Table 7.2.1

* SYSTEM - G * JATER PFQUIREMENTS IN MILLIÓN CUBIC METERS * IPPIGATION ARFA; 6000 HA. (EXISTING AREA)

MFAN							19																					19		8	
TOTAL	-3	∞	0	œ	0	~		Ò	~	\sim	Ò	0	-	œ	0	œ	0	~	~	•	O	0	•	M	4	~	N.	228	-	211	
DFC	12	-\$	7	Ŋ	7	13	-3	7	^	4			٥	4	12			<u>*</u>			•	0	œ	7	4	оc	•	^	190		
NON	14	M	12			17	M	M			M	ĸ	12		-		~	M	•	15	~	15	M	•	21		•	9	231		
OC'T							23					17				10		•		12					54					16	
SEP							23																							52	
A U G							27																					22		56	
ากเ	19	19	19	-	19	19	19								=															18	
NUC							23																							23	
A Α ≻							56																							22	
A P R	27	•	16	~	_		23			21				• -	17			•	•	_	•	-			17		. •		-	19	
Σ α α	15																											21		1	
FEB							-15																					τ α		-	
JAN	15	-	4	~	4		14																					17	335	•	
YFAR	9 5	95	95	95	95	95	1956	95	95	9.5	96	96	96	96	ዓ የ	96	96	ç.	96	9.6	6	6	6	6	97	6	6	6		A A	

Table 7.2.2

* GIRITALE TANK * WATER REGUIRFMENTS IN MILLION CUBIC METERS * IRRIGATION AREA; 3000 HA. (EXISTING ARFA)

Z E A N	αc	~	œ	2	0 0	œ	œ	2	6 0	7	•	•0	œ	√ C	œ	9	2	~	œ	2	2	οc	~	œ	٥	~	œ	6 0	202	
TOTAL				82																										
DEC	æ	œ	œ	₩	M	œ	S	2	~	Ŋ	10	~:	~	~	ው	~	~	~	~	2	M	~	7	2	2	۸.	~	~	126	
V 0 V	40	•	~	•	7	~	*1	•	10	2	•	~	īυ	-	GC.	-	-	-	S	~ 7	1	œ	•	0-	œ	'n	~	-	111	3
0 C T	'n	•	7	0	₩ì	•	_	~1	~	C	m	_	7	ĸ	M	c	0	0	~	C	•	•	0	- 3	7	~	9	0	sc ∞	M
SEP	2	•	0	-	M	•	M	7	~	~	c	MJ	c	0	2	M	c	-	0	C	~	ŀΩ	0	•	-	0	M	0	30	
AUG	-	13		12	13	-	<u>*</u>	13	σ	13	13	13	=	13	13	c	12	13	-	12	11	12	13	13	13	12	13	13		12
106	16	16	4	10	14	16	16	15	16	16	12	16	16	14	14	16	16	15	₹	14					16				418	15
A D C	15	15	15	15	15	15	14	15	15	7	15	15	15	15	15	15	7	15	15	15	15	15	15	14	15	15	15	15	417	15
¥∀	œ	~	0	11	=	10	=	OC.	10	œ	'n	10	10	-	вC	'n	1.	10	=	=	0-	œ	~	10	2	oc	=	=	256	
APR	7	C	-	0	0	C	2	m	M	•	0	-	2	-	7	0	~	~	M	C	0	0	-	- 7	~	c	C	4	0 7	-
Z Z	2	40	·c	•	~	•	·c	·c	7	9	æ	M	Ŋ	2	7	•	~	.	~1	•	æ	9	•	€	æ	~	¢	° C	140	'n
FER	-			12						13					10					12					12				298	
Z V T	<u>-</u>	m	~ ~	•	√	ç	0	10	~	эc.	2	M	аC	~		-	οc	15	Φ.	-					₹		15		222	oc.
YFAR		9	95		5	φ 2	95	9	95	9.5	ф Э	9	9	96	96	9	9	9	9	96	4	6	6	6	97	6	6	6	IOTAL	EAZ

Table 7.2.3

* MINNERIYA TANK * WATER RFQUIRFMENTS IN MILLIÓN CURIC METERS * IRRIGATION APEA; 9500 HA. (EXISTING AREA)

MEAN					23																									7 1	
TOTAL	C	•	O.	Ş	272	O	Ò	Ø	œ	~	2	₩3	0	₩,	0	-3	Ó	\sim	O.	¢	~	œ	\sim	Q.	•	Ó	0	/	•	- r	~
DEC			54		~									~		7			21				12		~	~	~	~			-
> 0 N	8.				21				17	ĸ	M	9 0	16		52		M	M		=					52		~	m) (
0 C T		17		c	٥	4		αc	14		Φ.	~		7		c	0	C	œ	C						21				- (
SEP	~	~	C	.	Φ	2	0	•	•	•	0	9 0	0	0	9	٥	0	4	0	0	•	0	C	~	₩;	0	œ	0	106		4
AUG					07																										
JUL					77																										
Nin					97																										
# A Y					5.3																									. 1	
A G A	12	-	- 7	c	0	C	2 0	c	٥	7	0	~	~	4	-	C	2	œ	Φ.	<u>-</u>	c	c	~	-	2	0	0	12	121		. ‡
M A Q	Œ				~																							17	6 2 7	٠,	
FEB					39																									- 1	\$ \$
N A N	3.0	0			17																										
YEAR	56	95	95	9.5		95	95	95	95	95	9.4	96	9	95	96	96	96	9,4	9	9	6	6	6	6	67	97	6	26	-		4

Table 7.2.4

* KAHDULLA TANK

* WATER PECUTRFRENTS IN MILLION CUBIC METERS

* IMPIGATION AREA; 5500 HA.

(Existing Area)

MEAN	15	13	7 [1 5	13	14	15	13	14	14	-	12	7	-	15	12	13	14	15	- -	13	14	13	15	16	13	15	14	38 18	14
TOTAL								155			М	~	~	~	OC.	-7	3	₹	~		5	ø	ĸ	~	ОC	\$	Œ	•	-7	162
DEC	15	14	14	-3	7	14	<u>о</u> -	.	12	6	~ _ ∝	-3	1>	7	16	7	12	•	12	• •	÷¢	7	~	-\$	-\$	•	7	4	226	
> 0 N	-	~		-			·c	~	10		~	'n	10		15	2	~	7	Φ	•	æ	14	7		15	o	-3	2	202	
0 C T		0	σC	C	Ŋ	11	7	2	οc	C	50	~	2 .		~	0	0	0	ĸ	C		0	O	~		12		c	155	•
SEP	7	•	c	~	S	-	Ş	7	- 7	7	0	S	0	0	₩	S	c	<i>ح</i> د	0	c	-3	5	C	•	~	c	~	C	63	~
A 11 G								5 2																						2.2
ገብ ና								27																						2.2
NO f								22																						22
¥.	14			20				15	17		6				15					0.2										12
APR	~	-	M	O	C		4	·c	Š	~	C	~:	~	~	~	C	_	~	Ś	C	C	0	7	æ	₩.	C	c	~	7.1	M
2 A A	7							12																					559	
FFR	20																													19
NAU	17	~	.	٦٧	10	10	4	4	12	15	C.	'n	7 -	S	17	Ş	15	5.2	17	2	α <u>τ</u>	~	5	53	73	17	53	20	425	~
7 F A R	1.950	\$	95	95	9	95	95	9	95	95	9	9	96	ዓ የ	9	Ş	Ç.	46	\$	ŝ	6	6	6	97	6	6	6	6	TOTAL	¥ 4

Table 7.2.5

* KANTALAI TAUK * WATER REGHIRENENTS IN MILLION CUBIC METERS (PAPDY + HPLAND + SHGAK) * [RPIGATION AREA ; 14300 HA. (FXISTING AREA)

HEAN																												33		34
TOTAL	₩-	OC.	ç	O-	~	~7	O-	O.	\sim	0	\sim	÷	\sim	*	₩7	_	Š	0	O-	~	O	\sim	\sim	-	\sim	Œ	S	391	5	
DEC					5																52	ις	K -		a 0	31		7 (16
N 0 V	10	-3			28			~	30		2		21		19	2	2	~	2						₹			72		13
0.0					14					13						•	0	Ó	59			31			47					17
SEP					3.5																									92
AUG					7.7																									
JUL					77																									09
NOT					44																									
⊁ ∀ ¥					20																									27
APR	32	æ	7		10			3.3							77		~			-,					12					16
M A R	α				23																									78
FFB	0.7	\$	50	57	5 7	æ~	4.6	3.0	4.2	52	12	32	7	73	20	15	47	33	5.4	3.1	7	53	∝ •	50	2 7	5	75	30		07
4 4 4	43	~			10												15												ช∪ ช	2
YFAR	95	2,5	Ş	5	1954	95	95	95	Ş	٠ د	φ Α	9	Š	9	9	9	Ġ.	¢ O	96	Š	6	6	6	<u>ر</u>	6	6	6	<u>~</u>	TOTAL	Α Α

Table 7.2.6

* DARAKPATA SAWDRA TANK * WATER PFOUTREMENTS IN WILLION CUBIC METERS * TRPIGATION ARFA ; 10100 HA.

MEAN																												212	-		54
TOTAL	-3	α	O.	ç	OC.	-	0	~	9	C	\sim	5	-	-7	-	S	~	C	^	_	5	÷	0	ø	-3	*	C	242	•	† 	282
DEC			71		αc		14		æ			эc			2×		-		23		12	œ	οc	αC	20		œ	œ	0		14
NO V	22					53		M	17	·c	13	v		~			M	₩	φ.	8 Z	~	22		~1		=		m	r		12
100		21		~	σc	נ		10					Ξ		10		С	~	Φ.	_	¢	œ	c	۰	52		15	~	870		Φ.
SEP	σ.	C	-	c	10	0	c	٥	Φ.	0	œ	٥.	c	Ó	~	10	~	٥-	6	٥	œ	10	0	C	c	10	-	0	152		s.
AUG									31																						
J !) L									75																						
MAIL									2.0																						
¥ ∀									32																				er er		25
APR	1.3	.~	₩-	c	ĸ	₩	~	0-	æ	·c	c	J	¢	C	æ	c	C	^	•	c	c	c	~	۲,	-	C	10		,		J
α •									14																			10	287	•	
ਜ ብ ፎ	4 0								34																					- 1	
Z 4 7	32								76																				733	r	
YEAR	56	٠ <u>٠</u>	S.	5	ر د	5	95	95	1958	5	94	ς	9	9	9	9	9	9	ሪ የ	96	<u>~</u>	6	^	6	<u>ر</u>	6	7	~ 6	TOTAL		4

Table 7.2.7 Irrigation Water Deficit Without Dam Condition (Irrigable area 48,300 ha)

Million cu-m YALA SEASON MAHA SEASON YEAR <u> IR /*</u> Deficit % of Deficit IR Deficit % of Deficit 1950 935 12.9 120.46 560 1951 864 56.14 6.5 519 1952 897 33.84 3.8 641 1953 826 301.27 36.5 433 1954 906 6.1 55.46 498 1955 792 0.28 0.4 753 1956 934 440.12 47.1 492 1957 947 404 123.75 13.1 1958 901 , - 673 1959 905 84.91 9.4 340 1960 789 _ _ 459 1961 964 71.81 7.4 453 3.0 0.7 1962 903 7.45 0.8 441 1963 885 41.26 4.7 443 1964 913 73.16 8.0 641 11.41 1.8 1965 788 _ 399 1966 882 67.15 7.6 547 1967 968 79.57 8.2 435 941 1968 123.79 13.2 617 1969 856 43.59 5.1 414 1970 867 547 1971 856 710 1972 872 157.67 18.1 565 1973 26.9 47.56 7.2 827 222.18 661 10.2 1974 874 285.15 32.6 718 73.04 29.0 857 6.72 1.0 1975 248.44 678 47.8 1976 888 424.54 578 1977 905 83.79 9.3 24,742 1,461.9 141.73 Total 3,145.78 883.6 112.3 12.7 522.1 5.2 Average

^{/*} IR: Irrigation Requirements

Table 7.2.8

* SYSTEM — G * WATER REGUIRFMENTS IN MILLION CUBIC METERS * IRRIGATION AREA; 6000 HA. (EXISTING AREA)

MEAN	20	15	17	16	16		4					17			17	15	17	ec ec	19	~	16					19		10		د
TOTAL	J	Œ	\sim	188	0	\sim	~	O.	^	~	O-	0	•	Œ	C	œ	C	\sim	N	-	0	0	•	M	4	~	m	2	-	211
DFC	12	. 3	-3*	~	7	13	7	4	2	-	7	-7	6	7	12	4	=	~	15	-5	•	0	œ	7	7	œ	•	~	190	
> 0 N	16	₩I	15	7		17		M	15		M	M	12		16		7	M	\$	15	~	15	₩ĵ	9	21	œ	•	•	231	
0 C T				10								17			О-	10			<u>+</u> .				√ C			54				16
SEP				52																										52
AUG				22																										56
711	19	19		€.																										~ −
N O O				23																										23
¥ ¥				50																										2.2
APR	2.2	21	\$			16			54	21	~	23	12	~	17	13		<u>6</u>	\$ 2	20	21	16	12	22	17	25	د	2.2	_	19
A R	15			10											71															4
FEB		10		13						-					12											14			316	
7 × √	15	-	4	~	7					Ú 2		10		4		<u>~</u>										<u>√</u>			335	
YFAR	95	95	95	1953	95	95	₹	95	Q 2	95	96	9 6	9	9	9	96	ن م	9	9 6	96	6	6	6	6	26	6	6	6		F A N

Table 7.2.9

* GIRITALF TANK * WATER REDUIREMENTS IN MILLION CUBIC METERS * IPRIGATION ARFA; 3000 HA.

MEAN	oC	7	σC	~	~	∞	œ	~	æ	σc	•	•	0 0	9	œ	·c	~	Ø	œ	~	~	œ	~	σ0	Φ.	~	80	œ	208	
TOTAL	86	85	93	A C	oc oc	96	26	85	91	90	7.0	9.2	76	7.4	98	2.2	ጽ	90	96	85	87	6	& &	95	102	80	26	0.6		
DEC	œ	æ.	αC	~	2	œ	Ŋ	~	~	Ś	10	~	~	~	٥	~	~	~	~	~	M	~	4	2	~	~	2	~	124	
> 0 N	•	•	~	•	~	~	M	-	īv	~	_	M	۲C	-	œ	•	_	•	ĸ	M	m	œ	•	0	∞	-3	~	_	110	4
0.0	5	S	4	0	~	•9	-	~	. ‡	c	M	 -	•	7	M	0	0	0	2	0	•0	Ŋ	0	-3	~	•	S	0	79	
SEP	M	•	0	~	-3	-	Ţ	~	IA)	M	C	M	0	0	2	7	C	~	0	0	M	•	0	-	-	0	m	0	2.4	2
AUG	10	1.3	13	=	13	-	13	13	œ	13	13	13	=	13	13	10	12	13	-	12	10	12	13	43	13	-	12	13		15
J11.	15	15	15	аc	13	16	16	14	15	15	10	15	16	13	12	15	15	16	16	12	16	15	16	©	16	Φ.	15	14		14
NOF	15	15	15	7.	15	15	13	15	15	14	15	15	15	15	15	15	15	15	15	15	14	15	15	13	15	15	15	15	414	15
Α Α ≻	^	9	σc		-			οc	o	œ	7		10		œ	-3		0		-	с ъ	αc	~	Ç	æ	~	-		248	
A C7 R3	r.	•	~	c	0	0	~	7	4	~	c	•	~	2	℃	0	•	~	7	0	0	c	•	寸	2	0	0	S.	53	2
E A R	M	¢	·c	~	~	•	~	7	7	~	ç	~	~	~	4	~	~	~	M	~	•	c	7	¢	~	S	~	•	150	~
E E								•		13			-	æ	0,	σc	13	-	13	12	~					-			298	-
A A N	0.	~	~	æ	√ C	¢	ο.	10	2	œ	ur.	ኮ ግ	Œ	ν.	٥.	•		12		-				13		0-	12		233	
YEAR	95	5	95	95	9	95	95	95	95	95	96	9	96	9	1966	96	96	96	9	96	6	6	6	26	67	6	6	6	_	N A I

Table 7.2.10

* MINNERIYA TANK * WATER PEOUIRFMENTS IN MILLION CUBIC METERS * IRRIGATION ARFA; 9300 HA. < EXISTING AREA)

Z K K																												23		M (2)
TOTAL	C	-3	άC.	-3	~	O.	Q.	S	œ	\sim	•	M	a¢.	2	C	M	Ó	\sim	0	•	C	Œ	ø	O-	•	C	S	275	σC	271
DEC		-			2										5 8						10	~	12	~	^	~	^	2		13
× 0 ×									10		2				52		2		15						25	•	14	~		12
0 C T		4.6		C	oc.	<u> </u>		~	13		œ	~		F	∞	0	c	c	~	0		16			22			0	248	
SEP	αC	₩	0	•	12	~	12	οC	œ	œ	0	10	0	0	~	12	0	2	C	0	œ.	-	0	۲	7	1,	c	0	138	
AUG															0 7															
30L															8C M															
NO.															4.6															
¥ A ¥															54															27
A C A	15	~	·c	c	c	0		12		\$	0	∢†	~	~	7 (c	m	10		-	0	0	_	13	7	-	C	15	157	
I 4 R																												17		16
8 4 4															3.0															33
A A	3.0	0	0	20	17	€	27	35	20	92	16	0	57	¢.	٥ <u>٠</u>	33	92	₩ ,	5 %	34	30	7	35	3,9	39	ac M	٥ د	34	719	\sim
YEAR		95	95	9.5	9	95	95	95	95	95	96	96	96	9		9	96	9	9	9	67	~	6	97	6	6	6	4		A N

Table 7.2.11

* KAUDULLA TANK * WATER REQUIPPEMENTS IN MILLION CUBIC METERS * IRRIGATION ARFA; 14600 HA. < INCLUDING EXTFNSION AREA)

MEAN																												3.6		× ×
TOTAL	\$	0	M	S	4	N	~	C	~	*	S	•	-#	5	4	Ý	4	M	S	-	•	M	N	Ś	∞	0	~	431	7	423
0 E C									33																	11		=		22
N 0 V	88						15				•0		52		38		-3	7			15				39			3		4 60
007		25				77			20			5			13		0	· c	-			52			34			0		
SFP	13		M		4				13			0		0		9		٥	0	0		17		S	~	-	16	0	235	
AUG									7 0																					
706									7.4																					
N C F									22																					
Σ A									77																					
A G	1.5		15	0	C	0		19	17	ው	M	œ	ć,		22		Ŋ		17	•	c	c	~		10	-		5.4	242	
A A									19																			2.2		25
8									67																					
N A L	97								3.2																					
YEAR	95	95	95	95	95	95	95	95	1958	95	96	96	96	9	9	96	9	96	96	96	6	97	6	97	0.7	6	6	97	10	MEAN

Table 7.2.12

* KANTALAI TANK

* WATER RFQUIRFWFNTS IN MILLION CUBIC METERS

(PADDY + HPLAND + SUGAR)

* IRRIGATION AREA; 17000 HA.

(INCLUBING EXTENSION AREA)

MEAN																												30		
TOTAL	\sim	S	-3	S	Ŷ	-	~	~	0	¢	-3	P	C	C	N	~	~		~	M	¢	0	4	0	Ó	V	~	797	~	478
DEC						32												вc					22			3.7		~		20
NO N	13					27		M	36		M	M	25		33		M	M		17					0 7					17
001						31		c			59					-	c	*	3.3			34		0	53					20
SEP																		32												22
AUG																		55												5.8
JUL																		₽											1950	2.0
JUN																		77												
¥ ×	23																	ς. ας												20
APR	39	~	œ	0	12	c	œ.	0 7	œ.	20	0	31	18	~	32	_		23											538	-
A A	43																	7 7											1097	~
F. B.	20	7 7	5	5.5	56	37	22	3 8	25	63	17	41	26	31	٨1	21	2.5	7 7	6.5	0 7	62	74	29	\$ 6	57	42	65	32	1371	7
Z ₹	53	0																62											1015	M
YEAR	1950	9	95	9	95	95	9	95	95	95	96	96	96	9	96	9	96	Ý	96	96	6	6	6	6	6	6	20	6	TOTAL	ΕA

Table 7.2.13

* PAPAKRAMA SAMBRA TANK * WATER REQUIPFYFRTS IN MILLION CURIC MFTERS * IRRIGATION APFA ; 12300 HA. < INCLUDING FXTENSION AREA)

F A																						92						77		62
TOTAL	*	-3	5	-	-3	~	r ~	M	5	\sim	~ 3	0	∞	D,	~	O	M	^	¢	~	O.	•	S	-	2	\sim	Ó	584	-3	345
DEC		~			0	30		٥				φ.						œ			14	0	۰	0	25		٥	٥		17
> 0 ×		m						M							56					34		25	M	M		13	M	m		13
0 C T		77			о¢	12	\$	-							22		0	~	٥	-	•	œ	0		58		17	2		10
SEP	16	0	M	0	9			15						0								16		0	0	16		0	544	
A U.G																						4								
1 0 f																						77						7 7		
N O C																						61								
⊁ ∀ ¥																						77							1073	M)
A D A	17	-3	~	С	œ	ĸ	Φ		12		c	~	C.	C	12	c	0		.	c	C	-	•	æ.	M	0	15	0	174	•
X A R	ا																					-							531	
7 7	67																					₹7							1109	-3
NAU	3.9																												891	PC
YFAR	9.5	٠ 5	9.5	Ş	9	95	95	9.5	95	95	9	9	9	9	9	96	9.6	96	96	9	6	1971	6	6	26	6	6	26	TOTAL	FAN

Table 7.2.14 Irrigation Water Deficit With Dam Condition (Irrigable area 62,200 ha, irrigation purpose only, without Kotmale)

Million cu-m

	·	VATA CD400				Million cu-m
YEAR	IR <u>/*</u>	YALA SEASON			MAHA SEAS	
		Deficit	% of Defici		Deficit	% of Deficit
1950	1,184	-		725	-	
1951	1,096	-		669	-	
1952	1,131	-		826	-	
1953	984	263.99	26.8	561	-	
1954	1,199	-	A	647	-	
1955	991	-		959	-	
1956	1,208	444.11	36.8	637	-	
1957	1,208	330.66	27.4	525	-	
1958	1,143	-		868	-	
1959	163, از	_		436	-	
1960	1,008	-		586	-	
1961	1,195	-		593	-	
1962	1,149	-		568	-	
1963	1,122	-		575	-	
1964	1,159	-		850	-	
1965	995	-		519	-	
1966	1,124	_		709	-	
1967	1,242	-		579	-	
1968	1,203	-		802	-	
1969	1,082	-		546	-	
1970	1,089	-		702	-	
1971	1,085	_		910	-	
1972	1,109	-		726	_	
1973	1,036	39.02	3.8	868	48.39	5.6
1974	1,112	485.22	43.6	915	220.2	24.1
1975	1,054	396.43	37.6	874	0.88	0.1
1976	1,133	510.60	45.1	733	_	
1977	1,150	5.66	0.5		-	
Total	31,354	2,475.69		18,908	269.47	
Average	1,119.8	88.4	7.9	700.3	10.0	1.4

/* IR: Irrigation Requirements

Table 7.2.15 Summary of Water Balance Studies

1.	Case	Case a	Case b	Case c
2.	H.W.L.	MSL 200 m	MSL 195 m	MSL 188 m
3.	L.W.L.	MSL 175 m	MSL 170 m	MSL 154 m
4.	Total Capacity	1,110 million cu-m	900 million cu-m	658 million cu-m
5.	Effective Capacity	802 million cu-m	686 million cu-m	618 million cu-m
6.	Irrigable Area	62,200 ha	62,200 ha	62,200 ha
7.	Firm Power Potential	10 MW	6 MW	0
8.	Average Annual Power Output Installed Capacity			
	66 MV	183.0 GWH	- GWH	- GWH
	50 MW	179.7	-	_
	45 MW	178.5	-	_
	40 MW	176.9	159.6	_
	35 MW	174.7	157.7	
	30 MW	170.8	154.7	-
	25 MW	162.2	148.9	_
	20 MW	144.3	135.4	_
	22 MW			104.4*
9.	Average Reservoir			
•	Water Level	MSL 190.60 m	MSL, 184.77 m	MSL 173.77 m

^{*} Generated under reservoir water level higher than MSL]65 m, and potential below this water level not counted because of limitation of turbine design.

