STUDY ON DESIGN WAVE

(1) Wind Speed by Direction

The records of maximum wind speed expressed in Beaufort wind scale were available during the period 1948 - 1984 as shown below:

Table-l Maximum Wind Speed by Direction

	All			Direction	<u> </u>	
Year	Directions	N	SE	s	SW	. NW
1948	7.					
1949	6 - 7					
1950	4 ~ 5			i .		1
1951	4 - 5		İ	· .		
1952	6 - 7					1
1953	6 - 7			i		
1954	6 - 7					
1955	4 - 5					
1956	4 ~ 5			1		
1957	8	•			la l	t .
1958	8	Note:	No directi	onal data	during 1948	- 1969
1959	8		1	1	1	ŀ
1960	7			£		
1961	7				·	
1962	7		. *			i .
1963	8					
1964	7.				ł .	
1965	7		·	•		
1966	5				A second	
1967	5					<u> </u>
1968	5					
1969	6 - 7	•		•		
1970	5	4	5	3	. '	4
1971	5	4	5	4		4
1972	6	5	5	4	5	6
1973	5	5	5 5 5 6	4		4
1974	6	4	6	4	4	6
1979	7	5		5	7	6
1980	6	5 5	5	4	6	5
1981		4	5 5 5	4	5	5
1982	5 8	5	6	5	7	8
1983	6	6	6	6	7 5	6
1984	6 6	4	6	5	1	4

The relationship between the Beaufort wind scale and wind speed is as follows:

Table-2

Beaufort Wind Scale	Wind Speed (m/sec)	Range (m/sec)
1	1.039	0.6 - 1.5
2	2.572	1.6 - 3.3
3	4.372	3.4 - 5.4
4	6.944	5.5 - 7.9
5	9.774	8.0 - 10.7
6	12.603	10.8 - 13.8
7	15.689	13.9 - 17.1
8	19.033	17.2 - 30.7

(2) Probability Analysis of Wind Speed

Based on the data of the wind speed as described above, a probability analysis was made. The data was plotted by the Thomas method and the probability was analyzed by the Gumbel method.

An analysis was made for each of six cases (directions) of winds, i.e., north (N), northwest (NW), southwest (SW), south (S), southeast (SE) and all directions, taking into account the winds corresponding to the waves which propagate to the proposed causeway.

The detailed calculations are presented in Appendix 4-2, of which the results are summarized as shown below:

Table-3

Return		Wind S	peed by	Directio	on (m/sec	:)
Period (Year)	N	MM	SW	S	SE	A11
2	8.5	10.1	11.1	7.3	10.6	12.8
5	10.6	14.3	15.1	9,9	12.2	16.3
10	12.0	17.1	17.7	11.6	13.3	18.6
20	13.4	19.8	20.2	13.2	14.3	20.8
50	15.1	23.3	23.5	15.4	15.6	23.7
100	16.5	25.8	25.9	17.0	16.6	25.9

(3) Shallow Water Wave

The scale of shallow water wave which is generated in the lagoon was estimated for a 50-year probability.

Judging from the location of the proposed causeway and topography of Tarawa, the shallow water wave generated by the north wind will have a larger effect on causeway than the others, and as such an estimation was made for it.

(i) Effective fetch of north wind

The distance between the proposed causeway and the reef edges on the opposite shore by direction is shown in the figure below:

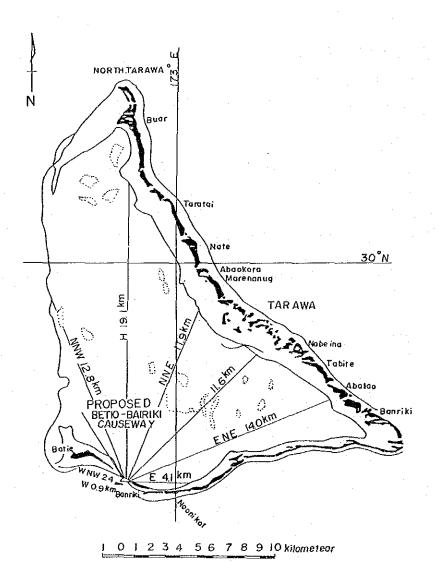


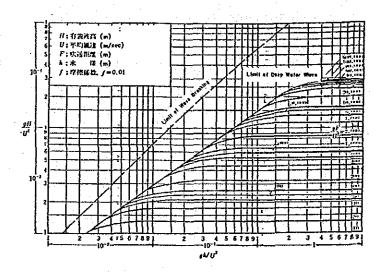
Fig.1 Effective fetch

Based on the above distance, the effective fetch was calculated by the following equation.

$$F_{eff} = \frac{\sum_{i=1}^{n} F_{t} \cos (\theta_{i} - \theta) \Delta \theta_{t}}{\sum_{i=1}^{n} \cos (\theta_{i} - \theta) \Delta \theta_{t}}$$

where,

Feff: Effective fetch


θ : Main wind direction

Fi : Distance to the opposite shore in

 θ_i direction

Using this formula, the effective fetch for the north wind was calculated at 12.7 kilometers.

(ii) A shallow water wave generated by north wind. Significant wave height and wave period of shallow water wave generated by north wind were estimated based on the Bretschneider's method shown in the following figure.

H: Significant wave height

U: Average wind speed

F: Fetch

h: Water depth

f: Coefficient of friction, f = 0.01

Fig.2 Estimation of Fetch of Shallow Water Wave

h = 8.0 + 1.8 = 9.8 m Average seabed level: DL - 8.00 Tide level (MHWS): DL + 1.80 U = 15.1 m/sec (50-year return period) F = 12.7 km $gh/U^2 = 9.8 \times 9.8/(15.1)^2 = 0.421$ $gF/U^2 = 9.8 \times 12,700/(15.1)^2 = 546$ $gH/U^2 = 0.049$ from the above figure

Therefore, the significant wave height (H) and the wave period (T) are calculated, as follows:

$$H = 1.14 \text{ m}$$

 $T = 3.86\sqrt{H} = 3.86 \text{ x } \sqrt{1.14} = 4.1 \text{ sec}$

(4) Deep Water Wave

The scale of a deep water wave generated in the ocean was estimated for a 50-year probability. Four cases (wind directions), SW, S and SE winds which blow on ocean side of the proposed causeway and NW wind which blows on lagoon side, were analyzed.

(i) Effective fetch and wind duration

According to the pilot chart of the Maritime Safety Agency of Japan, the maximum height of ocean wave $(H_{1/3})$ is 5.0 m and the maximum wave period (T) is 9.0 sec. The maximum wind speed during the period when this ocean wave occurred was 8 in the Beaufort wind scale, equivalent to about 40 knots (20.56 m/sec).

The fetch and wind duration were estimated based on the above, as described below:

a) Method A

Based on the wave height and wind speed, the following values were obtained using the S-M-B method (refer to the chart below).

Effective fetch : Fe = 250 kmPeriod : T = 8.6 secWind duration : t = 13 hr

b) Method B

Based on the wave period and wind speed, the following values were obtained also using the S-M-B method.

Effective fetch : Fe = 300 km Significant wave height : $H_{1/3} = 5.5$ m Wind duration : t = 16 kt

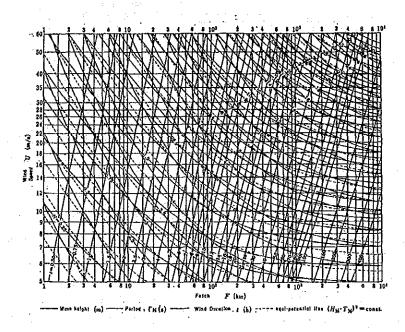


Fig.3 Curve of Wave Height by S-M-B Method

c) Effective fetch and wind duration

In general, if Bretschneider's method is applied in the case where there is an attenuation of well, the wave height decreases and the wave period increases in value as shown in the figure below. The difference between Method A and B is judged to be due to such attenuation and the attenuation distance was estimated at 20 - 30 km.

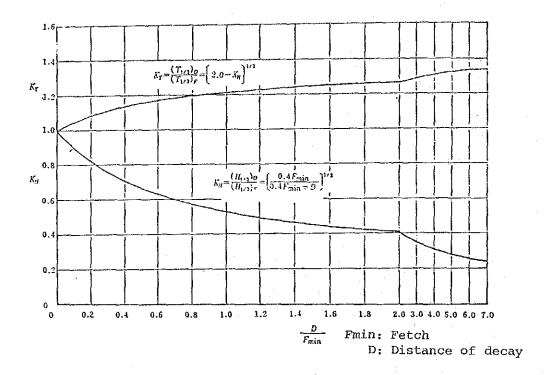


Fig.4 Attenuation Curve

Based on the above results, the effective fetch and wind duration near Tarawa were estimated to be 250 km and 14 hours, respectively, which are considered to be appropriate for such area near the equator that have no extraordinary weather such as typhoon or hurricanes.

(ii) Deep Water Wave by Direction

The wave height and period were estimated, for a wind speed of a 50-year return period, calculated in (2), effective fetch of 250 km and wind duration of 14 hours, using the S-M-B method, as summarized in the table below: The results are a little bit different between those calculated based on effective fetch and wind speed and those calculated based on wind duration and wind speed. The smaller values were taken referring to the Manual for Wave Analysis, Japan.

			Wave	on Ocean	Side	Lagoon Side
Wind Direction	SW	S	SE	NW		
Wind Speed		(m/sec)	23.5	15.4	15.6	23.3
Estimation based on	Wave Height	H _{1/3} (m)	6.2	3.5	3.5	6.2
Effective Fetch	Period	T (sec)	9.5	7.5	7.5	9.3
Estimation based on	Wave Height	H1/3 (m)	6.1	3.3	3.3	6.1
Wind Duration	Period	T (sec)	9.3	7.1	7.1	9.3
Used Values	Wave Height	H _{1/3} (m)	6,1	3.3	3.3	6.1
YULUUD .	Period	T (sec)	9,3	7.1	7.1	9.3

Table-4 Deep Water Waves by Direction

Based on the above, the following waves were fixed for the subsequent studies

Wave on ocean side (SW):
$$H_{1/3} = 6.1 \text{ m}$$
, $T = 9.3 \text{ sec}$
Wave on lagoon side (NW): $H_{1/3} = 6.1 \text{ m}$, $T = 9.3 \text{ sec}$

- (5) Wave Transformation and Setup on Reef

 The transformation of a shallow water wave and a deep water wave

 were analyzed until they reached the proposed location of cause
 way and the wave height and wave setup in front of the causeway

 were then calculated.
 - (i) In the case of a wave breaking on the reef (wave of 50 years return period) The height of breaking wave and wave transformation were estimated by the following Takayama's equations:

Takayama's equation

a) Height of breaking wave on reef edge

$$H_{1/3x=0} = Min \{ (\beta_0 \cdot H_0' + \beta_1 \cdot h), \beta_{max} \cdot H_0', K_s \cdot H_0' \}$$

Where,
$$H_{1/3x=0}$$
 = Height of breaking wave
$$\beta_0 = 0.028 \left(H_0' / L_0 \right)^{-0.38} \cdot \exp\left(20 \left(\tan \theta \right)^{1.5} \right)$$

$$\beta_1 = 0.52 \cdot \exp\left(4.2 \tan \theta \right)$$

$$\beta_{max} = \text{Max} \{ 0.92, 0.32 \left(H_0' / L_0 \right)^{-0.29} \cdot \exp\left(2.4 \tan \theta \right) \}$$

$$H_0' : \text{ Significant wave height}$$

$$L_0 : \text{ Wave length}$$

$$\tan \theta : \text{ Seabed slope on reef edge}$$

b) Attenuation of wave height and setup

$$\frac{H_{1/3x}}{H_{0}} = B \cdot \exp(-0.05 \frac{x}{H_{0}}) + \alpha \frac{h_{0} + \overline{\eta_{\infty}}}{H_{0}}$$

Setup

Wave height

$$\bar{\eta}_{x}/H_{0}' = \sqrt{C_{0} - 3/8\beta (\frac{H_{1}/3x}{H_{0}})^{2}} - \frac{h}{H_{0}'}$$

 $H_{1/3x}$ = Wave height at the distance of xm from reef edge

 $\vec{\eta}_{\mathbf{x}}$ = Setup at the distance of xm from reef edge

$$B = \frac{H_1/3x = 0}{H_0} - \alpha \frac{h_0 - \bar{\eta}_{\infty}}{H_0}$$

 $\alpha = 0.33$ (constant)

$$\frac{h_{0} + \eta_{\infty}}{H_{0}} = \sqrt{\frac{C_{0}}{1 + 3/8\beta\alpha^{2}}}$$

 h_0 = Water depth

 $\beta = 0.56$ (constant)

$$c_0 = \left(\frac{n_{x=0} + H_0}{H_0!}\right)^2 + \frac{3}{8}\beta \left(\frac{H_1/3x = 0}{H_0!}\right)^2$$

 $\overline{\eta}_{x}$ =0/H $_{0}$ ' = From Goda's estimation diagram

Using these equations, an analysis was made for the following 3 waves:

- Deep water wave to reach the ocean side of the causeway
 - Wave by SW wind
 - Significant wave height of ocean wave: 6.1 m
 - Period of ocean wave: 9.3 sec
 - Distance between the reef and the causeway (x) and water depth (h₀): x = 400 m, $h_0 = 1.3 \text{ m}$
- Deep water wave to reach the lagoon side of the causeway
- Wave by NW wind
 - Significant wave height of ocean wave: 6.1 m
 - Period of ocean wave: 9.3 sec
 - Distance between the reef and the causeway (x) and the water depth (h₀): x = 10,000 m, $h_0 = 8.0 \text{ m}$, and x = 300 m, $h_0 = 1.3 \text{ m}$
- Shallow water wave to reach the lagoon side of the causeway
 - Wave by N wind
 - Significant wave height of shallow water wave: 1.14 m
 - Period of shallow water wave: 4.1 sec
 - Distance between the reef and the causeway (x) and the water depth (h_0): x = 300 m, h_0 = 1.3 m

The detailed calculation is described in the subsequent pages, of which results are summarized below:

Table-5

					Table-)
		•	Ocean Side	Lagoon	Side
<u>.</u>	· ·		Deep Water	Wave	Shallow Water wave
Wind Direct	ion		SW	NW	N
Wind Speed		(m/sec)	23.5	23.3	15.1
Before	Wave Height	H _{0:1/3} (m)	6.1	6.1	1.14
Breaking	Period	T (sec)	9.3	9,3	4.1
	Wave Height	H _{1/3x} (m)	0.70	0.66	0.46
	Period	T (sec)	9.3	9.3	4.1
After	Setup	η (m)	0.7	0.69	0.08
Breaking	Tide Level	(m)	1.8	1.8	1.8
	Water Level	(DL + m)	+2.50	+2,49	+1.88

- (ii) In case of passing over the reef without breaking

 The wave height at the proposed causeway, attenuated by a friction
 loss, was estimated on the condition that the wave of limiting
 height passes over reef edge without breaking. Calculation of the
 limiting wave height was made based on the method proposed by
 Bredtschneider and Reid in "Shore Protection Manual, Volume I,
 USA" for the following 3 cases:
 - Deep water wave to reach the ocean side of the causeway
 - Deep water wave to reach the lagoon side of the causeway through Betio port
 - Shallow water wave which occurs in the lagoon and reaches the lagoon side of the causeway

The detailed calculation is described in the subsequent pages, the results of which are summarized below: It is to be noted the same attenuation distance as explained in (i) above was used in calculation.

Table-6

			Ocean Side	Lag	oon Side
Kind of wav	re			ater Wave	Shallow Water Wave
Before Attenuation	Wave Height H _{1/3}	3 (m)	1.01	3.27	1.01
by Friction Loss	Period T (s	sec)	9.3	9.3	4.1
After Attenuation	Wave Height H _{1/3}	3 (m)	0.42	0.49*	0.52
by Friction Loss	Period T (s	sec)	9.3	9,3	4.1

^{*} This wave is dumped by the friction loss and then attenuated by shallow reef as it propagates.

(6) Design Wave

Based on all the results of the above studies, it was determined to use the waves shown in the table below for the design of the Project.

1				Table-7
		Wave Height (m)	Period (sec)	Water Level (DL + m)
	Deep Water Wave Ocean Side (SW)	0.70	9.3	DL + 2.500
With Breaking	Deep Water Wave Lagoon Side (NW)	0.66	9.3	DL + 2.490
	Shallow Water Wave Lagoon Side (N)	0.46	4.1	DL + 1.880
	Deep Water Wave Ocean Side (SW)	0.42	9.3	DL + 1.800
Without Breaking	Deep Water Wave Lagoon Side (NW)	0.49	9.3	DL + 1.800
:	Shallow Water Wave Lagoon Side (N)	0.52	4.1	DL + 1.800

PROBABILITY ANALYSIS ON WIND VELOCITY

Probability analysis is made based on the following:

- a) Applied Method
 - Gumbel's Method in deriving the frequency curve
- b) Wind Direction
 - North
 - North West
 - South West
 - South
 - South East
 - All Direction

The results are shown in the succeeding pages together with the annual maximum wind velocity records.

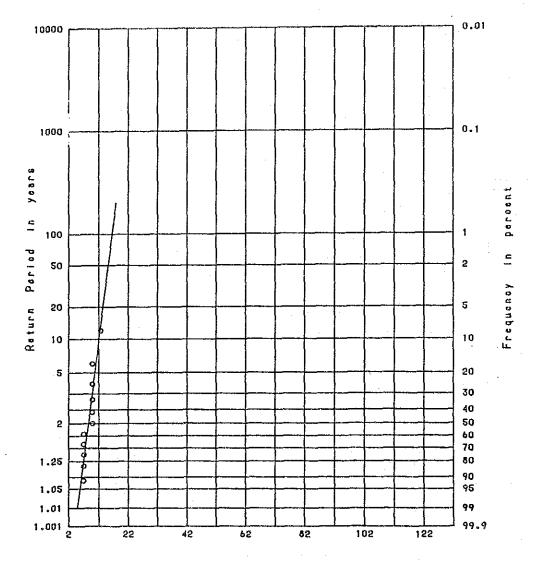
(1) NORTH

PLOTTING POSITION	·- ·
	
STATION ; KIRIPATI, TARAWA REGION ; BETIO-BAIRIKI	
DISTRICT ; PACIFIC OCEAN	
ALTITUDE OF STATION : 35.0 METERS KIND OF RECORD : WIND FORCE (N)	
PERIOD OF RECORD ; 11 YEARS	
* NUMBER OF SAMPLES ; 11	
NO. WIND HAZEN THOMAS	
VELOCITY	
1 6.94 0.9545 0.9167 2 6.94 0.3636 0.8333	
3 6.94 0.7727 0.7500	
4 6.94 0.6818 0.6667	
5 6.94 0.5909 0.5833 6 9.77 0.5000 0.5000	
7 9.77 C.4091 C.4167	
8 9.77 0.3182 G.3333	
9 9.77 C.2273 0.2500 10 9.77 0.1364 C.1667	·
11 12.60 0.0455 0.0833	
CALCULATION METHOD ; GUMBEL METHOD	
CALCOLATION WELLOW 'GOMBEL SELHOD	
STATION ; KIRIBATI, TARAWA	
REGION ; BETIO-BAIRIKI	
DISTRICT ; PACIFIC OCEAN ALTITUDE OF STATION ; 35.0 METERS	
KIND OF RECORD ; WIND FORCE (N)	
PERIOD OF RECORD : 11 YEARS	
(1) NUMBER OF SAMPLES ; 11	
RETURN EXCESS VARIABLE WIND	
PERIOD PROB. VELOCITY	
1.01 0.9901 -1.5293 4.930	
1.50 0.6667 -5.0940 7.629	
2. 0.5000 0.3665 8.495 5. 0.2000 1.4999 10.625	
10. 0.1000 2.2504 12.036	
26. 0.0500 2.9702 13.389	
30. 0.0333 3.3843 14.168 40. 0.0250 3.6762 14.717	
50. 0.0200 3.9019 15.141	
80. 0.0125 4.3757 16.032	
100. 0.0100 4.6001 16.454 200. 0.0050 5.2958 17.761	
200. 0.0050 5.2958 17.761	
NOTE : FORMULA OF PRESUMPTION	
X=XO+(1/A)*VARIABLE	
XO = 7.806	
1/A = 1.830	

:KIR:3ATI. TARAWA

Ragion

:BETIO-BAIRIKI


District

PACIFIC GCEAN

Altitude of Station :35.0 Haters

Kind of Record :WIND FORCE (N)

