 2,500 Kt	ийй	2,500 KL 20,000 KL 5,000 KL	ини	5,000 KL 40,000 KL 10,000 KL	ана	
S. Cooling Water System S. Sea Water Cooling Tower	1	18,000 M3/Kr	ਜ਼ ਜ	17,000 M3/HE 550 M3/HE	кн	17,000 m3/8r 1,000 m3/8r	44	
6. Sea Water Intake 6. Sea Water Intake 1 Pumps		2,500 m ³ /Hr	e	5,000 M3/Hr	คล	6,500 M3/KE 54 inch 3	44	One pump for stand-by
- Piping 7. Air System 8. Inert Gos System 9. Fuel Oil Pump		(5,000 M ³ /Hr) 1,500 Nm ³ /Hr 250 Nm ³ /Hr 40 Ton/Hr	ี ค.ศ.ค.	(10,000 Mg/Hr) 2,000 Nmg/Hr 500 Nmg/Hr 75 Ton/Hr	m M m	(20,000 M ARF) 2,000 NM ARF 1,000 NM ARF 145 TON/HF	NHW	One pump for stand-by
10. Fuel Gas System 11. Potable Water System - Chlorinator - Fank		10 Ton/Hr 1,000 KL	ਸੂਜੇ	10 TON/HF 1,000 KL	нн	20 TON/HE 1,000 KE	สด	

5.2.3 Offsite Pacilities

Tankage and Blending Facilities

The planned oil handling system of the refinery is illustrated in the tank flow diagram, Pigure 5.5.

Both Iranian light and Iranian heavy crude oils are delivered by the two crude oil pipelines and stored in separate tanks which are capable of accommodating full plant requirements for seven days' normal operation.

The following process intermediate tankage is provided to enable to continue its operation when the other units are shut down for maintenance or catalyst regeneration and replacement:

Stream	Process Unit Charged	Storage Days
SR Kerosene	HDS	18
SR Gas Oil	RDS	18
SR VGO	HDS	7
Atm. Residue (IL/IH)	HDS	18

The component oils before blending and finished products leaving the process units run into large semi-product and product tanks respectively. Total product tankage capacities including these for semi-products before blending are defined to be for 30 days minimum and, in principle, 15 days' capacity for semi-product.

Purthermore, product tankage is defined to have a capacity not less than 1.5 times of one shipment by the maximum size product carrier. The tankage for other services is defined based on the following:

. Bunker fuel oil	15 days
. Refinery fuel oil	6 days
. Refinery propane	5 days
. Liquid sulfur	3 days

The planned tankage for each case is summarized in Table 5.9. The tanks in the above table include a 15 percent safety factor.

Component oils stored in individual semi-product tanks are blended into the desired products with a schedule as shown in Table 5.10. Blending of gasoline and naphtha is performed by the commonly installed in-line blender. Based on each blending plan in the table, the required components are pumped simultaneously at controlled rates into a blending header.

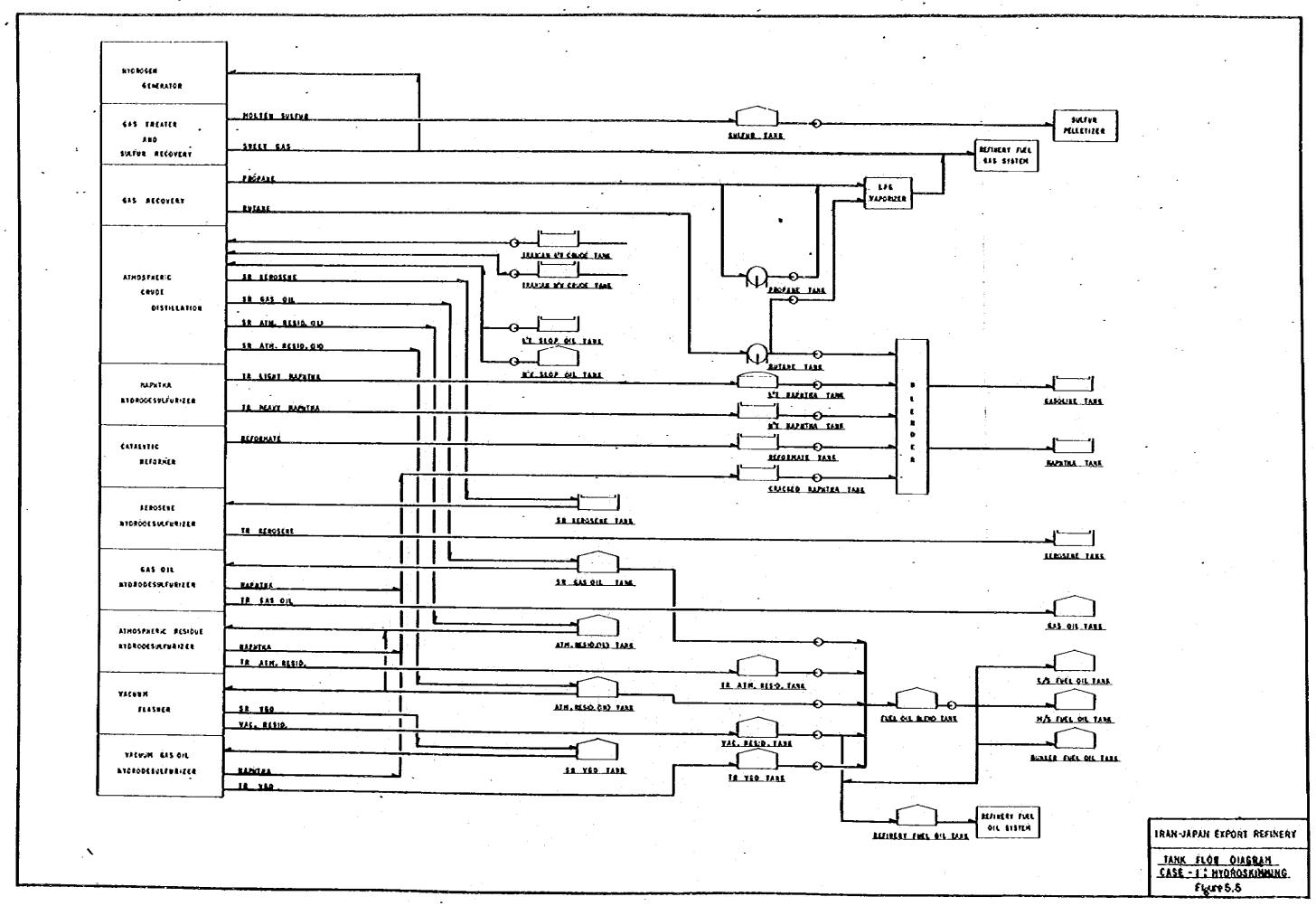


Table 5.9 Tankage Summary: Case 1 Hydroskimming

25 22 22 22 22 22 22 22 22 22 22 22 22 2			124 000 BBSD	25	250,000 BPSD	2005	500,000 BPSD	Remarks	
TOTAL STATE OF THE PROPERTY OF TAXON TO	Service		Canadian Military		Capacity, Kt.	80.8	Capacity, KL		
Total oil a service a serv		a do	2000						
(IL) 1) 2) 2) 40,000 3) 60,000 4 60,000 4 60,000 4 7,000 4 7,000 4 7,000 7,0	1. Crude Oll Tanks Crude	ÁK	37,500	หห	75,000	МÅ	100,000	PRT	
1,	- Transacraes Cross								
		 	-	•	60.00	~	000,00	YRT	
043 17) 2 2 25,000 3 5 00,000 6 4 1,000 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1	- 6	rie	000'09	4 4	000		000 09	5	
Out. 2 4,000 2 50,000 2 3 <	THO MAD COME AND COLOR	લ	000.00	· ·	000	, é	000-09	the contract of the contract o	_
Outs (IR) (IR) <th< td=""><td>Atmospheric Residue (III)</td><td>ų</td><td>40,000</td><td></td><td>000</td><td></td><td>20,000</td><td>ŧ</td><td></td></th<>	Atmospheric Residue (III)	ų	40,000		000		20,000	ŧ	
AL ONLY SOUND SOUN		м н	10,000	4 -4	20,000	2	20,000	ŧ	
## Oil	Straight Kun-Vacuum car Car								
The Residue 2 2,500 2 2,500 4 4 15,000 4 15,000 2 25,000 4 15,000 2 25,000 2 25,000 4 15,000 2 25,000		 	-			•	1.000	HQ2	
7 2,500 2 15,000 4 2,500 6 2 15,000 4 2 15,000 4 2 15,000 4 2 15,000 4 2 15,000 4 2 15,000 4 2 15,000 4 2 15,000 4 2 15,000 4 2 15,000 6 2 15,000 6 2 15,000 6 2 15,000 7 2 15,0	a destruction of the second	74	200	7	1,000	* \$	000	NAS	
10,000 2 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 4 25,000 10 25,000 10 25,000 10 10 10,000 10 10 10,000 10	Vropane		2,500	'n	000.5	} `	900	OK.	
1.5.000 2 25,000 4 5,000 2 25,000 4 5,000 1 1,000 2 25,00	Ducano		10,000	~1	15,000	•	200	THE ST	
12 10,000 12 20,000 8 20,000 8 10,000 14 10,000 15 10,00	にこなって ひもひっている	1 6	15,000	71	25,000	₹ .	2000	101	
10.000 1 10.000 2 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.000 8 20.0000 8 20.0000 8 20.0000 8 20.0000 8 20.0000 8 20.0000 8 20.0000	HOOVY NADACHA		10.000	4	20,000	*	200	Lon	
10 old 2 2 20,000 4 20,000 4 4 20,000 4 4 20,000 4 4 20,000 2 20,000 4 4 20,000 3 3 50,000 3	Xedormate	٠.	000.4	-1	10,000	77	000,01		
10.011 2 10.000 2 20.000 4 10.000 10.		٠.	000	4	20,000	eo 	000.00	; E	
10 11 2 10,000 2 20,000 4 20,000 13	greated Atmospheric Residue	N 6	90.00	7	20,000	4	20,000	; ŧ	
13	Areated Vacuum Cas Oll		10,000	~	20,000	•	20,000	,	
LA SO,000 3 50,000 3	Vaccus Residue								
13 50,000 3 50,000 10 50,000 10 50,000 10 50,000 10 50,000 10 50,000 10 50,000 10 50,000 10 50,000 10 10 50,000 10 10 50,000 10 10,000 1					***		20,000	FRT	
13	4 Victoria value	^	20,000	rs (000		20,000	r.Kr	
13		n	20,000	n	000	» «	20,000	TRE	
11	- COLORA	N	50,000	*	000.00	o <u>c</u>	60.000	ĕ	
1, oil 2 4,000 2 40,000 2 2 15,000 2 2 15,000 2 2 15,000 2 2 15,000 2 2 10,000 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 10,000 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 2 10,000 2 10,	Xerosene Xerosene	<u>-</u>	50,000	بن م	000000	} °	000.05	5	
1	Case OSI	· •	000,00	5 0	60,000	• ·	900	Š	
2 4.000 2 7,000 4 2 7,000 4 4 10,000 2	Low Sulfur Foot Onl	•	40,000		40,000	N 4		t	
2 4,000 2 7,000 4 1 10,000 1 10,000 2 1 10,000 1 10,000 2 2 500 1 1,000 2 2 300 1 2,577,000 116 4,7	Medica deliter year Oly		15,000		15,000-		222.64		
2 4,000 2 10,000 4 10,000 2 10							•	(
2 5,000 1 10,000 2 10,000 2 1 10,000 2 1 10,000 2 1 10,000 2 1 10,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 1 1,000 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 2 1 1,000 2 1 1,000 2 2 1 1,000 2	S. Other Service Tanks		400	-	4,000	*	200.		
1 10,000 1 10,000 2 10,000 1 10,000 2 1 10,000 2 2 1 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 1,000 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 1,000 2 2 1,000	Merinery rost Oil	NI 4		. 6	10,000	₹	10,000	Š	
1 10,000 1 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 2 1,000 2 1	Fuel Oil Blending	N 4		ا دا	10,000	ri	10,000	* E	
3 1,667,000 67 2,577,000 116	Light Slop Oil	r-t		-	10,000	č	10,000	5	
56 1,667,000 67 2,577,000 116	Heavy Slop Oth		000		7,000	~	1,000	CKT	
56 1,667,000 67 2,577,000 110	Molten Sulfur	,					4. 279.000		
CALLS ACCURATE	CATCH ALLES	*	1,667,000	67	2,577,000	777			
	Crare Acers								

Notes: 1) Interchangeable with Product Tanks
2) Common for Intermediate and Semi-Product Tanks

rable 5.10

Products Blending Table

Case 1 Hydroskimming 250,000 BPSD

Blending Component	вьср	Refinery Puel Gas	Gasoline	Napbtha	Kerosene	Gas oil	L/S Fuel Oil	M/S Fuel Oil	Bunker Fuel Oil	Refinery Fuel Oil
Off Cas	1,958 (EPO)	1,958 (Ero)							::::	
Propane	2,777	1,777		· <u>-</u>						
Butane	4,080	1,923	726	1,431	:					
Treated Light Naphtha	2,987		7,486	2,501		· · · · · · · · · · · · · · · · · · ·	•			
Treeted Heavy Naphtha	14,241			14,241	- 13 ()- -					
Reformate	13,038		13,038						÷ .	
Craked Naphtha	2,769			2,769					:	
Treated Kerosene	29,963				29,963	-				
Straight Run Cas Oil	1,128								1,128	
Treated Cas 011	44,814			-		44,814				-
Straight Run Atmos.Residue (IH)	10,900							5,653	5,247	
Treated Atmos. Residue	55,443			,			55,443			
Treated Vacuum Cas Oil	12,023						4,475	7,548	:	
Straight Run Vacuum Residue	11,589							1,779		9,810
and the second of the second o			140.00							
Total Professional States	012, 512	5,658	21,250	20,942	29,963	44,814	59,918	14,980	6,375	9,810

Blending of fuel oils is carried out by in-line blending followed by blending tanks were further adjustments are performed and then transferred to product tanks.

