2-3 Data Processing

2-3-1 Considerations on the Difference of Drainage Area

Consideration will be given how to reflect the factors of area on data processing when there are various areas of drainage represented by independent samples.

In the Projeto Geoquimica no Vale do Ribeira, each parameter of the drainage area (AD) such as $AD < 5 \,\mathrm{km^2}$, $5 - 10 \,\mathrm{km^2}$, $10 - 20 \,\mathrm{km^2}$ was calculated by geological unit.

Table II-3 shows MG (backgroud), DG (standard deviation) and MG x DG² taken out

Table II-3 Statistical Parameters by Element

Lie		Cu		Pb			Zn			
Geology & Area	nieter	MG	DG	MGx DG ²	мG	DG	MGx DG ²	МG	DG	MGx DG ²
Açungui Setuva	197	26	1.904	92	12	1,773	32	58	1,693	154
AD < 5 Km ²	80	26	1,876	93	11	1 620	29	55	1 743	167
= 5 10 Km²	53	26	1,773	81	12	1,576	31	61	1,576	153
= 10 20 Km ²	30	24	2.116	109	13	1,885	46	57	1,570	141
Açungui Clastico	509	23	2,151	105	16	1,860	55	52	1,869	182
AD < 5 Km ²	147	26	2,003	103	16	1,764	50	58	1,729-	175
= 5 10 Km ²	129	22	2,234	108	15	1,861	53	50	1,879	177
= 10 20 Km ²	70	19	2,177	92	15	1,608	39	49	1 910	178
Açungui Quimico	176	18	2,395	104	19	2,561	125	46	2,115	204
$\Delta D < 5 \text{ km}^2$	61	19	2,056	120	20	2,564	144	43	2 061	183
= 5 10 Km ²	48	20	2.327	110	19	2,751	145	52	2,363	292
= 10 20 Km ²	30	16	2.434	93	16	2 235	79	44	1,852	152
Grupo Açungui	868	23	2,134	103	15	2,010	61	52	1,865	182
$AD = 20 - 40 \text{Km}^2$	69	22	2,422	129	14	1.701	40	46	1,986	183
> 40 Km²	22	20	2,247	101	16	1.800	52	50	2,078	217
Granitos	345	11	1,976	43	17	1,636	45	40	1,521	92
AD < 5 Km ²	47	п	2,029	46	16	1618	41	39	1,622	103
= 5 10 Km ²	95	12	2,213	60	17	1 758	5]	41	1,505	9 <u>2</u>
= 10 20 Km ²	65	11	1.965	41	18	1,620	48	39	1.597	gg

MG Background DG Standard Deviation

from the tables of A-8-7 (Cu), 8-9 (Pb) and 8-11 (Zn) in appendices.

In general, when the drainage is large, the sediment would naturally come from wider area, so that it will be more homogegeneous, resulting in the approach of MG to the mean of the group with decrease of DG. Thus it is expected that threshold value will take principally low value. Such tendency can be read in the table with a few exceptions.

However, when comparing the values of $AD < 5 \,\mathrm{km^2}$ and $AD = 5 - 10 \,\mathrm{km^2}$, significant difference can not be recognized except the cases such as zinc in chemical sediments of the Açungui group and copper in granite. Therefore, it seems that the discrimination of these areas is unnecessary and that they might be able to be treated in a bundle.

In the case of AD = $10 \sim 20 \text{km}^2$, the differences are generally much greater compared with the former two. Therefore, it is questionable to treat them in a bundle.

However, as for 37 samples which represent areas of more than 10km², they were processed in a bundle because they were small in number, sharing only about 5% of the whole samples.

2-3-2 Interpretation Method

The area for interpretation is 7,600km², among which the area of drainage represented by the extracted samples is 3,993km², showing only 53% of the whole area. In addition, the 37 samples of more than 10km² are included, so that the detailed study is difficult because of considerable deviation of the data.


Here, a statistical processing by computor was attempted regardless of deviation of the data.

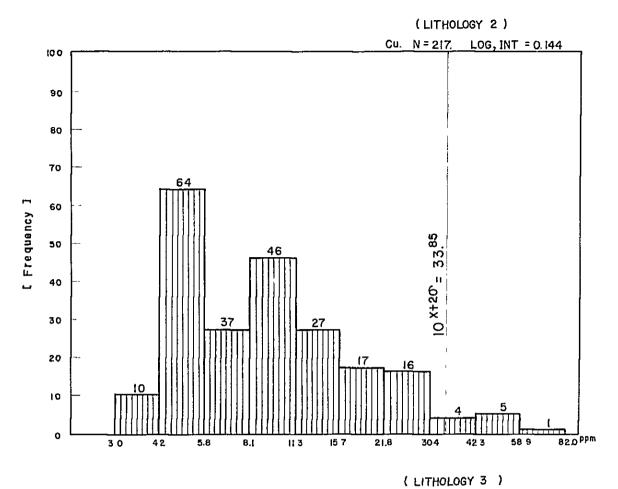

At first, histograms were made on the whole extracted data by element and lithology (4 units) (Fig. II-4-1 \sim 4-8), then mean (\overline{X}) and standard deviation (σ) were calculated, which are shown in Tables II-4 and II-5.

Table II-4 Distribution of Geochemical Data

Lithology Area(Km ²)	1	2	3	4	5	6	7	8	9	10	Total
1-5	3	116	60	146	47	18	0	5	25	15	435
6–10	4	87	36	95	19	3	0	1	21	3	269
11-15	0	12	3	14	3	0	0	0	1	2	35
16	0	2	0	0	0	0	0	0	0	0	2
Total	7	217	99	255	69	21	0	6	47	20	741

Total Area $= 3,993 \text{ Km}^2$

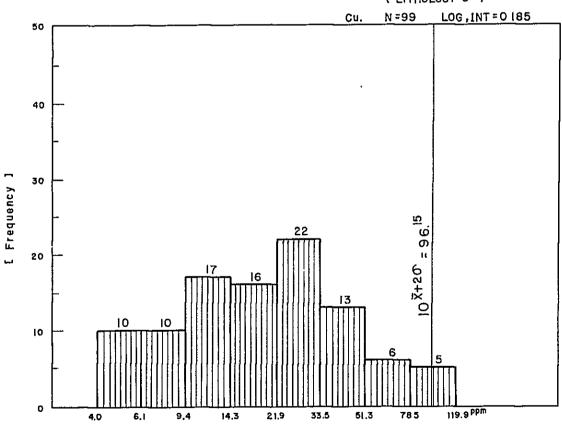
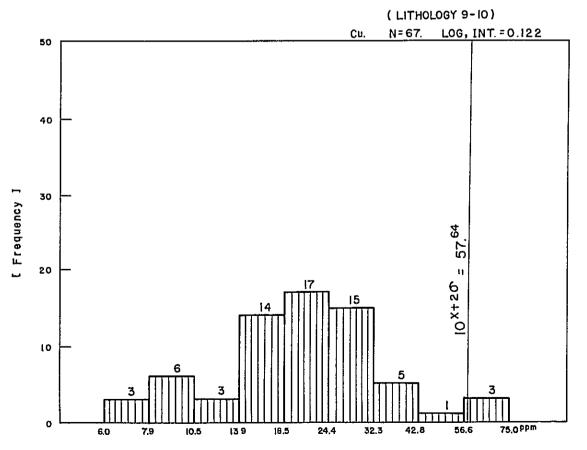


Fig. II-4-1 Histogram for Cu by Lithology



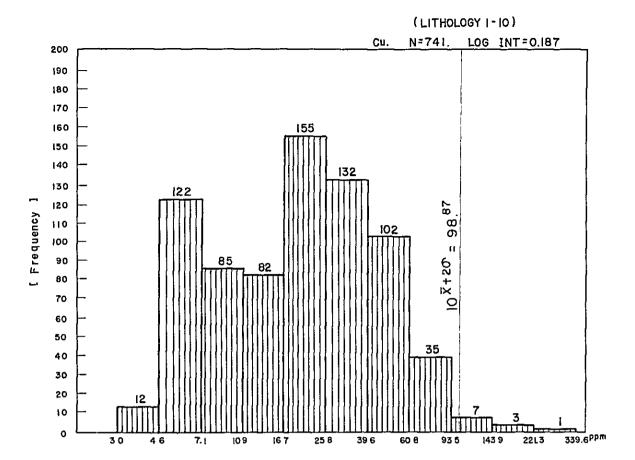


Fig. II-4-2 Histogram for Cu by Lithology

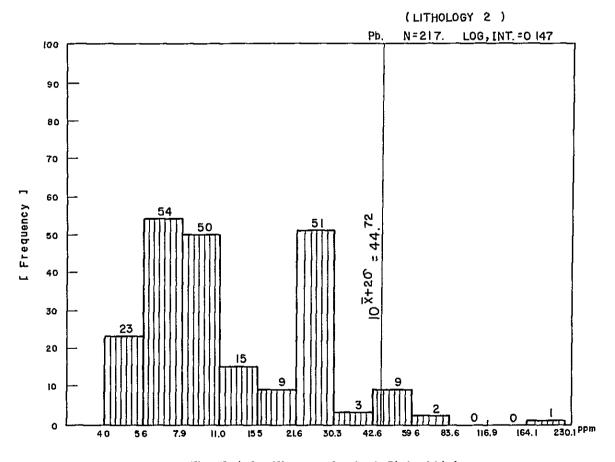
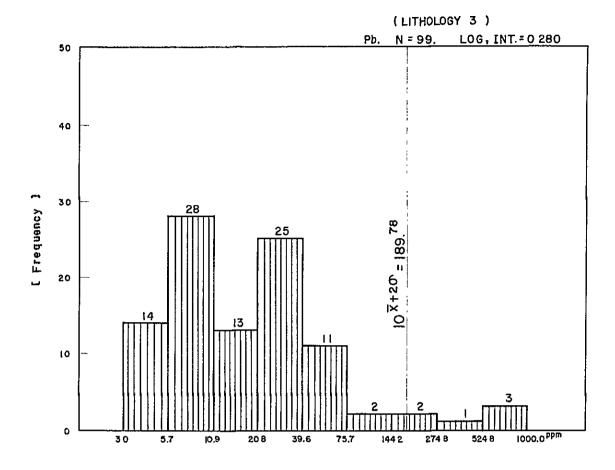



Fig. II-4-3 Histogram for Cu & Pb by Lithology

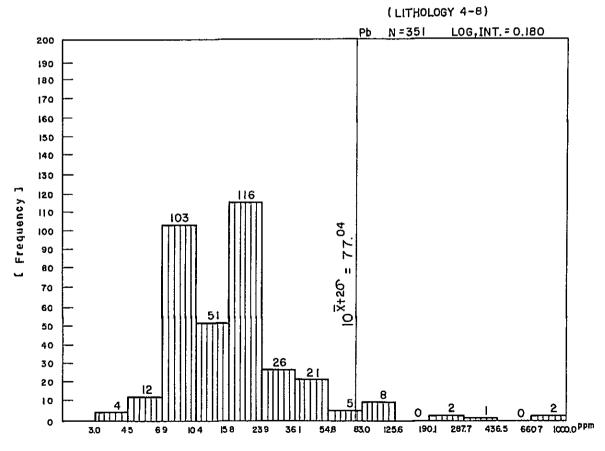
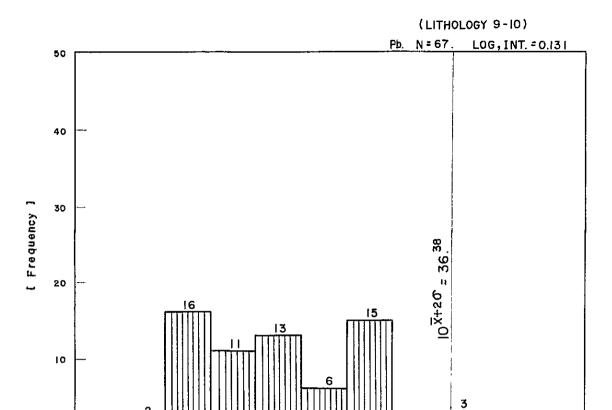



Fig. II-4-4 Histogram for Pb by Lithology

13.4

18 2

24,5

33 3

0

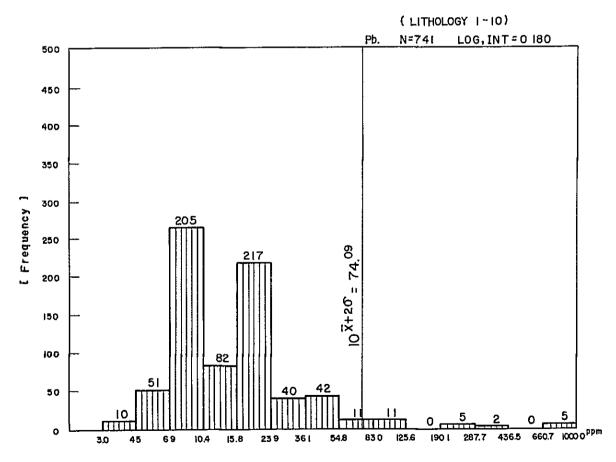
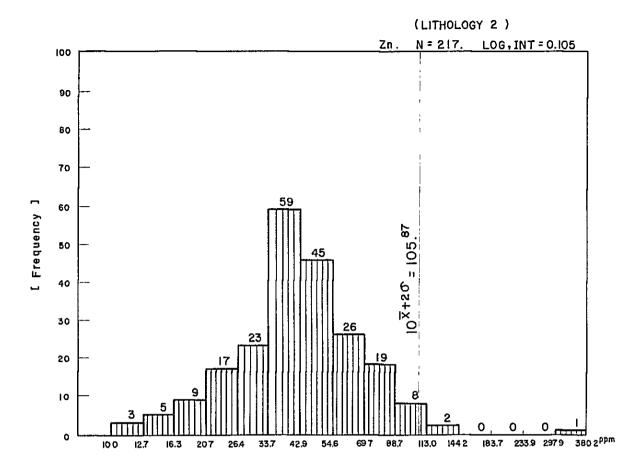



Fig. II-4-5 Histogram for Pb by Lithology

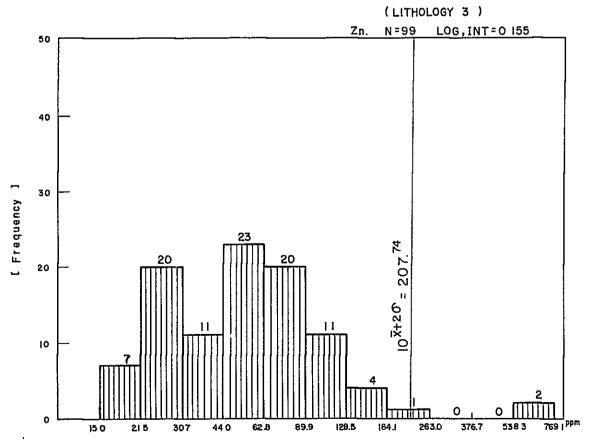
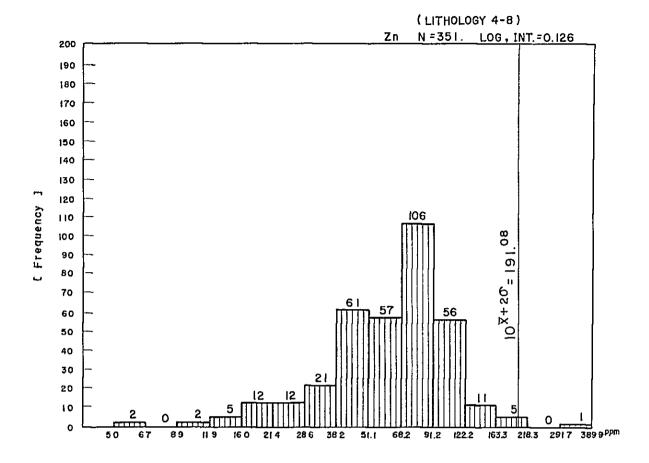



Fig. II-4-6 Histogram for Zn by Lithology

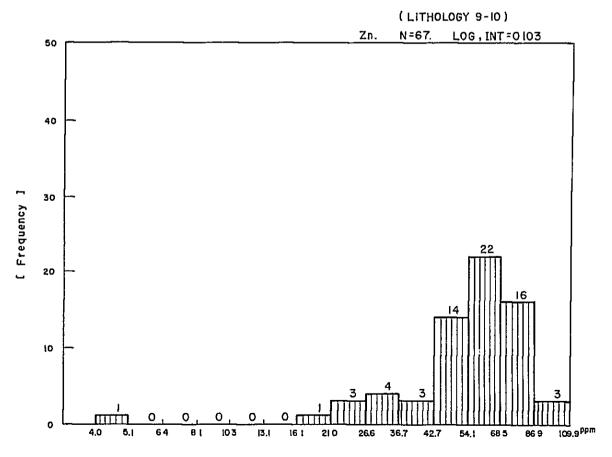


Fig. II-4-7 Histogram for Zn by Lithology

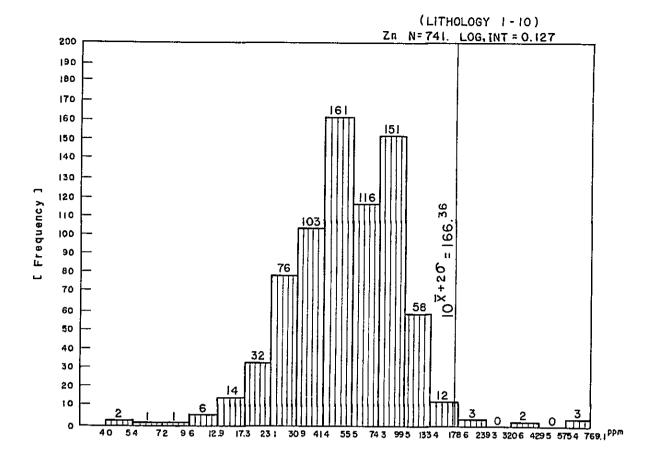


Fig. II-4-8 Histogram for Zn by Lithology

Table II-5 Mean and Standard Deviation of Stream Sediment Samples by Lithology

Element	Lithology	Number	Max (ppm)	Min. (ppm)	Mean 10 ^X	S.D. 10 ^σ	10 ^{x̄+σ}	10 ^{x+2 σ}
	2	217	82	3	9.27	1.91	17.71	33.85
	3	99	120	4	19.23	2.23	17.71	33.85
Cu	48	351	340	3	27.23	2.06	43.00	96.15
<u> </u>	910	67	75	6	20.09	1.69	34.04	57.64
	1–10	741	340	3	18.49	2.31	42.74	98.78
	2	217	230	4	11.97	1.93	23.14	44.72
	3	99	1,000	3	17.46	3.30	57.53	189.78
Pb	4–8	351	1,000	3	16.11	2.19	35.24	77.04
	9–10	67	45	4	11.78	1.76	20.71	36.38
]	1–10	741	1,000	3	14.52	2.26	32 80	74.09
	2	217	380	10	41.30	1.60	66.09	105.87
	3	99	770	15	52.48	1.99	104.41	207.74
Zn	4–8	351	390	5	61.38	1.76	108.36	191.08
	9–10	67	110	4	52.36	1.60	83.94	134.43
	1–10	741	770	4	52.84	1.77	93.72	166.36

Table II-6 Correlation Coefficient amang Three Elements

2	3	4 – 8	9 – 10	1 – 10
217	99	351	67	741
0.35	0.61	0.28	-0.02	0.36
0.59	0.71	0.49	0.43	0.59
0.58	0.79	0.65	0.22	0.65
	217 0.35 0.59	217 99 0.35 0.61 0.59 0.71	217 99 351 0.35 0.61 0.28 0.59 0.71 0.49	217 99 351 67 0.35 0.61 0.28 -0.02 0.59 0.71 0.49 0.43

The correlation coefficient and correlation diagram between each element are shown in Table II-6 and Fig. II-5-1 \sim 5-5 respectively. According to these, it is clear that the correlation coefficients such as Pb-Zn and Zn-Cu are high.

On the contrary, correlation coefficients of Cu-Pb are low except in limestone zone (lithological unit 3).