Period of Record :11 YEARS

BETIO-BAIRIKI CAUSEWAY-FISHERIES CHANNEL

Fig.-1

FREQUENCY

CURVE

(2) NORTH WEST

(2) NORTH WEST	
PLOTTING POSITION	
李宗司司 · 李宗司司 · 李宗司司 · 李宗司 · 李宗司 · 李宗司司 · 李宗司司 · 李宗司司 · 李宗司司司司司司司司司司	
STATION ; KIRIBAT1, TARAWA	
STATION ; KIRIBAT1, TARAWA REGION ; BETIO-BAIRIKI	
DISTRICT ; PACIFIC OCEAN	
ALTITUDE OF STATION ; 35.0	METERS
KIND OF RECORD ; WIND VELOCITY (NW)	Softwist Conflict with the definition of the Conflict with the world around a first the definition of the conflict with
PERIOD OF RECORD ; 11 YEARS	
* NUMBER OF SAMPLES ; 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A HOMPER OF SAME ESS.	
NO. WIND HAZEN THOMAS	
VELOCITY	
1 6.94 0.9545 0.9167	•
1 6.94 0.9545 0.9167 2 6.94 0.8636 0.8333	
3 6.94 0.7727 0.7500	
4 6.94 0.6818 0.6667	
5 9.77 0.5909 0.5833	·
6 9.77 0.5000 0.5000	•
7 12.60 0.4091 0.4167 8 12.60 0.3182 0.3333	
9 12.60 0.2273 0.2500	•
10 12.60 0.1364 0.1667	
11 19.04 0.0455 0.0833	
CALCULATION METHOD GUMBEL METHOD	
	w es
TA TANAMA	
STATION ; KIRIBAT1, TARAWA REGION ; BETIO-BAIRIKI	
REGION ; BETIO-BAIRIKI DISTRICT ; PACIFIC OCEAN	
ALTITUDE OF STATION ; 35.0	METERS
KIND OF RECORD ; WIND VELOCITY (NW)	
PERIOD OF RECORD ; 11 YEARS	
(1) NUMBER OF SAMPLES ; 11	
(1) NUMBER OF SAMPLES ; 11	
RETURN EXCESS VARIABLE WIND	
PERIOD PROB. VELOCIT	Υ
1.01 0.9901 -1.5293 3.081	
1.01 0.9901 -1.5293 3.081 1.50 0.6667 -0.0940 8.411	
2. 0.5000 0.3665 10.121	· ·
5. 0.2000 1.4999 14.330	
10. 0.1000 2.2504 17.117	
20. 0.0500 2.9702 19.790	
30. 0.0333 3.3843 21.328 40. 0.0250 3.6762 22.412	
40. 0.0250 3.6762 22.412 50. 0.0200 3.9019 23.251	
80. 0.0125 4.3757 25.010	
100. 0.0100 4.6001 25.843	
200. 0.0050 5.2958 28.427	
电子 化 	
NOTE : FORMULA OF PRESUMPTION	
NULE & FURNULA OF FREGURETION	
X=XO+(1/A)*VARIABLE	
$x_0 = 8.760$	
1/A = 3.714	
	· · · · · · · · · · · · · · · · · · ·

:BETIO-BAIRIKI :KIRIBATI. TARAWA Altitude of Station :35.0 Hattre :PACIFIC OCEAN Record : WIND VELOCITY (NW) Period of Record : _ YEARS 0.01 10000 0.1 1000 Return Period in years 100 50 50 10 10 20 5 30 40 50 60 70 80 1.25 90 1.05 1.01 99 1.001 2 99.9 42 62

BETIO-BAIRIKI CAUSEWAY-FISHERIES CHANNEL

Fig.-2 FREQUENCY CURVE

	PLOTTING PO	CITION					
	PLUTING PO	211104					
	STATION	: ' '			7.5.0.1.1.		
	REGION			KIRIBATI, BETIO-BAIR			
<u> </u>	DISTRIC		<u> </u>	PACIFIC OC			·
	ALTITUD KIND OF			35.0 WIND FORCE	(\$U \	METERS	
	PERIOD			7 YEARS			
	* NUMBER OF	SAMPLE	s ;	7	*****		
:	NO. W	IND OCITY	HAZEN	ZAMOHT		 -	
	***			***********	**************************************		
		6.94 9.77	0.9286 0.7857	0.8750 0.7500		· · · · · · · · · · · · · · · · · · ·	
	3	9.77	0.6429	0.6250			
		9.77	0.5000	0.5000			
		2.60 5.69	0.3571	0.3750 0.2500			
<u> </u>		5.69	0.0714	0.1250			
				•			
	CALCULATION	METHOD	GUN	BEL METHOD			
						·	·
	STATION REGION			KIRIBATI, BETIO-BAIR			
	DISTRIC	T		PACIFIC OC			
	ALTITUD		; NOITA	35 • C		METERS	
	KIND OF PERIOD			WIND FORCE 7 YEARS	(2M)		·
			· · · · · · · · · · · · · · · · · · ·				
	(1) NUMBER	OF SAMP	LES ;	7		<u> </u>	
	D.C.T.U.D.L.		SS VARIA		WIND	7 401 10 400	
	RETURN PERIOD	PRO			VELOCITY	·	
	1.01	0.99	01 -1.5	293	4.421		
	1.50	0.66	67 -0.0	1940	9.459		
	2.	0.50		999	11.075 15.053		
	5. 10.	0.10	00 2.2	504	17.686		
	20.	0.05	00 2.9	702	20.212		
	30.	0.03		3843	21.666		
:	40. 50.	0.02 0.02	.u 3.6 00 3.9	762 9019	22.690 23.482		
	80.	0.013	25 4.3	757	25.145		
	100.	0.010	00 4.6	001	25.933		
	200.	0.00	OU 3.4	958	28.374		
	OTE : FORM	ULA OF I	PRESUMPTI	.ON			
	x	=x0+(1/	A)*VARIAB	LE			
		x o	=	9.789	·		
•		1/6	2	3.509			

:KIRIEATI. TARAWA :BETIO-BAIRIKI Altitude of Station :35.0 Heters :PACIFIC OCEAN (SW) Record :WIND Period of Record : 7 YEARS 0.01 10000 0.1 1000 Return Period in years 100 50 20 10 10 20 5 40 2 50 60 70 1.25 ðű 90 1.05 1.01 99 99.9 1.001

BETIO-BAIRIKI CAUSEWAY-FISHERIES CHANNEL

Fig.-3 FREQUENCY CURVE

PLOTTING POSITION

		•
STATION	; KIRIBATI, TARAWA	
REGION	; BETIO-BAIRIKI	
DISTRICT	; PACIFIC OCEAN	
ALTITUDE OF STATION	35.0	METERS
KIND OF RECORD	; WIND FORCE (S)	
PERIOD OF RECORD	;	

* NUMBER OF SAMPLES : 11

	NO.	VEFOCILA MIND	HAZEN	THOMAS	

	1	4.37	0.9545	0.9167	
	2	5.00	0.8636	0.8333	
	3	6.94	0.7727	0.7500	·
	4	6.94	0.6818	0.6667	
,	5	6.94	0.5909	0.5833	
	6	6.94	0.5000	0.5000	
	7	6.94	0.4091	0.4167	
	8	6.94	0.3182	0.3333	
	9	9.77	0.2273	0.2500	
	10	9.77	0.1364	0.1667	
	11	12.60	0.0455	0.0833	

CALCULATION NETHOD	GUMBEL METHOD
STATION	; KIRIBATI, TARAWA
REGION DISTRICT	; BETIO-BAIRIKI ; PACIFIC OCEAN
ALTITUDE OF STATION KIND OF RECORD	; 35.0 METERS ; WIND FORCE (S)
PERIOD OF RECORD	;

(1) NUMPER OF SAMPLES ; 11

RETURN	EXCESS	VARIABLE	WIND WIND	
PERIOD	PROS.		AFFOCTII	
1.01	0.9901	-1.5293	2.907	
1.50	0.6667	-0.0940	6.200	
۷.	0.5000	0.3665	7 - 257	
<u>-</u>	0.2000	1.4999	9.858	
10.	0.1000	2.2504	11.580	
20.	0.0500	2.9702	13.232	
30.	0.0333	3.3843	14.182	<u> </u>
40.	0.0250	3.6762	14.852	
5ū.	0.0200	3.9019	15.370	
86	0.0125	4.3757	16,457	
100.	0.0100	4.6001	16.972	
200.	0.0050	5.2958	18,568	

NOTE : FORMULA OF PRESUMPTION

X=XO+(1/A)*VARIABLE

Χű	=	6	416	
1/A	=	2	295	

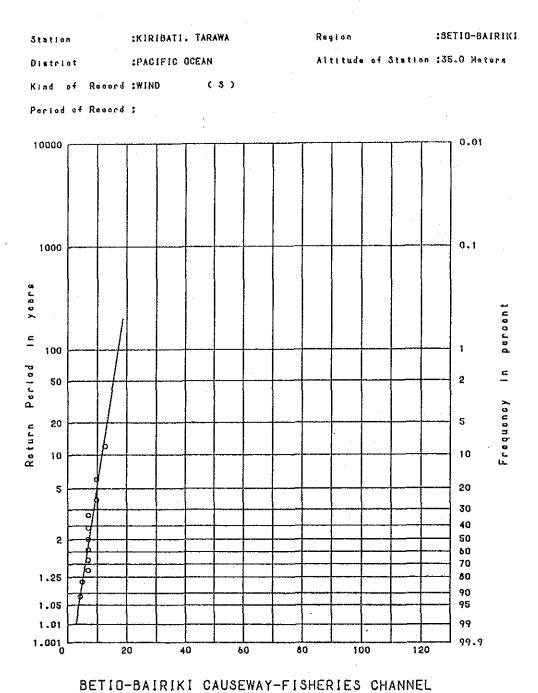
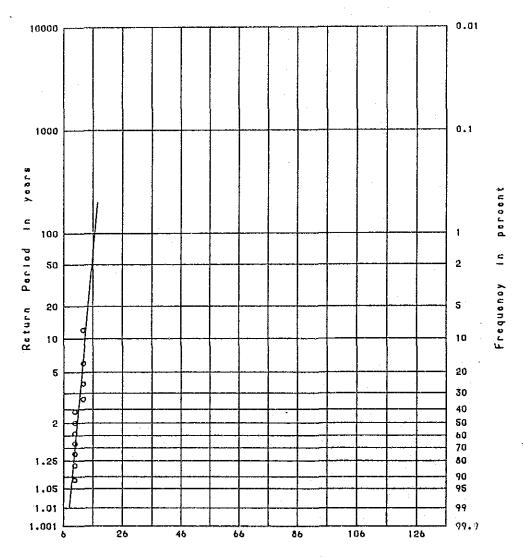


Fig.-4 FREQUENCY CURVE

STATION ; KIRIBATI, TARAWA
 REGION ; BETIO-BAIRIKI
 DISTRICT ; PACIFIC OCEAN
ALTITUDE OF STATION ; 35.0 METERS
 KIND OF RECORD ; WIND FORCE (SE) PERIOD OF RECORD ; 11 YEARS
 · · · · · · · · · · · · · · · · · · ·
* NUMBER OF SAMPLES ; 11
 NO. WIND HAZEN THOMAS
 VELOCITY
 1 9.77 0.9545 0.9167
2 9.77 0.8636 0.8333
 3 9.77 0.7727 0.7500 4 9.77 0.6818 0.6667
5 9,77 0.5909 0.5833
 6 9.77 0.5000 0.5000
 7 9.77 0.4091 0.4167
8 12.60 0.3182 0.3333 9 12.60 0.2273 0.2500
 10 12.60 0.1364 C.1667
 11 12.60 0.0455 0.0833
 CALCULATION HETHON COMPET HETHON
CALCULATION METHOD ;GUMBEL METHOD
 STATION ; KIRIBATI, TARAWA REGION ; BETIO-BAIRIKI
DISTRICT ; PACIFIC OCEAN
 ALTITUDE OF STATION ; 35.0 METERS
 KIND OF RECORD ; WIND FORCE (SE)
PERIOD OF RECORD. ; 11 YEARS
· · · · · · · · · · · · · · · · · · ·
(1) NUMBER OF SAMPLES ; 11
(1) NUMBER OF SAMPLES ; 11
RETURN EXCESS VARIABLE WIND
RETURN EXCESS VARIABLE WIND PERIOD PROB. VELOCITY
RETURN EXCESS VARIABLE WIND PERIOD PROB. VELOCITY 1.01 0.9901 -1.5293 7.949
RETURN EXCESS VARIABLE WIND PERIOD PROB. VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -0.0940 9.968
RETURN EXCESS VARIABLE WIND PERIOD PROB. VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -0.0940 9.968 2. 0.5000 0.3665 10.616
RETURN EXCESS VARIABLE WIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -0.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265
RETURN EXCESS VARIABLE WIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -0.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 26. 0.0500 2.9702 14.278
RETURN EXCESS VARIABLE WIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -0.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 26. 0.0500 2.9702 14.278 30. 0.0333 3.3843 14.860
RETURN EXCESS VARIABLE WIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -G.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 2G. 0.0500 2.9702 14.278 30. 0.0333 3.3843 14.860 40. 0.0250 3.6762 15.271
RETURN EXCESS VARIABLE WIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -6.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 20. 0.0500 2.9702 14.278 30. 0.0333 3.3843 14.860 40. 0.0250 3.6762 15.271 50. 0.0200 3.9019 15.538 80. 0.0125 4.3757 16.254
RETURN EXCESS VARIABLE WIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -6.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 20. 0.0500 2.9702 14.278 30. 0.0333 3.3843 14.860 40. 0.0250 3.6762 15.271 50. 0.0200 3.9019 15.538 80. 0.0125 4.3757 16.254 100. 0.0100 4.6601 16.570
RETURN EXCESS VARIABLE VIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -0.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 20. 0.0500 2.9702 14.278 30. 0.0333 3.3843 14.860 40. 0.0250 3.6762 15.271 50. 0.0200 3.9019 15.538 80. 0.0125 4.3757 16.254
RETURN EXCESS VARIABLE WIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -6.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 20. 0.0500 2.9702 14.278 30. 0.0333 3.3843 14.860 40. 0.0250 3.6762 15.271 50. 0.0200 3.9019 15.538 80. 0.0125 4.3757 16.254 100. 0.0100 4.6601 16.570
RETURN EXCESS VARIABLE WIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -6.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 20. 0.0500 2.9702 14.278 30. 0.0333 3.3843 14.860 40. 0.0250 3.6762 15.271 50. 0.0200 3.9019 15.538 80. 0.0125 4.3757 16.254 100. 0.0100 4.6601 16.570
RETURN EXCESS VARIABLE WIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -6.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 2G. 0.0500 2.9702 14.278 30. 0.0333 3.3843 14.860 40. 0.0250 3.6762 15.271 5C. 0.0200 3.9019 15.538 80. 0.0125 4.3757 16.254 100. 0.0100 4.6601 16.570 200. 0.0050 5.2958 17.548
RETURN EXCESS VARIABLE VIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -0.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 26. 0.0500 2.9702 14.278 30. 0.0333 3.3843 14.860 40. 0.0250 3.6762 15.271 50. 0.0200 3.9019 15.538 80. 0.0125 4.3757 16.254 100. 0.0100 4.6601 16.570 200. 0.0050 5.2958 17.548 NOTE : FORMULA OF PRESUMPTION X=X0+(1/A)*VARIABLE
RETURN EXCESS VARIABLE WIND VELOCITY 1.01 0.9901 -1.5293 7.949 1.50 0.6667 -6.0940 9.968 2. 0.5000 0.3665 10.616 5. 0.2000 1.4999 12.210 10. 0.1000 2.2504 13.265 2G. 0.0500 2.9702 14.278 30. 0.0333 3.3843 14.860 40. 0.0250 3.6762 15.271 5C. 0.0200 3.9019 15.538 80. 0.0125 4.3757 16.254 100. 0.0100 4.6601 16.570 200. 0.0050 5.2958 17.548

;KIRIBATI, TARAWA

Region


;8ETIO-BAIRIKI

:PACIFIC OCEAN

Attitude of Station :35.0 Matara

Kind of Record :WIND (SE)

Period of Regard :11 YEARS

BETIO-BAIRIKI CAUSEWAY-FISHERIES CHANNEL

Fig.-5 FREQUENCY CURVE

STATION ; KIRIBAT1, TARAWA
REGION ; BETIO-BAIRIKI
DISTRICT ; PACIFIC OCEAN
ALTITUDE OF STATION ; 35.0 METERS
KIND OF RECORD ; WIND VELOCITY (ALL)
PERIOD OF RECORD ; 33 YEARS