Table 7.2.16 Results of Reservoir Operation Study When Impounding, Satisfying the Water Requirement from Existing Farm Land of 40,000 ha under the Project

No.	Commencement of storage	Time necessary up to L.W.L. (Month)	Reached at L.W.L.	Time necessary up to H.W.L. (Month)	Reached at H.W.L.
1	Oct. 1950	3	Jan. 1951	15	Jan. 1952
2	Oct. 1951	2	Dec. 1951	30	Apr. 1954
3	Oct. 1952	16	Jan. 1954	26	Jan. 1955
4	Oct. 1953	3	Jan. 1954	14	Dec. 1954
5	Oct. 1954	2	Dec. 1954	6	Apr. 1955
6	Oct. 1955	25	Nov. 1957	27	Jan. 1958
7	Oct. 1956	13	Nov. 1957	15	Jan. 1958
8	Oct. 1957	1	Nov. 1957	3	Jan. 1958
9	Oct. 1958	13	Nov. 1959	16	Feb. 1960
10	Oct. 1959	1	Nov. 1959	4	Feb. 1960
11	Oct. 1960	1	Nov. 1960	3	Jan. 1962
12	Oct. 1961	2	Dec. 1961	14	Dec. 1962
13	Oct. 1962	2	Dec. 1962	6	Apr. 1963
14	Oct. 1963	2	Dec. 1963	5	Mar. 1964
15	Oct. 1964	11	Oct. 1965	14	Jan. 1966
16	Oct. 1965	1	Nov. 1965	13	Nov. 1966
17	Oct. 1966	1	Nov. 1966	14	Dec. 1967
18	Oct. 1967	1	Nov. 1967	14	Dec. 1968
19	Oct. 1968	2	Dec. 1968	15	Jan. 1970
20	Oct. 1969	2	Dec. 1969	4	Feb. 1970
21	Oct. 1970	2	Dec. 1970	12	Oct. 1971
22	Oct. 1971	2	Dec. 1971	73	Oct. 1977
23	Oct. 1972	1	Nov. 1972	59	Oct. 1977
24	Oct. 1973	25	Dec. 1975	47	Oct. 1977
25	Oct. 1974	13	Dec. 1975	35	Oct. 1977
26	Oct. 1975	2	Dec. 1975	25	Oct. 1977
27	Oct. 1976	1	Nov. 1976	13	Nov. 1977
	Total	150		522	
	Меап	5.5		19.3	

Table 7.2.17 Results of Reservoir Operation Study when Impounding, Satisfying the Water Requirements from Beneficial Area of 62,200 ha under the Project

N.	Commencement	Time necessary	Reached	Time necessary	
No.	of storage	up to L.W.L. (Month)	at L.W.L.	up to H.W.L. (Month)	at H.W.L.
		(200,022)		(100,00)	
1	Oct. 1950	3	Jan. 1951	51	Jan. 1955
2	Oct. 1951	2	Dec. 1951	39	Jan. 1955
3	Oct. 1952	16	Jan. 1954	31	Apr. 1955
4	Oct. 1953	3	Jan. 1954	18	Mar. 1955
5	Oct. 1954	2	Dec. 1954	39	Dec. 1957
6	Oct. 1955	25	Nov. 1957	28	Jan. 1958
7	Oct. 1956	13	Nov. 1957	16	Jan. 1958
8	Oct. 1957	1	Nov. 1957	4	Jan. 1958
9	Oct. 1958	13	Nov. 1959	17	Feb. 1960
10	Oct. 1959	1	Nov. 1959	5	Feb. 1960
11	Oct. 1960	1	Nov. 1960	28	Jan. 1963
12	Oct. 1961	2	Dec. 1961	16	Jan. 1963
13	Oct. 1962	2	Dec. 1962	7	Apr. 1963
14	Oct. 1963	2	Dec. 1963	28	Jan. 1966
15	Oct. 1964	13	Nov. 1965	39	Dec. 1967
16	Oct. 1965	1	Nov. 1965	27	Dec. 1967
17	Oct. 1966	1	Nov. 1966	40	Jan, 1970
18	Oct. 1967	1	Nov. 1967	28	Jan. 1970
19	Oct. 1968	2	Dec. 1968	16	Jan. 1970
20	Oct. 1969	2	Dec. 1969	5	Feb. 1970
21	Oct. 1970	2	Dec. 1970	12	Dec. 1971
22	Oct. 1971	2	Dec. 1971	74	Nov. 1977
23	Oct. 1972	1	Nov. 1972	62	Nov. 1977
24	Oct. 1973	25	Dec. 1975	50	Nov. 1977
25	Oct. 1974	13	Dec. 1975	38	Nov. 1977
26	Oct. 1975	2	Dec. 1975	26	Nov. 1977
27	Oct. 1976	1	Nov. 1976	14	Nov. 1977
	Total	152		758	
	Mean	5.6		28	

Irrigation Dam and Power Schemes taken up in Optimal Scale Study Table 7.3.1

Description	Scheme No.	- ;	2	e	7	ĸ	9
H.W.L. elevation L.W.L. elevation Effective capacity	(m) (mcm)		188 154 606		195 170 686	2 1 8	200 175 802
Dam crest elevation First saddle dam Main and 2nd Saddle dams	(m)		190.7		197.5 199.0	2	202.5 204.0
Power installation Nos. of unit-unit capacity(MM) Available power	capacity (MW)	None	1 - 22.5	1 – 26	2 - 20	1 - 28.5	2 - 33
Dependable peak Dependable energy Average energy	(MW) (GWh/year) (")	111	105.10	16.71 66.53 150.16	29.12 66.53 159.71	17.96 93.13 168.33	49.24 93.13 182.76

Notes:

Irrigation Dam of minimum scale to meet irrigation requirements, without power installation, but with intake facilities for water release. Scheme No.1:

To harness potential obtained by Irrigation Dam. Power generation is planned to be made with irrigation water released at water level more than El.165 m. No dependable peak power nor energy are expected. Scheme No.2:

Maximum discharge of turbine is limited as much as to $56.6 \, \mathrm{m}^3/\mathrm{s}$ corresponding to maximum conveyance of existing Elahera-Minneriya Canal so that afterbay is not required. Scheme No.3:

Peak powerstation to be operated for not less than 4 hours (maximum scale conceivable) Afterbay pond, 2.45 mcm in net capacity shall be provided. Scheme No.4:

Maximum discharge of turbine is limited to 56.6 m^3 so that afterbay is not required. Scheme No.5:

Peak powerstation designed to be operated for not less than 4 hours. Afterbay of 3.14 mcm in net capacity shall be provided. Scheme No.6:

Table 7,3,2 APPROXIMATE COST OF DAM AND POWER STATION (on 1978 December sasts, unit in million Rupees)

	R.V.1	H.V.L. 188	H, V, L, 195	195	H.Y.L. 200	200
Description	Scheme vo.1	Scheme Vo.2 22.5 MV	Scheme No.3 2c.0 MM	Scheme No.4 40.0 MV	Scheme No.5 28.5 MV	Scheme No. 6 66.0 MW
LAND & RICHT OF WAI	6.0	6.0	10.7	10.7	12.0	12.0
HIGHWAI RELOCATION	24.1	24.1	24.1	24.1	24.1	24.1
administrator's quarter	5.6	5.6	5.6	5.6	3.6	5.6
TOTAL	7.35	7.55	40.4	40.4	41.7	41.7
CONSTRUCTION WORKS						
Preparatory works	30.1	30.1	30.1	30.1	30.1	30.1
Care of river	6.09	67.09	60.9	6.09	60.9	6.09
Main dam	388.6	388.6	450.6	450.6	6.908	506.9
Pirst anddle dam	7.600	309.7	425.b	125.6	495.8	495.8
Second saddle dam	88.7	88.7	134.1	134.1	166.5	166.5
Spillway & banin	97.6	97.6	100.2	100.2	101.9	101.9
Irrigation intake	12.0	12.0	•	t	•	ı
Power intake	•	11.3	11.3	18.9	15.0	25.9
Paverhouse	•	56.2	56.2	62.4	58.2	68.6
Miscellaneoue	6.9	6.9	6.8	6.8	6.8	6.8
SUB-rotal	904.5	1,062.0	1,275.8	1,289.6	1,442.1	1,16),4
CONTINGENCE	29.4	106.2	127.6	129.0	144.2	1.971
GENERATING EQUIPMENT	•	125.6	104.2	183.0	122.3	257.0
ADMINISTRATION & ENGINEERING	87.5	101.5	122.2	128.1	136.7	149]
TOTAL	1,271.1	1,411,1	1,690.2	1,770.1	1,887.0	2,057.7
APTERBAT VEIR	,	t	1	218.8	•	256.7
GRAND TOTAL	1,217.1		1,000.2	1,948.9	1,887.0	2,225.7
MILLION 1'58 EQUIVALENT OF TOTAL COST	17 18	45.31		112.59	125.80	0" FE !
		! 				

Table 7.3.3 Tentative Financial Evaluation of Power Scheme

Scheme No.	2	_3	4	5	0
H.W.L. & Power installation	188 m	195	m	200	m
Description	22.5 MW	26	40	28.5	66
Present worth of total cost	(million US\$)				-
Capital cost	6.58	22.72	35.24	32.60	57.65
O & M cost	0.84	1.71	2.57	2.10	3.55
Total_cost	7.42	24.43	<u>37.81</u>	34.70	54.20
Present worth of total benef	it (million U	S \$)			
KW benefit	_	10.82	18.88	11.64	31.93
KWh benefit	8.93	16.89	17.73	19.95	21.23
Total benefit	8.93	27.71	<u>36.6</u> 1	31.59	53.16
Net benefit	1.51	3.28	-1.20	-3.11	-1.04
B/C ratio	1.20	1.13	0.97	0.91	0.98

Conditions:

- 1. Discount rate: 10 %, Base year: 1980, Period 50 years.
- 2. Economic life: 50 years for dam, intake, powerhouse and afterbay weir, 35 years for hydro-turbine, generator and transmission facilities and 25 years for alternative thermal plant.
- 3. Power benefit to be expected from 1987 while dam construction is planned to be commenced in 1981.
- 4. All secondary energy to come consumable in CEB system in 5 years after completion of hydropower plant.

Table 7.3.4 Cost-benefit Analysis for Stage Development

Stage	26 MW one unit	26 MW + 26 MW	26 MW (Future unit) (will not be) installed
Present worth of total cost (million US\$)			
Capital cost	23.64	30.45	25.21
0 & M cost	1.86	2.58	2.06
Total cost	25.50	33.03	27.27
Present worth of total benefit (million US\$)			
kW benefit	11.50	18.61	11.50
kWh benefit	18.12	20.05	18.12
Total benefit	29.62	38.66	29.62
Net benefit	4.12	5.63	2.35
B/C ratio	1.16	1.17	1.09

Conditions;

- 1. Discount rate: 10 %, Base year: 1980, Period 50 years.
- 2. Economic life: 50 years for dam, intake, power house and afterbay weir, 35 years for hydro-turbine, generator and transmission facilities and 25 years for alternative thermal plant.
- 3. Power benefit to be expected from 1986 while dam construction is planned to be commenced in 1981.
- 4. All secondary energy to come consumable in CEB system in 5 years after completion of hydropower plant.

Table 7.3.5 Required Major Plant and Equipment

Main equipment	Capacity	Quantity
Concrete plant	1.5 m ³ x 3	l set
Potable concrete plant	$0.5 \text{ m}^3 \times 1$	l set
Crushing plant	200 t, h	l set
Bulldozer	32 t	9 nos.
Bulldozer	21 t	15 nos.
Power shovel	1.2 m^3	8 nos.
Wheel loader	2 m ³	5 nos.
Dump truck	20 t	40 nos.
Ordinary truck	8 t	50 nos.
Crawler drill	$15 \text{ m}^3/\text{m}$	24 nos.
Air compressor	$34 \text{ m}^3/\text{m}$	12 nos.
Jib crane	14.5 t	2 nos.
Concrete pump	$60 - 85 \text{ m}^3/\text{hr}$	1 no.
Agitator truck	3 m ³	4 nos.
Tamping roller	15 t	4 nos.
Vibrating roller	8 t	4 nos.
Pump dredger	600 ps	2 nos.
Fuel tanker	5,000 £	18 nos.
Grout pump	7.5 kW	3 nos.
Grout pump	3.7 kW	8 nos.
Grout mixer	5.5 kW	ll nos.
Boring machine	5.5 kW	18 nos.
Diesel generator	750 kW	3 nos.
Water pump for water supply	ø200, 37 kW	6 nos.

Table 7.3.6 Main Construction Materials

Cement	100,000	tons
Reinforcement bars	1,500	tons
Structural steel	2,200	tons
Explosives	700	tons
Diesel (high speed diesel)	28,000	kl
Timber	8,200	m ³
Fine aggregate for concrete	150,000	m ³
Coarse aggregate for concrete	400,000	m ³

Table 7.3.7 Summary of Construction Cost of Moragahakanda Dam and Powerstation

(UNIT IN MILLION)

		COI	NSTRUCTION C	COST
	DESCRIPTION	YEN PORTION	RUPEE PORTION	TOTAL RUPEES
LANI	O AND RIGHT OF WAY		10.7	10.7
RELO	OCATION OF HIGHWAY		24.1	24.1
ADMI	NISTRATOR'S RESIDENCE & OFFICE		5.6	5.6
	Sub-Total		40.4	40.4
CONS	STRUCTION WORKS	15,062	262.4	1,421.1
1.	Preparatory works	416	7.4	39.4
2.	Care of river	549	7.9	50.1
3.	Main dam	4,617	66.2	421.4
4.	First saddle dam	4,297	97.2	427.7
5.	Spillway & stilling basin	434	15.4	48.8
6.	Intake structure & anchor blocks	29	1.4	3.6
7.	Second saddle dam	1,210	12.1	105.2
8.	Powerhouse & switchyard	547	16.2	58.3
9.	Miscellaneous	75	0.6	6.4
10.	Hydromechanical works	1,474	20.3	133.7
11.	Generating equipment & transmis- sion	1,414	17.7	126.5
PHYS	SICAL CONTINGENCIES	1,365	24.5	129.5
ENG	NEERING & ADMINISTRATION	1,314	23.0	124.1
TOTA	VI.	<u>17,741</u>	309.9	1,674.7
	GRAND TOTAL		350.3 \$114.34 mill	

Table 7.3.8 DISBURSEMENT SCHEDULE OF INVESTMENT COST TO DAM AND POWERSTATION

(UNIT IN MILLION RUPEES) CLASSIFICATION 1981 1982 1983 1984 1985 Civil, Metal and G/E cost including Physical 110.1 Containgencies 320.6 308.8 443.3 367.7 $38.8^{\frac{1}{2}}$ 22.4 Engineering Cost 22.3 22.3 22.4 Sub-Tota1 114.9 343.0 331.1 465.6 390.1 Land compensation & others 40.4 Total 185.3 343.0 331.1 465.6 390.1

Note: 1: Including disbursement in earlier years

Remarks:

- No conditions such as advance payment to the contractors, detention money and premiam of performance bond are considered herein.
- 2. Total of 1,715.1 million Rupees corresponds to estimated cost on 1978 price basis.

Table 7.4.1 Annual Energy Generation and Consumption (GWH)

Description	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
Consumption										
Industries	272	302	329.2	373.2	436.2	466.4	477.2	519.2	513.6	515
Commercial	81	82	85.6	92.8	8.96	107.6	118.1	122.5	139.6	154
Bulk Supply for Local Authorities	138.5	151	167.1	180.4	193.1	198.4	201.9	226.3	237.3	257
Street Lighting	9.5	10	10.5	11.0	11.5	12.0	12.5	13	13.5	14.7
Domestic	55	59	62.5	9.49	72.5	81.5	82.6	85	93	104
Total	556	604	654.9	722	810.1	865.9	892.3	965	166	1,044.7
Generation	648	695	785.8	845.2	944.3	979.5	1,011.4	1,078.8	1,132.8	1,216.6
Transmission and Distribution Efficiency (%)	85.8	86.9	83.3	85.4	85.8	88.4	88.2	89.5	88.0	85.9
Peak Demand (MW)	134.7	146.7	163.1	173.4	185.3	198.8	215.6	218.9	240.3	261
Annual Load Factor (%)	53.1	54.1	55.0	55.6	58.2	56.2	53.6	56.3	53.8	53.2

Table 7.4.2 <u>Installed Capacities of Hydropower Stations</u>

Name of Power Station	Type of Development	Installed Capacity (MW)	Firm Peak output (MW)	Annual Output Firm	Energy (GWH) Mean
Old Laxapana	Pondage	$_{2x12.5}^{50}(_{2x12.5}^{3x8.333})$	50	221	284.4
Wimalasurendra	Reservoir	50 (2x25)	50	99	101.4
Polpitiya	Pondage	75 (2x37.5)	75	420	420.
New Laxapana	Pondage	100 (2x50)	100	490	490.
Ukuwela	Run of river	40 (2x20)	20	180	226.
Udawalawe	Reservoir	5.94 (3x1.98)		_	7.67
Inginiyagala	Reservoir	$\frac{11.25}{2x3.15}$	Pro-	-	33.
Total	· · · · · · · · · · · · · · · · · · ·	332.19	295	1,410 1	,562.47

Udawalawe and Inginiyagala power station are operated according to the irrigation water requirements. And therefore their firm energies are not expected.

Table 7.4.3 <u>Installed Capacities of Thermal Power Stations</u>

Name of Power Station	Installed Capacity (MW)		
Kelanitissa (Steam)	50 (2x25)		
Chunnagam (Diesel)	$\binom{2x2.0}{3x2.092} \binom{3x1.11}{3x2.092}$		
Pettah (Diesel)	6.27 (3x2.092)		
Total	69.87		
			

Table 7.4.4 Hydropower Stations under Construction

Name of Power Station	Type of Development	Installed Capacity	Firm Peak Output	Annual Energy Output (GWH)	
		(MW)	(MW)	Firm	Mean
Bowatenna	Pondage	40 (1x40)	36	108	143
Canyon	Reservoir	30 (1x30)	28	144	169
Samanalawewa	Reservoir	120 (2x60)	111	420	600
Total		190	175	672	912

Table 7.4.5 Hydropower Stations under Planning

Name of Power Station	Type of Development	Installed Capacity	Firm Peak Output	Annual Output	Energy (GWH)
<u> </u>		(MW)	(MW)	Firm	Mean
Kotmale	Reservoir	150 (3x50)	117	380	411
Randenigala	II	75 (3x25)	58	264	350
Victoria	t†	120 (4x30)	92	528	649
Moragahakanda	Ħ	26 (1x26)	16	66.6	145
Total		371	283	1,238.6	1,555

Table 7.4.6 Promising Sites for Hydropower Development

Name of Site	Name of River	Capacity (MW)	Annual Firm Energy Output (GWH)
Taldena	Badulu Oya	14.5	48
Upper Uma Oya	Uma Oya	25.5	95.5
Lower Uma Oya	Uma Oya	30.	113.3
Maduru Oya	Maduru Oya	4.5	_
Kalu Ganga	Kalu Ganga	1.9	-
Pallewela	Loggol Oya	10.	34.5
Heen Ganga	Heen Ganga	7.1	25.5 (mean)

The Maduru Oya Project is the one of the five large projects in the Accelerated Mahaweli Ganga Development Programe.

Table 7.4.7 Power Demand Forecast

Year	Energy Consumption (GWH)	Energy Generation (GWH)	Maximum Demand (MW)
1978	1157	1322	274
79	1287	1471	305
1980	1428	1632	339
81	1579	1805	375
82	1742	1991	413
83	1918	2192	455
84	2107	2408	500
85	2311	2641	548
86	2530	2891	600
87	2766	3161	656
88	3021	3453	717
89	3295	3766	782
1990	3591	4104	852
91	3909	4467	927
92	4252	4859	1009
93	4622	5282	1096
94	5020	5737	, 1191
95	5449	6227	1293

Table 7.4.8 Balance of Peak Demand

Year	Peak Demand (MW)	Required Capacity (MW)	Firm Peak Capacity (MW)	Balance (MW)		
1978	274	324	364	40		· · · · · · · · · · · · · · · · · · ·
79	305	355	364	9		
80	339	390	399	9	Bowatenna	(35 MW)
81	375	431	427	-4	Canyon	(28 MW)
82	413	475	u	-48		
83	4 5 5	523	91	-96		
84	500	575	538	-37	Samanalawewa	(111 MW)
85	548	630	630	0	Victoria	(92 MW)
86	600	690	747	57	Kotmale	(117 MW)
87	656	754	763	9	Moragahakanda	(16 MW)
88	717	825	821	-4	Randenigala	(58 MW)
89	782	899	11	-78		
90	852	980	11	-1.59		
91	927	1,066	71	-245		

Table 7.4.9 Balance of Energy Demand and Firm Energy Supply

Year	Demand (GWH)		lable E ration Therna		_ Balance (GWH)	Actual Thermal Generation (GWH)		
1978	1,322	1,410	220	1,630	308	0		
79	1,471	1,410	11	IF	159	61		
80	1,632	1,518	11	1.738	106	114	Bowatenna	(108 GWH)
81	1,805	1,662	II	1,882	77	143	Canyon	(144 GWH)
82	1,991	11	520	2,182	191	329	New Thermal	(300 GWH)
83	2,192	41	820	2,482	290	530	11	ti
84	2,408	2,082	17	2,902	494	326	Samanalawewa	(420 GWH)
85	2,641	2,610	11	3,430	789	31	Victoria	(528 GWH)
86	2,891	2,990	11	3,810	919	0	Kotmale	(380 GWH)
87	3,161	3,056	11	3,876	715	105	Moragahakanda	(66 GWH)
88	3,453	3,320	11	4.140	687	133	Randenigala	(264 GWH)
89	3,766	11		11	374	446		
90	4,104	*1	Ħ	17	36	784		
91	4,467	11	n	15	-327	820		

Table 7.4.10 Balance of Annual Energy Demand and Mean Energy Supply

Year	Demand (GWH)		lable En ration (Balance	Actual Thermal		
	(GWI)	Hydro	Thermal	Total	— (GWH)	Generation (GWH)		
1978	1,322	1,562	220	1,782	460	0		
79	1,471	"	11	1,782	311	0		
80	1,632	1,705	II	1,925	293	0	Bowatenna	(143 GWH)
81	1,805	1,874	ff	2,094	289	0	Canyon	(169 GWH)
82	1,991	n	520	2,394	403	117	New Thermal	(300 GWH)
83	2,192	11	82 0	2,694	502	318	b	21
84	2,408	2,474	"	3,294	886	0	Samanalawewa	(600 GWH)
85	2,641	3,123	tt	3,943	1,536	0	Victoria	(649 GWH)
86	2,891	3,534	11	4,354	1,463	0	Kotmale	(411 GWH)
87	3,161	3,679	**	4,499	1,338	0	Moragahakanda	(145 GWH)
88	3,453	4,029	**	4,849	1,396	0	Randenigala	(350 GWB)
89	3,766	t1	**	H	1,083	0		
90	4,104	н	11	*11	745	75		
91	4,467	11	11	11	382	438		
92	4,859	•	11	11	-10	820		-
93	5,282	11	11	11	-433	820		

Table 7.4.11 Main Parameters of Scheme No.3

Reservoi	r water level:			
	maximum	195 m		
	minimum	170 m		
	mean	184.8 m		
	operation	174.4 m		
Tailrace	water level:			
	At a discharge of 0 m ³ /s	139.0 m		
	At a discharge of 100 m ³ /s	139.3 m		
Maximum o	putput	26 MW		
Annual ei	fective energy output	66.6 GWH		
Annual me	ean energy output	145.1 "		
Effective	e peak output	16.1 MW		
Turbine:	No. of unit	1		
	Design head	43 m		
	Maximum discharge	56.6 m ³ /s		
	Speed	214.3 r.p.m.		
Generato	r No. of unit:	1		
	Capacity	30.5 MVA		
	Voltage	11 kV		
	Speed	214.3 r.p.m.		
Main tra	nsformer:			
	No. of unit	1		
	Capacity	30.5 MVA		
	Voltage	132/11 kV		

Table 7.4.12 132 kV Transmission Line

Route length	about 16 km
No. of circuit	1
Voltage	132 kV
Conductor	ACSR (A 30/2.794 St 7/2.794)
Earth wire	Galvanized stranded steel (7/3.5)
Steel tower	Galvanized angle steel
Insulator string	11 pieces of 10" suspension insulator

Table 7.4.13 Annual Disbursement of Station Equipments (106Rs)

	1984	1985	Total
Equipment	71.69	21.69	93.38
Freight and insurance	2.89	0.88	3.77
Installation	1.18	4.73	5.91
Inland transportation	1.41	0.43	1.84
Installation	2.76	11.03	13.79
Total	79.93	38.76	118.69

Table 7.4.14 Annual Disbursement of the Line Cost (106Rs)

	1984	1985	Total
Survey and design	1.15	_	1.15
Materials (Tower, Conductor etc.)	~	4.18	4.18
Erection	-	0.74	0.74
Erection	-	1.74	1.74
Total	1.15	6.66	7.81

Table 7.4.15 Disbursement Schedule of the 26 MW Steam Power Station (106Rs)

	1983	1984	1985	Total
Generating equipment		151.82	26.8	178.62
Civil work	38.6	4.3	_	42.9
Erection	***	10.76	25.12	35.88
Total	38.6	166.88	51.92	257.40

Table 7.5.1

Exist- ing 4,400 14,325 10,230	6,200 11,000 - 4,400 - 14,325	Total Ex. 11,000 4,400 14,325	Total Exist & Pol Total ing Comp. 11,000 4,800 6,200 4,400 14,325 49,400 13,800	∄ ∤	New Total		Exist of rig Exist Exist- ing ing under out-	→	ey oy	a read		Gross Area	Area	rropos	rroposed Area	;		
Canals ind Work) Exist ing iners iners coda Ela critale 4,400 6, coda Ela critale 4,400 innersya 14,325 indarasan 10,230 intalai 10,230 Kulam cravipan- cham cham cham cham inners Oya	,200 1	1,000 4,400 4,325	18t- Com			-	ing out-	,							;	irrigable Area	Area	
, , , ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,000 4 4,400 4,325	, 800 6,	7500	11.0		side	shene	Nec	Total	Total Exist-	Other	New	Exist- ing Total under spec	II - Exist- I ing II out- spec	other shene	25 26 26 26 26 26 26 26 26 26 26 26 26 26	Tota]
4,400 14,325 10,230 22,230	200 6		,400 13,			11,000 4,800	'	10,000	,	14,800	8,00	14,800 8,000 71,2,10	,	31,200 4,800	800	10,000	; g	14,800
14,325 10,230 22,230	- 1		,400 13,			6,200	1,300	,	1	7,500	7,500 11,200		,	11,200 6,	6,200 1,3	1,300 -	1	7,500
22,230	, 200 6		,400 13,			13,500	005,4		•	18,000	18,000 26,300	ı	•	26,300 13,500	500 4,500	- 00	1	18,000
22,230	,200 6		7,400 13,			10,500	2,500	,	22,400		35,400 25,600	ι	55,700	81,300 10,500	500 2,500	1 000	22,4(22,400 35,400
22,230	0	•			28,000 91,200	<u>o</u>												
		1.650				20,800	3,100	1.000	t	34,400	42,800	34,400 42,800 18,700	ι	61,500 20,800		3,100 10,500	- 00	34,400
						3,300	1,700	1	•	5,000	5,000 6,500	ţ	ı	6,500 3,	3,300 1,700	- 00	•	5,000
Kahambiliya Oya Ani	r	1				200	100	1	1	009	600 1,100	•	1	1,100	500 1	100 -	1	909
Wan Ele	,	1				1,000	100	1	1	1,100	1 100 2 200	ı		2,200 1,000		100	•	1,100
Sub-Total 51,185 29,200 80,385 49,400 13,800	,200 8	10,385 49	,400 13,		000 91,20	0 55,80	13,300	10,500	22,400	102,000	115,700	18,700	55,700	28,000 91,200 55,800 13,300 10,500 22,400 102,000115,700 18,700 55,700190,100 55,800 13,300 10,500 22,400102,000	BOO 13,3	60 10.5	0 22,4(00102,000
Parakrama 18,200 9,100 27,300 19,000 Samudra	, 100 2	7,300 19		6	9,100 28,100 19,600	19,60	5,400	1	5,400		30,400 42,000	•	12,000	12,000 54,000 19,600	600 5,400	- 00	5,40	5,400 30,400
Kantalai -		ı	•	٠,	9,100 9,100		١	2,500	4,100	9,600	٠	•	14,400	14,400 14,400	,	1	6,600	009*9 00

Table 7.5.2 Monthly Mean Diversion Requirement under the Project

				1	j					İ		(Unit:	ac.ft)	Total
Tank	Irrigable Area (ac)	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	
Parakrama Samudra	30,400	25,755	25,755 32,109	15,426	6,979	32,259	48,034	44,526	37,914	6,671	7,870	7,870 10,953	13,550	279,134
Minneriya	23,000	19,734	26,421	12,745	4,520	22,051	36,642	34,796	30,002	4,101	7,158	9,530	10,629	219,507
Giritale	7,500	6,754	8,616	4,156	1,474	7,190	11,985	11,346	9,428	1,337	2,334	3,108	3,648	69,595
Kaudulla	36,000	32,419	39,819	19,938	7,113	34,816	57,028	53,534	45,885	6,822	10,968	14,794	17,365	342,223
Kantalai (Paddy)	24,200	22,253	28,596 14	14,743	6,128	25,365	37,738	36,314	28,082	3,582	7,452	9,915	11,632	231,798
Kantalai (Sugar)	17,900	7,109	7,109 11,552	16,941	9,507	15,488	20,868	20,181	18,570	18,809	8,461	3,616	4,761	136,758
System G	14,800	9,600	9,120 14	,400	15,386	22,113 18,227	18,227	15,127	20,846	20,355 12,929	12,929	7,204	5,607	170,534
Total	153,800													1,449,549

Table 7.5.3 Success Percentage and Irrigable Area without and with Project

Success Percentage Existing Project (Post-Polgolla) Success Percentage 84.2% 82.9% Success Percentage 84.2% 82.9% Existing D ₁ & D ₂ 94,100 ac 94,100 ac A Success Percentage 4,800 " 4,800 " A Success Percentage 6,100 " 1,000 " A Success Percentage 84.2% 94,100 ac A Success Percentage 82.9% 10,000 " A Success Percentage 1,000 " 1,000 " A Success Percentage 1,000 " 1,000 "	Post-Polgolla (after improve~ ment of inflastructures)	82.9%	94,100 ac 94,100 ac	4,800 " 4,800 "	10,000 " 10,000 "	9,500 " 9,500 " (1,000 "	- 22,400 "		5,400 "	
& D ₂								i		-
1 1 a =		ss Percentage	& D ₂	_U	New land G	Sugar		" D2	3	" A/D

