FEASIBILITY RESPOND

THE TYCHNIMITLYN RESIDENCORROBECTS

TOWNSHIP OF ANOTHERS

300101111 19

[AF 52-22] /20 & AF7

REPUBLIC OF SRI LANKA

FEASIBILITY REPORT ON THE INGINIMITIYA RESERVOIR PROJECT

VOLUME II: NOTES

1026830[8]

OCTOBER 1977

JAPAN INTERNATIONAL COOPERATION AGENCY

CONTENTS

	CONTENTS	
I Climat	e and Hydrology	
1.1	General	2
1.2	Climate	4
	Hydrology	
1.3		16
· .		16
	1.3.2 Yield of the River	20
en de la companya de	1.3.3 Flood Discharge	25
		•
II Topog	graphy and Geology	,
2.1	General	36
2.2	Topography	36
		26
2.3	Geology	36
2.4	Individual Geological Characteristics	37
2.5	Embankment Materials and Aggregates	38
	and the second of the second o	
III Soil	s and Soil Classification	
3.1	Physico-Chemical Properties of Soils	50
	3.1.1 Selection of Survey Sites	50
	3.1.2 Survey Items and Methods	50
	3.1.3 Results and Consideration	52
3.2	Irrigation Method	60
3.2		
•	3.2.1 Applicability of Irrigation Methods	60
	3.2.2 Furrow Irrigation	61
IV Agric	culture	
4.1	General	67
é.	4.1.1 Present Land Use and Production Patterns	67
	4.1.2 Agricultural Development under the Project	88
	4.1.2 Land Use and Cropping Patterns	68

		4.1.4 Future Project Output and Development Schedule	68
	4.2	Farm Equipments	69
	4.3	Farm Requisites	70
	4.4	Agricultural Labour	70.
	4.5	Interview at Project Site	77
		4.5.1 Land Use of Paddy and Yields of Encouraged Varieties.	77
		4.5.2 Time of Irrigation and Water Requirement	82
		4.5.3 Lift Irrigation Survey in Rajangana Project District	84
Λī	rriga	tion Plan	
-	5.1	General	86
	5.2	Identification of the Project Area	86
	5.3	Water Demands	87
		5.3.1 Effective Rainfall	87
		5.3.2 Water Requirement for Land Preparation	87
		5.3.3 Percolation and Dyke Leakage for Lowland Paddy	88
		5.3.4 Irrigation Efficiency	88
		5.3.5 Crop Water Requirement	88
		5.3.6 Irrigation Requirement	89
		5.3.7 Diversion Requirement	89
•	5.4	Water Balance between Supply and Demand	L06
		5.4.1 Computation Method	106
		5.4.2 Water Balance Computation	106
		5.4.3 Success Percentage	107
VÍ	Dam C	onstruction	
	6.1	Selection of Dam-Axisl	119
	6.2	Reservoir Parameters	119
	6.3	Selection of Dam Type	120
,	6.4	Embankment Design	120 ⁻

		6.4.1	Freeboard	120
		6.4.2	Dam Height	122
		6.4.3	Crest Width of Dam	122
		6.4.4	Gradient of Slopes	122
		6.4.5	Slope Protection Designing	137
		6.4.6	Design of the Detailed Parts of Dam	137
	6.5	Foundat	tion Design	141
	6.6	Spillwa	ay	147
		6.6.1	Location	147
		6.6.2	Type of Spillway	147
		6.6.3	Design Flood Discharge	149
		6.6.4	Type and Scale of Spillway Gate	150
		6.6.5	Cross Section of Spillway	158
		6.6.6	Emergency Spillway	158
	6.7	Spillwa	ay Tail Channel Section	158
•		6.7.1	Flood Water Level of the Mi Oya	158
	,	6.7.2	Tail Channel Section	159
	6.8	Intake	Facilities	163
		6.8.1	Location	163
	•	6.8.2	Structure	163
	6.9	Coffer	Dam	163
		1		
VII ·	Irri	gation 1	Facilities	
	7.1	Main Ca	anal	164
		7.1.1	Route of Main Canal	164
		7.1.2	Canal Type and Design Discharge	164
		7.1.3	Cross Section and Length	165
	7 2	Relate	d Structures	166

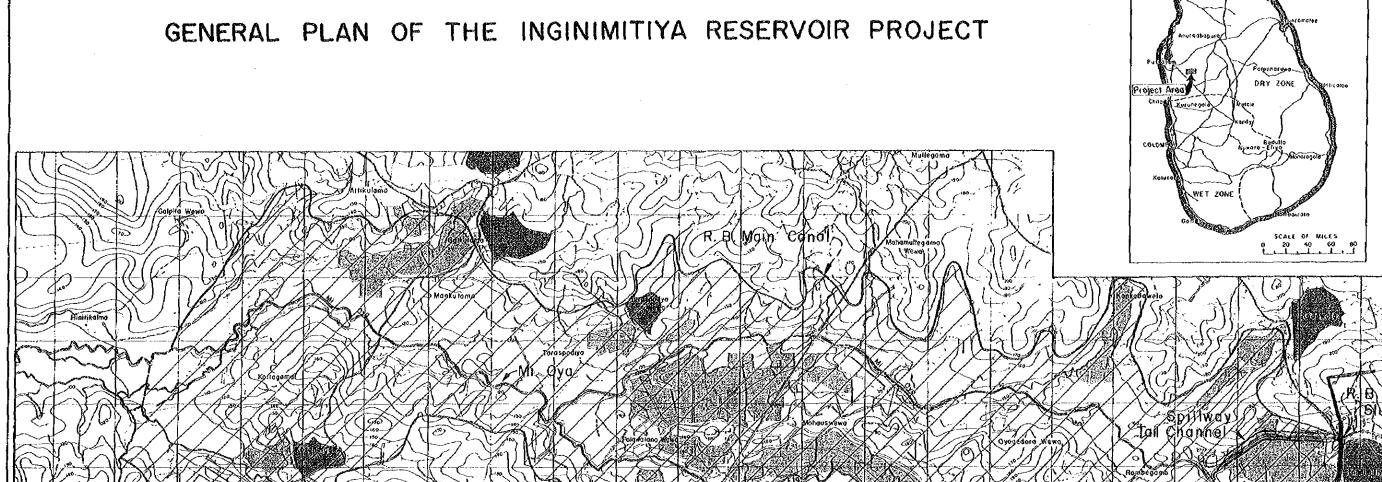
VIII Lar	nd Consolidation	
8.1	Blocking of the Reclaimed Land	169
8.2	Laterals and Farm Road Network	169
8.3	Land Consolidation	170
8.4	Model Farm	170
IX Const	cruction Programme	
9.1	Overall Plan	171
	9.1.1 Basic Considerations	171
	9.1.2 Dam Body	171
	9.1.3 Spillway and Laterals	172
,	9.1.4 Outlet Facilities	172
	9.1.5 Irrigation Facilities	172
	9.1.6 Land Development	172
9.2	Selection of Construction Machinery	173
9.3	Construction Schedule	173
X Const	ruction Cost	
10.1	Construction Cost Whose Foreign Exchange Portion Consists of Both "Direct" and "Indirect" Foreign Exchange Components	178
10.2	Alternative Construction Cost Estimates Allocating Some "Indirect" Foreign Exchange Component(s) to the Local Currency Portion	178
10.3	Unit Cost	178
10.4	Machinery Cost	179
10.5	Physical Contingencies	179
10.6	Price Contingencies	179
XI Econo	mic Evaluation	
11.1	Prices for Economic and Financial Analysis	192
11.2	Internal Rate of Return	195
11.3	Sensitivity Tests	196
•		

		List of Tables	
	No.	Title Page	e
	1-1	Mean Monthly Rainfall at Maha Uswewa	5
	1-2	Mean Monthly Rainfall at Galgamuwa	- 6
	1-3	Mean Monthly Rainfall at Mediyawa	7
·	1-4	Monthly Mean, Maximum and Minimum Temperature at Puttalam in OC (OF)	8
	1-5	Monthly Average Evaporation in inches at Tabbowa	9
	1-6	Monthly Mean Percentage of Sun Shine hours at Maha-Illuppallama	10
	1-7	Monthly Mean Relative Humidity at Puttalam	11
+ %	1-8	Monthly Mean Relative Humidity at Maha-Illuppallama	12
	1-9	Percentage of Wind Direction in 1965 at Puttalam	13
	1-10	Monthly Mean Daily Wind Mileage at Puttalam	14
	1-11	Monthly Mean Daily Wind Mileage at Maha-Illuppallama.	15
	1-12	Probable Rainfalls (at Maha Uswewa)	16
	1-13	Probable Maximum Paily Rainfall (at Maha Uswewa)	16
	1-14	Maximum Daily Rainfall and Continuous Drought Days (at Maha Uswewa)	19
	1-15	Probable Continuous Drought Days	17
	1-16	Mean Monthly Yield Figures for Maha Uswewa	21
	1-17	Maximum Discharge at Maha Uswewa Gauging Station (Daily Mean)	22
	1-18	Probable Discharge (By Gumbel Method)	23
	1-19	Derivation of 3 Hours Unit Hydrograph	32
	1-20	100 Year Flood Hydrograph	33
	1-21	200 Year Flood Hydrograph	34
	1-22	1.000 Year Flood Hydrograph	35

No.	Title	Page
2-1	Apparent Specific Gravity	37 .
2-2	Summary of Laboratory Tests and Insitu Tests	42
3-1	Physical Property of Sails	57
3-2	Soil Examination Data	58
3-3	Time of Water Stream Section of Furrow	63
3-4	Limited Length of Ridge	65
3~5	Water Application Efficiency	66
4-1	Agricultural Production in the Newly Developed Area under the Project (in Financial Prices)	72
4-2	Paddy Production in the Existing Agricultural Lands during the Construction Period	73
4-3	Paddy Production in the Existing Agricultural Lands under the Project (in Financial Prices)	74
4-4	Farm Equipment List (for 6,300Ac. Project Area)	75
4-5	Details of Input Requirements at Full Development (per Ac.)	76
46	Practical Survey of Paddy Rice Cultivation	78
4-7	Results of Extension Field Trials on Rice -Maha, 1976/77	76
4-8	Farm Household Survey at Soil Survey Points	80
4-9	Encouraging Varieties and Features of Paddy Rice	81
5-1	Crop Factor	90
5-2	Crop Requirement and Irrigation Requirement (Monthly)	91
5 3	Crop Requirement and Irrigation Requirement (5 days Period)	94
5-4	Irrigation Requirement (Monthly)	100
5-5	Irrigation Requirement (5 days Period)	101

No.	Title	Page
5-6	Calculation Sheet for Total Water Requirement (Monthly)	103
5-7	Calculation Sheet for Total Water Requirement (Sdays Period)	105
5-8	Operation Study of Inginimitiya Reservoir Project (1)	108
5-9	Operation Study of Inginimitiya Reservoir Project (2)	109
5-10	Operation Study of Inginimitiya Reservoir Project (3)	110
5-11	Operation Study of Inginimitiya Reservoir Project (4)	111
5-12	Operation Study of Inginimitiya Reservoir Project (5)	1.1.2
5-13	Operation Study of Inginimitiya Reservoir Project (6)	113
5-14	Operation Study of Inginimitiya Reservoir Project (7)	114
5-15	Operation Study of Inginimitiya Reservoir Project (8)	1.15
5-16	Operation Study of Inginimitiya Reservoir Project (9)	116
5-17	Operation Study of Inginimitiya Reservoir Project (10)	117
6-1	Design Values	124
6-2	Slope Stability Analysis	124
6-3	Recommended Riprap Design Criteria	137
6-4	Discharge Over an Ogee Crest (ALT-1)	152
6-5	Flood Routing Computations (ALT-1)	153
6-6	Discharge Over an Ogee Crest (ALT-2)	154
6-7	Flood Routing Computations (ALT-2)	155
- 6-8	Cost of the Spillway	151
7-1	Hydraulic Calculation of Standard Cross Section for Main Canal	168

No.	Title	Page
9-1	Operation Time of Equipment	174
9-2	Progressive Schedule of Equipment	175
9-3	Machinery Programme	176
10-1	Cost Estimate (Financial)	180
10-2	Cost Esimate (1)	181 182 183 184
10-3	Annual Disbursement of Financial Cost	185
10-4	Alternative Construction Cost Estimate (A)	186
10-5	Alternative Construction Cost Estimate (B)	187
10-6	Unit Cost	188
10-7	Depreciation Cost of Equipment & Machinery	190
10-8	Foreign Exchange Cost of the Project	191
11-1	Paddy Production in the Existing Agricultural Lands during the Construction Period (in Economic Prices)	197
11-2	Paddy Production in the Existing Agricultural Lands under the Project (in Economic Prices)	198
11-3	Agricultural Production in the Newly Developed Area under the Project (Economic)	199
11-4	G.P.V. Production Cost and N.P.V. under the Project (Market Price)	200
11-5	G.P.V. Production Cost and N.P.V. under the Project (Opportunity Price)	201
11-6	Internal Rate of Return (Financial)	202
11-7	Internal Rate of Return (Economic)	203


List of Figures

No.	Title	Page
1-1	General Plan of the Inginimitiya Reservoir Project	. 1
1-2	Mi Oya Basin	. 3
1-3	Annual Rainfall-Duration Curve	18
1-4	Annual Runoff-Duration Curve	24
1-5	Thiessen Polygon	26
1-6	October 1967 Flood	. 27
1-7	6hr Unit flydrograph	. 28
1-8	3hr Unit Hydrograph	. 29
1-9	Depth Duration Curve for the Catchment	. 30
1-10	Flood Hydrograph for 100,200 & 1,000 Year Floods	. 31
2-1	Geological Map	. 39
2-2	Geological Profile of Dam Axis	. 40
2-3	Proposed Dam Axis and Borrow Area	. 41
2-4	Condition of Borrow Area - Test Pit No. 1	. 43
2-5	Condition of Borrow Area - Test Pit No. 2	44
2-6	Condition of Borrow Area - Test Pit No. 3 .,	. 45
2~7	Result of Grain ~ Size Analysis	. 46
2-8	Result of Compaction Tests	. 47
2-9	Result of Triaxial Compression Tests Consolidated Undrain Condition	. 48
2-10	Plasticity Chart	. 49

No.	Title	Page
3-1	Soil Map	51
3~2	Three Phases of Soil in Inginimitiya Development Area	53
3-3	Intake Curves	59
3-4	Advance Curves	62
4-1	Proposed Cropping Pattern	71
4-2	Water Use and Field at Different Moisture Regimes	83
5~1	Water Balance Study	118
6-1	Relationship of Wave rideup height to fetch, Wind Velocity, Slope of the Upstream face, and type of riprap	121
6-2	Fill Completed Condition Alternative	125
6-3	Full Reservoir Alternative	.26
6-4	Rapid Drawdow Condition Alternative	.27
6 5	Slope Stability Analysis - Fill Completed Condition Alternative	28
66	Slope Stability Analysis - Full Reservoir Alternative	29
6~7	Slope Stability Analysis - Rapid Drawdown Condition Alternative	30
6-8	Fill Completed Condition	31
6-9	Full Reservoir13	32
6-10	Rapid Drawdown Condition	
6-11	Slope Stability Analysis - Fill Completed Condition	14
6-12	Slope Stability Analysis - Full Reservoir13	5
6-13	Slope Stability Analysis - Rapid Drawdown Condition13	6
	- x -	

No.	Title	Page
6-14	Relationship of Wave height to fetch, Wind Velocity, and Wind Duration	139
6-15	Proposed Dam Section	1.40
6-16	Dam Plan and Longitudinal Section	144
6-17	Seepage Around the Right Abutment	145
6-18	Flownet Under Embankment	146
6-19	Spillway Discharge Curve	156
6-20	Water Stage and Storage Capacity of Reservoir	157
6-21	Mi Oya Cross Section	160
6-22	Rating Curve at Mi Oya	161
6-23	Spillway Tail Channel Section	162
7-1	Canal Network and Discharge Assignment	167
9~1	Proposed Construction Schedule	177

LEGEND

- ; Main Canal

Field Paddy Field

; Existing Tank

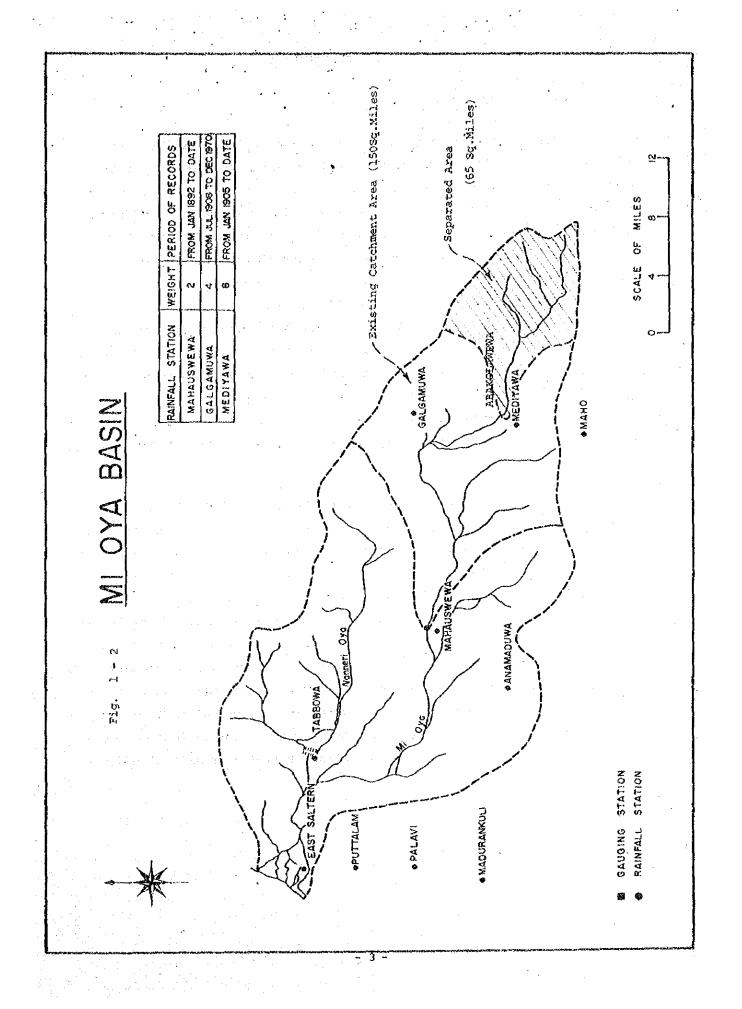
; Road

Project Area

SCALE OF MILES

INGINIMITIYA RESERVOIR PROJECT
THE REPUBLIC OF SRI LANKA

GENERAL PLAN


Date: Jun. 1977 D.W.G. No. 1

KEY MAP

1.1 General

Sri Lanka is a tropical island in the Indian Ocean located between 5°55' ~ 9°50' N and 79°40' ~ 82°0' E, separated from the Indian sub-continent by the Bay of Bengal in the north, the Palk Strait in the northwest, and the Arabian Sea in the west. Its climate is characterized by nearly constant temperatures but with large variations in rainfall. Based on precipitation, the island can be divided into two distinct zones: the wet zone (average annual rainfall over 75 inches), situated in the southwest quadrant and covering about 30% of the land area, and the dry zone (average annual rainfall 35 to 75 inches) covering the remainder of the island. The Project area lies in the latter, obtaining more than two-thirds of its annual precipitation during the northeastern monsoon season called "Maha" (October ~ March). The rest of the year (April ~ September) is under the influences of the southwestern monsoon and is called "Yala" season with little rain, extremely dry during three months of July through September.

The Project area is situated in the basin of the Mi-Oya, the 14th in size among Sri Lanka rivers, which originates at a 1,000 feet-level height between Dambulla and Maho and, after running in westward direction for about 68 miles, flows into Puttalam Lagoon. There are two rainfall stations (at Galgamuwa and Mediyawa) in the upper-stream of the proposed dam and one rainfall station at Mahauswewa which is located at the centre of the Project area. A gauging station along the Mi-Oya is also situated at Mahauswewa. Records available at Mahauswewa rainfall station date back to 1921 (for about 55 years) and those of Mahauswewa gauging station, to 1946 (for about 30 years). Location of the meteorological stations in the Mi-Oya's basin is shown in Fig. 1-2. As for the meteorological data excepting rainfall, the records kept at either Puttalam or Maha-Illuppallama are conveniently referred to.

1.2 Climate

- (1) Rainfall: Mean monthly rainfalls at Mahauswewa, Galgamuwa and Mediyawa for the last 20 years are given in Tables 1-1, 1-2, and 1-3, respectively.
- (2) Temperature: Monthly mean, maximum, and minimum temperatures at :

 Puttalam are given in Table 1-4.
- (3) Evaporation: Evaporation records have been kept at Tabbowa in the lower-stream of the Mi-Oya which are given in monthly averages in Table 1-5.
- (4) Sun Shine Hours: Monthly mean percentages of sun-shine hours at Maha-Illuppallama for the last 19 years are given in Table 1-6.
- (5) Humidity: Monthly mean relative humidity at Puttalam and Maha-Illuppallama for the last 20 years are given in Tables 1-7 and 1-8, respectively.
- (6) Wind Direction and Wind Velocity: Wind directions have been observed at Puttalam, and the wind velocity at both Puttalam and MahaIlluppallama. Table 1-9 gives the percentages of wind direction in 1965 and Table 1-10 and 1-11 give the monthly mean daily wind velocity in miles at Puttalam and Maha-Illuppallama, respectively.

			13] . -: {	2		1
~ '	Dec. Jan.	Feb.	Mar	Apr.	May	Jun.	Jul.	Aug-	Sep.	Total
1.99	0.72	0.70	9.79	4.30	0.58	3.14	o ja	ж ў., О	0.17	41.93
5.43	1.57	2.52	0.42	4.61	5.82	3.82	: :o:	0	0	45.59
23.95	1.75	0.55	13.18	16.18	1	ari S	0.50	5.45	0	90-78
2.96	4.17	0.16	0.0 S	11.31	10.34	2.20	1.77	0.80	3.59.	50.83
3.41	2.93	3.83 8.83	8.0	90.11	4.84	0.35	5,65,	o desp	0	52.43
1.57	7.47	1.55	2-44	6.07	2.93	4.84	3.36	66.0	3.57	58.83
5.14	4.23	3.79	2.00	4.29	9. 79	2.55	1.52	2.01	1.98	52.32
5.86	8.18	3.46	3-40	61.9	98 %	2.12	1.46	0.16	3.32	74.65
8.61	1-14	1.13	전	5.02	2,25	0.31	4.23	1-40	7.03	59.12
5.75	0.59	ì	0.46	10.84	5.45	0.25	0	5.68	0-50	46.26
9.23	1.24	09 0	1.55	14.14*	. 1 1	0	0,20	0-40	2.81	42.66
5.96	2.20	0.85	6.33	6.55	2.46	2.63	1.50.	ο. Ο ·	1.13	55.69
8.37	1.24	0.85	5.08	6.64	0.18	1.20	1.63	.1 +4C • . 0 •	2.20	47.50
8.27	1.62*	1.36*	0.45*	7.25*	2:02	0.42	O	3,56	0	40.14
8.71	2.61	3.17	4-42	16.27	7,98	0	1.20	0	3.01	72.35
	2.82	3.08	3.04	10.76	3.43	3.25	0.32	 . I	er Me	43.65
1	0	0	2.71	7.23	13.25	0	0.29	O	5.47	28.95
5.16	0	0.32	5.02	7.46	1.03	2.93	1.10	0.49	2.74	53.52
12.49	0	2.32	4.13	11:74	1.44	0.33	1.01	7.44	1.01	53.53
3.31	0.08	3.16	1.60	5.50	4.30	0.49	4.83	0.61	2.94	29.84
7.01	2.23	1.76	3.40	8.67	4,69	1.62	1.53	1.23	2.18	54.35

Table 1-2 Mean Monthly Rainfall at Galgamuwa

1																				• •		
Total	44.70	47.73	96.62	50.11	52.05	93.97	62.59	69.43	60.25	48.37	64.21	56.33	54.98	45.94	58.35	17.15	:			÷ ,	59.52	
Sep.	00-0	00.0	00.0	1.46	0.17	1.44	5.18	5.05	2.63	00.00	4.26	0.98	3.51	0.21	3.41				-	•*	1.89	
Aug.	0.37	00.00	3.36	0.00	0.00	0.61	0.30	0.63	1.31	4.18	00.00	00.00	0.00	5.79	00.00				•	•	1.10	
Jul.	00.00	0.89	00.00	0.58	8.27	2.55	0.21	2.22	4.69	0.00	0.27	0.53	1.32	00.00	0.50		-				1.47	
J.m.	2.70	2.52	3.15	1.99	0.81	5.81	0.24	2.58	0.71	00.0	00.00	2.04	1.16	0.00	0.00		٠				1.58	
May	2.23	5.07	4-30	8.20	2.55	7.95	4.54	3.74	1.48	6.14	1.35	2.87	0.21	1.69	4.42					:	3.78	
Apr.	4.41	9.28	15.52	13.43	8.60	2.60	6.99	5.12	6.13	12.56	9.57	4.19	6.33	5.65	11.46						8.32	
Mar.	7.34	1.31	8.91	00.0	1.82	1.00	10.97	3.48	2.41	0.78	3.52	4.54	6.91	0.67	1.21	-					3.66	
Feb.	00.00	2.73	0.50	0.21	3.20	3.09	1.56	4.19	0.79	2.42	0.00	2.20	00.0	0.52	6.48						1.86	
Jan.	1.06	2.00	1.06	3.95	1.68	7.43	4.53	8.95	1.84	1.42	3.14	1.15	1-74	1.14	2.32						2.89	
Dec.	4.31	7.27	30.84	4.25	5.07	4.26	5.23	4.96	10.48	3.45	11.71	8.57	9.57	9.63	10.67	4.29		-			8,41	
Nov.	8.64	12.44	17.18	9.30	11.61	50.40	8.31	5.97	14.44	12.32	13.32	15.43	7.03	10.42	2.34	5.57					12.80	
Oct.	13.64	4.22	11.80	6.74	8.27	3.83	17.52	22.60	13.34	5.10	17.07	13.83	17.20	10.22	15.54	7.29					11.76	
	1955/56	1956/53	1957/58	1958/59	09/6561	19/0961	1961/62	1962/63	1963/64	1964/65	1965/66	1966/67	1967/68	1968/69	1969/70	1970/71	1971/72	1972/73	1973/74	1974/75	Mean	

	. 1			Table	1-3	an Mont	Mean Monthly Rainfalll	ä	Mediyawa		-		
	oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Aor	May	Jun.	Jul.	Aug.	Seb	Total
1955/56	16.80	10.18	1.72	00.00	00	4.14	3,65	1.32	1.64	0.00	0.13	0.20	39.78
1956/57	5.06	12.34	8,15	2.81	2.76	00.00	17.31	2.23	5.06	1.49	0.07	0.00	57.28
1957/58	8 58	14.23	25.21	1.47	0.65	7.50	13.47	2.37	1.00	0.54	0.79	00.0	75.81
1958/59	2.68	6.13	3.89	2.21	0.92	0.37	11.04	6.30	3.36	2.16	0.84	2.58	42.48
1959/60	13.31	10.78	3.13	2.70	3.78	0.45	11.02	2.97	1.57	8.92	0.32	0.74	59:69
19/0961	4.52	16.41	2.75	3.68	5.09	1.89	2.30	5, 22	5.62	2.23	. 80 T	0.71	48.50
1961/62	6.61	7.29	3,42	3,89	0.45	4.19	13:78	6.52	1.08	2.09	1.85	4.44	55.61
1962/63	24.25	6.75	3.78	00.6	2.55	4.06	4.09	5.15	2.31	2.63	0.39	3.51	68.47
1963/64	10.41	12.92	7.84	1.77	2.36	1.54	5: 73	96.0	0.84	3.43	2.37	4.27	54.46
1964/65	5.23	6.65	2.94	1.48	3.42	0.27	18.05	7.49	0.85	0.20	7.33	0.39	541.30
1965/66	11.97	11.65	08 6	1.46	0.05	4.03	7.50	0.49	0.71	0.72	0.30	6.06	54.74
1966/67	12.17	12.60	6.08	1,41	1-98	4.62	5.46	2.90	3.53	y.	0.80	3.20	52.75
1967/68	21.58	8.35	10.09	1.52	00-0	5.80	7.24	2.05	4.76	0.82	0.00	1.10	62.81
1968/69	14.20	8.97	8.29	1.38	1.62	0.88	8.12	5.40	0.92	0.07	4.81	0,20	54.86
1969/70	18.29	4.80	12.61	4.77	4.13	3.82	10.15	5.7 <u>T</u>	0.28	1.41	0:00	4.53	70.50
1970/71	7.49	7.91	3.99	7.04	2.59	2.08	14.06	96.0	1.40	0.46	4.75	3.14	55.87
1971/72	9.32	4.75	7.54	0.57	0.00	2.31	5.72	10.31	00.00	0.64	00.00	3.65	44.81
1972/73	88	8	5.63	0.00	0.81	2.04	4.52	4.86	0.61	4.23	0.54		42.01
1973/74	5,63	4.35	12.55	00.0	6.61	2.17	11.39	3.32	0.43	2.62	0.87	2.51	52, 45
1974/75	0.12	3,05		ese Es	3.02	2.26	10.15	5.49	1.87	3.66	0:33	5.71	35.66
							-						

Table 1-4 Monthly Mean, Maximum and Minimum Temperature at Puttalam in OC

entre de la companya		And the second s	
Month	Maximum	Minimum	Mean
Jan.	29.8 (85.7)	21.2 (70.2)	25.4 (77.8)
Feb.	31.3 (88.3)	21.3 (70.4)	26.3 (79.4)
Mar.	32.3 (90.1)	22.8 (73.0)	27.4 (81.3)
Apr.	31.9 (89.5)	24.5 (76.1)	28.2 (82.7)
May	31.4 (88.6)	26.6 (79.8)	28.6 (83.4)
Jun.	30.4 (86.7)	26.3 (79.3)	28.2 (82.7)
Jul.	30.2 (86.4)	25.7 (78.3)	27.8 (82.0)
Aug.	30.4 (86.8)	25.6 (78.0)	27.8 (82.1)
Sep.	30.7 (87.3)	25.6 (78.0)	27.9 (82.2)
Oct.	30.3 (86.6)	25.7 (78.3)	27.2 (80.9)
Nov.	29.9 (85.8)	25.7 (78.2)	26.3 (79.4)
Dec.	29.4 (84.9)	25.8 (78.4)	25.6 (78.0)
Year	30.7 (87.2)	25.7 (78.2)	27.2 (81.0)

Table 1-5 Monthly Average Evaporation in inches at Tabbowa

Month	Pan. evaporation	Surfa	ce evapo	ration:
makkan igi ak iga ayan ka iga ayan ka iga iga iga in	1435 (A. 14 x)	2 4 A L 1 A	ى يەلەپ بىلەسىيەنسىقىدىلىدىلىدىلىدىلىدىلى	
Jan.	4.37	nu sesi de se	3.50	
Feb. v (1)			3.71	
Mar.	5.95	Agreement design	4.76	
Apr.	5.54		4.43	
May	5.7 0	ar Shaka	4.56	
Jun.	6.02	and the second of the second o	4.82	
Julian	6.04		4.83	· 24.4.
Aug.	6.88		5.50	1, 4
Sep.	6.46	135 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.17	
Oct.	5, 30		4.24	•••
Nov.	4.00	tell state of the	3.20	e de de la companya d
Dec.			-3.27	
Year Total	64.99		51.99	

113 86	Apr. May	dun	Jul.	Aug.	Sep.	oct.	Nov.	Dec.	fotal
:				,					
	4	69	85	73	46	65	· 19	75	11
	85	54	17	8	92	72	So	9	78
94 79	89	8	89	68	65	81	40	64	17.
88 85	72	79		F)	1,	1		1,	2
	73	ហ ស	77	-86	75	. 6 9	65	67	78
89	88	06	81	85	85	99	41	4€	73
87 97	94	83	9.	36	69	77	99	67	79
85	79	96	56	78	91	5	. 63	4	79
83	96	66	92	76	7.5	09	72	65	79
2 99	08	8	52	86	e) (0)	73	8 9	23	79
93	102	67	69	16	40	78	99	81	76
100 85	78	88	67	\$	8	63	65	52	78
92 87	78	87	78	84	81	73	52	46	76
87 92	75	73	83	83	73	99	. 99	27	73
66	69	77	28	88	88	62	77	61	83
97 79	73	73	77	64	89	62	8	42	73
98 86	81	68	83	83	67	76	08	51	8
86 84	06	64	85	74	5	67	46	57	74
96 26	86	66	84	78	98	75	55	57	83
91 88	82	81	75	82	78	69	8	56	77

	ì					•														
Total	7	다	89	6	89	99.	67	63	6 4	99	တ္ (မှ	17	73	75	73	73	73	27	77	74
Dec.	81	୍ଞ୍	73	09	20	89	2	\$	73	89	ે.	76	:8°	25	8	76	ં દુ	다.	76	83
Nov.	80	92	76	77	72	99	74	99	68	89	75	74	76	정	71	77	74	67	85	85
oct.	72	17	න . ම	89	99	72	89	65	70	74	73	73	78	74	72	08	76	72	78	7.1
Sep.	75	9	67	89	65	75	64	64	64	89	69	70	17	7.1	71	75	75	75	78	L
Aug.	69	72	- 65	89	89	64	62	. 62	99	99	69	74	72	72	72	75	74	73	80	75
Jul.	69	171	70	.72	0/2	67	99	63	62	89	73	74	74	76	77	6	75	76	76	76
Jam.	74	. 72	72	77	5	9	99	.62	65	63	7.1	74	74	77	7.4	76	7.7	76	76	02
May	72	74	72	74	69	69	89	9	99	65	7.7	67	92	83	78	79	74	76	78	75
Apr.	65	5	07	72	69	64	99.	63	61	89	65	73	72	17	ტ 9	66	72.	76	78	74
Mar.	59	89	8	64	\$3	₩./ IJ.	64	62	ខ្ម	61	62	69	65	77	69	62	99	89	74	89
Feb.	72	ω ,	62	99	99	9	2	ଔୄ	8.	19 ?	6 3	61	67	72	49	64	64	63	71	68
Jan.	65	71	99	, 7	, 60	72	ፒ	99.	28	99	9	99	5	16	8	67	99	67	69	11,
	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1961	1968	1969	1970	1971	1972	1973	1974	1975	1976
	!									- 1	1 -									

Table 1-8 Monthly Mean Relative Humidity at Maha-Illuppalluma (1957 $^{\circ}$ 1976).

Total	70	17	89	5	67	69	73	2	88	89	99	65	8	8	67	63	63	99	72	02	88
Dec.	87	74	78	74	76	83	86	77	81	92	76	74	78	75	08	73	76	75	79	82	78
Nov.	84	_62	82	80	74	78	98	80	78	74	74	74	72	. 77	71	70	89	63	98	83	77
oct.	7.7	Ĺ	65	85	10	77	74	55	72	75	64	68	74	73	67	73	୧୬	62	76	70	70
Sep.	58	99	9	61	28	69	63	69	61	65	26	19	28	63	63	57	57	67	69	09	- 62
Aug.	63	70	57	64	09	62	19	99	89	09	09	57	63	09	61	99	09	64	69	69	63
Jul.	89	9	8	70	99	63	67	65	28	62	63	64	0 °	4	62	8	9	67	29	9	64
Jun.	75	72	74	99	99	62	89	64	65	62	67	67	64	9	67	62	64	70	73	ဗ	67
May	74	76	74	73	20	69	62	70	2	99	69	9	70	72	89	. 70	65	75	72	17	20
Apr.	64	75	69	72	67	70	99	64	99	5	62	64	2	67	99	8	64	89	7,1	72	67
Mar.	57	2	20	99	64	28	72	89	58	67	62	63	57	62	62	23	o ភ	ω ω	65	58	61
Feb.	-69	68	63	80	70	89	76	72	69	89	69	99	G	71	62	57	8	56	63	. 65	99
Jan.	73	78	74	92	72	75	83	77	71	74	72	89	74	71	47	99	62	61	69	92	72
	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	Mean

Table 1-9 Percentage of Wind Direction in 1965 at Puttalam

	Month	N.	N.E.	Ε.	S.E.	s.		s.W.	W.	N.W.	CALM.
·	8:30	16	68	15	2 (o		0	a najmili manaja dini dalam andisma di lambati midan pa		0
ſąη.	17:30	31	55	6	0	. 0		0	0	5	: V
		•		·					•	y	•
eb.	8: 30	18	39	20	9:	4	v	. 0	0	0	11
	17:30	21	27	16	0	0		7	4	18	7
•	8:30	13	15	26	6	24		10	0	0	6
lar.	17:30	32	5	0	o	0		11	34	18	0
÷.		ary ex						,			
	8:30 17:30		10		5	2.7	4	8		5	33
	17:30	5	8	. 0	0	5		27	37	12	7
ay	8:30	0.	3	0	10	1.5	7.7	63	0.	o	10
	7: 30	0	0	0	0	3		85	5	0	6
	.0.20	11.0	A	3 h . !							: ''
	8:30 / 17:30	0	0					93		0	0
			0	0	0	0		100	0	0	0
ul.	81:30	4 0	1. 6 N	3	0	7 13	<u>:</u>	83	·" 0	0	0
	17:30	0	0	0	0	o		100	0	0	0
	8:30	o	, ö	0	, Ó.	0	:	45	52	O :	3
	17:30	0	0	0	0	0		42	58	0	0
				·							
эp.	14		• • • • • • • • • • • • • • • • • • • •		0			95	0	- 0	0
•	17:30	0	0	0	0	3		90	7	0 .	0
	8:30	0	o .	6	3	23	: · · ·	23	3.	3	39
et.	17:30	10	2	0	3	6		32	26	11	10
	8:30		erio. Sin alakan sana			~ + <u>1.</u>	and a second				
	8:30 17:30		35	13 2		· · · · 7 3			0,		23
			•					2	15	3	20
c.	8:30	$\mathbf{T}_{\mathbf{L}}^{(i)}$	37	~ 6 .′	. : [3]	6		6	3. ×	3	23
	7:30			0	3	3		10	10	2	29

Table 1-10 Monthly Mean Daily Wind Mileage at Puttalam

																						. ,		
	Total	202	191	190	189	183	187	178	206	197	. 178	180	187	175	172	175	172	167	175	219	218	· · · · · · · · · · · · · · · · · · ·	187	
	Dec.	143	139	135	129	140	125	144	144	121	128	142	138	130	150	140	151	128	160	163	144		140	
	Nov.	106	129	123	110	122	126	101	138	121	119	146	122	110	120	131	101	106	121	174	136		124	-
	Oct.	176	187	181	181	171	167	170	211	144	132	161	1.52	141	178	164	128	144	189	263	174		בלב	
	Sep.	302	260	262	301	239	283	260	303	287	215	212	250	252	214	220	211	213	180	273	282		251	
	Aug.	314	274	282	266	282	269	281	298	262	224	249	272	196	226	231	240	233	236	301	312		262	
	Ju2.	289	289	290	227	240	286	263	283	287	262	241	274	237	237	228	227	208	233	261	315		259	
	Jun.	314	317	259	292	266	267	299	307	325	277	237	265	263	234	258	218	225	241	351	297		276	
	May	171	197	178	230	230	183	135	264	244	284	208	203	197	185	199	202	188	188	280	306		214	
	Apr.	138	<u>ე</u>	136	116	129	130	87	120	134	102	138	123	134	114	124	132	123	123	109	158	:	123	
	Mar.	191	122	147	128	126	136	116	112	153	120	141	136	140	131	118	147	129	124	136	144		133	
	Feb.	150	129	140	143	115	141	136	142	140	140	150	150	146	136	145	138	191	155	158	184		145	
	Jan	160	151	150	140	137	129	136	145	151	134	137	154	154	138	140	165	146	148	163	168		147	
÷		1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1961	1968	1969	1970	1971	1972	1973	1974	1975	1976		Mean	
į	. [į	

alluma Nov. Dec. Total	76 98 154	64 90 132	58 76 134	.87 - 152	110 100 157.	83 93 138	74 96 133	77 105 147	87 95 143	72 79 143	112 113 147	82 94 153	74 95 136	140	1				139 112	96	82 95 148	
Table 1-11 Monthly Mean Daily Wind Mileage at Maha-Illuppalluma Max. Apr. May Jun. Jul. Aug. Sep. Oct. Nov.		126	132	147	148	120	116	140	104	86	ਲ ਲ ਜ	112	87	1		Aug.1975			268	159	127	
age at Ma		223	231	284	211	206	181	210	221	187	200	223	210	1		្ន	:		267	313	224	
find Mile.		216	267	239	250	215	199	208	183	204	. 232	253	. 169	.1		from Aug.1970				341	233	
n Daily W. Jul.	:	232	. 256	, 199	7.213	7238	195	199	192	236	226	.250	234	220		not available			:	348	235	
hly Mean Jun.	255	282	196	273	.7231	176	. 218	:,221	246	513	9.212	238	238	211			• •		• •	306	237	
il Mont	86	114	113	368	193	100	109	192	1:78	220	170	167	166	170		eage date				305	166	-
Rable 1-11	82	28	6 9	74	110	97	08	76	8	88	80	86	72	65		Wind Mileage data				121	81	
T Wax	06	4	56	ŝ	105	108	o	102	101	8	6 6	דנו	85	. 92				ĵ.	£.,	128	06	
Feb	95	64	TL	09	88	116	126	121.	120	122	106	110	96	110	¥					143	103	-
Çân	114	86	95	62	118	102	105	107	112	109	8	108	111	112	! 			ı	t .	137	104	
	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	Mean	

1.3 Hydrology

1.3.1 Rainfall Analysis

(1) Probable Rainfall

Mean monthly rainfalls at Mahauswewa for the last 20 years (Table 1-1) have been computed by Gumbel method to identify the probable rainfalls as per Table 1-12:

Table 1-12 Probable Rainfalls (at Mahauswewa)

Probability	Rainfall
1/1,000	122.64
1/500	115.13
1/200	105.21
1/100	97.68
1/50	90.13
1/20	80.05
1/10	72.26
1/5	64.15
1/2	51.89

The duration curve of annual rainfall is shown in Fig. 1-3.

(1) Maximum Daily Rainfall

Maximum daily rainfalls for the last 20 years at Mahauswewa which is located at the centre of the Project area are given in Table 1-14, and those in different probabilities are given in Table 1-13 below:

Table 1-13 Probable Maximum Daily Rainfall

Probability	Daily Rainfall	
1/1,000	12.14	
1/500	11.26	
1/200	10.09	
1/100	9.20	
1/50	8.31	(continued)

	Probabili	ty Da	ily Rainfall	44°)
	1/20		7.12	
	1/10	•	6.20	
	1/5		5.24 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	1) -
Section 18	4-3-5 2 1/2 -59-66	et part til et i 1994 e.		

1988 I object week book from the complete.

(3) Continuous Drought Days

Continuous drought days for the last 20 years at Mahauswewa which are given in Table 1-14 have been computed by Gumbel method into different probabilities as per Table 1-15 below:

Table 1-15 Probable Continuous Drought Days

Probability	Continuous Drought Days
1/200	196
1/100	178
1/50	160
1/30	146
1/20	136
1/10	117
1/5	97
1/3	82
1/2	

Fig. 1-3 Annual Rainfall - Duration Cnrve (1956~1975)

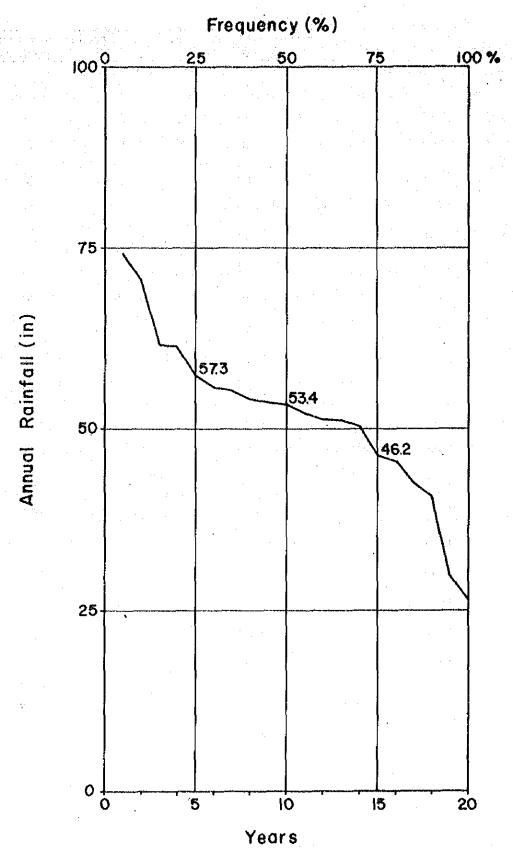


Table 1-14 Maximum Daily Rainfall and Continuous Drought Days (Maha Uswewa)

Year	Maximum Daily Rainfall (inches)	Continuous Drought Days (days)
1956	3,45	102
1957	4.53	134
1958	3.30	60
1959	3.25	74
1960	3.88	92
1961	6,50	30
1962	4.54	51
1963	6.56	70
964	3.50	62
1965	3.00	91
.966	6.90	67+a
967	5.02	58
968	3,50	63
969	1.60	50
970	4.35	103
971	3.55	30+α
972	3,26	122
973	4.00	85
974	2.04	54
975	3.21	46

1.3.2 Yield of the River

The Project intends to build a dam at the existing site of Inginimitiya Tank across the Mi-Oya which originates at 1,000 feet-level height between Dambulla and Maho and runs down along the central line of its basin during its 68 miles' westward journey into Puttalam Lagoon. It will create a new source of irrigation water to benefit agricultural devendament in the Project area which occupies the central part of the Mi-Oya's basin, at the foot of the proposed dam.

The discharge of the Mi-Oya has been recorded at Mahauswewa for the last 30 years since 1946; its data available for the last 20 years are given on monthly basis as per Table 1-16. The maximum monthly discharge recorded during these 20 years reads 15,739 Ac.ft., and the minimum, zero. As for the total annual discharge, the gap between the maximum (336,906 Ac.ft. in 1957/58) and the minimum (10,869 Ac.ft. in 1974/75) is extremely big.

The catchment area at Mahauswewa is recorded as 215 sq.miles but the diversion at Abakolawewa to the extent of 65 sq.miles makes its net catchment area to 150 sq.miles only. The discharge figures in Table 1-16 show those from this net catchment area of 150 sq.miles. The gauging figures recorded at Mahauswewa are given in daily means in cusecs and their probable daily discharges in cusecs are given in Table 1-18. The annual runoff duration curve for the last 20 years is shown in Fig. 1-4.

Table 1-16 Mean Monthly Yield Figures for Maha Uswewa

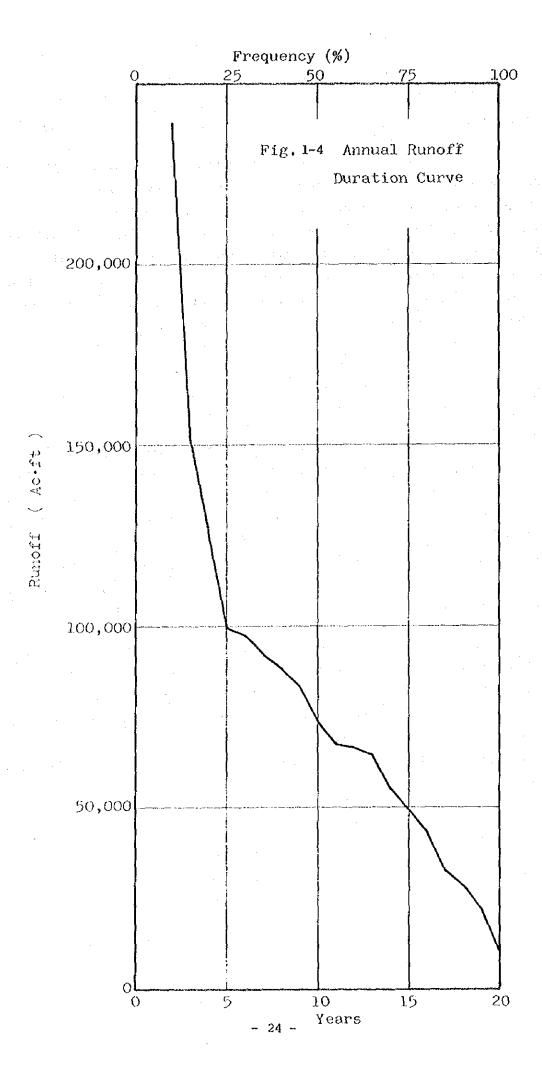

1955/56 2 1956/57 1957/58	oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	. Tut	Aug.	Sep	Total
	26,453	27,846	43,537	9,225	1,368	16,478	455	222	367	369	369	178	126,867
	20	5,641	.6,617	366	141	145	11,375	098 8	2,891	190	19	4. i-t	28,348
	6,461	59,382	157,391	24,459	.166,9	16,111	52,464	6,659	1,210	1,394	1,681	2,703	336,906
1958/59	2,597	2,620	6,327	1,443	267	712	Ni. I	4,978	1,661	640	346	250	21,941
1959/60	10,694	19,030	20,263	5,742	3,045	1,473	3,230	2,334	988	5,928	927	165	73,819
19/0961	473	30,183	8,973	6,785	3,287	1,857	632	8 8 8	719	1,141	576	303	55,624
1961/62	2,475	20,721	13,884	6,770	3,463	2,905	2,457	7,660	2,010	738	3,310	1,055	67,498
1962/63 8	88,666	20,582	12,211	88,518	10,817	5,350	4,162	3,926	2,043	1,485	812	550	239,122
1963/64	2,647	52,912	62,382	15,430	5,034	5,696	1,772	1,388	1,141	066	1,055	822	152,169
1964/65	832	13,316	6,278	2,348	1,836	859	9,389	51,069	2,560	719	4,439	784	64,449
1965/66	8,332	13,446	47,762	4,503	4,330	1,598	13,127	3,012	1,893	505	333	700	99,541
1966/67	9,680	39,953	15,723	7,801	4,499	2,366	4,025	1,572	109	416	297	1,210	88,249
1967/68	17,091	9,882	40,049	6,585	2,624	10,274	5,619	2,101	1,076	1,307	459	259	97,326
1968/69	1,610	30,500	18,982	5,532	3,000	2,166	2,230	1,206	422	87	392	154	66,281
1969/70	9,356	8,902	12,662	15,254	7,968	3,632	18,275	10,740	2,604	881	1,030	1,148	:92,452
17/0/61	4,085	7,510	6,665	4,570	2,776	2,875	5,657	5,471	1,562	826	985	260	43,539
1971/72	5,583	12,058	31,011	2,582	2,101	944	3,491	28,122	2,241	1,800	752	1,241	92,025
1972/73	12,999	40,851	12,805	2,728	1,847	2,160	7,486	1,005	792	396	293	198	83,560
1973/74	2,447	3,528	12,591	4,714	772	2,132	18,869	1,552	1,653	1,146	226	46	49,676
1974/75	i i	172	212	44	3,400	190	1,420	2,435	196	2,800	ਜ ਜ ਟ	TTN.	10,869
Mean 1	10,635	20,952	26,811	10,770	3,523	3,996	8,307	5,350	1,437	1,190	918	618	94,513

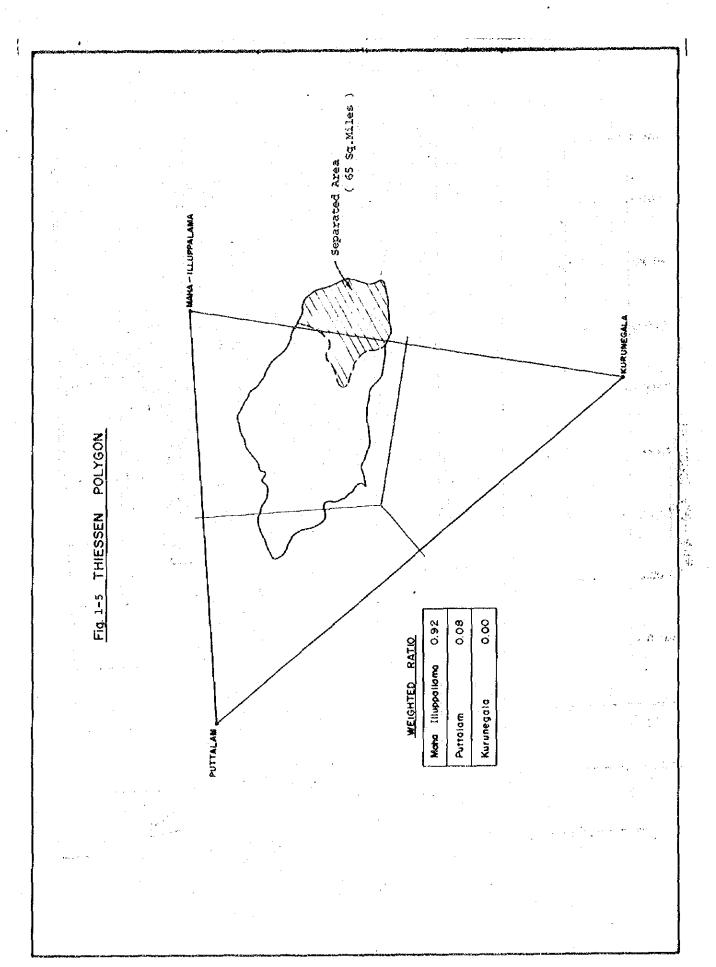
Table 1-17 Maximum Discharge at Maha Uswewa Gauging Station (Daily Mean)

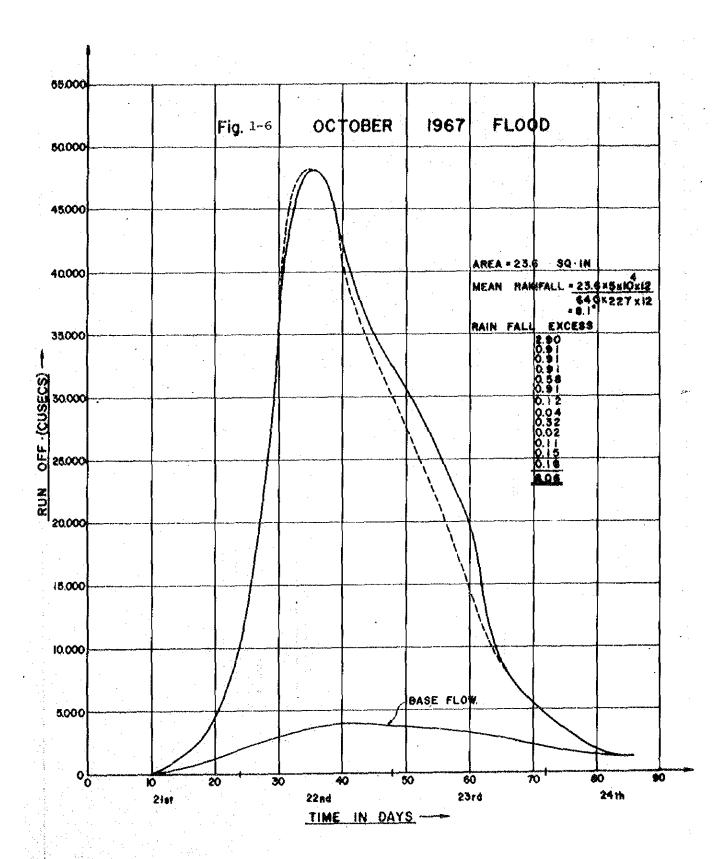
Year	Month	Date	(cusecs.) Discharge
1945	11	14	5,694
1946	12	23	18,575
1947	4	2	4,088
1948	8	3	4,852
1949	1	2	7,970
1950	12	22	1,580
1951	11	22	9,025
1952	1	3	4,938
1953	4	9	860
1.954	1	11	2,506
1955	12	1	5,500
1956	12	27	2,085
1957	11	30	5,320
1958	4	29	5,200
959	11	35	1,730
1960	11	24	1,710
.961	11	2	2,470
962	10	12	8,750
1963	1	10	15,304
.964	11	15	820
.965	5	8	2,944
.966	11	10	9,823
.967	12	8	4,483
968	11	20	10,001
969	12	31	1,324
970	5	5	1,698
971	12	16	2,208
972	5	14	2,651
973	12	28	1,560
974	4	10	1,235
975	5	26	432
976	4	3	1,698

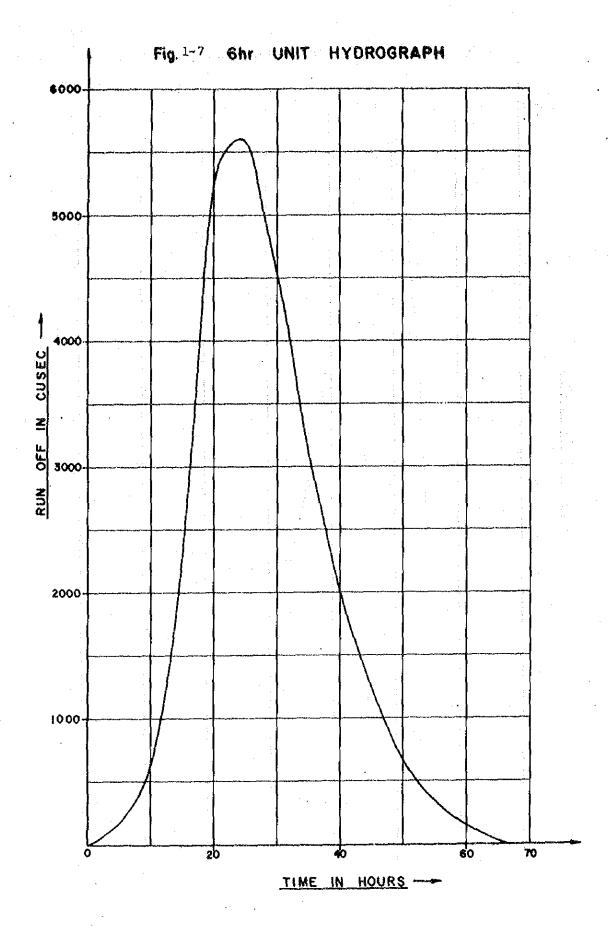
Table 1-18 Probable Discharge (By Gumbel Method)

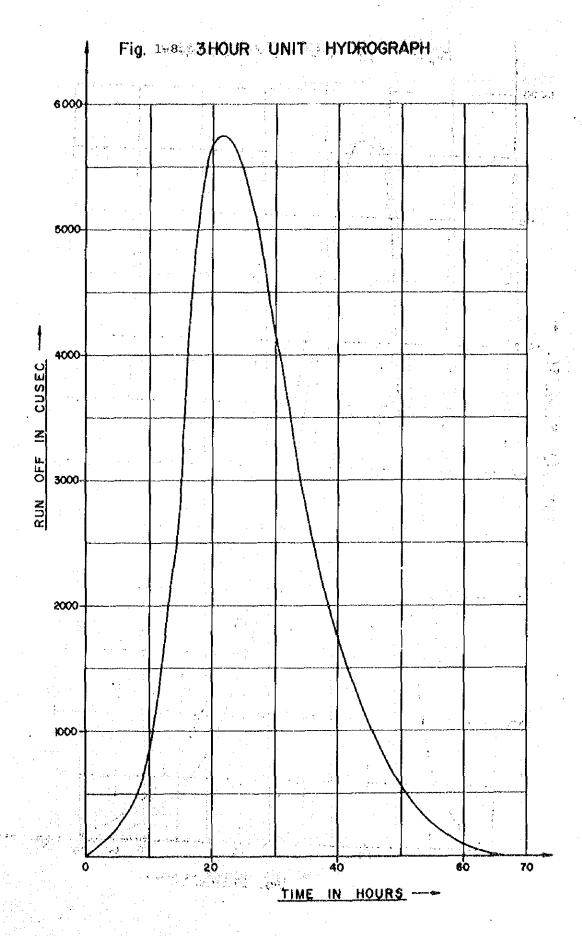
Probability	Discharge	
1/200	22,514.5	cusecs
1/100	19,903.5	
1/75	18,817.4	
1/50	17,282.9	
1/30	15,340.1	
1/20	13,785.9	
1/10	11,084.2	
1/5	8,267.7	
1/3	6,026.2	
1/2	4,013.7	

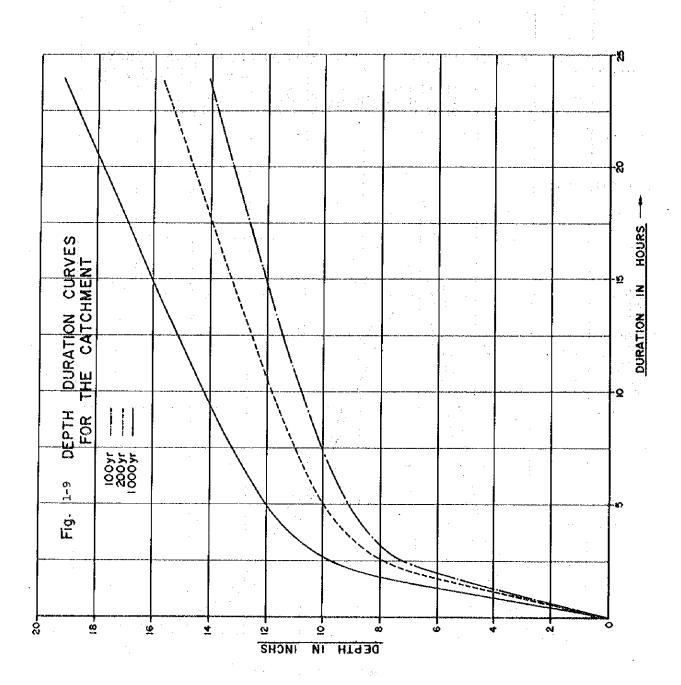
1.3.3 Flood Discharge


As the rainfall stations at Galgamuwa and Mediyawa in the Mi-Oya's basin in the upper-stream of the proposed dam have been recording rainfall on daily and monthly basis and no hourly rainfall record is available, the peak discharge has been computed from the hourly rainfall records which have been kept at Puttalam, Maha-Illuppallama and Kurunegala. Average rainfall in the entire basin of the Mi-Oya has been computed by use of Thiessen Polygon. The weighted ratio of each one of these three as determined through Thiessen Polygon is as follows:


Maha-Illuppallama	0.92
Puttalam	0.08
Kurunegala	0.00


The flood peak discharge has, therefore, been computed from the data available at Maha-Illuppallama and Puttalam. Their data cover the period of 22 years since 1953. Fig. 1-6 has been drawn from the records of the flood which took place in October 1967, and Fig. 1-7 shows the results of hydrographing at 6 hour unit. 6 hour unit hydrograph has been translated into 3 hour unit hydrograph by use of the standard formula: $2u(6,t) = u(3,t) \nmid u(3,t-3)$. Its calculation sheet is given in Table 1-19, and its illustration in Fig. 1-8.