* NUMBER OF SAMPLES 33

•	NO.	WIND	HAZEN	THOMAS
÷'		VEFOCILA		
	~~~~			
	1	8.36	0.9848	0.9706
•	2	8.36	0.9545	0.9412
	3 4	8.36	0.9242	0.9118
		8.36	0.8939	0.8824
	5 6	9.77	0.8636	0.8529
	6	9.77	0.8333	0.3235
	7	9.77	0.8030	0.7941
	8	9.77	0.7727	0.7647
	9	9.77	0.7424	0.7353
	10	9.77	0.7121	0.7059
	11	9.77	0.6818	0.6765
	12	12.60	0.6515	0.6471
	13	12.60	0.6212	0.6176
	14	12.60	0.5909	0.5882
-	15	12.60	0.5606	0.5588
	16	12.60	0.5303	0.5294
	17	14.15	0.5000	0.5000
	18	14,15	0.4697	0.4706
	19	14-15	0.4394	0.4412
	20	14.15	0.4091	0.4118
	21	14.15	0.3788	0.3824
	22	15.69	0.3485	0.3529
	23	15.69	0.3182	0.3235
	24	15.69	0.2879	0.2941
	25	15.69	0.2576	0.2647
	26	15-69	0.2273	0.2353
	27	15.69	0.1970	0.2059
	28	15.69	0.1667	0.1765
	29	19.03	0-1364	0.1471
	30	19.03	0.1061	0.1176
	31	19.03	0.0758	0.0882
	32	19.03	0.0455	0.0588
	33	19.04	0.0152	0.0294
•		.,		

CALCULATION METHOD	;GU	M8EL METHOD	-6
STATION	;	KIRIBAT1, TARAWA	
 REGION DISTRICT		BETIO-BAIRIKI PACIFIC OCEAN	
 ALTITUDE OF STATION		35.0	METERS
 KIND OF RECORD PERIOD OF RECORD	-	WIND VELOCITY (ALL) 33 YEARS	

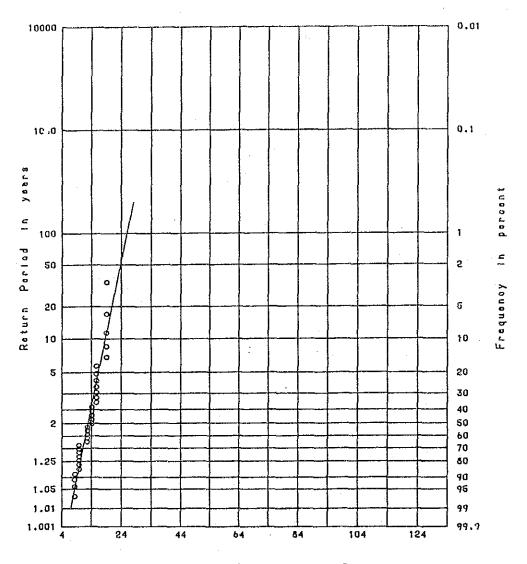
; 33 (1) NUMBER OF SAMPLES ... EXCESS VARIABLE WIND RETURN VELOCITY PROB. PERIOD 0.9901 -1.5293 6.977 1.01 0.6667 -0.0940 11.401 1.50 0.5000 0.2000 0.3665 12.820 16.313 2.2504 10. 0.1000 18.626 2.9702 20.844 22.121 0.0500 0.0333 20. 30. 23.020 23.716 25.176 3.6762 0.0250 40. sa. 0.0200 3.9019 4.3757 80. 0.0125 25.868 4.6001 5.2958 100. 0.0100 28.012 200. 0.0050

NOTE : FORMULA OF PRESUMPTION

X=XO+(1/A) *VARIABLE

X0 = 11.691 1/A = 3.082

:K.RIBATI, TARAWA


:BETIO-BAIRIKI

:PACIFIC OCEAN

Altitude of Station :35.0 Hetera

Record :WIND VELOCITY (ALL)

Period of Record : 33 YEARS



BETIO-BAIRIKI CAUSEWAY-FISHERIES CHANNEL

Fig.-6 FREQUENCY CURVE

# CALCULATION OF WAVE TRANSFORMATION OF BREAKING WAVES

- (1) Deep Water Wave (SW-direction, Ocean Side)
  - Significant wave height:  $H_0' = 6.1 \text{ m}$  (SW & NW, Return period = 50 years)
  - Period: T = 9.3 sec
  - Sea bottom slope (at reef tip):  $tan\theta = 1/10$
  - -M.H.W.S = DL + 1.800 m
  - Sea bed elevation: h = DL + 0.500 (average)
    - Distance between the tip of reef and causeway: x = 400 m

Calculation is made using Takayama's Method and tabulated in the following.

	Expression	Value
Lo	1.56 T ²	134.9 m
H'o/Lo	6.1/134.9	0.045
ho	M.H.W.S - h	1.300 m
ho/Ho	1.300/6.1	0.213
βο	$0.028 \ (H_0'/L_0)^{-0.38} \exp (20 \tan \theta^{1.5})$	0.171
$\beta_{1}$	0.52 exp (4.2 $\tan \theta$ )	0.791
β max	Max $(0.92, 0.32 (H_0'/L_0)^{-0.29} \exp (2.4 \tan \theta))$	1.000
H 1/3 x=0	Min (( $\beta$ o· $H'_o$ + $\beta$ l·ho), $\beta$ max $H'_o$ , KS· $H'_o$ )	2.071 m
H 1/3 x=0/H ₀	2.071/6.1	0.340
- 7 x=o/H ₀ '	FIG. 3-24 of "Random Seas and Design of Maritime Structures"	0.080
Со	$\left(\frac{\bar{2}_{x=0} + ho}{H'_{0}}\right)^{2} + \frac{3}{8} \cdot \beta \cdot \left(\frac{H \cdot 1/3 \cdot x=0}{H'_{0}}\right)^{2}$ , where $\beta = 0.56$	0.110
<u>7∞ + ho</u> H₀	$\sqrt{\frac{\text{Co}}{1 + \frac{3}{8}\beta \alpha^2}} \text{, where } \alpha = 0.33$	0.325

	Expression	Value
В	$\frac{\text{H } 1/3 \text{ x=0}}{\text{H}_0^1} - \Omega \frac{\text{ho } + \tilde{\eta}_{\infty}}{\text{H}_0^1}$	0.233
H 1/3 x=400	B exp $(-0.05 \frac{x}{H_0^1}) + \alpha \cdot \frac{h_0 + \tilde{\eta}_{\infty}}{H_0^1}$	0.116
Wave Height H 1/3 x=400	0.116 x 6.1	0.70 m
η̄ _{x=400/H} ο	$\int \frac{\cos^{-\frac{3}{8}} \beta \cdot (\frac{H + 1/3 \times 400}{H_0'})^2 - ho/H_0'}{\sin^{-\frac{3}{8}} \beta \cdot (\frac{H + 1/3 \times 400}{H_0'})^2}$	0.114
Wave Set-up $\bar{q}_{x=400}$	0.114 x 6.1	0.70 m

# (2) Deep Water Wave (NW-direction, Lagoon Side)

- a) Wave Breaking at Lagoon Tip
  - Significant wave height:  $H_0^i = 6.1 \text{ m}$  (NW, return period = 50 years)
  - Period: T = 9.3 sec
  - Sea bottom slope (at lagoon tip):  $\tan \theta = 1/30$
  - Sea bed elevation = DL 6.200 (Lagoon tip)
  - Distance between the tip of lagoon and reef: x = 10,000 m

	Expression	Value
Lo	1.56 T ²	134.9 m
Ho/Lo	6.1/134.9	0.045
ho	M.H.W.S - h	8.000 m
ho/Ho	8.0/6.1	1.311
βο	$0.028 \ (H_0'/L_0)^{-0.38} \ exp \ (20 \ tan \ ^{1.5})$	0.158
β 1	0.52 exp (4.2 tan )	0.598
ß max	Max $(0.92, 0.32 (H_0'/L_0)^{-0.29} \exp (2.4 \tan ))$	0.920

	The state of the s	
	Expression	Value
H 1/3 x=0	Min $((\beta_0 \cdot H_0' + \beta_1 \cdot h_0), \beta_{\text{max } H_0'}, KS \cdot H_0')$	5.612 m
H 1/3 x=0/Ho	5.612/6.1	0.920
<b>η</b> x=o/H₀'	FIG. 3-24 of "Random Seas and Design of Maritime Structures"	0.018
Со	$\left(\frac{\tilde{q}_{x=0 + ho}}{H_0^1}\right)^2 + \frac{3}{8} \cdot \beta \cdot \left(\frac{H_0^1/3 \times 0}{H_0^1}\right)^2$ , where $\beta = 0.56$	1.944
$\frac{\bar{\eta}_{\infty+ \text{ ho}}}{\text{H}_{\text{o}}^{1}}$	$\sqrt{\frac{\text{Co}}{1 + \frac{3}{8}\beta \alpha^2}} , \text{ where } \alpha = 0.33$	1.379
В	$\frac{H \frac{1}{3} \times e^{0}}{H_{0}^{1}} - \alpha \frac{h_{0} + \sqrt{2} \infty}{H_{0}^{1}}$	0.465
H 1/3 x=10,000 H _o '	B exp $(-0.05 \frac{x}{H_0'}) + \alpha \cdot \frac{h_0 + \overline{2}_{\infty}}{H_0'}$	0.455
Wave Height H 1/3 x=10,000	0.455 x 6.1	2.77 m
$\bar{\eta}_{x}$ =10,000/H $_{0}^{\prime}$	$\sqrt{\text{Co} - \frac{3}{8} \beta \left( \frac{\text{H} 1/3 \text{ x=10,000}}{\text{H}'_0} \right)^2} - \text{ho/H}'_0$	0.068
Wave Set-up	0.068 x 6.1	0.41 m

# b) Wave Breaking at Reef Tip

- Significant wave height:  $H_0' = 2.77 \text{ m}$
- Period: T = 9.3 sec
- H.W.L = DL + 1.8 + 0.41 = DL + 2.21
- Sea bottom slope (at reef tip):  $\tan \theta = 1/20$
- Sea bed elevation = DL + 0.500
- Distance between the tip of reef and causeway: x = 300 m

	Expression	Value
Lo	1.56 T ²	134.9m
H _o /Lo	2.77/134.9	0.020
ho	H.W.L - h	1.71 m
ho/Ho	1.71/2.77	0.617
βο	0.028 $(H_0^{1}/L_0)^{-0.38} \exp (20 \tan \theta^{1.5})$	0.155
β1	0.52 exp (4.2 tan )	0.642
B max	Max $(0.92, 0.32 (H_0'/L_0)^{-0.29} \exp (2.4 \tan \theta))$	1.122
H 1/3 x=0	Min $((\beta_0 \cdot H_0' + \beta_1 \cdot h_0), \max H_0', KS \cdot H_0')$	1.527m
H 1/3 x=o/H ₀	1.527/2.77	0.551
$\bar{\eta}_{x=0/H_0}$	FIG. 3-24 of "Random Seas and Design of Maritime Structures"	0.065
Co	$\left(\frac{\tilde{\eta}_{x=0 + ho}}{H'_{o}}\right)^{2} + \frac{3}{8} \beta \left(\frac{H \frac{1}{3} x=0}{H'_{o}}\right)^{2}, \text{ where } \beta = 0.56$	0.529
	$\sqrt{\frac{\text{Co}}{1 + \frac{3}{8}\beta \alpha^2}} \text{, where } \alpha = 0.33$	0.719
В	$\frac{\text{H } 1/3 \text{ x=0}}{\text{H'o}} - \alpha \frac{\text{ho} + 7\infty}{\text{H'o}}$	0.314
<u>н 1/3 х=300</u> нь	B exp $(-0.05 \frac{x}{H_0'}) + \alpha \frac{h_0 + \bar{\eta}_{\infty}}{H_0'}$	0.239
Wave Height H 1/3 x=300	0.239 x 2.77	0.66m
	$\sqrt{\text{Co} - \frac{3}{8} \beta \left( \frac{\text{H } 1/3 \text{ x} = 300}{\text{H}'_0} \right)^2} - \text{ho/H}'_0$	0.102
Wave Set-up Õx=300	0.102 x 2.77	0.28 m

# (3) Shallow Water Wave (N-direction, Lagoon Side)

- Significant wave height:  $H_0' = 1.14 \text{ m}$ 

(N-direction, return period = 50 years)

- Period: T = 4.1 sec
- Sea bottom slope (at reef tip):  $\tan \theta = 1/20$
- Sea bed elevation = DL + 0.500
- Distance between reef tip and causeway: x = 300 m

	Expression	Value
Lo	1.56 T ²	26.22m
H <mark>o</mark> /Lo	1.14/26.22	0.043
ho	M.H.W.S - h	1.300m
ho/Ho	1.300/1.14	1.140
βο	0.028 $(H_0'/L_0)^{-0.38} \exp (20 \tan \theta^{1.5})$	0.116
βl	0.52 exp (4.2 tan 0)	0.642
ß max	Max (0.92, 0.32 $(H_0'/L_0)^{-0.29} \exp (2.4 \tan \theta)$ )	0.920
H 1/3 x=0	Min (( $\beta$ o $H'_0$ + 1 ho), max $H'_0$ , KS $H'_0$ )	0.967m
H 1/3 x=0/H ₀	0.967/1.14	0.848
رُ x=o/H₀'	FIG. 3-24 of "Random Seas and Design of Maritime Structures"	0.025
Со	$\left(\frac{\tilde{\eta}_{x=0} + ho}{H'_{0}}\right)^{2} + \frac{3}{8} \cdot \beta \cdot \left(\frac{H \cdot 1/3 \cdot x=0}{H'_{0}}\right)^{2}$ , where $\beta = 0.56$	1.508.
	$\sqrt{\frac{\text{Co}}{1 + \frac{3}{8}\beta\alpha^2}} \text{, where } \alpha = 0.33$	1.214
В	$\frac{\text{H } 1/3 \text{ x=0}}{\text{H}_0^{'}} - \alpha \frac{\text{ho } + \sqrt{2}\omega}{\text{H}_0^{'}}$	0.447
H 1/3 x=300 H ₀	B exp $(-0.05 \frac{x}{H_0^1}) + \alpha \frac{h_0 + \bar{7}_{\infty}}{H_0^1}$	0.4006
Wave Height H 1/3 x=300	0.4006 x 1.14	0.46 m

# CALCULATION OF WAVE DECAY IN CASE OF NON-BREAKING WAVES

Calculation is made based on "SHORE PROTECTION MANUAL Volume I" adopted by U.S. Army.

- (1) WAVE DECAY FOR DEEP WATER WAVE (Ocean Side)
  - Water level: DL + 1.800
  - Sea bed elevation: DL + 0.500 (reef average)
  - Water depth: d = 1.8 0.5 = 1.3 m = 4.265 ft
  - Friction factor: Ff = 0.03 (assumed)
  - Maximum stable wave height:  $Hi = 4.265 \times 0.78 = 3.327 \text{ ft}$
  - Wave period: T = 9.3 sec
  - Distance related to friction loss:  $\Delta x = 400 \text{ m} = 1,312 \text{ ft}$

