5-4 Brief Outline of Alternative Plans

5-4-1 Right Bank:

(1) Case 1R:

The water sources of Case 1R will consist of wells in the 3 northern Amphoes, and surface water in Amphoe Nong Khaem and adjacent development area Bang Khun Thian. This plan will be relatively easy to implement as the 3 northern districts are to be supplied by wells.

On the other hand, the water supply for Nong Khaem and Bang Khun Thian will born a relatively considerable cost for transmission line as water will have to be carried from a distant river intake on account of the intrusion of sea water into the Nakhon Chai Si river. Baside of this problem, this water source seems satisfactory with respect to either quality or quantity of water.

The treatment plant should be located at Sathani Sala Ya which is located at about a midpoint between the water intake and the district of Nong Khaem, and treated water will be conveyed from there to the Amphoe Nong Khaem.

To supply the adjacent development area of Bang Khun Thian, a dedicated pump will be installed at Nong Khaem pump station to pump water into a executive pipe to carry water to the service reservoir.

(2) Case 2R:

The basic condition is made in Case 2R that the entire right bank area (where demand is placed at 56,400 CMD) is supplied with surface water and that the river intake and treatment plant is located the same as in Case 1R. In Case 2R, water will be carried from the treatment plant to the service reservoirs of the 3 northern districts (where demand is placed at 11,100 CMD) and that of Nong Khaem (45,300 CMD), and water will be transported by booster pumps and pipes to supply the respective communities.

Water will be carried from the treatment plant to the service reservoir of Nong Khaem in the same way as in Case 1R. But, supply to the 3 northern districts seems to pose problems: one is that a relatively small amount of water must be carried over a long distance; another is that it is difficult to supply Amphoe town as early as it desired; and, additionally, a system must be established to manage the water supply over a wide area, as the entire served area of this case will be covered by a single supply system.

(3) Case 3R:

Case 3R is a plan to supply the entire right bank area with water taken from the Klong Mae Nam Om. In this case a treatment plant will be located at the same site of the intake. This plan, relatively speaking, favors the supply to the 3 northern districts, but the route length of the transmission line to the district of Nong Khaem will be longer than in Case 1R, and a system to manage the water supply over a wide area will be required as in Case 2R.

(4) Case 4R:

In this case, the 3 northern districts will be supplied with water taken from wells as in Case 1R, and the districts of Nong Khaem and Bang Khun Thian will receive water from Tha Phra service reservoir of the central system.

This plan is advantageous in that it is as easy to implement as in the plan of Case IR. Furthermore, diversion of water from the central system is very economical. However, this plan will be influenced by the construction schedule of the central system and may require revision depending on the result of a review of the capacity of the separate system. On account of these restraints, it is difficult to plan the water supply project independent of other factors.

(5) Case 5R:

In this case, the Klong Mae Nam Om will be tapped as in Case 3R to supply the 3 northern districts and a treatment plant will be built at the same site of the intake.

As the 3 northern districts together form an area of convenient size, it permits planning of an integrated water supply system. Accordingly, the supply for this area can be stablized and systematically managed.

Nong Khaem and Bang Khun Thian will be supplied with water diverted from the central system as in Case 4R.

(6) Case 6R:

Case 6R represents a plan to supply the entire served area with water diverted from the central system. The 3 northern districts will be supplied with water taken from Phra Ram Hok service reservoir of the central system and a booster pumping station will be installed The water supply for this in each district to supply the Amphoes. served area has one problem in that a relatively small amount of water will have to be carried over a long distance. On the other hand, the supply for Nong Khaem and Bang Khun Thian will be as economically advantageous as in Case 4R. This case has the same problems as Case 4R concerning the construction schedule of the central system and the capacity of the separate system which may be changed depending on Therefore, the implementation of the plan the result of its review. of this case is subject to a review of the plan of the central system.

5-4-2 Left Bank:

(1) Case 1L:

Case 1L represents a plan to supply 5 Amphoes and Bang Chan with groundwater and all the adjacent development area with surface water taken from the Klong. This plan will be as easy to carry out, as in Case 1R, as the Amphoes will be supplied with ground water.

On the other hand, the adjacent development area will be supplied with 161,350 CMD of water obtained from the Klong Sam Wa and Sip Sam. Water will be carried from the two intakes to a treatment plant which will be located near the Amphoe Town of Min Buri.

This plan to separately supply the Amphoes and the adjacent development area may be disadvantageous from a geographical point of view, but the project for supplying the Amphoes with ground water will be relatively easy to implement.

(2) Case 2L:

Case 2L assumes that the entire left bank area will be supplied with water taken from the Klong. As the water supply in this case depends on the Klong to the greatest extent of all cases, the treatment plant will have to be built on the largest scale (212,500 CMD) accordingly. The water source will be the same as that of Case 1L, and the location of the intake and treatment plant will also be the same as for Case 1L.

As the entire served area is planned to be supplied with surface water, it will be difficult to supply Amphoe Town as early as it is desired, but the plan of Case IL can be modified to suit this case. At any rate, the supply for this area can be stabilized and systematically managed as an integrated supply system from intake to distribution.

(3) Case 3L:

Case 3L assumes that 5 Amphoes and Bang Chan will be supplied with groundwater, the eastern adjacent development area with surface water taken from the Klong and the southern adjacent development area with water diverted from the central system.

The supply for the Amphoes is planned as in Case 1L. Water taken from the Klong Sam Wa will be carried to a treatment plant to be located near Amphoe Town of Min Buri. Water to be diverted from the central system will be taken from the service reservoir of Samrong and conveyed to Bang Phli and Bang Bo, and Bang Poo and Klong Dan through separate pipes.

As it is planned in this case to use the water source nearest each district to be served, water will be taken from the largest number of sources of all the alternative cases and there will be little

mutual relationship among the served districts.

(4) Case 4L:

Case 4L is a plan to supply 3 eastern districts and the eastern adjacent development area with surface water taken from the Klong, and 2 southern districts and the southern adjacent development area with water diverted from the central system.

This plan is much like Case 3L so that it can be modified to suit Case 3L. But, under this plan the served area is divided into two parts from a geographic point of view.

Surface water will be taken from the Klong Sam Wa alone, while water to be diverted from the central system will be received from Sam Rong service reservoir. Otherwise, the basic concept of water supply is the same as that for Case 3L.

(5) Case 5L:

Case 5L represents a plan to supply 5 Amphoes and Bang Chan with groundwater, and all the adjacent development area with water diverted from the central system.

The plan to depend on wells to supply the Amphoes is the same as in Case IL. Water to be diverted from the central system will be received from Pak Bo and Sam Rong service reservoirs. Water will have to be carried over a considerable distance from the central system to the respective districts, but this plan will be economically advantages in part because no treatment plant will be needed and the administration and maintenance of the supply system will be simple.

(6) Case 6L:

In Case 6L it is assumed that the entire left bank area will be supplied with water diverted from the central system, taking water from Bang Thong Lang, Pak Bo and Sam Rong service reservoirs.

As the supply system of this case will depend on the central system for all its supply of water, its plan will also rest

with the construction schedule of the central system so that independent planning in this case will be impossible, the same as was noted for Case 6R.

5-5 Basic Construction Cost and Scale of Facilities

5-5-1 Basic for Estimation:

The basic construction cost for comprehensive water supply was estimated based upon the data collected by M.W.W.A., and the costs of major import items, such as pumps, machinery, electric apparatus, instruments and pipes (D.C.I.P.) were estimated based upon the Japanese market prices plus ocean freight, import duties, etc.

In the case where water is assumed to be diverted from the central system, the basic construction cost was estimated based on the following assumptions:

- 1) The scope of estimation is limitted to the equipment and facilities from the system to the pumping station built near the central system service reservoir.
- 2) The additional expanses by increasing the capacities of pumps is excluded from the scope of estimation.
- 3) The cost of distribution piping and facilities works is not included in the basic construction cost in the Adjacent Industrial and/or Residential Areas.

The basic construction cost estimated in this Sec. do not include the cost escalation and land cost.

The rough estimations of the basic construction costs for the alternative cases are shown in Table 5-3, and their breakdowns by water source are shown in Tables 5-4 and 5-5.

	Т	able 5-3 SUMMARY OF BASIC CONSTRUCTI	ON COST
CA	ASE	BASIC CONSTRUCTION COST (B)	GRADE
	1	735,302,000	D
因	2	873,660,000	E
r BANK	3 ,	882,309,000	F
RIGHT	4	406,936,000	Λ.
	5	489,372,000	, C
	6	481,017,000	В
	1	1,761,384,000	E
	2	1,908,000,000	F
BANK	3	956,415,000	c
LEFT	4	1,059,751,000	D
	5	847,725,000	A
	6	920,800,000	В

(1) Right Bank

Table 5-4 SUMMARY OF BASIC CONSTRUCTION COST PER CMD

50-106 littleback to be				and the state of t	
Case	District	Water Source	Water Demand (CMD)	Basic Construction Cost (匿)	18/CMD
	North 3 Districts	Well	11,100	123,847,000	11,157
1	Nong Khaem District	River	45,300	611,455,000	13,498
	Total		56,400	735,302,000	13,037
2	A11 Right Bank	River	56,400	873,660,000	15,490
3	All Right Bank	K1ong	56,400	882,309,000	15,643
	North 3 Districts	Well	11,100	123,847,000	11,157
4	Nong Khaem District	Central	45,300	283,089,000	6,249
	Total		56,400	406,936,000	7,215
	North 3 District	Klong	11,100	206,283,000	18,584
5	Nong Khaem District	Central	45,300	283,089,000	6,249
	Total		56,400	489,372,000	8,677
6	All Right Bank	Central	56,400	481,017,000	8,529

(2) Left Bank

Table 5-5 SUMMARY OF BASIC CONSTRUCTION COST PER CMD

	Table 5-5	SUPPRINCE OF DA	ASIC CONSIN	JCTION COST PER CMD	
Case	District	Water Source	Water Demand (CMD)	Basic Construction Cost (E)	B/CMD
	All Amphoes & Bang Chan	Well	31,800	236,254,000	7,429
1	East & South Developments	Klong x 2	161,350	1,525,130,000	9,452
	Total		193,150	1,761,384,000	9,119
2	All Left Bank	Klong x 2	193,150	1,908,000,000	9,878
	All Amphoes & Bang Chan	Well	31,800	236,254,000	7,429
3	East Developments	Klong	51,350	356,110,000	6,935
	South Developments	Central	110,000	364,051,000	3,310
	Total	:	193,150	956,415,000	4,952
	East 3 Districts & Developments	K1ong	77,350	626,282,000	8,097
4	South 2 District & Developments	Central	115,800	433,469,000	3,743
	Total		193,150	1,059,751,000	5,487
	All Amphoes & Bang Chan	Well	31,800	236,254,000	7,429
5	East & South Developments	Central	161,350	611,471,000	3,790
	Total		193,150	847,725,000	4,389
6	All Left Bank	Central	193,150	920,800,000	4,767

5-5-2 Scale of Main Facilities and Breakdown of Basic Construction Cost:

The scale of main facilities and the breakdown of construction cost by water sources and service area blocks for all alternative cases are shown in Tables 5-6 to 5-17. The water sources are classified into as follows:

- 1) Groundwater (Well)
- 2) Surface water (Klong and river).
- 3) Water diverted from the central system.

The basic construction cost of the distribution system was estimated for only the 9 Amphoes and for the adjacent development area, but the cost of laying pipe beyond the service reservoir built in each area is not included in the estimation.

Each estimation of basic construction cost includes a 20% allowance for miscellaneous expenses.

