REPORT ON THE INVESTIGATION OF ORE DEPOSIT AT THE MACUCHI MINING DISTRICT IN COTOPAXI PROVINCE OF ECUADOR

\qquad
\qquad
\qquad

REPORT ON THE INVESTIGATIOR OF ORE DEPOSIT AT THE MACUCHI MINING DISTRICT IN COTOPAXI PROVINCE OF ECUADOR

J|l|KA LIBRARY

1088668[0]

国際劦力事業団	
月日 84．4．－3	706
發銿No． 02396	

Our Geological Survey Tearn of Jepenese Government wras despatched to Republic of Eeuador By Overseas Technical Cooperation ${ }^{\text {gency, and carries out the topographiga? and }}$ geological surveys at the Macuchi minung districet in Cotopaxi. Province of Ecuador from November in 1962 to Narch in 1963.

The objects of oun worl are to make the geological map based on the detailed topographical map and to study the occurrence of copper deposit in the Macuchi mining district.

The present report is described on the results of the field and laboratory investigations and precious detas presented from all concerned on the spot.

The Geological Survey Team should feel fortunate if the report would be useful to develop the mineral resounces in Ecuador and to contribute the cooperation of mining industry between Ecuador and Japan in near future.

We wish to express our sincere thanks to the oificials of Ministry of Works (Ministerio de Fomento) and many peoples in Ecuador for their valuable assistances in carring out our field investigation

[^0]Report on the Investigation of Geology and Ore Deposit at the Macuchi Mining District in Cotopaxi Province of Ecuador.

Contents

I. Introduction
II. Outlines of physiography and geology

1. Coastal province
2. Andean province
3. Oriental province
III. General view of mining industry
IV. Geology and ore deposit in the Macuchi mining district
4. Location of the Macuchi mine
5. Physiography
6. Outline of geology
(1) Stratigraphy
(2) Composed rocks
(3) Geologic structure
7. Ore deposit
(1) History of the Macuchi mine
(2) Ore deposit
(3) Ore minerals
(4) Gangue minerals
(5) Ore reserve
V. Potentiality of the Macuchi mining district
VI. Conclusion

References

I. Introduction

The Republic of Ecuador is situated in the northwest corner of South Americe, bordering on the Pacific Ocean on the west.

In the central part of the Republic the Andes mountains stretch from north to south, then the country is divided into three provinces, Coastal province, Andean province and Oriental province, and the physiography and geology are varied in each province.

The geology of Ecuador was described by w. Sauer and by authors of "Ecuador in the Handbook of South American Geologry", with mape and bibliographies.

The mineral resources in the Republic have been investigated by geologistis of the South American Bxploration Company, and by German geological mission in 1958, French geological mission in 1959 and Japanese geological mission in 1960.

In order to give the techmicnl assistances and to find the possibility for mining, our Geological Survey Team investigated the goology and ore deposit at the Macuchi mining district in Cotopaxi Province of Ecuador.

The members of our surver team are as fiollows:
Dr. Hideo TAKEDA (Chief)
Official, Geologicel Survey of Japan
Mr. Koichiro ONO
Geologistu, Ishiwara Mining Co., Ita.
Mr. Hiroshi FURUTANI
Mining Engineer, Ishiward Mining Co., Ltd.

Unfortunately, however, it was rainy season (from November to April) during the months of our field survey, and the land and geological surveys were disturbed by fog and rain.

We have to express our regret that the investigated area was limited because of the bad weather.
II. Outlines of Physiography and Geology

The outlines of physiography and geology in Ecuador were already published by many authors, then are briefly described in the present report.

Physiographically and geologically Ecuador is divided into three provinces; Coastal province (Costa), Andean province (Sierra) and Oriental province (Oriente), and the characteristics of physiography and geology are distinct in each province.

1. Coastal province

The province, comprising from the west foot of the Andes mountains to the coast of the Pacifje Ocean, is mainly characterized by flat land under 300 m of altitude, and coastal terraces are developed on the coast.

In the province the Guayaquil River, the greatest ri,ver on the coast of the Pacific Ocean of South America, winds through flat land, and falls into the Guayaquil Bay.

The tropical climate is prevailing here, and the land is covered with dense forest except plantations.

The geology of the province is composed mainly of Tertiary and Quaternary formations, but some basement rocks, Paleozoic sediments, Mesozoic volcanics and granodiorite, are also found. The stratigraphic column is indicated in Table 1.

According to the investigation by J. G. Marks (1956), the mollusks of Inoceramus are found in the Calentura member of the Callo formation, and it is said that the Callo formation belongs to Late Turonian, on tie cther hand, the entire Callo formation is appeared to range from Cenomanian to Senonian
by the study of microfossils, and may be correlative to the Clavulina shales in Peru and the Palmira and Guadalupe cherts in Columbia.

As later described, the Pifion formation, underlying the Callo formation, is corresponded to the altered volcanic formation in the Macuchi mining district.