Depth duration curves in the catchment area have been arrived at from those at Puttalam and Maha-Illuppallama by use of the weighted ratios obtained by Thiessen Polygon, as shown in Fig. 1-9. Depth duration curves and 3 hour unit hydrograph given in Table 1-19 bring the flood hydrograph in different probabilities of 1/100, 1/200 and 1/1000, as is calculated in Tables 1-20 ~ 1-22, and illustrated in Fig. 1-10. The peak discharges will be as follows:


Probability	Peak Discharge
1/100	60,100 cusecs
1/200	65,600 "
1/1000	78,600 "

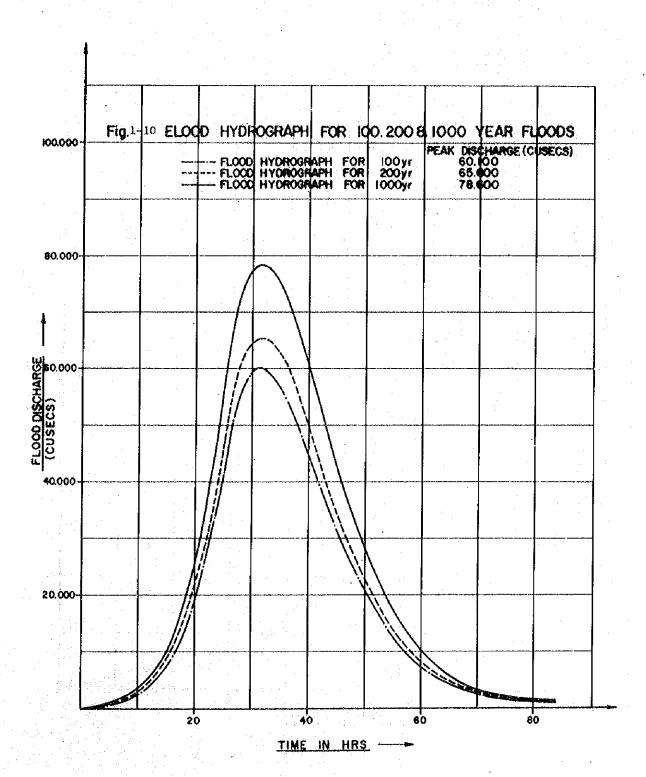


Table 1-19 Derivation of 3 Hours Unit Hydrograph

t(hrs)	U(6,t)	2U(6,t)	U(3,t-3)	U(3,t)
0	0	o		0
* , 3	75	150	0	150
6	225	450	150	300
9	475	950	300	650
12	1,110	2,220	650	1,570
15	2,310	4,620	1,570	3,050
18	4,080	8,160	3,070	5,110
21	5,430	10,860	5,110	5,750
24	5,600	11,200	5,750	5,470
27	5,295	10,590	5,470	5,120
30	4,570	9,140	5,120	4,020
-33	3,675	7,350	4,020	3,330
36	2,900	5,800	3,330	2,470
39	2,190	4,380	2,470	1,910
42	1,700	3,400	1,910	1,490
45	1,250	2,500	1,490	1,010
48	875	1,750	1,010	740
51	600	1,200	740	460
. 54,	390	780	460	340
57	250	500	340	160
60	130	260	160	100
63	65	130	100	30
66	0	0	30	0
69			o	

 $2\dot{U}(6,t) = U(3,t) + U(3,t-3)$

Table 1-20 100 Year Flood Hydrograph

	1020		3	\$	258	2,926	27.922	7,758	37.0	22,22	37,245	386,38		CE 28	S. S. 403	37.4	20,073			200 O	7277	277	1	\$58.3 e	WIT O		Store of	- C	98	2000
	Page		٠	\$	8	8 3,386	3	90E/1	9K.11 -	3,100	8 **	3,300		3,300	\$\$\$\times_{\ti	\$ 3,000				0.01	98.77 P	7 2.00		1	2007	3	3	4 1.68	2	27. 2.5
-	100	-	•	58.8	S.	625.8	2,338	5,057.6	7.112.01	20,125.3	33,645.4	49, 192,3	55,523.5	Sr. 874.4	51,003.6	43,362.5	36,273.2	28,296.9	22,178.4	27,052.	22,277.3	4,212,7	5,872.2	1,903.1	2,328	4 SEP . T.	3	754.4	ं गड़.7	d
	98	o R		į				· 1,						42		. :							,	12.6	8.97	33.6	4.7	8.61	14.7	12.3
4	\$	8							:	~ 1													ġ	X	Ħ	\$3	38	\$) #	Ş
	57	8				÷			-													67,2	\$	211,2	1,036.4	105.6	78.4	65.6	. 3	
	š	ğ							. •							, .					126	35	×	7	861	147	123	170	÷	
	22	3							/:.											193.2	257.6	607.2	2,985.4	303.6	225.4	186.6	3		<i>:</i> 	
	\$	35				•											• • • •		810.8	414.4	\$76.8	4,802.6	4.884	362.6	83.4	%				
Ì	\$\$	1,010									٠							424.2	\$65.6	1,333.2	6,384.9	• 9.999	6.4%	414.1	100	٠.				
ı	25	ı					•									. 1	625.8	634.4	.3'996'	9,670.1 1.	983.4 6,	. र•∞८	6.013	985						
		8							3.	7.						·~							Ģ	ši :						٠
	\$	1,910								٠.						602.2	1,069.6	2,521.2	12,396	1,260.6	935.9	78	\$	÷,*						
	×	2,470												٠	1,037.4	1,383.2	3,260.4	36,030	1,630	1,210.3	1,012.7	888						-		
	33	3,325	١.											1,396.5	862	4,389		2,194.5	1,629	2,263	2,330			e e						
	1	4,020											1,638.4	2,251.2	5,306.4 1,862	26,089.8 4.	2,653-2 21,879	1,969.8 2,	1,648.2 1,		,ì	. 1								
	1											φ.								1,608			•							
l		3,080	:.									6 2,133.6	2 2,344.8	4 6,705.6	3,696 32,969.2	4 3,352,8	6 2,489.2	8,280,2 0	2,032									•	-	
1	ă	- 1							. •		2,352	3,136	.5 7,892	36,344	.5 3,69	.5 2,748	2,2%	2,240												
	ដ	s. 1		-						2,415	3,220	7,590	37,317.5	3,735	2,817.5	2,357.5	2,300													
	82	5,120							2,146.2	2,861.6	6,765.2	33,163.9	3,372.6	2,503.9	2,095.1	2,044							•							
	ध	3,050		-		-, -		182,	302,	,026	794.5		2,494.1	1,250.5	1,220															
	ľ	2,578	A.	. •			659.4	879.2 1,281	2,072.4 1,708	10,189.3 4,026	1,036,2 19,794.5	769.3 2,013	643.7 3	629 1	H								:							
	1	1	ē.			:			8.5 2,		318.5 1,	266.5			' .	• •.														
	ı	33 08	.74	· ·	126	168 273	396	1,947 858	198 4,216.5	147 429	123 31	120 26	366																	
		3		*			906.6	92.4 1,	9 339	57.4	56.0	:				٠.														
-	۰		0	g	8,3		6-69	99.0	\$ * .0		9					<u>.</u>	<u></u>	-	ي هميند ۾		, 			4	k - Angray			·		-
				,	- ·		٥	ە 	٥,		.	-					<u>.</u>	E44 4				, and 4 ***a 1		-	EW. 144-7	•	y;,-y,-wt.4			. بد
	/	[ت	٥		. •	•	2	13	2	#	*	27	8	£	*	ጽ	Q	¥ 33	3	ď	X	5	\$	3	*	\$	t.	χ.	*	

Table 1-21 200 Year Flood Hydrograph

You're	(1)	٥	4	#	2,000	*	4,800	26,24	38,38	138,00	98,086	1,4	4,30	46,407	\$25,528	AL, T	34,44	23,362	907 X	18,000		47.3	2	•	ļ	2,910		3	1	3	4
9		•	\$	8	3,380	1,400	2,768	2,36	3,100	3,58	3,860	8,4	3,850	8	3,00	2,400	88,4	2,28	3,980	1,550	4	1	*	3		*		1	-	*	
Total	į	•	9	77.	8		5,622,3	11,536.7	22,286.3	37,047.5	54,254.1	60,872.3	\$0,986.00	57,016.7	46,537.7	40,936.3	32,054.6	2,162.1	39,370	23,878.5	10,854.8	6, 732.4	4.4		2,680.2	***	*	Ž.	4	ź	•
63	8						v o		8	e,	, vn	•	•	:	•								14.7	28.3	42.6	77.0 213.9	23.1	17.4	4.6. 15.9	14.7	
8	٠.			٠.	•																	\$	3	3	71.3		% •	53.0	\$	٠.	
57	3																				78.4	9.76	227.3	1,140.8	123.2	8.24	8 .	*.*	•		
\$4	8			1						e e										747	383	426	2,139	237	174	851	¥			:	:
5.1	9													-					225.4	280.6	653.2	3,280	356. 2	366.8	243.8	225.4			:	•:	:
48	740					-			٠						÷			362.6	451.4	1,050.8	5,276	8.695	7	392.2	362.6			-			
45	1,010																494.9	616.1	1,434.2	7,201 1	17.7.5	\$85.8	535.5	854.9	٠						
42	1,490 1					•										730.1	6-906	2,115.8			27	780.7	06.7								
	ļ								-						935.9	1,165.1	2,712.2		1,470.7 10,623.7	1,107.8 1,147.3	1,012.3	×						•			
ጵ	01673													m				13,618				ø									
36	2,470	ļ	-											1,210.3	1,506.7	3,507.4	17,611	1,902	1,432.6	1,309	1,230										
33	3,325									•			1,629.2	2,028.2	4,721.5	23,707.2	\$	1,928	1,762.2	1,63				-							
8	4,020											1,969.8	2,452.2	5,708.4	28,662.6	3,095	2,331.6	2,130.6	1,969.8											-	
27	5,080										2,489	3,098.8			3,911.6 2	2,346	2,692	2,689													
26		•								44	3,416 2,	7,952 3,	7 326	4,312 36,220	3,248 3,	2,968 2,	2,744 2,	2,													
73	\$ 027,2								2,817.5	3,507.5 2,744	8,165 3,		4,427.5 39,928 7,213.6	3,335 4	3,047.5 3,	2,517.5 2	. (1														
								4	3,117.1 2,8			3,934.7 40,997.5	2,963.8 4,4	2,708.3 3,5		4															
18	\$,110							5 2,504			5 36,434				25,039																
žĮ.	3,050						1,494.5	1,860.5	4,331	22,746.5	2,348.5	1,769	16,165	1,494.5															-		
ជ	2,570					769.3	257.7	2,229	1,194	1,206.9	910.6	832	769																		
6	959				316.5	396.5	923		•	377	¥	338.5																			
ø,				147	183	436	139				347														-						
6	-		99	8.5	198.8	996.2	107.8 2,139	81.2	74.2																						
ه اب	0 2 / (C) / J	<u> </u> •	8	3	3:	ä			5.53	0.49							-k		~~ ~~				,				,Qu-y Yarkı		-		
//	Ĭ/ĸ/	٦	~ ·	. o	-i	<u>۲</u>		ە 						~~ ~					····				·	**		 -,	. K				 }

Table 1-22 1000 Year Flood Hydrograph

Volen	(coseca)	0	*	1	5 431	1	5,617	8,933	17,680	32,042	027 6 3		3	1	35%, T	327,27	£.3	53,541			X, 88	14,506	14,113	\$385	7.34	\$.	3	2,43	7.	## T	**	Ä	
P.		°	8	8	1		8	2,300	4, 8,	3,500	8		, S	8,	98,4	3,60	3,000	2 300	2,500	22.2	7,980	7.5	1	8	1	9	7,00	1	8	3	•	•	
Total		ŀ	*	X	: [7.7	3,316.7	7,242.7	14,590	27.545	9		286,39	76,050	76,558	70,156	60,194	51,062	857.0	200° F	4,16	27,286	12,713	*	*	3,68	2,263	 8	-	A	0 4	9.8	*
99	0				•		• •		A	· N		+	Ψ.	. ~				.**	. •				7		22.3 0	•	0 1 0	. o \$ **	33.0	20.70	0 5.45	21.0	ø
69 63	30		٠.																					23.0	24	*	855 48	**	ħ	ĸ	K K	*	
\$7	160 1																						113.6	326	262.4	2,368	146.4	4.4	2	217		j.	
54	300																					ä	9	492	2,565	278	237	\$22	270				
51	460 3		-																		326.6	. *	754.4	3,933	427 8 2	363.4	345	22	÷				
8.9																		٠		525.4	592	1,213.6		686.2 3,	584.6	555	518						
	740																		7			5.5 1,2	939.3 6,327	797.9	3 5.727	307.0	\$5					٠	
45	1,010																	ø,	1.7.1	88	5 1,656.4	7 8,635.5				9		-					
45	1,490	}																1,057.9	1,192	2,443.6	12,739.5	1,385.7	1,177.1	1,117.5	1,063								
ጽ	1,910																1,356.1	1,528	3,132.4	16,330.5	3,776	1,508.9	1,432.5	1,337									
36	2,470														÷	1,753.7		805,04	21, 118.5	2,297.1	1,951.3		1,729										
23	3,325 2														2,360.7				3,092 21	2,626.7 2	2,493.7 1		4										
			-					•								.8 2,660	5,453	.6 28,428				8											
8	4,020		:										٠.	2,854	2 3,216	6,592.8	36, 372	2 3,738.6	3,175.8	3,015	2,824												
2	8,080												3,606.8	4,064	8,331.2	43,434	4,724	4,013.2	3,810	3,556											٠		
2	\$,600						٠					3,976	4,480	9, 1, 6	47,880	5,208		4,200	3,920														
ដ	5,750										4,082.5	4,500	9,430	49,162.5	5,347.5 47,880	6,542,5	4,312.5	4,025															
81	5,110								3.628.1			8,380.4	43,690.5	4,752.3	4,036.9	3,832.5	3,577																
							-	5	,								m															,	
\$7	3,050		•.				_	2,365,5	. *			26,037.5	3 2,836.5	5 2,409.5																			
ä	3,570	.:					520.0 1,114.7	1,256			604.5 13,423.5	1,460.1	1,240.3	2,177.5	1,99																		
6	959					\$61.5	520.0	ş	\$ 650 5 666		8	57.5	487.5	455		_						:			1							•	
٥	300				223	360	4	32 2 545 1 066				235	210		.*										٠.		٠						-
	0 140		,		113.0	229.6	1,190.0	2	9		105.0	98.0	٠.	٠.٠					-											-			
	3.5/	1.			8	3	3.55	ő	2	}	ь К	8		عدد شد			ئىيىنىن																
	/M /	} `			•	نو بروز. انج	·····							R	 R	 X	منت	. VI	میند اورن			ست پ از	··	•								 g	

2.1 General

Mi-Oya which provides the source of irrigation water for the agricultural development in the Project area meanders from east to west and the proposed dam will be constructed across the river at a point 21 miles southeast of Puttalam, almost at the midst of Tonigala and Galgamuwa. The Project area is spreading on the peneplain on both banks of the Mi-Oya. Apart from the patches of paddyfield having been developed at the foot of several tanks, the area is generally covered by jungles where Chena cultivation sporadically takes place at present. Geological base of the Project area is made out of the ancient rock which is classifiable into granite and gneiss which exposes itself here and there in the horse-back shaped outcrops. The alluvium covering the foundation rock contains fragments of the host rocks which have been reduced into so many round-shaped, small-sized gravels.

2.2 Topography

Mi-Oya meanders within a belt of 0.3 mile (0.48 km) and the difference between the river-bed and the flood plain is about 15 ft. (4.5 m). There is no oxbow lake in and around the Project area. The gradient of the river is 1/1,066. The wave length of the Mi-Oya's meander is about 0.8 ~ 1.0 mile (1.3 ~ 1.6 km), almost 40 times as big as its river width (about 120 ft. or 36.6 m). Bed load in the river consists of sandy soil. The alluvial flood plain has a width of about 0.4 mile, 1.3 times the river's meandering belt. As sepcified in the above, the Project area exists in a mature valley.

2.3 Geology

Fairly large outcrops at Tonigala, Kuntaniyagama and Mullegama inside the Project area disclose the existence of pink granite and gneiss under the surface soil. The outcrop on the right abutment of Inginimitiya Tank runs intermittently towards NE; the huge rocks scattering on the ground at Peddogama are made of pink granite, and biotite gneiss which exposes itself in the outcrop at Mayilewa runs till it reappears at Palugalla outcrop. While pink microcline gneiss and granite gneiss exist

in the Project area, the catchment area of Inginimitiya Tank is made of leucoratic biotite/hornblends gneiss and granite gneiss (see Fig. 2-1).

2.4 Individual Geological Characteristics

Reddish brown soil extensively develops in the Dry Zone with annual precipitation of less than 75 inches (1903 mm). Its host rock is made up of ferromanganesian materials: mica, hornblends, pyroxene and garnet. Apparent specific gravities of the samples collected from the outcrops are shown in Table 2-1. Pink granite collected at Tonigala is the hardest though with low gravity; granite gneiss at Mullegama and biotite gneiss at Mayilewa are soft, crumbling down into many fine sands if hammered on.

Table 2-1 Apparent Specific Gravity

Tonigala : 2.53 ~ 2.58

Mullegama : 2.54 ~ 2.81

Mayilewa : 2.60 ~ 2.73

Test Pit No. 2 : 2.79 ~ 2.97
(Cobble)

Dam Site : 2.80

(Gravel)

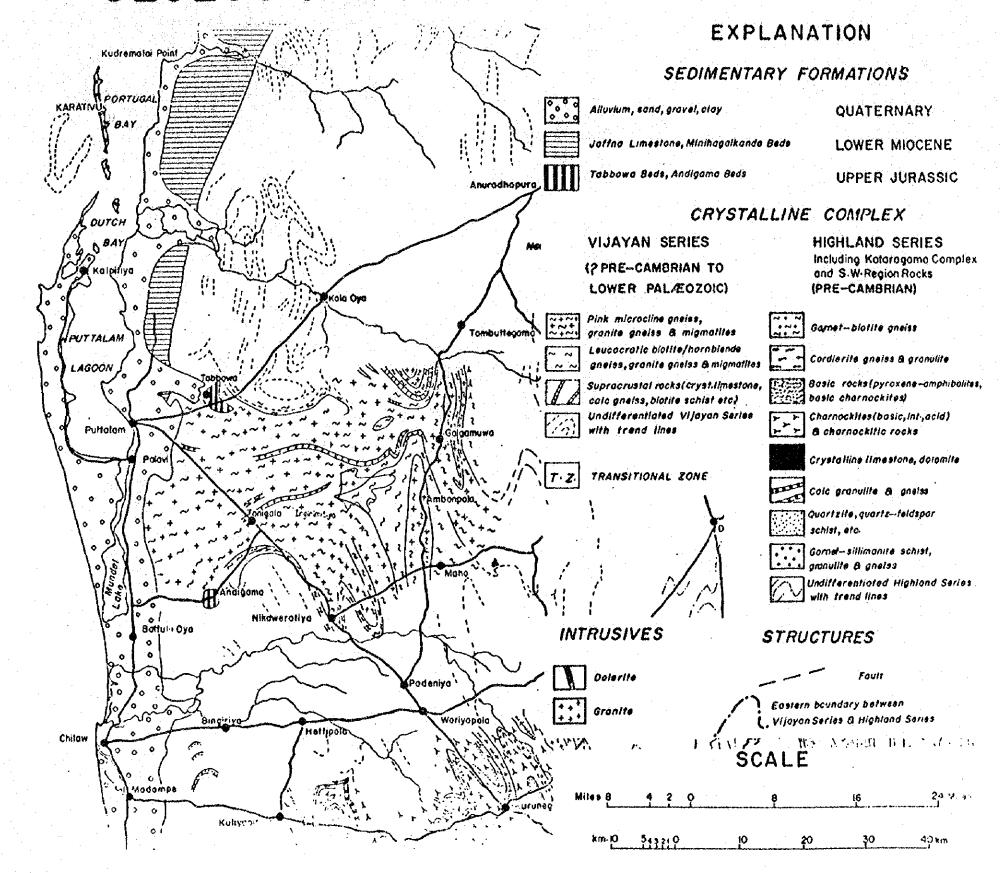
The results of the boring tests at dam-site are shown in Fig. 2.2. Maiority of the cores collected through boring are smaller than 4 inches (10.16 cm) and most of them are 1 inch (2.54 cm). Their rock quality description (R.Q.D.) given by the following formula is mostly below 5%:

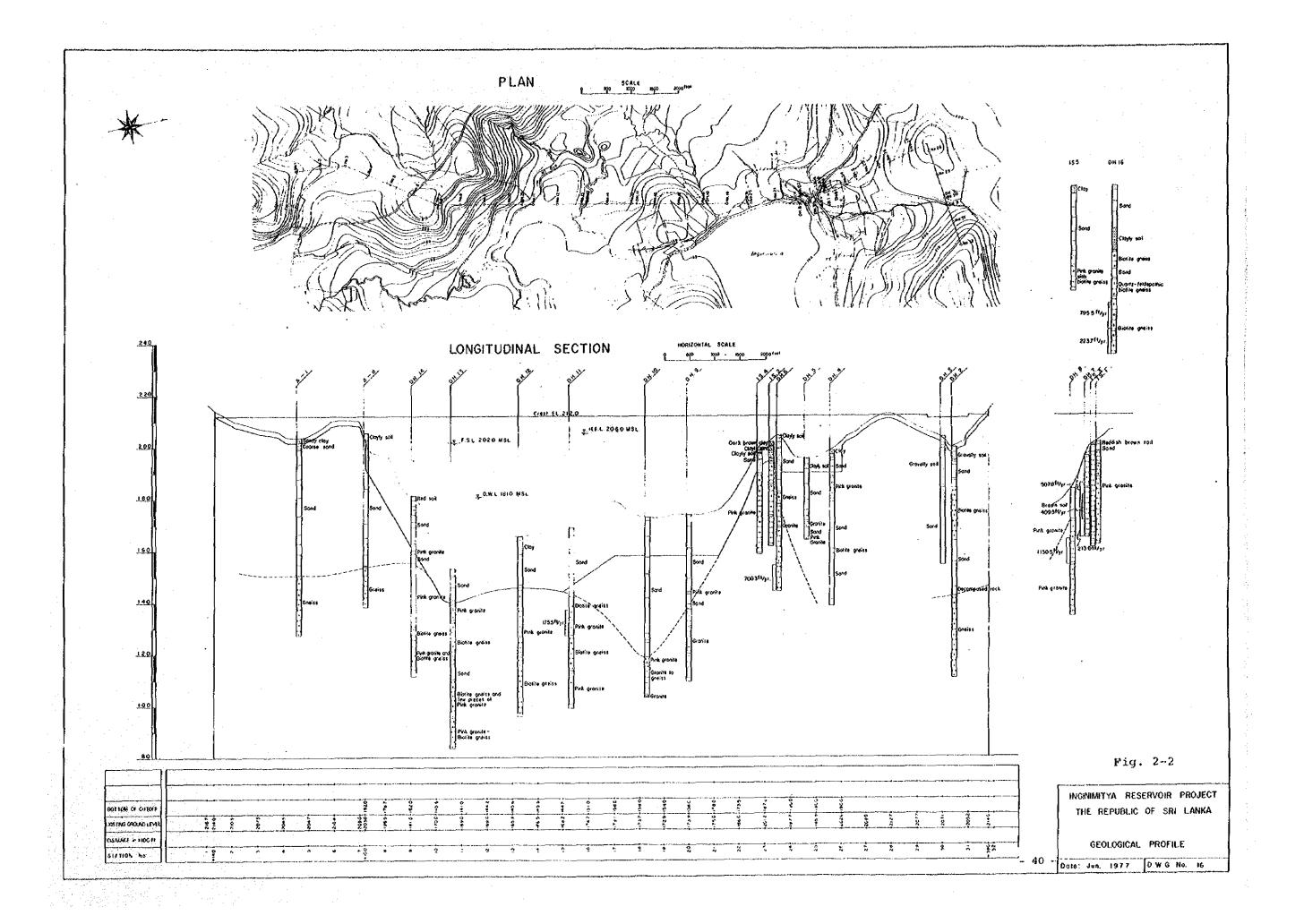
R.Q.D. =
$$\frac{\text{Total logs} > 4 \text{ in}}{\text{Total logs}} \times 100$$

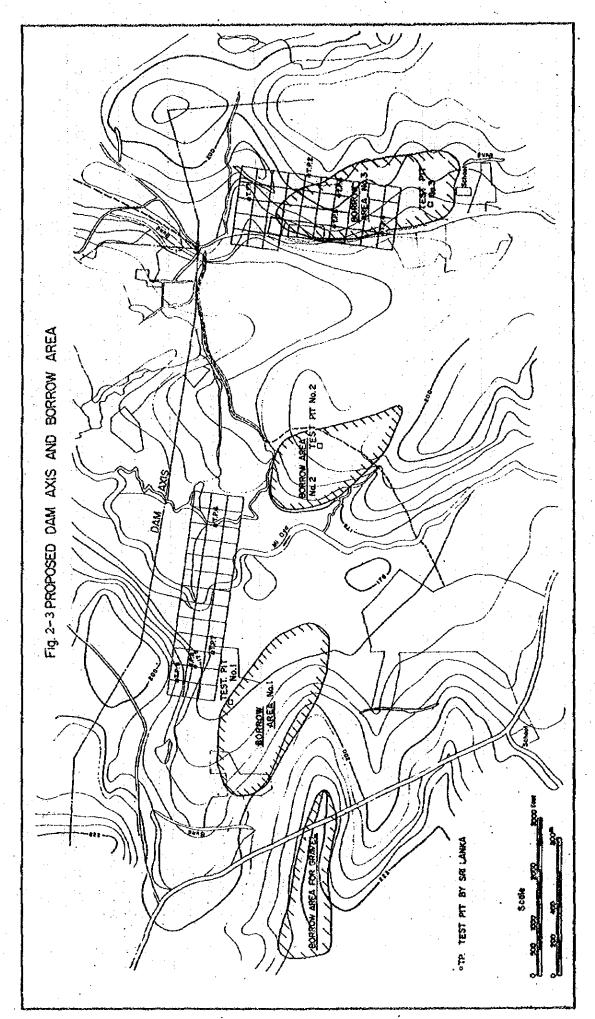
Although no sound rock could have been encountered at within the limit of the boring depth on the field, its existence can be estimated at about 20 ft. below the ground surface. The outcropped rock at the spillway site has enough bearing capacity, though cracked, as the foundation of spillway. Permeability coefficient of the foundation rock has been measured by injection method by use of the boring holes, as shown in Fig. 2-2. All the data shown there are the results of 10 minutes injection except DH.16, and their values have been multiplied 1.5 times to

obtain those at steady state; the modified values are given in Fig. 2-2.

2.5 Embankment Materials and Aggregates

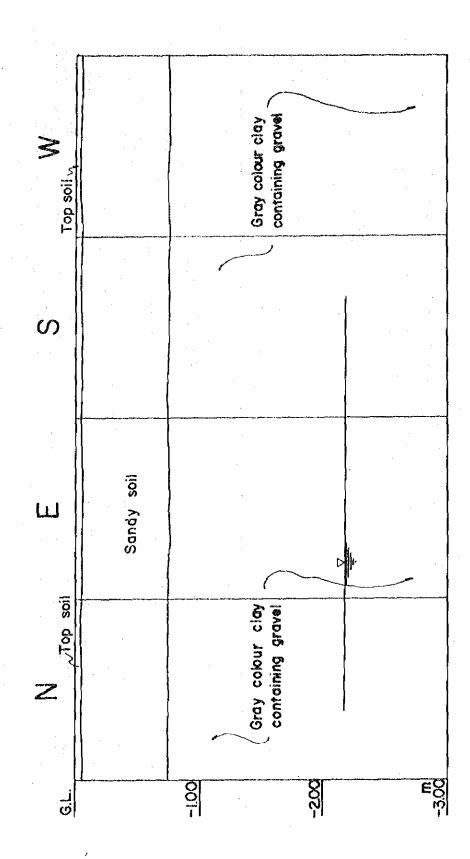

Test Pits each measuring 5' x 5' (1.524 m x 1.542 m) were dug at three places, as shown in Fig. 2-3. Their profile sections are given in Figs. 2-4 through 2-6. Although Test Pit No. 1 disclosed the existence of sandy and clayey soils to the depth of 10 ft., it is supposed that the same material as was identified by other pits on the right bank is available because of the existence of reddish brown soil in its vicinity. At Test Pits No. 2 and No. 3, it was discovered that below 5 ft. deep hard clay and gravel layer, there develops the weathered rock. The materials encountered at all the test pits are useful for embankment. Excavation of the weathered rock may require the use of Ripperdozer.


Three borrow areas have been selected as shown in Fig. 2-3 which also shows the spots where the samples were collected for both laboratory and insitu tests by Sri Lanka engineers; the test results are given in Table 2-2. The findings obtained by the grain size analysis, the compaction test and the triaxial compression test are respectively shown in Figs. 2-7, 2-8 and 2-9, and the plasticity chart is attached as Fig. 2-10.


The sand on the Mi-Oya's river-bed can be used for toe drain. The materials of the gravel layer underneath the Riprap will be available from the alluvial gravel layer in the upstream of Borrow Area No. 1, as shown in Fig. 2-3. The said gravel layer contains a lot of biotite and is made up of plenty of fine grains; they can be used after necessary treatment such as sieving and washing-out.

The cobble materials for the Riprap and Toe drain are available in Tonigala, Mullegama and Mayilewa. Mayilewa has been selected because of its nearness to the dam-site and the evenness of its topography which makes the construction and maintenance of the transport road easier. The broken rocks available in the same area can be substituted for the gravels required for Toe drain. As the rock available at Mullegama and Mayilewa is not satisfactory as the concrete aggregate, Tonigala rock is to be used as concrete aggregate unless better quarry site is identified.

Fig. 2 - 1 GEOLOGICAL MAP



2	1 1 2	· · · · · · · · · · · · · · · · · · ·			-											
Section College Section Co	-	e No.	£4.3	IM. S	IM.6	IM.7	1M.9	IM.10	IM.13	14.14	IM. 15	1M.16	134-17	IM. 1:8	1W. 13	DH. 20
35-21 47-2 27-61 37-21 47-26 27-216 27-216 27-21 27-62 27-		9	~	m	(m	4	ď	v)		7	0 0	œ	ø	о	엄	91
St. Ct. Ct. Ct. Ct. Ct. St. St. St. Ct. St.		Depth in Feet below G.L.	3*-3	4"-2"	26"	3"-3"		,9-,9,2		5.6"-6"	3"-2'6"	3,6,-6,	3*-3*	3,-6,	3*-2*6*	7.6"-6'
Strington Stri		Classification	ပ္ထဲ	វ	છ	ន	ម	SC	၁၄	SC	လွ	છ	Sæ	ည္ပ	ઝ	છ
Continuent Co. 20. 21. 25. 51. 25. 51. 26. 45 18. 65 21.12 13.11 19.10 18.65 23. 68 34. 30 17. 90 17.65 20. 65 24. 50 24. 55 24. 40 20.18 13.59 23. 20. 25 26. 40 22. 30 18. 05 25 26. 40 22. 30 25 26. 40 22. 30 25 26 20. 77. 7 20. 00. 00. 18. 05 20. 00. 18. 05 20. 00. 18. 05 20. 00. 00. 18. 05 20. 00. 00. 00. 00. 00. 00. 00. 00. 00.		Liquid Limit	37.0	43.4	54.10	43.0	43.00	51.30	26.70	48.30	40,40	53.30	60.70	41.80	35.70	47-40
		Plastic limit	. 20.3	19.89	23.25	18,45	18.60	21.12	13.11	19.10	18,61	23.68	34.30	17.90	17.65	21.98
6.66 5.9 7.4 4.8 2.5 4.0 10.0 3.2 5.6 3.0 2.2 2.3 5.0 5.00 5.00 5.00 5.00 5.00 5.00 5.0		Plasticity Ind.	16.7	23.51	30.85	24.55	24.40	30.18	13.59	29.20	21.79	29.62	26.40	23,90	18.05	25.42
0.006mm v 6.66 5.9 7.4 4.8 2.5 4.0 1.0 3.2 5.6 3.0 2.2 2.2 5.0 3.0 0.000mm v 77.0 72.8 68.1 40.6 44.5 74.1 82.2 68.7 77.7 69.0 74.3 44.6 82.4 72.0 0.000		Clay <0.002mm %	8.1	20.3	16.6	8.2	7.1	16.0	16.0	15.6	10.7	14.3	18.3	5.3	9.6	24.3
1.00 Mesh 1 2.5 66.1 40.6 44.5 74.1 82.2 68.7 77.7 69.0 74.3 44.6 82.4 77.0 Mesh 1 2.5 6.0 13.7 5.2 46.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		Silt 0.002-0.006mm %	6.6	6.9	7.4	8.4	2.5	0.4	0	3 2	5.6	3.0	7.	2.3	S.0	2.7
Near 1		Sand 0.006-3.0mm \$	77.0	72.8	68.1	40.6	44.5	74.1	82.2	68.7	7.77	0.69	74.3	. 9.77	82:4	75.2
House 4 43.5 54.9 47.2 33.8 51.1 47.0 44.0 39.7 46.0 41.9 48.5 22.7 41.6 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Gravel		1.0	6.7	46.4	46.0	. Q.	0	12.5	0.9	13.7	5.2	C.93	3.0	7.8
13.9 17.2 12.7 12.0 15.4 14.4 12.8 13.7 15.3 13.8 19.7 12.6 13.2 13.7 13.1 107.6 117.9 119.7 111.7 112.3 115.6 114.9 110.4 113.5 101.7 115.6 114.7 113		Pass 200 Mesh &	43.5	54.9	47.2	33.8	\$1.1	47.0	44.0	39.7	46.0	41.9	48.5	22.7	41.6	38.0
13.9 17.2 12.7 12.0 15.4 14.4 12.8 13.7 15.3 13.8 19.7 12.6 13.2 13.8 19.7 12.6 13.2 13.8 19.7 12.6 13.2 13.8 19.7 12.6 13.4 13.5		Uniformity Cu	8			904					74	•		288	. 26	
6t. 750 375 700, 550 725 600 525 450 460 450 600 500 575 66 11.3 11.3		Optimum Moist. Content &	13.9	17.2	12.7	12.0	15.4	14.4	12.8	13.7	15.3	13.8	19.7	12.6	13.2	14.0
Ft. 750 375 700, 550 725 600 525 450 460 600 500 575 66 11.3 11.3 6.1 11.3 6.1 11.3 6.1 2200' 26'35' 0.0112 0.0075 1.20 0.008 0.041 0.032 0.0114 0.0056 0.013 0.013 0.103 0.012 0.0079 9.15 6.12 8.70 5.23 6.20 6.00 6.78 7.32 6.22 6.57 5.92 5.3 6.22 \$ 7.8 7.8 7.8 8.4 6.3 TP. 2		Maximum Dry Density IBS/CUFT				1. 2.		112.3	115.6	114.9	110.4	113.5	101.7	115.6	114.7	111.6
# 11.3 17050' 26°35' 20°30' 26°35' 17050' 26°35' 20°30' 26°35' 20°31' 20°3		Penetration Resist. IBS/SQFT	750			550		900	525	450	460	450	009	500	575	099
1 17050. 20030' 26035' 0.0112 0.0075 1.20 0.008 0.041 0.032 0.0114 0.0056 0:0018 0.0113 0.103 0.012 0.0079 8		Cohesion IBS/SQFT	11.3					8.1	- - -			:'	11:3	6. 3		
6.0112 0.0075 1.20 0.008 0.041 0.032 0.0114 0.0056 0.018 0.0113 0.103 0.012 0.0079 8		Angle of Internal friction	17050		^			200301				. 1	22000	260351		
\$ 6.12 8.70 5.23 6.20 6.00 6.78 7.32 6.22 6.57 5.92 5.3 6.22 \$ 7.8 7.8 8.4 6.3 8.4 6.3 6.22 (OUFT. TP.2 122.2 135.0 31.0		Percolation Rate	0.0112	0.0075	1.20	0.008	0.041	0.032	0.0114	0.0056	0:0018			0.012	0.0079	
% (TP.1 (TP.1 (TP.1 (TP.2 (TP.		Consolidation *	9.15	6.12	8.70	1	6.20	6.00	6.78	7.32	6.22	6.57	5.92	5.3	6.22	7.68
113.6 313.6 313.6 313.6		Moisture Content &	[- w	19.3	•	7.8		, t	TP.2	-			•		· .
PT/TR		Percolation Rate	=+	. "	DEPTH 4'0'	้ ช้า ข	313.6			HI-GENTH	l b	,				
		PT/IR.	a, produ							,					•	

CONDITION OF BORROW AREA - TEST PIT No.1 Fig. 2-4

SCALE 1:30

BORROW AREA No.2 CONDITION OF E -TEST PIT

SCALE 1:30

25	2	Ш	S	>
	Clay brown colour		Clay brown colour	
001-	Clay gray colour			Clay brown colour
	Hard clay gray colour		Gravel	Hard cia
8	Clayly soil of weathered granite		Clayly soil of	
-30g	white colour		weathered granite	
	1.50 ^m			

Fig. 2-6 CNDITION OF BORROW AREA -TEST PIT No. 3

SCALE 1.30

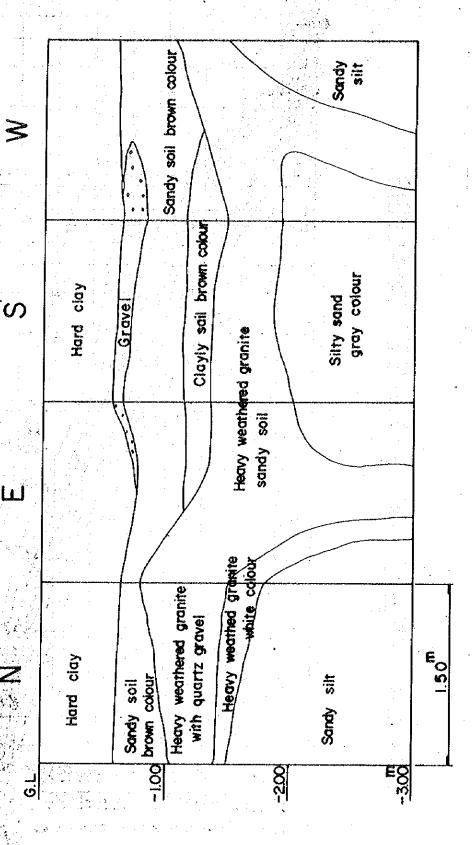
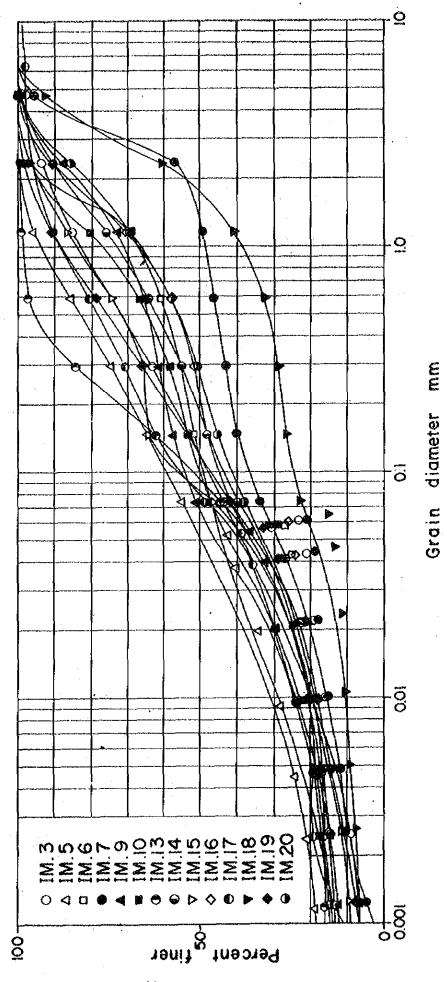
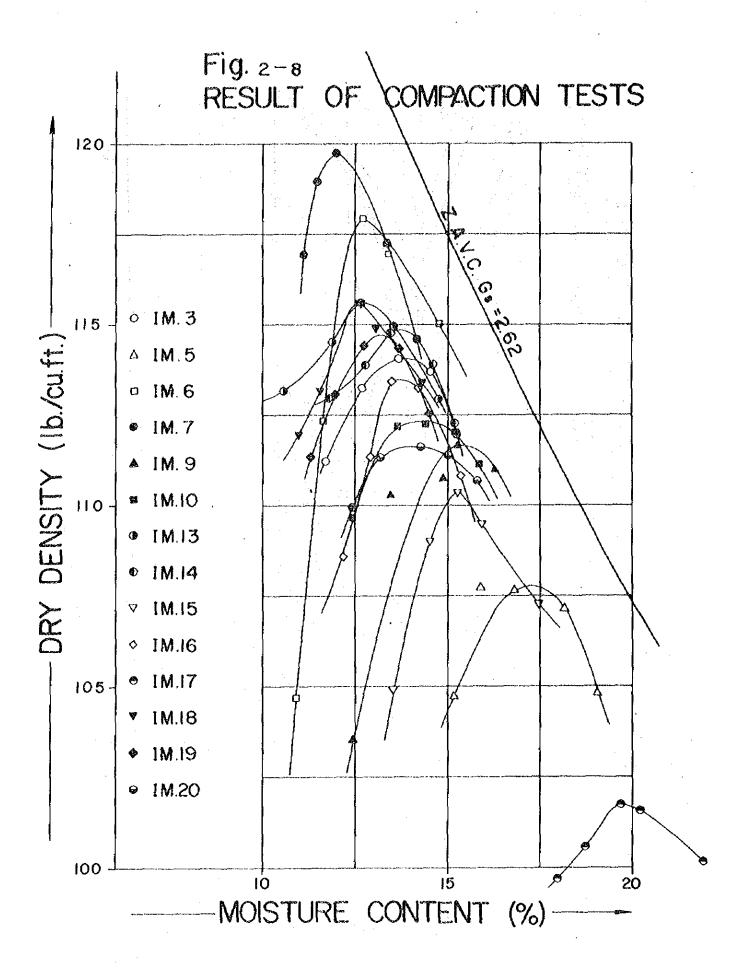
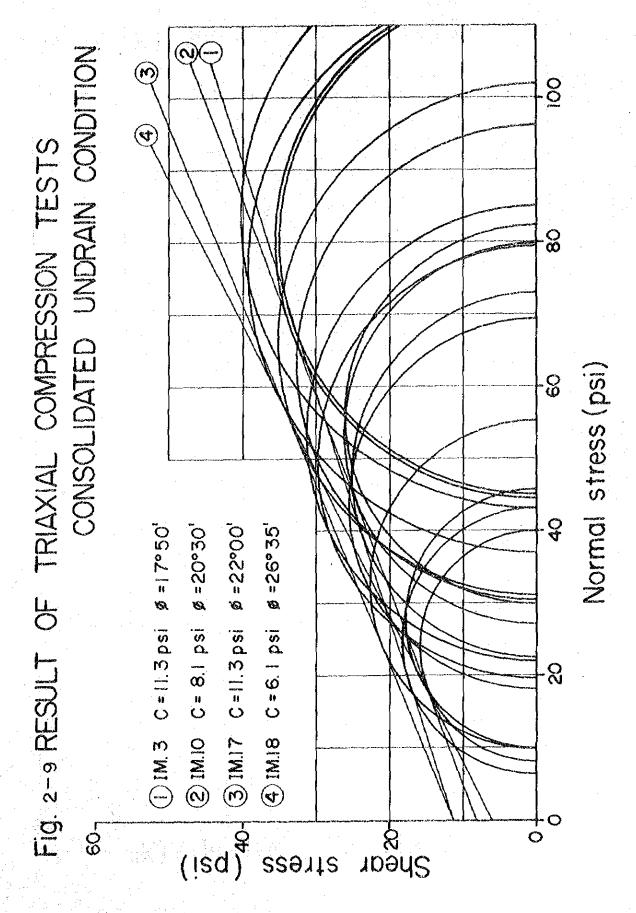
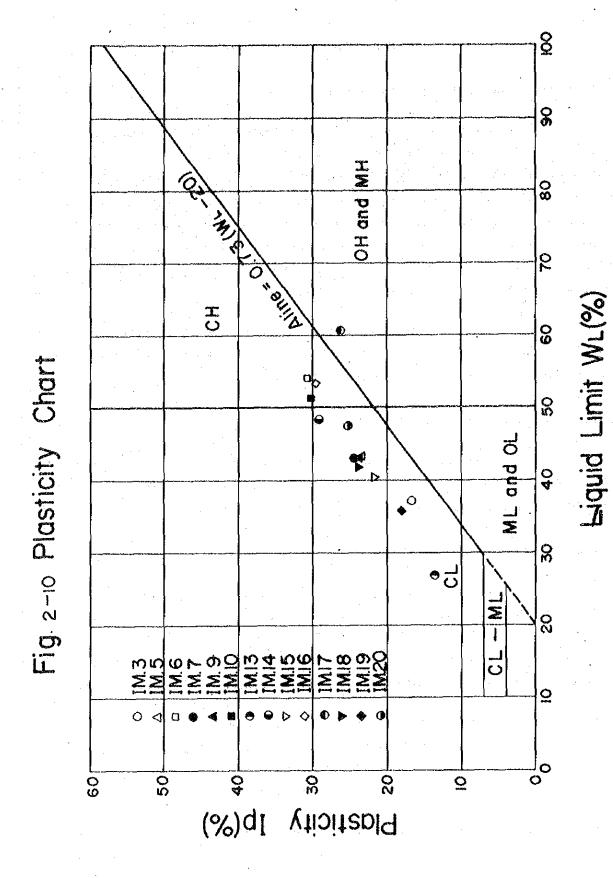






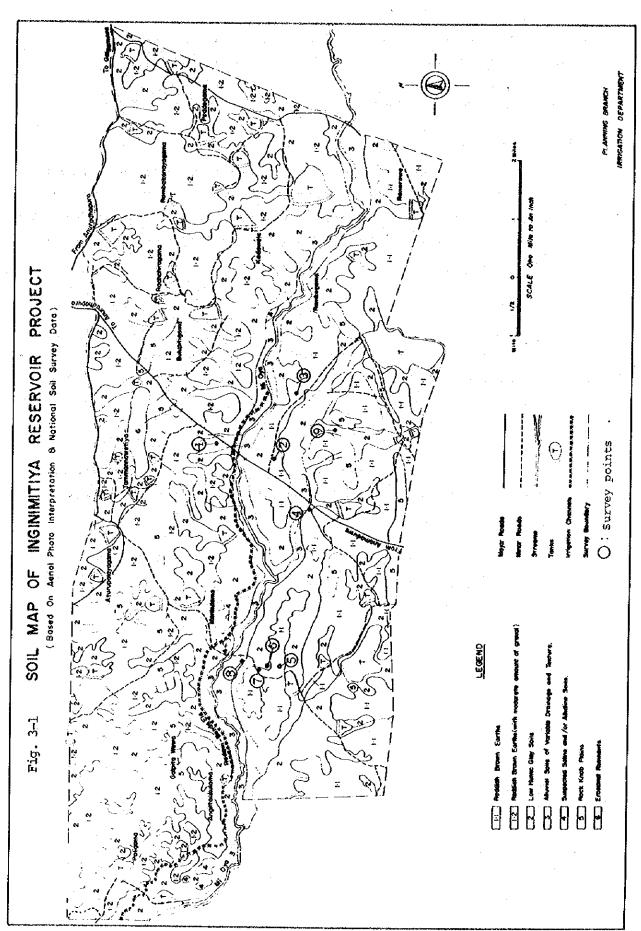
Fig. 2-7 RESULT OF GRAIN-SIZE ANALYSIS

- 49 -

III SOILS & SOIL CLASSIFICATION

3.1 Physico-chemical Property of Soil

In order to provide effective irrigation during the upland cropping season and improve the farm management in the project area, the establishment of irrigation method suitable to the field conditions, physico-chemical property of soil, topography and characteristics of crops, should be carried out. On the basis of the above field conditions, it should be necessary to enforce the complete consolidation of farm conditions including irrigation net work from field plotting, water distribution system and related structures.


This survey is made in order to clarify the above problems mainly in Inginimitiya area. The outline of survey methods and their results are as follows.

3.1.1 Selection of Survey Sites

The survey sites are selected on the basis of respective soil type shown on the soil map provided by the Irrigation Department, Government of Sri Lanka. The survey sites are shown in Fig. 3-1.

3.1.2 Survey Items and Methods

- (1) Measurement of (a) apparent specific gravity, porosity, three phase distribution, hardness and etc. of soil in respective soil strata on the selected points of eight survey sites by using quantitative soil sampling method (100 cc), and (b) the estimations of field capacity, available moisture (= field capacity wilting point moisutre) and others.
- (2) The values of intake rate are taken from the tentative data of Maha-Illuppallama. The measurement with cylinder infiltro-meter was omitted because of the time reason. It is necessary to measure the actual values of the intake rate at the earliest convenience.
- (3) The surface irrigation will be adopted for upland crops in the Yala period. However, the furrow stream test was omitted because of the lack of test apparatus and the time.

(4) Examination of chemical property of soil is made regarding PH (Kcl), P_2O_5 , NH_4-N , K_2O and others by simplified soil test.

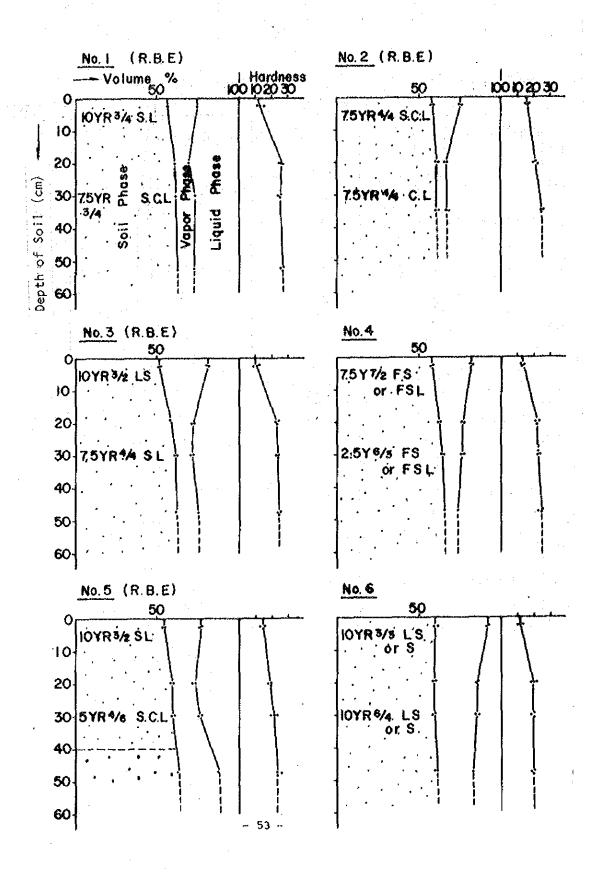
3.1.3 Results and Consideration

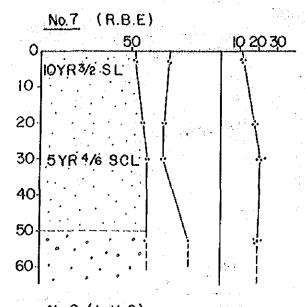
(1) Physical Property of Soil

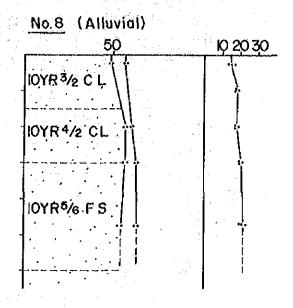
Physical property of soil at the survey site are shown in Table 1. The vapor phase ratio in the field capacity period is generally superior with over 10% except alluvial and L.H.G. type. The hardness is mostly under 23 in the range which the extension of roots would not be disturbed. (Fig. 3-2)

(2) Available Moisture.

Assuming the available moisture is obtained by the difference between the values of field capacity (FC) and wilting point (Wp), AM. to each depth of soil structure (d) is expressed by the following formula:


$$AM = \frac{1}{10} (FC - Wp) d$$


In this survey, FC value is the amount of moisture measured after about 24 hours fully watered. The value of Wp is calculated by


$$Wp = 0.36 FC^{1.08}$$

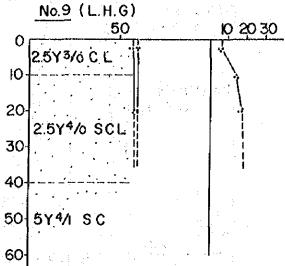

which is specified by Leonard J. Erie (U.S.A.), since actual value of Wp could not be measured. The available moisture per 10 cm is in between $10 \sim 20$ mm except sandy soil and sandy loam.

Fig 3-2 THREE PHASES OF SOIL IN INGININITIYA DEVELOPMENT AREA

Notes

SCL: Sandy clay loam

CL : Clay loam

SL : Sandy loam

LS : Loamy sand

FS : Fine sand

FSL: Five sandy loam

S : Sand

SiC: Silty clay

(3) Total Readily Available Moisture (TRAM)

The value is mainly determined by AM of soil and soil moisture extraction pattern dependent on effective root zone and respective crops.

The water quantity per irrigation (Wd) is obtained by the following formula:

where available moisture of soil in respective horizon indicated as $(AM)_1$, $(AM)_2$, $(AM)_n$, effective root zone as d and the moisture extraction pattern (shown by decimal point) to the n sections are indicated as a_1 , a_2 , a_n .

Crops gets physiological obstacles that the growth of crops is suspended, where the minimum value within values obtained by the above is the supremum value of the water quantity per irrigation and when the moisture content in the horizon corresponding to the minimum value becomes Wp. The irrigation period is determined by the moisture content of the first layer.

Since the moisture extraction pattern, on the other hand, depends on kind of crops, stage of growth, kind of soils and etc., no decision can be made in generally. Here, the computation was made on the assumption that the moisture consumptive ratio of the first layer is 40% of the whole and the root zone is 30, 45 and 60 cm. The water quantity per irrigation has been shown in Table 3-1. The water quantity per irrigation being less except alluvial soil, the design value of the surface irrigation such as furrow irrigation necessary to be examined by the field test.

(4) Intake Rate

This is a proportion which rain or irrigation water is absorbed by soil, usually showed by mm/hr, and is the most significant as a factor of determining the irrigation method and irrigation period. The intake rate is the most important factor in planning of the irrigation project.

The measured result is expressed by D = CTⁿ (D: accumulated amount of infiltration-mm, c,n: constant depended on test, T: time elapsed after the starting of water supply-min.). Since this value is altered by several factors as kind of soils, soil layer structure, soil moisture condition, existence of coverings, temperature of supply water, land temperature and turbidity of water and etc., the decision of the representative value will accompany many troubles.

Data of Mahaveli Stage II were provisionally used because direct measurement could not be carried out this time. (Fig. 3-3)

The intake rate reduces gradually conformable to the time elapsed from the beginning of irrigating or suppling water, and finally keeps almost constant value. The intake rate in this condition is called basic intake rate (I_B), and generally used as index of the permeability of soils. This value is usually decided as the intake rate when the variation ratio of the intake rate becomes 10% of the intake rate at that time. In this case, the time reaching to the intake rate is not related to the kind of soils, but equal to the time multiplied by 600 of index indicated by the intake rate formula.

$$I_B = 60 \text{ cm} \{600 (1-n)\}^{n-1}$$

gar kang bada di Kabupatèn Kabupatèn

(5) Checmical Property of Soils

Highway to Hark Since and Grading and Jackson

The results of measurement with simplified soil measuring instrument is as Table 3-2.