	B)		COST	26,092		14,667		243,412	4,000	112,722	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Title				253.613	735,302	
	SURFACE WATER : NAKHON CHAI SI RIVER (UNIT, 1000 B)	ad	NONG KHAEM PROGRAM BANG KHUN THIAN		$Q = 49,800 \text{ m}^3/d$ $6300 \times 11.53 \text{ m}^3/\text{min} \times 42 \text{m} \times 114 \text{kw} \times 2 \text{ sets}$	יו מי	Q = 49,800 m ³ /a	\$300 x \$250 x 10.49m ³ /min x 39m x 96kw x 2sets \$200 x \$150 x 5.24m ³ /min x 39m x 52kw x 4 sets	\$100 x 1.84m ³ /min x 50m x 25kv x 3 sets	DCIP \$700 L = 13.0 km DCIP \$300 L = 14.5 km		$v = 14.240 \text{ m}^3$	6 sets				6100 - 6700 L = 79.09 km	611,455	
	SURFACE WA)王)	BANG YAI	*Q = 1,200 m ³ /d × 1 unir Q = 1,000 m ³ /d × 1 unir Q = 1,100 m ³ /d × 2 units								$V = 1,520 \text{ m}^3$		4 sets	*V = 60 m	5 unites	ø100 - ø250 L = 38.4 km	42,187	
	H	1 3 DISTRICTS (AMPHOE)	BANG BUA THONG	Q = 1,500 m ³ /d x 2 units Q = 1,100 m ³ /d x 2 units		1				•	1	$V = 1,860 \text{ m}^3$	į.	4 sets	*V = 50 m ³	6 units	\$100 - \$400 L = 58.85 km	61,366	
	-6 (R) CASE -	NORTH	SAI NOI	Q = 1,000 m ³ /d								$V = 520 \text{ m}^3$		3 sets	V = 100 m ³	3 units	\$100 - \$150 L = 22.0 km	20,294	* EXISTING
(1 (1) Right Bank	Table 5-6	SERVED AREA.	DESCRIPTION	WELL	QUANTITY	MATER MAIN	G TREATMENT PLANT	зиик 10м Рег	S BOOSTER PUMP	FRANS	CENTRAL SYSTEM	SERVICE RESERVOIR	DISTRIBUTION PUMP	H LIFTING PUMP	ELEVATED TANK	BOOSTER PUMP	PIPE	COST (1,000 B)	
			Ä					5	32										

Table 5-7 (R) CASE - 2

SURFACE WATER: NAKHON CHAI SI RIVER

15,208	7	10,847	1			253, 613	873,660
	10.00			N .	100	~~~	8
$Q = 62,000 \text{ m}^3/\text{d}$ x 10,764 m ³ /min x 37 m x 94 kw x 5 sets DCIP $\phi 800$ I = 12.0 km	$Q = 62,000 \text{ m}^3/\text{d}$ $\times 10.49 \text{ m}^3/\text{min x } 39\text{m x } 96\text{kw x } 2 \text{ sets}$ $\times 5.24 \text{ m}^3/\text{min x } 39\text{m x } 52\text{kw x } 4 \text{ sets}$	1.55m ³ /min x 50m x 23kw x 4 sets 0.52m ³ /min x 39m x 7.5kw x 3 sets 0.52m ³ /min x 39m x 7.5kw x 3 sets 00 L = 14.0 km 00 L = 9.5 km 00 L = 15.0 km		0m^3 $V = 1,860 \text{m}^3$ $V = 1,520 \text{m}^3$ $V = 14,240 \text{m}^3$	m ³ *V = 50 m ³ *V =	6 units 5 units 5 units $\phi 100 - \phi 400$ $\phi 100 - \phi 250$ $\phi 100$ $L = 58.85 \text{ km}$ $L = 38.4 \text{ km}$ $L = 10.2 \text{ km}$	TOTAL CHARACTER STATE OF THE ST
\$300	6300 x 6200 x	\$100 x \$6 \$0 x \$0 \$0 x \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0		V = 52	3 sets	3 unit \$100 - \$ L = 22.0	
INTAKE PUMP RAW WATER MAIN			CENTRAL SYSTEM	SERVICE RESERVOIR DISTRIBUTION PUMP	LIFTING PUMP BLEVATED TANK	BOOSTER PUMP PIPE	COST (1,000 B)
	INTAKE PUMP ϕ 3300 x 10,764 m ³ /min x 37 m x 94 kw x 5 RAW WATER MAIN DCIP ϕ 800 L = 12.0 km	INTAKE PUMP RAW WATER MAIN PUMP PUMP PUMP PUMP PUMP PUMP PUMP PUM	ITY \$\phi 300 \times 10,764 \text{ m}^3/\text{min} \times 37 \text{ m} \times 94 \text{ kw} \times 5 \text{ sets}\$ DCIP \$\phi 800 \text{ L} = 12.0 \text{ km} \text{ q} = 62,000 \text{ m}^3/\text{d} \text{ q} = 62,000 \text{ m}^3/\text{d}	INTAKE PUMP QUANTITY Q = 62,000 m3/d RAW WATER MAIN DCIP \$680 L = 12.0 km REMAIN DCIP \$680 L = 12.0 km REMAIN DCIP \$680 L = 12.0 km REMAIN DCIP \$680 L = 12.0 km	INTAKE PUMP QUANTITY Q = 62,000 m³/d A A A A A A A A A	INTAKE PUMP	THYAKE PURP

Table 5-8 (R) CASE - 3

SURFACE WATER : KLONG MAE NAM OM

SERVED AREA	REA	N	NORIH 3 DISTRICTS (AMPHOE)	рнов)			,000 B)
SAI	SA1	SAI NOI	BANG BUA THONG	BANG YAI	NONG KHAEM	PROGRAM BANG KHUM THIAN	COST
							-
QUANTITY			$Q = 62,000 \text{m}^3/\text{d}$				
PUMP	\$300 ×	10.764	$m^3/min \times 10 m \times 25 \text{ kw}$	x 5 sets			
RAW WATER MAIN							
TREATMENT PLANT			$Q = 62,000 \text{m}^3/\text{d}$				
#300 > #250 >	\$300 3 \$250 3	x \$200 x 11 x \$150 x 5.	1.5 m ³ /min x 46 m x .75 m ³ /min x 46 m x	124 kw x 2 sets 67 kw x 4 sets	ø100 x 1.55m³/min x 30m	n x 14kw x 4 sets	304,313
BOOSTER PUMP \$200	\$300 ×	x \$250 x 10 x \$150 x 5	10.49 m3/min x 39 m x 5.24 m3/min x 39 m x	96 kw x 2 sets 52 kw x 4 sets	\$100 x 1.84m ³ /min x 50 \$ 80 x 0.52m ³ /min x 39	50m x 25kw x 3 sets 39 m x 7.5kw x 3sets	35,699
AIDG BAIA		\$800 L = \$4300 L	= 4.5 km = 14.0 km = 5.0 km	DCIP 6700 L = 1 DCIP 6300 L = 1 DCIP 6200 L = 1	13.0 km 14.5 km 15.0 km		288,684
SYSTEM				•			_
RESERVOIR V = 52	II.	io m ₃	$V = 1,860 \text{ m}^3$	$V = 1,520 \text{m}^3$	$V = 14,240 \text{ m}^3$		
DISTRIBUTION PUMP			1		6 sets		
LIFTING PUMP 3 se		sets	4 sets	4 sets	1		
TANK V = 1	- 1 E	100 m ³	*V = 50 m ³	*V = 60 m ³	•	4	
PUMP 3 ur		units	6 units	5 units	1		
Ø100 L = 2	\$100 L = 2	22.0 km	\$100 - \$400 L = 58.85 km	ϕ 100 - ϕ 250 L = 38.4 km	\$100 - \$700 L = 79.09 km		253,613
(1,000 B)				1			882,309
							A

* EXISTING

Table 5-9 (R) CASE - 4

CENTRAL SYSTEM : THA PHRA RESERVOIR

		··											
	COST		26,092		28,327	706*86						253,613	406,936
DEVELOPMENT	PROGRAM BANG KHUM THIAN			and the second s	3/min x 35m x 70kw x 5sets	= 13.2 km = 7.6 km				1			283,089
	NONG KHAEM				$Q = 45,300 \text{ m}^3/\text{d}$ $\phi 250 \times \phi 200 \times 7.9 \text{m}^3$	DCIP 4700 L = DCIP 4300 L =	V = 14,240 m ³	6 sets		1		\$100 - \$700 L = 79.09 km	283
нов)	BANG YAI	$*Q = 1,200 \text{ m}^3/\text{d}$ $\times 1 \text{ unit}$ $Q = 1,000 \text{ m}^3/\text{d}$	x 1 unit Q = 1,100 m ³ /d x 2 units				v = 1,520 m ³		4 sets	$*v = 60 \text{ m}^3$	5 units	ø100 - ø250 L = 38.4 km	42,187
	BANG BUA THONG	$Q = 1,500 \text{ m}^3/d$ $\times 2 \text{ units}$	$Q = 1,100 \text{ m}^3/\text{d}$ $x \text{ 2 units}$			F	V = 1,860 m ³	,	4 sets	*V = 50 m	6 units	$\phi 100 - \phi 400$ L = 58.85 km	61,366
NOR	SAI NOI	Q = 1,000 m ³ /d × 1 unic	Q = 500 m ³ /d x 1 unit				v = 520 m ³		3 sets	v = 100 m ³	3 units	φ100 - φ150 L = 22.0 km	20,294
SERVED AREA	DESCRIPTION	WELL	and the second s	SURFACE WATER	PUMP	SYSTEM PIPE	SERVICE RESERVOIR	E DISTRIBUTION PUMP	E LIFTING PUMP	ELEVATED TANK	BOOSTER PUMP	PIPE	COST (1,000 B)
	NORTH 3 DISTRICTS (AMPHOE)	SERVED AREA NORTH 3. DISTRICTS (AMPHOE) SAI NOI BANG BUA THONG BANG YAI NONG KHAEM BANG KHUM THIAN	SERVED AREA NORTH 3 DISTRICTS (AMPHOE) SAI NOI SAI NOI BANG BUA THONG Q = 1,000 m ³ /d x 1 unit $x = 1$ unit NONG KHAEM BANG KHUM THIAN RANG KHUM THIAN $x = 1$ unit $x = 1$	SERVED AREA NORTH 3 DISTRICTS (AMPHOE) SAI NOI Q = 1,000 m ³ /d	SERVED AREA NORTH 3 DISTRICTS (AMPHOE) SAI NOI BANG BUA THONG BANG YAI NONG KHAEM PROCRAM $Q = 1,000 \text{ m}^3/\text{d}$ $Q = 500 \text{ m}^3/\text{d}$ $Q = 500 \text{ m}^3/\text{d}$ $Q = 1,100 \text{ m}^3/\text{d}$	SERVED AREA NORTH 3 DISTRICTS (AMPHOE) NONG KHAEM PROGRAM NORTH NORT	SERVED AREA SAI NOI RANG BUA THONG RANG RANG THONG RANG RANG THONG RANG RANG THONG RANG BUA THONG RANG	SERVED AREA NORTH 3 DISTRICTS (AMPHOE) NONG KHAEM ROCKHAEM ROCKAM ROCKAM	SERVED AREA NORTH 3 DISTRICTS (AMPHOE)	NORTH 3 DISTRICTS (AMPHOE)	NONE RESERVED AREA NONE H 3 DISTRICTS (AAPPHOE)	NORTH 3 DISTRICTS (AMPHOE)	NONG KHAEM NON

* EXISTING

SURFACE WATER : KLONG MAE NAM OM CENTRAL SYSTEM : THA PHRA RESERVOIR S (R) CASE -

						<u> </u>		<u> </u>		·		7	ı	· · · · · · · · · · · · · · · · · · ·			<u></u>		
1,000 E)	#SOJ	100	l					62,669	2,749	43,110	28,327			<u>.</u>				253,613	489,372
THA FERA RESERVOIK (UNIT 1	DEVELOPMENT	BANG KHUN THIAN						3			$Q = 45,300 \text{ m}^3/\text{d}$ $\phi 250x\phi 200x7.9\text{m}^3/\text{min x }35\text{m x }70\text{kw x 5sets}$	3.2 km 7.6 km				1			19
CENTRAL SISIEM: L	MA AHY ONON	NONG KARAM						1			Q = 45,300 m3/d \$250x\$200x7.9m3/mi	DCIP 4700 L = 1	V = 14,240 m ³	6 sets			ı	ø100 – ø700 L = 79.09 km	283,089
	PHOE)	BANG YAI			sets			sets 4 sets	3 sets				$V = 1,520 \text{ m}^3$		4 sets	*V = 60 m ³	5 unics	¢100 - ¢250 L = 38.4 km	
	NORTH 3 DISTRICTS (AMPHOE)	BANG BUA THONG		п ³ /а	/min x 10 m x 8 kw x 4	-	3/d	in x 30 m x 14 kw x 3 in x 17 m x 7.5 kw x	in x 39 m x 7.5 kw x	9.5 km 15.0 km	1	A l e	$V = 1,860 \text{m}^3$		4 sets	*V = 50 m ³	6 units	\$100 - \$400 L = 58.85 km	206,283
		SAI NOI		$Q = 12,200 \text{ m}^3$	\$200 × 2.82 m ³ /		Q = 12,200 m ³ /	6100 x 1.55m3/min 6100 x 1.53m3/min	$\phi 80 \times 0.52 \text{m}^3/\text{min}$	DCIP #300 L = DCIP #200 L =			$V = 520 \text{ m}^3$		3 sets	V = 100 m ³	3 units	ø100 - ø150 L = 22.0 km	
	SERVED AREA	DESCRIPTION	WELL	QUANTITY	LINIAKE	RAW WATER MAIN	TREATMENT PLANT	NO1S	S BOOSTER PUMP	NAST OF CI CI	RAL	EM PIPE	SERVICE RESERVOIR	DISTRIBUTION PUMP	LIFTING PUMP	ELEVATED TANK	BOOSTER PUMP	PIPE	cosr (1,000 B)
		DESCR				изл	Ļ	REVCE	ıns		CENTRAL	SYSTEM		NC	ITUE	INTS	Ia		