$$\frac{\text{Ff} \cdot \text{Hi} \cdot \Delta x}{\text{d}^2} = \frac{0.03 \times 3.327 \times 1.312}{4.265^2} = 7.199$$

$$\frac{2 \cdot 1 \cdot d}{g \cdot T^2} = \frac{2 \times T \times 4.265}{32.2 \times 9.3^2} = 0.00962$$

From Figure 3-24 in the MANUAL, Kf is obtained as 0.41.

$$H_T = Kf \cdot Hi = 0.41 \times 3.327 = 1.364 \text{ ft}$$
  
= 0.42 m (wave height)

- (2) WAVE DECAY FOR DEEP WATER WAVE (Lagoon Side)
  - a) Friction Loss on Lagoon
    - Water level: DL + 1.800
    - Sea bed elevation: DL 2.4
    - Water depth: d = 1.8 + 2.4 = 4.2 m = 13.800 ft
    - Friction factor: Ff = 0.03 (assumed)
    - Maximum stable wave height:  $Hi = 13.8 \times 0.78 = 10.764 \text{ ft}$
    - Wave period: T = 9.3 sec (NW-direction)

- Distance:  $\triangle x = 10,000 \text{ m} = 32,809 \text{ ft}$
- Averaged water depth = 8.0 m = 26.248 ft

$$\frac{\text{Ff · Hi · } \times \text{x}}{\text{d}^2} = \frac{0.03 \times 10.764 \times 32.809}{26.248^2} = 15.378$$

$$\frac{2\pi \cdot d}{g \cdot T^2} = \frac{2 \times \pi \times 26.248}{32.2 \times 9.3^2} = 0.059$$

$$Kf = 0.3$$

$$H_T = 0.3 \times 10.764 = 3.229 \text{ ft} = 0.98 \text{ m}$$

- b) Friction Loss on Reef
  - Water level: DL + 1.800
  - Sea bed elevation: DL + 0.500 (reef average)
  - Water depth: d = 1.8 0.5 = 1.3 m = 4.265 ft
  - Friction factor: Ff = 0.03 (assumed)
  - Wave height: Hi = 0.98 m = 3.229 ft
  - Wave period: T = 9.3 sec
  - Distance:  $\triangle x = 300 \text{ m} = 984.3 \text{ ft}$

$$\frac{\text{Ff} \cdot \text{Hi} \cdot 4x}{\text{d}^2} = \frac{0.03 \times 3.229 \times 984.3}{4.265^2} = 5.242$$

$$\frac{2\pi \cdot d}{g \cdot T^2} = \frac{2 \times T \times 4.265}{32.2 \times 9.3^2} = 0.00962$$

$$Kf = 0.5$$

$$H_T = 0.5 \times 3.229 = 1.615 \text{ ft} = 0.49 \text{ m (Wave height)}$$

- (3) WAVE DECAY FOR SHALLOW WATER WAVE (Lagoon Side, N-direction)
  - Water level: DL + 1.800
  - Sea bed elevation: DL + 0.500 (reef average)
  - Water depth: d = 1.8 0.5 = 1.3 m = 4.265 ft
  - Friction factor: Ff = 0.03 (assumed)

- Maximum stable wave height:  $Hi = 4.265 \times 0.78 = 3.327 \text{ ft}$
- Wave period: T = 4.1 sec
- Distance related to friction loss:  $\Delta x = 300 \text{ m} = 984.3 \text{ ft}$

$$\frac{\text{Ff} \cdot \text{Hi} \cdot \text{Ax}}{\text{d}^2} = \frac{0.03 \times 3.327 \times 984.3}{4.265^2} = 5.400$$

$$\frac{2\pi \cdot d}{g \cdot T^2} = \frac{2 \times \pi \times 4.265}{32.2 \times 4.1^2} = 0.0495$$

$$Kf = 0.51$$

$$H_{T} = 0.51 \text{ x } 3.327 = 1.697 \text{ ft} = 0.52 \text{ m (Wave height)}$$

#### CALCULATION OF TIDAL FLOW BETWEEN BETIO AND BAIRIKI

1. Tidal flow in the straight between the island of Betio and the island of Bairiki.

### 1-1 Objective

This study aims to analyze tidal flow in the straight between the island of Betio and the island of Bairiki in connection with construction of the causeway.

#### 1-2 Calculation formula

Following equations for non-uniform flow will be adopted.

$$\overline{\Phi} = Z + H + \frac{\alpha Q^2}{2gA^2} + \frac{Nu^2Q^2 lu}{2R^4/3A^2}$$

$$\frac{\mathbf{U}}{\mathbf{U}} = \mathbf{Z} + \mathbf{H} + \frac{\alpha 0^2}{2g^{\Lambda^2}} - \frac{Nd^2Q^2 1d}{2R^4/3\Lambda^2}$$

where; Z: flow bed height

H: flow depth

a: coefficient of energy

Q: discharge

g: acceleration of gravity

A: flow area

1: distance between sections

N : coefficient of roughness

lu, Nu : valves of N and l at upstream section from

certain section

ld, Nd: valves of N and 1 at downstream section from

certain section

### 1-3 Input Data

- (1) Location and profiles of sections are shown in Fig. 1 and Fig. 2 respectively.
- (2) Water level and flow velocity are shown in Fig. 3. Flow velocities are those observed this time, while water levels are those of tidal level forecast at Betio harbour.

- 1-4 Order of Calculation
- (1) To estimate water levels at Sec. A-A' in the ocean side and at Sec. E-E' in the lagoon side, and then a difference between those water levels. (Refer to Table-1)
- (2) To estimate inflow and outflow in the existing condition.

  (Refer to Table-2 and -3)
- (3) To estimate velocity and discharge of flow in the fishery channel.

  (Refer to Table-4 and -5)
- (4) To estimate inflow and outflow after completion of causeway. (Refer to Table-6 and -7)

### 1-5 Results

Tidal inflow and outflow before and after completion of causeway. (Refer to Table-8)

Fig. 1 Location of Sections

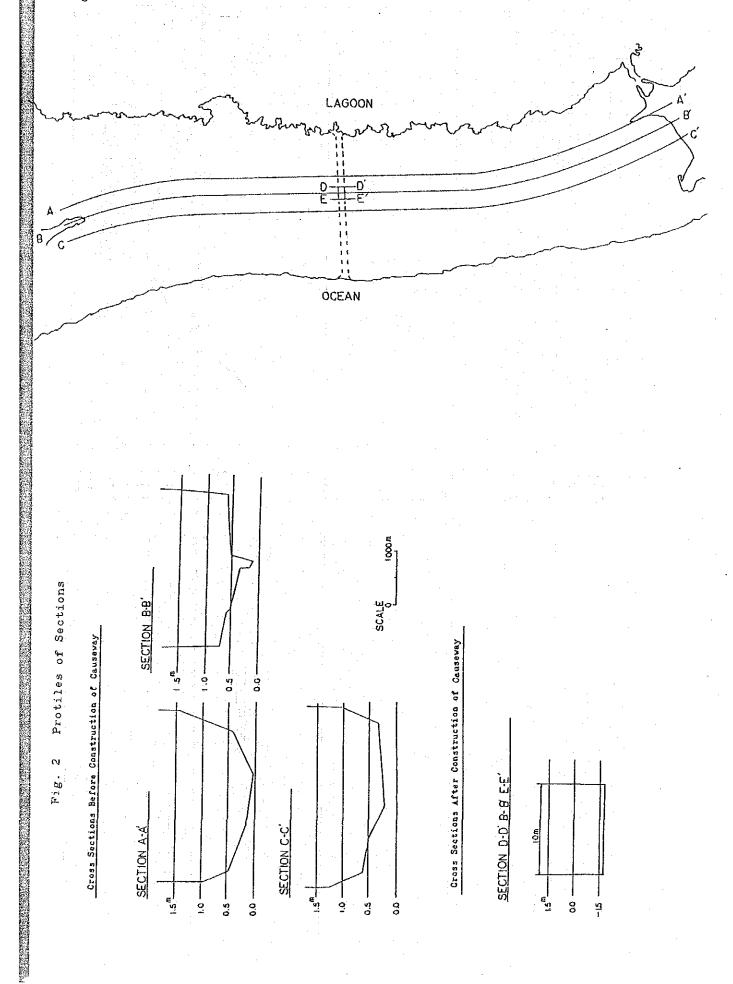
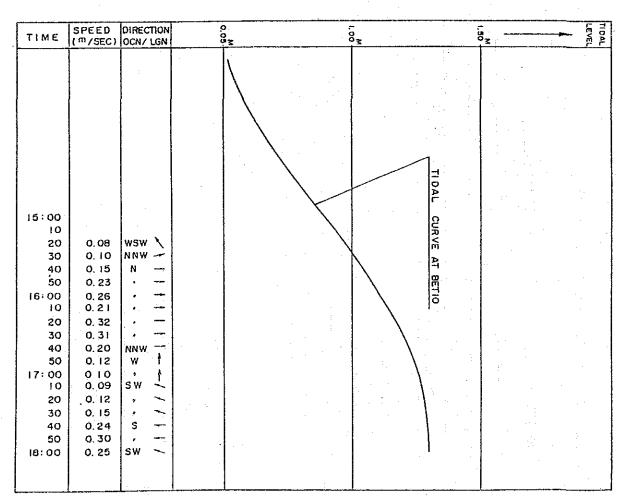




Fig. 3 Tidal Curve at Betio

TIME	SPEED (m/SEC)	DIRECTION OCN/LGN	D.50-			3		Š	TEVEL
12 : 40 50	0.38	N+10°							
00 : E1 01	0,52 0,43	,							<i>:</i>
20 30	0. 43 0. 38	,		·				:	•
40 50	0. 32 0. 32				1 112			1	1
14: 00	0.29	N-10°							
10 20	0.33	N+5			٠.				DAL
30 40	0.33								CURVE
50 15: 00	0.32 0.37 0.22				1 %				
10 20 30	NOT RECORDED 0, 41	SE A			. i . i				AT BE
40 50	0.65 0.61	/		·					BET 10
16: 00	0, 86								
10 20	0.75					A			
30 40	0. 73								
50 17: 00	0, 55 0, 37	, -						1	
10 20	0.15	ε ;						to great the con-	
30 40	[	N +10°							
50 18: 00	0.30 0.21	:					•		



10,834,200

10,837,000

291,000

608,000

192,000

320

17:30

Prom Ocean

18:00

to Lagoon

Total.

320,400

315,600 3,493,800

724,800

1,519 604

Outflow (m2)

Inflow (m3)

Averaged Discharge (m³/sec)

Discharge (m³/sec)

Flov Direction

819,000

606 895 784 1,831 1,207

rom Ocean

to Lagoon

12:30 13:00 13:30 14:00 14:30 15:00

1,623,600

1,512,000

(Inflow and Outflow at Spring Tide in the Existing Condition)

Table-2 Tidal Plow Analysis

4,204,800 2,529,000

1,941 2,336 1,405

1,051 2,830

15:30 16:00 16:30

Prom Lagoon

To Ocean

15:20

1,841 696

> 17:00 17:10

Table-1 Tidul Flow Analysis (Existing Condition)

	23 AFR 17:00	0.10	207	1,263	1,260	1,259
NOC	18 APR 18:00	0.21	355	1,139	1,130	1,127
OCEAN LAGOON	15:00 18:00	0.37	1,207	τ 679	1,670	1,477 1,667
OCE/	18 APR 14:00	0.29	784	1,489	1,480	
	18 APR 13:00	0.52	606	161'1	1,150	1,122
Flow Direction	Date	Observed Velocity (m/sec)	Discharge (m/sec)	Sec. C-C+	Sec. B-B'	Sec. A-A'
				(N)	FEAEL	KYLEK

	Flow Direction	-	OCE,	OCEAN LAGOON	NOC		
	Date	18 APR 13:00	18 APR 14:00	18 APR 18 APR 15:00	18 API	23 APR 17:00	
	Observed Velocity (m/sec)	0.52	0.29	0.37	0.21	0.10	
	Discharge (m/sec)	606	784	1,207	355	207	
(H)	Sec. C-C1	1,191	1,489	1,679	1,139	1,263	
FEAR	Sec. B-B'	1,150	1,480	1,670	1,130	1,260	
AVLEE	Sec. A-A'	1,122	1,477	1,477 1,667	1,127	1,259	

	, i			3		
EAN	23 APR 18:00	0.25	546	1,309	υ,300	1,441 1,297
LAGOON - OCEAN	18 APR 17:00	0.37	696	1,466	1,450	
LAGI	18 APR 16:00	98.0	2,830	1,739	1,680	1,646
Flow Direction	Date	Ovserved Velocity (m/sec)	Discharge (m/sec)	Sec. A-A'	Sec. B-B'	Sec. C-C'
				(H)	PEAEL	NATER

Table-3 Tidnl Plow Analysis (Inflow and Outflow at Neap Tide in the Existing Condition)

	Time	Discharge (m ³ /sec)	Averaged Discharge (m ³ /sec)	Inflov (m ³ )	Outflow (m3)
	15:20				
4	1		135	81,000	ı
From Ocean	15:30	502	405	729.000	ı
to Lagoon	16:00	541			
	06.30	683	612	1,101,600	<b>i</b>
	25.5	3	342	414,400	. '
	16:50	0	!		
		800	104	ı	62,400
	20:27	307	202		525 600
From Lagoon	17:30	376		1	200
to Ocean			461	,	829,800
	18:00	546			
			273	1	327,600
	18:20	0			
1			1	1	1
1: 15:20	15:20 - 18:20 Total	Totel	_	2,326,000	1,745,400
12:30 - 1	12:30 - 18:20 Total (1 x 2)	1 (1 x 2)	ı	4,652,000	3,490,000

Table-4 fidal Flow Analysis efter Construction of Causeway (velocity and Discharge) (1)

Flow Direction: Ocean - Lagoon

DATE/TIME	8	18 APR 13:00	18 APR 14:00	18 APR 15:00	18 APR 18:00	23 APR 17:00
WATER LEVEL AT OCEAN SIDE	7EL SIDE (m)	1,191	1,489	1,679	1,139	1,263
WATER LEVEL AT LAGOON S	VATER LEVEL AT LAGOON SIDE (m)	1,122	1,477	1,667	1,127	1,259
WATER HEAD	(w) ŒV	690.0	210.0	0.012	210.0	0.004
PREDICTED DISCHARGE	PREDICTED DISCHARGE (m³/sec)	61.2	34.3	34.3	26.9	20.8
2 2	W.L. (m)	1,191	1,489	1,679	1,139	1,263
28c. 12.	V. (m/sec)	2,117	1,075	1,015	0.947	0.701
e e	W.L. (m)	1,158	1,483	1,673	1,134	1,262
56C, 5-5	V. (m/sec)	2,141	1,077	1,016	0,949	0.701
id d	W.L. (m)	1,122	1,477	1,667	1,127	1,259
7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	V. (m/sec)	2,168	1,075	1,018	0.951	0.703

Note: V. : Velocity
W.L.: Water Level

Table-5 Tidel Flow Analysis after Construction of Causeway (Velocity and Discharge)

Flow Direction: Lagoon -- Ocean

(Inflow and Outflow at Spring Tide after Construction of Causeway)

Table-5 Tidal Plow Analysis

		· .								
23 APR 18:00	1,309	1,297	0.012	22.1	1,309	1,032	1,301	1,034	1,297	1,036
18 APR 17:00	1,466	1,441	0.015	45.0	1,466	1,421	1,454	1,427	1,441	1,432