Ho.	Soil Sarios	Depth	Senture.	Apparent Deseity	Total Pero	7.C	1) Meisture W.P. Myless	n-youl)	20000 R-45 ³	n-60 ⁴⁾	Phrop Soil Phone	plance o liquid Phase	Yapor Yapor Phase	Kaxanees
				(m)	1/0°	Wel. 6	Vol.4 mm	969	5200.	20	•	•	\$	(*************************************
		0 % 5	SL	1,52	43.1	24.9	11.6 13.3	24.9	37.4	50,8	56.1	24.9	19.0	12.7
	5 53 3	20		1.66	30.5	29.4	14.0 15.6				61.5	29.6	8.9	25.0
1	R.B.E.	30	\$CL	1.67	30, j	26.4	23.3 14.1				61.7	24.4	12.0	25.3
	- 1	50 ∿ 55		1.71	36.4	26.3	12.3 14.0				63,4	26.3	10.3	26.3
		0 ^ 5	sct	1.57	41.9	25.0	11.6 13.4	25.1;	37.7	55.1	39.1	25.0	16,9	16.0
2	R.B.E.	20		1.66	36.6	33.0	15.7. 17.3				61.4	. 33.0	5.6	20.3
		35	CIL .	1.67	30.0	33.0	15.7 17.3				62.0	33.0	5.0	24.3
		0 ^ 5	LS	1.40	40,2	14.7	8.5 10.2	19.1	20.7	43.4	51.0	14.7	29.5	10.0
		20		1.59	41.3	27.5	12.9 14.6	•			50.7	27.5	13.8	23.0
3	R.B.K.	30	SL	1.62	39,9	25.5	11.9 13.6				60.1	27.3	12,6	23.7
		45 ~ 50		1.66	36,4	22.3	10.3 12.0		•		61.6	24.1	14.0	25.0
		0~5	PS	1.58	41,6	18.7	4,5 10.2	19.1	28.7	41.6	58.4	18.7	22.9	12.7
		20		1.69	37.4	24.0	11.1 12.9				62.6	24.0	13.4	21.3
4		30	PS	1.76	34.6	23.6	11.0 12.8				65.2	23.8	11.0	22.0
		45 % 50	or FSL	1.79	33,7	27.0	12.7 14.3				64.4	27.0	6.7	24.0
	•	0 ∿ 5	SL	1.47	45.7	32,7	10.4 12.3	13.1	34.4	44,8	54.3	22.7	23.0	14.3
_		20		1.61	40.4	27.2	12.8 16.4				59.6	27.2	13.2	18.3
5	R.B.B.	30	SCL	1.60	40.6	23.4	10.8 12.6				59.4	23.4	17.2	20.7
		45 ∿ 50		1.72	36.2	12.3	5.4 4.9				63.8	12.3	23.9	23.7
		Q % 5	LS	1.64	39.5	8.8	3.8 5.0	9,4	14.1	22.9	60.5	8.8	30.7	11.1
		20		1.58	41.6	15.1	6.8 8.3				58.4	15.1	26.5	19.7
6		30	LS	1.50	41.6	15.7	7.0 0.7				58.4	15.7	25.9	19.3
		45 ∿ 50	or S	1.67	38.3	16.1	7.2 9.9		•		61.7	16.1	20.3	19.3
		0∿5	SL	1.40	48.1	29.5	13.9 15.6	29.3	43.5	60.0	51.9	29.5	18.6	11.6
		20		1.53	43.6	31.9	15.1 16.8			•	56.4	31.9	11.7	10.3
7	R.B.E.	30	SCL	1.60	40.8	32.3	15.4 16.9			. 1 1	59.2	32.3	. 8.5	21.3
		50 ∿ 55		1.56	42.2	14.0	8,2 9,8				57.8	16.0	24.2	19.3
		0∿5	CL	1.31	51.4	44.4	21.7 22.7	42.6	63.9	83.0	40.6	44.4	7.0	14.7
_		20	CI.	1.54	43.1	40.7	19.7 21.0	ş*			56.9	40.7	- 2.4	17.7
ij	Alluvia	30	FS	1.58	42,8	37.6	10.1 19.5				57.2	37.6	5.2	20.3
		45 ∿ 50	PS	1.59	45.4	38.2	18.4 19.6	* .			56.6	38,2	7.2	21.3
		0∿5 :	CL.	1.24	42.0	40.0	19.3 20.7	34.8	38.2	77.8	57.2	40.0	2.8	5.7
y	L.H.G.	20	SCL	1.64	42.5	40.3	19.5 20.8				57.5	40.3	2.2	16.3

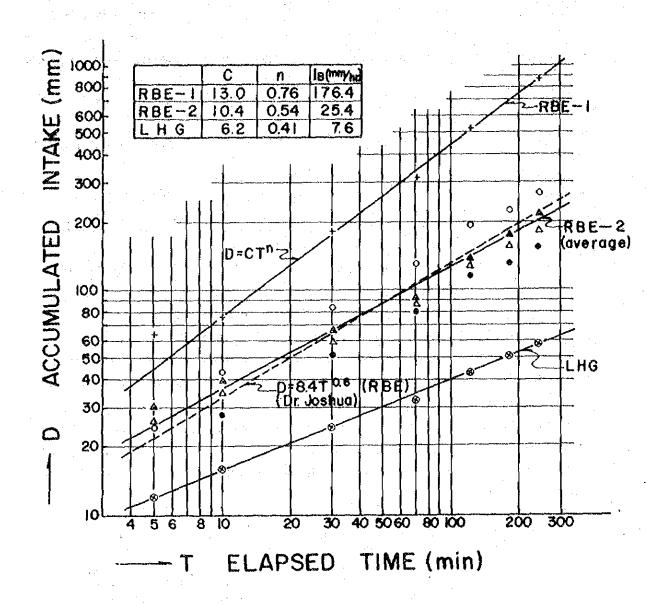
- NOTE: 1) H.P = 0.36FC^{1.08}
 - 2) Pulses (Root Depth 1.01)
 - 3) Soya Bean and Chillies (Scot Depth 1.5')
 - 4) Cotton (Root Dapth 2.01)
 - * TRAN: Total readily evailable moisture

til er er at tierg er aktører e aktøra før [1,14] er er bli i 1.55 Table 3-2 Soil Examination Data

			T C	mre 3-2 501	r'examina éron	Data		
en e	TOTAL ACT	$\{x_i, Y_i\}$		n en proportion de la companya de l La companya de la co		TANDEN North	14. 1 Sec. 1	Francisco (L. 1967)
No	DEPTE- (cm)		PH(kck)	P ₂ 05	P205 Coefficient	in Jan	NH4-N	к ₂ о
				mg/100g				mg/100g
1	5-10	· ju	6.5	0.1	-500		1	3. Sec. 10. 3.
2	5-10 25-30		5.5 6.0	1.0 0.1	-500		1 1	3 0
• •3 •	5-10	4.	6.0	0.1	-500	,	1	15
4	5-10		6.5	1.0	~500	: :	1	8
5	5-10 25-30		6.5 6.0	10.0	600	· .	1 1	15 3
6	5-10	v 1 1. 1	6.0	0.1	-500		1	3
7	5-10 25-30		7.0 6.0	1.0	600	-	1 1	30 8
8	5-10 2530	7	.0.∿ 7.5 .5.5	5.0 0.1	700		1 1	8 0

the second of the second of the second of the second

The Control of the Control


No. 1 WANNIYAGAMA

- 2 MAHAUSWEWA
- 3 MAHUSWEWA
 - and the supplier of the supplier of

8 July 5

- 5 KOLLANKULAMA, INGINIMITIYA
 6 KOTTAGAMA
- 6 KOTTAGAMA
- 7 INGINIMITIYA

Fig. 3-3 INTAKE CURVES

3.2 Irrigation Method

3.2.1 Applicability of Irrigation Methods

In relation to the basic intake rate, topography and crops, the classification of the irrigation methods will be as follows:

Irrigation Method	Slope of Lands	Extent of Basic Intake Rate	Objective Crops		
Furrow method	under 5%	5 ~ 100 mm/h	Furrow crop, orchard		
Cotton furrow method	5 ~ 27%	100 mm/h under	- do -		
Strip border method	under 5%	75 mm/h hour	Forage crop, pasture		
Contour ditch method	14 ~ 50%	Excessively not restricted	Pasture		
Basin method	0.2% under	under 75 mm/h	Orchard, pasture		
Sprinkling method	Excessively not restricted	above 5 mm/h	All kinds of crops		

In this project, the irrigation for the upland crop in the Yala period except some parts being objected. The respective farm may be considered to be flat lands. Accordingly, the irrigation method in such areas is determined only by crops and the basic intake rate. However, from economic and technical considerations, the surface irrigations such as furrow irrigation, border irrigation and basin irrigation are the effective method. When classified with respective land class, the following can be obtained:

Low land	Where water source is favored	- gravity irrigation
	where water demand is short	 intermittent irrigation (water is saved in 30 ~ 40%)
High land	Furrow irrigation or furrow basin	- maize, cotton, chillies (stage II)
	Border irrigation	- upland rice
	Corrugation irrigation	- chillies (stage I)

3.2.2 Furrow Irrigation

Furrow irrigation can be applied to all furrow crops in this area. In order to carry out this method effectively, the operation of relevant irrigation shall be made considering relation of the furrow stream and the advance rate of the flow of water. For the sake of this, it is recommended the flowing method (quartering method) with 1/4 of the required irrigation time (T), that is, the irrigation water reaches from the starting furrow to the terminal furrow in T/4 time.

(1) Relationship of Furrow Stream and Advance Rate of Water Flow

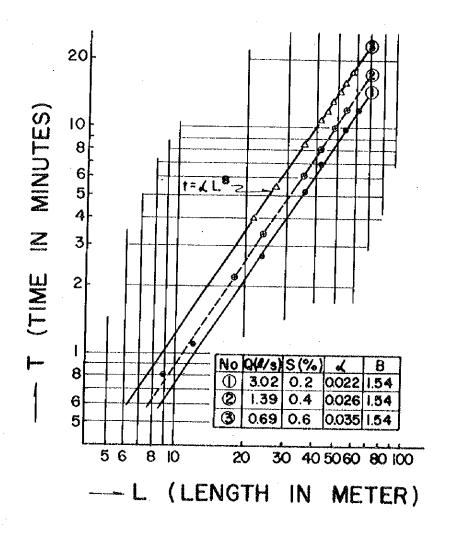
In general, when the furrow discharge and inclination are in between appropriate range, the reaching time of the flow of water is a function of the reaching distance as follows:

$$t = \alpha L \beta$$

t: Time to be required for the flow of water to reach to L (min)

L: Reaching distance of the flow of water (m)

 α, β : Constants


α, the coefficient of water flow is the time to be required for flowing down 1 m at the beginning. β shows the inclination in straight line. To conform with this value becoming less, the concentration time becomes short the indential furrow length. Fig. 3-4 shows the relation of furrow discharge and the advance rate of the flow of water, which was measured in Mahaveli project. (Upon the detail design of this area, actual survey in respective soil type is required.)

(2) Furrow Intake Rate

The approximation of the infiltration rate of the water in the water pressure condition of the furrow stream can be obtained from the value of cylinder intake rate. For anticipating correctness, furrow stream method is desirable to be adopted.

The expression of the intake rate of the furrow stream is ordinary showed by infiltration water-meter per length of ridge (l/min/lom) or infiltration water depth per hour (mm/hr). Though the measurement

Fig. 3-4 ADVANCE CURVES

Drawing from Fig. 6A, 6B, 6C in Mahaveli Stage 11

could not be carried out because of the surveying period, the actual measurement will be necessary in respective soil type upon the detail design.

(3) Time of Furrow Stream (Tr)

Time of furrow stream can be determined by $T=(\frac{D}{C})^{\frac{1}{n}}$ which is transformation of the furrow intake formula $D=CT^n$ (mentioned above). The concentration time (t) of the flow of water has not been considered yet. The following will be gotten to consider this:

$$Tr = T + t = \left(\frac{D}{C}\right)^{\frac{1}{n}} + t$$

Now, assuming furrow length, (L) 50 m, furrow width, 60 cm, the maximum time of water stream of the furrows is as Table 3-3:

Table 3-3 Time of Water Stream of Furrow

		Wat	er Quanti	ty per Ir	rigation	(D)
		20 mm	30 mm	40 mm	50 mm	60 mm
${f r}$	(min)	4.2	8.3	13.5	19.5	26.5
t	(min)	10.7	10.7	10.7	10.7	10.7
Tr	(min)	14.9	19.0	24.2	30.2	37.2

Note: assuming

C = 8.4, n = 0.6

 α = 0.026, β = 1.5

L = 50 m

(4) Limit of Furrow Length

In the irrigation under the surface irrigation method, a side of a plot, furrow length, is restricted by the flow length (length of run) in which water can be supplied with high irrigation efficiency. After all, this length is determined by considering the water quantity per irrigation, furrow inclination, furrow stream, soil intake rate and etc.

Generally, if the speed of the flow of water is fast, the distribution efficiency of infiltration water in each part of the furrow

becomes preferable. It is desirable as for irrigation efficiency. That the concentration time of the flow of water has parabola curve expressed by $t = \alpha L \beta$. If considering such adjustment in discharge quantity and inclination, the allowable length of furrow (L) can be determined by following formula:

$$L = (\frac{t}{\alpha})^{\frac{1}{\beta}}$$

If applying the view point of the cut-back division method to the relation of the concentration time of the flow of water (t) and required irrigation time(T), the concentration time of the flow of water becomes $t = \frac{T}{m}$.

Further, since the irrigation time (T) becomes $T=\left(\frac{D}{C}\right)^{n}$ as described above, from the result of the measurement of the intake rate indicating the water quantity per irrigation (D), the limited length of furrow (L) can be obtained by the following formula to substitute T, D, t and coefficients into the formula $L=\left(\frac{t}{\alpha}\right)^{\frac{1}{B}}$.

L (m) =
$$\left\{\frac{1}{\alpha} \cdot \frac{1}{m} \left(\frac{D}{C}\right)^{n}\right\}^{\frac{1}{\beta}}$$

The length of furrow shown in Table 3-4 is the value when $m = 1 \sim m = 4$, that is, when over 80% in irrigation efficiency. Accordingly, if reducing the irrigation efficiency to the extent of 60%, the limited length of furrow could be extended up to 50 m.

Table 3-4 Limited Length of Ridge

			t t	•		i	
	4-11	30.4	33,2	25.9	29.1	36,4	
R=60	m=2	47.7	52.1	40.7	45.7	57.1	
	10=3	74.8	81.7	63.7	71.7	9-68	
	m=4	21.9		16.4	20.1	26.0	
L max (m) R=45	n=2	34.3	34-6	25.7	31.5	40-8	•
Ä	m=1	53.7	54.2	40.4	49.4	63.9	
	m=4	14.1	14.2	10.7	13.0	16.8	
R=30	m=2	22.1	22.3	16.6	20.3	26.3	
	m=1	34.6	34.9	26.0	31.9	41.3	
E	R=60	50.8	55.1	43.8	48.8	60.09	
T. R. A. M. (mm)	R=45	37.4	37.7	28.7	34.6	43.9	
# #	R=30	24.9	25.1	19.1	23.1	29.3	
NO		М	8	m	w	<u>,</u>	

depended on Dr. Joshua's data C=8.4 n=0.6 Note:

(5) Irrigation Efficiency

The water application efficiency can be determined by the following formula on the basis of each constant mentioned so far:

Ea (%) =
$$\frac{200 \times D}{C \text{ (T = } \alpha L \text{S) + D}}$$

The water application efficiency is shown below in the Table 3-5.

Table 3-5 Water Application Efficiency

	T	RAM (mm)	Ea (%)					
No.					L = 50 m				
	R=30	R=45	R=60	R=30	R=45	R=60	R=30	R=45	R=60
				2.13		 			
1				70.5					
2	25.1	37.7	55.1	70.7	81.3	88.5	50.7	63.6	74.8
. 3	19.1	28.7	43.8	62.4	75.4	84.5	42.3	55.0	68.2
5	23.1	34.6	48.8	68.3	79.3	86.5	48.1	61.0	71.4
7	29.3	43.9	60.0	75.0	84.5	89.8	55.7	68.3	77.0

4.1 General

4.1.1 Present Land Use and Production Patterns

The entire area now covered by the Project cover 6,300 acres, of which about 1,640 acres is the existing agricultural land (paddyfield) and 4,600 acres is for new development. As a stable agricultural production takes place in the Dry Zone only through tank irrigation - supplementarily during Maha season but exclusively during Yala season - the extent of irrigability is synonymous with the entirety of land which can be productively used for cultivation of paddy which is the staple food of the people. The existing agricultural land, therefore, has its own sources of irrigation which, in our case, is Mahauswewa Tank and several other smaller village In the command area of Mahauswewa Tank which is the biggest and the most dependable in the region, the irrigable area has been limited to about 80% during Maha season and to about 40% during Yala season for the last 15 years or so; apart from paddy production, cultivation of some subsidiary food crops like cow peas, green gram, and the like is nevertheless possible and is actually tried out in the gardens and upland fields during Maha season. The pattern of irrigability and correspondingly the pattern of cropping in the command area of Mahauswewa Tank is supposed to be duplicated, though in much less favourable ratios, in the rest of the existing agricultural land.

The present land-use and production patterns in the existing agricultural land have not yet been studied in necessary details (some hearing from the farmers who happened to be living in the neighbourhood of the soil sampling spots are tabulated in the following part of this Chapter). It could, however, be said that by and large the farming is of subsistent level even within the existing agricultural land, to say nothing of the agricultural productivity in the area which will be newly developed that is almost negligible excepting some Chena cultivation during Maha seasons.

4.1.2 Agricultural Development under the Project

It is intended under the Project to clear, develop and consolidate some 4,600 acres of land which has not been systematically used for agricultural purposes and divide it into the small market oriented family farm of 2.5 acres each. The existing agricultural land which spreads over some 1,640 acres will also be consolidated, but no radical changes to its land distribution and tenure is anticipated. The development of both the existing and newly developed farms beyond subsistence level and within market oriented structures will require that the scientific agricultural techniques including the use of proper amounts of fertilizers, other agrochemicals and the farm machinery be extended among the farmers side by side with organization and management of the appropriate farmers' institutions for water-management, procurement of credits and facilitating for supply of agricultural input materials and marketing of the produce.

4.1.3 Land Use and Cropping Patterns

The broad patterns of land-use and agricultural production would be governed by topographic and soil conditions in the Project area: low land (5,200 acres) which is comprised of 1,640 acres of the existing agricultural land and 3,560 acres of the newly developed land covers 83% of the entire Project area and is meant for paddy cultivation during both Maha and Yala seasons while, in agreement with land classification patterns, artificially and naturally well-drained highland (1,100 acres) will be used for cultivation of paddy during Maha season and of subsidiary food crops such as soya beans and pulses and cash crop like dried chillies during Yala season. Cropping patterns on the lowland and highland are shown in Fig. 4-1.

4.1.4 Future Project Output and Development Schedule

Project implementation would be phased over 5 years and the full project benefits would be achieved 5 years after project implementation in the newly developed land. In the meanwhile, with special attention given to water management, extension work and credit/input supply guidance, it is expected that the average yields of the crops will steadily increase from the moderate level to much higher and constant level as the farmers

would be equipped with suitable agricultural machinery and obtain proper experience in managing their own farms and institutions. The output expected per acre in the newly developed land in the 6th and the 11th year will be as follows:

	Paddy	Soya bean	Pulses	Chillies (dry)		
6th year	45 bushels	6 cwt	5 cwt	7 cwt		
11th year	80 "	12 "	10 "	15 "		

The estimated agricultural inputs and outputs in the newly developed land under the Project are given in Table 4-1.

Due to the experiences in crop cultivation and water control previously accumulated among the farmers, plus intensive water-management and extension services as well as institutional trainings under the Project, the yield-increase would start in the existing agricultural land from the 5th year when the headworks including main canals should be ready for operation. The average yields of the proposed crops which are expected in the newly developed land only in the 11th year are supposed to be obtained in the 7th year in the command area of Mahauswewa Tank, and in the 8th year in the rest of the existing agricultural land. The agricultural inputs and outputs estimated in the existing agricultural land during the construction period and under the Project are given in Tables 4-2 and 4-3.

4.2 Farm Equipments

The supply of farm machinery will be indispensable to allow the farmers upkeep the cropping patterns given above; the use of draught animals would require the production of fodder on irrigated land and would reduce the expected output of the Project - compared with the cost of combined use of 4-wheel and 2-wheel tractors the operation of draught animals does not appear significantly more profitable. It is therefore suggested that the farm machinery as specified in Table 4-4 will be supplied to the Project and systematically used for smooth operation under the supervision of the Agricultural Production Unit. 2-wheel tractors and their attachments and sprayers will be sold to the farmers' co-ops., after 2 years training of the farmers on their use. Sprayers may be sold directly to the farmers particularly those who are engaged in upland crop cultivation after they would have good knowledge in their use and maintenance.

4.3 Farm Requisites

Agricultural input requirements have been estimated roughly along the recommendations given by the Department of Agriculture (Table 4-5) which will be given in monetary terms as follows:

nga panganan na ang panganan kanang p**a** panganan na panganan na ang panganan **a**

and the control of th

V	Pac	ldy	Chillies	Soya bean	Pulses
Seeds & Chemicals 1/	Rs.	530	Rs. 1,150	Rs. 220	Rs. 170
Farm Machinery & $\frac{2}{}$		520	1,080	480	520
Miscellaneous 3/			160		80
grade og er og er er skriver i skriver. Grade kommer i skriver av Artigårese.					Rs. 770

At the start of the agricultural development, it would be hazardous to invite inexperienced farmers to use high amounts of inputs which would result in heavy loss if crops were to fail. Thus, in the first year, it is expected that only 20 per cent of the recommended applications of fertilizers and agro-chemicals will be used; their dozage may increase as farmers will get experience and learn their value.

• Expected Tempo of Input Increase

 $(\mu^{(k)}, \kappa) = (4, \kappa, (1 + \mu), (1 + \mu$

Project Year	•	6th	7th	8th	9th	10th	11th
Percentage	:	.20	30	40	60	80	100

4.4 Agricultural Labour

Based on an equivalent of 2.0 full time adult workers per household (5.5 persons) working on average of 250 days per year, the requirement of hired labour per acre during the "peak months" would be:

40 days for paddy cultivation during Maha & Yala each;

60 days for subsidiary food crops, and 90~120 days for chillie cultivation during Yala;

and algebra and the tree to be a superior of the contract of

The labour wage is estimated at Rs. 8 per day.

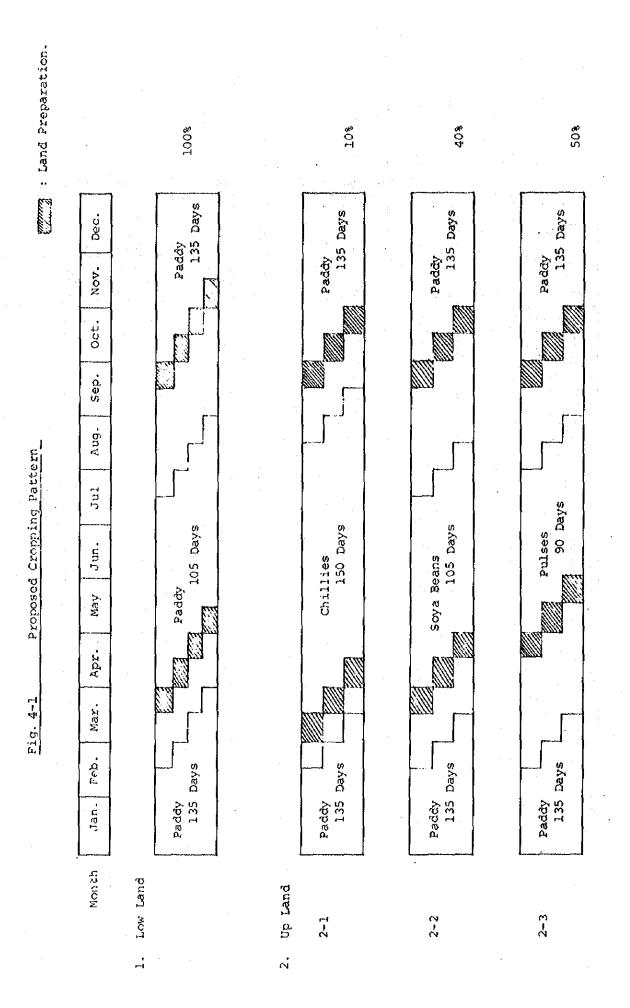


Table 4-1 Agricultural Production in The Newly Developed Area under The Project (Financial)

1		Type of Land	T	Low Land		High Land				
F		Size		,560 acres	·	1,100 acres				·
		Trrigability	854 during	Maha & 801 dur	ing Yala		during Maha	6 80% duri		***************************************
		Cropping Pattern	(during Maha)	ddy (during Yala)	Total	Paddy (during Haha	Upland) Soya Beans	Crops (dur Pulses		Total
	Area under Crops		3,026Ac.	2,848Ac.	5,874Ac	935Ac.	352Ac. (40%)	440Ac. (50%)	88Ac.	880Ac. (100%)
Γ	T	Yield per Acre	45bu	45bu		45bu	: 6cvit	5cvt	7cut	· · · · · · · · · · · · · · · · · · ·
		Production (Rs1,000)	136.2	120.2	264.4	42	2,112	2,200	616	
1	زاز	Unit Price (Rs)	33	33		33	84	128	1,000	٠
Year		G.P.V. (Re1,000)	4,494.5	4,230.6	8,725.1	1,306	177.4	281.6	616	2,461
ęty.		Cost per Acre (Rs)	579	579	·	579	410	390	1,269	
	1	Total Cost (Rs1,000)	1,752	1,649	3,401	541.4	144.3	171.6	113.4	970.4
1	18	N.P.V. (Rel,000)	2,743	2,582	5,325	844.6	33.1	110	502.6	1,490.3
	8	Yield per Acre	52bu	52bu		52bu	7.2cwt	6cvt	8.6cvt	
	ŧ	Production (Rsl,000)	157.4	148.1	305.5	48.6	2,534	2,640	757	
Year	200	Unit Price (Rs)	33	33	:	33	84	128	1,000	
	4	G.P.V. (Rs1,000)	5,194.2	4,887.3	10,081.5	1,603.8	212.9	337.9	657	2,911.6
43	Γ	Cost per Acre (Rs)	650	650		650	483	460	1,428	
	42	Total Cost (Rs1,000)	1,966.9	1,851.2	3.818.1	607.8	170	202.4	125.7	1,105.9
L	č	иру. (Rs1,000)	3,227.3	3,036.1	6,263.4	996	42.9	135.5	631.3	1,805.7
	8	Yield per Acre	59bu	59bu		59bu	8.4cwt	7cwt	10.2cwt	
	ř	Production (Rs1,000)	178.5	168	346.5	55.2	2,957	3,080	897.6	•
1	90	Unit Price (Rs)	- 33 -	33		33	84	128	1,000	
Year	å	G.P.V. (Rs1,000)	5,890.5	5,544	11,434.5	1,821.6	248.4	394.2	897.6	3,361.8
5	ľ	Cost per Acre (Rs)	746	746		746	535	5 30	11,583	
~	Cost	Total Cost (Rs1,000)	2,257.4	2,124.6	4 ,382	697.5	188.3	233.2	139.3	1,258.3
	ď	N.P.V. (Rs1,000)	3,633.1	3,419.4	7,052.5	1,124.1	60.1	161.0	758.3	2,103.5
ľ	8	Yield per Acre	66bu	66bu		66bu	9.6cwt	8cwt	11.8cwt	•
l	ğ	Production (Rel,000)	199.7	189	387,7	61.7	3,379	3,520	1,038.4	Ì
ķ	ğ	Unit Price (Rs)	33	33		33	84	124	1,000	
Year	A	G.P.V. (8s1,000)	6,590,1	6,204	12,794.1	2,036.1	. 283.9	436.5	1,038.4	3,794.9
ű	ų	Cost per Acre (Rs)	906	906		906	631	634	1,839	
l	80	Total Cost (Rs1,000)	2,741.6	2,580.3	5, 321.9	847.1	222.1	279.0	161.8	1,510.0
<u> </u> _	L	н.р.у. (Ral,000)	3,848.5	3,623.7	7,472.2	1,189	61.8	157.5	876.6	2,284.9
	8	Yield per Acre	73bu	73bu	· I	, 73bu	10.8cwt	9cwt	13.4cvt	r
	Š	Production (Rs1,000)	220.9	207.9	428.8	68.3	3,802	3,960	1,179.2	
Year	ğ	Unit Price (Rs)	33	33		33	84	128	1,000	
	4	G.P.V. (Rel,000)	7,289.7	6,860.7	14,150.4	2,253.9	319.3	506.9	1,179.2	4,259.3
10th		Cost per Acre (Rs)	1,043	1,043	. 7	1,043	205	701	2,116	
Ì.	Ç	Total Cost (Rs1,000)	3,156.1	2,970.5	6,126.6	975.2	248.2	308.4	186.2	1.718.0
 		N.P.V. (Rs1,000)	4,133.6	3,890.2	8,023.8	1,279.7	71.1	198.5	993	2,541.3
	100	Yield per Acre	80bu	80bu		80bu	12cvt	locut	15cvt	İ
۱. ا	Š	Production (Ral,000)	242.1	227.8	469.9	74.8	4,424	4,400	1,320	. 1
Year	ş	Unit Price (Rs)	33	33		33	84	128	1,000	
٦		G.P.V. (Rel,000)	7,989.3	7,517.4	15,596.7	2,468.4	354.8	563.2	1,320	4,706.4
1159		Cost per Acre (Rs)	1,185	1,185		1,185	780	770	2,390	
il	8	Total Cost (Rs1,000)	3,585.9	3,374.9	6,960.7	1,108	274.6	338.0		1,931.7
	٦	N.P.V. (Rel,000)	4,403.5	4,142.5	8,546	1,360.4	80.2	224.4	1,109.7	2,774.7

Paddy Production in The Existing Agricultural Lands during The Construction Period (in Financial Prices) Table 4-2

Table 4-3 Paddy Production in The Existing Agricultural Lands under The Project (in Financial Prices)

				1			T _S		ě	530	520	ñ	ñ	749	0.									
			Season		9th Yr	80	50,560		1,669	5.5	133	135	1,185	74	920									
	Lands		Yala Sea	acres	8th Yr.	73	46,136	ushel	1,523	436	480	127	1,043	629	364									
	ntural		during	i	7th.Yr.	99	41,712	Rs33/bushel	1,377	346	440	120	906	573	804									
•	The Rest of The Existing Agricultural Lands	acres	808	808	808	808	808	808	808	808	808	808		6th Xr. 7	59	37,288		1,230	256	400	8	746	472	758
	e Existir	790 ac	usc		9th Yr.	80	53,760		1,774	530	520	135	1,185	796	978									
	st of The		Maha Seaosn	acres	8th Yr.	73	49,056	ushel	1,619	436	480	127	1,043	701	918									
į	The Res	during 1		7th Yr.	99	44,352	Rs33/bushel	1,464	346	440	120	906	609	855										
			858		6th Yr.	59	39,648		1,308	256	400	06	746	501	807									
			Yala	10	8th Yr.	80	54,400		1,795	530	520	135	1,185	806	686									
	a Tank		80% during	680 acres	7th Yr	73	49,640	Rs 33/bushel	1,638	436	480	127	1,043	407	929									
	Command Area of Mahauswewa	acres			6th Yr.	99	44,880	Rs	1,481	346	440	120	906	616	865									
	Area of 1	850 ak	Maha	Maha	Maha	Maha	Maha	S	8th Yr.	80	57.840		1.909	530	520	135	1,185	857	1,052					
	Command		during Maha	723 acres	Yr.7th Yr.	73	52.779	Rs33/bushel	1,742	436	480	127	1,043	754	988									
			85%		6th Yr. 7	99	47,718		1,575	346	440	120	906	655	920									
	Diviison of Area	Total Area	Irrigability	Area under Paddy	Project Year	Yield per Acre (bu)	Total Pro- duction(bu)	Unit Price(Rs)	G.P.V. (Rsl,00C)	Seeds/Chemi- cals (Rs)	Farm Machine- ry/Labour	Miscellaneous	Cost per Acre (Rs)	Total Cost (Rsl,000)	N.P.V. (Rs1,000)									
	й ö	Ţ	H	P.	Υ. Υ.		0135			ທັ <u>ບ</u>	ធំ អ៊	⊋ ⊋so(Ĕ Ü	o, Z									

Table 4-4 Farm Equipment List (for 6,300 Ac. Project Area)

	Item	Quantity	Estimated Unit Cost (cif Colombo)(US\$1,0	Total Cost
Α.	4-wheel tractor 1/	20	7.0	140
	Tyre Tiller	20	1.0	20
	Heavy Duty Cultivator	20	0.9	18
	Disc Plough	5	1.2	6
	Offset Disc Harrow	5	1.6	8
	2 Ton Trailor	50	0.9	18
	Spare Parts (25%) 2/		LS	53 263
В.	2-wheel Tractor $\frac{3}{2}$	50	3.0	150
	Spare Parts (25%)		re	<u>38</u> 188
c.	Equipment for Repair and maintenance facilities		re	50
D.	Sprayers			
	Knapsack Power (duster/mister)	25	0.3	7.5
	Knapsack Hand	50	0.1	5
	Duster Hand	20	0.1	2
	Spare Parts (25%)		LS	$\frac{4}{18.5}$
	Grand Total			519.5 (say 520)

1/ Including Rotavator, Plough, Puddling Wheels, Level Board, etc.

2/ Particularly Rotavator Blader, Tyres & Tubes, Engine Parts like piston rings, injectors, etc.

3/ Including Rotavator, Leveller, Puddling Wheels, Ploughs, Spring Blader, 1.5 ton Treilor, etc.

A. To be put in custody, operation and maintenance of the Project HQ(i/c Agric. Prod. Unit);

B. To be put in custody, operation and maintenance of the Project HQ(i/c Agric. Prod. Unit) for 2 years after completion of the Project, then sold to the Farmers' Co-op. and separated by those who will have obtained enough training and experience in driving & repair/maintenance;

To be allocated among 4 Farm Machinery Centers which are under the control of the Project HQ (i/c Agric, Prod. Unit);

D. Same as above, but after the settlers will have good knowledge in their use sold to the Farmers' Co-op. for joint use or directly to the settlers particularly those who are engaged in upland crop cultivation.

Details of Input Requirements at Full Development (Per Ac.) Table 4-5

	Paddy (130 days) Lowland	Paddy (100 days) Lowland	Chillies	Soya Bean	Pulses
Seeds	sperson 2	2 bushels	च च	0.35 cwt. (60 lbs) Inoculated with Nitrogen Culture	0.1 cwt.
Fertilizers	Urea 1.6 cwt. N Superphosphate 0.8 cwt. P ₂ O _S Potash 1.2 cwt. K ₂ O	1.2 cwt. N 0.8 cwt. P205 1.2 cwt. K20	Ammon. 1.0 cwt.N -Sulph. 0.8 cwt. P205 0.6 cwt. K20	Ammon. 1.0 cwt. N -Sulph. 1.0 cwt. P205 0.5 cwt. K20	Ammon. 0.2 cwt. N -Sulph. 0.5 cwt. P205 0.5 cwt. K20
Pesticides	Gamma BHC 6% 100 lbs Sumithion 50% 60 fl. 02.	70 lbs 30 fl. oz.	Sumithion 50% 180 OZS Thicvit 270 OZS Manazate D 80% 20 OZS	Malathion 50% 60 OZS	Malathion 50% 60 Özs Ceresan Wet SD 1 kg
Weedicides	3.4 DPA 3.5 Pints MCPA 40% 1.5 Pints Dalapon 80% 1 15.	3.5 Pints 1.5 Pints 1 Pints	Lasso 40% 10 Pints	Linuron 50% 1.5 lbs	1

(Mahaweli Development Project)

 $\hat{x}_{i,j} = \hat{x}_{i,j} = \hat{x}_{i,j}$

4.5 Interview at Project Site

4.5.1 Land Use of Paddy and Yields of Encouraged Varieties

The results showed in Table 4-6 are derived from the survey of paddy cultivation in the Maha season in 1976 ~ 1977 in Mahauswewa benefited area. Cultivated varieties are mostly 3 ~ 3.5 month varieties of BG group, and occupy about 70% of the project area. The average yield is 80 ~ 100 bu/Ac and indicates considerably high value. Table 4-7 is the result of the yiled survey of encouraging varieties, and Table 4-8 is the result of farm households. Table 4-9 is encouraging varieties of paddy and their characteristics.

Table 4-6 Practical Survey of Paddy Rice Cultivation (MAHAUSWEWA District)

	Cillia	ated Area		Yie	1d ·	
Variety	CULCIV	ated Area	Ave	rage	Maximu	m*
	Acres	8	bu/Ac	kg/ha	bu/Ac	kg/ha
					$x_{i,j} = x_{i,j} + x_{i,j} + x_{i,j}$	
BG 11-11 (4 months)	62	7.1	100	5,045	119.0	6,003
H4 (" ")	5	0.6	80	4,036	77.9	3,930
н8 (")	· ·	٠.	•••		er og er og til 100 er og er	-
BG 90-2 (")	10	1.2	140	7,062		~
BG 94-1 (3 1/2 months)	.106	12.2	100	5,045	***	
BG 34-6 (")	127	14.6	80	4,036	128.8	6,497
BG 34-8 (3 months)	387	44.6	80	4,036	140.4	7,082
I.R 8 (4 ₀ , 4 1/2 months)			· <u>-</u>	_	154.7	7,804
3G 96-3 (4 months)	••		**	-	700	-
62-355 (3 months)	171	19.7	45	2,270	102.1	5,150

868Ac. 100.0%

^{*} From The BIWEEKLY MAGAZINE "NAVAYUGAYA" dated 26th April 1977.

Table 4-7 Results of Extension Field Trials on Rice - Maha 1976/77

Zones: Dry

District: Puttalam

D.R.O. Division

Anamaduwa

Name of A.I

S.A.L Senanayaka

Name of Farmer

K.A Wickramasinghe

Addrees of Farmer

Mahauswewa

Soil: Sandy

ı.

Paddy Varieties	Date Sown	Date of heading	Date of harvest		Lodging % at before hurve Low Fert.	est
BG 90-2	76.12.04	77.3.10	77.4.23	140	0	0 1 10 0 10 10 10 10 10 10 10 10 10 10 1
BG 96-3	u .	77.3.14	U	11	0	: 0
BG 11-11	, II	77.3.04	H	Ħ	0	0
LD 125	п	77.3.13	; r	4F	0	0

2. Yield

	Low Fer	t. Level	Level	
Varieties	Dry Vol (bu/ac)	Dry Wt. (Ib/ac)	Dry Vol. (bu/ac)	Dry Wt. (Ib/ac)
BG 90-2	70.8	3,228	84.9	3,965
BG 96-3	76.1	3,681	77.9	3,775
BG 11-11	65.5	3,038	69.7	3,322
LD 125	67.8	3,059	76.7	3,624

3. Amount of Fertilization

Fertilizer	Quantity	(Lb/ac.)
territzer	Low	High
Nitrogen	20	40
Phosphate	12 1/2	25
Potash	10	20

Recommended Quantity by The Dept. of Agri.

100 Lb/ac. 80

50

Table 4-8 Farm Household Survey at Soil Survey Points

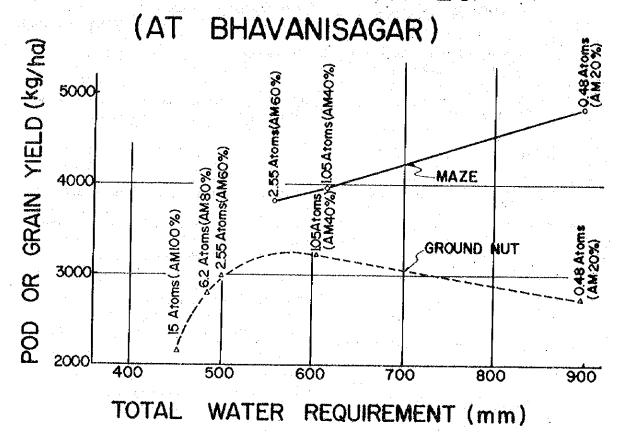
Feople 9 People 5 Couple -2 Children -3 Children -2 Ch
MAHAUSWEW A W.N.R.JIN People 5 Couple Couple A 3Ac. Paddy Fie aninimum) (BG34-8) Paddy Fie arieties Pac arieties Pac Dpland Cowpea S bu/Ac. 35 bu (18.8 irrigate for irrigate for 3 days sus- n a week.
MAHAUSWEWA 1969 FEODIE 9 COUDIE -2 Children -7 Labor Power -6 Faddy Field 3Ac. (In case of families 9, 5Ac is need in minimum) Paddy Fice (BG34-8) 3 months varieties Size of blook avera Sov 55 bu/Ac. Size of blook avera average 0.25Ac water maintenance Plantation; irriga everyday for a mon Then, to irrigate days and 3 days su pension in a week.
·

Table 4-9 Encouraging Varieties and Features of Paddy Rice (Dry Zone)

VARIETY	DURATION	Maximum Yield	Height	RICE (%)	COLOUR OF RICE
	(months)	(bu/Ac)			
BG 34-8	3	140.4	22.7	73.6 ~ 71.1	white
BG 34-11	II .	102.1	2133	71.3	\$1
BG 34-12	n '				
62 - 355	<u>,</u> 0	102.1	32.3	60.1	light red
BG 34-6	3 1/2	128.8	23.8	71.2	red
BG 94-1	. "				
IR - 262	11	138.8	18.4	71.1	white
н - 7	tt	85.8	34.5	73.5	H
IR - 8	4 4 1/2	154.7	22.0	72.2	II
IR -/ 20	13				
BG 11-11	t t	119.0	27.8	72.3	ti
BG 90- 2	, i				
н - 4	11	77.9	39.4	71.8	red

Note: From THE BIWEEKLY MAGAZIME " NAVAYUGAYA" 26th April 1977.

4.5.2 Time of Irrigation and Water Requirement


In the cultivation of upland crops, the tension of soil moisture in the irrigation gives a great influence to the water requirement and thus the yield. Dr. T. Sivanayagm (Research officer) carried out an experiment at Bhavanisager on the irrigation to begin when 20% (0.48 At.), 40% (1.05 At.), 60% (2.55 At.), 80% (6.2 At.), 100% (15.0 At.) of the available moisture consumption, and obtained a result as in Fig. 4-2 about the relationship of the yeild and water requirement.

Concerning maize, a result with high yield is obtained when the moisture tension is low in irrigation time. However, a result on ground nut shows that high yield can be realized when the irrigation frequency is extended to maintain the condition in high moisture tension (1.05 At. ~ 2.55 At.).

Although neither maize nor ground nut are the subjective crop to this project, a valuable suggestion would give to know the relationship of the crop production and water requirement.

It is necessary to clear these relationship regarding the intended crops in this project such as cowpea and chillie occasion as soon as possible for making a relevant source of the water management.

Fig. 4-2 WATER USE AND FIELD AT DIFFERENT MOISTURE REGIMES.

Water Relations of Pulse Crops Drawing from Dr. T. Sivanayagm, Research Officer

4.5.3 Lift Irrigation Survey in Rejangana Project District

(1) General Condition

Irrigation area

4,000 Ac.

Pumping station

240 places

(average 167 Ac. per pumping station)

Amount of water conveyance to the terminal block

56 l/sec

(6" P/V/C/pipe)

Objective crops for

irrigation

Chillie, onion, cowpea, green gram, black gram, soya bean and etc.

(2) Farm Household

Name of farm household

Piyadasa (Kokmaduwa, Rajangana)

Family structure

8 people (couple, children 6, labour 4)

Land tenure

Lift irrigation land 1.5

1.5 Ac.}

Paddy field

2.0 Ac. 4.0 Ac.

Building lot and etc. 0.5 Ac.

Crops

Chille (90 days variety)

1.0 Ac. 0.5 Ac.

Semami

Paddy rice

2.0 Ac.

Rotation system

Present

Irrigated

Maha

Maize

Maize

Yala

Cowpea

Chille, soya bean,

peanut

Field condition and water management

Average area per plot - about 0.06 Ac.

Irrigation (8 hours/day/Ac.) for 3 days, corresponding to about 120 mm, for land-grading a week before plantation. After plantation, 50 ~ 60 mm is irrigated once in every 5 ~ 7 days according to the degree of drought.

(3) Problems in Water Management

Irrigation water is conveyed with P/V/C/pipes (6") from the pumping station to the terminal block, and concrete lines canal after the terminal block. The water diversions are directly made from the

terminal canal into each farm. Because of the open canal it is difficult to intake the water where the gradient is steep.

The construction of the pumping station and the terminal facilities are in charge of the Irrigation Bureau, the Government of Sri Lanka while the water management and instruction in farm management are under the Ministry of Agriculture. Many facilities have been put out of operation due to poor cooperation. In the fields not directly connected with canals, the irrigation water is distributed from plots to plots to cross uplands. Further, due to that surface irrigation such as furrow irrigation is employed in no relation to the water holding capacity and permeability of soils and the cultivation pattern, the most of irrigation water about 70 ~ 80% have been washed. In order to make the surface irrigation such as furrow and border irrigation in high efficiency, ridge inclination, furrow stream, and length of ridge shall be decided rationally on the basis of the relation of topography, soil and crop combining to the well-planned farm consolidation.

The surface irrigation method seems simple but requires quite high technique. It is necessary to provide experiment farms and various values necessary for the design for the future farming in the project area.

Since Rajangana lift irrigation district has quite favorable conditions for studying these matters, it is desirable to commence experiments urgently to cooperate with each authority concerned.

5.1 General

Irrigation Plan has been worked out on the availability of a new source of water through construction of Inginimitiya Reservoir on the one hand and its effective use for agricultural development in the Project area, on the other. The reservoir will have a live (effective) capacity of 48,800 Ac.ft. out of a gross capacity of 53,000 Ac.ft., and the Project area has a gross acreage of 9,200, out of which topographically irrigable area would be 6,300 acres which is made up of 1,640 acres existing paddyfield and 4,660 acres for new reclamation.

Cultivation of paddy in two seasons of a year is proposed on the low land which represents a major part of the net irrigable area of 6,300 acres while, on the highland, paddy during Maha season and upland crops (soya beans, pulses and dry chillies) during Yala season.

Irrigation Plan covers several important items such as the construction of (1) Inginimitiya Reservoir, including spillway, outlets and tail channel, of (2) main canals, and (3) structures related to canals and channels, as well as (4) land development (jungle-clearing, land levelling and consolidation).

5.2 Identification of the Project Area

The Project area consists of the area which is embraced by two main canals running from right bank outlet and left bank outlet of the proposed dam (181 M.S.L.), being pierced by the Mi-Oya almost at its centre. It is bordered by the right bank main canal in the north, the left bank main canal in the south, the proposed dam in the east, and the tapering point of the right bank main canal and some brooklets in the west. Having an average width of 2 1/2 miles and the length of 9 1/2 miles, its gross area is about 9,200 acres, of which 800 acres is made up of non-irrigable heights and water surface. Out of the irrigable area of 8,400 acres, a net 6,300 acres will be directly benefited; the remaining 2,100 acres (25%) has been excluded because some is already occupied as coconut gardens, orchards, and village settlements and some other must be kept

aside for future settlements, public utilities and natural green. 1,640 acres out of this 6,300 acres is the existing paddyfield and the remaining 4,660 acres is covered by jungles.

The net irrigable area fed by the right bank and left bank main canals consists of:

Main Canal	Existing Paddyfield	New Development Area	Total
Left bank	1,165 acres	2,835 acres	4,000 acres
Right bank	475 "	1,825 "	2,300 "
	1,640 acres	4,660 acres	6,300 acres

5.3 Water Demands

5.3.1 Effective Rainfall

Monthly effective rainfall has been estimated according to the same procedures as have been adopted by the Mahaweli Development Board and many other Irrigation Schemes in Sri Lanka, as follows:

(a) Lowland Paddy

$$ER = (R - 1) \times 0.67$$
 (inches)
 $ER \ge 9"$ $ER = 9"$
 $R \le 1"$ $ER = 0$

(b) Upland Crops

$$ER = (R - 0.25) \times 0.67$$
 (inches)

 $ER \geq 3''$
 $ER = 3''$
 $R \leq 0.25''$
 $ER = 0$

Note: $ER = Monthly$ Effective Rainfall

 $R = Monthly$ Rainfall

5.3.2 Water Requirement for Land Preparation

- (a) Lowland Paddy = 7"
- (b) Upland Crops = 1.5"
 (including upland rice)

5.3.3 Percolation and Dyke Leakage for Lowland Paddy

In the light of the soil texture (low humic gley soils and alluvial soils of variable drainage and texture), these losses are estimated at 6 inches per month.

5.3.4 Irrigation Efficiency

Irrigation efficiency of 50% is applied for cultivation of upland crops, including upland rice.

5.3.5 Crop Water Requirement

Crop water required is defined as the sum of evapo-transpiration and percolation or irrigation losses. Evapo-transpiration is obtained from the following formula:

ET (Crop) = Eto x Crop factor

where ET (Crop) : Evapo-transpiration

ETo : Reference evapo-transpiration (not adjusted)

ETO values can be obtained by the modified Penman Method which was developed by FAO; the monthly Eto which were used for Mahaweli Scheme will be adopted for our Plan as follows:

Monthly Eto Values

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Eto: 4.7 5.0 6.2 5.9 6.4 6.9 7.5 7.6 7.5 6.2 4.3 4.5

Crop factors varying according to the crops' growing periods are shown in Table 5-1.

Irrigation requirement has been calculated as per Table 5-2 and 5-3, based on the Cropping Patterns (shown in Fig. 4-1) and the monthly and bi-monthly crop water requirements resulting from the proposed Cropping Patterns.

5.3.6 Irrigation Requirement

Irrigation requirement is defined as: Crop Requirement + Farm Waste - Effective Rainfall. Monthly and 5 days period irrigation requirements are given in Tables 5-4 and 5-5.

5.3.7 Diversion Requirement

Diversion requirement is defined as the sum of irrigation requirement and conveyance and diversion losses; the loss due to conveyance and diversion is estimated at 30% of the irrigation requirement. Monthly and bi-monthly diversion requirements are computed as per Table 5-6 and 5-7.

Table 5-1 Crop Factor

Crop and	Initial	Crop Development	Mid	Late
Crop factor	Stage	Stage	Stage	Stage
Lowland Rice	an and an array of the first of the sign of the first of the sign			
(135 days)	30 days	40 days	45 days	20 days
Crop factor	1.00	1.15	1.20	0.90
	2			
Lowland Rice	20. 300	20. Jana	20 days	20. dov.a
(100 days)	20 days 1.00	30 days	30 days	20 days 0190
Crop factor	1.00	1.15	1.20	0790
Lowland Rice				
(90 days)	20 days	25 days	30 days	15 days
Crop factor	1.00	1.15	1.20	0.90
maland Ne	:	•		
Upland Rice (100 days)	20 đays	30 days	30 days	20 days
Crop factor	0.90	1.00	30 days	20 days 0.90
rop ractor	0.30	1.00	1.03	0.90
Upland Rice			•	
(90 days)	20 days	25 days	30 days	15 days
Crop factor	0.90	1.00	1.05	0,90
Green Gram				
(75 days)	15 days	20 days	25 days	15 days
Crop factor	0.50	0.80	1.05	0.70
crop ractor	0.00	0100		••••
Chillies				
(150 days)	25 days	25 days	75 days	25 days
Crop factor	0.65	0.85	1.00	0.90
Ground Nuts	•			
(110 days)	20 days	30 days	40 days	20 days
Crop factor	0.65	0.80	1.00	0.80
			•	•
Soya Bean		20.	FO 3-	20 1
(105 days)	15 days	20 days	50 days	20 days
Crop factor	0.65	0.85	1.05	0.75
Cowpea				
(90 days)	15 days	25 days	35 days	15 days.
Crop factor	0.70	0.90	1.10	1.00
				e e
olses	1 C 3	20 3	25 -2	15 2000
(95 days)	15 days	30 days	35 days	15 days
Crop factor	0.50	0.80	1.05	0.50
Cotton				
(165 days)	25 days	45 days	55 days	40 days
			1.05	0.90
Crop factor	0.65	0.90	1.05	0.90

Tabel 5-2 Crop Requirement and Irrigation Requirement (Monthly)

(a) Lowland

(1) Lowland Rice (135 Days): Maha

	S	0	N	D	J	F	М
Crop Factor	The state of the s	0.38	0.93	1.14	1.17	0.95	0.36
E. To	4	6.2	4.3	4.5	4.7	5.0	6.2
E.T.		2.36	4.00	5.13	- 5.50	4.75	2.23
Percolation etc.		2.25	5.25	6.00	6.00	5.25	2.25
Land Preparation	1,75	3.50	1.75			**************************************	en e
Total	1.75	8.11	11.00	11.13	11.50	10.00	4.48

(2) Lowland Rice (105 Days): Yala

М	Α	М	J	J	А
	0.39	0.96	1.16	0.95	0.36
	5.9	6.4	6.9	7.5	7.6
	2.30	6.14	8.00	7.13	2.74
	2 .2 5	5.25	6.00	5.25	2.25
1.75	3.50	1.75		-	
1.75	8.05	13.14	14.00	12.38	4.99
	1.75	0.39 5.9 2.30 2.25 1.75 3.50	0.39 0.96 5.9 6.4 2.30 6.14 2.25 5.25 1.75 3.50 1.75	0.39 0.96 1.16 5.9 6.4 6.9 2.30 6.14 8.00 2.25 5.25 6.00 1.75 3.50 1.75 -	0.39 0.96 1.16 0.95 5.9 6.4 6.9 7.5 2.30 6.14 8.00 7.13 2.25 5.25 6.00 5.25 1.75 3.50 1.75 - -

(b) Upland

(1) Upland Rice (135 Days) : Maha

							•
	S	0	N	D	J	F	М
Crop Factor		0.45	0.95	1.02	1,04	0.81	0.15
E.TO		6.2	4.3	4.5	4.7	5.0	6.2
E.T.	-	2.79	4.09	4.59	4.89	4.05	0.93
E.T. $\times \frac{100}{50}$		5,58	8.18	9.18	9.78	8.10	1.86
Land Preparation	0,50	1.00				*	
Total	0.50	6.58	8,18	9,18	9.78	8.10	1.86

(2) Chillies (150 Days): Yala

	M	A	М	J.	J	Λ	s
Crop Factor	0.11	0.60	0.89	0.99	0.99	0.78	0.15
E.T _C	6.2	5.9	6.4	6.9	7.5	7.6	7.5
E.T.	0.68	3.54	5.70	6.83	7.43	5.93	1.13
E.T. $\times \frac{100}{50}$	1.36	7.08	11.40	13.66	14.86	11.86	2.26
Land Preparation	1.00	0.50	-	· <u>-</u>		-	
Total	2.36	7.58	11.40	13.66	14.86	11.86	2.26
10%	0.24	0.76	1.14	1.37	1.49	1.19	0.23

(3) Soya Bean (105 Days) : Yala

	М	A	М	J	Ĵ	A
Crop Factor		0.36	0.89	1,02	0.74	0.13
E.T _O		5,9	6.4	6.9	7.5	7.6
Е.Т.		2.12	5.70	7.04	5,55	0.99
E.T. $\times \frac{100}{50}$		4.24	11.40	14.08	11.10	1.98
Land						•
Preparation	0.50	1.00	-	***	. -	,
Total	0.50	5.24	11.40	14.08	11.10	1.98
40%	0.20	2.10	4.56	5.63	4.44	0.79

(4) Pulses (90 Days) : Yala

	A	М	J	J	A	
Crop Factor	**	0.30	0.79	0.92	0.34	
E.T _O	5.9	6.4	6.9	7.5	7.6	
E.T.	· •	1.92	5.45	6.90	2.58	
$\pm .T. \times \frac{100}{50}$	-	3.84	10.90	13.80	5.16	
Land Preparation	0.50	1.00		4-4	-	
otal .	0.50	4.84	10.90	13.80	5.16	
50%	0.25	2,42	5.45	6.90	2.58	

Table 5-3 Crop Requirement and Irrigation Requirement (5 days period)

(a) Lowland

(1) Lowland Rice (135 Days) : Maha

ASTRACTOR, IN		49	· · · · · · · · · · · · · · · ·		·····		
	9	0.39		8	7.0	;	8
	Ŋ	0.19		0.87	7.0		1.87
Ω	*	0.194	ر پ	0.87	٠ ٠	4	1.87
	۳,	0.188	\$ ·	0.85	1.0	ı	1.85
	2	0.185		0.83	. 0	:	1.83
	м	0.185		0.83	ч. 0.	4	1.83
	φ	0.179		0.77	0.4	ı	1.77
	86	0.179		0.77	0		77.11
z	*	0.179	4.3	0.77	0	,	77 - ۲
	8	0.131	4	0.56	0.75	0.58	 88
	3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6	042 0.042 0.083 0.083 0.083 0.131 0.131 0.131 0.179 0.179 0.185 0.185 0.188 0.194 0.194 0.196		26 0.26 0.51 0.51 0.51 0.56 0.56 0.56 0.77 0.77 0.77 0.83 0.83 0.85 0.87 0.87 0.88	0.25 0.25 0.25 0.5 0.5 0.5 0.75 0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	58 0.58 0.58 0.58 0.58 0.58 0.58	0.58 0.58 0.58 1.09 1.09 1.09 1.59 1.59 1.59 1.89 1.89 1.77 1.77 1.77 1.77 1.83 1.83 1.87 1.87 1.87 1.88
	п	0.131		0.56	0.75	0.58	7.83
	φ	0.083	•	0.51	0.5	0.58	1.59
	w	0.083		0.51	0.5	0.58	1.59
0	4	0.083	6.2	0.51	0.5	0.58	1.59
	-	0.042	*	0.26	0.25	0.58	1.09
	77	0.042		0.26	0,25		1.09
	ᄲ	0.042 0.0		0.26 0.	0.25	0.58	60°T
	٥	-				0.58 0.58 0.58 0.58 0.	0.58
	9					0.58	0.58
S	4					0.58	0.58
	m						1
	7						1
	н					·	
-		Crop Factor	E : E	е . ы	Percolation	Land Preparation	Total

				b						E4						E		
	~~	~	~	4	S	9	٦	~	m	7	'n	9		7	m	4 5 6 1 2 3 4 5 6 1 2 3 4 5	8	ø
Crop Factor 0.196 0.19	0.196	0.196	0.198	0.198	0.198	0.188	0.188	0.188	0.175	0.138	0.138	0.125	0.088	0.088	0.075	96 0.198 0.198 0.198 0.188 0.188 0.175 0.138 0.138 0.125 0.088 0.088 0.075 0.038 0.038 0.038	0.038	0.038
o⊥-∃				4.7					-	2.0						6.2		
E M	0.92 0.92	0.92	0.93	0.93	6.93	88	\$6.0	9,9	0.88	69.0	69.0	0.63	0.55	0.55	0.47	0.93 0.93 0.93 0.88 0.94 0.94 0.88 0.69 0.69 0.63 0.55 0.55 0.47 0.24 0.24 0.24	0.24	0.24
Mercolation 1.0 1.0	7.0	1.0	4.0	1.0	1.0	0.1	7.0	5.0	1.0	0.75	0.75	0.75	0.5	0.5	0.5	1.0 1.0 1.0 1.0 1.0 1.0 0.75 0.75 0.75 0.5 0.5 0.5 0.25 0.25	0.25	0.25
Land Properation	,	ı	ı	ł	ı	,	, '	,	,	1	1	ı		•	•	١) .	ı
Bocal.	1.92 1.92		1.93	1.93	1.93	1.88	1.98	1.94	1.88	4	1.44	1.38	1.05	1.05	0.97	1.93 1.93 1.93 1.88 1.94 1.94 1.88 1.44 1.38 1.05 1.05 0.97 0.49 0.49 0.49	0.49	0.49

(2) Lowland Rice (105 Days) : Yala

_		<u> </u>					
	W	12 0.042 0.083 0.090 0.030 0.131 0.138 0.138 0.179 0.188 0.188 0.188 0.196 0.196 0.196 0.198 0.188		1.28	7.0	1	2.28
	Ŋ	0.198		1.37	1.0	,	2.37
h	₹	0.196	6,9	1.35	0.1	1	2.35
	۴	0.196		1:38	0.1	i	2.35
	71	0.196		1.35	7.0	.1	2.35
	н	0.188		7.30	3.0	I	2.30
	9	0.188		1.20	1.0	ı	2.20
	Ŋ,	0.188		1.20	9.9	1	2.20
æ´	1 2 3 4 5 6 1 2 3 4 5 6	0.179	.6.4	0.25 0.49 0.53 0.53 0.84 0.88 0.88 1.15 1.20 1.20 1.30 1.35 1.35 1.35 1.37 1.28	0.25 0.5 0.5 0.5 0.75 0.75 0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	i	1.08 1.57 1.61 1.61 2.17 2.21 2.21 2.15 2.20 2.20 2.30 2.35 2.35 2.35 2.35 2.37 2.38
	8	0.138	ų	88.0	0.75	0.58	2.21
	7	0.138		38.0	0.75	0,58	2.21
 	1	0.131		28.	0.75	0.58	2.17
	3 4 5 6	0.090		0.53	0.5	0.58 0.58 0.58 0.58 0.58 0.58	1.61
	5	050.0		0.53	0.5	0.58	1.61
Æ	4	0.083	5.9	0.49	5.0	0.58	1.57
	6	0.042		0.25	0.25	0.58	1.08
	2	0.042		0.25	0.25	0.58	7.08
	H	0.042 0.0		0.25 0.25	0.25 0.25	0.58	1.08
	9		•			0.58 0.58 0.58 0.58	0.58 0.58 0.58 1.08 1.08
	5			٠		0.58	0.58
E	¥					0.58	0.58
	6					t	
	2					ı	
	7					,	
		Crop Factor	ы Э	EH H	Percolation	Land Preparation	iotal

		-		כו						et.		
		2 3		*	'n	2 6	H	7	m	1 2 3 4 5	2	9
Crop Pactor 0.185 0.188 0.175 0.138 0.125 0.088 0.088 0.075 0.038 0.038	0.185	0.188	0.175	0.138	0.138	0.125	0.088	0.088	0.075	0.038	0.038	0.038
о _Т -д				7.5					·	7.6		-
ក ម.	4	1.43	1.31	1.8	8	1.39 1.41 1.31 1.04 1.04 0.94 0.67 0.67 0.57 0.29 0.29 0.29	0.67	0.67	0.57	0.29	62.0	0.29
Percolation 1.0 1.0 1.0 0.75 0.75 0.75 0.5	0-1	9:0	7.0	0.75	0.75	0.75		0.5	9.5	0.5 0.5 0.25 0.25 0.25	0.25	0.25
Land Properation	ı	,	1	•	ı	ı	ì	ı	1	ı	ı	1
lotal.	2.39	2.67	2.31	1.79	1.79	2.39 2.61 2.31 1.79 1.69 1.17 1.17 1.07 0.54 0.54 0.54	1.17	1.17	1.07	0.54	27.	2,