* EXISTING

Table 5-11 (R) CASE - 6

CENTRAL SYSTEM : PHRA RAM HOK & THA PHRA RESERVOIR

SENTED AREA	(UNIT 1,000 B)	TSOO		l	1	50,312	177,092						253,613	481,017	
SCRIPTION SAI NOI BANG BUA THONG BANG YAI NONG KHAED	TINU)	DEVELOPMENT	BANG KHUN THIA			35ш	.2 km .6 km							39	
SERVED AREA		NONG KHAEM				5,300 m3/ x ¢200 x 75 kw x 9	\$700 L = \$	= 14,240		l	1	i	\$100 - \$700 L = 79.09 km	283,08	
SERVED AREA SAI NOI BANG BUA THONG WELL		百)	BANG YAI	1		। ਹਨ ਹਰ ।		= 1,520		4 sets	= 60		.00 - = 38.		
SCRIPTION WELL RFACE WATER CENTRAL SYSTEM DISTRIBUTION PUMP BOOSTER PUMP BOOSTER PUMP BOOSTER PUMP BOOSTER PUMP TIFTING PUMP BOOSTER PUMP BOOSTE		3 DISTRICTS	BUA			x 50 m x 30 kw x 3 x 50 m x 30 kw x 2 x 39 m x 7.5 kw x 3		= 1,860	1		= 50 m		ø100 - ø400 L = 58.85 km	197,928	
SCRIPTION WELL WELL RFACE WATER CENTRAL SYSTEM DISTRIBUTION PUMP LIFTING PUMP LIFTING PUMP BOOSTER PUMP PIPE PIPE PIPE PIPE		NOR	15			1,100 r x 2.08 x 1,77 x 0.52	g .D 11	Lt.			= 100	3 units	1 7		
		SERVED AREA	SCRIPTION	WELL	RFACE WATER	PUMP	BIPE	SERVICE RESERVOIR	ll		ELEVATED		FIPE	COST (1,000 %)	

* EXISTING

(2) Left Bank

Table 5-12 (L) CASE -1

SURFACE WATER: KLONG SAM WA & SIP SAM

74,354 608,770 65,300 161,900 1,761,384 548,660 118,700 COST (UNIT 1,000 E) 6400 x 16.4m3/min x 13m x 5 sets Q2=83,100m3/d 6460.x 21.5 x 40 x 220 x 5 6450 x 25.5 x 25 x 150 x 4 6400 x 20.0 x 27 x 150 x 4 6200 x 4.8 x 25 x 30 x 4 DCIP 61,200 61,100 SOUTH DEVELOPMENT PROGRAM \$400 x 14.5m3/min x 48m x L = 1.5 km L = 19.0 km L = 10.3 km= 1.6km = 4.0km = 3.0km ϕ 400 x 28.1m³/min x 25m x 190 kw x 5 Q = 177,500 m³/d 1,539,654 L = 5.3 kmDCIP $\phi = 600$ ϕ L = 10.2 kmDCIP $\phi = 400$ L = 15.0km DCIP \$ 800 L = 7.2km DCIP Ø1,100 Bang Chan Q = 1,275m3/d Q1=94,400m3/d EAST DEVELOPMENT PROGRAM x 4 units DCIP #1,000 ACP #200 - #100 *V=100m³,120m³ x 2 units $V = 1,000 \text{ m}^3$ $*0 = 1,200m^3/d$ 0 = 1,000m3/d.x lumit od = 1,000m3/d x I unit L = 15.1 km unit sets 20,282 SOUTH 2 DISTRICTS (AMPHOE) BANG BO ACP #200 - #100 $Q = 1,400m^3/d$ 2 units n_E $V = 1,000 \text{ m}^3$ L = 26.15 km2 units BANG PHLI 001 sets 27,990 # **^**× x + units $Q = 1,510m^3/d$ x + 2 unitsDCIP \$400 ACP \$300 = \$100 L = 57.95 km $Q = 1,520m^3/d$ $*V = 50m^3, 60m^3$ $V = 3,040 \text{ m}^3$ LAT KRABANG 6 units 5 sets 72,451 EAST 3 DISTRICTS (AMPHOE) Q = 1,460 m³/d x 5 units DCIP #400 ACP #300 - #100 L = 44.2 km MIN BURI $V = 2,560 \text{ m}^3$ *V =50m³,70m³ 7 units 5 sets 60,458 $Q = 945 \text{ m}^3/\text{d}$ × 2 units $Q = 870 \text{ m}^3/\text{d}$ x 3 units ACP 6300 - 6100 NONG CHOK V = 1,520 m ≈ 33.05 km 3 units . 60 ≡ 3 5 sets 675,04 ? SERVED ARE! QUANTITY BOOSTER FUMP SERVICE RESERVOIR PUMP (I,000 E) TREATMENT PLANT ELEVATED TANK RAW WATER MAIN LIFTING PUMP BOOSTER PUMP PUMP PIPE WELL ENTRAL SYS INTAKE PIPE COST DISCRIPTION TRANSMISSION NOITURIBLEION

EXISTING NEW WELL

*

5 - 38

Table 5-13 (L) CASE - 2

1,000 €)	T.S.O.D	1000			74,500	222,800		637,700	117,600	693,500		_		161,900			1,908,000	
SAM	SOUTH	PROGRAM	1		Principal Control Cont			THE SECOND SECON						1				
KLONG SAM WA & SIP	EAST	PROGRAM			5 ser					14.8 km 5.9 km 25.9 km 5.4 km								
(L) CASE - 2	EAST 3 DISTRICTS (AMPHOE)	NONG CHOK MIN BURI LAT KRABANG BANG PHLI BANG BO		$q_1 = 1.12,500 \text{ m}^3/d$, $q_2 = 100,000 \text{ m}^3/d$	4400 x 19.6m ³ /min x 12 m x 60 km x 5 sets 6400 x 17.4 m ³ /min x 42 m x 200 km x	DCIP 01,100 L = 1.5 km, DCIP 01,000 L = 19.0 km	$Q = 212,500 \text{ m}^3/d$	$6400 \times 30.6 \text{ m}^3/\text{min} \times 27 \text{ m} \times 220 \text{ km} \times 5 \text{ sets}$ $6100 \times 1.8 \times 27 \times 15 \times 3$ $6125 \times 2.8 \times 10 \times 11 \times 4$	\$450 x 24.0 x 50 x 300 x 5 \$4200 x 15.0 x 25 x 95 x 5 \$125 x 1.6 x 48 x 22 x 3 \$4200 x 4.8 x 25 x 30 x 4 \$125 x 1.1 x 50 x 15 x 3	DCIP \$1,200 L = 7.2 km DCIP \$800 L = 5.3 km DCIP \$500 L = 1 \$400 L = 19.0 km " \$400 L = 1.6 km " \$400 L = 10.3 km " \$600 L = 10.2 km " \$600 L = 20.2 km " \$600 L = 20		$V = 1,520 \text{ m}^3$ $V = 2,560 \text{ m}^3$ $V = 3,040 \text{ m}^3$ $V = 1,000 \text{ m}^3$ $V = 1,000 \text{ m}^3$	S sets 5 sets 4 sets 4 sets	$*V = 60 \text{ m}^3$ $*V = 50 \text{m}^3, 70 \text{m}^3$ $*V = 50 \text{m}^3, 60 \text{m}^3$ $*V = 100 \text{ m}^3$ $*V = 100 \text{m}^3, 120 \text{m}^3$	7 units 6 units 2 units	ACP\$300 - \$100 DCIP \$400 DCIP \$400 ACP\$200 - \$100 ACP\$200 - \$100 ACP\$200 - \$100 ACP\$300 - \$100 ACP\$300 - \$100 L = \$5.15 km L = 15.1 km		
- 11	SERVED AREA	DESCRIPTION	TIEM	QUANTITY	awn a	RAW WATER MAIN	TREATMENT PLANT		SAISSIOS BOOSTER PUMP	MAST E	CENTRAL SYSTEM	SERVICE RESERVOIR	LIFTING PUMP	ELEVATED TANK	BOOSTER PUMP	FIPE	COST (1,000 B)	
	/	DES				¥	IATAW	KFACE	ns		CEN		NO	TUBIR	sıa			

5 - 39

CASE - 3 Table 5-14 (L)

SURFACE WATER : KLONG SAM WA CENTRAL SYSTEM : SAMRONG RESERVOIR

(UNIT 1,000 E)

T_{i}		SERVED AREA	EAST 3	3 DISTRICTS (AMPHOE)	Œ)	SOUTH 2 DISTR	SOUTH 2 DISTRICTS (AMPHOE)	EAST	SOUTH	
H	DESCRIPTION		NONG CHOK	MIN BURI	LAT KRABANG	BANG PHLI	BANG BO	DEVELOPMENT PROGRAM	DEVELOPMENT PROGRAM	COST
	WELL		Q = 945 m3/d x 2 units Q = 870 m3/d	Q = 1,460m3/d x 5 units	Q = 1,520m3/d x 4 units Q = 1,510m3/d	Q = 1,400 m3/d x 2 units	*Q = 1,200 m3/d x 1 unit oQ = 1,000m3/d	Bang Chan Q = 1,275 m3/d		
					x t units		. x 1 unit Q = 1,000m3/d x 2 units	x 4 units		74,354
Ē	TWTAVE	QUANTITY			-			Q = 56,500m3/d		
1	THEFT	PUMP						6300x9.8m3/min x15mx45kwx5sets	•	15,900
RAI	RAW WATER MAIN	S MAIN			•			DCIP #800 L = 1.5 km		11,000
	TREATMENT PLANT	PLANT						Q = 56,500m3/d		
		PUND			ı			\$300x119m3/min x23m x75kw x4sets	•	210,860
		BOOSTER PUMP						\$200x3 lx5lx55x4		10,700
	MSNAAT 	PIPE			1			DCIP \$800 I=72km \$700 I=1.6km \$400 I=134km \$300 I=3.0km	,	170,650
	. B.	PUMP			1			ı	0=110,000m3/d ø350x19.1m3/min x35m x170kw x	
									5 sets \$250x7.2m3/min x 50m x90kw x3sets	55,051
	P	PIPE			ľ			i	DCIP \$900 L=15.0km \$600 L=23.0km \$500 L=16.5km	309,000
	SERVICE	SERVICE RESERVOIR	$V = 1,520m^3$	$V = 2,560m^3$	$V = 3,040m^3$	$V = 1,000m^3$	$V = 1,000m^3$			
	LIFTING PUMP	; PUMP	5 sets	5 sets	5 sets	4 sets	4 sets			12.5
34	ELEVATE	ELEVATED TANK	*v = 60 m ³	*V=50m ³ ,70m ³	*V=50m ³ ,60m ³	$*V = 100m^3$	$*V = 100m^3, 120m^3$		i.	
	BOOSTER FUMP	r PUMP	3 units	7 units	6 units	2 units	l unit			161
	PIPE		ACP #300 - #100 L = 33,05 km	DCIP 6400 ACP 6300 - 100 L = 4452 km	DCIP 6400 ACP 6300 - 6100 L = 57.95 km	ACP ϕ 200 - ϕ 100 L = 26.15km	ACP \$200 - \$100 L = 15.1 km)) 1
ľŬ	COST (1,000 B)	000 B)	40,549	12	72,451	7	20,282	370,634	364,051	954,415
	1.000			T.						