There are many insufficient descriptions of lead content in the original list of data, which are noted as interferencia. Among those, some are marked by the rank in the Projeto Geoquimica no Vale do Ribeira (Anexo VI \sim X), of which the means were substituted.

Lead content

Marked rank	Mean (substitutes)			
< 15 ppm	7 ppm			
15 - 30	22			
30 - 60	45			
60 – 120	90			

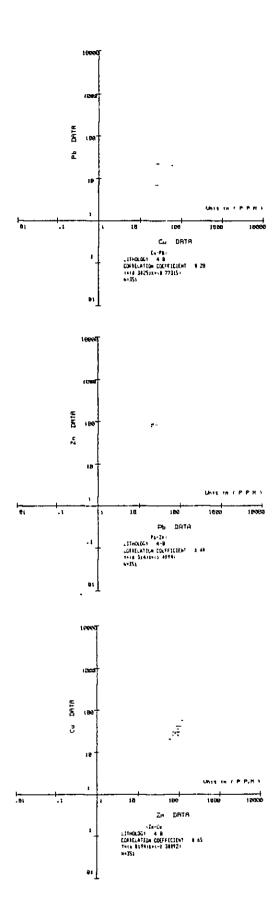


Fig. II-5-1 Correlation Diagrams (Lithology 2)

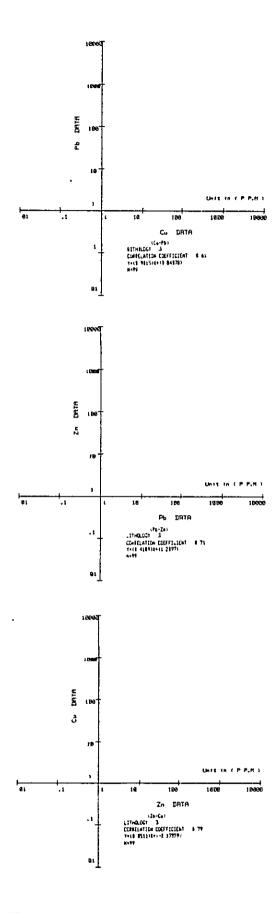


Fig. II-5-2 Correlation Diagrams (Lithology 3)

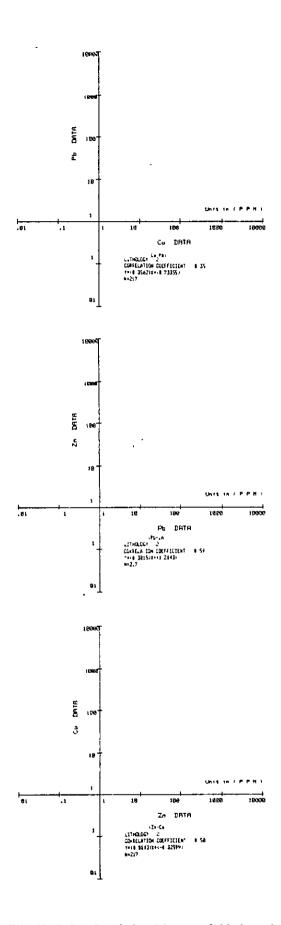


Fig. II-5-3 Correlation Diagrams (Lithology 4-8)

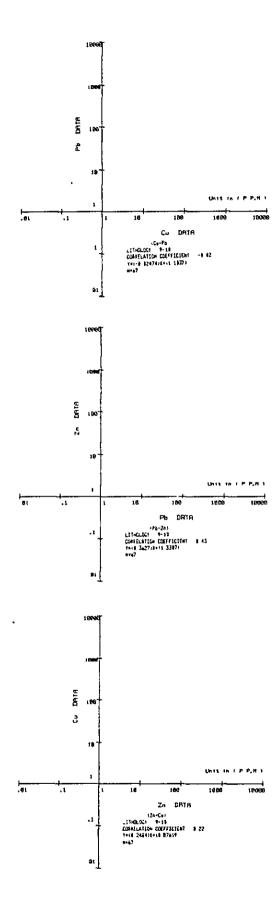


Fig. II-5-4 Correlation Diagrams (Lithology 9-10)

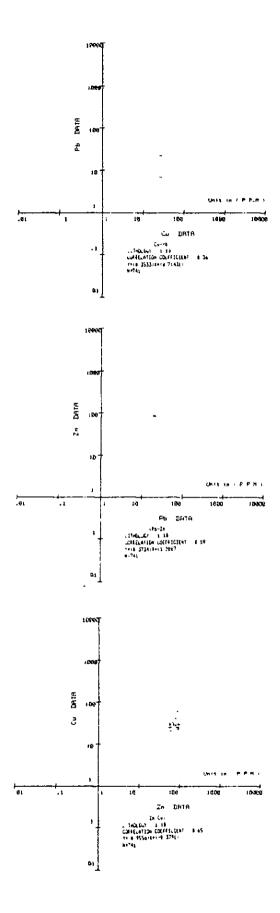


Fig. II-5-5 Correlation Diagrams (Lithology 1-10)

CHAPTER 3 INTERPRETATION OF THE ANOMALOUS AREA

3-1 Examination of the Anomalous Areas

Although $10^{x+2\sigma}$ value is adopted as anomalous value for each element, in order to observe the general tendency, $10^{x+\sigma}$ and $10^{x+2\sigma}$ areas are illustrated in the Plates (PL II-2-1, 2, 3) which show the anomalous areas for each element, and only $10^{x+2\sigma}$ areas are shown in the comprehensive map (PL II-3) in order to avoid complexity.

Copper:

The anomalous areas of copper which are above $10^{x+2\sigma}$ value are found in five places in granite; from east to west, one at Aguados Grande, one at Espirito Santo, one at Morro Agudo and two at Trés Córregos. Copper content ranges from 35 to 82 ppm and no extremely high values are obtained. In zone (3) where limestone is developed, the anomalous areas are found in the southwestern part of the drainage (IP-473) where the Furnas mine is located and in the north of the drainage (VA-17/172), showing 120 ppm in the former and 190 ppm and 340 ppm in the latter. It is probably due to the effect of copper in the barite bed of the Pretinhoe mine. Therefore, there is some possiblity of continuity of assay result). In zones (4)-(8) of the Açungui group, there are three anomalous areas, among which copper anomalies (AG-126, 129) with 140-150 ppm indicates the existence of copper mineralization in limestone. A weak anomaly with 62-90 ppm is shown on the west of the Perau mine, suggesting some relation with amphibolite.

In the surrounding area of gneiss zone of the Setuva formation (9), an anomalous area with 60-75 ppm are obtained, which is considered to be caused by chalcopyrite associated in the barite bed of the Pretinhoe mine. Therefore, there is a possibility of continuity of this horizon.

Lead:

There are five high lead anomalous areas (more than 1,000 ppm) in the whole area. All of them are known as the existing lead deposits or showings.

12 lead anomalies above 2σ are obtained, in which the contents are only in the range of 45–230 ppm, but they do not so rather concentrate. The drainage with the highest value of 230 ppm is located 15km north of Cerro Azul, where a small body of syenite is known.

Since limestone zone is the zone where lead ore deposits swarm the value of $10^{X+2\sigma}$ is as high as 190 ppm, which is two to three times those of granite and other Açungui group. When the anomalies which are above the value of 2σ are extracted, they agree well

with the existing typical deposits as shown in the following.

```
      I
      VA-167 (420 ppm) . . . . . . Espirito Santo

      2
      IP-473 (1,000 ppm) . . . . . . . Furnas mine

      3
      VA-130 (1,000 ppm) , IP-508 (235 ppm) . . . . Lageado mine

      4
      AM-30 (1,000 ppm) . . . . . . . Barrinha mine

      5
      TB-59 (1,000 ppm) . . . . . . . Rocha mine

      6
      TB-126 (1,000 ppm) . . . . . . . . . . . . Quarenta Oitavos
```

However, low values such as $40 \sim 60$ ppm obtained in the Panelas Mine area would indicate some problems on sampling.

In the Açungui group, lead anomalies of 100 and 210 ppm are obtained along the western periphery of the Agudos Grande granite body. In addition, an anomaly of 1,000 ppm is located in the drainage with the sampling density of 4km²/sample, 3km south of Iporanga, overlapping a copper anomaly. As the geological map of 1/100,000 made by Projeto Lesto do Parana (1977) has a thin bed of limestone and a symbol of the suspended iron mine, it is necessary to check.

The sample of VA-150, located 15km southwest of Iporanga, shows the lead content of 380 ppm. It would have been caused by limestone (lead bearing?) exposed at the divide.

As mentioned before, no lead anomalies do not appear in the vicinity of the Panelas deposit. Also in surrounding area of the Perau deposit occurring in the same group, no remarkable anomaly can be obtained, in spite of being under operation of mining and milling in the upstream.

In the Setuva formation and crystalline complex (9-10), $10^{x+2\sigma}$ is as low as 36 ppm and other anomalies obtained are insignificant.

Zinc.:

The anomalous areas of zinc are only nine places when the values of $10^{x+2\sigma}$ are taken, because the values are distributed more normally than those of copper and lead.

In granitic rocks (2), the anomalies are present 15km north of Cerro Azul overlapping the lead anomalies with the maximum value of 380 ppm.

In limestone (3), Zinc anomalies are present at the Furnas deposit area (IP-473, 770 ppm) and at the Lageado deposit area (VA-130, 710 ppm, IP-508, 230 ppm) overlapping the lead anomalies, but no anomaly is obtained in the areas such as Panelas and Rocha. This agrees with the existence of sphalerite in the both deposits of Furnas and Lageado, and on the contrary, with its absence in the Panelas and Rocha deposits.

In the Açungui group, the zinc anomaly obtained at the place 3km south of Iporanga coincides with the anomalies of copper and lead, showing 390 ppm.

In the Setuva formation and the crystalline complex, no notable anomaly is obtained.

3-2 Extraction of the Anomalous Areas and Comparison with the Data of CPRM

After selecting the areas with a homogeneous sampling density from the data of "Projet Geoquimica no Vale do Ribeira" conducted by DNPM—CPRM, and combining the ten existing lithological units into the four, such as granite, Açungui limestone (corresponds to the Açungui III formation of this time), Açungui schist (corresponds to Açungui I + II formations) and the Setuva formation, the extracted data was processed by computor.

The area represented by the samples which could be extracted is about a half of the whole area and the area of drainage represented by each sample was different, and a considerable number of estimated values were forced to be used, therefore there should be few difference between the anomalous areas worked out by the two method.

As a result, the highly anomalous zones are coincided with the CPRM report and the following anomalous zones have been newly obtained due to the change of mean and standard deviation by lithological unti.

- 1 AG-44 (Cu)
- 2 AG-156 (Cu)
- 3 AG-37 (Cu)
- 4 PP- 08 (Pb)
- 5 VA-60 (Cu)

As discussed in the previous chapter, AG-44, AG-157 and AG-37 occur as if they surrounded augen gneiss of the Setuva formation, which corresponds to the extension of the Pretinhoe deposit (Ba) which is the same horizon as the Perau deposit. Therefore, future investigation is recommended in this area.

The lead anomaly (PP-08, 45 ppm) in Morro Agudo granite 15km west-northwest of Tunas was shown as zinc anomalous area by the interpretation of CPRM. However, there is a zone of copper anomaly (TB-27, 55 ppm) on the east of the drainage, so that these anomalies may be caused not by the granite but by a weak mineralization.

In the same granite at the southwestern corner of the surveyed area, a copper anomaly (VA-60, 35 ppm) was newly obtained, but it is considered to be insignificant.

PART II AEROMAGNETIC INTERPRETATION

CHAPTER 1 GENERAL REMARKS

An aeromagnetic survey analysis was performed for an area of approximately 10,000km² in the Antagorda area of Brazil. This study was a part of Phase I of a Mineral Resources Survey of that area and was intended to delineate the major underground structures.

This report describes the results of the interpretation of the Aeromagnetic data. Before analysis, the digitized data were obtained from the residual map for the south-western area (A-area, 6,750km²), for the northeastern area (B-area, 3,250km²), the residual map was made from a magnetic tape supplied by the Government of Brazil, using an electronic computer.

By using the geological information availbale for the A-area, this report discusses the major structures and lineament directions interpreted by this analysis.

CHAPTER 2 OUTLINE OF AIRBORNE MAGNETIC SURVEY

2-1 Survey Area

The analysis work described in this report was made from the aeromagnetic data in the area of 10,000km² is located near the boundary between the states of São Paulo and Parana, Brazil, and forms a polygon whose apexes are as listed below.

	Latitude S	Longititude W
Α	24°27′	48°55.6′
В	24°27′	49°15′
C	24°30′	49°15′
D	24°30′	49°30′
Е	24°45′	49°30′
F	24°45′	49°45′
G	25°05′	49°45′
Н	25°05′	48°52.5′
I	24°52′	48°38.7′
J	24°48.7′	48°40.5′
K	24°45′	48°37.5′
L	24°45′	48°15′
M	24°15′	48°15′
N	24°15′	48°45′

In Phase I, the aeromagnetic map has been made only in the southwestern area (A-area; A-B-C-D-E-F-G-H-I-J-A), the analytical work was conducted for A-area. And, for B-area (A-J-K-L-M-N-A), only the residual map was made.

2-2 Outline of Field Work

The airborne magnetic surveys covering this survey area were conducted by the D.N.P.M. (Departomento Nacional da Produção Mineral) of Ministério das Minas e Energia and CPRM (Companhia de Pesquisa de Recursos Minerais) as a part of the project of the integrated airborne geophysical survey, which also includes aeromagnetic and radiometric surveys. The project names, specifications for both A- and B-areas are as follows:

1) A-area

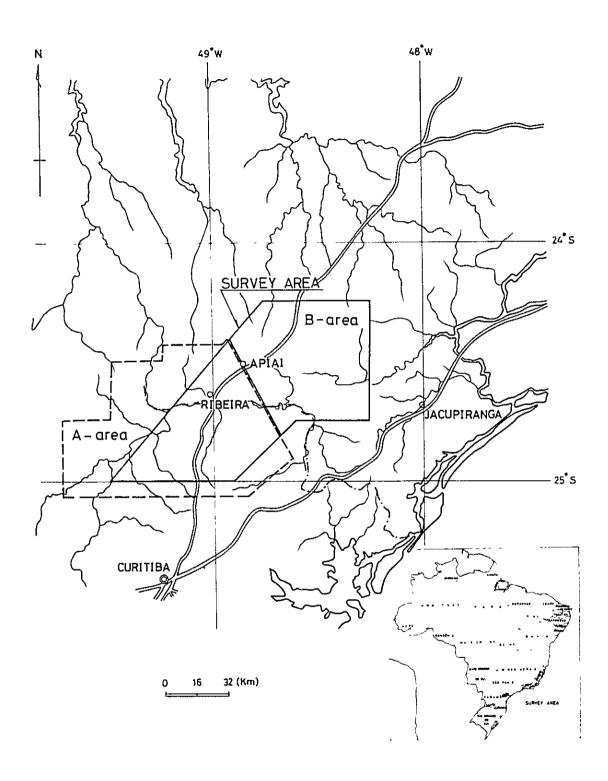
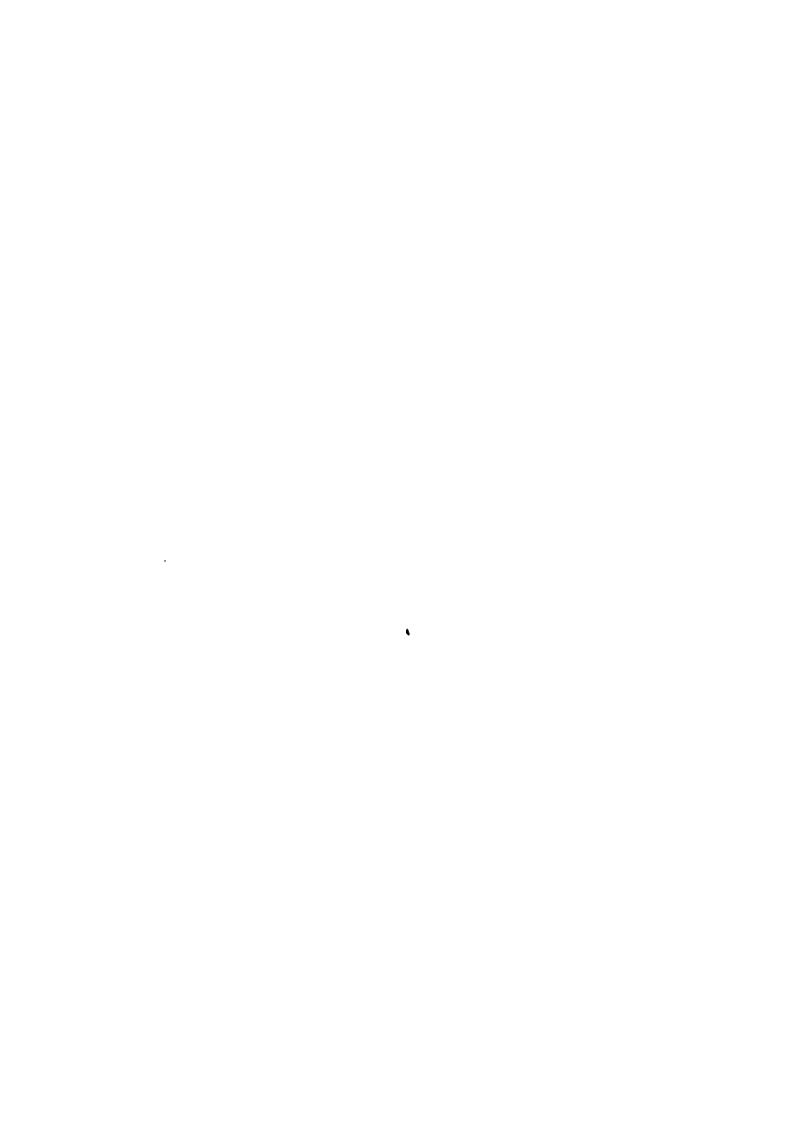



Fig. III-1 Location Map of Survey Area

Project Name: Serra do Mar Sul Project (Data Aquistion) — Airborne magnetic and radiometric survey at the Serra do Mar area, Santa Catarena and Parana.

Survey Period: August, 1975

Total Line Length: about 80,000km

Flight Altitude: 105 ~ 165m Above Ground Level (A.G.L.)

Separation of Flight Lines: 1km for the traverse lines and 20km for the tie lines.

Flight Directions: N30°W and N60°E

Geomagnetic Dip-Angle: 26°S Geomagnetic declination: N14°W

Total Geomagnetic Intensity: 23,500 gammas

2) B-area

Project Name: Airborne geophysical survey at the São Paulo - Rio de Janeiro Area

(airborn magnetic and radiometric surveys)

Survey Period: June to December, 1975

Total line length: about 32,000km

Flight Altitude: 150m A.G.L.

Separation of Flight Lines: 1km for the traverse lines and 20km for the tie lines.

Flight Directions: NS and EW

Geomagnetic Dip-Angle: 26°S

Geomagnetic Declination: N14°W

Total Geomagnetic Intensity: 23,500 gammas

2-3 Method of Analysis

The residual map has been drawn on the basis of the geomagnetic regional variation, which was calculated by subtracting the standard total intensity of the International Geomagnetic Reference Field (IGRF) from the aeromagnetic data. The analysis was made to the residual map.

There are two methods of analyzing aeromagnetic data. The first is a qualitative speculation of geological features selectively extracted from geomagnetic residual anomalies by means of some filtering procedures. The filters generally used are given as follows:

(1) Band-pass filter: which selectively extracts the magnetic anomalies with the optional region of wave length.

- (2) Second vertical derivative filter: which emphasizes the short-wave length magnetic anomaly.
- (3) Upward or downward continuation filter: which attenuates or emphasizes the short wavelength magnetic anomalies by means of calculating the magnetic value on the upper or lower level mathematically.
- (4) Auto-correlation analysis: which delineate the geomagnetic characteristics by detecting similar magnetic anomalies.
- (5) Spectrum analysis: This method is to understand the wave length characteristics of the geomagnetic anomalies in the survey area.
- (6) Reduction-to-pole filter: which is used to infer the shapes of the magnetized body by means of calculating the magnetic anomaly at the magnetic pole mathematically.

