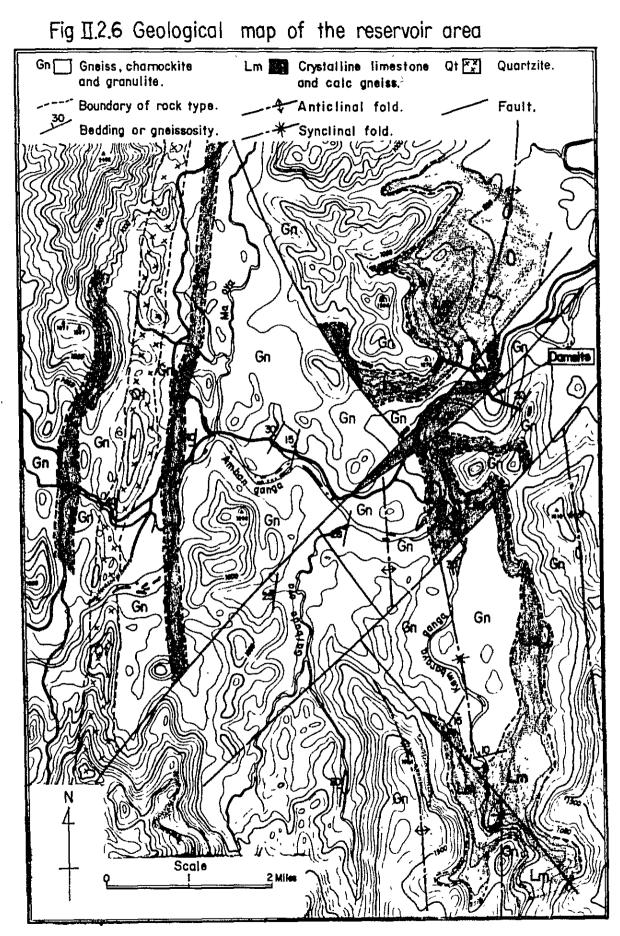
2.4 Foundation of diversion weir site

The contemplated diversion weir site is located about 200 m downstream from the damsite. The axes of the weir are across the Amban Ganga and the western channel of the sub-dam No.1.

The bed rock is gneiss with garnet and foundation conditions are very similar to those in the damsite. Acceptable firm rock of the slightly weathered zone (2.0 - 2.2 km/sec. in P-wave velocity) is reached at 10 to 20 m of depth, through the intensively and moderately weathered zones overlying it. Unconsolidated residual soil covering the slopes is only 1 or 2 m thick. The bottoms of both the Amban Ganga and the western channel are filled with river deposit, composed of sand or sandy silt, at 7 to 10 m thickness.

No low velocity zones were detected in seismic exploration along the dam axis, suggesting no serious fracturing or weak zone in the foundation.

2.5 Geology of the reservoir area


The reservoir area covers approximately 40 km² (depending on the high water level) within about 20 km upstream from the damsite. In this area the Amban Ganga flows meandering from west to east, with tributaries Ma Oya and Kalugalatta Oya from north, and Kambaraua Ganga and Galboda Oya from south. These tributaries trend nearly north-south, reflecting the geological structures. Ridges at 1,000 to 1,500 m in altitude, around and across the reservoir area, also show north-sough trends. Along the Amban Ganga and the tributaries develop narrow cultivated lands, and the rest parts are covered by jungle.

Topographically, this area shows characteristics of the valley in late mature stage. By developed side erosion the valleys are wide open, though slopes on the hillsides are fairly steep.

Geologically, the bed rocks in the reservoir area are gneisses of various mineral composition, charnockite, quartzite, calc gneiss and crystalline limestone, all of the pre-Cambrian Highland Series (See Fig. II.2.6). Quaternary unconsolidated deposits, such as river sand and silt, residual soil from weathering of rock and talus deposits, are rather thin. The rockbeds strike N-S to N40°E and dip horizontal to 40° westward in general, except in foldings.

Very gently warping folds are found to the north and to the south of the damsite, with axes roughly stretching north-southward. Faults with NE-SW trend and the others with NW-SE trend are assumed geomorphologically in the area of Kambaraua Ganga, Galboda Oya, Mt. Moragahakanda and the damsite, that is, in the eastern area of the reservoir.

Due to the mentioned thinness of unconsolidated Quaternary deposits and the high solidity of bed rocks, no possibility is conceivable for land sliding. As for possibility of water leakage from the reservoir, the Solution cavities in calcareous rocks should be drawn to attention. Those calcareous rocks, i.e. crystalline limestone and calc gneiss, are ordinarily solid, scarcely cracked and watertight, if they do no bear those solution cavities as observed in drilling and aditting on the left bank of the sub-dam No.1. The cavities, formed by solution of calcium carbonates into water during a long geological span of time, develop so

irregularly that it is not easy to trace their stretchings and it is extremely difficult to obtain a comprehensive picture of their exact development and distribution in a certain area.

What can be said about this problem in this reservoir area is the followings.

(1) Development of calcareous rock beds is limitted in certain localities in the reservoir area, that is, two strata at about 300 m of thickness in the area upstream from the confluence of Ma Oya and one through the sub-damsite to the western slope of the right bank ridge along the Kambaraua Ganga, all of which beds stretch in the north-south direction. Thickness of the watershed in the north and south where these calcareous rock beds pass out of the reservoir area is more than 500 m at high water level. Only in the sub-damsite and on the eastern slope of Mt. Moragahakanda, a calcareous rock bed runs out from the reservoir in a short distance. The calcareous bed in the sub-damsite will be treated as described in Section 2.3.4.

(2) Development of cavities is rather limitted in certain localities in the calcareous rock beds, and not prevalent in those beds. In geological investigations carried out so far, cavities were found rather rarely; only on the left bank of the sub-damsite No.1 and on the eastern slope of Nt. Moragahakanda. The former were encountered by drilling and aditting. The latter are exposed on the ground surface; one is thin crevice-shaped openings with 20 to 30 cm of width around EL.190 m and another is a group of developed narrow cavities at the zone far higher than the planned dam crest. Vertical development of the cavities is within 35 m, in so far as known about those in the sub-dam No.1.

(3) In drillings at the damsite, no extraordinary disturbance or depression of groundwater table was observed in spite of those cavities as mentioned above. On the eastern slope of Mt. Moragahakanda where some cavities are found, a drilling DM39 from EL.352 m for research of quarry revealed that the groundwater table was about 100 m higher than the contemplated high water level. All of the above suggest that those cavities are not so influential as to cause serious water leakage.

II-42

, ,

(4) While some cavities are encountered as mentioned above, no kharstic topography worth noting is observed in the reservoir area. Neither noticeable water springs are seen.

.

The above situations releave fairly the fear of water loss from reservoir through the solution cavities. Foundation treatment in the damsite will be the only work required for the problem of cavities.

.

Bibliography

- 1. The Geology of Ceylon (The national museums of Ceylon)
- Food and Agriculture organization of the United Nations and Irrigation Department of Ceylon. "Mahaweli Ganga irrigation and hydro-power survey (stage I) Volume IV, Engineering geology" (Colombo 1968)
- 3. Food and Agriculture Organization of the United Nations and Irrigation Department of Ceylon "Mahaweli Ganga irrigation and hydro-power survey (Stage II), Volume IV, Engineering geoloty" (Colombo 1968)

3. Construction Materials

3.1 Outline of Investigations

Topographic characteristics of the Moragahakanda damsite necessitate two sabdams besides the main dam. As the construction materials, the proposed Concrete Gravity Type Dam will need fine and coarse aggregates while the proposed Rockfill Type Dam will require impervious core material, filter material and rock material, whereas earth material will be necessary for the proposed Earthfill Type Dam.

The present material investigation was conducted in order to collect the available data of previous investigations conducted on these construction materials since 1961 and to clarify the available quantity and the characteristics of each of these construction materials based on the results of field investigation and laboratory tests conducted afresh after thorough field reconnaissance and analysis of the results of previous survey.

All the field tests and laboratory tests in this investigation were conducted by the staff of the Material Testing Laboratory of the Irrigation Department of Sri Lanka.

Material investigations for Moragahakanda Dam were conducted at four different stages including the initial survey made by UNDP/FAO in 1961 and the present investigation conducted by JICA. (see D. I.17, D. I.18).

Therefore, the present study consisted of the collection and analysis of the available data of the previous investigations and the additional field investigation and laboratory tests to confirm and supplement the previous investigations.

All the available data collected are as listed in Table I.3.1.

The present field investigation added 4 test pits and 28 auger holes for soil materials, 6 pits for the extraction of samples for filter materials and for the fine concrete aggregrates, 4 holes of core drillings (DM29, DM39, DM40 and DM41) and blasting at 2 points for the extraction of samples for rock material and coarse concrete aggregates (See D. II.18 for location of investigation).

II-45

The laboratory tests conducted on the samples extracted in this way are shown in Table I.3.2, I.3.3, and I.3.4.

•

Large Scale Shearing Tests on rock materials using an adit in the damsite are also being carried out.

۰.

-

. .

.

-

- •

TABLE II.3.1. LIST OF DATA COLLECTED ON PREVIOUS SOIL SURVEY 1. Map of Dam Site and Vicinity with Location of Soil Survey, Scale: 1/10,000. Report on the Preliminary Soil Investigation for Moragahakanda 2. Reservoir Project, Oct. 1960. 2-1. Location Map of Auger Holes. 2-2. Field Notes and Summarized Data on Logs of Auger Holes; 31 holes. 2-3. Summary of Laboratory Test Results. 3. Report on the Investigation of Earth Materials for the Moragahakanda Reservoir Scheme, 1961. 3-1. Location Map of Test Pits: 49 pits. 3-2. Summary of Laboratory Test Results. Report on the Subsoil Investigation of Moragahakanda Reservoir, 1966. 4. 4-1. Location Map of Auger Holes and Test Pits. 4-2. Logs of Upstream Test Pits; 4 pits. 4-3. Logs of Upstream Auger Holes; 29 holes. 4-4. Logs of Downstream Test Pits; 9 pits. 4-5. Logs of Downstream Auger Holes; 97 holes. 5. Moragahakanda Dam Axis Soil Investigation, May 1978. 5-1. Logs of Auger Holes; 25 holes. 6. Moragahakanda Borrow Area Soil Investigation, Jul.-Nov. 1978. Sketch of the Location of Test Pits 6-1. 6-2. Logs of Test Pits; 44 pits. 6-3. Results of Laboratory Tests.6-4. Summary of Laboratory Test Results. 6-5. Results of the Investigation of Riverbed Material.

PABLE II.3.2. NUM	BER OF LABORATORY	TES	STS	CO	NDU	CTE	ED (NC:	IMP	ERV	IOU	IS N	IATI	ERI.	AL	
TEST ITEM	BORROW AREA	 I	ł	B		C	1	C	2		D	E	ł	F		- Tot
,	••••	Auger Holes	Test Pita	Auger Holes	Test Pits	Auger Holes										
Specific Grav	ity	3	·	3		3		3	, ,	3		3		10	3	28
Field Moistur		3		3		3		3		3		3		10	3	28
Gradation		3		3		3		3		3		3		10	3	28
Atterberg Lim	its	3		3		3		3		3		3		10	3	28
Compaction	Ec=100%	;		•				•	-						3	
<u>-</u>	Eo=300%	1	-	 	•	• •			- -						3	
	at 0.M.C.	1						•	-		-		•		3	
Permeability	Dry at 0. M. C 4%	i		Ì			_		•						3	
	Wet at 0.M.C.+4%	i 1 .		_		_									3	
Triaxial	at O.M.C.				•		-		,						3	
Compression	Dry at 0. M.C4%		-											_	3	_
(SCU)	Wet at 0.M.C.+4%	-	1			-	-								3	
	at O.M.C.		·			• •	•					_	-		3	
Consolidation	Dry at 0.M.C4%	 _													3	
	Wet at 0.M.C.+4%	1		;	•			,	-		•	-	•		3	
TABLE IL 3.3.	NUMBER OF LABORA	ATOF		L TES	TS ,	CON	סטנו)TE	D 01	n F	ILT	ER	MA5	PER		
	LOCATI	ON				Up	str	eam	L		1					
TEST ITEM			***-		1	Ri		bed	•							
Specific Grav	ity				i		7				•					
Gradation							7				ŝ					
Density (Mar	imum, Minimum and	Re	lat	ive) 위		2									

and the second second

-

-

•

TABLE I.3.4 NUMBER OF LABORAT ROCK-FILL MATERIAN		CTED ON COARSE A	GGREGATES AND
LOCATION	Q-I	Q-II	DAM AXIS
TEST ITEM Specific Gravity	Boring Core 10 Blastings 2	Boring Core 2 Blastings 2	Boring Core 9.
Absoption	Boring Core 10	Boring Core 2	Boring Core 9
Compression	Boring Core 10	Boring Core 2	Boring Core 9
Sodium Sulphate Soundness	Boring Core 2	Boring Core 2	
Los Angeles Abrasion	Boring Core 2	Boring Core 2	
Unit Weight	Boring Core 2	Boring Core 2	

* In addition to these, Large Scale Direct Shear Tests are conducted for Rock Materials.

.

•

3.2 Soil Materials

3.2.1 Available Quantity of Soil Materials and the Selection of Borrow Areas

Borrow areas of impervious core material for the rockfill dam and earth materials for the earthfill dam were investigated in the upstream and downstream areas within reach of about 6 km from damsite. In the first investigation, conducted in 1951, an area in the upstream within a radius of about 3 km from damsite was investigated with 49 test pits allocated at intervals of 400 m. (see D. I.17) Although the detailed data of this investigation could not be collected during the present investigation, the Summary Report, shows that the upstream borrow areas cover 5,600,000 m^2 on the left bank and 2,400,000 m^2 on the right bank and the effective thickness of the layer of earth material overlying the decomposed rock stratum is about 1.5 - 2.5 m. The soil is composed mainly of SC material (by Unified Soil Classification) and a small quantity of GC material and CL material. Except for a very small amount of CL material with a high clay content, all these materials are suitable as impervious core material and earth material. The quantity of soil materials available in the upstream borrow area is estimated to be about 2,500,000 m³.

The second investigation was conducted in 1965 on the advice of UN Engineering Geologist Dr. J.B.Auden. In this investigation, importance was given to the downstream borrow area where 9 test pits and 97 auger holes were distributed. At the same time 4 test pittings and 29 augerings were also made in the upstream borrow area. Although detailed results of laboratory tests are not available, the downstream borrow area covers more than 1,600,000 m² and the average thickness of soil is estimated to be 2.4 m (see D. II.17), according to the Summary Report. Almost all of the soil samples were classified as SC materials and the available quantity of earth material was estimated to be about 3,800,000 m³.

The third investigation was started in May 1978 by the Material Testing Laboratory of the Irrigation Department. This investigation was conducted in the downstream borrow area to confirm and supplement the results of the second investigation made 12 years before (see D. I.18). Up to the present, 45 test pittings and 25 augerings have already been made while gradation tests of 31 samples, several tests for the determination of the specific gravity of soil particles and several compaction tests have been completed.

According to their results, the downstream borrow area consists of mainly SC materials though some CL materials and GC materials can also be seen. All these materials are suitable for impervious core material and earth material. The thickness of soil layer is about 1.5 - 2.5 m and the soil types agree well with the results of the second investigation.

In the present investigation, field survey was limited to 4 test pits and 28 auger holes to confirm and supplement the investigations conducted so far, while detailed tests were conducted with emphasis laid on soil test (see D. II.18).

The soil types agree well with the results of the previous three investigations with the majority covered by brown or reddish brown SC material, and small quantities of reddish brown GC material (Quartz gravel mixed) and light brown CH material.

Since the borrow areas proposed in the four investigations cover a wide extent in both downstream and upstream of the damsite, hereinafter they will be referred to as follows. Upstream borrow area on the left bank is divided into Borrow Area A and B, while that on the right bank is divided into Borrow Areas C_1 and C_2 . Downstream borrow area on the ritht bank is denoted as Borrow Area D while those on the left bank are divided into Borrow Areas E, F_1 , F_2 , F_3 and G (see D. II.17).

The details of each borrow area is given in Table I.3.5.

According to Dr. J.B.Auden (1965), with regards to the Borrow Areas A, B, C_1 and C_2 , since the base rock is limestone, the selection of borrow area in the upstream and the removal of natural blanket in the reservoir basin can lead to future leakage of reservoir. Although this is a problem of possibility, it is not necessary to persist on the upstream borrow areas when the same type of materials can be obtained under the same conditions in both upstream and downstream borrow areas.

The downstream Borrow Area D is located on the right bank and the hauling distance can become extremely large depending on the site selected for the bridge over Amban Ganga. Moreover, since it is very close to the river and is relatively a low area at E.L. 145 m - 150 m, this area cannot be considered suitable as a borrow area when considering the problems such as drainage during the rainy season.

Borrow Area G too is far from the damsite and partly has a low lying area where drainage will be a problem. Considering these factors, Borrow Areas E and F are considered the most preferable. Out of these, specially Borrow Area F_1 is located in a short distance (about 1.4 km) to the damsite and has a gentle slope throughout its area with favourable drainage condition. Therefore, Borrow Area F_1 can be considered as the most suitable borrow area.

The next favourable borrow area in a reasonable distance to the damsite is Borrow Area E although outcrops of limestone is seen here and there. If this area is further extended to Borrow Area F_2 , it is possible to collect 3,500,000 m² of soil material.

However, problem is that clearing of the thick jungle and removal of topsoil will largely influence the unit price of excavation since the layer of soil materials is very thin. But, as better areas are not found within a radius of 5 km from the damsite, Borrow Areas F_1 , F_2 and E can be the most suitable borrow areas in the region.

The typical geological profile of these borrow areas is shown in D. II.19.

1

ТАВLЕ П.3.5 .	, AVAILABILITY	ю дліті	OF INPERVIOUS MATERIAL IN	OUS NATE	RIAL IN	EACH BORROW AREA	ROW AREA			
Torres.	۷	B	19	C2	A	PA	£	24 F	F.3	Ċ
Left Bank or Right Bank	L.B.	L.B.	R. B.	R.B.	R•B.	L.B.	L.B.	L•B.	L.B.	L.B.
Upstream or Downstream	u/s	s/n	u/s	u/s	D/S	s/a	s/a	D/S	D∕S	D/S
Aerial Distance to the Dam Site(xm) from the Center of Borrow Area	2.0	2.4	1.3	2,8	1.3	1.4	1.4	2+2	2+2	2.8
from	150	150	145	150	145	150	175	175	150	140
Elevation (m) to to	200	175	155	165	160	175	200	200	175	155
Area (I,000 m ²)	1,200	560	450	650	420	850	1,000	520	520	1,100
epth of /	1.5	1.5	1•5	1.5	1.5	1•5	1.5	1+5	1.5	1.5
Excevation (m) to	2•5	2.5	2•5	2.5	2•5	2•5	2.5	2•5	2•5	2•5
Thickness.of Top Soil (m)	0.5	0+5	0+5	0•5	6 •5	0•5	0.5	0•5	0•5	0•5
Minimum Volume of Impervious Material Available (x 1,000 m)	1,800	840	675	975	630	1,300	1,500	780	780	1,650
Mote: See 2429, 30 for the location of Borrew Areas	oation oi	BOFFOW	Areas							

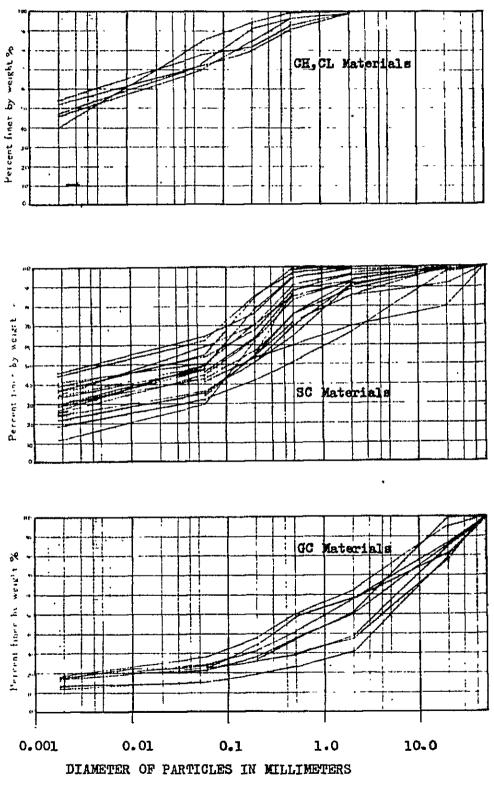
II-53

3.2.2 Physical and Mechanical Properties

The laboratory test results in previous investigations and the present ones (Figs. II.3.1, II.3.2, II.3.3 and II.3.4 and Tables II.3.6, II.3.7 and II.3.8) clearly show that the grain size and physical properties of each soil type are almost the same in Borrow Areas A, B, C, D, E, and F. Therefore, the soil material in the borrow areas within a radius of 6 km, both in the upstream and downstream of the damsite, could be represented at large by three soil types; SC materials, GC materials and CH. CL materials.

SC Material:

SC material is widely distributed throughout this region in large quantities. It is generally brown or reddish brown in colour and has a grain size distribution with 20 - 30 % Clay content, 10 - 20 % silt content and 50 - 70 % Sand and Gravel content. The specific gravity of soil particles is about 2.66. It is very plastic owing to the high clay content and has a field moisture content of 12 - 20 % and a plastic index of 12 - 27 %.


The mechanical properties of SC material are represented by MK-51 (in Table II.3.9 and Fig. II.3.5 (3)). These Tables and Figures show the results of tests conducted to verify the variation of mechanical properties of soil with the change of moisture content, within a range of about ± 4 % from the Optimum Moisture Content.

The results of tests conducted in the present investigation show strength characteristics somewhat differ from those in the previous investigations (see Table II.3.7). However, this is due to the fact that new triaxial compression tests were conducted in Saturated Consolidated Undrained condition while the previous tests were conducted in Non-saturated Unconsolidated Undrained condition.