Table 7.5.4 Summary of Construction Cost of Downstream Development

		Un	it 1000 Rs
Item	Total	Foreign	Local
A. Civil Works	403,959	157,387	246,572
1. Existing Land (Improvements)			
Existing canal Rehavilitation on farm Angamedilla Anicat Sub. Total	21,203 120,280 22,531 164,014	8,576 36,532 13,374 58,662	12,447 83,748 9,157 105,352
2. New Land (Development)			
Preparatory works Diversion works (A/D) Irrigation canal Drainage canal Land development Sub. Total	15,360 37,256 46,635 17,323 123,371 239,945	7,680 25,941 26,543 3,709 34,852 98,725	13,614
B. Construction Machinery	271,533	175,744	95,789
1. Existing Land	14,681	9,716	4,965
2. New Land	256,852	166,028	90,824
C. Land Settlement (Only new land)	68,800	34,400	34,400
D. Engineering, Administration (A+B+C) x 10%	74,428	44,656	29,772
1. Existing Land	17,869	10,721	7,148
2. New Land	56,559	33,935	22,624
E. Physical Contingency (A-D) x 10%	81,871	41,219	40,652
1. Existing Land	19,656	7,910	11,746
2. New Land	62,215	33,309	28,906
Total	900,591	453,406	447,185
(Existing Land New Land	216,220 684,371	87,009 366,397	129,211 317,974

Annual Disbursement of Cost

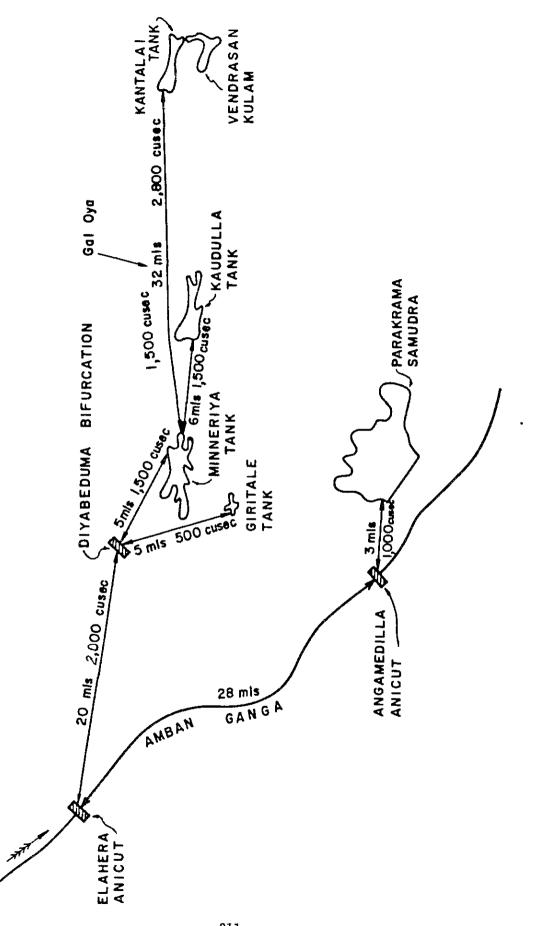
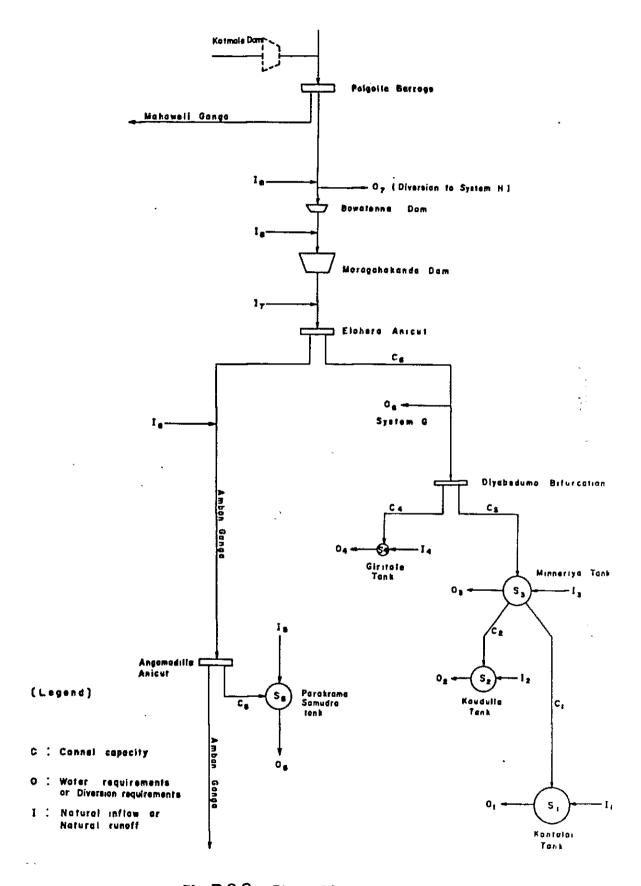
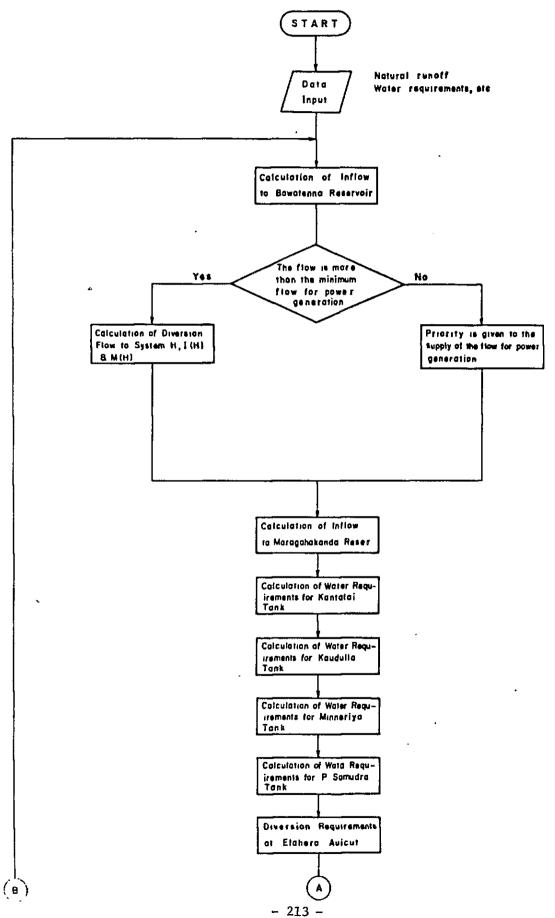
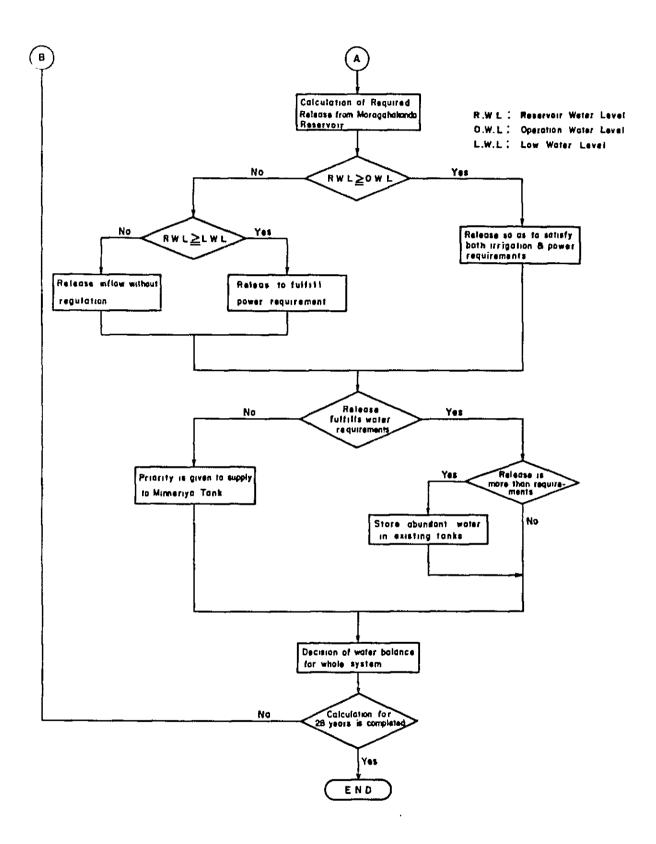
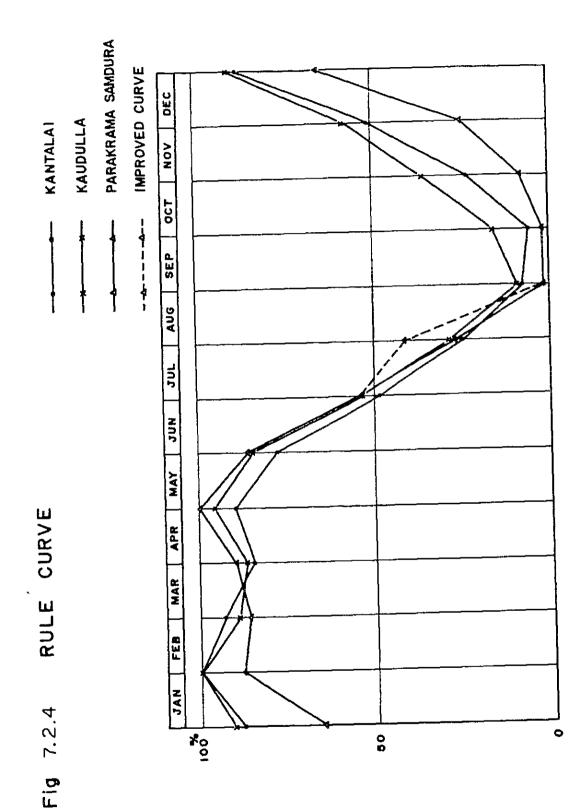

							ភ	Unit: 100	1000 Rs	
					Year			l		
Item	Cost	1980	198I	1982	1983	1984	1985	1986	1987	1988
Detailed Design	34,000 (F/C 25,000 (L/C 9,000	14,000 10,000 4,000	20,000 15,000 5,000						li:	
Machinery & Equipment	271,533 F/C 175,744 (L/C 95,789			85,380 80,590 4,790	100,082 85,714 (14,368	21,518 2,360 (19,158	21,518 2,360 (19,158	21,518 2,360 (19,158	16,138 1,770 14,368	5,379 590 (4,789
Existing Land Improvement	164,014 F/C 58,662 L/C 105,352			8,746 (4,425 (4,321	49,204 (17,600 (31,604	49,205 (17,600 (31,605	56,859 (19,037 (37,822			
New Land Development	239,945 (F/C 98,725 (L/C 141,220			15,360 (7,680 (7,680	23,623 (13,759 (9,864	51,382 (21,601 (29,781	55,107 (24,196 (30,911	40,205 13,819 (26,386	40,199 (13,814 (26,385	14,069 3,856 (10,213
Land Settlement	68,800 (F/C 34,400 (L/C 34,400						17,200 (8,600 (8,600	17,200 (8,600 (8,600	17,200 (8,600 (8,600	17,200 (8,600 (8,600
Engineering Survies Supervision	40,428 (F/C 19,656 (L/C 20,772			5,778 (2,808 (2,970	5,775 (2,808 (2,967	5,775 (2,808 (2,967	5,775 (2,808 (2,967	5,775 (2,808 (2,967	5,775 (2,808 (2,967	5,775 (2,808 (2,967
Sub Total	818,720 (F/C 412,187 (L/C 406,533	14,000 (10,000 (4,000	20,000 (15,000 5,000	115,264 95,503 (19,761	178,684 119,881 58,803	127,880 44,369 (83,511	156,459 (57,001 (99,458	84,698 (27,587 (57,111	79,312 (26,992 (52,320	42,423 15,854 (26,569
Physical Contingency	81,871 (F/C 41,219 (L/C 40,652	1,400	2,000 (1,500 (1,500	11,526 (9,550 (1,976	17,868 (11,988 (5,880	12,788 4,437 (8,351	15,645 (5,700 (9,945	8,470 2,759 (5,711	7,931 (2,699 (5,232	4,243 (1,586 (2,657
Total	900,591 (F/C 453,406 L/C 447,185	15,400 (11,000 (4,400	22,000 (16,500 5,500	126,790 (105,053 (21,737	196,552 (131,869 64,683	140,668 48,806 (91,862	172,104 62,701 (109,403	93,168 30,346 62,822	87,243 29,691 57,552	46,666 17,440 (29,226

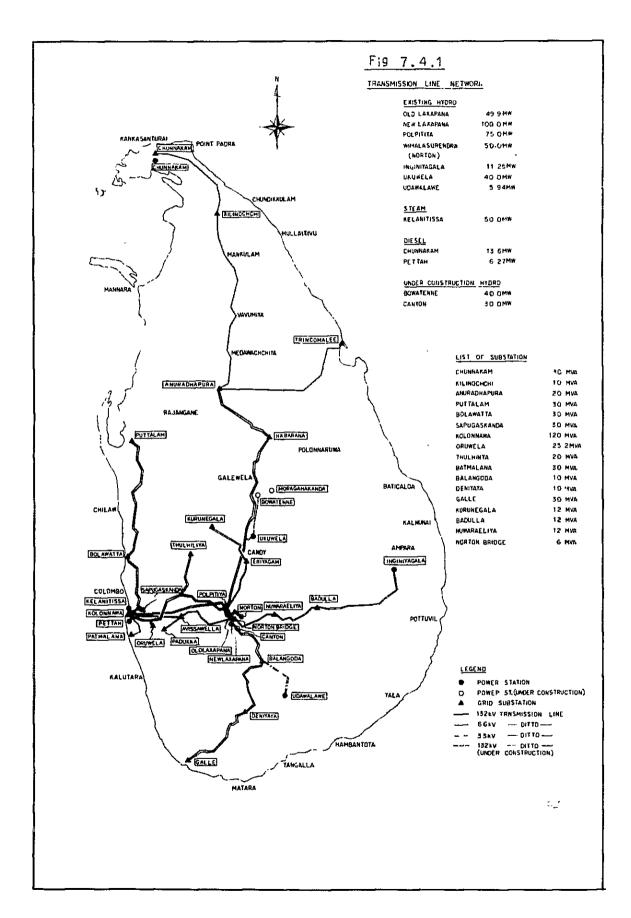
Table 7.5.6

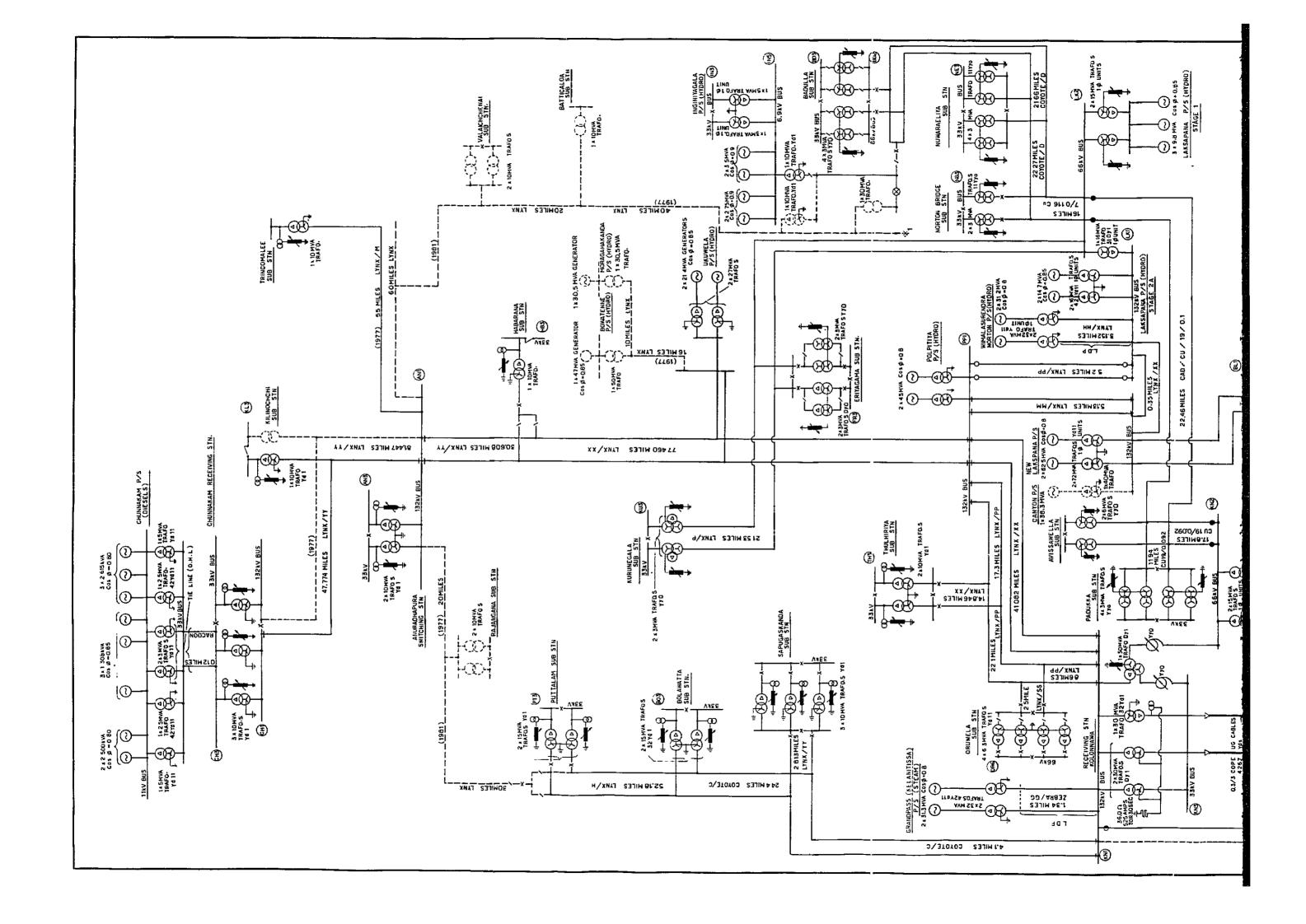
C.I.F. Prices (Dec. 1978 of Machinery and Equipment

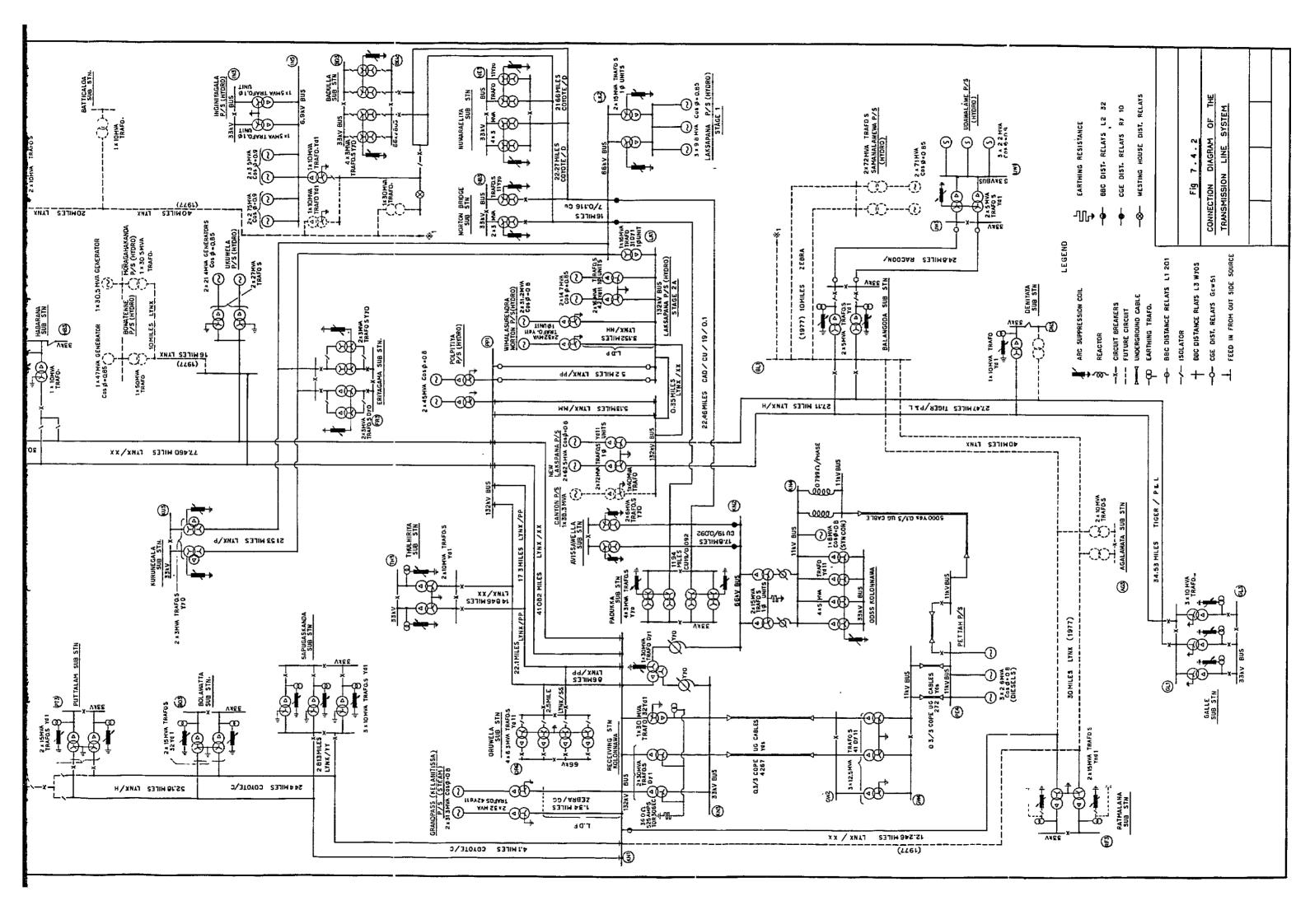
	Equipment & Machinary	Size & Capacity	Quan- tity	C.I.F. Prices	Amounts
1.	Crawler Tractor	180 to 200 H.P.	6	95,000	570,000
2.	- do -	300 н.р.	16	150,000	2,400,000
3.	Attachments to Crawler Tractor				
	a. Straight Blade Dozer	Av for both classes of Tract	14	13,000	182,000
	b. Ripper	**	6	17,600	105,600
	c. Pusher Cup		1	3,900	3,900
	d. Sheep Foot Roller	Twin drum	2	8,500	17,000
4.	Motorized Scraper	14/20 cu. yd.	1	165,000	165,000
5.	Water Truck with Sprinkler	1200 gls	2	25,000	50,000
6.	Crawler Mounted Crane (15T) with Drag Line Bucket	3/4 cu. yd.	17	115,600	1,955,000
7.	Rear Dump	15 T	3	50,000	150,000
8.	Farm Tractor (60H.P.) with Trailer (5T)		3	8,000	24,000
9.	Lorry	5T	1	13,000	13,000
10.	Motor Grader	120 to 150 H.P.	2	80,000	160,000
1.1.	Air Compressor	600 C.F.M.	5	20,000	100,000
12.	- do -	365 C.F.M.	5	17,000	85,000
14.	Pneumatic Jack Hammers	50 lb.	5	500	2,500
15.	Wheeld Crushing and Screening Plant	1/2" to 2.1/2"	1	33,800	33,800
16.	Concrete Mixer	14/10 cft.	9	9,000	81,000
17.	Engine Mounted Vibrator		18	725	13,050
18.	Road Roller	8 to 10T	1	22,500	22,500
19.	Front End Loader	130 H.P.	2	50,000	100,000
	Total				\$6,233,350 93,500,250