The second analysis aims for estimating depths, shapes and magnetic properties of magnetized bodies. The corresponding methods are as follows:

- (1) Specific Point Method
- (2) Curve Matching Method
- (3) Specific curve Method
- (4) Analytical Method

This survey was conducted at the flight level of $105 \sim 165 \text{m}$ A.G.L. in order to effectively detect the magnetic anomalies near the surface, it is assumed that the deep magnetic structure is masked by the shallow one.


In the present anomalies, the energy spectrum analysis by two-dimensional Fourier series was applied to the magnetic data obtained over 56km x 32km of the survey area including Rocha and Perau Mines. From the wavelength characteristics, two kinds of band-pass filter maps are obtained from the residual map. Thus three sheets of maps including the residual maps were obtained finally as the bases of qualitative analysis.

Quantitative curve matching analysis, based on the residual map, were also made to the typical anomalies on the residual map.

The methods used in this analytical work are summarized in the following subsection. The flow chart of analyses is shown in Fig. III-2.

2-3-1 Spectrum Analysis

The wavelength characteristics of magnetic anomalies distributed over the survey area is usefully applied to a magnetic analysis through filtering as well as to an estimate of depth to

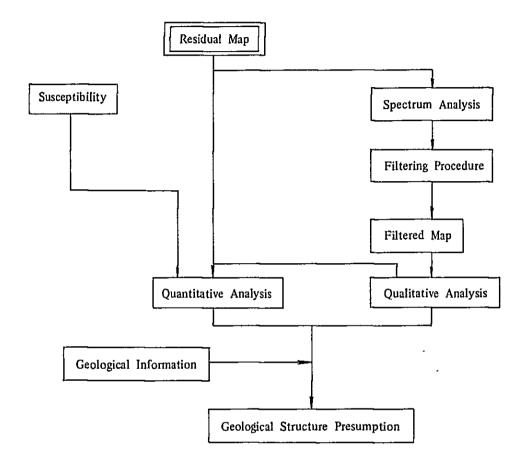


Fig. III-2 Flow Chart of Analysis

magnetic basement by using the potential theory.

1) Energy Spectrum

A value F(X, Y) in the rectangular coordinates is expressed in two-dimensional Fourier series as

$$F(x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} Amn \exp \left(-2\pi j \left(mx/L_1 + ny/L_2\right)\right) dmdn$$

Hence, the Fourier coefficient Amn is given by
$$Amn = \frac{4}{L_1 L_2} \int_0^{L_1} \int_0^{L_2} F(x, y) \exp(2\pi j (mx/L_1 + ny/L_2)) dxdy$$

$$Emn = /Amn/^2$$

Estimation of Mean Depth to Magnetic Basement

Assuming that an energy spectrum of magnetic anomalies due to a magnetic layer lying at a depth of H is white, the potential theory leads the following relation between energy spectrum Emn of wave numbers (m, n) and H. It is

Emn
$$\alpha \exp(-4\pi Hf)$$
,

Where f is a quantity called frequency:

$$f = \sqrt{(-\frac{m}{L_1})^2 + (\frac{n}{L_2})^2}$$

The energy spectrum is plotted in an f vz. In Emn graph. A straight line is determined by the least square fitting to the plots. H is estimated from the tangent of the straight line.

2-3-2 **Band-pass Filter**

The band-pass filter is derived from the deviation two low pass filters whose cut-off frequencies are different from each other.

Assuming two cut off frequencies as ω_1, ω_2 ($\omega_1 > \omega_2$), the coefficients of the bandpass filter is expressed as follows:

$$foo = (\omega_1 - \omega_2) / \pi^2$$

fno = fon =
$$(\omega_1 \cdot \sin n\omega_1 s - \omega_2 \sin n\omega_2 s) / (n\pi^2 s)$$

fmn =
$$(\sin m\omega_1 \sin n\omega_1 \sin n\omega_2 \sin n\omega_2 \sin n\omega_2 \sin n\omega_3) / (m \cdot n\pi^2 \cdot s^2)$$

For actual computations, the band-pass filtered values are obtained by the convolution using the discrete magnetic data digitized at 1km grid and the coefficient given by fmn.

Susceptivility Measurements of Rock Samples

A total of 56 rock samples were collected from outcrops at the location as shown in

PL. III-4. Magnetic susceptibility of all the samples were measured by means of a Bison Susceptibility Meter. The results are given in Table III-1.

The mean values of magnetic susceptibility amount to

285	64×10^{-6}	cgs emu/cc	for	1	gabbro sample
156	50	,,	for	2	diabase samples
140	00	"	for	2	syenite samples
40	57	#	for	6	granite samples
13	22	**	for	4	amphibolite samples
8	32	"	for	2	gneiss samples
4	12	**	for	16	pelitic rocks samples
:	51	"	for	6	psammitic rocks samples
4	18	**	for	10	limestone samples

Taking into account the susceptibility values, the rock samples were classified into four classes, class A (strongly magnetic rocks), class B (intermediately – magnetic rocks), class C (weakly magnetic rocks) and class D (slightly magnetic rocks). Gabbro, diabase and syenite belong to class A, granite to class B, amphibolite and gneiss to class C, pelitic rocks, psammitic rocks and limestone to class D.

According to the results of magnetic susceptibility measurements, it is expected that in the area where class A magnetic bodies are distributed, magnetic anomalies with a short wavelength and large amplitude are dominant, in the areas where the other classes magnetic bodies are distributed, there are many magnetic anomalies of small amplitude.

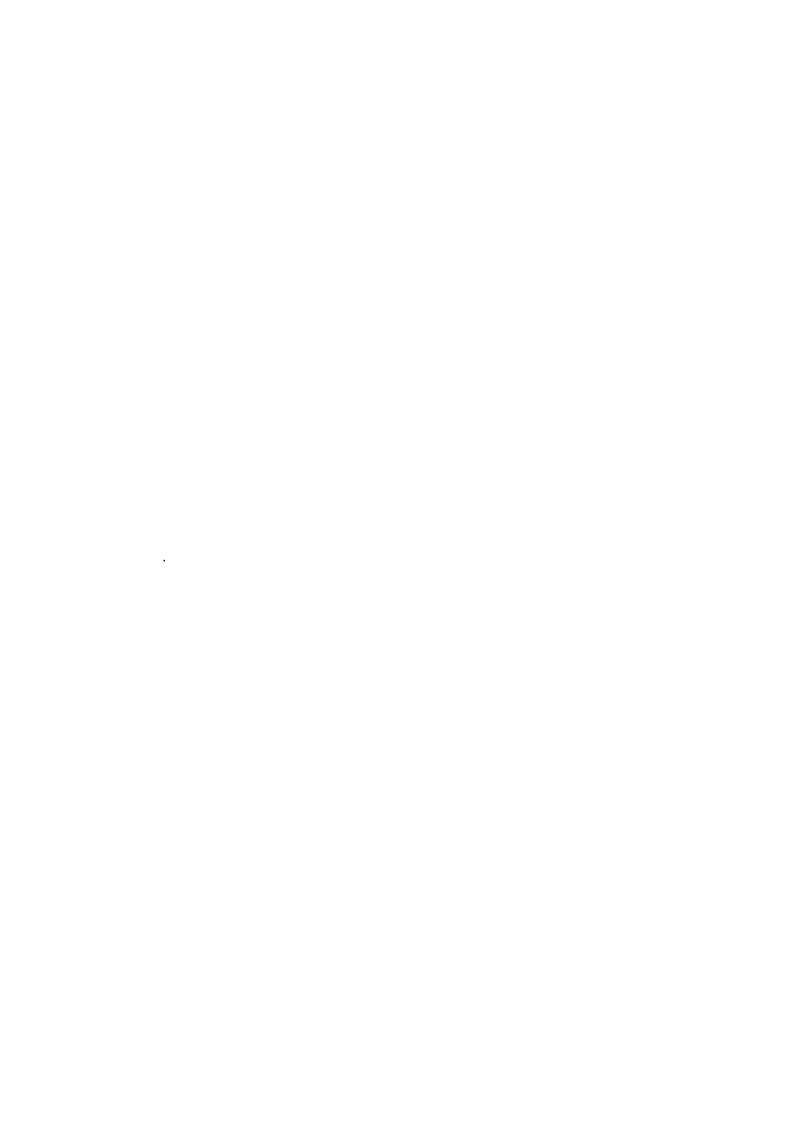


Table III-1 Susceptibility of Rock Samples (1)

	Sample				Susceptibility (x10 ⁻⁶ cgsemu)	
	No.			Average		Average
	F-66	Gneiss	2.61		65	
Gneiss	F-105	Gneiss	2.84	2.76	98	82
	F-290	Gneiss	2.84		(503)	
	F-2	Phyllite	2.62		42	
	F-5	Mica-schist	(2.83)	ļ	(1,877)	
	F-28	Phyllite	2.60)	74	
	F-76	Phyllite	2.45		28	ļ
	F-293	Mica-schist	2.52		69	
	F-294	Phyllite	2.57		38	
	F-300	Sericite-schist	2.64		73	
	S-13	Sericite-schist	2.38		54	
Pelitic Rocks	S-20	Sericite-schist	2.55	2,55	70	52
	S-24	Calcareous-schist	2.73	2.73		
	T-10	Mica-schist	2.69		50	
	T-13	Mica-schist	2.67		51	
	T-16	Mica-schist	2.65		38	
	T-20	Sericite-schist	2.55		27	
	T-35	Phyllite	2.50		56	
	T-47	Phyllite	2.05		32	
	K-252	Sericite-schist	2.59	<u> </u>	73	
	F-1	Quartzite	2.64		61	
	F-67	Quartzite	2.62		38	
	T-9	Psammitic-schist (metasandstone)	2.73		71	
Psammitic Rocks	K-195	Psammitic-schist (metasandstone)	2.62	2.63 (6)	59	51
	K-258	Psammitic-schist (metasandstone)	2.53		30	
	K-263	Psammitic-schist (metasandstone)	2.62		49	
	T-30	Green-schist	2.92	2.87	88	<u> </u>
Green-schist	[[Green-schist	2.81	1 0 1	81	85

Table III-1 Susceptibility of Rock Samples (2)

	Sample	mple Rock Name Density (gr/cm ³)			Susceptibility (x10° cgsemu)	
	No.	KOCK Name		Average		Average
	F-72	Limestone	2.78		24	
	S-15	Limestone	2.72		30	
	S-86	Limestone	2.77		47	
	S-89	Limestone	2.75		59	
Limestone	S-94	Limestone	2.73	2.77	61	48
	S-128	Limestone	2.71	(10)	36	
	S-129	Limestone	2.75		43	
	T-58	Limestone	2.66		46	
	T-85	Limestone	2.72		54	
	F-7	Amphibolite	2.97		108	
	F-272	Amphibole -schist	2.92		109	
Amphibolite	S-93	Amphibolite	2.99	2.95	117	122
	K-176	Amphibole -schist	2.83		(4,115)	
	K-178	Amphibolite	2.99		(1,390)	
	K-182	Amphibolite	3.00		155	
	F-39	Granite	2.61		225	
	F-57	Granite	2.62		593	
Granite	F-242	Granite	2.62	2.64	154	467
Granne	S-49	Granite	2.68	2.04	890	707
	S-91	Granite	2.64		80	
	K-184	Granite	2.64		860	
Sugnita	F-21	Syenite	2.59		1,272	1,400
Syenite	F-87	Syenite	2 65		1,528	1,400
Gabbro	S-33	Gabbro	2.93		2,854	2,854
	S-17	Diabase	3.02	3.02 2,331		1.550
Diabase	S-95	Diabase	2.90	2.96	796	1,560
	F-4	Magnetite	3.67		54,970	

CHAPTER 3 RESULTS OF ANOMALIES

In the residual map, the short wavelength magnetic anomalies reflecting shallower magnetic structure are dominant and the long wavelength which may correspond to deep magnetic structures ones are masked by those because of the flight of 105–165m A.G.L.

3-1 Residual Map

Judging from the magnetic anomalies shown in the residual map PL.III-1, the magnetic feature of the survey area are summarized as follows:

- 1) The southwestern part of A-area, is characterized by the groups of magnetic anomalies with the amplitude larger than 500 gammas and short wavelengths of 1-3km, of which the direction is almost NW-SE. This part is called as Zone A. In this zone, it is presumed that magnetic rocks belonging to class A such as gabbro, diabase and syenite, are extensively distributed.
- 2) In the area from central part to eastern part, there are small variation of magnetic value all over this area so magnetic bodies belonging to classes B, C and D may be distributed widely. At the northern and southeastern ends, there appear to be typical magnetic anomalies which may be caused by class A magnetic bodies.

The area from central to northeastern parts of this area, is called as Zone B, where relatively low magnetic values are detected. The southeastern part, called Zone C, is where relatively high magnetic values are detected.

3) In the northwestern part of the area, the northern part of Zones A and B, the trend of contour line with the direction of NE-SW is dominant and also there is a wide low magnetic anomaly with the direction of NE-SW. This part is called as Zone D.

From this point, the typical magnetic anomalies are classified with these zone signature.

3-2 Band Pass Maps

Fig. III—4 shows an energy spectrum analysis result of magnetic anomalies based on the residual map of an area 56km of N14°W—S14°E by 32km of N76°E—S76°W including Zones B and C (Fig. III—3). Judging from the energy spectrum distribution, the energy spectrum has a tendency to decrease with wavelength.

The wavelength domain is divided into three subdomains whose boundary wavelengths

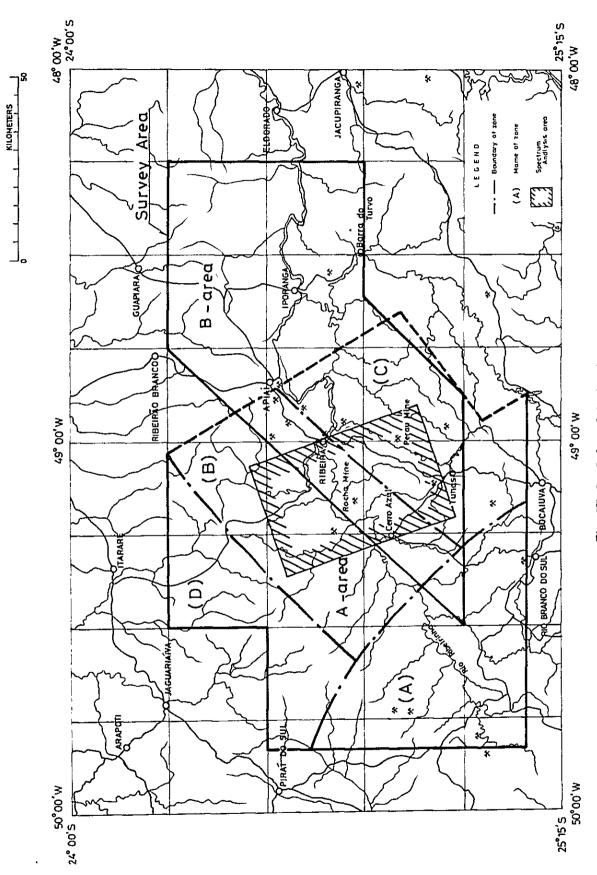


Fig. III-3 Index of Analyzed Area

(λ) are 2km, 4km and 16km. Straight lines are fitted by the least squares method in each of the subdomains, i.e. 2-4km and 4-16km. From the gradients of the straight lines, the depths to the magnetic basement are estimated as -2km and -6km from the flight level respectively. But as this survey flight path was not conducted by exactly horizontal flight, these values will be apparent depth for mathematical procedures.

In order to distinguish the distribution of the magnetic bodies from those sizes, the following two band-pass filters were designed.

- 1) BP-1: Band-pass filter for a wavelength domain 2-4km.
- 2) BP-2: Band-pass filter for a wavelength domain 4-16km.

These two filters were applied to the residual map to obtain two band-pass maps, BP-1 and BP-2.

Based on these band-pass maps, a qualitative discussion is given below.

3-2-1 Band Pass Map (BP-1)

This map has a similar distribution of the magnetic anomalies with the residual map, but the short wavelength anomalies became dominant. It can be seen that three are the continuities in the arrangement of magnetic anomalies detected in the residual map within each zones. In Zone A, the continuities of NW—SE direction are dominant. In Zone B, at the vicinity of the boundaries with Zone C and with Zone D, the trend of NE—SW direction is dominant, and partly there are continuities of the direction oblique or perpendicular with that direction. In Zone C and D, there are dominantly the continuities of NE—SW directions.

Magnetic anomalies with an amplitude larger than 500 gammas which exist within Zone A or which are classfied with the number of magnetic anomaly may be caused by the class A magnetic bodies.

In other part of Zones B and C excluding the intensive magnetic anomalies, where the amplitude of magnetic anomalies is relatively small, there may exist dominantly the class B, C and D magnetic bodies.

The magnetic discontinuity as judged from the magnetic anomaly features does not always coincide with geotectonic lines in a geological sense. Taking the above circumstances and the susceptibility measurement results of rock specimens into consideration, a qualitative interpretation is made to the BP-1 Maps follows.

1) Zone A: Plenty of small scale magnetic bodies of class A with the direction of the major geotectonic line (NW-SE) are distributed.

- 2) Zone B: The direction of the major geotectonic line is NE—SW, which is distributed almost parallel to the boundary with Zone D on north side and Zone C on south side. The south side geotectonic line is consisted of three sub-geotectonic lines;
 - (i) one which runs from Cerro Azul to 5km east of Itapirapua and extends to the north (B-a),
 - (ii) one which starts Rocha mine to 5km north of Ribeira and extends to the northeast (B-b),
 - (iii) one with the NW-SE direction from 5km east of Itapirapua to 5km north of Ribeira (B-c)

It is thought that the magnetized body of class B (granite) is mainly distributed in Zone B and the magnetic discontinuities with the direction of NW—SE and the magnetic anomalies such as B-1, 2, 3, 4 and 5 are induced by the class A magnetized bodies (diabase, basaltic rocks).

- 3) Zone C: The direction of the major magnetic discontinuities, which disappear at the boundary with Zone A, is NE-SW. And also another geotectonic line may be existed from 10km east of Cerro Azul to Paneras mine. Like Zone B, in Zone C, as an amplitude of magnetic anomalies is very small, there exist widely the magnetic bodies of class B, C and D (granite, amphibolite, pelitic rocks, psammitic rocks and limestone). But class A magnetic bodies like gabbro, syenite and diabase, may induce the magnetic anomalies of C-1, 2 and 4 with an amplitude of 500 γ.
- 4) Zone D: The direction of the major magnetic discontinuities is NE-SW, but, there are also small ones perpendicular to those direction. It is estimated that, in this zone, the magnetized bodies of class B, C and D (granite, amphibolite, pelitic rocks and limestone), causing magnetic anomalies less than 200 gammas, are dominantly distributed, excluding the northwestern edge where the magnetic bodies of class A may cause the magnetic anomalies with an amplitude larger than 500 gammas.

3-2-2 Band Pass Map (BP-2)

This map is characterized by the magnetic anomalies with an amplitude of 250 gammas and a half wavelength of about 10km.

At Zone A, the magnetic anomalies are arranged at the direction of NW-SE, which coincides with the direction of the major magnetic discontinuities as mentioned in 3-2-2. And

also, at Zone D, it can be seen that the trend of contour line is NE-SW and the low magnetic anomaly with long wavelength is distributed.

On the other hand, at Zones Band C, it is easily understandable that the magnetic anomaly features are derived from the smoothing effect for the magnetic anomalies like $B-1 \sim 4$ and $C-1 \sim 5$.

Therefore, it is thought that this map does not reflect the deep magnetic structure and expresses only the apparent magnetic anomalies as calculated mathematically.

3-3 Quantitative Analyses

Some profiles are drawn for typical magnetic anomalies on the residual map. Depths to the magnetic source and its apparent susceptibility were estimated from the data by means of the curve matching method using the standard curves of the prism, dyke and other models. In proportion to the obtained susceptibilities, the magnetic intensity of the source is classified into four classes A, B, C and D, as stated in 2-4.