Products Shipping System

The products are pumped from product tanks to a marine loading terminal by means of pipelines over a total distance of 19 km covering 4 km of on-shore causeway and 15 km of submarine from the end of the causeway as shown in Pigure 5.6.

Tanker loading time at the sea berth is assumed to be 18 hours for a ship of 130,000 DWT for white oils and 24 hours for a ship of 200,000 DWT for black oils.

Three pipelines are provided for white oil loadings, i.e., one line for gasoline and naphtha, one line for kerosene and gas oil and one line for common use.

One common pipeline is provided for low sulfur fuel oil and médium sulfur fuel oil shipping.

This line is scheduled to be flushed with gas oil after loading operation to prevent set up of heavy oils in the line.

One pipeline for supplying potable water to tankers and one pipeline to discharge of deballasting water from tankers are provided additionally. While, the ship's bunker fuel oil is transported from the refinery to the harbor through on-shore pipeline and then delivered to tankers by means of barges.

Table 5.11 represents the planned capacity of the shipping pumps and the size of the pipelines.

Solid Sulfur Handling System

The molten sulfur stored in the high temperature sulfur tank is pelletized for shipment. The pelletized sulfur is temporarily stored outdoors in piled form and then transported by means of the conveyor belt along the causeway to the sulfur shipping wharf located at the end of the causeway and 4 Km far from the refinery.

Based on the operation schedule that operating hours of the pelletizer are eight (8) hours per day and the maximum tonnage of a sulfur carrier is 10,000 DWT, this system is defined to be made up as shown in Table 5.12.

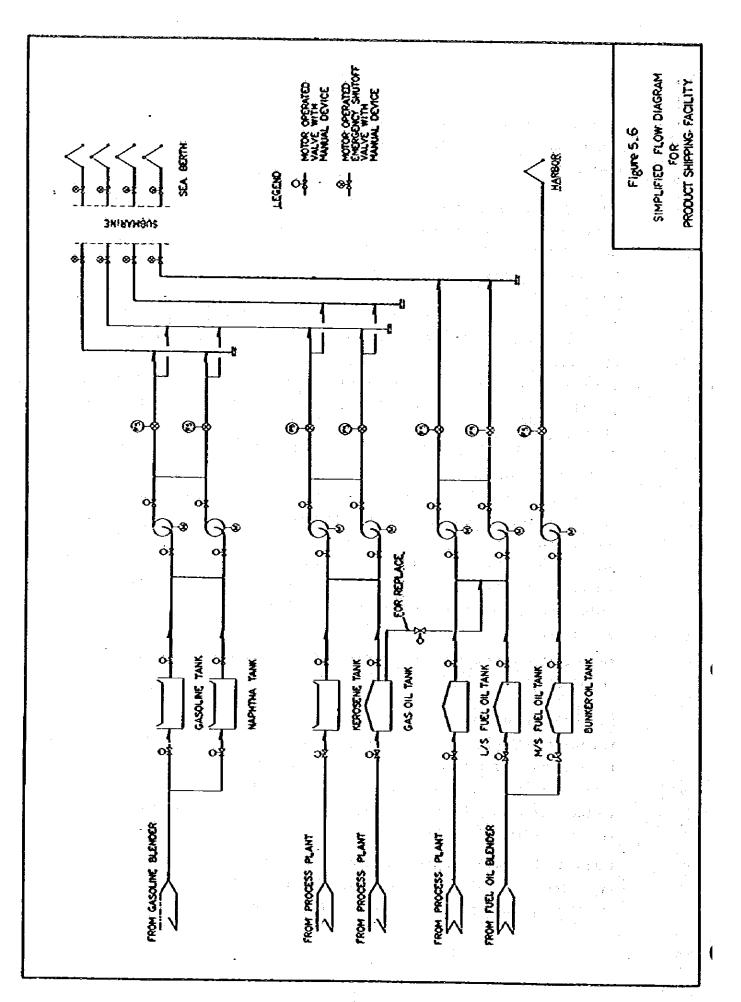


Table 5.11
Installed Capacity of Product Shipping System

Sérvice	Shipping Pumps	Pipelines
Gasoline Naphtha Kėrosėnė Gas Oil	5,000 m ³ /H × 4	32 inches x 3
L/S Puel Oil M/S Puel Oil	5,000 m ³ /H x 2	42 inches x 1
Bunker Puel Oil	1,000 m ³ /H x 2	16 inches x 1
Potable Water	50 m ³ /H x 2	4 inches x 1
Ballast Water	-	22 inches x 1

Table 5.12
Installed Capacity of Solid Sulfur Handling System

Case :	125,000 BPSD	250,000 BPSD	500,000 BPSD
Sulfur Pelletizer	20 Ton/H	40 Ton/H	80 Ton/H
Storage Yard	5,500 n ²	5,500 m ²	5,500 m ²
Conveyor Belt	500 Ton/H	500 Ton/H	500 Ton/H

Catalyst Loading and Unloading System

The atmospheric residue hydrodesulfurizer requires catalyst replacement at every six months intervals.

On this occasion, spent and deteriorated catalyst is withdrawn from the reactor and hauled away by truck after packing into drums. On the other hand, fresh catalyst is lifted to the level of the charging ports with bucket elevators and loaded into the reactor by means of conveyor belt. The volume of catalyst replaced and the time required are estimated for a 69,800 BPSD of the atmospheric residue hydrodesulfurization unit (reactor 2 trains).

- . Catalyst replaced: Annually 450 Ton x 2 Times
- . Required time : 15 days per time

Fire-fighting System

A fire water system to store, pump, and distribute sea water throughout the plant for fire protection and fire-fighting is provided. Water for the fire service is drawn from the sea water intake pit and pumped up to the water distribution header.

Three 410 m³/H fire water pumps including one spare pump (one is electric motor driven and two are diesel driven) are provided to distribute fire water to hydrants and turrets spaced strategically to protect all areas of the plant. The hydraulic pressure at each fire hydrant is maintained at 7 Kg/cm²G.

For the high pressure gas facilities in the LPG spherical tank area, water sprays are provided.

The refinery has a self-defence fire-fighting system centralized in the fire station where the following vehicles are provided:

- . Foam fire engines
- . Powder fire engines
- . Foam original liquid trucks
- . Ordinary fire engines
- Ambulances

Besides the above, movable powder chemical fire extinguishers are provided at major locations throughout the refinery.

Place and Blowdown Systems

provision is made for disposal of vapors and liquids discharged by various pressure-relieving devices such as safety valves, rupture disks, pressure-control valves, and furnace emergency blowdown valves.

Pacilities included in these systems are an appropriately sized flare knockout drum, and a smokeless type flare stack with the following sizes corresponding to the refining capacities:

Table 5.13
Sizé of Place Stack

Case:	125,000 BPSD	250,000 BPSD	500,000 BPSD
Diameter	36 inches	48 inches	48 inches
Height	80 m	80 m	110 m
Quantity	1	1	2

Sever and Effluent Treatment Systems

Drainage from the refinery is collected in the three sewer systems being classified into process waste water, oily waste water and clean waste water. A part of process waste water, which contains H2S and NH3, is reused as desalting water in the atmospheric crude distillation unit after being treated in the foul water stripper for removal of H2S and NH3. Other process waste water is sent to a retained tank and then treated in multiple stages by the following effluent treatment facilities:

- . CPI oil separator
- . Coaquiation settler
- . Filter
- Incinerator

Oily storm water and blowdown waters from boilers and BFW treater are treated together with tanker deballasting water in CPI oil separator and coagulation filter.

The clean waste water including desalinator brine, cooling tower blowdown, and clean storm water is directly discharged into the guard basin. Then,

all of the refinery effluent is gathered into the guard basin to retain and make the effluent uniform, and prevent large accidental discharge of contaminants. The quality requirements for waste water from the refinery are set as follows:

Table 5.14
Waste Water Quality

РH	5.8 - 8.6
COD	Hax. 60 ppm
011	Hax. 5.0 ppm
SS	Мах. 30 ррса

Buildings and Equipment

Table 5.15 shows the planned buildings and their floor areas examined in the three cases of refining capacities.

The floor space for the warehouses and maintenance shop is so defined that the refinery can be essentially selfsufficient.

All of these buildings are completely furnished and air-conditioned.

Instrumentation and Information Control Systems

Operation of the refinery is centrally controlled, with instrument panels provided in the following control rooms:

- . On-site Control Room
- . Utility Control Room
- . Off-site Control Room
- . Shipping Control Room

Each instrument panel is provided with a semigraphic panel which indicates the process flow of related units to facilitate operation of the refinery. An electronic system is adopted for the instrument signal media.

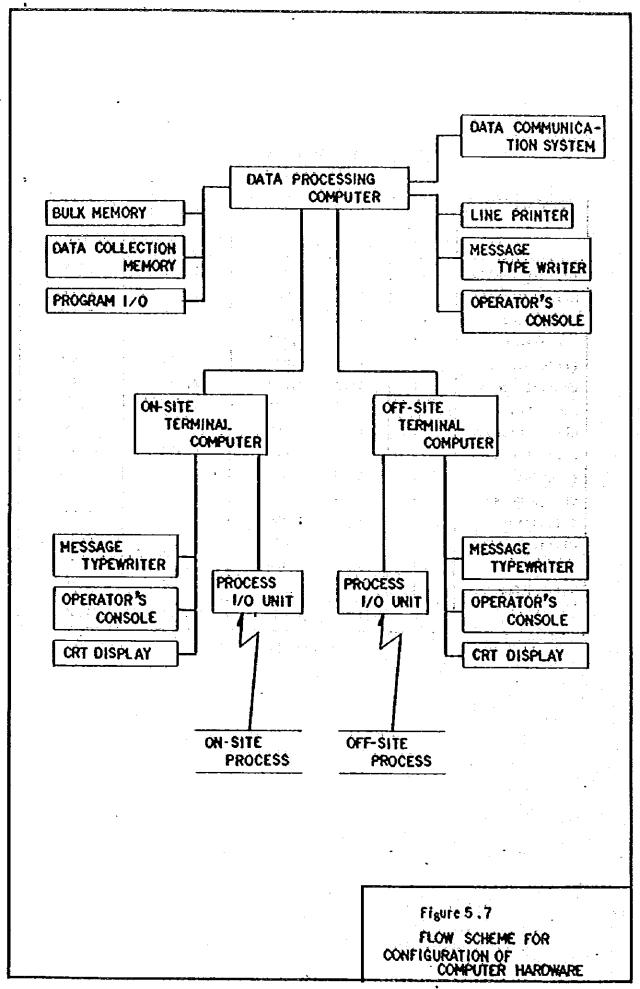

The following information control system using electronic computers is installed in the refinery for the purpose of providing correct information related to the refinery operation and facilities status:

Table 5.15

Building Plan

Buildi	ngs		Tota	l Ploor Arèa,	2 D
7193 : 1 ·	Stories	No.s	125,000 BPSD	250,000 BPSD	500,000 BPSD
Administ. Bldg.	2	1	3,000	3,000	3,400
Maintenance Shop	i 1	1	5,000	5,000	6,500
Warehouses	1	4	4,500	4,500	5,800
Laboratory	1	ı	1,000	1,000	1,300
Eng'g Office	1	1	1,000	1,000	1,500
Control Rooms	1	5(7)	2,920	2,920	4,480
Power House	$\mathbf{i} \in \mathbf{\hat{1}}^{-1}$	1	1,550	1,950	2,790
Costum House	1	1	90	90	90
Substations	1	25	4,600	6,910	12,330
Pirehouse	1	1	600	600	600
Change House	1	1	500	500	750
Cafeteria	1	1	1,260	1,260	1,800
Clinic	1	1	300	300	300
Rest Houses	1	2	200	200	200
Gate Houses	1	3	140	140	140
Total		49 (51)	26,660	29,370	41,980

(): 500,000 BPSD Case

- . Shipment Control System
- . Oil Inventory Control System
- . Pacilities Control System
- . Cost Control System

The computer hardware comprises two computer terminals, one central processor, and their satellite installations as shown in Figure 5.7.