Table 1. Stratigraphic column for the Coastal province of Ecuador (by J. G. Marks, 1956)

Age and stratigraphic position (with map unit abbreviations)		Rock units	Thickness (meters)
Quaternary (Qc)	Recent	Andean piedmont, fluvial, and mangrove deposits	?
	Pleistocene	Tablazos, alluvial fans	?
$\begin{aligned} & \text { Tertiary } \\ & (\mathrm{T}) \end{aligned}$	Pliocene	Puná fm., Jama fm., Canoa fm.	80
	U. Miocene	$\begin{aligned} & \text { Borbón Im. (part), Punta Gorda fm., } \\ & \text { strata on Puná Island } \end{aligned}$?
	M. Miocene	Borbón fm. (part), Bahia fm, , Daule fm, Progreso fm.	3000
	L. Miocene	Angostura fm.: (part), Onzole shale, Charapotó shale, Subibaja fm.	600
	U. Oligocene	Angostura fm. (part), San Agustin sdst., Viche shale, Tosagua shale, Lacruz fm., Rodeo frm. (part)	650
	M. Oligocene	Chumundé ash beds, Zapotal sdst., Rodeo fm. (part)	?
	L. Oligocene	Playa Rica fm., San Mateo fm., (part) Ancón Point fm.	170
	U. Eocene	```Zapallo shale, San Mateo fm. (part), Jusá shale, Salanguilo sdst., Seca shale, "Zapotal" fm. (subsurface), red-beds of El Morro```	275
	M. Eocene	San Eduardo ls., Middle grits, Clay Pebble bed, Javita ls., Socorro fm.	500
Upper Cretaceous and Lower Eocene (Ku)	Paleocene	Estancia sandistone, San José sandstone, San José shale, Atlanta fim.	1300
	U. Cretaceous	Callo fm., Guayaquil chert	3000
Cretaceous Igneous (Ki)		Pascuales granodiorite	
Cretaceous or Jurassic? (Jv)		Pinon volcanics	1000
Paleozoic (Pal)		Punta Pjedra rocks	

2. Andean province

The Andean province is characterized by high land over $3,000 \mathrm{~m}$ of altitude, and is made up of three divisions; Cordillera Oriental (or Cordillera Real), Intercordilleran Depression and Cordillera Occidontal.

The mountains of Cordillera Oriental stretch from north to south parallel to of Cordillera Dccidental, and there are many peaks, which rise to altitude greater than $4,500 \mathrm{~m}$, the highest is E1 Chimborazo (6272 m), the second is E1 Cotopaxi (5896 m) , and such magnificient summits are covered by glacier.

Between both Cordilleras Intercordilleran Depression is situated, and main cities in Ecuador, such as Quito, Latacunga, Ambato and Cuenca, are situated in the division.

The climate of the province is mild all the year round, and rainfall is scanty.

The geology of Cordillera Oriental consists mainly of metamorphic rocks, which are originated from sediments in the Paleozoic geosyncline, and the metamorphic belt is bounded by the great fault zone and suaternary formation.

On the other hand, the Mesozoic altered volcanics and sediments are widely distributed in Cordillera Occidental. Stratigraphically the altered volcanic formation is corres. ponded to the Piñon formation of Jurassic or early Cretaceous in the Coastal province, and is widely developed in the Macuchi mining district. The upper Cretaceous formation, composed of andesite, tuff, siliceous shale and limestone,
is also developed on the east side of the division, and granodiorite intrusives of late Cretaceous are observed in Cordillera Occidental.

Intercordilloran Dopression is covered by Quaternary volcanic rocks, fut Tortiary lake sediments are locally developed in the division.
3. Oriental province

The province is so-called "Oriente" in Ecuador, and the extent from the east slope of Andean province to the Amazon basin is comprised in the name of "Oniente".

The climatc of the province, covered by extensive dense forest, is tropical and darm.

Prior to the serch for oil, the geology of jungle area remained unknown, but geological survey has been carried out by the geologists of oil companies recently.

The geology of the province is resembled to of the Coastal province, and consists of Tertiary and quaternary formations, accompanied by Paleozoic and Mesozoic sediments and intrusives. The stratigraphic column is shown in Table 2.

The geological history of Ecuador can be deduced from the stratigraphy and geological structure as follows; the Sierra de Cutucu Paleozoje geosyncline during PremCambrian or early Paleozoic was intensely compressed by the Caledonian movement, and the metamorphic rocks had occurred from the sediments and igneous rocks in the geosyncline.

Thereafter transgression and regression were repeated by crustal movements from Carboniferous to early Jurassi.c
in the Andean province, and there was a great regression during Jurassic and early Cretaceous, because of severe orogenic movement during the same time, and the crustal movement revived during late Cretaceous.

The volcanic activities had heen assumed from Paleogene to Neogene, and the glacier was widely distributed during Quaternary, thus the Andean province was extensively elevated after the glacial age (Fig. 1 \& 2).