18 AFR 16:00	1,739	1,646	0.093	90.8	1,739	2,640	1,694	2,675	1,646	2,713
DATE/TIME	WATER LEVEL AT LAGOON SIDE (m)	WATER LEVEL AT OCEAN SIDE (m)	WATER HEAD (m)	PREDICTED DISCHARGE (m ³ /sec)	Sec. D. D.		Sec. B.B. W.L. (m)		W.L. (m)	V. (m/sec)

Nate: V. : Velocity
W.L.: Water Level

112,140 Outline (m3) 10,140 135,000 93,780 13,500 364,560 470,940 109,260 55,080 85,140 57,960 57,960 20,640 Inflow (m³) 14,520 Averaged Discharge (n³/sec) 52.1 30.6 16.9 75.0 22.5 12.1 32.2 17.2 62.3 13.5 60.7 47.3 32.2 25.6 Discharge (m³/sec) 59.1 8.06 45.0 34.3 61.2 30.0 34.3 33:7 26.9 60.2 24.2 Ö 0 Ó 0 13:00 13:30 14:30 15:00 15:20 15:30 16:00 16:30 17:00 17:10 17:30 12:30 14:00 18:30 18:00 Time From Lagoon From Ocean rom Ocean Plow Direction to Legoon to Lageon to Ocean Total

384,240 729,120

387,520 0 - 1.036

0 - 0.701

Negp Tide

SEC. E-E

Spring Tide 0 - 2.117

384,240 729,120 384,240

387,520 0 - 1.032 941,880 0 - 2.675 387,520 0 - 1.034 941,880 0 - 2.713

0 - 0.703

Neap Tide

<u>-</u>-

SEC.

21,774,000 | 0 - 0.691 | 21,668,000

Spring Tide | 0 - 0.357

Neap Tide

B-8

SEC.

SEC. A-A'

0 - 0.100 9,304,000 0 - 0.250 6,981,600

Neap Tide | 0 - 0.074 9,304,000 | 0 - 0.279 6,931,000 Spring Tide | 0 - 0.520 | 21,774,000 | 0 - 0.860 | 21,668,000

Spring Tide | 0 - 0.382 | 21,774,000 | 0 - 0.650 | 21,668,000

Discharge (m3/day)

Velocity (m./sec)

Discharge (m3/day)

Velocity (m /sec)

Outflow

Inflow

6,981,000 729,120

9,304,000 0 - 0.191 941,880 0 - 2.640

0 - 0.074

Neap Tide

SEC. C-C

Spring Tide 0 - 2.168

Spring Tide 0 - 2.141

0 - 0.701

Neap Tide

SEC. B-B

Table-8 Summary of Tidul Plow Analysis

(Inflow and Outflow at Neap Tide after Construction of Causeway) Table-7 Tidal Flow Analysis Prom to Oc Flow From to La

	Į		a		·			12	4			1					_		
				•	Condition								After	of	Causevey		·		
- 1-																-			
	٠				-														
	Outflow (m3)		1	ı	ŀ		1	6,240		37,620	38,880		13,320			040.40	202,000	192,120	
	Inflow (m ³ )		5,160	35,560	41,760	3	14,400	ı		ı	•		1			06.980	20,000	193,760	
	Averaged Discharge (m ³ /sec)		8.6	19.8	23.2	ć	7.21	10.4		20.9	21.6	. *	11.1				•		
	Discharge (m ³ /sec)	O		1	22.4	23.9	٥		20.8	ć	2	22.1		0		10401	10.01	12:30 - 18:20 Total (1 x 2)	
	Time	15:20	06.30		16:00	16:30	16:50		17:00	77.30	2	18:00	1	18:20		18:20 18:20	70.20	18:20 Tote	
	v ection		ć	11 OCC 111	0					m Lagoon	Ocean					75.26	A	12:30 - 1	

# COMPARISON OF LOADING SPECIFICATIONS FOR HIGHWAY BRIDGES

AASHTO (American Association of State Highway and Transportation Officials)  HS 20 - 44 (MS 18)  i = $\frac{15.24}{L+30}$ 30%	J.R.A (Japan Road Association)	Adopted to the Betio-Bairiki Causeway Project	Remarks
30%			
30%	TL - 20	TL - 20	
	$i = \frac{20}{50 + L}$ (For T-Load.)	$i = \frac{20}{50 + L}$ (For T-Load)	L: Span Length in Meters
	$i = \frac{10}{25 + L}$ (For L-Load.)	$i = \frac{10}{25 + L}$ (Por L-Load)	
	350 $kg/m^2$ (For L $\leq$ 80) 430-L (For 80 $\prec$ L $\leq$ 130) 300 (For L > 130)	350 kg/m ² (For L = 10 m)	L: Span Length in Meters
	Nil	Nil	Lateral Force
	250 kg/m	74.4 kg/m	Lateral Force
5% of Live Load	Ni.1	14.1	For Bridge Axis
V = 100  mph  (160.9 km/h) $V = 244 \text{ kg/m}^2 \text{ (For Girder and Beam)}$ $V = 195 \text{ kg/m}^2 \text{ (For Substructure)}$	$V = 55 \text{ m/s} $ $V = 300 \text{ kg/m}^2 \text{ (For PC Girder and Beam)}$ $V = 300 \text{ kg/m}^2 \text{ (For Substructure)}$	V = 23.2  m/s ( 84 km/h ) $V = 70 \text{ kg/m}^2$	V: Vind Velocity
- Equivalent Static Force Method - Response Spectrum Method	- Modified Static Force Method - Response Spectrum Method	EH = 0.05 WD	Ell: Horizontal Force in tons WD: Dead Weight in tons
16.7°C 22.2°C	± 15°C	°01 ∓	
$P = 515 \text{ k·V}^2$ V: Velocity of Water $K = 1 \cdot \frac{3}{8}$ (For Square End) $K = \frac{1}{4}$ (For Angle End, 30°) $K = \frac{2}{3}$ (For Circular Pier)	F = k·v ² v: Maximum Water Velocity k = 0.07 (For Square End) k = 0.04 (For Circular Pier) k = 0.02 (For Streamline Fier)	p = 1.5 w.Ho p : Pressure of breaking wave (4/m²) w : Unit Weight of see water (4/m³) Ho: Wave Height (m)	
0.79 . S ² R Design Speed (km/h) Radius of Curve (m)	C = 0.08 x W W: Vehicle Weight (t)	Nil	
Rankine's Formula	Coulomb's Formula	Coulomb's Formula	
	Water Square End) e End, 30°) ular Pier) d (km/h) urve (m)	P = K·V ² v: Maxim k = 0.07 k = 0.04 k = 0.04 c = 0.08 V: Vehic	+ 15°C  P = k.v ² v: Maximum Water Velocity k = 0.07 (For Square End) k = 0.04 (For Circular Fier) k = 0.02 (For Streamline Fier) k = 0.08 x W  C = 0.08 x W  C = 0.08 x W  Nil W: Vehicle Weight (t)  Coulomb's Formula

## ESTIMATION OF EARTHQUAKE LOAD

The following equation quoted from "Design Manual for Seismic Design" adopted by JRA, which shows good coincidence in case of long epicentral distance, is selected for estimating the ground acceleration caused by past earthquakes.

$$A = 40.3 \times 10^{-0.2621} \text{ M} \times (d + 30)^{-1.208}$$

where: A =estimated maximum ground acceleration in % of g

M = magnitude of earthquake

d = epicentral distance in km

Past earthquake records and induced ground acceleration in Tarawa Island (01°21'N, 172°56'E) are summerised hereunder.

TABLE-1 PAST EARTHQUAKES AND INDUCED GROUND ACCELERATION

1	000	curence	9		Epicen	tre		ď	A
No	Year	Month	Date	Latitude	Longitude	Depth	Magnitude		%g
1	1982	1	7	3.4 S	177.6 E	33 km	5.8 M	739	0.4
2	1982	5	23	3.4 S	177.4 E	32 km	6.1 M	724	0.5
3	1983	1	31	3.5 S	177.7 E	31 km	5.8 M	755	0.4
4	1983	2	5	3.5 S	177.8 E	33 km	5.8 M	763	0.4
5	1983	3	8	3.5 S	177.6 E	33 km	5.8 M	747	0.4

(Source of past earthquakes: "Chronological Table in Science" published by Marzen, Japan)

### CALCULATION OF WAVE RUNUP

Wave runup is calculated by means of the following formula:

$$\frac{R}{\text{Ho'}} = \left(\sqrt{\frac{\pi}{2\theta}} + \left(\frac{\eta_s}{H_1} - 1\right)\right) \cdot Ks$$

$$\frac{\eta_s}{H_1} = 1 + \pi \cdot \frac{H_1}{Lo} \coth kh \cdot \left(1 + \frac{3}{4 \sin h^2 kh} - \frac{1}{4 \cos h^2 kh}\right)$$

where, R : Wave runup (m)

H₁: Wave height (m)

Ho: Equivalent deep water height (m)

θ : Slope angle (radian)

 $\eta$ s: Wave runup for vertical wall (m)

h : Water depth (m)

Lo: Wave length (m) =  $1.56 \cdot T^2$ ; T: Period (sec)

 $k = \frac{2\pi h}{Lo}$ 

In this calculation, the following type of waves are taken into consideration, and the results are summarized in the succeeding pages.

- (1) Shallow Water Wave
  - (i) Lagoon Side, Wind = N-direction

- breaking wave (return period = 50 years)

$$H_1 = 0.46 \text{ m}$$

T = 4.1 sec

- non-breaking wave

$$H_1 = 0.52 \text{ m}$$

T = 4.1 sec

- (2) Deep Water Wave
  - (i) Ocean Side, Wind = SW-direction

- breaking wave (return period = 50 years)

$$H_1 = 0.70 \text{ m}$$

$$T = 9.3 \text{ sec}$$

- non-breaking wave

$$H_1 = 0.42 \text{ m}$$

$$T = 9.3 \text{ sec}$$

(ii) Lagoon Side, Wind = NW-direction

- breaking wave (return period = 50 years)

$$H_1 = 0.66 \text{ m}$$

$$T = 9.3 \text{ sec}$$

- non-breaking wave

$$H_1 = 0.49 \text{ m}$$

$$T = 9.3 \text{ sec}$$

TABLE-1 WAVE RUNUP FOR SHALLOW WATER WAVE (Lagoon Side, N-direction)

DESCRIPTION	BREAKING	NON-BREAKING
H1 (Return period = 50 years)	0.46 m	0.52 m
T ( do. )	4.1 sec	4.1 sec
Lo = $1.56 \cdot T^2$	26.224 m	26.224 m
Seabed elevation	DL + 0.500	DL + 0.500
Water level	DL + 1.880	DL + 1.800
$\frac{1}{2} \mathbf{h}^{2} \left[ \mathbf{h}^{2}$	1.380 m	1.300 m
h/Lo	0.053	0.0496
Ks (Wiegel's Table)	1.013	1.026
sin h kh ( do. )	0.6499	0.6189
cos h kh ( do. )	1.1926	1.1760
cot h kh	1.835	1.900
$\eta_{s/{ m H}_1}$	1.263	1.328
Elevation of parapet top	DL + 3.800	DL + 3.800
RL + y	DL + 1.190	DL + 1.020
d = 3.8 - y	2,610 m	2.780 m
<b>K</b>	3.165 m	3.420 m
$\theta = \tan^{-1} (d/x)$	39.5°	39.1°
Но'	0.45 m	0.51 m
R/Ho'	1.80	1.89
R	0.81 m	0.96 m
Elevation of runup (50 years)	DL + 2.69 m	DL + 2.76 m

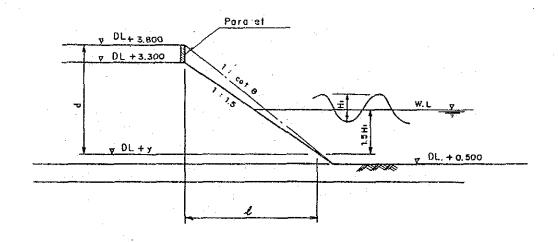



TABLE-2 WAVE RUNUP FOR DEEP WATER WAVE-1
(Ocean Side, SW-direction)

DESCRIPTION	BREAKING	NON-BREAKING
H ₁ (Return period = 50 years)	0.70 m	0.42 m
T ( do. )	9.3 sec	9.3 sec
$Lo = 1.56 \cdot T^2$	134.9 m	134.9 m
Seabed elevation	DL + 0.500	DL + 0.500
Water level	DL + 2.500	DL + 1.800
h	2.000 m	1.300 m
h/Lo	0.015	0.0096
Ks (Weigel's Table)	1.3070	1.4480
sin h kh ( do. )	0.3170	0.2507
cos h kh ( do. )	1.049	1.0309
cot h kh	3.309	4.112
$q_{ m s/H_1}$	1.449	1.510
Elevation of parapet top	DL + 3.800	DL + 3.800
RL + y	DL + 1.450	DL + 1.170
d = 3.8 - y	2.35 m	2.630 m
K	2.775 ш	2.745 m
$\theta = \tan^{-1} \left( \frac{d}{\ell} \right)$	40.3°	43.80
· Ho I	0.53 m	0.29 m
R/Ho'	2.45	2.81
R	1,30 m	0.82 m
Elevation of runup (50 years)	DL + 3.80 m	DL + 2.62 m

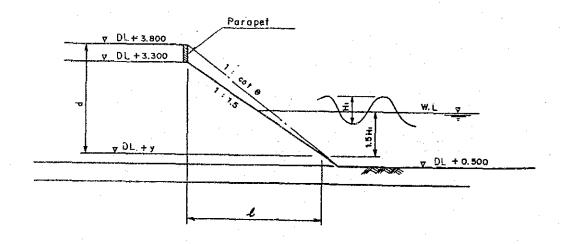