Civil Works

For preparation of the site in Mohammad Ameri, the ground is levelled at approximately 7 - 8 m above sea level.

The earth work volume for each refinery capacity is as shown below.

. 125,000 BPSD: 1,500,000 m³

. 250,000 BPSD: 1,800,000 m³

. 500,000 BPSD: 3,000,000 m3

The soil of the site is composed of alternate strata of cohesive and sandy soils.

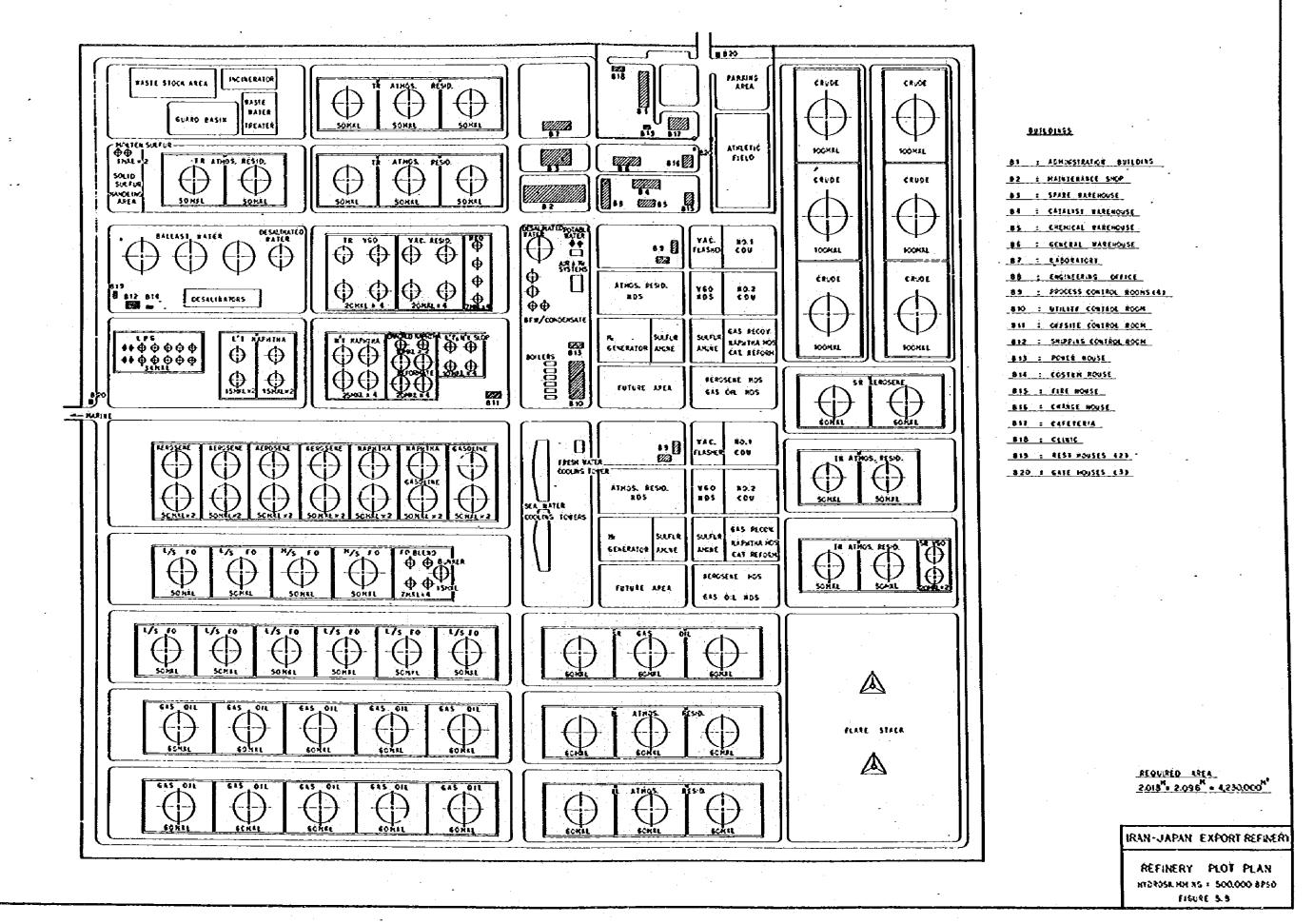
Because the subsurface soil is very stiff with the N value of 20 or more, piling is not required, and therefore, a spread footing type is selected. As the soil along the Persian Gulf is, in general, corrosive containing sulfate, the Type-V cement is applied for the concrete foundation. The tank foundations use an earth foundation type with crushed stones placed under shell plate.

The vicinities of process and utility facilities are paved with concrete. Roads are paved with asphalt concrete and the width of pavement is 16 m for main roads and 6 m for secondary roads.

Chain-link fences are provided around the refinery property.

5.2.4 Refinery Plot Plan

A plot plan for the 500,000 BPSD of hydroskimming refinery is presented in Figure 5.8.


Basically the overall refinery site is considered as a group of general areas arranged to include crude storage, process units, intermediate storage, product storage, shipping, utilities, administration and service, and waste disposal.

The process units area in 500,000 BPSD is subdivided into two trains each capable of processing 250,000 BPSD crude oil.

The plot plans for the 125,000 BPSD and 250,000 BPSD cases will be essentially the same with the exception that the number of trains in process area and the area required for the crude and intermediate tankage.

The required area for each case is estimated as follows:

- . 125,000: 2,130,000 m²
- . 250,000: 2,600,000 m²
- . 500,000: 4,230,000 m²

REPINERY

CASE 2 : HYDROCRACKING TYPE

5.3 Case 2: Hydrocracking Type Refinery

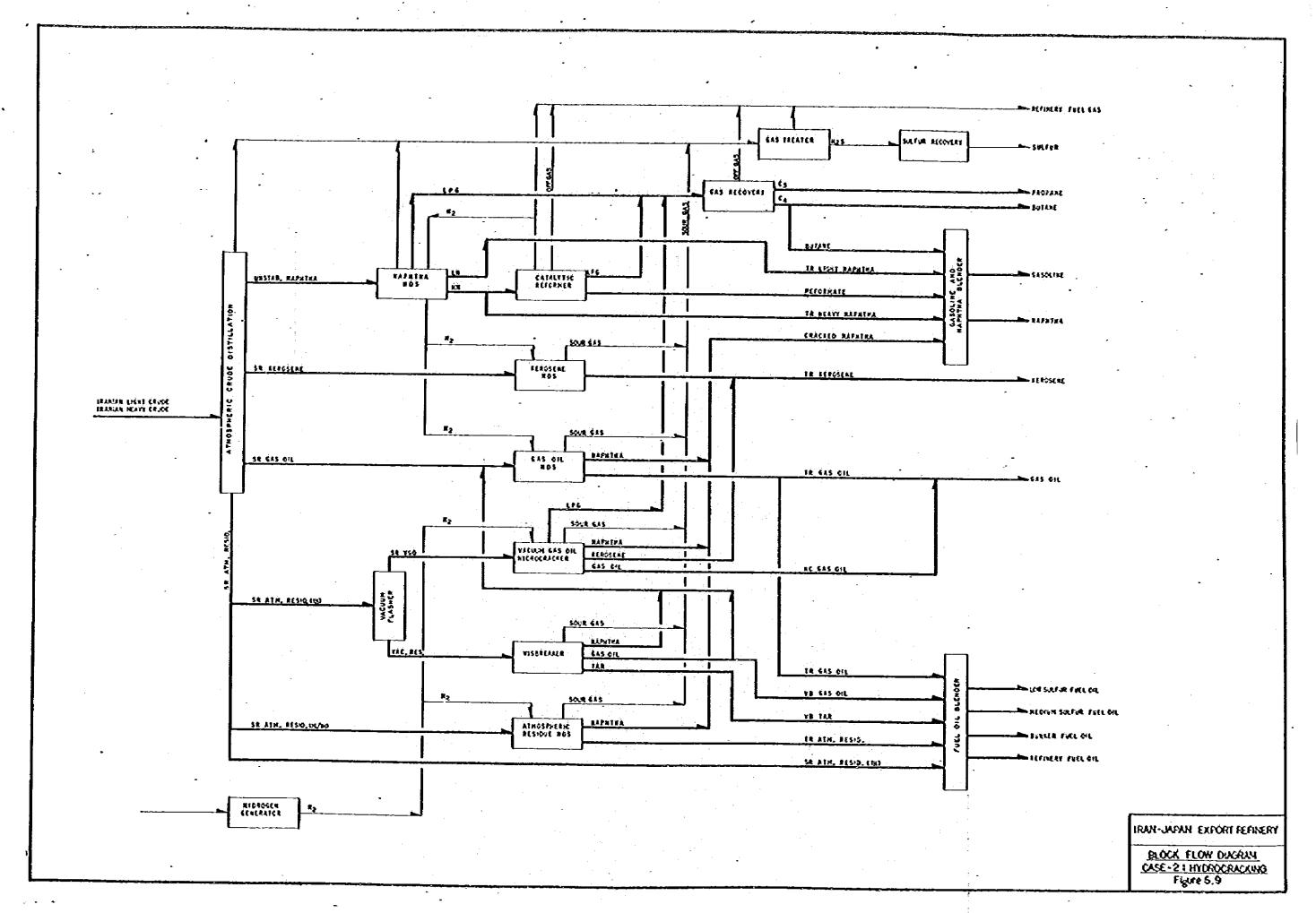
This section outlines the planned hydrocracking type refinery with three different capacities, namely, 125,000 BPSD, 250,000 BPSD, and 500,000 BPSD.

5.3.1 Process Units

As shown in the refinery flow scheme presented in Figure 5.9, this case represents a refinery with cracking processes such as the vacuum gas oil hydrocracker and the visbreaker. Thus the refinery processes the crude oils to increase the yields of middle distillates (naphtha, kerosene and gas oil).

The percentage yield of each salable products from this refinery is shown below:

Table 5.16
Product Yields of Case 2 Refinery


Products	Yields, Volt on Crude
Gasoline	10.0
Naphtha	12.5
Kerosène	17.4
Gas Oil	24.9
Low Sulfur Fuel 011	20.6
Kedium Sulfur Fuel Oil	5.1
Bunker Puel Oil	3.0
Total	93.5

Further, production volumes of products for the three refining capacities are shown in Table 5.17 and a comparison between product specification and estimated actual properties of products obtained is shown in Table 5.18.