Table 2. Stratigraphic column in Upper Amazon Basin
(by H. J. Tschopp, 2956)

Age and stratigraphic position (with map unit abbreviations)	Rock units	Thickness (m)
$\begin{aligned} & \text { Quaternary } \\ & \text { Qc } \end{aligned}$	Piedmont and Mesa deposits	
Tertiary-Recent	Wolcanic rocks deposited by Tertiary to Recent volcanoes	
Tertiary Miocene and Pliocene	Chambira and Ushpa formations Curaray formation Arajuno and upper Pastaza formations	about 2500
PEocene--OLigocene	Chalcana, lower and middle Pastaza formations Tiyuyacu and Cuzutca formations	5000
$\begin{gathered} \text { PUpper Cretaceous- } \\ \text { Paleocene-?Lower } \\ \text { Eocene } \\ \hline \end{gathered}$	Tena formation	270-1000
Chiefly $\underset{\mathrm{Ki}}{\mathrm{Cr}} \mathrm{taceeus}$	Igneous rocks, chiefly in- trusive	
Cretaceous Upper Cretaceous K Cretaceous	Napo formation	1240-800
Lower Cretaceous	Hollin formation	80-240
Upper, TiiddiéJvi and Lower Middle to Upper Jurassic Jurassic	Chapiza formation: in upper part, Misahualli member, equivalent to porchyrites and subsequent granite intrusions (T.opo granite, Ki))
Tg Lower Jurassic	Santiago formation	15500-2700
Paleozoic Carboniferous PAL\quad(Pennsylvanian)	Macuma formation	Upper, about 1250 Lower, about $150-200$
Early Paleozoic	Pumbuiza and Margajitas formations	1000 plus
Crystalline Paleozoic and/or Metamorphic pre-Paleozoic Basement pKm	Ortho- and paragneisses, mica schists, and phyllites intruded by granitic rocks	

III. General. View of Mining Tndusiry

Hitherto, the mineral resources in Ecuadoy havo not boen developed except some gold and petroleum doposits. The great interest of mineral nesourcos, however, has been aroused throuzhout Ecuador recent. y , and many infonations of minerals are gathered and the localities of them are arranged by the Vining Office of Ecuador Government (iig. 3).

The present situation of mining inductry in Eovador is about same as that in the report of Japanese geological survey team in 1960.

It appears that the inactive mining industry js caused by the following facts, (1) extensive area in Ecuador is covered by donse forest and volcanic tuff, which make exploration exceedingly difincult and mask the outcrop of mineral resources, (2) inspite of many investigations by geologists the surveys set limits in rough scale or in small area around mineral deposits, (3) the government of Ecuador has no facility of geological survey.

Gold In Ecuador small mines of alluvial gold and the Portovelo mine yield gold. The earlier history of mining is concerned mainly with gold, for instance, the Santiago river has produced placer gold since lfoth century. Some companies in the U.S.A. and England tried to develop gold deposite on a large scale, but the efforts proved unprofitable, thus there were only native wortings in production by 1919.

In 1892 the South American Development Corpany bought the Portovelo mine, and had developed until. 1950, but
ore reserve and grade were descend, and the mine was conveyed to the "Compania Industrial Mineral Asociada S. A.".

The Portovelo mine, however, is only the important metal mine in Ecuador, and monthly output of crude ore is about 5,000 tons, and grade of worked ore is 6-7 gramms gold per ton, 60-70 gramms silver per ton at present. It is said that there are over 2,000 mines of gold placer in Ecuador.

Silver Silver was also produced in earlier age of Inca, and many Spaniards tried to explorate for silver deposit, but it was impossible to success in development of silver mine.

The Portovelo mine also yields silver now, and it is said that the possibility of mining at the Pilzhum mine in Cañar Province and the Molleturo mine in Azuay Province is worthy of notice.

Copper There are many copper showings in Ecuador, but the Macuchi mine has the only record of copper production. As later described, the Vacuchi mine was worked from 1940 to 1950 by the Cotopaxi Exploration Company, and the total output was 25,750 tons of copper, but the deposit was worked out.

The La Plata mine in Pichincha Province was prospected by the same company in 1946, but the ore reserve were deemed insufficient to develop it.

Most of copper mineralization has been found in the Mesozoic altered volcanic formation associated with
granodioritic intrusives along the west slope of Cordillera Occidental, but there is no profitable copper mine besides Macuchi mine for the high cost of road building and trans. portation.

Iron and Manganese The ircn beach sands are known along the Ecuadorian coast, and the grade of refined ore is about $20 \% \mathrm{TiO}_{2}$. And small magnetite-hematite veins are found near Guayaquil, but it is said that the iron deposits are not enough to compensate.

Manganese deposits are known in some places, but have not been developed.

Lead and Zinc In Ecuador lead and zinc in small amounts have been produced, but there is no important deposit of them.

Petroleum and Coal At present petroleum deposits are worked at the Ancon oil field in the Penisula of Santa Elena, and the petroleum production is the most important as the mining industry of Ecuador.

Coal deposits are known in many parts of Andean region, but they cannot be developed on a large scale because of poor grades and high cost of transport.

Other minerals There are nonmetallic and industrial mineral deposits, such as sulfur, kaoline, gypsum, magnesite, bentonite, limestone, perlite, and diatomte, on a small scale, and some cement factories are built.
IV. Geology and Ore Deposit in the Macuchi Mining District

1. Location of the Macuchi mine

The Macuchi niine is situated at about $1,600 \mathrm{~m}$ above the sea levol on the west slope of Cordillera Occidental, and lies about 40 km east of Quevedo and about 60 km west of Latacunga.

A highway from Quito to Guayaquil via Latacunga passes through Macuchi village, and the ruins of mill and refinery of the Macuchi mine are found beside the good pavement of highway (see Pl. 1, Fig. $1 \& 2$).

It is convenient to drive to Macuchi village, because there are several buses at regular intervals on the highway.

2. Physiography

As the Macuchi mining district is located on the steep slope of Cordillera Occidental, the district is physiographicalIy characterized by the young stage of the Andean mountains.

