3.1.2 Related Structures

Many kinds of structures are needed in relation with the irrigation canals for the Project. They consist of: crossing structures, turnouts, division structures, checks, water measurement devices, drop structures, spillways, wasteways and so forth. All the related structures along the proposed canals are listed in Table 6.3.13 to 6.3.15.

Design consideration for these related structures are as follows.

(1) Crossing Structures

The proposed irrigation canals would inevitably cross at some places over or under the tributaries, drainage channels and roads. Aqueducts, bridges and cross drainage structures have been designed for those crossings.

a) Aqueducts

An aqueduct has been provided for the canal to cross the existing tributaries or drainage channels. The design velocity in an aqueduct has been decided 1.5 times as much as that in the upper and lower canals from view point of the economy. In this Project, aqueduct would also serve as road bridge. A reinforced concrete aqueduct which shaped rectangular has been designed after considering the required scale of aqueduct, durability and economical aspect. Wasteway has been provided with manual-operated slide gate (s) at the just upstream portion of the aqueduct so that can evacuate a part and/or whole of canal water. The typical design of aqueduct is shown in Dwg. No. I-017.

b) Cross drainage structures

The drainage water is conveyed across the proposed canal by undercrossings or is dropped in the canal by drainage inlets. Single or multi-barrel pre-cast circulat concrete conduit(s) has been adopted for the undercrossing. At places where the drainage canal is higher than the proposed canal, drainage inlets into the canal are provided for small catchments, with discharge less than 10 cusecs.

Those drainage structures are illustrated in Dwg. No. I-108.

c) Bridges

Since existing condition of road network in the project area is very poor, the proposed irrigation canals would corss few existing roads. In order to connect separated fields by the canals and to link villages and to also serve for operation and maintenance, however,

bridges have been provided at an interval of half a mile along the canal in this Project. It is proposed to adopt concrete slab bridges are shown in Dwg. No.I-109.

(2) Turnouts and Division structures

Turnouts are used to divert water from a canal to canal/canals. In accordance with the design discharge and the topographic condition where the turnout is located, the following three types of turnouts are adopted.

- Q = 20 cfs Type A: Slide gate + Single barrel concrete pipe + Measuring device (M.D.)
- 20 Q _ 130 Type B; Slide gates + Double barrel concrete pipes + M.D.
- Q 130 cfs Type C: Slide gate + Concrete box current + M.D.

Water measuring devices should be provided at turnout on canals. As a general rule, the Cipolletti weir is adopted for measuring device in this project because this type is a most common and the least costly. If an adequate water head loss is unavailable or the discharge is large, the broadcrested weir should be adopted.

The standardized designs of the turnouts are shown in Dwg. No. I-20.

Division structures combined with gate regulater(s) are used to divide the flow from a supply canal among two or more canals. Typical division structures are designed as shown in Dwg. No. I-021 and I-022.

(3) Checks

Checks are provided for maintaining a certain water depth in order to feed the fluctuating needs of different offtake canals and to prevent high flow velocity. Two types of checks to be used in this Project are standardized: one is a combined type of the fixed overflow weir and manually operated slide gate(s) and the other one has been designed as a flumed section and combined with a drop structure. They are illustrated in Dwg. No. 1-023.

(4) Water Measuring Devices

Water measuring devices have been provided at the intake site and at each turnouts on the canals. In this Project, the type of Cipolletti weir is adopted as the device in view points of economical aspects and considering operation and maintenance. In case of that an adequate water head loss is unavailable or the discharge is large, however, the broad-crested

weir will be adopted. These devices are used in combination with other canals structures.

(5) Drop Structures

Drop structures are used in canals to dissipate surplus energy. As the number of drops to be provided in the canal system of this Project is fairly large, it is desirable to standardized the design. After considering the required drop height, the topographical condition and other factor, vertical drop type has been adopted for this Project. In this type, the dissipation of energy is effected by the diffusion of water, as the water enters the pool of water downstream. Check structures are often combined with the drops to prevent racing and scouring upstream of the structure.

Vertical drops are standardized as in Dwg. No. I-024.

(6) Spillways and Wasteways

In order to automatically eliminate excess flow discharge due to floods or to unproper canal intake gate operation, spillways have been provided at the beginning or in adequate location along the more important canal system. Spillways are usually combined with wasteways which consist of mannally operated slide gates to provide means of removing the entire flow in the canal in cases of breakdown or desilting.

In this Project, the side channel overflow spillway has been adopted being combined with the wasteway as in Dwg. No. I-025.

(7) Washing and Bathing Places

Due to the intensive use of the exsiting canals for washing purposes special access points for people are provided in the canals incorporating steps and a bathing place. The number of these will be roughly two for every 3 miles length of canal.

The typical design is shown in Dwg. No. I-026.

Table 6.3.13 List of Proposed Related Structures in System D-1

Canal Type	AQ.	C.D.	D.I.	BR.	т.о.	D.S.	C.G.	M.D.	DR.	s.w.	W.P.
* M.C.	_	-	-	4	-	-	-	1	-	-	2
* 1-1	-	-	-	1	***	-	1	1	-	_	1
* 1-2	_	-	-	2	-	-	-	-	-	-	1
* 1-3	_	-	-	2	-	-	-	-	_	_	1
1-4	-	_	-	3	2	_	-	1	-	1	1
1-5	_	-	1	3	3	-	1	-	-	-	1
1-6	-	-	-	4	4	-	2	-	1	-	1
1-7	-	-	-	2	1	1	2	-	4	-	_
2-1	-	3	4	6	2	-	1	1	-	1	2
2-2	-	3	2	4	4	1	2	-	-	-	1
2-3	-	_	-	4	3	-	1	1	3	1	1
2-4	-	-	-	4	5	-	3	-	3	-	1
2-5	-	_	1	4	1	1	2	-	3	-	1
3-1	-	-	1	3	6	-	1	1	2	1	1
3-2	-	_	-	6	6	-	3	-	5	-	2
3–3	-	-	-	4	2	1	2	-	3	_	1
Total	0	6	9	56	39	4	21	6	24	4	18

Notes; AQ. = Aqueduct, C.D. = Cross Drain, D.I. = Drainage Inlet
BR. = Bridge, T.O. = Turnout, D.S. = Division Structure
C.G. = Check Gate, M.D. = Water Measuring Divice, DR. = Drop
S.W. = Spillway & Wasteway, W.P. = Washing & Bathing Place

Table 6.3.14 List of Proposed Related Structures in System D-2

Canal Type	AQ.	C.D.	D.I.	BR.	т.о.	D.S.	C.G.	M.D.	DR.	S.W.	W.P.
* M.C.	_	_	·_	3	_	_	_	1	_	_	2
* N-1	_	•••		1	_	-	1	1	-	-	1
* N-2	-	-	-	3	-	-	_	-	-	-	2
* N-3	_	-	-	1	_	-	-	-	-	-	-
* N-4	_	-	-	4	-	-	-	_	_	-	2
N-5	1	-	-	2	1	1	-	_	_	1	1
N-6	-	-	-	3	2	-	-	1	1		1
N-7	-	-	-	3	-	1	1	-	1	-	1
N-6-1	_		-	2	2	-	-	1	-	-	-
N-6-2	1		-	2	2		1	-	_	-	-
N-6-3	_	-	-	2	_	1	1	-	-	_	1
* E-1	-		-	3	-		1	1	-	-	1
* E-2	-	-	-	2	-		_	_	-	-	1
* E-3	_	-	-	2	-	-	-	-	-	-	1
* E-4	-	-	-	2	-	_	-	-	-	-	-
* E-5	_	-	-	2	-	-	_	-	-	-	-
E-6	1	-	-	3	2	_	_	-		1	1
E-7	-	-	_	3	2	-	2	-	-	-	1
E-8	-	-	-	2	-	1	-	1	-	-	_
Total	3	0	0	45	11	4	7	5	2	2	16

Notes; AQ. = Aqueduct, C.D. = Cross Drain, D.I. = Drainage Inlet
BR. = Bridge, T.O. = Turnout, D.S. = Division Structure
C.G. = Check Gate, M.D. = Water Measuring Divice, DR. = Drop
S.W. = Spillway & Wasteway, W.P. = Washing & Bathing Place

Table 6.3.15 List of Proposed Related Structures in System A/D

Canal Type	AQ.	C.D.	D.I.	BR.	T.O.	D.S.	C.G.	M.D.	DR.	S.W.	W.P.
1	5	1	1	13	6	-	2	1	_	1	4
2	_	_	-	1	-	1	1	_	-	_	-
3	1	1	2	6	4	_	3	1	2	1	2
4	-	1		3	4	_	3	•	1	_	1
5	-	_	-	4	2	1	2	-	_	_	1
1-1	-	1	-	6	1	1	1	-	1	-	2
2-1	-	1	1	2	3	-	1	1	1	-	-
2–2	-	1	1	5	2	1	-	-	1	-	1
Total	6	6	5	40	22	4	13	3	6	2	11

Notes; AQ. = Aqueduct, C.D. = Cross Drain, D.I. = Drainage Inlet
BR. = Bridge, T.O. = Turnout, D.S. = Division Structure
C.G. = Check Gate, M.D. = Water Measuring Divice, DR. = Drop
S.W. = Spillway & Wasteway, W.P. = Washing & Bathing Place

3.2 Drainage Plan

(1) General

As has been mentioned in the chapter of the present condition of the Project area, the problem of drainage in the Project area concentrates itself mainly on the discharge of excess water from frequently occurring storms of high rainfall intensity.

The purpose of a drainage system is to remove the excess water from the ground surface or subsoil. A drainage system should always be considered when an irrigation project is envisaged. Generally, open or underground drains or combination thereof are used as the means of drainage. In case of this Project, existing natural streams will be used as main drainage channel. When the existing natural stream section is unable to carry the design flood discharge, without backing up and inundating the irrigation system, it would be necessary to excavate and embank the natural drainage lines and/or to make smooth drainage by deviations or short cuts.

Seven tributaries to be improved have been selected for use as main drainage channels, which will mostly drain into the flood plain of the Mahaweli Ganga. The selected tributaries to be improved among System D-1, D-2 and A/D within the newly reclaimed lands are shown in the following table and the proposed drainage system is illustrated in Fig.6.3.8

Name	System	Length (miles)
Kalu Ganga	D-1	11.5
Thimbri Ela	D-1	7.5
Ambagaha Oya	D-1	8.4
Periya Aru	D-2	11.2
Sinna Ganga	D-2	9.0
Uppu Aru	A/D	4.8
Karappankadawela Aru	A/D	4.4

The design requirements for the main drainage channels are explained in the following paragraphs.

(2) Design Discharge

a) Planning of year of frequency occurence

According to "MAHAWELI GANGA IRRIGATION AND HYDRO-POWER SURVEY" by UNDP/FAO, 5-year frequency would be enough as the basis of design of drainage facilities in Sri Lanka. In this Project, it is also decided that 5-year frequency flood is taken as the design discharge.

b) Design discharge

The discharge capacity of main drainage channel will be provided to cater to a flood of 5-year frequency, as was stated previously.

For the estimation of the discharge, it will be assumed the lands have been developed as per the Project proposals. The flood discharge has been calculated according to the formula given below, which belongs to the category of formulae based on experience and is prevailing in Sri Lanka.

$$Q = C \times A \times R_t$$

 $t = (11.9 \times L^3 / H)^{0.385}$

where, Q; flood discharge in cusec,

A; catchment area in acres,

L; max. length of channel in miles,

H ; max. differnce in elevation in feet,

 $R_{_{\mbox{\scriptsize F}}};$ Rainfall intensity in inches within duration t hours,

t; time of concentration in hours (travel time from the most distant point in the catchment to the point of interest), and

C; coefficient of runoff

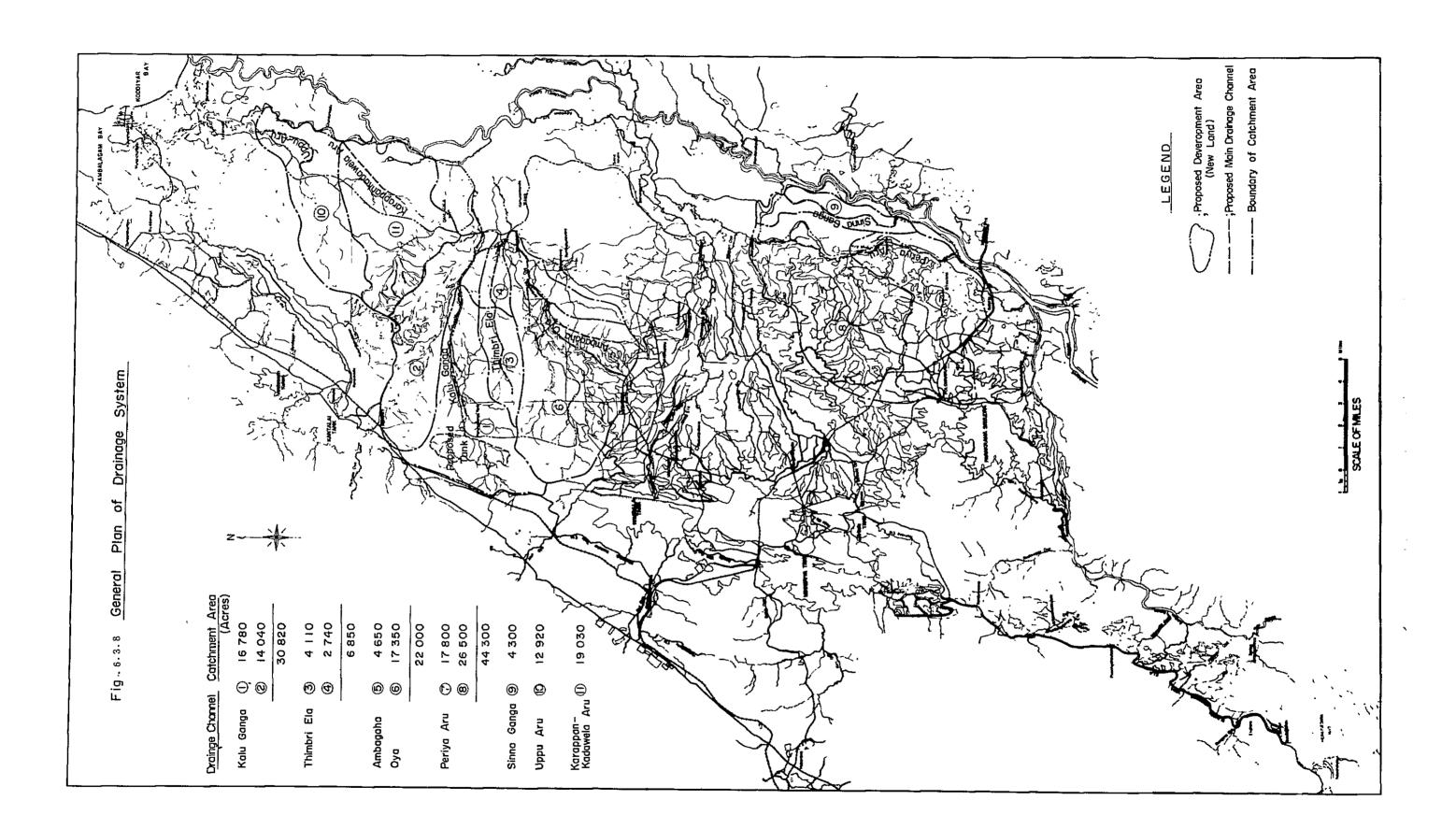
Assumption L = 1.5 A (A in sq.miles)

The rainfall intensity to be adopted for this drainage plan is as for Anuradhapura and is shown in Fig. 6.3.9 which is given in the above Report.

The runoff coefficient to be applicable in this Project is proposed as follow.

Classification of area	Runoff coefficient for drainage discharge for 5-year frequency
Jungle area	0.2
Paddy field	0.3
Cropped land	0.4

The calculation of the flood discharges/design discharges for each drainage channel proposed, which was carried out according to the method described above, have been summarized in Table 6.3.16.


(3) Standard Cross Sections of Main Drainage Channels

As for the standard cross section, ll types are designed for the main drainage channels.

The seciton proposed for the drainage channel is such that 2/5 of 5-year frequency flood will be carried by the portion excavated below from the ground level, and 3/5 of 5-year flood will be taken care of by the section above ground level and formed by embankments on the both sides. The bank top-width and berm width shall be provided at least 12 ft. and 10 ft., respectively. Freeboard in the main drainage channel is decided 3 ft. On the outside of the embankments, drainage ditches will be excavated.

For the purpose of the hydraulic design, the Manning formula has been adopted in the same manner as the irrigation canal. The value of roughness coefficient or 'N' for the design has been taken as 0.040.

The hydraulic calculations for determining standardized cross sections are tabulated in Table 6.3.17. The proposed standard channel sections for the drainage system are illustrated in Fig. 6.3.10 and 6.3.11.

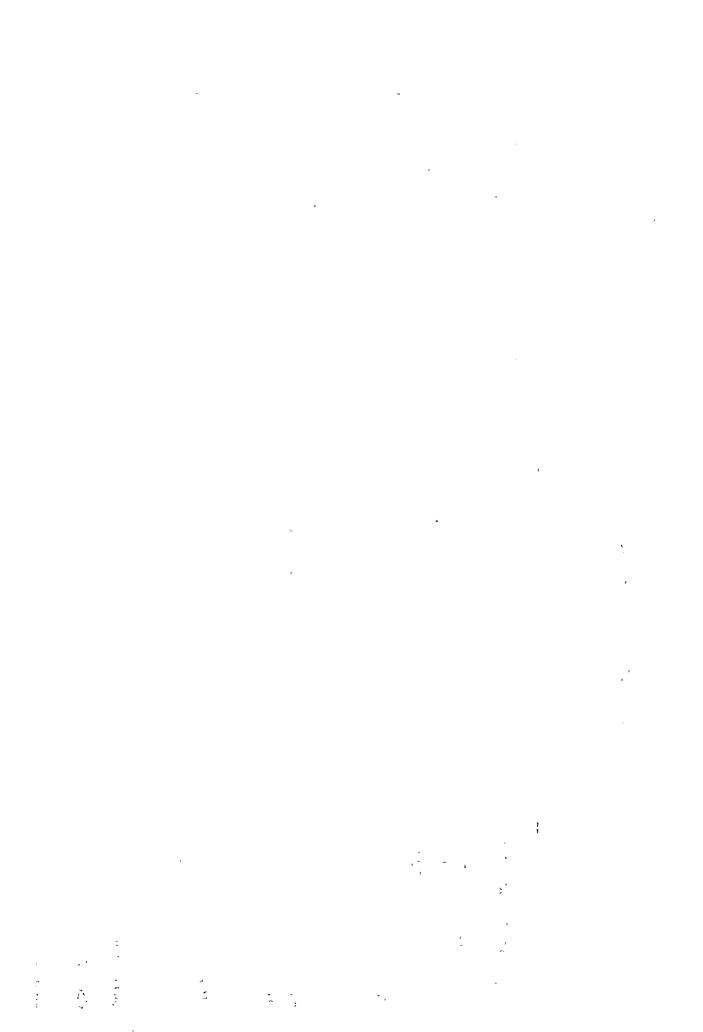


Fig 6.3.9 Rainfall Intensity — Duration Curve (Anuradhapura)

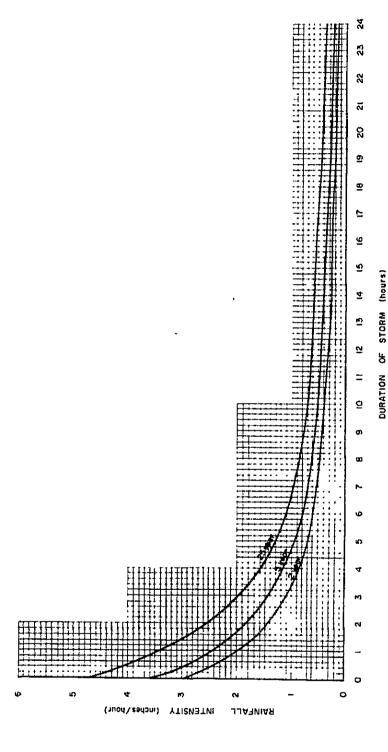
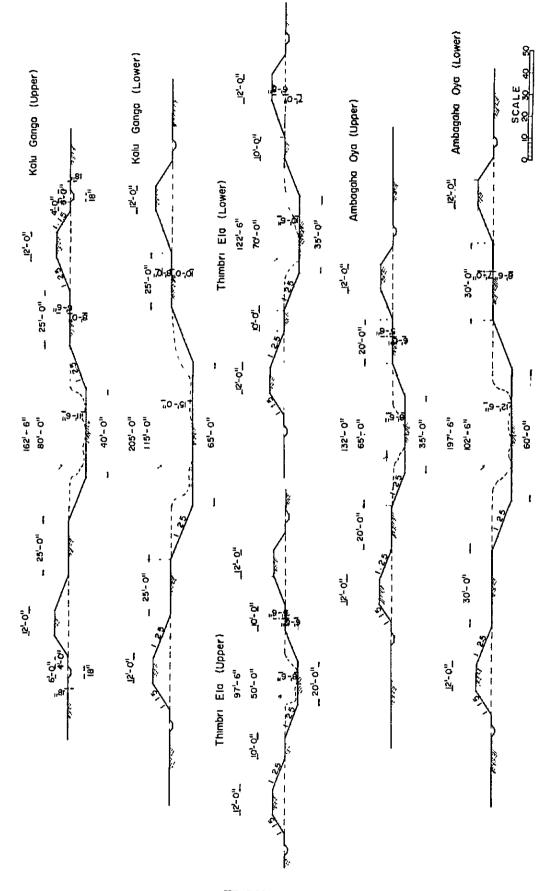



Fig. 6.3.10 Standard Cross Sections of Drainage Main Channels (1)

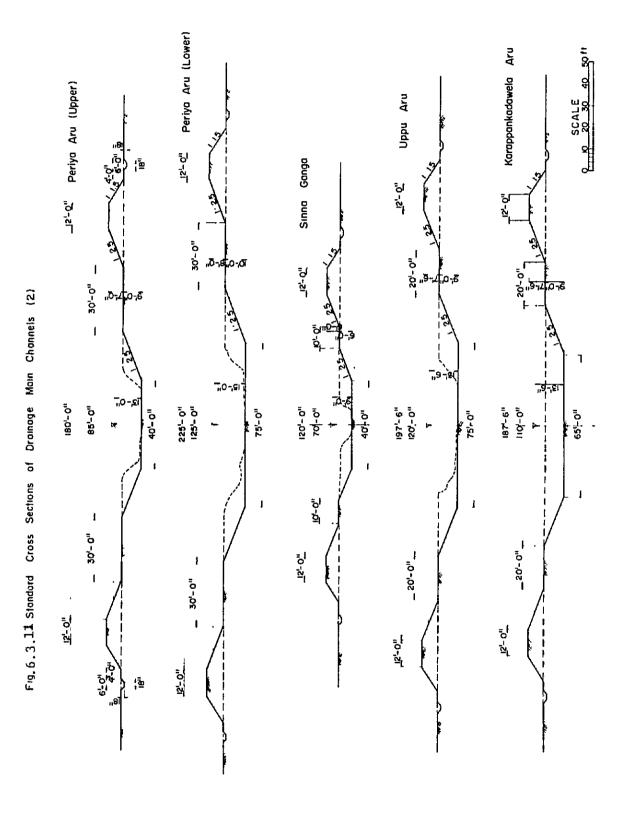
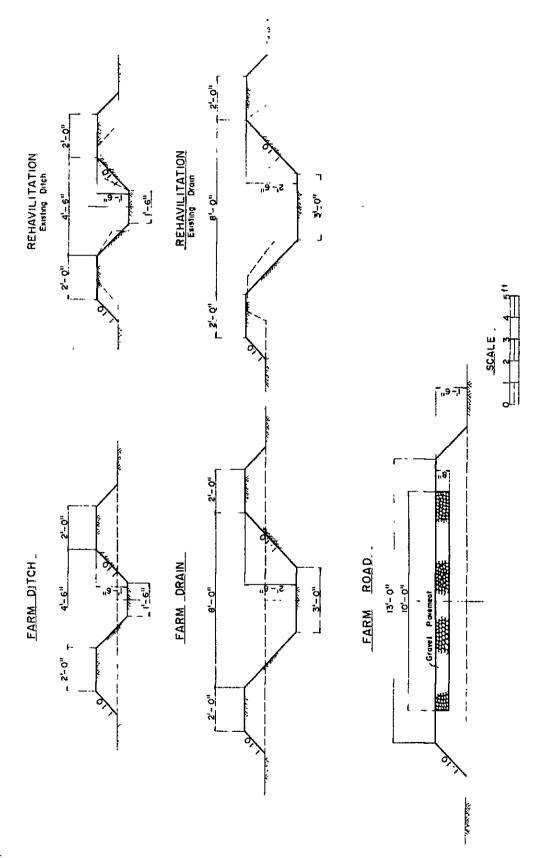
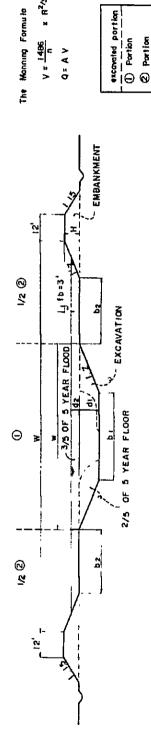



Fig. 6.3.12 Standard Gross Sections of Ditch Drain & Road

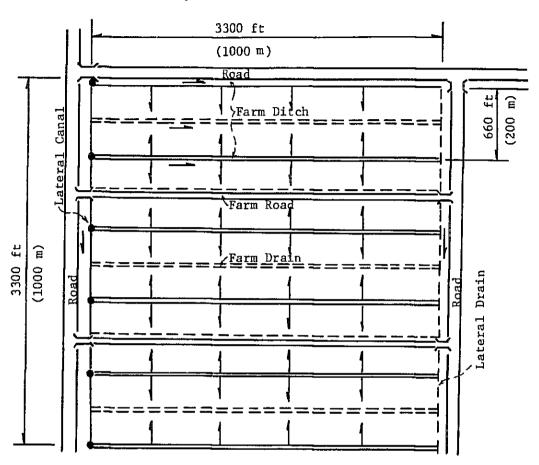

Drainage System 5-year Frequency Flood Discharge for Table 6.3.16 Estimation of

System	Drainage Channet	Reach of Channel	Length (miles)	Gradient (ft/ml)	Catchment area (Acs)	Classification of grea	Run off Coefficieut	Average Run off Coefficient	(141)	R t (In)	o (cfs)
	•		,	,	6	Crep 10 080	0.4	0.0	,		9
I – a	Kolu Ganga	raddo		C7	087 91	Paddy 6 700	6.0	0.35	3 (7	/ cou
			5	9	0000	Crop 22 700	0 4	:: 0	, ,		
			2	2	20.00	Paddy 8 120	0 3) o o	- -	đi Ci	10.260
		-	9	•	-	Crop 2 050	40	46.0			
	Thumber	and o	n i	* 2		Poddy 2 05 !	0.3	er o	- -	x 0	5290
		į	•	¥	Ç.	Crop 3 150	4 0	14 P	3.5	-	,
			-	6	0000	Poddy 3700	6.0	Ĉ,	c y	0	2+0.0
			*		0.80	Crop 1 860	0.4	25.0	,	<u> </u>	003.0
	Am bogaho	reddo	7	h	200 4	Paddy 2.79D	0.3	6.24	.		069.7
	oyo	3	9	2	22 000	Crop 8 800	9 0	7 10 0	,		
			3	3		Paddy 13 200	0.3	0.34	4	-	8 230
			a P	•	000	Crop B 900	9.4	0.35	1 29	o C	Vack
2 - 0	Periya Aru	ando		•	2	Paddy 8900	0.3		,		1 200
	•	Lower	10	·	44 400	Crop 18200	0 4	033	a	4	7630
						Poddy 26 100	0.3	100	o h	2	1 230
	Cond Gana	- tu	G M	v.	4 300	Crop 400	0 4	ř	C	e -	000
				•		Paddy 3900	٤ م	i i	}		8
	Uppu Aru	Entire	67	<u> </u>	12 920		4.0	220	UV	-	
A/D						Paddy 4520	0.3	5	}	2	5740
	Karappankadavelo Aru	Entera	89	2	19 030	Crop 9500 Poddy 9530	Q 0	0.35	4. 2.	89	5 330


Note Length is Max Channet length assumed

Table 6.3.17 Hydraulic Calculation of Standard Cross Section for Main Drainage Channels

Chonnel	Q (cfs)	2. 0 5. 0 (cfs)	s	c	bior bz (ff)	Z	dior dz (ft)	1486/S	Ator A2 (sgft)	Plor P2 , Rior R2 (ft)	Rior R2 (11)	R ² / ₃ or R ² / ₃ V1 or V2 (11/ _{5ec})	t – 1	0 or 02 (cfs)	0 (cfs)	> E	> €	 ∓	L (miles)
Kalu Gango (Upper)	7 250	2 900	0 00273	004	400 400 250	25	80 35	1941	4 <u>80</u> 760 206	83 883 888	57 <u>8</u> 915 299	4 37 207	6.25 8.49 4.03	3 000 6 452 828	7280	800	1625	 	6 G
Kalu Ganga (Lower)	10.260	4100	000105	004	65 0 65 0 25 0	25	100	1204	900 1475 313	611	757 124 406	386 536 255	4 64 6 45 3 0 6	9518 9518 956	10476	150	205 0	0 88	9
Thimbri Ela (Upper)	2 590	1040	0 00307	004	20 0 20 0 10.0	25	, 60 60 85	2.058	210 335 66	523 523 335	401 64 196	253 345 157	520 710 323	212	2 590	200	975	5 5	36
Thimbri Ela (Lower)	3840	1540	0 0015 1	004	35 0 35 0 10 0	25	7.0 7.0 3.5	444	368 	727 727 388	506 843 259	2.95 4 - 4 - 89	425 5.98 272	1563 3661 274	3935	70.0	1225	ıç Y	3.9
Ambagaha Oya (Upper)	2690	0801	0 00 155	0 04	35.0 35.0 20.0	25	60 60 25	1463	463	673 673 535	446 687 2 16	361	396 529 245	2445	2728	65 0	1320	so so	4
Ambogaha Oya (Lower)	8230	3590	0 00145	004	60 0 30 0	25	8 8 8 4 4 0	814	691 101 280	106	653 104 343	349 4.77 2.28	494 674 322	3413 7420 902	8322	102.5	976	7.0	4. W


_							
	L (m: les)	4. Q	63	06	4 83	4 4	
	π 🕃	70	0 6	09	7.5	75	
	¥ (£3)	0081, 098	2250	1200	1975	1875	
	≯ (E)	850	1250	700	1200	1100	
-	o (cfs)	5 033	7 678	1 680	5 762	5 393	
	01 or 02 (cfs)	4 376 657	3 089 6 9 3 8 7 4 0	691 1571 109	5 360 402	2207 4976 417	
	VI or V2 (11/sec)	3.54 4.85 2.35	3 09	2.09	3.78	2 80 3 86 1 8 1	
	Ri ² 3orR2 ²³ VI or V2 (11/sec)	3.43 4.70 2.28	3 92 5 42 2 59	275 382 173	370. 509 234	364 5 04 2.34	
	Rior R2 (11)	636 102 343	7.76 12.6 4.17	456 747 228	7 <u>11</u> 115 3.59	694 [13 359	! !
	Pi or P2 (ft)	885 885 815	129 129 869	72.3 72.3 36.2	123	113	1 1 1
	A1 or A2 (sq (1)	563 903 280	1625	330 540 825	878 1418 231	788 1283 231	1
	<u>₹</u>	1601	0 788	0761	0743	0770	
	dior de (ft)	0.6 0.4 0.4	100 100 100	60 80	90	0 6 0 4 0 4	
	Z	2.5	25	25	25	25	
	bior bz (ft)	40 0 30 0	75 0 75 0 30 0	400 400 100	75.0 75.0 20.0	65 0 65 0 20 0	
inue	ď	0 04	0 04	004	004	400	
L7 Cont	s	0.000077	0.00045	0.00042	000040	000043	
Table 6.3.17 Continue	\$ 0 (cfs)	0661	3010	540	300	2130	
Tab	Q (cfs)	4980	7.530	1 600	5740	5 330	
	Channel	Periya Aru (Upper)	Periya Aru (Lower)	Sinna Ganga	Uppu Aru	Korappankada Wela Aru	

3.3 Land Reclamation

Density of Canals and Roads is illustrated on page VI-114, and the standard cross-sections of ditch, drain and road are shown in Fig.6-3-12.

Density of Canals and Roads

Farm Ditch Intervals 200m Lateral Canal $\frac{3300 \text{ ft}}{247 \text{ ac}} = 13 \text{ ft/ac}$ $\frac{19800 \text{ ft}}{247 \text{ ac}} = 80 \text{ ft/ac}$ Farm Ditch Irrigation Canal Density = 93 ft/ac $\frac{3300 \text{ ft}}{247 \text{ ac}} = 13 \text{ ft/ac}$ Lateral Drain $\frac{16500 \text{ ft}}{247 \text{ ac}} = 67 \text{ ft/ac}$ Farm Drain Drainage Canal Density = 67 ft/ac $\frac{9900 \text{ ft}}{247 \text{ ac}} = 40 \text{ ft/ac}$ Road $\frac{6600 \text{ ft}}{247 \text{ ac}} = 27 \text{ ft/ac}$ Farm Road = 67 ft/acRoad Density

IV. CONSTRUCTION PLANS

4.1 General

Construction plan has been worked on the following assumptions:

4.1.1 Preparatory Period

Detailed design work will be commenced as soon as the required topographical maps will be completed by the end of 1979. Detailed design work will be completed within one year or so, from 1980 to 1981. About six months would be necessary for procurement of the construction machinery and the construction work will follow in 1982.

4.1.2 Construction Period

Total construction period will be seven years including the work which will be influenced by construction of reservoir and storage period thereof. Preparatory period inclusive, it would be about nine years. The whole construction work would be completed by the end of 1988.

4.2. Contents of the Work

Construction of the field offices and camps will be the first item of preparatory work. Two field offices for System D1 and each one field office for System D2 and System A/D will be established. Each field office will have two field camps. These offices and camps will be useful for improvement work in the existing land.

Construction work will be commenced from the improvement of the irrigation/drainage facilities in the existing land which shall be completed by the time the reservoir would have been built. Main features of the improvement work in the existing land are as follows:

(a) Repair Work of the Existing Canals

Erahera-Minneriya Yoda Ela (6 - 19.5 mi) 13.5 miles Kaudulla H.L.B Main & Branch (No.1) Canals 10.18 " Parakrama Samudra DI Main & Branch Canal 20.8 "

Additional restoration work would include bridges, measuring devices, regulating gates, washing ghats, etc.

- (b) Angamedilla Anicut (Amban Ganga) Restoration One
- (c) Adjustment Work in the Existing Fields

Restoration of irrigation/drainage facilities and repair of water management structures in the acreage under specification, and provision of irrigation/drainage facilities, farm roads, and water management structures upon consolidation of the farm plots. Adjustment work in the existing field would be done as follows:

Acreage under specifications 75,400 ac (excluding 4,800 ac in System G)

" unauthorized cultivation 18,700 ac

Land reclamation work in Systems D1 and A/D would be completed by the time storage period of the newly built reservoir ends in 1987. That in System D2 will be commenced after land reclamation work in Systems D1 and A/D would have been finished. It is expected that the flood control function of the upper stream dams and reservoirs in the Mahaweli basin would be felt in System D2 new land by that time.

Principal construction works in the Newland will comprise the following:

(a) Irrigation Water Source for System A/D

Kalu Ganga Tank, Diversion Weir across Minneriya-Kantalai Yoda Ela, and Kalu Ganga Anicut.