(b) Upland Rice (135 Days) - Maha (c) Opland Rice (135 Days) - Maha (1) Opland Rice (135 Days) - Maha (2) Opland Rice (135 Days) - Maha (2) Opland Rice (135 Days) - Maha (3) Osla O.050 O.050 O.050 O.100 O.100 O.100 O.156 O.156 O.161 O.161 O.161 O.167 O.1 (c) E.To (c) E.To (c) E.T. (c) E.T. (c) E.T. (c) E.T. (c) E.T. (c) E.T. (d) O.31 O.31 O.31 O.31 O.17 O.17 O.17 O.17 O.17 O.17 O.17 O.1	5 6 0.17 0.17	5 6 0.17 0.17 0.17 0.17	5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 4 13 4 13 4 13 4 13 4 13 4 13 4 13	(1) Upland Rice	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Crop Factor	e Ho	는 답	E.T.= 188	Land Preparation	Total
5 6 0.17 0.17 0.17 0.17	5 6 0.17 0.17	5 6 0.17 0.17 0.17 0.17	5 6 0.17 0.17 0.17 0.17	(135 Days)							,
5 6 0.17 0.17 0.17 0.17	5 6 0.17 0.17	5 6 0.17 0.17 0.17 0.17	5 6 0.17 0.17 0.17 0.17	s Kaha	4	-				0.17	0.17
				45	5			•		0.17	0.17
0.050 0.050 0.050 0.100 0.100 0.100 0.156 0.156 0.156 0.161 0.161 0.161 0.167 0.1 6.2 0.31 0.31 0.32 0.62 0.62 0.62 0.67 0.67 0.69 0.69 0.69 0.75 0.75 0.75 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	0 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 3 4 5 6 1 2 3 0.050 0.050 0.050 0.100 0.100 0.156 0.156 0.161 0.161 0.161 0.167 0.167 0.167 0.131 0.31 0.62 0.62 0.62 0.62 0.67 0.67 0.67 0.69 0.69 0.69 0.69 0.75 0.750 0.75 0.75 0.75 0.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 6 0.050 0.050 0.050 0.100 0.100 0.100 0.156 0.156 0.156 0.161 0.161 0.161 0.167 0.167 0.169 0.16 0.31 0.31 0.31 0.32 0.62 0.62 0.62 0.62 0.67 0.67 0.67 0.67 0.69 0.69 0.69 0.69 0.75 0.750 0.76 0.76 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	0.050 0.050 0.050 0.100 0.100 0.105 0.156 0.156 0.161 0.161 0.167 0.167 0.167 0.169 0.169 0.169 0.169 0.161 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.1		φ	garagangki dalikala	<u> </u>	··•		0.17	
2 3 4 5 6 1 2 3 4 5 6 1 2 .050 0.050 0.100 0.100 0.100 0.156 0.156 0.161 0.161 0.161 0.161 0.167 0.1 6.2 .31 0.31 0.62 0.62 0.62 0.67 0.67 0.69 0.69 0.69 0.75 0.7 .62 0.62 1.24 1.24 1.24 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.5 .79 0.79 1.41 1.41 1.41 1.41 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.5	2 3 4 5 6 1 2 3 4 5 6 1 2 3 .050 0.050 0.100 0.100 0.100 0.156 0.156 0.156 0.161 0.161 0.161 0.167 0.167 0.16 6.2 .31 0.31 0.62 0.62 0.62 0.67 0.67 0.69 0.69 0.69 0.75 0.750 0.77 .62 0.62 1.24 1.24 1.24 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.50 1.55 .79 0.79 1.41 1.41 1.41 1.41 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.50 1.55	2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 4 5 6 1 2 3 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 1 3 4	2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 5 0.0550 0.0550 0.1050 0.1050 0.1056 0.156 0.161 0.161 0.161 0.167 0.167 0.169 0.169 0.169 0.169 0.20 0.31 0.62 0.62 0.62 0.67 0.67 0.67 0.69 0.69 0.69 0.69 0.75 0.750 0.75 0.75 0.76 0.76 0.76 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75			0.050.0		0.31 0	0.62 0	0.17 0	0.79
3 4 5 6 1 2 3 4 5 6 1 2 050 0.100 0.100 0.100 0.156 0.156 0.156 0.161 0.161 0.161 0.167 0.1 6.2 31 0.62 0.62 0.62 0.67 0.67 0.69 0.69 0.69 0.75 0.75 62 1.24 1.24 1.24 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.5 79 1.41 1.41 1.41 1.41 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.5	3 4 5 6 1 2 3 4 5 6 1 2 3 OSO 0.100 0.100 0.100 0.156 0.156 0.156 0.161 0.161 0.167 0.167 0.167 0.16 6.2 31 0.62 0.62 0.62 0.67 0.67 0.67 0.69 0.69 0.69 0.75 0.750 0.75 17 0.17 0.17 0.17 0.17 0.17	3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 3 4 1	3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 2 3 4 5 6 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7	~	7.050 Q.					
4 5 6 1 2 3 4 5 6 1 2 100 0.100 0.100 0.156 0.156 0.161 0.161 0.161 0.167 0.1 4.3 62 0.62 0.62 0.67 0.67 0.67 0.69 0.69 0.69 0.75 0.7 24 1.24 1.24 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.5 17 0.17 0.17 0.17	4 5 6 1 2 3 4 5 6 1 2 3 100 0.100 0.100 0.156 0.156 0.156 0.161 0.161 0.167 0	4 5 6 1 2 3 4 5 6 1 2 3 4 100 0.100 0.100 0.156 0.156 0.156 0.161 0.161 0.167 0.167 0.169 0.16 62 0.62 0.62 0.67 0.67 0.67 0.69 0.69 0.69 0.75 0.750 0.76 0.76 17 0.17 0.17 0.17	4 5 6 1 2 3 4 5 6 1 2 3 4 5 100 0.100 0.100 0.156 0.156 0.156 0.161 0.161 0.161 0.167 0.167 0.169 0.169 0.169 62 0.62 0.62 0.67 0.67 0.67 0.69 0.69 0.69 0.75 0.75 0.75 0.76 0.76 17 0.17 0.17 0.17		e	.050.0.	6.2	.31 0.	.62 1.	.17 0.	79 1.
5 6 1 2 3 4 5 6 1 2 100 0.100 0.156 0.156 0.156 0.161 0.161 0.167 0.1 4.3 62 0.62 0.67 0.67 0.67 0.69 0.69 0.69 0.75 0.7 24 1.24 1.34 1.34 1.38 1.38 1.38 1.50 1.5 41 1.41 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.5	5 6 1 2 3 4 5 6 1 2 3 3 4 10 10 10 10 10 10 10 10 10 10 10 10 10	5 6 1 2 3 4 5 6 1 2 3 4 100 0.100 0.156 0.156 0.156 0.161 0.161 0.167 0.167 0.169 0.16 4.5 62 0.62 0.67 0.67 0.69 0.69 0.69 0.75 0.75 0.75 0.76 0.76 24 1.24 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.50 1.52 1.52 41 1.41 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.50 1.50 1.52 1.52	5 6 1 2 3 4 5 6 1 2 3 4 5 100 0.100 0.156 0.156 0.156 0.161 0.161 0.161 0.167 0.167 0.169 0.169 0.169 62 0.62 0.67 0.67 0.69 0.69 0.69 0.69 0.75 0.750 0.76 0.76 0.76 24 1.24 1.34 1.34 1.38 1.38 1.38 1.38 1.50 1.50 1.52 1.52 1.52 41 1.41 1.34 1.34 1.34 1.38 1.38 1.38 1.38 1.50 1.50 1.52 1.52 1.52			300 00		62 0.	24 1	17 0.	41 1.
0.156 0.156 0.156 0.161 0.161 0.161 0.167 0.1 4.3 0.67 0.67 0.69 0.69 0.69 0.69 0.75 0.75 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.5 1.34 1.34 1.34 1.38 1.38 1.38 1.50 1.5	2 3 4 5 6 1 2 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 2 3 4 4 5 6 1 3 4 1 3	1 2 3 4 5 6 1 2 3 4 5 6 2 3 4 5 6 3 4 6 6 3 4 6 6 6 3 4 6 6 6 3 4 6 6 6 3 4 6 6 6 6 3 4 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 6 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			100 001		62 0.6	24 1.2	17 0.1	41 1.4
2 3 4 5 6 1 2 6 0.156 0.156 0.161 0.161 0.167 0.13 4.3 0.67 0.67 0.69 0.69 0.69 0.75 0.7 1.34 1.34 1.38 1.38 1.38 1.50 1.5	2 3 4 5 6 1 2 3 6 0.156 0.156 0.161 0.161 0.167 0.167 0.167 0.167 0.16 4.3 0.67 0.67 0.69 0.69 0.69 0.75 0.750 0.77 1.34 1.34 1.38 1.38 1.38 1.50 1.50 1.55 1.34 1.34 1.38 1.38 1.38 1.50 1.50 1.55	2 3 4 5 6 1 2 3 4 6 0.156 0.156 0.161 0.161 0.167 0.167 0.169 0.16 4.5 0.67 0.67 0.69 0.69 0.69 0.75 0.75 0.75 0.76 0.76 1.34 1.34 1.38 1.38 1.38 1.50 1.50 1.52 1.52 1.34 1.34 1.38 1.38 1.38 1.50 1.50 1.52 1.52	2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 0.156 0.156 0.169 0.			0.15		2 0.67	1.3		1.34
3 4 5 6 1 2 0.156 0.161 0.161 0.161 0.167 0.1 4.3 0.67 0.69 0.69 0.69 0.75 0.7 1.34 1.38 1.38 1.38 1.50 1.5 1.34 1.38 1.38 1.38 1.50 1.5	3 4 5 6 1 2 3 0.156 0.161 0.161 0.161 0.167 0.167 0.14 4.3 0.67 0.69 0.69 0.69 0.75 0.75 0.75 1.34 1.38 1.38 1.38 1.50 1.50 1.55 1.34 1.38 1.38 1.38 1.50 1.50 1.55	3 4 5 6 1 2 3 4 6.0.156 0.161 0.161 0.167 0.167 0.169 0.16 4.3 0.67 0.69 0.69 0.69 0.75 0.75 0.750 0.76 0.76 1.34 1.38 1.38 1.38 1.50 1.50 1.52 1.52 1.34 1.38 1.38 1.38 1.50 1.50 1.52 1.52	3 4 5 6 1 2 3 4 5 0.156 0.161 0.161 0.167 0.167 0.169 0.169 0.169 4.3 0.67 0.69 0.69 0.69 0.75 0.75 0.75 0.76 0.76 1.34 1.38 1.38 1.38 1.38 1.50 1.50 1.52 1.52 1.34 1.38 1.38 1.38 1.38 1.50 1.50 1.52 1.52 1.52		~	6 0.156			1.34	- 1	, X
0.161 0.161 0.161 0.167 0.1 1.3 1.38 1.38 1.38 1.50 1.5 1.38 1.38 1.38 1.50 1.5	0.161 0.161 0.161 0.167 0.167 0.115 0.69 0.69 0.69 0.75 0.75 0.75 1.38 1.38 1.38 1.50 1.50 1.55 1.38 1.38 1.38 1.50 1.50 1.55	N 4 5 6 1 2 3 4 0.161 0.161 0.161 0.167 0.167 0.169 0.16 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.161 0.161 0.161 0.167 0.167 0.169 0.169 0.169 0.161 0.69 0.69 0.69 0.75 0.750 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.7		8	0.156	ч	0.67		1	1.34
5 6 1 2 0.161 0.161 0.167 0.1 0.69 0.69 0.75 0.7 1.38 1.38 1.50 1.5	5 6 1 2 3 0.161 0.161 0.167 0.167 0.14 0.69 0.69 0.75 0.750 0.77 1.38 1.38 1.50 1.50 1.51	5 6 1 2 3 4 0.161 0.161 0.167 0.167 0.169 0.16 1.69 0.69 0.75 0.750 0.76 0.76 1.38 1.38 1.50 1.50 1.52 1.52 1.38 1.38 1.50 1.50 1.52 1.52	5 6 1 2 3 4 5 0.161 0.161 0.167 0.167 0.169 0.169 0.169 0.69 0.69 0.75 0.750 0.76 0.76 0.76 1.38 1.38 1.50 1.50 1.52 1.52 1.52 1.38 1.38 1.50 1.50 1.52 1.52 1.52	×	4	0.161 (e.		1.38		88.4
6 1 2 161 0.167 0.1 69 0.75 0.7 .38 1.50 1.5	6 1 2 3 .161 0.167 0.167 0.14 .69 0.75 0.750 0.77 .38 1.50 1.50 1.5	6 1 2 3 4 161 0.167 0.167 0.169 0.16 6.9 0.75 0.750 0.76 0.76 1.38 1.50 1.50 1.52 1.52 1.38 1.50 1.50 1.52 1.52	6 1 2 3 4 5 .161 0.167 0.167 0.169 0.169 0.169 .69 0.75 0.750 0.76 0.76 0.76 .38 1.50 1.50 1.52 1.52 .38 1.50 1.50 1.52 1.52 1.52		ν.).161 o.			1.38 1		
167 0.1	167 0.167 0.14 167 0.150 0.75 150 1.50 1.55	1 2 3 4 167 0.167 0.169 0.16 75 0.750 0.76 0.76 50 1.50 1.52 1.52	D			161 0.3	-,				
	67 0.14 60 0.74 6 1.55	50 0.76 0.76 0.160 0.150 0.150 0.152 0.75	50 0.76 0.76 0.76 0.76 0 1.52 1.52 0 1.52 0 1.52 1.52 0 1.52			167 0.1			50 1.5	- 1	

					:		
	ø	1		,	1	1	ı
	1 2 3 4 5 6	,		•	ı	•	4
≱.	4	,	. 2. 9	1	ı	,	
	m	0.050	•	0.31	0.62	1	0.62
	2	050-0	•	0.31	0.62	1	0.62
	μď	175 0.175 0.175 0.167 0.167 0.167 0.158 0.108 0.108 0.100 0.050 0.050 0.050		82 0.82 0.82 0.78 0.84 0.84 0.79 0.54 0.54 0.50 0.31 0.31 0.31	.64 1.64 1.56 1.68 1.58 1.08 1.08 1.00 0.62 0.62 0.62	1	.64 1.64 1.64 1.56 1.68 1.68 1.58 1.08 1.08 1.00 0.62 0.62 0.62
	φ	0.100		0.50	8	ſ	1.00
	Ŋ	0.108		\$2.0	1.08	•	1.08
£	4	0.108	5.0	9.5	1.08	,	1.08
	ю	0.158	Ψ,	0.79	58	1	1.58
	8	0.167		0.84	1.68	,	1.68
	rđ	0.167		8.0	3	,	1.68
	4 5 6 1 2 3 4 5 6	0.167		0.78	38.1	1	1.56
	S	0.175		0.82	1.64	ŧ	1.64
h	.4	0.175	7	0.82	1.66	Į	2.1
	8	0.175	4	0.82	3	,	25.5
	7	0,172		0,81	1.62	,	1.62 1.62 1.
	ا،	0.172		0.81	1.62 1.62	1	1,62
		Crop Factor 0.172 0.172 0.	о е. ш	й Н	8 元 元 三 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元	Land Preparation	Total

(2) Chillies (150 Days) : Yala

				×						Æ					7	*						b		
		7	et	3 4	5	و	М	7	М	**	S	3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6	н	7	M	4	w	φ	ri	N	M	4	. N	ø
Crop Factor	-			0.036	0.036	0.036	0.036 0.036 0.036 0.072 0.072 0.083 0.119 0.119 0.131 0.139 0.150 0.150 0.158 0.158 0.167 0.167 0.167 0.167 0.167 0.167	0.072	0.083	0.119	0.119	0.131	0.131	0.139	3,150 (3, 150	3.158	0.158	0.158	0.167	0.167	0.167	0.167	2.167
년 - 년 - 년				6.2					Ŋ	5.9					φ	6.4			÷		w	6.9	,	
E.				0.22	0.22	0.22	0.22 0.22 0.22 0.42 0.42		0.49	0,70	0.70	21.1 21.1 21.1 21.1 21.1 60.1 10.1 10.1 20.96 0.96 0.84 0.87 0.77 0.07.0 07.0 07.0 08.0	8.0	68.0	, 96 ,	96.0	1.01	1.01	1.09	1.15		2. 25	1.15	21-15
H 100 H . T . H				0.44	0.44 0.44 0.44 0.84	0.44		9.8	0.98	1.40	1.40	0.98 1.40 1.40 1.54 1.68 1.78 1.92 1.92 2.02 2.02 2.18 2.30 2.30 2.30 2.30 2.30	1.68	1.78	92	1.92	2.02	2.02	2.18	2.30	3	2.3	2.30	8.3
Land Preparation	0.17	0.17	0.17 0.17 0.17 0.17 0.17 0.17 0.17	0.17	0.17	. 71.0	0.17		0.17	,	ı),	t	, e	(1.	i	1	1		1	1	1	1
Total	0.17	0.17	0.17 0.17 0.61 0.61 0.61 1.01 1.01	0.61	0.61	0.61	1.01		2.25	1.60	1.40	1.15 1.40 1.40 1.54 1.68 1.78 1.92 1.92 2.02 2.02 2.18 2.30 2.30 2.30 2.30 2.30 2.30	1.68	1.78	1.92	1.92	2.02	2.02	2.18	2.30	2,30	2.30	8.5	8
10%	0.01	7 0.01	0.017 0.017 0.017 0.061 0.061 0.061 0.101 0.101 0.115 0.140 0.154 0.158 0.178 0.192 0.192 0.202 0.202 0.218 0.230 0.230 0.230 0.230 0.230 0.230	0.061	0.061	0.061	0.101	0.101	0.115	0,140	0-140	0.154	0.168	0.178 (1.192	0.192	0.202	0.202	0.218	0.230	0.230	0.230	0.230	0.230

				J.		 				*						s		
		~	m	4	5	ý		7	m	4	·v	9	, ref	~	М	4	3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6	٠
Crop Factor 0.167 0.167 0.167 0.167 0.161 0.161 0.164 0.156 0.156 0.106 0.100 0.100 0.050 0.050 0.050	0.167	0.167	0.167	0.167	0.161	0.161	0.161	0.156	0.156	0,106	0,100	0.100	0.050	0.050	0.050			
E.To			•	7.5		···			•	7.6					Γ.	8.		
€-1	1.25 1.25		1.25	1.25	1.25 1.25 1.21 1.21 1.22 1.19 1.19 0.81 0.76 0.76 0.38 0.38 0.38	1.21	1.22	1.19	1.19	0.81	0.76	0.76	0.38	0.38	0.33			
E.T.* 300 2.50 2.50	3.50		3.5	8	2.50 2.50 2.42 2.42 2.58 2.38 1.62 1.52 1.52 0.76 0.76 0.76	2.42	2.44	2.38	2.38	1,62	1.52	1.52	0.76	0.76	0.76			
Lend Properation	1		1	ı	1	1	1	1	1 ,	•	1	1	`l	ı	ı			
total	2.50 2.50		2.50	2.50	2.50 2.50 2.42 2.42 2.44 2.38 2.38 1.62 1.52 1.52 0.76 0.76 0.76	2.42	2.64	2.38	2.38	1.62	1,52	1.52	0.76	0.76	0.76			
106	0.250	0.250	0.250	0.250	0.250 0.250 0.250 0.250 0.242 0.242 0.244 0.238 0.238 0.162 0.152 0.152 0.076 0.076 0.076	0.242	0.244	0.238	0.238	0,162	0.152	0.152	0.076	0.076	9.076			

		٥	.158		80-1	2.18	;	2.18	22
		2	0.036 0.036 0.036 0.083 0.083 0.083 0.131 0.142 0.142 0.153 0.164 0.164 0.164 0.175 0.175 0.175 0.175 0.158			2.42 2		2.42 2	0.068 0.068 0.068 0.236 0.236 0.236 0.460 0.460 0.460 0.572 0.728 0.728 0.784 0.840 0.940 0.964 0.968 0.968 0.968 0.968 0.968 0.958 0.872
		·•	0 571	· ტ	1.21 1.21 1.21 1.21	2			0 896
	b	m	.175 0.	6.9	22.	2.26 2.42 2.42 2.42		75 2	98
		,	175 0.		. i	.42		42 2	988
		ra	364 0.		1.13 1.	26 2.		26 2.	.° ≱06
		9	164		.i.	2.10 2.		0.17 0.17 0.17 0.59 0.59 0.59 1.15 1.15 1.15 1.68 1.82 1.82 1.96 2.10 2.10 2.10 2.42 2.42 2.42 2.43	0
		2	164 o.		1.05 1.05	2.10 2.	I	10 2.	3.60 o.
		4	153 0.	٠	0.98 1.	8	I	96 2.	784 0.
	>:		42 0.3	6.4	9	ŭ H	1	1 2	728 0.
		<u> </u>	42 0.1		1 0.91	2 4 8	1	2 1.8	28 0.7
		2	ं र		16.0	 	1	8 1.8	72 0.7
		۲4 	- E		8	0.98 0.98 0.98 1.68 1.82 1.82 1.96		1.6	9 0 0
		9	3 0.08		0.49 0.49 0.49	86.0	71.0 71.0 71.0	1.15	0 0.46
		2	. 0.08		0.49	0.98	0.17	1.15	9.0
	4	4	0.083	6.5	0.49	96.0	0.17	1.15	0.46
		٣	0.036	÷	0.21	0.42	0.17	0.59	0.236
		7	0.036		0.21	0.42	0.17	0.59	0,236
		٦	0.036		0.21 0.21	0.42 0.42	0.17	0.59	0.236
		v	:				0.17 0.17 0.17 0.17	0.17	0.068
		S					2.17	. 27.0	390.0
Yala	_	4					.17 (.17 (.068
te :		٣	 : .			: .	o l		O
Days)		77			3		,	:	
Soya Bean (105 Days)	1	-							
1 1 1 1 1 1 1 1 1 1	_		ğ	<u>_</u>	-	ន្ទីន	íon		
and the second of the second o			Crop Pactor	9	E	전 보 단 도	Lend Preparation	Total	ğ
8			8.	ы	ω	E)	14	P.	* :
						*****	. * . *		
	٠.	•							

				מ						æ		
	ы	2	м	*	2	9	н	7	60	4	S	φ
Crop Factor 0.158 0.158 0.142 0.100 0.100 0.083 0.042 0.042 0.042	0.158	0.158	0.142	0.100	0.18	0.083	0.042	0.042	0.042			
D. TO				7.5					17	7.6		
E 13	1.19	1.19	1.07	0.75	1.19 1.19 1.07 0.75 0.75 0.62 0.32 0.32 0.32	39.	0.32	0.32	0.32			
E.T. # 100	100 50 2.38 2.38 2.14 1.50 1.50 1.24 0.64 0.64 0.64	2.38	2.14	50	1.50	1.24	3.0	. 2	3.0			
Land Properation		•	1	. 1	1	ı	I	1	1			
Total	2.38	2.38	2.14	1.50	2.38 2.38 2.14 1.50 1.50 1.24 0.64 0.64 0.64	1.24	5.64	0.68	0.64			
8	0.952	0.952	0.856	0.600	0.952 0.952 0.856 0.600 0.600 0.496 0.256 0.256 0.256	0.496	0.256	0.256	0.256			

(4) Pulses (90 Days) : Yala

			a;				٠.	×					Ð						27		
	1 2	М	4	5 6	<u>ب</u>	2	m	4	so.	φ	3 4 5 6 1 2 3 4 5 6 1 3 3	i"	4	v.	¥		ţ	Ŷ	•	v	
Crop Factor					0.02	8 0.028	0.028	0.072	0.072	0 077	0.028 0.028 0.028 0.072 0.077 0.075 0.17 0.117 0.	7.7.1	, ,		1		•			n	0
ę.	-	,	•									; ;	· · · · · · · · · · · · · · · · · · ·	4 2	# · · · · · ·	7	191.0	0.161	0.144	0.144	0.146
0		Λ	5		·		~	6.4					6.9						7.5		
Ei Ш					0.18	0.18 0.18	0.18	0.46	0.46	0.46	0.18 0.46 0.46 0.46 0.81 0.81 1.01 1.01 1.01 1.01 1.01 1.01	81 0.8	1.01	1.03		<u>؟</u> كـــــ	۲.		Š	6	
B.T. x 100					2	36 0 36 0	\ \ \				•	;				<u>;</u>	1		3	3	3
2					•		\$.	76.0	7	20.0	0.30 0.34 0.32 0.92 1.62 1.62 1.62 2.02 2.02 2.02 2.42 2.42 2.42 2.16 2.16 2.16 2.16	62 1.6	2.07	2. 3.	2.02	2.42	2.43	2.43	2-16	2.16	2.16
Freparation		-	0.17 (71.0 71.0 71.0 71.0 71.0	7 0.17	0.17	0.17	0.17	0.17 0.17 0.17 0.17	0.17	1	ľ		4	t		. 1				
Total			7, 0	22 0 22 0 21 0 21 0 21 0	5	•	1			1											
				1) 	50.0	50.0	£0.4	£.03	8 3	U.53 1:09 1:09 1:09 1:62 1:62 1:62 2:02 2:02 2:02 2:42 2:42 2:42 2:42 2:16 2:16 2:16	62 1.6	2 2.02	2.03	2.05	2.42	2.42	2.62	2.16	2.16	2.16
808		~	0.085 (0.085 0.085 0.085 0.265 0.265 0.265 0.545 0.545 0.545 0.810 0.810 0.810 1.010 1.010 1.210 1.210 1.210 1.210 1.080 1.080 1.080	5 0.26	5 0.265	0.265	0.545	0.545	0.545	.810 0.	810 0.8	10 1.01	0 1.03	1.01	0 1.210	1.220	1.210	1.080	2.0	80
								İ													

K	1 2 3 4 5	Crop Factor 0.086 0.086 0.086 0.028 0.028 0.028	7.6	0.65 0.65 0.65 0.21 0.21 0.21	1:30 1:30 1:30 0:42 0:42 0:42	1	1.30 1.30 1.30 0.42 0.42 0.42	0.650 0.650 0.650 0.210 0.210 0.210
		Crop Factor	E-T	Ei Ei	ы э ж ж	Land Preparation	Total	\$0\$

Monthly Irrigation Requirement Table 5-4

(Note; excluding effective rainfall) 9.18 9.18 Dec. 11.13 11.13 Dec. 11.1 11.00 8.18 Nov. 11.00 Nov. 11.0 6.58 8.11 8.11 6.58 oct. Oct. > 1.75 1.75 0.50 0.23 0.73 Sep. Sep. 1.8 > > 91.1 0.79 2.58 4.56 4.99 4.99 Aug. υ Ο 12.38 12.38 4.44 1.49 12.83 Jul 6.90 ďE. 12.4 Þ Þ 14.00 1.37 5.63 5.45 12.45 14.00 Jun. Jun. 14.0 > 13.14 13.14 1.14 4.56 2.42 8.12 13.1 May May > Þ 8.05 8.05 0.76 2.10 0.25 3.11 Apr. Apr. % ⊢ > Þ 1.75 6.23 1.86 0.24 0.20 2.30 Mar. Mar. 6.2 Þ Þ 10.00 8.10 10.00 Feb. 8.10 9 10.0 ۶ (a) Lowland 11.50 9.78 Jan. 11.50 Jan. Upland Þ Þ Chillies (10%) Maha Yala Rice (Maha) Pulses (50%) 3 Beans (40%) Total Total Crops Rice: Soya-Rice:

(2,852.4 mm)

112.37

44.2"

6.4

17.7"

17.6"

85.9"

Total

57.97"

Total

54.31"

(2,184 mm)

86.0"

6.6

0.7

4.6

12.8

12.5

~;

۳ د

2 ..

ω ω

>

Table 5-5 Irrigation Requirement (5 days period)

(a) Lowland

	್ತು.	reb.	Mar.	Apr.	May
Meha Rice	Meha Rice 1.92 1.92 1.93 1.93 1.93 1.88 1.94 1.94 1.88 1.44 1.44	-20	1.38 1.05 1.05 0.97 0.49 0.49 0.49		
Yala Rice			0.58 0.58 0.58	0.58 0.58 6.58 1.08 1.08 1.08 1.57 1.61 1.61 2.17 2.21 2.21 2.15 2.20 2.20	2.17 2.21 2.21 2.15 2.20 2.20
Total	1.92 1.92 1.93 1.93 1.93 1.88 1.84 1.94 1.88 1.44 1.4	I	1.05 1.05 0.97 1.07 1.07 1.07	1.38 1.05 1.05 0.97 1.07 1.07 1.07 1.08 1.08 1.08 1.57 1.61 1.61 2.17 2.21 2.21 2.15 2.20 2.20	2.17 2.21 2.21 2.15 2.20 2.20
	Jun.	Jul.	Aug.	Sep.	Oct.
Maha Rice				85.0 85.0	65.1 65.1 60.1 60.1 60.1 85.0 85.0 85.0
Yala Rice	2.30 2.35 2.35 2.35 2.37 2.28 2.39 2.41 2.31 1.79 1.69 1.17 1.17 1.07 0.54 0.54 0.54	2.39 2.41 2.31 1.79 1.79 1.69	1.17 1.17 1.07 0.54 0.54 0.54		
Total	2.30 2.35 2.35 2.35 2.37 2.28 2.39 2.41 2.31 1.79 1.79 1.69 1.17 1.17 1.07 0.54 0.54 0.54	2.39 2.41 2.31 1.79 1.79 1.69	1.17 1.17 1.07 0.54 0.54 0.54	,	0.58 0.58 0.58 1.09 1.09 1.09 1.59 1.59 1.59

	Nov.	Dec.	Total
a Rice	Maha Rice 1.89 1.89 1.77 1.77 1.77 1.83 1.83 1.85 1.87 1.87 1.88	83 1.83 1.85 1.87 1.87 1.88	57.96
Yala Rice			54.32
Total	1.89 1.89 1.89 1.77 1.77 1.77 1.83 1.83 1.85 1.87 1.87 1.88	.83 1.83 1.85 1.87 1.87 1.88	112.28

purldn (q)

		0 0,140 0.154	0.085 0.085 0.085	0.69 0.70	Aug	18 0.238 0.162 0.152 0.152 0.152 0.052 0.052 0.055	1.14 0.37 0.36 0.36	Total	50	
Apr.		61 0.101 0.101 0.115 0.140 0.140 0.154	80.0	3 0.34 0.34 0.35 0.69		50 0.242 0.242 0.244 0.23 00 0.600 0.496 0.256 0.25	3 1.92 1.82 1.15 1.14	 Dec.	1.50 1.50 1.52 1.52 1.52	
Xax.	0.62 0.62	0.017 0.017 0.017 0.061 0.061 0.061 0.101		0.64 0.64 0.13 0.13 0.13	Jul	0.230 0.230 0.230 0.250 0.250 0.250 0.250 0.242 0.242 0.244 0.238 0.238 0.162 0.152 0.152 0.152 0.958 0.968 0.968 0.968 0.952 0.952 0.600 0.600 0.496 0.256 0.256 0.256 0.256	2.11 2.41 2.41 2.32 1.93	Nov.	1.41 1.41 1.34 1.34 1.38 1.38 1.38 1.50 1.50 1.52 1.52 1.52 1.54	
Peb.	1.68 1.68 1.58 1.08 1.08 1.00 0.62 0	0.010		1.68 1.58 1.08 1.08 1.00 0.64 0	- uni		2.21 2.21	Oct.	i .	
	1.62 1.62 1.64 1.64 1.64 1.56 1.68 1.			1.62 1.62 1.64 1.64 1.54 1.56 1.68 1.	May	0.168 0.178 0.192 0.192 0.202 0.202 0.218 0.230 0.230 0.630 0.672 0.728 0.784 0.840 0.840 0.904 0.968 0.968 0.965 0.265	1.59	·dəs	0.076 0.076 0.076	
	Pice: Maha	Chillies Sova Bean	Pulses	Total		Rice:Maha Chillies Soya Bean			Rice:Maha Chillies Soya Bean Pulses	†

Table 5-6 Calculation Sheet for Total Water Requirement (Monthly)

(1) Lowland

Month	ET _O	I.R.	Total Irriga Requir		* * * * * * * * * * * * * * * * * * *	rsion Water rement
		(in)	(Ac.ft.)	(ft ³ /Sec)	(Ac.ft.)	(ft ³ /Sec)
Jan.	4.7	11.5	4,983	83.7	6,478	108.8
Feb.	5.0	10.0	4,333	72.8	5,633	94.6
Mar.	6.2	6.2	2,687	45.2	3,493	58.8
Apr.	5.9	. 8.1	3,510	59.0	4,563	76.7
May	6.4	13.1	5,677	95.4	7,380	124.0
Jun.	6.9	14.0	6,067	102.0	7,887	132.6
Jul.	7.5	12.4	5,373	90.3	6,985	117.4
Aug.	7.6	5.0	2,167	36.4	2,817	47.3
Sep.	7.5	1.8	780	13.1	1.,014	17.0
Oct.	6.2	8.1	3,510	59,0	4,563	76.7
Nov.	4.3	11.0	4,767	80.Î	6,197	104.1
Dec.	4.5	11.1	4,810	80.8	6,253	105.0
Total	72.7	112,3	48,664	**************************************	63,263	

(2) Upland

Month	ETO	I.R.	Total Irrig Requir	ation Water ement		rsion Water rement
		(in)	(Ac.ft.)	(ft ³ /Sec)	(Ac.ft.)	(ft ³ /Sec)
Jan.	4.7	9.8	898	15.1	1,167	19.6
Feb.	5.0	8.1	743	12.5	966	16.3
Mar.	6.2	2.3	211	3.5	274	4.6
Apr.	5.9	3.1	284	4.8	369	6.2
Мау	6.4	8.1	743	12.5	966	16.3
Jun.	6.9	12.5	1,146	19.3	1,490	25.1
Jul.	7.5	12.8	1,173	19.7	1,525	25.6
Aug.	7.6	4.6	422	7.1	549	9.2
Sep.	7.5	0.7	64	1.1	83	1.4
Oct.	6.2	6.6	605	10.2	787	13.3
Nov.	4.3	8.2	752	12.6	978	16.4
Dec.	4.5	912	843	14.2	1,096	18.5
Total	72.7	85.9	7,884		10,250	

(3) Total

Andrew Books and and	- Charles of the Control of the Cont	and	Uplai	nd	Tot	al
Month	D.W.R.	D.W.R.	D.W.R.	D.W.R.	D.W.R.	D.W.R.
	(Ac.ft.)	(ft ³ /Sec)	(Ac.ft.)	(ft ³ /Sec)	(Ac.ft.)	(ft ³ /Sec)
Ĵan.	6,478	108.8	1,167	19.6	7,645	128.4
Feb.	5,633	94.6	966	16.3	6,599	110.9
Mar.	3,493	58.8	274	4.6	3,767	63.4
Apr.	4,563	76.7	369	6.2	4,932	82.9
May	7,380	124.0	966	16.3	8,346	140.3
Jun.	7,887	132.6	1,490	25.1	9,377	157.7
Jul.	6,985	117.4	1,525	25.6	8,510	143.0
Aug.	2,817	47.3	549	9.2	3,366	56.5
Sep.	1,014	17.0	83	1.4	1,097	18.4
Oct.	4,563	76.7	787	13.3	5,350	90.0
Nov.	6,197	104.1	978	16.4	7,175	120.5
Dec.	6,253	105.0	1,096	18.5	7,349	123.5
Total	63,263		10,250	· · · · · · · · · · · · · · · · · · ·	73,513	

Note: The above Tables do not include the effective rainfalls; those including the effective rainfalls are given in Tables 5-8 through 5-17 in Volume II: Notes.

Table 5-7 calculation sheet for Total Water Requirement

		Tyriant	Lowland (5 ion Water	,200 Ac)	Mater		Irrigati		100 Ac) Divers	on Water		otal ion Water
Konth	I.R. (in)		lrement	Requis		I.R.		rement	Requ	rement	Requ	irement
	1 (13)	ft 3/000	Ac ft	ft3/600	Ac ft	(5177	ft3/sec	Ac. ft	1t3/200 .	Ac.1t	Ac. ft	ft3/ceo
1	1.92	83.9	832	109.1	1,082	1.62	15.0	149	19.5	194	1,276	128.6
2	1.92	83.9	832	109-1	1,082	1,62	15.0	149	19.5	194	1,276	128,6
ۍ <u>ت</u>	1.93	84.3	836	109.6	1,087	1.64	15.1	150	19.6	195	1,282	129.2
٠ 4	1.93	84.3	836	109.6	1,087	1.64	15.1	150	19.6	195	1,282	129.2
5	1,93	84,3	836	109.6	1,087	1.56	15.1 15.2	150 151	19.6 19.8	195 196	1,282	129.2 126.7
6	1.68	92.2	815	106.9	1,060							
1	1,94	84.8	841	110.2	1,093	1.68	15.5	154 154	20.2 20.2	200 200	1,293	130.4 130.4
2	1,94	84.8 82.2	841 815	110.2 106.9	1,093	1.68	15,5 14,6	145	19.0	189	1,249	125.9
F 3	1.88	62.9	624	81.8	: 811	1.08	10.0	99	13.0	129	940	94.8
5	1.44	62.9	624 .	81.8	811	1.08	10.0	99.	13.0	129	940	94.8
6	1.38	60.3	598	78.4	777	1.00	9.3	92	12.1	120	897	90.5
1	1.05	45.9	455	59.7	592	0.64	5.9	59	7.7	77	669	67.4
2	1,05	45.9	455	59.7	592	0.64	5.9	59	7.7	77	669	67.4
м 3	0.97	42, 3	420	55.0	546	0.64	5.9	59 12	7.7 1.6	77 16	623 619	62.7 62.4
- 5	1.07	46.8 46.8	464 464	60.8 60.8	603 603	0.13	1.2	12	1.6	16	619	62.4
6	1.07	46.8	464	60.8	603	0.13	1.2	12	1.6	16	619	62.4
	*****			~	608	0.34	3.1	31	4.0	40	648	65.4
1 2	1.08	47.2 47.2	468 468	61.4 61.4	608	0.34	3.1	31	4.0	40	648	65.4
9	1.08	47.2	468	61.4	608	0.35	3.2	32	4.2	42	650	65.6
~ 4	1.57	68.6	680	89.2	884	0.69	6.4	63	8.3	82	966	97.5
5	1.61	70.4	698	91.5	907	0.69	6.4	63 64	8, 3 8, 5	82 83	989 990	99.8
6	1.61	70.4	698	91.5	907	0,70	6.5					
1	2.17	94.8	940	123.2	1,222	1.11	10.3	102	13.4	133 139	1,355	136.6 139.6
2	2.21	96. 6 96. 6	958 958	125,6 125.6	1,245 1,245	1.17	10.8	107 109	14.0 14.3	142	1,387	139.9
M 3	2.21	94.0	932	122.2	1,212	1.52	14.0	139	18.2	181	1,393	140.4
5	2.20	96.1	953	124.9	1,239	1.59	14.0	139	18.2	181	1,420	143.1
6	2.20	96.1	953	124.9	1,239	1.59	14.0	139	18,2	181	1,420	143.1
1	2,30	100.5	997	130.7	1,296	1.93	17.8	177	23.1	230	1,526	153.8
2	2.35	102.6	1,018	133.4	1,323	2.01	18.6	184	24.2	239	1,562	157.6
J 3	2:35	102.6	1,018	133,4	1,323	2.01	18.6	184	24.2	239	1,562	157.6
- 4	2.35	102.6	1,018	133.4	1,323	2.21	20.5	203	26.7	264 264	1,587 1,599	160.1
5 6	2.37	103.6 99.6	1,027 988	134.7 129.5	1,335 1,284	2.21	20.5 19.5	203 193	26.7 25.4	251	1,535	154.9
						 				287		164.9
1 2	2.39 2.41	104.5 105.3	1,036	135.9 136.8	1,347 1,357	2.41	22.3 22.3	221 221	29.0 29.0	287	-1,634 1,644	165.8
_	2.31	100.9	1,001	131.2	1,301	2.32	21.5	213	28.0	277	1,578	159.2
ர் 3 4 }	1.79	78,2	776	106.7	1,009	1.93	17.8	177	23.1	230	1,239	129.6
5	1.79	78.2	776	101.7	1,009	1.92	17.7	176	23.0	229	1,238	124.7
6	1.69	73.8	732	95.9	952	1.82	16.8	167	21.8	217	1,169	117.7
l.	1.17	51.1	507	66.4	659	1.15	10.6	105	13.8	137	796	80.2
2	1.17	51.1	507	. 66.4	659	1.14	10.6	105	13.8	137	796 740	80.2 74.6
A 3	1.07	46.8	464	60.8	603 304	0.37	10.6 3.4	105 34	13.8 4.4	137 44	348	35.1
5	0,54	23.6 23.6	234 234	30.7 30.7	304	0.36	3.3	33	4.3	43	347	35.0
6	0.54	23.6	234	30.7	304	0.36	3.3	33	4.3	43	347	35.0
		*	-		**	0.08	0.7	7	0.9	9	9	0.9
2		- 1	-	- 1	-	0.08	0.7	. 7	0.9	9	9	0,9
8 ³	-	- 1	÷.	- 1		0.08	0.7	7	0.9	9	9	0.9
4	0.58	25.3	251	32.9	326	9.17	1.6	16	2.1	2 <u>1</u>	347	35.0 35.0
5 6	0.58	25.3 25.3	251 251	32.9 32.9	326 326	0.17	1.6	16 16	2.1 2.1	2 <u>1</u> 21	347	35.0
			·			_				94	708	. 71.4
1	1.69	47.6 47.6	472 472	61.9 61.9	614 614	0.79	7.3	72 72	9.5 9.5	94 94	708	71.4
2 3	1.09	47.6	472	61.9	614	0.79	7.3	72	9.5	94	708	71.4
0 4	1.59	69.5	689	90.4	896	1.41	13.0	129	16.9	168	1.064	107.3
5	1.59	69.5	689	90.4	896	1.41	13.0	129	16.9	168	1,064	107.3
6	1.59	69.5	689	90.4	896	1.41	13.0	129	16.9	168	1,064	107.3
1	1.89	62.6	819	107,4	1,065	1.34	12.4	123	16.1	160	1,225	123.5
2	1.69	82.6	819	107.4	1,065	1 . 34	12,4	123	16.1	160	1,225	123,5
N 3	1.89	82.6	619 767	107.4	1,065	1,34	12.4	123	16.1 16.6	160 165	1,225	123.5 117.1
" 4 5	1.77	77.3 77.3	767 767	100.5 100.5	997 997	1.36	12.8 12.8	127 127	16.6 16.6	165	1,162	117.1
6	1.77	77.3	767	100.5	997	1.30	12.8	127	16.6	. 165	1,162	111.1
1	1.63	60.0	793	104.0	1,031	1.50	13.9	138	18,1	179	1,210	122.1
2	1.83	80.0	793	104.0	1,031	1.50	13.9	138	18,1	179	1,210	122.1
2	1.65	80.9	602	105.2	1,043	1.52	14.0	1 39	18.2	181	1,224	123.4
D 4	1.87	81.7	810	106.2	1,053	1.52	14.0	1 39	18.2	181	1,234	124.4
	1.67	81.7	810	106.2	1,053	1.52	14.0	139	18,2	181	1,234	124.4
5	اممي											
6	1.88	82.2	815	106.9	1,060	1,54	14.2	141	18.5	783	1,243	125.4

5.4 Water Balance between Supply and Demand

5.4.1 Computation Method

Water balance computation has been made through the following procedures:

- (1) Estimation of the volume of in-flow to the dam on the basis of the Mi-Oya's discharge data obtained at Mahauswewa for the last 20 years;
- (2) Rainfall has been identified from the observation records kept at Mahauswewa;
- (3) Calculation has been made on monthly basis;
- (4) Evaporation loss has been computed from the surface area of the dam as estimated from the storage capacity; the monthly evaporation loss has been accumulated to obtain the total evaporation loss;
- (5) Evaporation has been computed from the observation data obtained at Tabbowa; surface evaporation equates to 80% of Pan evaporation;
- (6) Seepage losses through and/or around the dam-body are negligible (less than 0.05% of the storage on a rough estimation);
- (7) Total demand is the sum of irrigation demand and evaporation loss; and
- (8) Gross total storage capacity of the dam is 53,000 Ac.ft., and the minimum storage, including dead water, is 8,450 Ac.ft.

5.4.2 Water Balance Computation

Water balance computation results are given in Tables 5-8 through 5-17.

5.4.3 Success Percentage

Success percentage of crop cultivation in Maha and Yala is given as follows:

Cropping Season	Success Percentage	
Maha	85	
Yala	80	

Table 5-8 Operation Study of Inginimitiya Reservoir Project (1)

			,				4	1 10		*			-		Total		,	
		Inflow	Rainfall	Low	Lowland (S	(5,200 Ac.	3)	ďn	Upland ((1,100 Ac))	Total		Loss	Demand	Storege	Storese	Spill
Year	Month			μ. ₩. թ.	Sec.	Sffective Rainfall	E-3-1	r. ¥. R	म्बर्ध स्वर्ध	Effective Rainfall	H.W.R.	E٠	L X X		>	***************************************		
		Acit	, ut	Acest	uţ.	Ac.ft	Ac-ft	Ac-2t	गुर	Ac-ft	Ac-2t	Ac-St	Ac-2t	Ac-22	Ac-ft	Ac-ft	Ac-2t	Ac-ft
1955	Oct	26,453	8.82	3,520	5.24	2,272	1,239	609	3.8	550	55	2,294	7,682	025	2,602	23,851	23,851	
	Nov	27,846	11.72	792,7	7.18	3,111	1,656	752	3.00	550	202	1,858		670	3,085	24.761	48,612	
	Dec	43,537	1.99	4,810	0.66	286	7.55	843	2.17	214	629	5,153		1,070	7,769	35,768	53,000	32,380
1956	, i	9,225		4,983	0	0	4,983	868	18.0	57	778	5,824		1,200	8,773	454	53,000	7.7
	E C	1,368		4,333	0	0	4,333	277	0.30	55	989	5.021	6,527	2,270	7.797	-6,429	46,572	
-	Men	16,478	9.70	2,687	90°.	2,552	135	112	3.00	950	0	135	176	1,58	1,676	14,802	53,000	8,373
	Apr	455	4.30	3,510	2.27	958	2,552	284	2.71	767	0	2,552	3,318	1,520	4,838	-4,385	719,87	
	May:	222	0.58	5,677	O	0	5,677	743	0.22	3	703	6,380	8,294	1,470	9,764	-9.542	39,075	
	ा पु	367	3.24	6,067	1.43	620	5.447	1,146	7-94	356	38	6,237	8,108	1,350	9,458	-9,091	29,984	
	 닭	369	0	5,373	0	0	5,373	1,173	0	ō	1,173	6,546	8,510	1,150	099.5	-9,291	20,693	
	Aus	369	0	2,167	0	O	2,167	432	0	0	755	2,589	3,366	80.1	4,446	-4,077	15,616	
	·Sep	178	0.17	780	0	0	780	7	0	0	4	778	1,097	910	2,007	-1,829	14.787	;
	Total	126,867	41.93	48,664	22.61	9,798	38,866	7,884	15.65	2.869	5,567	44,435	57,763	011,41	71,873			
	oct	20	5.71	3,510	3.16	1,369	2,141	605	3.00	550	55	2,196		710	3,565	-3,545	27,242	
	Nov	5,641	15.70	4,757	8.6	3,900	867	752	w.00		202	1,069	1,390	430	1,820	3,821	15,063	
	Dec	6,617	5.42	018,2	5.96	1,283	3,527	823	3.8		293	3,820	996,4	38	5,526	1,091	16,154	
1957	Jen J	366	1.57	4,983	0.38	165	4,818	896	0.38	161	737	5,555	7,222	610	7,632	-7,466		
******	Feb	141	2.52	4,333	1.02	777	3,891		2.52		757	4,355		380	6,042	5.90	8,450	
	Mar	145	27.0	2,687	0	0	2,687		0.11	20	ig.	2,878	3,741	200	4,241	960.4	8,450	
	Apr	11,375	79.7	3,510	2.42	2,049	2,461	584	2.92	535	0	2,461	3,199	094	3,659	7,716	36,166	
	, a v	98	5.82	5,677	3.23	1,400	4,277	243	8.8	920	193	4,470	5,811	08	6,611	157.5-	10,415	ho/mal/i
	Cl.	2,891	5.82	6,067	7.89	819	5,248	3,246	2.39	438	708	5,956	7,743	620	8,353	-5,462	8,450	
_		190	0	5,373	0	0	5,373	1,173	0	0	1,173	6,546	8,510	8	9,010	028. **	8,450	
	Aug	79	0	2,167	0	0	2,167	-7	0	0	755	2,589		570	3,956	-5,875	8,450	
	c es	43	0	780	0	0	780	75	0	0	E	3778	1,097	240	1,637	-1,5%	8,450	
	40407	875 86	45.50	799 87	25. 25.	707 01	58.237	788.7	0	K K K	CU3 .	0×6 07	673 33	7000	2		مطدرت	

Table 5-9 Operation Study of Inginimitiya Reservoir Project (2)

	ttids		Ac-ft		17,803	154,707	16,136		13,661	5,8				,															i in a supraire
End of	Storage		Ac.ft	13,301	53,000	53,000	53,000	52,170	53,000	53,000	51,851	42,510	74,004	33,136	33,442		32,401	30,036	29,407	24,206	17,084	13,179	11,828	12,072	3,450	8,450	8,450	8,450	
	Storage	andraja North	Ac-ft	4,851	57,502	54.707	16,136	88	16,491	50,944	-1,149	-9,341	8.50¢	88	306		1,041	-2,365	-629	-5.201	-7,122	-3,905	-1,351	577	-7,633	-7,834	-5,501	-324	
Total	Demand	e-surgestations of	Ac-2t	1,610	2.880	2,684	8,323	7,821	1,620	1,520	7,808	10,551	006.6	2,549	2,397	58,663	3,638	4,985	6,956	6,644	7,389	4,617	1,351	4,7%	9,2%	8,474	3,847	574	62,503
Evapora-	Loss		Ac-ft	0777	84	1,120	1,200	1,270	1,620	1,520	7,560	1,630	1,430	1,410	1,300	14,990	1,070	8	8	028	8	850	88	630	8	8	570	240	8,78
,, ,		× 5. H	Ac-ft	1,170	1,390	1,564	7,125	6,551	0	0	6,248	8,921	8,470	1,139	1,097	43,673	2,568	4,195	6,176	5,824	6,599	3,767	67.1	4,304	8,614	7.67	3,277	X	52,427
	Total	€→	Ac-ft	006	1,069	1,203	5,479	6,039	-	ō	4,806	6,862	6,515	876	8777	33,593	2,975	3,227	4,752	4,480	5,075	2,898	516	3,157	6,626	5,134	2,521	26	782,12
)	I.W.R.	Ac-£t	55	202	293	713	902	0	0	567	977	1,142	0	79	4,351	55	202	606	416.	743	27.7	0	193	8	986	354	0	4,575
Demand	Upland (1,100 Ac)	Effective Rainfall	Ac-£t	550	550	550	185	37	550	550	7775	569	22	550	0	4,266	550	550	334	787	ô	0		550	200	187	86	411	2,427
	land (Bife	in	3.00	3.00	3.8	1.01	0.20	3.00	3.8	2.97	0.92	0.17	3.80	0	25.27	3.00	3.8	1.82	2.63	0	0	8	8.8	1.31	1.02	0.37	2.24	21.39
Irrigation	ສິ	F.W.R.	Ac-ft	605	752	843	868	743	211	58 7	743	1,146	1,173	775	54	7,884	605	752	8	868	743	217	787	743	1,145	2,173	422	t	7,884
I	()	E.W.I	Acift	878	867	910	4,766	4,333	0	0	709,4	5,885	5,373	876	780	29,545	1,920	3,025	4,242	790.4	4,333	2,687	916	2,964	5,720	5,148	2,167	26	36,812
i	(5,200 Ac	tive	Ac-ft	2,665	3,900	3,900	217	0	3,536	3,980	1,070	182	0	2,291	0	20,661	1,590	1,742	568	919	0	0	7,884	2,713	347	225	0	754	11,852
	Lowland (9	Effective Rainfall	in	6.15	9.00	00.6	0.50	0	8,16	8.8	2.47	0.42	0	2.98	0		3.67	4.02	1.31	2.12	0	o	6.91	6.26	0.80	0.52	0	1.74	27.35
	MOT	F.W.R.	Ac-25	3,510	4,767	4,810	4,983	4,333		3,510	5,677	6,067	5,373	2,167	780	48,664 47.68	3,510	4,767	4,810	4,983	4,333	2,587	3,510	5,677	6,067	5,373	2,167	780	48,664 27.35 11,852
	Rainfall		u;	30.18	15.32	23.95	1.75	0.55	13.18	16.18	69.7	1.62	0.50	5.45	0	95.37	87.9	2.8	2.96	4.17	97.0	0.05	11.31	10.34	2.20	1.77	0.80	3.59	50.83
	Inflow	******	Ac-ft	6,461	59,382	157,391	54,459	6,991	16,111	52,464	6,659	1,210	7,394	1,681	2,703	336,906	2,597	2,620	6,327	1,443	267	712	N£I	4.978	1,661	076	346	250	23,841
		Month		Oct	Nov	Dec	Jan	Feb	Mar	Apr	May.	Jun	नुक	Aug	.Sep	Total	200	Nov	Dec	Jan	7.00 0.00	Mar	Apr	May	- Zun	525	Aug	Sep	Total
		Year		1957			1958				- wardy Se				,					1959									

Table 5-10 Operation Study of Inginimitiya Reservoir Project (3)

	Spill		Ac.ft																										
End of	Storage	*	Ac-ft	17,184	32,666	46,173	44,355	41,313	37,739	38,993	33,874	24,272	25,133	19,544	17,622		15,170	45,423	167.77	45.774	41,657	39,172	35,98	28,201	20,596	13,663	10,133	9,780	
	Storege :		Ac-ft	8,734	15,482	13,507	-1,818	-3,045	-3,574	1,254	-5,119	-9,602	-1,139	-3,539	-1,922		-2,452	28,253	3,068	1,223	4,057	-2,485	-3,266	-7,705	-7,605	-6,933	-3,530	-353	
Total	Demand		Ac-ft	2,960	3,548	6,756	7,560	6,087	5,047	1,976	7,453	10,590	7,067	4,516	2,087	279,79	2,925	2,930	7,905	5,562	7,74	4,342	3,898	8,400	8,324	8,074	4,306	929	63,466
Evapora-	Loss		Ac-ft	077	570		1,070	1,130	1,380	1,210	2,270	1,230	1,030	1,150	066	12,290	770	540	986	1,070	3,160	1,390	1,250	1,210	011,1	950	98	610	006,11
		; EI ×	Ac-ft	1,520	2,978	5,936	6,490	4,957	3,667	992	6,183	9,360	6,037	3,366	1,097	52,357	2,155	1,390	6,925	4,492	6,184	2,952	2,548	7,190	7,214	7,124	3,246	97	51,566
	Total	£-4	Ac-ft.	1,169	2,291	4,566	7,992	3,813	2,821	589	4,756	7,200	4,644	2,589	844	40,274	1,658	1,069	5,327	3,455	4,757	2,271	2,037	5,531	5,549	5,480	2,497	35	39,66
		T.W.R.	Ac.2t	55	202	454	268	303	134	ō	193	1,133	623	422	99	4,151	55	202	682	348	584	0	0	413	596	792	330	ó	4,002
Demand	1,100 Ac)	Effective Rainfall	Ac-ft	550	920	389	330	440	22	550	550	53	550	O	0	5,999	550	550	161	550	159	569	550	330	550	381	8	407	4,549
	Upland (1,100	Effe	иï	3.8	3.00	2-12	1.80	2.40	0.42	8.8	8.8	0.07	8.8	0	0	21.81	∞.₹	8.8	ე. 88 მ	9.00	0.87	1.47	8.8	8.3	8.8	2.08	0.50	2.22	24.82
Irrigation	ćΩ	.¥₹.	AG+St	609	752	843	868	743	112	587	743	1,146	1,173	422	49	7,834	509	752	843	868	743	211	787	743	1,146	1,173	422	\$	7,884
F4	G	æ.¥.∓	Ac.ft	1,114	5,086	4,112	4,424	•	*	589	4,563	6,067	4,021	2,167	780	36,123	1,603	867	4,645	3,107	4,173	2,271	2.037	5,118	4,953	4,688	2,167	35	35,664
	(5,200 Ac)	Effective Rainfall	Ac-ft	2,396	2,678	869	559	823	0	2,921	7,114	0	1,352	0	0	12,541	1,907	3,900	165	1,875		416	2,473	553	1,114	585	0	745	30.00 13,000
	Lowland (Eff. Rair	in.	5.53	6.18	1.61	2.29	28	0	6.74	2.57	0	3.12	o	0	28.94	07.4	9.00	0.38	4.33	0 37	96.0	3.40	1.29	2.57	1.58	0	1.72	30.00
	Low	. ¥. €.	Ac-ft	3,510	4,767	4,810	4,983	4,333	2,687	3,510	5,677	6,067	5,573	2,167	780	48,664	3,510	4,767	4,810	4,983	4,533	2,687	3,510	5,677	6,067	5,373	2,167	780	48,664
- -1 	Rainfall		r:	9.26	10.23	3.41	2.93	3.83	0.87	90.11	d t	0.35	5.65	0	C .	52.43	7.57	16.47	1.57	7-47	1.55	2.44	6.07	2.93	4.9	3.36	66.0	3.57	58.83
	Inflow		Ac-It	10,694	19,030	20,263	5,742	3,045	1,473	3,230	2,334	886	5,928	927	165	73,819	473	30,183	8,973	6,785	3,278	1,857	635	695	77.9	1,141	576	202	55,624
		Month		Sot.	Nov	. Dec	Jar	Feb	Mer	Apr	√eγ.	dun.	, , , ,	Aug	.Sep	Total	Oct	Nov	ပ္မ	Jan	Peb	Mer	Apr	May	Jun	57.5	Aug	Sez	Total
		Year		1959			1960								inole N					1%;		-Karteary						استخبيون	

Table 5-11 Operation Study of Inginimitiya Reservoir Project (4)

: Field Water Arquirment : Irrigation Water Arquirment

F.W.R.