In the district the Pilalo river wanders northward, and the fmaya river, tributary to the Pilalo river, winds near the Mercedes deposit of Macuchi mine, and many falls are found in gorges.

The climate is mild, because the altitude of the district ranges from $1,500 \mathrm{~m}$ to $2,500 \mathrm{~m}$, but rainfall is plentiful in the winter, and the land is covered by forest, and sugar-cane and banana are cultivated around houses ir Macuchi village (see Pl. 2, Fig. 1 \& 2, Pl. 3, Fig. 1 \& 2) .
3. Outiline of geology

For the purpose of making tho geological man, the topographical map on the scale of $1: 10,000$ was made by land survey was carried out based on the topographical map in the Macuchi mining district.

The geology of the district is composed mainly of altered volcanic rocks. According to some published papers, the altered yolcanic formation may be corresponded to the Piñon formation underlying the Callo formation, in which the mollusks, Inoceramus plicatus d'Orbignjr, I. striatoconcentricus Grubel and I. roemeri Karsten awe found, so that the altered volcanic formation may belong to the Jurassic or early Cretaceous.

As later described, some microfossils, radiolaria and diatom ($?$), are found in the Macuchi district, then it is possible that the geologic age of the altered volcanic formation is determined more exactly by the correlation of microfossils between Macuchi and Piñon formation.
(I) Stratigraphy

The geology of the Nacuchi mining district consists mainly of altered volcanic rocks: such as tuff, tuff breccia, agglomerate and lava flow, and sedimentary rocks, shale and sandstone. And some intrusives of plagio-porphyry, hornblende porphyrite and quartz diorite are found in the district.

From the rosults of route survey foom Pilalo to Sanfrancisco, the stratigraphical relation is as follows; the alternation of shale and sandstone at the Pilalo
anticline is the lower member, and is covered by the middle member of tuff and tuff breccia, which are widely distributed in the Macuchi district, and agglomerate associated with tuif and sha?e at the Macuchi syncline is the upper member (Fig. 4) .

The stratigraphic column in the surrounding area of Macuchi mine is shown in Table 3 (Fig. 5) .

It appears that, however, it should be necessary to investigate the geology in more wide area for study the stratigaphy, because the geologic structure is so complicated.
(2) Composed rocks

As above mentioned, the main composed rocks of the Macuchi mining district are altered volcanic rocks, originated from andesitic rocks in the Mesozoic geosyncline, and are affected by regional hydrothermal alteration, chloritization, epidotization and zeolitization.

Tuff According to the field observation, most of the rock is compact and massive, and of green in color, but the bedding structure is observed in some places (see PI 4, Fig. $1 \& 2$).

Under the microscope, the main constituent minerals are quartz, chlorite and a carbonate mineral, sometimes accompanied by plagioclase, augite and glassy inclusion. Small grains of magnetite are arranged parallel to the lamination in some parts with bedding structure (see P1. 8, Fig. I \& 2).

Some microfossils, radiolaria and diatom (?), are observed in the tuff, located noar the cross point

Table 3. Stratigraphic column in the surrounding area of Macuchi mine

Rock unit	Thickness (m)	References
Tuff	$100+$	Intruded by plagio-porphyry
Alternation of agglomerate, tuff and shale	100	Composed mainly of agglon merate associated with tuff (40 m in thick) and shale (0 m to 20 m in thick) in the lower part, and with shale (0 m to 25 m in thick) in the upper part. The Mercedes deposit lies in the alternation.
Alternation of agglomerate and tuff, and tuff brecoia	200	Interfingered relation between alternation of agglomerate and tuff, and tuff brecoia
Agglonerate and tuff	300	Interfingered relation between agglomerate (Om to 100 m in thick) and tuff
Turf breccia	100	
Tuff	200	
Alternation of tuff and shale	$0-100$	
Tuff	250	
Agglomerate	150	
Tuff	250	
Alternation of tuff breccia and tuff	600	Turf breccia is characterized by red breccias, and the rock facies is different from of above tuff breccias.

Notice: Lava flows are intercalated in those tuffs.
highway and line of $N 4,000$. It appears that the microfom ssils cannot immediately prove the geological age of altered volcanic formation, but they would bo useful to determine the geclogical age in future (see Pl. 8, Fig. 3 \& 4).

Tuff breccia In the Mecuchi district various breccias in size and color are observed in the rock with hydrothermal alteration.

Under the microscope, most of breccia is andesitic rock, but siliceous shale is rarely found, and the matrix is composed of chlorite, epidote, quartz and a carbonate mineral, which are the products of hydrothermal alteration.

Lava flow The altered augite andesite is often found under the microscope, but it is difficult to distinguish the rock from tuff in the field observation, because the rock facies of them are very similar. It suggests that most of the rock may be lava flow interculated in tuff.

The phenocryst consists mainly of augite and plagio. clase with zonal structure, accompanied by common hornblende locally, and the flow structure is of ten observed in the groundmass, composed of plagioclase, augite and magnetite (see Pl. 9, Fig. $1 \& 2$).

The rock is also altered by chloritization, epidotization and carbonatization.

In the district green rocks predominated in white spot are found, and they are proved to be lava flow in the micro. scopic observation. The white spot is composed of hydrothermal altered minerals, such as quartz, a carbonate mineral,
chlorite and zeolite.
As later described, the white spot is also developed in some rounded blocks of agglomerate.