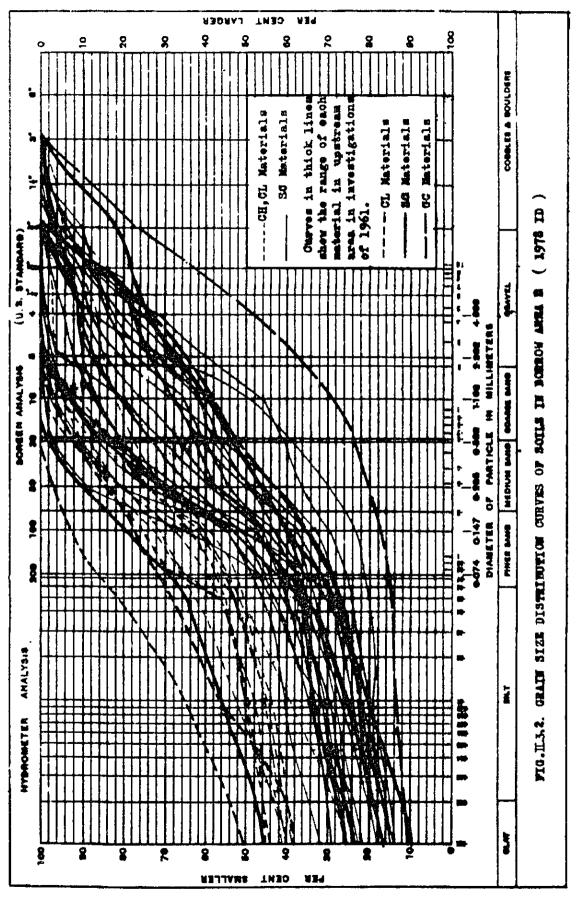
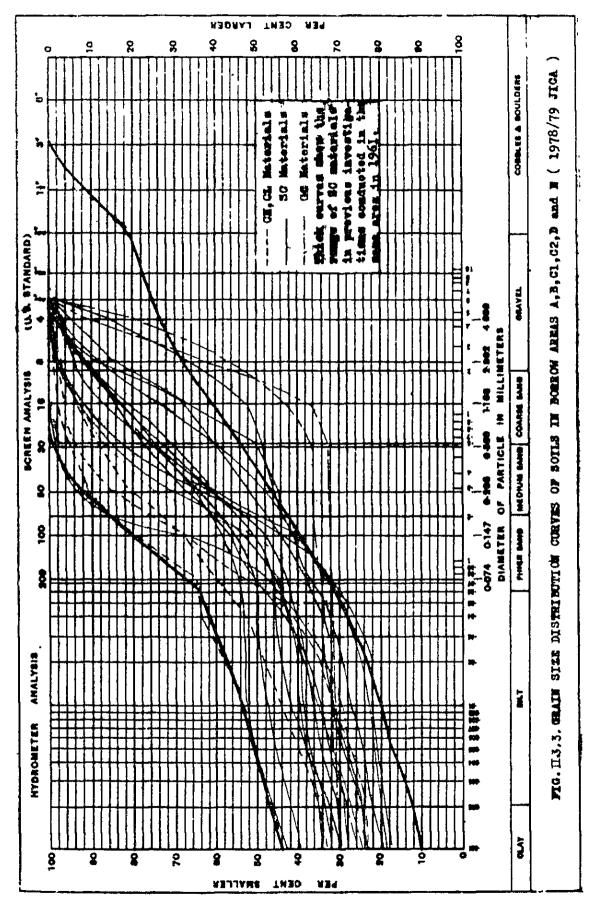
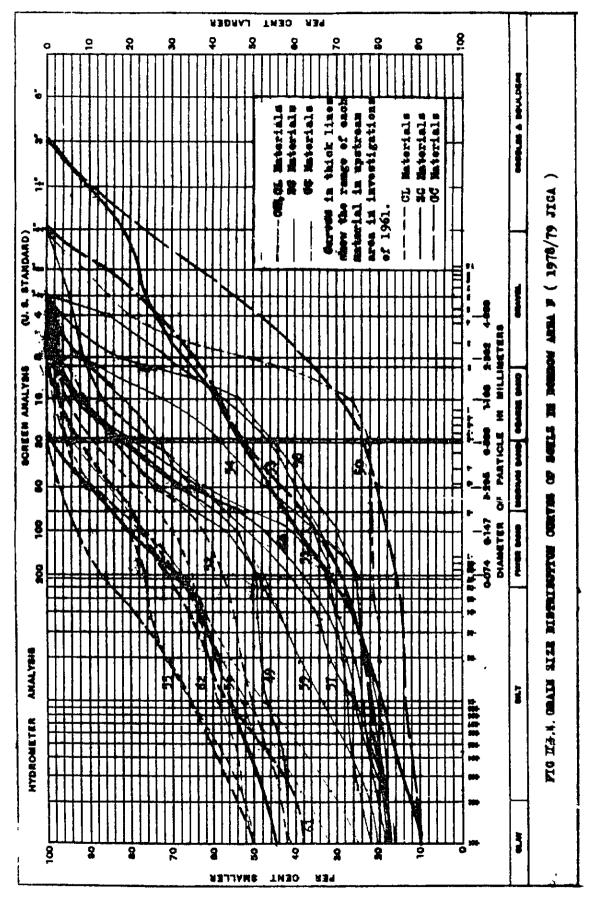

As clear from Fig. II. 3.5 (3) , the compaction of SC material is very effective showing a dry density of $1.78 - 1.87 \text{ t/m}^3$ within a range of ±3 % of the optimum moisture content, that is 14 % and is slightly on the dry side of the field moisture content.

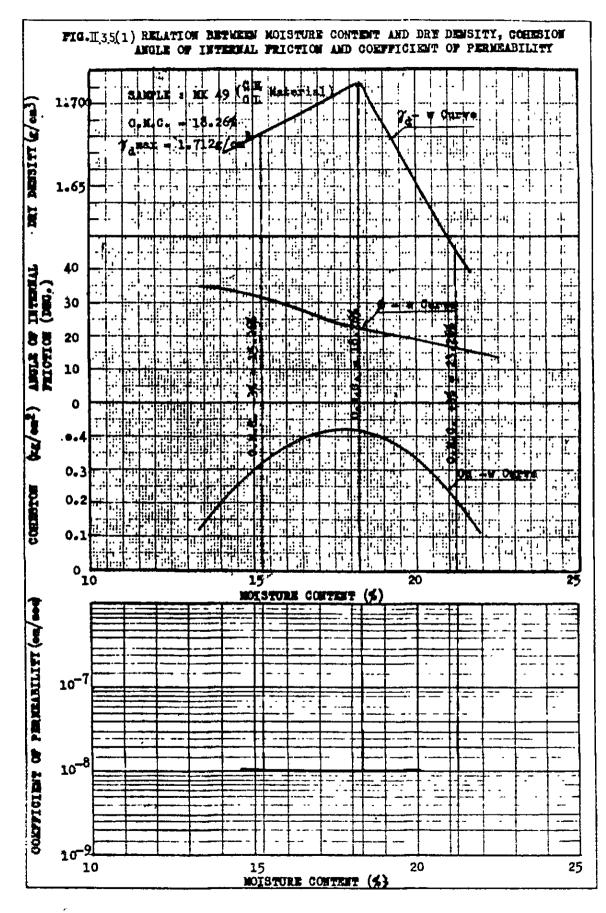
FIG.II.3.1. GRAIN SIZE DISTRIBUTION CURVES OF SOILS IN UPSTREAM BORROW AREAS (1961 ID)


.


11-55

II-56

II-57



II-58

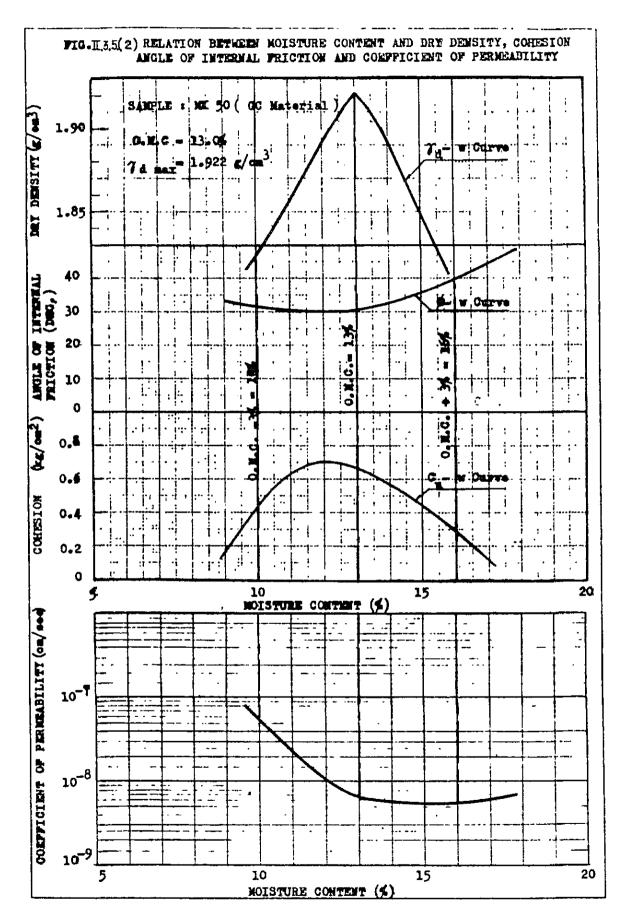
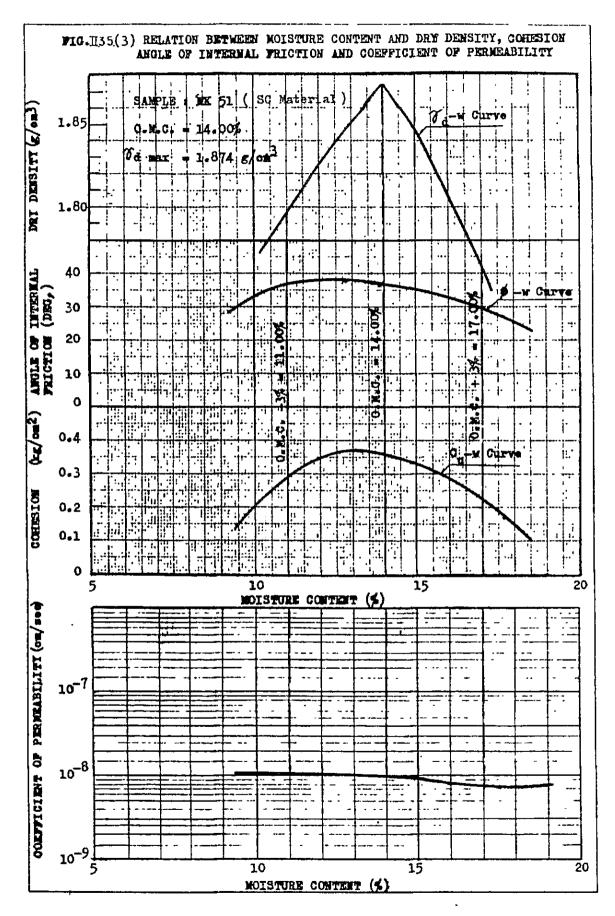

Borrow Area			BOTTOM		Area I	on L	Left B	Bank					F 1	Воггои	w Area		uo II	Right	Bank	ч
Soil Classification	SC	Materi	Te T		3	Material	ial		CH, CL		Material		30	Material	rial		ខ្ល	Material	ial	
	Mean	XaX	NH n	X	Kean	L L	Min	A F	Near	ž	n H	X	Meen	XaX	ЧЧ	7	Nean	Xey	н Н	24
4				20				4	×,			2	;C ;r		 6	•	+ L	0 7	،د ج	4
Clay (smaller than 2/4) %	Ħ	46	12		14	17	12		48	5	40		32	42	222		τ ι Γ	<u>°</u>	N 1	
silt (5/ - 60 /) &	14	22	9			12	9		25	4	14		18	58 58	ĥ		-	H	4	
Sand Fine (60 - 200 H) %	17	32	-ব		-	11	m		13	18	ω		24	40	Ħ		ŋ	10	2	
Sand Medium (200µ-600µ) %	18	30	9		10	15	4		<u>с</u> ,	13	5		18	23	11		2	12	m	
Sand Coarse (CO0/-2.0mm) &	ទ	24			12	16	8		4	ဆ	Ч		\$	14	0		11	14	80	
Gravel (2.0mm -19.0mm) 🖌	7	ЗI	-		32	41	S		н	~	0		2	-	0		6	48	33	
Cobbles (larger than 19 mm) %	m	30	0		16	21	E1		0	0	0		0	0	0		11	51	۲.	
Specific Gravity	2.67	2.73	2.60	20	2.65	2.69	2.55	4 2	2.72	2.76	2.68	5	2.66 2	2.71	2.58	9	2.68	2.72	2.62	4
Liquid Limit	39	56	27		36	40	32		46	52	43		35	4 3	30 M		40	47	31	
4	20	ŝ	\$	20	20	23	18	*	24	32	51	5	19	22	16	6	22	24	18	4
Plastic Index	19	25	15		16	21	11		22	27	20	╡	16	21	13		18	23	1	
Triaxial Compression Test			_	\$				٦				2				m				
Cohesion kg/om2	0. 70	0.70 0.91 0	0,56	-	0.56			-	0-77	1.12	0.42		0.70	1.01	0.56					
Migle of Internal Friction Deg	55	26	17		23				H	12	6		22	26	18					ļ
Compaction				20				m		2	000	5		0 0		σ	N (-	f C [VY	m
Optimum Moisture Content% Ite.1 21.0 1 Marimum Dur Danaity / 2011-8011-891	1-90	21.0	C•21	<u> </u>	1.84	1.87	1.81		1.57		1.38				1.62 1.62		1.92	1-87		
Penetration Resistance Kg/as ² 41.8 70.3 28.1	41.8	70.3	28.1		28.1		19.3			35.1	24.6		49.2	91.4	31.6		51.3	56.2	49.7	
Permeability x 10-80m/see 5.8	5°8	9ª6	1.0	20	19•3	21.3	8.7	3	2.9	4.8	1.0	4	8.7	19.3	1.9	2	22.2	44.3	8.7	m
Consolidation 5	4•8	6.8	3.2	20	4-9	0-9	4,3	3	3.8	4•8	2ª8	4	5.4	7,1	4.5	.7	3.5	4•3	2•9	m
Hote: Figures shown in column		iodia T	or the		пимрет	of te	tests o	puot	conducted											

TABLE E.3.7. CONPARISON OF LABORATORY) KOSI	TAI	DRAT Y	AT TE	TEST RI	RESULTS	5	5110 5		DIAS	UNV SI			TVEST	PREVIOUS AND RECENT INVESTIGATIONS	SNO		
BORRON AND	TRAU	UPSTREAK BORROW	BORRO	W AREAS	н	AND I	11 (19	(1961, I	â	Der Der	BORROW	AREAS	1	A,B,C,D,E		fin,	6/816	(1978/9,JICA)
Soil Classification	SC N	SC Matarial	ন	00 X	Material	7	CH, C	CH, CL Material	erial	30	Material	121	99	Material	rial	CH	CH, CL M	Material
	Mean	Nean Max.	Xia.	Magn	Kax.	M.n.	Haal	Kax,	Ma.	unex	, Tel	Min.	Kaan	• 	Min.	Mean	Мат.	Min.
Gradation																		ļ
Clay (smaller than 2µ) 🖌	E	46	12	15	18	12	48	54	40	22	34	17	26	35	18	43	61	23
Silt (5/4−60/4) 🖈	16	28	6	Ø	12	4	25	44	14	15	26	σ	4	~	ч	18	34	9
Sand Fine (604-2004) &	17	6	4	ø	11	¢1	13	18	ø	16	35	σ	Ś	8	0	F	24	<u>ه</u>
S	17	30	9	Ø	15	Ś	6	Ę.	Ś	19	28	9	ß	13	0	14	20	10
Sand Goarse(600/-2.0mm)%	6	24	0	11	16	8	4	œ	н	18	32	r-1	22	29	15	2	21	س
Gravel (2.0mm-19.0mm) \$	ŝ	31	0	38	48	23	Ч	rri	0	8	20	0	34	55	14	N	10	0
Cubbles(larger than 19mm)%	2	20	0	14	21	ı	0	0	0	0	0	o	o	0	0	0	0	•
Specific Gravity	2.67	2.73	2.58	2.66	2.69	2•55	2.72	2.76	2.68	2.65	2.85	2.60	2.64	2.67	2.61	2.67	2+70	2.61
Field Moisture Centent %										15.8	20.7	12.6	11.6	12.5	8.1	0°87	31.1	
Liquid Limit	*	56	27	Я	47	R	4	52	4 3	34.8	51	27	44-3	56	31	48-9	٤,	58 28
Plastic Limit	20	£	9	21	24	18	24	32	21	17.4	24	12	21.9	54	19	23,8	27	17
Plasticity Index	18	25	ព	17	5	7	22	27	20	17.4	27	12	22.4	33	12	25.1	33	11
No. of Test Samples		29			8		5				15			v			12	
							•											


T.	ABL		.3.8	. s	UMM	ARY O	·	ORATO siste		ST :	RES	_	-		ICA ion	-	1978)	
Sample No.	Borrow Area	Anger Hole/Test Pit No.	Depth Below Ground Level		Boil Classification	Field Noisture Content 5	Liquid Limit 🗲	Plastic Limit 🖇	Plasticity Index	5 Clay (0,002 mu)	≰ Bilt (0.002 - 0.06 mm)	🗲 Fine Sand (0.06 - 0.2 mm)	🗲 Medium Sand (0.2 - 0.6 mm)	<pre>\$ Coarse Sand (0.6 - 2.0 mm)</pre>	\$ Gravel (2.0 - 19.0 m)	★ Cobbles (19.0 Lm)	\$ Passing 19.0um Nesh	A Passing 200 Mesh	Specific Gravity of Soil Partieles
490 51 52 53 55 55 55 55 55 55 55 56 61 62 63 64 56 66 70 80 71 72 73 74 75 77 77 78 79 80	B B B C I C I D D D C C C C C C C C C C C C C	1 2 1 2 3 3 1 2 2 3 1 1 2 3 1 1 2 3 1 1 1 2 3 1 1 2 3 1 1 1 1		-2.0 -2.0	CCHCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	$\begin{array}{c} \textbf{31.0} \\ \textbf{28.3} \\ \textbf{17.5} \\ \textbf{12.4} \\ \textbf{17.8} \\ \textbf{27.6} \\ \textbf{27.7} \\ \textbf{23.8} \\ \textbf{16.5} \\ \textbf{15.8} \\ \textbf{16.5} \\ \textbf{16.5} \\ \textbf{18.9} \\ \textbf{18.8} \\ \textbf{21.9} \\ \textbf{18.8} \\ \textbf{21.9} \\ \textbf{18.8} \\ \textbf{21.9} \\ \textbf{18.8} \\ \textbf{14.2} \\ \textbf{13.9} \\ \textbf{14.5} \\ \textbf{12.8} \\$	27.4 48.0 31.2 36.0 61.0 29.1 42.9 37.1 31.7 46.6 59.8 35.2 27.2 27.2 27.2 27.2 27.2 27.2 27.2 2	24.2 12.9 24.6 18.9 16.9 32.3 16.2 21.9 21.6 24.2 24.2 26.8 14.9 21.9 21.6 24.2 24.2 24.2 24.2 24.2 24.2 24.3 17.4 14.8 12.3 17.4 17.4 17.3 19.3 17.1 21.6 16.5 22.2 21.7	28.7 12.9 21.0 15.5 16.5 22.4 33.0 14.9 22.9 17.8 12.4 14.9 27.1 20.4 10.8 18.6 16.9 26.6 22.4 22.7 16.6 22.4 22.7 16.6 33.3	2790 46192 25322 32931 2423 4230	1202218 101176 199115195748 1195148 1	122 52 99 95 179 1240 33 129 90 100 100 100 100 100 100 100 100 100	19 24 28 14 14 14 14 14 16 0 16 16 17 16 16 17 16 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 	$ \begin{array}{r} 12 \\ 15 \\ 24 \\ 20 \\ 17 \\ 16 \\ 23 \end{array} $	2 11 16 36 20 44 7 11	• • • • • • • • • • • • • • • • • • • •	$\begin{array}{c} 100 \\$	78 738 298 715 473 46 30 31 55 67 96 1 37 49 4 4 0 35 4 4 6 9 31	2.66 2.70 2.62 2.62 2.65 2.65 2.65 2.64 2.63 2.63 2.64 2.63 2.64 2.63 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.65 2.64 2.64 2.65 2.65
Note		1) S T).S	ampl onai ee a	es) ning 150	UK 49 5 #amj Table	- 51 ples :	are e are e: . for ples 1	the 1	ted ted	l fi fro ulto		te	st : or :	pit: holo	6 Al	ad a	11	<u>,</u>

II-62

II-63

II-64

TARLE I.3.9. SUMMARY (TARLE I.3.9. SUMMARY (Sample No. Sample No. Sample No. Sample No. Sample No. Sample No. Sample No. Noisture Content % 16.55 Noisture Content % 13.6 Noisture Content % 13.6 Noisture Content % 13.0 Noisture Content % 14.6 Noisture Content % 15. Nov Dry Density (g/cm3) 1.711 Rate of Gamgael 14. Nox Dry Density (g/cm3) 1.711 Remarks: I. Compaction t Number of La II. (1) Remits II. (2) Remarks: I. Compaction t II. (2) Remits	HANICAL TESTS ON INPERVIOUS MATERIAL	MX 49 (CH.CL) MX 50 (GC) MX 21 (SC)	17.65 18.18 19.39 20.40 12.17 12.36 14.47 15.24 15.80 11.79 12.90 13.71 14.80 16.64	1.707 1.712 1.678 1.640 1.894 1.903 1.872 1.839 1.809 1.818 1.847 1.858 1.858 1.853 1.780	15.50 16.51	1	32 18.40 22.03 9.12 12.70 16.84 9.64 14.33 17.67	0 42 0.11 0.21 0.70 0.14 0.18 0.35	31 22°23' 15°10' 33°6' 30°35' 43°50' 30°56' 36°1' 27°45'	20 18.30 22.50 9.70 13.10 17.00 9.90 14.90 18.40	22 1.03 - 7.15 0.65 0.62 1.01 0.93 0.74	3.55 8.00 2.60 3.62 7.53 4.05 6.68			(.st.0 4.C.= 18.2	} •		rr. Triarial tests are conducted under Saturated Consolidated Undrained Condition (SCU)	a of Consolidation and Percolation Tests (Consolidated Load: 1.397kg/om2)	Consolidation Tests (Consolidated Lo	· · · · · · · · · · · · · · · · · · ·	··· ···
<pre>3 II.3.9. SUMMARY OF MEC content % 16.55 17.65 ty (g/cm³) 1.695 1.707 ty (g/cm³) 1.695 1.707 contert % 13.70 14.70 content % 13.82 (h₅/cm²) 0.18 (h₅/cm²) 1.813 1.826 content % 13.82 ntent % 13.82 ntent % 13.82 ntent % 1.813 1.826 colation 1.02 ntent % 14.23 ntent % 1.5.20 fon % 3.00 ntent % 1.5.20 fon % 3.00 fon % 1.6.23 ntent % 1.5.20 fon 1.02 fon % 1.6.23 ntent % 1.5.20 fon 1.02 fon 1.02 fon 1.02 fon 1.02 fon 1.02 fon 1.02 fon 1.02 fon 1.02 fon 1.02 fon 1.02 for 1.2.20 fon 1.02 fon 1.02 for 1.2.20 for 1.2.20 fon 1.02 for 1.2.20 for 1.2.20 for</pre>	CHANICAL TESTS ON IMPERV	49 (18.18 19.39 20.40	1.712 1.678	15.50 16.51	1.852 1.810 1.792	18.40 22.03	0.11	150101		1.03 -	8.00	 		1.0 4.C.= 18.26%)	are conducted for Bo-100	3, Mumber of Blows per	re conducted under Satur	Consolidation and Percol	onsolidation Tests (Con		
	TARLE I.3.9 SUMIARY OF ME	x	\$ 16.55 17.	<u>.</u>	Contert \$ 13.70 14.7		_		Ja1 34	2	uon uon	· ·	[11ty	1.712 (I. Compaction tests	Number of Layers:	'TT' Triarial tests a	TTP (1) Remits of	IT. (2) Results of C		

.