							H	Irrigation	Demand	gg			"	-srocev			30 pura	
		120			7 000 1000	1						E		tion	18201		Morres	
		MOTILIT	14612120	% 7	- 1	(5,200 Ac)	3	c. C.D	Uplend (1,100	,100 Ac)		Total		Loss	Demand	Storage	Storese	Klids
Year	Menth			й. Ж	Effe Raini	Effective Rainfall	a: >>	a: .×.	Effective Rainfall		¥.	EH	۲. ۲. ۴۰	<u> </u>				
		Ac-ft	H.	Ac.ft	ui	Ac-ft	Ac-ft	40.£t	in /	Ac-ft	Ac-ft	Ac.ft	Ac.st	Ac.ft	Ac-ft	Ac-ft	Ac-St	Ac-ft
1961	964	2,475	9.55	3,510	5.73	2,483	1,027	605	3.00	550	55	1,082	1,407	067	1,897	578	10,358	
	Nov	20,721	5.45	4,767	2.98	1,291	3,476	752	3.00	950	202	3,578	787,7	390	5,171	15,550	25,908	
	Dec	15,884	5.34	4,810	2.77	1,200	3,610	843 843	8.8	550	293	3,903	5,074	720	5,794	060,8	33,998	
1962	c'an	6,770	4.23	4,983	2.16	936	4,047	868	2.67	489	607	4,456	5,793	006	6,693	7	34,075	
	rec.	3,463	3.79	4,333	1.87	810	3,523	743	2.37	754	309	3,832	4,982	950	5,932	-2,469	31,506	
	Mer	2,905	2.8	2,587	0.67	230	2,397	211	72.1	712	0	2,397	3,116	1,160	4,276		30,234	
	TO Y	2,457	4.29	3,510	2.20	953	2,557	284	2.71	497	0	2,557	3,324	1,050	4,374		26,318	
ar person	Maj	7,660	62.6	5.677	5.89	2,552	3,125	743	8	550	193	3,318	4,313	1,050	5,363	2,297	30,615	
	3) 2) 2)	2,010	2.55	6,067	1.04	457	5,616	1,146	1.54	282	798	087,9	8,424	1,160	485.6	, 	23,041	
	135	788	7.54	5,373	0.36	156	5,217	1,173	0.86	158	1,015	6,232	8,102	1,000	9,102		14,727	
	Aug	3,310	2.03	2,167	0.68	295	1,872	422	1.18	216	206	2,078	2,701	920	3,621	-311	14,416	
	Sep	1,055	1.98	780	0.66	286	767	7,9	1.16	213	0	767	642	850	1,492	-437	13,979	
	Total	67,498	52.32	78,664	27.01 11,703	11,703	36,961	7,884	25.66	4,703	3,546	40,507	52,559	10,640	63,299			
	oct	38,666	25.08	3,510	00-6	3,900	0	605	3.00	550	55	55	72	989	752	716'28	55,000	268*87
	NCV	20,562	90.6	792.7	2.40	2,340	2,427	752	8	550	202	2,629	3,418	1,090	4,508	16,074	53,000	16,074
	Dec	12,21	5.86	4,810	3.26	1,413	3,397	843	3.00	550	293	3,609	4,797	1,120	5,917	6,294	53,000	6,294
1963	res.	88,518	8.18	4,983	4-81	2,084	2,899	968	8	550	348	3,247	4,221	1,200	5,421	83,097	53,000	83,097
-	reb	10,817	3.46	4,333	1.65	725	3,618	243	2.15	394	Z.	3,967	5,257	1,270	6,427	4,390	53,000	4,390
	Mar	5,350	3.40	2,687	1.61	869	7,989	211	2.11	387	0	1,989	2,586	1,650	4,236	1,114	53,000	1,114
-	Apr	4,162	6.19	3,510	0.4.v	1,508	2,002	78. 78.	3.00	550	0	2,002	2,603	1,520	4,123	23	53,000	33
*****	May	3,926	6.36	5,677	3.59	1,556	4,121	743	3.80	550	193	4,314	5,608	1,56	7,168	-5,242	49,758	مر وسطوري
	Jun	2,043	····	6,067	0.75	325	5,742	1,146	1.25	529	216	6,659	8,657	1,58	10,247		41,554	السبيعيد
	5	1,485	····	5,373	0.31	136	5,239	2,173	8.0	148	1,025	6,264	8,143	7,400	9,543	-8,058	33,496	
-	Aug	812		2,167	0	0	2,167	755	0	0	422	2,589	3,366	2,400	4,766	-7,854	25,642	
	Sep	550	3.32	780	1.55	672	108	79	2.06	378	0	108	140	1,130	1,270	-720	24,922	*
	Total	239,122	74.65	48,664	35.41 15,345	15,345	33,709	7,884	26.38	4,836	3,804	37,513	48,768	15,610	64,378	, <u> </u>		

Table 5-12 Operation Study of Inginimitiya Reservoir Project (5)

## Siffective	Inflow Reinfall Lowlend (5,200 Ac) Upl	Reinfall Lowland (5,200 Ac)	Lowland (5,200 Ac)	Irrigat		Irriget Ac)	Irrigat	72. gs t:	[8 [5	ion Demand Uplend (1,100	200 Ac)		Totel		Evapora- tion	Total	Stores	End of Month Storege	Spill
Oct 2,647 3.21 4.0.ft 40.ft 1.0.ft 1.0.ft 40.ft 40.ft <th< th=""><th>Year</th><th>Month</th><th></th><th></th><th>(π. '×. 'π.</th><th>Effe. Rain</th><th></th><th>α; ;<u>s</u></th><th>. ¥.</th><th>Sffer</th><th>1 4</th><th>H. W. R.</th><th>F</th><th>ξΟ. X</th><th>w e e e</th><th>,</th><th>)</th><th></th><th></th></th<>	Year	Month			(π. '×. 'π.	Effe. Rain		α; ; <u>s</u>	. ¥.	Sffer	1 4	H. W. R.	F	ξΟ. X	w e e e	,)		
No. 2,647 8.21 3,520 4.65 2,030 1,417 6.05 3.00 55 1,472 1,930 6.00 No. 52,922 18.66 4,776 2,000 3.90 14,147 5.00 2.00 3.90 2.60 3.90 20 2.90 1,059 1,059 1,050 1,050 1.00 3.90 6.00 3.00 3.90 6.00 1.00 6.00 1.00			Ac-ft	នុ	\$E-0¥	: T	Ac.ft	Ac.st	Ac-2t	-	Acift	A0-2t	Ac.ft	Ac-ft	Ac-ft	Ac-ft	Acitt	\$1.0A	35-54
Now 52.912 18.66 4,767 9.00 3.990 867 772 3.00 550 202 1.069 1.390 660 1.000 1	1963	Oct	2,647	ன்	3,510	4.83	2,039		605	3.00	550	55	1,472	1,914	910	2,824	-177	24,745	
Dec 62,382 8.51 4.810 5.10 2.500 84.5 5.00 550 293 2.893 3.775 1.120 Feb		Nov	52,912	18.66	4,767	00-6	3,900	867	752	3.80	550	202	1,069	1,390	680	2,070	50,842	53,000	22,587
Jean 15,430 1.14 4,983 0.08 4,944 898 0.60 110 788 5,732 7,452 1,200 Rea 5,594 1.13 4,284 723 0.59 108 655 4,929 6,408 1,270 Apr 1,772 5.09 1.16 2,244 723 1.05 1,400 1,140 1,140 1,177 1,400 1,140 1,400 1,400 1,140 0.04 1,140 0.04 2,344 2,44 1,140 0.04		Dec	62,382		4,810	5.30	2,210	2,600	8	8.	550	293	2,893	3,761	1,120	4,887	57,501	53,000	
Feb 5,934 1.13 4,335 0.09 39 4,294 743 0.59 108 655 4,929 6,408 1270 0.59 1,270 1.270 1.270 1.270 1.270 1.200 39 5,468 211 0.59 1.08 655 4,925 5,408 1.270 May 1,736 2.68 1,166 39 5,448 211 0.59 49 7,475 1.20 0 1,160 1.10 1.20 1.400 1	1367	Jen	15,430		4,983	0.09	90	4,944	868	0,60	011	788	5,732	7,452	1,200	8,652	6,778	53,000	
Next 5,686 1.13 2,687 0.09 79 5,648 211 0.59 103 5,791 7,476 1,690 1,690 1,690 1,690 1,690 1,690 1,690 1,690 2,744 7,072 1,690 2,744 7,070 1,690 1,400	·	ri e O,	5,934	1.13	4,333	60.0	38	4,294	743	0.59	108	635	4,929	807,69	1,270	7,678	47,1-	51,256	
Apr 1,772 5.02 3,510 2.69 1,166 2,344 264 5.00 5,344 3,40 1,420 3,504 1,420 3,40 1,420 3,40 1,420 3,504 1,420 3,40 1,420 3,504 3,504		K S	5,696		2,687	60.0	39	879,6	112	0.59	108	103	5.751	7,476	1,630	9,106	-5,410	47,846	
Nay 1,388 2.25 5,677 0.84 364 5,313 7.43 1.34 246 4,97 5,310 7,553 1,400 Jii 1,144 0.31 6,667 0 6,067 1,146 0.04 7 1,139 7,206 9,588 1,310 Aug 1,035 1,40 2,167 0.2 1,17 2,057 489 664 5,21 5,577 1,110 Sev 1,035 1,40 2,167 0.24 1,17 2,056 664 3,00 568 5,121 6,657 1,110 Sev 1,035 4,04 1,17 2,056 2,07 1,40 0.7 1,10 0.7		Apr	1,772		3,510	5.69	1,166	2,344	584	8.8	550	0	2,344	3,047	1,420	4,467	-2,695	45,151	
Juil 1,144 0.51 6,067 0 6,067 1,146 0.04 7 1,139 7,206 9,368 1,310 Juil 990 4,23 5,773 2.050 4,437 1,173 2.67 489 684 5,121 6,657 1,110 Sep 482 1,23 1,24 1,27 1,173 2.67 489 684 5,121 6,657 1,110 Sep 482 1,23 1,27 1,27 1,27 1,27 1,27 1,173 2.67 421 2,11 2,050 1,100 Sep 4,23 1,27 1,27 1,27 1,27 2,050 2,05<		Mæ	1,338		5,677	78.0	767	5,313	743	1.34	546	267	5,810	7,553	1,400	8,953	-7,565	37,586	
Jul 990 4.23 5,373 2.16 936 4,437 1,173 2.67 489 664 5,121 6,657 1,110 Sep 1,035 1.40 2.167 0.27 117 2.050 422 0.77 141 281 2,331 5,030 1,110 Sep 322 7.03 4.22 0.77 141 281 2,331 5,030 1,110 Total 152,169 5.02 2.054 39,981 7.684 21.60 5.959 4,677 44.638 58,056 1,110 Oct 832 6.44 7.78 3,432 843 7.08 5.05 2.56 2.584 7.09 Nov 13,316 10.30 4,767 6.23 2.700 2.067 7.52 3.09 4,677 4,658 5.694 7.70 Dec 6.278 1.778 3,432 843 3.00 550 2.269 2,530 2,530 2,534 7.70		N. P.	1,141	0.31	6,067	0	0	6,067	1,146	0.0	~	1,139	7,206		1,310	10,678	-9,537	28,049	
Aug 1,055 1.40 2.167 0.27 141 2.050 422 0.77 141 281 2,331 3,030 Sep 822 7.03 4.04 1.751 0 64 3.00 550 0 0 0 Total 152.169 59.12 46,664 29.20 12.554 39,981 7.884 21.60 3.959 4,670 44,638 3.64 1,577 1,933 605 50 55 44,678 2,584 2,584 2,584 2,584 2,584 2,584 2,695 2,677 2,465 2,584 2,58		10.7	066		5,373	2.16	936	4,437	1,173	2.67	983	\$ 9	5,121	6,657	1,130	7,757	-6,777	272,12	
Sep Se2 7.03 780 4.04 1,751 0 64 3.00 550 0 0 0 0 0 0 0 0		Aug	1,055		2,167	0.27	117	2,050	725	0.77	141	281	2,331	3,030	1,100	4,130	-3,075	18,297	
Total 152,169 59.12 46,664 29.20 12,654 39,981 7,884 21.60 3,959 4,677 44,658 58,056 1,988 2,684 21.60 36,477 4,659 58,056 2,584 21.60 36,056 2,584		cas.	822	7.03	780	70.7	1,751	0	75	3.00	550	0	C	0	096	096	-138	18,059	
Oct 832 6.44 3,510 3.64 1,577 1,933 605 3.00 550 55 1,988 2,584 Nov 13,316 10.30 4,767 6.23 2,700 2,067 752 3.00 550 202 2,269 2,950 Dec 6,278 5.75 4,910 3.18 1,378 3,432 843 3.00 550 295 2,269 2,950 Jan 3,246 0.59 4,983 0.23 4,2 65 2,687 0.0 4,983 898 0.23 4,670 6,071 Mar 659 0.46 2,687 0 2,687 0 2,687 0 2,687 0 2,687 0 2,687 0 2,687 0 2,687 0 2,687 0 2,687 0 2,687 0 0 2,687 0 0 2,687 0 0 0 0 0 0 0 0		Total	152,169	59.12			12,654			21.60	3,959	4,677	44,658	58,056	סוני זו	72,166			
Nov 13,516 10.30 4,767 6.23 2,700 2,067 752 3.00 550 20.2 2,269 2,950 Dec 6,278 5.75 4,810 3.18 1,378 3,432 843 3.00 550 295 2,269 4,843 Jan 3,248 0.59 4,983 0 4,983 898 0.23 42 856 5,839 7,591 Feb 1,836 0.46 2,687 0 2,687 0 2,687 211 26 185 5,872 3,734 Apr 9,389 10.84 3,510 6.59 2,887 211 26 185 2,872 3,734 Apr 9,389 10.84 3,510 6.59 2,886 6,40 0,40 73 211 865 1,126 3,00 550 193 4,579 5,953 Jun 2,560 0.25 5,677 2.28 1,286 7,45 3,00		Oct	832		3,510	3.64	1,577	1,933	609	3.00	550	55	1,988		780	3,364	-2,532	15,527	
Dec 6,278 5.75 4,810 3.18 1,378 3,432 843 3.00 550 293 3,725 4,843 Jan 3,248 0.59 4,983 0 0 4,983 898 0.23 42 856 5,839 7,591 Feb 1,836 1.76 4,533 0.51 221 4,112 743 1.01 185 558 4,670 6,071 Apr 9,389 10.84 3,510 6.59 2,856 654 284 0.40 73 211 865 1,125 May 21,069 5.45 5,677 2.98 1,291 4,386 743 5.00 550 193 4,579 5,953 Jun 2,560 0.25 6,067 0 0 6,067 1,146 0 0 1,146 7,213 9,377 Aug 4,439 5.68 2,167 3.14 1,561 806 422 3.00 550 0 1,173 6,546 8,510 Sep 784 0.50 48 62 780 0 780 0 780 64 0.17 31 35 813 1,057 Aug 4,439 4,439 4,430 0 780 0 780 7 80 64 0.17 31 35 813 1,057		Nov	13,316		4,767	6.23	2,700	2,067	752	8.8	550	202	2,269		550	3,500	9,816	25,343	
Jan 3,246 0.59 4,983 0 4,983 0.23 42 856 5,839 7,591 Feb 1,836 1.76 4,983 0.51 221 4,112 743 1.01 185 558 4,670 6,071 Mar 659 0.46 2,687 0 2,687 211 0.14 26 185 2,872 3,734 Apr 9,389 10.84 3,510 6.59 2,8856 654 284 0.40 77 20 185 3,734 Apr 21,069 5.45 2,864 6,067 0 2,667 1,146 0 1,146 7,213 9,377 Jul 7,19 0 5,373 1,175 0 1,146 7,213 9,377 Aug 4,439 5.68 2,167 3.14 1,361 806 4,22 3.00 550 0 1,048 2,048 Sep 780 4,675 780		Dec	6,278		4,810	3.18	2,378	3,432	843	3.8	550	293	3,725		017	5,553	725	350,35	, Paryan
1,836 1.76 4,535 0.51 221 4,112 743 1.01 185 558 4,670 6,071 6.97 5.92 0.46 2,687 0 2,687 211 0.14 26 185 2,872 3,734 21.05 9,389 10.84 3,510 6.59 2,856 654 284 0.40 75 211 865 1,125 21,069 5.45 5,677 2.98 1,291 4,386 74,3 5.00 550 193 4,579 5,953 7.79 0 2,577 0 5,577 0	1965	Jan	3,248		4,983	0	0	4,983	868	0.23	45	926	5,839		770	8, 361	-5,113	20,955	
659 0.46 2,687 0 2,687 211 0.14 26 185 2,734 21,089 10.84 3,510 6.59 2,856 654 284 0.40 73 211 865 1,125 21,089 5.45 5,677 2.293 1,291 4,386 743 5.00 550 193 4,579 5,953 2,560 0.25 6,067 0 6,067 1,146 0 1,146 7,213 9,377 719 0 5,573 0 6,373 1,173 0 1,146 7,213 9,577 4,439 5.68 2,167 3.14 1,361 806 4,22 3.00 550 0 1,048 784 0.50 780 0 780 64 0.17 31 35 813 1,057 4,439 1,264 1,264 37,020 3,100 550 0 1,048 0 1,048 1,048		Feb	1,836		4,333	0.5	221	4,112	277	1.01	185	558	4,670		240	6,811	4,975	15,980	
9,389 10.84 3,510 6.59 2,856 654 284 0.40 75 211 865 1,125 21,069 5.45 5,677 2.93 1,291 4,386 743 3.00 550 193 4,579 5,953 2,560 0.25 6,067 0 6,067 1,146 0 0 1,146 7,213 9,377 719 0 5,373 1,173 0 1,174 0 1,146 7,213 9,377 4,439 5.68 2,167 3.14 1,561 806 422 3.00 550 0 1,048 784 0.50 780 0 780 64 0.17 31 35 813 1,057 64 0.50 4,439 5,646 36 27 31 35 813 1,057		Mar	659		2,687	0	O	2,687	112	0.14	88	385	2,872		830	7,564	-3,705	12,275	n.e.mpmg-co-
21,069 5.45 5,677 2.98 1,291 4,386 745 5.00 550 193 4,579 5,953 2,560 0.25 6,067 0 0 6,067 1,146 0 0 1,146 7,213 9,377 1,19 0 5,375 0 0 5,375 1,173 0 0 1,175 6,546 8,510 4,439 5.68 2,167 3.14 1,361 806 422 3.00 550 0 806 1,048 1,057 1		Apr	69,389		3,510	6.59	2,856	924	782	0.40	33	112	865	1,125	079	1,765	7,624	19,899	
2,560 0.25 6,067 0 0 6,067 1,146 0 0 1,146 7,213 9,377 719 0 5,573 0 0 5,373 1,173 0 0 1,175 6,546 8,510 749,55 5.68 2,167 3.14 1,561 806 4,22 3.00 550 0 806 1,048 784 0.50 780 0 780 64 0.17 31 35 815 1,057 745 750 750 750 750 750 750 750 750 750 75		May	59.42		5,677	2.98	1,291	4,386	743	8.8	250	193	4,579		088	6,833	14,236		
719 0 5,373 0 0 5,373 1,173 0 0 1,173 6,546 8,510 8,510 4,439 5.68 2,167 3.14 1,361 806 422 3.00 550 0 806 1,048 784 0.50 780 0 780 64 0.17 31 33 1,057 1,058 780 48.02		dan	2,560		6,067	0	0	6,067	1,146	0	0	1,146	7,213	9,377	1,240	10,617	8,057	26,078	ميست
4,439 5.68 2,167 3.14 1,361 806 4.22 5.00 550 0 806 1,048 784 0.50 780 64 0.17 31 35 813 1,057 65 220 2		- Cub	719		5,373	0	0	5,373	1,173	0	O	1,173	9,546			9,570	-8,851	17,227	
784 0.50 780 0 0 780 64 0.17 31 33 813 1.057 65 320 48.00 48		Aug	4,439		2,167	3.14	1,361	88	422	8.8	550	0	806		86	2,038	2,401	19,628	
12 12 20 12 20 12 20 1 20 1 20 1 120 21 120 21 120 120		Sep	784	0.50	780	0	0	78	\$	0.17	77	35	813		86	2,047	-1,263	18,765	
10,000 42,100 42		Total	65,329	48.02	48,664	26.27	17,584	37,280	7,884	16.95	3,107	4,905	42,185	54,843	10,180	65,023			

Table 5-13 Operation Study of Inginimitiya Reservoir Project (6)

: Field Water Requirment : Irrigation Water Requirment

E & M

	Spill		Ac-ft			21,981				1,083								17,542	9,838										
End of	Storage	en wenerêrîriyê	Ac-St	23,120	31,549	53,000	\$06,84	45,481	42,256	53,000	48,204	39,170	29,815	25,506	24,743		32,777	53,000	53,000	52,719	757,67	48,778	48,896	47,247	72,471	23,558	19,329	18,586	
	Storese		Ac-ft	4,755	8,429	43,432	-4.095	-3,424	-3,225	11,327	4,796	760.6-	-9.355	4,309	-763		8,034	37,765	9,838	-281	-3,265	9/9-	118	67,7-	-9,076	-8,913	4,229	-743	
Total	Denand	nggan yang dipinakan di saman di	Acast	3,577	5,017	4,330	8,598	7,754	4,823	1,300	7,808	10,927	9,860	4,642	1,463	70,099	3,646	2,190	5,883	8,082	7,764	3,042	3,907	8,921	9,785	9,329	4,526	1,953	67,028
Evapora-	Loss		Ac-ft	1062	670	8	1,200	2,230	1,470	1,300	1,560	3,550	1,350	1,300	1,130	14,330	910	8	1,120	1,200	1,260	1,560	1,440	1,480	7,400	1,210	1,160	990	14,530
		E ×	Ac.ft	2,787	4,347	3,530	7,398	6,544	3,353	Ö	6,248	9,377	8,510	3,342	333	55,769	736	1,390	4,763	6,882	6,504	7,482	2,467	7,441	8,385	8,119	3,366	963	52,498
	Total	£4	Ac-st	2,144	3,344	2,715	5,691	5,034	2,579	0	4,806	7,213	6,546	2,571	256	45,899	566	1,069	3,664	5,294	5,003	0,740	2,898	5,724	6,450	6,245	2,589	741	40,383
	·	I.W.R.	A0-2+	55	202	293	777	년 전	55	0	199	1,146	2,173	707	0	5,002	55	202	293	658	670	0	0	472	855	1,019	755	0	4,646
Denand	(1,100 Ac)	Effective Rainfall	Ac-ft	055	550	550	וצו	7	159		7775	0	0	87	315	3,399	950	550	550	240	73	550				154	Ö	108	3,887
	Upland (्रेड्ड १३५६	äξ	3.00	3.00	3.00	0.66	0.23	0.87	8.0	2.97	0	0	0.10	1.72	18.55	3.00	3.00	3.00	다.건	04.0	8	3.8	1.48	1.59	0.84	0	0.59	21.22
Irrigation	ćn.	e. A. W	Ac-ft	505	752	843	868	743	21.1	284	743	1,146	1,173	755	79	7,884	605	752	843	868	743	21.1	587	743	1,146	1,173	755	99	7,884
	6	α: 3:	Ac-ft	5,089	3,142	2,452	4,914	4,333	2,527	0	4,607	6,067	5,373	2,167	256	57,897	116	867	3,371	4,636	4,333	1,140	1,898	5,252	5,595	5,226	2,167	741	35,737
	5,200 Ac	Effective Rainfall	40.2t	1,421	1,525	2,388	φ φ	O	160	3,813	1,070	0	0	Õ	524	070,11	2,999	3,900	1,439	242	0	1,547	1,612	425	472	147	0	39	12,927
	Lowlend (5	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	in	3.28	3.75	5.51	0.16	0	0.37	8.80	2.47	•	0	0	1.21	25.55	6.92	8.6	3.32	8	0	3.57	3.72	96.0	1.09	0.34	0	60.0	29.83 12,927
	Low	e: ¥.	Ac-fr	3,510	4,767	4,820	4.983	4,333	2,687	3,510	5,677	6,067	5,373	2,167	780	48,664	3,510	4,767	4,810	4,983	4,333	2,687	3,510	5,677	6,067	5,373	2,167	780	48,664
-	Rainfall	hit anter men ne tr	ţ,	5.89	0,00	6.23	7.24	0,60	1.55	14.14	4.69	0	0.20	07.0	2.51	47.35	11.33	14.75	5.96	2.20	0.85	6.33	6.93	2.46	2.63	1.50	•	1.13	55.69
l	Inflow		Ac-ft	8,332	13,446	47,762	4,503	4,330	1,598	13,127	3,012	1,893	505	333	200	175,66	9,680	39,955	15,721	7,801	4,499	2,366	4,025	1,572	709	917	297	012,1	88,251
		Month		Oct	Nov	Dec	Jan	 	Mar	Apr	Ma;	ci ci	Zu7	Aug	· Sep	Total	200	Nov	Dec	Jen	Feb	Mar	Apr	May	วันม	걸	Aug	Sep	Total
		y. ea		1965			1966													1961							. —		

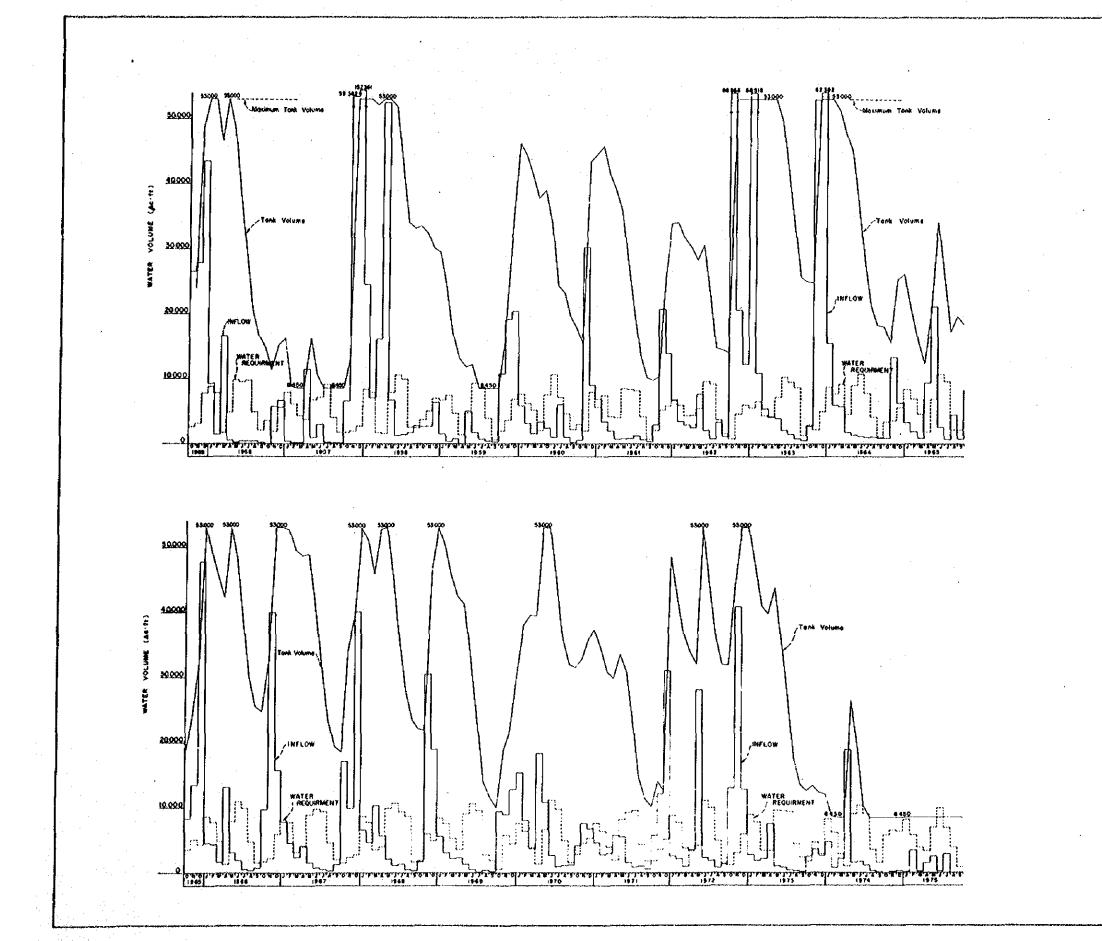
Table 5-14 Operation Study of Inginimitiya Reservoir Project (7)