(b) Irrigation Canals

(c) Drainage Canals

(d) Farming and Housing Plots (ac)

System	Farming Plot	Housing Plot	<u>Total</u>
· D1	22,400	4,480	26,880
D2	5,400	1,080	6,480
- A/D	6,600	1,320	7,920
Total	34,400	6,880	41,280

(e) Settlement Facilities and Infrastructure

For about 15,160 newly settling farm families.

4.3 Construction Machinery

Kinds and numbers of the construction machinery have been decided in accordance with the directions given in 'Caterpillar Performance Handbook' which is adopted by the Irrigation Department. They are shown in Table 6-5-4.

4.4 Construction Time Schedule

Reference is to be made to Fig. 6-4-1.

Fig. 6-4-1

Construction Time Schedule

Year Item	1979	1980	1981	1982	1983	1984	1,985	1986	1987	1988
Preparatory Detailed Design Procurement of Equipment			T -					,		
Existing Land Improvement Existing Canal Rehavilitation on farm Angamedilla Anicut										
New Land Development Preparatory Works Diversion Works Irrigation Canal Drainage Canal Land Development										
Land Settlement Engineering Services Supervision			•							
Completion Date						Dam Syst	Dam A/D System D ₁ , A/D System S ₂	N/D System D ₂		

PRODUCTION ANALYSIS

P. A. 1 Clearing and Grubbing

(Equipment) crawler Tractor (200 or 300 HP) and Streight Blade Dozer

For 200 HP Tractor - Light jungle at 4.5 ac per day (8hr)

P. A. 2 Land Levelling

(Equipment) crawler Tractor (300 HP) and Streight Blade Dozer

- production for Land Levelling at average dozing distance of
 ft. for ripped and cross-ripped soil
 - = 286.9 cu per hour
- 2. Average soil movement assumed in land levelling
 - = 90 cu per ac of farm
- 3. production time for land levelling

$$=$$
 $\frac{90}{286.9}$ = 0.31 hr per ac

P. A. 3. Ripping

(Equipment) crawler Tractor (300 HP) and Single Shank Ripper

- 1. Spacing = 3 ft penetration = 2 ft

 Distance = 300 ft
- 2. Ripping 0.86 ac per hr (85% efficiency)
- 3. Cross Ripping

Time taken for cross ripping = 1.21 hr

Production at 85% efficiency = 744.8 cu

$$=\frac{744.8}{1.21}$$
 = 615.5 cu per hr

$$= \frac{615.5 \times 100}{2 \times 43560} = 0.71 \text{ ac per hr}$$

4. Ripping and Cross Ripping

0.78 ac per hr

P. A. 4. Compaction

(Equipment) Sheep foot roller (Twin drum)

Compacted Volume for dam embankment

at 85% effy

97 cu per hr

Compacted Volume for main canals/major roads

at - do - 129 cu per hr

P. A. 5 Excavation/Borrow by Excavator with Dragline

(Equipment) Crawler mounted crane (15T) with dragline

Bucket C

	Nature of Excavation	Production
1.	Earth in foundation/canal	164
2.	Common in " /"	148
3.	Gravel in quarry	136
4.	Gravel in foundation/canal	128
5.	Sand in quarry	148
6.	Soft rock in foundation/canal	74

P. A. 6 Load and Haul with Front End Loader

(Equipment) Front End Loader (2.1/4 to 3.1/2 c. yd) 130 HP

Total Lift	Production in Cu per hr	% production
5	55.0	100.0
10	47.5	86.4
15	40.5	73.6
20	33.5	80.9
25	27.0	49.1
30	21.5	39.1
35	17.0	30.9
40	13.5	24.5
45	10.5	19.1

P. A. 7 Lift and Haul with Front End Loader

Range for	cut	Production Addl Rate for cut = fR		lft nb Ex	for lift End	Ex Ex
Over 5 up	to 10'	0.053 R	101	10'	0.157R	0.157R
10	15†	0.058 R	20'	15'	0.485R	0.201R
15	20	0.065 R	25'	20'	0.395R	0.283R
20	25	0.074 R		251		0.395R
25	30	0.083 R		30'		0.521R
30	35	0.095 R		35'		0.679R
35	40	0.110 R		401		0.845R
40	45	0.128 R		45		1.154R

P. A. 8 Excavation/Borrow with Screper

(Equipment) Motorised Scraper 14/20 c. yd, 330 HP

production in cu per day from Unit of 3 Scrapers and 1 Tractor

Haul			Excavati	no	Soft	Stripping	Borrow	Borrow from
dista	nce	Earth	Common	Gravel	Rock	Top Soil	Earth	Spoil Dump
1000	£t	996	896	697	398	1,245	1,145	1,494
1/4	ml	948	853	664	379	1,185	1,090	1,422
1/2	ml	798	718	559	319	998	918	1,197
3/4	m1	630	567	441	252	788	725	945

P. A. 9 Excavation/Borrow by Excavator and haul by Rear Dumper

(Equipment) Crawler Mounted Crane (15T) with dragline bucket (3/4 c. yd)

Haul dist	Earth excavation	Common excavation	Gravel Excavation	Soft-Rock Excavation
1/4 ml	262	247	188	111
1/2 ml	217	203	158	94
3/4 m1	216	163	125	74
1 ml	195	183	146	68
1.1/2 m1	183	171	137	64
2 m1	194	181	135	75

Compaction of Roadway Courses with Road Roller

(Equipment) Smooth Wheeled, 3 Roll Type Road Roller 10T

1. Base Course

Assume loose section of 6-9" Rubble 22' x 9"	10.89 cu
" 10 passes required for compaction	3.75 hrs
production 0.34 hr per cu or 2.9 cu per hr	•
Surface course	

2.

Assume loose section of 2" metal 22' x 3" 3.63 cu 6 passes required for compaction 2.25 hrs production o.62 hr per cu or 1.60 cu per hr

3. Blinding Course

Spread area of 1/4" to 1/2" metal 14.52 sq Assume 2 passes for compaction 0.75 hrs production 0.05 hr per sq or 19.4 sq per hr

P. A. 11 Quantities for Nominal Mix Concrete

Quantities per cube of concrete

Measure Volume for batching (Ve)

	1:4:8 mix	1:3:6 mix	1:2:4 mix
Cement (42 kg) bag	12.5 bags	15.8 bags	21.6 bags
Sand	0.51 cu	0.49 cu	0.44 cu
Coarse Aggr gate	1.02 cu	0.98 cu	0.88 cu
Water	63.2 gl	80.0 gl	109.1 gl

V. CONSTRUCTION COST ESTIMATES

The total construction cost is estimated at 900.6 million rupees (US\$60.0 m), of which 453.4 million rupees (US\$30.2 m) is in foreign currency and 447.2 million rupees (US\$29.8 m), in local currency (see Table 6-5-1). Distribution of the cost into foreign and local currencies has been done according to the standards adopted by the Irrigation Department.

5.1 Unit Price

Unit prices have been taken from December 1978 values given in 'Data for Costing, January 1979' prepared by the Department of Irrigation. In order to isolate the construction machinery costs, the unit costs involving machinery have been extracted.

5.2 Construction Machinery Cost

All the kinds and numbers of the construction machinery will be procured at the estimated prices, and the total amount thus arrived at has been accounted for as the Construction Machinery Cost.

5.3 Contingencies

10 per cent of the construction cost has been accounted for contingencies.

5.4 Annual Disbursement of Construction Costs

Shown in Table 6-5-2.

Table 6.5.1 Summary of Construction Cost

		Uni	t 1000 Rs
Item	Total	Foreign	Local
A. Civil Works	403,959	157,387	246,572
1. Existing Land (Improvements)			
Existing canal Rehavilitation on farm Angamedilla Anicat Sub. Total	21,203 120,280 22,531 164,014	8,576 36,532 13,374 58,662	12,447 83,748 9,157 105,352
2. New Land (Development)			
Preparatory works Diversion works (A/D) Irrigation canal Drainage canal Land development Sub. Total	15,360 37,256 46,635 17,323 123,371 239,945	7,680 25,941 26,543 3,709 34,852 98,725	7,680 11,315 20,092 13,614 88,519 141,220
B. Construction Machinery	271,533	175,744	95,789
1. Existing Land	14,681	9,716	4,965
2. New Land	256,852	166,028	90,824
C. Land Settlement (Only new land)	68,800	34,400	34,400
D. Engineering, Administration (A+B+C) x 10%	74,428	44,656	29,772
1. Existing Land	17,869	10,721	7,148
2. New Land	56,559	33,935	22,624
E. Physical Contingency (A-D) x 10%	81,871	41,219	40,652
1. Existing Land	19,656	7,910	11,746
2. New Land	62,215	33,309	28,906
Total	900,591	453,406	447,185
(Existing Land New Land	216,220 684,371	87,009 366,397	129,211 317,974

Table 6.5.2

Annual Disbursement of Cost

							ű	Unit: 1000	30 Rs	
Item	Cost	1980	1861	1982	Year 1983	1984	1985	1986	1987	DAXX
Detailed Design	34,000 (F/C 25,000 (L/C 9,000	14,000 (10,000 4,000	20,000 15,000 5,000							
Machinery & Equipment	271,533 (F/C 175,744 (L/C 95,789			85,380 80,590 4,790	100,082 (85,714 (14,368	21,518 2,360 (19,158	21,518 2,360 (19,158	21,518 2,360 (19,158	16,138 1,770 (14,368	5,379 590 (4,789
Existing Land Improvement	164,014 (F/C 58,662 (L/C 105,352			8,746 4,425 (4,321	49,204 17,600 (31,604	49,205 17,600 (31,605	56,859 19,037 (37,822			
New Land Development	239,945 (F/C 98,725 (L/C 141,220			15,360 ;7,680 (7,680	23,623 (13,759 (9,864	51,382 (21,601 (29,781	55,107 (24,196 (30,911	40,205 13,819 (26,386	40,199 (13,814 (26,385	14,069 3,856 10,213
Land Settlement	68,800 (F/C 34,400 (L/C 34,400						17,200 (8,600 (8,600	17,200 (8,600 (8,600	17,200 (8,600 (8,600	17,200 (8,600 (8,600
Engineering Survies Supervision	40,428 (F/C 19,656 (L/C 20,772			5,778 (2,808 (2,970	5,775 (2,808 (2,967	5,775 (2,808 (2,967	5,775 (2,808 (2,967	5,775 (2,808 (2,967	5,775 (2,808 (2,967	5,775 (2,808 (2,967
Sub Total	818,720 F/C 412,187 L/C 406,533	14,000 (10,000 (4,000	20,000 (15,000 5,000	115,264 95,503 (19,761	178,684 119,881 58,803	127,880 44,369 (83,511	156,459 (57,001 (99,458	84,698 (27,587 (57,111	79,312 (26,992 (52,320	42,423 15,854 (26,569
Physical Contingency	81,871 (F/C 41,219 (L/C 40,652	1,400	2,000 (1,500 (1,500	11,526 9,550 (1,976	17,868 (11,988 (5,880	12,788 4,437 (8,351	15,645 5,700 (9,945	8,470 (2,759 (5,711	7,931 (2,699 (5,232	4,243 1,586 (2,657
Total	900,591 (F/C 453,406 (L/C 447,185	15,400 (11,000 4,400	22,000 (16,500 5,500	126,790 (105,053 (21,737	196,552 (131,869 (64,683	140,668 48,806 (91,862	172,104 62,701 (109,403	93,168 (30,346 (62,822	87,243 (29,691 (57,552	46,666 17,440 (29,226

Table 6.5.3

Foreign Exchange Component of the Construction Cost

Item	Quant-		otal		oreign	Loca	al
Trem	ity	Unit	cost	Unit	cost	Unit	cost
	•	RS	1000RS	RS	1000RS	RS	1000R
. Construction Machine	ry						
Important Machinery	Item		93,500		93, 500		-
Tyre replacement	tr		5.468		5.468		-
spares	tı		64.976		64.976		-
Sub total	Y		163.944		163.944		
Cement	bag 287.957	18.5	5.327	6.66	1.918	11.84	3.409
Reinforcement	ton 949	5.200	4.935	2184	2.073	3016	2.862
Gate							
slide Gate	nos 219 nos		23.118		15.258		7.860
Radial Gate	5		17.500		16.625		875
Sub total			40.618		31.883		8.735
Concrete pipe & pile	Item		3.707		2.224		1.483
Fuels							
Disel	ge 2624.000		14.432	3.91	10.260	1.59	4.172
Engine oil	140.000	25.8	3.612	18.32	2.565	7.48	1.047
Sub total			18.044		12.825		5.219
Other Materials	Item	,	140.804		140.804		-
Labour, Field Service			11 0/0		11 060		
Overhead (Machinery)	Item		11.860		11.860		-
Engineering Survice	Item				44.656		
Contingencies	Item				41.219		
Total	····		·	·. ·	453,406	·	<u></u>

Table 6.5.4

C.I.F. Prices (Dec. 78) of Machinery and Equipment

	Equipment & Machinary	Size & Capacity	Quan- tity	C.I.F. Prices	Amounts
1.	Crawler Tractor	180 to 200 H.P.	6	95,000	570,000
2.	- do -	300 H.P.	16	150,000	2,400,000
3.	Attachments to Crawler Tractor				
	a. Straight Blade Dozer	Av for both classes of Tract	14	13,000	182,000
	b. Ripper	**	6	17,600	105,600
	c. Pusher Cup		. 1	3,900	3,900
	d. Sheep Foot Roller	Twin drum	2	8,500	17,000
4.	Motorized Scraper	14/20 cu. yd.	1	165,000	165,000
5.	Water Truck with Sprinkler	1200 gls	2	25,000	50,000
6.	Crawler Mounted Crane (15T) with Drag Line Bucket	3/4 cu. yd.	17	115,000	1,955,000
7.	Rear Dump	15 T	3	50,000	150,000
8.	Farm Tractor (60H.P.) with Trailer (5T)		3	8,000	24,000
9.	Lorry	5T	1	13,000	13,000
10.	Motor Grader	120 to 150 H.P.	2	80,000	160,000
11.	Air Compressor	600 C.F.M.	5	20,000	100,000
12.	- do -	365 C.F.M.	5	17,000	85,000
14.	Pneumatic Jack Hammers	50 lb.	5	500	2,500
15.	Wheeld Crushing and Screening Plant	1/2" to 2.1/2"	1	33,800	33,800
16.	Concrete Mixer	14/10 cft.	9	9,000	. 81,000
17.	Engine Mounted Vibrator		18	7 25	13,050
18.	Road Roller	8 to 10T	1	22,500	22,500
19.	Front End Loader	130 н.р.	2	50,000	100,000
_	Total			Rs	\$6,233,350 93,500,250

Table 6-5-5

Α.			100%
В.	Duty, Commission an	d Clearance C.I.F. x 10%	0
c.	Interest and insura	nnce (A + B) x 33%	0
	(Repairs)		
D.	Spares	A x 50%	95
E.	Customs Duty for Sp	ares E x 10%	0
F.	Labour for repairs	$(A + B) \times 25\%$	20
G.	Field Survices	(A + B) x 5%	25
н.	Overheads	(A + B) x 10%	25

* * * * * * * *

Tyre Replacement

Motorised Scraper	4 Nos.	All Plant 10,000 hr.
Water Truck	4 11	Rear Dumpers) 12,000 hr.
Motor Grader	1.5 "	- 1 "
Rear Dump	4 "	Jack Hammers Engine Mounted) 5,000 hr. Vibretors
Farm Trailer	4 11	
Front End Loader	4 "	
Wheeled Crushing and Screening Plant	4 "	

The second of the control of the con

Table 6-5-6

Labour

Daily Wage (8 Hour Day)

	Labour Grade	Basic (B)	Casual (17xB)	Long Team (1.45x1.7xB)	Category
1.	Casual Cl. III	5.00	8.50	12.33	Unskilled labour
2.	Semi-skilled Cl. II	8.00	13.60	19.72	Supervisors Greasors and Cl anors
3.	Skilled Cl. I - Gr. II	10.00	17.00	24.65	Masons, Carpenters B/smiths, pump Operators and Mechanics
4.	Skilled Cl. I - Gr. I	11.50	19.55	28.35	Operators of heavy equipment
5.	Watchers	8.00	13.60	19.72	Watchers, Messengers, Office Aides, etc.

Table 6-5-7

Cost of Materials at Sources of Supply

							L	ocal	Fore	eign
	<u>I</u> i	tem			Unit	Cost	%	Rs	%	Rs
1.	Cement po	er bag Ex	ĸ−Fa	ctory	42 kg	18.50	64	11.84	36	6.66
2.	Reimforce	ement – N	lild	Stee1	ton	5,200.00	58	3,016.0	42	2,184.0
3.	Reimforce	ement - 1	for S	Steel	11	5,600.00	58	3,248.0	42	2,352.0
4.	Petrol	- (Ordi	nary	gl	12.80	18	2.3	82	10.5
5.	Petrol	- 5	Supe	r	tt	13.80	18	2.48	82	11.32
6.	Auto Die	sel			n	5.50	29	1.59	71	3.91
7.	Heavy Du	ty Diesel	L		11	5.50	29	1.59	71	3.91
8.	Engine O	i1			***	25.80	29	7.48 ·	71	18.32
9.	Sand (wi	th plant))		Cu	30.27	36.6	11.08	63.4	19.19
10.	Metal	2" (v	vith	plant	:) "	202.36	40.2	81.32	59.8	121.04
	17	1.1/2"	(11) "	217.54	39.9	86.79	60.1	130.75
	ĦŤ	1"	(11) "	248.67	39.4	97.99	60.6	150.68
	11	3/4"	(11) "	280.17	39.0	109.33	61.0	170.84
	97	1/2"	(1r) "	331.36	38.6	127.76	61.4	203.60

Table 6-5-8	SUMMARY OF HOURLY PLANT RATES (DEC 1978)	(8)				
Rate No	Discription	Basic Rate per hr. Rs	Foreign Labour Rs % Rs	our %	Fuel Rs	84
PR 1	Crawler Tractor 180 to 200 HP-	54,0	31.0 57.4			
PR 2	Crawler Tractor 300 HP	82.0	50.0 61.0			
PR 7	Motorised scraper 14/20 cu-yd-330HP	68.0	40.0 58.8			
PR 8	Water Truck with sprinkler 1200 gls	20.0	10.0 50.0			
PR 9	Crawler mounted crane 157 with dragline buket (3/4 cu-yd)	42.0	22.0 52.4			
PR 10	Motor Grader 120 to 150 HP	38.0	20,0 52.6			
PR 11	Air Compressor 600 cfm	13.0	5.0 38.5			
PR 12	Penumatic Jack Hammer 501bs	8.0	5.0 62.5			
PR 13	Farm Tractor (60MP) with Trailer (5T)	19.0	12.0 63.2			
PR 14	Lorry ST without load	15.0	0.04 0.9			
	with load	21.0	11.0 52.4			
	idle	0.9	ı			
. 15	Rear Dump 15T (10/12 cu-yd) with load	38.0	20.0 52.6			
	idle	10.0	i			
PR 16	Weeled crushing and screening plant (15T 25HP)	15.0	6.0 40.0			
PR 17	Road Roller 10T	11.0	4.0 36.4			
PR 18	Front End Loader (2 $1/4$ to 3 $1/2$ c yd)	27.0	15.0 55.6			
भ भ	Concrete Mixer (14/10 c ft)	7.0	3.0 42.9			
PR 20	Engine Mounted Vibrator	4.0	2.0 50.0			

Table 6-5-9

Fuel % Rs %																
Labour Rs 2			·													
Foreign Rs %	200.19 117.71 58.8	106.73 "	79.99 54.3	55.10 "			48.09 2.7	38,84 2.7	27.74 2.7	16.65 2.7		58.15 58.7	64.14 57.3	15.50 60.2	7.99 49.8	87.63 57.0
Basic Rate I in Rs F	200.19	181.51	167.31	101,48			1,763.19	1,424.12	1,017.23	610.00		90.66	111.94	25.75	16.05	153.74
Unit	ဗ	=	Ξ	=			<i>ф</i>	Ξ	Ξ	=		ас	=	=	= .	z
Discription	(Machinery) Clearing and grubbing with Crawler Tractor	Heavy jungle	common "	medium "	light "	(Manual) clearing and grubbing	heavy jungle	common "	medium "	light "	Land Levelling (Machinery)	Ripping farmland prior to levelling	Ripping and Cross Ripping farmland prior to levelling	Land Levelling	Forming soil Conservation bund	Ripping, Cross-ripping, levelling and forming soil conservation bund for farms
Analy No	U.R. 1					M.R. 1					U.R. 15					
Rate	H					£17	r_1 32	ı			2					

Rate No	Analy No	Discription	-	Unit	Basic Rate in Rs	Foreign Rs	n Labour % Rs	84	Fuel Rs %
អា		Excavation (canal/road/foundation)	/foundation)						
	M.R. 2	(manual) Earth - lift 0 to 5' haul 100' as in foundation	5' haul 100' dation	ה נמ	27.13 29.84	0.74	2.7		
	Ξ	Gravel -	qp	=	33.91	0.92	2.7		
			=	=	37.30	1.01	2.7		
	=	Soft Rock-	-م٥-	=	61.04	1.67	2.7		
			Ξ	=	67.14	1.84	2.7		
	Ξ	Соптоп-	-op-	=	30.51	0.83	2.7		
V		() () () () () () () () () ()	z	=	33.56	0.91	2.7		
[-133	U.R. 2	(machinery) Earth - lift 0 to 5' haul	5' haul 100'	cn	2.12	1.07	50.5		
3		Common	-op-	=	2,35	1.19	50.5		
	Ξ	Gravel (quarry)	-op-	Ξ	2.56	1.29	50.5		
		(foundation)-do-	-op-(=	2.72	1.37	50,5		
		Quarrying sand		z	2.35	1.19	50.5		
		Soft Rock (foundation)	(on)	=	4.71	2.38	50.5		
7		Excavation/Borrow by Scraper	raper						
	U.R. 3	Earth excavation Haul	1000'	no	2.68	1,53 5	57.0		
		<u></u>	1/4ml	=	2.81	1,60	=		
		Ξ	1/2 "	2	3,34	1.90	=		
		=	3/4 "	E	4.23	2.41	=		

Rate Analy No No	Discription	:		Ba: Unit in	Basic Rate in Rs	Foreign Rs	%	Labour Rs %	Fuel Rs	%
=	Common excavation	Haul	1000'	ຕວ	2.98	1.70	57.0			
2		=	1/4ml	=	3.13	1.78	=			
5.		=	1/2 "	=	3.71	2,11	=			
		E	3/4 "	=	4.70	2.68	Ξ			
=	Gravel excavation	=	1000'	=	3.82	2.18	=			
		=	1/4ml	E	4.02	2.29	, =			
		=	1/2 "	£	4.77	2.72	=			
		=	3/4 "	=	6.05	3.45	=			
=	Soft Rock	=	10001	=	6.70	3.82	±			
12/		=	1/4ml	Ξ	7.03	4.01	=			
		=	1/2 "	=	8.36	4.77	=			
		Ξ	3/4 "	=	10.58	6.03	=			
r	Strripping Top Soil	=	1000'	=	2.14	1.22	=			
		=	1/4ml	=	2.25	1.28	=			
		=	1/2 "	z	2.67	1.52	=			
		=	3/4 "	Ε	3.38	1.93	=			
E	Borrow Earth	=	1000'	=	2,33	1.33	=			
		=	1/4ml	=	2,45	1.40	£			
-		=	1/2 "	=	2.90	1.65	=			
		Ξ	3/4 "	=	3.68	2.10	=			

Labour Fuel Rs % Rs %																	
Foreign Lal Rs % Rs	1.01 57.0	1.07 "	1.27 "	1.61 "		51.72 70.9		72.43 70.9		0.58 31.8	0.43 31.8	0.45 31.8		53.37 55.1	54.42 50.0	55,62 43.9	
Basic Rate in Rs	1.78	1.87	2.23	2.82		72.94		102.12		1.81	1.36	1.43		96.94	108.92	126.66	
Unit	no	=	=	Ξ		cn		=		no	=	Ξ		cn	=	Ξ	
	Haul 1000'	" 1/4ml	" 1/2 "	" 3/4 "	by Front end Loader	ndation/canal and piling			-i		oad embankment	ures	Fubble, - Air Compressor	đe		le	
Discription	Borrow Earth Spoil	Dump			Rock Excavation - lift by (Air Compressor)	Blaeting in quarry/foundation/canal	op	without piling	Embankment and Backfill	dam embankment	main canal and major road	back fill about structures	Production of Riprap,	18" Riprap	12" "	6-9" Rubble	Concrete
Analy No	U.R. 3				U.R. 5				U.R. 6								;
Rate No								17	T=13'	=							

-							
Rate	Rate Analy No No	Discription	Bas Unit in	Basic Rate Foreign in Rs Rs	Labour % Rs	Fuel % Rs %	امح
			į	841 01	371 67 44 2		
		I:3:0 (I I/2") AS IN WICH LOIMWORK	ទី	# ^ ##0	7.44 /0.4/0		
		1:3:6 (1") as in without formwork	=	626.38	320.34 51.1		
		1:3:6 (1") as in with formwork	=	843.81	372.74 44.2		
	U.R. 27	1:2:4 (1 $1/2$ ") as in without formwork	Ξ	846,14	398.09 47.0		
		1:2:4 (1 $1/2$ ") as in with formwork	=	1,136.05	467.96 41.2		
		1:2:4 (1") as in without formwork	=	848.66	399.05 42.0		
		1:2:4 (1") as in with formwork	z z	1,138.57	468.92 41.2		
VI-13		Cement plastering					
36	U.R.33	1/2" thick 1;3 mix rough ct. plastering	bs	77.02	22.28 28.9		

VI. OPERATION AND MAINTENANCE COST

Annual operation and maintenance cost of the agricultural facilities has been estimated at Rs 150/ac which is being adopted by the Irrigation Department in the similar project. 4,800 ac existing land and 10,000 ac new development area in System G has been excluded. Thus, the total O&M cost for 139,000 ac would be:

 $139,000 \text{ ac } \times \text{Rs } 150 = \text{Rs } 20,850,000$

Operation and Maintenance Cost (Irrigation Facilities)

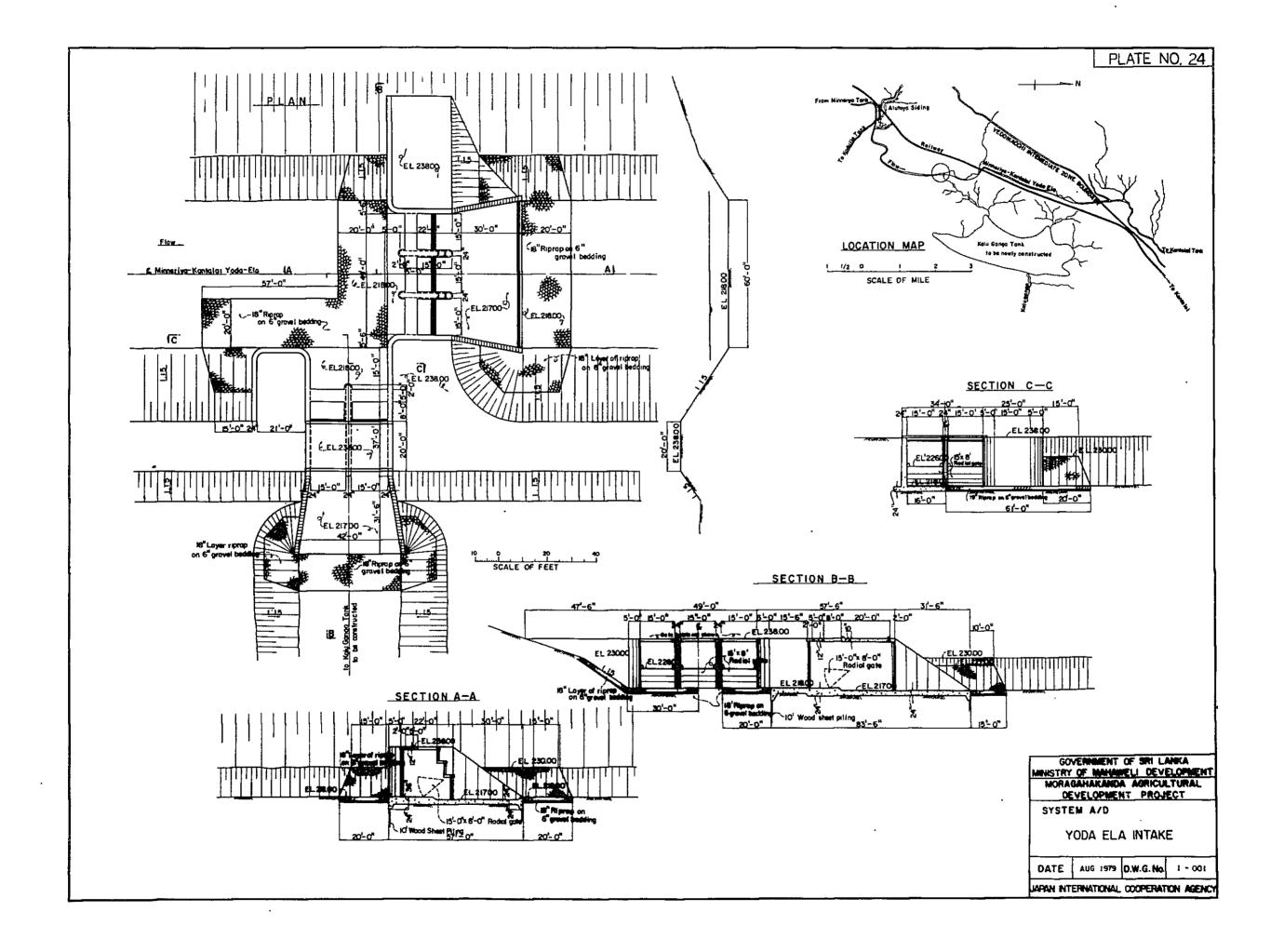
Staff Requirements for 6000 ac Module Area

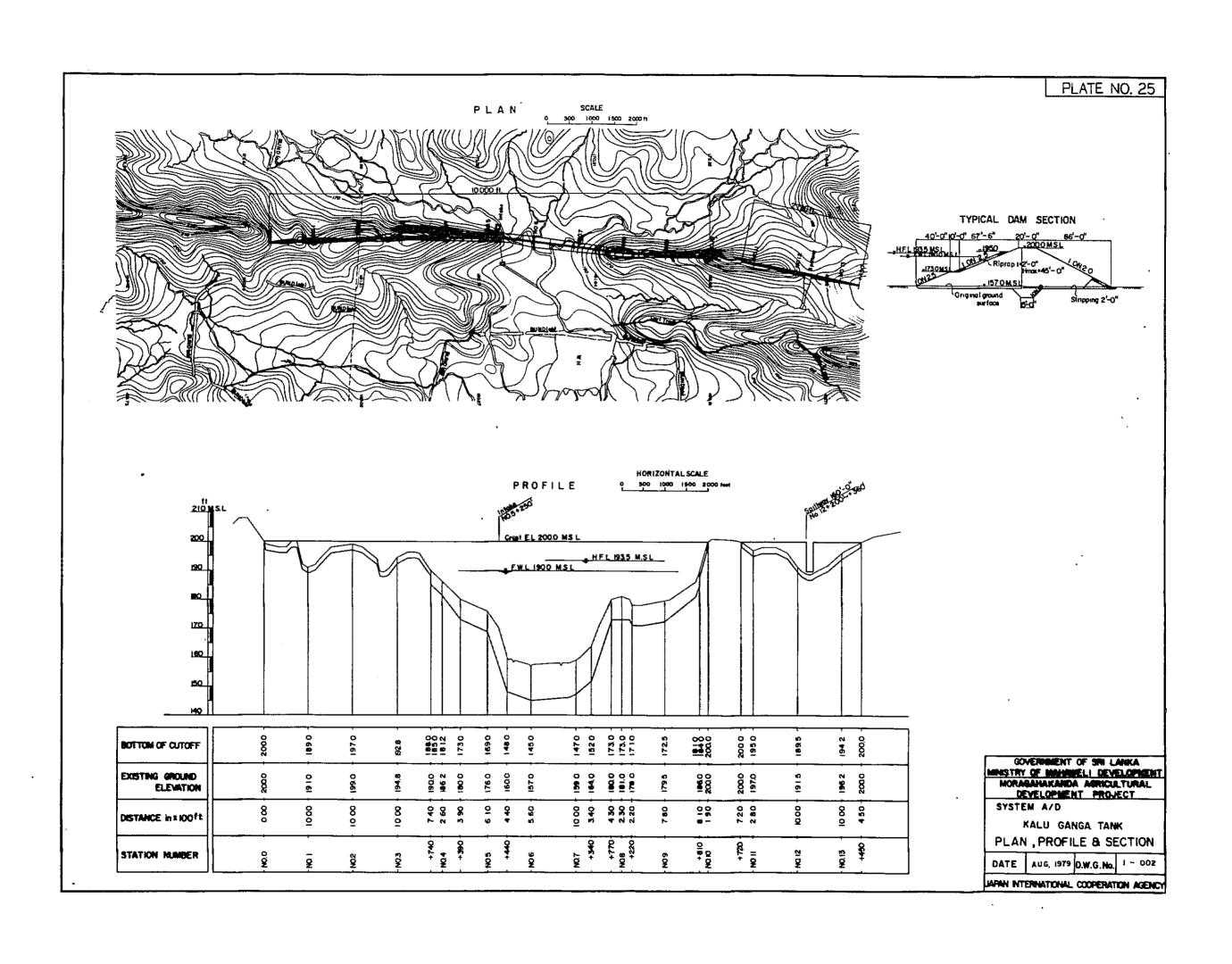
Staff Position	No	Salary/yr (Rs)	Total Cost (Rs)
Engineer	1	15,000	15,000
Technical Assitant	2	10,000	20,000
Maintenance Overseer	4	5,000	20,000
Maintenance Laborer & Irrigators	40	4,000	160,000
Driver	7	6,000	42,000
Store Keeper	1	5,000	5,000
Clerk	1	4,000	4,000
Sub-total			266,000
Leave and Travel	20%		53,200
Total			319,200