The Iranian light and Iranian heavy crude oils are fed to the respective atmospheric crude distillation units, and distilled at the following separation temperatures:

Table 5.17
Summary of Crude and Products
Case 2 Hydrocracking

·	125,000 BPSD	250,000 BPSD	500,000 BPSD
	BPCD	BPCD	BPCD
1.Crude Oil			
Iranian Light Crude	53,125	106,250	212,500
Iranian Reavy Crude	53,125	106,250	212,500
Total	106,250	212,500	425,000
	the state of the s		
2.Products	•		1
(1) Salable Products			
Gasoline	10,625	21,250	42,500
Naphtha	13,289	26,560	53,120
Kérőséne	18,500	37,000	74,000
Gas Oil	26,45\$	52,910	105,820
L/S Fuel 011 (0.115)	21,845	43,690	87,380
K/S Fuel Oil (1.515)	5,460	10,920	21,840
Bunker Fuel Oil	3,190	6,380	12,760
Total	99,355	198,710	397,420
Sulfur	145 TPCD	290 TPC0	580 TPCD
(2) Refinery Use			
Off Gas	1,270 EFO	2,540 EFO	5,080 EFO
Propane	1,125	2,250	4,500
Butané	1,275	2,550	5,100
Refinery Fuel Oil	5,430	10,860	21,720

Product Qualities Summary
Case 2 Hydrocracking

Table 5.18

Products	Properties	Specification	Estimated Actual Value
1 8 5 1 B	Specific Gravity (15/4°C)		0.746
	E-041 B 3 A1	Min. 90	90
	RVP 837.8 C	0.45 - 0.63	0.63
asoline	ASTH Distillation (0-86), C	****	
	161	Hax. 65	44
* · ·	SGA	Max, 120	76
1	901	Kax. 180	145
.]	973	Max. 205	166
ŀ	Specific Gravity (15/4°C)		0.722
10/144/2007	RVP #37.8°C . Ko/cm	Mex. 0.63	0.63
Maphtha	Sulfur Content , yt.1	Max. 0.01	0.01
	Sulfur Content , yt.1	Max. 200	190
		 	0.000
:	Specific Gravity (15/4°C)		0.802
	Plash Point (fag) , oc	Xin. 40	45
Kerosene	Saoke Point , sa	Min. 24	24
	Sulfur Content	Kax. 0.005	0.005
	ASTA Distillation (D-86), C	1	gara sa
	165	Min. 159	161
	951	Max. 235	233
	Specific Gravity (15/4°C) Plash Point (2-M)		0.852
	speciale diarity (15) 4 C)	Nin. 50	1 113
	Pour Point	Kax7.5	-9.0
40.044.00		Min. 50	57
Gas Oil	Cetane No.		0.04
	Sulfur Content , yt.1	Kax. 0.1	0.01
	ASIM Distillation (0-86), C		22.0
	901	Max. 350	335
	Specific Gravity (15/4°C) Plash Point , C	-	0.918
	Plass Point	Nin. 60	60
L/S feel Oil	Sulfur Content , vt.1	Ках. 0.1	0.1
	Viscosity #50°C .cst	Kax, 150	40
	viscostey eso c		
	Specific Gravity (15/4°C) Plash Point C		0.942
	Plash Point , C	Min. 60	60
M/S Fuel Oil	Sulfur Content	Max. 1.5	1.5
	Viscosity \$50°C , cSt	Нах. 150	150
	And the state of the Con-		0.962
	specific gravity (15/4°C)	1	2.6
Bunker Fuel Oil	Sulfur Content , wt. 1	Max. 3.5	
	C.C.R. , vt.4	K5x. 13	12.0
	Viscosity #50°C , cst	. наж. 250	250

Note: The estimated value of aromatics content in gasoline is 38 vol.%.

positive to the character of the contraction of the

Naphtha Less than 154°C Kerosene 154 - 235°C Gas Oil 235 - 371°C Residue

The overhead distillate from the atmospheric crude distillation units is treated in the naphtha hydrodesulfurizer and separated into LPG, light naphtha and heavy naphtha.

Over 371°C

The separated light naphtha is run down to storage tanks and is blended into gasoline and product naphtha.

A part of the heavy naphtha is processed in the catalytic reformer into reformate with octane number of RON 98, while the remaining heavy naphtha is run down to storage tanks and blended into the product inaphtha together with the light naphtha and cracked naphtha.

The LPG fraction from the naphtha hydrodesulfurizer, the catalytic reformer and the vacuum gas oil hydrocracker is fed to the gas recovery unit where propane and butane are separately recovered.

Of the recovered LPGs, all the propane is consumed as refinery fuel and as hydrogen plant feedstock, and butane is partly blended into gasoline and product naphtha within the vapor pressure specification limit. The remaining butane is entirely consumed as a fuel in the refinery, while no shipment as product.

The kerosene fraction from the atmospheric crude distillation units is directed to product kerosene tanks after being treated in the kerosene hydrodesulfurizer together with hydrocracked kerosene.

As for the gas oil fraction, although a part of it is used without further treatment as blending stock for medium sulfur fuel oil, most of the fraction is sent to gas oil pool after desulfurizing, together with hydrocracked gas oil.

The atmospheric residue from Iranian light crude oil is entirely hydrodesulfurized into fuel oil with a sulfur content of 0.1 wt. 3. While, the residue from Iranian heavy crude is routed to the following:

- . Atmospheric residue hydrodesulfurizer together with Iranian light residue.
- . Vacuum gas oil hydrocracker after vacuum flashing.
- Fuel oil blending.

The residue from vacuum flasher is fed to the visbreaker and thermally cracked into naphtha, gas oil and tar.

The sour gas streams from distillation, hydrodesulfurization and cracking units are amine washed for $\rm H_2S$ removal and sent to the refinery fuel system, while the recovered $\rm H_2S$ is fed to the sulfur recovery unit.

The hydrogen necessary for the naphtha, kerosene and gas oil hydrodesulfurizers is supplied from the catalytic reformer, from the hydrogen generator for the vacuum gas oil hydrocracker and atmospheric residue hydrodesulfurizer. The feedstock of hydrogen generator is refinery off-gas and recovered propane.

Installed Capacity

The capacity and number of units of the individual process units are defined for each refinery scale, i.e. 125,000, 250,000 and 500,000 BPSD by taking into account the operation and maintenance schedules.

The number of refining trains for each refinery scale is determined to be one for 125,000 and 250,000 BPSD and two for 500,000 BPSD.

Despite the above, the gas treating, sulfur recovery and hydrogen generator units are defined to have two independent units for refinery train to enable continuous service when one group is in maintenance, while the other group is in operation.

In defining the installed capacity of each process units, the following bases are used:

- An on-stream factor of 80 percents for the atmospheric residue hydrodesulfurizer.
- . An on-stream factor of 85 percent for the other units.
- . To cover Peak loads of hydrogen consumed and sour gas generated for hydrogen generator, gas treater and sulfur recovery.

The installed capacity of the process units is summarized in Table 5.19 for each refining scale.

5.3.2 Utilities System

One of the major factors essential to the successful operation of a grass-roots refinery is the reliable supply of the necessary utilities.

Table 5.19

Installed Capacities of Process Units Case 2 Mydrocracking

	-	125,000 BPSD	asaa	250,000 3950	BPSD	GS48 -000, 002	apso
2100 40000	משעם	Capacity	No. s	Capacity	No. s	Capacity	20°
Atmospheric Crude Distillation	GSAS	125,000 *)	ਜ	125,000	2	125,000	4
Vacuum Flasher	BPSD	19,300	н	38,500	н	38,500	ผ
Cas Recovery	BPSD	4,700	ч	9,400	н	9,400	ч
Naphtha Hydrodesulfurizer	BPSD	26,500	н	\$2,900	н	52,900	N
Catalytic Reformer	OSCR	9,700	А	19,300	ਜ	19,300	ผ
Kerosene Mydrodesulfurizer	BPSD	17,700	A	35,300	н	35,300	~
Cas Oil Hydrodesulfurizer	SPSD	28,900	н	57,700	н	\$7,700	~
Vacuum Gas Oil Hydrodesulfurizer	apsa	1	•	•	1		
Vacuum Gas Oil Hydrocracker	GS48	006'6	Ħ	19,700	н	19,700	и
Atmospheric Kesidue Hydrodesulfurizer	BPSD	30,300	H	08,8	-	60,600	и
Visbreaker	assa	9,400		18,800	4	18,800	74
Hydrogen Generator	10 6mm /SD	0.55	Ň	01.1	~	1.10	4
Gas Breater	TPSD (AB M2S)	700	Ŕ	200	74	200	4
Sulfur Recovery	TPSD (as S)	06	ćı	180	ď	180	4
Foul Water Stripper	TPSD	1,120	7	2,230	A	2,230	й

Dual Flasher Type

Based on the prevailing local conditions of Muhammad Ameri, the integrated system and facilities for supplying these services are investigated and defined.

Particular attentions are given to the reliability of the system, and the stable supply of the utilities on a self-supporting basis.

Overall Supply System

The overall system diagram for steam, power, and water is presented in Piqure 5.10.

The refinery generates and consumes steam at three pressure levels as follows:

- . High pressure steam 43 Kg/cm²G, 400°C
- . Medium pressure steam 15 Kg/cm²G, 270°C
- . Low pressure steam 3.5 Kg/cm²G, Saturate

High pressure steam generated in the oil fired boilers is consumed is steam turbines for power generation and as motive steam for the major gas compressors in the catalytic reformer, vacuum gas oil hydrocracker, and atmospheric residue hydrodesulfurizer as well as for driving refinery air compressors.

The medium pressure steam is generated from waste heat boilers equipped in the catalytic reformer and hydrogen generator and also is extracted from the power generation turbines.

It is consumed as motive steam for small drivers and as heating and atomizing steams.

Low pressure steam is generated from waste heat boilers and exhausted from steam turbines, and is consumed as descration steam for boiler feed water and also as heating and stripping steam for various equipment.

The extracting-condensing turbines are adopted for electric power generation.

The balance of medium pressure requirements can be adequately supplied by controlling the rate of extraction, while the supply of power demand can be kept easily by controlling the rate of steam to be condensed. Steam condensate is collected where practicable, and recirculated after filtered.

Two kinds of cooling water system are provided, one is the sea water cooling for the services where applicable to the maximum extent and the other is the fresh water cooling system. Both systems are designed to save the make-up waters by adopting a recirculating system through the individual cooling towers.

The refinery uses the three types of fuels as follows:

- . Refinery off gas
- . LPG
- . Heavy fuel oil

Gases from various process units are collected and sweetened in the amine gas treating unit and then sent to the mixing drum. LPG from storage is also sent to the mixing drum through the LPG vaporizer to sustain the mixed fuel gas at a predetermined heating value. While, home fuel oil normally used is a visbreaker tar of Iranian heavy crude. The oil is drawn from the storage tank and pumped to boilers and process furnaces after being heated up to 160°C.

Provision is made for the system to recirculate the oil to attain stable supply.

The air compressors to supply the instrument air and the plant air are provided as required. Furthermore, inert gas generators of air separation type are provided to supply the entire refinery's demand.

Utilities Balance

Table 5.20 shows the utilities balance in the case of a refinery capacity of 250,000 BPSD on calendar day basis (yearly average).

This table indicates the consumption and generation rates of utilities such as electric power, fuel, three pressure level steams, sea-water, fresh water, steam condensate, pure water, boiler feed water for each units in the refinery.

positive values indicated in the table represent consumption, while negative values for generation. Utilities requirements for each refinery capacity are summarized in Table 5.21.