* EXISTING OF WELL

Table 5-15

			-	· ·	<u> </u>													: 	أنسي	11 (1) 11 (1)
e c	COST			22,600	13,300		28/ 300	23,500		157,700	,	78,851	217 600				161,900		_	1,059,751
KLONG SAM WA SAMRONG RESERVOIR (UNIT 1,000	SOUTH	PROGRAM									180kw × 5 sets		L = 6.4 km			u V				
WATER : SYSTEM :	TS (AMPHOE)	BANG BO		1			1				Ε 4.α Χ	X TO X 3	= 15.0 km = 23.0 km	V = 1,000 m ³	4 sets	*V =100m3120m3	1 unit	ا م	L = 15.1 km	433,469
SURFACE	SOUTH 2 DISTRICTS (AMPHOE)	DANG FRUT									Q = 115,800 m ³ /d \$350 x 20.1 m3/min x 35 \$200 x 4,8 x 50 x 60 x \$100 x 4,8 x 50 x 60 x	WILL X 45	DCIP 4900 L = 1. 4600 L = 2. 4500 L = 1.	E	4 sets	6	2 units	g	L = 26.15 km	
	EAST DEVELOPMENT	יייייייייייייייייייייייייייייייייייייי					8	£ 3												
	E)	ONTO THE		x 5 sets				3.5 x 28	L = 5.9 km L = 25.9 km					V = 3,040 m ³	5 sets	*V=50m ³ ,60m ³	6 units	.e S	L = 57.95 km	
	3 DISTRICTS (AMPHOE)		100 m ³ /d		1.5 km	,100 m ³ /d	27 m × 90 km × 4 ø100	<pre>< 55 x 3</pre>	~ ~ ~	Control of the second s	, 1 ,			V = 2,560 m ³	5 sets	*V =50m3,70m3	7 units	DCIP 6400 ACP6300 - 6100	L = 44.2 km	626,282
CASE - 4	EAST NONG CHOK		0 = 85,100	\$350 x 14.8 m ³ /min x	DCIP \$900 L =	01,35,100	ϕ 350 × 14.0 m ³ /min × ϕ 200 × 2.8 × 10 × 11	\$250 x 5.2 x 35 x 55 \$100 x 1.6 x 43 x 22	DCIP 6800 L = 7. 6700 L = 1.0	3				$V = 1,520 \text{ m}^3$	5 sets	*v = 60 m ³	3 units	00	L = 33.05 km	
Table 5-15 (L)	SERVED AREA	WELL	QUANTITY	<u> </u>	RAW WATER MAIN	TREATMENT PLANT	РИМР	BOOSTER PUMP	Edid		PUMP		PIPE	SERVICE RESERVOIR	LIFTING PUMP	ELEVATED TANK	BOOSTER PUMP	341		(a, 000, t)
T	DISCRIPTION			INTAKE	i	ATE TREAT		MISS:	ENAST		TRAL TRM F	KS.				NAIA E		PIPE	1000	200

Table 5-16 (L) CASE - 5

CENTRAL SYSTEM : PAK BO & SAMRONG RESERVOIR (UNII 1,000 B)

	COSI	74,354		85,173	526,298		161,900		847,725
SOUTH	DEVELOPMENT PROGRAM		And the second s	d Q2=110,000m3/d n x45m x100kw x5sets x35 x170 x50 x 90 x3	L=15.0km ¢500 L=16.5km L=14.3km ¢400 L= 9.4km L= 5.6km ¢300 L= 3.0km L=23.0km		1		625,995
EAST	DEVELOPMENT PROGRAM	Bang Chan 3/4 Q = 1,275m 3/4 x 4 units	The state of the s	01= 51,350m3/d \$300x8:9m3/min \$350x19.1 \$250x7.2	DCIP¢900 L=15.0km \$800 L=14.3km \$700 L= 5.6km \$600 L=23.0km				
(ICTS (AMPHOE)	BANG BO	*Q = 1,200m ³ /d × 1 units oQ = 1,000m ³ /d × 1 units Q = 1,000m ³ /d × 2 units				V = 1,000 m ³ 4 sets	*V=100m ³ ,120m ³	ACP \$200 - \$100 L = 15.1 km	20,282
SOUTH 2 DISTRICTS	BANG PHLI	Q = 1,400m ³ /d x 2 units				V = 1,000 m ³	*V = 100 m ³	ACPØ200 - Ø100 ACP Ø200 - L = 26.15 km L = 15.1 km	27,990
(五)	LAT KRABANG	Q = 1,520m ³ /d x 4 units Q = 1,510m ³ /d x 2 units			,	v = 3,040 m ³ 5 sers	*V=50m ³ ,60m ³	DCIP 6400 ACP 6300 - 6100 L = 57.95 km	72,451
3 DISTRICTS (AMPHOE)	MIN BURI	0 = 1,460 m ³ /d × 5 units				V = 2,560 m ³ 5 sets	*V=50m ³ ,70m ³ 7 units	DCIP 6400 DCIP 6400 ACP 6300 - 6100 ACP 6300 - 6100 L = 44.2 km L = 57.95 km	60,458
EAST 3	NONG CHOK	Q = 945 m ³ /d x 2 units Q = 870 m ³ /d x 3 units				X = 1,520,m ³ 5 sets	*V = 60 m ³ 3 units	ACP #300 - #100 L = 33.05 km	40,549
SERVED AREA	DISCRIPTION	771224	SURFACE WATER	PUMP	SYSTEM	SERVICE RESERVOIR LIFTING FUMP	ELEVATED TANK E BOOSTER, PUMP	Sala	COST (1,000 B)

* EXISTING NEW WELL

Table 5-17 (L) CASE - 6

CENTRAL SYSTEM : BANG THONG RANG, PAK BO & SAMRONG RESERVOIR

0.8)		COST	l		150,900	000*065			0	000		920,800
(% 000,1 TINU)	SOUTH	DEVELOPMENT PROGRAM			4sets,¢100 x1.1m3/min x 45m x 15kw x 3 sets 4 4				1. 1. 1.2.			
	EAST	DEVELOPMENT PROGRAM			1.1m3/min x 45m				, , , , , , , , , , , , , , , , , , ,			And the state of t
out the court of t	CTS (AMPHOE)	BANG BO			* * * *		V = 1,000 m ³	4 sets	*V=106m ³ ,120m ³	· 1 unit	6200 - 6100 ACP 6200 - 6100 26.15 Am L = 15.1 Am	
CENT NEW	SOUTH 2 DISTRICTS	BANG PHLI			n3/d nin x 25m x 30kw x 35 x 180 x 50 x 60 x 30 x 45		V = 1,000 m ³	4 sets	*V = 100 m ³	2 units	ACP \$200 - \$100 L = 26.15 km	
	(LAT KRABANG	•	.1	03 = 115,800 m ³ /d cs, 6200 x 4.4m ³ /min x 6350 x 20.1 x 6200 x 4.8 x 6250 x 6.2 x	= 31.6 km = 11.0 km = 20.6 km = 6.4 km	v = 3,040 m ³	5 sets	*V=50m ³ ,60m ³	6 units	DCIP 4400 ACP 4300 - 4100 L = 57.95 km	
	3 DISTRICTS (AMPHOE)	MIN BURI			Q2 = 60,450 m ³ /d x 35m x 37kw x 4sets, x 48 x 22 x 4 x 43 x 22 x 5 x 43 x 22 x 3	15.0 km 6500 L 14.3 km 6400 L 5.6 km 6300 L 23.0 km 6200 L	V = 2,560 m ³	5 sets	*V=50m ³ ,70m ³ *	7 units	DCIF \$400 ACP \$300 - \$100 L = 44.2 km	
	EAST 3	NONG CHOK			Q ₁ = 16,900 m ³ /d Q ₂ \$200 x 4.0m ³ /min x 35n \$350 x 14.0 x 48 \$200 x 2.8 x 28 \$100 x 1.6 x 43	DCIP #900 L = 15 #800 L = 14 #700 L = 5 #600 L = 23	V = 1,520 m ³	5 sets	*V = 60 m ³	3 units	ACP 4300 - 4100 L = 33.05 km	
	SERVED AREA				PUMP	PIPE	RVOIR.) B)
	SER	DESCRIPTION	WELL	SURFACE WATER	CENTRAL SYSTEM		SERVICE RESERVOIR	LIFTING PUMP	ELEVATED TANK	BOOSTER PUMP	PIPE	COST (1,000 B)
		DES(SURI	CENT			NO	TLUALX	TSIG		

* EXISTING

5-6 Selection of Optimum Plan

It is quite difficult to select the most rational, both technically and economically, water supply plan from among the alternative cases described in Sec. 5-4, as each case still has problems to be solved. In the present study, however, an attempt will be made to choose the most optimum plan within the framework of the feasibility study of a separate system in consideration of the future socio-economic development of Thailand.

When all the alternative cases are reviewed, assuming that the water works are planned as the Greater Bangkok Area project, including both the central and separate systems, it would be ideal to take surface water from more than one source so as to assure a stable water supply. (Refer to right bank Case 2R and left bank Case 2L.)

However, the optimum feasible plan would be a case where the water works can be built at a minimum cost, when the economic conditions of the water supply project, the necessity of proper water supply management, the burden of increasing water charges on the community people and the present condition of the water authority are taken into consideration.

The combinations of the right or left bank and water sources are shown in Table 5-18 and Fig. 5-13 in order of increasing construction cost. Respective to the selection of water sources from the standpoint of construction cost, the following can be stated:

- It would be economically advantageous to also depend on the wells for water, so long as the pumpage established according to the survey results is not exceeded.
- 2) The plan to divert water from the central system will be more economically advantageous than the plan to use surface water, as the water supply by the former plan will need no treatment plant.
- 3) The water supply system will be quite expensive to build, if surface water is to be utilized over a wide area. The use of

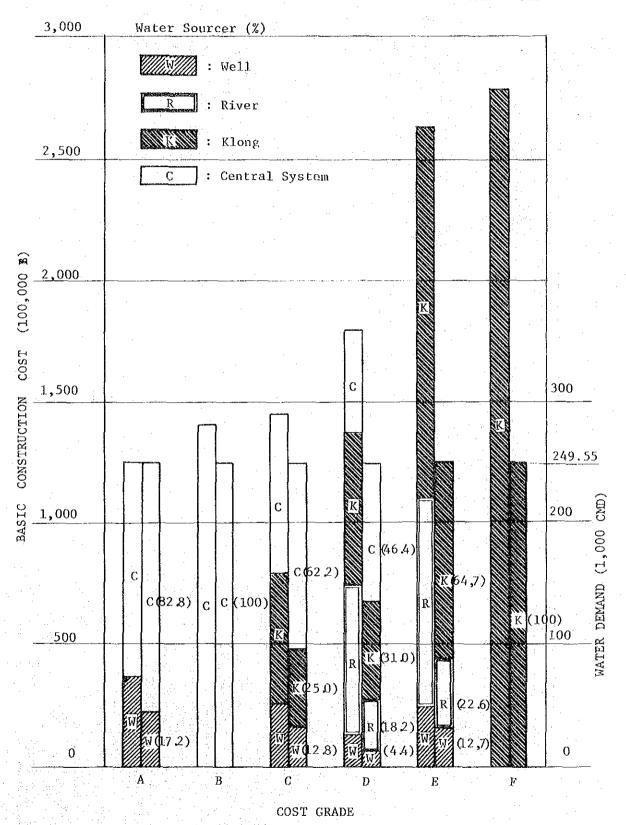
surface water should therefore be limited to an area of convenient size near the water intake point.

The major considerations which should be made in the use of each water source are noted as follows:

- 1) The use of wells should be allowed in only 8 Amphoes, excluding Nong Khaem, and in Bang Chan.
- 2) Phase 1 Project of the first stage of the central system is now under construction and the detail design of the Phase 2 Project has already been completed. The plan to divert water from the central system after Phase 2 Project must therefore be coped with its subsequent construction schedule.
- 3) Agreement must be reached with the authorities having jurisdiction concerning the water rights when the plan to use surface water is to be carried out.
- 4) The comprehensive water supply project which plans to depend on only surface water and build several water treatment plants does not seem feasible from an economic point of view, for its construction cost would be about 2.2 times as high as that of the least expensive plan. (Refer to right bank Cases 2R or 3R and left bank Case 2L.)

When the least expensive combinations of water sources are also taken into account in addition to the above considerations, the water supply projects in almost all existing Amphoes seem easy and relatively inexpensive, as they plan to dig wells. If wells are digged in the existing Amphoes, the other districts will be supplied by the central system. Tha Phra reservoir on the right bank is already under construction so that it can supply the Amphoes by the target year 1982. Furthermore, the detailed design of Khlong Toey reservoir has already been completed. When Pak Bo and Samrong reservoirs which will follow it, are built in the next stage of construction of the Bangkok water supply project, it will be possible to supply the adjacent development areas on the left bank in 1985.

As a conclusion, the optimum feasible plans which would be the least expensive of all alternative cases are recommended in this study as follows.