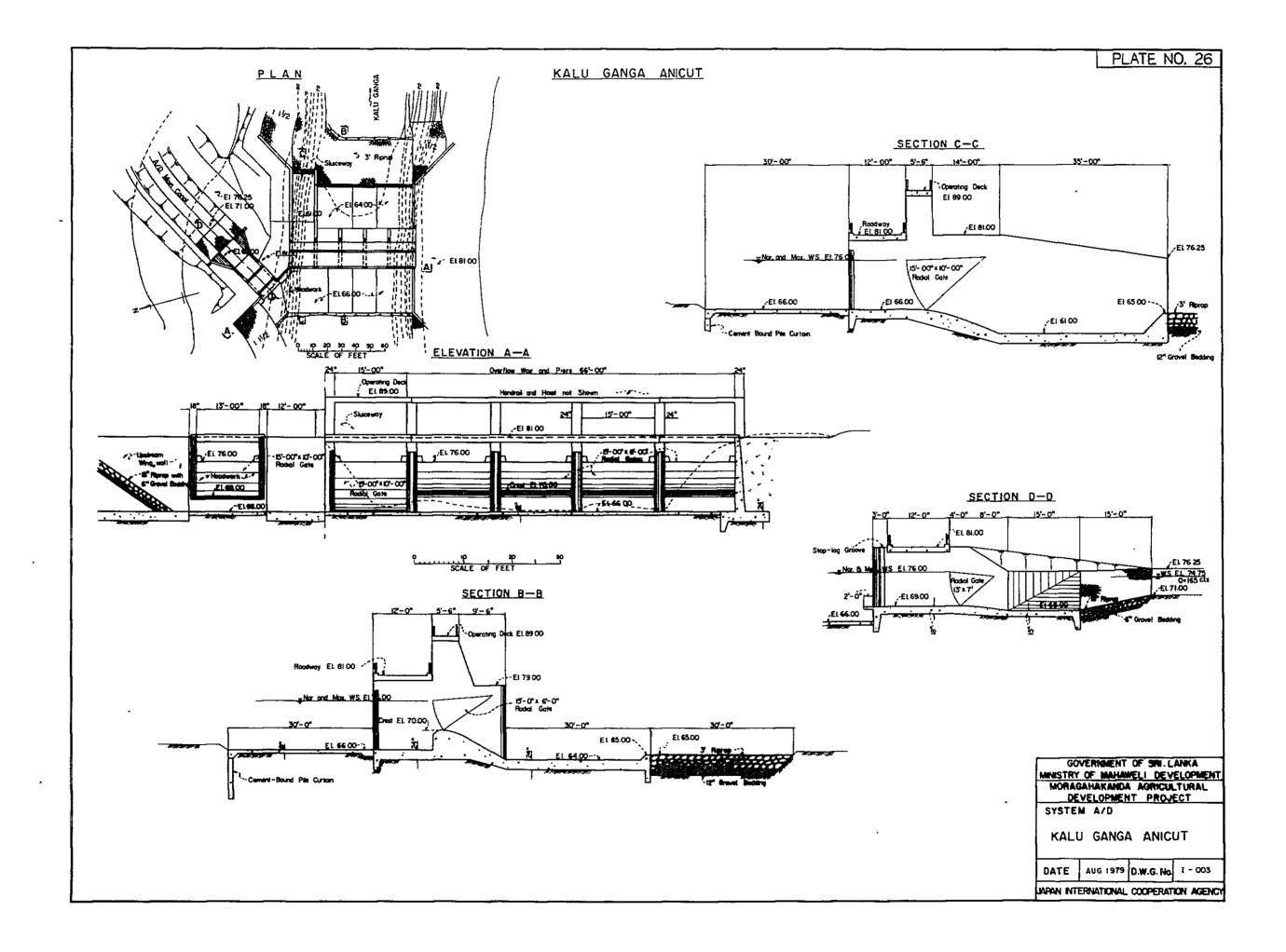
Equipment Requirements for 6000 ac Module Area

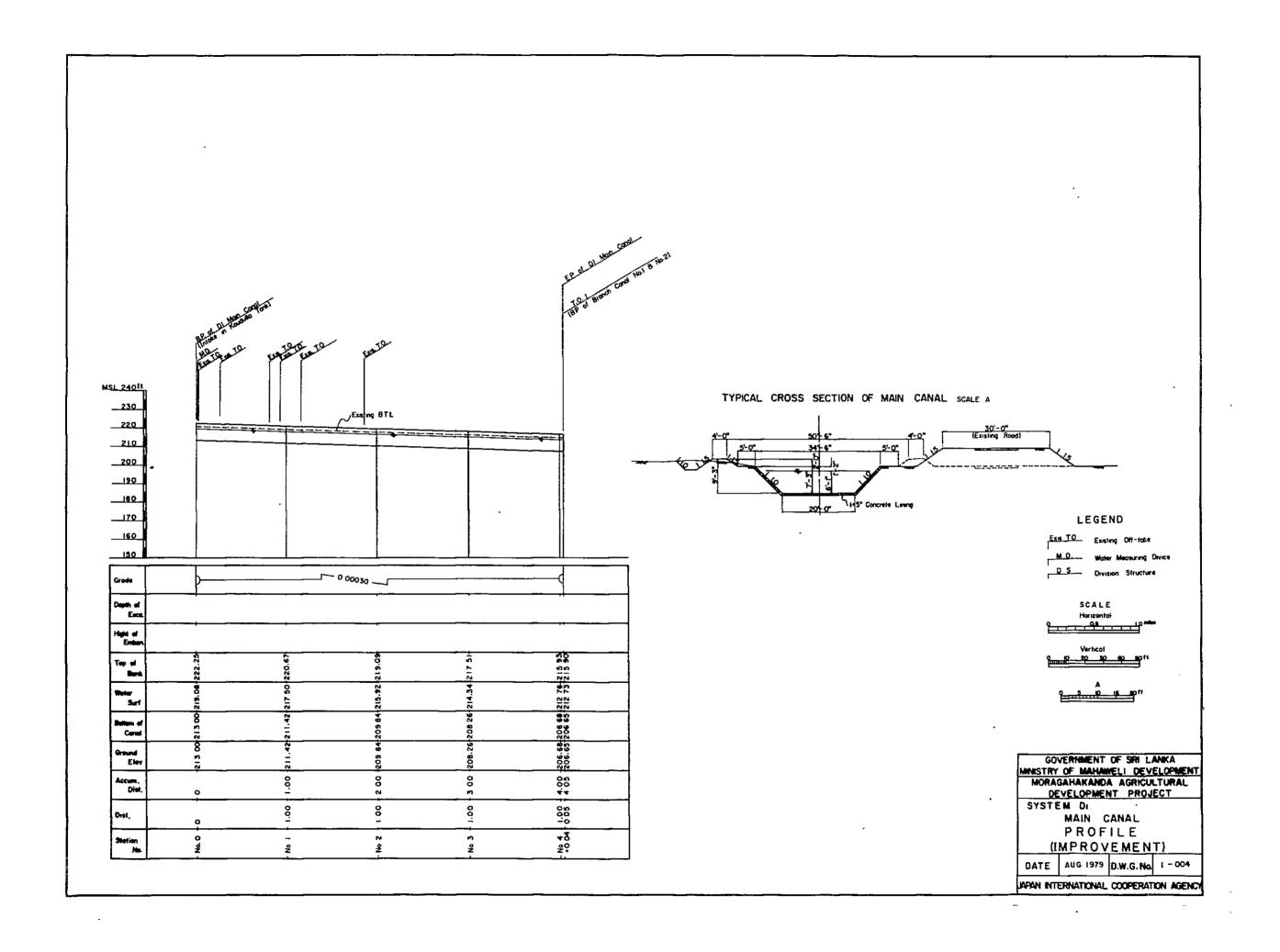
Item	No	Hrs/year	Cost/hour (Rs)	Total Annual Operating Cost (Rs)
5-ton Truck	1	2,000	54	108,000
Agricultural Tructor	3	2,000	19	114,000
Dump Truck .	2	2,000	38	152,000
4-Wheel Drive Field Car	1	2,000	25	50,000
Motorcycle	5	2,000	8	80,000
Pedestrian Roller	1	1,500	15	22,500
Total Annual Opera	ting C	ost		526,500
Contingencies 10 5	Z.			53,000
Total				579,000
Grand Total				900,000
		!	900,000 Rs/6,000 a	c = 150 Rs/ac