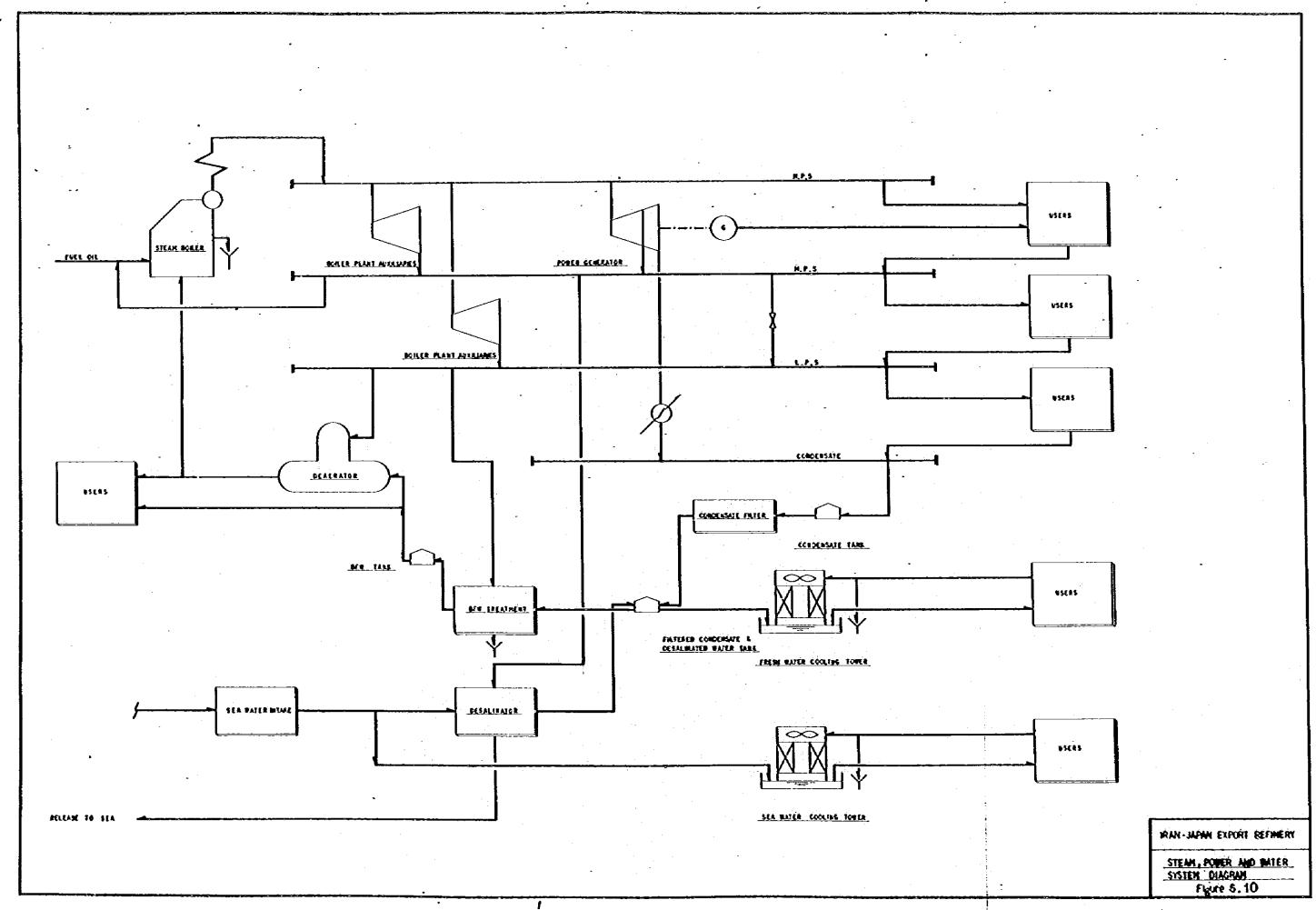


Table 5.20

Utility Balance (Case 2 Hydrocracking 250,000 BPSD)

	Elec.	Fuel		Steam		Water	ų	Steam Cond.	B.F.W.	W
	! !		-a-H	M.P.	r.v.	Sea	Fresh		Cold	Mot
	MX.	106 Kcal/CO	Ton/CD	Ton/®	Ton/CD	10 ³ ron/co	Ton/CD	Ton/CD	Ton/CD	Ton/CD
Atmos. Crude Distillation	4.480	2,801		970	327	40.8	1,224	-458		
Vacuum Flasher	740	694		231	- 26	24 S	261		-	112
Gas Recovery	TIO	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		182	20.00	787	797-	* .	. 45
Naphtha HDS	1,720	1,372	7.4.4	310	777	30.6	113		· .	98
Cat. Merormer	270	0/7/7	·	72	?	40.4	391			125
CAR Of HDS	7.4400	1,128	- -:	553	77	69.7	770	::-		218
Atmost Residue HDS	10.880	1,102	739	16 1	-636	92.9	3,020	-219		835
Kydrocracker	4,630	868	401	-266	-346	9	400			377
Visbreaker	310	24.5	÷ V	6 H	-1,008	16.4	ZIA			1,00
Cas Treating	320		-	72	1,157	18-3	ğ	-1,42		y v
Sulfur Recovery	720	254			7 6	7.7	1 1	2 4	7 650	
Hydrogen Plant	1,700	2,724		7.22	242	17.8	7/747	-526	60014	
Foul Water Stripper	2002				;		1		,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
On-Site Total	30,920	13,572	1,517	710	-657	428.0	8,554	-Z,803	2,639	4,120
Off-Site Total	3,000		216	480.	672	2.6	552	-120		
			6.4.4	900-	892-			-	4	
Steam Generator	,	7,782	7,00%	000	2.237				13,013	11,129
Deserator	23		5.496	-1,065		221.5		-4,430		-15,249
アンチのド こうちょうかんない	330				\$			15,790	-15,672	
Despitation	640				1,074			- 9.574		_
Sea Water Intake	1,260			-					-	
	1,050		/18/1		1707	4.300	901.6-	1,137		
I'M Cooling Tower	3		1					4	4	00,
Utility Total	-33,920	7,781	-1,733	-1,963	758	-430.6	-9,106	2,923	-2,659	77. E
Refinery Grand Total	0	21,353	O	-773	773	0.0	Ö	0	0	•

Notes: 1) Sea water Intake: 173,000 Ton/CD
2) Positive figures mean consumption, while negative figures for production.

Table 5-21

Summary of Utility Requirements
Case 2 Hydrocracking

Requirement	Unit	125,000 BPSD	250,000 BPSD	S00,000 BPSD
Electric Rower	KW	18,700	37,300	74, 600
rotal Fuel	10 kcal/CD	10,700	21,400	42,800
Steam	TON/CD	5,500	10,900	21,800
Cooling Sea Water	TON/CD	326,000	652,000	1,304,000
Cooling Fresh Water	TON/CD	4,600	001.6	18,200
Net Boiler Feed Water		4,300	8,500	17,000
Net Sea Water Intake	TON/CD	86,500	173,000	346,000
				:

Installed Capacity

The capacities of the individual utility facilities are defined on an operating day basis taking into account the peak loads (normal maximum). For the major facilities shown below, one unit is provided for stand-by service:

- . Steam boiler
- . Electric power generator
- . Sea water desalinator
- . Polisher
- . Cooling water circulation pump
- Air compressor

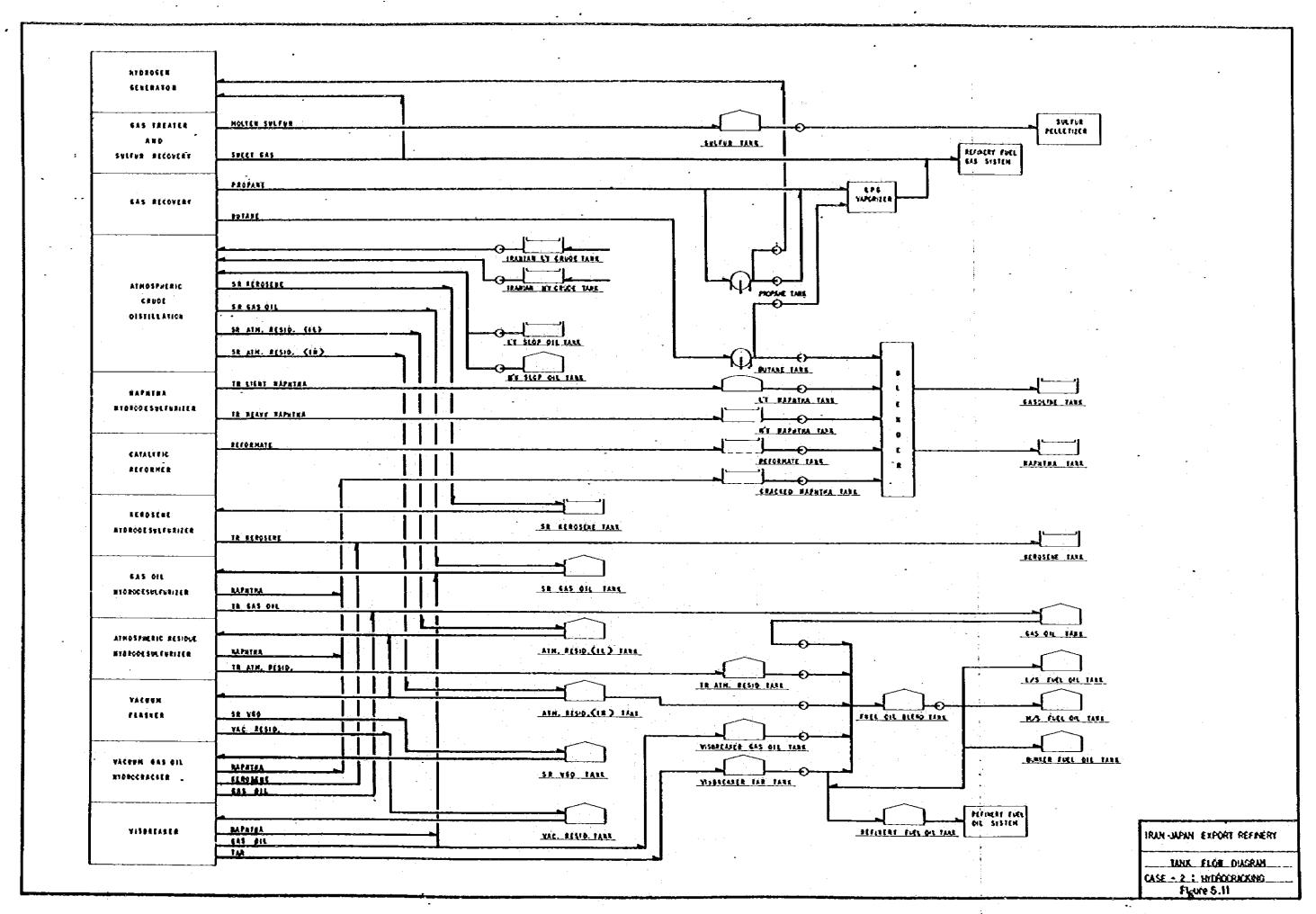
The installation summary of the utilities system for each refinery capacity is presented in Table 5.22.

5.3.3 Offsite Pacilities

Tankage and Blending Pacilities

The planned oil handling system of the refinery is illustrated in the tank flow diagram, Figure 5.11.

Both Iranian light and Iranian heavy crude oils are delivered by the two crude oil pipelines and stored in separate tanks which are capable of accomodating full plant requirements for seven days' normal operation.


The following process intermediate tankage is provided to enable to continue its operation when the other units are shut down for maintenance or catalyst regeneration and replacement.

Stream	Process Unit Charged	Storage Days
SR Kerosene	HDS	18
SR Gas Oil	HDS	18
SR VGO	HDS	7
Atm. Résidué (IL/IH)	HDS	18
Vac. Residue (IH)	Visbreaker	7

The component oil before blending and finished products leaving the process units run into large semi-product and product tanks respectively. Total product tankage capacities including those for semi-products before blending are defined to be for 30 days minimum and, in principle, 15 days capacity for semi-product.

rable 5.22 Installation Summary: Utility Facilities Case 2 Hydrocracking

	125,000 BPSD	. 0	250,000 BPSD		2007.000		Remarks
Fecility	Capacity	Non	Capacity	4 .0 2	Capacity	# °0 Z	
1. Steam Cenerator	170 TON/HE	9	310 TON/HE	6	400 TON/NE	4	44 Kg/cm ² G, 410 G. One unit for stand-by
2. Power Generator	15,000 KW		17,000 KW	4	21,000 KW	•	Extracting-condensing One unit for stand-by
3. Desalinator	2,700 Ton/day		5,200 Ton/day	ñ	10,200 Ten/day	n	One unit for stand-by
4. DPW Treatment - Condensate Filtor - Mixed Bod Polisher - Mared Bod Polisher	140 TON/HE 240 TON/HE	ผล	260 TON/HE 460 TON/HE	หต	340 TON/HE 600 TON/UE	es 4	One unit for stand-by
a) Condensate Tank b) Filtered Cond. & Desal.W.Tank c) BEW Tank	1,500 XL 12,000 XL 3,000 XL	чич	3,000 KL 25,000 KL 5,000 KL	иии	5,000 KL 12,000 KL	444	
5. Cooling Water System - Sea Water Cooling Tower - Fresh Water Cooling Tower	20,000 M3/HX 300 M3/HX	44	19,000 M3/Nr 600 M3/Nr	ич	19,000 M3/Hr 1,100 M3/Hr	44	
6. Sop Water Intake - Pumps' - Piping	3,000 M3/Hr 34 inch 3/Hr) (6,000 M3/Hr)	റെറ	5,500 M ³ /Hx 42.1nch (11,000-M ³ /Hz)	0 4	7,000 M³/HX 54 inch (21,000 M³/HX)	वसं ७	One pump for stand-by
7. Air System	1,500 Nm /Hr 250 Nm /Hr	n 4	2,000 Nm /Hr 500 Nm /Hr	n 13	1,000 Nm /Hr	n Å	
9. Fuel Oil Pump	45 TOn/Hz	m ·	90 TON/Hr		170 Ton/Hr	m	One pump for stand-by
10. Pocable Water System 11. Pocable Water System - Chlorinetor	10 TO/HK	нн	1,000 KL	нн	20 TON/HY	AA	

Furthermore, product tankage is defined to have a capacity not less than 1.5 times of one shipment by the maximum size product carrier.