Agglomerate Most of the rock is agglomeratic tuff, and rounded blocks of endesite are comented by volcanic tuff (see Fi. 5, Fig. I. \& 2), and the alternation of agglomerate and tuff with beddjng structure is sometimes observed in the district (soe P1, 6, Fig. 1 \& 2).

Under the microscope, the rounded blocks in agglomerate consist mainly of augite andesite, and some blocks are predominant in the white spot, composed of hydrothermal altered minerals (see Pl. 9 , Fig. 4).

Shale The rock is interculated in volcanic rocks as thin layer, and the shale bed is not persistent in the Macuchi mining district.

Under the microscope, the rock is composed mainly of fine-grained quartz, plagioclase and a carbonate mineral.

Sandstone: The rock is found near Pilalo, and is alternated with shale (see Pl. 7, Fig. 1). The main constituents are quartz, plagioclase, common hornblende and biotite, and it suggests that the rock is thermal metamorphosed weakly.

And also a thin bed of tuffaceous sandstone is observed at the boundary between shale and tuff near the Mercedes deposit, and it is composed of quartz, plagioclase, a. carbonate mineral and chloritized mafic mineral (see Pl. 7, Fig. 2, P1. 10, Fig. I \& 2).

In the Macuchi rining district some intrusives, such as plagic-porphyry, hornblence porphyrito and quartz diorite, are found.

Plagiomporphyry By the west side of Mercedes deposit the alternation of tuff and agglomerate is intruded by a sheet of plagiomporphyry, and some xonoliths of tuff are found in the intrusive body.

Acccrding to the field observation, the intrusive rock is fine-grained massive and compact, and of greyish white in color, and camot be found phenocryst.

Under the microscope, however, the rock is composed of phenocryst and groundmass, and the main constituents of phenocryst are plagioclase with zonal structure and chloritized mafic mineral (hornblende ?) in small amounts, and of groundmass are fine-grained quartz and small amounts of plagioclase (see Pl. 10, Fig. 4).

Hornblende porphvrite A small intrusive of hornblende porphyrite is observed in agglomerate near the ruin of mill (Fig. 6) .

The phenocryst and groundmass are composed of common hornblende, augite and plagioclase, and the rock is weakly altered by carbonatization (see Pl. 10, Fig. 3).

Quartz diorite In the Macuchi district small stocks of quartz diorite are found, but they cannot be examined under the microscope, because are decomposed.

Examined the hydrothermal alteration of composed rocks in the Macuchi mining district, the volcanics are regionally
altered by chloritization, epidotization, zeolitization and carbonatization.

On the contrary, the regional hydrothermal alteration could not be observed in the intrusives, then it appears that the activities of intrusives had started later to the alteration.

As later described, the altered rock characterized by silicification and sericitization is developed near the ore deposit, and the rock may be related with metallization.
(3) Geologic structure
hs above described, an anticlinal structure at Pilalo and a syncline or synclinorium at Macuchi are found in the Macuchi district.

The folding axes generally trend from north to south, and bedding planes on the wings of folding incline at steep angle of $50-70^{\circ}$.

The complicated folding, combined with anticline and syncline in a smaller scale, is observed near Macuchi mine, and the structure is appeared to be synclinorium, stretched from the syncline in the north side.

The folding axes may plunge to south, and the trend of axes turns from NNW to NNE near Minchua.

It appears that the geologic structure in the Macuchi mining district was mainly constructed by the intense folding movement during early or middle Cretaceous after the sedimentation of volcanic pyroclastics in the Mesozoic geosyncline.
4. Ore deposit

There are many copper showings in the Mesozoic altered volcanic belt, located on the west slope of Cordillera Occidental, but almost all deposits have not been developed besides Macuchi mine.

It seems that the inactivity of mining is due to the following facts; (1) the region of altered volcanic belt is characterized by steep mountains with dense forest, which make exploration, road building and transportation difficult, (2) there is no detailed topographical map, and the geological investigations set limits in rough scale.
(1) History of the Macuchi mine

The Macuchi mino was prospected for gold and silver by Mr. Saravia during the colonial period of Spain, and was developed by Mr. Carloo Seminarjo from 1930 to 1935. In 1936 the mine was bought by the Cotopaxi Exploration Co., a subsidiary of the South American Development Co., and was worked from 1940 to 1950. The total output was 25,750 tons of copper and 3,000 to $4,000 \mathrm{~kg}$ of gold. The copper produced in Ecuador during those years came from the Macuchi mine.

The mining at Macuchi mine vas in a prosperous condition from 1940 to 1945 , and the crude ore was treated by selective filotation and the concentrates were smelted at the Macuchi mine, producing copper matte containing all the gold, for shipment to a refinery in the U.S.A.

But the production had been inclined to restrict since 1946 , and the efforts of exploration had failed to reveal additional commercial ore in the surrounding area. In 1950 the Mercedes deposit was worked out, and the mining was obliged to rest, and all equipments of mining, mill and refinery werc withdraw.
focording to the reports of the Cotopaxi Exploration Co., submitted to the Mining Office of Ministry of Works, the hydroelectric plant and equipments for mining were completed in 2940, and the exploration was carried out on A-level by physical prospecting, and succeeded in finding of ore shoot by drilling near l-level. And ó-level was developed for finding of new ore under the mineralized zone by the road from Macuchi to Quevedo, but the prospecting had failed.