P.L.III-4 shows the above results synthetically estimated from both the quantitative and the quantitative analyses.

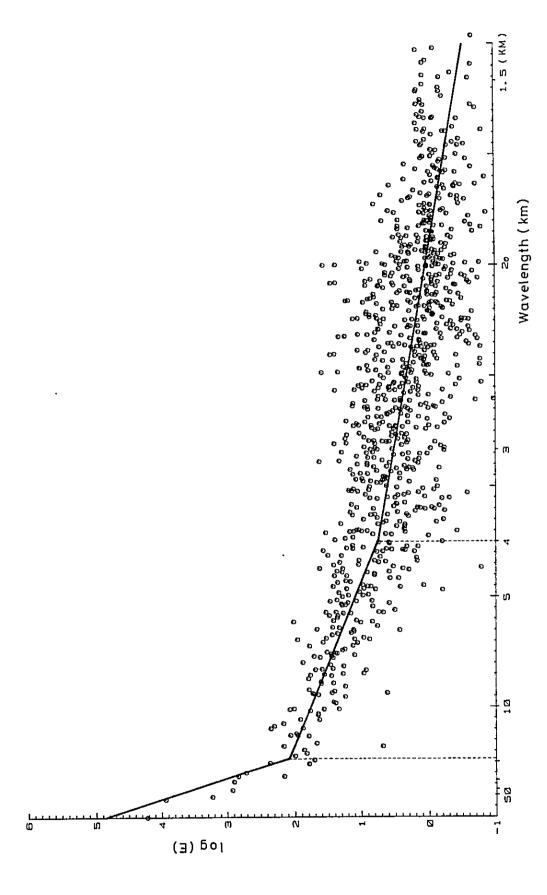



Fig. III-4 Energy Spectrum vs. Wavelength

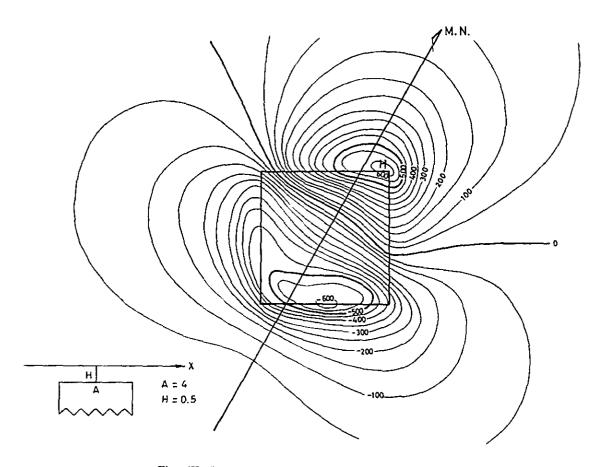


Fig. III-5 Magnetic Anomaly due to Prism Model (Inclination 26°S)

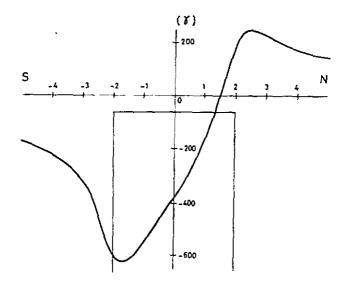


Fig. III-6 Magnetic Anomaly due to Dyke Model (Inclination 26°S)

CHAPTER 4 CONCLUSIONS

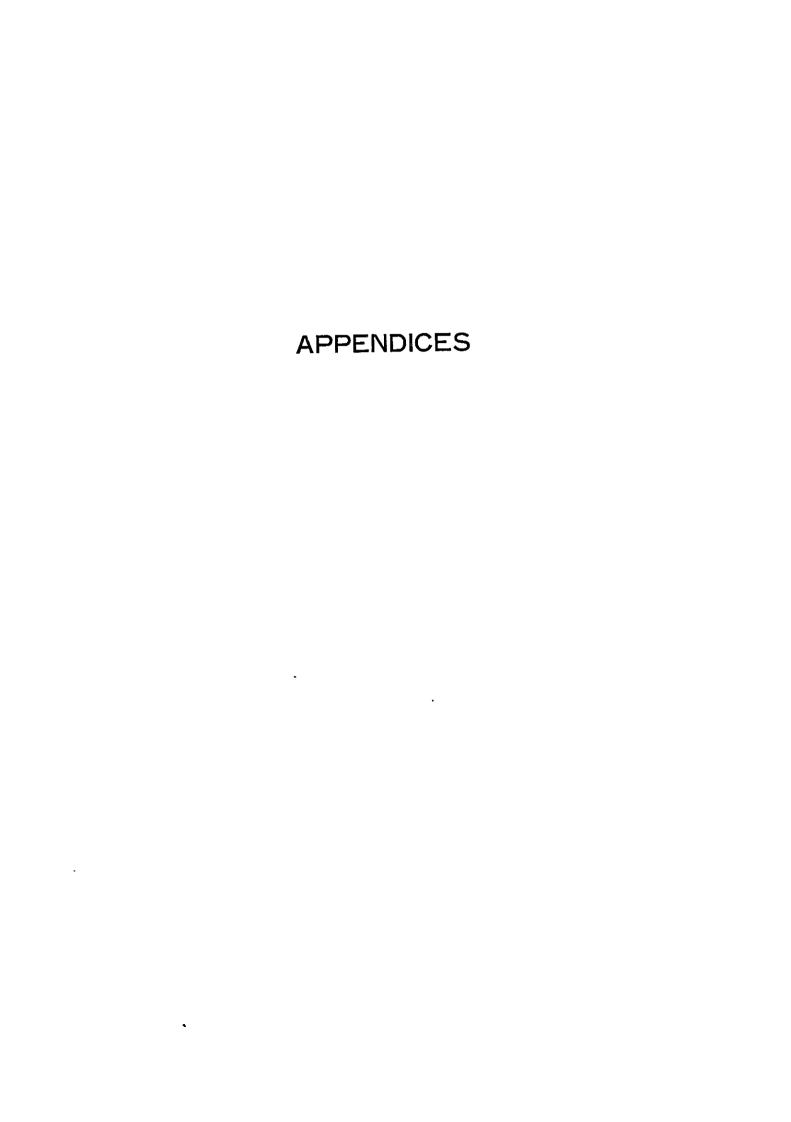
Magnetic anomalies in the survey area are classified into four classes A, B, C and D, which are induced by the buried magnetic sources of class A (strongly magnetic), class B (intermediate magnetic), class C (weakly magnetic) and class D (slightly magnetic) respectively.

According to the magnetic susceptibility measurements of rock samples, gabbro, diabase and syenite belong to class A, granite to class B, amphibolite and gneiss to class C and pelitic rocks, psammitic rocks and limestone to class D.

The results of the survey can be summarized with geological implications as follows:

- 1) In the area from central to northeastern area (Zone B), class B magnetic body (granite) is prominantly distributed with a width of about 30km and trending the direction of NE-SW, and its both edges is limited by geotectonic lines. At the north end and central part in this body, magnetic bodies of class A (syenite, diabase) exist as intrusive rocks, in which B-1 and B-3 is outcropped but other B-2, B-4 and small magnetic bodies in the vicinity of B-3 are concealed. Also, narrow dykes of class A are expressed as the magnetic discontinuities of the NW-SE direction.
- 2) According to the geological information, there exists large amounts of granite (class B magnetic body) in the southwest of the area of Zone B. But, it is difficult to delineate its distribution because of the existence of many small class A magnetic bodies (diabase) with the NW-SE direction. It is possible to understand that the geotectonic lines detected in the southwestern part of the survey area correspond to narrow dykes of class A magnetic body.
- 3) In the southeastern part of the survey area, the magnetic bodies of class D is most widely distributed and the major geotectonic lines have the direction of NE-SW. The magnetized bodies of class A (gabbro and syenite) are detected near Rocha mine (B-5), south of Ribeira (C-1), near Tunas (C-4) and about 10km east of Perau mine. The relation between these intrusive rocks and mines is not clear now. The magnetized bodies of class C (gneiss, amphibolite) is distributed parallel to the above-stated geotectonic line from the south of Ribeira to about 20km southeast of Tunas.

Based on above-mentioned considerations, the following conclusions were derived:

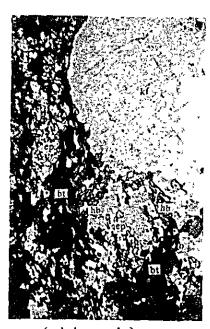

The geological lineation runs in a NE—SW direction. This tendency is consistent with
the magnetic lineament. The distributions of granite, sycnite, gabbro and diabase are almost

always recognized. Mines in the survey area locate within the magnetic body of class D. The relation these mines and the magnetic bodies of class A and B (gabbro, diabase, syenite and granite) is not clear.

It is suggested that, by means of re-analyzing aeromagnetic data of the B-area and considering both the results of Phase I and B-area, the distribution of class D magnetic body closely related with mines be recognized and the correlation between mine and class A and B magnetized bodies be also revealed.

Photo. A-1 Microphotograph of Thin Section

Abbreviations

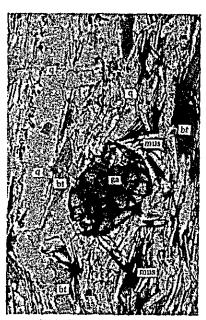

q : quartzpl : plagioclasekf : potash feldspar

bt : biotite
mus : muscovite
hb : hornblende
tr : tremolite
au : augite
ae : aegirine
ga : garnet

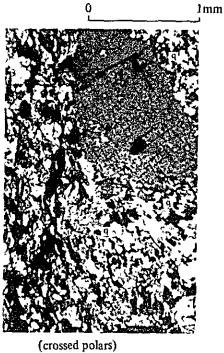
op : opaque mineral
tor : tourmaline
ser : sericite
chl : chlorite
srp : serpentine
ep : epidote
cal : calcite
dol : dolomite

Sample No.: F-105
Rock name: hornblende epidote biotite gneiss (Setuva F.)

Location : Cerra do Cadeado



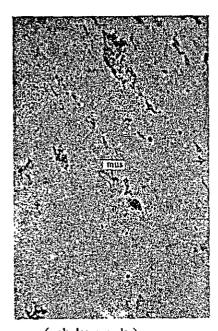
(only lower polar)

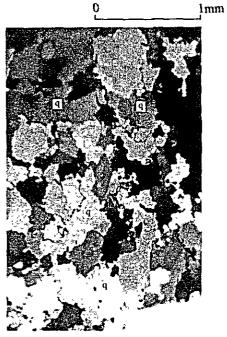

Sample No. : S-37

Rock name : biotite muscovite schist (Açungui I F.)

Location : Barrinha

(only lower polar)

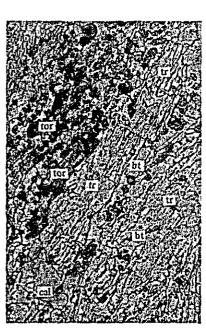

(crossed polars)


Sample No. : F-1

Rock name : quartzite (Açungui I F.)

Location : Perau Mine

(only lower polar)



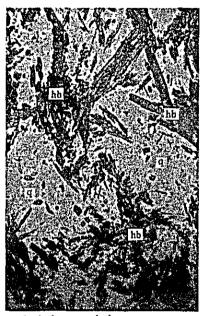
(crossed polars)


Sample No.: F-278

Rock name : calcareous muscovite tremolite schist (Açungui I F.)

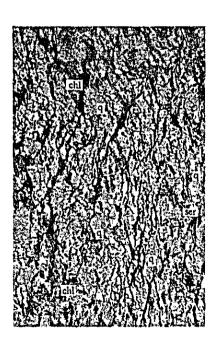
Location : Perau Mine

(only lower polar)



(crossed polars)

Sample No. : F-7

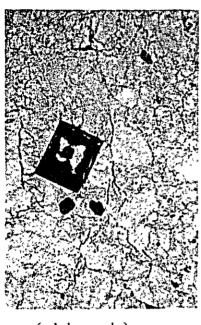

Rock name : amphibolite (Açungui I F.)
Location : Perau Mine

(only lower polar)

Sample No. : T-10

Rock name : chlorite sericite schist (Açungui II F.)
Location : Barra do Turvo

(only lower polar)

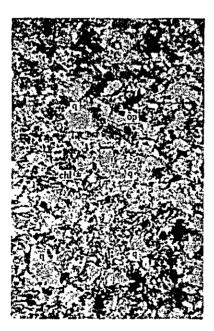

0.5mm

(crossed polars)

Sample No. : S-9

Rock name : sandstone (Açungui III F.)

Location : Adorianopolis



(only lower polar)

Sample No. : K-272

Rock name : sericite chlorite schist (Açungui III F.)

Location : Iporanga

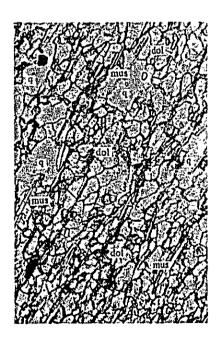
(only lower polar)

(crossed polars)

(crossed polars)

Sample No. : S-126

Rock name : limestone (Açungui III F.)


Location : Rocha Mine

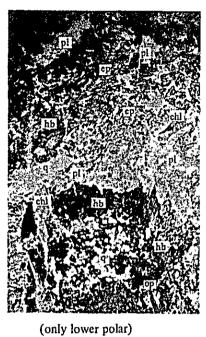
(only lower polar)

Sample No. : S-127

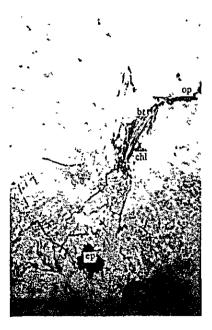
Rock name : dolomite (Açungui III F.)
Location : Rocha Mine

(only lower polar)

(crossed polars)

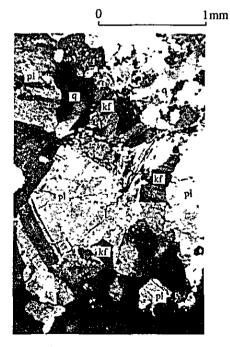


(crossed polars)



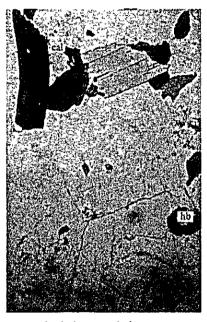
Sample No. : S-48

Rock name : amphibolite (Açungui III F.)
Location : Adrianopolis

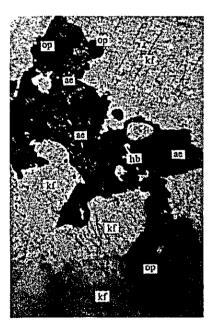


Sample No. : F-57
Rock name : granite
Location : Cerro A : Cerro Azul

(only lower polar)

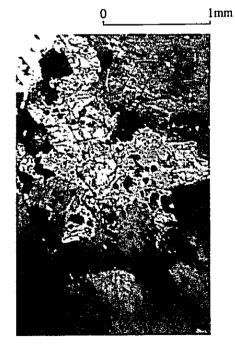


(crossed polars)



Sample No.: F-124 Rock name : granite : Itaoca Location

(only lower polar)


Sample No. : F-87
Rock name : aegirin syenite
Location : Tunas

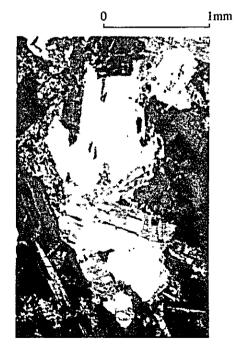
(only lower polar)


(crossed polars)

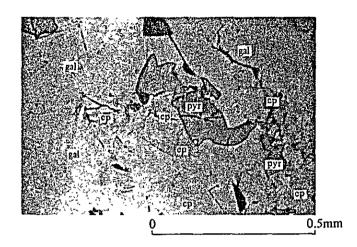
(crossed polars)

Sample No. : F-9
Rock name : diabase
Location : Perau

(only lower polar)


Sample No. : F-38
Rock name : gabbro
Location : Morro Agudo

(only lower polar)


(crossed polars)

(crossed polars)

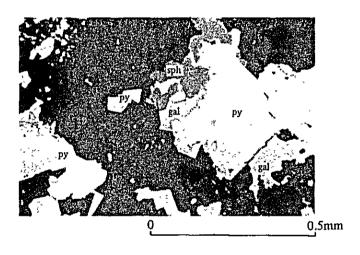
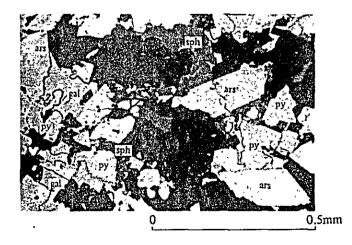
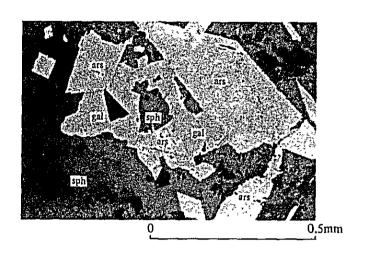


Photo. A-2 Microphotograph of Polished Section


Sample No. : F-204
Rock name : lead ore
Location : Panelas Mine

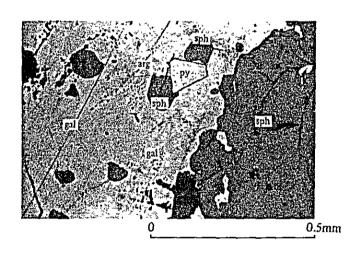
Refrected light Only lower polar

Sample No. : K-351A
Rock name : lead and zinc ore
Location : Lageado Mine


Refrected light Only lower polar

Sample No. : K-351C
Rock name : lead and zinc ore
Location : Lageado Mine

Refrected light Only lower polar



Sample No. : T-81

Rock name : lead and zinc ore Location : Furnas Mine, 500mL

Refrected light Only lower polar

Sample No. : T-83

Rock name : lead and zinc ore Location : Furnas Mine,

Santa Barbara II

Refrected light Only lower polar

Abbreviations

py : pyrite
cp : chalcopyrite
ars : arsenopyrite
pyr : phyrrhotite
gal : galena
sph : sphalerite
arg : argentite

Table A-1 List of Mines and Showings

	,			 -			·		···														
Ser.		Name of	Kınd	Туре	Status	Location	Host Rock		Ore De	posits			Grad	ic (%)			Ore-Mineral	Remarks					
No.		Mine	of Ores	.,,,,	Quo	Lyddi , 181		Strike & Dip	Lateral Extension	Longitudinal Extension	Average Width	Au	Ag	Cu	Ръ	Zn							
1.	E	spirito Santo	Pb	vein	closed	Estado São Paulo Municipio Iporanga	Açungui III F	N80W~N80E 65~80N	m 20	m -	m 0.40	g/T -	g/T -	%	%	%	Ga, Sp, Py, Cp						
2.	М	laximinioro	Pb, Ag	đo	do	đo	do	N40E 60S	100°	4	0.10	0	33	0.1	0.8	0.0	Ga, Q						
3.	F	urnas	Pb, Ag	stratiform & vein	operating	do	do	N40-60W, 55N & E-W, 80S	100	300	0.20 0.20	0	200	0.1	12.0	8.0	Ga, Sp, Py, Cp, Cer, Lim	production (1981) 500T/M Pb:7% Ag:3,000g/T					
4.		Lourenço Velho	Pb	vein	closed	do	đo	N50E 80S	20~30	_	0.30	-	-	-	_	-	Ga, Lim, Cer						
5.		Santana Velha	Pb	do	do	do	do	N55E 75S	800	30	0.50	-	_	-	-	-	Ga, Lim						
6.		Santana Nova	Pb	do	do	do	do	N60E 75S	600	200	0.20	1	1,050	0.0	30.3	0.0	Ga	ore pocket 50m x 5m x 0.2m					
7.		Mamangaba	Рь	do	do	do	do	N60E 60S	500	100	0.80	0	215	0.0	11.1	0.0	Ga, Sp, Py Cer, Lim	ore pocket 200 ^m x 20 ^m x 0.8 ^m					
8.	Group	Porco de Mato	Pb	do	do	do	da	N70E 70S	_	_	0.30	+	_	•	-	-	Ga, Sp, Py						
9.	Lageado	São Vicente	Pb	đo	do 🌩	do	do	N40E 80S	-	-	0.30	0	1,210	0.3	30.2	0.2	Ga, Py, Sp, Lim						
10.		S. Rafael	Pb	do	do	do	đo	N40E 60S	_	_	2.00	1	1	0.0	0.9	0.0	Ga, Py, Po, Cp, Lim						
11.		Jardim II	Pb	do	đo	do	do	N40E 60S	200	5	_	0	1,130	0.3	29.8	0.1	Ga, Sp, Py						
12.		Bugios	Pb	do	do	do	da	N40E 70S	į	_	-	-			-	_	Ga						
13.		Coqueiro	Ръ	do	do	do	do	N60E 80S	-	-	-	-	-	-	-	-	Ga						
14.	R	Rocha	Pb, Ag	do	operating	Estado Parana Municipio Adrianopolis	Açungui III F dolomite	N10~30W 60N,60S	180~400	150~300	0.10~2.00	1	130	0.5	18.0	0.4	Ga, Sp, Cp, Py	production (1981) 2,500T/M Pb:6.5% Ag:130g/T					
15.	В	Barrinha	Pb, Ag	stratiform	under Exploration	do	Açungui III I` limestone & calcareous shak	N50~70E 40~80N	50~70	70~200	0.50~14.00	1	150	0.1	30.6	0.0	Ga, Sp, Cp, Py Cer, Pyro						