The tankage for other services is defined based on the following:

. Bunker fuel oil	15 days
. Refinery fuel oil	6 days
. Refinery propane	5 days
. Liquid sulfur	3 days

The planned tankage for each case is summarized in Table 5.23. The tanks in the above table include a 15 percent safety factor.

Component oils stored in individual semi-product tanks are blended into the desired products with a schedule as shown in Table 5.24. Blending of gasoline and naphtha is performed by the commonly installed in-line blender. Based on each blending plan in the table, the required components are pumped simultaneously at controlled rates into a blending header.

Blending of fuel oils is carried out by in-line blending followed by blending tanks where further adjustments are performed and then transferred to product tanks.

Products Shipping System

The products are pumped from product tanks to a marine loading terminal by means of pipelines over a total distance of 19 Km covering 4 Km of on-shore causeway and 15 Km of submarine from the end of the causeway as shown in Figure 5.12.

Tanker loading time at the sea berth is assumed to be 18 hours for a ship of 130,000 DWT for white oils and 24 hours for a ship of 200,000 DWT for black oils.

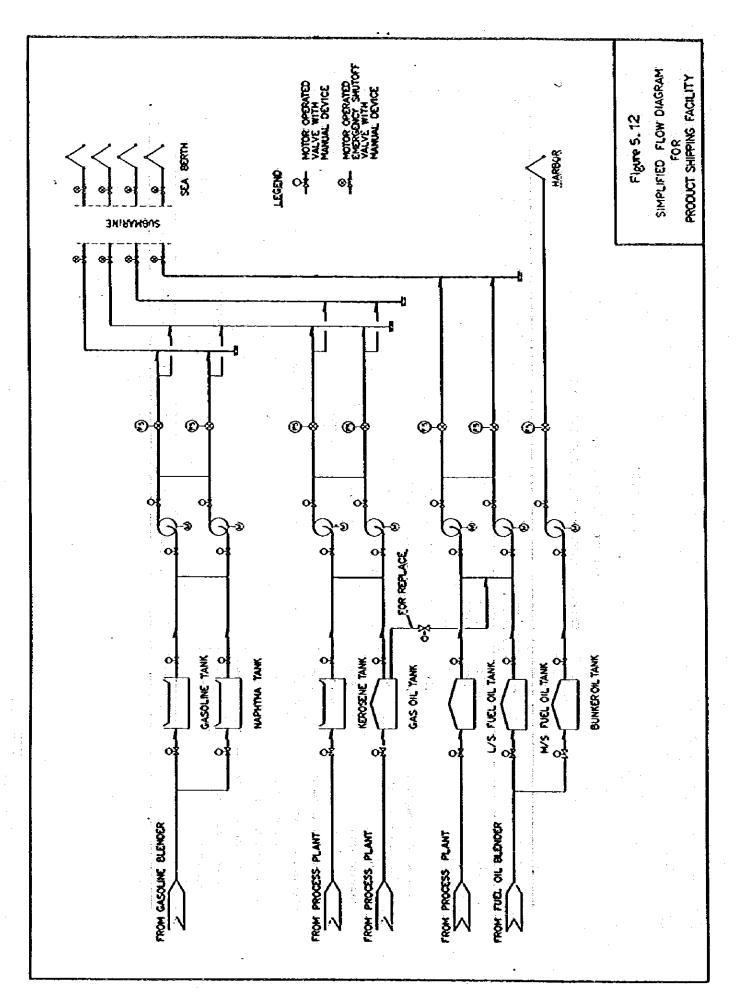
Three pipelines are provided for white oil loadings, i.e., one line for gasoline and naphtha, one line for kerosene and gas oil and one line for common use.

One common pipeline is provided for low sulfur fuel oil and medium sulfur fuel oil shipping.

This line is scheduled to be flushed with gas oil after loading operation to prevent set up of heavy oils in the line.

Tankage Summary: Case 2 Hydrocracking

	からないかの	72	125,000 8950	250	250,000,005	200	000,000 apsp	Remarks
		No.a	Capacity, XL	NO.	Capacity, Kb.	No.6	Capacity, KL	
<u> </u>	l. Crude Oil Tenks Iranian Light Crude Iranian Heavy Crude	24.62	37,300	пп	75,000		000'001	FRT
?	1						900 O7	
_	Grand Star Xeroeshe		000.00	N 4	000.00 VO.000	4 ~	0000	Š
	Attachbering Resident (HE)	2 C4	000,04	· 63	000.09	÷ ••	000109	to
	Atmospheric Residue (IM) 2)	~	30,000	~	000 404	· •	40,000	ext.
	Straight Run Vacuum Gas Oil Vacuum Residue	нн	15,000	нн	25,000	áĸ	25,000	k k
٦	3. Semi-Product Tanks			,	•	,	,	May
	からかること	n in	3,000	n 10	000 %	0 2	00016	HAS -
	Light Naphtha	~	10,000	64	15,000	₹	15,000	D. S.
•	Heavy Naphtha	24	15,000	c2 (25,000	•	25,000	FRE
	Reformate	č1 ć	10,000	rt c	20,000		20,000	# KCT
_	Chacked Nebbasher C. Desides	4 6	000.05	4 67	000	r •	000.09	: £
	Vietnesker Gas Oil	ŧ ~	3,000	, jie	2,000	C1	2,000	CRA
	Viebresker ran	~	10,000	2	20,000	4	20,000	CRT
<u> </u>	4. Product Tanks					-	- (
,	Gasolthe	N 6	000,00		000,00	N #	000.09	
	Naphripa	36	000,00) 4	000.09	, ac	000,09	TR.
	Cap Of:	• •	000,09	خ ا	000,09	ä	60,000	ę,
	LOW SULFUR FUEL OAL	36	.000,09	'n	60,000	'n	000,00	t d
	Medium Sulfur Tuel Oil	N	40,000	74	000	cs'	40,000	5
	bunker fuel Oil	-	15,000	۲ .	15,000	~1	15,000	כועד
\ <u>'</u>	Other Service Manks					· · .		
	Refinery Fuel Oal	64	4,000	ď	7,000	.	2,000	t i
	Fuel Oil Blending	~	5,000	ผ	000	·	10,000	8
	Light Slop Oil	4	10,000	d	10,000	ň.	10,000	rich (
:	Heavy Slop oul	н	10,000	ri :	10,000	~ .	000	b [
	Molten Sulfur	۲	200	-	ממסיד	,	00041	, cw,
	Grand Total	57	1,737,000	70	2,676,000	119	4,337,000	


Notes: 1) Interchangeable with Product Tanks
2) Common for Intermediate and Semi-Product Tanks

rable 5.24

Produces Blending Table

BPSD	
250,000	
Hydrocracking	
Case2:	

	1	Refanery		4 4 4			\$/7	S/W	Bunker	Retinery
blending Component	6046		Casoline Naphtha	Naphrha	Norcesine Norcesine	100	ruel oth	Enel Oil	ruel oil	Fuel Oil
Off Cas	2,535	2,535								
	ô Đ	(Ç	1				-			•
Propene	2,247	2,247		- :						
Butane	5,046	2,554	726	1,766			-			
Treated Light Naphtha	6,987		7,486	2,502			-			
Treated Heavy Naphtha	14,241	-		14,241		•				
Reformate	13,038		13,038							
Cracked Naphtha	8,051			8,051				-		
Treated Kerosene	29,963				29,963	_	-			
Hydrocracked Kerosene	7,044	-			7,044		-			:
treated Gas Oil	46,453					45,849		604		
Hydrocracked Cas Oll	1,061					7,061	-			
Visbreaker Gas Oil	1,540	_				-			1,540	
Straight Run Atmos.Residue(IH)	9,286		-	•				5,859	3,427	
Treated Atmos. Residue	48,147				-		43,688	4,459		730
Visbreaker Tar	12,264			:					D 4 4 1	2000
rocal	216,903	7,336	21,250	26,559	37,007	52,910	43,688	10,922	6,375	10,856

One pipeline for supplying potable water to tankers and one pipeline to discharge deballasting water from tankers are provided additionally. While, the ship's bunker fuel oil is transported from the refinery to the harbor through on-shore pipeline and then delivered to tankers by means of barges.

Table 5.25 represents the planned capacity of the shipping pumps and the size of the pipelines

Solid Sulfur Handling System

The molten sulfur stored in the high temperature sulfur tank is pelletized for shipment. The pelletized sulfur is temporarily stored outdoors in piled form and then transported by means of the conveyor belt along the causeway to the sulfur shipping wharf located at the end of the causeway and 4 Km far from the refinery.

Based on the operation schedule that operating hours of the pelletizer are eight (8) hours per day and the maximum tonnage of a sulfur carrier is 10,000 DWT, this system is defined to be made up as shown in Table 5.26.

Catalyst Loading and Unloading System

The atmospheric residue hydrodesulfurizer requires catalyst replacement at every six months intervals.

On this occasion, spent and deteriorated catalyst is withdrawn from the reactor and hauled away by truck after packing into drums.

On this occasion, spent and deteriorated catalyst is withdrawn from the reactor and hauled away by truck after packing into drums.

On the other hand, fresh catalyst is lifted to the level of the charging ports with bucket elevators and loaded into the reactor by means of conveyor belt. The volume of catalyst replaced and the time required are estimated for a 60,000 BPSD of the atmospheric residue hydrodesulfurization unit (reactor 2 trains).

- . Catalyst replaced: Annually 390 Ton x 2 Times
- . Required time : 15 days per time

Fire-fighting System

A fire water system to store, pump, and distribute sea water throughout the plant for fire protection and fire-fighting is provided. Water for the fire service is drawn from the sea water intake pit and pumped up to the water distribution header.

Table 5.25

Installed Capacity of Product Shipping System

Service	Shipping Pumps	Pipelines
Gasóline Naphthá Kérośene Gas Oll	5,000 m ³ /H × 4	32 inches x 3
L/S Fuel Oil M/S Fuel Oil	5,000 m ³ /H x 2	42 inches x 1
Bunker Fuel Oil	1,000 m ³ /H x 2	16 inches x 1
Potáble Water	50 m ³ /H × 2	4 inches x 1
Ballast Water	<u> </u>	22 inches x 1

Table 5.26

Installed Capacity of Solid Sulfur Handling System

Case i	125,000 BPSD	250,000 BPSD	500,000 BPSD
Sulfur Pelletizer	20 Ton/H	40 Ton/H	80 Ton/H
Storage Yard	5,500 m ²	5,500 m ²	5,500 m ²
Conveyor Belt	500 Ton/H	500 Ton/H	500 Ton/H

Three 410 m³/H fire water pumps including one spare pump (one electric motor driven, two diesel driven) are provided to distribute fire water to hydrants and turrets spaced strategically to protect all areas of the the plant. The hydraulic pressure at each fire hydrant is maintained at 7 Kg/cm²G.

For the high pressure gas facilities in the LPG spherical tank area, water sprays are provided.

The refinery has a self-defence fire-fighting system centralized in the fire station where the following vehicles are provided:

- . Poam fire èngines
- . Powder fire engines
- . Foam original liquid trucks
- . Ordinary fire engines
- . Ambulances

Besides the above, movable powder chemical fire extinguishers are provided at major locations throughout the refinery.

Place and Blowdown Systems

provision is made for disposal of vapors and liquids discharged by various pressure-relieving devices such as safety valves, rupture disks, pressure-control valves, and furnace emergency blowdown valves. Facilities included in these systems are an appropriately sized flare knockout drum, and a smokeless type flare stack with the following sizes corresponding to the refining capacities:

Table 5.27
Size of Place Stack

Casei	125,000 BPSD	250,000 BPSD	500,000 BPSD
Diameter	36 Inches	48 inches	48 inchés
Height	80 pa	80 m	110 m
Quantity	1	1	2

Sewer and Effluent Treatment Systems .

Drainage from the refinery is collected in the three sewer systems being classified into process waste water, oily waste water and clean waste water.

A part of process waste water, which contains H₂S and NH₃, is reused as desalting water in the atmospheric crude distillation unit after being treated in the foul water stripper for removal of H₂S and NH₃.