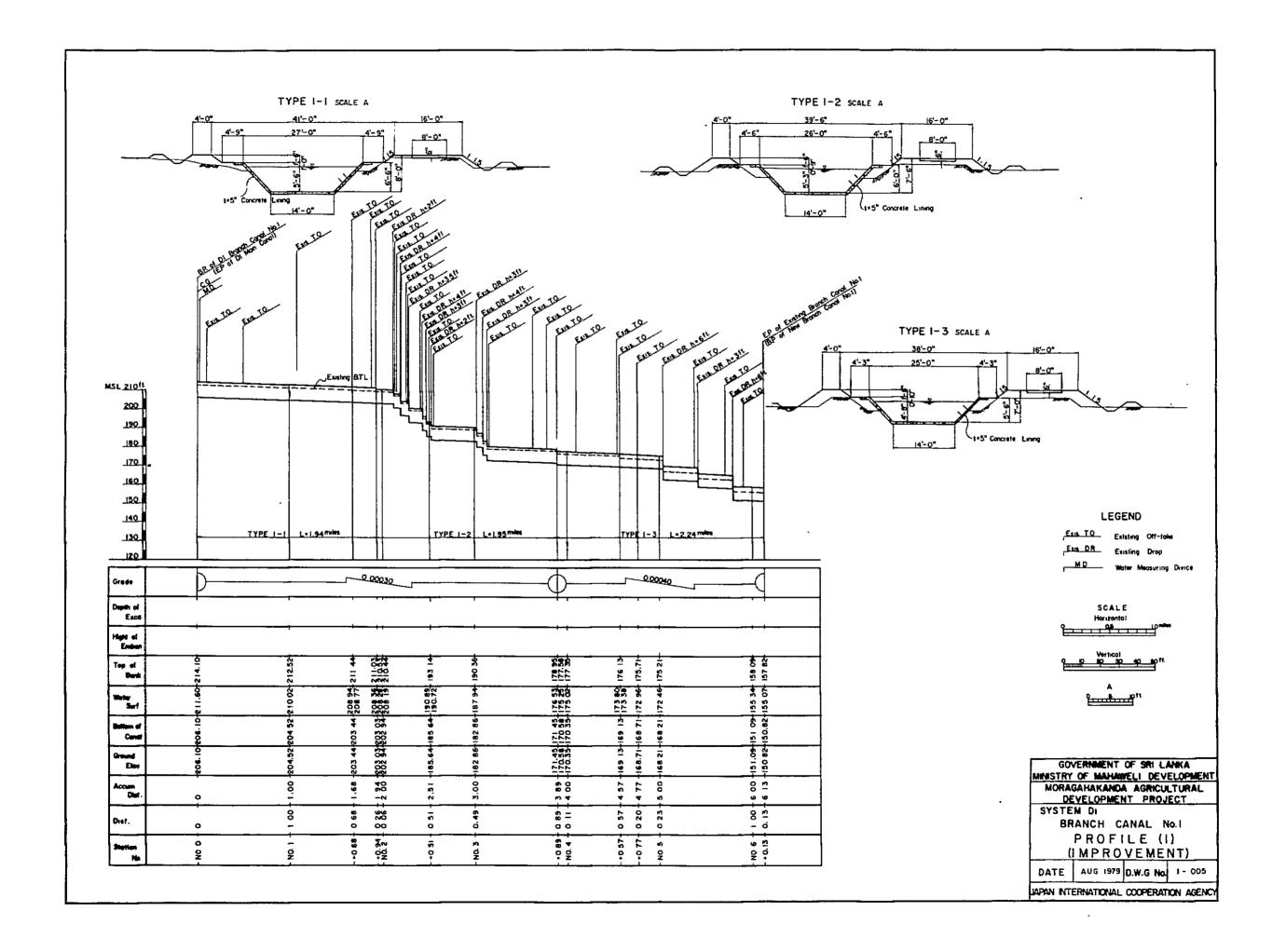
-

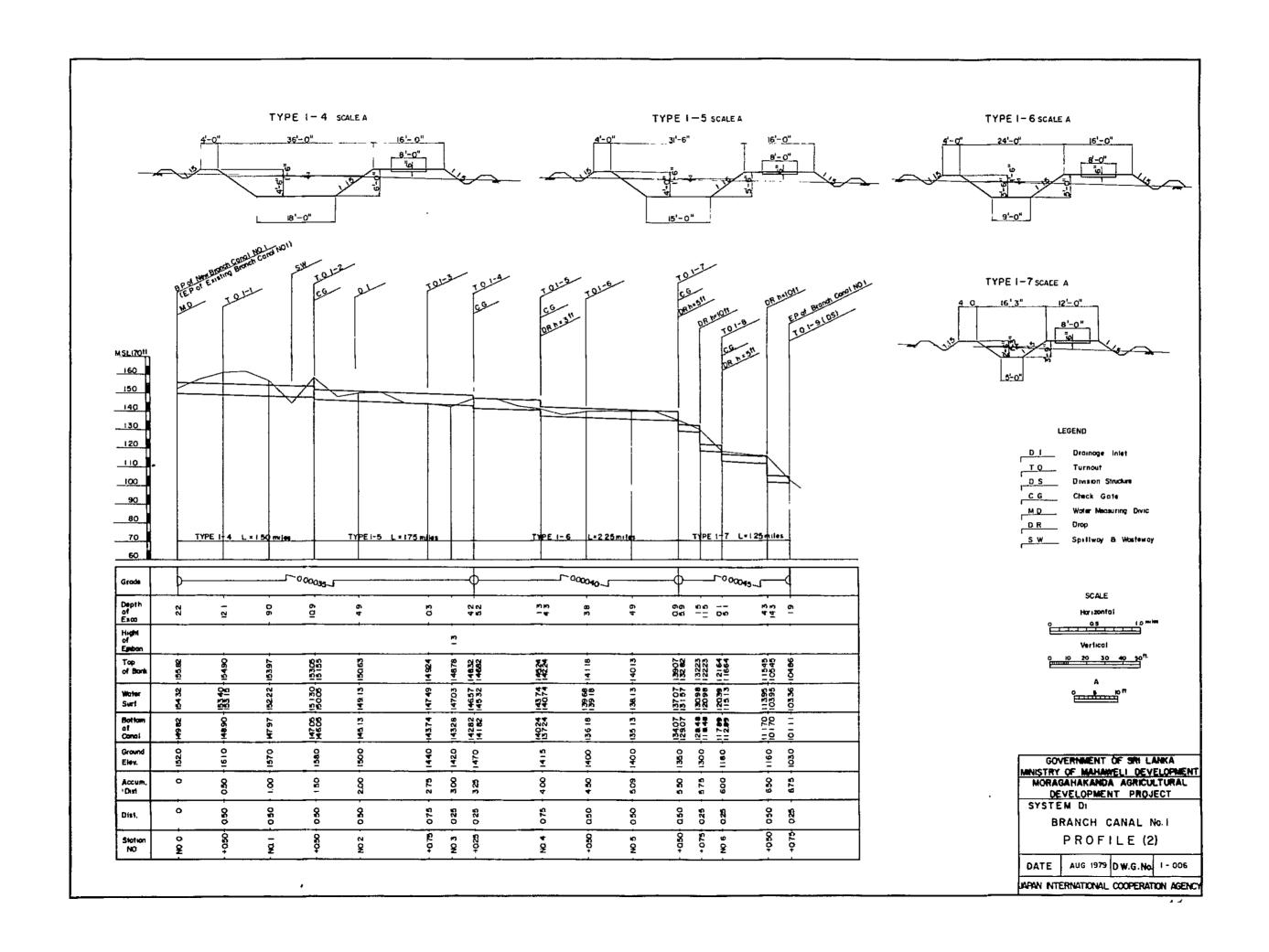

•

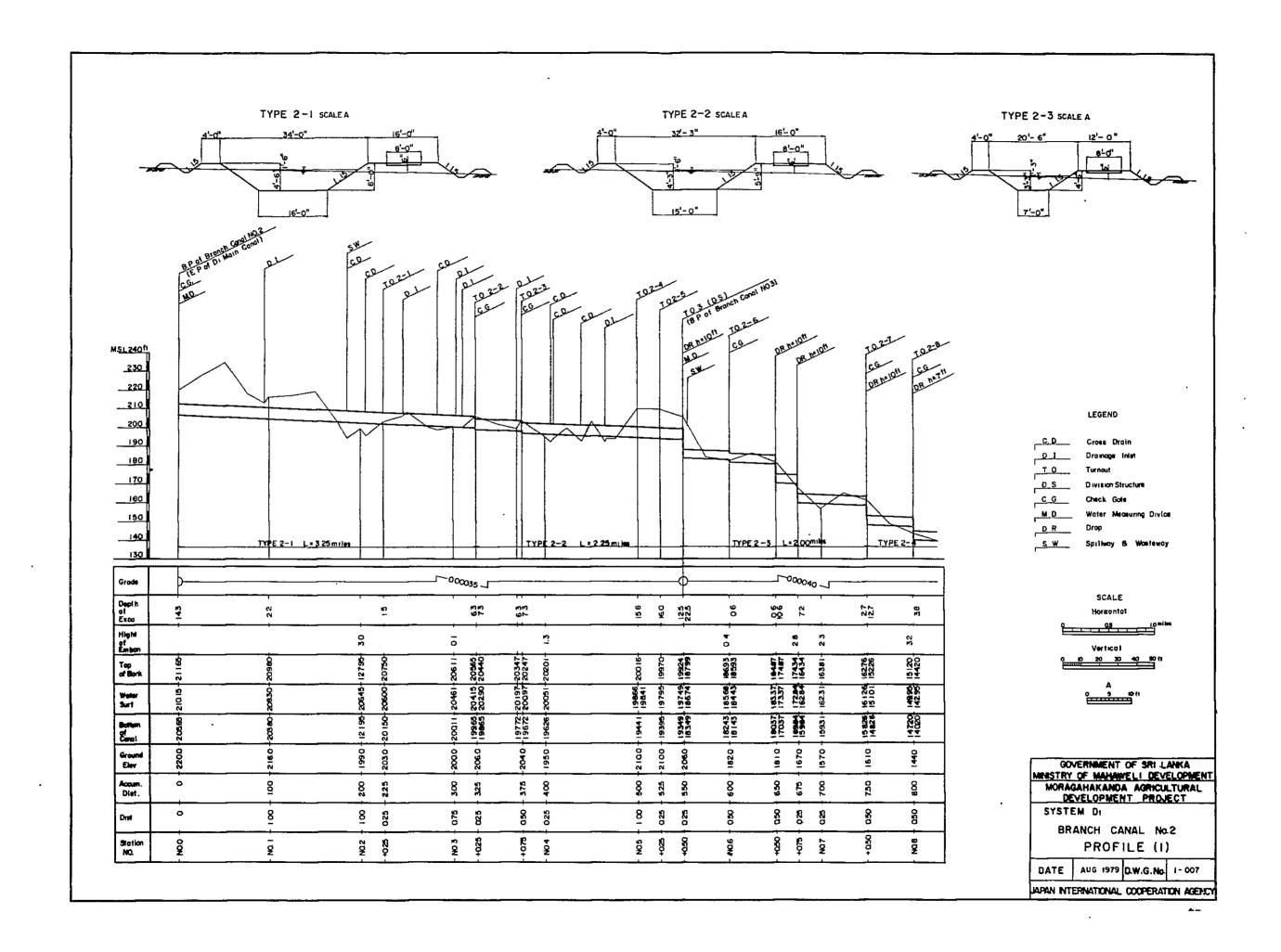

•

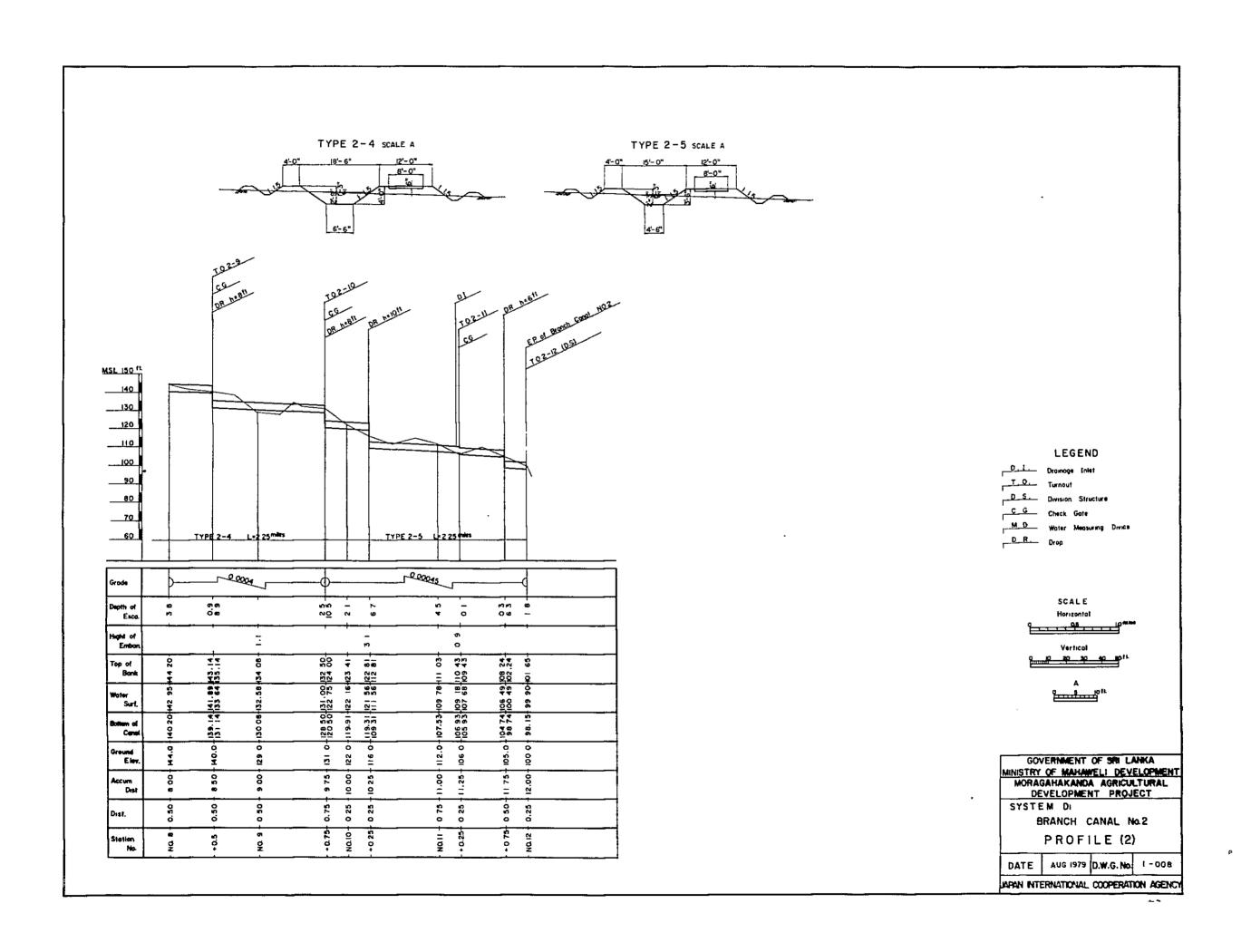

•

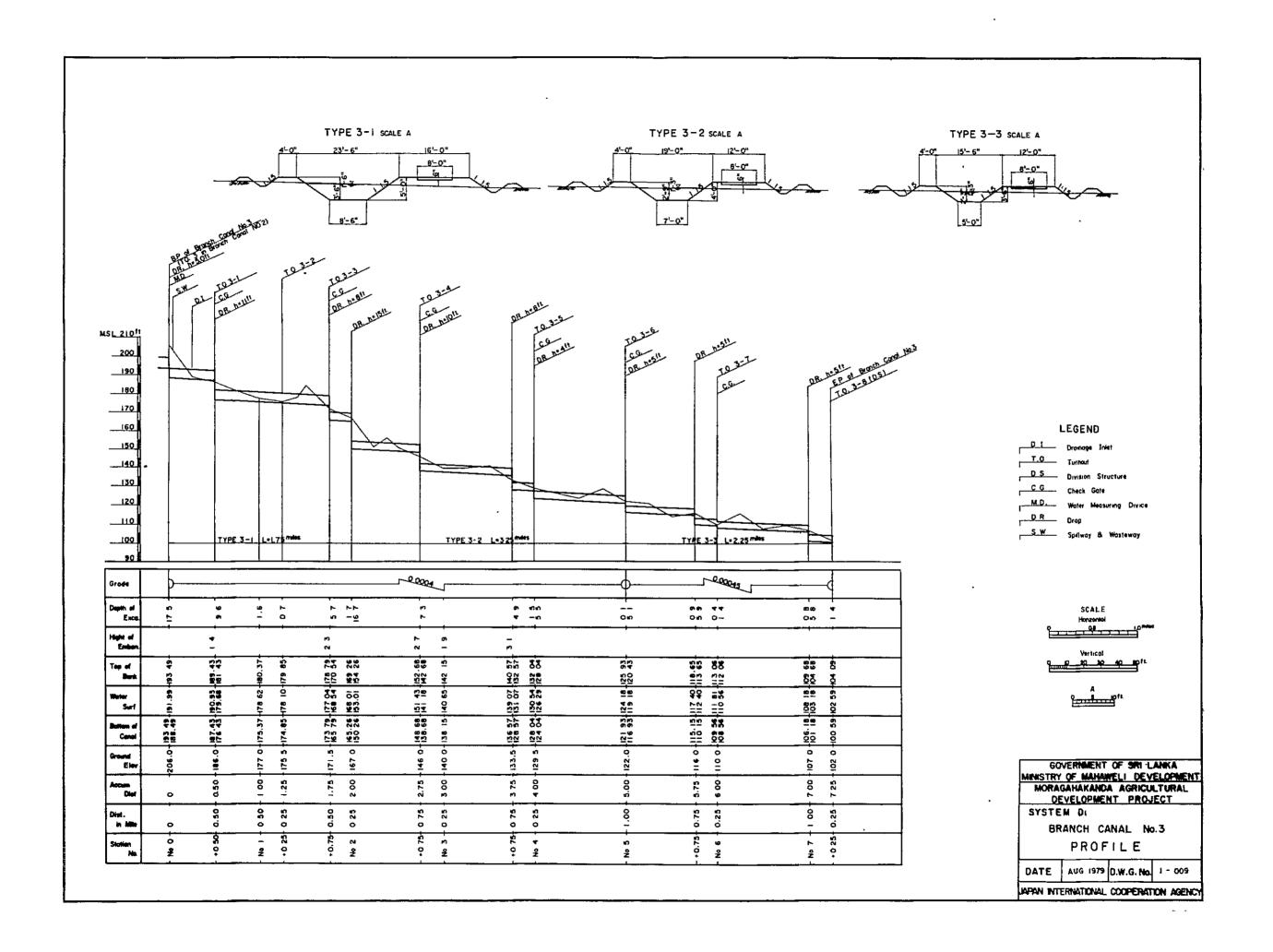

* - * - ·

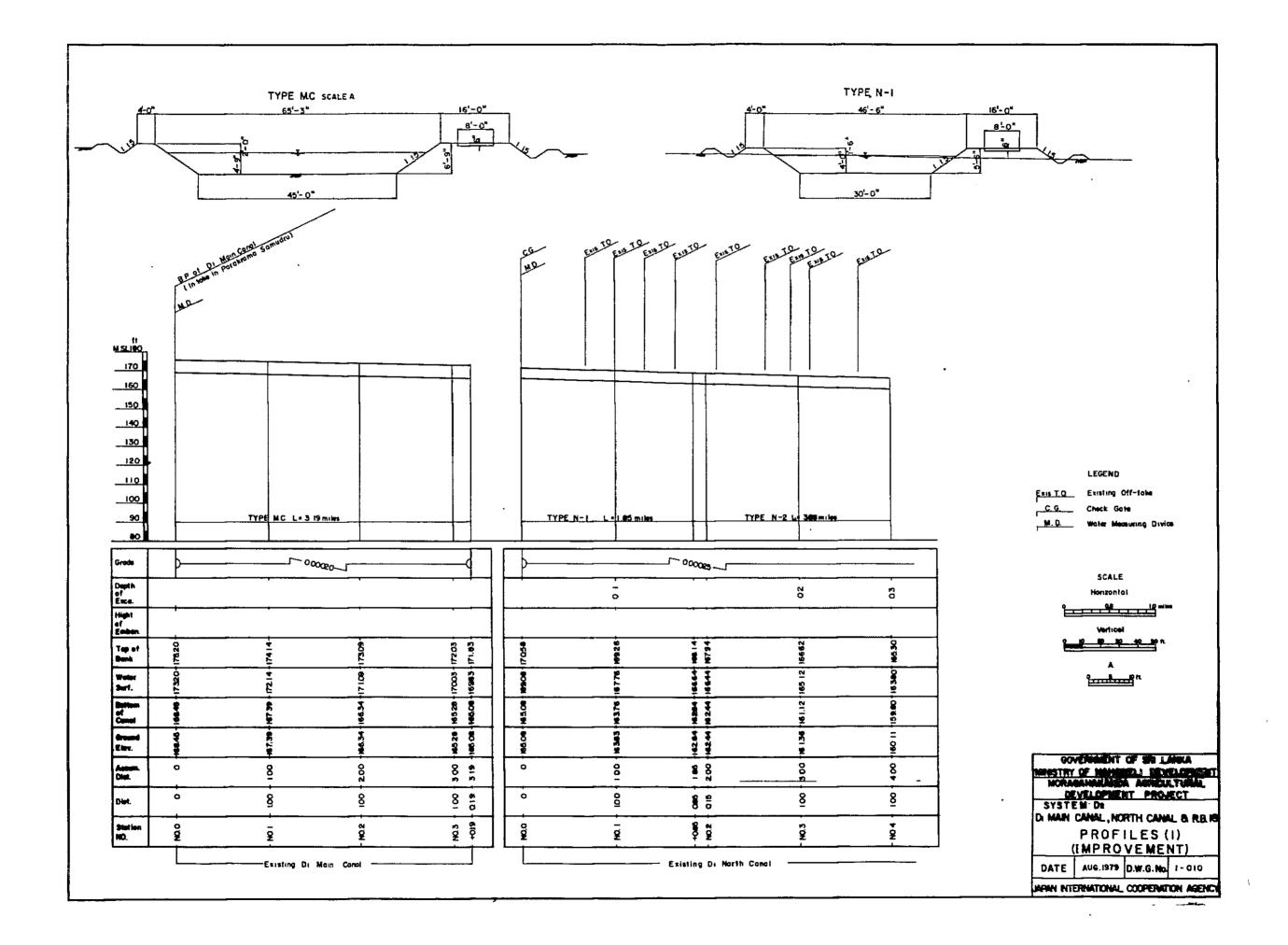

· -

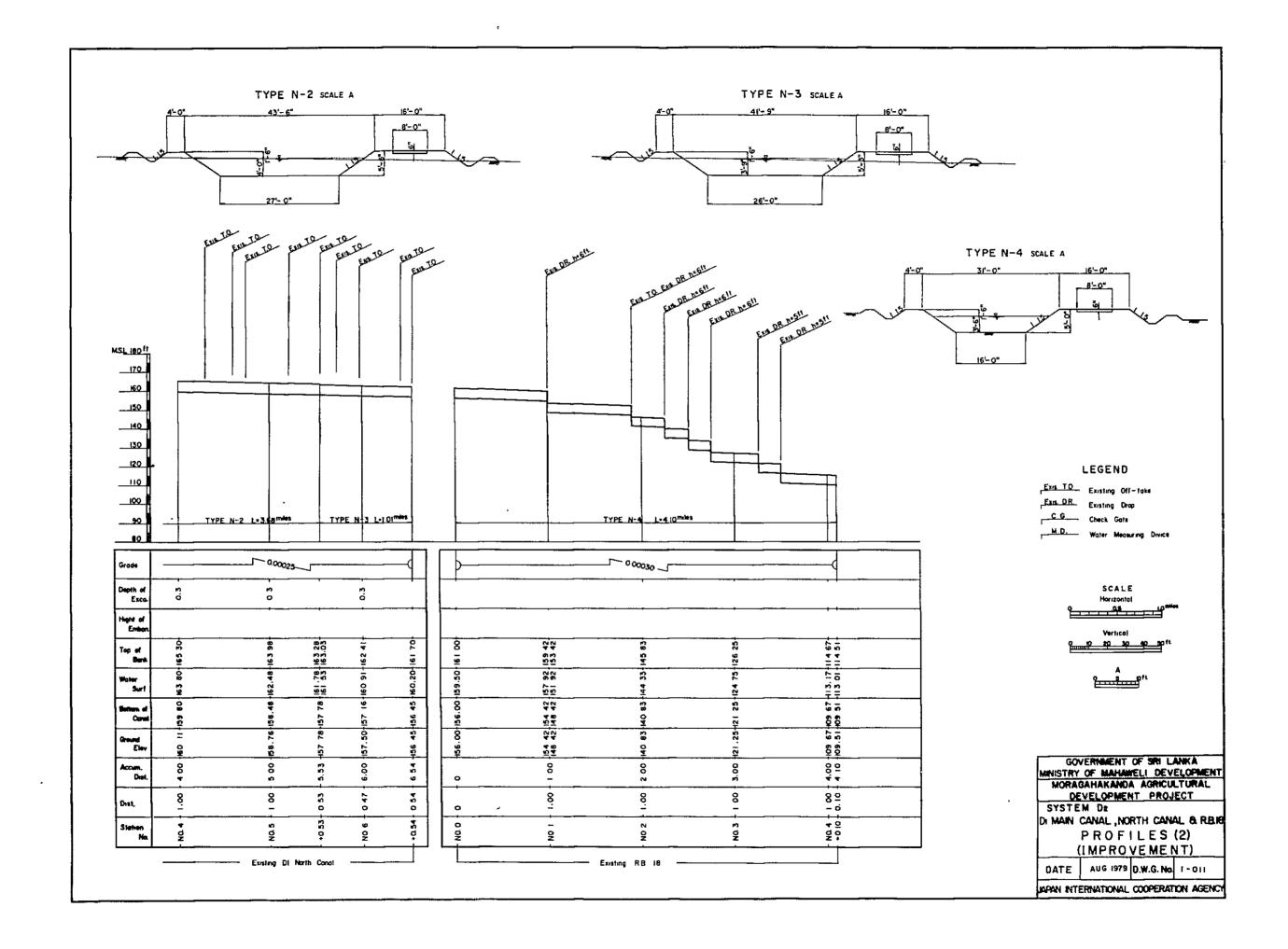


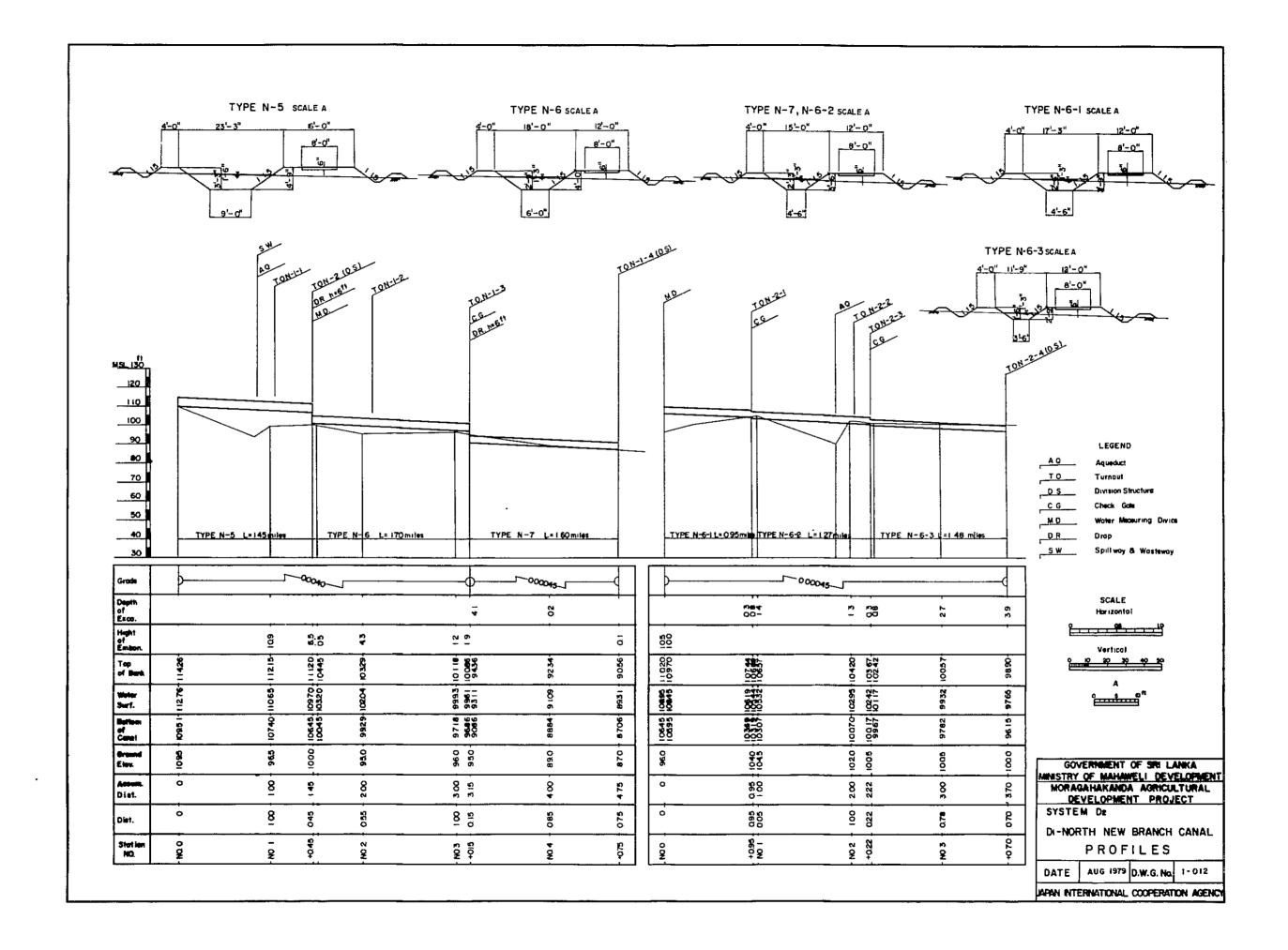


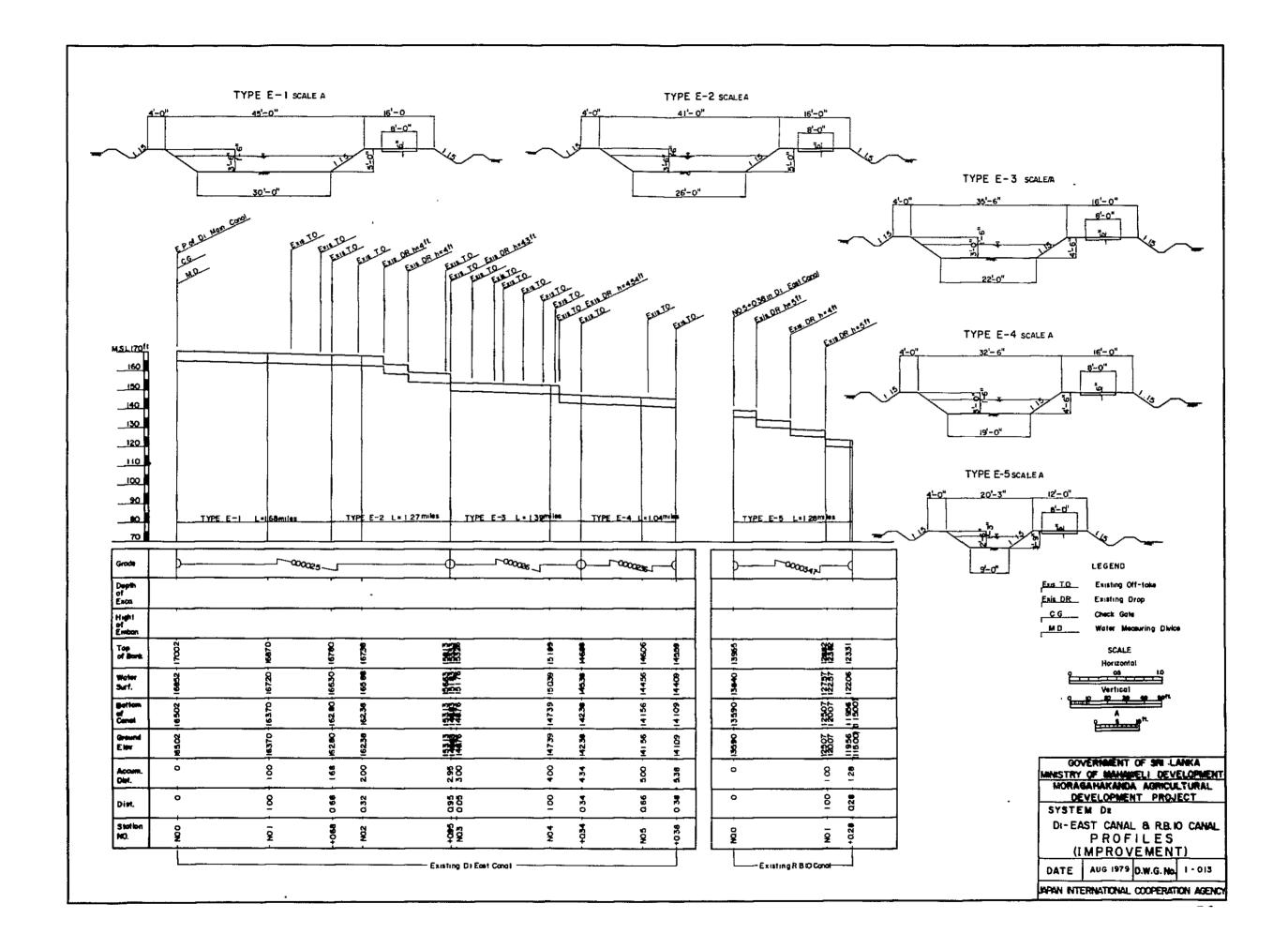


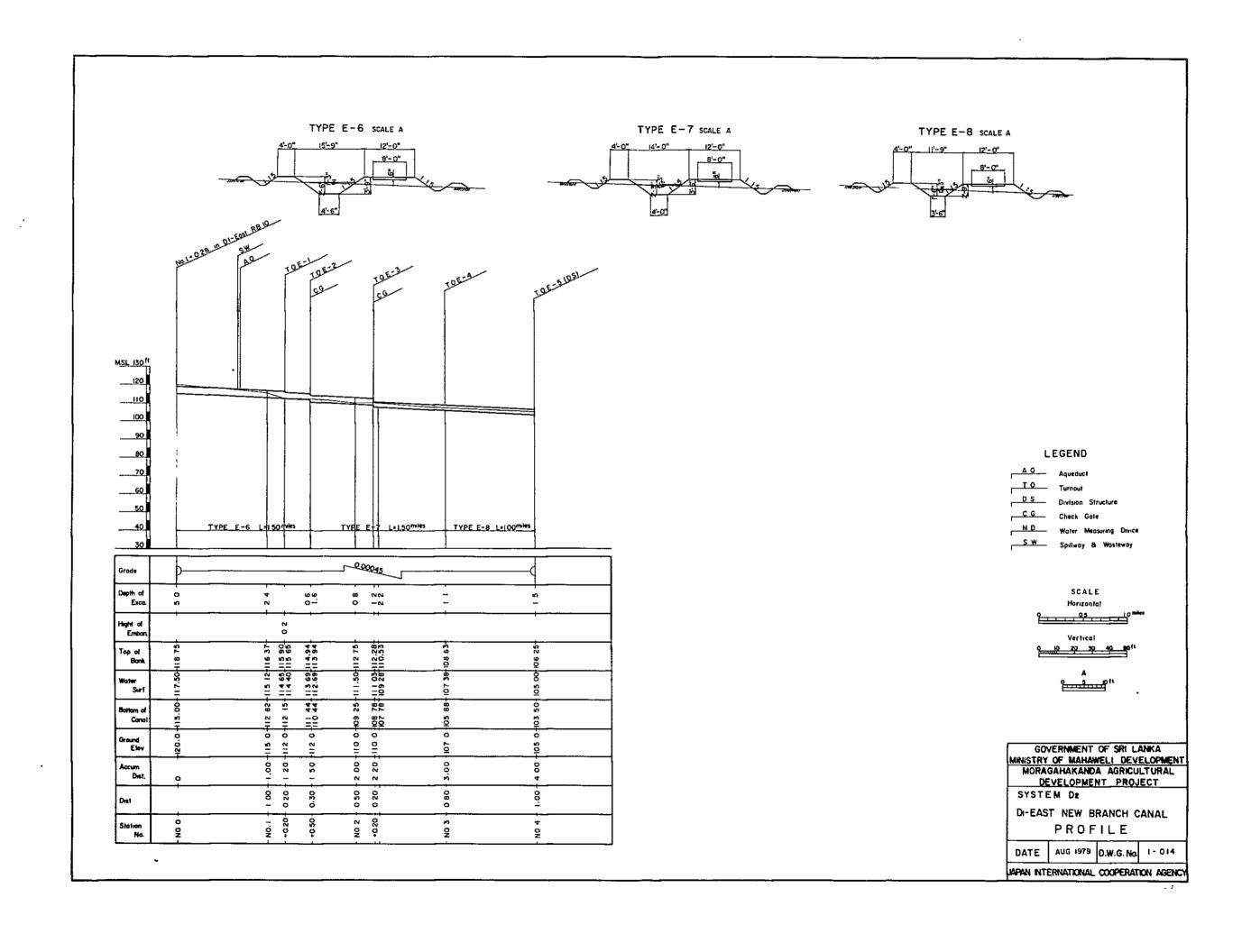


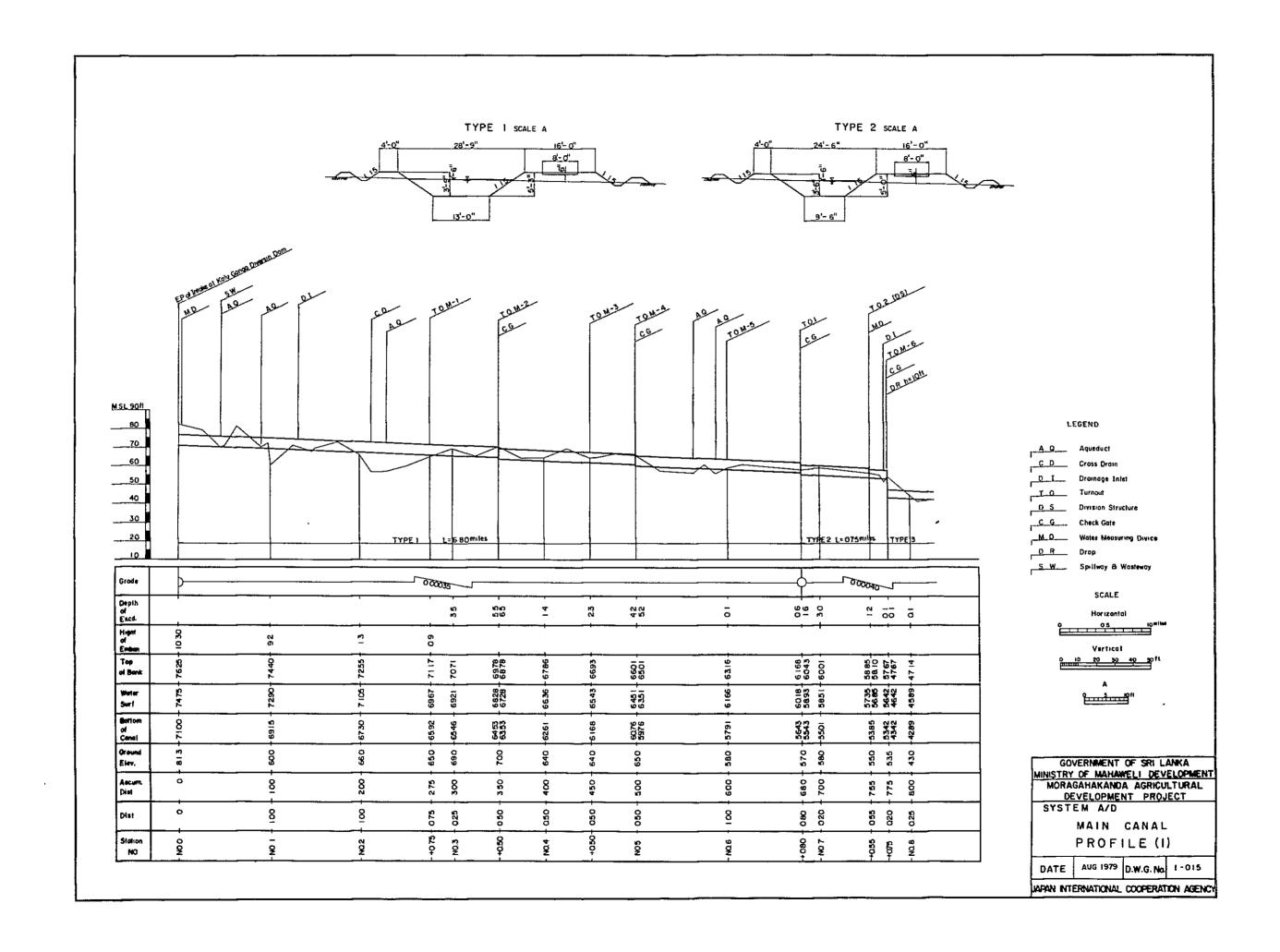


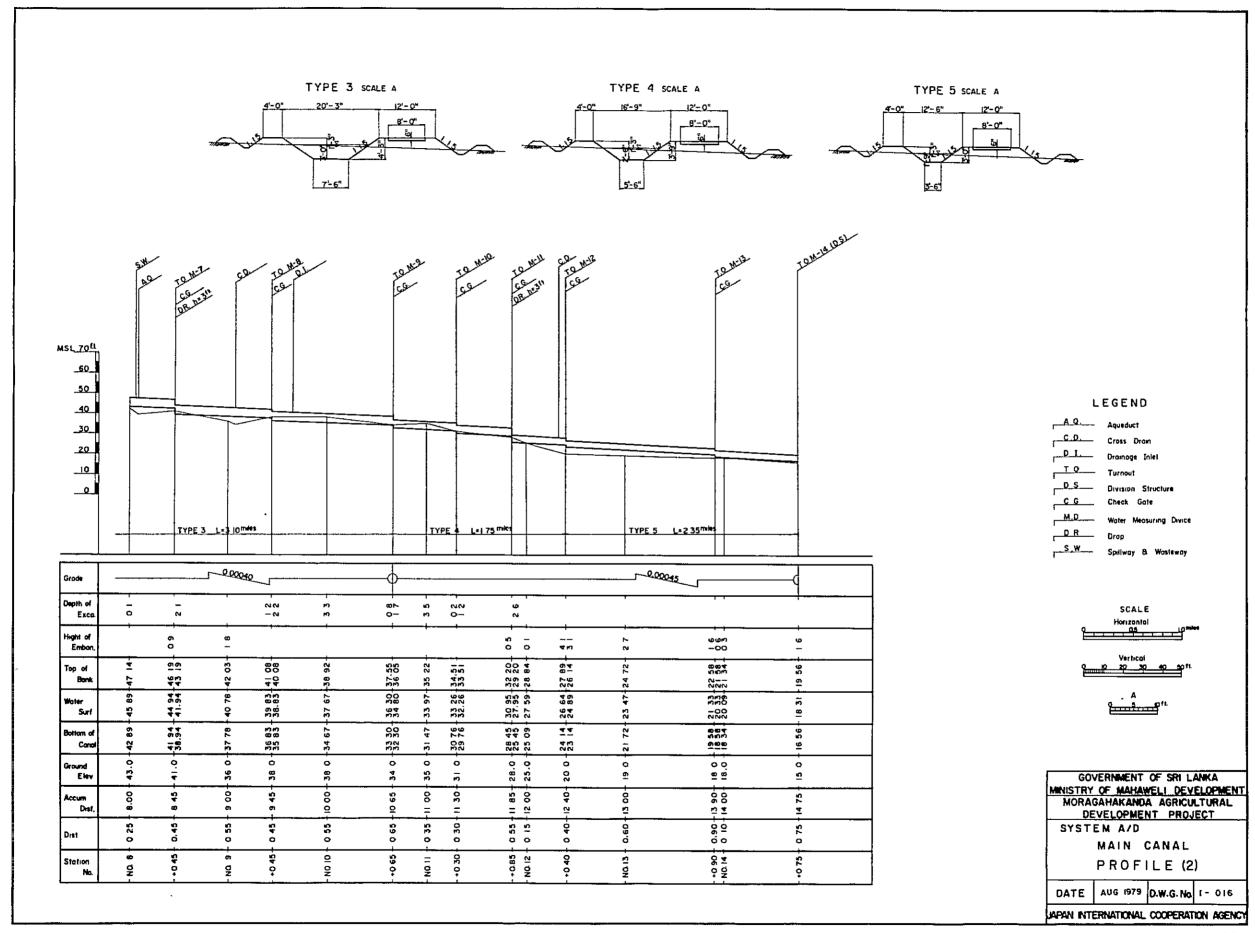


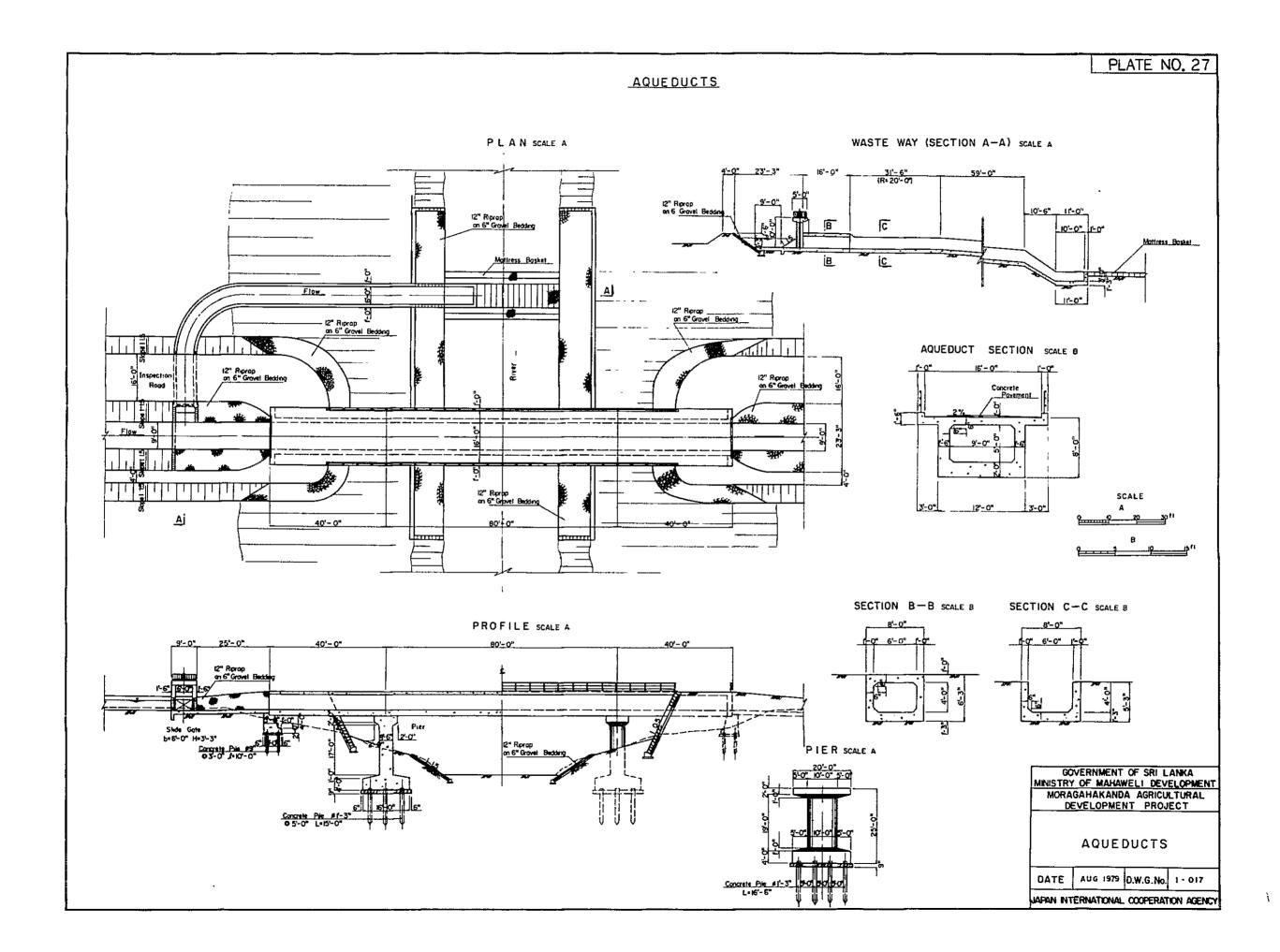


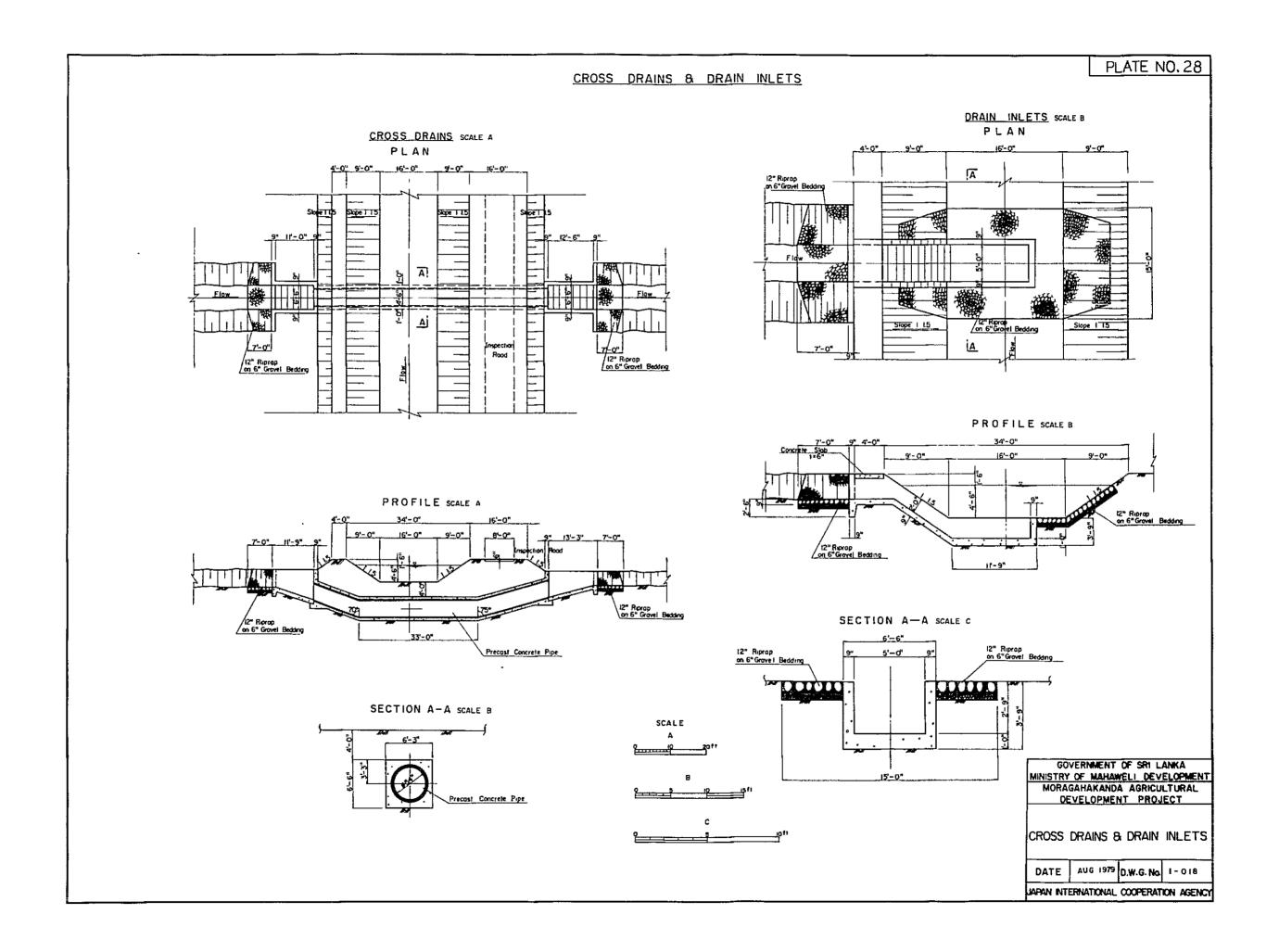


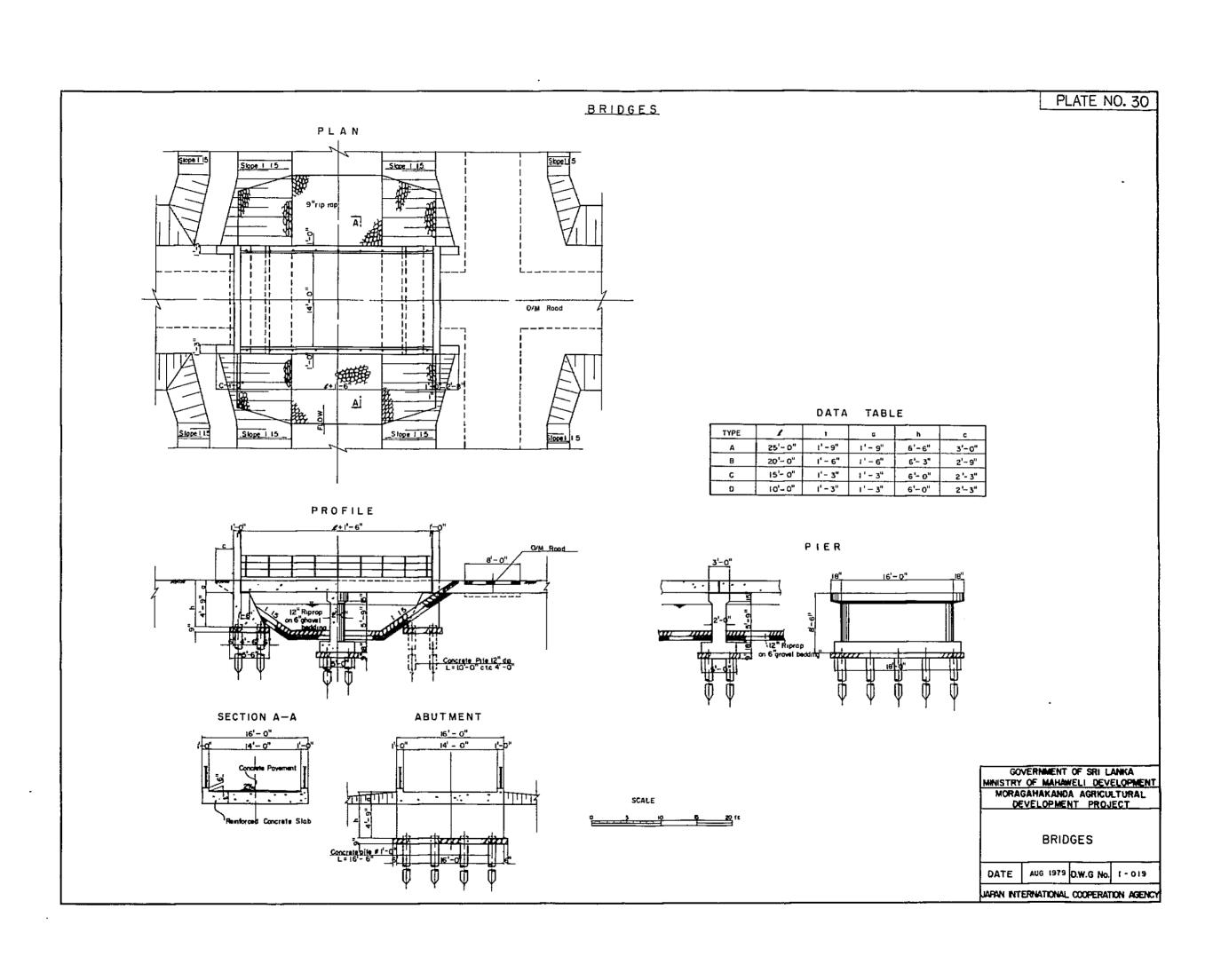


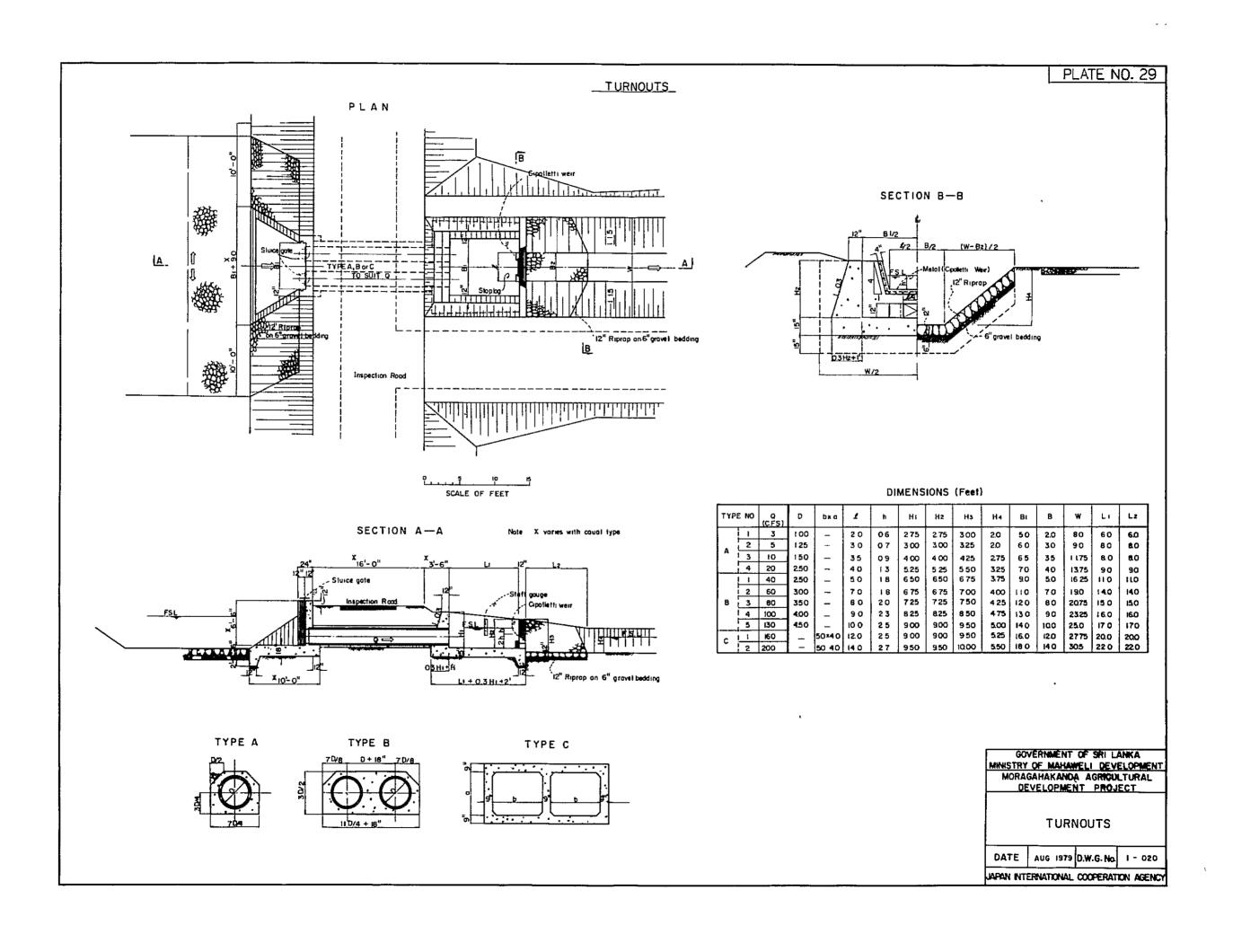


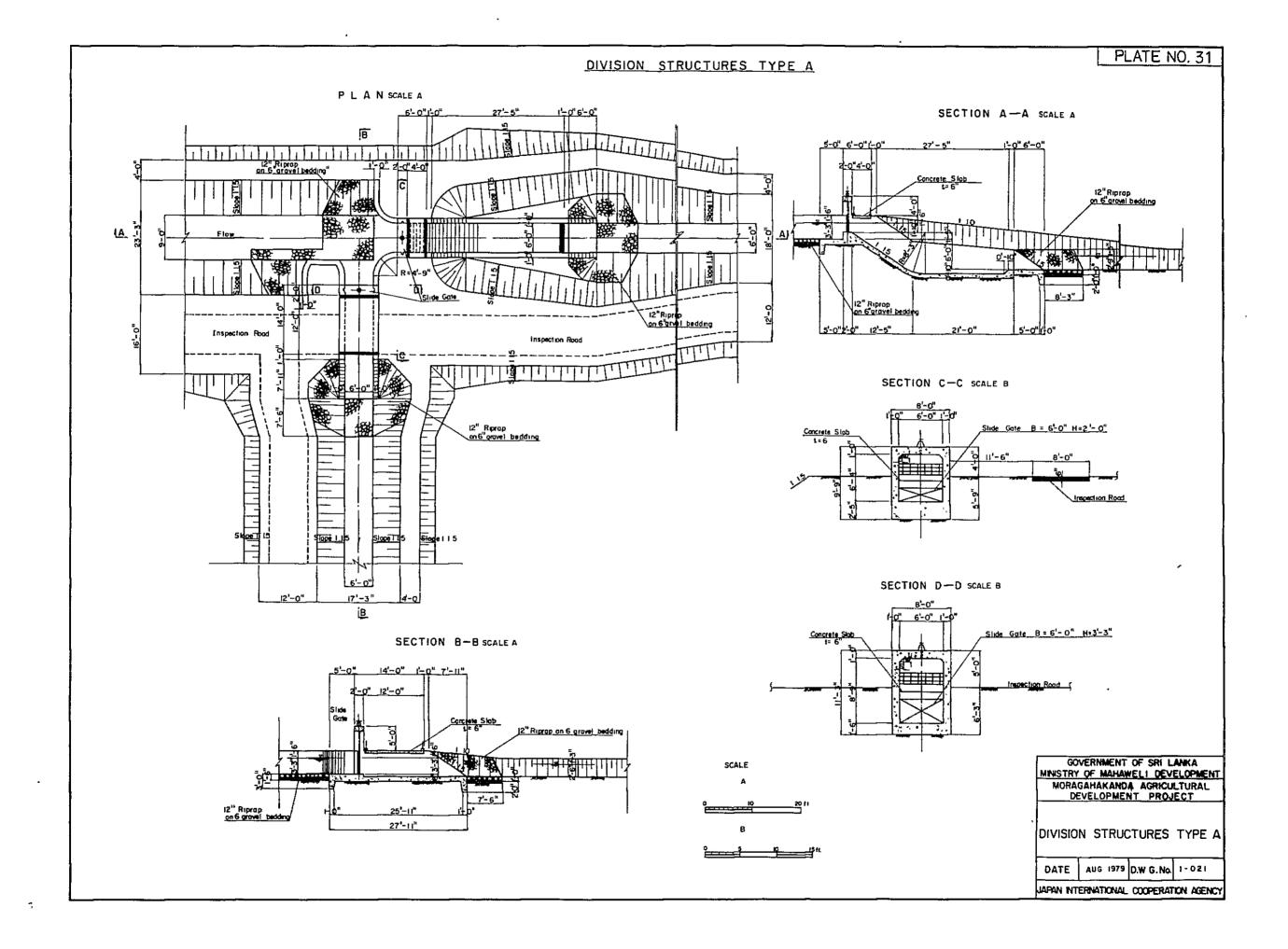


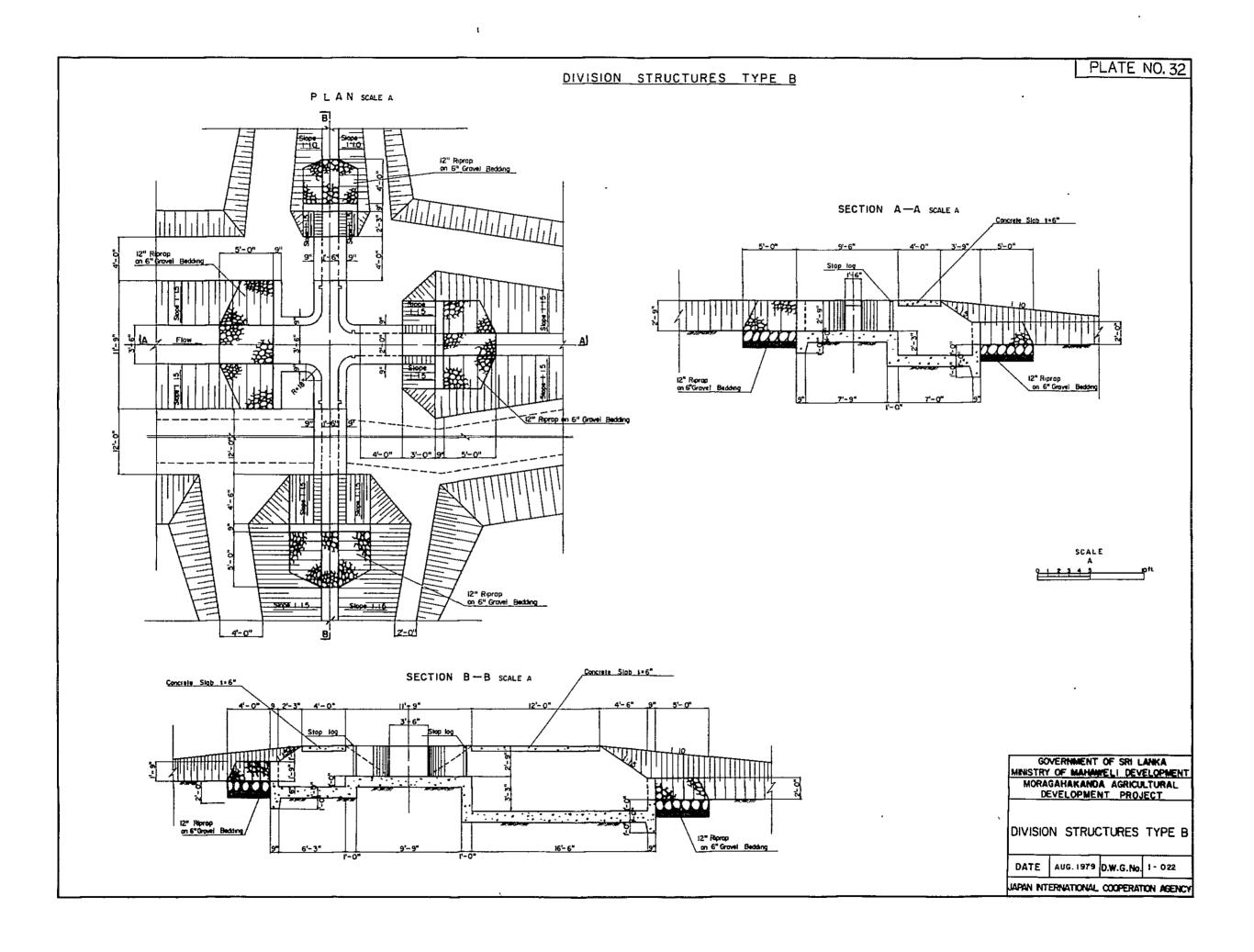


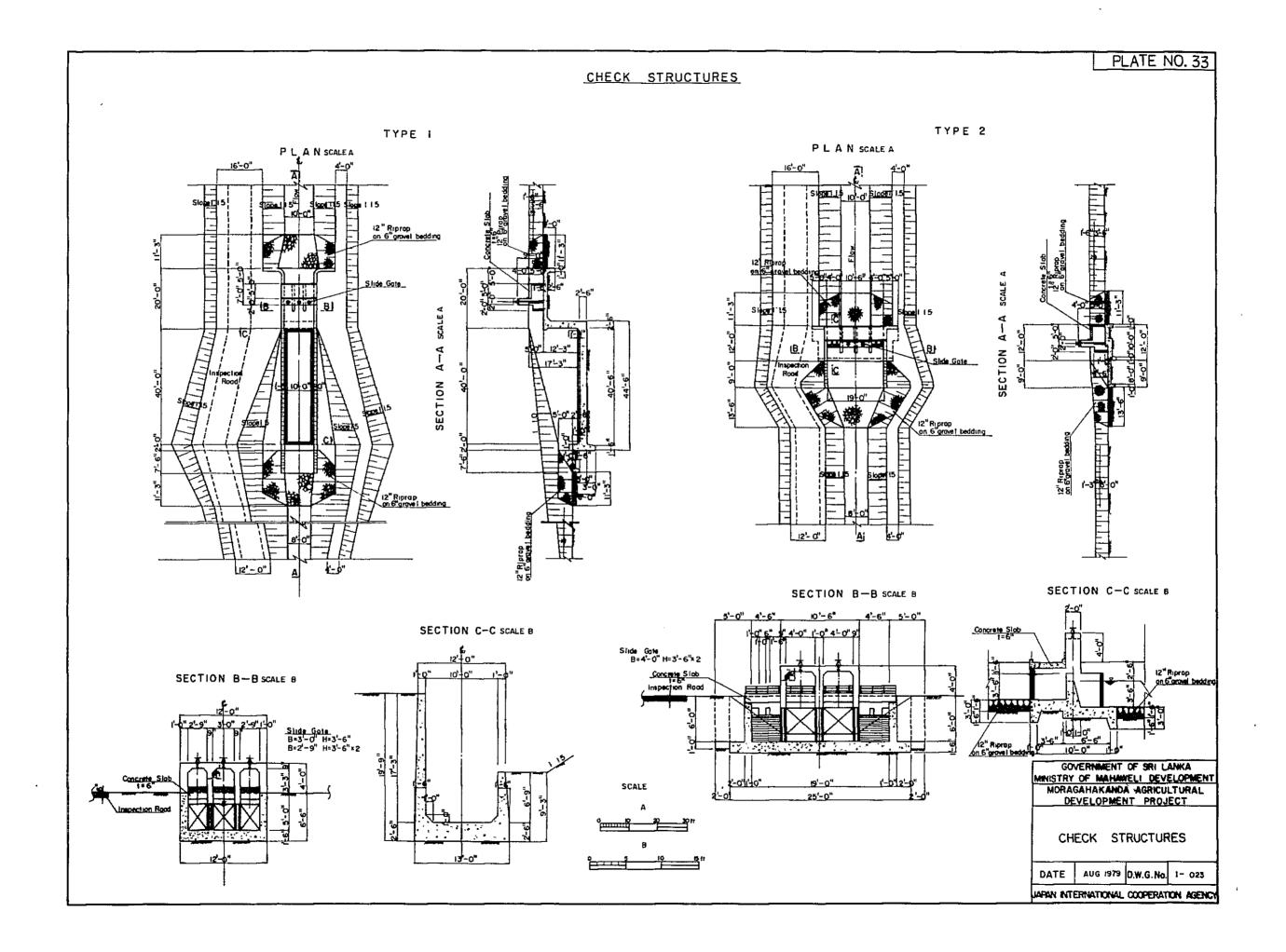


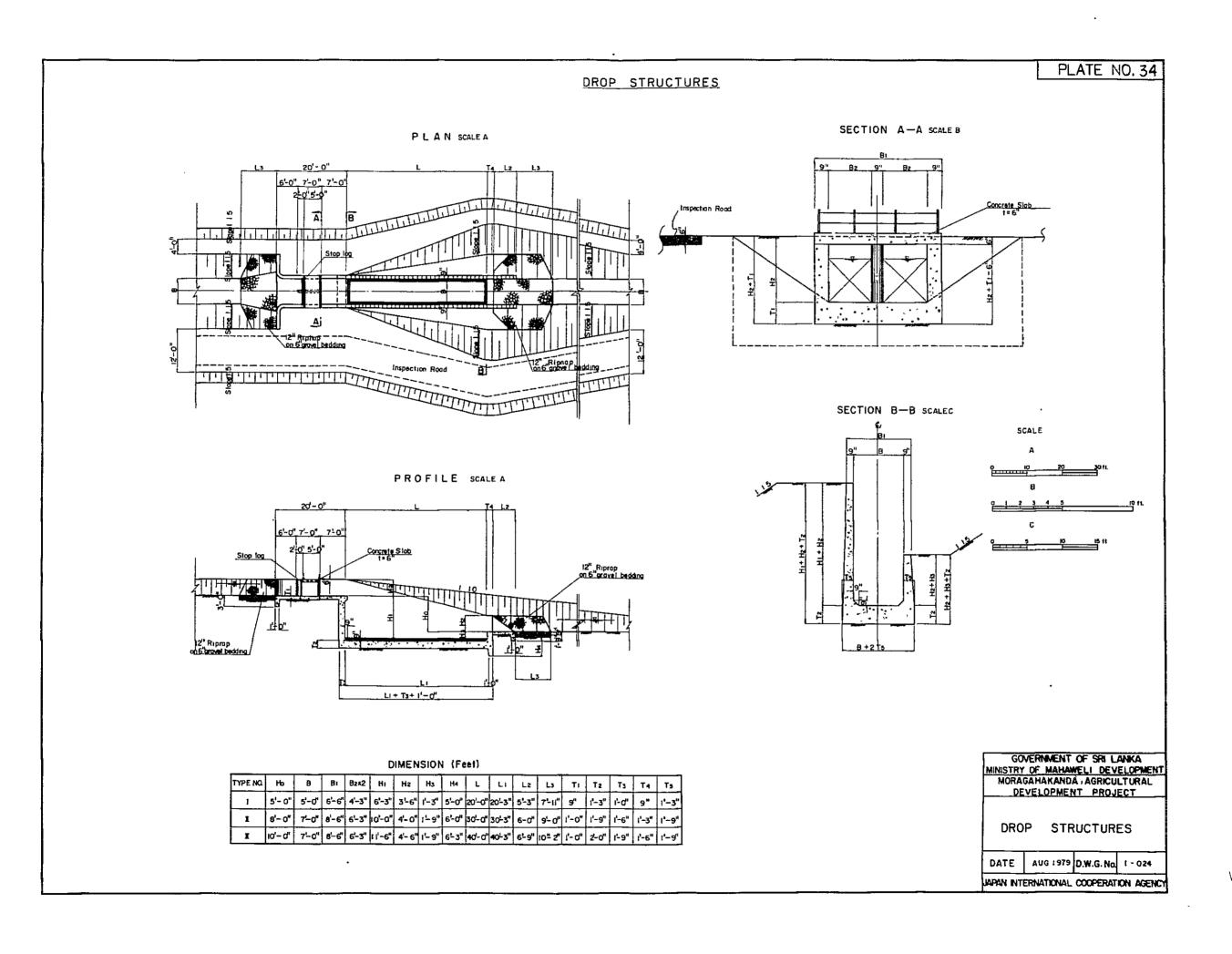


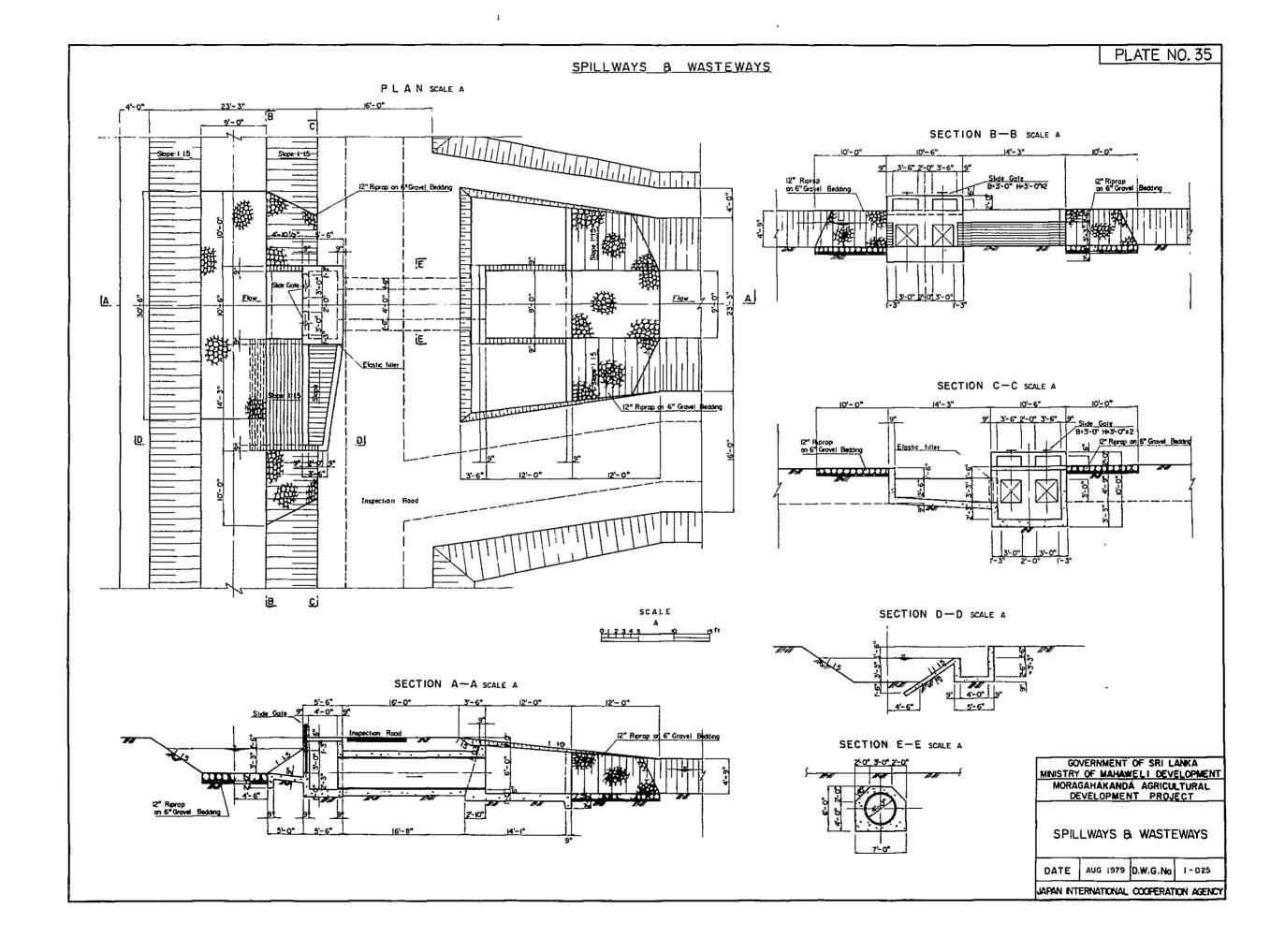


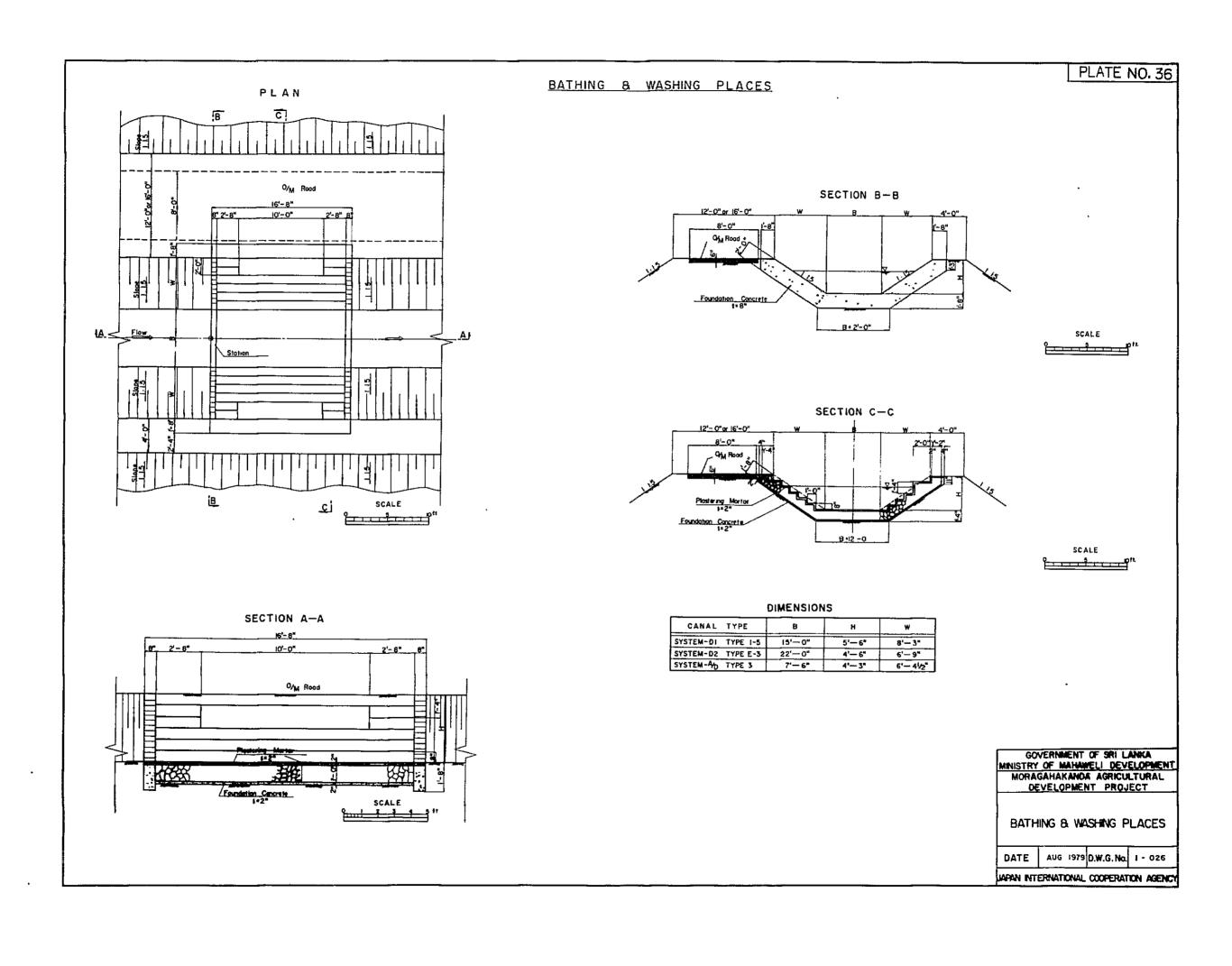












LAYOUT IN SAMPLE AREA SYSTEM DI

LEGEND

Distributary Field Channel Check Gote Roads Secondary Drainage Field Drains

GOVERNMENT OF SRI LANKA
MINISTRY OF MAHAWELI DEVELOPMENT
MORAGAHAKANDA 'AGRICULTURAL
DEVELOPMENT PROJECT

LAYOUT IN SAMPLE AREA SYSTEM DI

DATE | AUG 1979 | D.W.G.No. | 1 - 027

JAPAN INTERNATIONAL COOPERATION AGENCY

. %

.

--

- 1

. .

.

ANNEX VII : AGRICULTURE AND ANIMAL HUSBANDRY

Contents

		<u>Page</u>
VII-1	Rice Production	VII- 1
VII-2	Productive Inputs	VII- 4
VII-3	Labour Requirements	VII-18
VII-4	Farm Mechanization	VII-25
VII-5	Crop Production Costs	VII-35
VII-6	Rainfed Cropping	VII-39
VII-7	Amimal Husbandry	VII-42

ANNEX VII AGRICULTURE AND ANIMAL HUSBANDRY

VII-1 Rice Production

Effect of High Yield Varieties

In relation to the paddy rice, which is most important crop in Sri Lanka as well as in the proposed cropping patterns, the improvements of their varieties have been playing very important role on the development of rice production.

Therefore, in this item, the breedings of rice have been reviewed and recommendable varieties to the project area are summarized as follows.

Effect of High Yield Varieties of Rice (Historical Review)

(Yield potential-ton/ha)

Year Variety	1940	1950	1960	1979	1970 (early stage)	1970 1970 (early stage) (later stage)
	MAWI	PODIWIE	PTB 16	6-H	BG 3-5	1
6 months	MUTUSAMBA (2.1)	A-8 (2.6)	(2.6)	(4.7)	(6.5)	ľ
4-4 1/2	MURUNGAKAYAN	MURUNGAKAYAN	MAS	H-4	BG 11-11	BG 90-2
months	(2.1)	M-302 (2.6)	(3.1)	(5.7)	(Engrater x H-8) x H-8 (6.25)	(6.25)
3 1/2	HEENATI			Н-7	BG 34-6	BG 94-1
months	VELLAIFEKUNAL (1.6)	r	1	(3.6)	(red rice) (6.25)	(6.25)
	PACHICHAI			H-10	BG 34-8	
3 months	PEKUMAL (P.P) (2.1)	1	1	62-355 *(3.0)	(6.25) BG 33-2 (7.0)	
Note	Old Indica, 6 months			*62-355 (for High-	BG = Batagonia Breeding	BG 90-2 BG 94-2
	variety (only for wet zone)			land Lift Irrigation H = Hybrid	\sim	(only for good farmer)

- * Crossing and characteristics of varieties.
- . Pachichai Perumal (P.P.) = Old Indica. Not improved.
- . H-4 = M302 x Mas. Strong resistance to diseases (blast)
- . $H-7 = H5 \times (Mas P.P 2462/11)$
- . H-9 = Pandurwee x (C 104 x Mas)
- . H-10 = Same cross method with H-7.
- $62-355 = H5 \times PP 2462/11$
- . BG 11-11 = (Engkatek x H-8) x H-8 (back cross)
- . BG 34-8 = $(1R8-246 \times PP \ 2462/11) \times Mas \times H \ 501$
- . BG 33-2 = $1R8-246 \times H-10$ (Wet zone only)
- . BG 90-2 = 1R262 x Remadja (Need good disease and insect controlblast, stem borer, etc.)

Old Improved Variety (Old HYV) = Variety up to 1960

New Improved Variety (New HYV) = Variety after 1970

Recommendable Varieties for the Project Area

Variety	МАНА	YALA
4-4 1/2 months	BG 11-11 BG 90-2 *	BG 11-11
	*Need much pest controls	(In case of enough irriga- tion water is available)
3 1/2 months	BG 94-1	BG 94-1 BG 94-2 * * for good farmer only
3 months	BG 94-1 BG 34-8 BG 34-6 (red rice)	BG 34-8

VII-2 Productive Inputs

Adequate inputs supply with reasonable price is essential element to succeed in the agricultural development project. The price list of fertilizers (50% subsidy), Agro-chemicals and seeds associated with their requirement per ha as well as total requirements with project are listed in the following tables.

(1) Fertilizers

The price list of fertilizer which effective from 17th November, 1978 published by Ceylon Fertilizer Corporation and released to all authorized fertilizer dealers is as follows. The list shows 50% subsidised selling price. These prices will be renewed in future.

A) Price of fertilizer

1) Paddy Fertilizer

	Urea	Rs 1,638	Per MT
	N. P. K. 5/15/15	1,548	11
	N. P. K. 3/30/10	1,695	11
	V - 1 with S.A.	1,460	" (dry zone)
	(Sulphate of Ammonia))	
	V - 2 tr	954	" (wet zone)
	V - 3	1,482	" (")
	T.D.M - 1 with Urea	1,557	u
	T.D.M - 2	1,515	21
	T.D.M - 3	1,430	
2)	Straight fertilizer		
	Sulphate of Ammonia	1,179	MT
	Muriate of Potash	1,132	n
	Rock Phosphate Apatite	783	π
•	Sulphate of Potash	1,674	н
	Triple Super Phosphate	1,556	n .

	Commercial Epsom Salt	1,230	MT	
	Zinc Sulphate	2,916	IT .	
3)	Mixture with T. S. P.			
		Rs	Per	-
	Vegetable Mixture	1,336	MT	(Home Garden)
	Leafy Vegetables	1,277	It	
	Chillie	1,313	tt	
	Soya Beans	1,365	11	
	Groundnuts	1,404	tř	
	Onion	1,366	Ħ	
	Sugar Cane Basal - 1	1,346	TI .	
	Sugar Cane - I	1,326	†i	
	Sugar Cane - II	1,350	11	
4)	General Mixtures with R. E			-
		Rs	Per	
	Onion	1,056	MT	
	Beans & Cowpea	1,025		
	Chillies	1,135	, u	,
	Banana	1,137	11	•
	Papaw	1,076	n	
5)	Special Mixture (Effective	th July	, 1978 col. 2)	•
		Rs	Per	
	Veg. Mixture	1,181	MT	
	Leafy Vegetable	1,284	fi fi	
	Beans	1,206	11	
	Yam Special	1,244	11	
	Root Vegetable	1,329	ft	
	Chillie	1,409	11	•
	Soya Beans	1,470	11	
	Sugar Cane - I	1,419	11	
	Sugar Cane - II	1,480	11	

- B) Application of fertilizer in the dry zone (with Project per ha) *
 - 1) Paddy (3 3 1/2 varieties)

Name	Application		Amount	Unit Price	Total (Rs)
v_1	Basal		3.75 ^{cwt}	82/cwt	307.50
Urea	Top dressing	(1)	1.25	84/cwt	104.00
Urea	·11	(2)	1.875	11	157.50
				(Total)	569.00

- * Amount of fertilizers will vary according to the soil conditions of each field and the ideal amount of fertilizer will be decided by both soil and foliar analysis of each field and crop at the same time. (Foliar analysis is common in case of plantation crops)
- 2) Paddy (4 4 1/2 varieties)

					Total (Rs)
v_1	Basal		3.75 ^{cwt}	82 Rs/wct	307.50
Urea	Top dressing	(1)	1.25	84	104.00
Urea	п	(2)	H	H	104.00
T. D.	M. (*) "	(3)	1.875	80	150.00
				(Total)	665.50

(*) Another application method practiced in Polonnaruwa District is as follows:

3rd top dressing	cwt		Total (Rs)
Urea	1.875	84 Rs/cwt	150
T.D.M.	1.25	80	100
(or Potash)			

. Application of "K" fertilizer at last top dressing increase resistance to plant disease and can be expect more yield.