A-12

		Kind					Ore Deposits Grade (%)						(2)				
Ser No,	Name of Mine	of Ores	Туре	Status Quo	Location	Host Rock	Strike & Dip	Lateral Extension	Longitudinal Extension	Average Width	Au	Ag	Cu	Pb	Zn	Ore-Mineral	Remarks
16.	Paqueiro	Pb, Ag	vein & stratiform	closed	do	Açungui IIIF limestone	N50~60E 80N~80S	1~70	40	40 0.20~1.20		1 214		9.6 0.0		Ga, Sp, Cp, Py	total production 16,300T Pb:9%
17.	Виело	Pb, Ag	đo	do	do	do	N35E 50S	15	20	1.50	1	70	0.2	23.1	0.0	Ga, Py	total production 66T Pb:10.6%
18.	Diogo Lopes	Pb, Ag	đo	do	do	đo	N75~85E 50-70S	10	10 50 0.80		I	221	0.1	16.1	0,4	Ga, Py	total production 144T Pb.9.72%
19.	Onça II	Pb	vein	do	do	do	N45E	_	_	_	_	_	-	_		Ga	
20.	Quarenta Qitava	Pb	do	do	do	do	N45E	-	-	_	-	-	_	-	-	Ga	
21.	Вгах	F	do	do	do	do	-	-	- - -		-			-	F, Ga, Py, Cp		
22.	Carumbe	Pb, Cu	do	do	do	do	_	-	-	_	-	_	-	_	- :	Ga, Py, Cp, F	
23,	Cecrisa	Pb	stratiform	do	do	Açungui III F calcareous shale	E-W 60N	-	_	0.10~0.50	0	187	0.1	7.9	0.0	Ga, Cer	
24.	Laranjal	Рь	do	do	do	do	N70E 60N	·	_	0.50	1	223	0.6	17.4	0.1	Ga	
25.	Onça I	Рь	vein	do	do	Açungui III F limestone	-	-	_	0.30	-	-	-	_	-	Ga	
26.	Panelas	Pb	stratiform & vein	operating	do	do	N40E 50N	900	200	0.30	0	130	0.3	24.0	0.0	Ga, Sp, Py, Po	total production I,200,000T Pb:7.0% production (1981)
27.	Fluorita de Sete Barras	F	vein	closed	do	do	N80E	50+	20	0.50	nd	(F) 24.6	nd	nd	nd	F	2,500T/M Pb:5.8% Ag.100g/T
28.	Mater Empresa de Mineração	Cu	stratiform	do	do	Açungui II F calc-silicate rock	N80W 35 N	60	60	0.50	1	10	0.4	0.2	0.7	Cp, Py, (Ga)	
29.	Pretinhoe	Ba	do	operating	do	Açungui I F calc-silicate rock	N40E 35S	1,000	100+	1.50	(BaSO ₄) 85	(S) 0.5	ppm 800	ppm 50	ppn 60 [n Ba	production (1980) 140T/Y
30.	Perau	Pb	do	do	do	do	N10E 30W	300+	200	0.50	0	120	0.2	18.7	2.0	Ga, Sp, Cp, Py	production (1981) 1,500T/M Pb.8.5% Ag:100g/T
31.	Agua Clara	Cu	do	closed	do	Açungui I F dolomite	E-W 40S	10	50	0.20	0	8	0.8	0.0	0.0	Ga, Cp	

- no data

Ga · Galena Sp : Sphalerite Cer : Cerussite

Py · Pyrite Ba : Barite

Cp : Chalcopyrite

Pyro : Pyromorphite Lim : Limonite
Po : Pyrrhotite F : Fluorite

Table A-2 Microscopic Observations (Thin Section)

Abbreviations

Rock forming minerals

q : quartz

pl : plagioclase

kf : potash feldspar

bt : biotite

mus : muscovite

hb : hornblende

tr : tremolite

au : augite

ae : aegirine

cpx : clinopyroxene

ga : garnet

op : opaque mineral

tor : tourmaline

ap : apatite

zi : zircon

.

sph : sphene

ser : sericite

chl : chlorite

srp : serpentine

ep : epidote

cal : calcite

dol : dolomite

Rock name

gn : gneiss

sch : schist

Format	tion	Sample No.	Location	Rock name	Texture	q	pi	kf	bt	mus	hb	tr	ga	ор	tor	ар	zi	sph	ser	chl	ep	cal	dol	Remarks
ı, e		F- 66	Tunas	bt - ep - gn	porphyroblastic	0	•	0	•	•						•			•	•	•			
Setuva Formation		F-105	Cerra do Cadeado	hb - ep - bt - gn	porphyroblastic	0		0	0		•										0	,•		see photograph.
8 6		F-106	Cerra do Cadeado	bt - gn	porphyroblastic	0	0		0					•		•			0					
	Ì	F-290	Barra do Turvo	ep - hb - gn	nematoblastic	0	0	0			0		•	•					•		•	•		
		F- 1	Perau Mine	quartzite	granoblastic	0		•						•					•	,				see photograph.
		F- 7	Perau Mine	amphibolite	lepidoblastic	0	•				0			•		•								see photograph.
		F- 67	Tunas	quartzite	lepidoblastic	0								•					•	•				
	İ	F-115	Barrinha	bt - mus - sch	nematoblastic	0			0	0		•	•	•	•						•			
	_	F-278	Perau Mine	calcareous mus - tr - sch	lepidoblastic				0	•		0		•	0							0		see photograph.
	Formation	K-331	Lageado Mine	phyllite	fibroblastic	0								•					0					
	- 1	K-332	Lageado Mine	sandstone	blastopsammitic	0									•									
	-	K-357	Lageado Mine	chl - ser - sch	fibroblastic	0								•	•				0	0				
		K-359	Lageado Mine	ser - chl - sch	porphyroblastic	0									•				0	0				
		K-401	Rio des Pilões	chl - mus - sch	lepidoblastic	0			•	0					•					0				
		S- 37	Barrinha	bt - mus - sch	nematoblastic	0			0	0			0											showing microfolding, see photograph.
		S- 41	Barrinha	bt - mus - sch	nematoblastic	0			0	0				•						•				
		S- 93	Barrinha	amphibolite	nematoblastic	0					0			•				•						
		T- 30	Iporanga	calcareous green sch	lepidoblastic .	0	•							•	•					0		0		
		T- 31	Iporanga	phyllite	fibroblastic	0								•					0					fine grained.
		T-170	Rio Pescaria	phyllite	fibroblastic	0								•					0					
,	_ E_\	T-173	Rio Pescaría	green sch	granoblastic							0		•						0				
	mation	T- 9	Barra do Turvo	ser - sch	lepidoblastic	0								0					0			•		
Group	II Format	T- 10	Barra do Turvo	chl - ser - sch	nematoblastic	0	<u> </u>								•				0	0				see photograph.
Açungui	مست	F-251	Adrianopolis	calcareous amphibolite	granoblastic							0										0		
lýv		K-151	Araçaiba	chl - ser - sch	porphyroblastic	(0)	•	•		•				•					0	0				
		K-161	Apiai	sandstone	blastopsammitic	0								•										
		K-192	Furnas	ser - chl - sch	lepidoblastic	(0)										•		0	0	0				

Forma	tion	Sample No.	Location	Rock Name	Texture	q	pl	kf	bt	mus	hb	tr	ga	op	tor	ар	zi	sph	ser	chl	ер	cal	dol	Remarks
		K-215	Furnas	calcareous sch	lepidoblastic	(0)								•					•			0		
		K-259	Iporanga	ser - chl - sch	porphyroblastic	0								0	•		•		0	0		•		
		K-272	Iporanga	ser - chl - sch	porphyroblastic	()								•	•				0					sce photograph.
		S- 9	Adrianopolis	sandstone	blastopsammitic	(0)								()		•			0	•				see photograph.
	_	S 13	Adrianopolis	chl - ser - sch	lepidoblastic	0								0	•				0	0				
i	Formation	S- 18	Rocha	ser - sch	lepidoblastic	(c)								C	•		•		0	•				
		S- 45	Adrianopolis	calcareous chl - sch	porphytoblastic	(Ō)				ŧ				0						0		0		
	Ħ	S- 48	Adrianopolis	amphibolite	poikiloblistic	O	0				0			0	•					0	0			see photograph.
		S- 83	Barrinha Mine	calcareous chl - sch	lepidoblastic	(0)								0						0		0		
		S-126	Rocha Mine.	lumestone	granoblastic	•				•				•								0		see photograph.
		S-127	Rocha Mine	dolomite	lepidoblastic	0				•				•									0	see photograph.
		S-132	Espirito Santo	sandstone	blastopsammitic	0								•		•	•		0	•				
		S-135	Espirito Santo	sandstone	blastopsammitic	(0)								0	•		•		0	•				
		T- 87	Furnas Mine	limestone	granoblastic	•				•				0								0		
		T-117	I-urnas Mine	ser - seh	fibroblastic	0								•					0	0				showing microfolding.

Igneous Rocks

Sample No.	Location	Rock name	Texture					Phei	юсту	st						Gro	undn	nass				5	Second	iary n	inera	ıl			Remarks
				q	kf	pl	bt	mus	hb	au	ae	ар	op	q I	kf g	ol b	t h	b ср	x m	us q	ca	l se	cl	i ep	op	spl	h srj	bt	
F- 33	Morro Agudo	granite	equigranular	0	•	0	0		•										—	\top	•	1.	•		•			†	
F- 57	Cerro Azul	granite	equigranular	0	0	0	•															•	•	•	1	•	1	-	kf is composed mainly of microcline. see photograph.
F-124	Itaoca	granite	equigranular	0	(0)	O	0		0												•					•			kf shows microcline and perthite structure, see photograph.
F-242	Itaoca	granite	equigranular	0	(0)	()															1.	•				1.			kf is composed mainly of microcline.
K-101	Ribeirão Branco	granite porphyry	porphyritic	0	0	0	•							0) () ()			О			•			•				ep forms veinlets.
K-102	Ribeirao Branco	granite porphyry	porphyritic	0	0	0	•						•	(i)		•			•			1.		•	•	T			
K-106	Ribeirão Branco	granite porphyry	porphyritic	(C)	0	0								())) C				•			•	•		•				mafic min. altered to chl, containing garnet.
S- 28	Rocha	granite	equigranular	0	Ō	(j)		0													0	0	0		•				mafic min. altered to chl, kf shows perthite structure.
S- 36	Varginha	granite	mosaic	0	0	0	•															0	•	•					kf is composed mainly of microcline.
S- 50	Adorianopolis	granite	equigranular	(C)	0	0	0		•				•								•	•		•	•	•			containing garnet.
S-134	Espirito Santo	granite	equigranular	0	Ô	0	0		0												T	•	•	•		•			kf shows perthite structure.
F- 87	Tunas	aeginn syenite	equigranular		0	•			•		()		•									•			•	•			kf shows perthite structure. see photograph.
S- 90	Vinte e Sete	monzo-dionte	equigranular	•	0	(C)	()			0		•										•	•	•	•		\top		
F- 9	Perau	diabase	doleritic			Ó				()					()	,		0			•	•	•		Γ		•		see photograph.
F- 38	Morro Agudo	gabbro	equigranular			0	•		•	(0)													•		0				see photograph.
K-157	Apiai	altered gabbro	equigranular	•		(0)				0										•				0		•			epidotized, silicifized.
K-168	Apiai	dıabase	doleritic			0				0					O)		0					0		•		-	•	strongly chloritized.
K-169	Apıaı	gabbro	ophitic			0				()										•			•		•				
S- 17	Rocha	gabbro	equigranular			0				(i)				\top	1	1-	1		1	_	╽.	1	•	T	•	†	\top		

A-3 Microscopic Observations (Polished Section)

Microscopic Observation Remarks	
Magnetite-gangue (quartz). Hematite replaces magnetite in regular directions	(Açungui IF)
It is mainly composed of pyrite and galena. Galena fills fractures in pyrite. A small amount of sphalerite and chalcopyrite can be seen. Order of crystallization is pyrite, galena, spharelite and chalcopyrite from an earlier stage.	(Açungui 1F)
Main components minerals are pyrite and sphalente. Pyrite has an euhedral or subhedral form and has replaced by sphalerite. Galena is accompanied with sphalerite.	(Açunguı IF)
Pyrite crystals are crushed in various size (maximum 2mm, average size: 0.8mm). A few sphalerite with galena fill the fractures Chalcopyrite grains are rarely observed in pyrite.	(Açunguı IIF)
It is mainly composed of galena and pyrrhotite. Pyrrhotite after pyrite is in a venomorphic granular form and enclosed by galena. Chalcopyrite and sphalerite are commonly accompanied with pyrrhotite.	rrhotite (Açungui IIIF)
Main components are xenomorphic granular pyrrhotite after pyrite and galena. A few chalcopynite replace pyrrhotite and are accompanied with sphalerite.	(Açunguı IIIF)
Granular pyrite crystals are in gangue. Very fine grained galena is scattered in pyrite and gangue. A few chalcopyrite with an irregular form and covelline are also found in them.	(Açungui IIIF)
Pyrrhotite after pyrite is enclosed by galena Both of them are penetrated by gangue veins.	(Açunguı IIIF)

					(2)
No.	Sample No.	Location	Names of Ore and Formation	Microscopic Observation	Remarks
9.	F-253	Panelas Mine	Galena-Pyrrhotite (Açunguı IIIF)	Main components are pyrrhotite and galena. Both crystals are large in size. Chalcopyrite and sphalerite replace pyrrhotite along fractures and cleavages.	
10.	F-255	Panclas Minc	Galena-Pyrrhotite (Açungui IIIF)	It is mainly composed of pyrrhotite. Galena replace pyrrhotite irregularly. Euhedral pyrite grains partly replaced by galena and lath-shaped chalcopyrite are observed in pyrrhotite.	
<u>=</u>	F-257	Perau Mine G-3	Galena-Sphalerite (Açungui IF)	Galena and sphalerite are main components Sphalerite is granular in form (0.3 ~0.5mm) and embeded in galena. There are tiny dots of chalcopyrite with an oriatation in sphalerite.	<u>=.</u>
12.	F-269	Galeria da Azurita	Oxidized Chalcopyrite (Açungui IF)	Chalcopyrite and gangue mineral. Chalcopyrite is oxidized into azurite along the fractures which are parallel to the bedding of dolomite.	
13.	F-276	Perau Mine G-1 Raise	Gajena-Sphalerite (Açungui IF)	Galena streaks (0.2mm in width) are in host rock (calc-silicate rock). Galena replaces sphalerite and pyrite. No chalcopyrite can be seen.	
14.	F 280	Perau Mine G-3	Galena-Pyrite (Açungui IF)	It is mainly composed of pynte and galena. Pyrite is granular in form (average size · 1mm) and enclosed in galena. There are a small amount of sphalerite in which exsolution dots of chalcopyrite exist.	
5.	F. 307	Perau Mine	Galena-Chalcopyrite-Sphalerite (Açunguı IF)	Granular pyrite and irregular chalcopyrite are in galena. Sphalerite has many oriented dots of chalcopyrite. A few pyrrhotite can be observed along the rims of spharerite and chalcopyrite.	
16.	S-54	Bueno Mine SSOm.L	Galena-Chalcopyrite-Pyrite (Açungui IIIF)	Large crystals of pyrite (2mm in size) are penetrated by chalcopyrite-sphalerite-galena vein. Chalcopyrite is partialy altered into covelline. Chalcopyrite dots are scattered in sphalerite.	

1	•	1

No.	Sample No.	Location	Names of Ore and Formation	1 Formation	Microscopic Observation	Remarks
17.	S-57	Paqueiro Mine Stockpile	Galena-Pyrite	(Açungui IIIF)	Cubic or granular pyrite grains are enclosed in galena. A few granular sphalerite are also accompanied. Chalcopyrite and galena dots are included in pyrite.	
18.	S59	Paquetro Mine 620mL	Galena	(Açungui IIIF)	Galena crystals with a few sphalerite. No chalcopynte occurs.	
19.	S-76	Barrınlıa Mıne	Galena		Galena with irregular form scatters in gangue and includes some dots of chalcopyrite	chemical analysis No. S-75
20.	S-77	Barnnha Mine	Galena	(Açungui IIIF)	Galena is penetrated by gangue minerals. Pyrite grains partly replaced by sphalerite are in galena. No chalcopyrite.	
21.	S-79	Barrinha Mine Quatro	Galena-Pyrite	(Açungui IIIF)	Cubic or triangular pyrite and anhedral galena are main component minerals. In the pyrite a little amount of chalcopyrite and galena occur in the form of dot.	dave.
22.	S-81	Barrinha Mine G2	Galena-Pyrite	(Açunguı IIIF)	Euhedral pyrite grains (partly crushed) are enclosed by galena. A few dots of chalcopyrite, galena and sphalerite are found in pyrite. Many gangue veinlets penetrate all of the ore minerals.	
23.	S-109	Rocha Mine 600mL	Galena	(Açungui IIIF)	Much galena with very few pyrite. Narrow gangue veins penetrate regularly.	
24.	S 114	Rocha Mine 308mL	Gafena	(Açunguı IIIF)	Galena occupies the most part of the field. Chalcopyrite occurs in an irregular form No other minerals can been seen.	
25.	S-119	Rocha Mine 308mL	Galena-Pyrite	(Açungui IIIF)	Subhedral pynte (1mm in size) are embeded in galena. Some pynte crystals are crushed and penetrated by gangue or galena. A few granular sphalente with chalcopynte dots and chalcopynte are observed in galena.	

	ķ							<u>-</u>	···-	_ - _		
(4)	Remarks											
	Microscopic Observation	Fine grained anhedral pyinte crystals are replaced by galena. A few sphalerite and chalcopyrite are in galena.	Same as S-122	Granular pyrite and irregular galena are main components. There are a few chalcopyrite and sphalerite in which oriented chalcopyrite dots can be seen.	A few granular pyrite (0.1~1mm in size), irregular sphalerite (max 2mm, average 0.3mm) and chalcopyrite (average 0.1mm in size) occur in galena. Dots of sphalerite and chalcopyrite are also included in pyrite.	Some amount of chalcopynite in an irregular form, a few pyrite, few sphalerite and galena occur in gange minerals. The maximum width of vein is 2mm.	Galena irregularly fills cracks of host rock.	Granular pyrite is in galena, both of which are penetrated by gangue minerals. Pyrite includes some prismatic chalcopyrite.	Subhedral pyrite (some have intergrowth texture) are enclosed by galena. Very tinny dots of chalcopyrite are in pyrite.	Galena partly altered into cerussite? vein. Some corroded pyrite are replaced by enclosing galena.	Pyrite-quartz veinlets and pyrite impregnation.	Galena is partially replaced by cerussite. Some cubic pyrite are altered to limonite.
	d Formation	(Açungui IIIF)	(Açungui IIIF)	(Açungui IIIF)	yrite (Açungui IIIF)	(Açungui IIIF)	(Açungui IIIF)		(Açungui IIIF)	(Açungui IIIF)	(Açunguı IIIF)	(Açungui IIIF)
	Names of Ore and Formation	Galena-Pynte	Galena-Pyrite	Galena-Pyrite	Galena-Chalcopyrite-Pyrite (Aç	Chalcopyrite-Pyrite	Galena	Galena-Pyrite	Galena-Pyrite	Galena vein	Pyrite-impregnation	Galena-Cerussite
	Location	Rocha Mine 403mL	op	Rocha Mine 308mL	op		Lageado Mine	Lageado Mine Santa Nava	Lageado Mine Santa Nava	Lageado Mine Mamangaba	Lageado Mine Copper Mine	Lageado Mine São Vicente
	Sample No.	S122	S-124	S-125	5–136	K-188	K-238	К-309	K-316	K-322	K-329	K-334
	No.	26.	27.	28.	29,	30.	31.	32.	33.	34.	35.	36.