II-65

The compression tests show an angle of internal friction ϕ' of over 30° and a cohesion C' of over 2 t/m². The coefficient of permeability is not very much affected by the density of compaction due to the high clay content and is very low at 10⁻⁸ cm/sec. showing that this soil is a very impervious material suitable for core material.

GC Material:

GC material is distributed only in some parts of the upstream and downstream borrow areas, at depths comparatively close to the topsoil. It is generally reddish brown in colour and is composed of 15 - 25 % Clay content, 5 - 10 % Silt content, 15 - 45 % Sand content and 15 - 50 % Gravel content. The specific gravity of soil particles is about 2.66. The soil is plastic with a field moisture content of 8 - 12 % and a plasticity Index of 12 - 33 %.

The mechanical properties of GC material are represented by Mk 50 (in Table II.3.9 and Fig. II.3.5 (2)).

As seen in Fig. II.3.5 (2), compaction of GC material is extremely good with a dry density of $1.81 - 1.92 \text{ t/m}^3$ within a range of 3 % of the optimum moisture content. The optimum moisture content is 13 % and is about the same as the field moisture content.

This material has an angle of internal friction ϕ ' of over 30° and a cohesion of over 3 t/m². The coefficient of permeability is very low at 10⁻⁸ cm/sec. owing to the high content of clay. This material is the most suitable for core material.

CH. CL Material:

This material is widely destributed in the upstream and downstream borrow areas at relatively shallow depths in moderate quantity. It is generally brown or light brown in colour and has a grain size distribution of 25 - 55 % Clay content, 10 - 30 % Silt content and 15 - 40 % Sand and Gravel content. The specific gravity of soil particles is about 2.68. The field moisture content has a wide range of 17 - 31 %, but the soil is plastic with a plasticity index of 11 - 33 %. The mechanical properties of CH. CL material are represented by MK 49 in Table II.3.9 and Fig. II.3.5 (1).

The dry density in the compaction test within a range of ± 3 % of the optimum moisture content is comparatively low at 1.61 - 1.71 t/m³. The optimum moisture content is 18 % and is on the dry side of the field moisture content.

Within the same range of moisture content, the angle of internal friction ϕ' is over 17° and the cohesion C' is over 2 t/m². The coefficient of permeability is not affected by compaction due to high content of clay and is 10^{-8} cm/sec. This very impervious material can be used as core material, but its strength is comparatively low.

3.2.3 Suitability as Impervious Material


Judging from the physical and mechanical characteristics of each soil type, GC material is rated as the best suited soil material to be used as impervious core material in the rockfill dam or as earth material in the earthfill dam, followed by SC material and CH. CL material in that order.

Out of the above three soil types, even the inferior CH. CL material is not necessarily judged as not suitable for the impervious core material or earth material. Its impermeability is excellent and moreover, the field moisture content is very close to the optimum moisture content. In the compaction test, dry density show an increase when the compaction energy is raised to 300 % of the standard compaction energy, showing no problems due to overcompaction (see Fig. II.3.6 and II.3.7). With an average plasticity index of 25, this material has sufficient resistance against piping. The strength is somewhat low, nevertheless, this material could be rated as sufficiently suitable for a dam with height less than 70 m.

Among the three soil types, the available quantity of SC material is the largest while that of GC material is the smallest. Moreover, since GC material is distributed very close to the ground surface, it is difficult to depend on this quantity. Therefore, when Borrow Areas E and F are selected, SC material becomes the main material accompanied by some CH. CL material. Anyway, since these soils are distributed only within a small depth making it necessary to collect the soil material from a wide area, it is virtually impossible to differenciate the soils of those three categories in the site.

Therefore, the various design criteria for the basic design of the damshould be determined with respect to the inferior CH. CL material.

Considering that the moisture content is controlled within a range of ±3 % of the optimum moisture content, the minimum values in this range are taken as the design values of the CH. CL material. However, since all the new triaxial compression tests were conducted in saturated condition, the strength in the unsaturated condition was estimated at

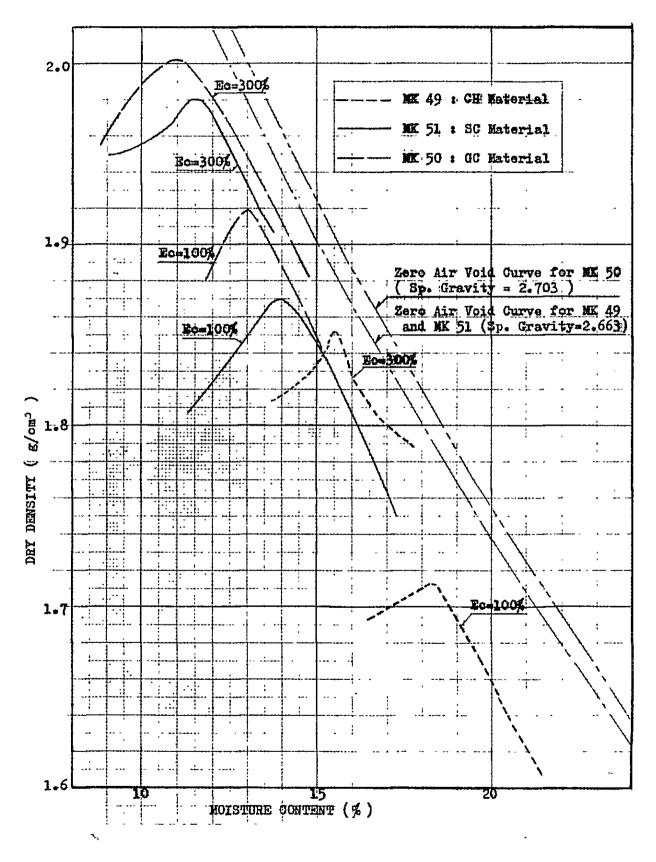


FIG.II3-7 RESULTS OF COMPACTION TESTS: RELATION BETWEEN NOISTURE CONTENT AND DRY DENSITY OF SOIL

 $C = 4.0 \text{ t/m}^2$, or twice the value in saturated condition, after thorough consideration of the results of previous triaxial compression tests conducted in unsaturated condition. The design values are summarised below (see also Fig. II.3.5 (1)).

Moisture Content w	=	21 %
Specific Gravity of Soil Particles	=	2.66
Dry Density γd		1.61 t/m ³
Bulk Density Yt	-	1.95 t/m ³
Cohesion (when Saturated) C'sat	=	2.0 t/m^2
Cohesion (Unsaturated) C'	=	4.0 t/m ²
Angle of Internal Friction ϕ '	=	17°
Coefficient of Permeability k	=	10^{-7} cm/sec.

.

3.2.4 Matters of Special Attention

The major part of soil materials selected for impervious material will be SC material. However, CH. CL material will also be mixed in large quantities. Therefore, development of high pore water pressures, which is detrimental to the stability of the dam, could be expected during compaction. However, it is difficult to observe the actual behaviour of pore water pressure in the triaxial compression tests conducted in the present investigation since the pore water pressures are not measured completely.

In order to overcome the possible development of high pore water pressures during construction, it may be necessary in the design, to take suitable measures such as the limiting of the thickness of impervious core in the case of rockfill dam and the installation of Chimney Drains etc., in the case of earthfill dam.

Moreover, prior to the detailed design, it is also necessary to determine the appropriate type of rolling equipment, the number of turns of rolling, the thickness of spreading and the working moisture content etc., by conducting field compaction tests.

Since the impervious material required has to be collected from a comparatively thin layer of soil extending to a wide area, the use of power shovels in excavation can not be considered due to extremely low efficiency. Moreover, when considering the severe irregularities on the surface of base rock, bulldozers are considered more suitable than the scrapers for excavation and collection of soil material. Therefore, a combination of bulldozers with wheel loaders etc., for loading and dump trucks for the transport of material is considered appropriate for this site.

In the proposed borrow areas, the exploitable soil material is covered by a comparatively thick layer of topsoil. Therefore, excavation and removal of a tremendous volume of topsoil becomes inevitable. It is an efficient and economical procedure to refill an already excavated area with disposed topsoil from the other area which is excavated later. The stagnation of rain water etc., in the borrow area can largely affect the quality of soil material. Since the proposed borrow areas are specially wide, it is necessary to pay special attention on the drainage in borrow areas during construction.

.

.

.

3.3 Filter Material and Fine Aggregates for Concrete

3.3.1 Availability and Exploitable Quantity

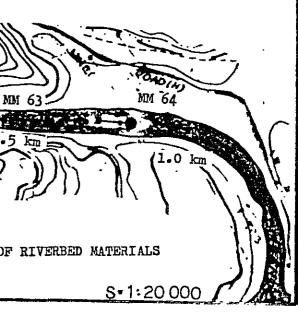
With respect to filter material for the fill type dams and fine aggregates for the concrete dam, investigations were carried so far on the riverbed deposits of Amban Ganga.

The first investigation of the riverbed deposit was conducted in 1966 along with the investigation of borrow areas for earth material. In this investigation the thickness of sand at the riverbed was measured by penetrating a metal probe into the riverbed deposit. According to this survey conducted in a range of 3 km upstream and 1.3 km downstream, the average thickness of riverbed deposit was about 3 m.

Assuming the average thickness of riverbed deposit at 3 m and the average width of the river at 40 m, about 520,000 m³ of riverbed deposit could be expected in the 4.3 km stretch of river investigated above.

The second investigation was conducted from July to September 1978 on the riverbed deposit of Amban Ganga in the upstream of dam site. According to the results of this investigation (see Fig. I.3.8), about $100,000 \text{ m}^3 - 150,000 \text{ m}^3$ of sand is deposited for every kilometer length of the river in the investigated section.

As above, investigations had been conducted twice in the past on the riverbed deposit and the volume of deposit does not differ very much in them. Therefore, in the present investigation, laying emphasis on the physical and mechanical properties of this material, tests for specific gravity, gradation and relative density and moreover, triaxial compression tests (at $D_r = 65$ %) were conducted.


Riverbed materials are deposited also in the low-lying areas other than the riverbed, for example, in the Borrow Areas C_1 and D. However, the results of reconnaissance and auger borings conducted in these areas show that the content of silt and finer material is relatively high with about 10 % - 30 % and therefore, these materials could not be considered suitable. On the other hand, the riverbed material deposited under the water which is naturally washed and cleaned through the long years could -.

	HEF 27- 0.5.0 km	NE C	RESULTS OF LABORATORY TESTS (1966)
C		NUT 25 NUT 25 3.0 Lm 1. 2.5 km NU 61.	e Density ose). m3 m3 m3 m3 n3 fio fio fio fio fio fio fio fio fio fio
	4.5 km 	2.0 km 0 MM 60	MN 54 1.46 1.61 2.80 6.7 0.65 0.145 MN 55 1.45 1.55 2.80 2.3 0.45 0.195 MM 56 1.55 1.67 2.20 6.1 0.70 0.210 MM 57 1.45 1.54 2.15 6.0 0.77 0.340
	VOLUME OF RIVERBED MATERIAL (SEPTEMBER 1978)		NMC 58 1.55 1.68 2.60 2.3 0.67 0.145 MM 59 1.44 1.54 2.47 4.2 0.50 0.100 MM 60 1.53 1.64 2.84 5.7 0.23 0.220 MM 61 1.57 1.66 2.50 0.9 0.57 0.195 MM 62 1.61 1.70 2.60 1.7 0.77 0.450 MM 63 1.39 1.53 2.88 8.8 0.93 0.155 MM 64 1.59 1.70 2.60 3.6 0.63 0.220
(_)	Point No. Interval (m) Accumulative Distance (m) Sediment Width (m) Sediment Depth (m) Area (m ²) Average Area (m ²) Average Average Average Average Average Average Average Average Average Area (m ²) Sediment Volume (m ³)	ин 59 година 59	See Table 3-1 for laboratory test results of riverbed material (Samples No. MKF 23, MKF 24, MKF 25, MKF 26 and MKF 27) extraoted
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0 km 1.0 km MET 23	in 1978.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NON 56 NON 56 NON 56 NON 55 NON 55	
Ĵ	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MM 64
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FIG.H3-8 LOCATION AND AVA	ILABILITY OF RIVERBED MATERIALS
	26 150 3,900 44 4.8 211 190 29,400 579,300 27 150 4,050 44 4.8 211 211 31,650 579,300 27 150 4,050 44 4.8 211 211 31,650 579,300	INVESTIGATED	ILABILITY OF RIVERBED MATERIALS S-1:20 000

-

`

_ ... _ -

IT-75

. (: (. (

. •. be considered the most desirable material.

2

The sand suitable for filter material in the fill type dams and for fine aggregates in the concrete dam is available in Amban Ganga as riverbed material deposited to an average depth of 3 m. It is reasonable to consider a volume of about 100,000 m^3 per kilometer of river length.

Possibility of alternative fine materials to be obtained by crushing the rocks available in the damsite was examined by laboratory tests, similar to those conducted on river sand, on the samples from the adit in the damsite.

3.3.2 Physical and Mechanical Properties

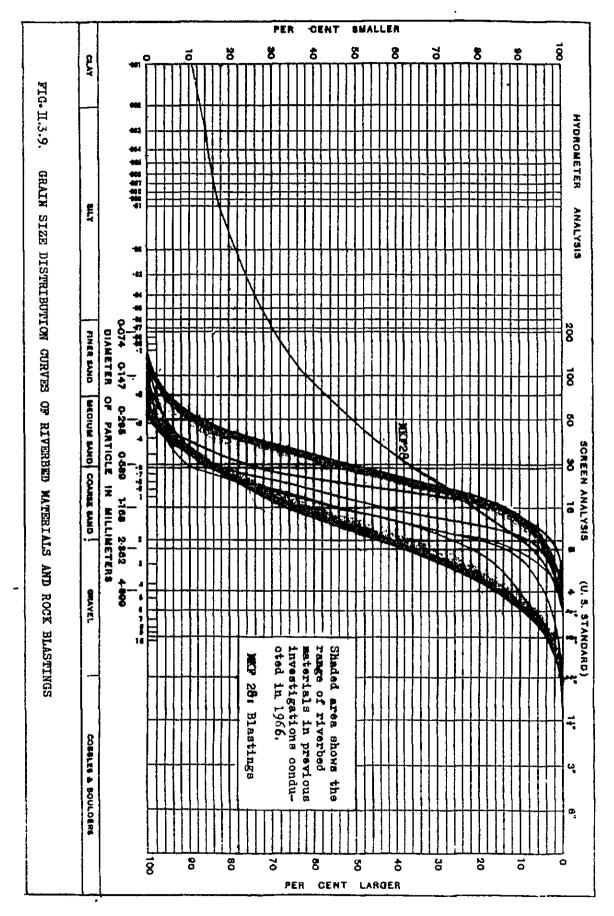
The results of the tests conducted in 1966 on riverbed deposit of Amban Ganga are shown in Fig. II.3.8, while those of the tests conducted in the present investigation are shown in Table II.3.10.

River sand collected from Amban Ganga is very clean, and as clear from the grain size distribution curves shown in Fig. II.3.9, is a fairly coarse sand with an average Uniformity Coefficient of 2.64. This sand has a Fineness Modulus of 3.40 on the average.

Althogh there is a slight variation in the specific gravity of sand in the previous investigation, this variation is very small in the present investigation. In the dry bases, the average value of specific gravity is 2.55 and in the saturated surface dry basis, this value is 2.62.

Also in the absorption test, the results in the two investigations differ largely. However, in the present investigation, the average absorption is 1.20 %.

From the above results, specially in the present investigation, the riverbed deposit of Amban Ganga is suitable both as a filter material for the fill type dams and as the fine aggregate in the concrete dam.


Further, in order to grasp the mechanical properties of riverbed deposit, triaxial compression tests are being conducted using sand with a relative density of 65 %.

The grain size distribution curve of rock blastings obtained from the adit is shown in Fig. II.3.9 (curve MKF-28). Since the content of silt and finer particles is over 30 %, this material is not considered suitable for the filter material or for the fine aggregate.

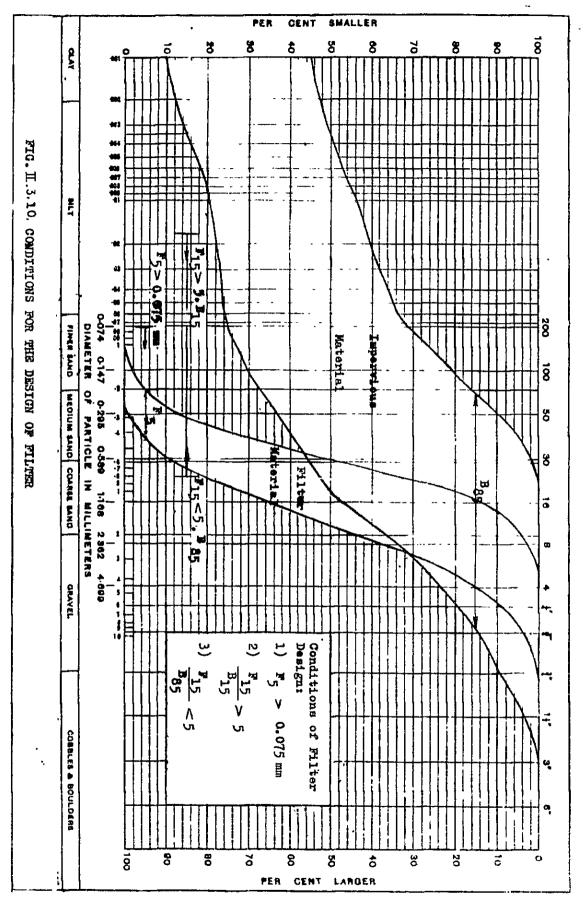
3.3.3 Suitability as Filter Material

The river sand of Amban Ganga is the only material available in the close proximity of the damsite and suitable as a filter material for filltype dams and as a fine aggregate for the concrete dam. The

LARY OF LABORATORY TESTS ON RIVERBED MATERIAL AND ROCK BLASTINGS	MICF 28 NICF 23 NICF 24 NICF 25 NICF 26 NICF 27 NIG	from Dam Axis) 9-I 1. km U/\$ 2 kmU/S 3 kmU/S 4 kmU/S 5 kmU/S Value		T3 0 0	11 0		19 8 11 27 17 10 1	71 67 69 75 63		100 100 97 100 99	33 0 0 0 0	2•55 3•13 2•32 2•62 2•56 2•64) Dry Basis 2.62 2.64 2.58	✓ 1.33 1.28 1.33 1.16 0.92	1.77 3.58 2.89 3.28 3.73 3.40
TABLE IL.S. IU. SUMMARI	Sample No.	Location of Sampling (Distance from Dam Aris	re of Material	Clay (smaller than 2 H)	Silt (54 - 60 M)	Sand Fine (60/ -200/)	Sand Medium ($200\mu - 600\mu$)	Sand Coarse (600 / - 2000 /)	Gravel (larger than 2000 /4)	Percentage Passing 1/4" mesh	Persentage Passing 200 mesh	Uniformity Coefficient Uc	Specific Gravity Dry Basis	Specific Gravity Saturated Surface	Absorption	Fineness Modulus

tests conducted on rock blastings obtained from an adit in the damsite prove that rock blastings cannot substitute the river sand due to the very high content of silt and finer grains, which exceeds 30 %, in the former.

The river sand is found to be clean and homogeneous throughout the area investigated. Its relationship as a filter material with respect to the impervious material is excellent satisfying the conditions F_{15} $^{5B}_{15}$ and F_{15} $^{5B}_{85}$ (see Fig. I.3.10). Moreover, with practically no particles passing No.200 Standard Sieve, this sand satisfies all the conditions of a filter material, including the condition; F_5 0.0075 mm. The only shortcoming of this river sand is that its grain size distribution curve is not parallel to the grain size distribution curves of impervious material but rather steep. Even this would not be a problem if the width of the filter is taken larger than 3 m.