In 1940 the total output of crude ore was 58,046 tons, 135 tons per day, and the total production from the Macuchi mine was 558 kg of gold, $2,600 \mathrm{~kg}$ of silver and 1,850 tons of copper, and the grade of crude ore was $3.2 \% \mathrm{Cu}$ in average.

In 1942 the total output of crude ore increased to 90,950 tons, daily tonnage was 324 tons, and 912 kg of gold, $4,660 \mathrm{~kg}$ of silver and 3,800 tons of copper were produced, then the crude ore contained $4.2 \% \mathrm{Cu}$.

The scale of Mercedes deposit was investigated by drillings, the total length of which was $3,400 \mathrm{~m}$, and the results suggested that the probable ore estimated by drillings was less than the possible ore in 1940, and the
possibility of success in prospecting was limited in the surrounding area of Mercedes deposit.

According to the report in 1944, the total output of crude ore was 91,311 tons, 318.7 tons per day, and the average ore grade was 11.6 gramms gold per ton, 77 gramms silver per ton and 4.34 percent copper.

The prospecting by drilling was carried out on 2035and 2170-levels, but some ore bodies in poor content of copper could be found.

There were 1385 workers of Ecuadorian besides 26 foreign engineers at the Macuchi mine, and salary of a worker was 25 to 30 Sucres (1\$ $\div 20$ Sucres) per day.

The ore reserve, at the date of Jan. Ist in 1945, is shown in Table 4, and the total output in 1945 was 99,000 tons, daily tonnage was 345 tons, and the crude ore contained 12.6 gramms gold per ton, 67 gramms silver per ton and 4.8% Cu.

From 1946 to 1950 the ore deposit had been worked, but the production was inclined to restrict as Table 5 .

Table 4. Ore reserve at Macuchi mine (Jan. lst, 1945)

Level	Known ore reserve (t)	Output (t)	Average grade			Extant ore reserve (t)
			$\mathrm{Au}(\mathrm{gr} / \mathrm{t})$	$\therefore \mathrm{Ag}(\mathrm{gr} / \mathrm{t})$	$\mathrm{Cu}(\%)$	
B-1/3	11,45.2	10,883	12.2	68	2.35	568
A B	270,191	258,726	11.5	68	4.59	21,465
1 A	213,088	136,946	11.7	68	4.94	76,142
2 1	61,720	22,747	11.8	68	4.29	38,973
32	9,281	6,438	10.5	68	4.29	2,843
63	-	-	-	-	-	\cdots
Total	564,731.	435,740	21.6	68	4.67	129,991

Table 5, Output of copper from Macuchi mine

Year	Cu (t)	Year	Cu (t)	Year	Cu (t)
1940	1,850	1944	3,450	1948	350
1941	3,900	1945	4,000	1949	800
1942	3,800	1945	2,050	1950	600
1943	4,850	1947	100		

At present the pit-mouths of Macuchi mine are closed by the iron gate or hidden under earth, and the temperature in pit is elevated by oxidation of sulfide ore, then underground survey is impossible.
(2) Ore deposit

The underground survey could not be carried out owing to destruction of pit at the facuchi mine.

According to the datas of Cotopaxi Exploration Co., the ore body occurred as an irregular, steeply dipping lenses concordant with the bedding structure. The size of ore body was 100 m long on the strike, 125 m long on the plunge and 18 m thick in the thickest part.

From the results of our investigation, the stratigraphical position of Mercedes deposit lies in the upper member, composed of agglomerate associated with tuff and shale, and the deposit is situated on the west wing of anticline in synclinorium structurally.

The altered zone with metallization is developed near the deposit, and is characterized by sluish clay stone, and hard and compact rock with silicification, sericitization and sometimes hematitization. The altered rocks are often associated with impregnated sulfide minerals.

Under the microscope, the main constituent minerals of altered rocks are quartz, sericite and ohlorite, and relic structure of volcanic rocks is often observed (see Pl. Il, Fig. 1 \& 2).
(3) Ore minerals

There are some kinds of ores, such as compact pyritic. ore, impregnated pyritic ore, chalcopyrite rich ore and sphalerite-galena ore in the Merceder deposit.

1) Compact pyritic ore

The ore is divided into finemgrained and coursemgrained ores.

Under the ore microscope, the coarse-grained ore is composed mainly of pyrite, chalcopyrite and sphalerite, associated with small amounts of tetrahedrite, galena, bornite and covelline.

Minute inclusion of chalcopyrite is observed in some crystals of sphalerite, and the texture is similar to an exsom Iution texture, but it appears that the texture is caused by replacement, because the minute inclusion of chalcopyrite is partially observed in the margin of sphalerite crystals.

Small veinlet of covelline may occur as secondary enrichment by oxidation of weathering, but bornite may be primary mineral (see PI. 11, Fig. 4) .

On the other hand, the fine-grained ore consists mainly of pyrite, accompanied by small amounts of chalcopyrite and sphalerite (see Pl. 11, Fig. 3).
2) Impregnated pyritic ore

Magascopically the ore is composed of many small grains of disseminated pyrite, but chalcopyrite, sphalerite and small amounts of galena are observed besides pyrite under the ore microscope.
3) Chalcopyrite rich ore

The ore is compact and massive. It seems that the chalcopyrite rich ore was copper source of Macuchi mine.