- 4 ~,						*	H	Irrigation	Demand	and		(Evapora-	Total		En Sea	
والمن والمناهد		wotjui	Reinfall	Low	Lowland (5,200	5,200 Ac)	1) (ເວັນ	Upland (1,100	1,100 Ae)		Total		tion .	Demand	Storege	Month Storage	Spill
Year	Month			. W. R.	Rein	Effective Reinfall	₩. ₹	it.	36.15 36.15	Effective Reinfall	I.W.R.	E-1	. y x H					
		Ac.ft	다	Ac-£t	ដូ	Acife	Ac-ft	Ac-£t	in.	Ac-ft	Ac-ft	AC-St	Ac-ft	Ac-ft	Ac-ft.	Ac-ft	Ac. St	\$6.54
1961	Oct	17,091	11.37	3,510	6.95	5,012	867	509	3.00	550	55	553	719	790	605°T	15,582	34,168	
	Nov	9,882	3.74	4,767	8,19	2,249	2,518	752	3.00	550	202	2,720	3,536	830	4,366			
	o d	670,04	8.37	4,810	76.7	2,141	2,669	843	3.60	550	293	2,962		930	4,781			21,952
1968	, S	6,585	7.24	4,983	0.16	69	4.914	868	0.56	121	777	5,691	7,398	1,200	8,598			
	тер,	2,624	8	4,333	0	0	4,333	743	0,40	73	670	5,003	6,504	1,240	7,744	-5,120		
	Mar	10,274	5.08	2,687	2.73	1.183	1,504	211	5-00	550	0	1,504	2,955	1,480	3,435	6,839		
	Apr	5,619	79-9	3,510	3.78	1,638	1,872	787	3.33	550	0	1,872	2.434	1,510	3,944		53,000	., 381
	Na.	2,101	0.18	5,677	0	0	5,677	743	0	0	743	5,420	8,346	1,560	9,906			
	3; 5;	1,076	3.20	6,067	0.13	26		1,146	49.0	117	1,029	7,040	9,152	1,480	10,632			
	Tr.	1,307	1.63	5,373	24.0	182	5,191	1,173	0.92	169	1,004	6,195	8,054	2,270	9,324			
	Aug	459	0	2,167	o	0	2,167	755	0	O	4.22	2,589	3,366	1,250	4,616	4,157		
	Sep.	259	2.20	780	03.0	347	433	79	1.31	240	0	433	563	1,080	1,643	-1,384	22,081	
	Totel	97,326	47.50	48,654	25.10	10,877	37,787	7,884 18.93	18.93	3,470	5,195	42,982	55,878	14,620	70,498			
	oct 0	1,610	10.85	3,510	9.90	2,860	650	605	3.8	550	55	705	716	098	1,777	-167	21,914	
	No.	30,500	4.34	792.7	2.24	971	3,796	752	2.74	502	250	970,4	5,260	3	2,900	24,600	46,514	
	ပိုင်	18,982	8.27	018.4	78.7	2,110	2,700	643	8.8	550	293	2,993	5,891	1,030	4,921	14,061	53,000	7,575
1969	Jar	5,532	1.62	4,983	0.42	782	4,801	868	0.92	169	729	5,530	7,189	1,200	8,389	-2,857	50,143	
	,0 (4)	3,00	1.36	4,333	0.24	707	4,229	743	0.74	136	607	4,836	6,287	1,230		4,517	45,626	
~~~	Mar	2,166	0.45	2,687	0	0	2,687	277	0.13	24	187	2,874	3,736	1,470	5,206	-3,040	42,586	
	Apr	2,230	7.25	3,510	4.19	1,816	7,694	788 788	3.8	550	0	1,694	2,202	1,310	3,512	-1,282	41,304	
	Hay	1,206	2.05	5,677	0.68	295	5,382	743	<u>क</u> ्ष.स	218	525	5,907	7,679	1,320	8,999	-7,793	35,511	
	drin.	422	0.42	6,067	0	0	6,067	3,146	0.11	8	1,126	7,193	9,351	1,230	10,581	-10,159	23,352	<b>P</b> arancapa
	122	87	6	5,373	0	0	5,375	1,173	0	0	1,173	6,546	8,510	1,010	9,520	-9,433	13,919	
	Aug	392	3.56	2,167	1.72	745	1,422	422	2.25	404	0	7,422	1,849	870	2,719	-2,327	11,592	
	Sep	154	0	780	0	0	780	73	0	٥	79	778	1,097	28	1,797	-1,643	9,949	
	Total	66,281	40.14	48,664 (21.06	21.06	9,083	39,581	7,884 17.05	17.05	3,126	5,009	4,590	57,968	12.870	70,838	<u> </u>		

Table 5-15 Operation Study of Inginimitiya Reservoir Project (8)

Storage St. 12.025  Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. Ac. ft. ft. ft. Ac. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft									4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		25.0							200	
Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Mainton   Main								4	rigacion		STC.				Evapora-;	Total	*****	10 VIII	
North         Act 75         In         Act 76	·-·		Inflow	Rainfall	Lon	$\sim$	5,200	(c)	rčn	and (		(	Tot		Loss	Demand	Storage	Storage	Spill
No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   No. 15   N	Year	Month			α; μ,	17 ag	ective Mall	ж > 1	F. F.	Effe Rain	ctive	ĭ.¥.R.	€+	×					
Cot         9,356         19,35         3,510         9,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         3,00         <			Ac-22	în	Ac-ft	uţ.	Ac-ft	Ac.ft	Ac-ft	j:	Ac-ft	Ac-£t	Ac-ft	Ac-ft	Acift	Acift	Ac-£t	Acret	Ac-ft
Nov.   5,902   5,565   4,767   3,12   2,240   2,445   3,445   3,40   5,50   2,50   2,567   4,702   6,50   5,302   3,147   4,410   5,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,224   2,	1969	Oct	9,356	19.33	3,510	8.00	3,900	0	605	8.8	550	55	35	72	067	562		18,743	
Dee         12,662         8,17         4,850         2,570         8,43         3.50         690         29,860         2,860         4,728         6,2860         4,732         6,460         4,732         6,460         4,732         6,460         4,732         6,460         4,732         6,460         4,732         6,460         4,732         1,742         7,743         1,742         7,743         1,742         1,742         6,460         4,742         7,743         1,743         1,743         1,743         1,743         1,743         1,743         1,743         1,743         1,743         1,743         1,743         1,743         1,743         1,743         1,743         1,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,744         7,		Nov	8,902	5.65	4,767	3.12	1,352	3,415	752	8	550	202	3,617	4,702	00	5,302	<b>.</b>	21,390	
Jan         15,254         2.61         4,963         1.08         4,951         1.95         1.95         5,123         6,660         6,705         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,754         7,126         7,126         7,754         7,754         7,126         7,126         7,754         7,754         7,126         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,127         7,12		Dec	12,662	8.3	4,810		2,240	2,570	843	3.80	550	293	2,863	3,722	999	4,382			~~
Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part	1970	can can	15,254	2.61	4,983		897	4.515	868	58	280	800	5,123	6,660	830	7,490			
Mar.         3,552         4,42         2,650         4,20         2,189         211         2,79         511         0         1,895         2,464         1,340         3,804         -1720           Apr.         16,275         1,627         2,28         7,00         550         190         1,250         1,290         1,290         1,290         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200         1,200 <t< th=""><th></th><th>rep.</th><th>7,968</th><th>3.17</th><th>4,333</th><th></th><th>628</th><th>3,705</th><th>743</th><th>1.96</th><th>359</th><th>78</th><th>4,089</th><th>5,316</th><th>1,010</th><th>6,326</th><th></th><th></th><th></th></t<>		rep.	7,968	3.17	4,333		628	3,705	743	1.96	359	78	4,089	5,316	1,010	6,326			
Apr.         18,275         16,27         3,510         9,00         3,900         7,00         550         10,00         10,20         10,20         10,20         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,00         10,		Mer	5,632	4.42	2,687		792	1,895	212	2.79	511	0	1,895	5,464	1,340	3,804	****		-
Wet.         10,706         7.98         5,677         4.68         3,649         7.43         3.00         350         13,842         4,995         1,560         6,555         4,195           Julin         2,604         0         6,067         1,146         0         1,146         7,213         3,377         1,560         1,107         9,275         1,260         1,260         1,260         1,146         7,213         3,777         1,690         1,146         7,213         3,777         1,690         1,140         7,210         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275         1,100         9,275		Apr	18,275	16.27	3,510		3,900	0	584	3.8	550	0	0	Ó	1,250	1,250			3,429
Jum         2,604         0         6,067         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146         0         1,146		: N	10,740	7.98	5,677		2,028	3,649	743	3.8	550	193	3,842	4,995	1,560	6,555			
Juli         881         11.20         5,573         0.13         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1177         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.65         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.64         1178         0.65         1178         0.65         1178         0.65         1178         0.65         1178         0.65         1178         0.65         1178         0.65         1178         0.65         1178         0.65 <t< td=""><td>~</td><td>Jun</td><td>2,604</td><td>0</td><td>6,067</td><td></td><td>0</td><td>6,067</td><td>7,746</td><td>ဂ</td><td>ō</td><td>1,146</td><td>7,213</td><td>9,377</td><td>1,650</td><td>11,027</td><td></td><td>14,577</td><td></td></t<>	~	Jun	2,604	0	6,067		0	6,067	7,746	ဂ	ō	1,146	7,213	9,377	1,650	11,027		14,577	
Auxil         1,030         0         2,167         0         2,167         0         2,167         0         2,167         0         2,167         0         422         2,589         3,366         1,450         1,450         1,450         1,450         1,524         2,766           7889         1,1,48         3,01         780         1,352         1,85         1,86         1,366         4,356         1,270         1,270         1,524         -376           7001         4,085         8.66         3,510         1,12         1,287         605         7.00         550         2,99         37,364         4,510         3,000           Nov         7,510         8.29         4,767         4,88         2,115         2,625         7.00         550         2,99         3,757         4,364         3,000           Nov         7,510         8.29         4,767         4,88         2,115         2,645         5,00         550         2,99         3,757         4,364         3,50         1,441         3,000         2,99         2,99         2,99         2,99         2,99         2,99         2,99         2,99         2,99         2,99         2,99         2,99		Jaj	881	1.20	5,373		56	5,317	1,173	0.64	117	1,056	6,373	8,285	1,470	9,755		35,703	-10
Cota   2.8   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0		Aug	1,030	0	2,167		0	2,167	425	0	0	727	2,589	3,366	1,450	4,816			
Cott         4,065         8.66         77.27         12,652         33,495         7,884         23.82         4,366         4,359         37,884         4,366         4,259         37,884         4,366         4,213         15,580         62.793         1,370           Oct         4,085         8.66         3,510         5.13         2,223         1,287         60         550         550         1,742         1,746         1,300         1,300         550         20         2,854         1,746         1,300         1,300         550         20         2,854         1,746         3,000         1,300         550         20         2,854         1,746         3,000         1,200         550         20         2,854         4,750         1,444         3,000         1,200         550         2,854         3,710         3,000         1,444         3,000         1,444         3,000         1,200         550         2,854         3,710         3,000         1,444         3,000         2,854         3,000         2,854         3,000         2,854         3,000         2,854         3,000         2,854         3,000         2,854         3,000         2,854         3,126         2,844         3,000	h	,Sep	1,148	3.01	780	1.35	585	195	79	1.85	539	0	195	254	1,270	1,524			
Oct         4,085         8.66         3,510         5.12         1,287         605         5.00         550         550         1,742         1,742         1,040         2.785         1,750         8.29         4,767         4,88         2,115         2,652         7.52         202         2,854         3,757         4,344         800         4,510         3,000         4,510         550         203         3,557         4,344         800         5,224         1,441         3,000         4,510         580         2,750         4,357         4,344         800         5,224         1,441         3,000         4,510         2,956         2,958         1,441         3,000         5,007         5,007         6,248         3,751         1,441         3,000         4,510         5,007         4,324         3,007         4,324         3,000         5,007         5,007         6,248         3,007         4,324         3,000         5,007         4,126         5,007         5,007         5,007         6,248         3,007         4,324         3,000         4,126         3,007         4,126         5,007         4,126         5,007         4,126         5,007         4,126         5,007         4,126         5,00		Total	92,452	72.35		37.27	7	33,495		23.82	4,366	4,359	37,854	49,213	13,580	62,793			
Nov         7,510         8.29         4,767         4.88         2,115         2,652         750         550         202         2,854         3,710         800         4,510         3,000           Dec         6,665         7.01         4,610         4.02         1,746         3,00         500         297         3,757         4,364         860         5,224         1,441           Jer         4,570         2.82         4,983         1.22         529         4,424         893         1.72         516         550         507         4,364         860         7.58         2.594         1,441           Feb         2,776         3.08         4,570         348         395         4,126         5,564         7,588         2,594         7,588         2,594         4,126         5,566         2,598         1,771         343         2,548         3,731         1,276         3,738         4,126         5,548         1,140         3,738         4,126         5,548         1,140         2,998         3,738         4,126         5,548         1,140         2,998         3,738         4,126         5,548         3,738         3,738         3,738         3,738         3,738		0 CC	4,085	8.66	3,510		2,223	1,287	605	8	550	55	1,342	1,745	070,1	2,785		72,841	4
Dec         6,665         7.01         4,810         4.03         1,746         3,064         843         5.00         550         293         3,557         4,364         860         5,224         1,441           Jam         4,570         2.82         4,954         898         1.72         315         583         5,037         6,548         960         7,508         -2,938           Feb         2,776         3.08         4,353         1.29         602         3,731         1.40         346         960         7,508         -2,938           Mar         2,776         3.08         4,354         2,093         21,12         343         0         2,093         2,721         1,150         5,548         -2,548         -2,598         2,13         343         0         2,093         2,126         5,548         -2,598         -2,598         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,958         -2,959         -2,958         -2,958         -2,958         -2,959         -2,958         -2,958         -2,958		Nov	7,510	8.29	4,767		2,115	2,652	752	9.00	550	202	2,854	3,710	88	4,510	المجاورستان	35,841	
Jam.         4,570         2.82         4,983         1.72         315         515         593         5,037         6,548         960         7,508         -2,938           Feb         2.776         3.08         4,333         1.29         602         3,731         743         1.90         348         395         4,126         5,364         960         7,508         -2,938           Feb         2.776         3.08         4,333         1.29         602         3,731         1.87         348         395         4,126         5,364         960         7,508         -3,548           Mar         2.875         2.04         2.834         2.093         211         3.43         3.93         3,524         6,321         1,150         3,871         1,160         8,048         1,100         3,774         3,738           Apr         5,657         1.07         4,971         1,146         2.03         353         5,324         6,321         1,160         8,048         1,100         9,218         2,050           Jul         1,562         5.27         6,057         6,131         1,146         2.01         36         1,164         6,571         1,104         1,104<		Dec	6,665	7.01	018,4		1,746	3,064	843	8	550	295	3,357	4,364	098	5,224		77,282	<u> </u>
2,776         3.08         4,333         1.39         602         3,731         743         1.90         348         395         4,126         5,364         960         6,324         -3,548           2,875         3.04         2,087         2,093         211         1.87         343         0         2,093         2,721         1,150         3,871         -996           2,875         3.04         2,687         1.37         594         2,093         211         2,43         0         676         879         1,040         1,919         3,738           5,657         10.76         3,510         6.54         2,834         676         2.13         390         353         5,324         6,921         1,919         3,738           1,562         5,473         1,146         2.03         353         1,164         6,537         8,498         1,010         9,508         -8,682           1,562         5,373         0         0         5,413         1,175         0.05         9         1,164         6,537         8,498         1,010         9,508         -8,682           826         0         2,167         4,22         0         0         4,26 </td <td>1971</td> <td>ra ra</td> <td>4,570</td> <td>2.85</td> <td>4,983</td> <td></td> <td>529</td> <td>4,454</td> <td>868</td> <td>1.72</td> <td>315</td> <td>583</td> <td>5,037</td> <td>6,548</td> <td>96</td> <td>7,508</td> <td></td> <td>3 74,34</td> <td>.4</td>	1971	ra ra	4,570	2.85	4,983		529	4,454	868	1.72	315	583	5,037	6,548	96	7,508		3 74,34	.4
2,875         3.04         2,687         1.37         594         2,093         211         1.87         343         0         2,093         2,721         1,150         3,871         -996           5,657         10.76         3,510         6.54         2,834         676         284         3.00         550         0         676         879         1,100         1,100         1,100         1,100         1,100         3,778           5,471         3.43         5,677         1.65         4,971         743         2.13         390         353         5,324         6,921         1,100         9,01         2,610           1,562         5.275         6,067         1.51         654         5,413         1,146         2.013         353         1,174         6,537         8,498         1,100         9,508         -8,682           826         0.32         5,373         0.05         9         1,164         6,537         8,498         1,010         9,508         -8,682           826         0         2,167         422         0         422         2,589         3,366         9         1,104         6,537         8,498         1,010         9,508		ret o	2,776	3.08	4,333		602	3,731	743	8.4	348	395	4,126	5,364	096	6,324	,,,,,,,,,	30,796	16
5,657         10.76         3,510         6.54         2,834         676         284         3.00         550         0         676         879         1,040         1,919         3,738           5,471         3.43         5,677         1.63         706         4,971         743         2.13         390         355         5,324         6,921         1,160         8,081         -2,610           1,562         5,471         1.65         5,413         1,146         2.01         368         778         6,191         8,048         1,170         9,218         -7,656           826         0.32         5,573         0         5,373         1,175         0.05         9,116         6,537         8,498         1,010         9,218         -7,656           982         0         2,167         0         2,167         422         0         6,537         8,498         1,010         9,508         -3,284           560         0         2,167         422         0         6,599         3,466         900         4,266         -3,284           560         0         780         0         780         0         4,509         4,0,970         55,261		Mar	2,875	8.00	2,687		594	2,093	211	7.87	343	0	2,093	2,721	1,150	3,871		29,800	~~~
5,471         3.43         5,677         1.65         4,971         743         2.13         390         353         5,324         6,921         1,160         8,081         -2,610           1,562         5.25         6,067         1.51         654         5,413         1,146         2.01         368         778         6,191         8,048         1,170         9,218         -7,656           826         0.32         5,373         0         0         2,167         0.05         9         1,164         6,537         8,498         1,010         9,508         -8,682           982         0         2,167         0         2,167         4,22         0         0         4,266         3,566         3,366         3,366         3,366         3,366         3,366         3,366         3,366         3,373         4,309         40,970         55,261         11,730         64,991         -3,217         -1,217		Apr	5,657	10.76	3,510			929	284	3.00	550	0	676	879	1,040	2,919	ــنـــ	3 33,538	· · · · · · · · · · · · · · · · · · ·
1,562 5.25 6,067 1.51 654 5,413 1,146 2.01 368 778 6,191 8,048 1,170 9,218 -7,656 828 826 0.32 5,373 0 0 5,373 1.175 0.05 9 1,164 6,537 8,498 1,010 9,508 -8,682 826 0 2.167 0 2,167 422 0 0 4,22 2,589 5,366 900 4,266 -3,284 560 0 780 0 780 64,901 7,984 21.68 3,973 4,309 4,091 1,097 55,261 11,730 64,991		May	5,472	3.43	5,677		·	4,971	242	2.13	390	353	5,324	6,921	1,160	8,081	lane in the	30,928	weren
826 0.32 5,373 0 0 5,373 1,175 0.05 9 1,164 6,537 8,498 1,010 9,508 -8,682 8,289 0.32 2,167 0 0 2,167 4,22 0 0 42 2,589 3,366 900 4,266 -3,284 5,600 0 780 0 780 64,901 7,037 4,309 4,000 55,261 11,730 64,991 1		Jun	1,562	3.25	6,067			5,413	3,146	2.01	368	778	6,191	8,048		9,218		5 23,272	٨١
982 0 2,167 0 0 2,167 422 0 0 422 2,589 3,366 900 4,266 -3,284 5,539 50.66 48,664 27.70 12,003 36,661 7,884 21.68 3,973 4,309 40,970 55,261 11,730 64,991		d d	826	0.32	5,373		0	5,373	1,175	0.05	G,	1,164	6,537	867,8	1,010	9,508		2 14,590	
560         0         780         0         780         64         0         64         0         64         0         64         1,097         680         1,777         -1,217           43,539         50.66         48,664         27.70         12,003         36,661         7,884         21.68         3,973         4,309         40,970         53,261         11,730         64,991		Aug	88	0	2,167		ō	2,167	422	0	0	452	2,589	3,366	8	4,266		11,306	
45,539 50.66 48,664 27.70 12,003 36,661 7,884 21.68 3,973 4,309 40,970 53,261 11,730		Sep	260	0	780	0	0	780	75	0	0	3	7778	1,097	089	1,777		7 10,089	-6
		Total	45,539	50.66	799,84	27.70	12,005	36,661	7,884	21.68	3,973	4,309	40,970	53,261	11,730	166.39			

Table 5-16 Operation Study of Inginimitiya Reservoir Project (9)


: Field Water Requirment : Irrigation Water Requirment

a. a. ≽ ≥ a. ⊢

							1	Irrigation	1 .	Demand				Evapora-	) }		End of	
Inflow Reinfall Lowlend (5,200 Ac)	Reinfall Lowlend (5,200	Lowlend (5,200	(5,200	(5,200		(3)		[dn	Upland (1,100	1,100 Ac)		Total		tion	Demand	Storege	Month Storage	Spill
Year Month F.W.R. Rainfall I.W.R.	E.W.R. Rainfall	Effective Rainfall	Effective Rainfall	<u> </u>	<u> </u>	T.W.F		W.W.	Rain Rain	Zffective Rainfall	Z A I	Œ	E X					
Ac.ft in Ac.ft in Ac.ft Ac.ft	in Ac.St in Ac.St	Ac.St in Ac.ft	in Ac-ft	Ac-ft	r	Ac-f	cų.	Ac-ft	20	Ac.ft	Ac.ft	Ac-ft	Ac-ft	AC-ft	Ac-2t	Acift	Ac-It	AC-24
5,683 10.00 3,510 6.03 2,613	10.00 3,510 6.03 2,613	3,510 6.03 2,613	6.03 2,613	2,613			897	609	3.00	550	55	825	1,238	200	1,738	3,945	14,034	 
12,058 10.05 4,767 6.05 2,626	10.05 4,767 6.05 2,626	4,767 6.05 2,626	6.05 2,626	2,626		W	2,141	752	3.00	550	202	2,343	3,046	510	3,556	8,502	22,536	
Dec 31,011 7.01 4,810 4.03 1,746	7.01 4.810 4.03 1,746	4,810 4.03 1,746	4.03 2,746	2,746		K)	,064	843	3.00	550	293	3,357	4,364	670	5,034	25,977	48,513	
2,582 0 4,983 0 0	0 6,983 0 0	6,983 0	0	0		ţ.	983	898	0	O	868	5,881	7,645	1,120	8,765	-6,183	42,330	
2,101 0 4,333 0 0	0 6,333 0	4,333 0 0	0	0		4	4,333	743	0	0	743	5,076	6,599	1,090	7,689	-5,588	36,742	
2.71 2.687 1.82 789	2.71 2.687 1.82 789	2,687 1.82 789	1.82 789	789		ΑĨ	898	211	1.65	302	0	1,898	2,467	1,280	3,747	-2,803	33,939	
7.23   3,510 4.17   1,837	7.23   3,510 4.17   1,837	3,510 4.17 1,837	4.17 1,807	1,807		ਜੰ	1,703	284	3.00	550	0	1,703	2,234	1,130	3,344	177	34,086	
28,122 13.25 5,677 8.21 3,558	13:25 5,677 8.21 3,558	5,677 8.21 3,558	8.21 3,558	3,558		ď.	119	743	3.00	980	193	2,312	3,006	1,170	4,276	23,946	53,000	5.032
2,242 0 5,067 0 0	0   0,067   0	6,067 0 0	0	0		võ	290	1,146	0	0	1,146	7,213	9,377	1,650	11,027	-8,786	44,214	
0.29 5.373 0 0	0.29 5.373 0 0	5,373 0 0	0	0		īŲ	373	1,175	0.03	'n	1,168	6,541	8,503	1,470	9,973	-8,173	36,041	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
752 0 2,167 0 0	752 0 2,167 0 0	2,167 0 0	0	0		ď	167	755	0	Ö	422	2,589	3,366	1,460	4,826	4.074	31,967	
.Sep 1,241 5.47 780 2.99 1,296	1,241 5.47 780 2.99	.47 780 2.99	2.99		1,296		0	79	3.00	550	0	0	0	1,270	1,270	-29	31,958	
Total 92,026 56.01 48,664 35.31 14,435 34,7	92,026 56.01 48,664 35.31 14,435	48,664 33.31 14,435	14,435	14,435		34,7	45	7,884	19.68	3,602	5,120	39,865	51,825	13,320	65,145			
12,999   14.55   3,510 9.00 3,900	12,999 14.55 3,510 9.00 3,900	3,510 9.00 3,900	9.00 3,900	3,900			0	609	8.	550	55	55	72	1,040	2,112	11,887	43,825	
40,851 12.72 4,767 7.85 3,402	12.72 4,767 7.85 3,402	4,767 7.85 3,402	7.85 3,402	3,402		~	1,365	752	3.00		505	1,567	2,037	096	2,997	37,854	53,000	28,679
Dec 12,805 . 5.16 4,810 2.79 1,209	5.16 4,810 2.79 1,209	4,810 2.79 1,209	2.79 1,209	1,209		1CJ	3,601	843	3.8	. 550	293	3,894	5,062	770	5,832	6.973	53.000	6,973
0 0 286,4	0 0,983 0	0 0 283	0	0		ひ	4,983	898	φ	0	868	5,881	7,645	1,200	8,945	711,9	46,883	
Feb 1,847 0.32 4,333 0 0	0.32 4,333 0 0	4,333 0 0	0	<u></u>		4	333	743	0.05	O	734	5,067	6,587	1,170	7,757	0.6,8-	40,973	
2,160 5.02 2,687 2.69 1,166	5.02 2,687 2.69 1,166	2,687 2.69 1,166	2.69 1.166	1,166		e-i	125	217	3.00	. •	0	1,521	1,977	1,370	3,347	-2,187	39,786	
7.46 3,510 4.33 1,876	7.46 3,510 4.33 1,876	3,510 4.33 1,876	4.33 1.876	1,876		ď	634	284	8.8	550	0	1,6%		7,250	3,374	211,2	43,898	
1.03 5.677 0.02 9	1.03 5.677 0.02 9	5,677 0.02 9	0.02	Ø)		n.	, 66B	743	0.52	95	879	6,316	8,211	2,380	165,6	-8,586	35,312	
792 2.93 6,067 1.29 559	2.93 6,067 1.29 559	6,067 1.29 559	1.29 559	959		'n	,508	2,146	3.80	330	978	6.324	8,221	1,270	167.6	-8,699	26,613	
1.10 5,373 0.07 30	1.10 5,373 0.07 30	5,373 0.07 30	0.07 30	28		'n	,343	1,173	0.57	충	1,069	6,412	8,336	2,070	9,406	-9,010	17,603	
0.49 2,167 0 0	293 0.49 2,167 0 0	2,167 0 0	0	0		_	2,167	422	0.16	53	393	2,560			4,328	-4,035	خبيب	-
198 2.74	198 2.74 780 1.17	780 1.17	1.17		507	[	273	40	1.67	306	0	273	355		1,165	-967		
Total 83,560 55.52 48,664 29.21 12,658 5	83,560 55.52 48,664 29.21 12,658	48,664 29.21 12,658				. K.)	36,396	7,884 19.77	19.77	3,623	5,108	41,504	53,955	13,920	67,245			

Table 5-17 Operation Study of Inginimitiya Reservoir Project (10)

	\$2117		AC- 20																						eleperior)—				
End of	Storese	, , , , , , , , , , , , , , , , , , ,	Actt	13,337	12,264	12,047	8,616	8,450	8,450	26,352	18,903	10,281	8,450	8,450	8,450		8,450	8,450	8,450	8,450	8,450	8,450	8,450	8,450	8,450	8,450	8,450	8,450	
	Storege		Ac-ft	736	-1.073	-217	-3,431	-5,390	-678	17,902	677,448	-8,625	-7,858	-3.395	-1,503		-5,778	-6,299	-6,115	17.97	-2,308	-3,638	7,907	87.7	-9,623	4,047	-3,879	-822	
Total	Demand	<u></u>	Ac.ft	1,711	4,601	2,808	8,145	6,162	2,810	957	9,001	10,275	400.6	3,581	1,549	419,09	5,778	6,471	6,327	8,015	5,708	3,828	3,321	6,925	9,839	6,847	3,879	822	67,760
Evapora-	Loss		Ac.ft	620	7067	200	200	390	200	760	2,010	910	620	570	540	7,110	0777	330	340	370	390	န္တ	097	027	8	88	570	240	9,410
		۲. «ن ج	Acoft	1,091	4,111	2,308	7,645	5,772	2,310	502	7,991	9,365	8,384	3,011	1,009	53,504	5,338	6,341	5,987	7,645	5,318	3,328	2,861	6,455	9,339	6,247	3,309	282	62,350
	Total	Н	Ac.ft	839	3,162	1,775	5,881	077,7	1,777	290	6,147	7,204	6,449	2,316	176	41,156	4,106	4,724	4,505	5,881	4,091	2,560	2,201	4,965	7,184	4,882	2,545	217	196.74
	()	7.W.R.	Ac-ft	55	202	293	868	788	0	0	966	1,137	1,080	275	0	5,024	965	451	797	868	386	977	0	546	1,117	623	378	0	5,208
Denand	(1,100 Ac)	Sifective Reinfall	Ac-ft	550	550	550	70	255	727	920	147	on	93	247	93	3,421	Ø	301	376	0	357	165	950	767	53	550	77	330	3,208
1 1	Upland (	Ser. Reir	цŢ	3.00	3.00	3.8	0	239	2.50	3.00	0.30	0.05	0.51	0.80	0.51	18.56	50.0	1.64	2.05	0	1.95	0.90	3.00	12.7	0.16	8.8	0.24	1.8	17.50
Irrigation	ćn	જ. ખે.	Ac-St	605	752	843	868	743	211	284	743	1,146	1,173	422	79	7,884	605	752	843	868	243	211	284	743	7,146	1,173	422	40	7,884
H	÷	с. ж. н	Ac.2t	784	2,960	1,482	4,983	3,952	1,777	330	5,551	6,067	5,369	2,041	776	56,132	3,510	4,273	4,138	4,983	3,705	2,514	2,201	4,719	6,067	4,259	2,167	217	42,753
	5,200 Ac	Effective Reinfell	Ac.5t	2,726	1,807	3,328	0	381	910	5,120	126	0	7	126	4	12,532	0	767	672	0	628	175	7,309	958	0	1,114	0	563	5,911
	Lowlend (	回 (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	3.5	6.23	4.17	7.68	0	0.88	2.10	7.20	0.29	0	0.01	0.29	10.0	28.92	O	7.14	1.55	0	1.45	07.0	3.02	2.21	O	2.57	0	7.30	13.64
	Low	F. W. R.	Ac-ft	3,510	4,767	4,810	4,983	4,333	2,687	3,510	5,677	6,067	5,373	2,167	780	48,664	3,510	4,767	4,810	4,983	4,333	2,687	3,510	5,677	6,067	5,373	2,167	780	48,664 13.64
	Rainfall		r;	10.39	7.23	12.46	0	2.32	4.13	11.74	7.7	0.33	1.01	7.77	1.01	53.50	0.32	2.70	3.31	90.0	3.16	3.60	5.50	4.30	67.0	4.83	6.62	5.94	29.84
	Inflow	******	Acift	2,447	3,528	2,591	4,714	772	2,132	38,869	1,552	1,653	1,146	526	94	39,62	TTN	172	212	777	3,400	190	1,420	2,435	196	2,800	CTM	Nil	10,869
		Month		Oct	Nov	Dec	Jer	.C.	\$ ,	Apr	May	r. L.	dar.	A:S	.Sep	Total	0ct	Nov	Dec	Jan	reb Cer	Mar	Apr	Kay	Jun	3	Aug	ÇeS	Total
		7. 889 7.		1973			1974			•					3					1975									



Pig. 5-1 water balance study for inginimitya reservoir project

- 118 -

#### 6.1 Selection of Dam-Axis

Several dam sites were investigated and ultimately the present dam site was chosen by the Irrigation Department as the most suitable one from such considerations as of geology, storage capacity and, particularly, the availability of foundation rock at the site proposed for spillway, etc. After field exploratory surveys, the Feasibility Study Team endorsed the ID's decision.

#### 6.2 Reservoir Parameters

Water balance computation between the water requirement for irrigating 6,300 acres, in consideration of the proposed cropping patterns, and the storage capacities (at different F.W.Ls ranging from 200 to 206 M.S.L.) having been done in Chapter V, 202 M.S.L. has ultimately been identified as the Full Water Level for the most appropriate storage capacity. The reservoir parameters are given as follows:

Drainage area at Dam-site : T	'otal	:	215	sq.miles
$oldsymbol{n}$	etween Ingi- imitiya and bakolawewa	:	150	sq.miles
Maximum annual yield (for 150	sq.miles)	:	336,906	Acre-feet
Maximum monthly yield ( -	do- )	:	157,391	15
Minimum annual yield ( -	do )	:	10,869	14
Minimum monthly yield ( -	do- )	:	0	45
Maximum water surface elevati	on 1/	:	206.	O ft.MSL
Normal maximum operating pool	W.S EL 2/	. :	202.	0 ft.MSL
Minimum water surface EL $\frac{3}{}$	and the second	:	181.	O ft.MSL
Capacity at EL 206.0 MSL		:	72,000	Acre-feet
Capacity at EL 202.0 MSL		:	53,000	111
Capacity at EL 181.0 MSL $\frac{4}{}$		· :	4,200	ų
Effective storage capacity EL	202-EL 181.0	:	48,800	II

(continued)

^{1/} High flood level

^{2/} Full supply level

^{3/} Sill level of sluice (outlet)

^{4/} Dead storage

Area at EL 206.0 MSL : 5,030 Acres
Area at EL 202.0 MSL : 4,100 Acres
Area at EL 181.0 MSL : 850 Acres

### 6.3 Selection of Dam-Type

In view of the availability of homogenous and suitable embankment materials in the vicinity of the dam-site, the type of this earth dam has been decided to be "homogenous type" which is justifiable from both the technical as well as the economic considerations.

#### 6.4 Embankment Design

#### 6.4.1 Freeboard

Earth dam must be provided with sufficient freeboard so that there is no possibility whatever of the embankment being overtopped.

Necessary freeboard is calculated by assuming that the maximum river flood will occur when the reservoir is full and that the highest possible waves will develop at the same time. The minimum freeboard equals the computed head on the spillway crest at maximum flood discharge, plus runup on riprapped slopes, plus a safety factor. The physical fetch extends for 6 miles (9,670 m) but as the reservoir is located on the eastern side of the embankment and the wind direction at flood time is either NW or SE, 2.6 miles (4,180 m) along the dam-axis is taken as an actual fetch for calculating the freeboard. However, it is necessary to ascertain that no overtopping will take place due to the wind from the eastern direction

The safety factor, which is generally varies between 2 feet. (0.601 m) to 10 feet (3.048 m), is selected by considering the size of the reservoir, the dam height, and the reliability of the data from which the flood computations are made. As an emergency spillway, 300 feet (243.84 m) in length and 1 foot (0.304 m) below the dam crest, is designed on the right abutment, the safety factor is decided as 2 feet (0.6096 m).

Head on the spillway crest 24 feet (7.3152 m)

Runup on riprapped slope (see Fig. 6-1)

Wind velocity 60 m.p.h (26.67 m/sec)

Fetch 2.6 miles (4,180 m)

Runup =  $0.7 + \frac{1.1 - 0.7}{10} \times 0.67 = 0.97$  m (3.17 = 3.2 ft)

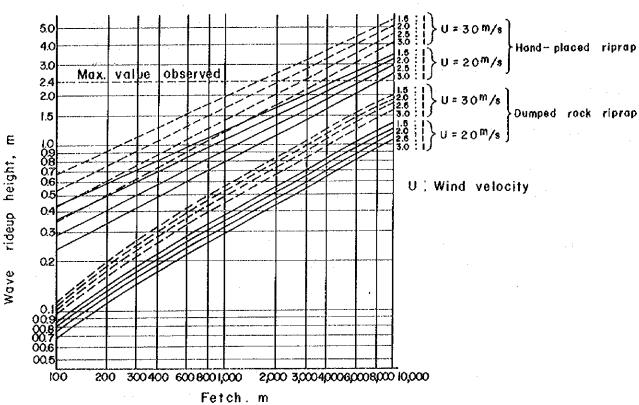



Fig. 6-1 Relationship of wave rideup height to fetch, wind velocity, slope of the upstream face, and type of riprap

The proposed dam is provided with a spillway which is equipped with radial gate  $(20^{\circ} \times 20^{\circ} = 6.096 \text{ m} \times 6.096 \text{ m})$  and the spillway crest is fixed at EL. 182.0 MSL, which does not equate to F.W.L. Dam crest can be determined through the following formula:

Dam Crest Elevation = Spillway crest elevation + Head on the spillway crest + Runup on riprapped slope + Safety factor

$$=$$
 EL.182.0 + 24.0 + 3.2 + 2.0  $=$  EL.211.2  $=$  EL.212.0

Accordingly, the elevation of dam crest is determined as EL. 212.0 MSL.

It is confirmed through the following calculation that no overtopping will take place when wind blows from the eastern direction:

Runup on riprapped slope

Wind velocity

60 m.p.h. (26.67 m/sec)

Fetch

6 miles (9,670 m)

Runup = 
$$1.2 + \frac{1.76 - 1.2}{10} \times 6.67 = 1.57$$
 (5.15 ft = 5.2 ft)

Maximum Height of the waves during non-flood season

= F.W.L. + Runup over riprapped slope

= EL.202.0 + 5.2 = EL.207.2 < EL.212.0 = Dam Crest EL.

### 6.4.2 Dam Height

The height of the dam is a balance between the dam crest elevation (EL. 212.0) and the river-bed elevation of the Mi-Oya (153.0):

$$212.0 - 153.0 = 59 = 60$$
 feet

# 6.4.3 Crest Width of Dam

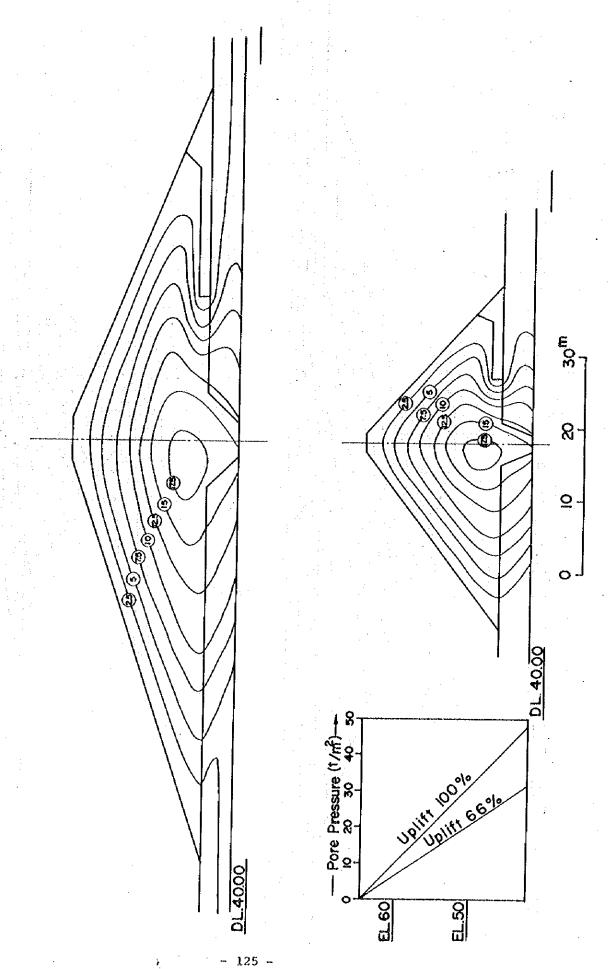
Crest width of dam has been determined at 20 feet (6.096 m), by taking into consideration the stability against waves and seepage, and the efficiency of construction as well as its use as a road.

#### 6.4.4 Gradient of Slopes

The original slopes of the dam which were made 1 on 3 and 1 on 2.5 on the upstream and down-stream by the Irrigation Department have been

altered to 1 on 2.5 and 1 on 2.0, respectively, on the abutment. Such alterations have been made on the ground as explained in the below.

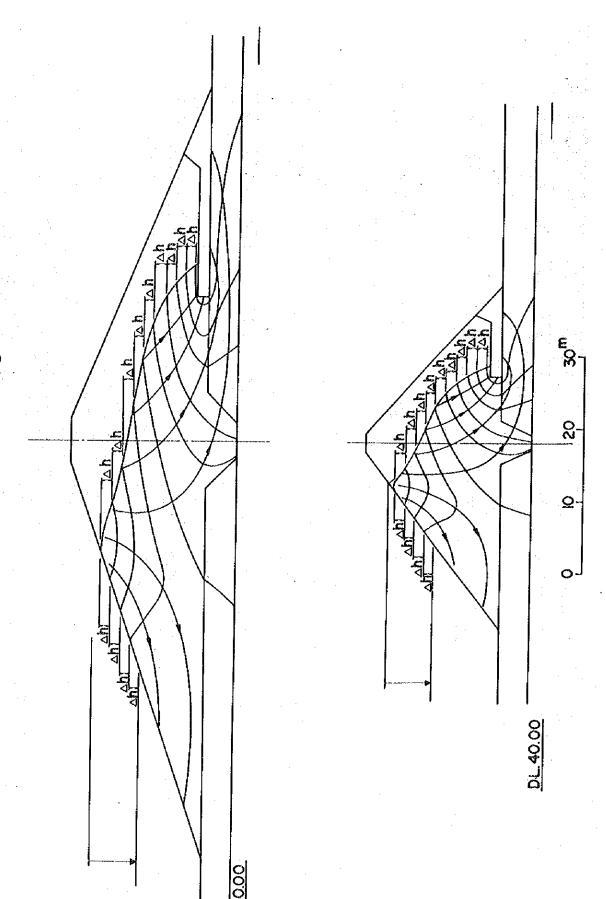
According to the proposals made by ID, the distribution of pore pressure immediately after construction of the dam and the flownets at the time of a full storage and under a rapid drawdown condition will be shown as per Fig. 6-2, 6-3 and 6-4, respectively; on these basis the Bishop's pore pressure coefficient immediately after construction of the dam is assumed to be 60% and the ratio between the coefficient of permeability in the vertical direction (kv) and that in the horizontal direction rection(kh) is assumed at 1:5, with the use of a sheep's foot roller for According to the results of laboratory tests the dam-body's density and strength in design is given in the values as given in Table 6-1, which also shows those of its foundation and drain. Slope stability analysis with computer has been made on these data with three cases of fill completed condition, at full reservoir time, and under the rapid drawdown condition. As its results given in Fig. 6-5 to 6-7 and in Table 6-2 show, in all cases the calculated safety factors are larger than the tolerable safety factors adopted in Sri Lanka; accordingly, the slopes could safely be made steeper to reduce the embankment volume. The stability of embankment, of which slopes are 1 on 2.5 and 1 on 2 on the upstream and downstream, has been analyzed by the use of the equi-pore pressure lines and the flownets at the time of full reservoir and under a rapid drawdown conditions as shown in Figs. 6-8, 6-9 and 6-10, respectively, and the results as shown in Figs. 6-11 to 6-13 have been obtained. They also show that the minimum safety factors are above the tolerable ones and that the dam-body will have enough resistance to sliding. The inclinations of the slope are, thus, determined at 1:25 on the upstream and 1:2.0 on the downstream.

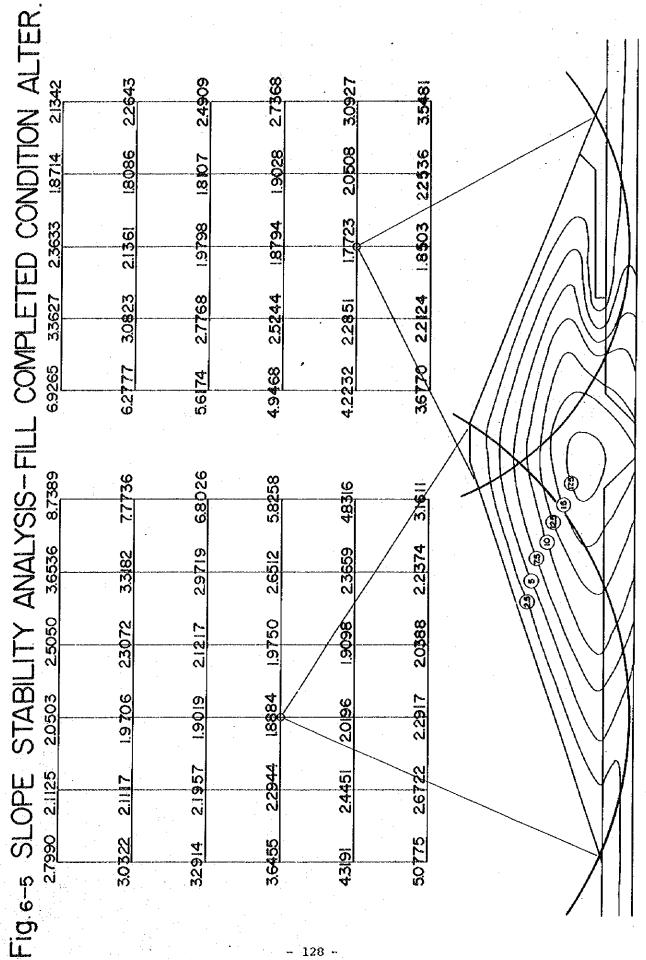

Table 6-1 Design Parameter

		Embankment	Sand Blanket & Toe Drain	Foundation
Wet density	lb/ft ³	133	119	•
nee denotely	t/m ³	2.131	1.906	
Saturated density	lb/ft ³	135.7	ing.	132
odem.deed density	$t/m^3$	2.173	ene	2.115
Cohesion	lb/ft ²	1,150	0	1,035
coneston	t/m ³	5,615	0	5,054
Angle of internal	DEG	23°30'	30°00'	21°09'
friction	RAD	0,4103	0.523599	0.36928

Table 6-2 Slope Stability Analysis

Safety Factor	Sri Lanka	a Proposals	Revised	Proporsals	Tolerable Safety
Case	Upstream	Downstream	Upstream	Downstream	Factor
Fill completed condition	1.89	1.77	1.83	1.62	1.5
Full storage time	2.19	1.93	1.91	1.78	1.3 🗸 1.5
Rapid drawdown time	2.05	<b>~</b>	1.86	••	1.2


Fig. 6-2 Fill Completed Condition Alternative



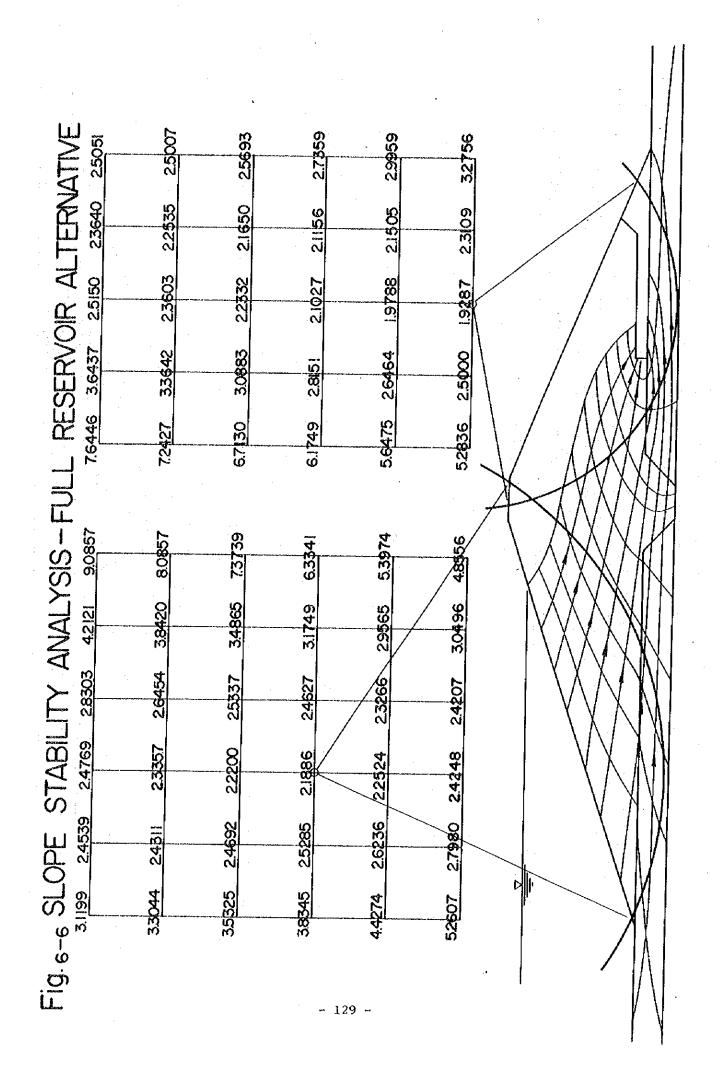


Alternative

Fig. 6-3 Full Reservoir

Fig. 6-4 Rapid Drawdown Condition Alternative







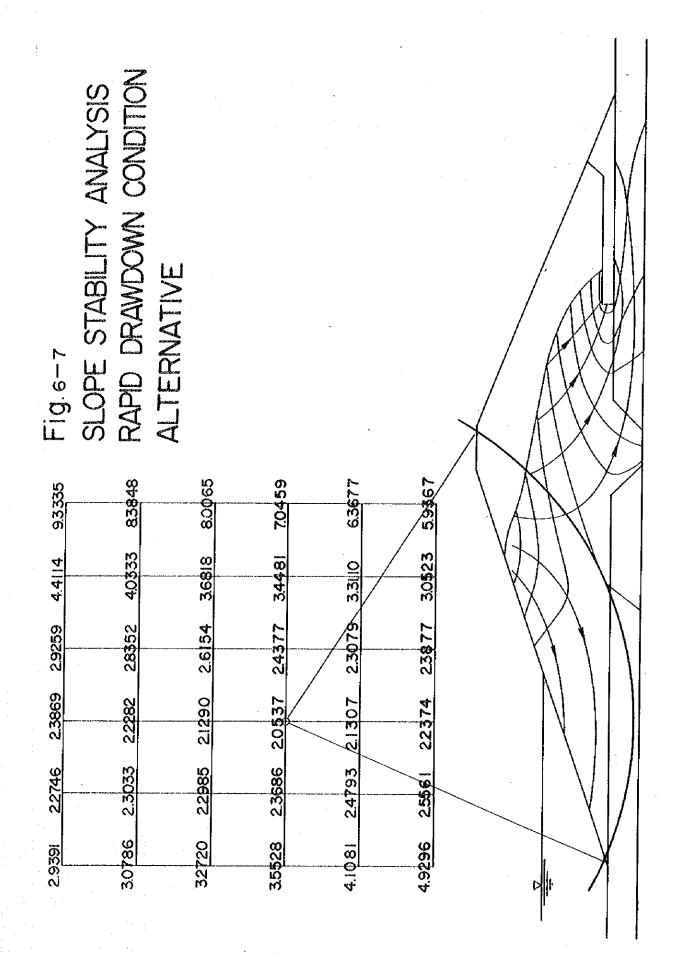



Fig.e-s Fill Completed Condition

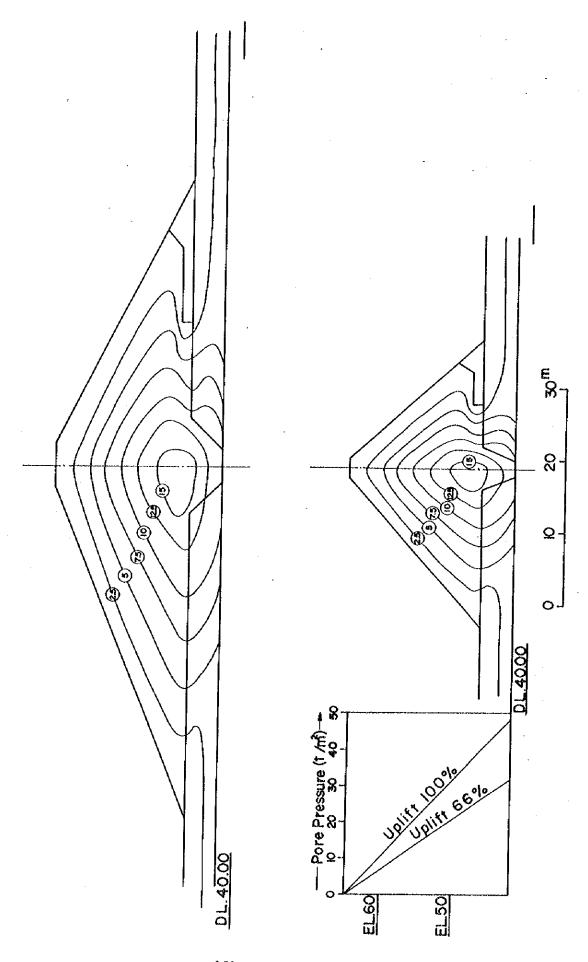



Fig. 6-9 Full Reservoir

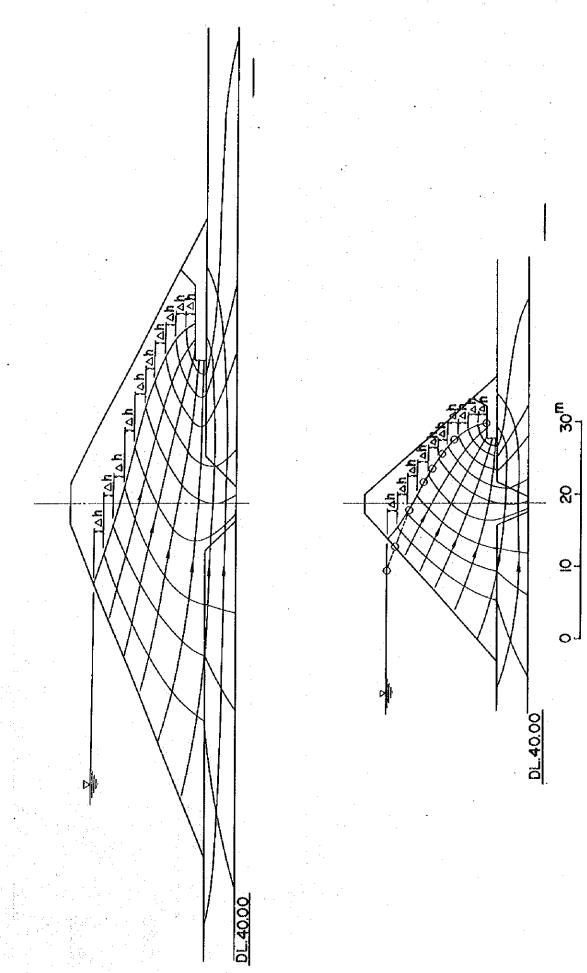
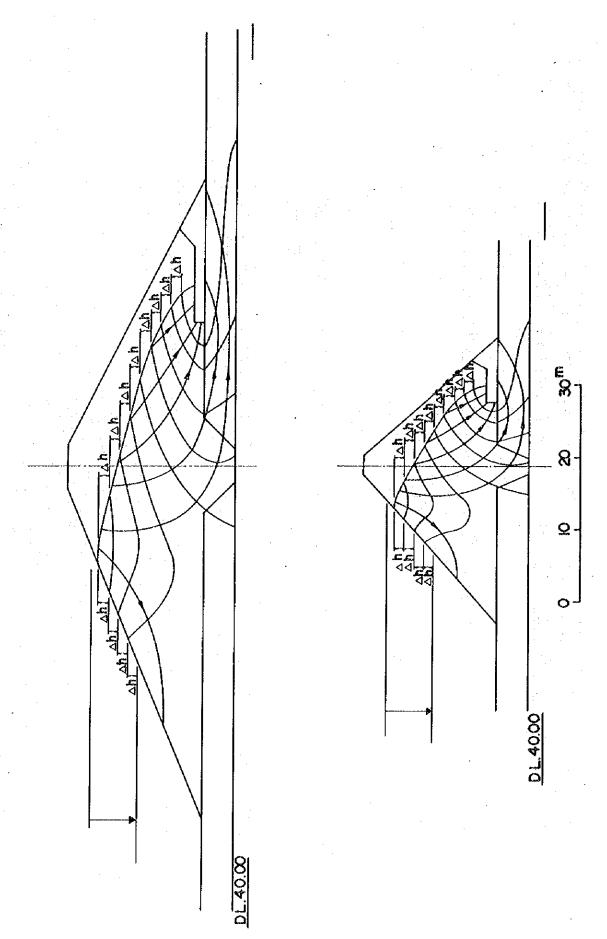
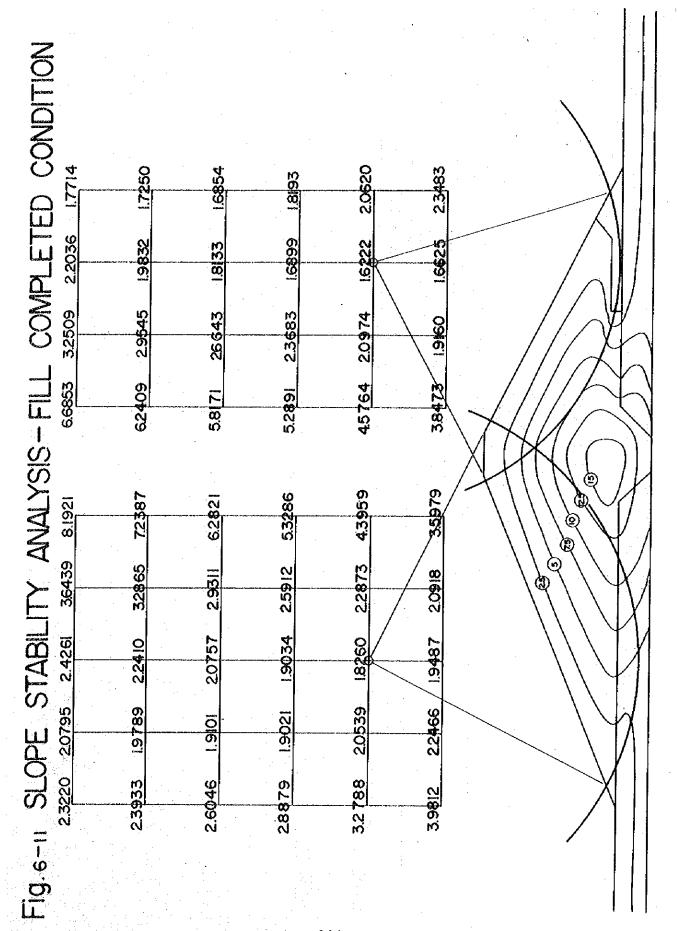
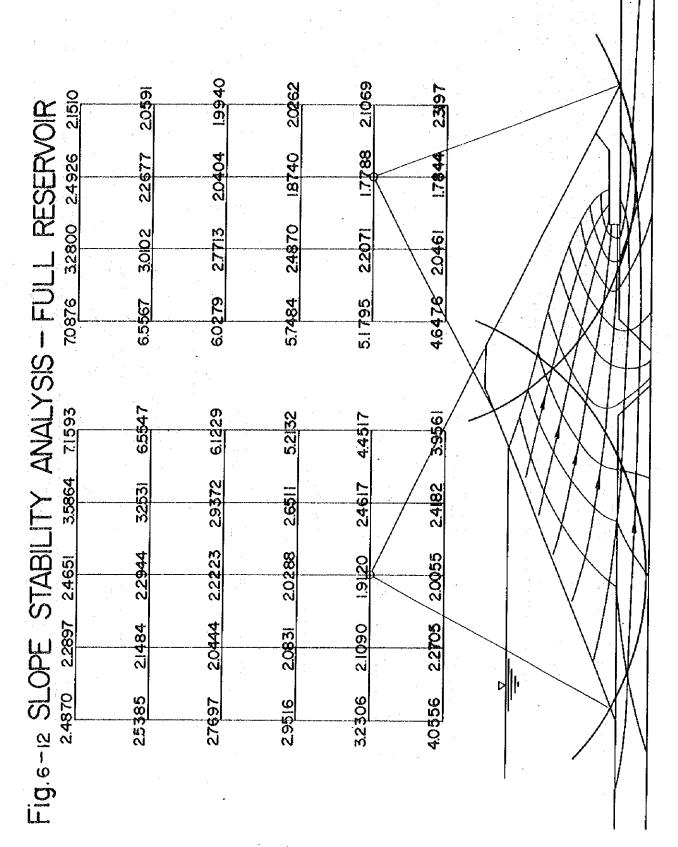






Fig. 6-10 Rapid Drawdown Condition







# Fig. 6-13 SLOPE STABILITY ANALYSIS— RAPID DRAWDOWN CONDITION

# 6.4.5 Slope Protection Designing

Riprap needs to be provided to prevent washing-out of the upstream slope by the waves which may develop at the flood time. The fetch
at the full storage time is about 6 miles (9,670 m) and Sri Lanka's design
wind velocity is 60 m.p.h. (26.67 m/sec). The highest-possible wave which
may develop under these conditions would be about 7 feet (2.134 m). (see
Fig. 6-14). The relationship among the highest wave, the riprap layer
thickness, and an average rock size is shown Table 6-3 below:

Table 6-3 Recommended Riprap Design Criteria

Maximum Height of Wave	Minimum Average Rock Size D50	Layer Thickness
(ft)	(in)	(in)
0 ~ 2	10	12
2 ~ 4	12	18
4 ~ 6	15	24
6 ~ 8	18	30
8 ~ 10	21	36

However, as the reservoir is situated on the eastern side of the dam-body and the strong winds would blow only from NW or SW directions, the riprap with an average rock size of 15 inches and 2-feet layer thickness against 4 ~ 6 feet high waves is recommended. The thickness of filter under riprap is designed at 1 foot (0.3048 m). Riprap is provided inbetween 6 feet (1.829 m) below the dead water level and 5 feet (1.524 m) above the F.W.L. The downstream slope will be protected by turfing.

# 6.4.6 Design of the Detailed Parts of the Dam

The top soil will be removed by 2 feet thickness. 10 feet (3.048 m)-wide bern is provided at the lower end of riprap. After removal of the top soil, the portion levelling lower than F.W.L. (202.0 MSL) needs to be provided with Toe Drain to expedite flowdown of the seepage water through dam-body and its foundation. Generally speaking, Chimney Drain is most suitable to this type of homogeneous earth dam because it can best solve the problem of unisotropic seepage and thus increases the

stability of the downstream part of the dam-body. However, Toe Drain has been adopted instead of Chimney Drain due to the difficulties in obtaining filter materials, and paucity of working experiences with this type of drain, in Sri Lanka.

Sand Blanket is provided at the downstream of the crossing-point of the gradient line of 1:1.5 from the downstream edge of the crest and the surface of sand blanket itself. Its thickness varies according to the permeability coefficient of the dam-body but is decided at 5 feet from the construction viewpoint.

Standard cross sections of the dam are shown in Fig. 6-15.

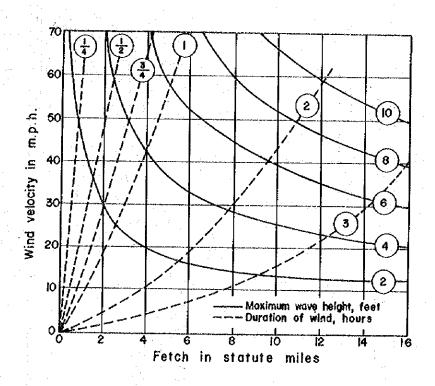



Fig. 6-14 Relationship of wave height to fetch, wind velocity, and wind duration

Fig. 6-15 PROPOSED DAM SECTION SCALE: 40 FEET TO AN INCH

RIPRAP

D.W.L. 181.0

### 6.5 Foundation Design

The geological conditions of dam foundation are shown in Fig. 1-16; the existence of sandy soils and weathered rocks with high coefficient of insitu permeability between 200  $ilde{\sim}$  1,200 feet (1.9 x 10⁻⁴  $ilde{\sim}$  1.2 x 10⁻³ cm/sec) per year, from the surface down to about 100 feet (30.48 m) where there is supposed to be sound rock, requires some sort of foundation treatment. In designing homogeneous dam, the length of the seepage path right beneath dam-body is longer than that of other types of dam and, in consideration of that the permeability coefficient along the horizontal direction is many time bigger than that along the vertical direction, cutoff needs to be provided to slow down the flow speed of seepage water which occurs : right beneath the dam-body, in view of preventing the danger of piping and increasing the stability of dam against seepage. The original ID's plan was to construct the cutoff through excavation to the depth of one-third the dam height but to facilitate for construction, the proposed elevation of the bottom of excavation is shown in Fig. 6-16. The bottom-width is fixed at 15 feet (4.572 m) from the workability of the construction machinery, and the excavation gradient is determined at 1.0:1.

Because of high degree of evaporation from the water surface of the reservoir in the Dry Zone of Sri Lanka, its seepage loss must be minimized: grouting becomes necessary if seepage from the reservoir should be more than 0.05%/day of its effective storage. Therefore, computation of the amount of possible seepage loss has been made.

# . Estimation of Seepage Loss

On the left abutment, the seepage around the embankment is supposed to be negligible as the groundwater level there would considerably rise and the groundwater should flow into the reservoir. On the right abutment, however, it could occur as the groundwater level would be situated lower than the storage level in a considerable extent of the abutment (the groundwater level was identified - in April 1977 - at  $16 \, ^{\circ} \, 20$  feet  $(4.88 \, ^{\circ} \, 6.10 \, \text{m})$  below the ground surface and is supposed to further drop by another 4 feet  $(1.22 \, \text{m})$  during dry season. Therefore, the seepage problem must be analyzed in the right abutment from various angles. The

plane seepage flownet of right abutment is shown in Fig. 6-17; the seepage flownet through the dam-body, in Fig. 6-9, and that through the dam-foundation, in Fig. 6-18.

Seepage around the Dam-body: Q₁

$$Q_1 = K_1 \frac{Nf_1}{Np_1} H \cdot D$$

where, K₁ : Permeability coefficient of abutment

Nf, : Number of flow channels of the plane flownet

 $N_{\mathrm{D}\,i}$  : Number of equal potentional drops of the plane

flownet

II : Head

D : Depth of pervious layer of abutment

 $K_1 = 800 \text{ ft/yr } (7.7 \times 10^{-4} \text{cm/sec}), Nf_1 = 5, N_{\text{pl}} = 5,$ 

H = 50 ft (15.24 m), D = 50 ft (15.24 m),

 $Q = 800 \times \frac{5}{5} \times 50 \times 50 = 2,000,000 \text{ cu.ft/yr } (56,640 \text{ m}^3/\text{yr}).$ 

· Seepage through the Dam-body: Q2

$$Q_2 = K_2 \frac{Nf_2}{Np_2} H \cdot L$$

where, K2 : Permeability coefficient of dam-body

 $K_2 = \sqrt{kv \, kh}$ 

kv : Permeability coefficient along vertical direction

1.2 ft/yr (1.2 x  $10^{-6}$  cm/sec)

kh : Permeability coefficient along horizontal direc-

kh = 5 kv (assumed)

Nf₂: Number of flow channels

N_{p2} : Number of equal potentional drops

H : Total head loss

L : Longitudinal length

 $K_2 = \sqrt{5} \text{ kv} = 2.7 \text{ ft/yr } (2.6 \times 10^{-6} \text{cm/sec}), N_{p2} = 10,$  $Nf_2 = 4.5$ , H = 45 ft (13.716 m), L = 9,500 ft (2,895.6 m),

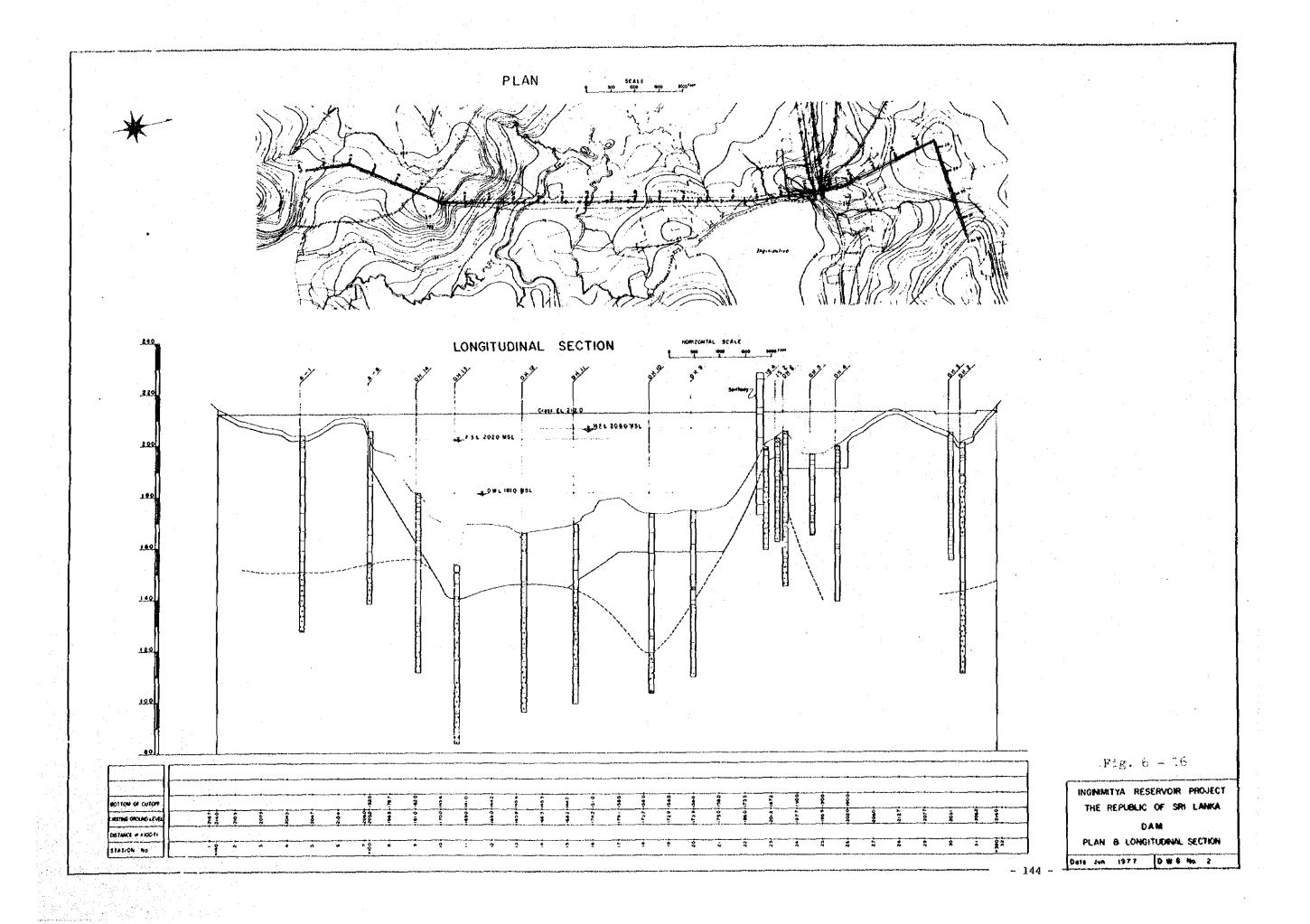
 $Q_2 = 2.7 \times \frac{4.5}{10} \times 45 \times 9,500 = 519,412.5 \text{ cu.ft/yr (1,471 m}^3/\text{yr)}.$ 

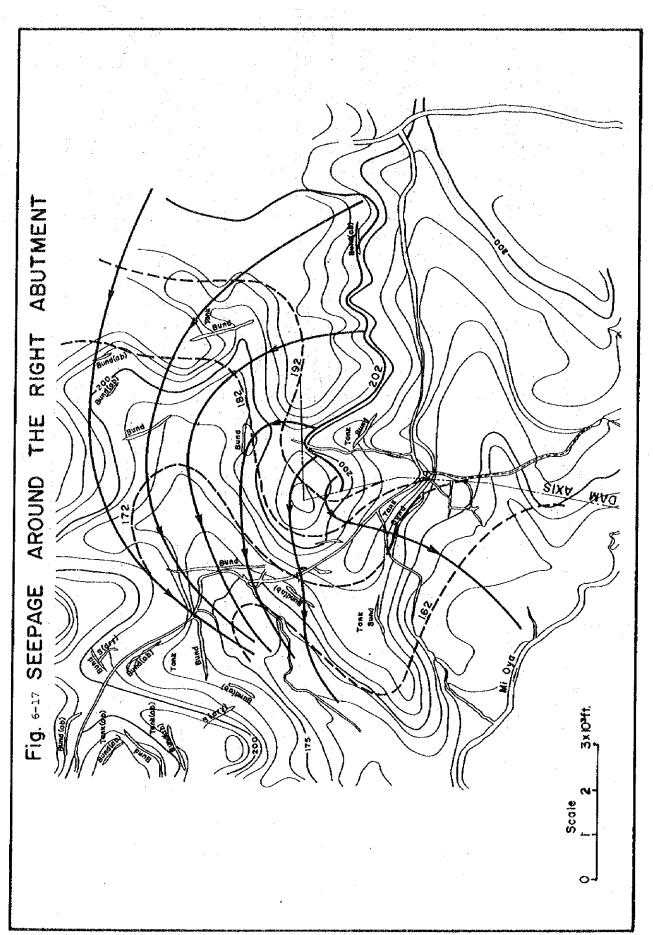
· Seepage through Dam-Foundation: Q3

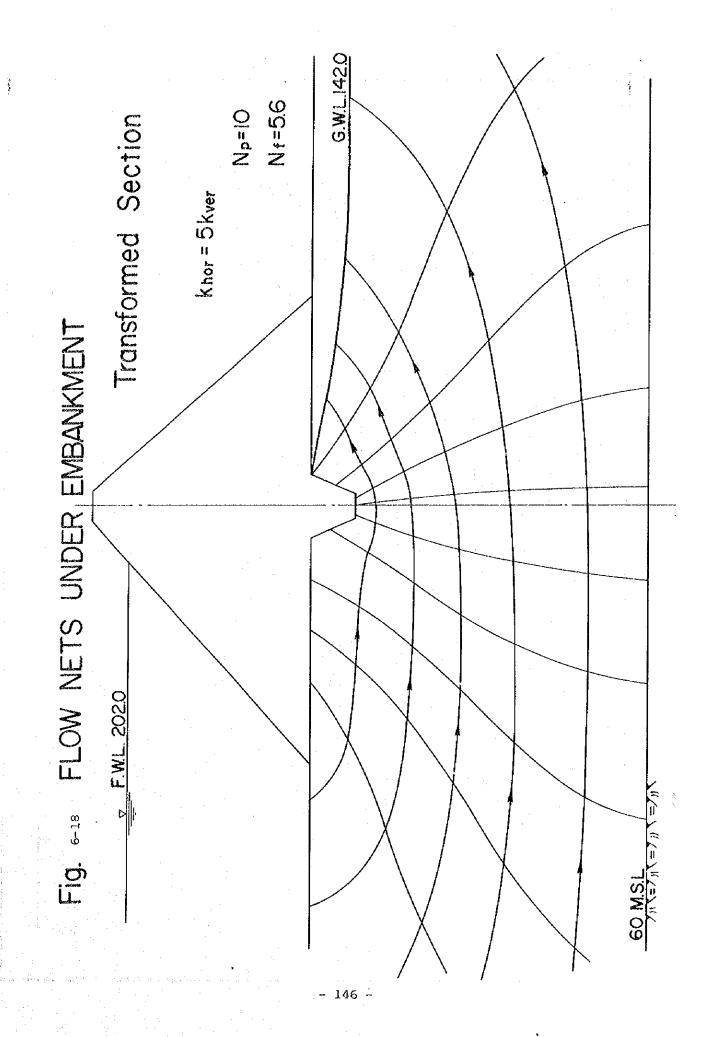
$$Q_3 = K_3 \frac{Nf_3}{Np_3} H \cdot L$$

where, K₃ : Permeability coefficient of dam-foundation

 $K_3 = 700 \text{ ft/yr } (6.8 \times 10^{-4} \text{cm/sec}),$ 


 $Nf_3 = 5.6$ ,  $N_{p3} = 10$ , H = 60 ft, L = 9,500 ft.


 $Q = Q_1 + Q_2 + Q_3 = 225,959,412.5 = 226,000,000 \text{ cu.ft/yr}$   $(6,327,820.8 \text{ m}^3/\text{yr})$ 


Effective storage = Ve = 48,800 Ac.ft = 2,125,728 cu.ft (60,194,800 m³)

Seepage loss =  $\frac{Q}{Ve}$  = 0.1063/yr = 0.029%/day

The seepage loss has been calculated at 0.03%/day through the above computation; hence no grouting is planned.







# 6.6 Spillway

### 6.6.1 Location

Among the conditions necessary to be taken into consideration when selecting the site for spillway, the most important is the availability of proper foundation rock. From such viewpoint, the vicinity of Station No. 23 on the right bank had been proposed as the site for spillway by ID and it has been accepted as final on the ground of the engineering, the structural, and the operation/management advantages.

# 6.6.2 Type of Spillway

There are two broad types of the controlled and the uncontrolled. After studying (a) uncontrolled - overflow weir type, (b) uncontrolled - side channel type, (c) controlled - all gate system, and (d) controlled and uncontrolled - a combined type, the controlled type (c) has eventually been adopted. Principally speaking, the uncontrolled type would be more suitable and yet it has been rejected due to the following reasons:

- (a) Spillway crest is to be longer (2,000 feet);
- (b) Foundation rock is not running evenly; assuming a mountainlike shape, it is going down at two ends;
- (c) Connection with tail channel requires a large-scale work;
- (d) Either a bridge over the spillway or a round-about road leading from the tail channel is required for control; and
- (e) Construction cost and the required facilities become very large due to the above reasons.

An alternative idea of combining a solid weir with gates has also been dropped  $\frac{1}{2}$  from the undermentioned reasons.

- (a) Discharge flow over the radial gate is to be avoided as a rule;
- (b) The longer is the crest line, the deeper becomes the foundation rock;

Data on hand on the geological conditions which are indispensable for such comparative study are unfortunately poor; the final decision as for the preference of the fully controlled type over the combined system of solid weir plus gates should be made in the detail designing stage, upon obtaining all the required data.

(c) With the width of gate being fixed at 20', the length of solid weir will be as follows, if the number of gate should be diminished by one:

Radial gate w20 feet x h20 feet Weir length = 280 feet -do- = 196 feet

- (d) Related structures, particularly the tail channel and control bridge, will become large-scaled if the combined system be adopted;
- (e) The combined system requires more construction cost.

On the other hand, a fully controlled type will make obligatory the special attention and care as follows:

- (a) When the spill discharge does not require full opening of one of the gates, an experienced skill is required in controlling the gate. In this case, (i) partial opening of a gate, or (ii) installation of an adjustable gate, will become necessary;
- (b) Counter measures in case of unexpected breakdown of gate(s);
  - i) when gate(s) fail to open;
  - ii) when flood wood or other floating material blocks proper flow between piers even if gate opens;
  - iii) when gate(s) fail to close.
- (c) Emergency spillway is required.

The gate system of the controlled type spillway thus requires a full and constant 0 & M order which is prepared to meet any one of the emergency cases as follows:

- (a) Stationing of a residential engineer who is held responsible for overall water management and operation of facilities including spillway;
- (b) Regular inspection and check of the gates so that they will be maintained in operational condition at all the times;
- (c) Daily check of the water level and round-the-clock observation of the fluctuation of the water level after the reservoir water goes up beyond the F.W.L.;
- (d) Institutional preparedness for immediate mobilization, in case of emergency, of operators and labourers who are drilled in

opening and closing of the gates, demolition of the emergency spillway, and other counter-measures;

- (e) Appropriate facilities to prevent the suspended materials, particularly large-sized lumbers, to approach the spillway; and
- (f) Stock-piling of the necessary articles for operation of the gates.

### 6.6.3 Design Flood Discharge

Flood peak discharge analysis under 1.3.3: Flood Discharge in Chapter I: CLIMATE & HYDROLOGY estimated the flood peak discharges in different probabilities as follows:

Probability	Peak Discharge
1/100 years	60,100 cusec
1/200 "	65,600 "
1/1000 "	78,600 "

Among the above, 65,600 cusec in 1/200 years has been adopted as inflow design flood discharge.

The ratio between the area of water surface of Inginimitiya reservoir and its drainage area is 1:19 and the time required for the arrival of flood is considerable, hence is conspicuous the flood regulating capacity of the reservoir. The reservoir helps make the maximum outflow smaller than inflow as the inflow flood discharge will be partially and temporarily held on the fully stored water in it.

# · Size of Spillway Gate

Hydrological computation with two alternative sizes (alternative 1: 20 feet x 20 feet and alternative 2: 20 feet x 15 feet) of the spill-way gate has been made as per shown in Tables 6-4 to 6-7, with the maximum outflow discharges as follows:

Alternative 1: (20 feet x 20 feet) Max. Q = 50,000 cusec Alternative 2: (20 feet x 15 feet) Max. Q = 52,000 cusec

# 6.6.4 Type and Scale of Spillway Gate

Among various types of the gate, the one for whose operation no power is required, or a man-handling type, is preferred. Radial gate is the one which has been extensively used in Sri Lanka. Radial gate, however, is rather weak to vibration and several years' hard use may sometimes makes its smooth operation difficult because of loosening at its fixture with weir. Therefore, a good care is required in its installation to use parts and accessories which have liberal allowances over and above the calculated capacities.