1) Right Bank: Case 4R

2) Left Bank : Case 5L

Table 5-18 TOTAL BASIC CONSTRUCTION COST OF SEPARATE SYSTEM

(10 10 10 10 10 10 10 10 10 10 10 10 10	, c	Basic	Cost	Per-		Water	r Sources	(CMD)				
บ วัง วัง	น ถือ ว	Cost (1,000 I)	(B/CMD)	centage (%)	We11	(%)	River	(%)	Klong	(%)	Central	(%)
	R - 4	406,936	7,215		11,100				•		45,300	
4:	1 - 5	847,725	4,389		31,800		-		1		161,350	
	Total	1,254,661	5,004	100	42,900	17.2					206,650	82.8
	В В	481,017	8,529				1		ı		56,400	
М	Г - 6	920,800	4,767		niver.		1		ı		193,150	
	Total	1,401,817	5,617	112	•				ı		249,550	100
	R – 5	489,372	8,677		1		1-		11,100		45,300	
U	г П	956,415	4,952		31,800		1	·.	51,350		110,000	
	Total	1,445,787	5,794	115	31,800	12.8	1		62,450	25.0	155,300	62.2
	R 1	735,302	13,037		11,100		45,300		ı		1	
А	L - 4	1,059,751	5,487				•		77,350		115,800	
	Total	1,795,053	7,193	143	11,100	4.4	45,300	18.2	77,350	31.0	115,800	46.4.
	R - 2	873,660	15,490		•		56,400					
[±]	T - 1	1,761,384	9,452		31,800		_	П	161,350		-	
	Total	2,635,044	10,559	210	31,800	12.7	56,400	22.6 1	161,350	64.7		
	R - 3	882,309	15,641		_				56,400		arra	
ļъι	L - 2	1,908,000	9,878		ı.			1	193,150		1	
	Total	2,790,309	11,181	223	l		1	2	249,550	100	1	

Fig. 5-13 BASIC CONSTRUCTION COST & WATER SOURCES RATIO

CHAPTER 6 TRANSMISSION PLAN FROM CENTRAL SYSTEM TO SEPARATE SYSTEM

CHAPTER 6

TRANSMISSION PLAN FROM CENTRAL SYSTEM TO SEPARATE SYSTEM

6-1 Outline of Central System

The water supply of Bangkok dates from about three hundred years back. The aqueduct which was built in Lopburi about three hundred years ago in order to supply water to the Royal Palace was the first form of water supply, and in the later days of King Rama V the water supply system presently being used was proposed and came into service in 1914.

The population of metropilitan Bangkok has incessantly been increasing from year to year, and in 1976 its population reached 4,559,000 persons. Of them 2,469,000 are now served with water and average daily water demand is 1,177,000 CMD. Of the demand 850,000 CMD is met by the Sam Sen and Thonburi water treatment plants, and the remainder of the demand, or 327,000 CMD, is met by use of ground water.

The water supply system of Bangkok was expanded as its population grew, but demand has always exceeded supply for the past several years. The unrestrained use of groundwater has already involved various problems, such as ground subsidence, the fall of the water table and an increase of salinity in groundwater. Thus, the development of new water sources and the implementation of a comprehensive water supply project have been desired and urgently needed.

To find solutions to these problems, U.S. consultant Camp, Dresser & Mckee (CDM) was called on to draw up a master plan of a water supply project in 1968 and the CDM finished that task in 1970.

In accordance with the master plan, which was made as a long-range projection through year 2000, the water supply project was put into action and the Phase 1 Project (capacity of treated water = 800,000 CMD) of the first stage is now under construction, and the detail design for Phase 2 Project has already been completed. However,

the project was badly hindered by the oil crisis and worldwide inflation so that it is far behind schedule. The completion of the Phase 1 Project is now set for 1979. In August 1977 the MWWA reviewed Phase 2 Project in relation to the whole project and made a report "A Review of the Bangkok Water Supply Phase 2 Project".

The present condition and planned scale of the central system are shown in Table 6-1.

Table 6-1 Item Served Area (Sq. km) Population to be Served (1,000 Person) (L/c.d.) Daily Water Consumption per Head	L976 1976 242 2,469 477	1979 1979 2,820	CENTRAL SYSTEM FUTURE WATER REQUIREMENTS 1976	1985 1985 430 44059	ed by M. 1990 5,027 475	M.W.A. E 1995 - 6,260	ER REQUIREMENTS (Prepared by M.W.W.A. Phase 2 Estimate) 1985	Remarks
Daily Mean Water Demand (1,000 CMD)	1,177	1,311	1,448	1,887	2,338	2,999	3,758	
Daily Maximum Water Demand (1,000 CMD)	1,472	1,639	1,810	2,359	2,985	3,749	4,698	

6-2 Present Condition and Future Plan of Central System 6-2-1 Present Condition:

(1) Surface Water Intake and Aqueduct:

At present surface water is taken from the Chao Phraya river at Sam Lae pump station, located 91 km upstream of the mouth of the river and stored in the Bang Luang Reservoir, located inside the curved section of the Chao Phraya river. From that point water is led south to Sam Sen treatment plant over a distance of 25 km using the Klong Prapa as an aqueduct. On the way to the treatment plant, water is diverted to Thonburi treatment plant at Ban Su which is located about 3 km north of Sam Sen treatment plant.

(2) Water Treatment and Distribution Facilities:

At present two water treatment plants are in operation; Sam Sen and Thon Buri. Sam Sen treatment plant, which consists of 10 systems for purification and treatment, has a capacity of about 680,000 CMD; while Thonburi treatment plant is capable of treating about 170,000 CMD of raw water. The water treated at these plants is then distributed directly to the community.

(3) Groundwater:

As of 1976 about 140 deep wells with a combined daily yield of about $327,000~\rm m^3$ were operating in the area over which MWWA has jurisdiction.

6-2-2 Future Plan:

(1) Surface Water Intake and Aqueduct:

No change in the location of the water intake and the route of the aqueduct is envisaged; but, as the amount of water drawn from the river is expected to increase to 6,000,000 CMD (= 70 m³/sec) in 2000, there is a plan to build a new pump station at Sam Lae, and a plan to improve both the Bang Luang reservoir and the Klong Prapa for use as an aqueduct.

(2) Water Treatment Plants:

In addition to the existing treatment plants at Sam Sen and Thon Buri, a new large-scale plant is under construction at Bang Khen.

Sam Sen treatment plant will be scaled down from the present capacity of 680,000 CMD to 480,000 CMD and Thonburi treatment plant from 170,000 CMD to about 142,000 CMD. Conversely, Bang Khen treatment plant will be expanded to have a final capacity of 4,800,000 CMD; this plant to comprise four systems each of which can treat 1,200,000 CMD of raw water.

(3) Transmission and Distribution Facilities:

Water treated at Sam Sen and Thon Buri treatment plants will be distributed directly to the community. These plants, however, will cover only a small part of the served area, and the greater part of the area will be served by the Bang Khen treatment plant.

Water will be transmitted from Bang Khen treatment plant by underground conduits, 4.6 to 2.0 m in diameter, to 13 service reservoirs from which water will be distributed throughout the entire served area.

(4) Groundwater:

Until completion of the transmission lines from Bang Khen treatment plant, usage of groundwater will increase from 327,000 CMD in 1976 to 532,000 CMD in 1979.

Thereafter the consumption of groundwater will be decreased by about 10 % from year to year until all water demand is met with surface water in 1990.

The outline of the future plan of the central system is shown in Table 6-2.

Table 6-2 CONSTRUCTION OF RAW WATER REQUIREMENTS FOR BANGKOK WATER SUPPLY

				***************************************				S
Item	Year	Raw Water	Raw Water Requirement	Capa	Capacity (1,000 CMD)	(a	Daily Demand (1,000 CMD)	emand O CMD)
Stage	(A)	CMS	1,000 CMD	Plant	Ground Water	Total	Average	Maximum
Present	1977		950	850	312	1,162	1,211	1,514
lst Stage - Phase l	1979	21	1,800	1,622	532	2,154	1,311	1,639
1st Stage - Phase 2	1981	26	2,300	2,022	874	2,470	1,448	1,810
2nd Stage	1985	42	3,600	3,222	294	3,516	1,887	2,359
3rd Stage	1990	54	4,700	4,222	0	4,222	2,388	2,985
Final Stage	1995	70	9,000	5,422	0	5,422	2,999	3,749
	2000	70	000'9	5,422	0	5,422	3,758	4,698

6-3 Brief Review for Transmission Plan from Central System to Separate System

6-3-1 Subject for Review:

In this section the transmission plan from the central system to the separate system will be reviewed so as to make clear whether the water treatment and transmission facilities of the central system can meet not only its demand based on the MWWA report entitled "A Review of the Bangkok Water Supply Phase 2 Project", but the demand of the separate system as well.

(1) Water Demand:

The water demands on the central and separate systems for each phase or stage of construction were estimated by way of two kinds of estimates of water demand for the separate system:

Estimate (A) representing the total demand on the separate system; and, Estimate (B) representing the total demand on the separate system minus the demand in the districts served with groundwater. The total water demands on both the central and separate systems for both cases are shown in Table 6-3.

(2) Construction Schedule of Central System:

The planned capacities of the existing treatment plants and Bang Khen treatment plant now under construction are shown in Table 6-4. In this table the water treatment capacity of the central system is divided into surface water and groundwater.

(3) Demand-Supply Balance of Water:

The total water demand on the separate system in 2000, including that in the adjacent development area, is estimated to be 249,550 CMD. This volume accounts for only 5.3 % of the demand of 4,698,000 CMD which the central system will be required to supply in 2000. Thus, the planned capacity of the water treatment and transmission facilities of the central system is large enough to meet the water demands of both the separate and central systems. (See Fig. 6-1).

Table 6-3 DAILY MAXIMUM WATER DEMAND

(GKG)

Item		Central	Separate System	System	Total	
Stage	rear (AD)	System	(A)	(B)	Case (A)	Case (B)
Present	1977	1,514,000		1	1,514,000	1,514,000
lst Stage – Phase 1	1979	1,639,000		1	1,639,000	1,639,000
1st Stage - Phase 2	1981	1,810,000	77,980	58,020	1,887,980	1,868,020
2nd Stage	1985	2,359,000	120,040	96,240	2,479,040	2,455,240
3rd Stage	1990	2,985,000	182,450	152,850	3,167,450	3,137,850
Final Stage	1995	3,749,000	219,750	183,850	3,968,750	3,932,850
	2000	4,698,000	249,550	206,650	4,947,550	4,904,650

(A) : All Separate System Area

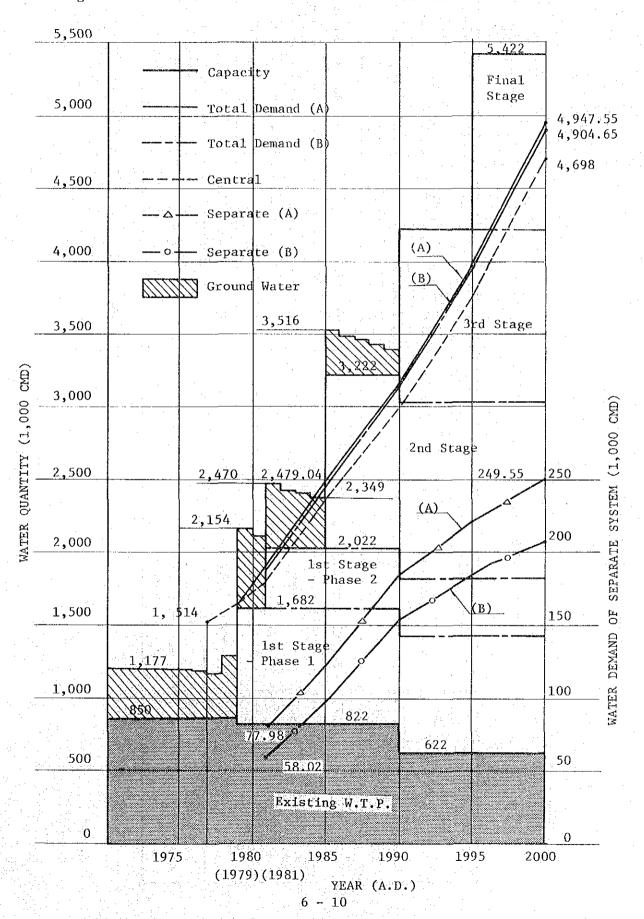

(B) : Amphoe Nong Khaem and All Development Areas without Bang Chan

Table 6-4 CONSTRUCTION SCHEDULE OF CENTRAL SYSTEM

	£	1,162,000	1,162,000				
	Vater	312,000	312,000		312,000 532,000 448,000 294,000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Ground Water		220,000				
	_ Surface	850,000	850,000	850,000 1,622,000 2,022,000	850,000 1,622,000 2,022,000 3,222,000		
	Bang Khen W.T.P.		800,000	1,	1, 1,	3, 2, 1,	800,000 1,200,000 2,400,000 3,600,000 4,800,000
	bang Kh	-	800,000	800,000	H	800,000 400,000 1,200,000	800,000 400,000 1,200,000 1,200,000
	* Existing Plant	850,000	850,000	850,000 822,000 822,000	850,000 822,000 822,000	850,000 822,000 822,000 822,000	850,000 822,000 822,000 822,000 622,000
_		ľ	-28,000				
	Year	1977	1977	1977	1977 1979 1981 1985	1977 1979 1981 1985 1990	1977 1979 1981 1985 1990
ſ		Fresent	Present 1st Stage Phase 1	lst Stage Phase 1 Ist Stage Phase 2	lst Stage Phase 1 Lst Stage Phase 2 2nd Stage	lst Stage Phase 1 Ist Stage Phase 2 2nd Stage 3rd Stage	lst Stage Phase 1 Ist Stage Phase 2 2nd Stage 3rd Stage

* Existing Plant : Sam Sen & Thonburi W.T.P.