The design values of the filter material are established as follows based on Table II.3.10.

Moisture content w	= 6 %
Specific Gravity of Soil Particles	= 2.62
Dry Density Yd	$= 1.80 \text{ t/m}^3$
Bulk Density Yt	= 1.91 t/m ³
Cohesion C	= 0
Angle of Internal Friction ø	= 30°

Since the results of the tests for the determination of density and the results of triaxial compression tests conducted at 65 % relative density are yet to be obtained, the generally used values are adopted here tentatively. The angle of internal friction of sand is generally in the range of $30^{\circ} - 35^{\circ}$ and the lowest value of 30° is taken here as the design value.

3.3.4 Suitability as a Fine Aggregate for Concrete

The fine aggregates for dam concrete should be clean, excellent in hardness and durability, of suitable particle size and shold be free from harmful amounts of dirt, mud and organic material etc. In this

II-81

respect, riverbed material of Amban Ganga is very clean and practically does not contain any harmful amounts of organic material etc.

The most appropriate grain size distribution of fine aggregates for dam concrete is said to be within the range shown in Table II.3.11, which is established with long practical experience. Particles finer than 0.15 mm are very important both in reducing the bleeding of concrete and improving the workability. However, the riverbed material tested in this investigation, practically has no particles finer than 0.15 mm and on the other hand is a relatively coarse sand with an average fineness modulus of 3.40.

Therefore, this riverbed material alone could not play the role of fine aggregate satisfactorily. However, it can be used satisfactorily as a fine aggregate for dam concrete by adjusting its grain size distribution using fine sand available in the sands of the river or using the fine material obtained by crushing the rocks available in the damsite.

Next, with regards to the use of quarry rocks for a fine aggregate for dam concrete, the tests conducted in this investigation prove that this material is not desirable for this purpose due to its high content (38 %) of particles finer than 0.15 mm. Moreover, considering the shape of crushed paritcles which has a large influence over the strength of concrete and the large costs necessary for crushing plants etc., river sand is remarkably superior to the rock blastings in many ways.

3.3.5 Matters of Special Attention

In collecting the material, since it is necessary to dredge the riverbed material from a relatively long stretch of the river, the use of pump dredgers are considered desirable rather than drag lines etc., from the view points of movability and efficiency. However, in this case, considerable turbity of river can be expected due to turbulance at the riverbed and it may be necessary to take suitable precaution5.

Particle Size	Recommended Standard	River Sand (River Sand (Amban Ganga)	Rock Blastings	ŭ
(um)	Range by Weight	Actual Range by Weight (\$)	Remarks	Actual Range by Weight (%)	Remarks
10.0 - 5.0	80 I O	0 - 10	Satisfactory	1	Satisfactory
5 •0 - 2• 5	5 - 25	1 - 22	Satisfactory	<u>س</u>	Satisfactory
2+5 m 1+2	10 - 25	10 - 28	Satisfactory	EL EL	Satisfactory
1.2 - 0.6	10 - 30	27 – 38	Realtively high	16	Satisfactory
0.6 - 0.3	15 - 30	9 - 26	Satisfactory	15	Relatively Low
0+3 - 0+15	12 - 20	1 - 12	Relatively Low	12	Relatively Low
0-15-0	3 - 10	0 - 1	Relatively Low	38	Ercessive

3.4 Rock Material and Coarse Aggregates for Concrete

3.4.1 Available Quantity and the Selection of Quarries

In the investigations conducted in 1965, after reconnaissance of the vicinity of damsite, 4 spots were considered as the possible quarries to collect rock material for the rockfill dam and coarse aggregates for the concrete dam. According to the report on this investigation, Quarry No.1 is located 3.5 km north of the damsite and consists mainly of Crystalline Limestone. Quarry No.2 is located on the left bank of the river about 2.0 km upstream of the dam site. This too, has Crystalline Limestone as the main rock type. Quarry No.3 is a small hill located on the left bank near Elahera Anicut in the downstream and consists mainly of Charnockite. Quarry No.4 is located on the right bank about 6 km downstream and consists of Charnockite.

In the present investigation, reconnaissance of these proposed quarries was made once again and it was found that Quarries No.1 and No.4 are not preferable for long distance of haulage, while Quarries No.2 and No.3 are both small hills and not sufficient for a massive requirement (D. II.17).

In the other hand, the hill with its peak at about E.L. 355 m, proposed by the Japanese Preliminary Survey Team as a prospective quarry, is located on the right bank about 1.2 km upstream of the damsite (see D. I.18).

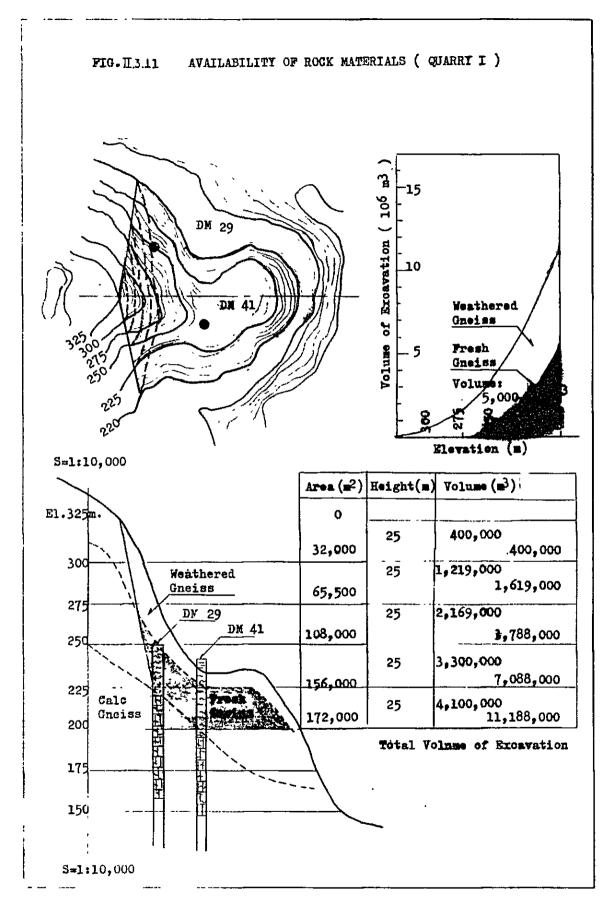
Geologically, this area consists of gneiss, charnockits, crystalline limestone, calc gneiss, etc., of the Pre-Cambrian Highland Series. All of these rocks are in fresh condition hard and homogeneous with very few cracks, qualifying this site as an excellent quarry for rock materials and coarse aggregates. Results of Boring DM-29 show that rocks above E.L 225 m are gneiss and charnockite while those below this elevation are mainly crystalline limestone and calc gneiss.

The strike of the rocks varies from N-S to N 40°E. Dip is about 10° - 30° to west. Fault structures do not exist in this area.

Quaternary deposit covering these baserocks, is only top soil not exceeding l = -2 m in thickness. Talus deposits are rather rare.

The flat areas close to Amban Ganga are covered with river deposits.

In Boring DM-29, the thickness of weathered zone is about 15 m. This weathered zone is in a condition where relatively fresh blocks remain among decomposed rock. Blocks of fresh gneiss are very hard and suitable as aggregates for concrete.

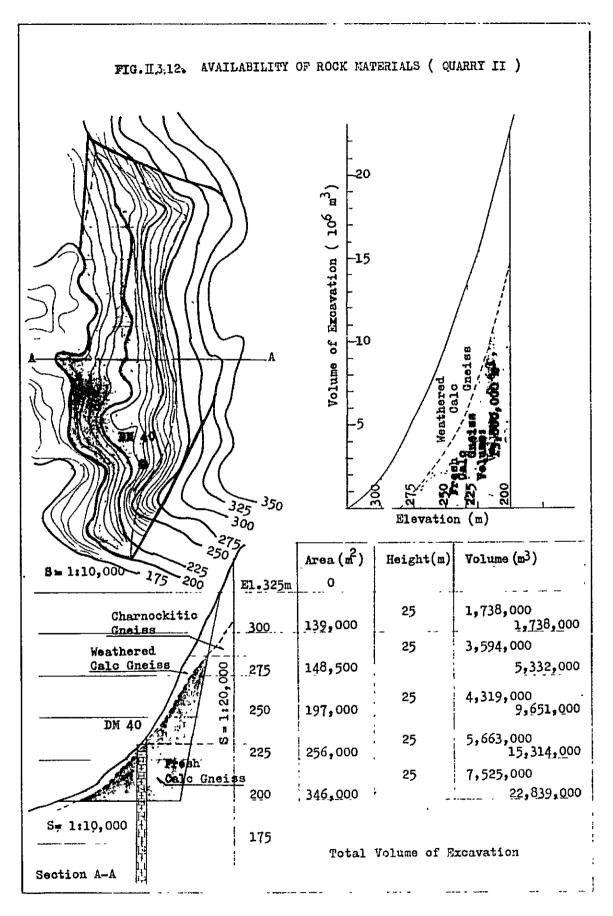

By selecting the area above E.L.200 m of this hill for quarry, it will be easy to construct a road for the transport of materials to the right bank of the damsite. This proposed quarry, which is referred to as Quarry Q-I, has a haulage diatance of only about 1.5 km. By the adoption of Bench Cut Method, it is possible to obtain sufficient cut face. This proposed quarry meets in every way requirement of a massive production of material. Sufficient material is available here only by cutting a small part of this hill (see Fig. I.3.11).

With regards to the rock material for the rockfill dam, Moragahakanda Hill which makes the left abutment for the second sub dam is considered suitable for a quarry as proposed earlier by the Japanese Preliminary Survey Team. This area hereinafter refered to as Quarry Q-II (see D. II. 18) is geologically very much similar to Quarry Q-I. In Boring DM-39, rocks above E.L. 280 are seen to be gneiss and charnockite while those below this elevation are calc gneiss, crystalline limestone etc. Both drillings DM-37 and DM-40 encountered crystalline limestone or calc gneiss. As in the case of Quarry Q-I, all the fresh rocks are hard and homogeneous with very few cracks.

The strike of the rocks is almost in the N-S direction and the dip ranges from 15° to the horizontal.

Quaternary deposit distributed over the baserock is only topsoil of thickness not more than 1 m - 2 m, while very thin layers of talus deposit are observed rarely.

Thickness of the weathered zone is about 4 m in DM-37, 9 m in DM-39 and 2 m in DM-40. The thickness in DM-39 is deemed common on the slope, whereas thin weathered zone as is seen in DM-37 and DM40 is exceptionally characteristic for the terrace which had undergone intensive erosion in the past.


II-86

Weathered condition is very much similar to that in Quarry Q-1, with relatively fresh blocks contained in decomposed rock.

Considering the eastern side of this Moragahakanda Hill becomes the abutment to the second sub dam, the quarry should be located on a relatively steep slope above E.L. 200 m on the southeast face of the hill, for advantages as follows:-

- * By selecting the quarry at an elevation above the highest water level in the reservoir, future problems of leakage through exposed rock could be avoided.
- * The soil covering is thin.
- * To make it possible to have cut faces as long as possible.
- * To bring down the average gradient of the road for transport of materials to about 5 %.

As a result, the average distance of haulage from the Quarry Q - II to the damsite is about 1.5 km. Considering the scale of this hill and the quality of material available here, there is no problem with respect to the quantity of exploitable rock material (see Fig. II.3.12).

II-88

3.4.2 Physical and Mechanical Properties

Quarries Q-I and Q-I consist of various rock types such as gneiss, limestone, calc gneiss, charnockite etc., either in fresh condition or in weathered condition. Several samples picked up from drill cores in

various degrees of weathering were tested for the physical and mechanical properties such as specific gravity, absorption and compressive strength. The results of these tests are summarized in Table II.3.12.

In this table, samples denoted with DM-29 represent Quarry Q-I, while those with DM-37 represent Quarry Q-I. The remaining samples are obtained from the drillings made along the dam axis.

It is clear from this table that fresh gneiss has a specific gravity in the range of 2.91 to a rarely high value of 3.35, and a mean value of 3.04. Specific gravity of weathered gneiss is about 2.82 while that of calc gneiss is in the range of 2.83 - 2.91. Fresh limestone shows values in the range of 2.88 - 2.92.

Except for weathered gneiss which shows a relatively high degree of absorption in the range of 0.37 % - 0.57 %, all the rock types show values generally less than 0.25 %. The average absorption for the fresh rocks of all types is 0.17 %.

The compressive strength of fresh gneiss is realatively high with values varying from 1,111 kg/cm² to 1,832 kg/cm² and with an average value of 1,542 kg/cm². Calc gneiss shows a compressive strength in a wide range of 661 kg/cm² - 1,124 kg/cm². Although only two samples were tested, Fresh limestone has a compressive strength in the range of 668 kg/cm² = 842 kg/cm². It was impossible to determine the strength of weathered gneiss because of cracks in the boring core specimens.

As clear from the forgoing, the rocks available in Quarries Q-I and Q-I have a compressive strength in a wide range of about 650 kg/cm² - 1,800 kg/cm².

Furthermore, tests were also conducted with blasted rock samples obtained from outcrops in the vicinity of Quarries Q-I and Q-II. The results of these tests for the various properties such as absorption,

SAMPLE To.		TION OF ACTION	ROCK TYPE	SPECI GRAVI		BSORPTION	COMPRESSIVE STRENGTH
	<u> </u>	epth (11)		S.S.D	DRY	(%)	(Kg/om²)
DX 29-83	Quarter E	14.5	Weathered	2.817	2.807	0.374	- *
DX 29-85		14.5	Gneiss	2.832	2.816	0.570	- *
DX 29-127	•	19.0	Fresh Gneiss	-	-	-	1832
DN 29–128	m	19.2	n	2.914	2.912	0.064	1492
DN 29-135	•	20.8	я	-		-	1542
DN 29-139	-	20.9	H	2.997	2.986	0.377	12 0 0
DN 29-155	-	23.3	nt	3.164	3.162	0.080	1813 ·
DN 29-162		24,5	-	2.803	2.797	0,202	1536
DN 29-162	•	24.5	-	3.353	3.349	0.134	1536
DN 29–176	n	26.1	π	-	-	-	1818
DH 29-177	•	26.2	n	-	-	-	1111
DN 29-183		28.8	Calc Gneiss	2.834	2.827	0.251	1124
DN 29-220	#	37•7	n	2.847	2.842	0.185	661
DN 29-254	Ħ	45•3	Fresh Linestone	2.880	2.874	0.233	668
DH 37-16	Quantity II	2.6	Calo Gneiss	2.914	2.913	0.038	773
DX 37-37	Ħ	6.8	Fresh Linestone	2.922	2.919	0.107	842
DN 6-2	Dan kris	11.7	Fresh Gneiss	3.055	3.054	0.037	19 96
DX 7-18	-	11.5		3.063	3.061	0.021	1847
DN 16-77		15.7	-	2.917	2.916	0.045	1268
DN 16-86		18.2		2.927	2.926	0.043	1792
DH 19-28	12 -	13.1	Crystalline Limestone	2.896	2.891	0.149	473
DX 20-23	•	7.0	Gneiss	3.180	3.106	0.052	1889
DH 2325		15.8	Calc Gneiss	2.915	2.911	0.163	1132

Note: * Unable to determine the compressive strength due to cracks in the rock samples.

.

.

Rest / Instruction March Idention March Idention March Idention March Idention Institution (100 rest) Jacks Commontion Jacks Commotididididididididididididididididididid	J	Quarry No.				н					H					II		
Oold Classification Basto Channolito Basto Channolito Basto Channolito Basto Channolito Basto Channolito Manualian After 100 yes 1.40 % 21.43% 22.53% 22.53% Manualian After 100 yes 36.07 % 21.43% 22.53% 22.53% Manualian After 100 yes 36.07 % 51.40% 69.13% 22.53% Manualian After 500 yes 36.07 % 51.40% 69.13% 22.53% Manualian Manualian Manualian Manualian 69.13% 22.53% Manualian Manualian Manualian Manualian 51.40% 53.00% Manualian Manualian Manualian Manualian Manualian 50.23% Manualian Manualian Manualian Manualian Manualian 51.40% Manualian Manualian Manualian Manualian Manualian 51.40% Manualian Manualian Manualian Manualian Manualian 51.40% Manualian Manualian Manualian Manualian Manualian 51.40% 51.50% Manualian Manualian Manualian Manualian Manualian 51.50% Manualian Manualian </th <th>3</th> <th>oratory No</th> <th></th> <th>2</th> <th></th>	3	oratory No															2	
Theoremation After 100 res T.40 % ST.4% ST.4% ST.4% Res Kort % Kort % St.4% St.4% St.4% Res Kort % St.4% St.4% St.4% St.4% Res J/k Cort % St.4% St.4% St.4% J/k J/k Local J.0% J.4% St.4% St.4% J/k J/k Local J.1% St.4% St.4% St.4% J/k J/k Local J.1% St.4% St.4% St.4% J/k J/k J/k Local J.1% St.4% <	S S S	k Classifi	oation	A	8	House			4	A here				Hei	athered	L Lime	stone	
Mr. dr. 100 rem Mr. dr. 10	- Al	aston Af	0			1.40	, ve				2.43	5				22-53		ļ
Reserve		; 	ter 500 res		- •	10-36	×.				61.BO	~	i		Ţ	\$61.95		
Reserve R <t< th=""><th></th><th></th><th></th><th>1</th><th></th><th>uersez.</th><th>\$737eedg</th><th>GLOAT 43</th><th></th><th>- Astened</th><th>j Boşşda</th><th>67,7006g</th><th>0584572</th><th></th><th>Titered (:E</th><th>y Botter</th><th>o î î î ê e e î î î e e e e e e e e e e e</th><th>(LEVAT #1</th></t<>				1		uersez.	\$737eedg	GLOAT 43		- Astened	j Boşşda	67,7006g	0584572		Titered (:E	y Botter	o î î î ê e e î î î e e e e e e e e e e e	(LEVAT #1
3* 1 1/2 1 1/2 1.505 0.204 3.000 3.005 1.33 1.466 0.247 2.900 1.633 1.505 0.233 1 1/2 3/4 1.112 1.607 0.315 3.095 5.971 1.531 0.3556 2.930 2.953 1.505 0.233 3/4 3/4 2.955 1.931 0.1072 3.093 3.094 3.70 1.535 0.535 2.955 1.555 0.535 3/4 3/8 2.956 1.439 0.315 3.034 15.60 0.51 2.911 2.655 0.507 2.556 0.507 0.501 2.911 2.655 0.507 0.501 3/8 3/8 0.315 3.034 15.60 1.560 0.51 2.911 2.655 0.507 0.501 14.9 14.9 7.2 1.501 3.034 15.60 1.563 0.501 2.914 2.955 0.501 18.4.16 18.4.3 1.6.5 1.6.5 1.503 1.701 0.695 0.501 2.944 2.929 1.693 2.04	9618 2834	Provide State	Returned				8	X	•	/4) 4148	LOBELY	R	1	-	1/4) ATHE	OPQY	33	DRT
1 1 2 3/4 1.12 1.607 0.375 2.056 5.951 1.531 0.356 0.530 0.530 0.536 0.530 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.536 0.556 0.556 0.567		1	1 1/2	1	1.704		8	8		1.469		2.900			1.505		2,919	2.91
3/4 3/6 2.56 1.531 0.107 3.004 3.70 1.502 0.20 2.655 11.24 1.565 0.504 3/4 3/7 3.034 15.60 1.560 0.51 2.911 2.896 13.90 1.567 0.504 * 3/4 8 3.2 6.5 6.5 1.439 0.315 3.034 15.60 1.560 0.51 2.911 2.896 13.90 1.567 0.504 * 10.6 8 5.2 6.5 1.650 1.560 0.504 1.567 0.504 * 10.6 8-16 5.2 6.5 1.650 1.567 0.504 * 10.504 1.650 1.650 1.650 1.650 1.667 0.504 * 10.6 10.504 1.22 1.717 0.49 2.944 2.929 1.653 2.04 * 10.6 1.717 0.49 2.944 2.929 1.653 2.04 * 10.6 1.717 0.49 2.944 2.929 1.653 2.04 </td <td>-</td> <td></td> <td>- V/c</td> <td>1.12</td> <td>1.607</td> <td></td> <td>2.995</td> <td>3.058</td> <td></td> <td>1.531</td> <td></td> <td>2.930</td> <td>2. \$20</td> <td>6.99</td> <td>1.536</td> <td>0.530</td> <td>2,890</td> <td></td>	-		- V/c	1.12	1.607		2.995	3.058		1.531		2.930	2. \$20	6.99	1.536	0.530	2,890	
No. N		3/5		2.56	1.531			3.049	3.70	1.502	_	2.820		11.24	1.565	0.620	2.907	2.890
We 4 We 4 We 4 3.2 14.9 14.9 We 4 We 4 6.5 7.2 11.0 11.0 We 4 Us - 30 4.5 4.5 6.3 6.3 We 4 Us - 30 4.5 5.2 4.5 6.3 6.7 We 4 Us - 300 1.023 1.701 3.106 3.053 3.053 2.944 2.929 1.693 2.04 Remarks: Ise Angles Abreaton Test we conducted as per Designation 21 of U.S.B.R. Concrete Manual by the 10 of U.S.B.R. Concre				4.70	1.439	0.315	_		15.80	1.560		2.911	2.896			0.504	2.918	2.903
Remarkst UNL-30 4.5 7.2 11.0 11.0 Null-30 UNL-30 4.5 4.5 6.3 6.3 6.3 6.3 Null-30 UNL-30 4.5 6.2 4.5 6.2 6.3 6.3 6.3 6.4 Null-30 UNL-30 1.803 1.701 3.106 3.053 1.717 0.49 2.929 1.693 2.04 Null-30 UNL-200 1.8023 1.701 3.106 3.053 1.717 0.49 2.929 1.693 2.04 Remarkst UNL-200 1.8023 1.701 3.106 3.053 1.717 0.49 2.929 1.693 2.04 Remarkst 1 Ios Angles Abreation Test was conducted as per Designation 21 of U.S.B.R. Concrete Manual by the ion of the ion of U.S.B.R. Concrete Manual by the ion of the ion	f 🗰			3.2		•			6.5					14.9				
P UE-16 UE-30 4.5 4.5 6.3 6.3 UL-30 UE-30 4.3 5.2 5.2 6.7 6.7 6.7 U-4 UE-200 1.823 1.700 3.106 3.053 1.717 0.49 2.944 2.929 1.693 2.04 Remarks: I Ice Angles Abrasion Test was conducted as per Designation 21 of U.S.B.R. Concrete Manual by the Soundance Manual by the Soundan	81 1		88-16	6.5	·				T.2					11.0				
Weight 4.3 5.2 6.7 Weight Use-200 1.823 1.701 3.106 3.053 1.717 0.49 2.944 2.929 1.693 2.04 Remarks: 1 1.8223 1.701 3.106 3.053 1.717 0.49 2.944 2.929 1.693 2.04 Remarks: 1 Ice Angles Abrasion Test was conducted as per Designation 21 of U.S.B.R. Concrete Manual by the 10 of U.S.B.R. Concrete Manuk by	•		06-30	4-5					4.5					6.3				
US-200 1.023 1.70 3.106 3.053 1.777 0.49 2.944 2.929 1.693 2.04 1) Los Angles Abrasion Test was conducted as per Designation 21 of U.S.B.R. Concrete Manue Oredang A.	•		-	4.3					6.2	``			•	6.7				
 Los Angles Abrasion Test was conducted as per Designation 21 of U.S.B.R. Concrete Nanu Orading A. 2) conducte Fact was conducted as new Designation 19 of U.S.B.R. Concrete Manual by the 	Ý		03-200		7			3.053		1.77	0.49	2.944	2.929		1.693	2°0	2.810	2.760
]) Low Argles Abrasion Test was conducted as per Designation 21 of U.S.B.R. Concrete Manu Orading A. 2) soundaise Fast wes conducted as mer Designation 19 of U.S.B.R. Concrete Manual by the	Ŕ					-	•		•			1					•	
Soundries Fast was conducted as war Designation 19 of U.S.B.R. Concrete Manuel by the			•		-		AE 001X	luoted		H Dent	gue tí o	21			onoreti		al using	र व
Sulphate Method.		N		Metho	_	ondapt.			at grant:	ien 19	to to	5. B.R.				the	Sodium	_

abrasion, soundness, density and specific gravity are presented in Table I.3.13. The rock types used in these tests are basic charnockite in the case of Quarry Q-I and limestone in the case of Quarry Q-I. These rock material obtained from outcrops are generally weathered during the long period of their exposure to the atmosphere.