3) Soya beans

		cwt		(Total) Rs
v_1	Basal	3.75	82 Rs/cwt	307.50
Urea	Trop dressing	0.625	84	73.00
			(Total)	380.50

(*) If the field shows deficiency of "P" and "K", the following fertilizers are recommended.

(Basal)

2.5 cwt of Conc. Superphosphate (225^{Rs}) 1.24 cwt of muriate of Potash (47.5^{Rs})

(Top dressing)

2.5 cwt of Urea (210 ^{Rs})
(Total) 482.5 ^{Rs}

4) Pulses (Cowpea/Grams)

a) Average soils

				Total (Rs)
v_1	Basal	3.75 ^{cwt}	82 Rs/cwt	307.50

b) Soils with deficiency of P & K

(Basal)

2.5 cwt of Conc. Superphosphate	(225 ^{Rs})
1.25 cwt of muriate of Potash	(47.5 ^{Rs})
1.25 cwt of Sulphate of Ammonia	(58.0 ^{Rs})
(Top dressing)	
0.625 cwt of Urea	(53 ^{Rs})

(Total) 383,50^{Rs}

5) Groundnuts

			cwt		Total (Rs)
Urea		Basal	0.625	84 Rs/cwt	
Conc. Superphosi	phate	11	2.5	90	53
Muriate of	Potach	T1	1.25	38 '	47.5
Urea	(Top	dressing)	1.25	84	105
				(Total)	430.50

6) Maize and Sorghum

			cwt	16 = 1	Total (Rs)
	. Sulphate	Basal	2.5	46 Rs/cwt	115
	c. Superphosphate	17	2.5	90	225
Mur	iate of Potash	**	1.25	38	47.5
Ure	a (Țop d	ressing)	3,125	84	263
				(Total)	650.50
7)	Chillie				
					Rs
-	v_1 , Urea	Nursery	cwt		15
	v_2	Basal	3.75	82 Rs/cwt	307.5
	Urea	**	0.625	84	53
	V ₁ Top	dressing	3.75	82	307
	Special mixture	11	5	72	360
				(Total)	1,042.50
	* Another applica	tion metho		naruwa is as	follows.
	Amm. Sulphate	Basal	1.25 ^{cwt}	46 Rs/cwt	57.5
	Triple Super- phosphate (or special mixture)	11	2.5	90	225
	Muriature of Potach	tt	0.625	38	23.75
		" (Top)	0.625 7.5	38 46	23.75 345
	Potach		· -		
8)	Potach		· -	46	345
8)	Potach Amm. Sulphate Red Onions	(Top)	7.5	46 (Total)	345 651.25 Rs
8)	Potach Amm. Sulphate	(Top) Basal	7.5 cwt 5	46 (Total) 84 Rs/cwt	345 651.25 Rs 420
8)	Potach Amm. Sulphate Red Onions Special Mixture	(Top)	7.5	46 (Total)	345 651.25 Rs

9) Bombey Onions

Urea	Basal	3.125 ^{cwt}	84 Rs/cwt	262.5 ^{Rs}
Conc. Super- phosphate	ti	2.5	90	225
Muriate	В	1.25	38	47.5
			(Total)	535

^{* 10} tons of manure per ha is necessary as basal organic fertilizer (2,000 Rs/ha) in case of Red Onions, Bombey and Chillies.

10) Vegetables (1) Brinjal, Capsicum, (etc).

Special Mixture 12.5 ewt 83 Rs/cwt 1,037.5 Rs (Basal & Top dressing)

* 10 tons of manure is recommendable in addition. (per ha)

11) Vegetables (2) Beet, Carrot (etc).

Special Mixture 12.5 cwt 83 Rs/cwt 1,037.5 Rs

* 10 tons of manure is recommendable in addition. (per ha)

12) Sugar Cane

UK Mulika Mixture	Basal	6.25 ^{cwt}	70 Rs/cwt	437.50 ^{Rs}
Urea	Top	3.75	84	315
UK Deveri	*11	7.5	70	525
			(Total)	1,277.50

^{*} For stubble shaving of Ratoon crop, additional top dressing is necessary according to the growth condition of plant.

(2) Agro-chemicals

The prices of Agro-chemicals for sale including new products authorized by the Ceylon Petroleum Corporation are given in the list below. These prices are effective from 4th December, 1978. This price will be renewed in future.

A) Price

Item	Name of New Product	Package	Price (Rs) (Wholesale)	Price (Rs) (Retail)
Insecticide	B.H.C. 10% dust	2 Kg	6.00	7.15
(pesticide)	Thiodan 35%	450 ML	42.50	52.50
		200 ML	19.50	24.00
		100 ML	10.50	13.00
11	M.E.M.C.	l oz pkt	2.00	2.50
		l lb. pkt	15.20	19.20
11	Trichlorphon 80%	1/2 lb. pkt	13.50	15.00
11	Dimethoate 40%	100 ML	7.70	9.70
		200 "	13.50	16.90
		450 "	26.00	32.50
11	Monocrotophos 60%	100 ML	16.40	21.10
		200 ML	30.70	39.50
		450 ML	60.50	78.00
11	Furadan 3G	500 Gm	7.25	8.35
		2 Kg	22.50	26.00
		25 Kg	260.00	290.00
11	Parathion E 50	100 ML	7.30	9.75
		200 "	12.70	17.00
		450 "	24.30	32.40
11	Folpet 50%	200 Gm	9.20	11.50
		500 Gm	22.05	27.55
It	Chloropyriphos 40%	100 ML	15.00	16.80
		200 "	28.30	35.50
		450 "	60.00	75.00

Item	Name of New Product	Package	Price (Rs) (Wholesale)	Price (Rs) (Retail)
Insecticide	Dicofol 42%	450 ML	30.00	37.50
		4.5 L	275.00	344.00
	Carbaryl 85%	200 Gm	13.70	17.20
		500 "	29.00	36.25
		25 Kg	1,364.18	1,543.21
Weedicide	Trithion 2 E	100 ML	9.95	11.45
		200 "	18.45	21.20
		450 "	39.80	45.80
11	M.C.P.A. 40%	450 ML	14.00	17.00
		4.5 L	114.00	140.00
tt	Ramrod	1/2 lb. pkt	10.00	12.00
Ħ	Machete 5 G	1 lb. pkt	4.70	5.00
		5 1b. pkt	18.75	21.50
		44 lb. bag	149.60	165.00
tt	Machete 50% EC	16 oz bot.	27.25	33.00
		1 Lit.	47.00	55.00
FF	Linuron	1/2 lb. pkt	11.50	13.50
11	3 - 4 D.P.A. 36%	450 ML	19.50	22.00
		3.375 L	130.25	147.00
		4.5 L	170.00	191.80
ft	Paraquat 24% EC	450 ML	33.00	38.50
		4.5 L	305.00	335.00
ti	2 - 4 D.N.A. Salt	1 1b pkt	12.75	15.00
		88 1b bag	924.00	1,056.00
Fungicide	C.O.C. 50% mp	200 Gm	8.00	10.00
		500 Gm	19.20	24.00
		25 Kg	620.00	775.00
11	Sulphur mp	500 Gm	9.40	11.00
Ħ	Cuprasan	1 1b pkt	7.75	9.50
IT	Dithane	1/2 1b pkt .	7.60	9.50

Item	Name of New Product	Package	Price (Rs) (Wholesale)	Price (Rs) (Retail)
Fugicide	Mancozeb 75%	200 Gm	8.80	11.00
•		500 Gm	16.70	20.00
11	Maneb 80% mp	200 Gm	8.80	11.00
		500 Gm	16.20	20.00
Rodenticide	Marfarin	1/4 lb pkt	2.00	2.50
		l lb pkt	5.20	6.50
11	Aliminium Phosphide	Tablets	0.40	0.45

B) Application of Agro-chemicals (per ha. with project)

1) Paddy

Name of Disease & insect	Name of Agro- chemicals	Amt/ha	Unit Price (Rs)	Total (Rs)
Stem borer and Gall Midge	Diazinon 6% Granules	50 1bs	120 Rs/20 1bs	300 Rs
* (Carbo	-fradan is also ef	fective for s	tem borer)	
Leaf eating Catapillars	Tamaron	75 fl. ozs	144/30 fl.	360 Rs
or	Thiodan	75 fl. ozs.	124/30 f1.	310 Rs
(*) Pent	hion and Polinate	are also avai	lable.	
Brown Plant Hopper (or	Furadan Curater)	50 lbs	120/20 fl.	300 Rs

(Note)

Paddy bugs

. Fenthion or Monocrotophos for Leaf rollers

B.H.C. 10% dust

(*) Lebacide and Polimat are also available.

. Bacterial leaf blight is partly increasing. To control this disease, the disinfection of seed paddy is necessary (by Seresan).

20 Kg

7.15/2 Kg

Total

71.5 Rs

1,341.5

^{*} Amount and timing of spraying will be decided according to the conditions of actual outbreak of diseases and injurious inspects.

2) Soya beans

Name of Disease & Insect	Name of Agro- chenicals	Amt/ha	Unit Price (Rs)	Total (Rs)
Leaf eating Caterpillars	Tamaron or	75 fl. ozs	144/30 fl.	360 Rs
Pod-hoeing Caterpillars bean fly, etc.	(Azodrin)			(400 Rs)
3) Pulses (Cowpea/grams)			
Leaf eating	Thiodan or	75 fl. ozs	124/30 fl.	310 Rs
Caterpillars and flies	Azodrin			(400 Rs)
4) Groundnu	ts			
(Same as other pu	lses)			
	Thiodan or Tamaron	50 fl. ozs	124/30 f1	210 Rs
5) Maize an	d Sorghum			
Stem borer	Azodrin 60%	75 fl. ozs	160/30 fl.	400 Rs
6) Chillie				
Mites, flies, hopper and others	Acetellic	180 fl. ozs	4.76/fl	857 Rs

- (*) Sumithion, Fenthion, Elsan, Trithion, Sulpher and Tamaron are also available.
- 7) Red Onions and Bombey Onions

Thrip, Caterpillars and others Tamaron 25 fl. ozs 144/30 fl 173 Rs

(*) Ambush is also available.