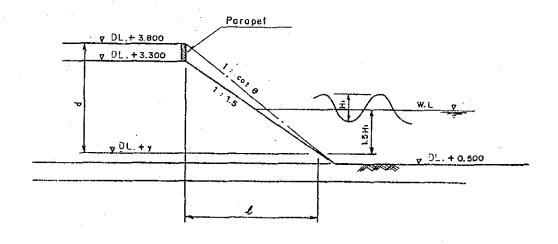




TABLE-3 WAVE RUNUP FOR DEEP WATER WAVE-2 (Lagoon Side, NW-direction)

DESCRIPTION	BREAKING	NON-BREAKING	
H ₁ (Return period = 50 years)	0.66 m	0.49 m	
T ( do. )	9.3 sec	9.3 sec	
$Lo = 1.56 \cdot T^2$	134.9 m	134.9 m	
Seabed elevation	DL + 0.500	DL + 0.500	
Water level	DL + 2.490	DL + 1.800	
h	1.99 m	1.30 m	
h/Lo	0.015	0.0096	
Ks (Wiegel's Table)	1.3070	1.4480	
sin h kh ( do. )	0.3170	0.2507	
coshkh (do.)	1.049	1.0309	
cot h kh	3.309	4.112	
$\eta_{\mathrm{s/H_1}}$	1.449	1.510	
Elevation of parapet top	DL + 3.800	DL + 3.800	
RL + y	DL + 1.500	DL + 1.065	
d = 3.8 - y	2.30 m	2.735 m	
K	2.70 m	3.353 m	
$\theta = \tan^{-1} \left( \frac{d}{k} \right)$	40.40	39.20	
Ho'	0.50 m	0.34 m	
R/Ho'	2.44	2.93	
R	1.22 m	1.00 m	
Elevation of runup (50 years)	DL + 3.71 m	DL + 2.80 m	



### DESIGN OF FISHERIES CHANNEL

1. Design of Approach Section of the Fisheries Channel from the Ocean Side

### 1.1 Design Wave

According to the information obtained about ordinary operations of fishing boats, they have to suspend their operations several days a year due to bad weather in the sea area and the wave height seems to be about 1.8 metre in such bad weather.

As such, the design wave for the approach section shall be the maximum wave height normally encountered during the year.

In the case of a maximum wind speed of 9.0 metre/sec and wind duration of 40 hours in a year, the wave height will be 1.8 meters with a wave period of 6 second.

### 1.2 Design Conditions

The elevation of the sea bottom of the approach section of the channel is  $D \perp -3.00$  metres as shown in Fig. 1.

Typical cross section of the approach and standard portions of the fisheries channel on the ocean side are shown in Fig. 2.

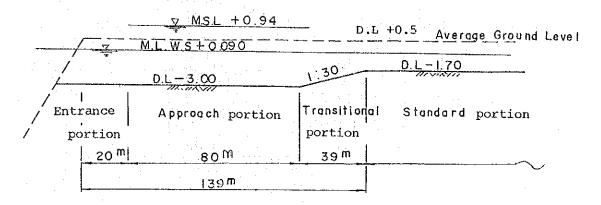
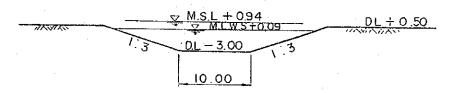
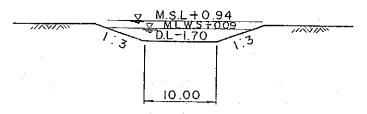





Fig. 1 Longitudinal section of the approach section of the channel on the Ocean side



Cross Section of Approach Portion



Cross Section of Standard Portion

Fig. 2 Profile and Cross Sections of Approach Portion of Fisheries Channel on Ocean Side

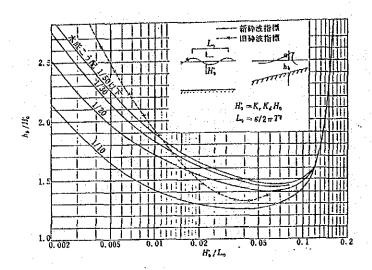



Fig 3 Relation between Depth of breaking and Equivalent deepwater wave height

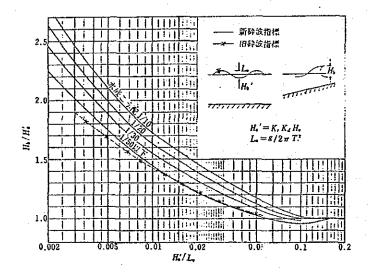



Fig 4 Relation between Breaking wave height and Equivalent deepwater wave height

- 1.3 Breaker depth of Wave
- 1) Relation between the depth of breaking and of the breaking wave height at the beginning point of the approach section.

The relation between depth of breaking and the equivalent deepwater wave height is shown in Fig. 3, while the relation between the breaking wave height and equivalent deepwater wave height is shown in Fig. 4.

The following assumptions are used for the design:

Deepwater wave height  $H_0 = 1.8 \text{ m}$ Wave period T = 6.0 secWave length  $L_0 = 1.56 \text{ T}^2$   $= 1.56 \times 6^2 = 56.16 \text{ m}$ 

In this case, the deepwater wave height ( ${\rm H_0}$ ) and equivalent deepwater wave height ( ${\rm H_0}$ ') are almost the same when the bottom slope is not steeper than 1/50.

i.e.  $H_0 = H_0$ 

then, 
$$\frac{\text{H}_0}{\text{L}_0} = \frac{1.8}{56.16} = 0.032$$

$$\frac{h_b}{L_0}$$
 = 1.53 is given in Fig. 3.

$$h_b = 1.53 \times 1.8 = 2.75$$

On the other hand, if both sides of the channel are dried up, tidal currents will flow only within the fisheries channel during low water tide.

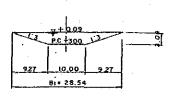
Therefore the tidal current speeds will increase and the deepwater wave height will increase simultaneously due to the abrupt reduction of the channel width. The relation between the wave height at the beginning point of the approach section  $(H_0^-)$  and the wave height at the ending point of the approach section  $(H_2^-)$  was calculated as follows (See Fig. 5 below):

$$\left(\frac{H_2}{H_0}\right)^2 = \left(\frac{B_0}{B_1}\right)$$

$$\therefore H_2 = H_0 \sqrt{\frac{B_0}{B_1}} = 1.8 \sqrt{\frac{68.54}{28.54}} = 2.79 \text{ m}$$

where: Bo: Width at the beginning point of entrance portion

B1: Width at the ending point of entrance portion


The water depth which does not break the wave height at  $\rm H_2$  (2.79m) was changed from  $\rm H_2$  to  $\rm H_2$ ' and for bottom slopes is not steeper than 1/50.

The breaking depth of a wave was calculated as follows (refer to Fig. 3):

$$\frac{h_b}{H_2!}$$
 = 1.48 m  $\therefore h_b$  = 1.48 x 2.79 = 4.13 m

Accordingly, the sea bottom at the beginning point of the approach section was determined as shown below;

Tide	Tidal Elevation	Depth of Breaking wave	Required sea bottom elevation at Begin- ning point of the Approach Section
MLWS	DL + 0.09	4.13	-4.04
MSL	DL + 0.94	2.75	-1.81
MHWL	DL + 1.80	2.75	-0.95



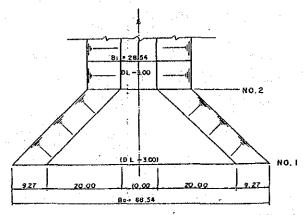



Fig. 5 Beginning width and ending width at Approach of Channel

2) Deepwater wave height which does not break was calculated as follows, assuming that the tide at L.W.L. and the deepwater wave height are 0.80 m.

$$H_2 = H_1 \times \sqrt{\frac{B_0}{B_1}} = 0.8 \times \sqrt{\frac{68.54}{28.54}} = 1.24$$

As  $H_2 = H_3$ 

$$\frac{\text{H}3'}{\text{L}_0} = \frac{1.24}{56.16} = 0.022$$

then by Fig. 3;

$$\frac{h_b}{H_3}$$
 = 1.63 i.e.  $h_b$  = 1.63 x 1.24 = 2.02 m

Here, the wave height attenuation at the approach section of the fisheries channel was calculated by using the Bretschneider & Reid Formula, as follows:

$$K_{f} = \frac{H_{2}}{H_{1}} = \left[1 + \frac{64}{3} \frac{\pi^{3}}{g^{2}} \frac{fH_{1}\Delta x}{d^{2}} \left(\frac{d}{T^{2}}\right)^{2} \frac{K_{s}^{2}}{\sinh^{3}\left(\frac{2\pi d}{L}\right)}\right]^{-1}$$

here, f: Coefficient of sea bottom friction

H₁: Wave height

 $\Delta x$ : Distance of wave height attenuation

d: Water depth

T: Wave period

 $\mathrm{H}_2$ : Wave height after attenuation

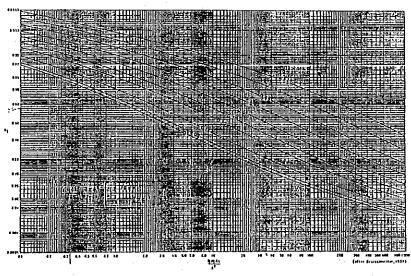



Fig: 6 Relationship for Friction Loss Over a Section of Constant Depth

$$\frac{f_f Hi \Delta x}{d^2} = \frac{0.03 \times 2.02 \times 139}{(3.09)^2} = 0.88$$

$$\frac{2\pi d}{gT^2} = \frac{2 \times 3.14 \times 3.09}{9.8 \times (6)^2} = 0.055$$

by Fig. 4,

$$K_f = 0.86 = \frac{H_2}{1.24}$$
 .:  $H_2 = 0.86 \times 1.24 \approx 1.07 \text{ m}$ 

$$\Delta H = 1.24 - 1.07 \approx 0.17 \text{ m}$$

- 3) The attenuation of the deepwater wave (H₀') of 1.8 m in height caused by passing through the approach section of 139 meters long was calculated as follows:
  - a) d = 3.09 m  $\ell = 139 \text{ m}$  at M L W S

$$\frac{f_f Hi\Delta x}{d^2} = \frac{0.03 \times 2.79 \times 139}{(3.09)^2} = 1.218$$

$$\frac{2\pi d}{gT^2} = \frac{2 \times 3.14 \times 3.09}{9.8 \times (6)^2} = 0.055$$

then by Fig. 4:

$$K_f = 0.82 = \frac{H_2}{2.79}$$
  $\therefore$   $H_2 = 0.82 \times 2.79 = 2.29 \text{ m}$ 

$$\Delta H = 2.79 - 2.29 = 0.50 \text{ m}$$

b) 
$$d = 3.94 \text{ m}$$
  $l = 139 \text{ m}$  in M S L

$$\frac{f_f \cdot \text{Hi} \cdot \Delta x}{d^2} = \frac{0.03 \times 1.80 \times 139}{(3.94)^2} = 0.484$$

$$\frac{2\pi d}{gT^2} = \frac{2 \times 3.14 \times 3.94}{9.8 \times (6)^2} = 0.070$$

then by Fig. 4:

Kf = 
$$0.93 = \frac{H_2}{1.8}$$
  $\therefore H_2 = 0.93 \times 1.8 = 1.67 \text{ m}$ 

$$\Delta H = 1.80 - 1.67 = 0.13 \text{ m}$$

c) 
$$d = 4.80 \text{ m}$$
  $\ell = 139 \text{ m}$  in M.H.W.S.

$$\frac{f_{f} \cdot Hi \cdot \Delta x}{d^2} = \frac{0.03 \times 1.8 \times 139}{(4.80)^2} = 0.326$$

$$\frac{2\pi d}{gr^2} = \frac{2 \times 3.14 \times 4.80}{9.8 \times (6)^2} = 0.085$$

then by Fig. 4:

$$K_f = 0.97 = \frac{H_2}{1.8}$$
 ...  $H_2 = 0.97 \times 1.8 = 1.75 \text{ m}$ 

$$\Delta H = 1.8 - 1.75 = 0.05 \text{ m}$$

The results of these calculations are summerized in Table 1, below:

Table 1. Summary of Calculation Results

in Metre

		Design wa			Approach Portion		Standard Portion	
	Tide	Tidal level	*1 No.1	*2 No.2	Water depth	Attenuated wave height	Necessary water depth	Design water depth
Ī	MLWS	+0.09	1.80	2.79	3.09	0.50	2.29	1.79
	MSL	+0.94	1.80	1.80	3.94	0.13	1.67	2.64
	MHWS	+1.80	1.80	1.80	4.80	0.05	1.75	3,50

^{*1} At the beginning point of the approach section

# 4) Study result of design condition

The study result pertaining to the deepwater wave height in the approach section are summerized in Table 2 at M L W S, M S L and M H W S, respectively.

^{*2} At the ending point of the approach section

Table 2.	Summary	of	Study	Results	of	Design	Conditions
						•	
							(in Metres)

[	height		Dewign wave Approach height Portion			Standard Portion			
	Tide	Tidal level	*1	*2	Depth of breaking		Depth of breaking		Remarks