Under the ore microscope, the main constituent ore minerals are chalcopyrite, pyrite and sphalerite, accompanied by galena
and tetrahedrite (see Pl. 12, Fig. 1).
Minute grains of native gold are observed in chalcopyrite under high magnified objective (see Pl. 12, Fig. 2). The silver mineral cannot be found, but silver may be contained in tetrahedrite.
4) Sphalerite-galena ore

Megascopically the ore is also compact and massive, and of black in color. The ore is very similar in appearance to the somcalled "black ore (Kuroko in Japanese)", composed mainly of sphalerite and galena, from the "Kuroko deposits" in the "Green tuff" region in Japan.

Under the ore microscope, the ore consists of sphalerite, galena, pyrite and tetrahedrite, and crystal form of pyrite is sometimes resembled to a colloform texture (see P1. 12, Fig. $3 \& 4)$.
(4) Gangue minerals

Examined those ores under the microscope, the gangue minerals are quartz, sericite, a carbonate mineral; chlorite and barite, and there is no great difference among various ores concerning to the kind of gangue minerals.
(5) Ore reserve

According to the datas of Cotopaxi Exploration Co., the total quantity of ore mined from the Macuchi mine was 472,156 tons, and the average grade of crude ore was $4.7 \% \mathrm{Cu}, 11.6$ gramms gold per ton and 68 granms silver per ton.

And the extant ore reserve is estimated at 139,000 tons, but it occurres at the marginal part of Mercedes deposit, then it may be poor content of copper.
V. Potentiality of the Macuchi mining district

In the report of Japanese geological survey team in 1960, it was described that the exploration in the Macuchi mining district was limited in the area, underlying the Mercedes deposit, then it should be possible to find new ore bodies i.f the prospecting would be made along the strike side of ore horizon,

Examined the underground map of Macuchi mine, however, the Cotopaxi Exploration Co. already made the prospecting along the strike side, and also tried to prospect with drillings at the altered zone by the west side of Mercedes deposit, but the efforts of prospecting had failed.

In view of the above results, we find it difficult to avoid the conclusion that the possibility in reference to the exploration may be exhausted in the surrounding area of Mercedes deposit.

The geology of the Minchua district is similar to of the Macuchi district, and the exploration with drillings was carried out at the altered zone by the Cotopaxi Exploration Co., but it could not success in the finding of new ore.

However, it is necessary to investigate in more detail by land and geological surveys with physical exploration and drilling in the Minchua district, because the altered zone with metallization is widely distributed in the Minchua district.

As above mentioned, there are many copper showings in the Mesozoic altered volcanic sormation on the west slope
of Cordillera Occidental, and it suggests that the geological survey should be carried out in the altered volcanic belt in near future, because the potentiality of mining would be admitted in the region.

We suggest the advisability of efforts being made to survey the geology and to develop the copper deposits in the Mesozoic altered volcanic belt by the Government of Ecuador.

And it seems that the vestment in mining is not attractive for foreigners, because the scale of copper deposits is not so large.

VI. Conclusion

Our survey was carried out for the purpose of making the geological map based on the detailed topographical map in the Macuchi mining district.

The geology of the Macuchi mining district is composed mainly of andesitic volcanic rocks, affected by regional hydrothermal alteration, and sediments in the orogenic belt of Mesozojc geosyncline. And also some intrusives, such as plagio. porphyry, hornblende porphyrite and quartz diorite, are found in the district.

The copper deposit of Macuchi mine lies in the upper member, composed of agglomerate with tuff and shale, and is situated on the west wing of anticline in synclinorium.

The Mercedes deposit is irregular, steeply dipping lenses in form, and is 125 m long on the plunge, 100 m long on the strike and 18 m thick in the thickest part in size.

There are some kinds of ores, such as pyritic ore, chalcopyrite rich ore and sphaleritemgalena ore in the deposit, and the ore minerals are pyrite, chalcopyrite, sphalerite, galena and tetrahedrite, accompanied by small amounts of bornite, covelline and native gold, and quartz, sericite, chlorite, barite and a carbonate mineral are found as gangue minerals.

The altered zone with metallization, characterized by silicification, sericitization, chloritization and sometimes hematitization, is developed in the surrounding area of the deposit.

The total output of crude ore from Macuchi mine was 472,156 tons, and average ore grade was $4.7 \% \mathrm{Cu}, 11.7$ gramms gold per ton and 68 Eremms silver per ton, and there were 1,350 workers at Mouchi mine in 1945 .

The Mercedes deposit was worked out, and the efforts of explonation had failed, then the mining rested in 1950 , but the extant ore reserve is estirated at 139,000 tons.

In the Hacuchi mining district the possibjlity concerning to mining may be exhausted, but it is necessary to investigate in more detail by lend and geological survey with physical exploration and drilling jn the rinchua district.

It merits peculiar notice that the characteristics of geology and ore deposits in the Mesozoic altered volcanic formation are very similar to them in the "Green tuff" region, in which there are many great ore deposits, in Japan.

We suggest that the geological survey should be carried out in the Mesozoic altered volcanic belt on the west slope of Cordillera Occidental because of high potentiality for mining in near future.