Name of Disease & Insect	Name of Agro- Chemicals	Amt/ha	Unit Price (Rs)	Total (Rs)
8) Vegetab	les			
Cut worms,	Tamaron	25 fl. ozs	144/30 f1	173 Rs
Caterpillars and others	Acetellic	20 11	5/f1	20
or	Aldrin 20 EC	20 "	18/8 fl	45
or	Lannate	20 "	24/8 fl	60
or	Lebaycide	20 "	30/8 f1	75
			Total	223 Rs
(3) Seeds				
Crop	Seed/ha	Unit Price	(Rp) Total (Rp)	
1) Paddy (a)	2.5 bushel	52/b.	130	Transplant
(b)	5.0 "	н	260	Broadcast
2) Soya beans	150 lbs	3/1bs	450	
3) Cowpea/grams	50 "	4/1bs	200	
4) Groundnut	225 "	3	675	
5) Chillie	2.5 "	40	100	
6) Maize & Sorgh	rum 40 "	3	120	
7) Red Onions	1,700 Kg	1	1,700	
8) Bombey Onions	20 1bs	12	240	
9) Vegetables (Average)	12 lbs	25	300 *	

^(*) Amount and price of vegetable seeds will vary according to their species and varieties.

(4) Total input requirements with project (Rs)

Concerning with fertilizers, agro-chemicals and seeds, the total requirements with project in full development conditions have been estimated as follows.

(4)-1 Fertilizers

In the project area about 60 - 70% of farmers have been practiced adequate fertilizer applications for paddy fields and very few farmers are using fertilizers for upland crops. The total requirements of fertilizers are estimated in the following table.

Fertilizer requirements (Rs)

Crop *	Acreage (ha)	Cost/ha (Rs)	Total Cost (Rs)	Note
Paddy (Maha)	48,798	700	34,158,600	4-4 1/2 variety
Paddy (Yala)	36,430	600	21,858,000	3-3 1/2 variety
Onions	2,400	1,400	3,360,000	Red Onion and Bombey Onion
Pulses	2,400	400	960,000	Cowpeas Grams and Soyabeans
Chillies	2,400	1,000	2,400,000	
Vegetables	2,400	1,500	3,600,000	
Maize & Sorghi	ım 2,400	650	1,560,000	
Sugar Cane	5,960	1,200	7,152,000	including lst ratoon
Total			75,048,600Rs	

^{*} Classification of crops are same as Agro-chemicals.

(4)-2 Agro-chemicals

Fungicides, Insecticides and Weedicides are included as Agrochemicals. It is very difficult to estimate the costs of Agro-chemicals because it would be fractuated by the facts, namely, resistant variety, adequate fertilizer application, weeding, land cleaning, equipment cleaning, degree of diseases and insect's outbreak and their kinds, frequency of spraying of different chemicals, weather conditions, etc. In this estimate, all these-factors have been considered and calculated as an average datas.

Agro-chemicals requirements (Rs)

Crop	Acreage (ha)	Cost/ha (Rs)	Total Cost (Rs)	Assumed spraying time
Paddy (M.Y)	85,228	1,300	110,796,400	3
Onions	2,400	900	2,160,000	3
Pulses	2,400	600	1,440,000	2
Chillies	2,400	1,600	3,840,000	4
Vegetables	2,400	800	1,920,000	3
Maize and Sorghum	2,400	500	1,200,000	3
Sugar Cane	5,960	500	2,980,000	3
Total			124,336,000R	s

(4)-3 Seeds

Qualified seeds with sufficient supply in time is first step of crop cultivation. It is expected that self-supply of seeds will be made in the full development stage except F-1 Hybrid varieties.

Seed requirements (Rs)

Crop	Acreage (ha)	Cost/ha (Rs)	Total Cost (Rs)	Note
Paddy (M.Y.)	85,228	130	11,079,640	<u>/1</u>
Soybeans	800	450	360,000	
Cowpea/Grams	800	200	160,000	
Groundnuts	800	675	540,000	Shelled
Chillies	2,400	100	240,000	
Maize	1,200	120	144,000	
Sorghum	1,200	120	144,000	
Red Onion	1,500	1,700	2,550,000	Seed onion

Crop	Acreage (ha)	Cost/ha (Rs)	Total Cost (Rs)	Note
Bombey Onion	900	240	216,000	
Vegetables	2,400	300	720,000	
Sugar Cane	5,960	_	-	<u>/2</u>
Total			16,153,640Rs	ā.

- /1 In the project area, about 7-8 percents of total agricultural credit loan had been applied by farmers. (1978) This means that the farmers have been endeavouring toward the self supply of seeds, especially in case of paddy.
- Sugar cane seedling would be supplied by plantation at the beginning stage. Usually, cost of planting materials per hectare is assumed as 1,500 Rs.

VII-3 Labour Requirements

- (1) Year round cropping patterns both for the existing fields and the newly reclaimable lands proposed under the project is summarized as follows.
 - (a) Existing Field (ha)

MAHA	Paddy		35,080 ha
	Sugar cane		3,400
		Total	38,480
YALA (*)	Paddy		25,580
	Subsidiary Food	Crops	9,500 *
		Total	35,080

(Note)

- 1. Percentage of S.F.C/Total acreage is 27%
- 2. Percentage of each S.F.C. in yala

Onion 26% (Red and Bombey)
Chillies 21%
Pulses 27% (Cowpea, Gram, Groundnuts, Soyabeans)
Vegetables 26%

Total 100%

(b) Newly reclaimable land (ha)

Paddy - Paddy	10,950 ha
Sugar cane (N.S.E.)	2,200
Sugar cane (Out growers)	360
Paddy - Upland crops	2,480 *
Total	15,990

(Note)

- 1. Upland crops are Subsidiary crops same as existing field plus maize and Sorghum.
- Percentage of upland crops/Total acreage excluding Sugar cane is 19%.

(2) Labour availability

In the Polonnaruwa District, total potential supply of farm family labours was assumed to 2.5 unit per family as mentioned in the main report. Assuming 25 working days per month over a 6 month seasons, this meant that Polonnaruwa farm had, on average, 375 man days available per farm. According to the Report of Victoria Scheme, Maharveli Development Project, it was found that out of 330 man-day used, only 111 man-days were family labours, the balance being hired. This means that 64% was hired labour. In the Sogreah report, in 1973, the hired labour was only 17%.

Total possible availability of farm family labor in the Polonnaruwa district is assumed to 600 Unit Per year under the future Project, that is assumed as follows.

(a)	6 months (peak)	2.5 unit/family x 6 months x 25 days/
		month = 375 units/family
(b)	6 months	<pre>2.5 unit/family x 6 months x 15 days = 225 units/family</pre>
	Total	600 units/family/year (50 working days/
		month in average)

In the related report of A.R.T.I. (1976-1977) is showing the additional labor requirement in case rice cultural operations.

Operation	Average duration (days)	Potential family labour/farm (man days)	Total labour use (man days)	Additional requirement (man days)
Land Preparation and nurseries	30	75	91	16
Transplanting	5	13	95	82
Crops care	100	250	31	(219)
Harvesting, threshing, transport	7	18	112	94

This shows that increase of hired labourers, that was influenced by expansion of irrigated farming and shortage of labor at peak season as well as difficulty to use sufficient animal Powers and Agricultural machineries.

On the other hand, the National Science Council was found that majority of family had 2 Labor Units and Sogreah assumed that 2.2 Units in the existing farm and 1.5 Units in case of new settlers.

In Conclusion, labor problem is a bottle neck for the future development program which associating with wide ranged socio-economic conditions including unemployed. However, every countermeasures to ensure hired labors as well as full time work of farm labour is essential to solve the problem and also it is very urgent to expand the Utilization of draught power and Machineries. In the existing farm, the hired labour is approximately 50% of total labour in average on paddy and subsidially food crops cultivation which should be reduced to under 30% of total labour requirements in future.

(3) An estimate and proposal on labour requirements

For the implementation of development project, the following estimates and proposal would be considered.

(3)-1 Seasonal peak is shown in the following table,

Labour	requirements	(Man/months	dave ner	ha)
Laucut	remurrements	Transmontus	uava ver	na,

	Crop/month	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	Sugar cane													200
2	Paddy (M)	3	45	35						27	50	20	10	190
3	Paddy (Y)		15	50	25	15	3	3	54	20				185
4	Soyabeans (Y)				8	32	22	5	27	41				135
5	Groundnuts (Y)			17	18	22	5	3	46	22				133
6	Cowpea/Gram (Y)				3	42	20	18	32					115
7	Maize (Y)			16	25	15	3	27	62					148
8	Sorghum (Y)			11	20	18	12	25	63					148
9	Chillies (Y)		20	67	78	22	78	63						328
10	Red Onions (Y)			10	46	60	53	35	67	57				327
11	Bonbly Onions (Y)		25	25	87	95	55	18	75					380
12	Vegetables (Y)			15	35	37	28	28	18	47	17			245

- Note (1) M = Maha, Y = Yala
 - (2) Labour should be distributed evenly in each moth as possible in future with more improvement of cultural practices.
- (3)-2 Total labour requirements in the proposed cropping patterns
 - a) Existing fields

(Maha)

Paddy 35,080^{ha} x 190^{unit} = 6,665,200.units
Sugar Cane 3,400^{ha} x 200^{unit} = 680,000 units
Total
$$(7,345,200)$$
units

(Yala)

Paddy 25,580^{ha} x 185^{unit}
$$\sqrt{1}$$
 4,732,300^{units}
S.F.C. 9,500^{ha} x 210^{unit} = 1,995,000^{units}
Total (6,727,300)^{units}

/l : average unit

- b) Newly reclaimable lands
 - 1) Paddy-paddy $19,950^{\text{ha}} \times 190^{\text{unit}} = 2,080,500^{\text{units}}$ $19,950^{\text{ha}} \times 185^{\text{unit}} = 2,025,750^{\text{units}}$ Total $(4,106,250)^{\text{units}}$
 - 2) Sugar cane (N.S.E.) 2,200 ha × 200 unit = 440,000 units
 - 3) Sugar cane (Outgrowers) 360 x 140 = $50,400^{\text{units}}$ Total $(490,400)^{\text{units}}$
 - 4) Paddy-Upland Paddy 2,480^{ha} x $190^{\text{unit}} = 471,200^{\text{units}}$ Crops

 Upland 2,480^{ha} x $210^{\frac{1}{2}} = 520,800^{\text{units}}$

/2 : Average labour requirement for all crops.

Total labour requirements by seasons

(Maha)

Paddy (1) 2,080,500 units

" (2) 471,200

(paddy total) 2,551,700 units

Sugar Cane (total)

490,400^{units}

(Total

3,042,100^{units}

(Yala)

Paddy (1) 2,025,750

Upland crop

520,800

(Total) 2,546,550 units

(3)-3 Estimated labor requirements with project in relation to farm labours and hired labours

	Estimated Family (Man	Estimated Supply by Family Labour (Man-days)	Estimated Units	Estimated Farm Units	Esti Hired (Man	Estimated Hired Labours (Man-days)	Estimat of L	Estimated Number of Labours
	202	207	202	70%	20%	30%	50%	30%
a) Existing farms	Su							
MAHA	3,672,600	3,672,600 5,141,640	12,242	17,139	12,242 17,139 3,672,600 2,203,560 36,726	2,203,560	36,726	22,035
YALA	3,363,650	4,709,110	11,212	15,697	3,363,650	2,018,190	33,637	20,182
b) Newly reclaimable	nable							
MAHA	1,521,050	2,179,470	5,070	7,098	7,098 1,521,050	912,630	15,210	9,126
YALA	1,273,275	1,273,275 1,782,585	4,244	5,941	5,941 1,273,275	753,965	12,732	7,539
(Notes)								
(1) Total	Total labour requirements	ements						
a) E3	a) Existing farms			N (q	Newly reclaimable lands	mable lands		
	МАНА	7,345,200 units	nits		MAHA	3,04	3,042,100	
	YALA	6,727,300			YALA	2,54	2,546,550	

* Sugar cane is a perennial crop but included in MAHA in this calculation.

(2) Estimated supply by family labours

Percents (50/70%) mean potential figure against total requirements and expect 70% with project.

(3) Estimated farm units

It is assumed that each farms may have 600 Mandays/year and distributed evenly to MAHA/YALA with project.

(4) Estimated hired labours

Percents (50/30%) mean pontential figure against total requirements and expect 30% with project.

(5) Estimated Number of labourers

Assumed that one labourer could work 200 days/year and may able to be distributed evenly through MAHA and YALA seasons.

(6) Relation with development stages

Targets yields will be completed within 6 years and 8 years in existing farms and newly reclaimable lands, respectively.

Total labour requirements will be reduced by expansions of draught powers as well as agricultural mechanization with project.

Assumed reduction rate of labours in this connection is assumed approximately 20-50%, which vary according to the crops and difficulty of cultivation practices. For example, picking of chillies and vegetables are very hard to mechanize and need much labours. New machineries should be developed to transplanting, harvesting and threshing of rice.

In the early stage of new settlers (Mostly younger generations), total family labour availability is assumed to about 80% of ordinary farms, which is approximately 480 man-days per year/family.

VII-4 Farm Mechanization

In this annex, it is reviewed that the present status of, and future needs for, farm power in relation to proposed developments in the project area. Farm mechanization is the way of agricultural modernization in Sri Lanka, which concerned with labour availability, potential of animal power, land development and creating the new employment opportunities. Agricultural machineries have been developed to meet various and special type of work and still need improvements in details for the efficiential and economical utilizations. 2 wheel tractors, that are mostly Japan made is more suitable for paddy cultivation because it is originated in an intensive paddy cultivation country with small holders. 4 wheel tractors, that are mostly produced in European and American Countries with larger size of farm and suitable for large scaled cultivation as well as threshing of Paddy rice and Cultivation of Sugar Cane field.

- (1) Present status of farm powers in the project area
- (1)-1 Cropping system of paddy rice

Main crop in the existing fields is paddy rice. Buffaloes, tractors (2 wheeled and 4 wheeled) and other small machineries have been introduced but it is not sufficient for the intensive farm management. In case of upland crops including subsidiary food crops, mechanization is far delayed compared with paddy cultivation.

Cropping system of paddy rice.

- 1. Land Preparation
 - Ploughing, puddling, leveling etc. (manpower, buffaloes, tractors)
- Seeding, Transplanting, Multing.
 (manpower, partly seeding machine)
- Weeding, Fertilizer application
 (manpower, rotary weeder, partly weedicide sprayer)

- Plant protection (agricultural chemicals)
 (Manpower, sprayer (hand, powered)
- 5. Harvesting

(manpower) (Harvesters have not been introduced.)

- 6. Drying (Sun-dried) (Dryer is not used.)
- 7. Threshing *(Need Thresher urgently.)

 (Manpower, tractor (mostly 4 wheeled) and partly thresher)
- 8. Winnowing and cleaning (Manpower, fan (manpower, or engine powered)
- 9. Parboil (processing)(With steamed iron pot or at rice mill)
- 11. Hulling and Milling (Manpower, Hulles, Milling machine)
- (1)-2 Working hours for different cultivation practices

Necessary hours (average)	Buffalo pair	2 wheel tractor	4 wheel tractor
First plowing	16hrs/AC /1	8hrs/AC	4hrs/AC
Second plowing	8hrs/AC	4hrs/AC	
Puddling	8hrs/AC	4hrs/AC	-
Leveling	2hrs/AC	_	-
Threshing	8 B.P/ one night /AC	-	4hrs/AC

/l Good Buffalo Pairs

(1)-3 Cost of Baffaloes and Tractors when hired or Contracted (per Acre)

	Buffalo pair	2 wheel tractor	4 wheel tractor
First plowing	150 ^{Rp}	200 ^{Rp}	200 ^{Rp}
Second plowing	100	150	150
Puddling	75	100	-
Leveling	50	***	-
Threshing	80		100
(Total)	455 ^{Rp} (1138 ^{Rs} /ha)	450 ^{Rp} (1125 ^R s/ha)	450 ^{Rp} (1125 ^R s/ha)

(Notes)

1. Farm gate price at present (January, 1979) Buffalo Pair (over 4 years old) with Plough $2,500^{\mathrm{Rs}}$

2 wheel tractor 20,000 - 25,000 Rs

(Kubota, Iseki, etc)

4 wheel tractor 10,000 - 150,000 Rs

(MF 135, International)

2. Ploughing - Buffalo 35%, 2 wheel tractor 30%

4 wheel tractor 35% (approximately)

Puddling - Buffalo 85-90% 2 wheel tractor 15-10%

Threshing - 4 wheel tractor 85% Buffalloes 13%

2 wheel tractor 2%

(1)-4 Denticy of present buffaloes and tractors

a. Total population of Baffaloes 15,000 heads (approximately)

b. Available buffalo pairs 3,000 B.P.

(more then 4 years (approximately)

(more than 4 years.

Assumed that 40% x total population.

* Present national wide average is 20-25% of total buffaloes)

c. 2 wheel tractors 1,000 (approx.)

d. 4 wheel tractors '400 (")

e. Denticy for 38,080 ha of existing farms

Buffalo pairs One B.P per 13 ha
2 wheel tractor One set per 38 ha
4 wheel tractor One set per 95 ha

- f. Assumed balance of shortage of farm powers
 - Total cultivable areas in case of 30 working days of plowing (one time)

Buffalo Pairs /1 $3000BP \times 0.3AC/day \times 30days = 27,000^{Acs} = 10,800^{ha}$ 2 wheel tractor $1000sets \times 1AC/day \times 30days = 30,000^{Acs} = 12,000^{ha}$ 4 wheel tractor $400 \text{ sets } \times 2Acs/day \times 30days = 24,000^{Acs} = 9,600^{ha}$ Total $32,400^{ha}$

2. Shortage of farm powers

Total cultivated acreages	38,080 ha
Assumed available powers	32,400
(Balance)	5,680 ha (-)

This balance have been covered by manpowers and extending the working period of both Baffaloes and tractors and the above estimated power availability is only for one plaughing. To make good paddy field, 2nd plaughing is necessary at present. These conditions have been resulting the delay of planting, that is one of the important reasons of crop failure.

/1 Buffalo Pairs

Possible to cultivate 0.25 AC - 0.5 Ac/day, but actually they can work only 4 - 5 hours/day for their poor ability, which need improvement by breeding. Improved single Buffalo in Philippines can plow twice much compared with indigenous Sri Lanka's Buffaloes.

(2) Future requirement of farm mechanization

(2)-1 Proposed cropping patterns

Total cultivated acreages both existing fields and new lands are divided into three groups such as 1 paddy-paddy 2 paddy-upland crops (Subsidiary Food Crops are included, and Sugar Canes, maximum acreage of each crop group per season is as follows, which would be considered as a basic element to estimate the quantity of machineries.

- a. Paddy/season (Maximum is MAHA) 48.510
- b. Upland crops (S.F.C.)/season (Maximum is YALA) 11,980 ha
- c. Sugar cane (NSE, out growers) (perennial crops) 5,960 ha
- (2)-2 Estimated requirements of bufalloes and tractors

(2)-2-1 Farm powers to be introduced

In this Project Area, number of 4 wheel tractors is numerous than other places especially in Kantalai Tank area. Main reason is lack of labourers caused by competition with high wages of Sugar Cane plantation workers. Another reason is threshing is being done by 4 wheel tractors for lack of Buffaloes and threshing machines as well as land preparation should be finished in a short period after issued water, otherwise cause crop failure. To accerate the Project implementation, powerful 4 wheel tractor (40-70 H.P.) will play important role in future too, especially in case of sugar cane.

However, 2 wheel tractors, that are Japan made (6-7 H.P.) is most suitable for paddy field. Main reasons are cheaper than 4 wheel tractors, suitable for wet field, easy to operate in the small block of paddy field. It is also workable in the small size field, upland crops or S.F.C., too. Even the sugar cane field, it will be used for weeding and inter-cultivating.

Buffalo Pairs (including Cattles in future) is also available for wetfield rice and increased its importance because of higher expenses of tractors as well as shortage of li estock products and manures.

Threshing, weeding, spraying, harvesting, drying, processing and other working should be mechanized in future, which save labour requirements.

- (2)-2-2 An proposal of estimated number of buffaloes and tractors
 - a . Paddv

Percentage of each farm powers

Buffalo Pairs - 30%, 2 wheel tractor - 50% and 4 wheel

tractors 20% are assumed.

1. Buffalo Pair

$$48,510^{\text{ha}} \times 30\% = 14,553^{\text{ha}}$$
 (Paddy field)
 $0.25 \text{ Acs/day} \times 30 = 7.5 \text{ Acs} = 3\text{ha/season}$ (Ability of B.P.)
 $14,553^{\text{ha}} \div 3\text{ha} = 4,851 \text{ B.P.}$
 $4,851 \times 120\% = 5,321 \text{ B.P.}$

- * 20% is for reserve. Ability of B.P. will be 0.5Acs/ day in future by breeding and increase of feeds.
- 2 2 wheel tractors

3. 4 wheel tractors

$$48,510^{\text{ha}} \times 20\% = 9,702^{\text{ha}}$$

 $2 \text{ Ac/day } \times 30 \text{ days} = 60 \text{ Ac} = 24^{\text{ha}}$
 $9,702^{\text{ha}} \div 24 \text{ ha} = 404 \text{ tractors}$
 $404 \times 120\% = 485 \text{ tractors}$

Note:

At the starting period, 2 wheel tractor would be 60-70% because of scarcity of Buffaloes.

Summary: Number of powers to be newly introduced (estimated number-present)

Buffaloes 2,821 B.P. (5,821 B.P. - 3,000 B.P.) 2 wheel tractor 1,425 (2,425 - 1,000)

4 wheel tractor 85 (485 - 400)

b. Upland and S.F.C.

2 wheel tractor - 90%, 4 wheel tractor - 10% (B.P. could be used partly.)

1 2 wheel tractors

 $11,980^{\text{ha}} \times 90\% = 10,782^{\text{ha}}$

10,780^{ha} ÷ 12^{ha} = 899 tractors

899 x 120% = 1,079 tractors

2 4 wheel tractors

 $11,980^{\text{ha}} \times 10\% = 1,198^{\text{ha}}$

1,198^{ha} ÷ 24^{ha} = 50 tractors

 $50 \times 120\%$ = 60 tractors

c. Sugar Cane

(Not estimated because of the following reasons.)

Present Kantalai Sugar plantation have equipped with approximately 140 sets of 4 wheel tractors of 40 - 70 H.P. to operate the farm, Additional 4 wheel tractor set of about 100 may be required.

1) About 50% of these heavy machineries need repairs.

Summary:

Total additional number of farm powers were assumed as follows.

В	uffalo	pairs	2,821	B.P.
2	whee1	tractors	2,504	sets
4	wheel	tractors	145	sets

(Note)

- Necessity number of present tractors to be replacement in relation to their completion of depreciation was not calculated.
- 20% of reserve is sickness or accident of Buffaloes or out of order, repair and accidents related to tractors.

(2)-2-3 Initial investments for the additional farm powers

(A) Unit prices and credit

1.	Buffalo pairs with plough	2,500 ^{Rs}
2.	2 wheel tractor (6 HP) with rotaly filler	25,000 ^{Rs}
3.	4 wheel tractor with 9 time filler	110,000 ^{Rs}

4. Retail Prices (Rs), Oct. 1978 were as follows. (Consultant estimate)

Item	Source	Retail Price Oct. 1978 in Rupees
6/7 HP Two-wheeled tractor	Imported	20,000 - 25,000
-rotary cultivator	Imported	5,900
-levelling rake	Locally made	300
-puddling wheels	Locally made	700
-two-wheeled trailer	Locally made	4,200
-fan winnower	Locally made	500
-ridger (single row)	Imported	700*
-toolbar hoe	Imported	1,300*
-sprayer with hand lances	Imported	2,400
	Total	36,600

Retail Price Oct. 1978 in Rupees

42	HP	Four-wheeled tractor	Imported	110,000 - 150,000
		-9 tine tiller	Locally made	6,000
		-rotary cultivator	Imported	19,000*
		-puddling cage wheels	Locally made	1,600
٠		-3-farrow disc plough	Imported	18,000
		-2-wheeled tractor	Locally made	16,500
, ,	.*		Total	163,000

Credit system

Present credit terms offered in Mahaweli Development are as follows.

- a. Buffaloes/Bullochks Plus Carts
 3,500Rs
 Repayable over 5 years in ten equal installments.
 14% interest/annum.
- b. 2 wheel tractor
 10,000Rs (Same repayment as a)
- c. 4 wheel tractors
 50,000Rs (Same repayment as a.)
- (B) Tentative estimates in Rs for new B.P. and tractors
 - .1. Buffalo pair
 2,821 B.P x 2,500Rs = 7,052,500Rs
 - 2. 2 wheel tractors
 2,504sets x 25,000Rs = 62,600,000Rs
 - 3. 4 wheel tractor

145 x 150,000Rs = 21,750,000 (Total) 91,402,500Rs

- (2)-2-4 Problems to be solved for the successful farm mechanization

 It was found that various problems to be solved on farm mechanization, which are mainly as follows.
 - Expand the size of blocks of field as possible as can to save the movement loss of tractors which reduce the working hours and fuel cost of tractors.
 - 2. Provide efficient irrigation and drainage systems combined with better water management.
 - 3. Organize effective training programs for operation and maintenance of machineries.
 - 4. Expand the farm roads as well as related infrastructures are necessary.
 - Adequate supply of spair parts and repair services in time is required.
 - 6. Uniformity of cultivation practices is necessary.
 - 7. Ensure the supply of fuels with lubricants.
 - Reduce the farm gate prices of machineries as possible.
 Government subsidily system would be considered in this connection.
 - 9. Expand the credit system available for mechanization.
 - 10. Establish cooperative holding and utilization of expensive machineries in connection with the expansion of the Extension Services.
 - 11. Secure the prices of agricultural products to be possible to repay the credits.
 - 12. For the long ranged planning, enlarge the domestic manufacturing of agricultural machineries with the international cooperations.

VII-5 Crop Production Costs

The following table is the Production Costs of each crops in comparison with current & with project.

Note:

- 1. W/out Project (w/out P) means estimated costs in 1991.
- With Project (with P) means estimated Costs in 1991.
 (Full development)
- 3. Table Costs were divided into two groups.
 - (A) Mostly concerned with foreign currency.
 - (B) Mostly concerned with local currency.
- 4. (A)-1 Fertilizers = Chemical fertilizers
- 5. (A)-2 Agro-Chemicals = Fungicide, Insecticide, Weedicide.
- 6. (A)-3 Machineries = Mainly tractor cost and partly other machineries.
- 7. Grand Total = (omitted fractions)
- 8. Yields, Unit Prices, GPV, Production Costs and NPV with and without project are summarized in the Annex VIII.

Table Production Costs of Crops (Rs)

Item of		Paddy		Soya	Bean	Cowpeas/Grams	
	Cost	with P	w/out P	with P	w/out P	with P	w/out P
(A)							
1.	Fertilizers	788	_	361	_	318	_
2.	Agro-Chemicals	635		340	-	200	-
3.	Machineries	1,075	100	875	870	855	720
	(Total A)	2,498	100	1,576	870	1,393	720
(B)							
1.	Labours						
	MAN	948	756	516	300	108	120
	WOMAN	780	180	730	350	500	410
	(Sub total)	1,728	936	1,241	650	608	530
2.	Seeds	130	260	450	450	200	200
3.	Composts or Manures	-	-	-	-	-	-
4.	Draught Animals	518	1,038	-	-	-	_
5.	Miscelleneous	125	62	32	32	20	20
	(Total B)	2,501	2,296	1,728	1,132	828	750
	(Grand Total)	5,000	2,400	3,300	2,000	2,200	1,470

	Ground	nuts	Ma	ize	Sorg	ghum	Chi	llies	Red (nions
	with P	w/out P	with P	w/out P	with P	w/out F	with P	w/out P	with P	w/out 1
(A)										
1.	431	-	586	-	586	-	1,090	750	1,750	1,000
2.	300	-	160	-	160	-	1,790	900	900	700
3.	875	875	875	600	600	600	1,250	1,250	1,325	1,250
	1,606	875	1,621	600	1,346	600	4,130	2,900	3,975	2,950
(B)										
1.	252	216	312	288	312	276	720	492	720	552
	770	510	650	410	570	250	2,110	1,540	3,860	3,360
	1,022	726	962	698	150*	526	2,830	2,032	4,580	3,912
					1,032					
2.	675	600	120	120	120	120	100	1.00	1,700	1,700
3.	_	-	-		-	-	2,000	1,200	2,000	1,700
4.	, –	<u> </u>	_	-	-	-	_	-	-	-
5.	· _	-	-	-	-		-	-		-
	1,697	1,326	1,082	818	1,152	646	4,930	3,332	8,280	7,312
	3,300	2,200	2,700	1,420	2,500	1,250	9,060	6,230	12,255	10,262

^{*} Boy's worker for bird scaring

	Bombay	Onions	Veget	ables	Sugar Ca	ne (NSE)	Sugar Cane	(out Growers)
	with P	w/out P	with P	w/out P	with P	w/out P	with P	w/out P
(A)								
1.	1,300	900	1,600	1,000	664	300	564	300
2.	800	300	800	400	100	_	-	-
3.	1,250	1,250	1,250	1,250	1,475	1,000	1,375	980
	3,350	2,450	3,750	2,650	2,239	1,300	1,939	1,280
(B)								
1.	408	396	444	324	1,140	924	1,020	924
	2,500	2,170	2,900	2,080	130	-	150	
	2,908	2,566	3,344	2,404	1,270	924	1,170	924
2.	240	240	300	300	_			
3.	1,500	750	1,500	800	-			
4.	-							
5.	_				100	100	100	100
	4,648	3,356	5,144	3,504	1,370	1,024	1,270	1,024
	8,000	6,000	8,900	6,150	3,600	2,320	3,200	2,300

VII-6 Rainfed Cropping

In case of rainfed agriculture, it is better to cultivate the crops of relatively shorter growth period as mentioned in the main report.

The followings Tables are (1) Growth period of crop variety in rainfed agriculture, (2) List of the drought tolerant crops in general. (Reference data for the selection standards of crops into the rainfed agriculture.) and (3) General crop budget in rainfed agriculture.

Table (1) Growth period of crop variety in rainfed agriculture

Crops	Variety	Average growth period (days)	Note
Chillie	MI-1	150 days	SANTAKA (Japanese
	MI-2	150	variety) is recommend- able in YALA for its sen-
	SANTAKA	105	sibility to rain.
Caspsicum	Hangarian yellow wax	105	
Brinjal	(Local)	105	
Soya bean	TK No. 5	90	
	(others)	105	
Green grams	M ₁ - 1	90	
	M ₁ - 4	75	Could be 60 days in case of new variety.
Black gram	$M_{i}-1$	90	
	Type 9	75	
Cowpea	Bombay	90	
	Arlington	90	
	$M_1 - 35$	75	
Groundnut	$M_1 - 1$	105	
	Red spanish		_

Crops	Variety	Average growth period (days)	Note
Red onion (shallot)	(Local)	75-90 days	
Bombay onion	Poona-Red	90-105	
Spring onion		60	
Vegetables		45-60	Short variety
Cotton	HC 101	120-150	
Tabacco	Cigarette Tabacco	120-135	
Maize	Hybrid	100-120	
Sorghum	15,941	100-120	
Manioc		150-180	

Table (2) List of the drought tolerant crops in general (*)

a) Food crops

Barley, Grain sorghum, Millet, Maize, Groundnut, Mung beans, Broad beans, Kidney beans, Cowpeas, Sweet potato, Sugar cane, Manioc.

b) Industrial crops

Cotton, Seseme (Gingelly), Safflower, Sunflower, Castor bean.

c) Fodder crops

Alfalfa, Sudan grass, Rhodes grass, Bermuda grass, Napier grass, Vetch.

d) Vegetables

Tomato, Melon, Spinich, Asparagus, Turnip, Onions (dry onion), Watermelon, Lettus, Cabbage, Carrot, Broccoli.

e) Fruits

Fig, Pomegranate, Citrus, Banana, Mango, Papaw, Grapevine, Olive, Pineapple, Dates, Guava.

(*) — Underline shows high drought tolerant.

Table (3) General crop budget in rainfed agriculture

Crop	Yield/ha ton	Unit price Rs/ton	GPV Rs/ha	Production cost Rs/ha	NPV Rs/ha
Paddy	1.6	3,240	5,184	1,920	3,264
Soya bean	0.9	4,140	3-726	1,773	1,953
Groundnut	1.0	6,510	6,510	2,200	3,310
Cowpea/gram	1.0	5,000	5,000	2,200	3,530
Sorghum/Maize	1.6	1,700	2,720	2,200	450
Chillie (dried)	. 1.1	17,600	19,100	6,230	13,130
Red Onion	8.1	4,000	32,400	10,100	22,330
Sugar Cane	35	290	10,150	2,700	7,450

- VII-7 Animal Husbandry
- 7-1 Animal Husbandry in the Dryzone

7-1-1 Consumption of Animal Proteins

The requirement of animal proteins of high biological value found in Milk, Meat and Eggs per capita is estimated as follows.

Product		Present		Recommendable					
Milk & Milk Products		45.6 lbs (2 ozs/day)		5.49 ozs/day					
Meat			7.4	lbs				152 lbs	
Beef	5	lbs					*	Total recommended	
Mutton	1.2	3						Protein/day by Medical Institute of Sri Lanka	
Pork	0.5	6						is 62 grams in which	
Chicken	0.5	1					14.6 grams from an		
Total:	7.4								
Egg			2.05	1bs	(22	eggs)		200 - 250 eggs	

7-1-2 Importance of ZEBU Type Cattles in the Tropics

Most of the developed countries in Animal Husbandry are located on Temperate Zone, therefore we should avoid to copy it as it is when apply the technics to the Tropical Zone, where entirely different conditions. Except the Highland or Up Country where is more than 4,000 ft. from sea level and temperature is under 70°F, the Cattle Breeds of Temperate Zone could not be raized.

ZEBU and ZEBU Mixed Cross Breeds are best in the tropics for its high tolerance for high temperature, high moisture or draught, poor nutrient contented indigeneous grasses and resistant to communicable diseases and parasites in the topics. The Cattle with less than 50% of Indian blood show unsuitability to the Tropics. (Both Dairy and Beef Cattle.) Same principle, which means to select tropical breeds, should be considered for smaller livestocks raising (pig and others) and poultry management.

7-1-3 Unusual Drop of Livestock and Poultry Population

Serious food crisis happened in around 1973 caused serious drop of population of livestock and poultry as follows by unusual slanghtering, which made slow down of regular development of animal husbandry. The unusual slanghtering should be stopped for the future development.

Livestock and Poultry Population

	1970	1973		Balance (1970-1973)
Cattle	1,593,000 heads	989,000 heads	(-)	604,000 heads
Baffaloes	736,000	387,000	(-)	349,000
Goat & Sheep	556,000	284,000	(-)	272,000
Pig	180,000	42,000	(-)	138,000
Poultry	6,856,000	3,668,000	(-)	3,188,000

7-1-4 Shortage of Draught Animal

More than 50% of paddy is being produced in the dry zone. Shortage of draft animals is serious problem at present, it is estimated that maximum number of potential draft powers that consist of Cattles and Baffaloes is 134,000 pairs. About 30-40% of total population of Baffaloes could be used for draft power (only 20-25% of Baffalo is available sometime.) and it is very difficult to use Cattle for cultivation at present condition. So that, the possible cultivated area is assumed as follows.

- a) Total number of possible animal pair 134,000 pairs
- b) Acreage to be cultivated by one pair/season 5 Acs
- c) Estimated cultivated area by draft animals 670,000 Acs
- d) Actual cultivated area (Cattles not available easily) approx. 340,000 Acs

Rice cultivation area in the dry zone (800,000 Acs at present) will be expanded to more than one million Acs in total by Mahaweli Projects. Hence, the available draught power will be far short of the future needs of the extent of paddy land in the dry zone, combined with expansion of subsidiary food crops.