Fig.6-1 CONSTRUCTION SCHEDULE OF CENTRAL & SEPARATE SYSTEM

6-3-2 Construction Schedules for Central and Separate Systems:

The separate system is planned to put in service in the entire service area in 1982. In this section the plan will be reviewed in connection with the construction schedule of the central system so as to determine when the separate system related to the central system can put in service.

The service reservoirs of the central system on which the separate system will depend for water, will be located at Tha Phra (Right Bank), Pak Bo and Sam Rong (Left Bank). Tha Phra service reservoir is under construction and is expected to be commissioned upon completion of Phase 1 Project of the first stage (1979), whereas no definite plans for the other two service reservoirs have as yet been formulated. As the construction schedule of the central system through Phase 2 Project (1981) of the first stage has already been decided, Pak Bo and Sam Rong service reservoirs will be planned in the second stage at the earliest or thereafter, depending on the case; but, if the second stage comes as envisaged by the master plan, the two service reservoirs will be completed in 1985.

Therefore, respective to the right bank, it appears that construction of the separate system can satisfactorialy correlate with the central system work; whereas, respective to the left bank, it is required that the second stage work of the central system, especially the construction of the transmission line from Klong Toey to Pak Bo to Sam Rong and service reservoirs, is completed as early as possible.

On the left bank all water from the central system upon which the separate system will depend, will be distributed to the adjacent development area. Any water supply project which starts before water can be diverted from the central system, will have to use groundwater. However, the use of groundwater should be allowed only for a very brief period, and only on condition that a safe margin of pumpage is observed and strictly adhered to.

6-3-3 Study of Demand-Supply Balance and Capacity of Bang Khen Plant:

(1) Demand-Supply Balance of Water:

As has been previously stated, the demand and supply of the central and separate systems as a whole will be in balance. In this section the demand-supply balance of water at Bang Khen treatment plant which will directly supply the separate system will be discussed.

The planned capacity of the Bang Khen plant has already been indicated. The demand which this plant will meet, will be calculated based upon conditions as follows:

- The wells will be used to the upper limit of the planned capacity.
- 2) The existing treatment plants will be operated to the upper limit of the planned capacity.
- 3) Bang Khen treatment plant will meet the estimated demand on the central system minus the supply from the wells and existing treatment plants.

The annual demand which Bang Khen plant will meet when the above conditions are met, can be estimated on the basis of the master plan as shown in Table 6-5. When the planned demands (A) and (B) of the separate system are added to it, Bang Khen plant will have to fill the requirements shown in Table 6-6 and Fig. 6-2.

Bang Khen treatment plant has an adequate capacity to fill the total demand (B) through the final year of the plan, although a supply shortage may occur in the last years of the first or second stages. Before 1984, however, the transmission lines and service reservoirs of the central system will not be completed to supply the service area of the separate system, other than Nong Khaem and Bang Khun Thian on the right bank; and other districts within the service area of the separate system will not be supplied until 1985 when the second stage has been completed. Therefore, the separate system will be actually supplied with 18,100 CMD of water in 1984, while the total demand will be 1,881,000 CMD. Should demand be more than as anticipated in that year, the supply shortage would be only in the order of 5% or

so, and such condition would not last for long period of time.

This temporary condition is adjudged not particulally serious since most any system can, in one way or another, be managed to cope with such a slight shortage.

The water demand (B) on the separate system which will be filled by the central system is shown in Tables 6-7 and 6-8 and Fig. 6-3 according to the district and service reservoir.

 $$\operatorname{\textsc{The}}$$ total demand on the service reservoirs of the central system is shown in Table 6-9.

Table 6-5 MAXIMUM DAILY DEMAND OF CENTRAL SYSTEM

(1,000 CMD)

_							
	Service Reservoir	lst Stage Phase 1		Stage se 2	2nd Stage	3rd Stage	Final Stage
No.	Name	1979	1981	1982	1985	1990	2000
1	Bang Khen	-	60	88	134	217	300
2	Sam Sen W.T.P.	822	822	822	822	622	622
3	Thonburi W.T.P.						
4	Tha Phra	146	170	204	221	277	332
5	Phahon Yothin	a-co	75.	109	168	224	279
: 6	Lunpini Park	139	166	200	221	247	273
7	Klong Toey	_	69	100	154	205	256
8	Pak Bo		1		168	253	388
9	Phra Ram Hok	-	-		87	194	300
10	Kaset Sat	_	. 4		-	113	338
11	Rat Burana			_	90	199	307
12	Yannava	_	-			116	349
13	Samrong	•••	~	_		116	350
14	Huai Khwang	****	~			101	302
15	Bang Thong Lang	_	1	-		101	302
	Sub Total _	1,107	1,362	1,523	2,065	2,985	4,698
(Groud Water	532	448	404	294	0	0
	Total	1,639	1,810	1,927	2,359	2,985	4,698
*Co	vered by Bang Khen W.T.P.	285	540	701	1,243	2,363	4,076

*Excluding Sam Sen, Thonburi W.T.P. & Groud Water

Table 6-6 WATER DEMAND COVERED BY BANG KHEN W.T.P.

(CMD)

Item	,		. (* Separa	* Separate System	Total	al
Stage	rear (AD)	W.T.P. Capacity	System	(A)	(B)	Case (A)	Case (B)
Present	1977		ı		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	ì
lst Stage – Phase 1	1979	800,000	285,000	ı		285,000	285,000
lst Stage – Phase 2	1981	1,200,000	540,000	77,980	58,020	617,980	598,020 *(-)
	1982	1,200,000	701,000	88,500	67,580 *(15,700)	789,500	768,580 *(716,700)
2nd Stage	1985	2,400,000	1,243,000	120,040	96,240	1,363,040	1,339,240
3rd Stage	1990	3,600,000	2,363,000	182,450	152,850	2,545,450	2,515,850
Final Stage	1995	4,800,000	3,127,000	219,750	183,850	3,346,750	3,310,850
	2000	4,800,000	4,076,000	249,550	206,650	4,325,550	4,282,650

* Amount of water from Central System to Separate System at Phase 2.

^{*} Separate System (A): Total Water Demand of Separate System (B): Water Demand covered by Central System

Fig. 6-2 WATER DEMAND COVERED BY BANG KHEN W.T.P.

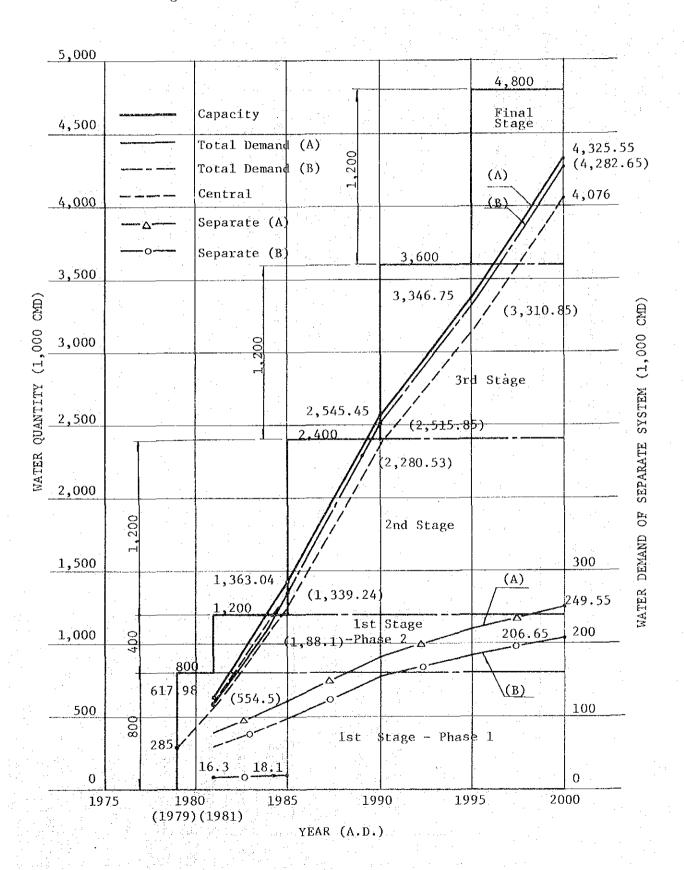


Table 6-7 WATER DEMAND OF SEPARATE SYSTEM (B) COVERED BY CENTRAL SYSTEM

									(2000)
/	Year (AD)		1980	1981	1982	1985	1990	1995	2000
Nong	Khaem	Amphoe	8,000	9,200	10,400	14,000	20,000	28,000	40,000
Bang Thian	Bang Khun Thian	ОН	5,300	5,300	5,300	5,300	5,300	5,300	5,300
gns	Total		13,300	14,500	15,700	19,300	25,300	33,300	45,300
Lat]	Krabang	щ	5,200	5,200	5,200	5,200	9,850	9,850	9,850
Lat	Krabang	ОН	2,730	4,850	6,970	13,330	26,000	38,000	38,000
New	Airport		1,500	1,600	1,700	2,000	2,500	3,000	3,500
Sub	Total		9,430	11,650	13,870	20,530	38,350	50,850	51,350
Bang Bang	Phli- Bo	Іп, но	5,100	7,240	9,380	15,800	23,800	23,800	23,800
Bang	Poo	In, Ho	15,440	17,980	20,530	28,160	44,700	55,200	65,500
Ĕ	Klong Dan	댐	5,200	6,650	8,100	12,450	20,700	20,700	20,700
Sub	Total		25,740	31,870	38,010	56,410	89,200	99,700	110,000
n a	Total		35,170	43,520	51,880	76,940	127,550	150,550	161,350
1 2	Grand Total		48,470	58,020	67,580	96,240	152,850	183,850	206,650
1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							<u></u>

Note: In : Industrial Development Program

Ho : Housing Development Program

Table 6-8 WATER DEMAND OF SEPARATE SYSTEM COVERED BY CENTRAL SYSTEM RESERVOIR

(CMD)

		<u> </u>		
Reservoir Year(AD)	Tha Phra (4)	Pak Bo (8)	Samrong (13)	Total
1980	13,300	9,430	25,740	48,470
1981	14,500	11,650	31,870	58,020
1982	15,700	13,870	38,010	67,580
1983	16,900	16,090	44,140	77,130
1984	18,100	18,310	50,280	86,690
1985	19,300	20,530	56,410	96,240
1990	25,300	38,350	89,200	152,850
1995	33,300	50,850	99,700	183,850
2000	45,300	51,350	110,000	206,650

Fig. 6-3 WATER DEMAND OF SEPARATE SYSTEM COVERED BY CENTRAL SYSTEM RESERVOIR

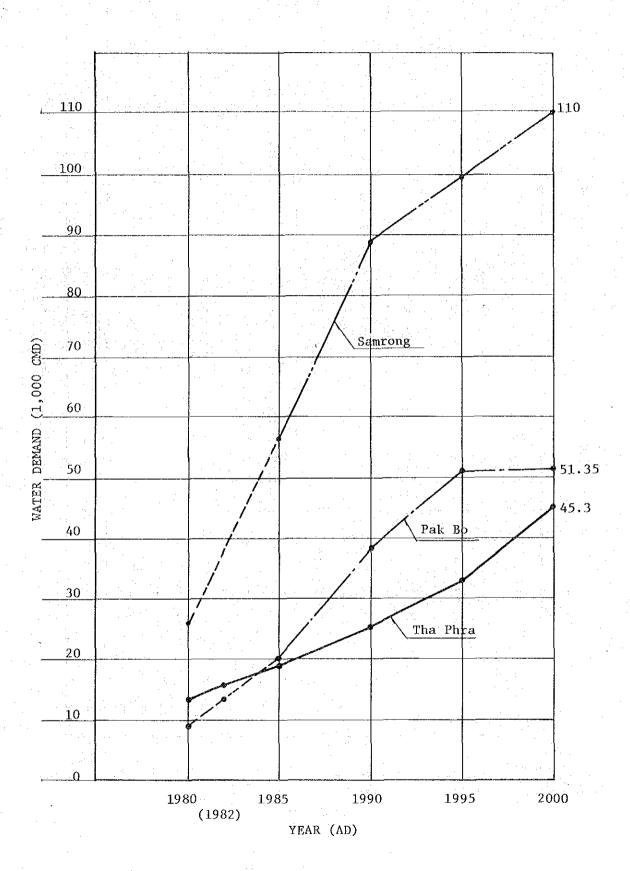


Table 6-9 WATER DEMAND COVERED BY 3 RESERVOIRS

(CMD)

Reservoir	Year (AD)	1980	1981	1982	1985	1990	1995	2000
	Central S.	158,000	170,000	204,000	221,000	277,000	304,500	332,000
Tha Phra (No. 4)	Separate S. (B)	S. (B)*(13,300) *(14,500)	*(14,500)	15,700	19,300	25,300	33,300	45,300
	Total	158,000	170,000	219,700	240,300	302,300	337,800	377,300
	Central S.		•		168,000	253,000	320,500	388,000
Pak Bo (No. 8)	Separate S.(B)	(087,6)*	*(9,430) *(11,650)	*(13,870)	20,530	38,350	50,850	51,350
	Total	•		•	188,530	291,350	371,350	439,350
	Central S.	ı			•	116,000	233,000	350,000
Samrong (No. 13)	Separate S.(B)	*(25,740)	*(31,870) *(38,010)	*(38,010)	56,410	89,200	99,700	110,000
	Total	1			56,410	205,200	332,700	460,000

* Water demand which can not be covered by Central System.