References

I. Bain, H. Foster, and Reed T. T., 1934, Ores and Industry in South America: Council on Foreign Relations, Harper Brothers, N. Y.
2. Cotopaxi Exploration Company, 1940, 1942, 1944, 1945, Informe General de los Trabajos de la Cotopaxi Exploration Company, Annual Report to Mining Office in Ministry of Works of Ecuador.
3. Kizuka, S, and others, 1960, General information of Mineral Resources in Ecuador, Report of Japanese Geological Survey Team to Ecuador.
4. Lewis, G. E., Tschopp, H. J., and Marks, J. G., 1956, Ecuador, in Handbook of South American Geology, Geol. Soc. America, Memoir 65, p. 251291.
5. Sauer, Walter, 1960 , El mapa GeolGgico del Ecuador, Quito.
6. Stoll, W. C., 1962, Notes on the Mineral Resources of Ecuador, Econ. Geol., Vol. 57, p. 799808

PLATE 1.

Fig. 1. General view of the Macuchi mining district.

Fig. 2 Ruins of the mill and refinery of Macuchi mine.

Fig. 1

Fig. 2

PLATE 2.

Fig. I. Sludge of Macuchi mine near Pilalo river.

Fig. 2. Land surveying in the forest.

Fig. 1

Fig. 2

PLATE 3.

Fig. 1. The space near the pit mouth of A-level.

Fig. 2. Mountain and valley of the Macuchi mining district.
White part: Waste heap abo ve A-level

Fig. 1

PLATE 4.

Fig. l. Green tuff with bedding structure by the side of mill of Macuchi mine.

Fig. 2. Ditto at the highway on N,6000.

Fig. 1

Fig. 2

PLATE 5.

Fig. 1. Agglomerate on the valley of Queb sn Uoaquin. Fig. 2. Ditto near the pit mouth of l-level.

$$
\approx \approx
$$

Fig. 1

Fig. 2

PLATE 6.

Fig. 1, Alternation beds of agglomerate and tuff near Imagen de Maria.

Fig. 2. Ditto near Huella de Planta Electrica.

Fig. 1

Fig. 2

PLATE 7.

Fig. l. Alternation beds of shale and sandstone near the town of Pilalo.

Fig. 2. Alternation beds of tuff and sandstone at the mouth of Queb sn Uoaquin.

Fig. 1

Fig. 2

PLATE 8.

Photomicrographs.

Fig. 1. Tuff (62121502). One nicol. $\times 40$.

Fig. 2. Tuff with lamination (62121702). One nicol. X 40 .

Fig. 3. Radiolaria in tuff (63010814). Cross nicols. X 90 .

Fig. 4. Diatom in tuff (63010814). Cross nicols. $\times 70$.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

PLATE 9.

Photomicrographs.

Fig. Lava flow of altered augite-andesite (62121801).
pl: plagioclase ag: augite
One nicol. X 40.

Fig. 2. Lava flow of altered andesite (62121905).
pl: plagioclase One nicol. X 40 .

Fig. 3. Tuff-breccia (62121502). One nicol. X40.

Fig. 4. Altered augite-andesite of rounded block in agglomerate (63010803).
chl: chlorite ag! augite
One nicol. $\quad X 40$.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

Photomicrographs.

Fig. 1. Taffaceous sandstone (62121708). One nicol. X 40 .

Fig. 2. Ditto, Cross nicols. X 40.

Fig. 3. Brown hornblende-augite andesite (63010802). hb: hornblende One nicol. $\times 40$.

Fig. 4. Plagio-porphyry (63010902).
pl: plagioclase Cross nicols. X 40.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

PLATE 11.

Photomicrographs.

Fig. 1. Altered rock with mineralization (63011002). py: pyrite One nicol. X40.

Fig. 2. Ditto, sr: serlcite, Cross nicols. $X 40$.

Fig. 3. Flne-grained pyritic massive ore (Polished section-E). py; pyrlte X 110 .

Fig. 4. Course-grained pyritic massive ore (Polished sec-tion-B).
py: pyrite sp: sphalerite cp: chalcopyrIte gn: galena G: gangue mineral
$\times 110$.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

PLATE 12.

Photomicrographs.

Fig. l. Chalcopyrite-rich ore (Polished section-A). cp: chalcopyrite td: tetrahedrite py: pyrite

$$
\mathrm{x} 110 .
$$

Fig. 2. Native gold in chalcopyrite of chalcopyrite-rich ore (Polished section-A). au: native gold cp: chalcopyrite G: gangue mineral
$\times 500$.

Fig. 3. Sphalerite-galena ore (Polished section-D). sp: sphalerite td: tetrahedrite py: pyrite
$\times 110$.

Fig. 4. Sphalerite-galena ore (Polished section-C). py: pyrite sp: sphalerite
gn: galena G: gangue mineral X 110 .

Fig. 1

Fig. 3

Fig 2

Fig. 4

Fig. 1

Fig. 8

PROGRESS MAP. B1/3 LEVEL.
Fig. 9

Fig. 11

Fig.I4

Fig. 16

[^1]
[^0]: Dr. Hideo Takeda.

[^1]: COTOPAXI EXPLORATION CO.
 MACUCHI-ECUADOR
 Scale:I: 1000
 Date: Dec 31,1945
 By: Engineering Staff