The specific gravity of charnockite in Quarry Q-I is about 3.02 and that of limestone in Quarry Q-I is about 2.91.

In the soundness test by the Sodium Sulphate Method as per Designation 19 of U.S.B.R. Concrete Manual, the percentage loss is less than 4.7 % in the case of charnockite, but as large as 15.8 % for the particles passing 3/8" sieve and retained in US-4 sieve in the case of weathered limestone. However, the average percentage loss of all coarse aggregates passing 3" sieve and retained in US-4 sieve is only 2.2 % in the case of charnockite and 7.9 % in the case of weathered limestone.

Abrasion of charnockite is 7.4 % after 100 revolutions and 36.1 % after 500 revolutions as against the corresponding values of 22.0 % and 68.4 % of weathered limestone.

The average absorption of coarse aggregates is 0.27 % for charnockite and 0.40 % for weathered limestone.

3.4.3 Suitability as Rock Material

As mentioned earlier in 3.4.1, Quarry Q-II is meant for rock material for the rockfill dam. The laboratory test of the rock samples gives compression strength in the range of 650 kg/cm² - 1,800 kg/cm². The percentage loss in soundness test gradually decreases with the increase in size for particles above 5 mm. Taking the above into account, this material can be satisfactory for rock material for the rockfill type dam.

The design values of rock material are tentatively established as follows;

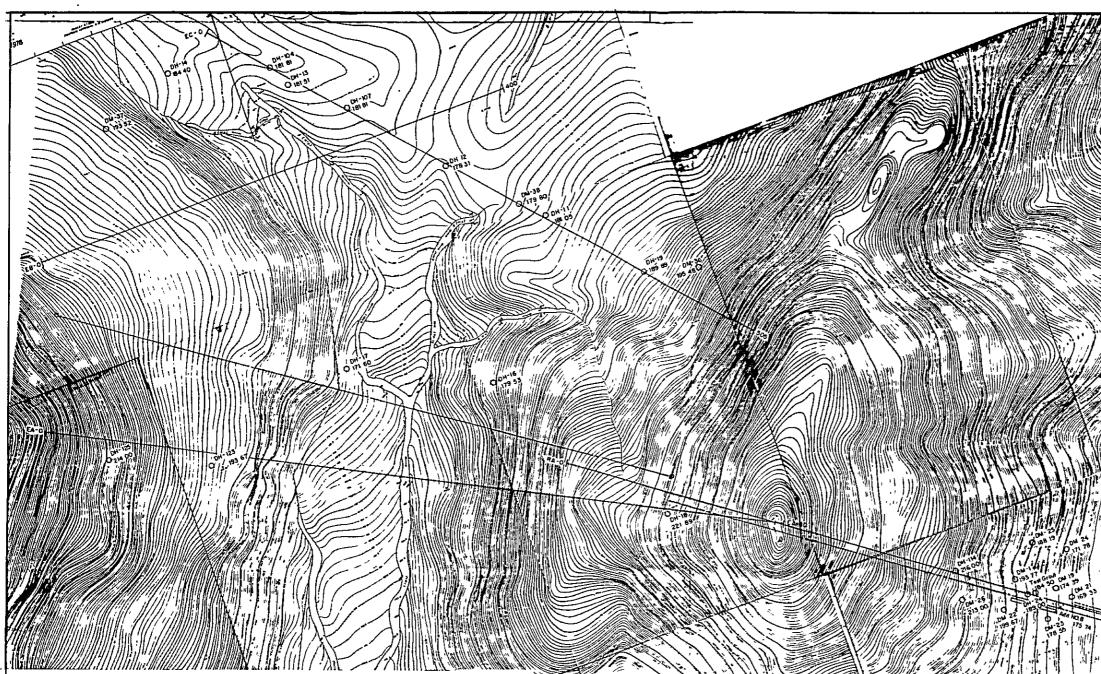
Moisture Content w = 2 % Specific Gravity G_s = 2.70 Dry Density γ_d = 1.80 t/m³ Bulk Density γ_t = 1.84 t/m³ Angle of Internal Friction ϕ = 40° (assumed conservatively)

Similar quality can be expected for calcareous rocks in the subdamsite No.1. In case that diversion channel is excavated through this site, the excavated material can be utilized for rock fill material.

3.4.4 Suitability as Coarse Aggregates for Concrete

Quarry Q-I is proposed as the quarry for carse aggregates for dam concrete. Results of the tests (see Table II.3.13) show that rocks obtained from this quarry sufficiently satisfy the following conditions for coarse aggregates as specified in the Concrete Manual;

Average absorption	= 0.22 % - 1.0%
Soundness (% loss)	= 2.2 % - 10 %
Abrasion after 100 rev.	= 7.4 % - 10 %
Abrasion after 500 rev.	= 36.1 % - 40 %
Specific gravity	= 3.02 - 2.60


By selecting rocks of charnockite and gneiss in Quarry Q-I above E.L. 200, sufficient quantity of material suitable as coarse aggregates for the concrete dam could be obtained.

3.4.5 Matters of Special Attention

The Large Scale Direct Shear Tests for which the preparations are being made at the field should be conducted without fail prior to the detailed design of the dams. The results of these tests should be taken into account in determining the design values.

At the stage of detailed design, it may be required to consider the necessity of excavating adits and conducting blasting tests in order to confirm the thickness of weathered zone and the variation of rock types in Quarries Q-I and Q-IL. ۰ ۰

. .

(t) Driling

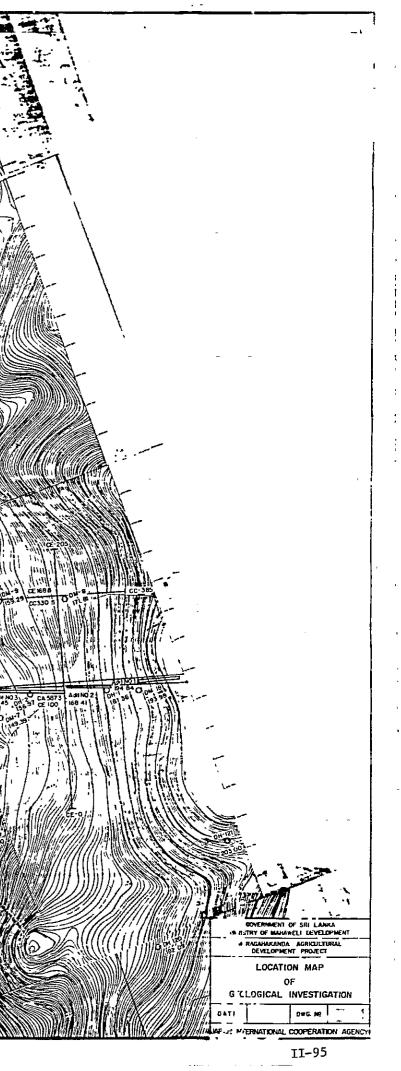
Hote NO	Depth (m)	EL.	Inclimation of hole	Hole	Depth (m)	EL	Incidented at hol
ж- і	32 36	181 36	Vertical	0+104	28.65	181 81	Vertica
2	30.76	1 56 97	i •	107	46 41	181 20	
3	30 05	14617	• •	114	30,48	216.00	•
- 4	31 47	150 00	<u>۰</u>	115	55 (9	162 46	
5	2758	174 96	1 ·	116	4623	154 66	•
6		i	1	107	60 96	15141	
7	25 31	190.00	• •	118	112 29	155 27	
. 6	45 72	179 83	i • 1	119	60 96	146 00	
- 9	4115	145 69	•	120	60.96	182.09	
10	22 15	108.36	•	121	30 58	203 00	
11	25.43	181 05	•	122	30 48	146 38	
12	21.34	17831	•	123	76 20	193 67	
13	19 20	181 51	•	124	40 23	155 00	•
I A Ì	12 99	184 40	•	125	30 66	214 00	•
5	26.26	23317	•	126	31 24	227 81	
5	26 37	179 37	-	i		i ı	ł
7	28.35	171 60	•		i 1		I
a	46 08	221 89	-				
9	25.07	183 83	•			i	
200	21 08	98.73	•			ı I	
21	41 61	260 00					1
22	31 39	260 60	•			i I	
23	60 96	147 73	•		1	. I	
24	61.65	189.00	4				
1							

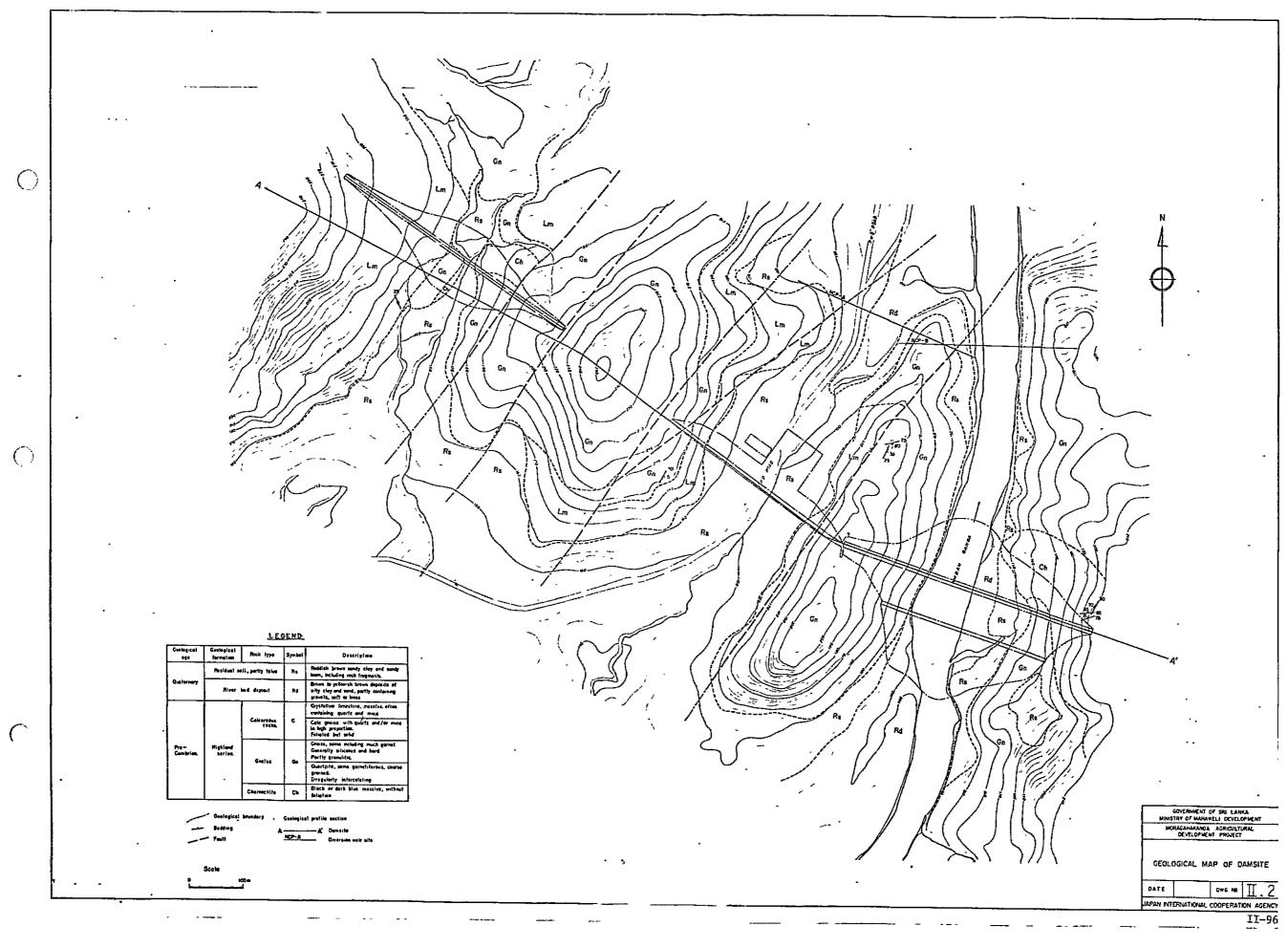
Depth EL (m) Inclination of Noise Hole NO Depth (m) EL (m) Inclination of Isla 45 90 193 77 Verination of Noise Depth (m) EL (m) Inclination of Isla 45 90 193 77 Verination of Noise Depth (m) EL (m) Vertication of Isla 36 10 193 77 Verination of Noise 30 100 (2 31 52 70 Vertication of Noise 38 10 148 01 - 32 12 00 Vertication of Noise Vertication of Noise 20.17 141 53 - 34 15 60 - - 21.39 178 1 - 36 61 25 195 478 - 33 05 155 29 - 37 61 60 193 523 - - 8 41 156 60 - 38 98 147 352 387 - - 8 193 171 83 - 0w-1 30 00 - - 400 14 02 133 - 21 55 50 -				-	_			
36 25 142 76 • 30 52 70 37 76 76 38 30 140 12 • 31 52 40 * 7 38 10 46 10 • 32 12 200 * * 7 7 7 10 12 200 * * 7 7 7 11 10 32 12 200 * * 7 10 * 7 10 * 7 11 12 10 * 13 13 90 * * 33 13 90 * 33 13 90 * 33 13 90 * 33 13 90 * 33 13 90 * 33 13 31 33 16 50 * * 33 13 31 33 13 34 19 * 33 30 10 * 30 10 * 33 33 14 33								
36 25 142 76 • 30 52 70 37 76 76 38 30 140 12 • 31 52 40 * 7 38 10 46 10 • 32 12 200 * * 7 7 7 10 12 200 * * 7 7 7 11 10 32 12 200 * * 7 10 * 7 10 * 7 11 12 10 * 13 13 90 * * 33 13 90 * 33 13 90 * 33 13 90 * 33 13 90 * 33 13 90 * 33 13 31 33 16 50 * * 33 13 31 33 13 34 19 * 33 30 10 * 30 10 * 33 33 14 33	45 90	191 77	Vertices		DM-29	45.00		
38 30 140 12 · 31 52 40 Vertical 38 10 140 1 · 32 12 00 Vertical 38 10 140 1 · 32 12 00 Vertical 20.17 141 33 13 50 · . . . 21.31 141 35 60 91 155 .					r - i			
38 10 148 01 • 32 12 00 Vertical 21 49 141 04 • 33 13 90 • 22 07.17 141 95 • 34 15 60 • 22 31 149 39 • 35 60 95 165 00 • 31 39 • 36 61 25 195 478 • • 33 05 155 29 • 37 16 10 19235 • • 18 41 156 00 • 38 56 35 179803 • • 7 671400 • 400 91 47 352 387 • • • 7 671400 • 400 91 74 •								-
21 49 141 04 , 33 13 90 , 20.17 141 55 , 34 15 60 , 22.31 143 99 , 35 60 95 165 00 , 31 33 171 81 , 36 61 25 195 478 , 33 05 153 29 , 37 61 60 193 523 , , 84 1155 00 , 38 85 35 179 803 , , 8201 143 38 , , 39 91 47 , , 8201 143 38 , , 091 74 , , , 33 96 156 52 , , 33 , , , 33 96 156 52 , , , , , , 213 71 163 91 , , , , , , , 33 96 156 53 , , , , , , , 33 96 156 52 , , , , , , <td< td=""><td>38 10</td><td>148 DI</td><td>•</td><td>Ļ</td><td>•</td><td></td><td></td><td>Vertical</td></td<>	38 10	148 DI	•	Ļ	•			Vertical
20.17 141 55 34 15 60 , 22.33 143 39 35 60 95 165 00 , 33.05 153 29 37 61 25 195 478 , 33.05 155 29 37 61 60 195 523 , 18 41 156 00 38 56 35 179 603 , 8.281 140 241 39 91 47 32 387 , 8.00 143 86 0w-1 30 00 , , 8.00 13 86 0w-1 30 00 , , 14 10 140 13 2 19 50 , , 33 56 156 52 33 56 156 52 . <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
22 33 148 39								
31 39 171 81								
33 05 159 29 37 61 60 193 523 18 41 155 00 38 56 35 179803 8 281 140 24 39 91 47 352 367 7 671 140 01 40 39 91 47 352 367 8 00 143 38 0w+1 30 00 . 14 10 140 13 2 19 50 . 14 02 139 78 . . . 33 58 155 52 . . . 23 47 193 98 . . . 33 59 155 52 . . . 23 47 193 98 . . . 33 59 155 52 . . . 23 47 193 98 . . . 33 49 169 33 . . . 33 49 169 33 . . . 33 49 169 33 . . . 23 37 188 19 . . . 41 67 132 28 . . . 41 67 132 28 . . . 41 67 132 28 . . . <				[36	61 25	195 478	
18 41 156 00 38 58 35 179 803 - 8.281 140 241 39 91 47 352 387 - 7 671 140 01 400 91 74 - - 8.00 143 38 0w-1 30 000 - - 14 10 140 13 2 15 50 - - 33 56 156 52 2 - - - 23 47 195 38 - - - - 21 47 193 98 - - - - - - 33 58 156 52 -								
8.281140 24 39 9147 352387 7 671140 01 40 9174 . 8.00143 36 00×1 3000 . 14 10140 13 2 21550 . 14 02133 78 . . . 33 56156 60 . . . 33 56156 60 . . . 21 7 193 86 . . . 22 76 198 10 . . . 33 49199 671 . . . 42 80176 139 . . . 33 54189 671 . . . 42 80176 139 . . . 33 7188 19 . . . 41 67 192 288 . . .								
7 671 140 01 . 40 91 74 . 8 00 143 38 . DW-1 30 00 . 14 10 140 10 13 . 2 19 50 . 14 02 139 78 33 58 156 52 . . . 23 47 193 98 . . . 21 76 198 10 . . . 22 76 198 10 . . . 23 49 169 33 . . . 24 268 178 39 . . . 42 68 178 39 . . . 43 03 171 78 . . . 23 37 188 19 . . . 45 67 125 28 . . .					19			1
14 10 140 13 . 2 19 50 . 14 02 133 78 33 36 156 52 .								
4 02 133 78 33 96 156 60 	6.00	143.38	•		DW-I	30 00		
14 02 139 78 33 56 156 60 23 47 193 98 51 05 174 59 27 76 196 10 53 49 169 33 33 54 159 671 42 66 178 35 43 03 177 78 23 37 188 19 45 55 213 00 45 671 52 58 45 00 45 00 4					1 · · · I			
33.96 156.60 33.58 156.32 51.05 174.39 51.05 174.39 52.76 199.10 53.49 165.33 33.94 195.671 42.88 178.39 43.03 171.78 43.03 171.78 4								
23 47 193 98 • 5 51 05 174 59 • 2 22 76 196 10 • 5 33 49 169 33 • 5 33 49 169 33 • 5 33 94 199 671 • 4 42 68 178 33 • 4 43 03 171 78 • 7 23 37 188 19 • 4 45 55 213 00 • 4 45 67 192 58 • 5			•					
51 05 174 39 • 22 76 196 10 • 53 49 163 33 • 33 44195 671 • 42 88 178 32 • 43 03 171 78 • 23.37 188 19 • 45 95 213 00 • 45 467 192 288 •	33.58	156 32	•					
22 76 198 10 • 53 49 169 33 • 33 94 199 67 • 42 88 178 59 • 43 03 171 78 • 23 37 188 19 • 45 35 215 00 • 45 67 132 58 •	23 47	193 98		1				
53 49 169 33 • 33 94 199 671 • 42 68 178 59 • 43 03 171 78 • 23 37 188 19 • 45 55 213 00 • 45 71 192 58 •	51 05	174 39	•					
33 941 199 671 • 42 88 178 39 • 43 03 171 78 • 23 37 188 19 • 45 95 213 00 • 45 07 192 28 •	22.76	196 10	•	[1			
42 88 178 39 • 43 03 171 78 • 23 37 188 19 • 45 55 215 00 • 45 67 192 58 •	53 49	169 33		1				
43 03 171 78 • 23 37 188 19 • 45 55 213 00 • 41 67 192 58 •	33.94	199 67					I	
23 37 188 19 4 45 95 213 00 4 45 87 192 58 4			•				i	
45 95 213 00 + 45 87 192 58 +	43 03	17178	•					
45.67 192.58	23.37	188 19						
	43 95	213.00	•					
46 35 151 58 4	45.87	192.5B	•					
	46 35	151 58	4					