Ì			No.1	No.2	wave	depth	wave	depth	
	M L W S.	+0.09	1.80	2.79	4.13	3.09		. 184	Breaking wave
	мьжѕ	+0.09	0.80	1.24	2.02	3.09	1.74	1.79	Non- breaking
	MSL	+0.94	1.80	1.80	2.75	3.94	2.28	2.64	Non- breking
	мнพѕ	+1.80	1.80	1.80	2.75	4.80	1.67	3.50	Non- breaking

- *1 At the beginning point of the approach section
- *2 At the ending point of the approach section

Accordingly, the deepwater wave height (which is higher than 0.8 metre) will break within the fisheries channel at M L W S.

The required water depth of the approach section was calculated to be 4.13 metre in order to keep a wave of 1.8 m height (which was used in design) from breaking in the approach section, however, such a deep excavation does not seem economical. Therefore, it was assumed as a design condition that a deepwater wave of 1.8 metre in height will not break at M.S.L in the approach section.

- 2. Design of Approach Section of the Fisheries Channel from Lagoon Side
- 2.1 Design Wave

The longest fetch in Lagoon side is in the N direction.

The wave height and wave period were calculated by the using Bretschneider Formula as follows:

### - Wave height at M H W S

Wind speed : 8.50 m/s

Effective fetch : 19.1 km

Average water depth : 9.8 m (8 m + 1.8 m)

Tide level : +1.8 m

$$\frac{gh}{U^2} = \frac{9.8 \text{ m/sec}^2 \times 9.8 \text{ m}}{(8.5 \text{ m/s})^2} = 1.33$$

$$\frac{gF}{U^2} = \frac{9.8 \text{ m/sec}^2 \times 19,100 \text{ m}}{(8.5 \text{ m/s})^2} = 2,590.7$$

$$\frac{gH}{U^2} = \frac{9.8 \text{ m/sec}^2 \text{ x H m}}{(8.5 \text{ m/s})^2} = 9.5 \text{ x } 10^{-2}$$

$$\therefore H = \frac{9.5 \times 10^{-2} \times 8.5^2}{9.8} = 0.70 \text{ m}$$

Wave period

$$T_{1/3} = 3.86 \sqrt{H^{1/3}} = 3.86 \sqrt{0.70} = 3.23 = 3 \text{ sec.}$$

### - Wave height at M L W S

Wind speed : 8.50 m/s

Effective fetch : 12.70 km

Average wave depth : 8.09 m

Tidal level : +0.09 m

$$\frac{gh}{v^2} = \frac{9.8 \text{ m/sec}^2 \times 8.09 \text{ m}}{(8.5 \text{ m/s})^2} = 1.10$$

$$\frac{gF}{U^2} = \frac{9.8 \text{ m/sec}^2 \times 12,700 \text{ m}}{(8.5 \text{ m/s})^2} = 1,722.6$$

$$\frac{gH}{U^2} = \frac{9.8 \text{ m/sec}^2 \times H \text{ m}}{(8.5 \text{ m/s})^2} = 8.0 \times 10^{-2}$$

$$\frac{gH}{U^2} = \frac{8 \times 10^{-2} \times 8.5^2}{9.8} = 0.59 \text{ m}$$


Wave speed

$$T_{1/3} = 3.86 \sqrt{H^{1/3}}$$
  
=  $3.86 \sqrt{0.59} = 2.96 = 3.0 \text{ sec.}$ 

The relation between the wave height at the beginning point  $(H_0^{!})$  and wave height at the ending point  $(H_2^{})$  of the approach section was calculated as follows (refer to Fig. 7, below):

$$\left(\frac{H_2}{H_0'}\right) = \left(\frac{B_0}{B_1}\right)$$
 $H_2 = H_0' \sqrt{\frac{B_0}{B_1}} = 0.6 \times \sqrt{\frac{60.74}{20.74}} = 1.03 \text{ m}$ 
 $L_0 = 1.56\text{T}^2 = 1.56 \times 3^3 = 14.04 \text{ m}$ 

The water depth which does not break the wave height  $H_2$  (2.79m) was calculated as follows, where the sea bottom slope is not steeper than 1/50:



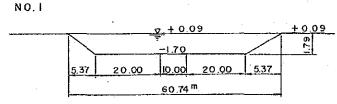



Fig. 7 Beginning width and ending width at Approach of Channel

Received: 85,4.12

Received: 85,4.1	TOT A	NT AND VEHIC	Har into	Appendix 4-10 (1)
From MR. Mannool	Kavier			
Vehicle/Plant (Monager:	Reg. No.	<u>In</u> Service	Remaining Value	Condition
Nissan Tipper	BTC 3184	Renewal 1983	34596.00	New_not yet put into service
n n	BTC 3024	14.9.82	12025	Good condition
n n	BTC 3025	20.9.82	12025	Good condition
n H	BTC 3026	29.9.82	12025	Good
it	BTC 3022	14.9.82	16850	Good
930 Cat Loader	BTC 3063	1.11.82	57396	Good.
n n n	BTC 2989	23.7.82	53405	Good Back-Up Machine
Dump Truck	BTC 3043	19.9.82	76503	Presentay under repairs but good
Sykes 4" pump	No. 5	20.4.79	875	Good
Simplite 2" Pump	No. 6	5.2.81	1150	Good
11 11 11	No. 7	5.2.81	1150	Gdod
4" Johnson Pump	No. 2	3-3-75	Nil	Operational
4 ¹¹ 11 11	No. 3	3.3.75	Nil	Operational
Honda 2" Pump	No. 8	1.1.83	525	Good
Lister 15KVA	No. 2	2.1.67	137	Good
Powerlite 30KVA 3 Phase	No. 4	1.5.81	9000	Good
1Î 17	No. 5	1.5.81	9000	Good
Meiko C/Mixer	Ex-J	ap. Aid (N	Mautari Projec	t)Good
Winget 7/5	No. 6	74	Nil	Operating
n n	No. 12	74	Nil	Operating
Holman Compressor	No. 2	8.10.79	1250	Good
Comp. Air 160 CV	No. 4	1.5.81	6328	Good
18 18 11 19	No.5	1.3.82	8925	Good
Moore Phuemat ic Tyred Roller	BTC 2630	28.4.81	18000	Good
Steel Tyred Roller Aveling Barford	BTC 2808	28.4.81	27334	Good
Cat D6D	BTC 1575	Rebuilt Fiji Jan81	55250 I	Good
R n	BTC 2218	20.6.79	47925	Good
Cat 1300 Grader	BTC 2105	1.1.79	27215	Good
17 19 19	BTC 2165	23.5.79	27215	Good
12G	BTC 3137	1.1.83	87360	Good
22RB	BAN 23	EX BPC 11.3.80	2500	Good
n	Ban 24	11.3.80	2500	Good
" Piling	BTC 1368	1.3.74	2500	Good
22RB	BTC 1520	5.7.76	4000	Good
_		-	3=300	<i>a</i> . 1

35325

BTC 2042

27.10.78

Good

Coles 911C 10ton	BTC 2105	4.7.81	72189	Good
York Container Trailer	BTC 2353	22.1.80	2125	Good
Tractor for Above	BTC 2353	22.1.80	4600	Good

### SIMULATION OF TIDAL CURRENT IN THE LAGOON OF THE TARAWA ATOLL

### 1. Objective

This study aims to analyze a change of tidal flow in the lagoon of the Tarawa Atoll due to construction of the causeway between the island of Betio and the island of Bairiki.

### 2. Calculation Formula

### (1) Basic Formula

# i. Equation of Motion

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = 2 \Omega v \sin \phi$$

$$-\frac{1}{\phi} \frac{\partial p}{\partial x} + V x \frac{\partial^2 u}{\partial x^2} + V y \frac{\partial^2 u}{\partial y^2} + V z \frac{\partial^2 u}{\partial z^2} \qquad ----- (1)$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = 2 \Omega \sin \phi$$

$$-\frac{1}{\phi} \frac{\partial p}{\partial y} + V x \frac{\partial^2 v}{\partial x^2} + V y \frac{\partial v^2}{\partial y^2} + V z \frac{\partial^2 v}{\partial z^2} \qquad ----- (2)$$

$$0 = \frac{1}{\phi} \frac{\partial p}{\partial z} - g \qquad ----- (3)$$

# ii. Equation of Continuity

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \frac{\partial \mathbf{w}}{\partial \mathbf{z}} = 0 \qquad ---- \tag{4}$$

where:

x, y = horizontal axis of x, y.

z = vertical axis

u, v, w = velocities for respective direction of s, y, z.

 $\Omega$  = angle speed of rotation of the earth

 $\phi$  = latitude

p = pressure

 $v_x$ ,  $v_y$ ,  $v_z$  = coefficient of eddy viscosity for respective direction of x, y, z.

# (2) Equation for Calculation

Basic equations (1) to (4) will be integrated as regarding z direction as follows:

$$\frac{\partial Sx}{\partial t} + \frac{\partial}{\partial x}(Sx.\bar{u}) - \frac{\partial}{\partial y}(Sx.\bar{v}) = 2 \cap Sy \sin \phi$$

$$- g(\mathcal{E} - H)\frac{\partial \mathcal{E}}{\partial x} - r_b^2 \bar{u} \sqrt{u^2 + v^2} + v_x \frac{\partial^2 Sx}{\partial x^2} + v_y \frac{\partial^2 Sx}{\partial y^2} - (5)$$

$$\frac{\partial Sy}{\partial t} + \frac{\partial}{\partial y}(Sy.\bar{u}) - \frac{\partial}{\partial y}(Sy.\bar{v}) = 2 \cap Sx \sin \phi$$

$$- g(\mathcal{E} - H)\frac{\partial \mathcal{E}}{\partial y} - r_b^2 \bar{v} \sqrt{u^2 + v^2} + v_x \frac{\partial^2 Sy}{\partial x^2} + v_y \frac{\partial^2 Sy}{\partial y^2} - (6)$$

$$\frac{\partial \mathcal{E}}{\partial t} = \frac{\partial Sx}{\partial x} - \frac{\partial Sy}{\partial y} - (7)$$

where:

$$S_{X} = \int_{-H}^{g} Udz = (g - H)\overline{u}$$
 
$$S_{Y} = \int_{-H}^{g} Vdz = (g - H)\overline{v}$$

ζ = water level above MSL

 $r_b^2$  = coefficient of sea bed friction

Equations (5) to (7) will be calculated numerically.

# 3. Conditions of Calculation

Simulation of tidal flow will be made in the following 4 cases:

Case	Betio - Bairiki Entrance	Tide Flow	Tide Level CDL	
1	Closure	Spring tide	+0.09 - +1.80	MHVS
2	Closure	Neap tide	+0.67 - +1.22	MHWN
3	0pen	Spring tide	+0.09 - +1.80	MLWS
4	0pen	Neap tide	+0.67 - +1.22	MLWN

# Conditions of calculations are as follows:

Topography: Ocean sea bed -20.0 CDL

: Lagoon west entrance -2.4 CDL

: Betio - Bairiki entrance +1.19 CDL*

: Lagoon sea bed -8.0 CDL

Mesh size: 1,000 m both directions of x, y.

Time step : 20 sec.

Calculation time: 3 tidal

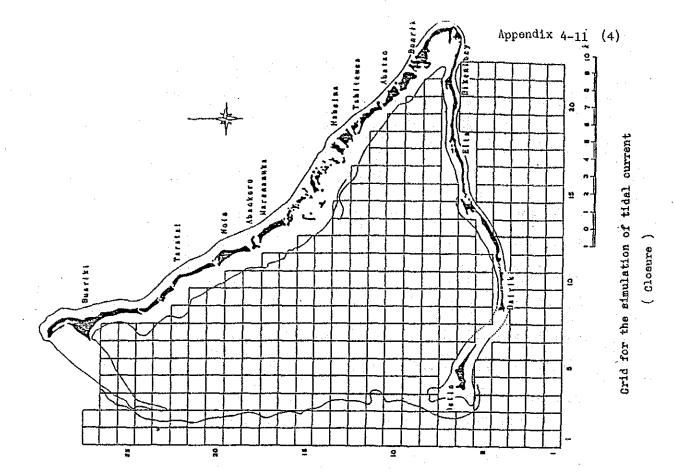
Coriolis' coefficient:  $2w \sin \varphi = 2 \times (360/3,600 \times 24) \times \sin 15^{\circ}$ 

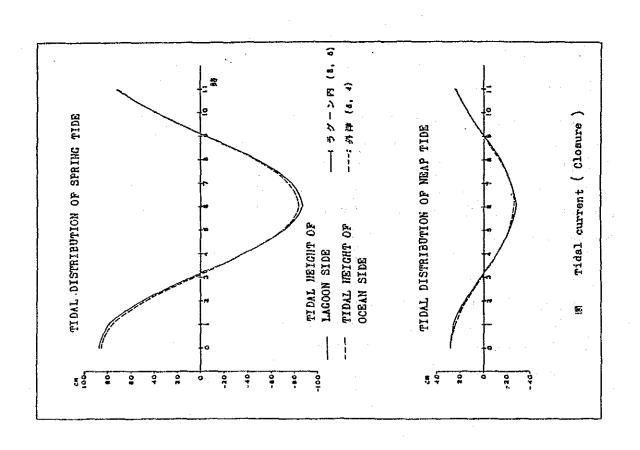
Coefficient of viscosity: 10⁶ cm²/sec

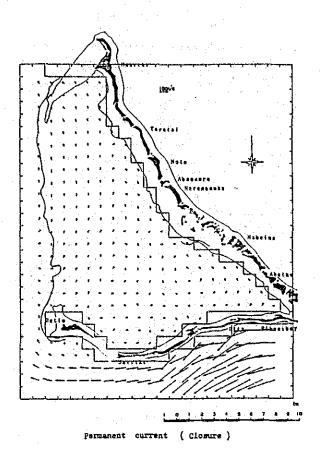
Coefficient of sea bed friction: 0.0026

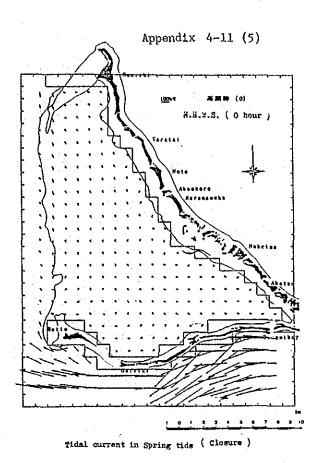
# Boundary condition:

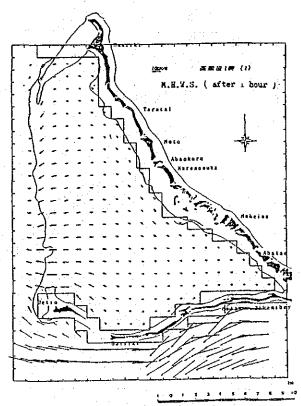
Spring Tide : Amplitude of spring tide at boundary 85.5 cm
: Phase lag of east and west 4.2°
: Water level of east boundary 2 cm

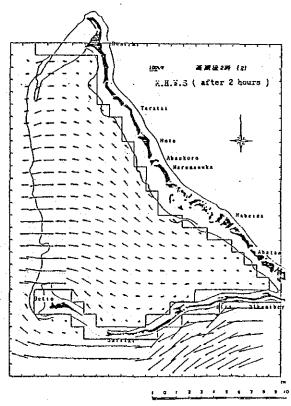