ſ		 			<u> </u>				
(5)	Remarks			see photograph		see photograph			sce photograph
	Microscopic Observation	Massive galena is penetrated by irregular veins of gangue minerals. Galena is partially altered to cerussite and limonite	Same as K-336	Main components are pyrite, galena and sphalente. Pyrite shows not only a framboidal texture but a dissemination in a cubic form. There is a faint zoning in the field viz. 1) host rock 2) larger crystals of pyrite (0.1mm±), 3) fine grained framboidal pyrite (0.01mm±) 4) larger cubic pyrite (0.5~0.7mm) 5) anhedral galena and sphalente.	Galena-sphalerite venlets (0,3mm± m width) are m host rock Pynte with a cubic form is disseminated, and partially replaced by sphalerite.	Some prismatic or rhombic arsenopyrite crystals coexist with framboidal pyrite. A few sphalerite and galena can be seen around arsenopyrite.	Aggregation of fine grained cubic pyrite. No replacement occur. A very few amount of galena with cuhedral form exist	Pyrite is replaced by galena. A few sphalerite can be seen. The order of crystalization is pyrite, sphalerite, chalcopyrite and galena from an earlier stage.	Cubic pynte partially corroded by sphalente, chalcopynite with an irregular form and large subhedral galena (2mm in size) are enclosed in sphalerite. There are a few rhombic arsenopynite.
	Names of Ore and Formation	na (Açunguı IIIF)	Galena vein (Açungui IIIF)	Zalena-Sphalerite-Pyrıte (Açungui HIF)	Galena-Sphalente-Pynte (Açunguı IIIF)	Ynte-Arsenopyrite (Açungui IIIF)	e (Açunguı IIIF)	Galena-Pyrite (Açunguı IIIF)	Sphalerite-Galena-Pyrite (Açunguı IIIF)
	Ž	Galena	Caler	Caler	Galer	Pynt	Pynte	Galer	Sphal
	Location	Lageado Mine	Lageado Mine Jardim II	Lageado Mine	Lageado Mine	Lageado Mine	Lageado Mine	Furnas Mine 571mL	Furnas Mine 500m L
	Sample No	K-336	K-338	K -351A	K 351B	K 351C	K -351D	T-71	1. 81
	No.	37.	38.	39.	40	4	5.	43.	44

r									
(9)	Remarks		see photograph						
A CAMPAGE AND A	Microscopic Observation	Same as T-81. The order of crystalization is pyrite, sphalerite, arsenopyrite and galena from an earlier stage.	Galena and sphalente are main components. Some cubic pyrite partially corroded are enclosed in galena and sphalente. A very few argentite occur with or near sphalente.	Cubic or granular pyrite (0.1mm in size) and massive galena. Pyrite is partially replaced by enclosing galena. Few chalcopyrite and sphalerite are present.	Mineral assemblage is same as T-82. A few chalcopyrite dots occur in pyrite. There are also triangular arsenopyrite.	Galena veinlets (1~2mm in width) in host rock. Corroded pyrite is partially replaced by enclosing galena.	Galena vemlet (1cm in width) contains pyrite Cubic or subhedral pyrite grains are scattered in galena. A few rhombic arsenopyrite crystals are present.	Granular pyrite crystals and granular ~ uregular formed sphalerite are enclosed galena vein (5mm in width). Very fine grained chalcopyrite dots are recognized in pyrite.	
	nd Formation	rite (Açungui IIIF)	nte (Açungui IIIF)	(Açunguı IIIF)	(Açungui IIIF)	(Açungui IIIF)	(Açunguı IIIF)	(Açungui IIIF)	
	Names of Ore and Formation	Sphalerite-Galena-Pyrite	Galena-Sphalente-Pynte (Galena.Pyrite	Galena-Sphalerite	Galena vein	, Galena-Pyrite	Galena-Sphalerite	
	Location	Furnas Mme Santa Barbara II	do Santa Barbara II	op	op	Furnas Mine	op		
ŀ	Sample No.	T-82	T-83	T-84	T-86	T-103	T-104	T-113	
	No.	45	46.	47.	48.	49.	50.		

Table A-4 X-ray Diffractive Analysis

Smec : Smectite
Ch : Chlorite
Ver : Vermiculite
K : Kaolinite
Tc : Talc

Sp : Serpentine

M : Mica

t: trioctahedral - Phiogopite ~ Biotite

d: dioctahedral - Muscovite

Tr : Tremolite
Q : Quartz
Cc : Calcite
D : Dolomite

Pl (ab) : Plagioclase (Albite)

Goe : Goethite

Ch/M : Chlolite - illite

Dra : Dravite (Na, Ca)0.9 (Mg, Fe)2.9 (Al, Fe, Ti)6 B3Si6O27(OH, F)4

Hem : Hematite

Gas : Gaspeite (Ni_{0.49} Mg_{0.43} Fe_{0.08}) CO₃
Pyro : Pyromorphite Pb₅ (PO₄, AsO₄)₃ Cl

Table A-5 Results of Chemical Analysis

Ore

(1)

No.	Sample No.	Location	Occurrence		Au g/T	Ag g/T	Cu %	Рь %	Zn %
1	F-10	Perau Mine	galena impregnation	w.70	0.0	69.6	0.08	9.60	10.0
2	11	do	stratiform massive galena	w:60	0.4	92.9	0.00	25.35	0.14
3	12	do	do	w:35	1.0	79.6	0.44	7.42	0.70
4	14A	do	do	w:30	0.3	148.6	0.05	18.12	0.01
5	14B	do	galena impregration	w:30	0.3	22.3	0.76	0.41	0.07
6	15	đo	massive galena	w.10	0.1	131.0	0.15	30.06	0.11
7	17	đo	azulite (stockpile)		0.4	62.1	2.53	0.03	0 12
8	18	do	galena-pynte-quartz vein	w:20	0.0	4.5	0.04	6.68	9.21
9	81	Agua Clara Mine	chalcopyrite-quartz vein	w:20	0.0	8.4	0.81	0.01	0.01
10	121	Mater Empresa de Mineracão	stockpile		0.5	10.5	0.39	0.18	0.65
11	204	Panelas Mine	massive galena-pyrite	w:30	0.1	287.0	0 36	30 45	0.01
12	207	do	galena-pyrrhotite	w:10	0.0	09	0.20	24.46	0 04
13	211	do	galena-pyrrhotite	w:10	03	134.3	0 26	15.36	0 00
14	221	đo	stratiform galena-chalcopyrite	w 10	04	2700	0.80	28.85	0 02
15	233	do	massive galena vein	w:15	0.0	220.5	0 06	30.70	0.00
16	253	do	stratiform galena-pyrrhotit	e w:20	0.1	0.9	0.15	9.24	0 16
17	255	do	do	w.50	0.7	0.6	0 11	26.11	0.02
18	257	Perau Mine	stratiform massive galena	w 30	0.3	459.9	0.07	32.61	11.59
19	260	đo	. do	w [.] 15	0.0	207.6	0.03	22.55	4.07
20	265	do	do	w-20_	0.0	256.5	0 00	31.72	3.49
21	269	Galerita da Azunta	stratiform azulite	w 10	0.3	116.2	29.90	0 04	0.09
22	276	Perau Mine	massive galena-pynte	w·60	0.1	115.2	0.02	14.84	3.13
23	280	do	massive galena	w:35	0.2	23.3	0.87	27 80	0 30
24	281	do	galena impregnation	w 30	0.0	83.3	0 02	7.35	0.52
25	302	Maximinioro Mine	galena-quartz vein		0.0	32.7	0.05	0.83	0 01
26	306	Perau Mine	coarse galena		0.3	235.2	0.06	33.29	3.64
27	307	do	fine galena		0.3	147.1	2.53	31.40	0.64
28	S 55	Bueno Mine	galena-pyrite vem	ĺ	0.5	70.2	0.18	23.05	0.01

(2)

									(2)
No.	Sample No.	Location	Occurrence		Au g/T	Ag g/T	Cu %	Pb %	Zn %
29	S- 57	Paqueiro Mine	massive galena (stockpile)		08	57.4	0.25	33.05	0.03
30	58	do	do		2.1	361.6	0.19	30.98	0,04
31	59	do	do		0.4	656.5	0.09	21.83	0 01
32	62	do	galena impregnation	w:100	2.5	1100	0.03	8 91	0.01
33	63	do	do	w.20	0.1	64	0.01	1 61	0.45
34	65	do	galena vein	w 20	0.1	84.5	0.06	5.95	0.01
35	66	Bueno Mine	galena pyrite vein		0.2	1.3	0.16	0 02	0 01
36	67	do	do	w.80	1.0	53.3	0 20	5 99	0.61
37	68	đo	massive galena vein	w.50	0.9	424 9	0.07	31.83	0 38
38	70	do	galena impregnation	w·10	0.2	1 6	10.0	0 29	0 01
39	71	do	do	w 40	0.0	180	0 07	0 41	0 01
40	72	Barrinha Mine	galena-quartz-calcite	w-50	0.7	199.5	0.26	15 20	0 05
41	• 75	do	do	w.50	3.9	164 3	0.10	8 30	2 98
42	78	do	oxidized ore	ļ	00	153 3	0 08	30 61	0.04
43	82	do	stockpile	ļ	0.1	187.1	0 09	7.86	0 01
44	85	đo	galena-quartz	w 40	0.8	222.9	0.58	17.38	0 06
45	104	Rocha Mine	galena-pynte vein chip		15	140 0	0 23	14.65	0 26
46	113	do	do	w.80	1.8	4701	0 49	26 95	0.02
47	115	do	do	w 60	0 8	80.8	0 34	5 03	0 04
48	116	do	do .	w 40	04	63 1	0.35	3.62	0.15
49	117	do	do	w 20	0 2	2126.0	5 07	30.61	0 30
50	118	do	do	w 80	0.7	72 6	0.33	13.43	0.08
51	121	do	do	chip	0 2	123 3	0.45	30.43	0.92
52	123	do	do	chip	0.8	131.4	1.05	18 54	1.73
53	T 52	I urnas Mine	oxidized ore	w 40	0.0	29 8	0.00	13 65	15 91
54	53	do	do	w 40	00	19 5	0.00	0.69	27.50
55	56	do	do	w.200	0.0	24.0	0 03	0.28	19 42
56	57	do	do	w 150	01	8 2	0.05	0 03	2.30
57	61	do	do	w 10	00	87	0.15	3,43	2.80
58	71	do	galena-pyrite	w 150	04	181.7	0.04	30 37	0.14
									

(3)

No.	Sample No.	Location	Occurren	ce	Au g/T	Ag g/T	Cu %	Pb %	Zn %
	70 70	Funtana Mari	and decades	160	0:	37.0	0.00	1.55	3.53
59	T-72	Furunas Mine	oxidized ore	w.150	0.1	27.0	0.08	1.95	2 52
60	80	do	do	w.50	 	36.9	0.00	0.45	20 96
61	81	do	sphalerite-galena vem	w.50	0.0	97.6	0.07	5.06	33 89
62	82	do	do	w:50	0.3	5.9	0.03	9.56	21.01
63	83	do	galena-sphalerite vein	w.40	00	311.9	0 07	17.26	27.31
64	84	do	galena vein	w 10	0,0	2.2	0.06	29.51	0 31
65	89	de	oxidized ore vein	w 200	0.0	5.7	0.05	0 96	4 32
66	99	do	do	w.70	0.1	199 5	0 03	3 43	1.89
67	100	do	do	w 40	01	26 1	80.0	18.81	2.19
68	102	đo	do	w 30	00	14.1	0.01	0.31	0.07
69	103	đo	galena vein	chip	1.0	1208.0	10.0	31.46	0 06
70	104	do	do	chip	0.0	6418	0.00	30 98	1.31
71	106	đo	oxidizedore vein	w.150	04	146 2	0.02	3.33	1.65
72	110	do	do	w.10	0.2	4508	0.06	30.73	2 15
73	113	do	galena	w 10	02	13300	0.17	31.10	0.87
74	115	do	oxidized ore	w:10	0.0	98	0.00	0.34	0.26
75	118	do	galena	w.10	0.3	233.9	0.05	14.84	7.07
76	K-105	Ribeirão Branco	pyrite-quartze vein		0.0	1.5	0.00	0.03	0.03
77	138	Aracaiba	greentock with pyrite		00	0.5	0.01	0 02	0.03
78	153	do	do		0.0	0.7	0.01	0.03	0.03
79	236	Lageado Mine	altered sandstone		0.0	0.9	0.00	0 02	0.01
80	238	do	umestone with pyrite		0.0	01	0.01	0 01	0.02
81	301	do	oxidized ore	chip	1.8	232.4	0.11	19.71	0.30
82	303	do	do	chip	1.7	265.5	0.03	21.71	0.02
83	307	do	galena, vein	w:100	1.2	960.9	0.02	29.15	0.01
84	309	do	do	chip	1.0	798.9	0.04	30.73	0.03
85	315	do	oxidized ore	chip	0.5	4.5	0.01	0.10	0.02
86	316	do	galena-oxidized ore	chip	0.1	1378.0	0.02	30,98	0.01
87	K-319	do	cerussite?	chip	0.0	12.5	0.01	0 87	0.28
88	322	do	do	Max w. 150	0.6	630.8	0.13	32.32	0.02

(4)

									()
No.	Sample No	Location	Оссителсе		Au g/T	Ag g/T	Cu %	Pb %	Zn %
89	K-319	Lageado Mine	oxidized ore vein	w:10	0.0	7.4	0.00	0.21	0 09
90	328	do	pyrite-galena vein	chip	1.4	27.3	1 60	0.46	3 47
91	329	đo	pyrite impregnation	chip	0.0	1.9	0 00	0 67	10.0
92	333	do	oxidized ore vem	w·200	1.4	14	0.01	0.86	0.03
93	334	do	galena-oxidized ore vein	w 40	04	1212.0	0.28	30.21	0 16
94	336	đo	galena vein	w.100	0.0	6588	0.00	29.27	0 17
95	338	do	galena-oxidized ore vein Ma	x w:200	0.1	1132.0	0 33	29.76	0 12
96	348	do	oxidized ore vein	chip	00	595.5	0 00	29.88	0 02
97	350	do	do	chip	0.0	68.0	0 02	4 24	31 82
98	351A	do	galena + pyrite vein	chip	0.0	18.9	0 01	6,34	10.93
99	3518	do	do	chip	0.0	26 1	0 02	8 44	1.67
100	35 LC	do	do	chip	0.1	11	0 00	2.20	0 20
101	351D	do	do	chip	0.0	59.3	0.00	3.57	0 28
102	353	do	galena vein	chip	0.0	690 4	0 05	31 34	1.86
103	358	do	altered sandstone	ļ	0.0	3 2	0 00	0 13	0 02
104	403	Rio dos pilões	green rock with chalcopyri	te	0.0	1.3	0 10	0 04	0 02

No.	Sample No.	Location	Occurrence	BaSO ₄ %	5%	Cu ppm	Pb	Zn ppm
105	Γ- 13	Perau Mine	thin beded barite in schist	87 05	0.76	47	1 92 %	69
106	82	Agua Clara Mine	dolomite	0.34	0.24	29	63 ppm	26
107	113	Pretinhoe Mine	thick beded barite (1~2m) in schist	85 48	0 51	812	54 ppm	61

No	Sample No.	Location	Occurrence	1%
108	F-123	Fluorita de Sete Barras	network of fluorite in limestone	24.64

(5)

No.	Sample No.	Location	Оссите	nce	CaO%	MgO%	Al203%	Fe ₂ O ₃ %	С%	CO ₂ %	Insoluble Residue%
1	F-216	Panelas Mine 150ML	lunestone	(black)	38.39	3.36	0.21	1.07	_	_	22.58
2	218	đo	do	(black)	15.39	5.27	0.48	1.76	_	-	58.52
3	225	do	do	(grey)	44,40	8.85	0.02	0.14	-	-	1.06
4	228	do	đo	(grey)	42.92	2.96	017	0.61	-	_	15.62
5	230	do	do	(black)	52.41	9 66	0 06	0.29			3 30
6	231	do	do	(black)	45 16	1 21	0.08	0.56	0.76	30.20	15 22
7	232	do	do	(grey)	31.79	4.34	0.56	2.70	-	-	29 76
8	234	do	do	(grey)	52.00	1.15	0 06	0.66	0 01	34.09	3 76
9	256A	Outcrop	banded limi	estone (black)	45.11	0.96	0.12	1.19	0.02	13.84	14 44
10	256B	do	do	(white)	50 67	076	0 08	0.94	0.03	21.05	4 84
11	S 126	Rocha Mine 308ML	grey limesto	one	41.29	2.32	0.09	0.67	-	-	19.84
12	127	do	grey dolom	ite	25.13	16 72	0.44	1 32	-	-	16.56

Table A-6 Fossils

Formation	Sample No.	Rock	Location	Fossils	Remarks
Açungui III F	S-26	Dolomitic Schist	Rocha Mine	None	
	S-89	Limestone	Diogo Lopes Mine	None	
	S-101	Limestone	Rocha Mine	None	
	S-129	Limestone	Espirito Santo	None	
	T-58	Limestone	Furnas Mine	None	
	T-85	Limestone	Furnas Mine	None	
	T-152	Limestone	Espirito Santo	None	
Açungui I F	F-72	Dolomite	Southeast of Tunas	None	
	F-74	Dolomite	Southeast of Tunas	None	
	F-75	Limestone	Southeast of Tunas (Quarry)	None	
i	F-82	Dolomite	Agua Clara Mine	None	

Table A-7. Metal Contents of Geochemical Samples approved for Interpretation

Abbreviation

 Sam No.
 :
 Sample No.