7-1-5 Agro Climatics in Relation with Animal Husbandry

In Sri Lanka, three agro-climatic zones are classified as follows.

		Elevation	Rainfall	Temperature
a)	Up country	above 4,000'	50" - 60"	50F - 85F
ь)	Mid country	1,500 - 4,000	***	70F - 90F
c)	Low country	0 - 1,500'	40" - 70"	70F - 100F

- a) Mild climate is suitable for high producing temperature breeds of dairy Cattles such as Friesians, Ayshires and Shorthorn, etc. by KIKUYU grasses, clovers and other improved pastures.
- b) Almost same as up Country. Giant Pusa, Pangola, Setaria and Brachiaria can gow also. 10-12 pints of milk/day/cow could be produced in the above two zones. Conservation of roughages in the forms of hay or silage is necessary in the dry season.
- c) ZEBU Type (Indian Blood) and its hybrid Breeds with Indigenous is most suitable. According to the Department of
 Agriculture, about 0.8 million Acs in the dry zone are suitable
 for pasture land of Villu Damana at present and could be
 introduced Brachiarias and other improved pastures.

7-1-6 Current Situations

a) Cattle & Baffaloes

90% of Cattle are of indigenous type referred to as "Sinhala Cattle". 350-400 lbs of weight will be reached after 4 years age. Its Caracass weight is about 135-150 lbs. Baffaloes of same age will reach 600 lbs and 300 lbs is approximate Caracass weight. In the up land and midcountry, around 100 lbs of green grass with D.M. contents of 15-20% and concentrates 6-8 lbs are offered dairy per cow to produce 12-16 pints of milk/day/cow. In the dry zone, Cattle and Buffaloes produce 2-4 pints per day/cow by only milking once a day and grazed by natural grasses and 7-8 pints/day/cow by feeding Brachiarias.

b) Goat & Sheep

Ingineous goats' weight is 55-70% lbs and 20-25 lbs of Caracass weight at 1.5 years. They can breed twice annuary. Goat are mainly kept for meat production and few are being milked.

Sheeps are small with mature weight of 25-50 lbs and mainly for meat and manuring purpose.

c) Pig

There are few pigs in the dry zone. Mostly 40-50 lbs of live weight at 6 months and 70-80 lbs in 12 months. Another improved type such as Landrace or Large Black were partely introduced and fed with concentrates. These improved pig reach to 200 lbs at about 8 months.

d) Poultry

Poultry is also small size of operation in the dry zone under laying percentage of approximately 15%. Only intensive layer is 50%.

7-1-6 Improved Breed of Cattles

Indigenous Sinhala Cattle only produce 100 1bs of milk per lactation and very difficult to improve it by selective Breeding. Maximum possibility of improvement of this method is estimated as 0.5-1.0% per year. It will take nearly 100-200 years to double the productivity of Sinhala Cow. There is also difficulty caused by in-breeding in Cattle and Baffaloes at present. Cross Breed is main method of improvement. Indian blooded Breeds such as Scindhi, MURRAH and other ZEBU Milch Breeds should be expanded to raise. Santa Gertrudes and its cross breed may produce 1-2 lbs of gain weight per day by only pasture.

- 7-2 Potential and Development of Animal Husbandry
- 7-2-1 Future Outloook for the Development of Livestock Industry in Sri Lanka

There is no doubt that the potential for the expantion of the livestock industry in Sri Lanka in view of its favoured climate, land, labour and stock resources available. Agricultural by-products in the form of rice bran, rice straw, coconut poonac, rubber seed meal, gingelly cake, wheat bran, fish meal, etc.) are available and can be utilized for concentrates or compound feeds.

Future increase of output of rice, maize, sorghum, manioc, soya bean, groundnuts, wheat bran and coconut poonac which can be produced domestically will no doubt reduce dependence on feed imports. Another incentive is second oil shock. To import oil and machineries has abstacles of these international situations and has to utilize draft animals as well as organic fertilizers which are by-products of animal husbandry to keep soil fertility.

In the short time, animal protein can be increased by expanding piggery and poultry that consume more concentrates than the ruminants, largely depending on well managed pastures and process it by themselves to milk and meat.

A supporting program for the improved grasses, cereals and other subsidiary food crop production as well as expansions of concentrates will meet the needs of livestock industry. Thus, major limiting factor, namely, availability of animal feeds will be resolved by well planned integrated agricultural production program linked with livestock production, which is urgently necessary in Sri Lanka.

7-2-2 Proposal of New Five Year Plan

New five year plan shown in "Some proposals for livestock Development in Sri Lanka" (Dr. M.E. Perera) is quite a reasonable planning to be realized, which is introduced as follows.

	Nutritional require- ments per caput/annum in 1bs (M.R.I.)	Required production levels to meet nutritional needs in M lbs/annum	tion levels at present	Possible production levels through breed feed & manage- ment im- provement	Compounded feed re- quired in 1000 tons	Minimum time period in years for achiev- ing goals
Milk	114.00	3.4 M [*] pints/day	0.6 M [*] pints/day	1.5 M	97	20
Beef	4.24	58.5	41.90	45.40	-	10
Goat & Sheep						
Mutton	0.68	9.4	-	9.40	_	6
Pork	0.37	5.1	44.55	17.0	25	
Poultry						
Meat	0.71	9.8	5.90	15.0	14	
Eggs	6.00	662 M*	213 eggs	343.2 M* egg	;s 63	

* Pig meat, poultry meat and eggs could be increased to any level provided the required feed stated is supplied to the Industry. Increase in pig meat and poultry meat in the short term will compensate for the slow progress in the production of milk, eggs and beef in the long term.

M = million

Source: Dr. M.E. Perera

"Some Proposals for Livestock Development in Sri Lanka"

7-2-3 Feeds

The major constraint to develop the livestock industry in Sri Lanka is the insufficiency of livestock feeds.

The 'present production level by local produce is around 65,000 tons which need to be raised to over 160,000 tons in five year to get the target production. All kind of by products of crops which is mentioned in the previous items should be used to maximum advantage.

7-2-4 Grasses

It is apparent that ruminants require roughages as the fundermental feeds as well as cheapest source of energy. Production of grasses and fodder crops should be given first priority and maximize domestic production of concentrates for Cattle, Pig and Poultry.

By using Brachiaria brizantha or B, mutica (for imperfectly drained area), the grazing capacity of Cattle will raise up to one cow/1.5-2 acres (Cow equivalent) and twice much when intensive farming. Regarding the Milk production, the following estimate could be made in case of pasturing system.

Milk		•	Present production	450,000 pints/day/cow
	•	•	Future production *	960,000 - 1,600,000 pints/day/cow
	*	(1)	Potential grassland	800,000 Acres
		(2)	Grazing capacity	one cow/1.5-2 Acres (one cow/1 Ac in future)
		(3)	Cattle number (Extensive pasturing s	400,000-500,000 heads system)
		(4)	(3) × 40% (milking cow)	160,000 heads
		(5)	Unit production/day/co	วพ
			ZEBU	6-7 pints
			Improved Milch Baffalo (MURRUH)	8-10 pints
			ZEBU × European Cross	Breed over 10 pints

1,600,000 pints/day/cow
Note: Problems of over maturing of grasses and necessity

960,000 -

(6) Total production

of rotational grazing are already discussed in the main report.

The average yield of improved grasses are as follows. (Trial in the Agricultural Research Station, Maha-Illuppallama)

<u>Grasses</u>	Dry matter yields lb/ac./yr.
Setaria sphaccalata	16,875
Digitaria documbens (Pangola grass)	16,397
Branchiaria ruzizionsis	13,581
Branchiaria miliformis	13,145
Branchiaria brizantha	12,560
Brachiaria mutica (good for imperfect drained area)	ly 12,456
LSD. $(P = 0.05) = 1570 \text{ lbs/acre.}$	•
C.V. = 7.2%	

Additional test on the effect of Nitrogen application for the above grasses shows that the yield increased about 50% in case of 120 pounds of Nitrogen/Acre.

o <u>Improved</u> pasture versus purchased concentrates

As soon as reasonable pasture can be developed, an effort should be made to graze with less or no supplement to prevent heavy concentrates supplements, that is shortage of supply in Sri Lanka.

Another test on the effect of supplementary feeding of concentrates shows the result that 10 lbs of increase of milk/day/cow which made not significant difference compared without concentrates. However, reduction of milk in February and March are significant. In this period and dry reason, the concentrates are especially necessary and the hight productivity cross breeds need some concentrate always. Poor stand of grasses of higher fibre and moisture of tropical zone reduce sufficient energy contents. Under rainfed conditions, shortage of roughages during dry season is major problem and have to provide hay or silage by using very simple facilities for the continuous development of animal husbandry.

It is suggested that grassland agriculture must be the basis of an integrated system of crop and animal industry which link up with use of cattle manure for the arable crops and improving the soil fertility.

7-2-5 Concentrates and Supplementary Feeds

The Chemical Composition of feed staffs used in Sri Lanka is shown in the following table.

CHEMICAL COMPOSITION OF CEYLON FEEDSTUFFS USED IN CEYLON

Feedstuff	Dry Matter	Crude Protein	<u>Fat</u>	Crude <u>Fibre</u>	<u>Ash</u>	NFE
Blood meal	91	82.2	1.0	1.0	4.8	2.0
Bone meal	95	12.1	3.2	22.0	71.8	-
Coconut meal, chekku	90	21.2	15.3	15.4	1.9	40.2
" expeller	93	20.4	8.6	12.0	6.9	45.2
" solv. extr.	92	21.3	1.8	15.0	5.6	48.3
Cotton seed hulls	90	3.9	1.4	42.9	2.5	39.6
Cotton seed meal	93	39.6	6.6	15.7	5.1	26.4
Cowpea seed	89	23.1	1.3	5.1	3.2	55.8
Dhal	94	22.9	4.3	0.3	4.7	61.8
Dhal husk	91	10.6	0.2	15.9	0.5	63.8
Fish meal	92	63.2	4.4	1.0	21.7	1.6
Kapok seed meal	88	27.0	8.2	23.0	6.3	47.8
Kurakkan	88	7.6	1.3	1.6	2.3	75.2
Gingelly meal	93	47.9	5.1	5.0	9.3	25.7
Naioc meal	87	2.2	1.6	1.9	1.2	80.1
Maize meal	94	13.1	3.3	2.9	1.8	72.9
Meat meal	93	53.4	9.9	2.4	25.2	2.6
Milk, fresh	12	3.1	3.7	-	0.8	4.4
Milk, whole dried	94	25.2	26.4	0.2	5.4	36.4
Milk, dried skimmed	94	33.5	0.9	0.2	7.6	51.8
Rice polish	90	11.8	13.2	3.0	8.0	54.0
Rice bran, No. 1 (raw)	89	12.5	14.6	8.9	10.6	42.4
" " No. 1 (parboiled)	90	12.8	20.3	10.0	10.7	36.2
" No. 2 (raw)	89	8.9	6.5	19.1	19.6	34.9
" " No. 2 (parboiled)	90	9.1	10.3	17.1	21.2	32.3
Rice, whole (polished)	87	6.3	0.4	0.3	1.6	78.4
" (unpolished)	87	7.4	0.7	0.3	1.0	77.6
Sorghum	91	10.6	3.9	2.3	1.3	72.9
Soya bean meal	89	45.8	0.9	6.0	5.8	30.5
Wheat bran	89	16.0	4.1	10.0	6.1	52.8
Wheat flour	89	15.8	2.9	3.0	2.1	65.0
Wheat grain	89	12.7	1.7	3.0	1.6	70.0

Compiled by Dr. J.A.de S. Siriwardena

Division of Animal Nutrition, Veterinary Research Institute, Peradeniya.

(Remarks)

* Wheat bran will be produced in Trincomalee by new factory of the Flour Milling Corporation, and it is better to consume the bran domestically while it may exported.

Total requirements of the concentrates in five year plan is as follows.

	eed Igredient	Daily	Poyltry	Total required	Estimated local pro-duction end	Amount need to be imported
		(All in	tons)		of plan period	
1.	Coconut cake, gingelly cake & rubber seed meal	50,000	30,000	80,000	60,000	20,000
2.	Rice bran & wheat bran	26,000	18,000	44,000	35,000	9,000
3.	Grains and wheat flour	20,000	40,000	60,000	13,000	47,000
4.	Others (energy feeds, leaf meal, bagasse)	-	-	-	35,000	-
5.	Fish meal & meat meal	1,000	9,000	10,000	-	10,000
6.	Milk powder	1,000	1,000	2,000	-	2,000
7.	Mineral mixture	2,000	2,000	4,000	-	4,000
				200,000	144,000	92,000

Source: Dr. M.E. Perera

Notes

(1) Coconut Cake

It is estimated that could be raise to 80,000 tons/ year domestically by mixed farming with Cattles under coconut triangle.

(2) Rice Bran

Improvement of quality is necessary. (Fiber content should be no more than 10-15%.)

(3) Other Potential Feeds

Rubber seed meal, Fruits cannery wastes, Bagase, sugar cane tops and molassess, grass meal (ipil-ipil in-cluded), Gingey poonac, Soya bean and groundnut oil cakes; Wheat Bran (Trincomalee) maize & sorghum, manioc, sweet potato and others.

* Reference:

Importation of animal feeds to Japan (1976)

Feed	Quantity (ton)	Price (C&F, Tokyo)/ton
Corn	6,261,000	195 U.S.\$
Grain Sorghum	3,975,000	182 "
Wheat Bran	181,527	182 "
Beet Pulp	266,711	197 "
Soya Bean Cake	192,884	322 "

7-2-6 Samples of Fattening Cattles for Beef Production

It is not familiar to raise Cattle for meat production only and not confirmed its economicall feasibility in case of commercial production. However, by introducing ZEBU Type or mixed beef Cattle to Sri Lanka and Keep them by grazing system with some salt/minerals and vaccination, it may be succeeded in this country in future.

In Japan, beside the special Beef Cattles, the castrated steers of dairy Cattle have been used for fattening. At present, about 30% of Beef in the market is from fattened steers of dairy Cattle.

Here is some samples that shows fattening Cattle projects in Phillippines and Paraguay in Private Sector which were succeeded.

a) Phillippines (private sector)

ZEBU blooded cross breeds fed by only grasses operated by an private sector is as follows.

Breed - Draught Master, A.I.S. Brangus, Shorthorn-Brahman, Red Sindhi (all Zebu blooded)

Grass - Brachiaria, Para grass, ipil-ipil, Guatemala Grass, African blue grass and others.

Grazing Capacity - $1 \sim 2$ heads/ha (Special case - Grazing in the forest area)

Caracus - 300 lbs - 400 lbs

b) Paraguay (private sector)

Breed - (1) ZEBU × local breeds.

(2) Santa Gertaludes × local

Grass - Same as Phillippines and Pangola, Jaragua, Napiel, Colonia, etc.

Grazing Capacity - 6 heads/ha (Summer) - wet $3 \quad \text{''} \quad / ha \quad \text{(Winter)} - dry$

Dressing percent - 60% Caracus 240-250 kg

Finished live weight - 410 kgs (900 lbs)

Mortality - 3% (snake bite)

Fettering period - 6 months

Gain weight/day - 800 grams/day in average

(maximum 1 kg/day)

Net income/head - 50 US\$/head ~ 60 US\$

(1973)

Net income/50 heads - 2,500 US\$ (37,500 Rs) (1973) ~ 3,000 US\$ (45,000 Rs)

(2)-7 Other Countermeasures


Artificial Insemination, Livestock Breeding Center, compound feed factory, Silage, Vaccination Services combined with vaccines and biological products factory, fertilizer application to pastures, rotational greezing system, More milk Collection Center, warehouses and effective extension services are necessary to the development of livestock Industry in Sri Lanka.

and the second of the second o and a control of the control of the

the title of the second of the first of the second of the

The State of the S

ANNEX VIII : AGRICULTURAL ECONOMIC, MANPOWER AND SETTLEMENT

Contents:

		Page
VIII-1	Projected Inputs and Outputs	VIII-1
VIII-2	Net Production Values	VIII-10
VIII-3	Agricultural Manpower Training	VIII-16
VIII-4	Settlement	VIII-19
VIII-5	Alternative Development Plan of the Kantalai Downstream	VIII-23

VIII-1: Projected Inputs & Outputs

VIII-1 will consist of the following Tables:

(1) Existing Land

- Table 8-1 Yields and Production Costs as assumed w/out Project and w/Project in the Existing Fields, and
- Table 8-2 Yields, Unit Prices, Gross Production Values, Production Costs and Net Production Values in the Existing Fields as assumed w/out Project and under the Project (per ha).

(2) Newly Reclaimed Land

- Table 8-3 Yields and Production Costs Proposed for the Newly Reclaimable Lands, and
- Table 8-4 Yields, Units Prices, Gross Production Values, Production
 Costs and Net Production Values Proposed for the Newly
 Reclaimable Lands (per ha).

Table 8-1 Yields and Production Costs as Assumed w/out Project and w/Project in the Existing Fields

	•				>-	-	P 7	•	(tons/ha	î.									Produc	tion C	04 C	Production Coats (Re/ha	1:				
	Project Year A.D.	0 1979	1980	1981	3 1982	1983	5 1984	6 1985	1986	8 1987	1988	1989	11	12 1991	0 87.91	1980	0 1 2 3 4 5 6 1979 1980 1981 1982 1983 1984 1985	3 1982	1983	5 19 8 4	1985	1986	1987	7 8 9 1986 1987 1988	1989	10 11 1989	136
Paddy	W/out P Mith P	1.5	1.52	1:53	1.6	1.65 1.7	1.7	1.75	1.79	2.6	3.0	3.4	9.1.8 8.8	2.0	1,785 1,824 1,840 1,920 1,980 2,040 2,100	1,824	1,840	1,920	1,980	36.5		2,130	2,180	2,130 2,180 2,225 2,275 2,330 2,400 2,980 3,095 3,570 4,050 4,520 5,000	2,275	330	8 8
Soya- beans	With P	0.75	0.76 0.77	0.77	9.0	0.82	0.84	6.0	0.92	26.0	0.95	0.97 _. 1.3	0.99 1.4	1.0	1,500 1,520 1,540 1,600 1,640 1,600 1,800 1,800 2,000 2,000 2,840 2,860	1,520	1,540	1,600	1,640	1,680	1,800	1,840	1,880	1,840 1,880 1,900 1,940 1,980 8,000	1,940	1,980	000,5
Ground- nute	With P	0.75	0.76	0.77	9.0	0.82	0.84	6.0	0.92	0.94	0.95 0	76.4.	0.99	1.0	1,650 1,622 1,700 1,760 1,800 1,800 1,980 2,025 2,066 2,100 2,114 2,178 2,200 1,500 2,300 2,500 2,600 2,600 3,900	1,622	1,700	1,760	1,800	1,830	1,980	2,025	2 300	2,025 2,066 2,100 2,134 2,178 2,200 2,000 2,300 2,640 2,860 3,080 3,080 3,300	2,134	178	88
Haize	W/out P	9.0	0.81	0.82	0.81 0.82 0.85 0,87	0,87	6.0	0.93	0.94	0.95	0.97	8	0.99	1.9	1,080 1,150 1,170 1,210 1,240 1,280 1,320 1,330 1,350 1,378 1,390 1,406 1,420 1,560 1,867 1,890 2,274 2,416 2,700	1,150	1,170	1,210	1,240	1,280	1,320	1,335	1.350	1,378	2,274	416	4.20 780
Sorghum	W/out P	9.0	0.81	0.82	0.85	0.87	6.0	0.93	1.1	0.95	0.97	0.98	1.8	2.0	1,000 1,013 1,025 1,063 1,087 1,125 1,160	1,013	1,025	1,063	1,087	21,135	1,160	1,175	1,188	.175 1,188 1,213 1,225 1,238 1,250 .375 1,625 1,875 2,000 2,250 2,500	1,225	250 2	250
Cowpeas/ grams	Wout P	0.75	0.76 0.77 0.8	0.77		0.82	0.84	6.0	0.92	0.94 1.1	0.95	0.97	0.99	1.0	1,100 1,117 1,130 1,175 1,200 1,215 1,320	1,111	1.130	1,175	1,200	1,235	1,320	1,352 1,382 1,397 1,426 1,455 1,470	1,382	1,352 1,382 1,397 1,426 1,455 1,470	1,426	053	2,8
Chillies	Wout P	6.0	0.91	0.93	0.91 0.93 0.95 0.98 1.0	0.98	1.0	1,03	1.1	1.05	1.07	1.08	1.09	1.1		27.40	7 7	arc's	£	2	OR.	ages and acts with ours only are off, its only	200	6000	2880	7 (2.00	62.0
Red Ontons	Wout P With P	,	7.1	7.2	7.4 7.6	7.6	7.9	80	8.2	8.3 9.1	8.5 9.5	8.6 10.0		8.8	and and only only and offi self	1880	8	67/3	-	-		3/26 01/6	3/26 00/6	Sets 95to	£ 3	_	97.70
Bombay Ontons	Wout P With P	7	7.1	7.3	7.5	7.7	8.0	8.2	8.8	8.5 9.5	8.6 8.7 10.0 10.7		8.9 11.4	9.0	0.9	4,735	4,870	5,000	5,136	5,336		4,670 4,735 4,870 5,000 5,136 5,336 5,470 5,530 5,667 5,733 5,800 5,933 6,000	5,667	5,530 5,667 5,733 5,800 5,933 6,000	2,800	609	8 8
Veget-	Wout P With P	و	6.1	6.2	4.9	9.9	9.	7.0	7.1	7.2	7.3	,		11.0	4,860 4,940 5,020 5,180 5,340 5,500 5,670 5,276 5,18 7,280 7,850 8,318 8,900	076'5	5,020	5,180	5,340	5,500	5,670	5,745	5.826	5,907	5,990	335	150
Sugarcan (NSE)	Wich P	7 07	. 7	7 21	7 77	7 97	47 80	ος	51.3	52.7 60 60	54.0 S		56.7 5 75 8	8, 8	1,600 1,640 1,680 1,760 1,840 1,920 2,000	1,640	1,680	1,760	1,840	076,1	2,000	2,050 2,110 2,160 2,210 2,270 2,320 2,475 2,700 2,925 3,150 3,375 3,600	2,110	2,160	2,210 ;	375	770
Sugarcane (Out- growers)	Weuc P Wich P	8	30.5 3	31	32	33	34	35	39.5	3.4	7 5	37.0 3 52 5	37.5 3 56 6	38 60	1,600 1,627 1,640 1,700 1,750 1,880 2,120 2,150 2,290 2,180 2,210 2,240 2,270 2,300 1,600 1,627 2,990 3,200	1,627	1,640	1,700	1,750	0	2,120	2,150 2,180 2,210 2,240 2,270 2,300 2,470 2,290 2,505 2,775 2,990 3,200	2 290	2,210	2,240	270	300

Table 8-2 Yields, Unit Prices, GPV, Production Costs and NPV in the Existing Fields as Assumed without Project and under the Project (per ha)

								:
Kind of	With or	See	1000	1007	1000	1,000	1990	1991
Crops	W/out	Foot Notes	1986	1987	1988	1989	TAAO	±77↓
	Project					<u></u>		
1		_*1	1.79	1.83	1.87	1.91	1.96	2.0
	17 /	2	3,240	3,240	3,240	3,240	3,240	3,240
	W/out Project	¯ 3	5,800	5,929	6,059	6,188	6,350	6,480
	Troject	4	2,130	2,180	2,225	2,275	2,330	2,400
Paddy		_ <u>5</u>	3,670	3,749	3,834	3,913	4,020	4,080
raddy		1	2.2	2.6	3.0	3.4	3.8	4.2
	77.4.1.	2	3,240	3,240	3,240	3,240	3,240	3,240
	With Project	3	7,128	8,424	9,720	11,016	12,312	13,608
	Troject	4	2,980	3,095	3,570	4,050	4,520	5,000
	`	5	4,148	5,329	5,970	6,960	7,792	8,608
	Project	Benefit	388	1,580	2,136	3,053	3,772	4,528
		1	0.92	0.94	0.95	0.97	0.99	1.0
	11/	2	4,140	4,140	4,140	4,140	4,140	4,140
	W/out Project		3,809	3,892	3,933	4,016	4,099	4,140
	Troject	4	1,840	1,880	1,900	1,940	1,980	2,000
		5	1,969	2,012	2,033	2,076	2,119	2,140
Soyabeans	······ '	1	1.0	1.1	1.2	1.3	1.4	1.5
1		<u> </u>	4,140	4,140	4,140	4,140	4,140	4,140
1	With	2 3	4,140	4,554	4,968	5,382	5,796	6,210
1	Project	4	2,000	2,300	2,640	2,860	3,080	3,300
ļ		5	2,140	2,254	2,328	2,522	2,716	2,910
	Project	Benefit	171	242	295	446	597	770
			0.92	0.94	0.95	0.97	0.99	1.0
	W/out	2	6,510	6,510	6,510	6,510	6,510	6,510
1	Project	3	5,989	6,119	6,185	6,315	6,445	6,510
j	. 10,000	4	2,200	2,068	2,100	2,134	2,128	2,200
Groundnuts		5	3,789	4,051	4,085	4,181	4,267	4,310
(shelled)		1	1.0	. 1.1	1.2	1.3	1.4	1.5 6,510
1	With		6,510	6,510	6,510	6,510	6,510	•
1	Project	3	6,510	7,161	7,812	8,463	9,114	9,765
		4	2,000	2,300	2,640	2,860	3,080	3,300
1		5	4,510	4,861	5,172	5,603	6,034	6,465
	Project		721	810	1,087	1,422	1,767	2,155 1.0
1		1	0.94	0.95	0.97	0.98	0.99	1
	W/out	2	2,000	2,000	2,000	2,000	2,000	2.000
	Project	3 ,	1,880	1,900	1,940	1,960	1,980	2,000
1	!	4	1,175	1,188	1,213	1,225	1,238	1,250
Sorghum	-	5 1	705 1.1	712 1.3	727 1.5	735 1.6	742 1.8	75 0 2.0
			t	•				
•	With	2	2,000	2,000	2,000	2,000	2,000	2,000
	Project	. 3	2,200	2,600	3,000	3,200	3,600	4,000
		. 4 . 5	1,375	1,625	1,875	2,000	2,250	2,500
	- pî		825	975	1,125	1,200	1,350	1,500
I	Project	Benefit	120	: 263	398	465	608	750

^{1 =} Yield in tons/ha;

^{2 =} Unit Price in Rupees per ton;

^{3 =} Gross Production Value in Rupees;

^{4 =} Production Cost in Rupees per ha;

^{5 =} Net Production Value in Rupees/ha.

			1986	1987	1988	1989	1990	1991
	W/out	1 2	0.92 5,000	0.94 5,000	0.95 5,000	0.97 5,000	0.99 5,000	1.0
Cowpeas/	Project	3 5	4,600 1,352 3,248	4,700 1,382 3,318	4,750 1,397 3,353	4,850 1,426 3,424	4,950 1,455 3,495	5,000 1,470 3,530
grams	_	1 2	1.0	1.1 5,000	1,2 5,000	1.3	1.4	1.5 5,000
	With Project	3 4	5,000 1,468	5,500 1,613	6,000 1,760	6,500 1,907	7,000 2,053	7,500 2,200
	Project	5 Benefit	3,532	3,887 569	4,240 887	4,593 1,169	4,947 1,452	5,300 1,770
	W/out	1 2	1.04	1.05	1.07 17,600	1.08	1.09 17,600	1.1
Chillies	Project	3 + 4 5	18,304 5,860 12,444	18,480 5,920 12,560	18,832 6,030 12,802	19,008 6,090 12,918	19,184 6,145 13,039	19,360 6,200 13,160
(dried)		1	1.1	1.2 17,600	1.3	1.4	1.5 17,600	1.6 17,600
	With Project	3 4	19,360 6,200	21,120 6,700	22,880 7,323	24,640 7,890	26,400 8,453	28,160 9,060
	Project	5 Benefit		14,420 1,860	15,557 2,755	16,750 3,832	17,947 4,908	19,100 5,940
	W/out Project	2	8.2 4,000 32,800	8.3 4,000 33,200	8.5 4,000 34,000	8.6 4,000 34,400	8.7 4,000 34,800	8.8 4,000 35,200
Red Onions		5	9,100 23,700 8.6	9,215 23,985 9.1	9,440 27,560 9.5	9,550 24,850 10.0	9,660 25,140 10.5	9,770_ 25,430 11.0
	With Project	2	4,000 34,400	4,000 36,400	4,000 38,000	4,000 40,000	4,000 42,000	4,000 44,000
		5	9,550 24,850	. 10,100 26,300	10,550 27,450	28,900	11,660 30,340	12,255 31,745
	Project	Benefit		2,315	2,890	4,050	5,200	6,315
	W/out Project	2	8.3 3,600 29,880	8.5 3,600 30,600	8,6 3,600 30,960	8.7 3,600 31,320	8.9 3,600 32,040	9.0 3,600 32,400
Bombay Onions		5	5,530 24,350 8.8	5,667 24,933 9.5	5,733 25,227 10.0	5,800 25,520 10.7	5,933 26,107 11.4	6,000 26,400 12.0
	With Project	2 3	3,600 31,680	3,600 34,200	3,600 36,000	3,600 38,520	3,600 41,040 7,600	3,600 43,200
	Project	4 5 Benefit	5,867 25,813 1,463	6,333 27,867 2,934	6,667 29,333 4,106	7,133 31,387 5,867	7,800 33,440 7,333	8,000 35,200 8,800

			1986	1987	1988	1989	1990	1991
		1	7.1	7.2	7.3	7.4	7.5	7.6
	,	2	2,000	2,000	2,000	2,000	2,000	2,000
	W/out Project	3	14,200	14,400	14,600	14,800	15,000	15,200
		4	5,745	5,826	5,907	5,990	6,070	6,150
Vegetables		5	8,455	8,574	8,693	8,810	8,930	9,050
_	ļ	1	7.7	8.3	9.0	9.7	10.3	11.0
	With	2	2,000	2,000	2,000	2,000	2,000	2,000
	Project	3	15,400	16,600	18,000	19,400	20,600	22,000
		4	6,230	6,716	7,280	7,850	8,335	8,900
		5	9,170	9,884	10,720	11,550	12,265	13,100
	Project		715	1,130	2,027	2,740	3,335	4,050
		_ 1	51.3	52.7	54.0	55.3	56.7	58
	W/out	2	290	290	290	290	290	290
	Project	3	14,877	15,283	15,660	16,037	16,443	16,820
		4	2,050	2,110	2,160	2,210	2,270	2,320
Sugarcane		5	12,827	13,173	13,500	13,827	14,173	14,500
(NSE)		1	55	60	65	70	7 5	80
	With	2	290	290	290	290	290	290
	Project	3	15,950	17,400	18,850	20,300	21,750	23,200
	Ĭ	4	2,475	2,700	2,925	3,150	3,375	3,600
	_	5	13,475	14,700	15,925	17,150	18,375	19,600
	Project	Benefit	648	1,527	2,425	3,323	4,202	5,100
		1	35.5	36.0	36.5	37.0	37.5	38
	W/out	2	290	290	290	290	290	290
	Project	3	10,295	10,400	10,585	10,730	10,875	11,020
	·	. 4	2,150	2,180	2,210	2,240	2,270	2,300
Sugarcane	-	, 5	8,145	8,260	8,375	8,490	8,605	8,720
(Out-		1	39	43	<u>4</u> 7	52	56	60
growers)	With	2	290	. 290	290	290	290	290
	Project	3	11,310	12,470	13,630	15,080	16,240	17,400
		4	2,470	2,290	2,505	2,775	2,990	3,200
		5	8,840	10,180	11,125	12,305	13,250	14,200
	Project	Benefit	695	1,920	2,750	3,815	4,645	5,480

Yields and Production Costs Proposed for the Newly Reclaimable Lands 8-3 Tab le

			Ę,	Yield (tons/ha)	ms/hs)						Produ	Production C	Cost (Rs/ha)	/ha)		
Kind of Grops	lst year	2nd year	3rd year	4th year	5th year	6th year	7th year	8th year	lst year	2nd year	3rd year	4th year	5th year	6th year	7th year	8th year
Paddy	1.0	1.2	1.4	2.0	2,5	3.0	3.5	4.2	1,190	1,430	1,670	2,380	2,980	3,570	4,165	3,000
Soyabeans	0.5	9.0	0.7	0.8	1.0	1.2	1.3	1.5	1,100	1,920	1,540	1,760	2,200	2,640	2,860	3,500
Groundaute (shelled)	0.5	0.6	0.7	0.8	1.0	1.2	1,3	1,5	1,100	1,320	1,540	1,760	2,200	2,640	2,860	3,300
Maize	0.5	9.0	0.7	0.9	1.2	1.4	1.6	1.9	710	850	995	1,280	1,700	1,990	2,270	2,700
Sorghum	0.5	9.0	0.7	1.0	1,3	1.5	1.7	2.0	625	750	875	1,250	1,625	1,875	2,125	2,500
Cowpeas/ grams	0.5	9.0	0.7	0.8	1.0	1.2	1.3	1.5	740	880	1,030	1,170	1,470	1,760	1,910	2,200
Chillies (dried)	0.5	0.6	0.7	6.0	1.1	1.3	1.4	1.6	2,250	3,420	3,980	5,100	6,230	7,360	7,940	9,060
Red Onions	5	5.5	6.0	7,0	8.0	9.5	10.0	11.0	5,570	6,130	069.9	7,800	7,800 8,915	10,585	11,140	12,255
Bombay Onions	5	5.5	0.9	7.5	8.5	10.0	11.0	12.0	3,400	3,670	4,000	5,000	5,670	0,670	7,340	8,000
Vegetables	5	5.2	8.2	7.0	8.0	9.0	10.0	11.0	4,000	4,210	4,700	5,670	6,480	7,290	8.100	8,900
Sugarcane (NSE)	30	32	38	45	5.5	99	02	08	1,500	1,610	1,710	2,025	2,480	2,930	3,150	3,600
Sugarcane (Out-growers)	20	22	28	30	42	47	50	90	2,000	2,200	1,490	1,860	2,230	2,500	2,650	3,200

Yields, Unit Prices, GPV, Production Costs and NPV Proposed for the Newly Reclaimable Lands (per ha) 8-4

Table

		lst Year	2nd Year	3rd Year	4th Year	5th Year	6th Year	7th Year	8th Year
	Yield	0.1	1.2	1.4	2.0	2.5	3.0	3.5	4.2
	Unit Price	3,240	3,240	3,240	3,240	3,240	3,240	3,240	3,240
Paddy	GPV	3,240	3,888	4,536	6,480	8,100	9,720	11,340	13,608
	Production cost	1,190	1,430	1,670	2,380	2,980	3,570	4,165	5,000
	NPV	2,050	2,458	2,866	4,100	5,120	6,150	7,175	8,608
	Yield	0.5	9.0	0.7	8.0	1.0	1.2	1.3	1.5
	Unit Price	4,140	4,140	4,140	4,140	4,140	4,140	4,140	4,140
Soyabeans	GPV	2,070	2,484	2,898	3,312	4,140	4,968	5,382	6,210
	Production	1,100	1,320	1,540	1,760	2,200	2,640	2,860	3,300
·	NPV	970	1,164	1,358	1,552	1,940	2,328	2,522	2,910
	Yield	0.5	9.0	0.7	0.8	1.0	1.2	1.3	1.5
	Unit Price	6,510	6,510	6,510	6,510	6,510	6,510	6,510	6,510
Groundnuts (shelled)	GPV.	3,255	3,906	4,557	5,208	6,510	7,812	8,463	9,765
	Production cost	1,100	1,320	1,540	1,760	2,200	2,640	2,860	3,300
	NPV	2,155	2,586	3,017	3,448	4,310	5,172	5,603	6,465
	Yield	0.5	9.0	0.7	1.0	1.3	1.5	1.7	2.0
	Unit Price	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Sorghum	GPV	1,000	1,200	1,400	2,000	2,600	3,000	3,400	4,000
	Production cost	625	750	875	1,250	1,625	1,875	2,125	2,500
	NPV	375	450	525	750	975	1,125	1,275	1,500

		1st Year	2nd Year	3rd Year	4th Year	5th Year	6th Year	7th Year	8th Year
ŧ	Yield	0.5	9.0	0.7	8.0	1.0	1.2	1.3	1.5
·	Unit Price	2,000	2,000	2,000	5,000	5,000	2,000	2,000	2,000
Cowpeas/	GPV	2,500	3,000	3,500	4,000	5,000	000,9	6,500	7,500
	Production cost	740	880	1,050	1,170	1,470	1,760	1,910	2,200
	NPV	1,760	2,120	2,470	2,830	3,530	4,240	4,590	5,300
	Yteld	0.5	0.6	7.0	6.0	1.1	1.3	1.4	1.6
1	Unit Price	17,600	17,600	17,600	17,600	17,600	17,600	17,600	17,600
Chillies (dried)	GPV	8,800	10,560	12,320	15,840	19,360	22,880	24,640	28,160
	Production cost	2,850	3,420	3,980	5,100	6,230	7,360	7,940	090'6
	NPV	5,950	7,140	8,340	10,740	13,130	15,520	16,700	19,100
	Yield	5	5.5	0.9	7.0	8.0	9.5	10.0	11.0
A	Unit Price	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Red Onions	GPV	20,000	22,000	24,000	28,000	32,000	38,000	40,000	44,000
	Production cost	5,570	6,130	069*9	7,800	8,915	10,585	11,140	12,255
	NPV	14,430	15,870	17,310	20,200	23,085	27,415	28,860	31 745
	Yield	5	5,5	0.9	7.5	8.5	10.0	11.0	12.0
	Unit Price	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600
Bombay	GΡV	18,000	19,800	21,600	27,000	30,600	36,000	39,600	43,200
SIIC	Production cost	3,400	3,670	4,000	2,000	5,670	6,670	7,340	8,000
	NPV	14,600	16,130	17,600	22,000	24,840	29,330	32,260	35,200

		lst Year	2nd Year	3rd Year	4th Year	5th Year	6th Year	7th Year	8th Year
	Yield	5	5.2	5.8	7.0	8.0	0.6	10.0	11.0
	Unit Price	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Vegetables	GPV	10,000	10,400	11,600	14,000	16,000	18,000	20,000	22,000
	Production cost	4,000	4,210	4,700	5,670	6,480	7,290	8,150	8,900
	NPV	000,9	6,190	006,9	8,330	9,520	10,710	11,900	13,100
	Yield	30	32	38	45	55	65	70	80
	Unit Price	290	290	290	290	290	290	290	290
Sugar Cane	G₽V	8,700	9,280	11,020	13,050	15,950	18,850	20,300	23,200
TII-	Production	1,500	1,610	1,710	2,025	2,480	2,930	3,150	3,600
	NPV	7,200	7,670	9,310	11,025	13,470	15,920	17,150	19.600
	Yield	20	22	28	35	42	47	50	09
	Unit Price	290	290	290	290	290	290	290	290
Sugar Cane	G₽V	5,800	6,380	8,120	10,150	12,180	13,630	14,500	17,400
(21,000)	Production cost	2,000	2,200	1,490	1,860	2,230	2,500	2,650	3,200
	NPV	3,800	4,180	6,630	8,290	9,950	11,130	11,850	14,200

VIII-2: Net Production Values

VIII-2 will consist of the following Tables:

(1) Existing Land

- Table 8-5 NPV., Areas and Total NPV of Paddy (w/Project and w/out Project) in the Existing Fields,
- Table 8-6 NPV., Areas and Total NPV of Sugarcane (w/Project and w/out Project) in the Existing Fields, and
- Table 8-7 NPV., Areas and Total NPV of Subsidiary Food Crops (w/Project and w/out Project) in the Existing Fields.