Other process waste water is sent to a retained tank and then treated in multiple stages by the following effluent treatment facilities:

- . CPI oil separator
- . Coagulation settler
- . Pilter
- . Incinérator

Oily storm water and blowdown waters from boilers and BFW treater are treated together with tanker deballasting water in CPI oil separator and coagulation filter.

The clean waste water including desalinator brine, cooling tower blowdown, and clean storm water is directly discharged into the guard basin. Then, all of the refinery effluent is gathered into the guard basin to retain and make the effluent uniform, and prevent large accidental discharge of contaminants.

The waste water quality from the refinery is defined as follows:

Table 5.28
Waste Water Quality

PH	5.8 - 8.6
COD	Мах. 60 рра
Oil	Мах. 5.0 рра
SS	Нах. 30 ррга

Buildings and Equipment

Table 5.29 shows the planned buildings and their floor areas examined in the three cases of refining capacities.

The floor space for warehouses and maintenance shop is so defined that the refinery can be essentially self-sufficient.

All of three buildings are completely furnished and air-conditioned.

Instrumentation and Information Control Systems

Operation of the refinery is centrally controlled, with instrument panels provided in the following control rooms:

- . On-sité Control Room
- . Utility Control Room
- . Off-site Control Room
- . Shipping Control Room

Table 5.29
Building Plan

Buildi	ngs	(<u>)</u>	Tota	l Ploor Area,	p. 2
	Stories	No.s	125,000 BPSD	250,000 BPSD	500,000 BPSD
Administ. Bldg.	2	1	3,000	3,000	3,400
Mainténance Shop	1	1	5,000	5,000	6,500
Warehouses	1	4	4,500	4,500	5,800
Laboratory	1	1	1,000	1,000	1,300 ···
Eng'g Office	1	1	1,000	1,000	1,500
Control Rooms	111	5(7)	2,920	2,920	4,480
Power House	1	: 1 :	1,550	1,950	2,790
Costum House	er er i	1.0	90	90	90
Substations	1	25	4,600	6,910	12,330
Pirehouse	p-7 1 -51	• • 1 • •	600	600	600
Change House	4 1	1	500	. 500 11	750
Cafeteria	1	1	1,260	1,260	1,800
Clinic	Y		300	300	300
Rest Houses	1	2	200	200	200
Gate . Houses	1	3	140	140	140
Total		49 (51)	26,660	29,370	41,980

): 500,000 BPSD Case

Bach instrument panel is provided with a semigraphic panel which indicates the process flow of related units to facilitate operation of the refinery. An electronic system is adopted for the instrument signal media.

The following information control system using electronic computers is installed in the refinery for the purpose of providing correct information related to the refinery operation and facilities status:

- . Shipment Control System
- . Oil Inventory Control System
- . Pacilities Control System
- . Cost Control System

The computer hardware comprises two computer terminals, one central processor, and their satellite installations as shown in Figure 5.13.

Civil Works

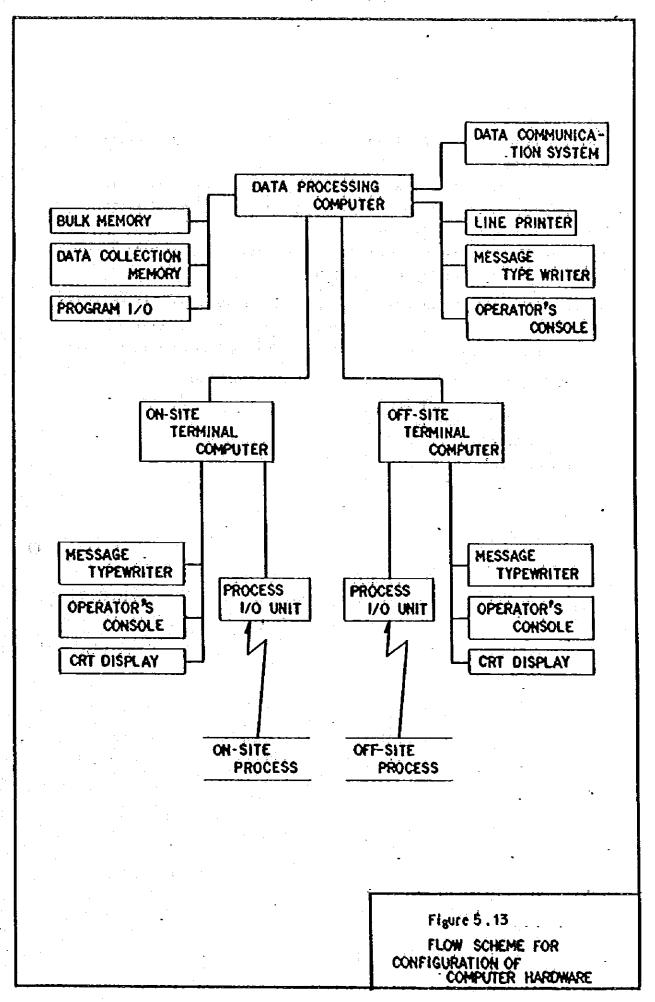
Por preparation of the site in Mohammad Ameri, the ground is levelled at approximately 7 - 8 m above sea level.

The earth work volume for each refinery capacity is as shown below.

. 125,000 BPSD : 1,600,000 m³

. 250,000 BPSD : 1,900,000 m³

. 500,000 BPSD : 3,200,000 m³


The soil of the site is composed of alternate strata of cohesive and sandy soils.

Because the subsurface soil is very stiff with the N value of 20 or more pilling is not required, and therefore, a spread footing type is selected. As the soil along the Persian Gulf is, in general, corrosive containing sulfate, the Type-V cement is applied for the concrete foundation. The tank foundations use an earth foundation type with crushed stones placed under shell plate.

The vicinities of process and utility facilities are paved with concrete.

Roads are paved with asphalt concrete and the width of pavement is 16m for main roads and 6m for secondary roads.

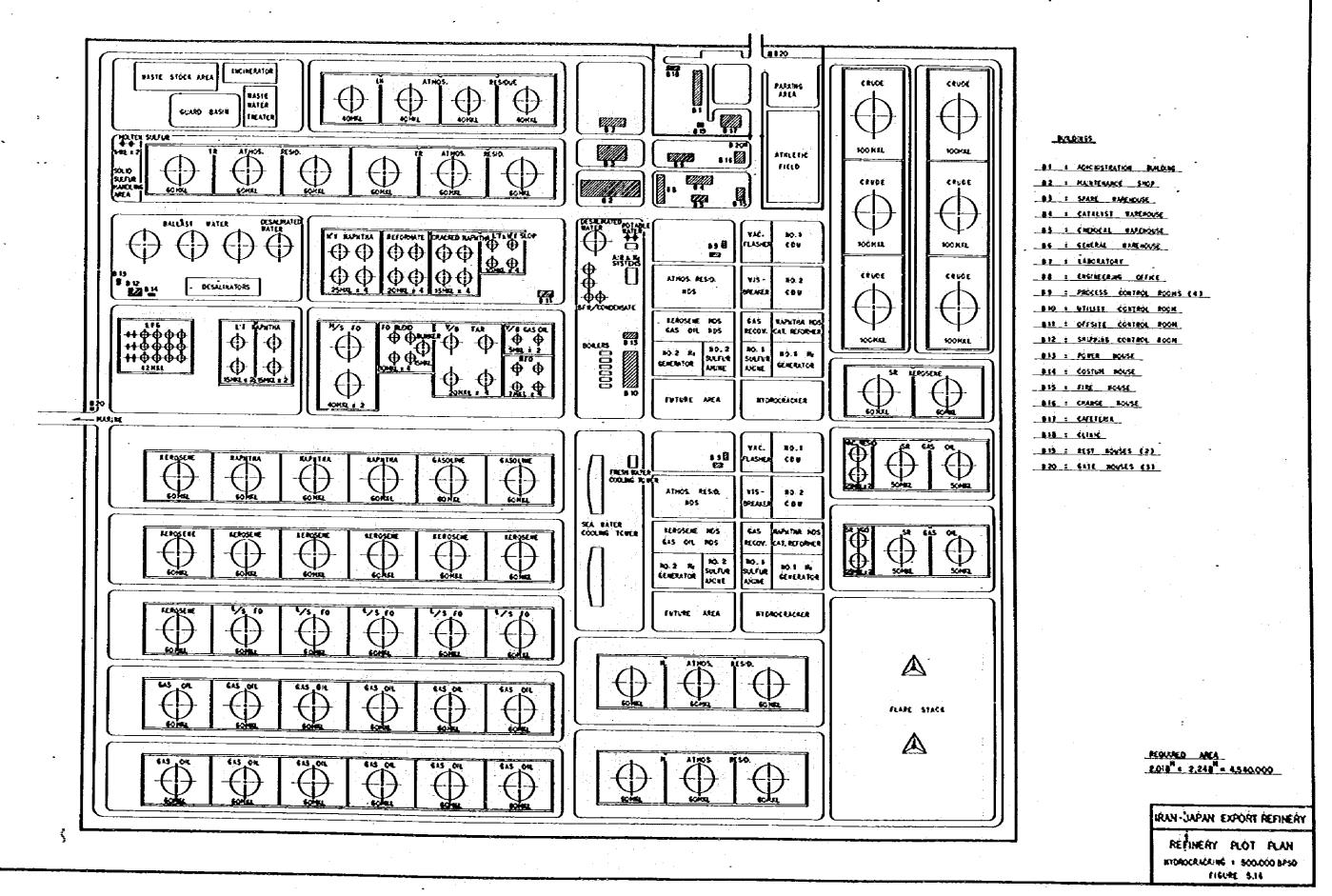
Chain-link fences are provided around the refinery property.

5.3.4 Refinery Plot Plan

A plot plan for the 500,000 BPSD of hydrocracking refinery is presented in Figure 5.14.

General areas arranged to include crude storage, process units, intermediate storage, product storage, shipping, utilities, administration and service, and waste disposal.

The process units area in 500,000 BPSD is subdivided into two (2) trains each capable of processing 250,000 BPSD crude oil.


The plot plans for the 125,000 BPSD and 250,000 BPSD cases will be essentially the same with the exception that the number of trains in process area and the area required for the crude and intermediate tankage.

The required area for each case is estimated as follows:

. 125,000 BPSD : 2,290,000 m²

. 250,000 BPSD : 2,790,000 m²

. 500,000 BPSD : 4,540,000 m²

MARINE PACILITIES

5.4 Marine Pacilities

As illustrated in Figure 5.15, the following marine facilities for product shipment are constructed in the nearest sea area to the refinery:

- . Sea Berth
- . Harbor and Dredged Channel
- Causeway
- . Sea Water Intake Pacility

Host of products from the refinery are shipped at the sea berth which can accommodate 200,000 DWT product tankers and tankers as small as 50,000 DWT through the product submarine pipelines.

Shipment of solid sulfur and bunker fuel oil, which are poor in fluidity, is conducted at the harbor by carriers up to 10,000 DWT for sulfur and 5,000 DWT for bunker fuel oil.

In locating these marine facilities, due considerations are made on the directions of prevailing wind, wave, and tidal current in the sea area for attaining safe navigation and anchorage of product carriers.

5.4.1 Sea Berth

A sea berth which can accommodate large size tankers up to 200,000 DWT is constructed at a point, 18.8 Km offshore from the coastline near the refinery, with a water depth of 20 m.

A fixed platform sea berth shown in Pigure 5.16 is adopted for the plan because of ease of tanker steering and reliability of the facilities. The facility comprises a loading platform, breasting dolphin, mooring dolphin and catwalks for connecting them.

The superstructures for the loading platform and mooring dolphin is a steel construction and that for the breasting dolphin is of reinforced concrete. Steel pipe pile is used for the substructure of these installations.

The prevailing wind direction in the sea area is northwest and tidal current is in the almost same direction.

Prom the above viewpoint, the normal line of sea berth is decided to be in the axis of northwest - southeast.

Twin berth will be adopted for the 500,000 BPSD capacity refinery, while single berth for the 125,000 or 250,000 BPSD capacity.

5.4.2 Harbor and Dredged Channel

At 3.5 Km offshore of the refinery where the water depth is 3 m, a harbor will be constructed for loading solid sulfur and bunker fuel oil, unloading general cargoes and accommodating various small boats such as tugboats, fire boats, and launches.

A dredged channel with 10 m depth and 200 m width will be constructed to permit ships of maximum tonnage of 10,000 DWT to pass through it to the harbor.