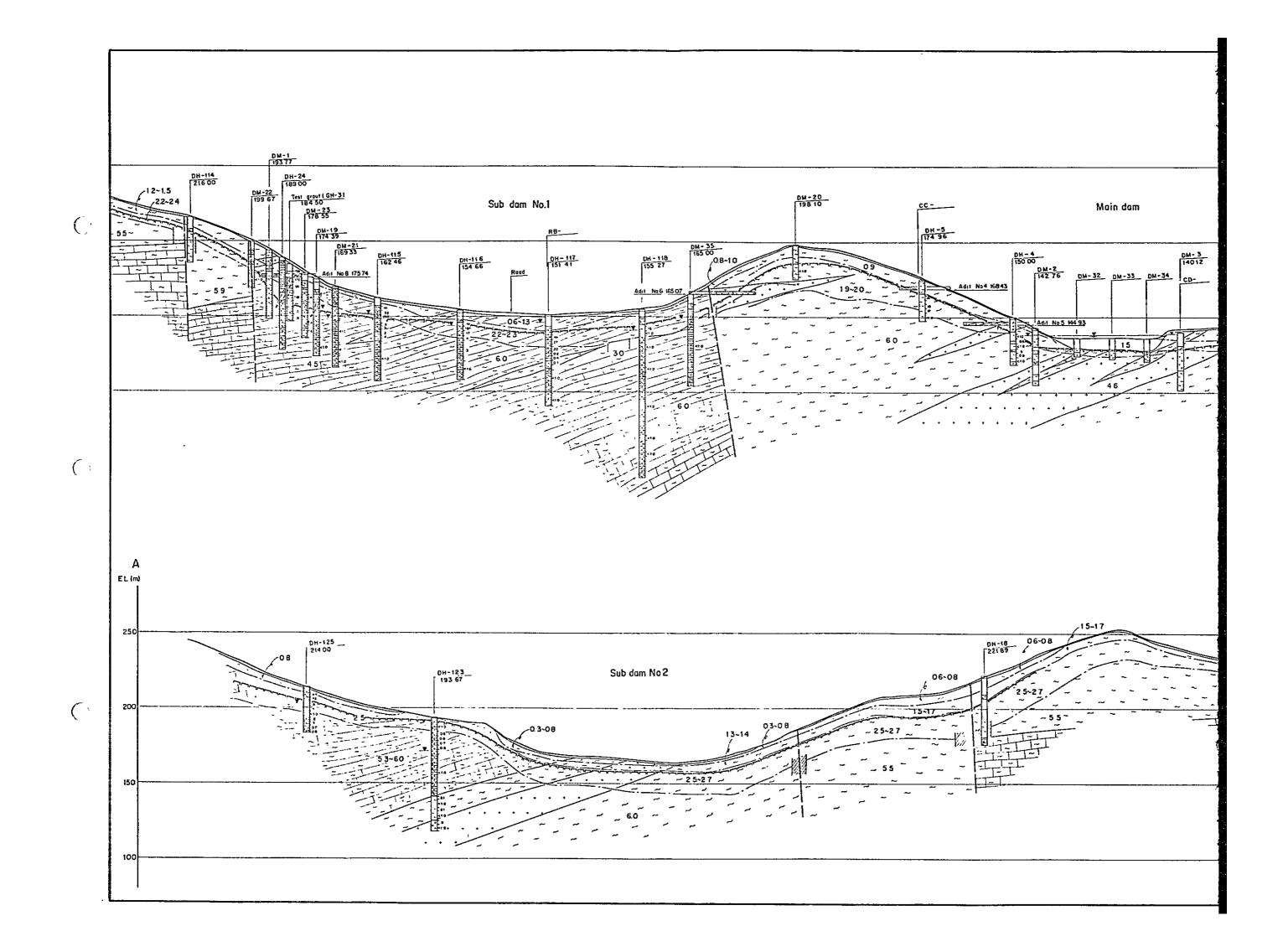
Hole NG DM-1

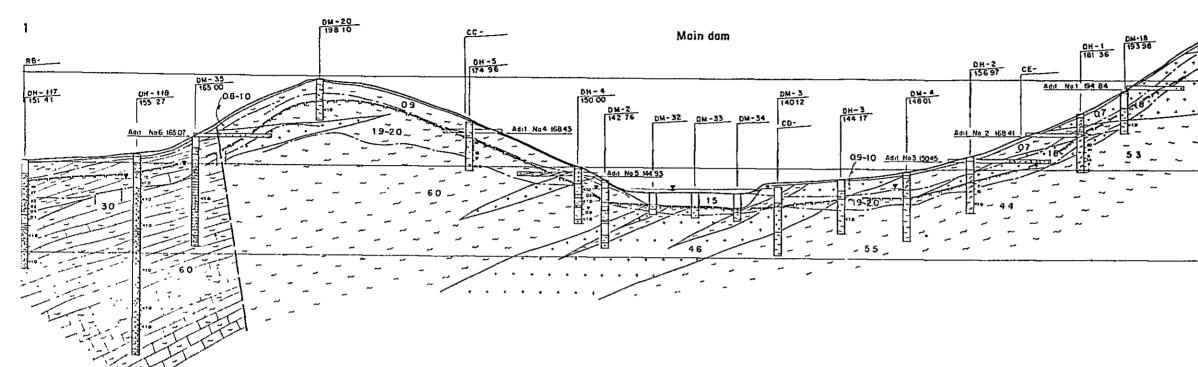
11

(2) Seismic exploration

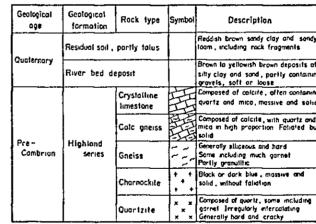

Esplaration line	Lengih (m)	Location	Remarks
CA	800	Main domaite	Parallet to dom arm
CB	385	• •	•
23	305		Vertical to dom asis
CD	305		
CE	205		-
RA	800	First sub demokite	Porefiel to dom ass
RB	300		Veriecol ins dom-esis
EA	605	Second sub domestic	Persiliet to dem cura
EB	405	.	-
EC	505	•	• · •
HCP- A	355	Diversion ware arts	Variated to rever
NCP-8	335	•	
12 lines	5305		

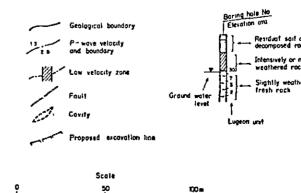

(3) Test odit

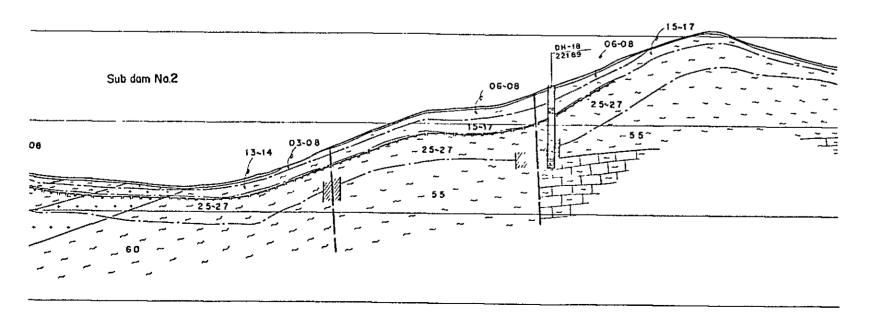

1		Length		
Localiza -	Totel (m)	turnet [m]	Open cut (m)	NQ
Right bank of main domsite	330	25 BO	72	ł
-	35 50	26.50	9 ĐÔ	2 3
•	58 50	48.75	9 75	3
Laft bank of most demails	36 00	29 00	7.00	4
•	45 00	40 50	4 50	5
Right bonk of first sub damark	45.00	30 00	15.00	6
Leff boe. of first sub domains	65.00		65.00	7
-	37 00	21 00	16.00	8
	355 00	221.55	133 45	1



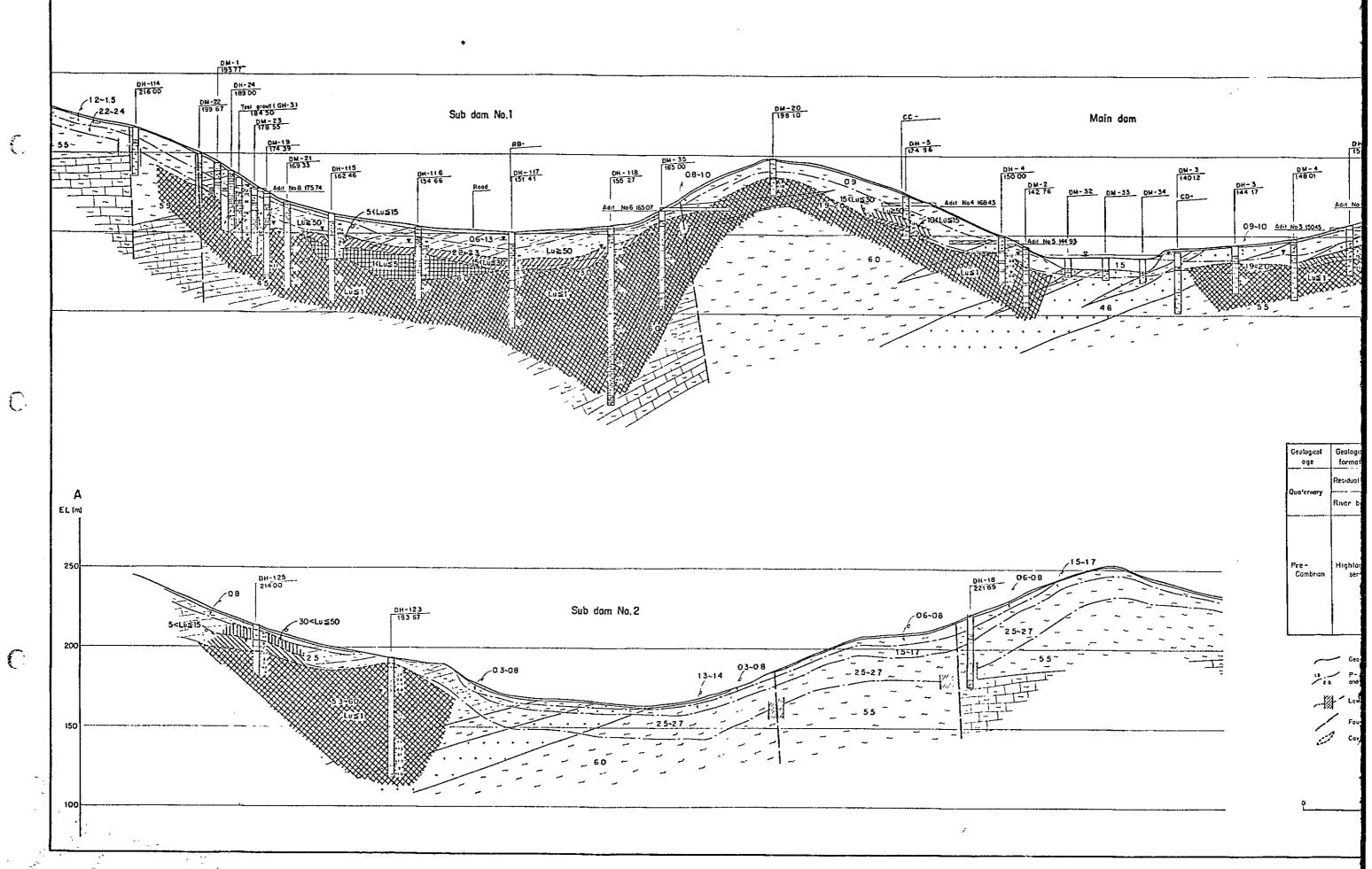
r		
(3) Test adil		





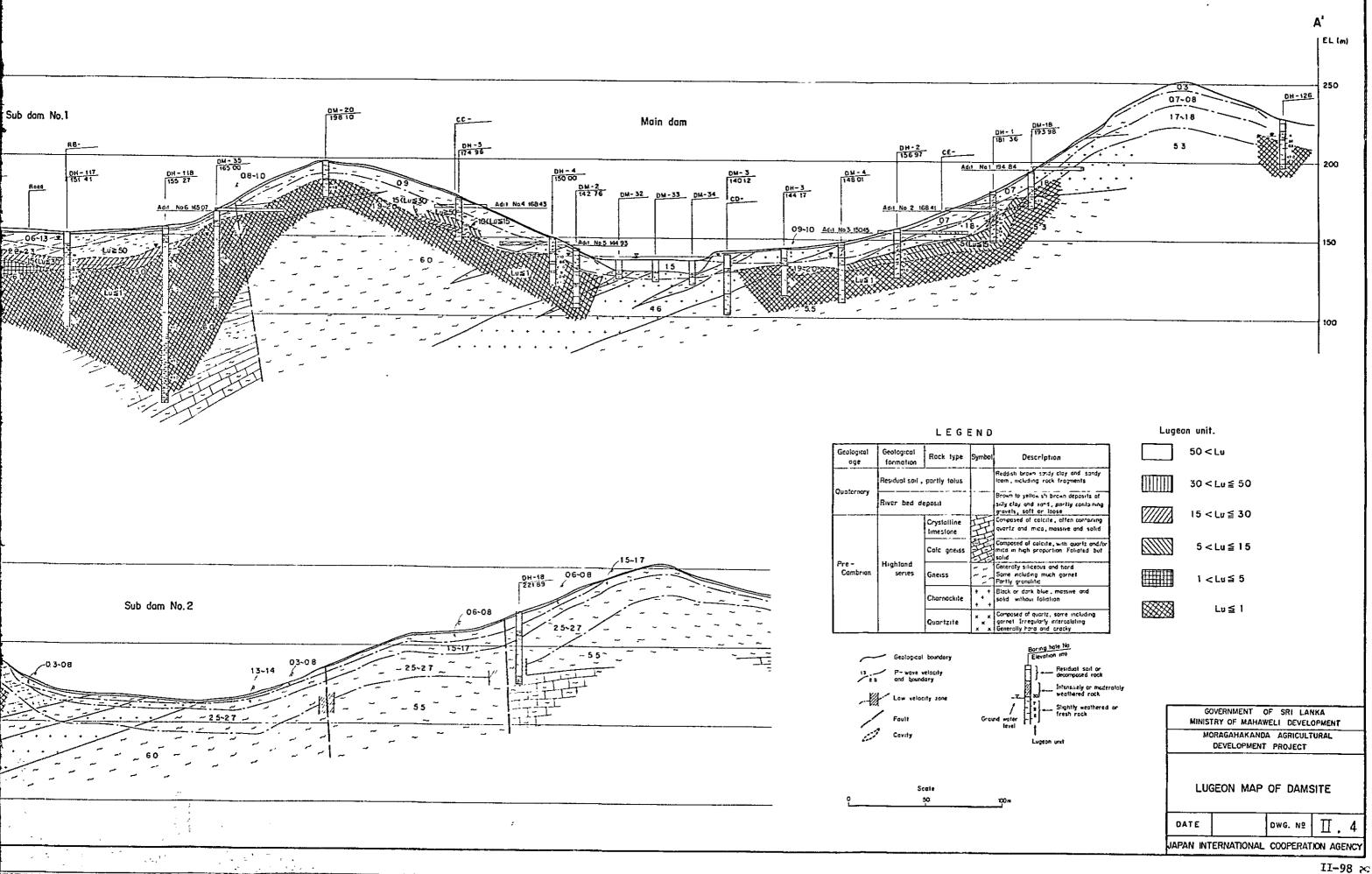


LEGEND

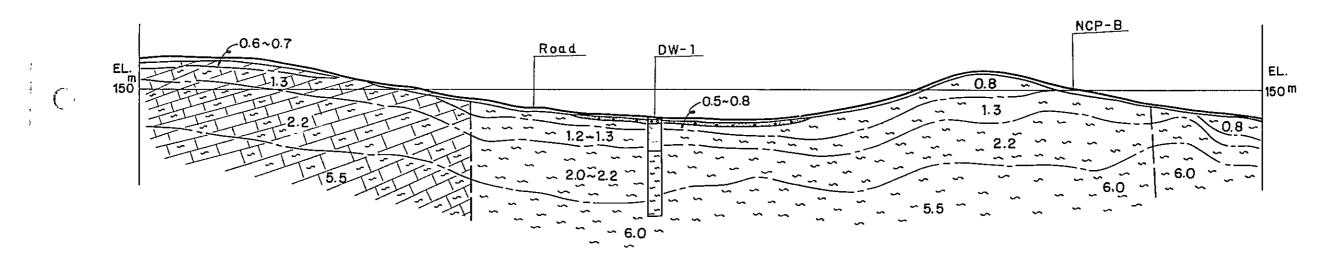

.

~

• •


•					
				A'	
				EL (m)	
	03	<u> </u>	DH-126	250	
	17~18				
A.C.	53				
* * *	<u> </u>		<u>El</u>	200	
	<u></u>			150	
	<u></u>		···	100	
y -					
ng '					
ng id				ť	
d/or ut					
r					
r ck noderatoly k					
k Fred or l					
	MINIST	OVERNMENT C	ELI DEVELO	PMENT	
	MORAGAHAKANDA AGRICULTURAL DEVELOPMENT PROJECT				
	GE	OLOGICAL	PROFI	LE	
		OF DA			
	DATE		DWG. Nº	Π.3	
	JAPAN INT	ERNATIONAL			

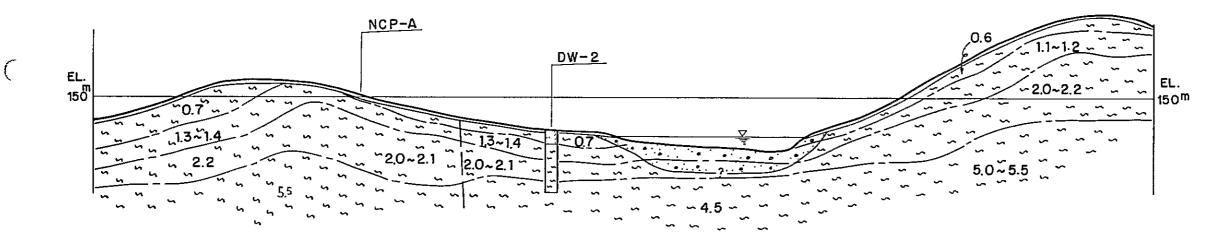
II-97

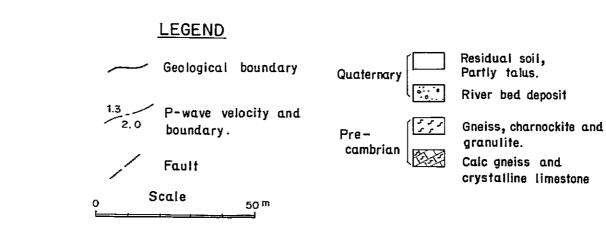

.

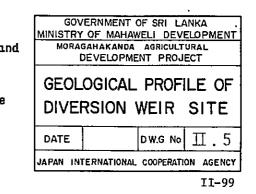
i u sta sta s st ~~~~ .

The second s A PARAMENTAL STATES AND A STATES

NCP-A

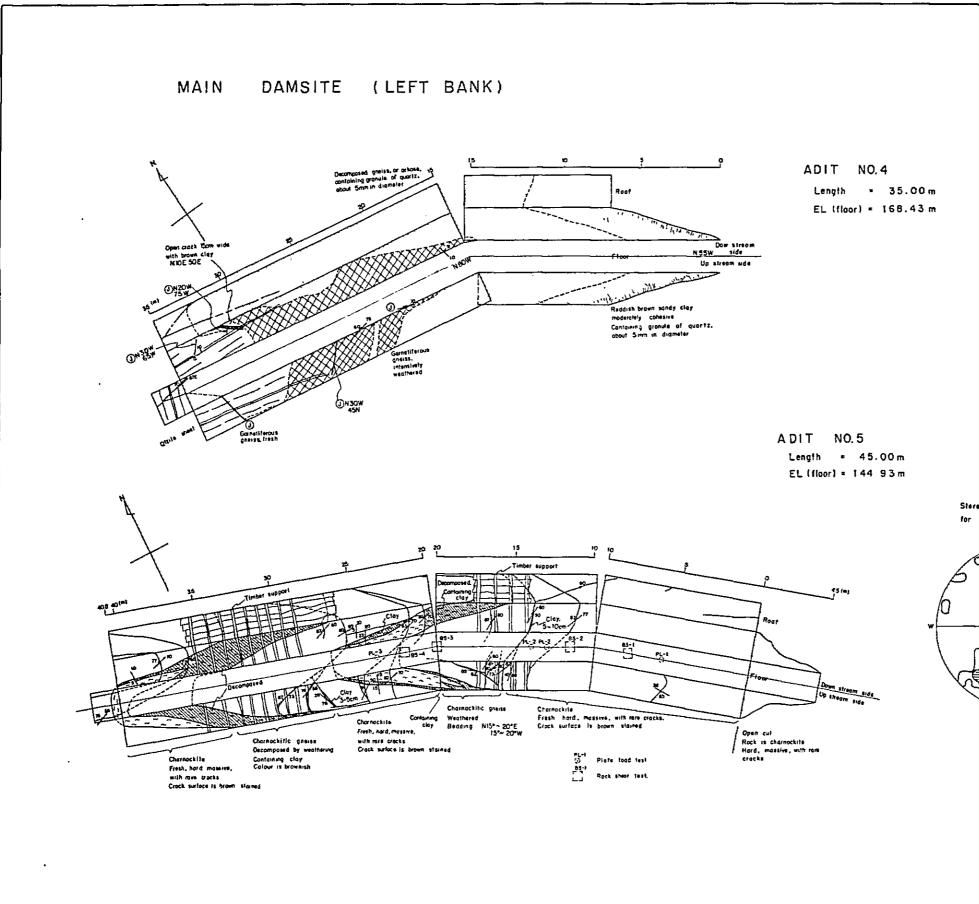

** **

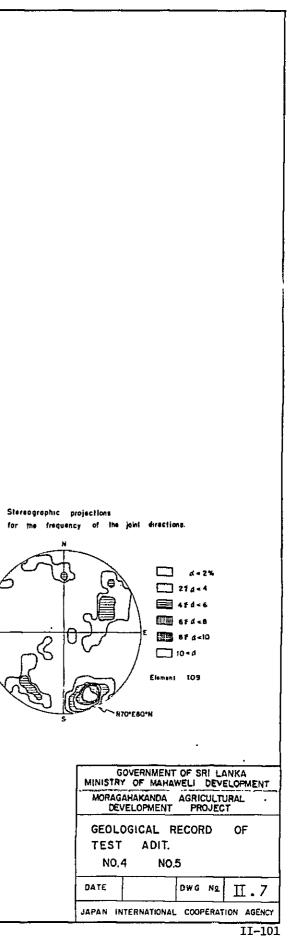

4


.