Size of the gate will be regulated by the locally available capacities in its manufacturing, transportation and operation (physical strength of the operators): the maximum width would be 20 feet and the maximum height, upto 20 feet. Although its width has been determined at 20 feet, the decision as of its height needs to be made after further studies involving, first of all, identification of the geological conditions of the spillway site in more details. Thus the final decision about the size of the gate rests on future comparative studies which take into consideration the pattern of the foundation rock layer, the quality of the gate material, the permeability, etc., in detail design stage.

There may be three alternative proposals as follows:

Alternative	(Alt.) Widt	h of Gate	Height of Gate	No. of Gates
1		20'	201	6
	· · · · · · · · · · · · · · · · · · ·	20'	151	9
3	Combination (	201	20'	5
		201	11'	2

Alt-1 is proposed by ID and Alt-3 is primarily meant to solve the difficulties experienced with gate system in regulating a smaller spill discharge. However, as both Alt-1 and Alt-2 now visualize partial adoption of adjustable gate for spill discharge regulation, the Alt-3 may be ignored.

Thus, Alt-1 and Alt-2 will be compared from the hydrological, foundation, economic and O & M angles as follows:

# (a) Hydrological

As has been calculated under 6.7.3, the maximum outflow discharges would be:

Alt-1. W=20' x H=20' 6 gates Max. Q = 50,000 cusec Alt-2. W=20' x H=15' 9 " Max. Q = 52,000 cusec

The bigger discharge with Alt-2 necessitates a larger cross section of the tail channel. However, the bigger grows the depth of flow over the spillway, the greater becomes the flow capacity of Alt-2 and thus the safety against flood increases when Alt-2 is adopted.

### (b) Foundation rock

According to the available data, Alt-1 is safter and more dependable.

### (c) Construction cost

Alt-2 is more costly, including a slightly costlier construction cost of its spillway tail channel, as per Table 6-8 below:

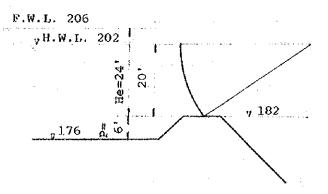
Table 6-8 Cost of the Spillway

Item	Unit Alt-1.(20'x20'=6 Nos.)				Alt-2. $(20'x15'=9 Nos.$		
	OHIC	Q'ty	Cost	Amount	Q'ty	Cost	Amount
Earth excavation	Cubes	25,500	40	Rs.000) 1,020	30,600	40	Rs. '000) 1,224
Rock "	<b>(</b> (r	25,800	100	2,580	28,380	100	2,838
Concrete works		2,500	1,100	2,750	2,700	1,100	2,970
Radial gate	sq.ft	2,400	1,540	3,696	2,700	1,750	4,725
Total				10,046		• :	11,757

# (d) Operation & Maintenance

Alt-2 is easier and, though each two adjustable gates will be equipped in both cases, Alt-2 will be manageable with comparatively more severeness.

Table 6-4 Discharge over an ogee crest (A.L.T.-1)


$$Q = CLHe^{3/2}$$

where: Q = discharge,

C = a variable coefficient of discharge,

L = effective length of crest, and

H = total head on the crest.



Gates: 6 Nos - 20' x 20' High

Discharge over an uncontrolled overflow ogee crest

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8) 3	(9)
Reser <b>v</b> oir elevation	He (ft)	Ile/IIo	C/Co	Ci	l (ft)	3 He 2	q=CilHe2 (cfs/gate.)	Q=q x 6 (cfs)
202	20	0.83	0.978	3.64	19.20	89.44	6,251	37,510
203	21	0.88	0.985	3.66	19.16	96.23	6,748	40,490
204	22	0.92	0.990	3.68	19.12	103.19	7,261	43,570
205	23	0.96	0.995	3.70	19.08	110.30	7,787	46,720
206	24	1.00	1.00	(5) ¹ 3.72	19.04	117.58	8,328	49,970
207	25	1.04	1.005	3.74	19.00	125.00	8,883	53,300

Note: (2) The approach losses are small. So they can be neglected in this case.

- (4) Use of figure 190 (Design of Samll Dam, page 276)
- (5)' From figure 189, the value of Co for a P/Ho value of 0.23 is 3.61. Next, from figure 191, the ratio of Cinclined/Cvertical for a 1:1 upstream slope is 1.031. Then, Ci=3.61 x 1.031=3.72.
- (6) Effective length of crest of a gate (1)=20.0 0.04He

Table 6-5 Flood Routing Computations (ALT-1)

(1)	(3)	(3)	(4)	(\$)	(6)	(7)	(4)	(9)	(10)	(11)
rime, wours		Average rate of inflow Q2 for &t second-feet	Average inflow	Trial reservoir Storage ele- vation end of ôt	Average rate of outflow Qo. second-feet	Average outflow for åt. acre-feet	Incremental storage AS, acre-test	Total storage, acre-feet	Recervoir elevation and of at	Romark
.0		<del></del>			-	rege di persona pièrità di distribui del persona del persona del persona del persona del persona del persona d	*************************			
3	. 3	234	59	202.0	234	59	0	53,000	202.0	
6	3	725	101	202.0	725	101	•	\$3,000	202.0	
10	4	1,966	655	202.0	1,986	655	0	53,000	202.0	
15	\$	5,436	2,264	202.0	5,436	2,264	0	\$3,000	202.0	
20	5	14,461	6,025	202.0	14,461	6,025	٥	53,000	202.0	
251	5	34,600	14,500	202.0	34,800	14,500	o [.]	53,000	202.0	
27	2	57,325	9,554	202.4	38,700	6,450	3,104	56,104	202.6	Lov
				202.5	39.000	6,500	3,054	56,054	202.6	Lov
			•	202.6	39, 300	6,550	3,004	\$6,004	202.6	OK
29	2	60,662	10,110	203,5	42,030	7,005	3,105	59,109	203.3	Яlgh
				203.3	41,410	6,902	3,208	59,212	203.3	OK.
30	1	64,073	5,339	203.6	42,340	3,524	1,611	61,023	203.7	Low
				203.7	42,650	3,554	1,705	60,997	203,7	OK.
31	1	65,236	5,436	204.1	43,690	3,657	1,779	62,776	204.2	Low
				204.2	44,200	3,683	1,753	62,750	204.2	OK .
32	1	65,675	5,473	204,6	45,460	3,788	1,685	64,435	. 204.6	OK.
33	1 .	65,325	5,443	204.9	46,405	3,867	1,576	66,011	204.9	OK
34	1	64,275	5,356	205.2	47,070	3,923	1,433	67,444	. 205.2	OK
5	1	62,750	5,230	205.4	48,020	4,002	1,228	68,672	205.4	OK
×6	1	61,133	5,094	205.6	46,670	4,056	1,038	69,710	205.6	OK
97	1	58,958	4,913	205.4	49. 320	4,110	803	70,513	205.8	OK.
88	1	56,125	4,677	208.0	49,970	4, 164	513	71,026	205.9	Righ
				205.9	49,645	4,137	540	71,053	205.9	οκ
19	1	53,144	4.428	206.0	49,970	4,164	264	71,317	205.9	Righ
				205.9	49,645	4,137	291	71,344	205.9	OK .
0	1	50,269	4,189	205.9	49,645	4,137	52	71, 396	205.9	OK
1	ì	47,550	3,962	205.9	49,645	4,137	-175	71,221	205.9	OK
2	1	44,850	3,737	205.9	49,645	4,137	-400	70,621	205.8	High
			2.00	205.8	49,320	4,110	-373	70,848	205.8	OK
5	3	38,633	9,708	205,4	48,020	12,405	-2,297	69,551	205.4	ok
9	3	31,200	7, 800	204.6	45,460	11,365	-3,565	64,986	204.7	Low
				204.7	45,775	11,444	-3,644	64,907	204.7	0X

Note: Column (4) = Column (3) x Column (2) + 12 (1 second-feet for 12 hours = 1 acre-feet)

Column (10) corresponding to storage in column (9) from figure "Reservoir capacity curve".

Table 6-6 Discharge over an ogee crest (A.L.T. -2)

$$Q = CLHe^{3/2}$$

where: Q = discharge,

C = a variable coefficient of discharge,

L = effective length of crest, and

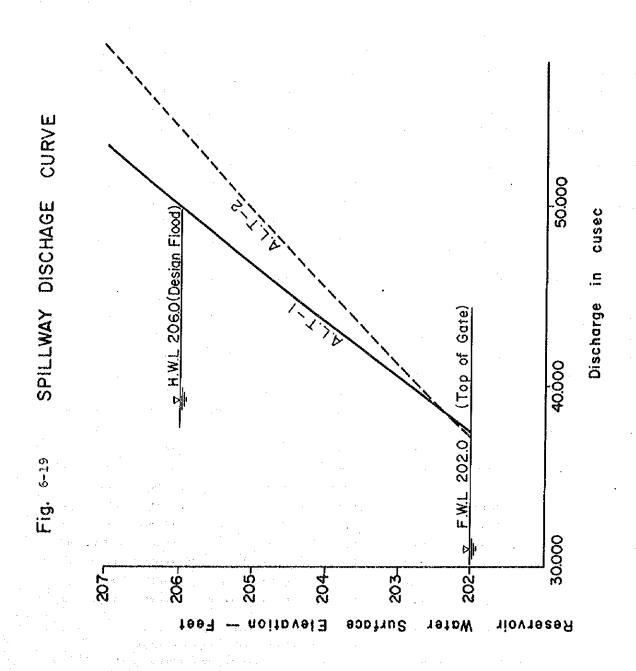
H = total head on the crest.

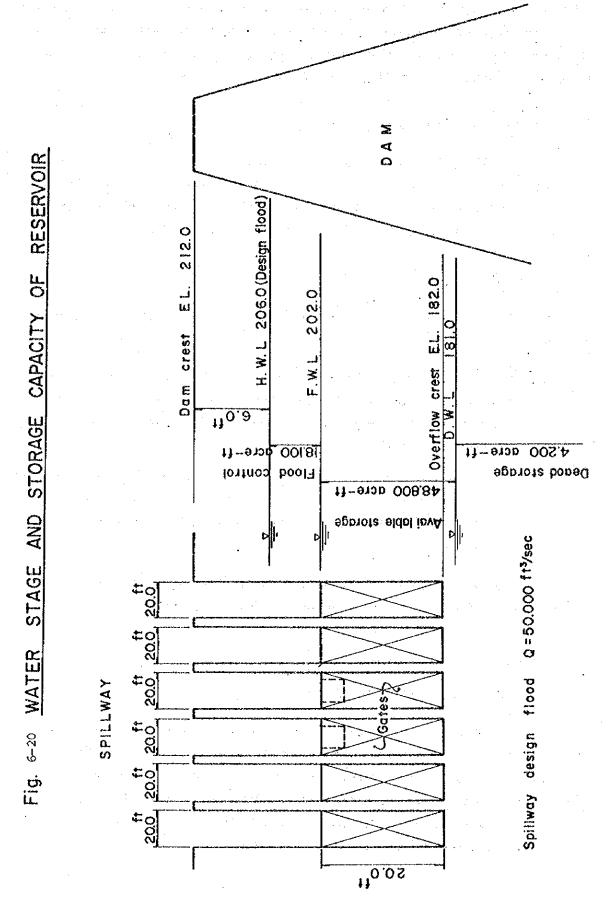
Gates: 9 Nos - 20' x 15' High

Discharge over an uncontrolled overflow ogee crest

(2)	(3)	(4)	(5)	(6)	(7)	(8) 3	(9)
He (ft)	не/но	c/co	Ci	٤ (ft)	He 2	q=CilHe2 (cfs/gate.)	Q≂q x 9 (cfs)
15	0.79	0.972	3,67	19.40	58.09	4,136	37,220
16	0.84	0.979	3.70	19.36	64.00	4,584	41,260
17	0.89	0.986	3,73	19.32	70.09	5,051	45,460
18	0.95	0.993	3.75	19.28	76.37	5,522	49,700
19	1.00	1.00	(5) _{3.78}	19.24	82.82	6,023	54,210
20	1.05	1.006	3.80	19.20	89.44	6,526	58,730
	15 16 17 18	He (ft) He/Ho  15 0.79  16 0.84  17 0.89  18 0.95  19 1.00	He (ft) He/Ho C/Co  15 0.79 0.972  16 0.84 0.979  17 0.89 0.986  18 0.95 0.993  19 1.00 1.00	He (ft) He/Ho C/Co Ci  15 0.79 0.972 3.67  16 0.84 0.979 3.70  17 0.89 0.986 3.73  18 0.95 0.993 3.76  19 1.00 1.00 (5) 3.78	He (ft) He/Ho C/Co Ci (ft)  15 0.79 0.972 3.67 19.40  16 0.84 0.979 3.70 19.36  17 0.89 0.986 3.73 19.32  18 0.95 0.993 3.76 19.28  19 1.00 1.00 (5) 3.78 19.24	He (ft) He/Ho C/Co Ci & (ft) He 2  15 0.79 0.972 3.67 19.40 58.09  16 0.84 0.979 3.70 19.36 64.00  17 0.89 0.986 3.73 19.32 70.09  18 0.95 0.993 3.76 19.28 76.37  19 1.00 1.00 (5) 3.78 19.24 82.82	He (ft) He/Ho C/Co Ci & & He \frac{3}{2}  \text{q=Cilhe2} \\ 15  0.79  0.972  3.67  19.40  58.09  4,136 \\ 16  0.84  0.979  3.70  19.36  64.00  4,584 \\ 17  0.89  0.986  3.73  19.32  70.09  5,051 \\ 18  0.95  0.993  3.75  19.28  76.37  5,522 \\ 19  1.00  1.00  \frac{(5)}{3.78}  19.24  82.82  6,023 \\ \end{align*}

Note: (2) The approach losses are small. So they can be neglected in this case.


- (4) Use of figure 190 (Design of Samll Dam, page 276)
- (5) From figure 189, the value of Co for a P/Ho value of 0.32 is 3.70. Next, from figure 191, the ratio of Cinclined/Cvertical for a 1:1 upstream slope is 1.023. Then, Ci=3.70 x 1.023=3.78.
- (6) Effective length of crest of a gate (1)=20.0 0.04He


Table 6-7 Flood Routing Computations (20' x 15' gates 9 Nos.) (ALT-2)

(l) ima,	(2) A÷	Average rate of inflow Q ²	(4) Average inflow	· (5) Trial reservoir Storage ele-	(6) Average rate of outflow Qo.	(7) Average	(6) Incremental	(9) Total storage,	(10) Reservoir elevation	(11)
		for At, second-feat	ecre-feet	vation end of	second-feet	At. scre-feet	acre-test	acre-feet	end of At	Remarks
0									<del></del>	
3	3	234	59	202.0	234	59	0	53,000	202.0	
6	3	725	181	202.0	725	161	٥	53,000	202.0	
10	4	1,966	655	202.0	1,966	655	o	53,000	202.0	
15	5	5,436	2,264	202.0	5,436	2,264	o	51,000	202.0	
0	5	14,461	6,025	202.0	14,461	6,025	0	53,000	202.0	
.5 '	5	34,600	14,500	202.0	34,000	14,500	0	, 53,000	202-0	
:7	2	57,325	9,554	202.5	39,240	6,340	3,014	\$6,014	202.6	Low
	-		•	202.6	39,644	6,607	2,947	55,947	202.6	Oκ
9	2	60,662	10,110	203.2	43,100	7,017	3,093	69,040	203.3	Low
			•	20), )	42,520	7,007	3,023	58,970	203.3	οκ
0	1	64,073	5,339	203.6	43,780	3,668	1,691	60,661	203.7	Low
				209.7	44,200	3, 603	- 1,656	60,626	203.7	ox
31	1.	65,236	5,436	204-1	45,664	3,824	1,612	62,238	204.1	ox
								•	•	
12	14	65,675	5,473	204.4	47,156	3,930	1,543	63,701	304.4	or.
3	ı	65,325	5,443	204.7	48,426	4,034	1,407	65,188	204.7	ок
14	i	64,275	5,356	205.0	49,700	4,142	1,214	66,402	205.0	OK
15	1	62,750	5,230	205.2	50,602	4,217	1,013	67,415	205.2	oĸ
6	1	61,133	5,094	205.4	51,504	4,292	803	60,217	205,4	ок
17	)	58,958	4,913	205,5	51,955	4,330	503	68,800	205.5	CK
8	ı	56,125	4,677 -	205.6	53,406	4,367	310	69,110	205.5	High
				205.5	\$1,985	4,330	347	69,147	205.5	οx
19	1	53,144	4,428	205,6	93,496	4,367	61	69,208	205.5	High
				205.5	51,965	4,330	96	69,245	205.5	ox
0	1	50,269	4,189	205.5	51,995	4,330	-141	69,104	205,5	øk -
ì	ì	47,550	3,962	205.5	51,955	4,330	-368	69,736	205.4	οx
2	ì	44,850	3, 737	295.4	51,504	4,292	-555	68,219	205.3	High
				205.3	\$1,053	4,254	-517	68,257	205.3	OK
5	3	18,833	9,708	204.0	49,852	12,213	-2,505	65,752	204.8	οĸ
8	3	31,200	7,600	204.0	45,460	11,365	<b>~3,565</b>	62,187	204.0	OK

Note: Column (4) * Column (3) x Column (2) : 12 ( ) second-feet for 12 hours * ) acro-feet )

Column (10) corresponding to storage in column (9) from figure "Reservoir capacity curve".





Although the Alternative-2 proves to be more advantageous through the above comparative sutdy, Alternative-1 which is strongly supported by ID is tentatively adopted for design, pending on the further studies and final decision in the detail design stage.

### 6.6.5 Cross Section of the Spillway

As discussed in the above paragraph, radial gates (W=20'x H=20') in 6 Nos. will be adopted and 2 out of 6 gates will be equipped with adjustable gates. Water Stage and Storage Capacity of Reservoir according to this plan is shown in Fig. 6-20.

# 6.6.6 Emergency Spillway

Provision of an emergency spillway is designed due to the following reasons:

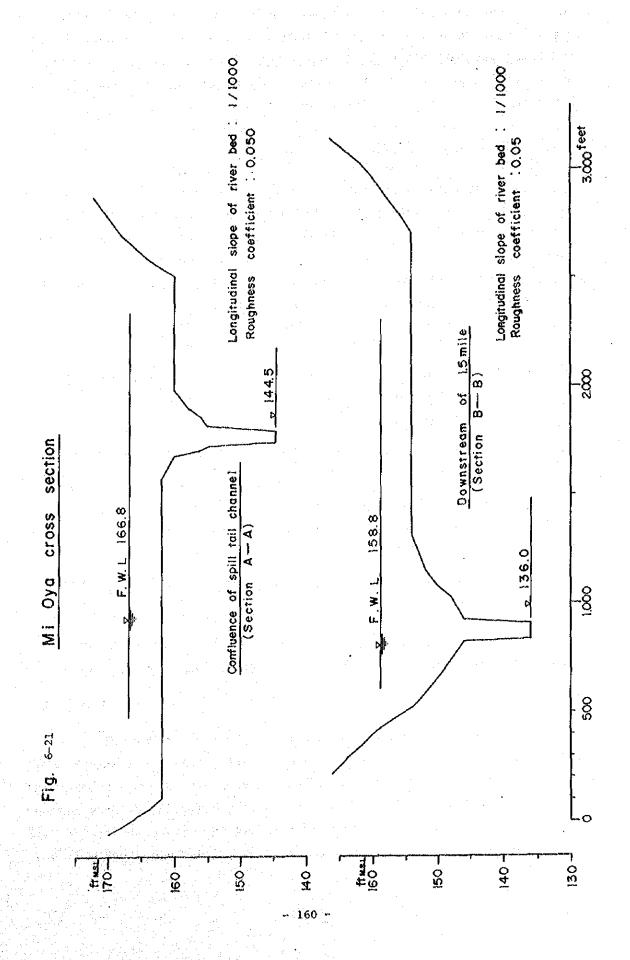
- (a) The main spillway is designed with a fully controllable gate system and proper spill discharge may happen to be jeopardized either due to the mechanical breakdown of the gate(s) or jamming by the flood woods, etc.;
- (b) The fluctuation of precipitation and the gap between the maximum and the minimum rainfall is extremely big, and the historical records of the past rainfall alone would not warrant the safety of the dam.

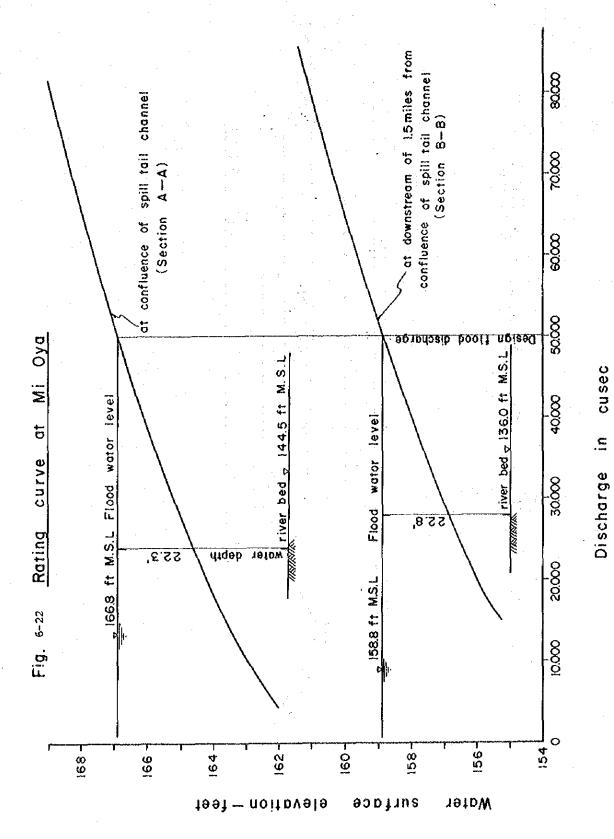
The emergency spillway is located on the right bank for the distance of about 800 feet, 1 foot below the dam crest line.

# 6.7 Spillway Tail Channel Section

# 6.7.1 Flood Water Level of the Mi-Oya

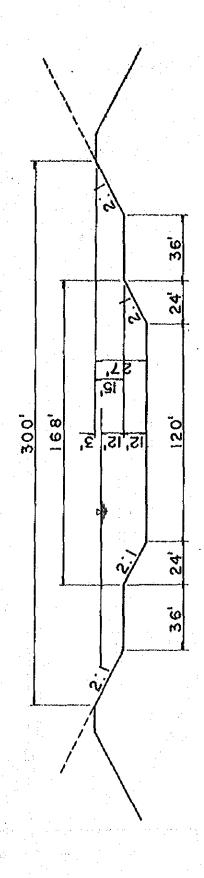
The water level of the Mi-Oya when 50,000 cusec of the design flood discharge of the spillway flows down has been sought by calculating the uniform flows at two points: the one at the confluence of the Tail Channel with the Mi-Oya (Section A-A) and the other, about 1.5 miles (7,800 feet) downstream of Section A-A which forms a bottleneck for the flow from the topographical reasons. The Mi-Oya's cross section is shown


in Fig. 6-21, and H-Q rating curve of Mi-Oya is shown in Fig. 6-22. If the gradient of the spillway tail channel is designed at 1/1000, the maximum spillway tail water level would not rise higher than 175 feet MSL. As the design spillway crest elevation is made at 182 feet MSL, the possible back water of the Mi-Oya should not affect the spillway.


# 6.7.2 Tail Channel Section

Upon completion of the reservoir, the discharge over the spill-way will take place only during Maha season of an exceptionally heavy rainfall. To meet with a wide fluctuation of the discharge between the normal year and the flood year, it has been designed as a double section channel. The design cross-sections which are shown in Fig. 6-3 have been arrived at by considering the following conditions:

- (a) Spillway design flood discharge is 50,000 cusec;
- (b) The present river channel of the Mi-Oya annually overfloods; the present width of the river-bed, that is, about 100 feet will be maintained;
- (c) The Mi-Oya's river-bed in the vicinity of its confluence with the Tail Channel is  $10 \sim 15$  feet below the river side elevation;
- (d) Coefficient of roughness (n) is:  $low-water\ channel \qquad n=0.03$   $high-water\ channel \qquad n=0.05$
- (e) Average flow speed along the low-water channel = less than 10 feet/sec.


The flow capacity of the design low-water channel is 12,500 cusec. The total design length is 6,460 feet.





- 161 -

Spillway Tail Channel Section



### 6.8 Intake Facilities

level is 181 MSL.

The first section of the section of the section of the section of the section of the section of the section of

### (6.8.1 - Location ). The graph has the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contrac

The elevation of the foundation rock is 180 MSL on the left bank, and the sluice will be built at the place where it is easily connectable to the main canal. The right bank sluice will be built adjacent to the spillway being connected with the intake tower by headrace which runs from the spillway approaching canal.

# 6.8.2 Structure

Intake, as specified below, will be regulated by operating the slide gate:

		Irrigable Area	Discharge
	Right bank outlet	2,300 acres	61.0 cusecs
·	Laft bank outlet	4 000 agres	105 0 cusecs

# 6.9 Coffer Dam

Coffer dam is built on the upstream of the embankment and its construction takes place during July. The height of its crest is so designed as to hold the maximum gross discharge for three months of July through September during the last 20 years. Crest height is fixed at 184 MSL from H-Q curve; the crest width, 10 feet; and the up/downstream slope, 1:2.5.

and the first of the first of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of

### VII IRRIGATION FACILITIES

The irrigable area totalling 6,300 acres can be divided into the left bank (4,000 acres) and the right bank (2,300 acres); in each area a main canal, the related structures, the lateral channels and the farm facilities (farm ditches, farm drainages, farm roads, etc.) are planned.

### 7.1 Main Canal

### 7.1.1 Route of Main Canal

The selection of the main canal routes has been made through the field exploratory surveys and they are drawn tentatively on the 4-chain and 8-chain maps; as parts of these topographical maps are incomplete, the routes drawn on them are not final ones requiring reconfirmation after additional surveying: minor alterations of the main canal routes may become necessary. The main canal routes have been selected by paying due attention to the following points:

- To select straight course, as far as possible, to shorten the distance;
- (ii) To balance the volume of excavation and embankment to minimize the earth work cost; and
- (iii) To maintain the highest water level to facilitate for gravity irrigation.

# 7.1.2 Canal Type and Design Discharge

The main canal type is the open earth canal which is economically justifiable. The maximum water requirement (see Table 5-7) for the entire irrigable area has been allocated among both banks according to the size of their command areas, with the following discharges:

Left bank Q = 105 cusecs Right bank Q = 61 cusecs

# 7.1.3 Cross Section and Length

The main canal cross-section has been decided by the following calculations, and the maximum flow speed has been regulated less than 2 feet/second to prevent wash-out of its slopes:

(a) Feedboard

$$F = (1 + d/4)$$

where, F : Freeboard

d : hydraulic depth

(b) Inside slope

1:1.5

(c) Bank width

Width of the bank has been designed at 5 m so as to make it accessible to motor vehicles meant for operation and maintenance purposes, while that of its opposite bank, 2.5m.

(d) Flow formula:

The manning formula is generally used for open channel flow in calculating its discharge, as follows:

$$V : \frac{1}{n} R 2/3 I 1/2$$

where, Q: Design discharge

A : Cross sectional area

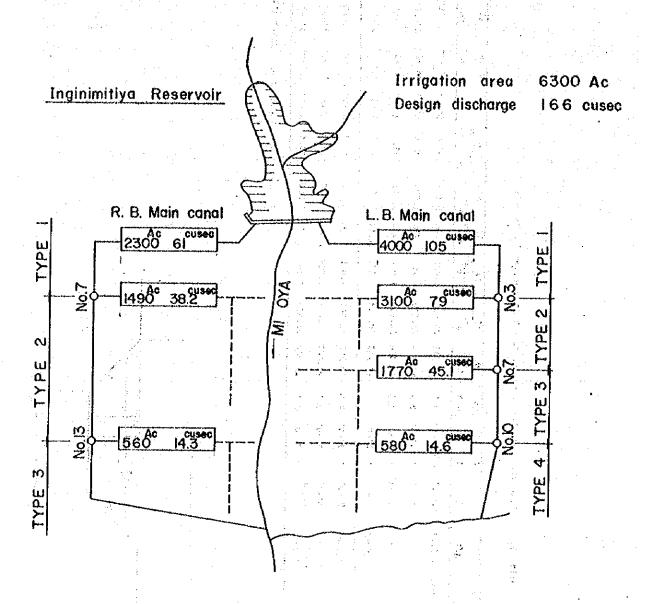
V : Velocity of water

n : Roughness coefficient

R : Hydraulic radius

I : Slope of the water surface and channel bottom

Left Bank Canal will have 4 types and the right bank canal, 3 types; the bank width has been fixed at 16.6 feet on the Project area side and 8.3 feet on the opposite side; the Project area side bank is meant for operation and maintenance purposes. Canal Network is shown in Fig. 7-1, and the cross sectional calculations as per Table 7-1.


### · Particulars of the Main Canal

Canal	Туре	Discharge (cusec)	Length (mile)
L.B. Canal	1	105.0	3.0
·	2	79.0	4.0
	3	45.1	3.0
	4 :	14.6	3.3
Total			13.3
R.B. Canal	1	61.0	7.0
	2	38.2	6.0
	3	14.3	3.2
Total	•		16.2

# 7.2 Related Structures

Crossings (aqueducts, culverts, bridges, etc.) over the streams, drainage channels, and roads, and water management facilities such as turnouts, check-gates and water measurement facilities are planned. Among the crossings, aqueducts will be preferred to siphons as far as possible.

Fig. 7-1 Canal Network and Discharge Assignment



				Tab.	Table 7-1	Bydroul	ů Q	alculat	8	Bydroulic Calculation of Standard Cross Section for Main Canal	rd Cross	Section	for M	i Lan Canal	-4	100			1994 (1)
	a k	1 type od ^{cuft} /s	мн	ма	1 T	<b>ω</b> α	w 14	7 8	8 9/9	7 8 9 10 11 12 13 d b/d A ^{£t2} p ^{£t} R(** R(***) f [£] R ² /3 y ^{£t} /*	o ¥ _a	11 R(*A)ft	12 R2/3	13 oft/#	14 cuft/\$ \$c(=8.v)	51 8	3.6	ti G	<b>3</b> , 1
	P	105.0	105.0 1/3500 0.0168	0.0168	1,0061		1.53	.9E	3.2	58.041	23.952	2.423	1.88	1.815	11'-4" 1.5 3-6" 3.2 58.041 23.952 2.423 1.804 1.815 105.4 5-5" 27"-7"	-SS	277"	11-11	್ಟ್
Left Bank	· •	8,0		8	•	.9-,6		¥-,4	2.9	9'-6" 3'-3" 2.9 46.719 21.218 2.202 1.692 1.703	21.218	2,202	1.692	1.703	79.6	21.	79.6 5-1- 249"	1104	0.4
Malis Canal	m	45.1	•	*	•	6-11" - 29" 2.5	£ (7	-6	2.5	30, 366	30, 366 16.832 1.804 1.482 1.491	1.804	1.482	1.491	£ .0	\$7	-ZSZ-	-81	3.0
	•	14.6	14.6 1/3000		1.0868	31.	*	•	8:1	* 2:-0" 1.5 12;166 10.294 1.182 1.118 1.215	10.294	1.182	1.118	1.215	14.8	36	14.8 3'-6" 13'-7"	16	3,3
	î,#	62.0	61.0 1/3500	•	1.0061	8,-3		3,-0, 2,8		38,250 19,067 2,006 1,591 1,600	19.067	2.006	1.591	1.600	61.2	63	61.2 49 226	#6-°5	ိုး
Main Canal	. ~	38.2			•.	.09	1	.e-	2.3	2"-8" 2.3 26.667 15.615 1.708 1.429 1.437	15.615	1.708	1.429	1.437	38.3	77	38.3 44 19-0"	*8T	9.
	M	14.3 . 1/3000	1/3000	. •	1.0868	3,-0,	8	2*-0* 1.5		12.000	12.000 10.211 1.175 1.114 1.210	3,175	1.114	1.210		36	14.5 36" 136"	16	

L: Length of Main Canal (Miles)

*

#### VIII LAND CONSOLIDATION

Except the existing paddyfields and the hamlets scattering around them, the Project area is generally covered by jungles of medium-density which would not cause special difficulties in clearing. The area for land consolidation can be divided into (a) mild slope (s=1/50), and (b) flat openings ( $s=1/300\sim1/500$ ) spreading on both banks of the Mi-Oya.

### 8.1 Blocking of the Reclaimed Land

The standard size for each liyadde will be 1/4 acre, if topography permits. However, field sizes may be varied in order to achieve efficient use of farm machinery and good water management. The farmland allocated to each family will be 2.5 acres, measuring 310 feet by 70 feet.

### 8.2 Laterals and Farm Road Network

Irrigation and drainage laterals are provided independently per family farm. For efficient water use, however, the drainage laterals will be connected to irrigation laterals in the downstream to enable repeated use of water. Farm roads lead from the settlers' villages to their farms, running along the irrigation channels to make water management easier.

# · Particulars of the Network

Farm road Width : 13 feet

Elevation : 1 foot or more

Longitidinal slope: upto 12%

Laterals Type : open ditch

Cross section : Trapezoid section allowing

peak discharges for both

irrigation and drainage

Slope : 1 : 1

# 8.3 Land Consolidation

Land levelling of the paddyfield will be maintained within ±2 inches, and the gradient of the field surface will be either horizontal or a little inclined toward drainage lateral.

### 8.4 Model Farm

A model farm will be established between Galkulama Tank and the Mi-Oya in the vicinity of R.B. Canal No. 12. It will cover 220 acres to be managed by 88 settlers' families.

### CONSTRUCTION PROGARMME AND ADDRESS OF THE PROGRAMME AND ADDRESS OF THE PROGRAMME AND ADDRESS OF THE PROGRAMME.

# 4 9.1 Overall APlan, patragrees when a stitle to be seen a contract of the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the seen as the see

#### 9.1.1 Basic Considerations

Conflict Confliction and Confliction Confliction

The basic considerations for the Project implementation are as follows:

#### (1) Workable Days

280 working days a year is feasible proposition judging from the daily rainfall data in the past; the work will be done on two shifts in a day.

#### (2) Construction Peirod

The construction will take full five years, following the detail design work which would be completed within 8 months.

#### 9.1.2 Dam Body

Prior to the commencement of dam construction work, it is necessary to complete the access roads, field office, accommodation facilities for the staff, motor pool, stores and depots for construction equipment and materials. Jungle clearing at the dam-site and the borrow areas comes first, then comes the excavation of the surface soil at dam-axis, to be followed by digging of trenches. The excavated soils (the spoil) are to be used for embankment either on the upstream side or the downstream side according to their nature.

As and when trenches will have been dug, embankment work of the dam-body will be commenced by using the spoil from the spillway tail channel and/or the material obtainable from the borrow areas. The toe drain and horizontal drain on the downstream side need to be completed before embankment. When the embankment work will have reached 1/2 of the dam height, riprap will be built on the upstream slope; the remainder will be worked upon after the completion of the embankment work. Turfing will be effected on both the upstream and downstream slopes after dam-body will assume the regulated shape.

The construction work will proceed on both banks of the Mi-Oya and completed except about 500 feet of the Mi-Oya's river-bed. The closing of the Mi-Oya takes place in the last stage, during the dry months of July to September. The dam will be completed after construction of a coffer dam on its upstream; the coffer dam will remain where it would have been built.

# 9.1.3 Spillway and Laterals

Excavation work at spillway site will start after the surface soil at the dam-site will have been removed; rock cutting at the spillway site will follow. Excavation and embankment of the laterals can be undertaken simultaneously with the above work; the surplus spoil will be utilized as embankment material for dam-body.

Concrete pitching starts as soon as rock will have been cut at the spillway site and then attachment of radial gates will follow.

#### 9.1.4 Outlet Facilities

Simultaneously with excavation at the dam-site, that at the sites for tower sluices and box culverts will take place, to be followed by their concrete works at the lower part of the tower sluices and the box culverts. The upper part of the tower sluices and the connecting bridge will be completed after fulll embankment of the dam. Provision of headrace channel and excavation of the foundation rock is required for completion of the right bank outlet facilities.

#### 9.1.5 Irrigation Facilities

Excavation and embankment work will start according to the specified cross-sections after jungle-clearing is over, from the upstream side. Careful compaction is required at the embankment portion to avoid seepage or crumbling down.

### 9.1.6 Land Development

Land development work will proceed by the order of: jungleclearing-land levelling-removal of debris - road construction - lateral construction - border construction - levelling of the field surface and blocking of the farm. Jungle-clearing work is limited to 4,660 acres of the newly reclaimed land.

To maintain the best working conditions all through the construction period, a particular attention needs to be paid to construction and maintenance of the appropriate drainage facilities to treat the inflow water from outside the Project area and to quickly remove the rainwater falling inside the Project area.

# 9.2 Selection of Construction Machinery

The combination of the construction machinery has been so arranged that the daily work duty can be fulfilled within the given construction period. Machinery-wise duty and the combination of machinery set for execution of each item of the construction work are given on Tables 9-109-3.

Construction machinery and vehicles generally fall in the same categories as proposed by ID but a minor alteration has been made in their size and number. The working hour of each machinery per work item has been estimated as per Table 9-1; the net working hour has been fixed at 80% 8 hours/day. Deployment of construction machinery and vehicles will follow the Schedule as given in Table 9-2. The number of machinery has been calculated from the sets of machinery combined for execution of each item of the construction work, and the machinery will shift from one item of the construction work to another according to the Schedule.

The machinery deployment programme has been worked out from the viewpoint of full and continuous use of the given numbers with no surplus machinery on waiting list; the number and specifications of the construction machinery and vehicles required during each year of the construction period have been stipulated in Table 9-3; extra number of the machinery which will be required for specific duty or duties and replacement of those expiring their workable life (10,000 hrs) are given in parenthesis: these denote the kinds and number to be additionally imported.

# 9.3 Construction Schedule

Schedule on which the above mentioned construction programme shall be implemented is given in Fig. 9-1.

Table 9 - 1 Operation Time of Equipment

Quantities or			Cl. 1 Tractor	C1. 2	Tractor	C1. 8	Practor		,	 				Euclid Rear						
Equipment			Dozer	Dozer	S.F. Roller	Roller Dozer	Scraper	Motor Scraper	Motor Grader	Exca- vation	Air Com-	Jack Hanmer	Shovel Loader	Damp	Crusher	Water Bowser	Concrete Mixer	Parm Tractor	lorry Tipper	
Monke :	Quantities	Vnit			2,9 ^t ,5,5 ^t	N = 3	12 m ³	11 m ³ 210 x 2 ^{PS}	2.2 ta 53 ^{PS}	0.6 m ³ 100 ^{PS}	m ³ /min 10.5 105 kg	m ³ /min 3.4 39 kg	1.2 m ³ 70 ^{PS}	15 ^t 210 ^{P8}	50 t/k 75 ^{PS}		0.3 m ³ 5.5 ^{PS}	5 ^t	100 ^{PS}	Hotes
Item 1. Acquisition Access and Road Deviation						·														
1. Jungle Clearing in the Access Roads	24	Acres	124								1 1							l i	l	
2. Embankment	11,900	Cubes					264		219						<b>!</b>					
3. Bedding Material (gravel)	2,800	51									722	1,443	307	2,333	397	219		<u> </u>	1,261	
Item 2. Dam Body									!					-			ļ		l	
l. Jungle Clearing in Dam Area	55	Acres	285						ļ					ļ			ł		1	ļ
2. Jungle Clearing in Borrow Area	1/1	ŧı	731																	
3. Stripping 24" Top Soil for Filling Dam	42,800	Cubes	3,741						l	Į,	Į į		ļ	[	ļ ļ		ļ	ļ	ļ	
4. Stripping 12" Top Soil in the Borrow Area	61,000	b	5,332									li					1	1		ļ
5. Excavation Common in Core Trenches and Spoil to Waste	14,700	ь	543	631		ļ	639							ļ			ļ	ļ		
6. Excavation Common in Core Trenches and for the Dam	34,400	H			1,026	1,139		1,274	633			i				633				
7. Earth Work in Formation of Dam from Borrow Area	249,300	н			7,433	8,258		25,310	4,588					}		4,588	]		]	
8. Riprap Protection for U/S Slope of Dam (rock	13,800	- 11	1		[				ļ		3,557	7,113					ļ	Į i	ļ	
9. Riprap Protection for U/S Slope of Dam(grave	1) 6,900	И			l								757	5;750	977				6 1501	sand 12,100
10. Toe Filter with Sans, Gravel Metal and Rubble for Dam	24,000	н					l				3,067	6,134	1,306	9,917	850				5,450( 2,703(	gravel) gravel 6,000 gravel) rock 5,900
11. Coffer Damming Dealing with Water, etc.	7,100		•		212	235		721	131					<u> </u>		131	ļ		ļ	
144 3. Spillway	<u> </u>	Ī	İ					}		ļ	<b> </b>	}		<b>\</b>	\		1		}	
1. Earth Excavation in Foundation	25,500	Cubes	942				877									!			ł	
2. Loose Rock Excavation in Foundation	25,800	D	<b>\</b>		<u> </u>		1			ļ	6,650	13,299	2,832	6,247	į		1	ļ	ŧ.	augus?
<ol><li>Cement Concrete with Nominal Reinforcement, etc.</li></ol>	concrete 2,500	ы			i										199		1,773		631	gravel 2,500 × 4 ₹ 1,400
4. Earthwork in Spill Tail Channel (spoil to waste)	74,800	"	2,633		) 		2,574					<u>'</u>			<u> </u>			•		
<ol> <li>Earthwork in Spill Tail Channel (for the dam)</li> </ol>	109,300	н			3,259	3,620		11,096	2,011			İ		<b> </b>		2,011				
6. Earthwork in Spill Tail Channel (training fund)	34,500	"	1,676		1,029		1,187		635		····					635				
Item 4. Sluice (Outlet Works)	aanamata									İ					;	ļ			1	
1. Construction of L.B. Sluices	concrete 120	Cubes	,		ļ ļ			ļ		<b>!</b>		[		ļ	10	į	85		31	
2. Construction of R.B. Sluices	80	"												<b> </b>	7		57		21	
Item 5. Irrigation Facilities	[		4		Į į		l .		A			•		ľ	<b>,</b>	665	ļ		1,	Tunnia Clánning Ol Agres
1. Barthwork in L.B. Main Channel	33,000	Cubes	472	1,146	984		513		607	808				]	l i	607 677		· ·	1,011	Jungle Clearing 91 Acres Jungle Clearing 105 Acres
2. Barthwork in R.B. Main Channel	36,800	"	544	1,280	1,097		573	,	677	897		ļ		1	[	""	Į.	ļ	1,124	deligie organius to works
<ol><li>Construction of Distributory Channel, Field Channel, etc.</li></ol>													~~~~					<u> </u>	<u> </u>	
Item 6. Land Development										İ				}	}	<b>[</b>	1	1	}	
1. Jungle Clearing	4,660	Acres	24,145												Ī				1	
2. Land Levelling	6,300	. ا	1			18,584				[			ļ	}	}		}	07.36	}	1
3. Ripping and Cross Ripping	6,300	11										<u> </u>		<u> </u>		<u> </u>	ļ	23,162	<b> </b>	-
Total			41,168	3,057	15,040	31,836	6,627	38,401	9,501	1,705	13,996	27,987	6,717	35,747	2,640	9,501	1,315	23,162	12,232	

Table 9 - 2 Progressive Schedule of Equipment

2. Findenteed   -37.5(1), N.G(1), N.G(2)   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B.   S.D.B						open ha angag philis ("de haire anna phreimeirae neur magas ga bhaire mid agus a		
17.8(1)   37.0   31.1 Tractor will be 2. Releasement   37.8(2)   37.0   31.1 Tractor will be 2. Releasement   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1)   37.8(1		lst Year	2nd Year	3rd Year	4th Year	5th Year	6th Year	Remarks
2. Relationset  5. Residing Stateward (gravard)  1. daugle Clearing in Real area  1. daugle Clearing in Real area  1. daugle Clearing in Real area  1. daugle Clearing in Real area  1. daugle Clearing in Real area  1. daugle Clearing in Real area  1. daugle Clearing in Real area  1. daugle Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real area  1. days Clearing in Real are	Item 1. ACQUISITION ACCESS and ROAD DEVIATIONS	WQ4084644	<b>6 M</b>		,			
3. Reduling Historial (graves)	1. Jungle Clearing in the Access Roads		LT.D(1)			·		NT.D ; Cl.1 Tractor will Dozer
The state   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   De	2. Embankment		ST.S(1), M.G(1)	, W.B(1)				· · · · · · · · · · · · · · · · · · ·
1. Jungle Clearing in Bon Area 2. Jungle Clearing in Borrow Area 3. Stripping 28* rop Soil for Filling Date 4. Stripping 12* rop Soil in the Borrow Area 5. Excession Common in Core Tencholes and Spail to Maste 6. Excentation Common in Core Tencholes and Spail to Maste 7. Sankth Sork in Formation of Ban From Energy Area 8. Hippon Protection for 91/8 Slope of Date (rock) 9. Hippon Protection for 91/8 Slope of Date (rock) 9. Hippon Protection for 91/8 Slope of Date (rock) 10. Tore Filter with Shand Graves) Netal road Subble for Ban 11. Coffee Damanie, Declaring yith Matter, etc. 12. Jungle Rock Revervation in Foundation 1. Serial Excession 1. Serial Excession 1. Common Concrete with Normal Reinforcement, etc. 1. Emphasing y 1. Serial Excession (rough) Silver of the dam) 1. Serial Excession (rough) Silver of the dam) 1. Serial Excession (rough) Silver of the dam) 1. Serial Excession (rough) Silver of the dam) 1. Serial Excession (rough) Silver of the dam) 1. Serial Excession (rough) Silver of the Gapil to waste) 1. Serial Excession (rough) Silver of the Gapil to waste) 1. Construction of L.B. Silvices 2. Construction of R.B. Silvices 2. Construction of R.B. Silvices 2. Construction of R.B. Silvices 3. Construction of Distributory Channel, Field Channel, etc. 3. Construction of Distributory Channel, Field Channel, etc. 3. Construction of Distributory Channel, Field Channel, etc. 3. Construction of Distributory Channel, Field Channel, etc. 3. Construction of Distributory Channel, Field Channel, etc. 3. Construction of Distributory Channel, Field Channel, etc. 3. Construction of Distributory Channel, Field Channel, etc. 3. Construction of Distributory Channel, Field Channel, etc. 3. Construction of Distributory Channel, Field Channel, etc. 3. Construction of Distributory Channel, Field Channel, etc. 3. Construction of Distributory Channel, Field Channel, etc.	3. Bedding Material (gravel)		********* A.C(1), J	H(2), S.L(1), E.R.	.D(3), Cr(1), L.T(2)			
17.0(2)   17.0(3)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0(4)   17.0	Item 2. DAM BODY					30 M		· ·
2. Jungle Diserving in Berrow Area  17.0(1)  3. Sultiping 28" Top Soil for Filling Dum  4. Striping 12" Top Soil in the Deriver Area  5. Exception Common in Come Trunches and Spail to Wastes  6. Recentation Common in Come Trunches and Spail to Wastes  6. Recentation Common in Come Trunches and Spail to Wastes  7. Earth Sork in Formation of Dum Pron Europe Area  9. Highey Protection for U/S Slope of Dum (rock)  9. Highey Protection for U/S Slope of Dum (rock)  10. Top Filter with Sand Gravel Netal and Rubble for Dum  11. Coffer Dassing, Dealing with Water, etc.  12. Journ Rock Recentation in Poundation;  2. Journ Rock Recentation in Poundation;  2. Journ Rock Recentation in Poundation;  3. General Commonst delifer Commons, etc.  4. Earthwork in Spillway Tail Channel (apoil to waste)  5. Earthwork in Spillway Tail Channel (for the dam)  5. Recent Commonst delifer Commons, etc.  6. Earthwork in Spillway Tail Channel (for the dam)  1. Destruction of Lis Slutes	l, Jungle Clearing in Dam Area		1T,D(2)					
4. Stripping 12" Top Soil in the Barrow Area  5. Recaration Camen in Core Trenches and Spoil to Weste 6. Streamation Camen in Core Trenches and Spoil to Weste 7. Earth Sank in Formation of Das From Source Area 8. T.R(2), M.S(2), T.S.R(2), M.S(2) 8. R.R(2), M.S(2), T.S.R(2), M.S(2) 8. R.R(2), M.S(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2) 8. R.R(2), M.S(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8. R.R(2), M.S(2) 8.	2. Jungle Clearing in Borrow Area	•	весплания 1Т	D(1)				· ·
1. Stripping 12 "top Soil in the Horrow Area  5. Excavation Common in Core Tranches and Squil to Maste  6. Excavation Common in Core Tranches and Squil to Maste  7. Earth Sori in Formation of Dam From Borrow Area  8. F.R(2), M.S(2), M.S(2), M.S(2), M.S(2), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3), M.S(3	3. Stripping 24" Top Soil for Filling Dam		escarces 1	T.D(3)		į		
5. Excavation Common in Core Trenches and Spoil to Weste 6. Excavation Common in Core Trenches and for the Ban 7. Earth Sork in Formation of Dam From Energy Area 8. Riprap Protection for U/S Slope of Daw (rook) 9. Riprap Protection for U/S Slope of Daw (grave) 10. To replicate with Sand Grave Metal and Mubble for Daw 11. Coffer Dawning, Decling with Nater, etc. 12. Loung Rook Excavation in Foundation 13. Control of Dawning Rook Excavation in Foundation 14. Earth Excavation in Foundation 15. Earthwork in Spillway Tail Channel (spoil to waste) 16. Earthwork in Spillway Tail Channel (for the daw) 16. Earthwork in Spillway Tail Channel (trot the daw) 17. Control of R.B. Sluices 17. Construction of R.B. Sluices 17. Construction of R.B. Sluices 17. Loung Rook 18. Lub, Main Channel 19. Lub, Main Channel 20. R.B. Main Channel 21. Lub Rook Rook Rook) 22. Land Leveling 23. R.B. Main Channel 24. R.B. Main Channel 24. R.B. Main Channel 24. R.B. Main Channel 24. R.B. Main Channel 25. Rand Channel 26. R.B. Main Channel 26. R.B. Main Channel 27. R.B. Main Channel 28. R.B. Main Channel 29. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 21. Land Leveling 21. Land Leveling 21. Land Leveling 22. Land Leveling 23. Land Leveling 24. Land Leveling 25. Land Leveling 26. R.B. Main Channel 26. R.B. Main Channel 27. Land Leveling 27. Land Leveling 28. Land Leveling 29. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveling 20. Land Leveli	4. Stripping 12" Top Soil in the Borrow Area		da Av	T.D(	)			1
7. Earth Sork in Formation of Dam From Borrow Area  2.7. 8.(2), 8.3(6), 8.3(2)  2.7. 8.(2), 8.3(6), 8.3(2)  3.8. 1 dack Research 2.7. 3.8(2)  8. Riprap Protection for U/S Slope of Dam (rock)  9. Riprap Protection for U/S Slope of Dam (gravet)  10. Toe Filter with Sand Gravel Metal and Rubble for Dam  11. Coffer Damming, Dealing with Natar, etc.  11. Sarth Excavation in Foundation  2. Louise Rock Excavation in Foundation  2. Louise Rock Excavation in Foundation  2. Louise Rock Excavation in Foundation  3. General Concrete with Romanal (spoil to waste)  5. Earthwork in Spillway Tail Channel (for the dom)  6. Earthwork in Spillway Tail Channel (for the dom)  6. Earthwork in Spillway Tail Channel (for the dom)  7. Earthwork in Spillway Tail Channel (training bunds)  1. Construction of R.B. Sluices  2. Construction of R.B. Sluices  1. L.B. Rein Channel  3. Construction of R.B. Sluices  4. Construction of R.B. Sluices  4. Construction of Spillway Tail Channel, Fleid Channel, etc.  4. R.B. Rain Channel  3. Construction of Dam Frow Borrow Area  2. R.B. Rain Channel  3. Construction of Dam Frow Borrow Area  2. Land Levelling  3. Construction of Dam Frow Borrow Area  2. Land Levelling  3. Construction of P.B. Sluices  3. Construction of Dam Frow Borrow Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon Area  4. Cannon	5. Excavation Common in Core Trenches and Spoil to Waste		назапо 1.	T.D(1), ST.S(1), 21	.D(1)			
7. Serits Sork in Portaction for Us Slope of Dan (pack)  9. Riprap Protection for U/S Slope of Dan (pack)  10. Toe Filter with Sand Gravel Metal and Rubble for Dan  11. Coffor Dessing, Dealing with Water, etc.  12. Loue Rock Excavation in Foundation  2. Loue Rock Excavation in Foundation  2. Loue Rock Excavation in Foundation  3. Cerent Concrete with Rosinal Reinforcement, etc.  4. Reinfurer in Spillway Tail Chemnel (spoil to waste)  5. Earthwork in Spillway Tail Chemnel (for the dam)  6. Earthwork in Spillway Tail Chemnel (for the dam)  1. Construction of L.B. Sluicee  2. Construction of R.B. Sluicee  2. Construction of R.B. Sluicee  3. Construction of R.B. Sluicee  3. Construction of R.B. Sluicee  3. Construction of R.B. Sluicee  3. Construction of R.B. Sluicee  4. Construction of R.B. Sluicee  3. Construction of R.B. Sluicee  4. Construction of R.B. Sluicee  4. Construction of R.B. Sluicee  5. Construction of R.B. Sluicee  6. Earth Romel  7. R.B. Main Channel  7. R.B. Main Channel  7. R.B. Main Channel  7. S.R. M.B. Main Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. M.B. Channel  7. S.R. M.B. M.B. Channel  7. S.R. M.B. M.B. Ch	6. Excavation Common in Core Trenches and for the Dam		********** S	T.R(2), M.S(2), M.C	(2), 2T.S.R(2), W.B	(2)	•	- I
### A.C(2), J.H.(4), S.L(1), E.R.D(5)   W.F.   Water Bowser   S.L(1), E.R.D(5)   V.F.   Water Bowser   S.L(1), E.R.D(5)   S.L(1), E.R.D(5)   C.M.   Concrete Mixer   S.L(1), E.R.D(5)   C.M.   Concrete Mixer   S.L(1), E.R.D(5)   C.M.   Concrete Mixer   S.L(1), E.R.D(5)   C.M.   Concrete Mixer   S.L(1), E.R.D(5)   C.M.   Concrete Mixer   S.L(1), E.R.D(5)   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M.   C.M	7. Earth Sork in Formation of Dam From Borrow Area			€mm-messee Petrimon	S.T.	R(2), M.S(6), M.G( S.R(2), W.B(2)	2)	
10. Toe Filter with Sand Gravel Metal and Rubble for Dom  11. Coffer Damming, Dealing with Water, etc.  12. Loue S. SPILMAY  11. Earth Excavation in Foundation  22. Loue Rock Excavation in Foundation  33. Cenent Concrete with Nominal Reinforcement, etc.  44. Earthwork in Spillway Tail Channel (spoil to waste)  55. Earthwork in Spillway Tail Channel (for the dam)  65. Farthwork in Spillway Tail Channel (for the dam)  66. Farthwork in Spillway Tail Channel (training bunds)  11. Construction of L.B. Sluices  27. Construction of R.B. Sluices  28. Construction of R.B. Sluices  29. Construction of R.B. Sluices  40. EMM SCHITTES  10. L.B. Main Channel  20. R.B. Main Channel  21. Construction of Distributory Channel, Field Channel, etc.  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Channel  40. EMM SCHITTES  40. L.B. Main Cha	8. Riprap Protection for U/S Slope of Dam (rock)				1		i), E.R.D(5)	1
10. Coffer Parking, Bealing with Water, etc.    Include Parking, Bealing with Water, etc.   Including 7	9. Riprap Protection for U/S Slope of Dam (gravel)				**************************************	(1), E.R.D(3)	·	C.M ; Concrete Mixer
16 m   3. SPILIMAY   16 m   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17.D(2), ST.S(2)   17	10. Toe Filter with Sand Gravel Metal and Rubble for Dam			ээтника A.C(3), J.H(	6), S.L(1), E.R.D(8	), Cr(1), L.T(3)	1	F.T ; Farm Tractor
1. Earth Excavation in Foundation 2. Louse Rock Excavation in Foundations, 2 3. Cerent Concrete with Nominal Reinforcement, etc. 4. Earthwork in Spillway Tail Channel (spoil to waste) 5. Earthwork in Spillway Tail Channel (for the dam) 6. Earthwork in Spillway Tail Channel (training bunds) 7. Construction of L.B. Sluices 2. Construction of L.B. Sluices 2. Construction of R.B. Sluices 3. L.B. Hain Channel 4. L.B. Hain Channel 5. RERIGATION FACILITIES 1. L.B. Hain Channel 3. Construction of Distributory Channel, Fleld Channel, etc. 4. Supplies the second of the Channel (training bunds) 4. L.B. Hain Channel 5. Construction of Distributory Channel, Fleld Channel, etc. 4. Supplies the second of the Channel (training bunds) 5. Construction of Distributory Channel, Fleld Channel, etc. 6. LAND DEVELOPMENT 6. LAND DEVELOPMENT 6. LAND DEVELOPMENT 7. Jungle Clearing 7. Land Levelling 7. Supplies the second of the Channel (training bunds) 7. L.B. Land Levelling 7. Supplies the second of the Channel (training bunds) 7. Jungle Clearing 7. Supplies the second of the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Supplies the Sup	11. Coffer Damming, Dealing with Water, etc.			incl	uding 7			
2. Louse Rock Excavation in Foundations (	Item 3. SPILLWAY				18 M			· ·
3. Cenent Concrete with Nominal Reinforcement, etc.  4. Barthwork in Spillway Tail Channel (spoil to waste)  5. Earthwork in Spillway Tail Channel (for the dam)  6. Earthwork in Spillway Tail Channel (training bunds)  17.D(1), ST.S(1), M.S(6), M.S(2), 27.S.R(2), W.B(2)  17.D(1), ST.S(1), M.G(1), 27.S.R(1), W.B(1)  18. Stuices  19. Construction of L.B. Stuices  2. Construction of R.B. Stuices  2. Construction of R.B. Stuices  19. REIGATION PACILITIES  19. L.B. Main Channel  2. R.B. Main Channel  3. Construction of Distributory Channel, Field Channel, etc.  19. L.B. Main Channel  3. Construction of Distributory Channel, Field Channel, etc.  19. L.B. Land Levelling  19. L.B. Land Levelling  19. L.B. Land Levelling  19. L.B. Land Levelling  19. L.B. Land Levelling  19. L.B. Land Levelling  19. L.B. Land Levelling  19. L.B. Land Levelling  19. L.B. Land Levelling  19. L.B. Land Levelling  19. L.B. Land Levelling	1. Earth Excavation in Foundation		6226	-1T.D(2), ST.S(2)				
4. Barthwork in Spillway Tail Channel (spoil to waste)  5. Earthwork in Spillway Tail Channel (for the dam)  6. Earthwork in Spillway Tail Channel (training bunds)  1. Construction of L.B. Sluices  2. Construction of R.B. Sluices  1. L.B. Main Channel  2. R.B. Main Channel  3. Construction of Distributory Channel, Field Channel, etc.  1. Jungle Clearing  2. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling  1. Land Levelling	2. Louse Rock Excavation in Foundation			A.C(4),	   J.H(8), S.L(2), B.A	R.D(4)		
5. Earthwork in Spilway Tail Channel (for the dam) 6. Earthwork in Spilway Tail Channel (training bunds) 7. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bunds) 8. Earthwork in Spilway Tail Channel (training bund	3. Cement Concrete with Nominal Reinforcement, etc.			Cr(	1 1), L.T(1), C.M(2)	ĺ		
5. Earthwork in Spillway Tail Channel (for the dam) 6. Earthwork in Spillway Tail Channel (training bunds) 1. Construction of L.B. Sluices 1. Construction of L.B. Sluices 2. Construction of R.B. Sluices 1. L.B. Main Channel 2. R.B. Main Channel 3. Construction of Distributory Channel, Field Channel, etc. 4. LAND DEVELOPMENT 1. Jungle Clearing 2. Land Levelling  ST.R(2), M.S(6), M.C(2), 2T.S.R(2), W.B(2) 1. T.D(1), ST.S(1), M.C(1), 2T.S.R(2), W.B(2) 1. T.D(1), ST.S(1), M.C(1), 2T.S.R(2), W.B(2) 1. T.D(1), ST.S(1), M.C(1), 2T.S.R(2), W.B(2) 1. T.D(1), ST.S(1), ST.S(1), Exc(1), L.T(1) 1. T.D(1), ST.S(1), ST.S(1), Exc(1), L.T(1) 1. T.D(1), ST.S(1), ST.S(1), Exc(1), L.T(1) 1. T.D(2) 1. T.D(3) 1. T.D(3) 1. T.D(5) 1. T.D(5) 1. T.D(5) 1. T.D(6) 1. T.D(7) 1. T.D(8) 1. T.D(8) 1. T.D(9) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(2) 1. T.D(3) 1. T.D(4) 1. T.D(5) 1. T.D(5) 1. T.D(6) 1. T.D(7) 1. T.D(8) 1. T.D(8) 1. T.D(8) 1. T.D(9) 1. T.D(9) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1) 1. T.D(1)	4. Earthwork in Spillway Tail Channel (spoil to waste)			Tr.	l D(2), ST.S(2)			
6. Earthwork in Spillway Tail Channel (training bunds)  1. Construction of L.B. Sluices  2. Construction of R.B. Sluices  2. Construction of R.B. Sluices  1. L.B. Main Channel  2. R.B. Main Channel  3. Construction of Distributory Channel, Field Channel, etc.  1. L.B. Distributory Channel, Field Channel, etc.  1. Jungle Clearing  2. Land Levelling	5. Earthwork in Spillway Tail Channel (for the dam)				)	T.S.R(2), W.B(2)		
1. Construction of L.B. Sluices 2. Construction of R.B. Sluices 39 M 1. L.B. Main Channel 2. R.B. Main Channel 3. Construction of Distributory Channel, Field Channel, etc.  1. L.B. Distributory Channel, Field Channel, etc.  1. Jungle Clearing 2. Land Levelling 3. Construction of Distributory Channel, Field Channel, etc.	6. Earthwork in Spillway Tail Channel (training bunds)		<b>\</b> .		1		<u>'</u> 	
2. Construction of R.B. Sluices    Cr(1), L.T(1), C.M(1)	Item 4. SLUICES (outlet works)	·						1
2. Construction of R.B. Sluices  Item 5. IRRIGATION FACILITIES  1. L.B. Main Channel  2. R.B. Main Channel  3. Construction of Distributory Channel, Field Channel, etc.  1. LAND DEVELOPMENT  1. Jungle Clearing  2. Land Levelling  39 M  17. D(1), 2T. D(1), ST. S(1), Exc(1), L.T(1)  L.T(1), N.G(1), 2T.S.R(1), W.B(1)  L.T(1), N.G(1), 2T.S.R(1), W.B(1)  3. ST.R(4)	1. Construction of L.B. Sluices							
1. L.B. Main Channel  2. R.B. Main Channel  3. Construction of Distributory Channel, Field Channel, etc.  1. Jungle Clearing  2. Land Levelling  3. L.B. Main Channel  3. L.T(1), 2T.B(1), 2T.B(1), Exc(1), L.T(1)  4. L.T(1), M.G(1), 2T.S.R(1), W.B(1)  5. L.T(1), M.G(1), 2T.S.R(1), W.B(1)  4. L.T(1), M.G(1), 2T.S.R(1), W.B(1)  5. Land Levelling  3. Construction of Distributory Channel, Field Channel, etc.  1. Jungle Clearing  3. Land Levelling	2. Construction of R.B. Sluices			<del>nc∞amoo</del> Cr(	1), L.T(1), C.M(1)			
2. R.B. Main Channel  3. Construction of Distributory Channel, Field Channel, etc.  tem 6. LAND DEVELOPMENT  1. Jungle Clearing  2. Land Levelling	tem 5. IRRIGATION FACILITIES	~- <del></del>					39 M	-
2. R.B. Main Channel  J/C E/W 1T.D(1), 2T.D(1), ST.S(1), Exc(1)  3. Construction of Distributory Channel, Field Channel, etc.  tem 6. LAND DEVELOPMENT  1. Jungle Clearing  2. Land Levelling  ST.R(4)	1. L.B. Main Channel			J/C E/W	1T.D(1), 2T.D(1)	ST.S(1), Exc(1),	L.T(1)	
1. Jungle Clearing  2. Land Levelling  ST.R(4)	·			<u>3/c</u>	E/W 1T.D(1). 2	/, w.b(1) 2T.D(1), ST.S(1). E	xc(1)	
tem 6. LAND DEVELOPMENT  1. Jungle Clearing  2. Land Levelling  ST.R(4)	3. Construction of Distributory Channel, Field Channel, et	· •			L.T(1), M.	.c(1), 2T.S.R(1), W	.B(î)	
2. Land Levelling		<del></del>	<del></del>				4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	<del>-</del>
2. Land Levelling			ĺ	10000		1T.D(5)		
			1			70(3)	ST.R(6)	
	3. Ripping and Cross Ripping						F.T(3)	4th Year 23% 1,450 Acres

Table 9-3 Machinery Programme

Equipment & Machinery	lst Year	2nd Year	3rd Year	4th Year	5th Year	6th Year	Notes
Cl.1 Tractor (21 ^t , 180 ~ 200 ^{p. s}	) 0	4	(5)	5	0	0	
Dozer (4,265 ^B x 1,013 ^H mm)	0	4	(5)	5	0	0	Cl.1 Tractor
28.2 Tractor (15 ^t , 130 ^{p.s.} )	0	3	(4)	4	0	0	
Dozer (3,825 x 923 mm)	0	(1)	1	. 1	0	0	Cl. 2 Tractor
Cl. S Tractor (32 ^t , 300 ^{p.s.} )	,0	(4)	4	4	4	1	
Dozer (4,065 x 1,360 mm)	ø	2	3	(4)	4	1	Cl.S Tractor
Rooter (N=3)	0	2	3	(4)	4	1	n
Scraper (12 m ³ )	0	(2)	2	1.	. 0	0	•
foter Scraper (11 m ³ )	0	2	(6)	6	• 0	0	
Sheep foot roller (2.9 ~ 5.6 t)	0	2	(3)	3	. 0	: · O.	Cl. 2 Tractor
loter grader (B=2.2m, 53Hp)	0	2	(3)	3	0	0	
xcavator (1.2m ³ , 145 ^{p.s.} )	0	o	(1)	1	0	. 0	
orry Tipper (4 ^t , 100 ^{p.s.} )	0	6	(7)	2	0	. 0	
ompresser	0	3	(4)	2	0	0	4
ack Hammer	0	6	(8)	4	0	0	
hovel Loader (1.2m ³ , 70 ^{p.s.} )	0	1	(2)	2	. 0	0	
uclid Rear Damp (15 ^t , 210 ^{p.s.} )	0	(8)	8	8	0	0	,
rusher (50 \ 90t/hr, 75 ^{p.s.} )	0	(1)	ı	1	0	0	
ump	0	0	(4)	4	4	0	
ater Bowser	0	2	(3)	3	0	0	* * *
uel Bowser	0	(2)	2	2	2	1	
еер	0	(4)	4	- 4	4	. 4	
oncrete Mixer (0.3m ³ , 5.5 ^{p.s.} )	0	0	(2)	2	0	0	
arm Tractor (5 ^t )	0	0	0	(3)	3 .	. 3	:
isk harrow (24° x 20)	0	0	. 0	(3)	3	3	offset type

( ) Max Nos

Fig. 9-1 Proposed Construction Schedule