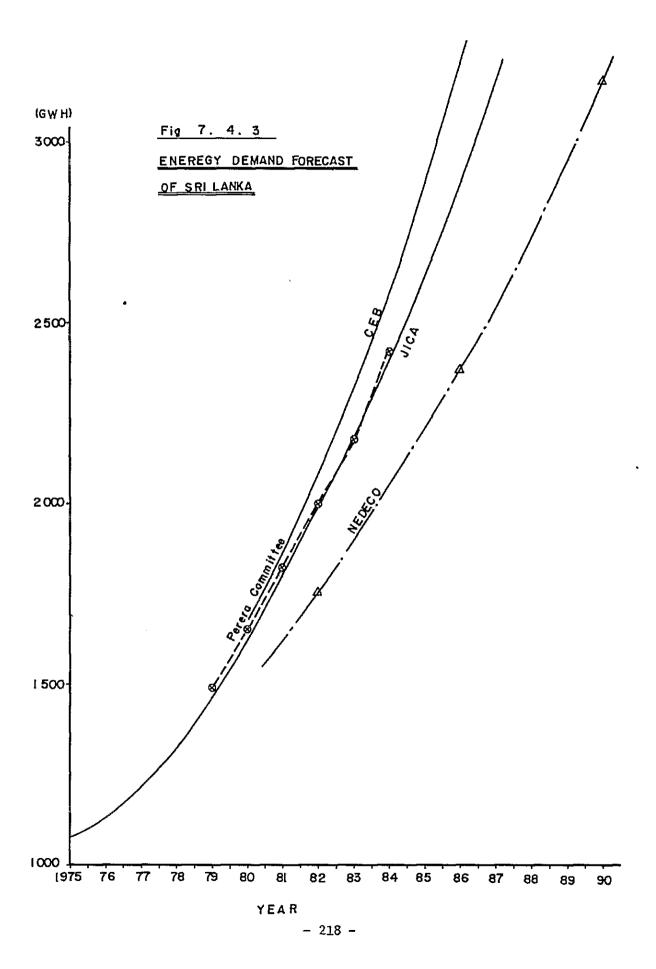
Fig. 7.2.1 Existing Canal Layout

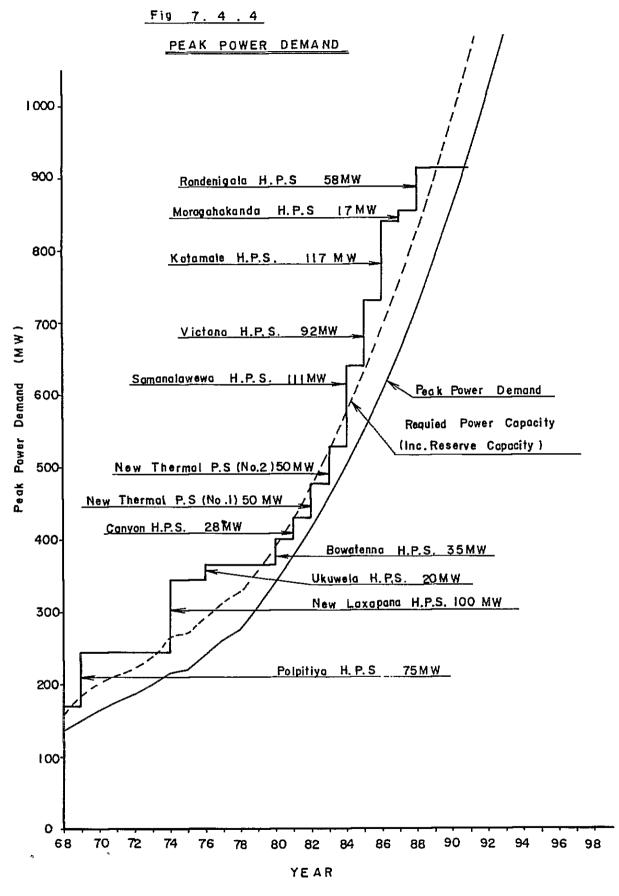





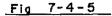

Fig. 7.2.2 Flow Diagram

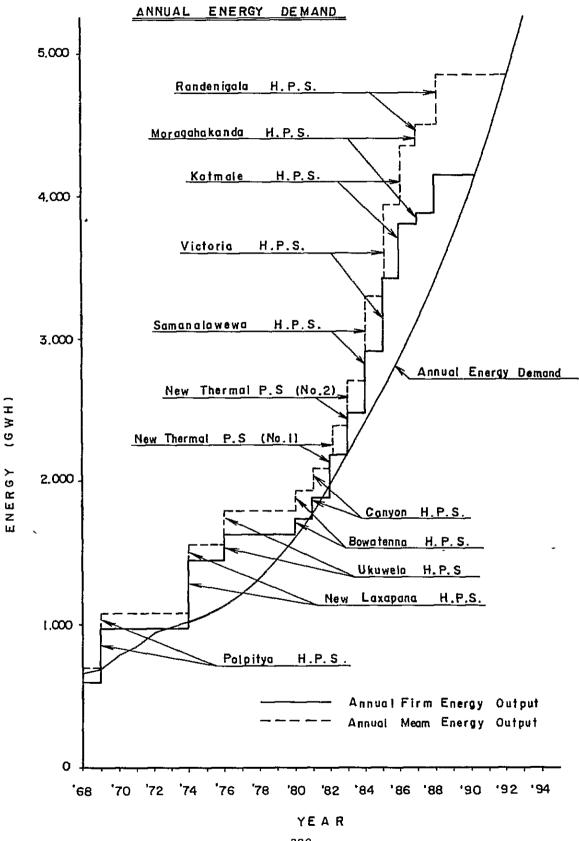

Fig. 7.2.3 Flow Chart of Computation Procedures









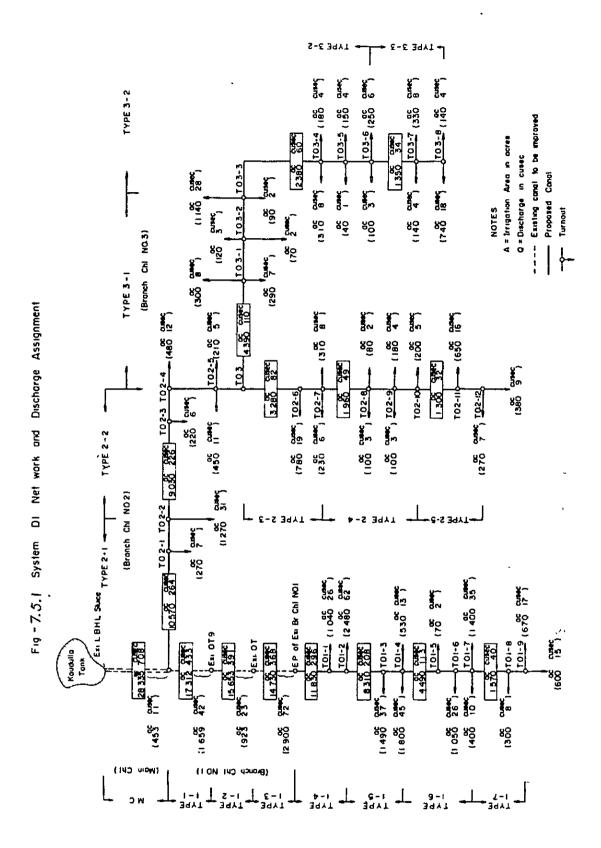


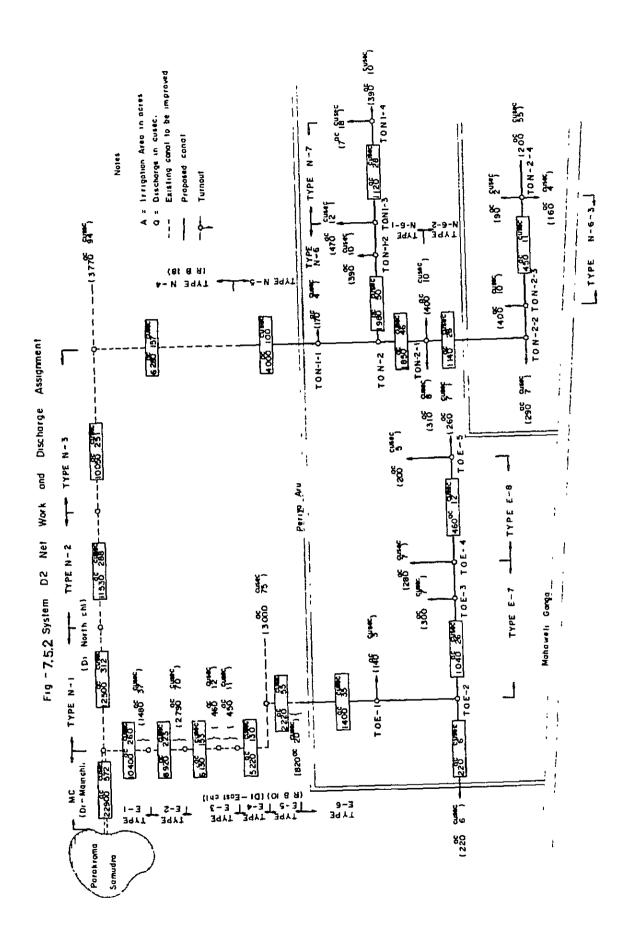
·
.
. , ; ; • · • 4

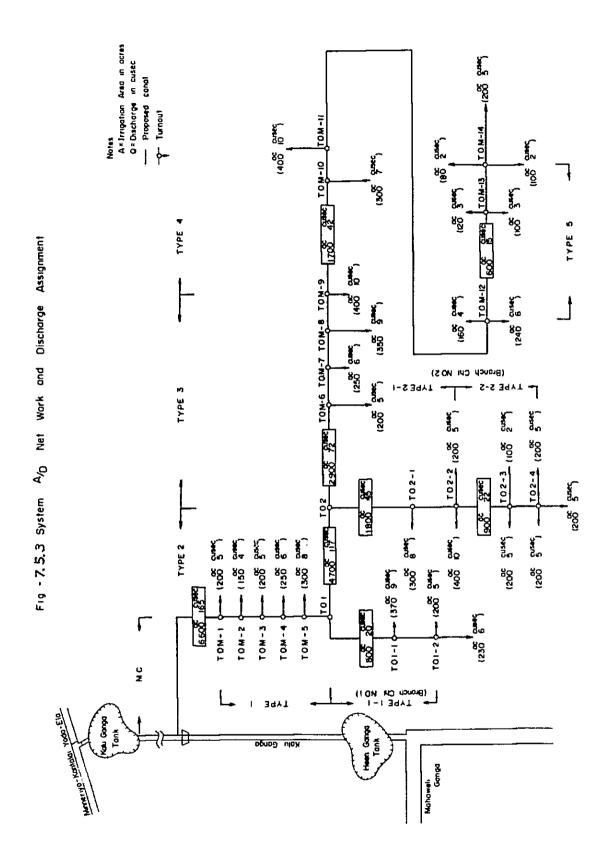
FMAM Painting 1986 Test JFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJ Aux Machine Piping Casing Concreting Transport 0,H.T.C Transp. No.1 No.2 DESIGN & MANUFACTURING - DITTO Contract Tender CUBICLES & PANELS DIESEL GENERATOR BATTERY ETC. EVALUATION & CONTRACT MAIN TRANSFORMER PLC TELEPHONE OUTDOOR EQUIP. STRUCTURE O.H.T. CRANE GENERATOR TURBINE CABLING TENDER

G / E

SCHEDULE OF


TIME


CONSTRUCTION

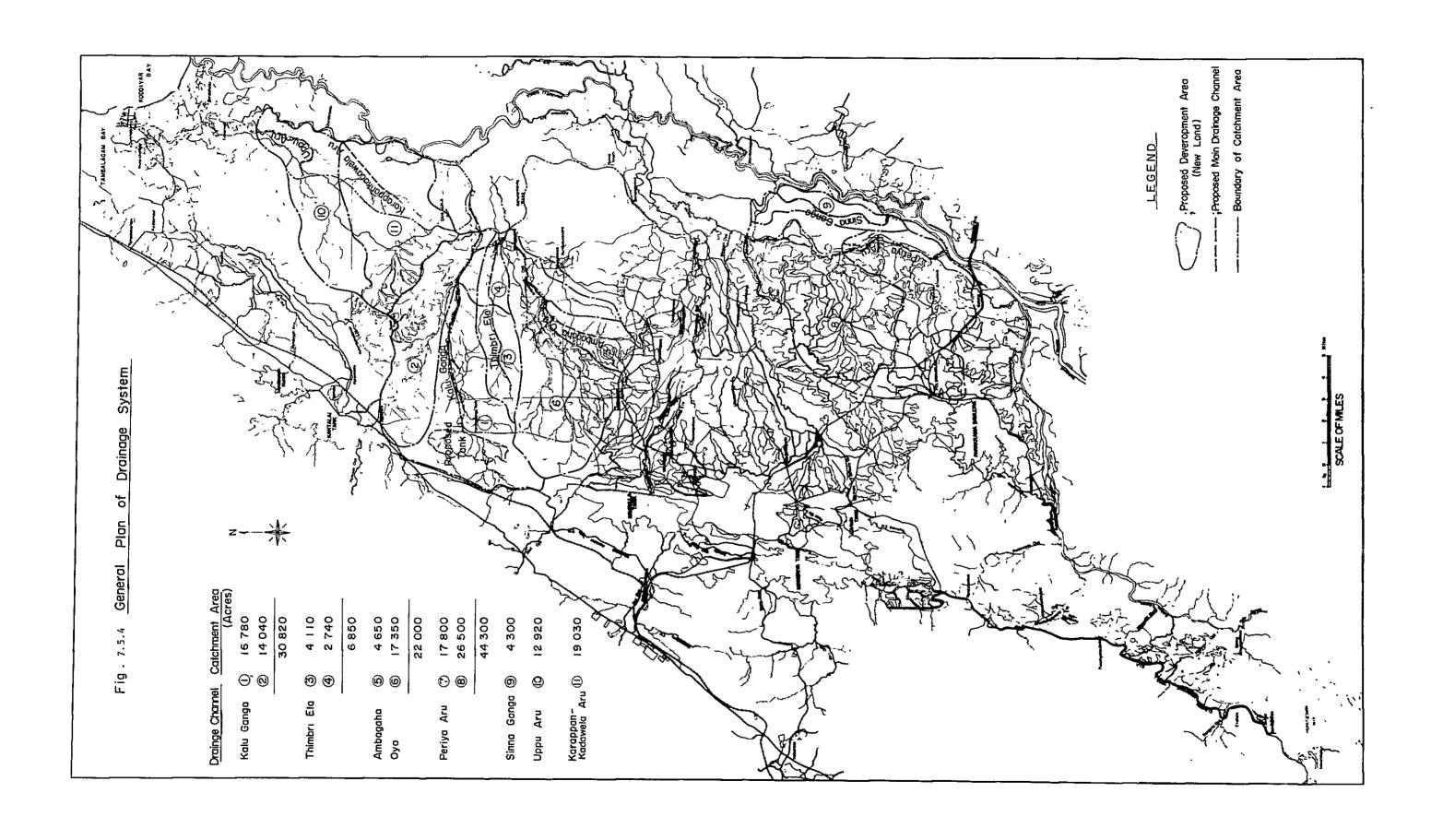

Fig 7.4.7

JAISIO NID AFFMAMIJ JAISON DAFM 1985 LINE OF TRANSMISSION 1984 A F M A M J FIG 7.4.8 CONSTRUCTION TIME SCHEDULE CONDUCTOR AND OTHER MATERIALS EVALUATION & CONTRACT SEA TRANSPORTATION TOWER FAUN ATION SURVEY & DESIGN JUNGLE CLEARING TOWER BASE TOWER BODY TOWFR EFECTION ACCESS ROAD STRINGING TENDER

- 223 -

,

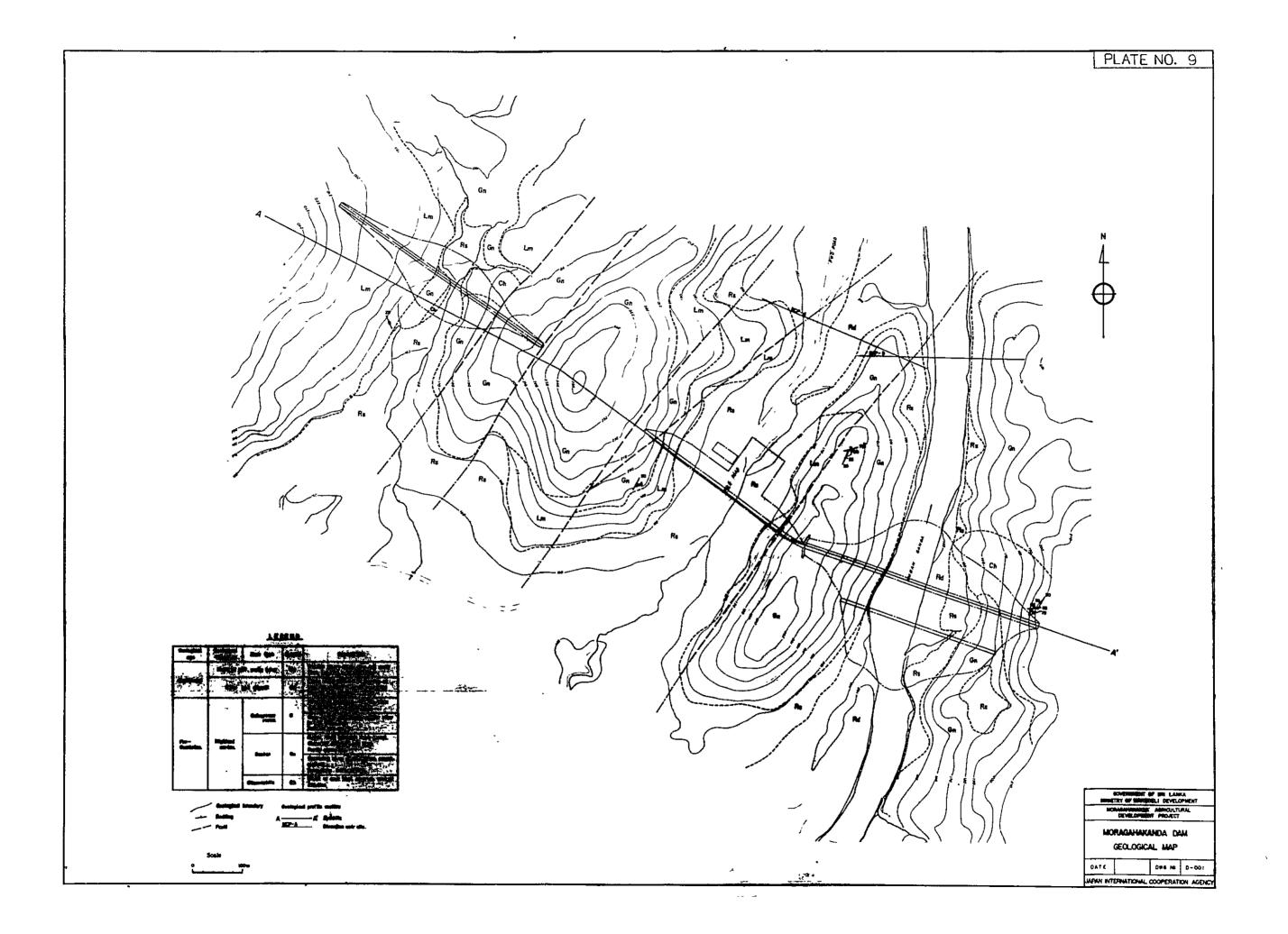
-

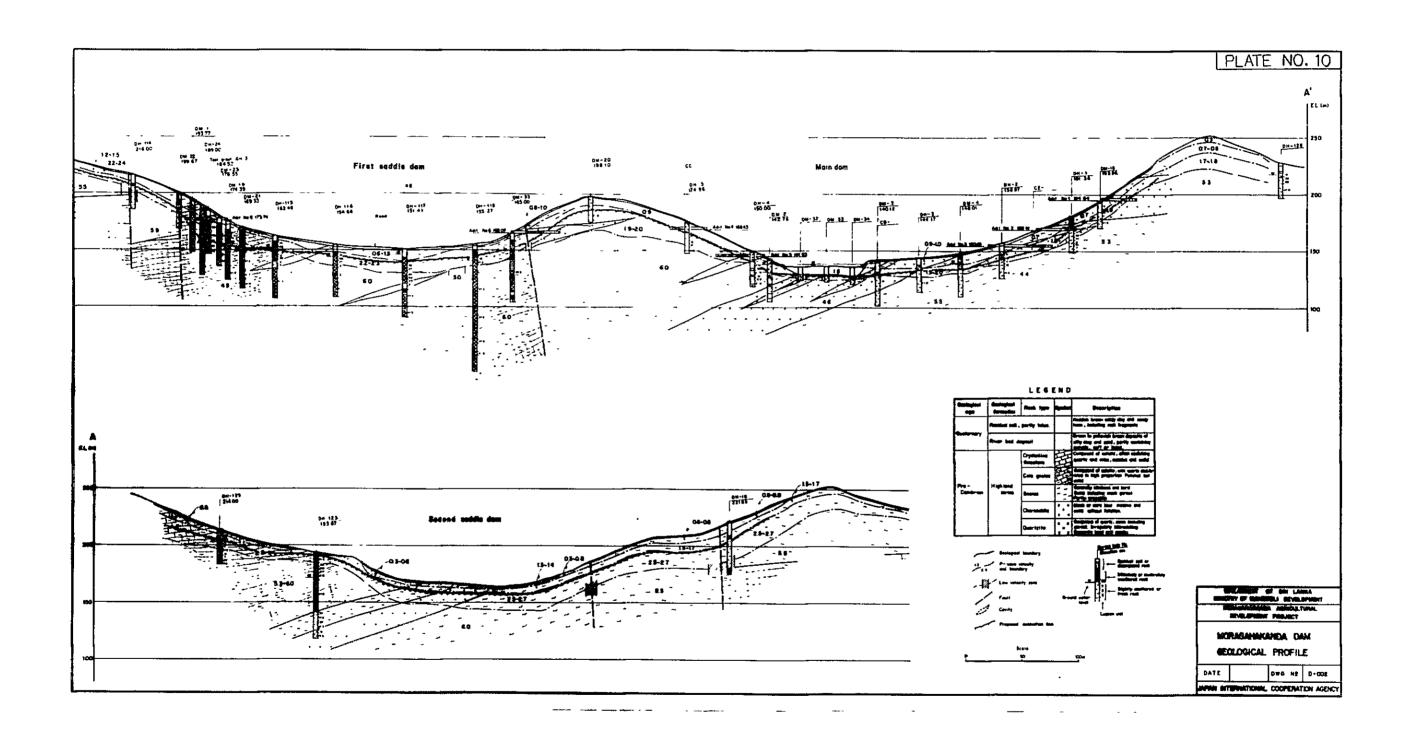

.

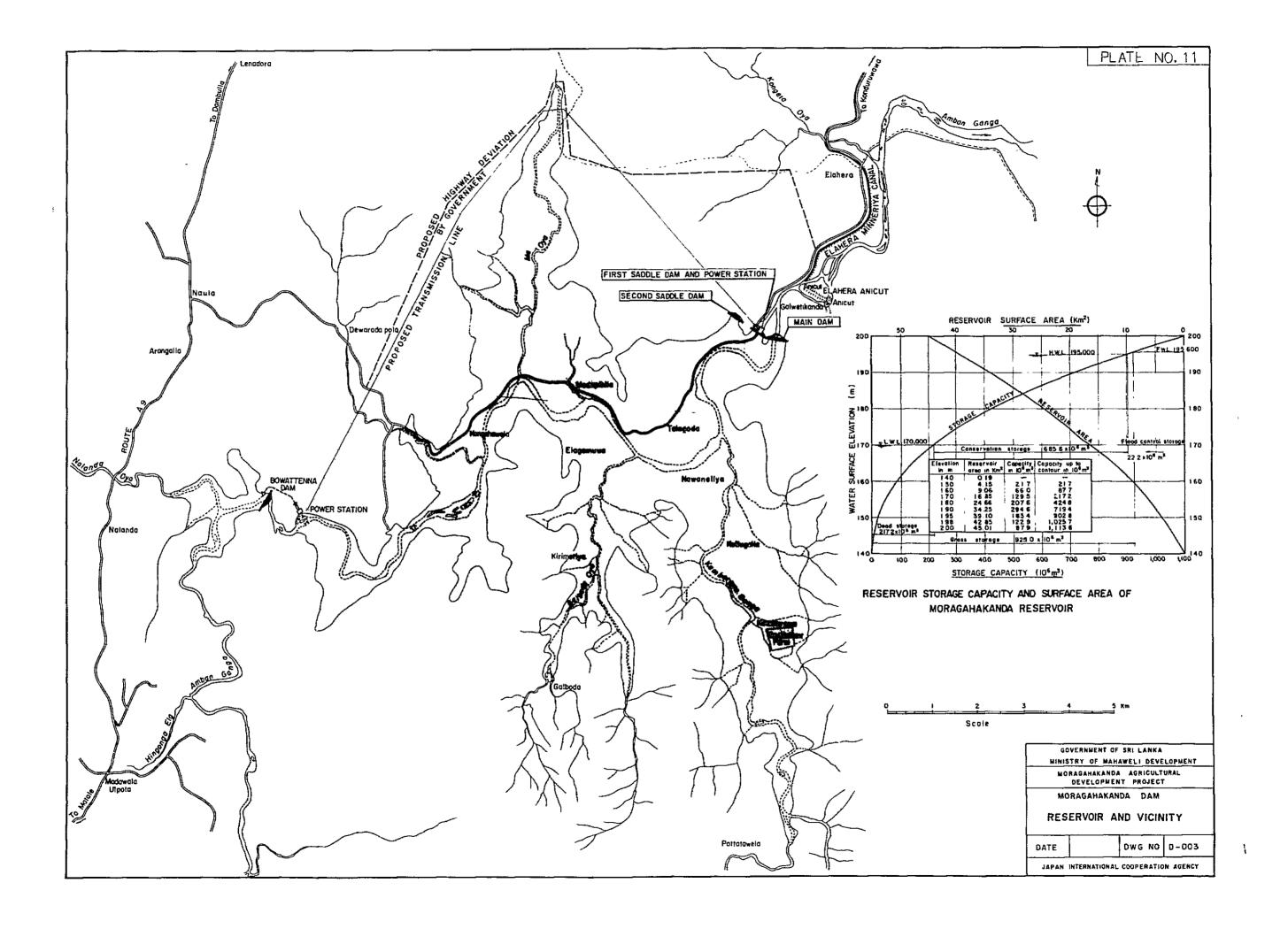
.

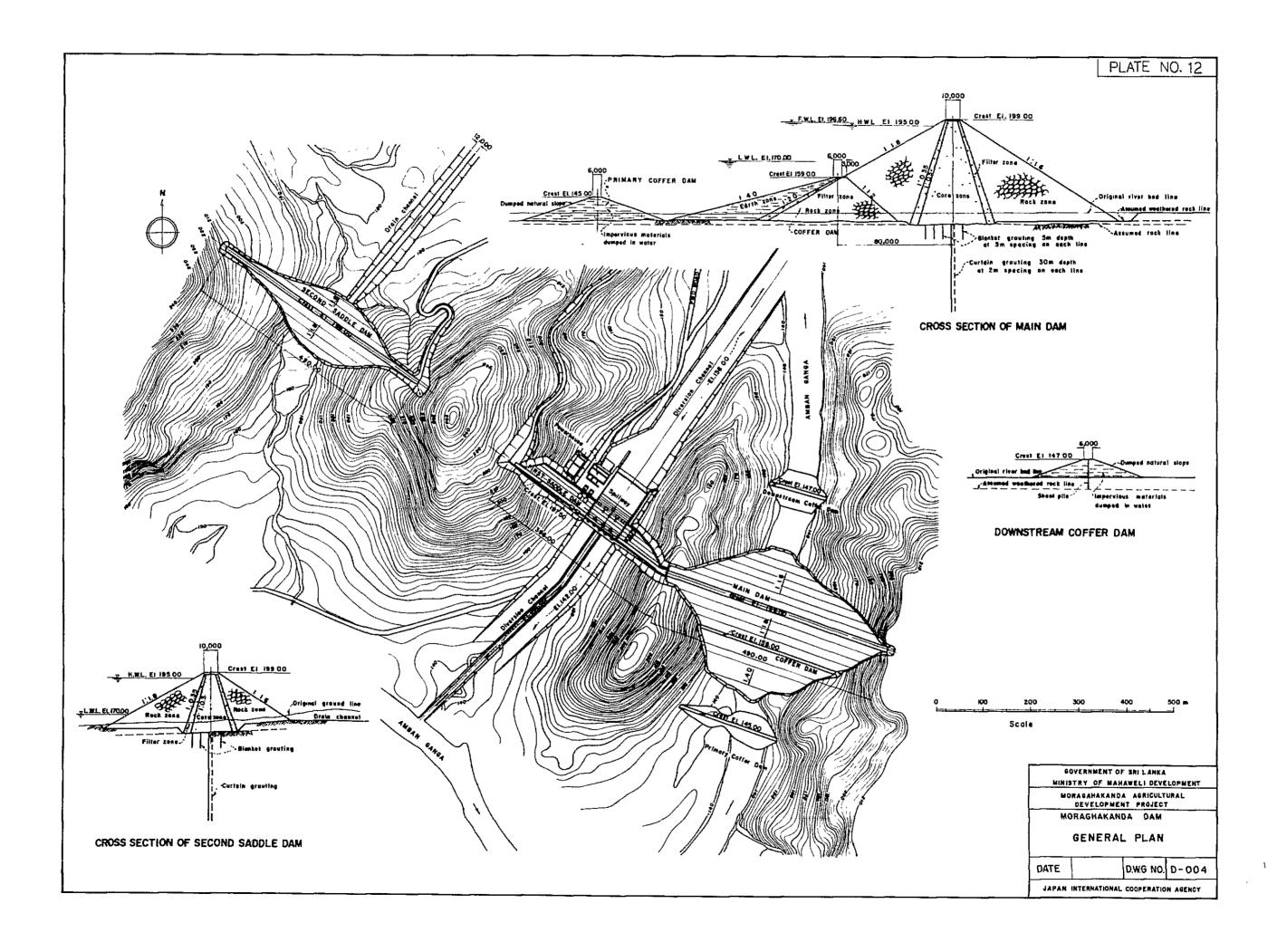
:

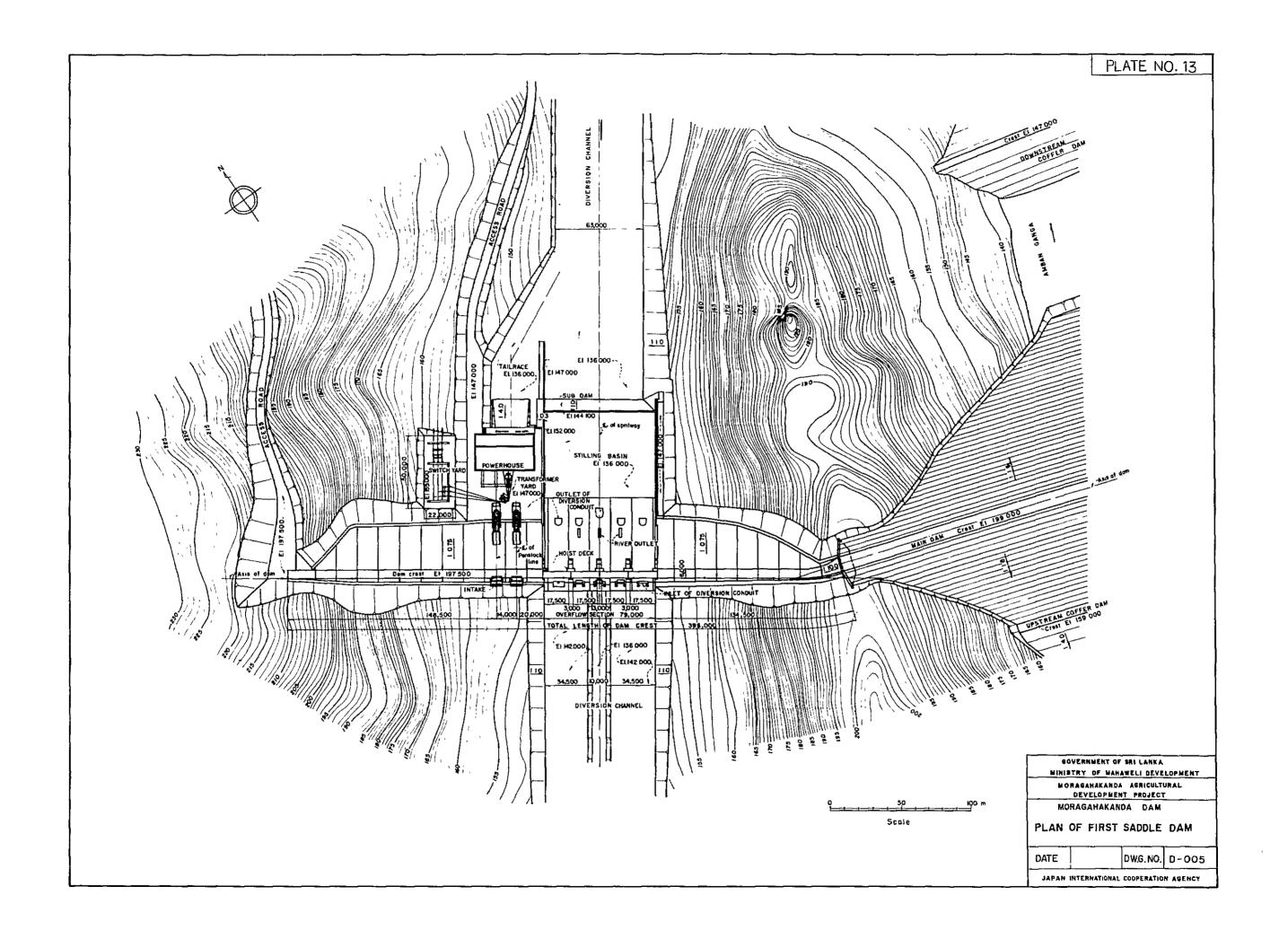
.