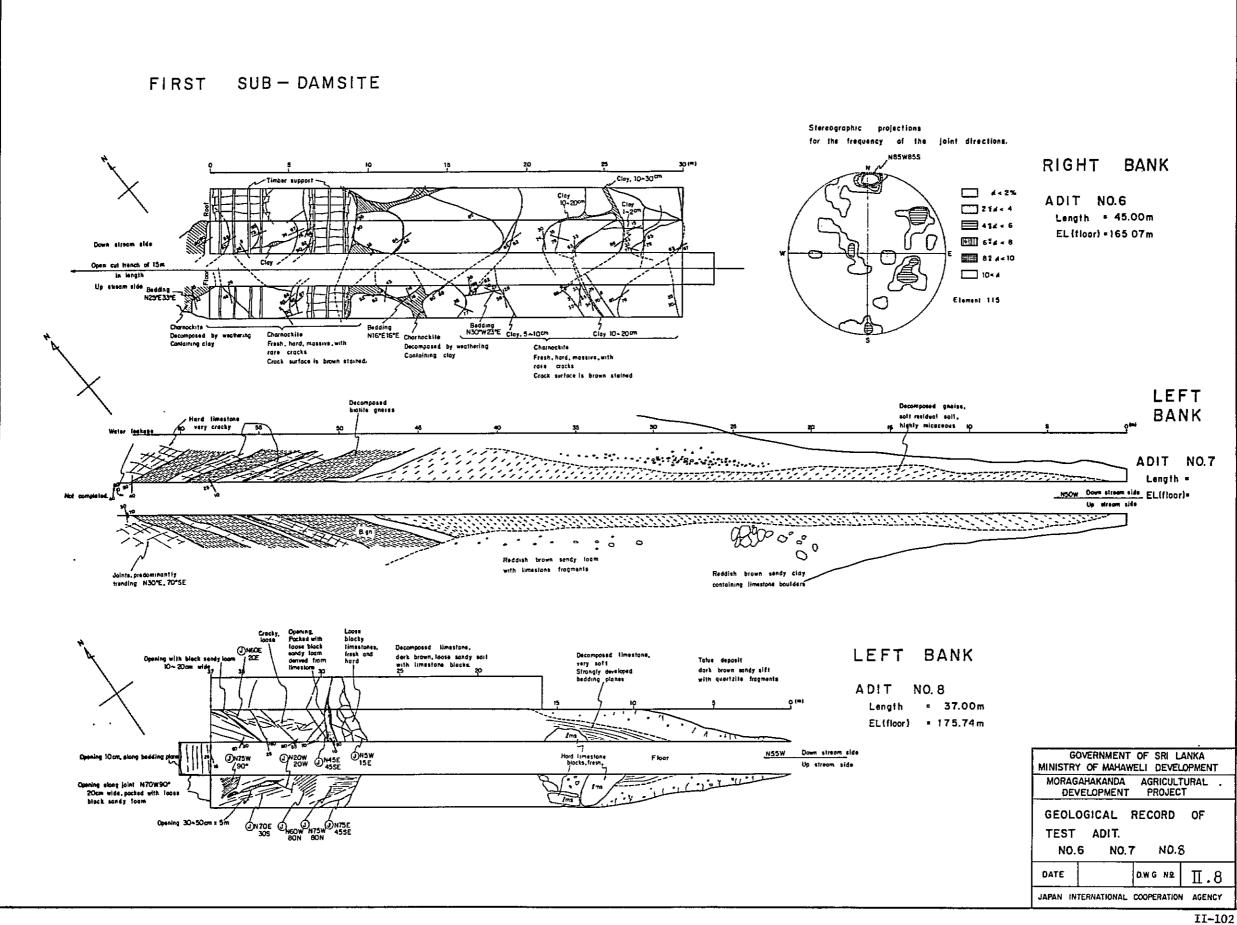
, ,

 \mathbf{C}

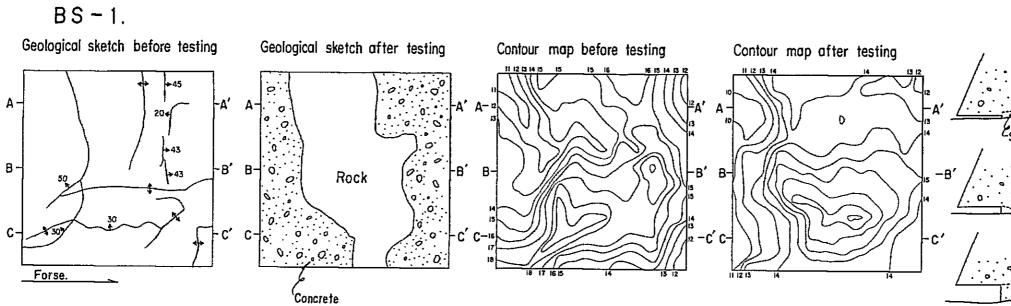


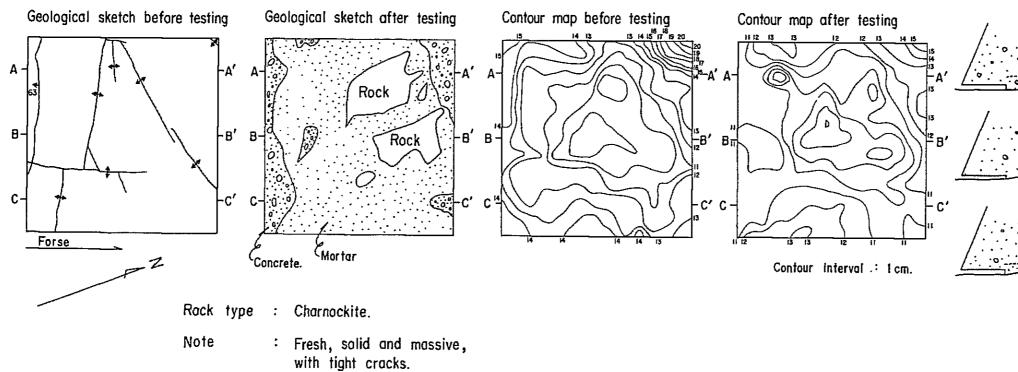


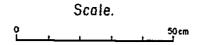
.

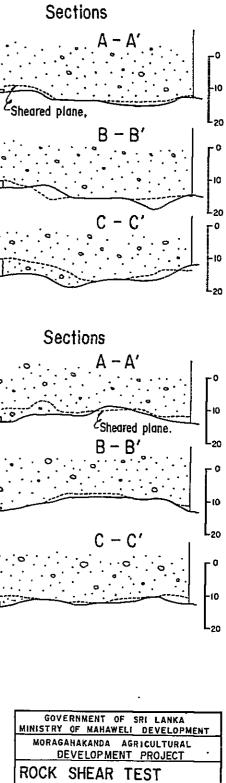

.

II-100

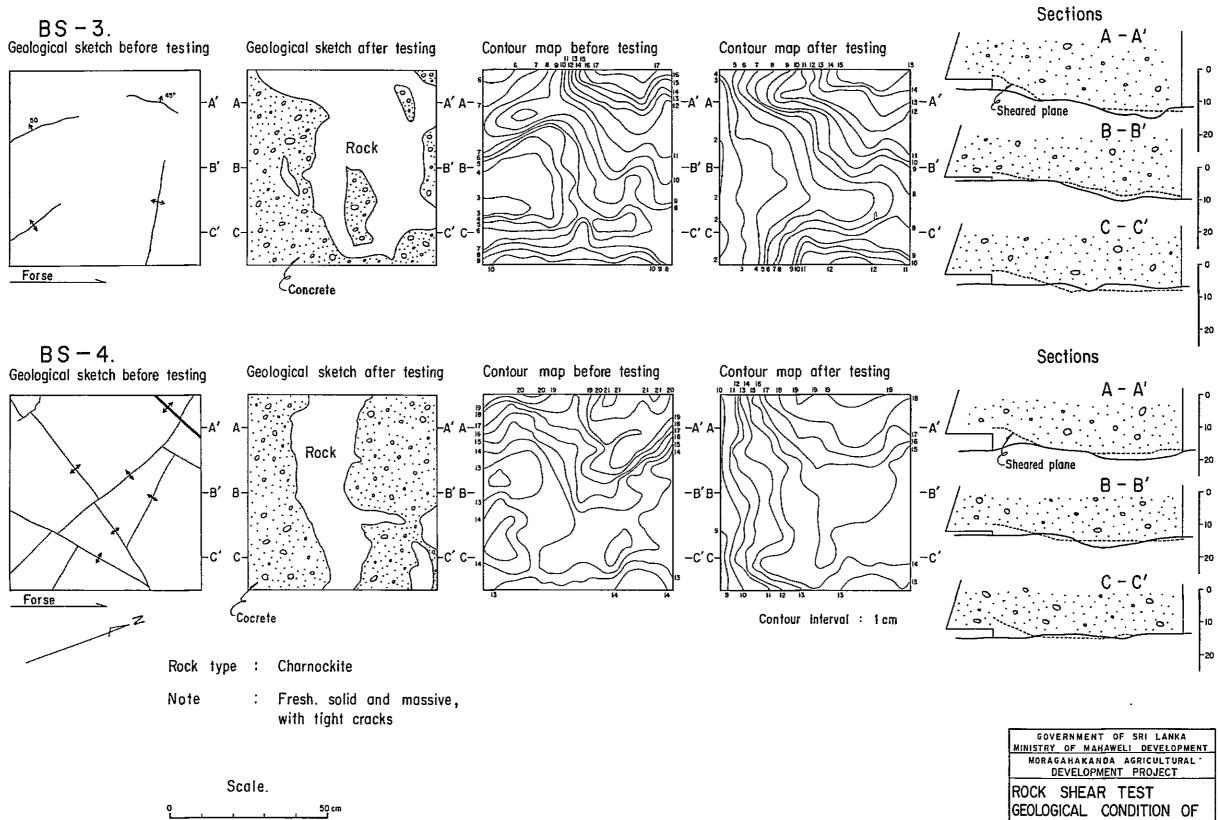



•



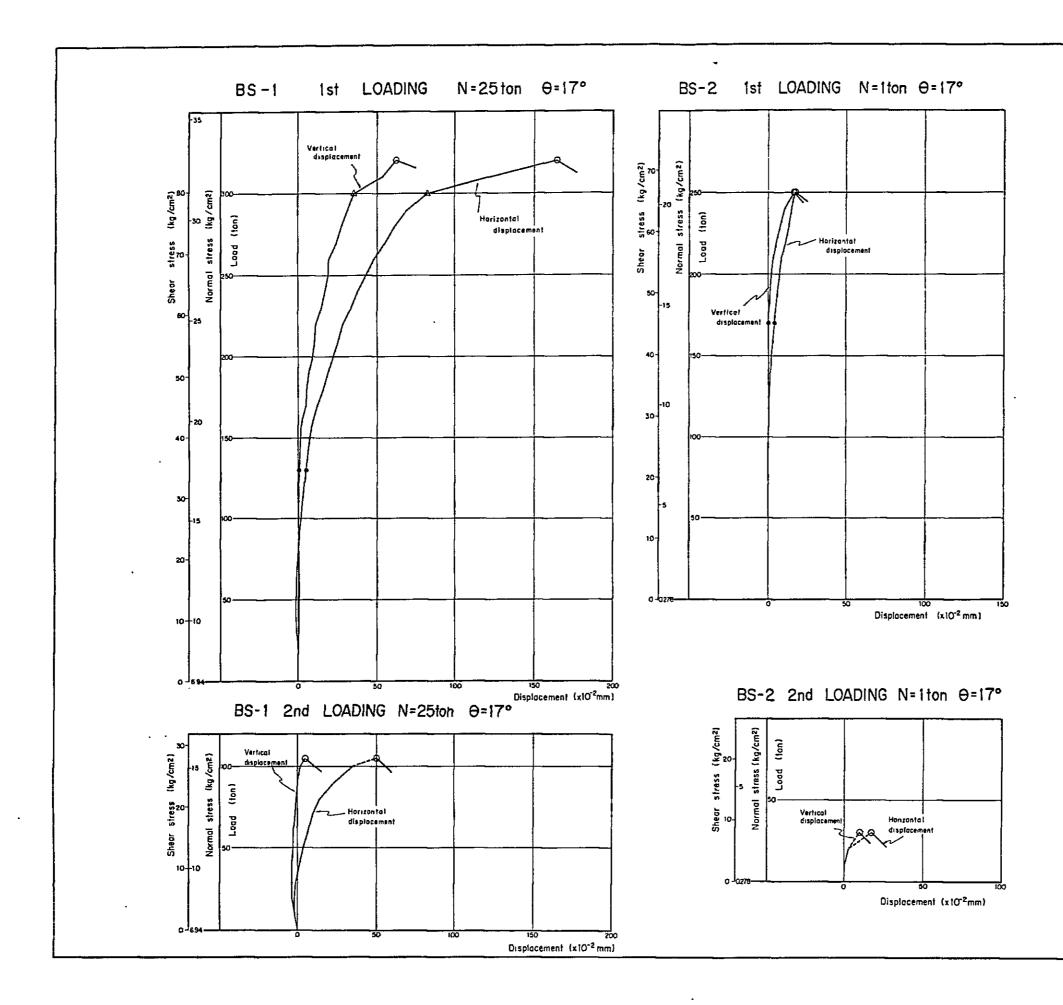

ł

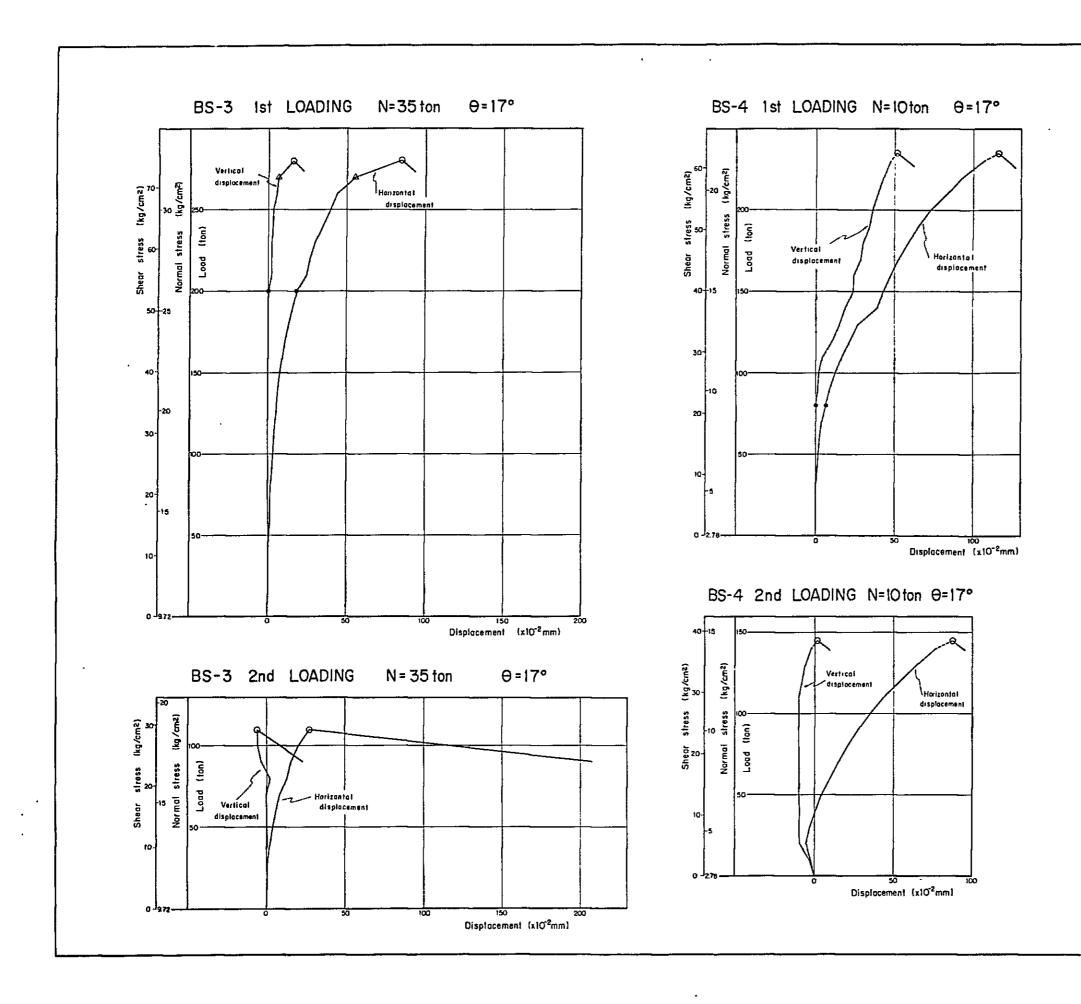
BS-2

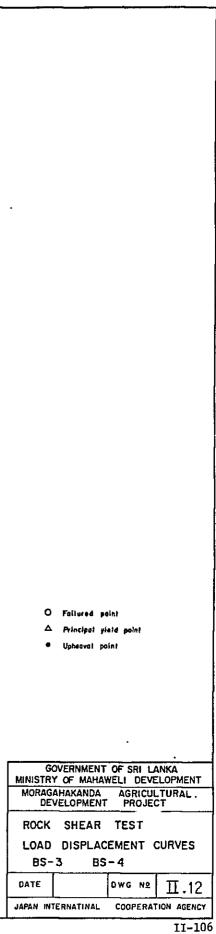


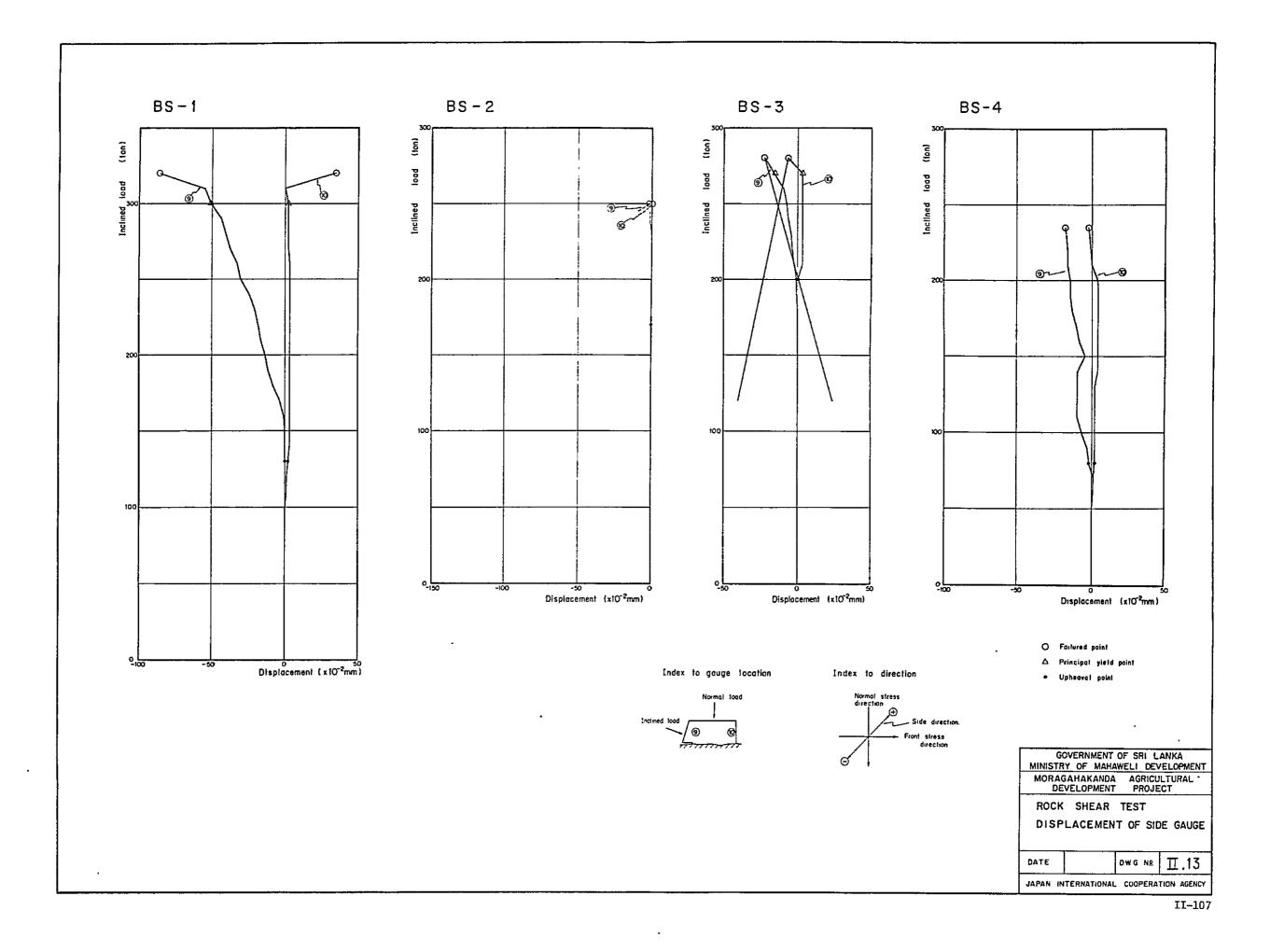
E	EVELOPMENT	PRO	JECT	•	
ROCK	SHEAR T	EST			
GEOLOGICAL CONDITION OF					
TEST PLANES. BS-1. BS-2.					
DATE	D.W.	G <u>No</u>	Π.	9,	
JAPAN INTERNATIONAL COOPERATION AGENCY					
			ТТ	102	