(2) Capacity of Bang Khen Water Treatment Plant:

Under this section will be estimated the approximate capacities of the rapid settling basin, rapid filtration basin and clear-water basin of Bang Khen water treatment plant which will be required for not only its own demand but the demand (B) on the separate system in 2000.

1) Rapid Settling Basin:

i) Dimensions : $58.0 \text{ (dia.)} \times 5.3 \text{ m (H)} \times 24 \text{ units}$ = 335.760 m^3

ii) Capacity : 200,000 CMD/unit

iii) Detention period : $\frac{335,760 \text{ m}^3}{4,076,000 \text{ m}^3/\text{day}} \approx 24 \text{ hr} = 1.98 \text{ hr}$

iv) Detention period : $\frac{335,760 \text{ m}^3}{4,282,650 \text{ m}^3/\text{day}} \times 24 \text{ hr} = 1.88 \text{ hr}$

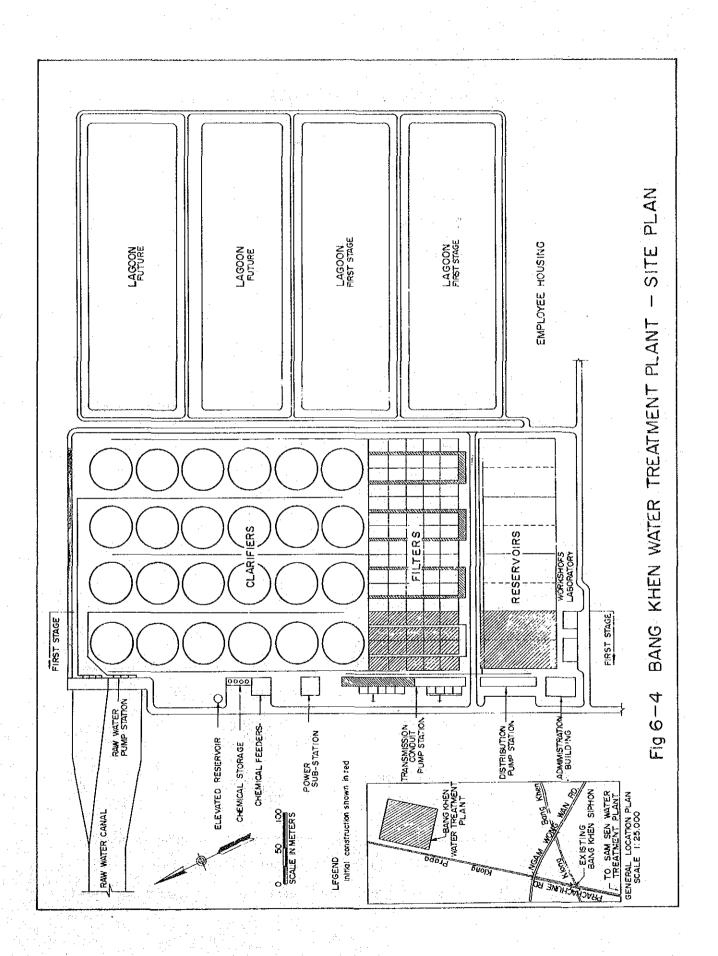
2) Rapid Filtration Basin (Anthracite with Sand):

i) Dimensions : 9.35 m (W) x 27.4 m (L) x 80 units = 20.495 m^2

ii) Filtration speed : $\frac{4,076,000 \text{ m}^3/\text{day}}{20,495 \text{ m}^2} = 198.8 \text{ m/day}$ (central)

iii) Filtration speed : $\frac{4,282,650 \text{ m}^3/\text{day}}{20,495 \text{ m}^2} = 209.0 \text{ m/day}$ (total)

3) Clear-water Basin:


i) Dimensions : $70 \text{ m (W)} \times 180 \text{ m (L)} \times 6 \text{ m (H)}$ $\times 8 \text{ units} = 604,800 \text{ m}^3$

ii) Detention time : $\frac{604,800 \text{ m}^3}{4,076,000 \text{ m}^3/\text{day}} \times 24 \text{ hr} = 3.56 \text{ hr}$

111) Detention time : $\frac{604,800 \text{ m}^3}{4,282,650 \text{ m}^3/\text{day}} \times 24 \text{ hr} = 3.39 \text{ hr}$

As shown above, all the basins have an adequate capacity to permit the water treatment plant to perform as required.

The site plan of Bang Khen water treatment plant is shown in Fig. 6-4.

(3) Capacity of the Transmission System:

This section will deal with a hydraulic study of the transmission system which will transmit water from Bang Khen water treatment plant to 13 service reservoirs in the community in order to fill the demands of both the central and separate systems.

This hydraulic study assumes two cases: (A) and (B). In Case(A) the demands of both the central and separate systems will be filled, while in Case(B) the demand filled by wells in the service area of the separate system will be omitted.

For Case(A)the transmission system only in 2000 will be considered, whereas for Case(B)the hydraulic study will cover the transmission system in each stage of construction.

The hydraulic study is based upon assumptions as follows:

- 1) The pipe sizes and route lengths shown in the detail design will be adopted in the first stage.
- 2) In the second and subsequent stages, pipelines will be laid according to the master plan, except that the route leading to Yannava will be branched off at Lumpini Park.
- 3) In the second and subsequent stages, the pipe sizes shown in the master plan will be employed for the loop, but pipes 2.0 m in diameter will be used in all the branches in accord with the detail design.
- 4) The amount of water which each service reservoir will receive, will be decided in accord with the master plan. (See Table 6-5.)

The transmission route from Bang Khen treatment plant to each service reservoir is indicated in Fig.6-5, and the results of the hydraulic study of the transmission system are shown in Figs. 6-6 through 6-11.

(4) Capacity of the Service Reservoir:

The capacity of the service reservoir of central system was in principle decided to be $10\ \%$ of the daily maximum water demand.

In the master plan, the service reservoirs of central system are arranged so that each service reservoir can receive about 300,000 to 400,000 CMD of water. Accordingly, all but Pak Bo service reservoir with a capacity of 50,000 m³ are planned to receive 40,000 m³. But, when the water demand on the separate system is also taken into account, capacity of Sam Rong service reservoir needs to be increased from 40,000 CMD to 50,000 CMD.

However, expansion of Samrong service reservoir seems not necessary since installation of service reservoir for each Amphoe and adjacent development area are planed in their proposed served area.

(5) Method of Transmission to the Separate System:

Transmission of water from the central system to the separate system is planned to be accomplished by a newly built pumping facility. It is desirable that this pumping facility is planned as a part of that of the central system and is located in the premises of the service reservoir. If none of the site of service reservoirs can afford land for the pumping facility, a independent pumping station for separate system will have to be built near one of the service reservoirs of central system.

Prior to the completion of the 2nd stage construction of the central system, and in case the water transmission to the separate system on the left bank area is provided by independent transmission main systems from Klong Toey reservoir to Pak Bo and Samrong reservoirs, to meet water demands for years 1984 and 2000, the construction cost of these transmission main systems are estimated as $145 \times 10^6 \, \text{K}$ and $244 \times 10^6 \, \text{K}$, respectively.

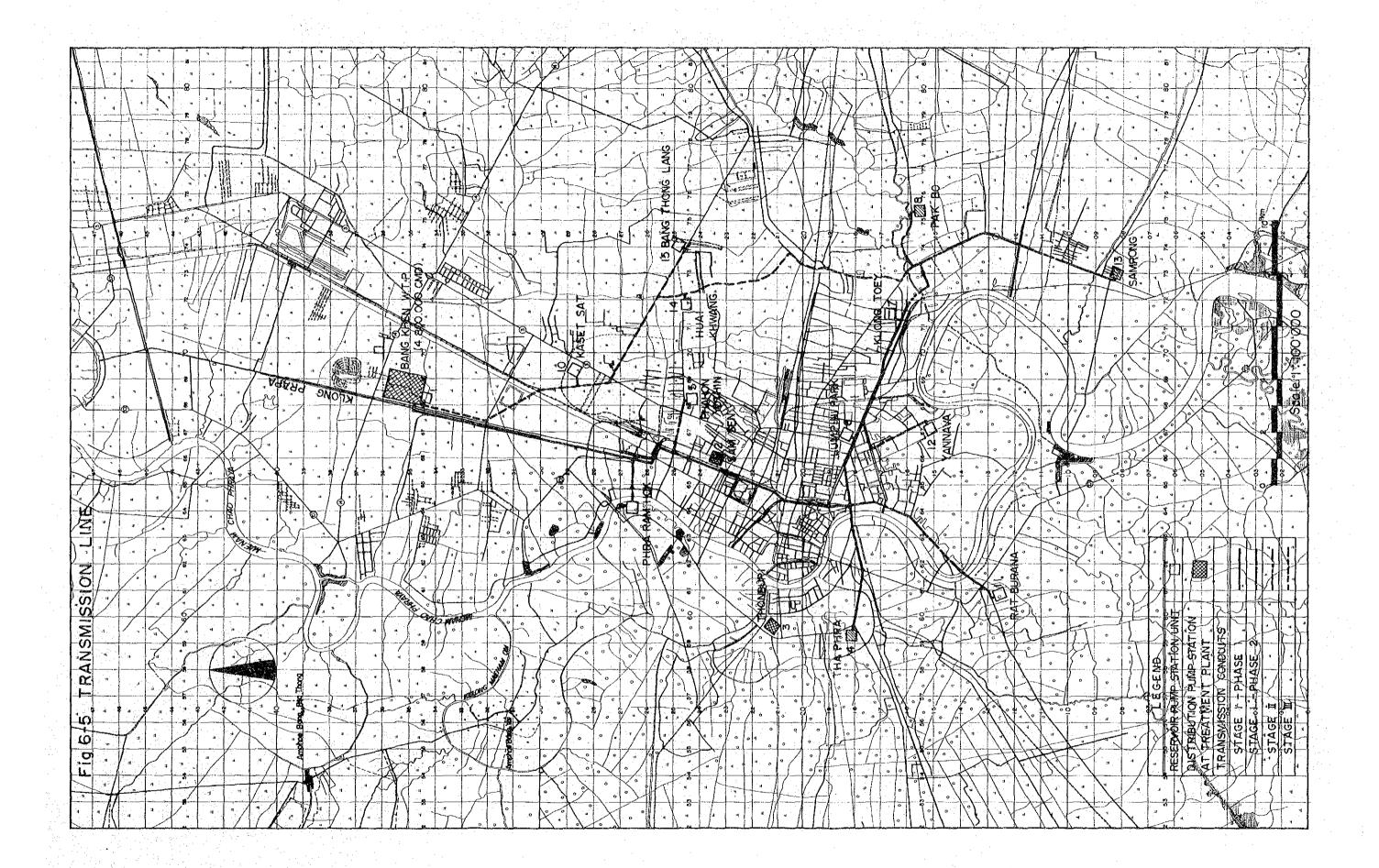


Fig. 6-6 1st. STAGE - PHASE 2 (1981 AD)