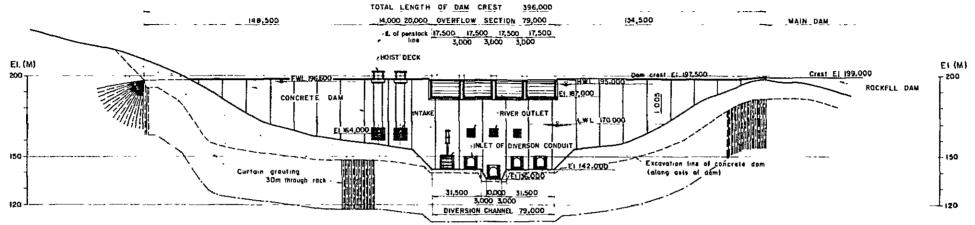

,

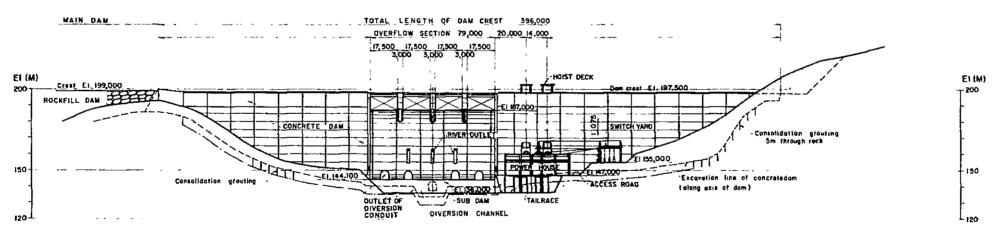



Year Item	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988
Preparatory Detailed Design Procurement of Equipment		1	T							
Existing Land Improvement Existing Canal Rehavilitation on farm Angamedilla Anicut				4 4						
New Land Development Preparatory Works Diversion Works Irrigation Canal Drainage Canal Land Development										
Land Settlement Engineering Services Supervision			-		8					
Completion Date						Dam Syst	System D ₁ , A/D	A/D System D ₂		T


- 228 -

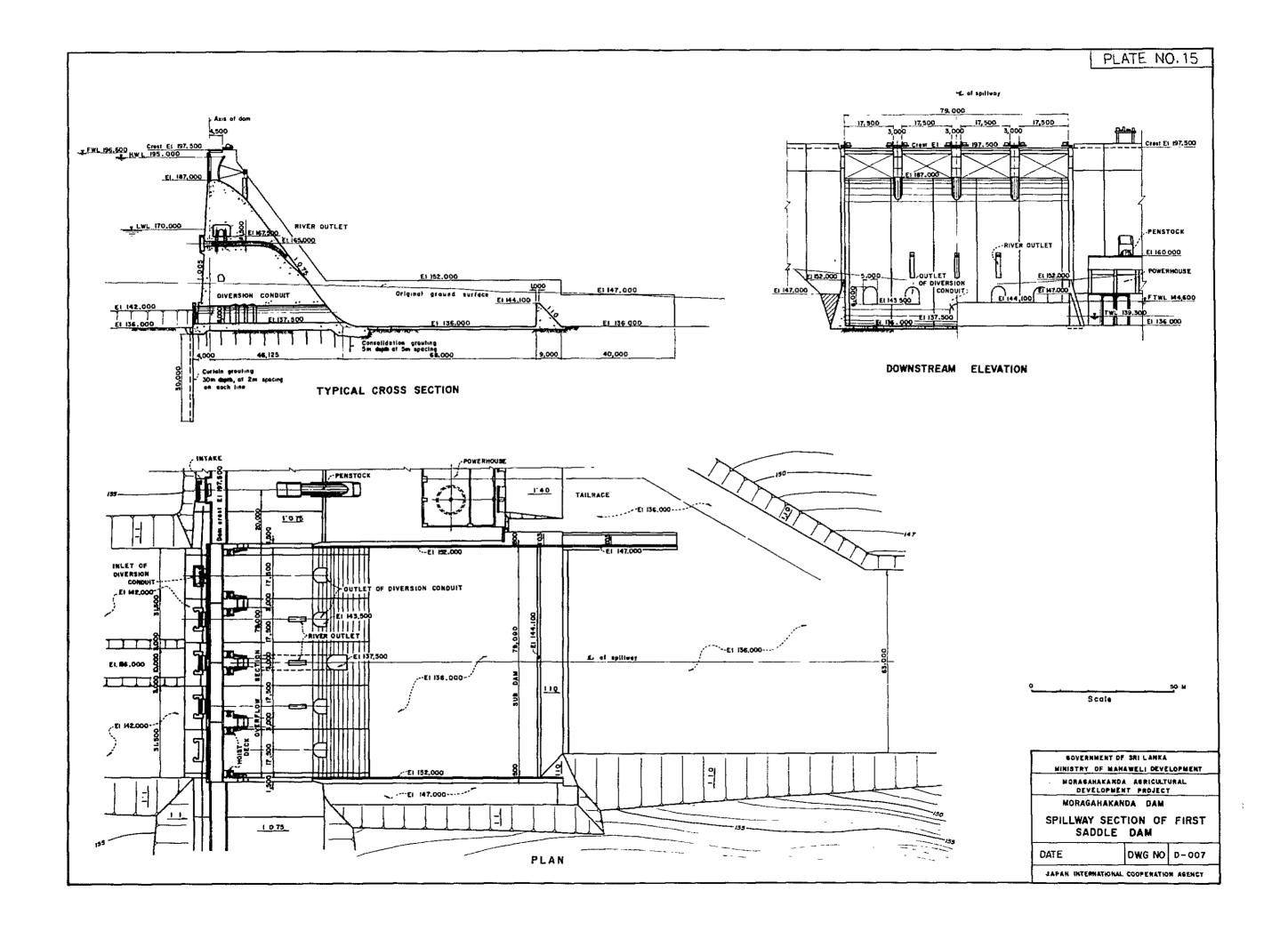

.

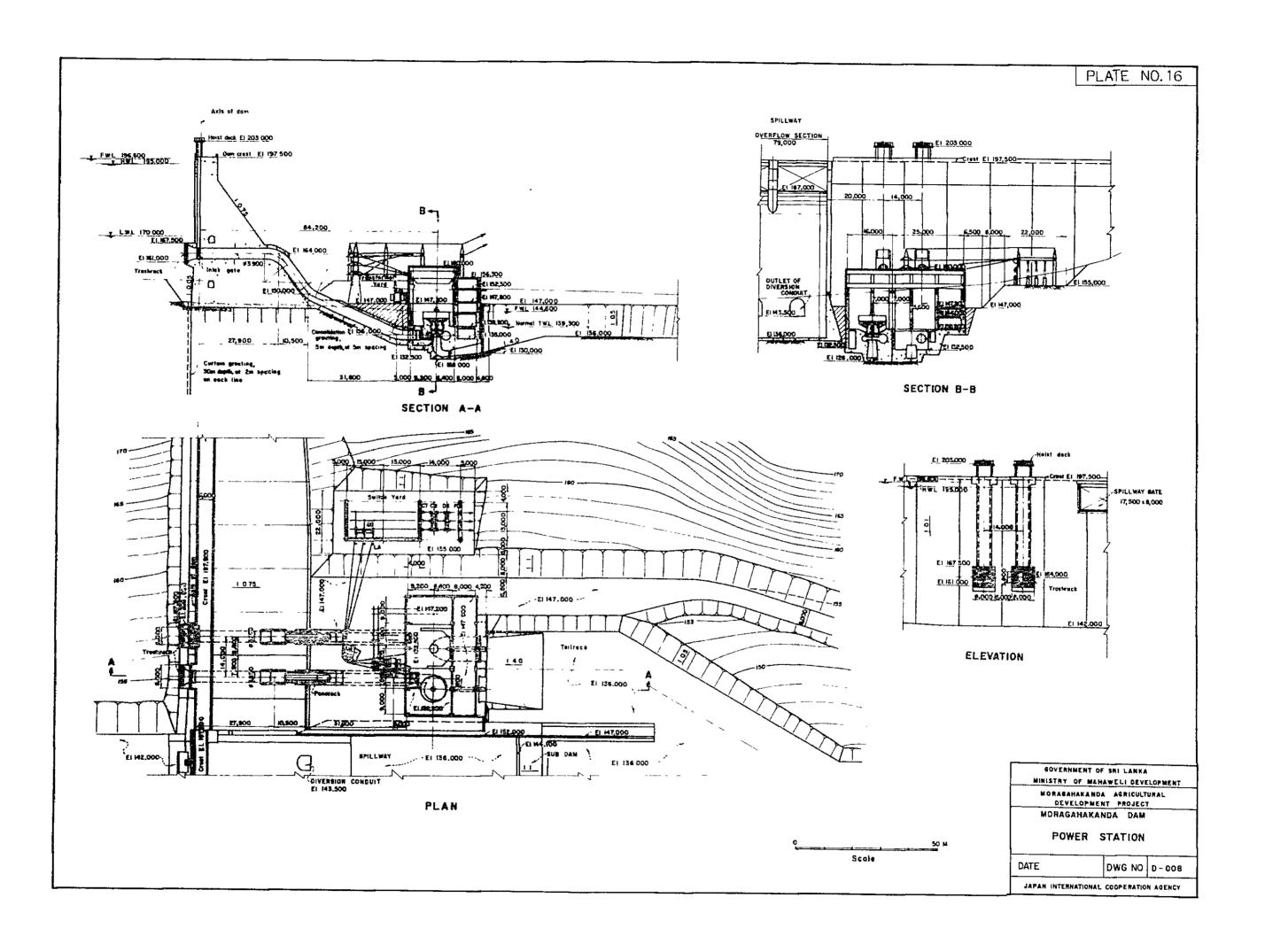




UPSTREAM ELEVATION ~

GOVERNMENT OF SRI LANKA
MINISTRY OF MAHAWELL DEVELOPMENT
MORAGAHAKANDA AGRICULTURAL
DEVELOPMENT PROJECT
MORAGAHAKANDA DAM

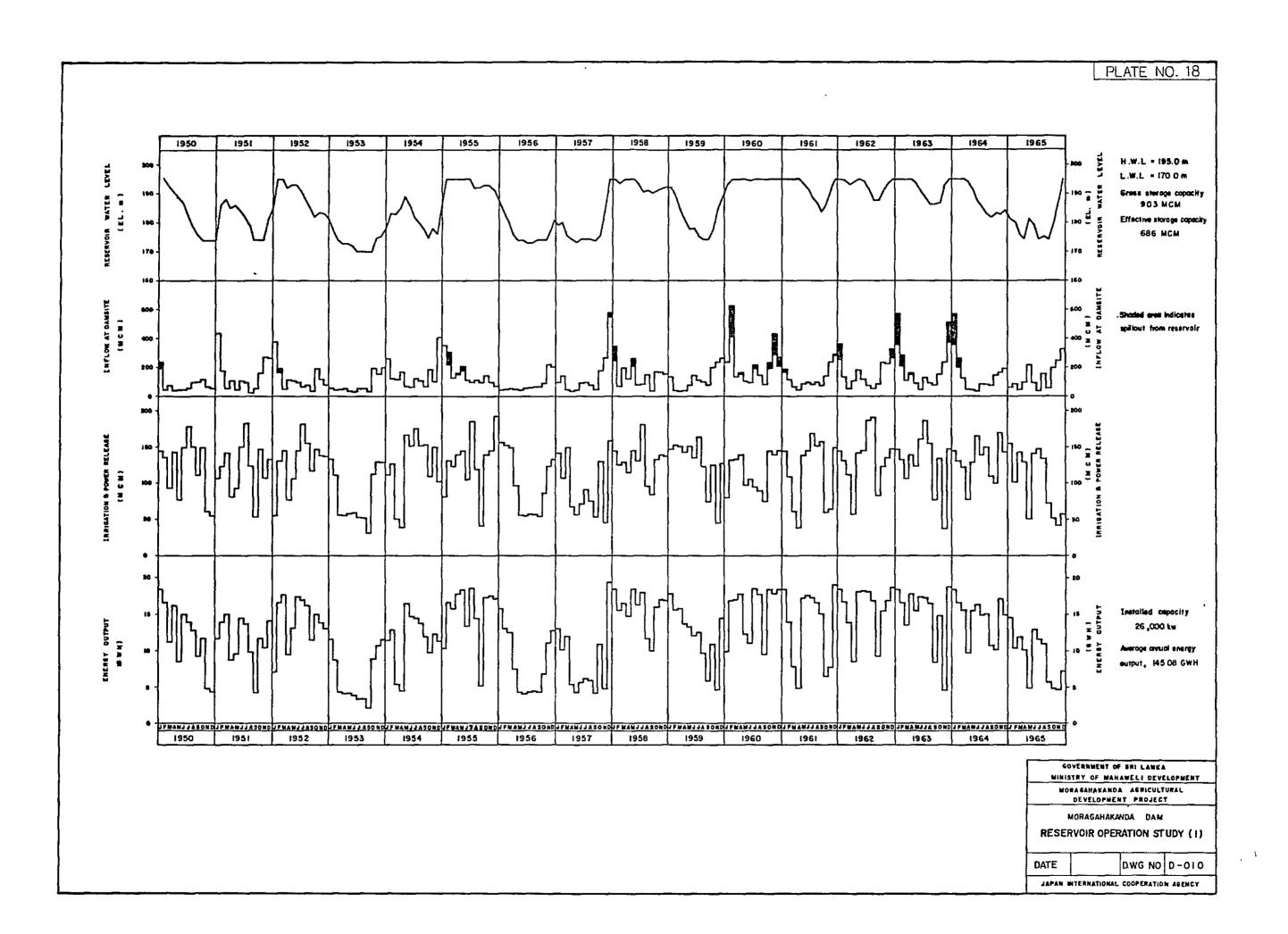

ELEVATIONS OF FIRST SADDLE DAM


DATE

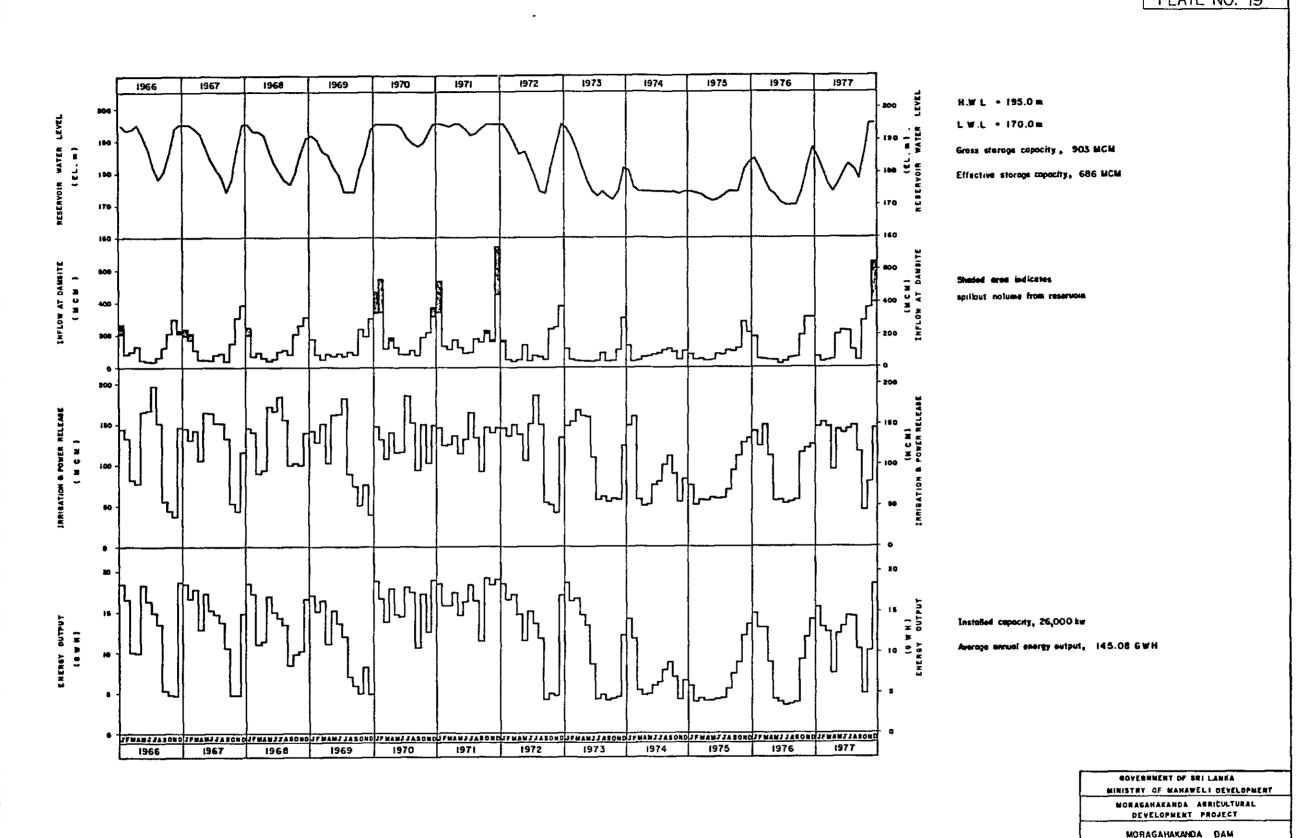
DWG NO D-006

JAPAN INTERNATIONAL COOPERATION AGENCY

1



Work Item	Quantity JF	1979 LLIMAM	AISIO	OF	UM A M	JAISIC	NIDIJ	MA	1861 [[[[ISION	10 1	FIMAIN	1982 1 J J J	SON	OFF	HAMIJ	JAS	OINIO	JFM	JOE LIMIA	JAISIO	NIDI	FMAI	1985 J J	AISIDIN	<u>जार</u>	MAM	JiJ A	SIONID	卣	Remarks		
A Tender 8 Others 1. Feasibility study 2. Tender design 3 Tender 8 contract 4 Mobilization								il work		sorie c				or omech	Anical w				00900153												secsons and hatch are do 2 Asterisk "I to be made annot work.	* shows excaration together with diversion	
B. Preparatory Warks 1 Construction road & bridges 2. Diversion canal 3 Primary cofferdams 4 Aggregate & concrete plant 5 Trestle & crane	604,000 m ³		9.79,14														Primary	CO	ering												Mit Man Man Trai	thick lined is a	
C Main Dam 1. Excavation 2. Grouting 3 Embankment Core zone Filter zone Rock zone	578,000 m ³ 20,630 m 714,000 m ³ 182,000 m ³																								Com	mence.	nent of	wqlor	oforage.				
D First Saddle Dam 1. Excavation 2. Grouting 3. Concreting	248,000 m ³ 16,900 m 376,000 m ³																																
E. Second Saddle Dam I Excavation 2. Grouting 3 Embankment Care zone Filter zone Rock zone	177,000 m ³ 21,820 m 139,000 m ³ 51,000 m ³ 241,000 m ³												, co	D.M. P.C.	ment of	concreti	C4												A STATE OF THE STA				
F. Stilling Basin Excavation Concreting	58,500 m ³ x 25,600 m ³																																} }
G. Powerhouse 1. Excavation 2 Substructure 3. Superstructure	119,000 m ³ x 12,000 m ³ L.S																																
H Quarry Operation 1, Quarry site 2 Borrow grea 3 River sand	LS						100		2	and clear	ring	for S	11	Soddie C	H : '	1	Main D				oin Dam	- i I		or Main	Dam	1							
I. Hydro-mechanical Equipment	LS											1	; R	Into		• 1 2	W/~ K	\$60.00	 ay gale				2			11	Corrents	Doning					
J. Electro-mechanical Equipment	L.S							Ш						T		-,					3		—			Tet	4						
K. Transmission Line	16 km	1111			11	111			1.1	111	١L		11	1.1					l	Survey	Design				! !!!!	별!							J

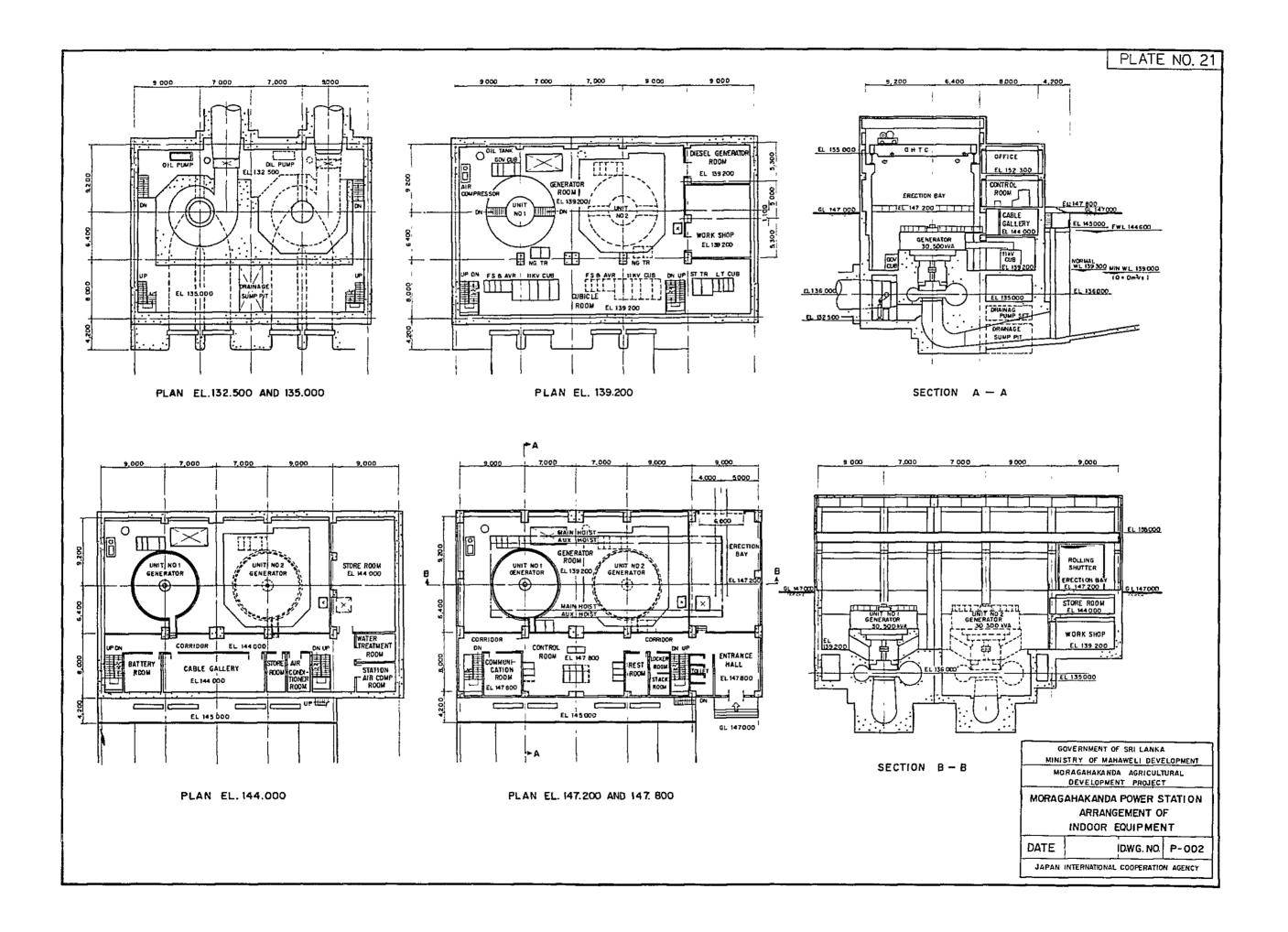

GOVERNMENT OF SRI LANKA
MINISTRY OF MAHAWELI DEVELOPMENT
MORAGAHAKANDA AGRICULTURAL
DEVELOPMENT PROJECT
MORAGAHAKANDA DAM
CONSTRUCTION TIME SCHEDULE