 M
 Multiple

 Area
 :
 Drainage Area

 Lith
 :
 Lithology

4,

1. Basic Complex

2. Granite

3. Açungui Group — chemical sequence

do - upper clastic sequence

5. do - middle clastic sequence

6. do - schist and amphibolite

7. do - metabasite and amphibolite

8. Quartzite

9. Setuva Formation


10. Crystalline Complex

* : Mean value of the rank

$\overline{}$	25	25 H S S	K 작립 2	みたぬめても	25万円 おぶん	23 25 25 25 25	55 55 55 55 55 55 55 55 55 55 55 55 55	25 26 14 14 14 14
C	Pb Zn in ppri	120 120 45.	\$ ~ X X	25 25 25 25 25 25 25 25 25 25 25 25 25 2	សង្គម្ភាស	r, 2 - r, 51	ารถระหนันสานาราย	7 7 7 22 22 22 23
	ב נקוז נקוז	~		•			: \$ 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	82 4 2 8
							, , , , , , , , , , , , , , , , , , ,	
	£.	WW Z 4 Z		C C C C C C C C C C C C C C C C C C C		**********		ייי ייי ייי ייי
	Arealsth	4444	* ~ ~ ~ ~	404904	NW-PWG	игишии	• • • • • • • • • • • • • • • • • • • •	
								N. D a C M
	San No	VA0129 VA0130 VA0135 VA0135	VAD138 VAD139 VAD141 VAD142	VA0143h VA0144h VA0145H VA0151H VA0151H	VAD153 VAD162 VAD165 VAD166 VAD167	UA0171 VA0172 VA0183 VA0185# UA0187	MA1900 WA1994 WA1995 WA1196 WA201 WA201 WA201 WA210 WA210 WA1216 WA1227 WA1227	VAV235 VAU236 VAQ250 VAG252 VAU253
	5	22222	7 451 7 451 7 451	165 V V V V V V V V V V V V V V V V V V V	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22.22.22.22.22.22.22.22.22.22.22.22.22.	189 199 199 199 199 199 199 199 199 199	196 197 198 199 200
	۶ <u>.</u>	84 4 3 %	នេះ ខេត្ត	******	FRERRY	6경감찬합청	778244884444444444444444444444444444444	38888
	ps Zu sh ppnl	~~ 검지 @	. 2 8 8 4	្និ ភូមិ ភូមិ ភូមិ		5 4 4 8 K K	. % - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ងនេងដន
	Co (Unit	mrmag	יוט אב ואי או	25225	· #3^#57	******	* % % % % % % % % % % % % % % % % % % %	មកទេសក
					AA 014			
	¥.	ը, ու ու ու	ת העית העי	1 TA CA CA TA CA CA	ւտսարտու	NOTO 100 100 100 100 100 100 100 100 100 10	╸♀♀♀♀wыыыыыыыыыыыыөөөөөөөөөөөөөөөөөөөөөө	בת על עז עת טו
	FreeLith						****************	
		• = n. ° n.						_
	San Ra	UA1856 UA1852 UA1853 UA0654 UA0855	VADDSS VADDSS VALDSS	UADDAS UADDAS UADDAS UADDAS VADDAS	VADD71A VADD744 VADD747 VADD747 VADD767 VADD787	VADDB2H VADDB2H VADDB3H VADDB5 VADDB5H	VAGUESTINIA VAGUES	VA0119A VA0120 VA0121 VA0122
	ξ. Σ.	101 GA 112 GA 113 GA 114 GA 115 GA 115 GA	125 117 118 118 118 118 118 118 118 118 118		\$\$\$\$\$\$\$ \$\$\$\$\$\$\$	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14	
	_	***	:::::::::::::::::::::::::::::::::::::::		, , , , , , , ,	яняня.	ી ફી થી કો ફી ફો ફો કો કો કો કો કો ને ન ન ન	<i>केन</i> क्रेन
	5 ₁	54 54 64 64	នដទ	នស្នងនៅ	ដើនខនុស្ស	120 120 140 145 145		\$\$\$\$ \$
	Pb Zu In ppn J	~=====]ទីគូទីគី	ត្រូវក្សក្ស	ដ្ឋាន្ត្រីនិង	277500) W 4 8 8 1 4 4 4 4 8 8 8 4 4 5 5 5 5 7 1	8 4 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Çe (dat	***	ទុក្សិ	ន្លេខស្ឌងក្	1200025	95 24 7 25 25 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	: ~ Z Z ~ ~ ~ Z Z Z ~ ~ Z Z ~ ~ Z	erer#
		40000	D. (-2)-	. 1011 . 010 . 0	=		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 10 10 G -0
	至		, , ,			N N N N N N N N N N N N N N N N N N N	4	vonco
	Arealsth	N D T T		. 4 4 4 4 0 4	404440	inamann	***************************************	Cana
				. E. V. E. A. St.			. 3 r r r 3 m r w w n 4 4 r w m	
	San No	JR0268 JR0269 JR0274 JR0299	0317	JR0320 JR0325 JR0325 JR0326 JR0329 JR0415	180435 180436 180439 180442 180450	VAGUE VAGUE VAGUE VAGUE VAGUE	VARILIA VARRIZA VARRIZA VARRIZA VARRIZA VARRIZA VARRIZA VARRIZA VARRIZA VARRIZA VARRIZA	VA0042 VA0043 VA0044 VA0045 VA0045
	S.	- គេគគគគ - គេគគគគ	: # # # # # # # # # # # # # # # # # # #	222222			. 38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
								-
	Zu Zu	윘춈츸윉먃	:X = R 3	នេសសសស	\$ 4 8 4 4 8 8	245884	123 SS 12	119 120 118 118 93
	2 5	~ # # # # # # #	រកកដ្ឋ	1224 V V V	. 32233	# 4 4 3 4 X 8	232222222222222222222222222222222222222	B 88 83 4
	5 5 5 5 5 7	ដសសសភ	ដីសសល	טייט אייט ייט יי	าพพพพลัพ	<u> </u>	343384458833333333333333333333333333333	55 46 35 35
	Ŧ.		,,,,			,,,,,,		
		UA 4 MV	เดอกก		เหตุเกรเล	~~~~~~~	. what operate at a a a a a a	4444
	Arealith	мамен	งกษะ	. W. W. G. A. W. A.	निवस्त्रक्त		រូសស្ តស្តុកសត្ សក្សស្ត្	www.r.#
	ž	25 88 20 20 20 20 20 20 20 20 20 20 20 20 20	JR0118 JR0121 JR0128 JR0129	180132 180133 180135 180135 180135	180148 180155 180156 180169 180162	JR0158 JR0173 JR0174 JR0175 JR0176 JR0183	180216 180216 180218 180223 180225 180225 180227 180236 180336 180336	JR0246 JR0251 JR0253 JR0256 JR0257
				66666	000000	0000000	2222222222222222	22252
	% 52 ×	1 JR0070 2 JR0089 3 JR0090 4 JR0117 5 JR0117		***	***		2425443434343434343434343434343434343434	

_	2.5	899	& £	25	58	88 5	3 23	축 R	152	35	S	ž K	2 :	R K		150	125	2 (· 5	5 4	, R. F	17 E	5. 5. 5.	120	7 9	۲, E	, z	38	£ 8	90
5	Pb Zn in ppm]	====	5 E	∞ :	~ =	==	: 12	۶ ۵	*	2 1	12	*	2 9	22	Z Z	۵ ئ	3 5	3 \$ 4	» # <u></u>	5 4	2 2 2	<u>.</u> .	걸각	5,5	រស	, ,	y ~	~ °	2.23	ន្តន
	Co [Unit	e o .c	۰.		~ 49	m a			Lh	m -	ma	o- 11	. ~ .	= 60	ın ın	_	· • · ·	י ייט י	n 👄	vo u		- L/S	₩	10.5		o- u	n	٥.	ט פ	
		48 2								•																		₹ ₩	M) PO	₩.
	吉	Or CA TA															יואל הערי											י",	20 °.	W W
	Arealith	N IN IN	יט עי	٠,	32	N D	ישי	tv rv	40	S O		~ ~	0.0				4 4						4		_			-ru un		ທຸດ
	45.6	-0 m o-		~14	থ ক	₩ Œ	נייו נ	∢ ∢	+1		-	o	. H.J.				-0=											4 5		~ 4
	San No	FA0018 FA0019 FA0024	FA0027	FA0028	FA0032	FA0033	FA0036	FA0037	FA8848	FA0041 FA00455	FA3346H	FA0047 FA0049	FAU049R	FA0053	FA0055 FA0056	FAUDS7	FA0059	F40063	FA0065	F#0053	FA10.	+ AUU.77	FA0078	FA0081	FA0083m	FAUURA	r Aubistr Faubistr	FAOOB7 FAUTB38	FA0091	FA0100 FA0102
	ž. S.	352 FA	54 FA	4	2.05	44 65 44 64		33	2				2 :	72.5	7.5 FB	25 ES ES ES	77 FA	79 54			32.5	83	87 FA							
	~	mmm	Pi Pi	i Mili		F1 F5		ez ez	1 47	iği iğ	ř.	PF PF	·~2 ē	4) 4) i		ومة ومة	· i (+i ·	a éra é	7 173	F-1	, m3 F	·, ~·,	en én	eri in	i Fri	يا لج	ני נ	د⊸ دغ	ěn ěs	ले व
	5 ₁	8 2 8	8 5	36	34	5 5	ន	2 2	ž	ನ ನ	61	2 %	នេះ	₹ ₹	2 5	સ ન્ય	: 63	ដា	ផន	2 4		C &	220	0.5	2 5	3 3	3 3	₽; 3;	3 %	2 3
	Pt Zn tn ppn1		7	י בע	ន្តន	212	۷,	ខាខា	, tr.			74 L													, ni	יי ביי	دى ن	60 93	- ল্ব	ម្ពុង
	Cu P																						-				-			
	33	996	≅ 4	0-4	au0	D- 14	4	# #	#	7 2	₹.	₽ ∞	2 2	ù or i	<i>.</i> .	o r	. a. ê	-	* #	≑ ₹	3 7 7	3 %	ર લ	£ 2		7.7	2 2	2 4	4 0 0 4	2 4
	丢		ν. ν.υ														P. O.				י נה נ הנה ב		ک در دی در					n N	10 A	5 5
	Areal.1 th	~ 4 €	4 4	47	W 60	~	1 (1)	~ ~	~	N N	m	na n	י מייו	W 6W	4 (1)	~r	~ ~	יניו י	* 47	→ 4	· v·	7 4	4 ~	N 2	=	93	2 ~	> 4	W U	S S
	A	Φ φ- φ-	œ 5	~ !	3 5	~ 0	2			,- J	'n	33 O-	~ r	~ o- ,	ე 4+	≓ ^	-0-		. •	4 ₩	900	° =				~, ~	o et	~ 2	***	27
	2	TB0163 TB0164 TB0166	180170 180171	172	180174 TB0176	TB0179	TB0182	[#8183 TR0184A	Bertas	180191 1801924	150194	TB0203	180204	160267 Tx0267	18021, 18021,	248 248	150249	TB0274	TB0320	180321 180322	TR0323	190326	TB0327 180329	180332A	305	40806	146003	FADBIO	FAUULEN FAUULEN	FA0014 FAU015#
	¥0 5an																						2 TB	186	Ē					
	æ	125	9 8	F ;	38	# #	: E	312	777	# #	₩.	4 4	: C;	3 PH 1	2	엄각	327	121	3 13	3 2	3 77 7	3 =3	337		, ,	40 5	5 %	345	4 5	349
	٤.	25 X X	S 5	\$!	4 2	¥ 7	: K3 :	e 2	9	25 ع الا	£ .	∌ £	2:	2 K :	# E	2 2	36	189	3 X	ឌ ខ	1 7 4	ŕŝ	110 80	۲. ±	2	139	÷ 45	2 2	នគ	2 0
	Zn pp#1												_																	
	Pb 11 10	55 15	# £	7	100	5 E	: F3	ري زي	. .	59	N :	= =	Ξ.	7 75	33	សង	ដូន	i ali	ដែ	₹ ₹	Ξ.	- 3	ii) "	. 3	123	-3 ·	. 1	유 왕	22 ^	~ 3
	E G	ននេះ	25	Ξ:	25	¥ 5	: 2	음 찬	₹;	នន	17	£ #	# :	3 23 (3 =	중 등	22	8	3 4	73 K	. 4 S	: 6	25	\$ \$	8	43 £	3 %	د ه	1 1	55
	£	មាក		** .	70						_		٠.	۰	<i>,</i>	ω ~ 3	ب رس						_					.a ~	رد. س د س	"
	£	THE STATE OF THE	3.0	ID I	· ~		י אטר	ພະ	- C	רטיט הטיט	-0	910	.s.	A	2.2	<u>ب</u> م	L3 F	٠.	יטי	2 2	יו יע.	ייט פ	~		. په ا ای	-2 to	v . v⊤.	- A		
	Ξ	no 4 to to to to	10 45 10 17	in i	^	4 4	· v·	4.4. 1.1.	· S	NJ 40 NJ 10 NJ 10	40	- 4 - 4	٠.	л т чт 1	n -4. n ∿u	42 42 Tu Ou	4.4	***	4 4 v ~	43 44 72 72 72 72		ייי	رن بن بن بن بن بن	N 40	120	4 4 V 7 J 44	, .o	4. 4. 7. V	44	ुत्र क व
	Arealıt	V B 4	44 √1 (√1	ы. С. г	N W	44	4	~ .	*	M ←		→ 40		ለ ድ ቀና ፤ ማ ኒፓር ፥	n ∵n	12 T	4.4	***	+ 4 √ √		~~	. 4	ω. 	8 2 2 4	11 3 5 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		~ (1	o- 00	7 4 4 7 2 4 4 7
	No Arealith		4 -2 4 -4 4 -4 4 -4	. W.	5 2 3	-0 -0 -4 -4 -0 -0	. Д	, , 5 4 4 2 4	**	w 0- w 4- m 4-	1 3 6	10 4 4 5 5		ለ ድ ቀና ነ ማ ኒጥ ፥	 		0-1-	100 . 100 e	7 4 4	100 C/ 100 44 74 C/4			12 4 5 5 5							
	San Ho	TB0049 TB0050 TB0052	180053 4 3 5 180054 6 4 5	TREOSS S 3 S	180059 10 2 5	TROOKS 6 4 6 TRANKS A 4 5	TE0070 3 4 5	1900/3 2 4 5 190080 10 4 5	780083 3 4 S	180085 3 3 5 6 (80086 9 4 5	TB1087A 1 3 6	TB0098 10 4 6 5	TB0092A 3 6 5	FB0142 5 4 5	180103A 7 2 5 TE0104 10 4 5	TB0105 TB0111	TR0114 9 4 5	TB0117 2 4 5	TE0124 7 4 S	TB0126H 3 3 5 TB0126 2 4 5	TB0129H 4 3 6	(F01.35ft 2 4 5	TB0134 12 5 5 18 180137 4 5 5	T80139A [H6146	180143	190148 180149	160153	780154 188555	180156 [80157	TB8160 Tb8162
	ž		180053 4 3 5 180054 6 4 5	TREOSS S 3 S	180059 10 2 3 /	TROOKS 6 4 6 TRANKS A 4 5	TE0070 3 4 5	1900/3 2 4 5 190080 10 4 5	780083 3 4 S	180085 3 3 5 6 (80086 9 4 5	TB1087A 1 3 6	TB0098 10 4 6 5	TB0092A 3 6 5	FB0142 5 4 5	180103A 7 2 5 TE0104 10 4 5	TB0105 TB0111	TR0114 9 4 5	TB0117 2 4 5	TE0124 7 4 S	TB0126H 3 3 5 TB0126 2 4 5	TB0129H 4 3 6	(F01.35ft 2 4 5	TB0134 12 5 5 18 180137 4 5 5	T80139A [H6146	180143	190148 180149	160153	780154 188555	180156 [80157	TB8160 Tb8162
	Ne San No	251 TB0049 252 TB0050 253 TB0052	254 TB0053 4 3 5 255 TB0054 6 4 S	256 tR0055 S 3 S	250 180050 10 2 5 250 180059 5 3 7	259 TB0060 6 4 6 24 0 24 0 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6	261 TB0070 3 4 S	262 TB00/3 2 4 5 263 TB0080 10 4 5	264 780083 3 4 5	265 TB0085 3 3 5 2 5 2 5 2 5 3 5 3 5 3 5 3 5 3 5	267 TB1087A 1 3 6	269 T800916 10 4 6 5	270 TB0092A 3 6 5	272 (B0102 5 4 5	274 TE0104 16 4 5	275 TB0105 276 TB0111	277 TR0114 9 4 5	279 TB0117 2 4 5	281 T80124 7 4 S	282 TB0126H 3 3 5 5 283 TB0126 2 4 5	284 TBB129H 4 3 6	286 (F01.15M 2 4 5	287 TB0134 12 S S S 288 TB0137 4 S S	289 T80139A 290 [H6140	291 180143	292 190148 293 190149	294 TH0153	295 TB0154 296 180155	297 T80156 298 TRU157	299 TB8160 300 TB0162
	Ne San No	80 251 TB0849 40 252 TB0850 85 253 TB0852	90 254 180053 4 3 5 50 255 180054 6 4 5	80 256 IRIOSS S 3 5	30 258 TB0659 5 3 7	70 259 TB0060 6 4 6	60 261 TB0070 3 4 S	55 262 1909/3 2 4 5 2 263 190900 10 4 5	75 264 TR0083 3 4 5	65 265 TB0085 3 3 5 90 90 266 (80086 9 4 5	90 267 TB1087A 1 3 6	170 268 180088 10 4 6 110 110 110 110 110 110 110 110 110 1	101 270 TB1092A 3 6 5	75 272 (80102 5 4 5	70 274 TEGGG4 10 4 5	70 275 TB0105 60 276 TB0111	81 277 TR0114 9 4 5	27 279 TB0117 2 4 5	55 281 780124 7 4 5	75 282 TB0126H 3 3 5 8 85 283 TB0126 2 4 5	75 284 TBB129H 4 3 6	BS 286 (F01.3M 2 4 5	45 287 TB0134 12 S S 7 75 288 TB0137 4 S S	75 289 TB0139A 75 290 TH0140	85 291 180143	90 292 190148 95 293 180149	80 244 160553	120 295 TB0154 /0 296 (B0155	80 297 180156 110 298 188157	60 259 TB0160
	Pb Zn Ne San No an ppml	251 TB0049 252 TB0050 253 TB0052	90 254 180053 4 3 5 50 255 180054 6 4 5	80 256 IRIOSS S 3 5	30 258 TB0659 5 3 7	70 259 TB0060 6 4 6	60 261 TB0070 3 4 S	55 262 1909/3 2 4 5 2 263 190900 10 4 5	75 264 TR0083 3 4 5	65 265 TB0085 3 3 5 90 90 266 (80086 9 4 5	90 267 TB1087A 1 3 6	170 268 180088 10 4 6 110 110 110 110 110 110 110 110 110 1	101 270 TB1092A 3 6 5	75 272 (80102 5 4 5	70 274 TEGGG4 10 4 5	70 275 TB0105 60 276 TB0111	81 277 TR0114 9 4 5	27 279 TB0117 2 4 5	55 281 780124 7 4 5	75 282 TB0126H 3 3 5 8 85 283 TB0126 2 4 5	75 284 TBB129H 4 3 6	BS 286 (F01.3M 2 4 5	45 287 TB0134 12 S S 7 75 288 TB0137 4 S S	75 289 TB0139A 75 290 TH0140	85 291 180143	90 292 190148 95 293 180149	80 244 160553	120 295 TB0154 /0 296 (B0155	297 T80156 298 TRU157	60 259 TB0160
	Ne San No	80 251 TB0849 40 252 TB0850 85 253 TB0852	22° 90 254 190053 4 3 5 22° 50 255 180054 6 4 5	22 80 256 180055 5 3 5	7 30 258 TB0059 5 3 /	45° 70 259 TB0060 6 4 6	7 60 261 TB0070 3 4 S	7 55 262 TBUD/3 2 4 5 7 55 263 TBUDBU 10 4 5	45* 75 254 780083 3 4 5	22* 65 265 TB0085 3 3 5 22° 90 266 (80086 9 4 5	22 90 267 TB1087A 1 3 6	22 170 258 180088 10 4 6 22° 130 269 T800914 4 6 5	22* 101 270 TB0092A 3 6 5	16 75 272 (80142 5 4 5	40 70 274 TEGGA 16 4 5	40 74 275 TB01105 35 60 276 TB0111	24 61 277 TR0114 9 4 5	7 27 270 TB0117 2 4 5	19 55 281 T80124 7 4 S	23 75 282 TB0126H 3 3 5 2 21 85 283 T80126 2 4 5	11 75 284 TBB129H 4 3 6	19 BS 286 (F01.15ff 2 4 5	10 45 287 TB0134 12 5 5 16 75 288 TB0137 4 5 5	18 75 289 TB0139A 12 75 290 EB140	13 85 291 180143	13 80 292 160146 12 95 293 160149	14 80 294 [B0153	15 120 295 TB0154 14 /0 296 180155	45 80 297 TB0156 98 110 298 TBU157	20 60 299 TB0160 30 77 300 TB0162
	Pb Zn Ne San No an ppml	7 80 251 180849 7 40 252 180650 22 85 253 180652	23 22° 90 254 TB0053 4 3 5 18 22° 50 255 TB0054 6 4 5	30 22° 80 256 180055 5 3 5	12 22 50 250 18005 10 2 5 24 7 30 250 180059 5 3 /	13 45° 70 259 TB0060 6 4 6 25 259 TB0060 6 4 6	18 7 60 261 180070 3 4 5	18 7 55 262 1900/3 2 4 5 19 19 7 55 263 180080 10 4 5	40 45 75 264 TROUBS 3 4 5	90 22° 65 265 f80085 3 3 5 18 22° 90 266 f80085 9 4 5	21 22 90 267 TB0087A 1 3 6	40 22 170 268 150088 10 4 6 5 30 22° 130 269 1800914 4 6 5	20 22 100 270 TB0092A 3 6 5	35 16 75 272 f80182 5 4 5	35 40 70 274 TE0104 16 4 5	35 40 70 275 TB0105 30 35 60 276 TB0111	18 24 81 277 TB0114 9 4 5 45 20 75 2/8 180116 3 4 5	10 7 27 279 180117 2 4 5	27 19 55 281 T50124 7 4 S	70 23 75 282 TB0126H 3 3 5 85 21 85 283 T80126 2 4 5	62 11 75 284 TBB129H 4 3 6	35 19 BS 286 (P01.3.5ft 2 4 5	20 10 45 287 TB0134 12 5 5 4 40 16 75 288 F0137 4 5 5	55 18 75 289 TB0139A 40 12 75 290 [B0140	45 13 85 291 780143	40 13 80 292 160148 35 12 95 293 180149	35 14 80 294 160153	40 15 120 295 TB0154 20 14 /0 296 FB0155	45 45 80 297 T80156 11 90 110 298 T80157	29 20 60 299 TB0160 41 30 77 300 TB0162
	pH Cs Pb Zn Ne Sam Hs [Unit in ppm]	5.7 25 7° 80 251 180049 5.9 10 7° 40 252 180050 5.5 20 22° 85 253 180052	23 22° 90 254 TB0053 4 3 5 18 22° 50 255 TB0054 6 4 5	5 V 30 22* 80 256 tR0055 5 3 5	5 5 24 7° 30 258 T80057 5 3 7	5 5 13 45° 70 259 TB0060 6 4 6 5 7 25 22° 80 260 TB0069 6 4 6	5 9 18 7° 60 261 150070 3 4 5	5 9 18 7" 55 262 1900/3 2 4 5 5 7 19 7 55 263 180080 10 4 5	5 0 40 45* 75 264 TR0083 3 4 5	90 22° 65 265 f80085 3 3 5 18 22° 90 266 f80086 9 4 5	21 22 90 267 TB0087A 1 3 6	40 22 170 268 150088 10 4 6 5 30 22° 130 269 1800914 4 6 5	20 22 100 270 TB0092A 3 6 5	5 3 35 16 75 272 (80102 5 4 5	35 40 70 274 TE0104 16 4 5	35 40 70 275 TB0105 30 35 60 276 TB0111	5.3 18 24 61 277 T80114 9 4 5 5 77 180114 7 4 5 5 7 75 2/8 180116 7 4 5	10 7 27 279 180117 2 4 5	5 3 27 19 55 281 T50124 7 4 5	5 3 70 23 75 282 TB0126H 3 3 5 5 55 85 21 85 283 TB0126 2 4 5	5.7 62 11 75 284 TB0129H 4 3 6	5 3 35 19 85 286 (F01.13M 2 4 5	5 5 20 10 45 287 TB0134 12 5 5 5 5 3 40 16 75 288 TB0137 4 5 5	5 3 55 18 75 289 TB0139A 5 3 40 12 75 290 TH0140	5 3 45 13 85 291 180143	5 5 40 13 80 292 150148 5 3 35 12 95 293 150149	5 3 35 14 80 244 [h0153	40 15 120 295 TB0154 20 14 /0 296 FB0155	6 5 45 45 80 297 180156 6 5 11 70 110 298 fkW157	29 20 60 299 TB0160 41 30 77 300 TB0162
	pH Cs Pb Zn Ne Sam Hs [Unit in ppm]	5.7 25 7° 80 251 180049 5.9 10 7° 40 252 180050 5.5 20 22° 85 253 180052	3 6 2 23 22° 90 254 180053 4 3 5 4 5 9 18 22° 50 255 180054 6 4 5	3 5 9 30 22 80 256 180055 5 3 5	5 5 5 24 7° 30 258 T80057 5 3 7	10 5 5 13 45° 70 259 TB0060 6 4 6 9 4 7 240 TB0060 6 4 6	10 5 9 18 7 60 261 75070 3 4 5	10 5 9 18 7 55 262 1900/3 2 4 5 10 5 7 19 7 55 263 180080 10 4 5	4 5 0 40 45 75 264 TR0083 3 4 5	4 5 5 90 22 65 265 TB0085 3 3 5 4 5 60 TB0 18 22 90 265 TB008 9 4 5	4 5 0 21 22 90 267 TB1087A 1 3 6	4 5 0 40 22 170 268 180088 10 4 6 4 5 4 5 3 30 22 130 269 1800914 4 6 5	4 5 3 20 22° 100 270 TB00928 3 6 5	4 5 3 35 16 75 272 HB1#2 5 4 5	9 5 5 35 40 70 274 TE0104 16 4 5	4 5 5 35 40 74 275 TB0105 1 5 3 30 35 60 276 TB0111	1 5 3 18 24 81 277 T88114 9 4 5 4 5 7 45 20 75 278 180115 7 4 5	3 5 9 16 7 27 279 TB0117 2 4 5	9 5 3 27 19 55 281 780124 7 4 5	4 5 3 70 23 75 282 TB0126H 3 3 5 4 5 85 21 85 283 TB0126 2 4 5	4 5 7 62 11 75 284 1801299 4 3 6	4 5 3 35 19 85 286 (P01.13f) 2 4 5	4 5 5 20 10 45 287 TB0134 12 5 5 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5	2 5 3 55 18 75 289 TBQ139A 4 5 3 40 12 75 290 F6040	4 5 3 45 13 85 291 180143	4 5 5 40 13 80 292 150148 4 5 3 35 12 95 293 180149	4 5 3 35 14 80 294 [HOIS]	4 5 5 40 15 120 295 TB0154 4 5 3 20 14 /0 296 F00155	3 6 5 45 45 80 297 180156 4 6 5 11 90 110 298 [kW157	3 6 2 29 20 60 299 TB0160 3 6 0 41 30 77 300 TB0162
	No Arealith pH Cs Pb Zn Ne Sam No [Unit in ppn]	7 2 5 7 25 7° 80 251 180849 9 4 5 9 10 7° 40 252 180850 12 4 5 5 20 22° 85 253 180852	5 3 6 2 23 22° 90 254 180053 4 3 5 3 4 5 9 18 22° 50 255 180054 6 4 5	2 3 5 7 30 22 80 256 IRU055 5 3 5	11 3 6 2 12 22 50 250 180056 10 2 5 6 5 5 5 24 7° 30 258 180057 5 3 7	4 10 5 5 13 45 70 259 TB0060 6 4 6 3 9 5 7 2 25 25 80 250 TB0669 5 4 6 5	5 10 5 9 18 7 60 261 Tb070 3 4 5	4 10 5 9 18 7 55 262 1800/3 2 4 5 4 5 4 10 5 7 19 7 55 263 180080 10 4 5	2 4 5 8 40 45 75 264 780 78 3 4 5	6 4 5 5 90 22 65 265 100085 3 3 5 5 4 5 0 18 22° 90 266 (80086 9 4 5	4 4 5 0 21 22 90 267 TB0087A 1 3 6	5 4 5 0 40 22 170 268 180088 10 4 6 5 4 4 5 3 30 22 130 269 1800914 4 6 5	7 4 5 3 20 22 100 270 TB0092A 3 6 5	10 4 5 3 15 65 65 671 150097 5 4 5 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 9 5 5 35 40 70 274 TE0104 16 4 5	2 4 5 5 35 40 70 275 TB010S 7 1 5 3 30 35 60 276 TB0111	10 1 5 3 18 24 81 277 TR0114 9 4 5 10 4 5 75 2/8 19014 7 4 5	4 3 5 9 16 7 27 279 TB0117 2 4 5	6 9 5 3 27 19 55 281 780124 7 4 5	2 4 5 3 70 23 75 282 180126H 3 3 5 3 5 5 5 5 85 21 85 283 180126 2 4 5	3 4 5 7 62 11 75 284 TB0129H 4 3 6	4 4 5 3 35 19 85 286 (H01.5M 2 4 5	5 4 5 5 20 10 45 287 TB0134 12 5 5 7 7 4 5 3 40 16 75 288 [50137 4 5 5	6 2 5 3 55 18 75 289 T80139A 5 4 5 3 40 12 75 290 [H6140	3 4 5 3 45 13 85 291 780143	4 4 5 5 40 13 80 292 160148 4 4 5 3 35 12 95 293 180149	5 4 5 3 35 14 80 244 160453	7 4 5 5 40 15 120 295 TB0154 1 11 4 5 3 20 14 70 296 F0355	5 3 6 5 45 49 80 297 180156 3 4 6 5 11 90 110 298 180157	3 3 6 2 29 20 60 299 TB0160 7 3 6 0 41 30 77 300 TB0162
	pH Cs Pb Zn Ne Sam Hs [Unit in ppm]	7 2 5 7 25 7° 80 251 180849 9 4 5 9 10 7° 40 252 180850 12 4 5 5 20 22° 85 253 180852	UAD262 5 3 62 23 22° 90 254 180053 4 3 5 UAD265 3 4 5 9 18 22° 50 255 180054 6 4 5	VA0266 2 3 5 9 30 22 80 256 18055 5 3 5	VANZOS II 3 6 2 12 24 7° 30 250 IBDUS9 5 3 /	UA1274 4 10 5 5 13 45° 70 259 TB0060 6 4 6 UA1275 3 9 5 7 25 22° 80 260 TR0669 6 4 6	VAR276 5 10 5 9 18 7 60 261 TB0070 3 4 5	VAD277N 4 10 5 9 18 7° 55 262 TBUD73 ∠ 4 5 VAG27B ₹ 10 5 7 19 7° 55 263 TBUDB0 10 4 5	940279 2 4 5 0 40 45" 75 264 TRQUB3 3 4 5	VANZBU 6 4 5 5 90 22 65 265 TBU08S 3 3 5 VANZBU 5 4 5 0 18 22° 90 266 (80086 9 4 5	VA0282 4 4 5 0 21 22 90 267 TB0087A 1 3 6	VAUZS4 5 4 5 0 40 22 170 268 18008B 10 4 6 VAO28S 4 4 5 3 30 22° 130 269 180091A 4 6 5	VAR287 7 4 5 3 20 22° 100 270 TBDD92A 3 6 5	WHITE IN 4 3 3 15 66 75 272 HOLDS 5 4 5	TB0008 10 9 5 5 35 40 70 274 Fg0104 16 4 5	180009 7 1 5 3 30 35 60 74 275 TB0105 180009 7 1 5 3 30 35 60 276 TB0111	180010 10 1 5 3 16 24 61 277 TR0114 9 4 5 TB0011 10 4 5 3 45 20 75 2/8 190116 3 4 5	TREDUIZ 4 3 5 9 16 7 27 279 TROIT 2 4 5	TROOTS 6 9 5 3 27 19 55 281 T50124 7 4 5	TB0016 2 4 5 3 70 23 75 282 TB0126H 3 3 5 180017 3 4 5 5 85 21 85 283 TR0126 2 4 5	TB0018A 3 4 5 7 62 11 75 284 TB0129H 4 3 6	TB0021 4 4 5 3 35 19 85 286 (F01.33M 2 4 5	TB0023 5 4 5 5 20 10 45 287 TB0134 12 5 5 TB0025 7 4 5 3 40 16 75 288 (B0137 4 5 5	TB0027 6 2 5 3 55 18 75 289 TB0139A TB0028 6 4 5 3 40 12 75 290 CH6140	TB0029 3 4 5 3 45 13 85 291 TB0143	TB0030 4 4 5 5 40 13 80 292 TB0148 TB0032 4 4 5 3 35 12 95 293 TB0149	TB0033 5 4 5 3 35 14 80 244 TH0153	180035 7 4 5 5 40 15 120 295 TB0154 180037A 11 4 5 3 20 14 70 296 F00155	TB0042 5 3 5 5 45 45 80 297 180156 TB0044 3 4 6 5 11 90 110 298 180157	3 6 2 29 20 60 299 TB0160 3 6 0 41 30 77 300 TB0162