Stripping	
Stripping   1	)
Jungle Clearing   Acres   196   Bases   Acres   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Bases   196   Ba	)
Stripping         Acres         196           Stripping         Cubes         103,800           Excavation         Cubes         249,100           Excavation         Cubes         249,300           Rigrap         Cubes         20,700           Excavation         Cubes         22,400           Rock Excavation         Cubes         2,400           Concrete         Oubes         2,400           R.B. Sluices         Cubes         120           R.B. Sluices         Cubes         120           R.B. Sluices         Cubes         35,000           R.B. Sluices         Concrete Works         Oubes         35,000           R.B. Main Canal         Acres         91           L.B. Main Canal         Acres         35,000           R.B. Main Canal         Acres         56,800           Barth Works         Acres         6,300           Barth Works         Acres         6,300           Barth Works         Acres         6,300           ent         Land Leveling         *         6,300           ent         Land Leveling         *         *           Rapping & Satipping         *         *	• • • • <b>• • • • • • • • • • • • • • • </b>
Excavation Cubes 103,800  Excavation Cubes 249,300  Riprap Cubes 24,100  Excavation Cubes 24,100  Rock Excavation Cubes 2,500  Concrete Cubes 2,500  Concrete Works Cubes 2,500  L.B. Sluices 80  L.B. Sluices Cubes 35,000  L.B. Main Canal Cubes 35,000  Earth Works Acres 91  L.B. Main Canal Cubes 35,000  R.B. Main Canal Cubes 35,000  R.B. Main Canal Cubes 35,000  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canes 6,300  R.B. Main Canal Canal Canes 6,300  R.B. Main Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal Canal C	• • • • • • • • • • • • • • • • • • •
Excevation Cubes 49,100  Excevation Cubes 24,100  Excavation Cubes 25,800  Concrete Sq.rt 2,400  Concrete Works Cubes 120  Concrete Works Cubes 120  Concrete Works Cubes 35,000  L.B. Main Canal Acres 91  L.B. Main Canal Acres 105  Earth Works Chees 35,000  R.B. Main Canal Acres 6,300  Earth Works Chees 6,300  Instributory & Acres 6,300  Field Chemical Chees 6,300  Wingle Clearing Acres 6,300  Earth Works Chees 6,300  Wingle Clearing Acres 6,300  Earth Works Chees 6,300  Wingle Clearing Acres 6,300  Earth Works Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical Chemical	• • B • • • •
Embanisment   Cubes 249,300	1 B 1 1 1 1 1
Riprap   Cubes 20,700   Rock Excavation   Cubes 244,100   Rock Excavation   Cubes 25,800   Concrete   Cubes 2,500   Concrete Works   Cubes 120   Concrete Works   Cubes 120   Concrete Works   Cubes 2,400   Concrete Works   Cubes 2,500   Concrete Works   Cubes 35,000   Concrete Works   Cubes 35,000   Concrete Works   Cubes 35,000   Concrete Works   Cubes 35,000   Concrete Works   Cubes 35,000   Concrete Works   Cubes 35,000   Cubes 25,000	
Excavation	Management of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th
Rock Excavation Cubes 25,800  Concrete Cubes 2,500  Radial Gate sq.ft 2,400  L.B. Sluices Cubes 120  Concrete Works Cubes 80  Concrete Works Cubes 91  L.B. Main Canal Acres 91  L.B. Main Canal Cubes 75,000  R.B. Wain Canal Cubes 75,000  R.B. Wain Canal Cubes 75,000  B.B. Wain Canal Cubes 76,800  Distributory & Acres 6,300  Distributory & Acres 6,300  Congrete Works Acres 6,300  Concrete Works Acres 6,300  Concrete Works Acres 6,300  Concrete Works Acres 6,300  Concrete Works Acres 6,300  Concrete Works Acres 6,300  Concrete Works Acres 6,300  Concrete Works Acres 6,300  Concrete Works Acres 6,300  Concrete Works Acres 6,300	
Concrete   Cubes 2,500     Radial Gate   Sq.Tt 2,400     L.B. Sluices   Cubes   120     R.B. Sluices   Cubes   80     L.B. Main Canal   Acres   91     L.B. Main Canal   Acres   92     L.B. Wain Canal   Acres   105     R.B. Wain Canal   Acres   105     R.B. Wain Canal   Cubes   35,800     R.B. Wain Canal   Cubes   36,800     R.B. Wain Canal	
Radial Gate sq.ft 2,400  L.B. Sluices 120  R.B. Sluices 2005  R.B. Sluices 2005  R.B. Main Canal Acres 91  L.B. Main Canal Acres 35,000  R.B. Main Canal Acres 105  R.B. Main Canal Cubes 36,800  R.B. Main Canal Cubes 36,800  Distributory & Acres 6,300  Ungle Clearing Acres 6,300  ent Land Leveling " 6,300  Choss Ripping " 6,300  Choss Ripping " 6,300  Choss Ripping " 6,300	
L.B. Sluices Concrete Works R.B. Sluices Corcrete Works Corcrete Works Corcrete Works Corcrete Works L.B. Main Canal Jungle Clearing R.B. Main Canal Jungle Clearing R.B. Main Canal Jungle Clearing R.B. Main Canal Jungle Clearing R.B. Main Canal Jungle Clearing R.B. Main Canal Jungle Clearing R.B. Main Canal Jungle Clearing R.B. Main Canal Jungle Clearing R.S. Main Canal R.S. Main Canal R.S. Main Canal Jungle Clearing R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main Canal R.S. Main	REPORTED THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY
R.B. Sluices Cubes 80  L.B. Main Canal Acres 91  L.B. Wain Canal Cubes 75,000  R.B. Wain Canal Acres 105  R.B. Wain Canal Cubes 76,800  R.B. Main Canal Cubes 76,800  Distributory & Acres 6,300  Ungle Clearing Acres 6,300  Ungle Clearing Acres 6,300  Change Clearing Acres 6,300  Change Clearing Acres 6,300  Change Clearing Acres 6,300  Change Clearing Acres 6,300  Change Clearing Acres 6,300  Change Clearing Acres 6,300	
L.B. Main Canal Acres 91  L.B. Main Canal Cubes 35,000  R.B. Wain Canal Acres 105  R.B. Main Canal Acres 105  R.B. Main Canal Cubes 36,800  Distributory & Acres 6,300  Unigle Clearing Acres 6,300  Chingle Clearing Acres 6,300  Righing * 6,300  Choss Apping * 6,300  Choss Apping * 6,300	
L.B. Main Canal Cubes 33,000  R.B. Wath Canal Acres 105  R.B. Wath Canal Capal Cubes 36,800  Earth Works  Distributory & Acres 6,300  Ungle Clearing Acres 4,660  Ungle Clearing * 6,300  Choss Alphing * 6,300  Choss Alphing * 6,300	
R.B. Main Canal Acres 105  R.B. Wain Canal Cubes 36,800  Distributory & Acres 6,300  Ungle Clearing Acres 4,660  oungle Clearing Acres 6,300  Chiping # 6,300  Choss Ripping # 6,300  Choss Ripping # 6,300	
R.B. Main Canal Cubes 36,800 Earth Works Distributory & Acres 6,300 Field Channel Jungle Clearing Acres 4,660 Land Leveling # 6,300 Ripping # 6,300 Closs Ripping # 6,300 Sections of	ZOMBOZ.
Distributory & Acres 6,300  Field Channel, 4,660  Land Leveling 6,300  Ripping 6,500  Coss Elipsing 6,500	
Jumgle Clearing Acres 4,660 Land Leveling # 6,300 Ripping & 6,300 Closs Ripping # 6,300	
Land Leveling 6,300 Ripping 6 Cross Ripping 6,300 Coeff amont of	
Ripping & 6,300 Cross Ripping Scartisment of	
C +1010	
Acres 6,300	
Land Acquistion	

# X CONSTRUCTION COST

10.1 Construction Cost Whose Foreign Exchange Portion Consists of Both "Direct" and "Indirect" Foreign Exchange Components

From the original cost estimation made by ID on job basis have been isolated the land acquisition cost, construction machinery cost, repairs and maintenance cost of the machinery and price contingency has been added. As a result, the sum-total of the construction cost has experienced a considerable rise to Rs144,952,000 (US\$19,911,000 @US\$1.00 = Rs7.28) which is made up of Rs66,819,000 (US\$9,178,500) in foreign currency and Rs78,133,000 (US\$10,733,000) in local currency. The details of the construction cost is given in Table 10-1.

10.2 Alternative Construction Cost Estimates Allocating Some "Indirect" Foreign Exchange Component(s) to the Local Currency Portion

Alternative A: Fuel Cost being allocated to Local Currency Portion As shown in Table 10-4.

Alternative B: Fuel, Cement, Steel & Spillway Gates Costs being allocated to Local Currency Portion
As shown in Table 10-5.

# 10.3 Unit Cost

The unit cost used for calculating the construction cost has primarily been taken from the "Evaluation of Unit Prices and Rate Analysis" which is the standard document adopted by Sri Lanka Government. The unit cost given in this document, however, includes the depreciations and spare parts of the construction machinery and vehicles. Therefore, machinery and their spare parts have been isolated from them and put together under a cost item of "Construction Machinery." The unit costs which are not covered by the said standards have been computed from the similar lists and tables.

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

### 10.4 Machinery Cost

Necessary kinds of construction machinery and vehicles have been determined for each item of the construction work and their number has been estimated from the viewpoint of full and continuous use all through the construction period according to the construction Schedule shown in Fig. 9-1. Their life times have been determined according to ID's standard. Their prices are given in cif. Colombo, plus local handling charges rated at 8% of the machinery price. Depreciation cost has been computed by the following formula:

Depreciation Cost = Unit price x unused life time total life time

Spare parts and overhaul, = (cif Colombo + Local handling Charges)
x 25%

and the property of the contract of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the proper

Caramata to the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the St

Sec. Hills Bridge

CONTRACTOR OF STATE OF STATES

Apart from the construction machinery cost, costs for the labour of repairs and the maintenance and general supervision have been calculated at 25% and 8%, respectively, according to Sri Lanka standards.

# 10.5 Physical Contingencies

10.5% of the civil works cost has been computed as the physical contingencies.

### 10.6 Price Contingencies

"Evaluation of Unit Prices and Rate Analysis" quoted in the above specifies the inflation rate (1969-73) of 6.7% as applicable to the construction works (irrigation, highways, water supply, etc.). The Price contingencies have, therefore, been calculated assuming this rate for the initial year and the incremental rates for the ensuing years as follows:

Price contingencies have been calculated for each year of the construction period excepting for land acquisition and land settlement.

Table 10-1 Cost Estimate (Financial)

			( Unit	1,000 Rs )	
	Item	Total	Foreign	Local	
1.	Civil Works	59,300	16,740	42,560	
	Access & Road deviations	500	69	431	
	Dam structure	9,000	2,534	6,466	
	Spillway & Tail channel	12,000	3,874	8,126	
	Outlet works	900	313	587	
	Irrigation facilities	20,600	7,107	13,493	
	Land development	7,000	2,843	4,157	
	Repairs & Maintenance of machinery	9,300		9,300	
II.	Construction Machinery	35,600	33,500	2,100	
111	.Land Acquisition	1,000	~	1,000	
IV.	Land Settlement	5,300	2,650	2,650	
	Sub Total (I ∿ IV)	101,200	52,890	48,310	
v.	Engineering, Administration & Overhead Charge	10,000	1,500	8,500	
VI.	Physical Contingency (I) x 10%	5,930	1,674	4,256	
	Sub Total (I∿VI)	117,130	56,064	61,066	
VII	Prices Contingency (I + II + V + VI) x 25%	27,822	10,755	17,067	
	Total .	144,952	66,819	78,133	

~
(2
stimate
t Est
Cos

			_						
	, , , , , , , , , , , , , , , , , , ,	4444	t (1	Total	Fox	Foreign	r S	Local	บีกน้ะ
Les Grigorion	units	units Quentities	х и о	Amount	Rate	Cost	Rate	Cost	Cost No.
			(Rs.)	(1,000Rs)	(Rs)	(1,000Rs)	(Rs)	40	1
Item 3. Spillway & Tail Channel				12,000		3,873.5		8,126.5	
Earth excavation in foundation	Cubes	25,500	4.5	114.8	1.5	38.3	0.0	76.5	<b>7</b>
Loose rock excavation	F		5 E	2,038.2	59	748.2	SO	1,290.0	iń H
Concrete with nominal reinforcement etc.	£		1,059	2,647.5	188	470.0	871	2,177.5	91
Earthwork in spill tail channel (to waste)	5		6.3	471.2	~	149.6	4.3	321.6	17
" (for the dam)	=		11.2	1,224.2	ه. ه.	393.5	7.6	830.7	۲
" (training bund)	2	34,500	04	345.0	3.5	110.4	8.0	234.6	œ
Radial gate (20° x 20 SNos)	sg-ft	2,400	1,540	3,696.0		1,478.4		2,217.6	
Grout	41 11	680	200	136.0		54.4		81.6	
Other (reserve of gate etc.)	Htem	H	Sum	1,327.1		418.7		908.4	
Item 4. Sluices (Outlet works)				006		312.9		587.1	
Construction of L.B sluice (concrete works)	Cubes		1,067	128.0	190	22.7	877	105.3	6
" others	tem	rH	Sum	372.0		149.0		223.0	
Construction of R.B sluice (concrete works)	Cubes		1,067	85.4	190	15.3	877	70.1	o H
" others	H t e H		Sum	314.6		125.9		188.7	
Item 5. Irrigation Facilities				20,600		7,107.2		13,492.8	
Cost of 13.3 miles of L.B main canal									
" jungle clearing	Acres	رق	263	23.9	83	7.5	180		rd
" earthwork (1)	Cubes	23,100	တ်	226.4	3.7	71.6	6.7	~1	20
" (2)	=	006,6	14.3		4.4	40.6	10.2		21
" lelated structures	Item	r-l	Sum	1,332.7		799.6		533.1	
Cost of 16.2 miles of L.B main canal									
" jungle olearing	Acres	105	263	27.6	83	8.7	180	18.9	rH

e Θ
~
timate
£O.
មា
t)
8

Description   Units Quantities Rate   Total   Foreign   Lioosa   Sate   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost   Cost							Continued		,	
Cubes 25,800 9.8 252.8 3.1 80.0 6.7 11,000 14.3 157.3 4.1 45.1 10.2 3.    Intem 1 sum 1,742.7 1,045.6 3.    Acres 6,300 900 5,670.0 1,701.0 5,835.0 6,300 250 1,575.0 2,835.0 6,300 217 1,225.6 83 386.8 180 6,300 217 1,225.6 83 386.8 180 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 21.00.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 16,739.6 26,400.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,200.0 2,2	Description	Units	Quantities	Rate	Total Amount	Rate	וטו	Sate Lo	Cal	Unit Cost W
Cubes 25,800 9.8 252.8 3.1 80.0 6.7  " 11,000 14.3 157.3 4.1 45.1 10.2  " sum 1,742.7 1,045.6 3,  " 6,300 1,500 9,450.0 2,835.0 6,83  " 6,300 1,500 9,450.0 2,835.0 6,300  " 6,300 250 1,575.0 2,835.0 6,300  " 6,300 217 1,225.6 83 386.8 180 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 217 1,367.1 74 466.2 143 6,300 21 1,895.4 2,342.9  Item 7,100.0 7,7,100.0 2,2,100.0 16,739.6 24,22,100.0 16,739.6 24,22,100.0 16,739.6 24,22,100.0 16,739.6 2,7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0 7,100.0				(Rs)	(1,000Rs)	(Rs)	(1,000Rs)	(Rs)	\	3
s Item 1 sum 1,742.7 4.1 45.1 10.2  Sacres 6,300 900 5,670.0 1,701.0  6,300 1,500 9,450.0 2,835.0  6,300 250 1,575.0 472.5 1,701.0  7,000 2,842.9 4,701.0  8,000 217 1,255.6 83 386.8 180  6,300 217 1,367.1 74 466.2 143  6,300 217 1,367.1 74 466.2 143  6,300 217 1,367.1 74 466.2 143  9,300 9,701.0  1 sum 4,098.6 1,895.4 2,701.0  1 sum 2,200.0 2,701.0  1 sum 28,500.0 26,400.0 2,700.0  2,7100.0 7,100.0 7,700.0 2,7100.0 7,700.0 2,700.0 2,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7,700.0 7	Cost of 16.2 miles of earthwork (1)	Cubes	25,800	ω σ	252.8	~	ς α	4		(
rem 1,742.7 1,045.6 10.2  Acres 6,300 900 5,670.0 1,701.0 3,6,300 1,500 9,450.0 2,835.0 6,300 250 1,575.0 2,842.9 4,72.5 1,000 2,842.9 4,72.5 1,25.6 83 386.8 180 4,000 21 1,25.6 83 386.8 180 4,000 21 1,25.6 83 386.8 180 4,000 21 1,25.6 83 386.8 180 4,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,0	Earthwork (2)	:	000 11	~	C 177	} ·	) (	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.7/1	₹
Acres 6,300 900 5,670.0 1,701.0 3,6300 1,500 9,450.0 2,835.0 6,300 1,500 9,450.0 2,842.9 4,701.0 2,842.9 4,7000 2,842.9 4,7000 2,842.9 4,7000 2,842.9 4,7000 2,842.9 4,7000 2,842.9 4,7000 2,842.9 4,7000 2,842.9 4,7000 2,842.9 4,7000 2,842.9 4,7000 2,842.0 2,842.9 4,7000 2,842.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0 2,942.0	" Lelated structures	+ 4 4 8	222	) 	, (		7.0%	70.2	112.2	21
### 1,701.0  ### 2,300 1,500 9,450.0  ### 2,835.0  ### 3,805.8  ### 3,807.1  ### 3,807.1  ### 3,807.1  ### 3,807.1  ### 3,807.1  ### 4,098.6  ### 1,895.4  ### 2,200.0  ### 2,200.0  ### 3,500  ### 3,500  ### 3,500  ### 3,500  ### 3,500  ### 3,500  ### 3,500  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,500.0  ### 3,5	distri	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	4 C		1.25/11				697.1	
" " " " " " " " " " " " " " " " " " "	" Field channels	() 1) 1) 1)		) () ()	0.0/0.0				3,969.0	
Acres 4,660 263 1,225.6 83 386.8 180  " 6,300 217 1,367.1 74 466.2 143  ses Item 1 sum 4,098.6 1,895.4 2,  " 2,200.0 9,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 - 2,  " 2,200.0 - 2,  " 2,200.0 - 2,  " 2,200.0 - 2,  " 2,200.0 - 2,  " 2,200.0 - 2,  " 2,200.0 - 2,  " 2,200.0 - 2,  " 2,200.0 - 2,  " 2,200.0 - 2,  " 2,200.0 - 2,  " 2,200.0 - 2,200.0 - 2,  " 2,200.0 - 2,200.0 - 2,  " 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200	" drainage channels	:	00°, 0	0000	45.0 0.0		2,835.0	-	6,615.0	
Acres 4,660 263 1,225.6 83 386.8 180  " 6,300 217 1,367.1 74 466.2 143 308.7 15 94.5 34 2,300 49 308.7 15 94.5 34 2,200 9,7  " 2,200.0 2,7  " 2,200.0 2,7  " 2,200.0 2,7  " 2,200.0 2,7  " 2,200.0 2,7  " 2,200.0 2,7  " 2,200.0 2,7  " 2,200.0 2,7  " 2,200.0 2,7  " 2,200.0 2,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 7,7  " 2,200.0 - 7,7  " 2,200.0 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,200.0 - 7,7  " 2,				) )	0/0		4/2.5		1,102.5	
Acres 4,660 263 1,225.6 83 386.8 180  " 6,300 217 1,367.1 74 466.2 143  ses Item 1 sum 4,098.6 1,895.4 2,  " 7,100.0 9,  " 2,200.0 7,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 2,200.0 2,  " 16,739.6 42,  " 2,200.0 2,  " 1,000.0 33,500 26,400.0 2,  " 7,100.0 7,100.0 2,	Item 6. Land Development				7,000.		2,842.9		4.157.1	
ses Item 1 sum 28,500.0 26,400.0 2,71	Jungle clearing (New Land)	4 0 1 0 1	4	525		ć		•		
ses Item 1 sum 28,500.0 26,405.0 26,2 143  ses Item 2 sum 4,098.6 1,895.4 2,  1,100.0 9,  2,200.0 7,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 2,  2,200.0 - 2,200.0 - 2,  2,200.0 - 2,200.0 - 2,  2,200.0 - 2,200.0 - 2,  2,200.0 - 2,200.0 - 2,  2,200.0 - 2,200.0 - 2,  2,200.0 - 2,200.0 - 2,  2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0 - 2,200.0	Land leveling	2	000	7 6			386.8	180	838.8	
ses Item 2 308.7 15 94.5 34  lery	Ripping and cross ripping	:	000,00	777	1,36/.1	14	466.2	143	6.006	23
ltem 1 sum 28,500.0 1,895.4 1,895.4 1,895.4 1,895.4 1,895.4 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,100.0 1,	foreseen	£ ↓	0, 300 0, 300 1, 300	4. W	308.7	<u>ل</u> 3		34	214.2	23
1tem 1 sum 28,500.0 7,100.0 - 2,200.0 16,739.6 4,240.0 15,740 26,400.0 15,700.0 15,700.0 15,740 26,400.0 15,700.0 7,100.0 7,100.0		j J	•1	S THE	4,098.6		895		2,203.2	
Item 7,100.0 2,200.0 2,200.0					0	, 1		-	(	
7,100.0 2,200.0	Recaire (Maricia or 1 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to	i				ŧ	I		005,7	
" 2,200.0 59,300 16,739.6 = 16,739.6 = 16,740 = 35,600 33,500 26,400.0	Maintenancy and general supervision	I tem			7,100.0	ı	. 1		7,100.0	
59,300 16,739.6 = 16,739.6 = 16,739.6 = 35,600 33,500 26,400.0 1 7,100.0 7,100.0	(Machinery cost x 25%)	*			2,200.0	1	i.		2,200.0	
"=16,740	Sub Total (Item 1 ~ 7)				59,300			7	12.560.7	
35,600 33,500 Item 1 sum 28,500.0 26,400.0 1 7,100.0 7,100.0						,,,	ı İ	, <u>}</u>	=42,560	
Item 1 sum 28,500.0 26,400.0					35,600		33.500		00.5	
lem 1 sum 28,500.0 26,400.0 1 " 7,100.0 7,100.0	Machinery Cost + F T C T management	į							2001	:
	Overhaul & spares (Machinery x 25%)	rem "	rd rd	mns "	28,500.0 7,100.0		26,400.0 7,100.0		2,100.0	
Lema Acquisition Item 1 Sim 1 000	Item 9. Land Acquisition	Item	r-t	. according	000-1					

ŀ	-				1	Total.	04	Foreign	Local	Chit
	:	Description	Units Q	Units Quantities	Жр. 4	Amount	Rate	Cost	Rate Cost	Cost No.
۱,			:		(RS)	(1,000Rs)	(Rs)	(1,000Rs)	(Rs) (1,000Rs)	
	Item 10.	Item 10. Land Settlement				5,300		2,650	2,650	
	Settlemen	Settlement of colonists	Acres	900	400	2,520.0		1,260.0	1,260.0	
	Others	octal initasticulae Others	Item	) rd	) 1	71.0		0.10 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 1	25.55 35.55	
		Sub Total (I~10)				101,200		52,890	48,310	
	Item 11.	Engineering, Administration & Overhead Charge		<b>H</b>	ms	10,000		1,500	8,500	
	Item 12.	Physical Contingency (Item 1 ~ 7) x 10%	Ltem	н	um s	5,930		1,674	4,256	
		Sub Total (Item 1°12)				021,711		56,064	61,066	
	Item 13.	Prices Contingency (Item 1 ~ 8.11.12) x 24.8%	Item	н	s um	27,822		10,755	17,067	
		Total		·		144,952		66,819	78,133	

Annual Disbursement of Financial Cost Table 10-3

	F	١.	1				1
WOLKS	10001	TSC Kedz	zna zear	ord rear	tear tear	zear vac	ocn rear
Civil Works	59,300	1	2,010	14,000	18,170	15,050	10,070
Foreign Currency	,16,740	1	009	3,560	5,030	4,610	2,940
Local Currency	42,560	. 1	1,410	10,440	13,140	10,440	7,130
II. Construction Machinery	35,600	r	35,600	1		ı	
Foreign Currency	,33,500	T'	33,500	ı	. 1	1	1
Local Currency	2,100	i	2,100		1		<b>↓</b> .
III. Land Acquisttion	1,000	1,000		1	i	ı	
Foreign Currency	1 '	l ~	ı	r	1	Ī	ı.
Local Currency	000'1,	000'1,	1:	1	i.	1	1
IV. Land Settlement	5,300	. 1		1,760	1,780	1,760	
Foreign Currency	,2,650	1	ı	088	068	088	
Local Currency	2,650	1		088,	068	088,	
V. Engineering, Administration	10,000	5,000	1,000	1,000	1,000	000°T	1,000
s Overnead charge	, r	1 500		i	. 1	1	
Local Currency	(8,500	(3,500	000,1)	, , , ,	,000,1	000,1	(1,000
VI. Physical Contingency	5,930	1	201	1,400	1,817	1,505	1,007
,Foreign Currency	1,674	Ì	60	356	503	461	294
Local Currency	4,256	i	141	1,044	4.314	1,044	,713
Sub Total (I + II + V + IV)	110,830	5,000	38,811	16,400	20,987	17,555	12,077
,Foreign Currency	,53,414	7,500	,34,160	3,916	5,533	5,071	,3,234
Local Currency	57,416	3,500	4,651	12,484	15,454	12,484	8,843
VI. Prices Contingency	27,822	335	5,356	3,510	6,191	6,706	5,724
Foreign Currency	,10,755	101'	,4,714	. S38	,1,632	1,937	1,533
Local Currency	17,067	,234	642	2,672	4,559	4,769	161,4
Total	144,952	6,335	44,167	21,670	28,958	26,021	17,801
Foreign Currency	,66,819	109,1	,38,874	5,634	8,055	7,888	4,767
Local Currency	78,133	4,734	5,293	16,036	20,903	18,133	13,034

Table 10-4 Alternative Construction Cost Estimate (A)

(Fuel cost being allocated to Local Currency portion)
(unit: '000 Rs.)

	Item	Total	Foreign	Local
I	Civil works	59,300	7,140	52,160
	Access & Road deviations	500		500
	Dam structure	9,000	669	8,331
	Spillway & Tail channel	12,000	2,834	9,166
	Outlet works	900	155	745
	Irrigation facilities	20,600	2 839	17,761
	Land development	7,000	643	6,357
	Repairs & Maintenance of Machinery	9,300	<del>-</del>	9,300
IJ	Construction Macninery	35,600	33,500	2,100
III	Land Acquisition	1,000		1,000
ıv	Land Settlement	5,300	1,450	3,850
	Sub Total (I ~ IV)	101,200	42,090	59,110
V	Engineering, Administration & Overhead charge	10,000	1,500	8,500
VI	Physical Constingency (I) x 10%	5,930	714	5,216
	Sub Total (I ∿VI)	117,130	44,304	72,826
VII	Prices Contingency (I+II+V+VI) x 25%	27,822	8,506	19,316
	Total	144,952	52,810	92,142

Table 10-5 Alternative Construction Cost Estimate (B) $\frac{1}{2}$ 

	Item		Total	Foreign	Local
1.	Civil Works	**************************************	59,300	2,590	56,730
	Access & Road diviations		500		50
	Dam structure	1 .	9,000	669	8,33
	Spillway & Tail channel		12,000	700	11,30
,	Outlet works		900	1 (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1	90
	Irrigation facilities		20,600	678	19,92
	Land development		7,000	543	6,45
	Repairs & Maintenance of machinery	·	9,300	in and The company of the second	9,30
II.	Construction Machinery		35,600	33,500	2,10
	Sub-total (I ~ II)	7. F	94,900	36,090	58,81
II.	Land Acquisition		1,000	_	1,00
EV.	Land Settlement	Þ _e t	5,300	derbesser sammada varienda	5,30
	Sub-total (I ~ IV)	•	101,200	36,090	65,11
<b>v</b> .	Engineering, Administration & Overhead Charges		10,000	1,500	8,50
/I.	Physical Contingencies (I) x 10%	14	5,930	259	5,67
	Sub-total (I~VI)	-	117,130	37,849	79,28
	Price Contingencies (I+II+V+VI) x 25%		27,822	5,600 	22,22
**	Total		144,952	43,449	101,50

^{/1} In this Construction Cost Estimate, such "indirect" foreign exchange components as fuels, cement, steel, spillway gates, etc. are allocated to the local currency portion.

Table 10-6 Unit Cost

Item No.	Work	Unit	Quantity	Total Unit Price	Local Currency Portion	Foreign Currency Portion
	Jungle clearing (medium)	Ac	g <b>4</b>	263.00	180.00	83.00
0	Embankment	Ö,	H	2.60	1.80	08.0
m	Bedding Material (gravel)	. =	Н	53.00	38.00	15.00
4	Stripping of top soil (12",24" depth)	<b>*</b>	Ħ	4.40	3.00	1.40
5	Excavation common in the core trenches and and spoil to waste	<b>*</b>	r-4	7.30	2.00	2.30
Q	Excavation common in the core trenches for the dam	:	- <del>-</del> -⊀	8.10	5.50	2.60
~	Earthwork in formation of dam from borrow area	#	<b>-</b>	11.20	7.60	3.60
00	Riprap protection for U/S slope of dam (rock)	ß	н	122.00	85.00	37.00
Ø	Riprap protection for U/S slope of dam (gravel)	<b>c</b> ·	н	76.00	65.00	11.00
2	Toe filter with sand gravel metal and rubble for dam (sand)	<b>r</b>	е <b>ч</b> , ,	45.00	43.00	1.50
11	Toe filter with sand gravel metal and rubble for dam (gravel)	E	ं त्यं	75.00	38.00	37.00
77	Toe filter with sand gravel metal and rubble for dam (rock)	E	<b>ન</b> :	111.00	77.00	04.0
	Turfing slopes of dam	Sg	100	20.00	20.00	
74	Barth excavation in foundation	Ö	el.	4.50	3.00	1.50
15	Loose rock excavation in foundation	. 2	н	79.00	20.00	29,00

Ttem No.	mit	Unit Quantity	Total Unit Price	Local Currency Portion	Foreign Currency Portion
16 Cement concrete with nominal reinforcement etc.	n D	r-f	1,059.00	871.00	188.00
17 Barthwork in spill tail channel (spoil to waste)	ŧ	н	6.30	4.30	2.00
18 Earthwork in spill tail channel (traning bunds)	<b>2</b>	rel	10.00	08-9	3.20
19 Construction of L.B. sluices (concrete works)	=	H	1,067.00	877.00	190.00
20 L.B. main channel (earthwork 1)	· #	М	08.6	6.70	3, 10
21 L.B. main channel (earthwork 2)	. <b>:</b>	۳.	14.30	10.20	4.10
22 Land leveling	=	гł	217.00	143.00	74.00
23 Ripping and cross ripping	Ą	м	49.00	34.00	15,00

Table 10-7 Depreciation Cost of Equipment & Machinery

	Equipment 6 Hachinery	Size &		Quanti	ty Unit	otal Price	Total	Į) g	ed time	t US\$)
	Alarbacia a inclinary	Capacity		(1)		Amount (3)=(1)×(2)	Life Time(4)	Time(5)	(6) = (5) / (4)	cost (7)=(3)×(6)
(1)	C.I.P. Price				ļ					
٠,	Tractor (cf ×I)	21t 160 200p.8		5	76,300	381,500	50,000	41,168	82.3	313,974
	Dozer	4,2650 x 1,013H	:	5	5,700	28,500	<b>*</b>		11 <b>4</b> 1	23,455
	Tractor (cf =2)	15t 130p.s		. 4	61,100	244,400	40,000	18,199	45.5	111,202
	Dozer	3,8258 x 923H		i	3,900	3,900	10,000	3,057	30.6	1,193
	Sheep foot Roller	2.9 % 5.6t		3	10,000	30,000	30,000	15,042	50.1	15,030
	Tractor (cf *S)	32t 300 ^{p.8}		4	139,000	556,000	40,000	38,466	96.2	534,872
	Dozer	4,0658 x 1,360H		4	10,000	40,000	40,000	31,838	79,6	31,840
	Rooter	N=3		4	11,000	44,000				35,024
	Scraper	12ar3		2	37,400	74,800	20,000	6,628	33.1	24,758
	Hoter Scraper	llm ³		6	182,000	1,092,000	69,000	39,402	64.0	
	Hoter grader	2.28 ^m 65 ^{p.s}		3	25, 300	75,900	30,000	9,501	31.7	698,880
	Excavator	0.6m ³ 100P·s		1	63,000	63,000	10,000	8 B 1		24,060
	Loxry Tipper	4 ^t 100P·s		7	15,400	107,800		1,765	17.1	10,773
	Compresser	10.5m ² /m 105 ^{p.1}	5	4			70,000 12,000x4) 48,000	12,236	17.5	18,865
	Jack Hammer	3.4m ² /m		8	13,800	1	48,000 5,000×8) 40,000	13,962	29.1	16,063
	Shovel Loader	1.2m ³ 70 ^p .s			100	6,400		27,924	69.8	4,467
	Enchid Rear Damp	15t 210 ^{p.s}		2	25,100	50,200	20,000	6,719	33.6	16,867
	-			8	66,400	531,200	80,000	35,745	44,7	237,446
	Crusher	50 ∿90t/h		1	32,000	32,000	10,000	2,440	24.4	7,808
	Pump	150mm		4	1,800	7,200	(\$,000x4) 20,000	6,000	30.0	2,160
	Water Bowser	6,0002		3	17,500	52,500	30,000	9,501	31.7	16,642
	Puel Bowser	n		<b>2</b>	17,500	35,000	20,000	10,000	50.0	17,500
	Jeep			4 .	6,800	27,200	40,000	40,000	100.0	27,200
	Concrete Hixer	0.28 %0.4m ³	,	2	7,600	15,200	20,000	6,000	30.0	4,560
	Farm Tractor	5t 50P.s		· 3.	22,000	66,000	30,000	7,721	77.2	50,952
	Disk harrow	24" x 20 ^{nos}		3	3,000	9,000	30,000	7,721	77.2	6,948
					•		-			
	Sub Total					3,628,900		4		2,252,539(62)
		•				6,418,392 Rs 6,400,000				16,398,483Rs 16,400,000
	Local Handling (Total price)	x 8%				2,100,000 Rs	i			2,100,000 Rs
	Total				2	8,500,000 Rs			:	18,500,000 Rs

^{*} US\$1.00 = Rs7.28

Table 10-8 Foreign Exchange Cost of the Project

		Item		Amount M. Rs	D. (direct) I.D.(indirect)
1.	Cost of Machinery	79 Nos		26.40	D.
2.	Cost of Fuel Disesel Impricant	M.gal 3.33 @Rs 3 81,000gal @Rs 10	M.Rs 9:99 0,81	10.80	ı,p.
3.	Foreign Component o	f Cement and Steel	***	•	
	Main Canal & Other	crete for Spillway, O Structures /cubes x 10Rs/bag	M.Rs 2.73		
	Steel - allow:	s <b>u</b> m	0.87	3.60	r.p.
4.	Spares for Machiner	y and Equipment		7,10	<b>D</b> ,
5.	Tools, Accessories	and surveying Instrum	ents	1.25	D.
6.	Blasting Material			1.05	D.
7.	Generators, Electric Accessories for Bui	cal Fittings and Othe Idings, etc.	r	0.75	<b>D</b> ,
8.	Foreign Component o (gates, 1 fting gea			1.270	I.D.
9.	Others Material			1.130	1.D.
10.	Engineering Service	(detail design)		1.50	D.
11.	Contingency (physica	al)	:	1.67	
12.	" (prices)			10.76	
	Total		. 4 -	66.82	

#### XI ECONOMIC EVALUATION

### 11.1 Prices for Economic and Financial Analysis

#### (1) General

The future farm gate prices of agricultural outputs (paddy, soya beans, pulses and chillies) have been estimated, together with those of agricultural inputs (fertilizers, agro-chemicals, etc.) from projected 1985 world market prices in 1976 currency values, with appropriate adjustments for freight, handling and processing as well as by applying price ratio prevailing among various relevant commodities.

# (2) Exchange Rate

The Sri Lanka Rupee, which was linked to a basket of currencies with the initial parity rate based on the prevailing (May 1976) Rupee/Pound rate, equated to about US\$1.00 = Rs8.66 or Rs8.70 if rounded. To promote "non-traditional" exports while cutting down on non-essential imports, a dual exchange rate system through the sale and purchase of Foreign Exchange Entitlement Certificates (FEECs) was introduced by the Government. Despite this, Sri Lanka has not been able to solve severe balance of payments problems for the last several years experiencing thereby widespread shortages of essential materials, spare parts and capital equipment. Judging from these phenomena, the official exchange rate clearly understated the real value of foreign exchange to the Sri Lanka economy. Yet the official rate was recently fixed at US\$1.00 = Rs7.28, but the FEECs system still continues. Under such circumstances, the Irrigation Department proposed to use double the exchange rate for economic evaluation. However, we are of the opinion that a rate of US\$1.00 = Rs12.00 (equal to the current FEEC rate) seems to more reasonably reflect the value of foreign exchange to the Sri Lanka economy. Therefore, the economic analysis is based on this assumption.

#### (3) Crops

Paddy: The projected 1985 price used as a basis for economic anylysis is US\$235 per metric ton of low-to-medium quality rice (25% - 35% broken) fob Bangkok. Adding shipping and insurance costs results in a projected price of US\$265 per metric ton cif Colombo. By adding to this the estimated average handling, transportation and marketing costs between Colombo and the likely "deficit areas", US\$300 per ton is obtained for an estimated local market price of milled rice. Assuming US\$25 per ton for the costs of the marketing, processing and transportation between the farm and the urban areas close to the project, a farm gate price per ton rice equivalent is US\$275. At an estimated milling yield of 65%, this is equivalent to a paddy farm gate price of about US\$180. However, not unforgetful of the shortage-related prices which averaged not many years ago more than US\$400 per metric ton, the economic price of paddy has been fixed at US\$200.

Cultivation of soyd beans, pulses and dried chillies is subsidiary to paddy production. Soya Beans: The economic farm gate price has been estimated at US\$165 per ton. Pulses: Historical comparisons of rice prices with those for pulses indicate that the price ratio remains fairly stable, with pulses commanding a 50 - 70% premium over the paddy prices. A 50% premium over paddy price will make an average price of US\$300 per ton for pulses. Chillies: US\$840 per ton has been assumed as an appropriate economic farm gate price of dried chillies.

and a figure in a growth of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the first terms of the

to the contract of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second

### (4) Crop Inputs

Fertilizers: The 1985 fertilizer price per ton has been projected for different nutrients at various ports of shipment. Nitrogen nutrient (fob Persian Gulf) would be about US\$350; phosphate nutrient (fob Morocco) US\$470, and SU\$95 for potassium nutrient (fob Vancouver). Shipping, insurance, handling and local marketing would add an average of about US\$80 per ton nutrient. Accordingly, the per ton farm gate prices for the three nutrients would be US\$430, US\$550 and US\$175, respectively. For both the commonly used basal

mixture of 3-30-13 NPK and for urea (46% N) used as top dressing, the price would be about US\$200 per ton.

Agro-chemicals: Different kinds of agro-chemicals are being recommended and practically used at different prices. To save complicated estimation of their economic farm gate prices, comparison of fertilizer price with the average price of agro-chemicals particularly in terms of the gap between their market price and economic price with a result that while the gap between the market price and economic price is as big as 1:2.5 with fertilizers, that of the agro-chemicals remains inconsiderable, that is, roughly about 1:1.3 - 1.5. Therefore, the economic cost of the fertilizers and agro-chemicals combined has been computed as twice the market price.

Mechanized Farming: Farm machinery, its spare parts and fuels for its operation will need to be imported for the time being. Mechanization cost has therefore been computed as twice the market cost or rental charges.

<u>Farm Labour</u>: In view of the unemployment and underemployment situation prevailing in the area, the market wage rate of Rs8 per day is considered inappropriate for economic analysis. Accordingly, the economic cost of all farm labour is assumed to be one-third its market price.

Both the financial and economic prices of the essential agricultural outputs and inputs will be recapitulated as follows:

Item		Financial	Economic
Crops			
Paddy	(Rs/bushel)	33	50 (US\$200/ton)
Soya Beans	(Rs/cwt)	84	100 (US\$165/ton)
Pulses	(Rs/cwt)	128	180 (US\$300/ton)
Chillies (dry)	(Rs/cwt)	1,000	500 (US\$840/ton)
Fertilizers			
Basal (3-30-13 NPK)	(Rs/50 kg)	50	120 (US\$200/ton)
Urea (46% N)	(Rs/50 kg)	50	120 (US\$200/ton)
Mechanization Cost			••
Combined Use of 4-wheel & 2-wheel Tractors	(Rs/hr)	40	80
Farm Labour	(Rs/day)	8	2.7

### 11.2 Internal Rate of Return

Based on the following assumptions, the project's economic rate of return is estimated at about 18%:

- (a) a five year project implementation and a 50 year project life;
- (b) full agricultural development five years after project completion;
- (c) Projected 1985 world market prices in terms of 1976 dollars for construction machinery, construction materials, etc. and agricultural inputs and outputs;
- (d) allowance for the shortage of foreign exchange by using a shadow rate of US\$1.00 = Rs12.00;
- (e) all farm labour valued at about 33% of the average market wage rate of Rs8 per man-day and construction labour at the market wage; and
- (f) only the project related agricultural production is included in the benefits. Benefits from improved roads, and other improvements are not included in the analysis.

# 11.3 Sensitivity Tests

Further sensitivity tests indicate that the project remains viable under a variety of adverse assumptions about costs and benefits. Results from some of the important tests are given below:

	Alternative	Rate	e of Return
(a)	Basic case		18%
(b)	A decrease of 10% in net benefits		15%
(c)	An increase of 10% in project investment costs		17%
(d)	A two year delay in realizing the full project benefits		16%
(e)	Combination of (b) and (c)		14%
(f)	Combination of (c) and (d)		15%
(g)	Combination of (b), (c) and (d)		12%

Table 11-1 Paddy Production in The Existing Agricultural Lands during The Construction Period (in Economic Prices)

Agricultural Land		40% during Vala Season	316 acres	52 bushels	16,432 bl.	Rs50	Rs 822	#	ŧ	•	Rs617	Rs195	Rs627
The Rest of The Existing Agricultural Land	790 acres	80% during Maha Season 40	632 acres	52 bushels	32,864 bl.	RS50	Rs1,643	Rs346	Rs187	Rs 84	Rs617	Rs 390	Rs1,253
lahauswewa Tank	acres	40% during Yala Season	340 acres	59 bushels	20,060 bl.	Rs 50	Rs1,003	£	,11	=	Rs803	Rs273	Rs730
Command Area of Mahauswewa Tank	850 ac	80% during Mana Season	680 acres	59 bushels	40,120 bl.	RS 50	Rs2,006	Rs446	Rs267	Rs90	Rs 803	Rs546	Rs1,460
	Total Area	Irrigability 8	Area under Paddy	Vield per Acres	Total Production	Unit Price	G.P.V. (Rs1,000)	Seed & Chemicals	Farm Machinery/Labour	Miscellaneous	Cost per Acre	Total Cost (Rs1,000)	N.P.V. (Rs1,000)
					لسسيسا	onpo	L			180	25		

Table 11-2 Paddy Production in The Existing Agricultural Lands under The Project (in Economic Prices)

		т	<del></del>	-γ	т	1	····			-γ	γ	· · · · · ·	<del></del>		·r
			son		8th Yr.	8	50,560		2,528	994	507	135	1,636	1,034	1,494
	Lands		Yala Season	acres	7th Yr.	73	46,136	shel	2,307	908	427	127	1,360	860	1,447
	Agricultural 1		during 1	632 8	6th Yr.	99	41,712	Rs50/bushel	2,086	626	347	119	1,092	069	1,396
-1		acres	% 08		5th Yr.	59	37,288		1,864	446	267	8	803	507	1,357
	The Existing	790 ac	uog		8th Yr.	80	53,760		2,688	994	507	135	1,636	1,099	1,589
	o F		Maha Season	acres	7th Yr.	73	49,056	shel	2,453	908	427	127	1,360	914	1,539
. '	The Rest		during	672	6th Yr.	99	44,352	Rs50/bushel	2,218	626	347	119	1,092	734	1,484
			85%		5th Yr.	59	39,648		1,982	446	267	06	803	540	1,442
			Yala	10	7th Yr.	88	54,400	Į.	2,720	994	507	135	1,636	1,112	1,608
	ewa Tank		80% during Yala	680 acres	6th Yr.	73	49,640	Rs 50/bushel	2,482	806	427	127	1,360	925	1,557
	of Mahauswewa	acres	808		5th Yr.	99	44,880	, and	2,244	929	347	119	1,092	743	1,501
		850 ac	faha	87	7th Yr.	08	57,840		2,892	994	507	135	1,636	1,183	1,709
	Command Area		during Maha	723 acres	6th Yr.	73	52,779	Rs50/bushel	2,639	808	427	127	1,360	983	1,656
			% %		5th Yr.	99	47,718	Rs	2,386	626	347	119	1,092	790	1,596
	Division of Area	Total Area	Irrigability	Area under Paddy	Project Year	Yield per Acre (bu)	Total Pro- duction(bu)	Unti Price (Rs)	G.P.V. (Rsl,000)	Seeds/Chemi- cals (Rs)	Farm Machine- ry/Labour	Miscellaneous	Cost per Acre (Rs)	Total Cost (Rsl,000)	N.P.V. (RS1,000)
				7 12				5 coqu		<i>5,</i> ∨		3500			ρ Z

Table 11-3 Agricultural Production in the Newly Developed Area under the Project (Economic)

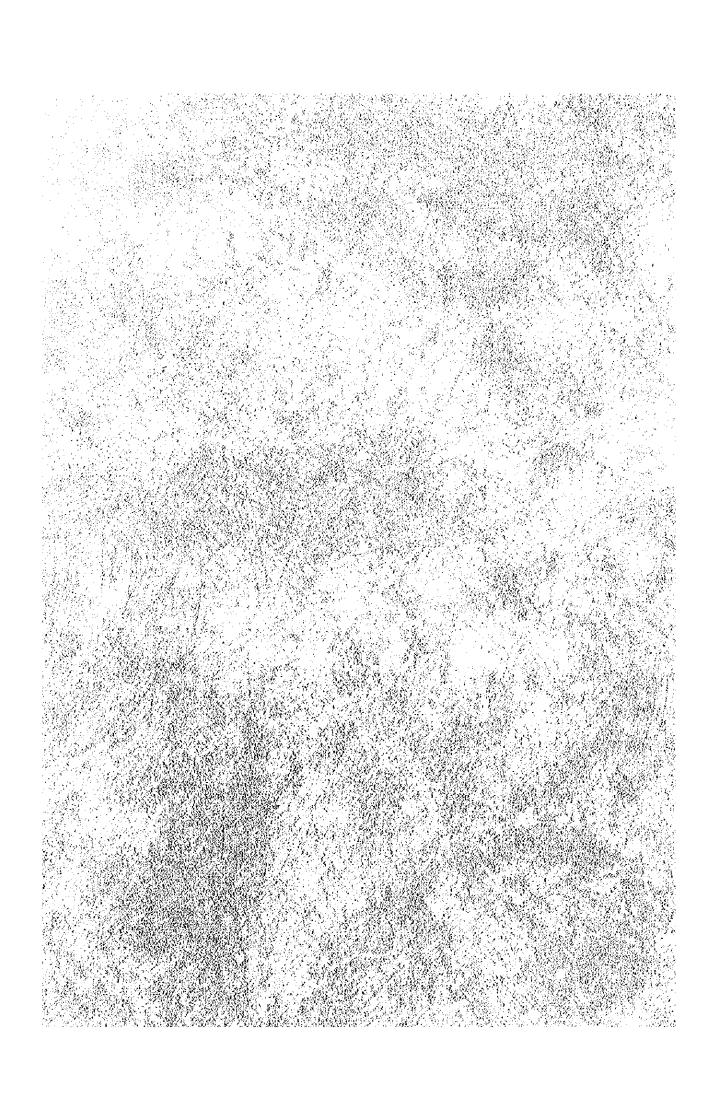
			1 1	Low Land			High	Land		
L		Type of Land	·	,560 acres			1.100	acres	<u></u>	
		Size Irrigability		Maha 6 80% dur	ing Yala		iuring Maha &	801 durir		
-		Cropping Pattern		ddy (during Yala)	Total	Paddy (during Maha	Upland C Soya Beans	rops (duri Pulses	ng Yala) Chillies	Total
,	Arc	ea under Crops	3,026ac.	2,848ac.	5,874ac.	935ac.	352ac. (404)	440ac. (50%)	98ac. (104)	880ac. (1004)
	g	Yield per Acre	45bu	45bu		45bu	6c₩t	5cvt	7cwt	
	첉	Production (Rsl,000)	136.2	128.2	264.4	42	2,112	2,200	616	
1	ğ	Unit Price (Rs)	50	50		50	100	180	500	
Year	칥	G.P.V. (8s1,000)	6,810	6,410	13,220	2,100	211	396	308	3,015
	-	Cost per Acre (Rs)	479	479		479	275	249	895	
t p	#	Total Cost (Rsl,000)	1,449	1,364	2,813	448	97	110	79	734
ł	Ö	N.P.V. (Rel,000)	5,361	5,046	10,407	1,652	114	286	229	2,781
+	-	Yield per Acre	52bu	52bu		52bu	7. 2cvt	6cwt	8.6cut	
	<u>.;;</u>		157.4	148.1	305.5	48.6	2,534	2,640	757	
- 1	힣	Production (RS1,000)	50	50		50	100	180	500	
Year	Š	Unit Price (RS) G.P.V. (RS1,000)	7,870	7,405	15,275	2,430	253	475	379	3,537
ន	^		6)7	617		617	360	327	1,165	<del></del>
۲,	v	Cost per Acre (Rs)	1,867	1,757	3,624	577	127	144	103	951
1	8	Total Cost (Rs1,000) N.P.V. (Rs1,000)	6,003	5,648	11,651	1,853	126	331	276	2,586
}		Yield per Acre	59bu	59bu		59b <b>u</b>	8.4cwt	7cwt	10.2cwt	
Ī	콁	Production (Rel,000)	178.5	168	346.5	55.2	2,957	3,000	897.6	
-	Sct	Unit Price (Rs)	50	50		50	100	180	500	
Year	è	G.P.V. (Rs1,000)	8,925	8,400	17,325	2,760	295.7	554.4	449	4,059.1
	-	Cost per Acre (Rs)	803	803		803	464	442	1,467	
Ş	,,	Total Cost (Rs1,000)	2,430	2,287	4,717	751	163.3	194.5	129	1,237.8
ļ	8	N.P.V. (Rs1,000)	6,495	6,113	12,608	2,009	132.4	359.9	320	2,821.3
-	_	Yield per Acre	66bu	66bu		66bu	9.6cwt	8cwt	11.8cwt	
	tion.	Production (Rs1,000)	119.7	188	387.7	61.7	3,379	3,520	1,038.4	
. \	9	Unit Price (Rs)	50	. 50		50	100	180	500	
Xear	PEG	G.P.V. (Rs1,000)	9,985	9,400	19,385	3,085	337.9	633.6	519	4,575.5
ş		Cost per Acre (Rs)	1,092	1,092		1,092	628	585	2,012	
- ·	4	Total Cost (Rs1,000)	3,304	3,110	6,414	1,021	221.1	257.4	177	1,676.5
1	8	N.P.V. (Rs1,000)	6,681	6,290	12,971	2,064	116.8	376.2	342	2,899
+		Yield per Acre	7.3bv	73bu	·	73bu	10.8cwt	9cwt	13.4cwt	
ļ	릛	Production (Rs1,000)	220.9	207.9	428.8	68.3	3,802	3,960	1,179.2	
.	gre	Unit Price (Rs)	50	50		. 50	100	180	500	
xeer xeer	v	G.P.V. (Rs1,000)	11,045	10, 395	21,440	3,415	380,2	712.8	590	5,098.0
ş	_	Cost per Acre (Rs)	1,360	1,360		1,360	772	715	2,551	
Ş	ų	Total Cost (Rel,000)	4,115	3,873	7,989	1,872	271.7	314.6	224	2,082.3
	8	N.P.V. (Rs1,000)	6,930	6,522	13,451	2,143	108.5	398.2	366	3,015.7
+	_	Yield per Acre	80bu	80bu		80bu	12cwt	10cwt	15cwt	
١	ş	Production (Rs1,000)	242.1	227.8	469.9	74.8	4,424	4,400	1,320	
<u>,</u> [	Ş	Unit Price (Rs)	50	50		50	100	180	500	
Year	QH.	G.P.V. (Rs1,000)	12,105	11,390	23,495	3,740	422.4	792.0	660	5,614.4
ន្	_	Cost per Acre (Rs)	1,636	1,636		1,636	916	845	3,082	
ទ	ار	Total Cost (Rel,000)	4,951	4,659	9,610	1,530	322, 4	371.9	271	2,495.2
	8	N.P.V. (8s1,000)	7,154	6,731	13,885	2,210	100	420.2	389	3,119.2
: [	ř	Merite (votions)			4-7-5-					

G.P.V. Production Cost and N.P.V. under the Project (Market Price) Table 11-4

								(Unit:	Rs 1000)
		G.P.V.	;	ZE.	Production (	Cost		N.P.V.	
	Paddy	Upland erops	Total	Paddy	Upland crops	Total	Paddy	Upland crops	Total
Newly Developed Area							÷		,
Φ	111,01	1,075	11,186	3,942	429	4,371	6,169	, 646	6,815
	11,685	1,408	13,093	4,426	498	4,924	7,259	016	8,169
σ	13,256	1,540	14,796	5,080	561	5,641	8,176	979	9,155
თ	14,830	1,759	16,589	6,169	663	6,832	8,661	1,096	9,757
10	16,404	2,005	18,409	7,102	743	7,845	9,302	1,262	10,564
11	17,975	2,238	20,213	8,069	824	8,893	906'6	1,414	11,320
Existing Agricultural Land									
r-ł	3,613	1	3,613	1,377	i	1,377	2,236	1	2,236
<pre>     (without the</pre>									
4 + roject)	3,613	ı	3,613	1,377	i	1,377	2,236	1	2,236
<b>ነ</b> ስ	5,594	ı	5,594	2,244	1	2,244	3,350	1	3,350
Φ	6.221		6,221	2,645	ı	2,645	3,576	1	3,576
1	6,846	·	6,846	3,023	ı	3,023	3,823	1	3,823
œ	7,147		7,147	3,208	1	3,208	3,940	1	3,940
Total Development Area									
<b>v</b>	16,332	1,075	17,407	6,587	429	7,016	9,745	646	10,391
r	18,531	1,408	19,939	7,449	498	7,947	11,082	910	11,992
ω	20,403	1,540	21,943	8,288	195	8,849	12,116	676	13,095
0	21,977	1,759	23,736	9,377	663	10,040	12,601	960,1	13,697
10	23,551	2,005	25,556	10,310	743	11,053	13,242	1,262	14,504
1.1	25,122	2,238	27,360	11,277	824	12,101	13,846	1,414	15,260

Table 11-5 G.P.V. Production Cost and N.P.V. under the Project (Opportunity Price)

		G. P. V.		Ω	Production	Cost		un)	(Unit: RS'000)
	Paddy	Upland	Total	Paddy	Upland crops	Total	Paddy	Upland	Total
Newly Developed Area									
•	15,320	915	16,235	3,261	286	3,547	12,059	629	12,688
7	17,705	1,107	18,812	4,201	374	4,575	13,504	733	14,237
60°	20,085	1,299	21,384	5,468	487	5,955	14,617	812	15,429
Ó	22,470	1,491	23,961	7,435	959	8,091	15,035	835	15,870
01	24,855	1,683	26,538	9,260	810	10,070	15,595	873	16,468
7.7	27,235	1,874	29,109	11,140	965	12,105	16,095	606	17,004
Existing Agricultural Land							•		
Jedi									
<pre></pre>	5,474	ı	5,474	1,404	ľ	4,070	4,070	1	4,070
.ហ	8,476	.1	8,476	2,580	ı	2,580	5,896	1	5,896
v	9,425	1	9,425	3,332	ı	3,332	6,093	1	6,093
7.	10,372	,	10,372	4,069	i	4,069	6,303	1	6,303
œ	10,828	1	10,828	4,428	ı	4,428	6,400	1	6,400
Total Development Area		٠							
Ψ	24,745	918	25,660	6,593	286	6,879	18,152	629	18,781
7	28,077	1,107	29,184	8,270	374	8,644	19,807	733	20,540
00	30,913	1,299	32,212	9,896	487	10,383	21,017	812	21,829
<b>o</b> n _	33,298	1,491	34,789	11,863	656	12,519	21,435	335	22,270
10	35,683	1,683	37,366	13,688	810	14,498	21,995	873	22,868
11	38,063	1.874	39.937	. 090	390		1		


Table 11-6 Internal Rate of Return (Financial)

March   Court   Empirementing Land   Court   Empirementing Land   Court   Empirementing Land   Court   Empirementing Land   Court   Empirementing Land   Court   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing Land   Empirementing					3.5	SISO					Ø	SNEELT	s	 		
1,000  35,600  2,211  1,000  15,400  1,000  1,760  250  18,410  19,967  1,000  1,760  250  21,267  22,309  23,267  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  22,309  2,244  2,209  2,244  2,209  2,244  2,209  2,244  2,209  2,244  2,209  2,244  2,209  2,244  2,209  2,244  2,209  2,239  2,236  2,244  2,209  2,236  2,244  2,209  2,244  2,209  2,236  2,244  2,209  2,236  2,244  2,209  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,236  2,2	Year			i	Engineering 6 Administ- ration	Land Settle- ment	3. (3		Replace- ment		Existing Land	Newly Developed Land		A P V	D.F. at low	123
35,600 2,211 1,000  15,400 1,700 1,700 250 18,410  19,987 1,000 1,700 500 2,244 22,109 5,594  11,077 1,000 1,700 7,947 8,947 6,846 13,093 19,399  1,000 1,000 1,000 11,000 11,000 11,040 11,040 11,040  1,000 10,040 11,040 11,040 11,040 25,556  1,000 10,040 11,040 11,040 11,040 12,556  1,000 12,101 11,101 12,506  1,000 12,101 11,506  1,000 12,101 11,506  1,000 12,101 11,506  1,000 12,101 12,506  1,000 16,506  1,000 16,506  1,000 16,506  1,000 16,506  1,000 11,010 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500 11,500	ત	1,000			2,000	•				8,000				-3,764	-3,421	-3,361
15,400   1,000   1,780   500   23,267   2,326   2,326   1,000   1,780   500   2,326   1,000   1,780   5,00   2,244   22,309   5,594   1,000   1,760   7,016   2,0093   6,221   1,186   1,7409   1,000   1,000   1,000   2,947   6,846   13,093   19,939   1,000   2,947   6,846   13,093   19,939   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000	И		35,600	2,211	1,000					38,81				-36,575	-30,211	-29,150
19,987   1,000   1,760   500   23,264   2,356   5,554   5,554   5,554   11,077   1,000   1,760   7,016   20,093   6,221   11,136   17,409   1,000   1,000   7,947   8,947   6,846   13,093   1,009   1,000   10,040   11,040   12,053   12,043   12,565   1,000   11,000   11,000   11,000   11,000   11,000   11,000   11,040   13,101   12,566   12,021   12,566   12,560   12,560   12,560   12,566   12,560   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,566   12,5	m			15,400	1,000	1,760	250			18,410			•••	-16,174	-12,147	-11,516
1,555   1,000   1,760   750   2,244   22,309   5,594   5,594   5,594   1,009   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000	4			19,987	1,000	1,780	200			23,267			2,236	-21,031	-14,364	-13,376
11,077 1,000 1,000 7,947 8,947 6,846 13,093 19,939 1,000 8,849 9,848 7,147 14,796 21,943 1,000 10,040 11,040 11,040 18,589 23,736 1,000 12,101 13,101 20,213 27,360 1,000 12,101 13,101 20,213 27,360 1,000 12,101 13,101 20,213 27,360 1,000 12,101 13,101 405 12,103 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,50	i/ì			16,555	1,000	1,760		,244		22,309	5,594		5,594	-16,715	-10,380	774,6-
1,000 7,947 8,947 6,846 13,093 19,939 1,000 8,849 9,845 7,147 14,796 21,943 1,000 10,040 11,040 16,589 23,736 1,000 12,101 13,101 20,213 27,360 1,000 12,101 13,701 1,000 12,101 12,506 4,000 16,506 12,506 4,000 16,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506	φ			11,077	1,000			,016		20,093	6,221	11,186	17,409	-2,686	218,1-	-1,362
1,000 8,849 9,845 7,147 14,796 21,943 1,000 10,040 11,053 12,053 18,409 25,556 1,000 12,101 13,101 20,213 27,360 1,000 12,101 13,701 20,213 27,360 4,000 12,101 12,506 12,506 12,506 12,506 12,506 7,147 20,213 27,360	1							.947		8,947	6,846	13,093	19,939	10,992	5,639	4,968
1,000 10,040 11,040 16,589 23,736 1,000 12,101 13,101 20,213 27,360 1,000 12,101 13,101 20,213 27,360 1,000 12,101 13,101 12,506 4,000 16,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506	00						1,000 8,	849		9.84	7,147	14,796	21,943	12,094	5.648	4,886
1,000 12,101 1,000 12,101 1,000 12,101 1,000 12,101 1,000 12,101 1,000 12,101 405 12,101 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506	ው						1,000 10,	080		11,040	•••	16,589	23,736	12,696	5,383	4,583
1,000 12,101 1,000 12,101 1,000 12,101 1,000 12,101 405 12,101 4,000 16,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506	2						1,000,11,	.053		12,053	•••	18,409	25,556	13,503	5,212	4,348
1,000 12,101 1,000 12,101 405 12,101 405 12,101 12,506 12,506 12,506 12,506 12,506 12,506 12,506	13						1,000 12,	101		13,101		20,213	27,360	14,259	,	
1,000 12,101 1,000 12,101 405 12,101 12,506 12,506 12,506 12,506 12,506 12,506 12,506 12,506	77						1,000 12,	101			•••	•••	• • •	•••		
1,000 12,101 40\$ 12,101 12,506 4,000 16,506 12,506 12,506 12,506 12,506 12,506 12,506	13					. <b>•</b>	1,000 12,	101			• • •				17,424	13,945
405 12,101 12,506 12,506 12,506 405 12,101 12,506 7,147 20,213 27,360	Ľ						1,000 12,	101		13,301		•••	• • • •	14,259	•	
4,000 16,506 12,506 12,506 405 12,101 12,506 7,147 20,213 27,360	15						405 12,	101		12,506	••••	•••	• • •	14,854		
12,506 4,000 16,506 12,506 405 12,101 12,506 7,147 20,213 27,360							•••	•••		•••	•••	. <b></b>	•••	•••	36,868	24,494
4,000 16,506 12,506 405 12,101 12,506 7,147 20,213 27,360	4						•••			12,506	•••	• • • ·	•,•	14,854	_	i
12,506 405 12,101 12,506 7,147 20,213 27,360	Ĉ,						•••	•••	4,000	16,506		• • •	•••	10,854	152	. 65
405 12,101 12,506 7,147 20,213 27,360	\$						••••			12,506	• • • •		• • • •	14,854	ر	
405 12,101 12,506 7,147 20,213 27,360	į						••			••••	•••			••••	277	312
	8						405 12,	101		12,506	7,147	20,213	27,360	14,854	-	

10 + 2( 5,060 ) = 10.54

5,060 -10,641

	- :	U	0 0 0 H N					M	50日日后 62日	w		  -	
Lend Con- Civil Acquisi- struction Works tion Machinery	Civil m Works	Engineering & Administ- ration	Land Settle- ment	#: #	Culti- vation Cost	Replace- ment	Total	Existing Land	Newly Developed Land	Total	'A'-A'-R	D.F. at 18%	<b>\$</b> 02
		5,979	÷		-		6,979			4,070	-2,909	-2,464	-2,423
21,360	2,640	1,000					25,000				-20,930	-15,028	-14,525
	17,945	1,000		325		-	19,280				-15,210	-9.263	-8,307
	23, 583	1,000		839			25,233			4,070	-21,163	-10,920	-10,201
.•	19,851	3,000		975	2,580		24,406	8,476		8,476	-15,930	-6,961	-6,404
	13,179	7,000	-	1,300	6.879		22,358	9,425	16,235	25,660	3,302	1,222	1,106
	-			1,300	8,644		9,944	10,372	18,812	29,184	19,240	6,041	5,368
				1,300	10,383		11,683	10,828	21,384	32,212	20,529	5.461	4,783
	÷			1,30	12,519		13,819		23,961	34,789	20,970	4,718	890 <b>%</b>
i.				300	14,499		15,799	•	26,538	37,366	21,567	4,119	3,494
				1,300	16,533		17,833		29,109	39,937	22,104		• :
				1,300		-		• • •		•••	••		
				1,300			•••	•••	• • •	•••	•••	11,361	9,262
		•		1,300	•••		17,833		•••	.,,	22,104		
				527	• • • •		17,060	• • •	•••	• • •	22,877		
	•							•••		•••			
					• • •		• • •					12,422	8,876
				• • • •				• • •	•••		•••		
:							17,060		•••	,* <b>* «</b>	22 877		
				•••		6,000	23,060	•••	4 4 2 -	•••	16,877	7.1	<b>' o</b>
				•••			17,060	•••	••••	•••	22,877		
				527	16.533		5	000				\$	•
							33.	070.01	42,103	39,937	77.8777		. 1
60% of the Pinancial Cost + 65% for P/C	the + 65% al for F/C 65% including 10% contin-	/C ding ontine		÷ 30 <b>*</b>							# *	772 -5	-5,403
	Sei offer										) }	. 6,174	