DATE D.W.G. NO D -009

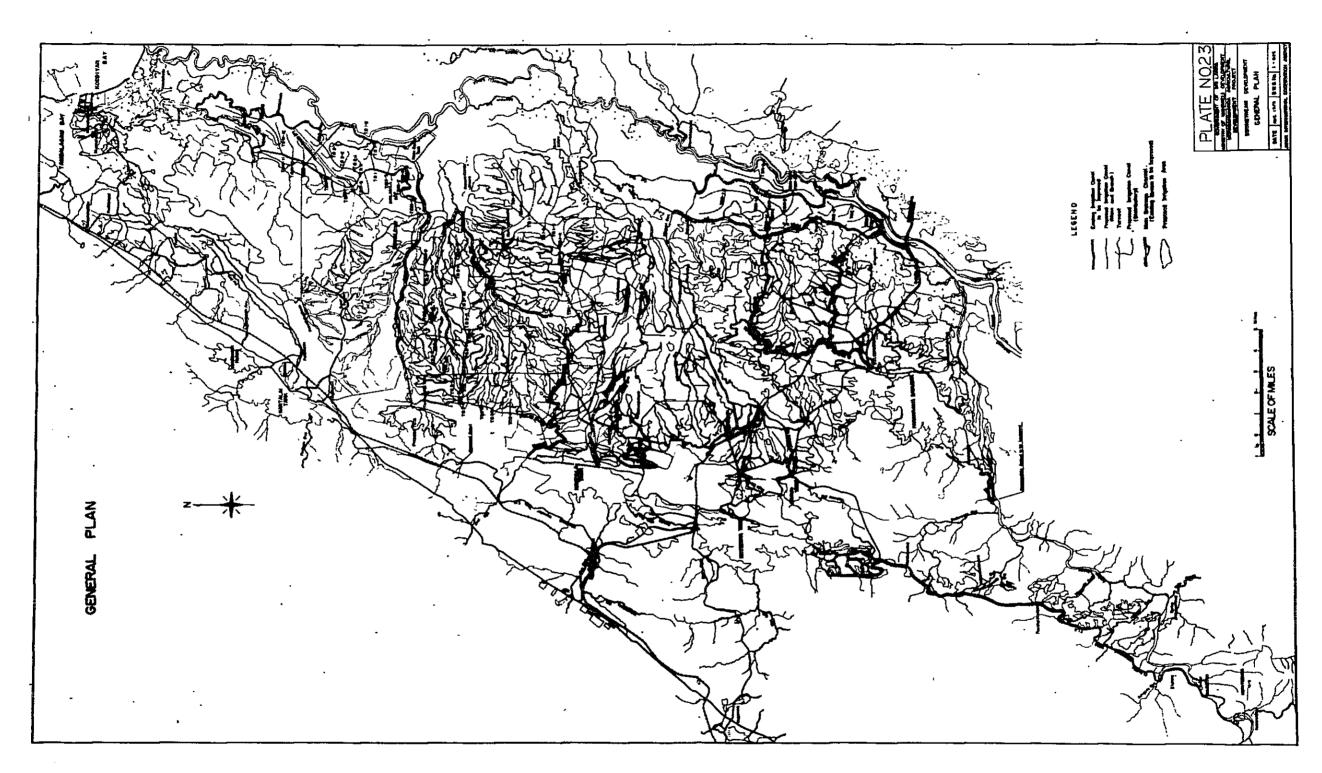
JAPAN INTERNATIONAL COOPERATION AGENCY

MINISTRY OF MANABELI DEVELOPMENT

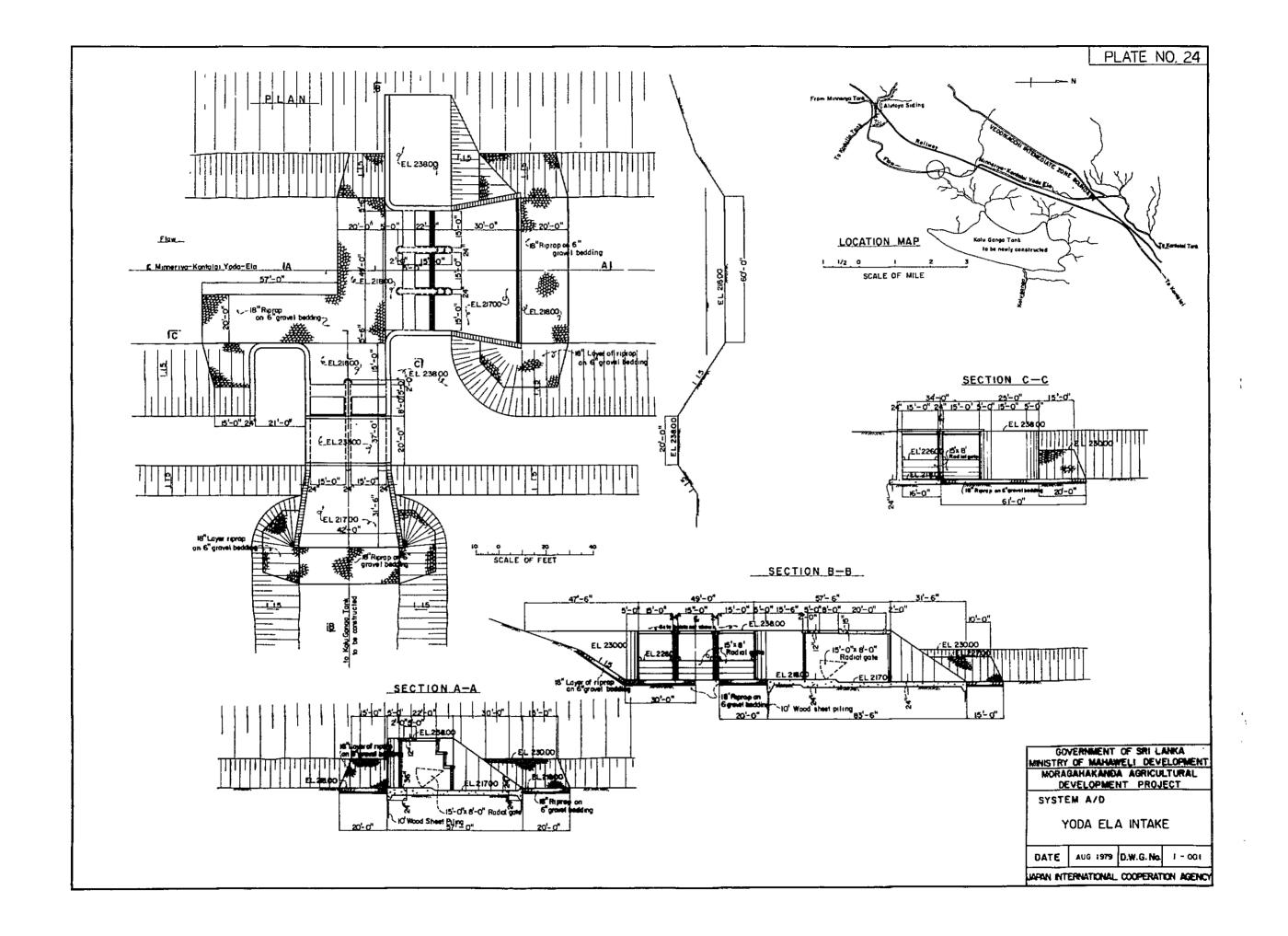

MORAGANAKANDA ABRICULTURAL
DEVELOPMENT PROJECT

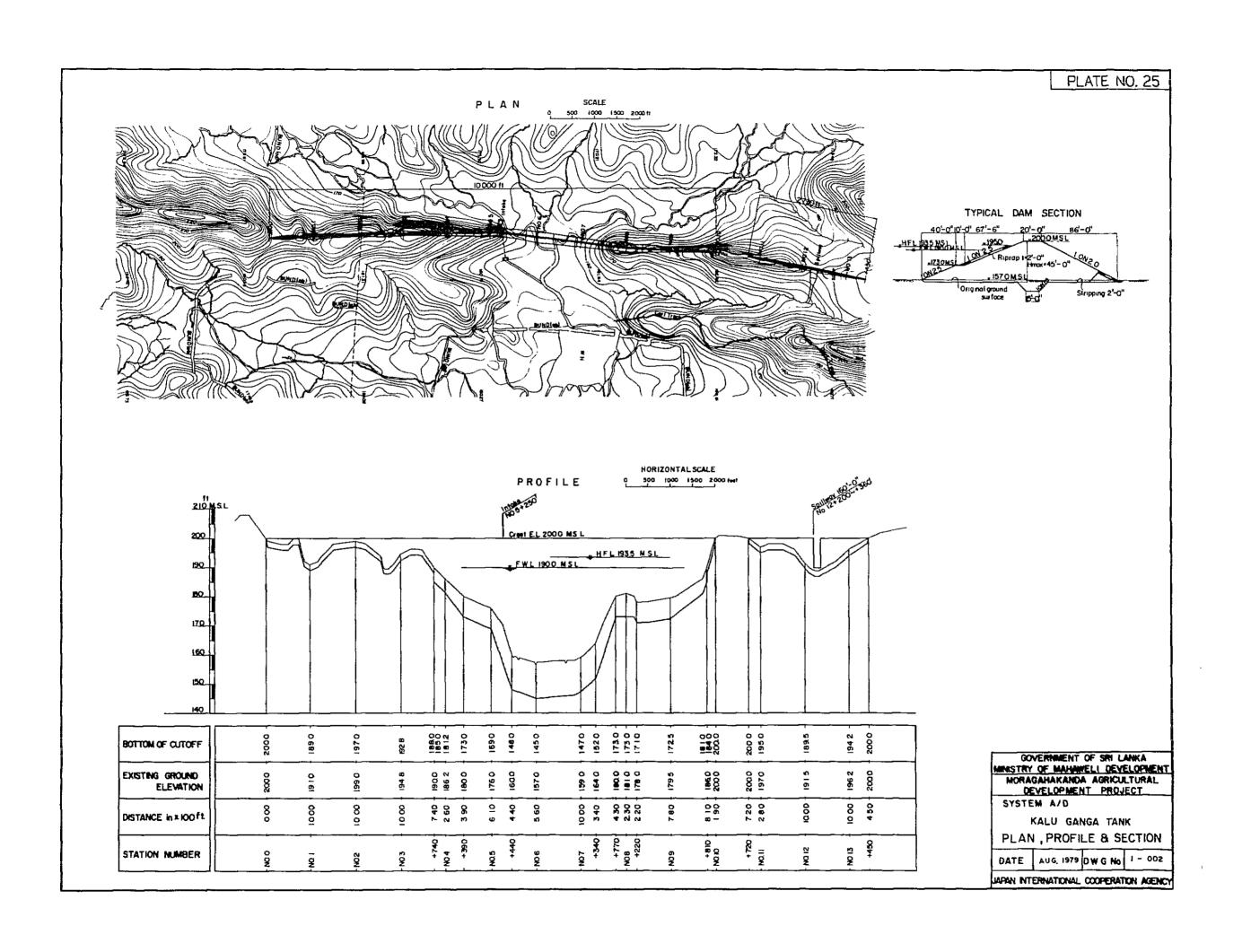

MORAGANAKANDA DAM

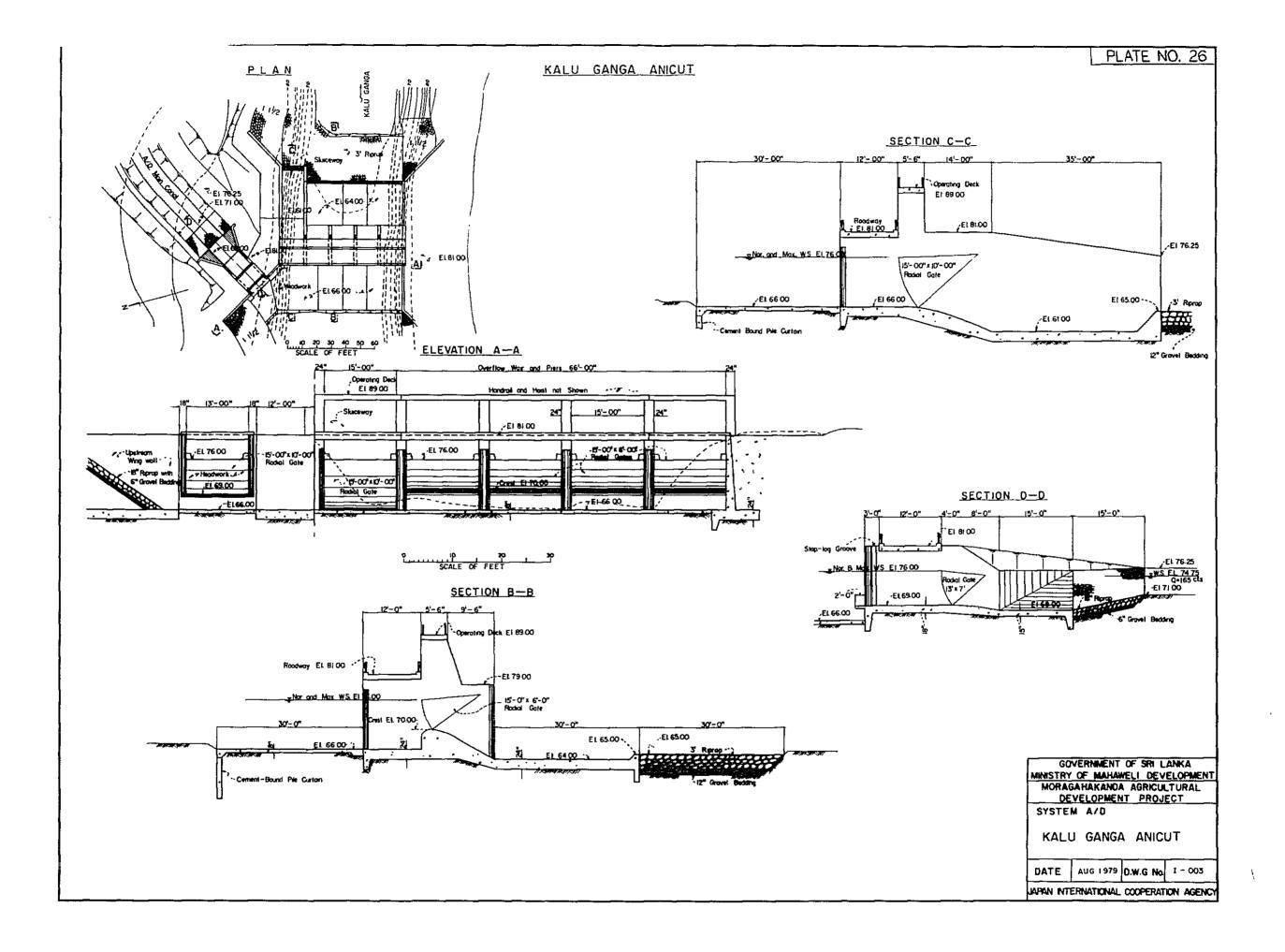
RESERVOIR OPERATION STUDY (2)