Flow Coefficient: C = 110 Capacity 1,200 (1,000 CMD)

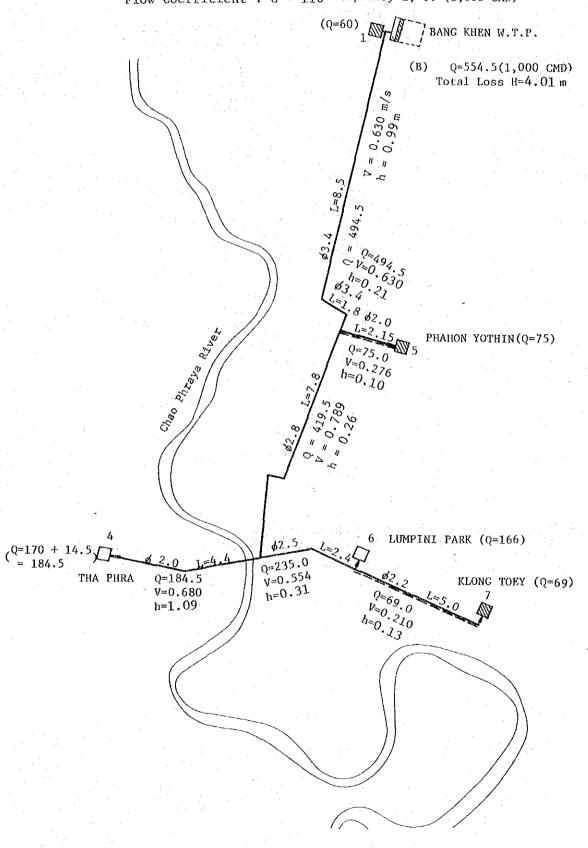
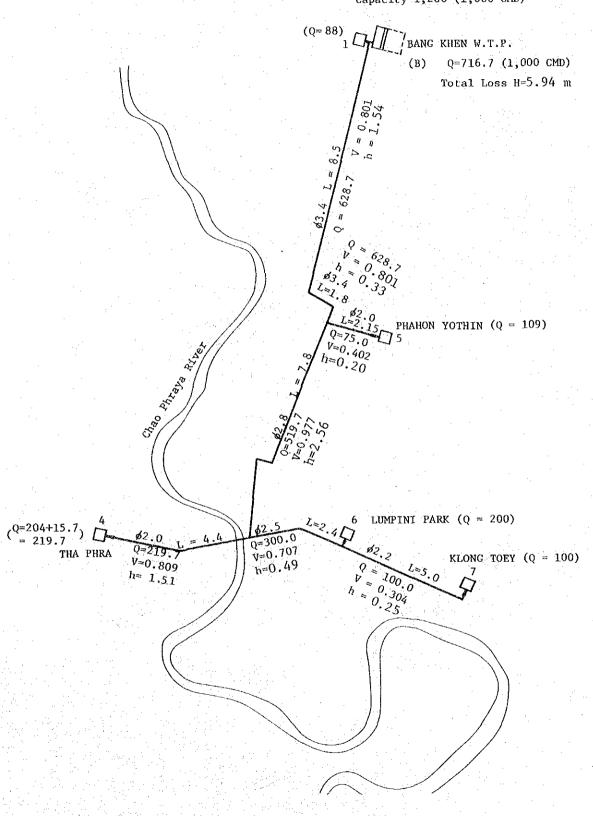



Fig. 6-7 lst. STAGE - PHASE 2 (1982 AD)

Capacity 1,200 (1,000 CMD)

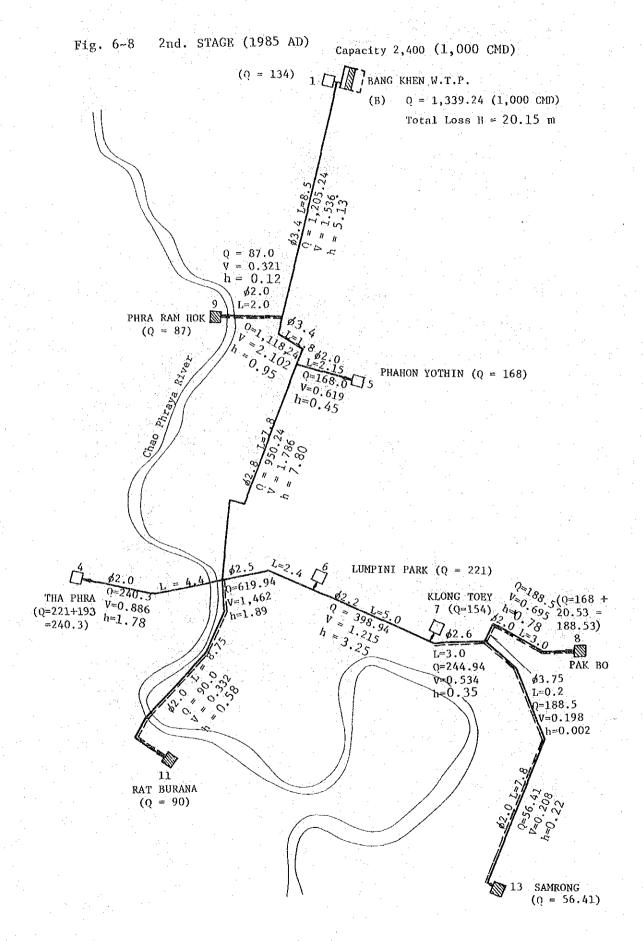
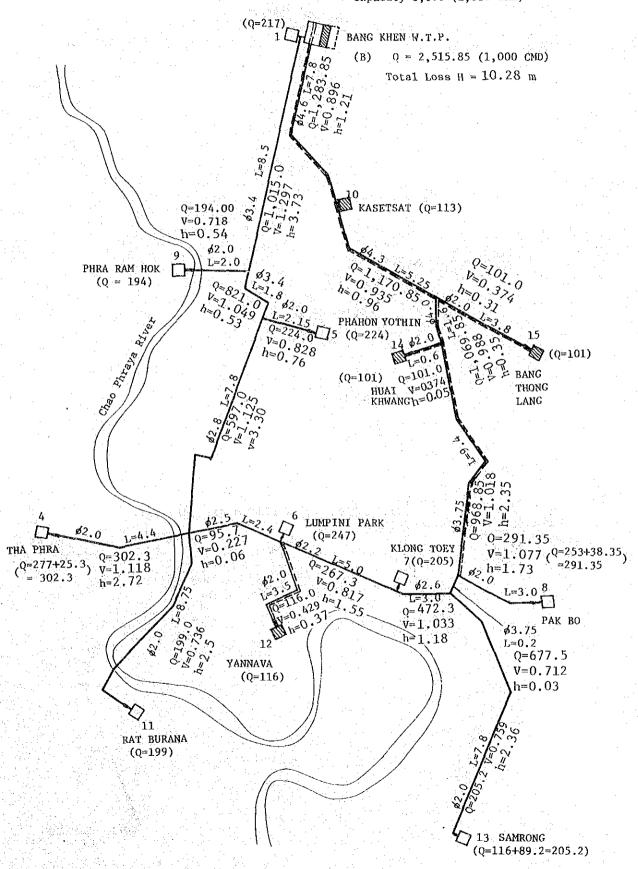
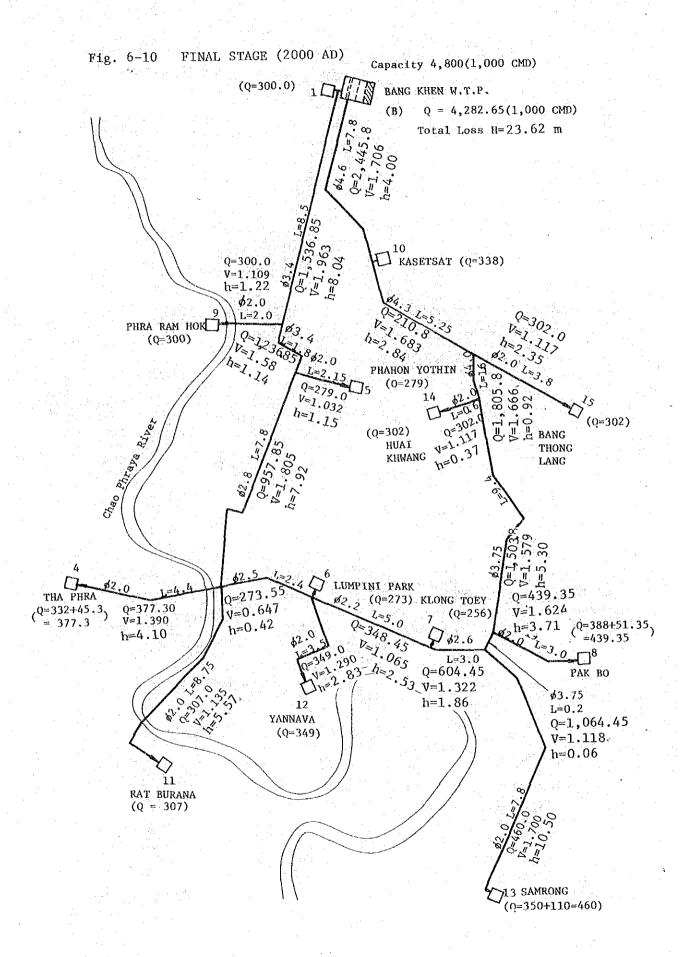
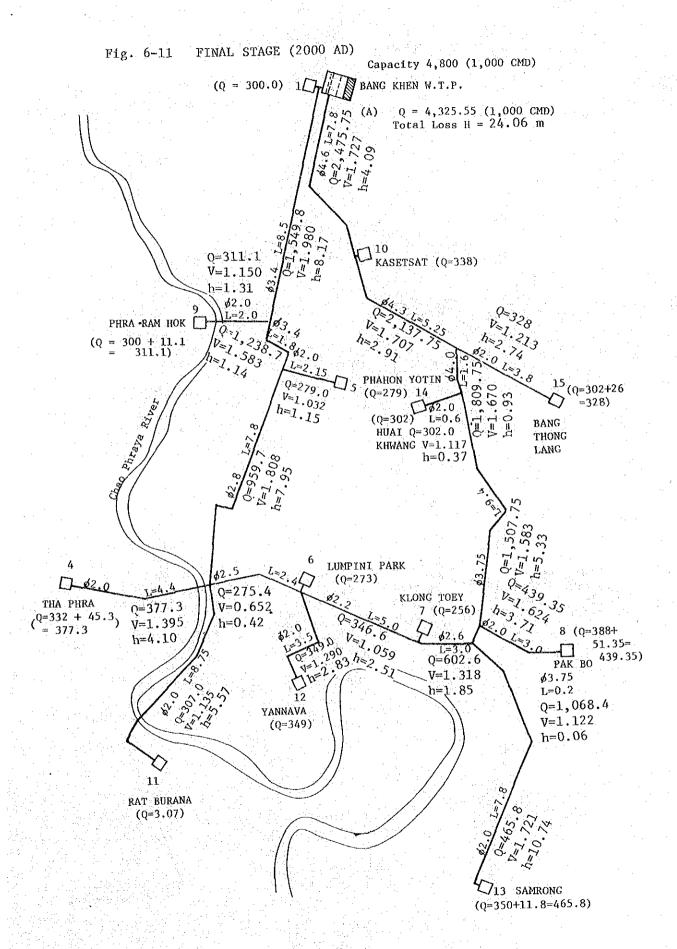





Fig. 6-9 3rd. STAGE (1990 AD) Capacity 3,600 (1,000 CMD)

6-4 Discussion

CDM, who prepared the master plan of the Bangkok water supply project, planned the separate system independently of the central system. However, as time went on, the separate system including the housing and industrial projects acquired increasing importance until its water demand could no longer be met by using groundwater alone. As a result, the diversion of water from the central system was planned; the notable aspect of this plan being the fact that the project was promoted by MWWA and at its own discretion.

To review the plan of the central system and modify part of it to suit the convenience of the separate system, it might threaten to be criticized as loss of identity for the engineering. An effort to find other water sources might be rewardable if MWWA planned a water supply project for one hundred years hence; but, the problem of an alternative water source cannot possibly be solved in the foreseeable future, save the singular possibility that a project of finding a new water source is undertaken on a national level.

As recommended under Chapter 2, the study of the feasibility, scale and time of diverting water from the central system should be commenced immediately. Furthermore, it is most desirable that experts in principle lead the study in accordance with the procedures set forth in Sec. 2-4-3.