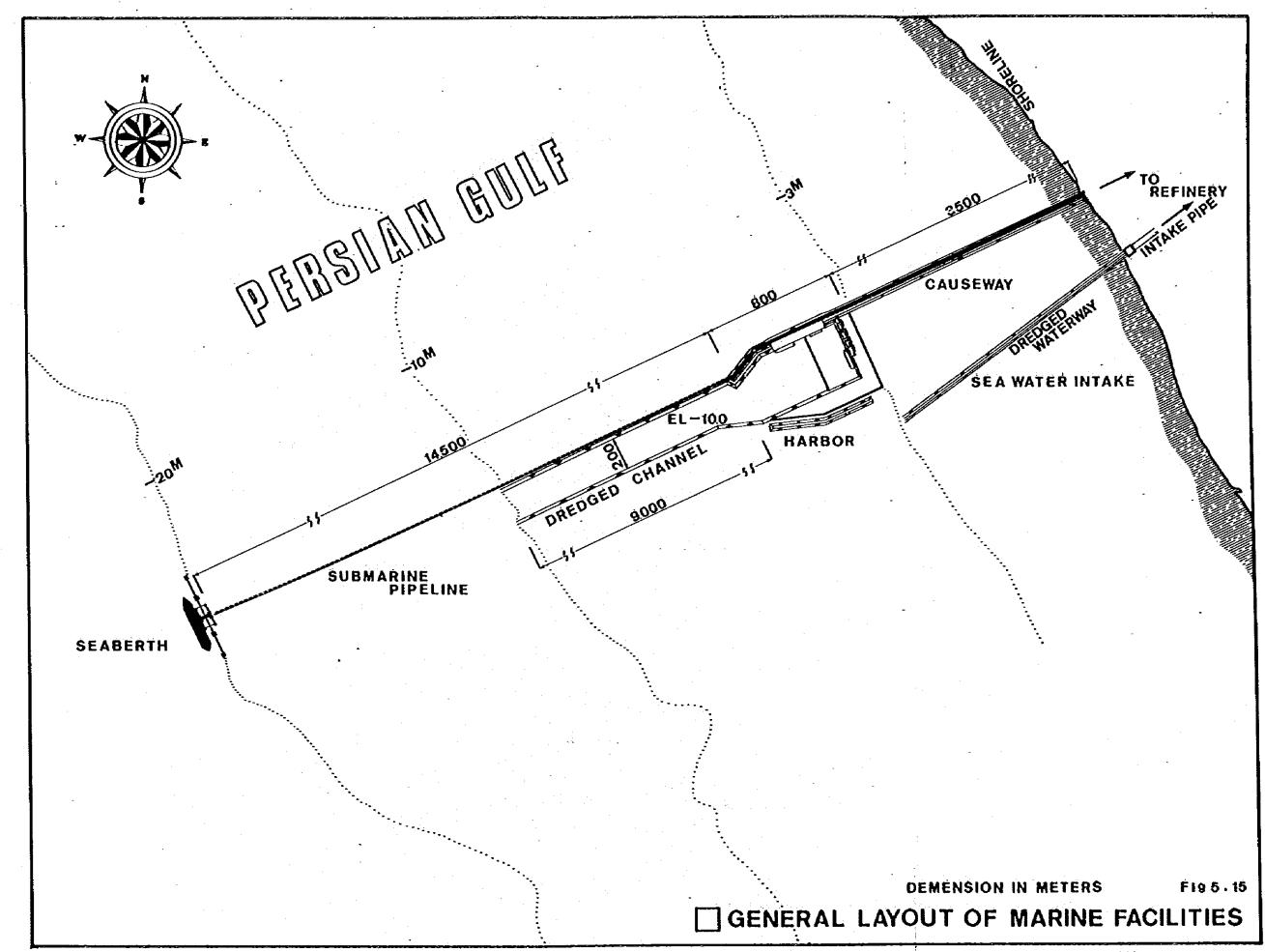
It will be required to dredged about a distance of 9 Km.

A general plot plan of the harbor is presented in Pigure 5.17.

As shown in the figure, the major sizes of the harbor facilities are as summarized below:

- . Sulfur loading wharf (up to 10,000 DWT)
 - 10 m water depth, 210 m quaywall length
- . Bunker oil berth (up to 5,000 DWT)
 - 8 m water depth
- . Common wharf (up to 1,000 DNT)
 - 8 m water depth, 140 m quaywall length
- . Small boat pier
 - 8 m water depth, 185 m pier length

The anchorage area is planned to be enough to provide these vessels with safe sailing and anchoring as well as to permit the greatest vessel, 10,000 DWT sulfur carrier to turn in this area.


At the normal steering of 10,000 DWT carrier, two tugboats for arrival and one for departure is used.

Based on it, 350 m wide area of the turning basin, that will be enough for 10,000 DWT vessel to turn, is secured.

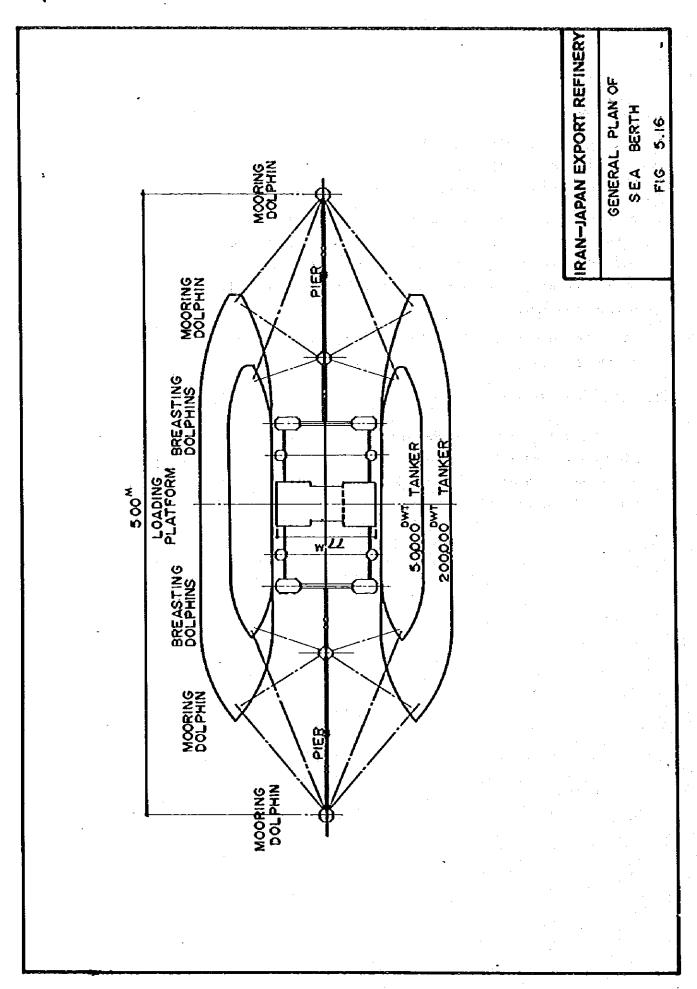
To always keep the anchorage area calm, a breakwater is constructed to shelter the area from the northwest predominant waves.

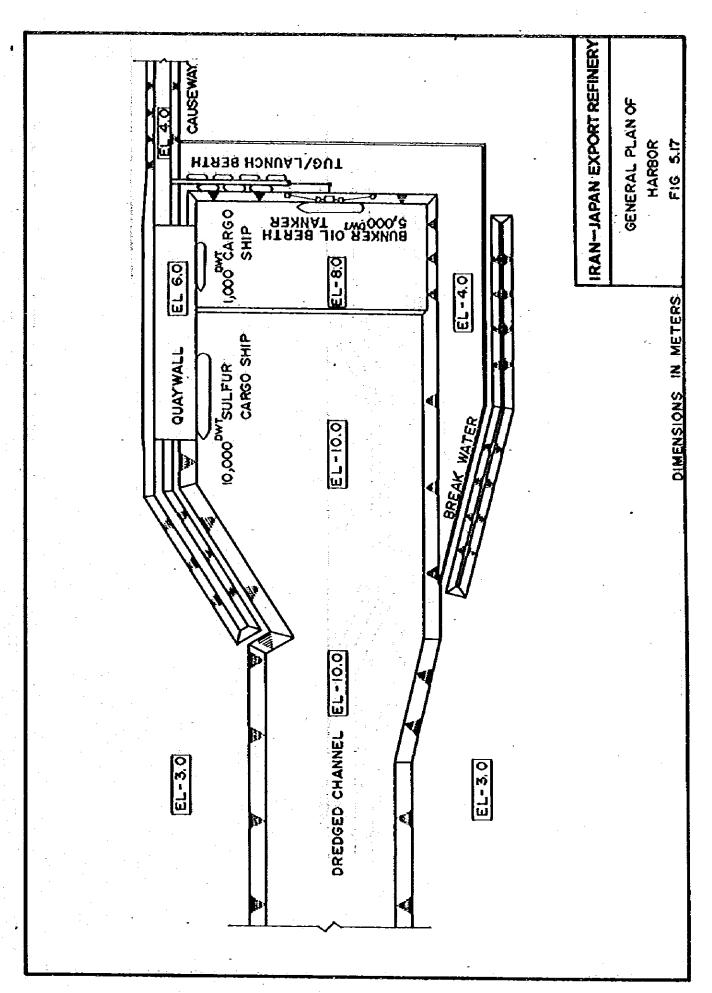
5.4.3 Causeway

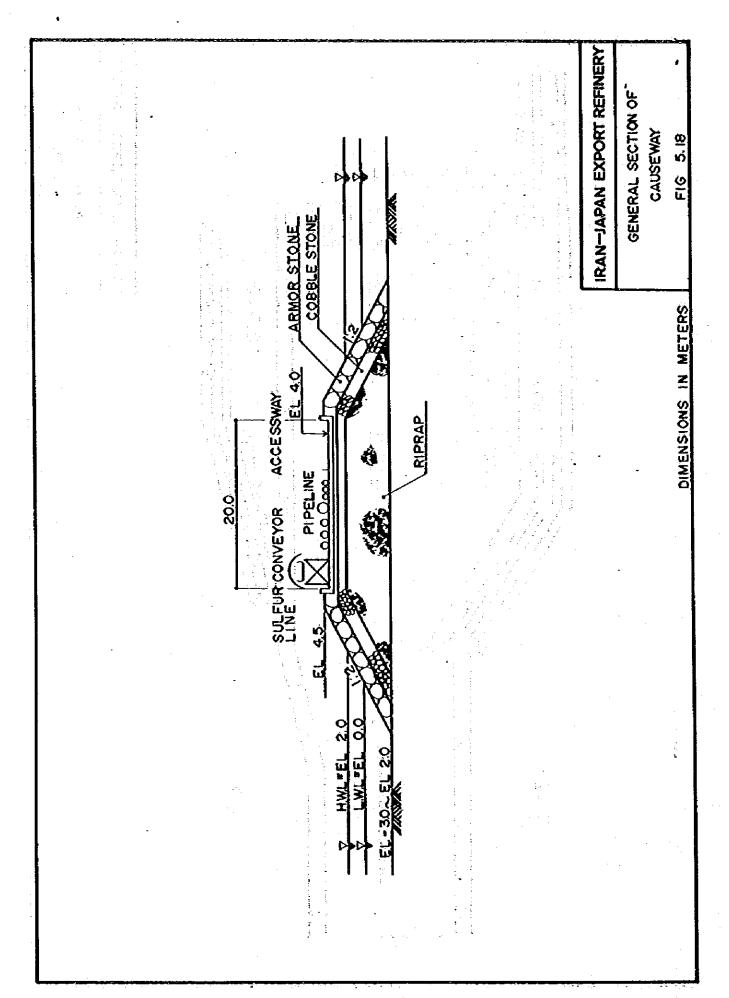
A causeway with a crown width of 20 m will be constructed as a connecting path between the refinery and the harbor, on which the following provisions

are made:

- . Access road with 6 m width
 - . Lane for pipelines with 10 m width
 - Lane for sulfur conveyor belt with 4 m width


As shown in the general section of the causeway of Figure 5.18, the embankment is mounted by riprap and on which cobble and armor stones with 0.5 to 4 tons weight are covered to reinforce it.


While the crown levee surface is paved with concrete to withstand possible overtopping waves.


It is expected that all of the embanking materials will be brought from an inland quarry.

5.4.4 Sea Water Intake Facility

Prom a point of 3 m water depth to the shoreline where a sea water intake pit will be installed, exclusive dreged waterway will be constructed. The waterway is planned to be located to be south of the causeway to avoid the northwest predominant wave.