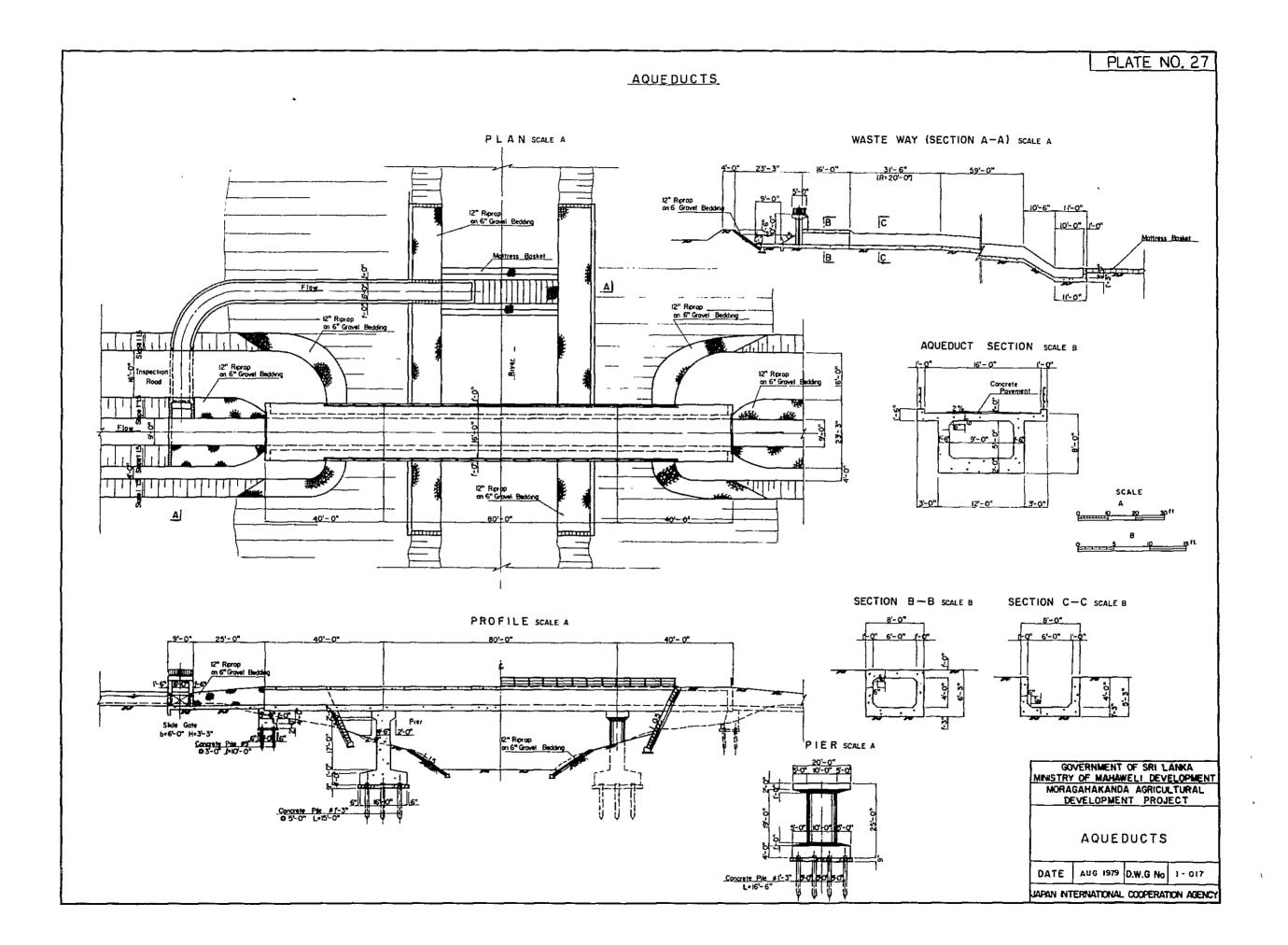

DATE DWG NO. D-011

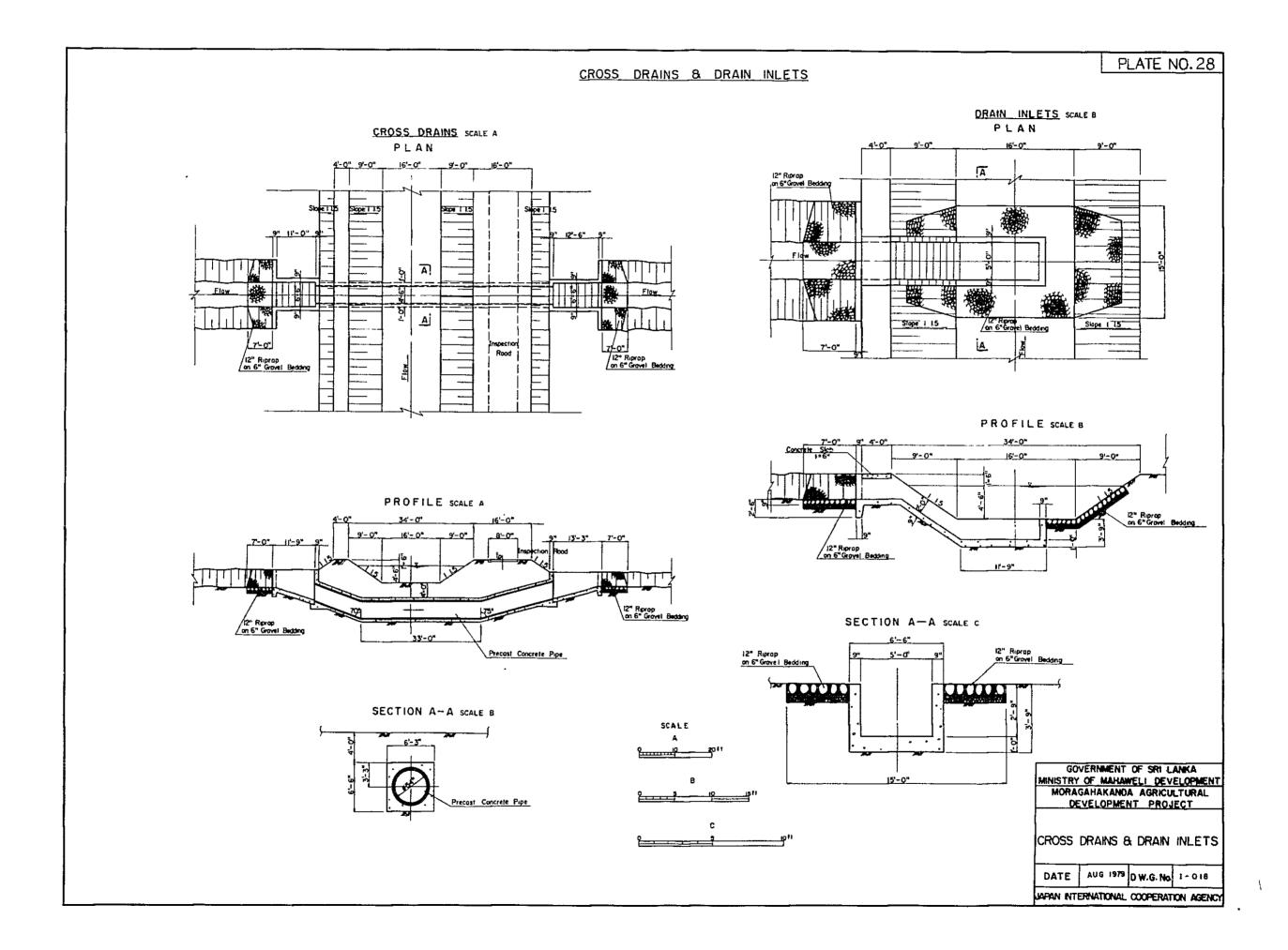
JAPAN INTERNATIONAL COOPERATION AGENCY

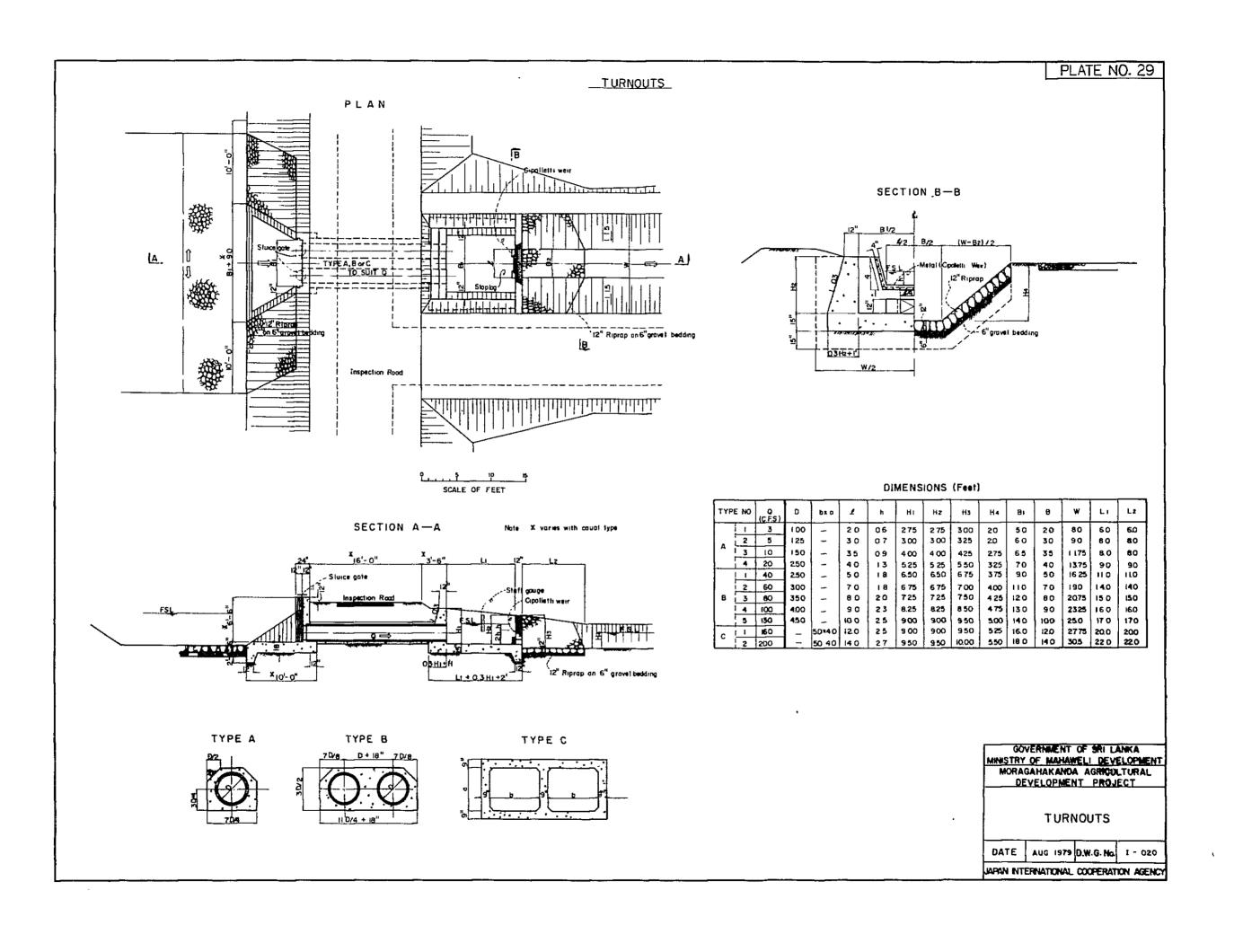


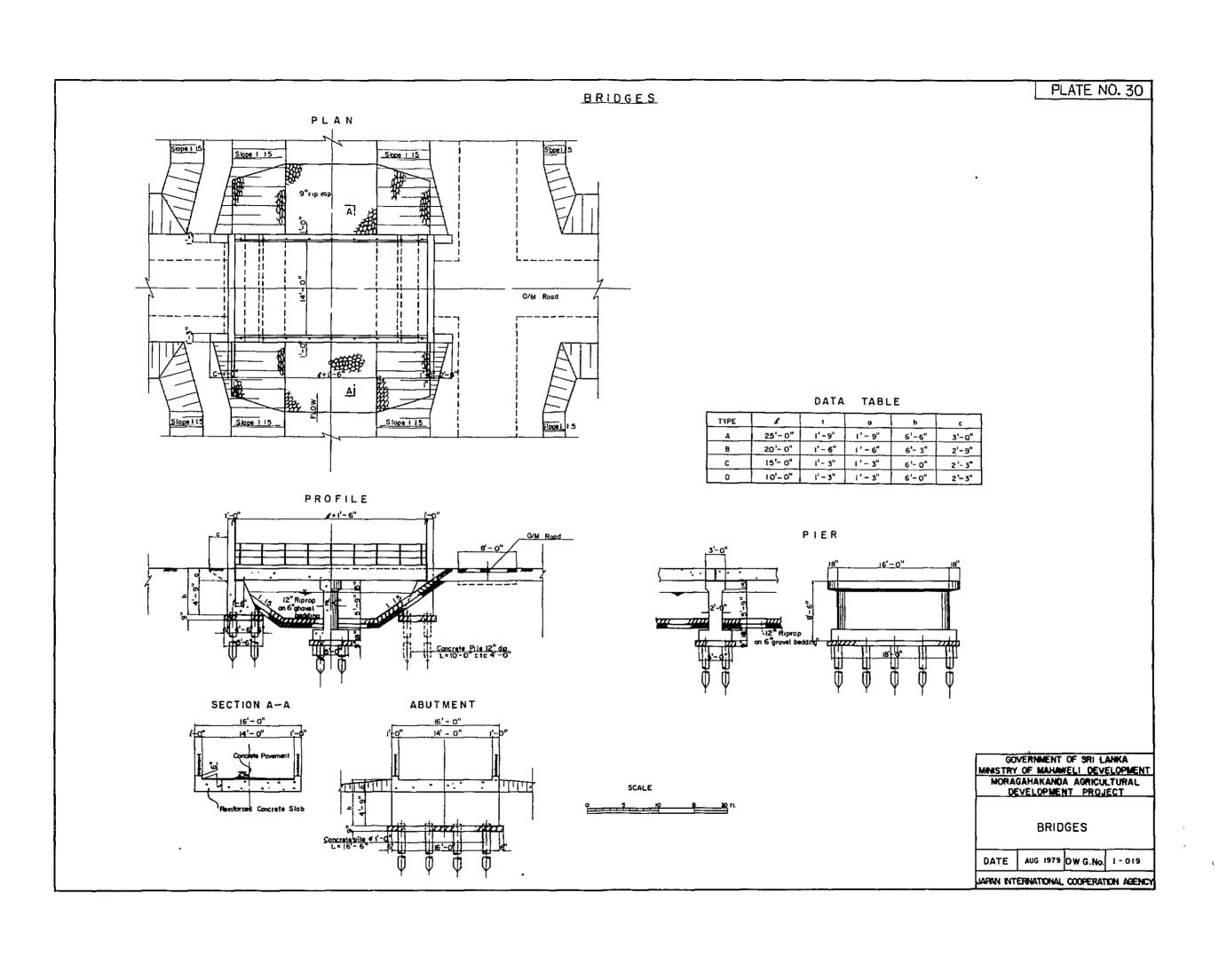


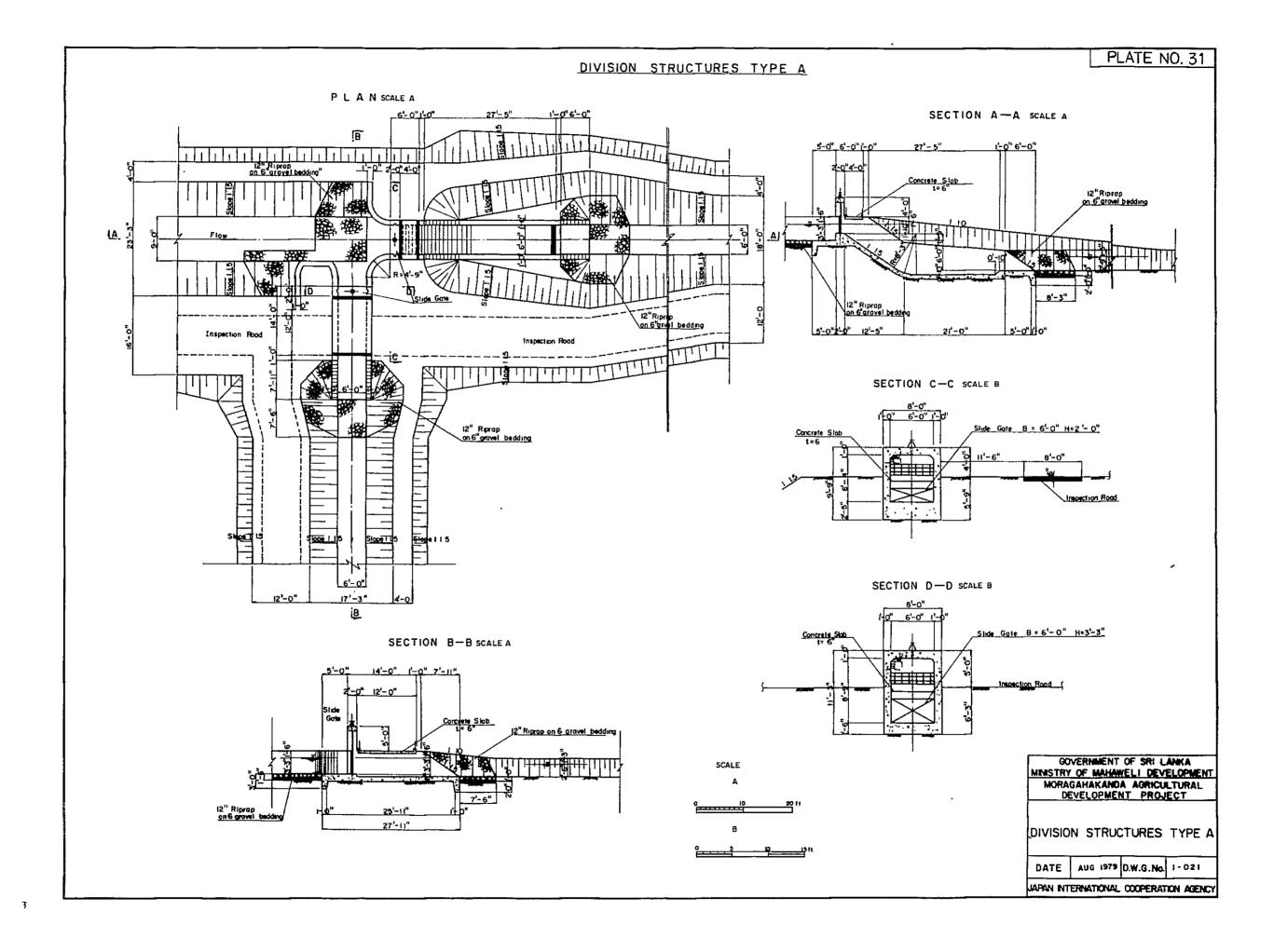


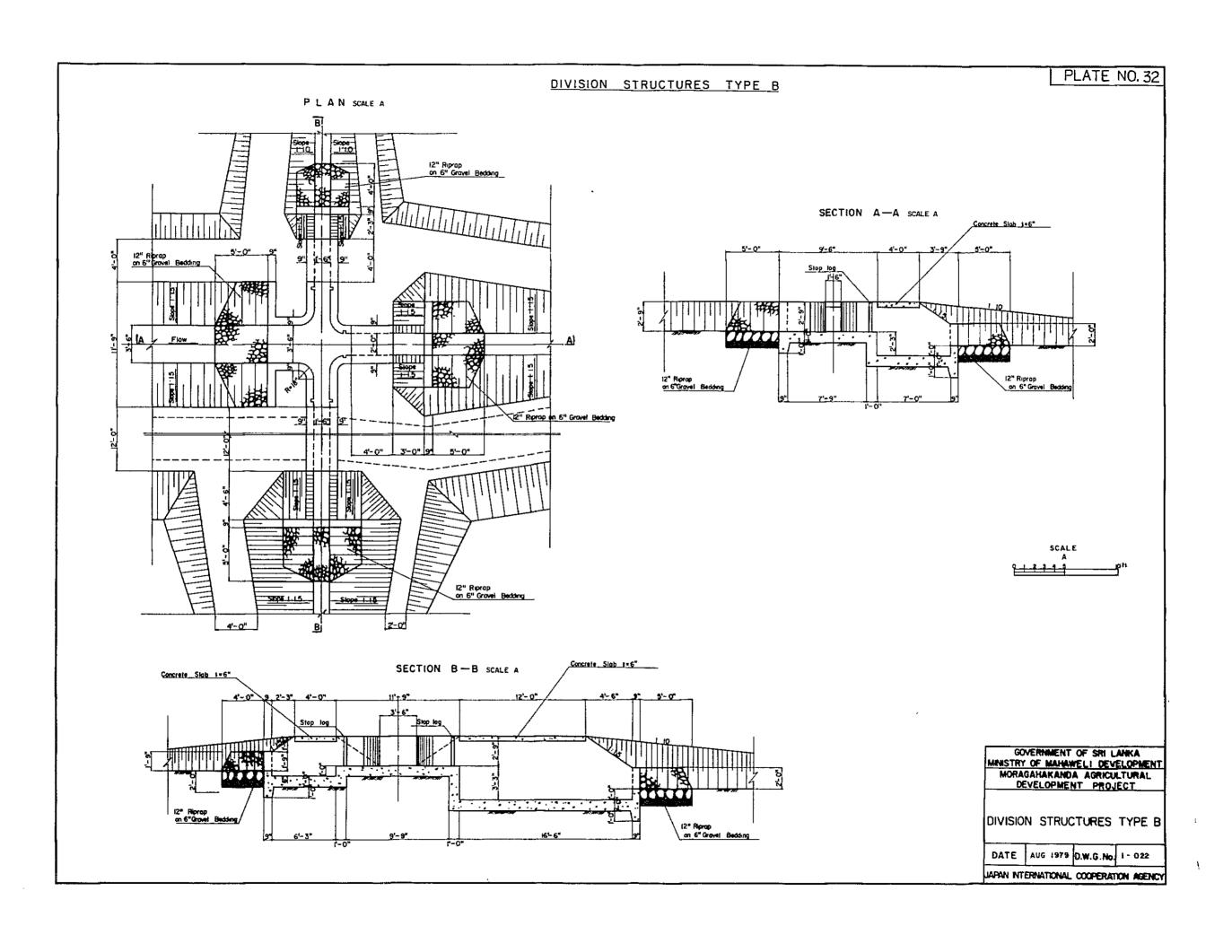


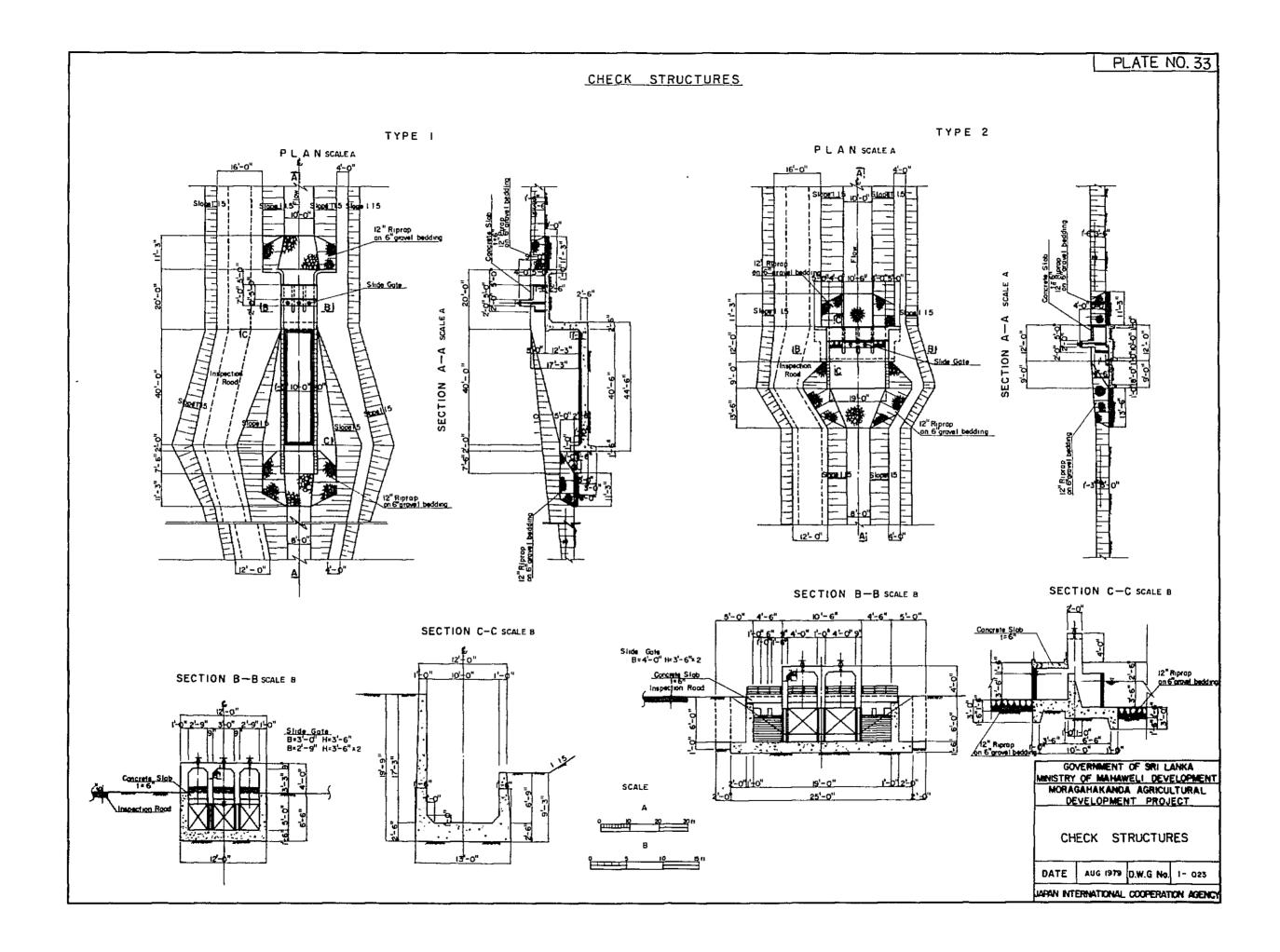

;

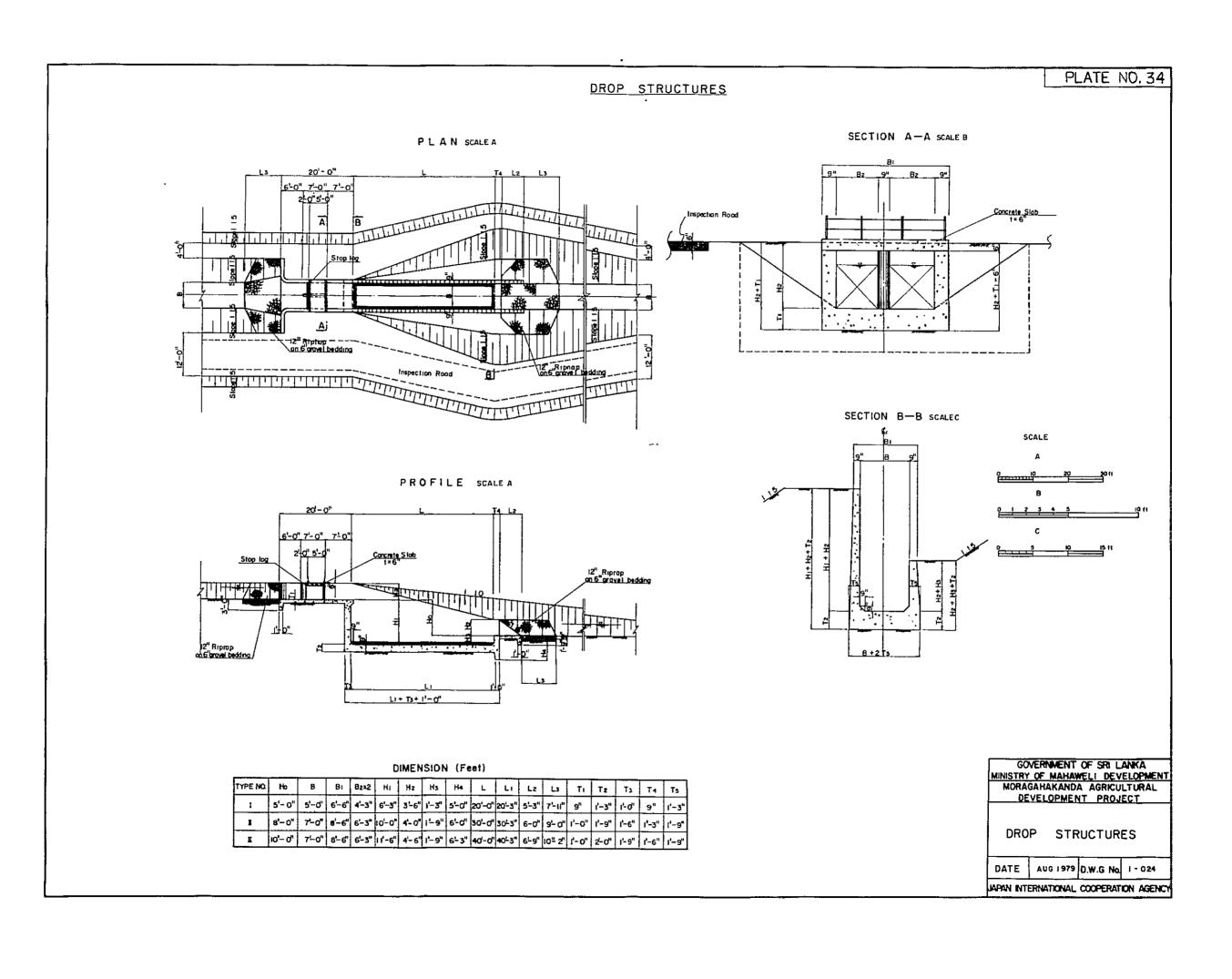


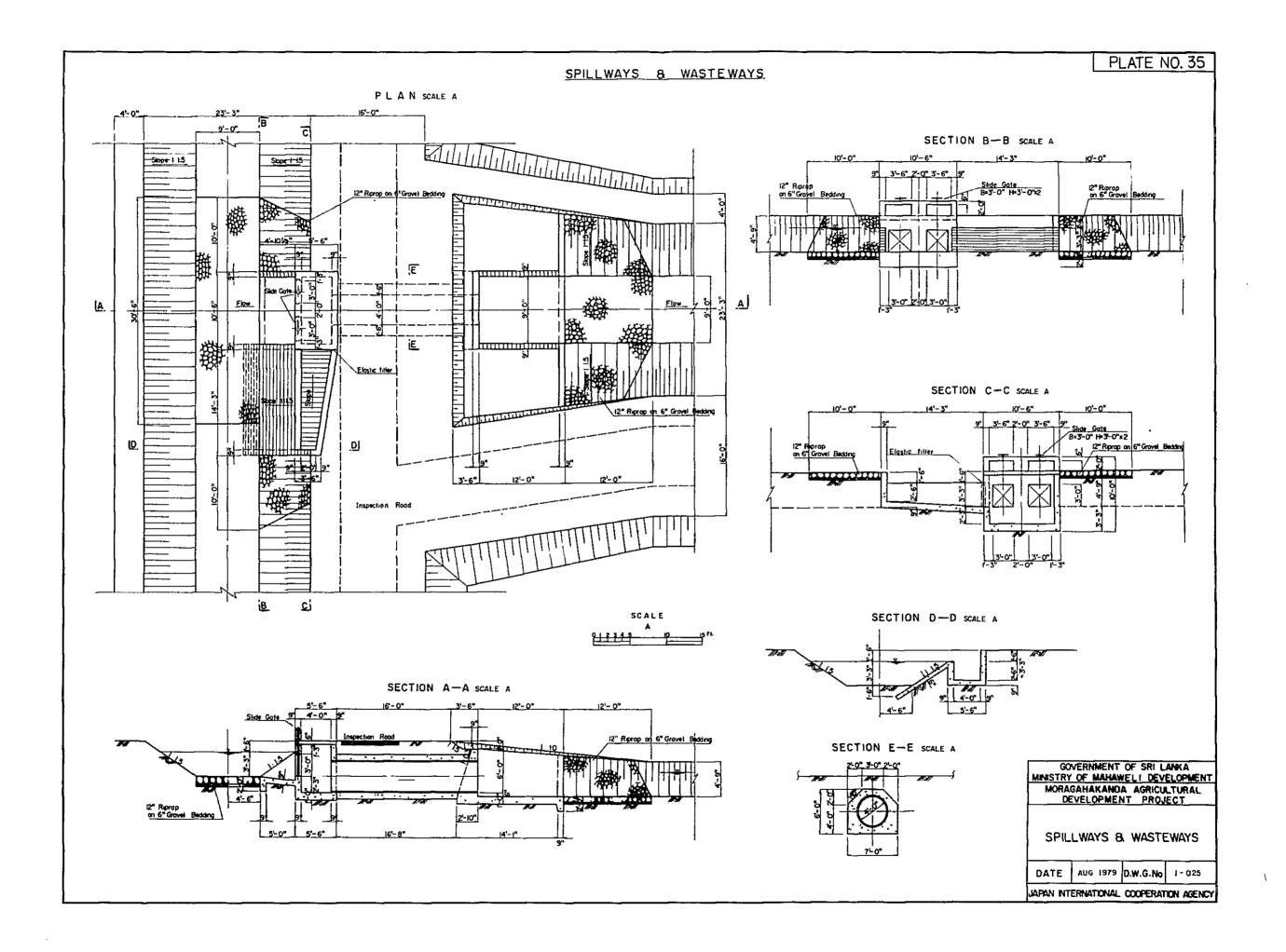


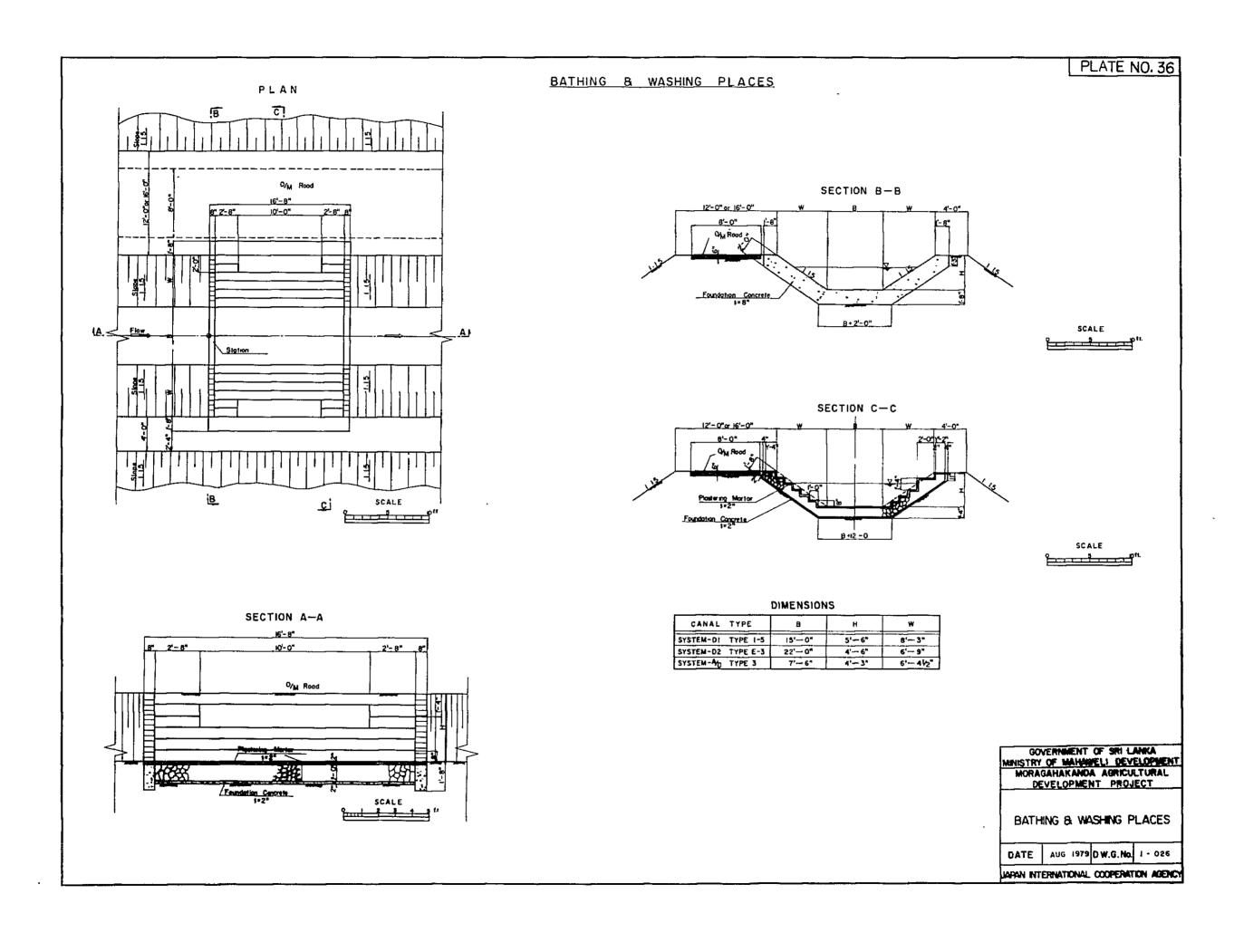


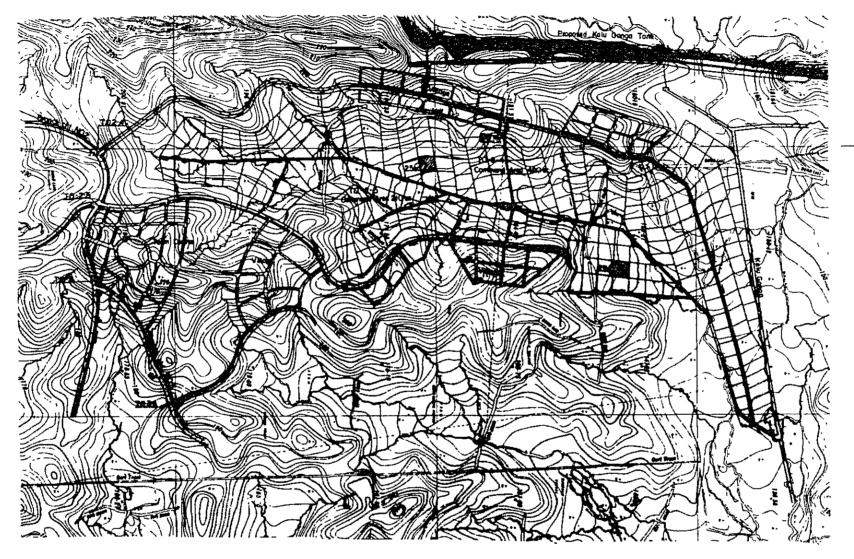












LAYOUT IN SAMPLE AREA SYSTEM DI

SCALE
FEET
DESCRIPTION
METHOD
NO THE SEP GO NO

LEGEND

Distributory

Field Channel

Check Gale

Turnouls

Roads

Secandory Drainage

Field Drains

GOVERNMENT OF SRI LANKA
MINISTRY OF MANAMELI DEVELOPMENT
MORAGAHAKANDA AGRICULTURAL
DEVELOPMENT PROJECT

LAYOUT IN SAMPLE AREA SYSTEM DI

DATE AUG 1979 D.W.G.No 1 - 027

JAPAN INTERNATIONAL COOPERATION AGENCY

A TATEL AND A CONTRACT OF THE STATE OF THE S

* , -,

Chapter VIII: ECONOMIC EVALUATION

8.1 Introduction

Development of the Moragahakanda project would generate a considerable amount of benefits to Sri Lanka due to increases in agricultural production, hydro power output, employment opportunities as well as other multiplied economic effects. The objective of the economic analysis is to assess benefits and costs of the project in economic terms and to indicate its economic viability.

The major costs include construction, operation and maintenance of the dam, hydroelectric plant and reservoir area and development of irrigation and drainage system associated with other infrastructures and services which support the Socio-economic activites in the area, whilst the major benefits comprise hydro-power output, increases in agricultural production and social welfare which, when brought about, are anticipated to spill over into other neighbouring areas.

8.2 Methodology and Approach

8.2.1 Evaluation Criteria

The criteria used in evaluating the project are the present value, internal rate of return and benefit cost analysis. Costs and benefits are priced in terms of economic price which are of true value to the national economy. All these costs and benefits are valued in terms of 1978 constant prices therefore excluding the effects of inflation. An analysis period of 50 years is used.

Since all the factors relevant to the economic analysis are not necessarily determined assured, sensitivity tests are applied by changing certain variable factors when and where necessitation deems.

8.2.2 Discount Rate and Shadow Pricing

The following describes the assumptions made for the pricing of inputs and outputs of the project.

1) Discount Rate:

A discount rate of 10 per cent is normally used by Government Agencies and by international lending agencies for Sri Lanka. In the economic evaluation, therefore, the 10 percent discount rate is used for the standard analysis case, whilst the discount rate of 12 per cent applied only in the sensitivity analysis case.

2) Shadow Price of Foreign Exchange:

At present, the Sri Lanka rupee is probably over-valued in terms of its official exchange rate of about Rs 15 for US\$ 1.0. A shadow rate of Rs 18 for US\$ 1.0 is therefore used in the analysis.

3) Oppotunity Cost of Labour:

As it is considered, presently as well as in the future, that the abundance of farm labour as well as that of unskilled labour is likely to be available for irrigated agriculture and various construction works, a figure of only 50 per cent of the market wage rate for unskilled labour is taken into account in the economic analysis. For all other types of labour the economic and financial prices are the same.

4) Pricing of Other Project Inputs and Outputs:

Necessary adjustment was made for other major inputs and outputs of the project such as petroleum, cement, reinforcing steel bar and other imported construction materials as well as for crops and fertilizer. The prices of these items are by and large distorted by subsides, import duties and other transfers, thus significant differences between the economic and financial prices are noticed for certain items.

8.3 Economic Analysis

8.3.1. Summary of Benefits and Costs

1) Hydropower Benefits:

Hydropower benefits are assessed based on the costs of the alternative thermal project. Benefits from a hydropower project producing a given amount of dipendable power and secondary energy can be calculated by estimating the capital and recurrent costs of generating the same power output in the best alternative thermal project.