Neap Tide : Amplitude of neap tide at boundary 27.5 cm
: Phase lag of east and west 4.2°


: Water level of east boundary 2 cm


### 4. Results

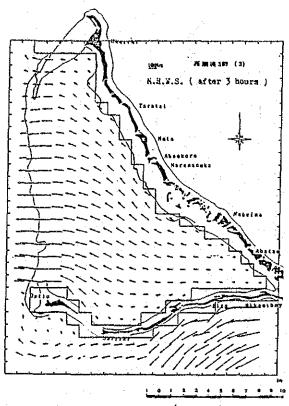

Tidal flow before construction of the causeway is shown in Appendix 4-11 (4) to 4-11 (10) and after in Appendix 4-11 (11) to 4-11 (17). As shown in the results, the change of tidal flow is none in the neap tide, while a little in the spring tide. The charge is a little occurred in the flow direction near the opening of Betio - Bairiki and none in the flow velocity.


* Average depth of the highest portion of the reef along the causeway. Existing two channels with elevation of +0.1 m to 0.5 m and width of 20 m to 30 m are not considered for calculation.

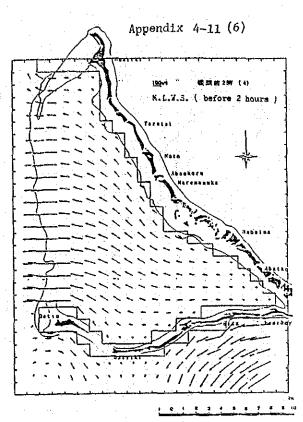




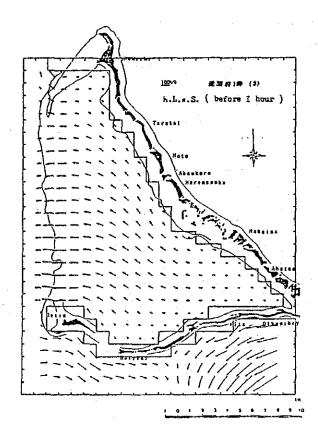


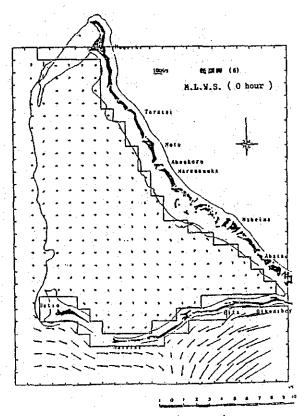


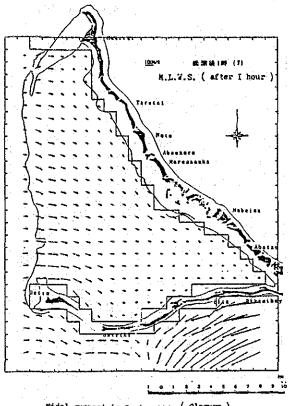

Tidal current in Spring tide ( Closure )


Tidal current in Spring tide ( Closure )

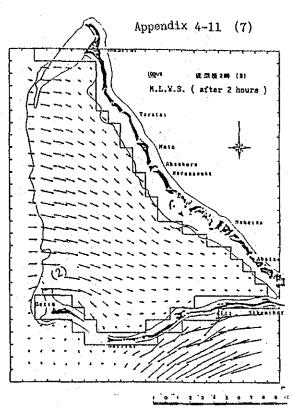




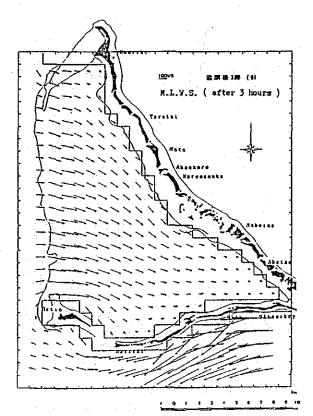




Tidal current in Spring tide ( Closure )

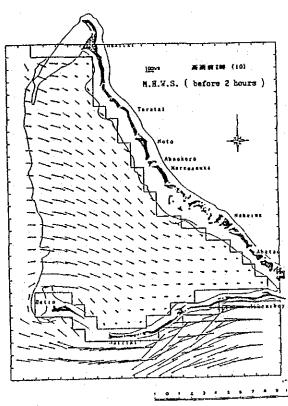



Tidal current in Spring tide ( Closure )

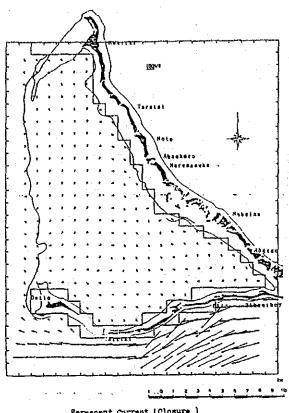


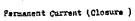

Tidal current in Spring tide ( Closure )

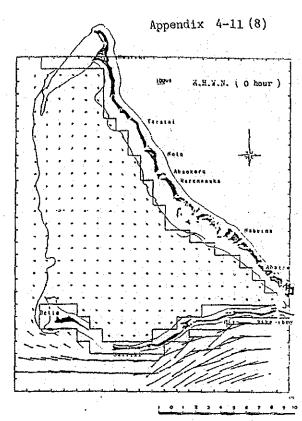



Tidal current in Spring tide ( Closure )

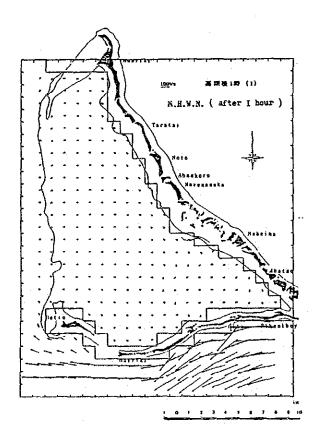



Tidal current in Spring tide( Closure )

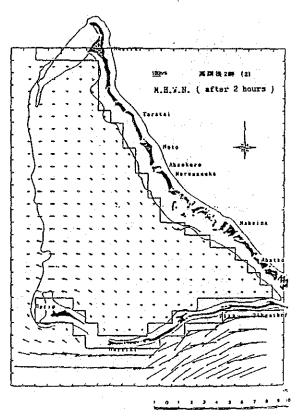




Tidal current in Spring tide ( Closure )

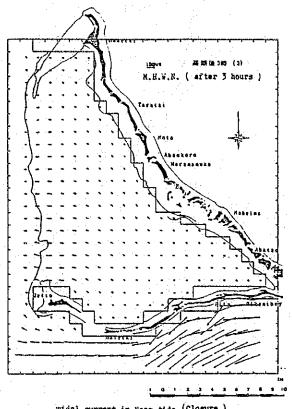



Tidal current in Spring tide ( Closure )

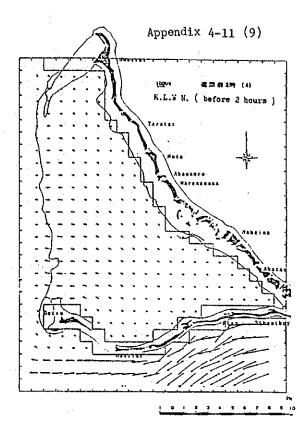




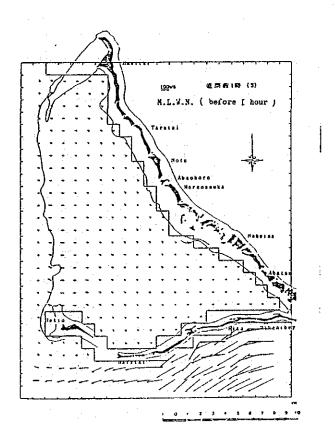




Tidal current in mean tide ( Closure )

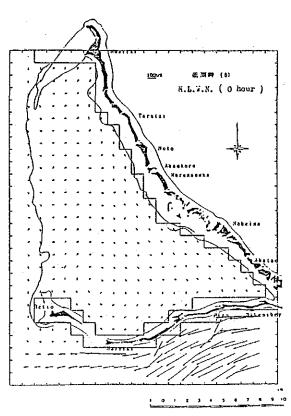



Tidal current in Necp tide ( Closure )

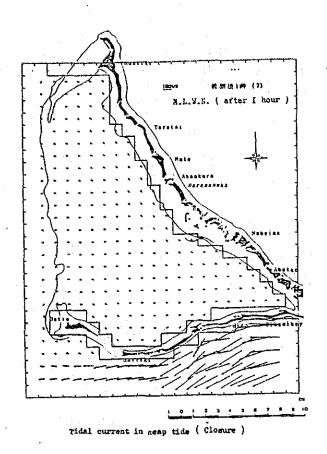


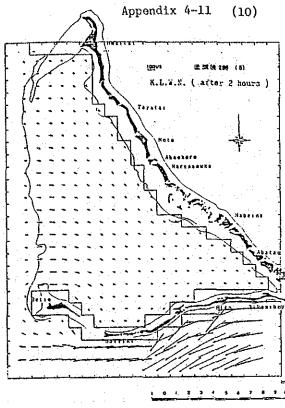

Tidal current in Nemp tide ( Closure )



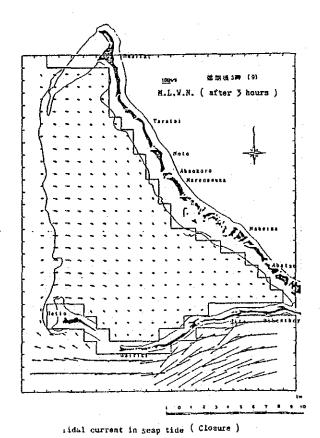






Tidal current in Heap tide( Closure )




Tidal current in meap tide (Closure )

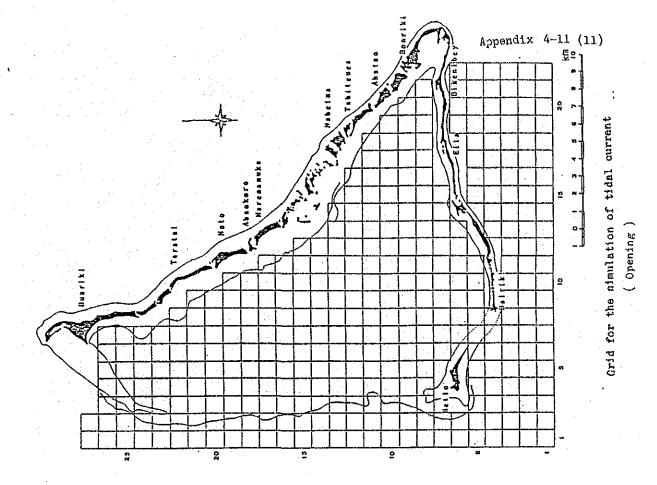


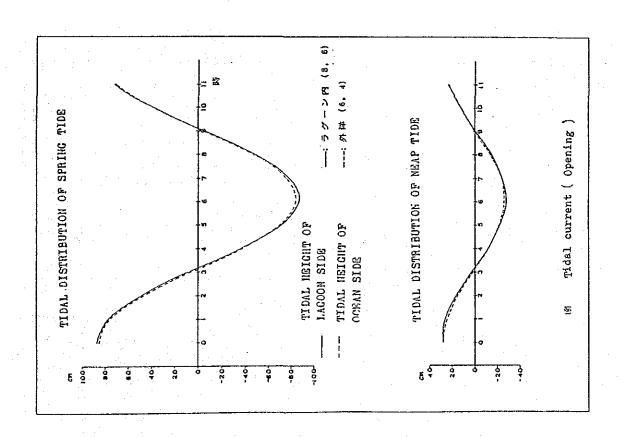

Tidal current in mean tide (Closure )

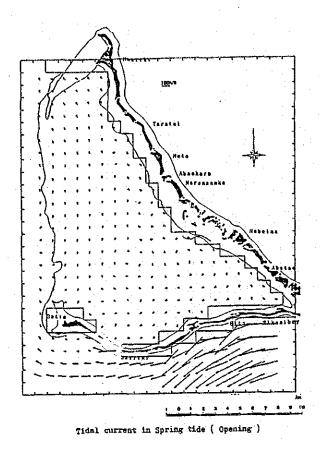


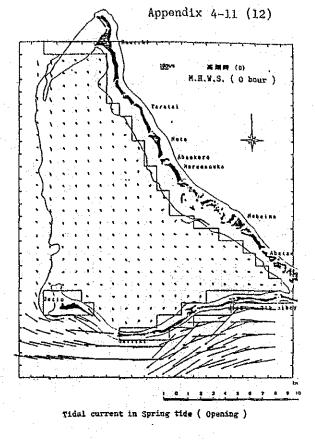


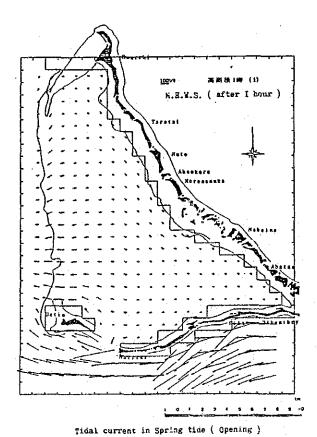
ridal current in Neap tide ( Closure )

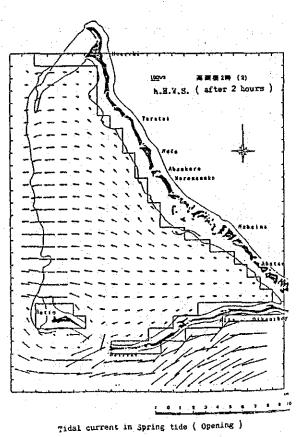


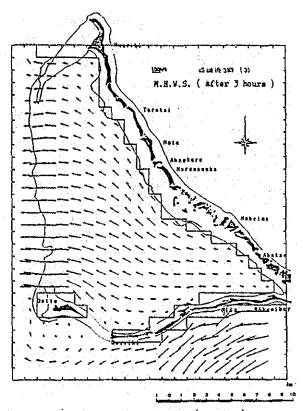


K.H.V.K. ( before 2 hours )


Absolute

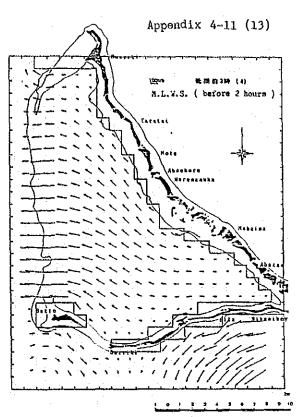

Absolut


Tidal current in Neap tide ( Closure )

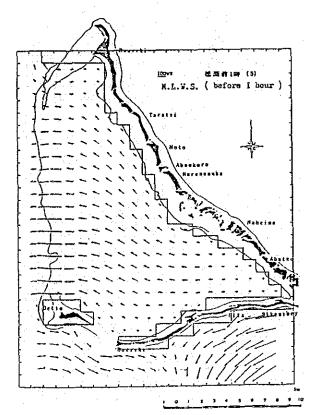


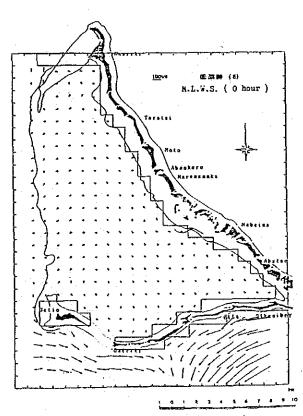


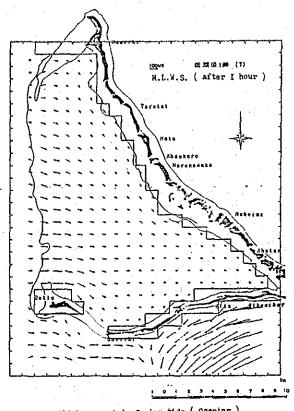


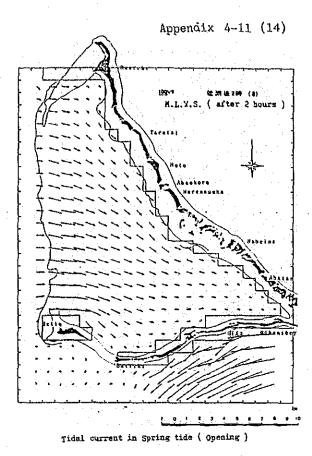





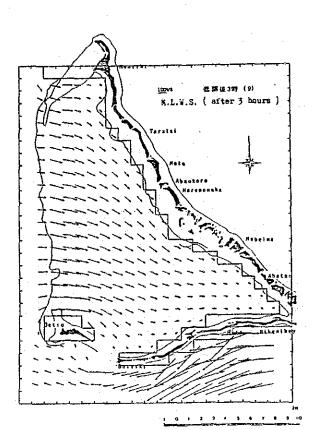


Tidal current in Spring tide ( Opening )




Tidal current in Spring tids ( Opening )



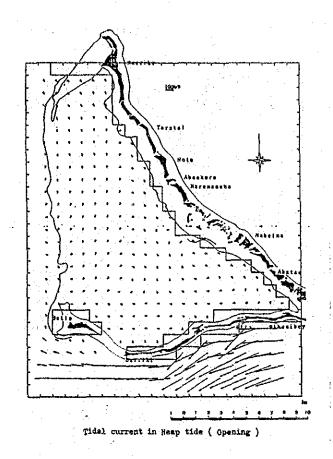

Tidal current in Spring tide ( Opening )

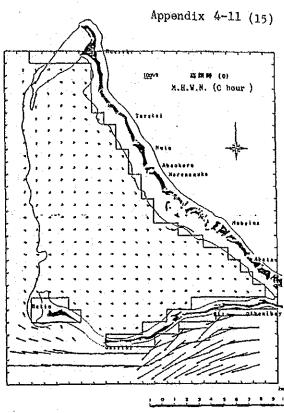



Tidal current in Spring tide ( Opening )

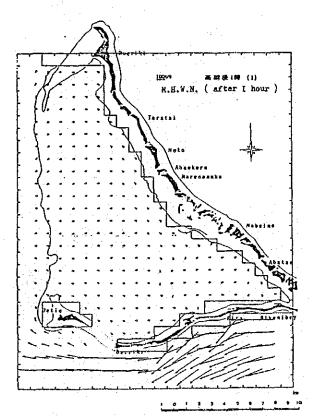




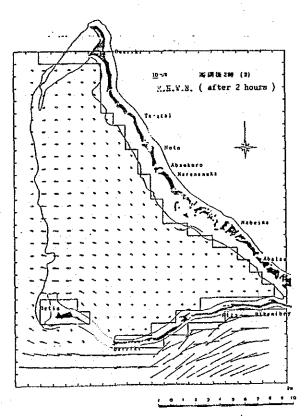

Tidal current in Spring tide ( Opening )



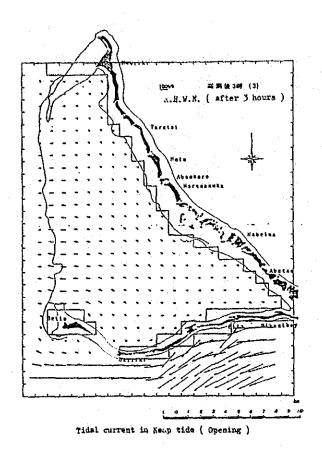

Marcanagh

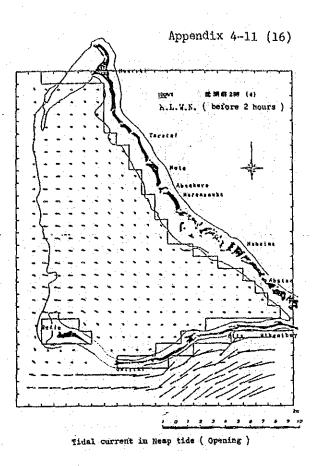

Taidul current in Spring tide ( Opening )

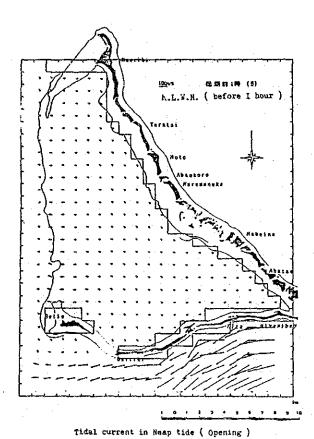
Tidal current in Spring tide ( Opening )

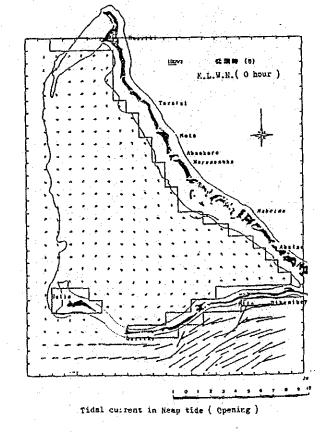


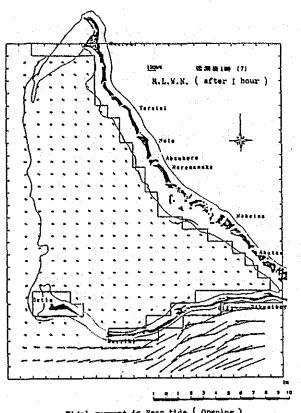




Tidal current in Neap tide ( Opening )

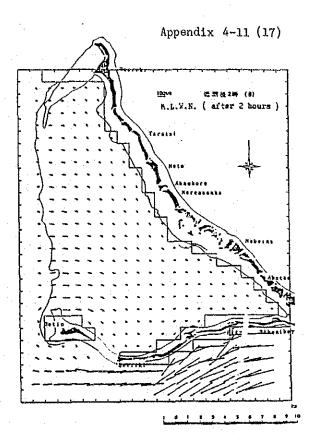




Tidal current in Neap tide ( Opening )





Tidal current in Neap tide ( Opening )

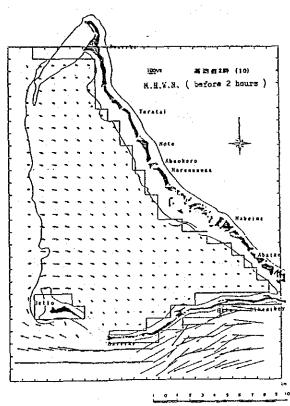













Tidal current in Newp tide ( Opening )



Tidal current in Neap tide ( Opening )



Tidal current in Neap tide ( Opening )

Transport Cost of Ferry and Lighter

## 1. Transport Cost of Ferry

## 1.1 Ferry Operating Cost

Ferry operating cost is estimated based on the present cost as of 1984. As for labor cost and maintenance cost is adjusted by shadow rate (0.87) as follows:

	Labor Cost	Maintenance Cost	Fuel	
Cost as of 1984	107,443	42,716	75,750	
Shadow-Rate	0.87	0.87		
Adjusted Cost	93,475	37,163	75,750	

### 1.2 Procurement Cost of New Ferry

At present, 3 nos of ferry boats are operated of which 2 nos will be replaced with new ones in 1987 and one in 1988 where they become at the end of durable period respectively. Transport capacity of new ferry boats shall meet future demand which will be estimated to be 140% of the present capacity. Purchase cost of new ferry is A\$650,000 per one and then procurement cost will be A\$585,000 excluding the residual value (10% of purchase cost). New ferry boats to be procured in 2002 and 2003 will be valued as 120% of the above procurement cost.

1987		2 nos	$A$585,000 \times 2 = A$1,170,000$
1988		1 no	A\$585,000
2003	•	2 nos	$A$702,000 \times 2 = A$1,404,000$
2004		1 no	A\$702,000

## 1.3 Construction Cost of New Terminal at Takoronga

The existing ferry terminal will be relocated to Takoronga from the Betio harbor according to the extension scheme of the Betio harboror. The construction cost of new ferry terminal at Takoronga is estimated to be A\$605,000 according to the report published in 1983 from Ministry of Communication.

This new ferry terminal will not be required when the causeway is constructed. Accordingly the construction cost of new ferry terminal will be considered as transport cost saving which will be adjusted to be A\$526,000 by shadow rate (0.87) for actual use of evaluation.

## 1.4 Maintenance Cost of New Ferry Terminal

Maintenance cost of new ferry terminal is estimated to be 0.2% of the construction cost.

## 2. Cost of Lighter

Lighterage consists of transportation cost on the sea and loading and unloading cost, of which only loading and unloading cost is used in this study. According to The Report on Development Program on Fisheries Jetty at Betio in The Republic of Kiribati prepared by JICA in 1981, loading and unloading cost is A\$2.60/ton. Considering infration rate 5% per year, it is estimated to be A\$3.3 ton as of 1985 price.

Time Value

#### 1. Shadow Wage Rate

Shadow wage rate of domestic labor is estimated to be equal to standard conversion rate from domestic market price to border price on the assumption that domestic market price represents opportunity cost.

$$SCF = \frac{I + E}{(I + TI) + (E - TE)}$$

SCF: Standard Conversion Rate

I : Total Import Price

E: Total Export Price

TI: Total Import Duty Price

TE: Total Export Duty Price

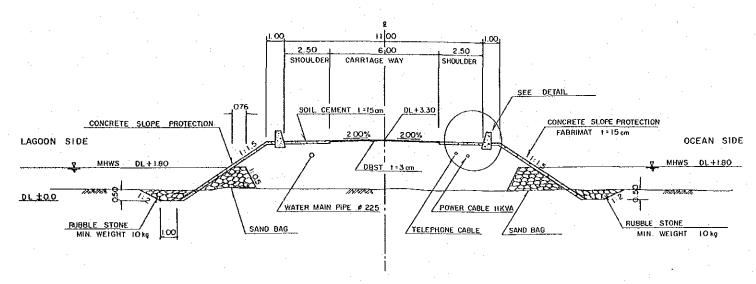
According to trade statistics in 198. SCF is estimated to be 0.87.

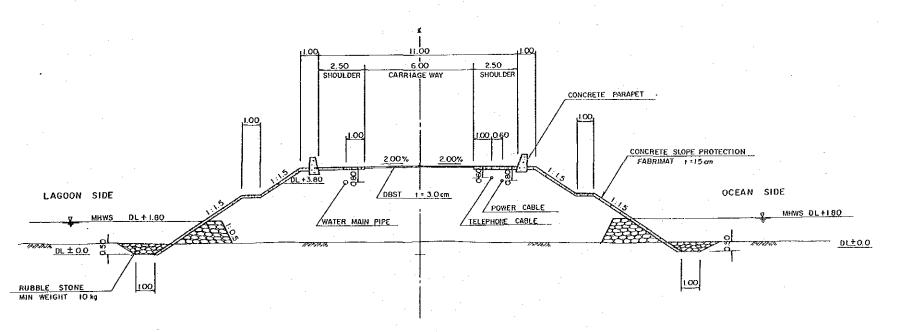
#### 2. Time Value

Time value is estimated by multiplying standard wage rate of domestic labor by shadow wage rate.

About 40% of employees in the South Tarawa consists of government officers. Ranking of government officer's wage is from 1 to 19 of which 11 to 16 occupies majority. Therefore averaged value of wages from 11 to 16 is adopted as representative wage in the South Tarawa.

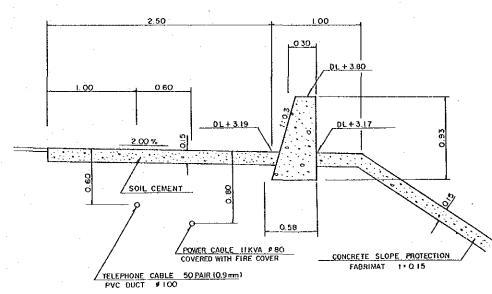
GDP and the population of the Republic of Kiribati in 1985 is estimated to be A\$37,000,000 and 70,000. Accordingly GDP per capita is estimated to be A\$530 and GDP per household is also estimated be A\$3,800 based on the average number of member per one household (7.2). Therefore the above average value of A\$3,050 is not high as compared to the above value of A\$3,800.


The wage per hour is calculated as shown below:


 $A$3,050/12 \times 23 \times 8 = A$1.38/hour$ 

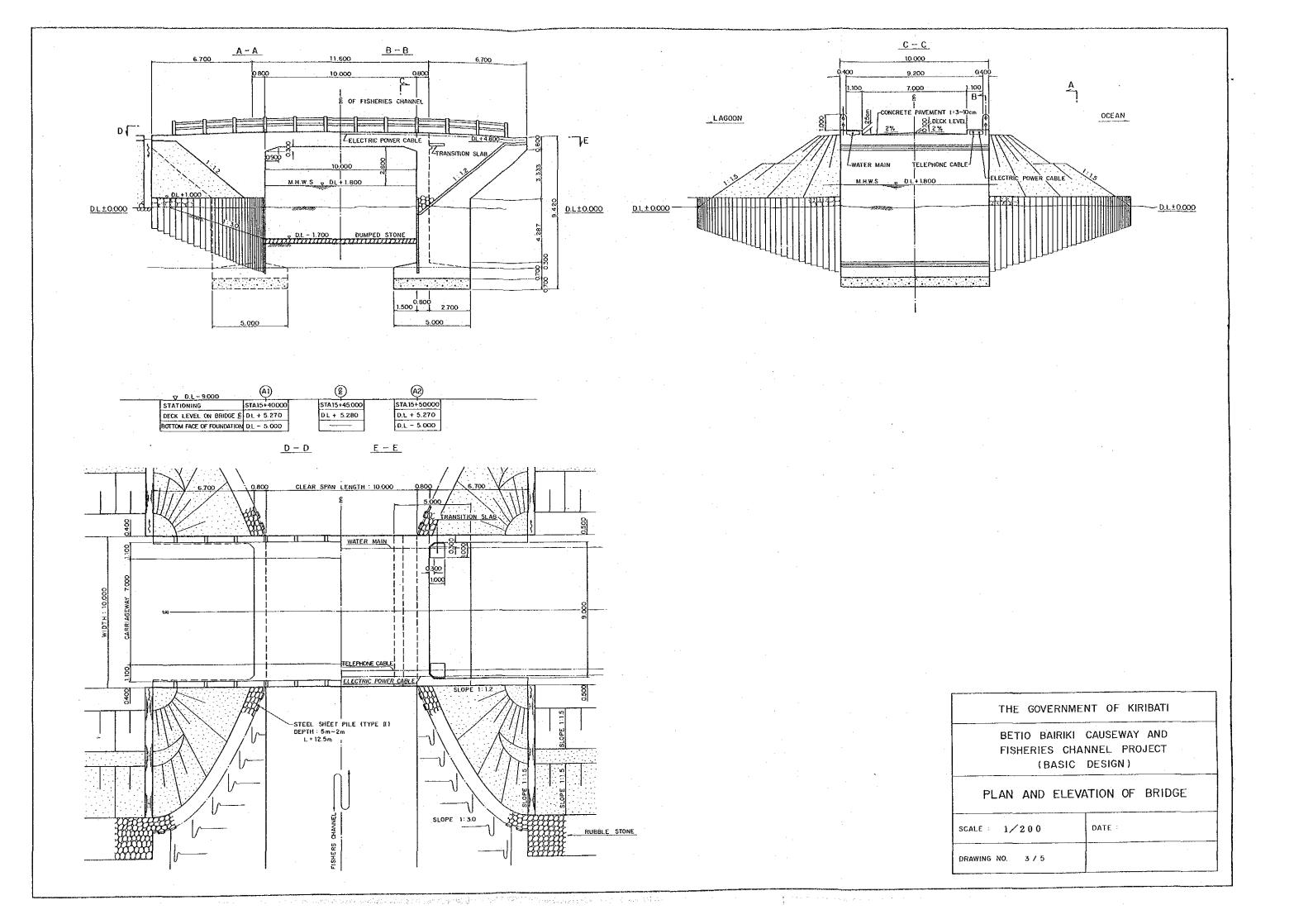
Therefore the time value is estimated by multiplying the above hourly wage by shadow wage rate of 0.87.

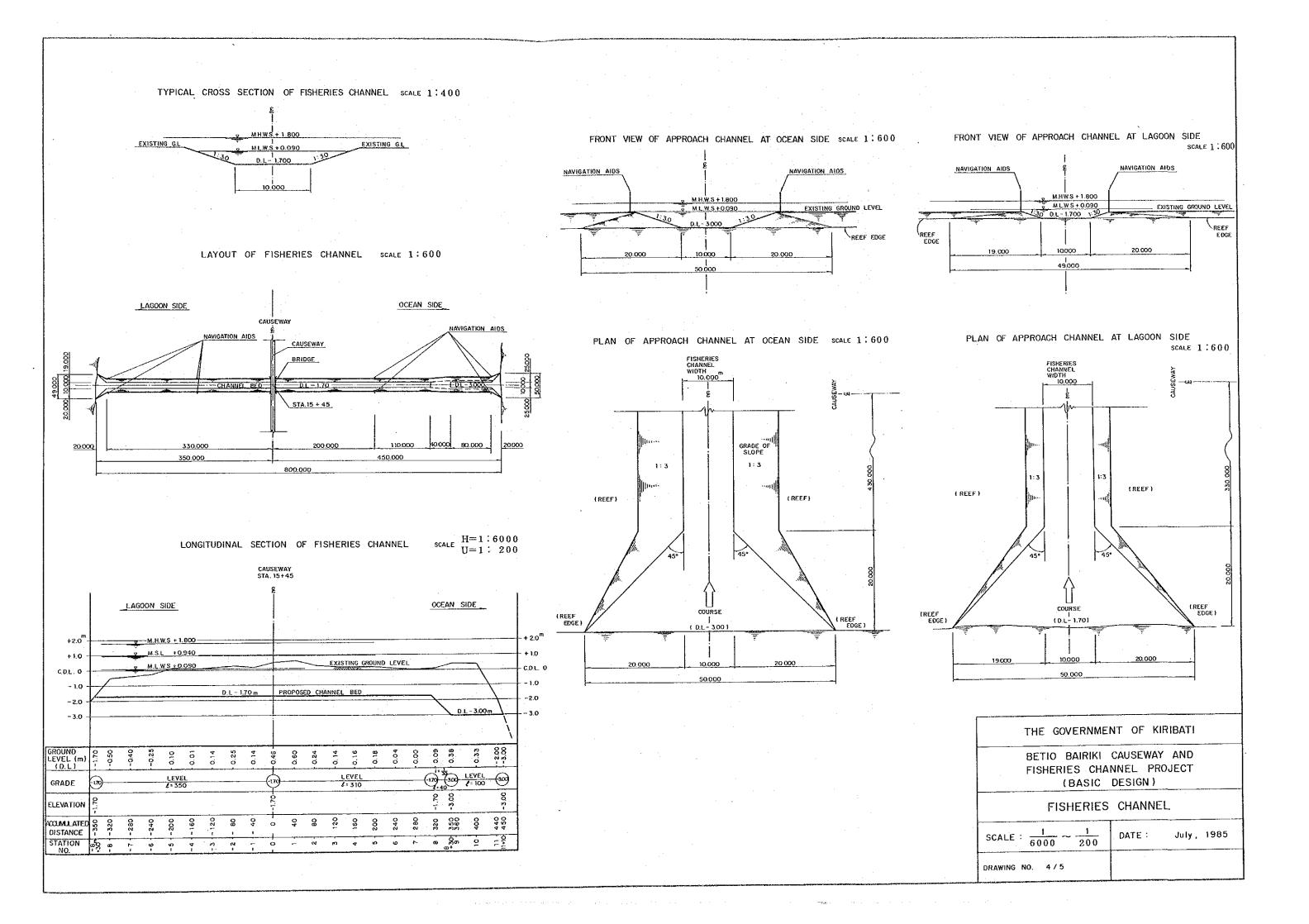
Time Value =  $A$1.38 \times 0.87 = A$1.20/hour$ 

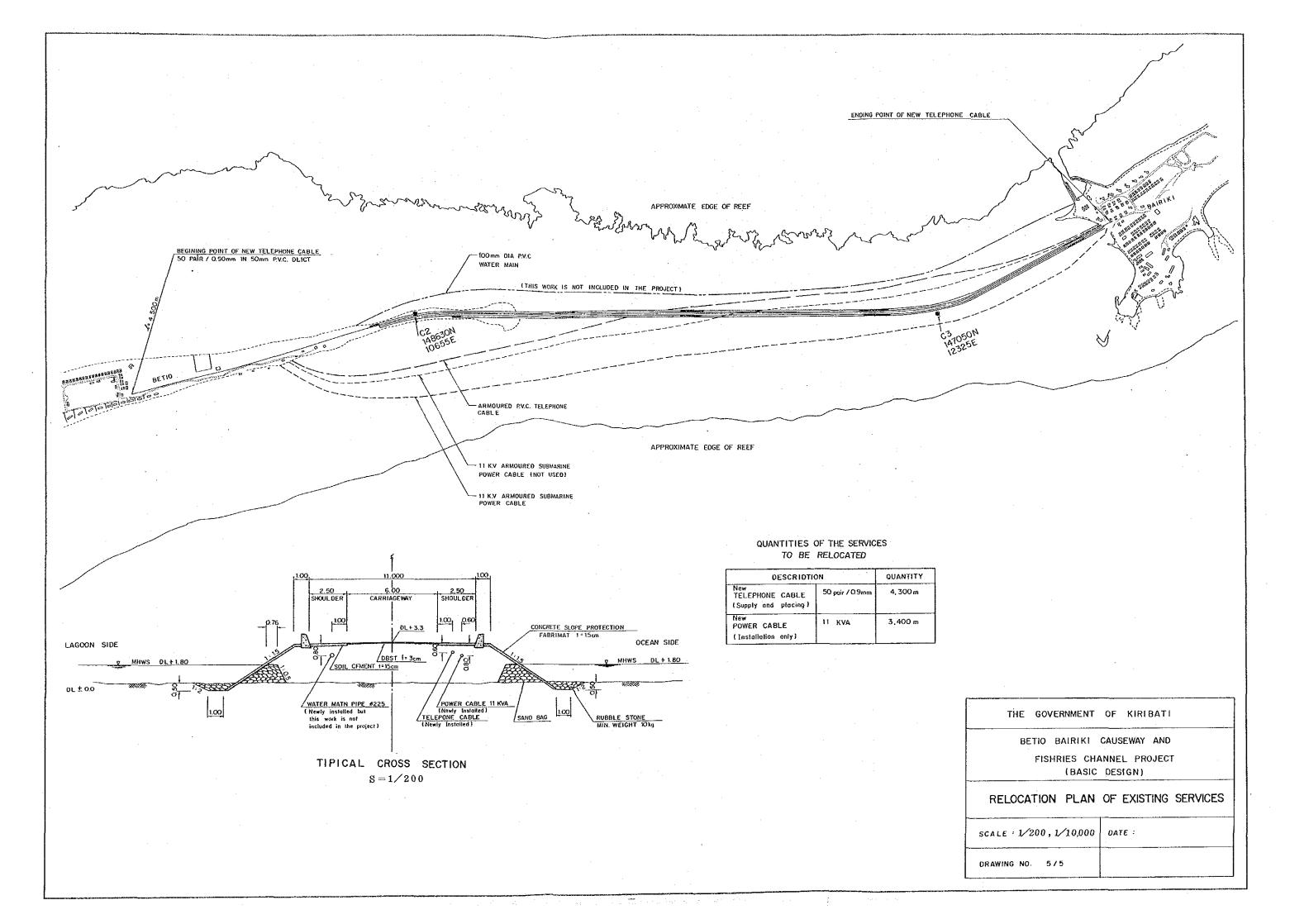

# DRAWINGS

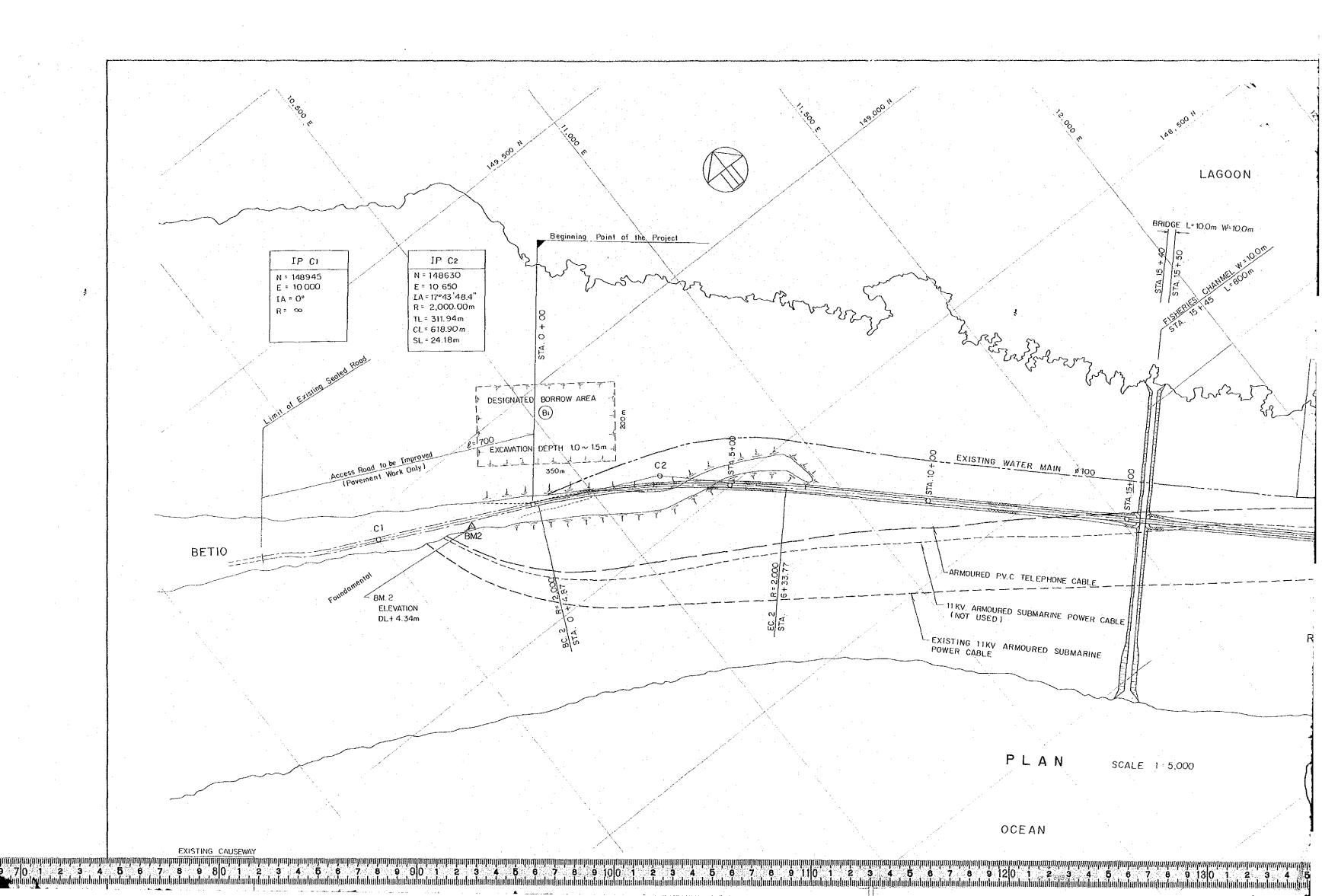


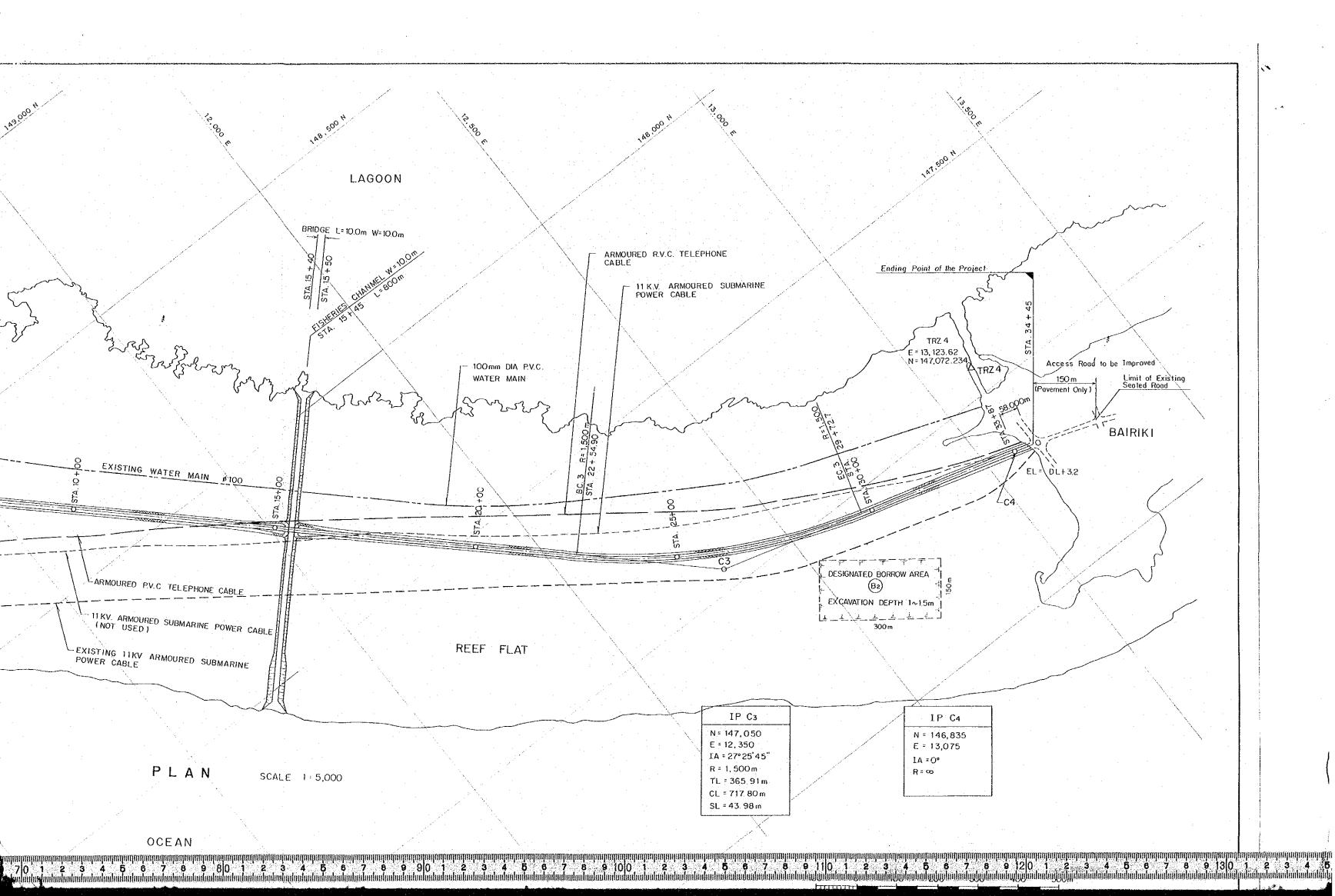


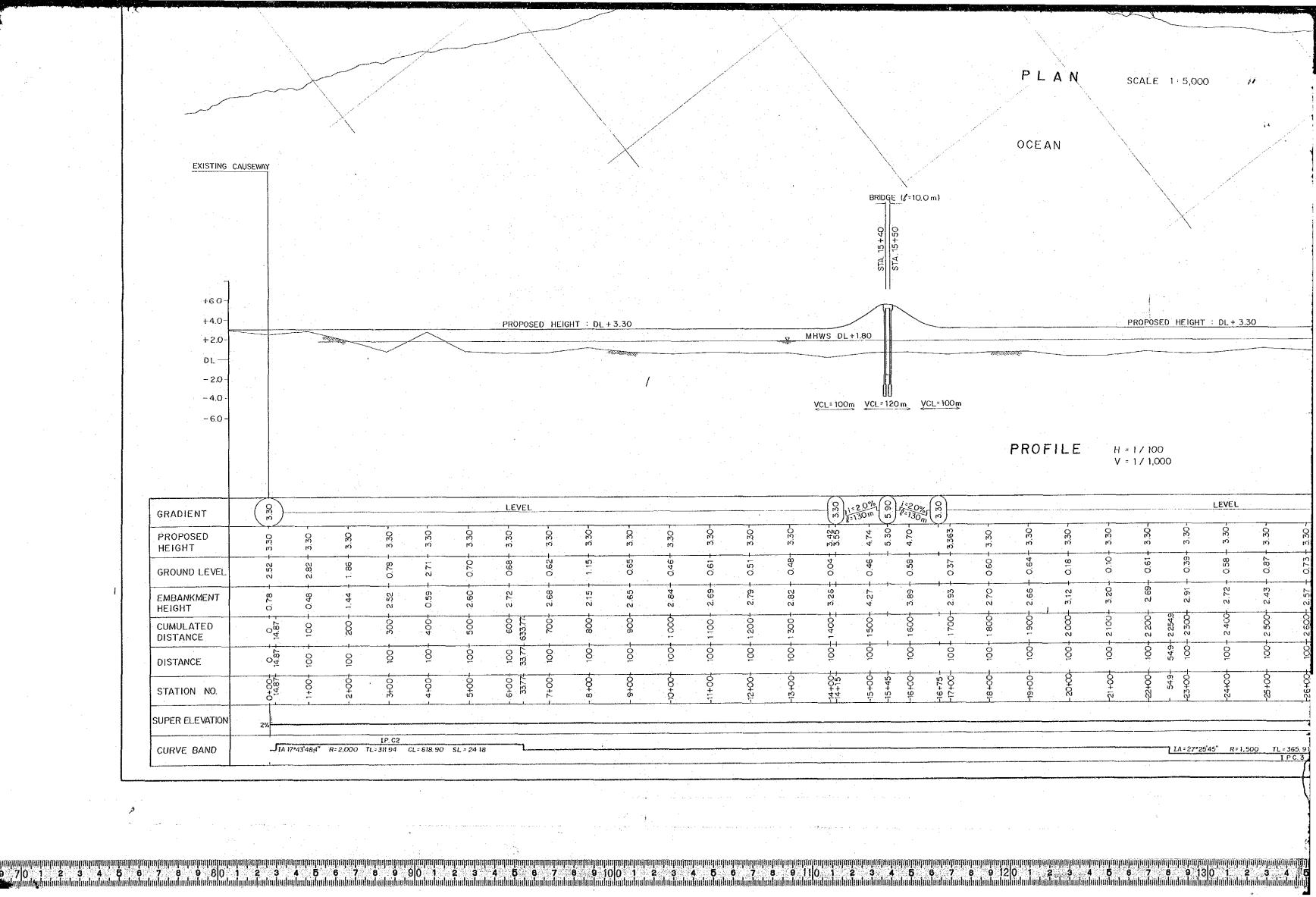

TYPICAL CROSS SECTION (II)  $\begin{array}{c} \text{STA. 15} + 00 \\ \text{S} = 1/200 \end{array}$ 

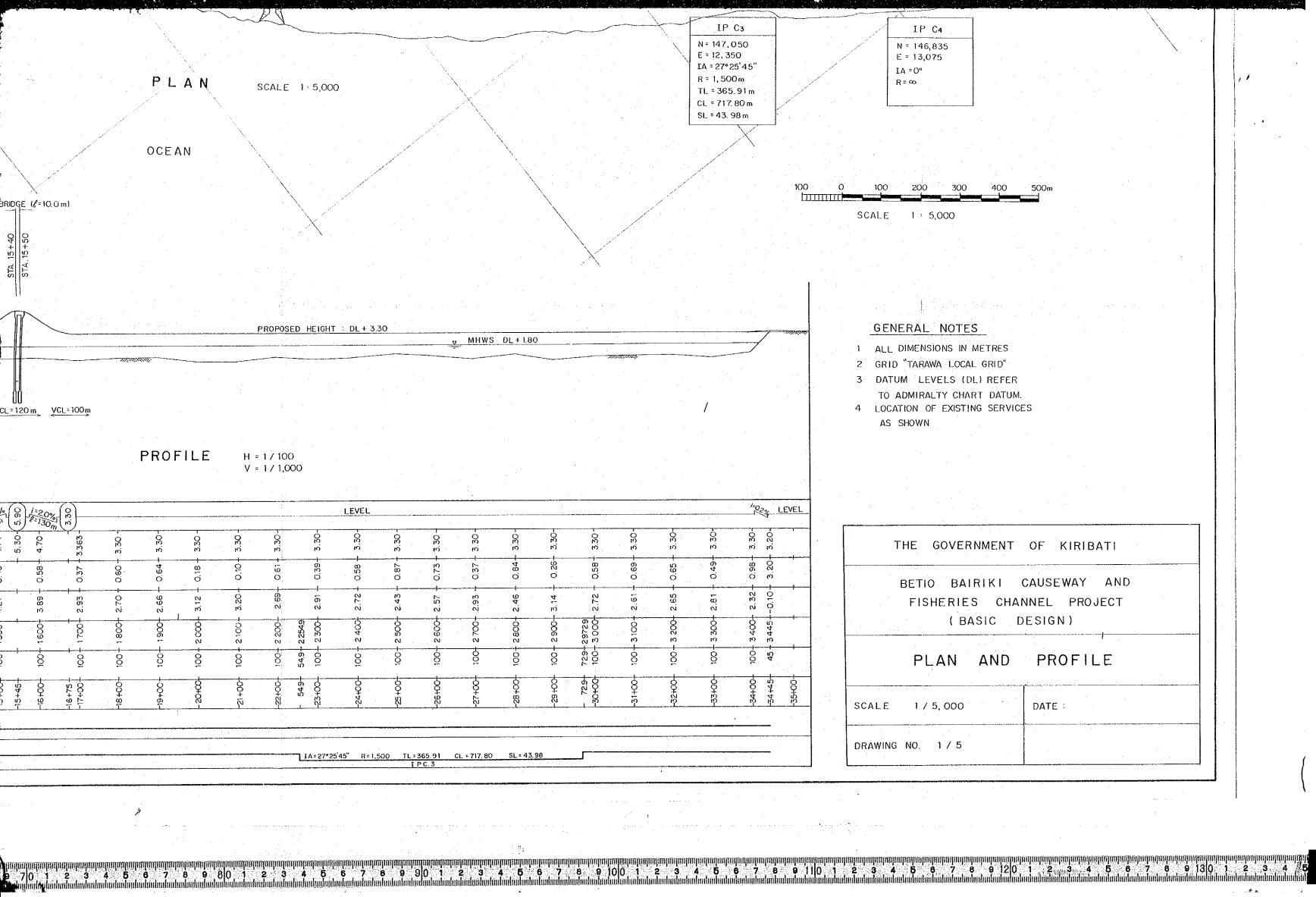

<u>.</u>. . <u>.</u>





DETAIL S=1/100


THE GOVERNMENT	OF KIRIBATI		
BETIO BAIRIKI CA	USEWAY AND		
FISHERIES CHANNE	_ PROJECT		
(BASIC DE	(SIGN)		
TYPICAL CROSS SECTION			
SCALE: 1/100~1/200 D	ATE:		
DRAWING NO. 2/5			














ADIL