(2) Newly Reclaimed Land

- Table 8-8 Agricultural Benefits in the Newly Reclaimed Lands in Systems Dl and A/D, and
- Table 8-9 Agricultural Benefits in the Newly Reclaimed Lands in System D2.

(3) The Whole Project Area

Table 8-10 Moragahakanda Downstream Development Project Benefit.

NPV., Areas and Total NPV of Paddy (With & W/out the Project) in the Existing Fields 8-5 Table

	1986		1987		1988			1989			19:0			1661	
dZ	$\frac{1}{\text{NPV}}$ Area NPV	VPV	NPV Area Total	NPV	Area	NPV Area Total	Adn	Area	NPV Area NPV	i	NPV Area Total	Total NPV		NPV Area Total	Total NPV
4,	4,148 283,350 68,310	5,329	66,850	5,970 65,280	70 38	389, 722 63, 850 7, 792 4 80 6, 960 444, 396 62, 110	6,960	53,850	44,396	7,792	12,110	83,961	8,608	50,660	522,161
ຕົ	3,67d 230,050 62,684	3,749	2,604	8	34 2	239,767	3,913	62,456 3 244,390	62,456 3,913 244,390	4,020	, 62,387	250,796 62, 87 4,080,	, ,080,	31.7	254,253
	53,300		121,542			149,955	•	%	200,006	•	6	233,165			267,908

NPV., Areas and Total NPV of Sugarcane (With & W/out Project) in the Existing Fields 9-6 Table

1986	1987		1988		1989	19		1990		1	1991
NPV Area NPV	13 NPV Area Total	al NPV	NPV Area NPV	tal PV	NPV Area	Area Total	NPV Area NPV	rea	otal NPV	NPV A	Area Total
With 13,475 45,815	5 3,400	15,925		145	54,145 3,400		18,375	62	475	3,	62,475 3,400
3,400	14,700 49,980		3,400		7,150	58,310	58 310 3,400	, 00t		9,600	96,640
W/out 12,827 37,070	, 2,89(·	015	37,015 2,890 14,173	_	14,173	04	096,	40,960 2,890	890
2,890	13,173 38,070		2,890	금 ! :	3,827	D96 6E,	39,960 2,890	390	д.,	4,500	41,905
572 8	0.00		£			. ,		. 5	L.		
		_	Ĺ	7		ָרֶרֶיּהְיּ		Ÿ	CTC (T.z.		CC / 67

NPV in Rupees; Area in ha; Total NPV in Thousand Rupees.

NPV., Areas and Total NPV of 3.F.C. (With & Wout Project) in the Extering Fields Table 8-7

NRV Area Total NRV Area Total NRV Area NR				1986			1987			1988			1989	[1990			1991	
With Project 25,813 150 3,812 27,867 300 8,360 29,313 500 14,667 31,387 650 20,402 31,442 650 6,665 1,695 25,227 75 1,892 25,520 85 2,159 26,107 90			NPV 1	Area 2	Total 3	γPv	Area	Total	NPV	Area	Total NPV	NPV	Area	Total	NPV	Area	Total	V dw	Area	Total
Winder Froject Z4,336 60 1,461 24,933 68 1,695 25,227 75 1,892 25,520 85 2,189 26,107 90 Froject Froject Z4,879 300 Z447 Z4,900 559 1,445 27,775 2,474 2.775 2,414 2.411 2,411 2,414 2.411 2,414 2,414 2,414 2,414 2,414 2,414 2,414 2,414 2,414 2,414 2,414 2,414 2,414 2,414 2	274	With Project	25,813	150		27,867	300	8,360	29, 333	ος	14,667	31,387	650	20,402	33,440	850	28,424	35,200	1,000	35,200
High Project 24,877 26,665 12,775 12,7	Bombay	Wout Project		99		26,933	68	1,695	25,227	₹.	1,892	25,520	€	2,169	26,107	6	2,350	26,400	100	2,640
With Project 23, 478 300 2467 24, 540 359 14, 645 23, 14, 645 235 24, 57		Project Benefit	•		2,411			6,665			22,775			18,233		-	26,074			32,560
Nour Project 13,700 175 4,76 13,397 190 4,579 16,176 16,176 1,1300 13,779 1,1300 1,13		With Project	24, 250	300	2002	006,25	550	_	27,412				1,000	28,700	30,06	1,280	58888	31,965	1,500	819.64
Project Project 13,160 400 5,246 14,420 700 10,094 15,557 10,000 15,557 10,000 15,557 10,000 15,557 10,000 15,557 10,000 15,557 10,000 15,557 10,005 11,007 10,007	Red Ontons	Wout Project	23.70	175		23,765	193		** 740	205		037.37	220	2,467	25/40	235	3.906	26,430	250	6312
High Project 12,444 250 3,774 12,560 270 3,397 12,672 290 3,774 16,735 11,770 4.00 21,774 17,770 11,004 Project 12,444 250 3,774 12,560 270 3,397 12,672 290 3,774 12,776 11,097 13,097 330 4.001 Project 4,510 150 677 4,864 280 1,361 5,172 400 2,069 5,603 500 2,802 6,036 630 64,267 13,037 330 10,004 Project 2,056 350 2,242 600 1,345 2,414 900 2,173 2,465 1,180 2,999 2,824 1,480 1,994 14,14 Project 1,880 250 4,70 1,922 265 509 1,941 280 543 11,550 1,680 19,404 12,252 1,100 19,004 Project 2,056 307 4,585 9,884 880 8,698 10,720 1,300 13,936 11,550 1,680 19,404 12,255 2,110 19,004 Project 4,078 8,598 8,098 10,720 1,301 13,241 18,629 11,629 11,640 19,404 12,655 1,180 11,241 18,629 19,404 11,241 18,62		Project Benefit						2,706			16,376			2 3453			32,927			41,260
Wour Project 12,444 250 3/1/4 12,560 273 3,397 12,672 290 3,713 12,716 13,037 330		With Project	13,160	400	5,266	14,420		10.09		1,000	15,557		1,300	21.77	17,947	1,700	30,510	19, 100	2,000	38,200
Project Proj	Chillies (dried)	Wout Project	12,444	250	3//2	12,560	273		12,602	290	3,775	12, 118	310	4005	13,037	330	4,303	13,160	350	4.606
With Project 4,584 280 1,361 5,172 400 2,069 5,603 500 2,802 6,034 630 hed) With Project 3,789 68 258 4,051 75 304 4,085 80 327 4,181 88 368 4,257 95 hed) Project 419 2,242 600 1,345 2,444 900 2,173 2,465 1,80 2,934 4,267 95 with Project 1,880 250 470 1,922 265 509 1,941 280 543 1,980 300 2,934 1,480 Benefit 200 4,585 9,884 880 8,698 10,720 1,300 13,936 11,550 1,680 19,404 12,265 2,110 Benefit 4,078 8,585 9,884 880 8,693 80 695 8,810 8,930 13,241 18,629 13,241 18,629 13,241 18,3		Project Benefit			2,153			6.703			11,844			17,770			26,207			33,574
Project 3,789 68 258 4,051 75 304 4,085 80 327 4,181 88 368 4,267 95 Project Benefit 2,056 350 720 2,242 600 1,345 2,414 900 2,173 2,465 1,180 2,909 2,824 1,480 With Froject 1,880 250 470 1,922 265 509 1,941 280 543 1,980 300 594 2,020 315 Project Benefit Benefit 350 4,585 9,884 880 8,698 10,720 1,300 13,936 11,550 1,680 19,404 12,265 2,110 With Project Benefit 4,078 8,574 75 643 8,693 80 695 8,810 88 775 8,930 95 With Project With Project With Project With Project 4,078 8,055 13,241 13,241 18,629 With Project With Project 4,078 4,078 4,055 4,055 4,055 4,055 4,055 With Project 4,078 4,055 4,055 4,055 4,055 With Project 4,078 4,055 4,055 4,055 4,055 4,055 With Project 4,078 4,055 4,055 4,055 4,055 4,055 With Project 4,078 4,055 4,055 4,055 4,055 With Project 4,078 4,055 4,055 4,055 4,055 With Project		With Project	4.510	150	677	4,86	280	1,361	5,172	8	2,069	5,603	200	2,802	6,034	630	3,801	6,465	750	4,849
Project Project 2,036 350 2,242 600 1,345 2,414 900 2,173 2,465 1,180 2,909 2,824 1,480 Mith Project 1,880 250 4,70 1,922 265 509 1,941 280 543 1,980 300 594 2,020 315 Project Project 9,170 500 4,585 9,884 880 8,698 10,720 1,300 13,936 11,550 1,680 19,404 12,265 2,110 Mith Project 8,455 60 507 8,574 75 643 8,693 80 695 8,810 88 775 8,930 95 With Project With Projec	Groundbuts (abelled)	Wout Project	3,789	89	258	4,051	75	702	4,085	8	32.7	4,181	88	368	4,267	9.5	\$07	4,310	100	431
##th Froject 2,056 350 720 2,242 600 1,345 2,414 900 2,173 2,465 1,180 2,909 2,824 1,480 2,941 4,480 2,041		Project Benefit		i	419			1,057			1,742	;		2,434			3,396			4,418
Wout Project 1,880 250 470 1,922 265 509 1,941 280 543 1,980 300 594 2,020 315 Project Benefit 250 4,585 9,884 880 8,693 80 695 8,810 88 775 8,930 95 With Project Benefit 4,078 8,574 75 643 8,693 80 695 8,810 88 775 8,930 95 With Project Wi		With Project	2,056	350	, 1	2,242	909	1,345	2,414	900	2,173		1,180	2,909	2,824	1,480	7,180	2,037	1,750	5,315
Project Benefit 250 836 1,630 2,315 1,640 12,265 2,110 1,640	Pulses &	Wout Project	1,880	250	•	1,922	265	509	1,941	280	543	1,980	8	594	2,020	315	636	2,040	330	673
With Project Benefit 9,170 500 4,585 9,884 880 8,698 10,720 1,300 13,936 11,550 1,680 19,404 12,265 2,110 ables W/out Project 4,078 8,574 75 643 8,693 80 695 8,810 88 775 8,930 95 W/out Project W/out Project W/out Project 13,241 18,629 18,930 95	etc.	Project Benefit	_		250			876			1,630			2,315			3,544			4,642
Mout Project 2 8,455 60 507 8,574 75 643 8,693 80 695 8,810 88 775 8,930 95		With Project	9,170	005	4,585	788'6	880	8,698	1		13,936		1,680	19,404	12,265	2,110	25,879	13,100	2,500	32,750
Project 6,078 8,055 13,241 18,629 Benefit: With Project Wout Project	Vegetables	Waut Project		9	207	8,574	7.5	643	8,693	8	569	8,810	88	775	8,930	95	848	9,050	100	905
With Project Wout Project		Project Benefit			4,078			8,055		7	13,241			18,629			150,62			31.845
Wout Project		With Project																		
at a production	S.F.C. Total	W/out Project	,					•												
12,618 33,224 57,608 82,879		Project Benefit			12,418		- •	33,224			57.608			82, 119	1		117,175			148,319

1 : NPV: Net Production Value in Rupees; 2 : Area in ha'

3 : Total NPV in Thousand Rupees:

(a) Under the Project, vegetables will be grown as post-crops of groundhite, sovabuans, sorghums, cowpeas/grams, etc. Accordingly, the cropped area of vegetables will equal to those of the latter.

(b) Without the Project, vegetables will continue to be grown as independent crops.

Agricultural Benefits in the Newly Reclaimed Lands in Systems D1 and A/D (including Kaudulla, Kantalai, MDB Farm and A/D Land) 8-8

Tab le

		,											
		Paddy	Sugarcane NSE Out	cane Outgrower	Chillies	Sorghum	Cowpeas grams	Red Onions	Bombay Ontons	Soyabeans	Ground nuts	Veget- ables	Total
	NPV 1	2,050	7,200	3,800	5,950	32E	1,760	14,430	14,600	270	2,155	6,000	
1s.	lst Area 2	10,02	2,200	360	20	17	12	9	57	12	8	67	
	Total ⁽²⁾	42,623	15,840	1,368	119	7	21	87	73	7/	17	594	02509
· • • • • • • • • • • • • • • • • • • •	NPV	2,458	7,670	4,180	7.40	450	2,120	068'51	16,130	5911	2,586	6,190	
2nd year	2nd Area	tacor	2,200	360	9	28	20	10	9	18	13	79	·
	Total	50,974	16,874	1,505	214	/3	77	12)	26	77	34	489	70,442
	NPV	2,866	9,310	6,630	8,340	725	2,470	01821	17,600	8581	3,017	6,900	
yea	3rd Area year	86902	2,200	360	43	37	25	15	10	23	17	102	
	Tota1	59,263	20,482	2,387	359	19	62	260	176	16	15	707	83714
	NPV	4,100	11,025	8,290	10,740	256	2,830	20 200	22,000	763/	3,448	8,330	
yea	4th year Area	20,60%	2,200	360	55	47	32	17	12	32	20	131	
	Total	96338	24,255	2,984	591	35	91	743	564	દ	69	1,091	642,411
	NPV	\$,120	13,470	9,950	13,130	326	3,530	23.035	24,840	1940	4,310	9,520	Ž
5th year	5th year	625'02	2,200	360	65	57	07	20	14	40	24	161	
	Total	801:301	29,634	3,582	853	5-5	141	462	348	28	103	1,533	862.141
	· van	6,150	15,920	11,130	15,520	57/	4,240	51862	29,330	2,328	5,172	10,710	
6th year	Area	194.02	2,200	360	75	67	45	25	15	45	30	187	
	Total	125,835	35,024	4,007	1,164	26	191	485	440	401	155	2,003	169.684
	NPV	7,175	17,150	11,850	16,700	3621	4,590	098'87	32,260	2572	5,603	11,900	
yea	year Area	586,02	2,200	360	87	77	50	8	18	53	35	215	
	Total	146,262	37,730	4,266	1,453	98	230	866	581	134	196	2,559	174.375
	NPV	8,608	19,600	14,200	19,100	ا دعو	5,300	386'15	35,200	2,910	597.9	13, 100	
year	oth year Area	20,303	2,200	360	100	87	09	33	20	09	07	247	
	Total	174.768	43,120	5,112	1,910	/3/	318	8401	704	101	259	3,236	186.082
1 : Net	Productio	Net Production Value in Rupees;	Rupees;	,2 : Area	in hat; 3	: Total		Net Production Value	e in Thou	in Thousand Rupees	. 8		

Agricultural Benefits in the Newly Reclaimed Lands in System D2 (including Downstream of Parakrama Samudra) 8-9

Table

Veget- Total	000.9	12	37/6 21	061.9	22	136 8.59R	006*9	29	200 / 0053	8,330	34	283 /4,343	9,520	42	718.21 007	10,710	50	536 2/542	11,900	56	11152 999	13,100	- (7
Ground- nuts	2,155	, ,		2,586	7	, 10	3,017	5	15	3,448	9	21	4,310	7	25	5,172	œ	41	5,603	10	95	6,465	5
Soya- beans	170	m	6	49/1	S	9	85 87	7	10	2531	60	7/	0361	10	61	828.	12	go M	7557	13	33	2910	3.5
Bombay Ontons	14,600	 1	15	16,130	7	e H	17,600	7	35	22,000		99	24,840	m	75	29,330	4	1117	32,260	3	129	35,200	
Red	14430		29	15,870	М	4 80	17,310	4	69	20,200	4	18	23085	Ŋ	7.5	516.62	9	191	23.860	7	4 4	5×1.1E	α
Cowpeas	1,760	m,	ivs .	2,120	9	13	2,470	7	17	2,830	∞	23	3,530	ot	35	4,240	12	51	4,590	13	60	5,300	5.
Sorghum	375	7	, d	450	7	ניז	ŗ	. 10	4	5	ũ	6	328	15	۲۶	32/1	18	70	3221	20	9.5	0051	33
Chilites	5,950	អា	30	7,140	жo	57	8,340	10	78	10,740	14	, 150	13,130	17	223	15,520	50	310	16,700	23	384	19,060	3.6
Paddy	2,050	3388	6766	2,458	3373	1628	2,866	7.5 E	8192	4,100	13€€	13698	5,120	1286	17,004	6,150	3300	56202	7,175	3286	23,563	8,608	3766
	NPV J	Area 2	Total NPV	NPV	Area	Total MPV	NPV	Area	Total NPV	NPV	Area	Total MPV	NPV	Area	Total NPV	NPV	Area	Total NPV	NPV	Area	Total NPV	NPV	Area
Year		lst			2nd year			3rd vear		!	4th vear			5th year		;	6th	į	i	7th Area		•	8th

1 : Net Production Value in Rupees; 2 : Area in ha; 3 : Total Met Production Value in Thousand Rupees.

Table 8-10: Moragahakanda Downstream Development Project Benefit
(in Thousand Rupees) (in Financial Prices)

Year	Existing Fields	Newly Recla Systems D1 & A	imed Lands /D System D2	Whole Project Area
1986	67,197			67,197
1987	150,008	60,520		210,528
1988	200,424	70,442	7,126	277,992
1989	271,053	83,794	8,596	363,443
1990	334,673	114,249	10,053	458,975
1991	396,866	141,898	14,343	553,107
1992	396,866	169,684	17,916	584,466
1993	396,866	194,375	21,562	612,803
1994	396,866	230,781	25,119	652,766
1995	396,866	230,781	30,072	657,719
1996	396,866	230,781	30,072	657,719

(1) Outline of the Proposed Training Project

(a) Introduction

MDB's Training Farm plan is to provide a 100 ac Farm under the year-round irrigation and dormitory facilities on behalf of about 120 youngmen so to give them chance to engage at cultivation of paddy (during Maha) and subsidiary food crops (during Yala), under the circumstances similar to those currently prevailing in the Mahaweli Area; after one year experience they will be qualified as KVS, and/or agricultural development workers primarily meant for extension services being attached to other institutions, in the Mahaweli Area.

However, the irrigated agriculture, to be a success, needs an overall attention and care which cannot be confined to the practical agronomic know-how and its extension alone, but methods of organising, operation and management of the farmer services such as rural credit, input supply and marketing also. It is essential, therefore, that the trainees will be given lessons, both theoretical and practical, on the minimum necessary scientific knowledge and its application, for instance, botany and plant pathology including optimal application of irrigation water, fertilizers and agro-chemicals; veterinary medicine for upkeeping and multiplying draught animals and poultry; mechanism of farm machinery including their operation and maintenance; civil engineering called for irrigation/drainage, etc. At the same time, they need to be taught about the proper function and operation of rural credit and savings together with their coordination with rational distribution of input supplies and their link-up with marketing services.

For this purpose, the original MDP plan should be substantially expanded. The Training Farm-turned-Rural Development Training Centre would require permanent lecturer-cum-demonstrators on those subject-matters of additional lessons to be introduced in RDTC, lecture-rooms and workshops as well as teaching aids and other relevant facilities, machinery and vehicles, etc.

(b) Concept of the Rural Development Training Centre

Rural Development Training Centre, whose establishment has been designed on the concept of the MDB's Training Farm plan, will be one of the tripartite scheme being incorporated with the Pilot Project and the Integrated Rural Development Project (IRDP), and is intended for bringing up two kinds of development staff: one is the junior staff with one year integrated training who has been referred to as the Farm Guidance Worker (FGW) and the other is the intermediate staff (members of the Agrarian Service Team or AST) who undergo 2.5 years' training in addition to FWG training.

Some 150 youngmen with the minimum necessary qualifications, preferably from the Mahaweli Program area, Moragahakanda Project area in particular, would be admitted into RDTC for integrated training for one year. About half of the trainees (70-75) would be sent out as so many FGW immediately upon completing this one year course, while the remaining half (70-75) would be given additional 6 months' intensive course which is divided into seven different classes, each consisting of 10, of (i) water management, (ii) agronomy, (iii) farm mechanization, (iv) livestock (and poultry), (v) rural credit, (vi) input supply and marketing, and (vii) community development.

(2) RDTC's Pilot Project

(a) Purpose of the RDTC's Pilot Project

This Pilot Project would be staged in about 500 ha year-round irrigable area situated preferably nearby the Rural Development Training Centre for configurative rural development activities as taught in RDTC. The area identified as for the Pilot Project will be equipped with good infrastructure including land consolidation, irrigation/drainage facilities and others.

Under these circumstances, the farmers who have been already cultivating or newly settled there would be trained in the optimal farm management practices including high-level water management/control and cultivation of paddy and other possible crops - from the land preparation and nursery stage through post-harvest stage.

(b) Field Training on Behalf of the AST Members

Those candidate-trainees for AST members who would have successfully completed the 6 months' specialized training in RDTC would be sent, in 10 batches of 7 - one from each of 7 different classes - to the Pilot Project for one year field training.

(3) Integrated Rural Development Program

IRDP Model Area would cover the rural community where 2,000 to 3,000 farmhouseholds are actually engaged in farm production. IRDP in this Model Area would be centred around the following:

- (i) Strengthening of the resident farmers' organizations and rural institutions and creation of any other voluntary units as desired;
- (ii) Acceleration of agricultural productivity increase among the resident farmers by encouraging them to follow the farm management methods as successfully adopted in the RDTC's Pilot Project area, through the coordinated provision of rural credit, input supply, extension and marketing services through the strengthened farmer organizations;
- (iii) Mobilization of local youngmen and young women for joint activities aimed at community development;
 - (iv) Safeguarding of the 'Owner Farmer Establishment Policy' of the Government of Sri Lanka by preventing undesirable socio-economic stratification and alienation of cultivation-rights from respective allottees of the farmland, through liquidation of rural indebtedness by providing debt liquidation credit from a Special Fund to be established in the Central Bank of Ceylon, and
 - (v) General upliftment of the farmers' living standards.

The candidate-trainees for AST members who would have undergone one year field training in the Pilot Project would be transfered to this IBDP Model Area for another year's initiation training. After this, we shall have 10 Teams of full fledged Agrarian Service staff.

VIII-4: Settlement

(1) Planning Approach

a) Settler Selection

The basis for selection of settlers into the newly reclaimable lands has been discussed in 6.4.2 <u>Settlement Policies</u> in the Main Report where the broad principle of selection based on social need being felt in the project area is recommended.

b) The Pattern and Hierarchy of Settlement

The MDB standards have been broadly adopted as for the pattern and hierarchy of settlement.

c) Standards for Infrastructure and Facilities

The MDB current policies for the provision of facilities have been generally followed.

(2) Settlement Policies

a) The Process and Phasing of Settlement

The British Victoria Team's recommendations as regards the process and phasing of settlement are broadly acceptable by the JICA's F/S Team on the Moragahakanda Project. Instead of bringing in settlers just three months before the availability of water, a gradual placement of settlers and utilizing them as members of a direct labour group for area development seems to be a wise idea. From one-half to three-quarters of the selected settlers would be brought into the new land as labour force for land development and preparation of the basic infrastructure of the settlement area.

For this purpose, the Village Service Centre would have to be constructed as the first element after the access road is completed, together with the primary school or the primary education unit to provide them temporary accommodation and basic amenities of living.

(3) Building, Equipment and Infrastructure Requirements

a) Land Clearance

Quantitative aspect of land clearance for both the farming plots and housing plots has been dealt under 'Downstream Development Construction Plan'.

b) Project Management Units, Agricultural and Social Infrastructure

Standards have been shown in the relevant Tables included in the Main Report, and their unit construction costs will be given in the attached Table 8.12.

Table 8.12 Costs of Building, Equipment and Infrastructure

(1)	Proje	ct Management Unit:	Unit Cost (Rs. million)	Foreign Exchange %	
	(a)	Office		•	
		Production Circle Office	0.17		
		Production District Office-cum- Agricultural Service Centre	0.3	30 .	
		Production Zone Office	0.27		
		Project Management HQ	0.4		
		RDTC + PP + IRDP	3.0	40	
	(b)	Vehicles			
		Jeeps	0.14	96	
		Motor Cycles	0.014	86	
		Bicycles	0.0006	90	
	(c)	Staff Housing (prefabricated)			
		FGW Quarters (12 bed unit)	0.16	,	
		AST Quarters (10 bed unit)	0.2		
(2)	Agric	ultural Infrastructure			
	(a)	Paddy Handling			
		Village Hullers	0.365	86	
		Paddy Store	0.06095	30	
	(b)	Cooperative			
		Co-op. Depot or Butique	0.063		
		Branch Co-op.	0.078		
		Primary MPCS	0.232		
		Fertilizer Store	0.129		
		Lorries	0.19	97	
	(c)	Market Areas	0.1		
(3)	Socia	1 Infrastructure			
	(a)	Cultural			
		Village Service Centres	0.257		
		Township Cultural Centres	0.25		
	(b)	Education			
		Primary Education Units	0.215		
		Senior Secondary Education Units	1.065		

		Unit Cost (Rs. million)	Foreign Exchange %
(c)	Health		
	Visiting Dispensary	0.070	30
	Central Dispensary/Maternity Wards	0.238	
(d)	Postal		
	Post Box	0.0001	
•	Sub Post Office	0.061	
(e)	Post Office	0.195	
	Administrative		
	Town Council Office	0.2	
	Police Station	0.626	

863

VIII-5: Alternative Development Plan of the Kantalai Downstream

1. Background

Sri Lanka relies very heavily on sugar imports at the level of annual imports of 246,000 tons (1968-1973 average). This was reduced to 209,000 tons in 1976, due to a sharp rise of sugar price in the world market. Yet this stands for per-capita sugar intake of about 6 kg/year which is far below the recognizable minimum nutritional requirement of 10.35 kg/ capita/year. Climates and soils being originally suitable for sugarcane cultivation, it is not only desirable but necessary to encourage domestic production of sugar in Sri Lanka.

2. Present Condition of Kantalai Sugar Factory

The existing factory, which is claimed to have been equipped with cane crushing capacity of 1,200 tons/day, started operation since 1960. To supply material cane for optimal operation of the factory, about 2,200 ha of land was reclaimed as sugarcane plantation, out of some 3,000 ha. The results so far obtained may be summarized as follows:

1)	Original capacity	1,200 MT/day
2)	Actual working capacity	600 "
3)	Maximum cane harvested area (1977)	4,908 ac
		(3,558 ac - planted)
		(1,350 ac - ratooned)
4)	Maximum production of cane (1974)	102,343 MT
5)	Average yield of cane/ac	21,5 MT (53.8 MT/ha)
6)	Maximum sugar produced (1978)	9,946 MT (average annual production being 9,000 MT)

7) Average sugar extraction ratio

i) The factory has not been operated adequately due to shortage of spare parts and difficulty of repairing because of a lack of uniformity in model or type of machinery and equipment:

The following causes and reasons are attributable to this poor performances:

9%

ii) Low sugar came yield due to serious shortage of irrigation water, inadequate supply of agricultural inputs and shortage of labour inspite of high wages.

Abnormality of the performance of Kantalai Sugar Project derives from a complex of low yield of sugarcane plantation on the one hand, and poor operation of the factory, on the other. As a normal yield of sugarcane would be 34 ton/ac, 5,500 ac (2,200 ha) should produce about 187,000 tons, while the Kantalai case resulted at 21 ton and 4,800 ac, respectively. The optimal case of a sugar factory would be: utilization ratio 95%; working days, 180 days of a year; and the sugar extraction ratio, 10%. Kantalai resulted at 50%, 164 days and 9%, respectively.

Kantalai could have attained the following performance: Original capacity 1,200 tons/day \times 0.95 = 1,140 tons/day 1,140 tons \times 0.1 = 114 tons day \times 164 Days = 18,700 tons/year (sugar) 187,000 tons of sugarcane = 5,500 ac \times 34 tons

This shows that the current sugar production could have been doubled from 9,000 MT/year to 18,700 MT/year, out of the sugarcane harvestable from the present plantation extending over 5,500 ac, provided that the cane crushing capacity could recover its normal operating capacity of 95% of the installed plant and an average sugar extraction ratio of 10%, on the sugar factory side, and the cane yield of 34 tons/ac, on the plantation side.

3. Future Expansion Plan of Kantalai Sugar Project

The Kantalai Stage II Sugar Project involves investment to increase the production of sugar to 25,000 MT (maximum 27,000 MT) per year, against the present production of 9,000 MT, by expanding the factory capacity to 2,500 MT/day instead of 1,200 MT at present and the reclamation of a new land of 9,500 ac (3,800 ha), in addition to 5,500 ac (2,200 ha) of Stage I. It is proposed to provide an additional capacity of 1,300 MT/day, after doing all the best to recover rull capacity of the existing factory, to make a total capacity of 2,500 MT. Expansion of the factory capacity and the plantation size is not an easy job and will require a very careful and in-depth survey, which will also cover the adequacy of developing 2,800 ha sugarcane area, 400 ha of which under the outgrower system and diverting 1,000 ha out of the total 3,800 ha into paddy/paddy area, as suggested in 'Conclusions and Recommendations' in the concluding part of this Annex.

4. Production of Sugarcane by Combination of Plantation and Small Holdings

International experiences give us an assurance of its success if the undermentioned care would be taken in right earnest:

- 1) Irrigability of the cane fields;
- 2) Provision of technical assistance including input supply of seedlings, fertilizers, agro-chemicals and others as well as ploughing services with 4-wheel tractors and transportation service of the harvested cane to the factory-site, by the factory management, and
- 3) Determination of cane price not unfavourable to the outgrowers and liquidation of all factory service charges from the sales price on the outgrowers' delivery of their produce.

5. Conclusions and Recommendations

In the downstream of the Kantalai Tank, Sri Lanka Sugar Corporation is planning to develop, on and above the current 2,200 ha sugar cane plantation area, an additional 3,800 ha as Stage II program, and its cost has been estimated. Judging from the nature of soils, however, about a quarter of the land (1,000 ha) which is proposed for sugarcane plantation would be more suitable for paddy/paddy. Furthermore, learning from the poor performance of sugarcane production in the present 2,200 ha plantation area which is very much due to shortage of available labour and which is partly responsible for the low rate of the sugar factory operation, it is proposed under this Project to introduce the 'outgrower system' of sugarcane production in 400 ha out of 2,800 ha land which is believed to be precisely suitable for sugarcane production. Consequently, the 3,800 ha in the downstream of the Kantalai Tank would be devoted for different kinds of farming as follows:

```
2,400 ha .... Sugarcane plantation
400 ha .... Outgrowers' sugarcane farm, and
1,000 ha .... Paddy/paddy cultivation
3,800 ha
```

400 ha outgrowers' sugarcane farm would be combined with 100 ha paddy/paddy area to be distributed among 500 newly settling families at the rate of 0.8 ha for outgrowing of sugarcane and 0.2 ha for paddy/paddy cultivation, per family. The remaining 900 ha paddy/paddy land would be allocated among 900 settlers. The total strength of the settling families would, therefore, be about 1,400. Their number has been tentatively estimated at 1,260,

because of the uncertainty of the border-line between the sugar producing area and paddy/paddy area.

It is very difficult to visualize at present how best to combine the sugar factory capacity and sugarcane production in future, without undertaking a specific survey, which we propose to be carried out by the qualified experts as mentioned below:

Formation of the Survey Team:

a.	Irrigation Engineer	1
Ъ.	Civil Engineer	1
c.	Sugar Plant Expert	1 (Machinery)
ď.	Sugar Plant Expert	1 (Process and chemical)
e.	Sugar Plantation/Agronomist	1
f.	Field Equipment Expert	1
g.	Factory Management & Development	1
h.	Economist	1 (Economic evaluation)
		8

Additionally, each one expert for Finance/Accounting and Training Planning would be desirable to guarantee technoeconomic viability of the project.

Consultants' Services (After Appraisal)

Irrigation and Civil Engineering	38	man-months	(24	x	2)
Plantation and Farm Management	48	Ħ	(24	x	2)
Factory	96	11	(12	x	8)
Management	24	11	(12	x	2)