The benefits comprise two distinct types of components. Firstly, the costs of providing the same generation capacity which hydropower would give can be termed "capacity benefits" or "KW benefits". Secondly, fuel and other operating costs required in generating each kilowatt (KWH) of electricity which would otherwise be produced by hydropower can be termed "energy benefits" or "kwh benefits".

Methodology and process of calculating the benefits are discussed in 7.4.5. Power Benefit in Chapter VII but in terms of financial prices which therefore have been converted into economic prices. The Moragahakanda power station with 16.10 MW of dipendable peak output producing 6616 GWH of yearly energy product will generate the benefits from 1986 and thenafter. The brnefit stream is shown in the Table 8.2.

2) Irrigation Benefits:

The methodology adopted for the estimation of irrigation benefits for the project is described in 5.2.9. Net Agricultural Benefits in Chapter V. The benefits in terms of economic prices are summarized in Table 8.2.

3) Summary of Project Costs:

All the project cost including dam, power station, irrigation facilities and social infrastructures is converted into economic prices which are broken down into capital and shown in Table 8.1.

Project cost totals Rs. 3,187 million of which Dam and Powerstation require two third or Rs. 2,112 million, while Down Stream Development Rs. 1,075 million. In the latter the cost of social infrastructure development is included because agricultural activities in the new lands would not be able to be satisfactorily performed unless various community facilitis are provided to the farmers and their families. However, since these facilities can benefit other people in the neighbouring areas and all of them are not always directly related to production activities, it is assumed only one third of the total development cost be allocated to the project.

Table 8.1. Summary of Project Cost in 1978 Economic Prices

Particular	Rs. million	Disbursement
Head work:		
Dam, capital:	1,966.3	1981 - 1985
reccurent:	9.8/year	1986 -
Generating Equipment and Transmission,		
Capital :	146.1	1985 - 1986
reccurent:	2.2/year	1986 –
Sub-total	2,112.4 plus	12.0 /year
Down Stream Development		
Irrigation Facilities,		
Capital :	899.2	1980 - 1988
reccurent:	21.3 /year	1986 ~
Social Infrastructures $\frac{1}{2}$		
Capital :	175.4	1985 - 1987
reccurent:	36.5 /year	1987 –
Sub-total	1,074.6 plus	57.8 /year
TOTAL	3,187.0 plus	69.8 /year

 $^{/\}underline{1}$: only 1/3 of the total development cost of social infrastructures required in the area.

Table 8.2. Cash Flow of Benefits and Costs of the Project

		TOTAL	:	,	ı	i	41.3	227.8	65.8	124.1	245.8	303.2	375.9	457.3	537.6	564.2	587.9	621.7	625.7	625.7	9.096	625.7	625.7	625.7	625.7	: 625.7	6.5.7
			Sub- Total	-	ı	1	41.3	227.8	65.8	67.2	67.2	67.2	67.2	67.7	67.2	67.2	67.2	67.2	67.2	67.2	402.1	67.2	67.2	67.2	67.3	67.2	67.2
m1111cm)	Hvdropower	Benefits	KWH Benefits	ı	•	,	,	ı	ı	67.2	67.2	67.2	67.2	67.2	67.2	67.2	67.2	67.2	67.3	5.79	67.2	67.2	67.2	67.3	67.2	67	67.2
(Bs.	æ	i	KW Benefits		•	1	41.3	227.8	65.8	•		1	ı	•	1	1	1	•	t	••• 1	334.9	•	1	•	•	1	ı
BENEFIT			Sub- Total		•	1	ı	•	ı	56.9	178.6	236.0	308.7	390.1	4.00.4	0.794	520.7	554.5	558.5	558.5	558.5	558.5	558.5	558.5	558.5	558.5	55K,5
	Irrigation	Benefits	New Lands	ı	•	•	ı	ı	1	ı	51.9	66.1	78.9	105.7	132.6	159.4	183.1	216.9	220.9	220.9	220.9	220.9	220.9	220.9	220.9	. 6.027	220.9
	II	g.	Existing Lands	1	•	ı	ı	•	ı	56.9	126.7	169.9	229.8	284.4	337.6	337.6	337.6	337.6	337.6	: 337.6	337.6	337.6	337.6	337.6	337.6	337.6	337.6
		TOTAL		15.4	228.9	521.1	577.0	7.69.7	8.207	252.2	174.4	116.4	8.69	8.69	8.69	8.69	8.69	8.69	69.8	8.69	8.69	8.69	8.69	215.9	69.8	89	6.71.2
	ا	il Vocture	0 6 H	1	ı	ı	ı	•	1	1	36.5	36.5	36.5	36.5	36.5	36.5	36.5	36 5	36.5	36.5	36.5	36.5	36.5	36,5	36. 3	,′⊊	36.5
	DOWN STREAM DEVELOPMENT	Social Infrastructure	fapital	ı	,	ţ	ŧ	ı	32.1	125.8	17.5	ı	ı	,	ı		•	1	ı	1	1	•	1	,			
	TREAM DE	ties	4 4	ł	ı	ı		ı	,	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21 3	21.3	21.3	21.3	21.3	11.3	21.3	21.3	21.3		- -:
(1110n)	DOWN S	Irrigation Pacilities	Capital	15.4	21.9	126.6	196.2	140.5	171.8	93.1	87.1	9 97	ı	i	ŧ		,	ı	1	••••	ı	ŀ	;	•	•		•
COST (Rs Hillian)	,	g Equip. saton	0 %	ı		1	ı	ŧ	ľ	2.2	2.2	2,2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	?	?;
	X	Generating Equip. 6 Transmission	Capital	1	ı	ı	1	93.8	52.3	t	i	ı	ı	,	1	1	,	ı	ı	• • • • •	ì	i	;	146 1	•	••••	AH7 7
	HEAD WORK	Баш	¥ 0	,	,	,	ı	,	ı	9.8	9.8	9.8	9.6	9.8	9.8	8.6	9.8	8.6	9.6	6. 8.	9.8	9.6	<u>8</u>	9.6	8.6	e.	ac on
			Capital	1	207.0	194.5	380.0	535.4	448.6	ı		ı	•	•	ı		1	,	,	•••1	•	ı	••• 1		1	• • • • •	•
			Year	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1661	1992	1993	1994	1995	5003	2010	2011	2020	2021	2022	; ; 2034	20.35
				۲.	2.	ei.	4	vi	•	7.	æi	6,	10.	11.	12.	ដ	14.	. . 53.	16.	ģ	31.	32.	;	42.	43.		5 6.

8.3.2. Economic Analysis

1) Analysis Results for Standard Analysis Case:

Based on the cashflow of the costs and benefits summarized in the Table 8.2., an economic analysis was carried out for the standard analysis case: 10 % of discount rate shadowpricing of foreign exchange rate of Rs. 18.0 at US\$ 1.0, shadowpricing of major construction materials and opportunity cost of unskilled labour being considered.

As is shown in the Table 8.3. herebelow economic returns from the project implementation amount Rs.578.8 million in terms of net present value. Internal rate of return (IRR) is 12.0 precent, while the Benefit Cost ratio at the discount rate of 10 per cent is 1.22, thus the implementation of this project can be economically justified.

Table 8.3. Rusults of the Economic Analysis for Standard Analysis Case

	IRR (%)	Net Present Value (Rs million)	B/C Ratio (r=10%)
Value	12.0	575.8	1.22

2) Sensitivity Tests

In order to determine the economic viability of the project, a sensitivity test was done by changing the following factors.

(1) Discount Rate: 12 %

(2) Capital Costs: 15 % higher

(3) Capital Costs: 15 % lower

(4) Foreign Exchange Rate: Rs 15.0 at US\$ 1.0

The rusults of the sinsitivity analysis can be summarized as shown in the Table 8.4. Details of the discounted benefits and costs are presented in the Table 8.5 through 8.9.

cate the project will be economically feasible in any analysis case.

Table 8.4 Results of Sensitivity Analysis

		Sensitivity Case										
Particular	A	В	C_	D	E							
Discount Rate Capital Costs Foreign Exchange Rate (to US\$ 1.0)	10 - Rs. 15	12 - Rs. 15	10 15% higher Rs. 18	10 15% lower Rs. 18	12 - Rs. 18							
IRR (%) NPV (Rs million) B/C Ratio	ŀ	.0 - 270.5 1.13	10.8 275.8 1.09	13.0 875.8 1.39	12.0 Δ 3.7 1.00							

3) Conclusion

In the economic analysis only two types of major benefits were discussed and analysed quantitatively. The analysis indicate the level of these benefits is large enough so that the project will be economically feasible. The implementation of the project, moreover, bring about other direct or indirect intangible benefits into the areas as well as to Sri Lnaka. Major benefits which can be expected additionally include increase of employment oppotunities, increase of fish production from the reservoir to be constructed, generation of secondary and tertiary industries in association with the large-scale agricultural development as well as community development, increase of social welfare standard and so on. Implementation of the project, therefore, can be recommended from the national economic view point.

Table 8.5

Benefits and Costs for Alternative Analysis Cases

Analysis	Discount Rate: 10%
	Construction Costs: + 0%
Condition:	Conversion Rate for Foreign Exchange: US\$ 1.0 = Rs. 15.0
oviid Labit	Shadow Pricing for Major Materials: considered
	Opportunity Cost of Unskilled Labour: considered

Type of Benefit/Cost	Discounted Amount at Year 1980 (Rs. million)	(%)
BENEFIT TOTAL	3,204.5	(100.0)
Irrigation Benefits		
-Existing Lands -New Lands	1,667.3 909.1	(52.0) (28.4)
Hydro Power Benefits		
-KW Benefits	214.4	(6.7)
-KWH Benefits	413.7	(12.9)
COST TOTAL	2,332.1	(100.0)
Head work		
<pre>-Dam (Capital plus 0 & M) -Generating Equipment and</pre>	1,295.7	(55.6)
Transmission (Capital plus 0 & M)	95.7	(4.1)
Down Stream Development		
-Irrigation Facilities (Capital plus 0 & M)	644.0	(27.6)
-Social Infrastructures (Capital plus 0 & M)	296.7	(12.7)
B-C Ratio: 1.37		
Net Present Value: Rs. 872.4 mill	lion	

Table 8.6 Benefits and Costs for Alternative Analysis Cases

CASES B

, -		Discount Rate: 12%
1	Analysis	Construction Costs: ± 0%
	Condition:	Conversion Rate for Foreign Exchange: US\$ 1.0 = Rs. 15.0
		Shadow Pricing for Major Materials: considered
		Oppotunity Cost of Unskilled Labour: considered

	Discounted Amount at	
Type of Benefit/Cost	Year 1980 (Rs. million)	(%)
BENEFIT TOTAL		
•	2,390.8	(100.0)
Irrigation Benefits		
-Existing Lands	1,229.4	(51.4)
-New Lands	651.2	(27.2)
Hydro Power Benefits		
-KW Benefits	193.5	(8.1)
-KWH Benefits	316.7	(13.3)
COST TOTAL	2,120.3	(100.0)
Head work		
-Dam (Capital plus O & M)	1,215.1	(57.3)
-Generating Equipment and Transmission	85.9	(4.0)
(Capital plus 0 & M)		
Down Stream Development		
-Trrigation Facilities	581.3	(27.4)
(Capital plus O & M) -Social Infrastructures (Capital plus O & M)	238.0	(11.3)
B-C Ratio: 1.13 Net Present Value: Rs. 270.5 millio	on	

Table 8.7 Benefits and Costs for Alternative Analysis Cases

CASES C

Analysis Condition:	Discount Rate: 10% Construction Costs: 15% higher Conversion Rate for Foreign Exchange: US\$ 1.0 = Rs. 18.0
	Shadow Pricing for Major Materials: considered
	Oppotunity Cost of Unskilled Labour: considered

Type of Benefit/Cost	Discounted Amount at Year 1980 (Rs. million)	(%)
BENEFIT TOTAL	3,335.9	(100.0)
Irrigation Benefits		
-Existing Lands	1,667.3	(50.0)
-New Lands	909.1	(27.2)
Hydro Power Benefits		
-KW Benefits	283.7	(8.5)
-KWH Benefits	475.8	(14.3)
COST TOTAL	3,060.1	(100.0)
Head work		
-Dam (Capital plus O & M)	1,730.6	(56.6)
-Generating Equipment and Transmission (Capital O & M)	129.4	(4.2)
Down Stream Development		
-Irrigation Facilities (Capital plus O & M)	851.2	(27.8)
-Social Infrastructures (Capital plus O & M)	348.9	(11.4)
B-C Ratio: 1.09		
Net Present Value: Rs. 275.8 millio	on .	

Net Present Value: Rs. 275.8 million

Table 8-8 $\label{eq:Benefits} \mbox{Benefits and Costs for Alternative Analysis Cases}$ $\mbox{CASES D}$

Analysis	Discount Rate: 10% Construction Costs: 15 % lower
Condition:	Conversion Rate for Foreign Exchange: US\$ 1.0 = Rs. 18.0
	Shadow Pricing for Major Materials: considered
	Oppotunity Cost of Unskilled Labout: considered

•	Discounted Amount at Year 1980			
Type of Benefit/Cost	(Rs. million)	(%)		
BENEFIT TOTAL	3,137.7	(100.0)		
Irrigation Benefits				
-Existing Lands -New Lands	1,667.3 909.1	(53.1) (29.0)		
Hydro Power Benefits				
-KW Benefits -KWH Benefits	209.7 351.6	(6.7) (11.2)		
COST TOTAL	2,261.9	(100.0)		
Head work				
-Dam (Capital plus O & M)	1,279.2	(56.6)		
-Generating Equipment and Transmission (Capital plus 0 & M)	95.6	(4.2)		
Down Stream Development				
-Irrigation Facilities (Capital plus 0 & M)	629.2	(27.8)		
-Social Infrastructures (Capital plus 0 & M)	257.9	(11.4)		
B-C Ratio: 1.39 Net Present Value: Rs.875.8 million				

Table 8.9

Benefits and Costs for Alternative Analysis Cases

CASE E

	Discount Rate: 12%								
'Analysis	Construction Costs: ± 0%								
Condition:	Conversion Rate for Foreign Exchange: US\$ 1.0 = Rs. 18.0								
†	Shadow Pricing for Major Materials: considered								
; 4	Oppotunity Cost of Unskilled Labour: considered								

BENEFIT TOTAL 2,420.0 (100.0) Irrigation Benefits -Existing Lands 1,229.4 (50.8) -New Lands 651.2 (26.9) Hydro Power Benefits -KW Benefits 222.7 (9.2) -KWH Benefits 316.7 (13.1)		Discounted Amount at Year 1980			
Irrigation Benefits -Existing Lands -New Lands -New Lands -New Benefits -KW Benefits -KWH Benefits 222.7 -KWH Benefits 316.7 COST TOTAL 2,423.7 Head work -Dam (Capital plus 0 & M) -Generating Equipment and Transmission (Capital plus 0 & M) Down Stream Development -Irrigation Facilities (Capital plus 0 & M) -Social Infrastructures (50.8) 1,229.4 (50.8) (9.2) (9.2) (9.2) (13.1) (9.2) (13.1) (13.1)	Type of Benefit/Cost	(Rs. million)	(%)		
-Existing Lands 1,229.4 (50.8) -New Lands 651.2 (26.9) Hydro Power Benefits -KW Benefits 222.7 (9.2) -KWH Benefits 316.7 (13.1) COST TOTAL 2,423.7 (100.0) Head work -Dam (Capital plus 0 & M) 1,411.2 (58.2) -Generating Equipment and Transmission (Capital plus 0 & M) Down Stream Development -Irrigation Facilities 668.2 (27.6) (Capital plus 0 & M) -Social Infrastructures 243.4 (10.1)	BENEFIT TOTAL	2,420.0	(100.0)		
-New Lands 651.2 (26.9) Hydro Power Benefits -KW Benefits 222.7 (9.2) -KWH Benefits 316.7 (13.1) COST TOTAL 2,423.7 (100.0) Head work -Dam (Capital plus 0 & M) 1,411.2 (58.2) -Generating Equipment and Transmission (Capital plus 0 & M) (Capital plus 0 & M) Down Stream Development -Irrigation Facilities 668.2 (27.6) (Capital plus 0 & M) -Social Infrastructures 243.4 (10.1)	Irrigation Benefits				
-KW Benefits 222.7 (9.2) -KWH Benefits 316.7 (13.1) COST TOTAL 2,423.7 (100.0) Head work -Dam (Capital plus 0 & M) 1,411.2 (58.2) -Generating Equipment and Transmission (Capital plus 0 & M) Down Stream Development -Irrigation Facilities 668.2 (27.6) (Capital plus 0 & M) -Social Infrastructures 243.4 (10.1)		-	• • • • • •		
-KWH Benefits 316.7 (13.1) COST TOTAL 2,423.7 (100.0) Head work -Dam (Capital plus 0 & M) 1,411.2 (58.2) -Generating Equipment and Transmission (Capital plus 0 & M) Down Stream Development -Irrigation Facilities 668.2 (27.6) (Capital plus 0 & M) -Social Infrastructures 243.4 (10.1)	Hydro Power Benefits				
Head work -Dam (Capital plus 0 & M) 1,411.2 (58.2) -Generating Equipment and Transmission (Capital plus 0 & M) Down Stream Development -Irrigation Facilities 668.2 (27.6) (Capital plus 0 & M) -Social Infrastructures 243.4 (10.1)			•		
-Dam (Capital plus 0 & M) 1,411.2 (58.2) -Generating Equipment and Transmission (Capital plus 0 & M) Down Stream Development -Irrigation Facilities 668.2 (27.6) (Capital plus 0 & M) -Social Infrastructures 243.4 (10.1)	COST TOTAL	2,423.7	(100.0)		
-Generating Equipment and Transmission (Capital plus 0 & M) Down Stream Development -Irrigation Facilities (Capital plus 0 & M) -Social Infrastructures 100.9 (4.1) (4.1) (68.2 (27.6) (10.1)	Head work				
Transmission (4.1) (Capital plus 0 & M) Down Stream Development -Irrigation Facilities (68.2 (27.6) (Capital plus 0 & M) -Social Infrastructures 243.4 (10.1)	• •	1,411.2	(58.2)		
-Irrigation Facilities 668.2 (27.6) (Capital plus 0 & M) -Social Infrastructures 243.4 (10.1)	Transwission	100.9	(4.1)		
(Capital plus 0 & M) -Social Infrastructures 243.4 (10.1)	Down Stream Development				
-Social Infrastructures 243.4 (10.1)	. =	668.2	(27.6)		
	-Social Infrastructures	243.4	(10.1)		
	Net Present Value: △Rs. 3.7 million				

.

Table 8-10 Cash Flow of Project Investment at Estimated Current Prices 1/

					HEAD W	ORK						DOWN S	TREAM	DEVELOR	MENT						(Pa	million)
					-			Equipt.	&		rrigat				ocial	. –					(ns i	HTTTTOH)
			Da Capital				smissio Capital				acilit pital	ies			nfrastr Capital				Capita.	Total		·
	Year	F/C	L/C	Total	M&0	F/C	L/C	Total	M&0	F/C		Total	M&0	F/C	L/C	Total	M&O	F/C	L/C	Total	M&0	Total
1	1980	_	_	_	_	-	_	_	_	12.8	5.3	18.1	-	_	_	_	_	12.8	5.3	18.1	_	18.1
2	1981	148.8	88.0	236.8	-	-	-		-	20.8	7.2	28.0	-	-	-	-	-	169.6	95.2	264.8	-	264.8
3	1982	380.3	88.3	468.6	-	-	-	_	_	143.0	30.2	173.2	-	-	_	-	-	523.3	118.5	641.8	_	641.8
4	1983	387.1	70.7	477.8	-	_	-	-	-	189.3	95.6	284.9	-	-	-	-	-	576.4	186.3	762.7	-	762.7
5	1984	574.5	135.3	709.8	-	116.0	7.1	123.1	-	73.9	144.2	218.1	-	-	-	-	-	764.4	286.6	1,051.0	-	1,051.0
6	1985	507.9	120.4	628.3	-	51.4	22.0	73.4	-	100.2	182.4	282.6	-	21.2	31.6	52.8	-	680.7	356.4	1,037.1	-	1,037.1
7	1986	-	-	-	15.1	_	-	-	3.4	51.2	111.3	162.5	36.7	7.1	251.6	258.7	_	58.3	362.9	421.2	55.2	476.4
8	1987	-	-	-	16.0	-	-	_	3.5	52.8	108.4	161.2	38.9	3.3	33.9	37.2	73.8	56.1	142.3	198.4	132.2	330.6
9	1988	-	-	-	17.0	_	-	-	3.8	32.6	58.4	91.0	41.3	-	-	-	78.3	32.6	58.4	91.0	140.4	231.4
10	1989	-	-	-	18.1	_	-	_	4.0	-	-	-	43.8	_	-	-	83.1	-	-	-	149.0	149.0
11	1990	-	-	-	19.1	-	-	-	4.2	-	-	-	46.5	-	-	-	88.2	-	_	-	158.0	158.0
	•				•												•				•	•
•	•				•				•				•				•				•	•
•	•				•				•				•				•				•	•
• '					•				•				•				•				•	•
То	tal	1,998.6	522.7	2,521.3		167.4	29.1	196.5	·	676.6	743.0	1,419.6		31.6	317.1	348.7		2874.2	1,611.9	4,486.1		

1/: Escalation factors are assumed as follows:

		1978	1979	1980	1981	1982	1983 onwards	
Local Component	:	_	12.2	7.9	7.9	6.3		
Foreign Component	:	_		8	.0 —		5.50 (%/	year)

[:] Escalation factors for O&M are determined based on the assumption that the cost comprises 20% of F/C and 80% of L/C.

Table 8-11 Cash Flow of Project Investment at Current Prices 1/

					HEAD V								TREAM	DEVE	LOPMENT						(million	venl
				D			_	quipt. &	•		Irriga				Social						(. ,,
				Dam		Trans	mission Cost tol				Facili				Infrastr				0	Total		
	Year	F/C	Capita _L/C	Total	M&O	F/C	Capital L/C	Total	M&0	F/C	Capita L/C	Total	0&M	F/C	Capital L/C	Tota	L O&M	F/C	Capita L/C	Total	M30	Total
1	1980	-	_	_	_	-	-	_	_	166.4	68.9	235.3	_	_	-	_	_	166.4	68.9	235.3	_	235.3
2	1981	1,934.4	1,144.0	3,078.4	_	_	_	-	-	270.4	93.6	364.0	_	-	_	-	_	2,204.8	1,237.6	3,442.4	_	3,442.4
3	1982	4,943.9	1,147.9	6,091.8	_	_	_	-	-	1,859.0	392.6	2,251.6	_	-	_	-	_	6,802.9	1,540.5	8,343.4	_	8,343.4
4	1983	5,032.3	1,179.1	6,211.4		-	~	-	-	2,460.9	1,242.8	3,703.7	_	-	-	-	-	7,493.2	2,421.9	9,915.1	_	9,915.1
5	1984	7,468.5	1,758.9	9,227.4	_	1,508.9	92.3	1,600.3	-	960.7	1,874.6	2,835.3	-	-	_	-	-	9,937.2	3,725.8	13,663.0	_	13,663.0
6	1985	6,602.7	1,565.2	8,167.9	-	668.2	286.0	954.2	-	1,302.6	2,371.2	3,673.8	-	275.6	410.8	686.	4 –	8,849.1	4,633.2	13,482.3	_	13,482.3
7	1986	-	-	-	196.3	-	-	-	44.2	665.6	446.9	2,112.5	477.1	92.3	3,270.8	3,363.	- 1	757.9	4,717.7	5,475.6	717.0	6,193.2
8	1987	-	-	-	208.0) -	_	-	45.5	686.4	409.2	2,095.6	505.7	42.9	440.7	483.	5 959.	4 729.3	1,849.9	2,579.2	1,718.	4,297.8
9	1988	-	-	_	221.0) <u> </u>	-	-	49.4	423.8	759.2	1,183.0	536.9) -	-	_	1017.	9 423.8	759.2	1,183.0	1,825.	3,008.2
10	1989	-	-	-	235.3	· -	-	-	52.0	-	-	-	569.4	-	-	-	1080.	.3 -	-	-	1,937.0	1,937.0
11	1990	-	-	-	248.3	3 -	-	~	54.6	_	-	_	604.5	· -	-	-	1,146	6 –	-	-	2,054.0	2,054.0
					•				•								•					•
٠	•				•				•				•				•				•	•
•	•				•				•				•				•				•	•
	•				•				•				•				•				•	•
•	Total	25981.8	6,795.1	32,776.9		2,176.2	378.3	2,554.5	. 8	,795.8	9,659.0	18,454.8	•	410.8	4,122.3	4,533.	L 3	37,364.6	20,954.	7 58,319	.3	

1/: Escalation factors are assumed as follows:

		1978	1979	1980	1981	1982	1983 onwards
Local Component	:	-	12.2	7.9	7.9	6.3	6.25
Foreign Component	:	-		8	.0 —		5.50 ^(%/year)

[:] Escalation factors for O&M are determined based on the assumption that the cost comprises 20% of F/C and 80% of L/C.

-•
· • --, r

Chapter IX: RECOMMENDATIONS AND OUTSTANDING ISSUES

Feasibility study having been concluded, the Moragahakanda Agricultural Development Project awaits the detailed survey at the earliest possible point of time. To facilitate such survey, the F/S team would like to point out some actions to be taken by the Government of Sri Lanka, under two headings:

A: MORAGAHAKANDA DAM AND POWER STATION

In order to step up an early implementation of the Project, the financial arrangement shall be expedited side by side with the preparation of definite plan of the Project and tender documents for the construction.

The definite plan investigation will be needed to consolidate the economic and technical viability of the stage development of power station as recommended in this Report. Some supplementary investigations will be required for preparation of the tender design.

The definite plan investigation will mainly include the topographic survey around Kongetta Oya Afterbay site and possible NCP canal route to the Kongetta Oya, the geological investigation at the Afterbay weir site as well as around the Elahera Anicut as an alternative site, and material survey for the construction.

The supplementary investigation for the tender design will include the following:

- (i) Topographic survey on such areas not covered by the existing maps as inlet of diversion channel, quarry site, contractor's quarters etc.;
- (ii) Topographic survey along the proposed transmission-line to Bowatenna Power Station:
- (iii) Additional core drilling, permeability test, grouting test and additing at the damsite and core drilling at the quarry;
- (iv) Trial mix test of concrete and shearing test of rock material;
- (v) Collection of additional meteo-hydrologic data for estimation of probable maximum flood;


- (vi) Reconnaissance and assessment of present conditions of transportation facilities such as roads, railways and port, and
- (vii) Collection of cost data.

It is recommended that the investigations mentioned above and the tender design had better be made in collaboration with the competent, international consulting engineers in view of the earliest implementation of the Project. The period required for the investigation and the preparation of tender design will take 12 to 15 months at the shortest.

B: DOWNSTREAM DEVELOPMENT

Prior to the commencement of the detailed design survey on the irrigation/drainage facilities (rehabilitation and new provision), it is desirable to have the following data and materials collected, prepared and compiled for ready reference:

- (i) Topographic Maps (1/2,500 1/5,000 with 2' contour) for System D_1 , D_2 and A/D;
- (ii) Survey to identify the area under unauthorized cultivation which is being distributed widely in the Project Area and totalling 7,600 ha (18,700 ac);
- (iii) Profiles and crossings of the existing canals which would be utilized for new land irrigation will need to be identified along the undermentioned courses and distances:
 - (1) Parakrama Samudra: D1-Main Canal and D1-North Canal (incl. RB 18) and D1-East Canal (Incl. RB 10);
 - (2) Elahera-Minneriya Yoda Ela: Downstream of the rehabilitated portion; and
 - (3) Minneriya-Kantalai Yoda Ela: Portion or portions badly requiring repair and rehabilitation.