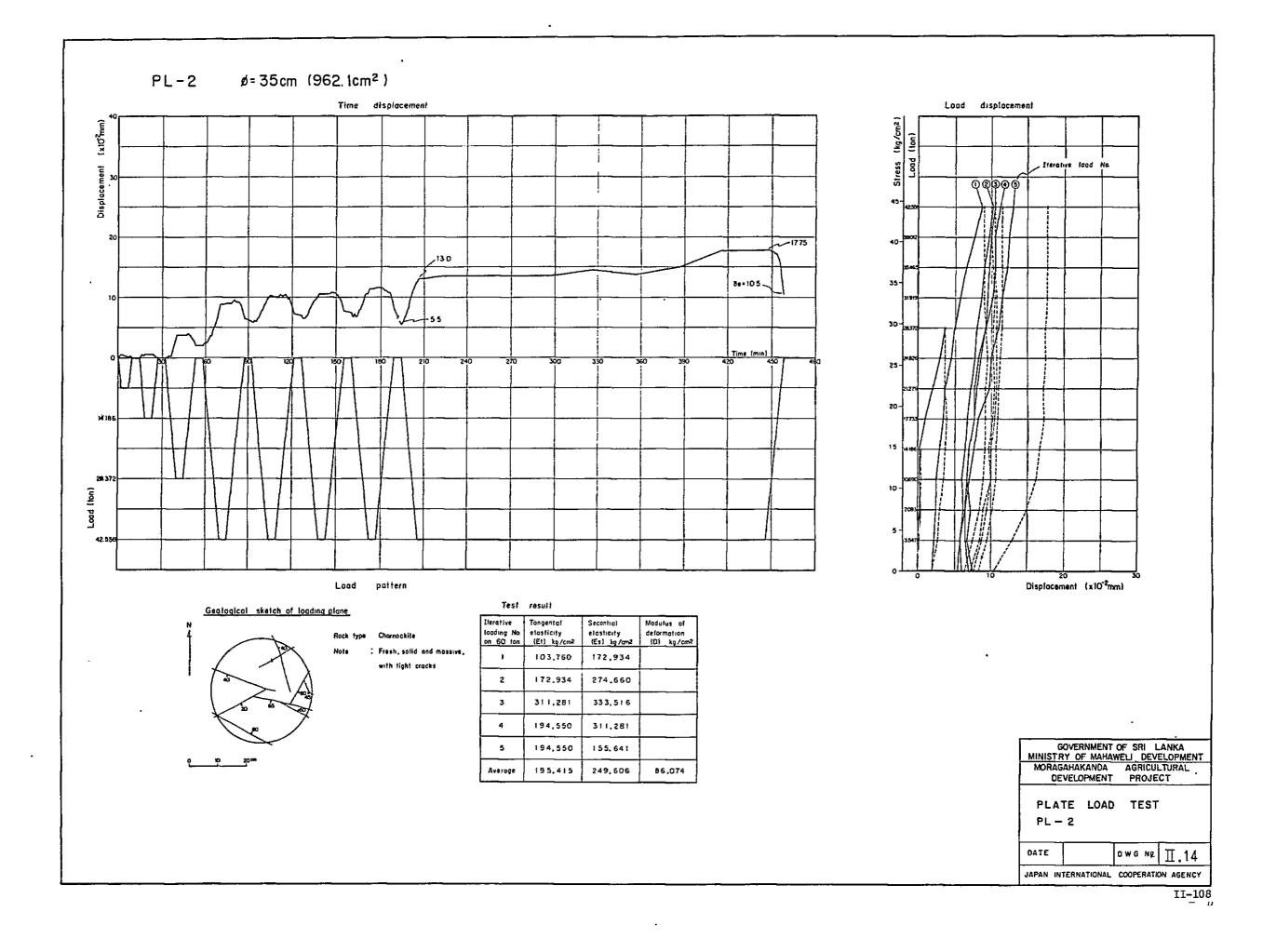
II-103

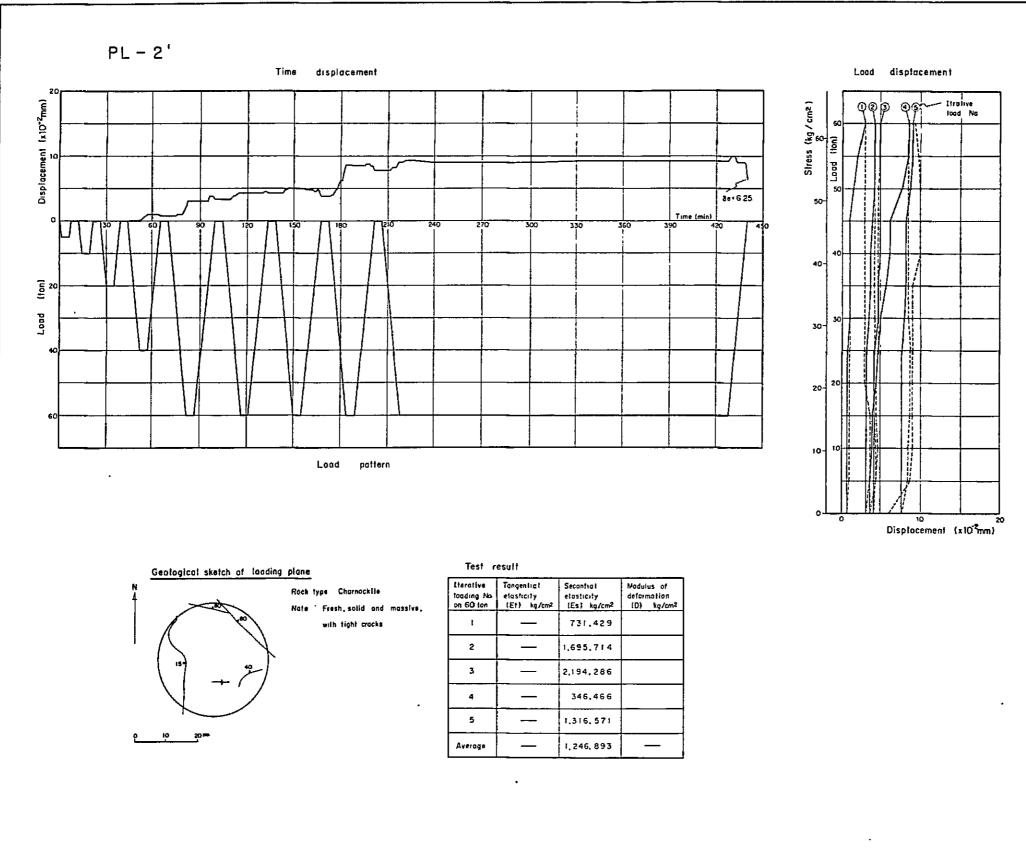

,

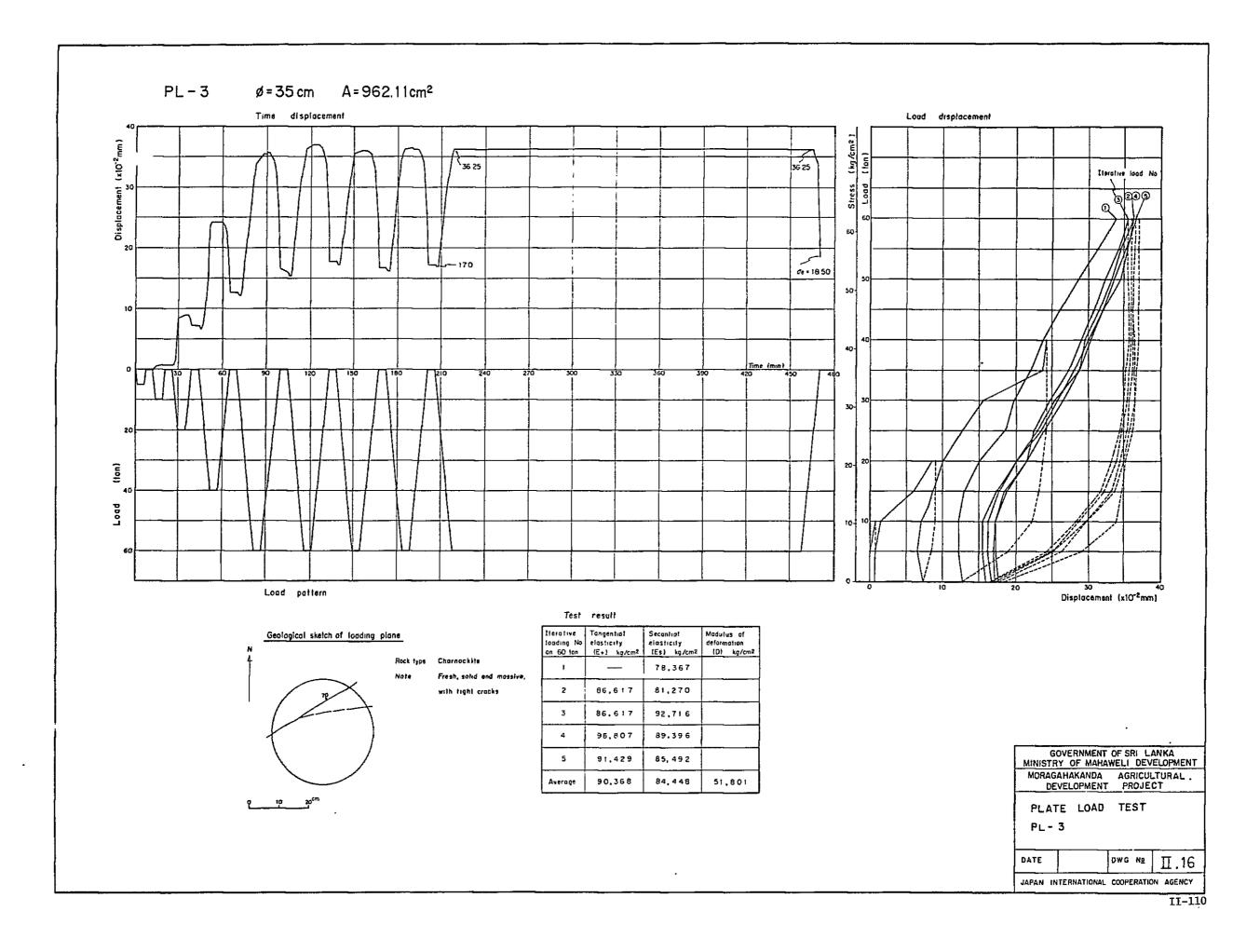

DATE JAPAN

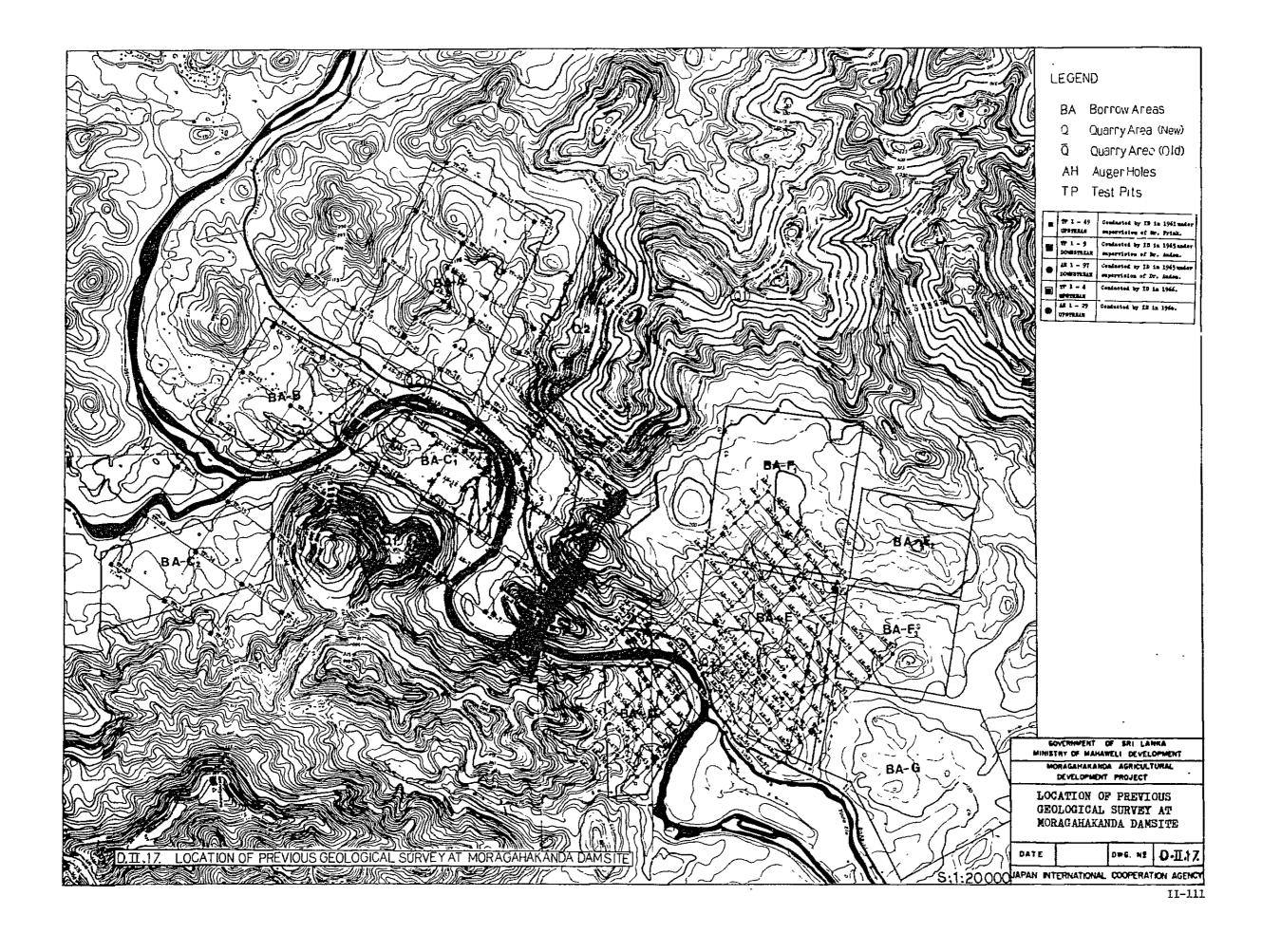

000		OF SRI			
MINISTRY	OF MAHA	WELL DEV	ELOPMENT_		
MORAGAHAKANDA AGRICULTURAL DEVELOPMENT PROJECT					
ROCK SHEAR TEST GEOLOGICAL CONDITION OF					
TEST	PLANES	S. BS-	3. BS-4.		
DATE		D.W.G <u>No</u>	п.10		
JAPAN INTERNATIONAL COOPERATION AGENCY					
			II-104		


4



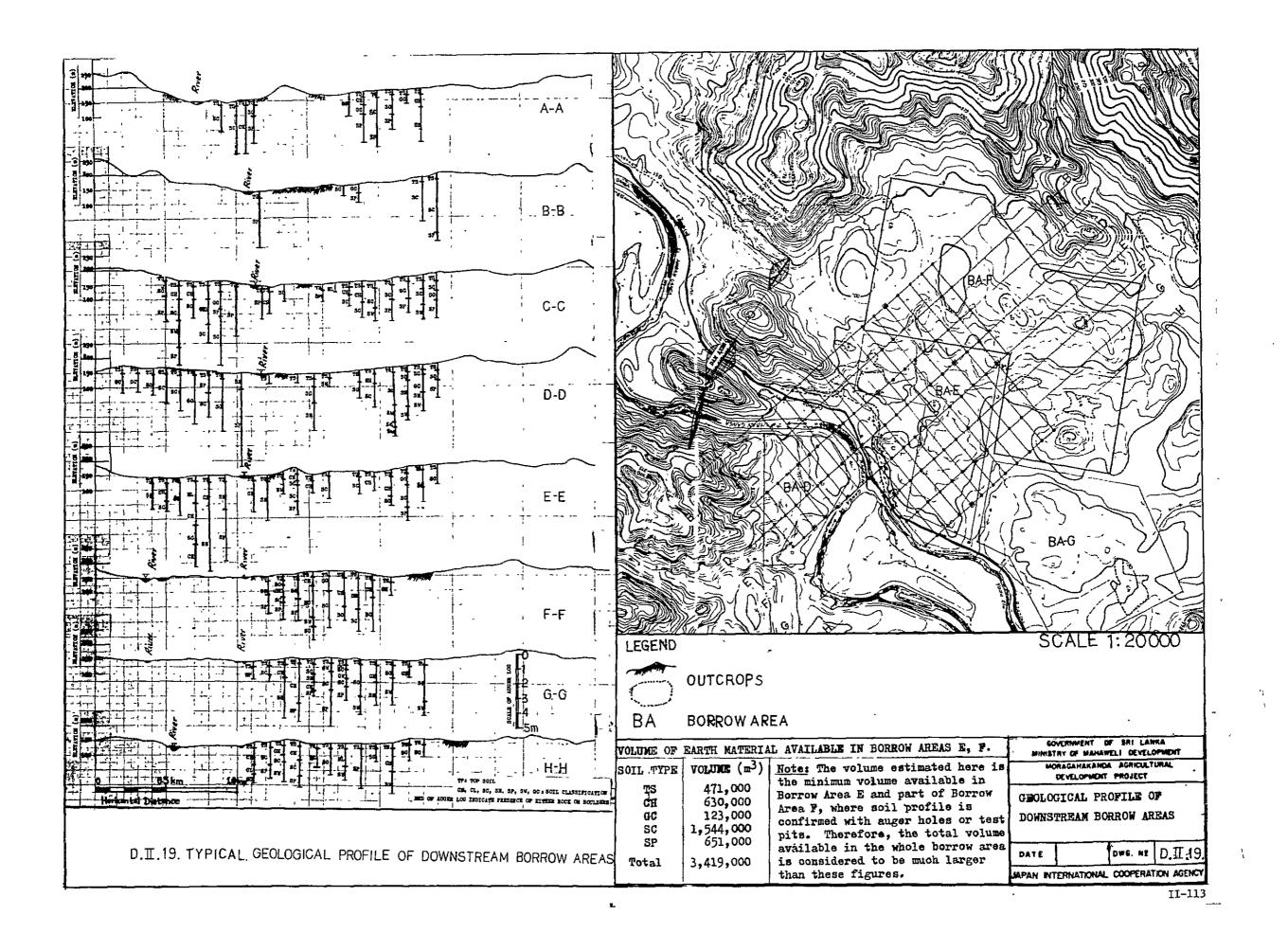

0	Failured pa	Int	
Δ	Principat y	ield point	
•	Upheaval pa	vint	
		-	
	ERNMENT		
	OF MAHA		
	HAKANDA ELOPMENT		
ROCK	SHEAR	TEST	
LOAD	DISPLA	CEMENT	CURVES
BS -	1 BS-	2	
DATE		D.WG N⊉	Ⅱ.11
JAPAN INT	RNATIONAL	COOPERATIO	N AGENCY
		ı	11-105





.

· · · · · · · · · · · · · · · · · · ·						
GOVERNMENT OF SRI LANKA MINISTRY OF MAHAWELI DEVELOPMENT						
MORAGAHAKANDA AGRICULTURAL - DEVELOPMENT PROJECT						
PLATE LOAD TEST PL-2'						
DATE DWG № 1.15						
JAPAN INTERNATIONAL COOPERATION AGENCY						
, II–109						


.

\mathcal{C}]		
	LEGEND								
		BA Borrow Areas							
K		Q Quarry Area							
Q	DM Rock Boring								
	AH Auger Holes								
	TP Test Pits								
	_			Blasting		s			
ŝ		TF 1 -	37	Conducted by	 ID is Joly	; 1978. ₁			
(TP 1 ~ /	4	Conducted by			1		
		DOMISTRI	EAN .	under superv Team,	tation of JI	CA	l		
	•	AR 1 - 3 DOMONSTR	26 Jan	Conducted by Under supers					
		AH 1 - 1		Team. Conducted by					
	۲	UTSTEEL		under supers Team for com	ision of Ji	14 I			
		DOWNSTRE	201	previous res Berrow Area.	ulte in end				
						J			
							ł		
M									
Ň									
. /									
7									
\checkmark									
N									
N									
7									
Ä									
~									
Л									
é		MIMST	R۲	MMENT OF	ELI DEVE	DPMENT			
\neg				AHAKANDA ELOPMENT		TURAL .			
	t		_	N OF		C.	٦		
	GEOLOGICAL SURVEY AT								
4	MORAGAHAKANDA DAMSITE								
1	DA	TE			0WG N2	D.II.18	ł		
5	JAPAN INTERNATIONAL COOPERATION AGENCY								
						II-11	2		

. . .

2 · · ·

1 -

. . ` • • • • -· · · · ·

۰ ۱ ۱ . ~ r - * - . . - --

-

. .

,

-