	설론	85 1,40	5	83	5 5	: :	, %	6	\$ 4	, H.	₹,	3 4	, R	\$3	S .	4 .	3	S.	2 4	2	₽:	۲ē	20	R H	, 1	5 :	2 5	ß:	₹ \$	\$ 2	Ë	4 t	2 5	S	2 th	9	35.22
(E)	25	ន្ទ	3 않	25	٥ -	4 =	: 2	2	3 ~		⊒ 5	à "	, r	90	≈ '	o3 4	-:	œ ·	۵.		15	٠,	14	5	? 8	97	- 2	# :	₹ :	•	٥	٠.	12	2	21 22	13	a v
	Cv Pb Zn [Unit in ppm]	នឧដ	ያዼ	5	<u> </u>	; =	. E5	<u>ب</u> م	ii o	. F	3O G	~ ¥	, e	28	D - !	ž u	, 5 2	۰	ئ دە	2	61 6	? :	. 23	; 닭	រក	ψ. (2 83	£ :	<i>4</i> :	: 3	46		- 53	2	អស	동	II 52
	Ŧ.							ا وسا	U M		- 2 ,	n r-	ייי נ	v.	· .	-n t-	, m	ю.	· 0 C	. ^		лн	, ~ <u>,</u>	173 143	۰	un o	r .n	ı, c	> u	ניו י	'n	v o	. un		ת, ניי	וויט	ر د
			. <i>.</i>					ر در ا	 	·	, n	٠,	. <u>.</u>	~	ا می د		·				. ه	n v	יעי	ب می م	م. ه سا	io e	ט אי	ب برر د برر	. .		~	سادی میرم	טיי ה	م		ויאו	no no
	Arealsth	~~.		~		4 10						^		_	_	45 64 D4	د. د	-		_	~		·~			g		۰.		. ~	•					~ .	
	Ę	,,,,,,,	9.29	_		-	•				٠.			•	_			2	-					M 9	-		•							•	•	•	
	he San Ne	1P0.559 1P0.700	17177	100705	11/041	100/13	111714	Abd 883	ACB505	AL0010	Accu14	ALC: 015	A50018	ALU021	AG0024	ALBU25 AG0028	AL002.09	AC0030	ACD 031	ALUU34	Audite.	ACROTE ACROTE	A:\$0.59	Au0040A	AC0042	ALUB43	40004	AC6047A	ACCOUNT ACCOUNTS	AGE 33	AC0057	84.00.74 A10.074	AL0065	ACQ167	A50068 A61069	Au0070	A60074 A60075
	3												2.5	9 AL	₩.	9 4	균	윤 :	4 6	급	7 B.	5 5 5 5	F	581 Au	1.4	균:	1.4	78.	2 0 2 0 3 0	2	£ AC	균성	3 4 5				599 AL 600 AL
	Z.	25.52	ያ ያ	55	χ. Ω.	3 3	55	7,	S F	20.5	£ .	2 2	. 2	895	'n.	જે જે	<u> </u>	G !	3 5	ί,	577	તે હ	. 33	B 3	3 33	37 (2 23	% .	2 0	3 %	ኤ	35 8	i ii	ያ	3 2	5	\$ 3
	c	C1 -17 G			-v4	. د		=	, ,		,	n e	3 es	~	د ص	۰.	. ح	œ	- -	. ~	<u>.</u>	⇒ 5	,			.	,		u e	, ₂		⇒ ∈		'n	n N		مر د
	ppm 26	44.2	7	2		•		47 1	rs -0	35	ъ.	.	7	ř	_	¥ 9	`	**	₹ 3	•	4.			~ ~	33	¥3 :	٠.		~ 4	2	13	ر n	• •	æ	ΦΦ	_	3 %
	5 2	## # # #	3 3	22	7 3	3 4	₩.	2	Z Z	8	Q :	2 ~	ጎ ሆነ	7	3	v 3	-	CJ :	9 fe	5	۲ - ۱	÷ 8	2	3 4	7	ξ. Σ.	3 %	3	3 2	2 :	110	\$ 5	3 5	S	9 5	_	ដូស
	Co Pb (Unit in	w w .	n Ln	2	un t	, v	=	·n .	<i>ر</i> . د	2	≘ •	, r.		~	3	3 %					2	4 £	2	ωé	3 89	¥ 8	9 9	.	2 :	: #	ŝ	~ J	٦ ا	51.	찬 ^X 2	٠.	5 t t
	蓋																																				
		-100		•						,					an						m r	2 14									-	-		Au i	~ ~		
	Arealsth	0 ~ 0		٠. س	· ·	1	•	~, (o- o-		u r	70	,	·	_ च	~) ~	· eu	٠.	- E		٠,	r c		٠,		<i>a</i> .	· ·	es ·	. .	. ب		es e		D .	ري وس		മാ
		-		_					. 4		_	. 5	E _	_							_									_	_	_		_			
	No San Ne	P0381	17 L33	I+0388	190369	46504	120335	1F 8 4Yb	IP6466 P84039	190403	170404	120405	IP0407	100408	166411	17.14.35	14077	IP0442	1754 3 170474	1F04.7	120480	144441	3.5	170493	1-0505	120503	1.63.58	IP0559	1000011	1.0566	10007	1904041	1-4533	1-0650	170659 170653	SAGR41	171695 170696
	νi Ž	10.00			300 15					111						7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					527					455			1 2 2						2 2		549 11 05c
		ר מו טי	ח_ח	'n	יים	יים, יי		٩,	<i>.</i>	וייט		^ 4	ייטי		v.		л,	.n	n "n	י י	٠.	n ur		د دن	יעי	Λ.	ייביי	σ.	ր Մ	די, ו	יננ	ע ה.	יעי	<i>.</i> ,	n _n	~ .	л л
	Zn ppm i	光电池	3 €	33	₹,	; ;	ន	59	3 <	35	2 2	3 5	: 5	4	<u>ج</u>	n ei	=	2 :	3 2	₹	700	g p	Ä	នេះ	3 13	₹.	3 4	40	ŧ ń	3	9	찬 7	: 4	δ,	t 4	4	នគ
	1. 1. ps	th dig	U 74	پ	3 4	• 0-	2.	= 4	9 9	.	= ;	٠,	٠,٠	,	<u>.</u>	n a	n	J.	1 2	~		2 2	4	<u>-</u> ۲	. ~	2 9	2	<u> </u>	2 .	- 2	9	99		9	= 42	91	~ ኣ
	Cu f	•			•						_																			-	-		•	_			-7
	ដូ ដ	5 2 1	ישי	3	is È		12	9 8	K. 43	5	3 5	۳ ب	,,,1	Δ,	2 '	ა ჯ	^	ייי	יט יא		w.	• ນ	. 5	עיי.	יעי	3 5	יעין	٠° ;	ה ה	. ~	¥.	F *	? `	σ	n en	3'	n.n
	ŧ					,		,		,	,		,	,	,		,	4	, ,	,		, ,	,	, ,	ı		,	,	,	1	1		ı				
	ž.	ms ru o	1 1/4	m	~> ~	• ru	=	-	2 3	٠.	٠,	<u> </u>	r eu	∢ .	47 .	4 ~	·v	۸,	* 1/4	v	٠.	r =	•	(*)	۱,	eu e	٠,	~ (4 0	بہ ،	cu i	~ ^	٠~،	ny s	v	eu r	יי ע
	Arealitn	4 3 L	3 #	(4)	a ti	ימ	**	٠, ٠	~ =	=	<i>n</i> t	n 14	, _C	~1	ب د	u ar	æ	47°	^ 0	ΓV	~ -	o (~	~	<u>ه</u> د	•	∢ .		-	? 4		C1	n 6.	ı aı	۰ م	7	~) r	'
		25.0	4 49	37	9 6	7.7	5	異是	8 3	3	n e	2 6	38	5	<u> </u>	ر ا ا	3,	.	35	31	<u>م</u>	9 8	9	<u>بر</u> ک	3	약 #	7	រូក្ខ ។	è di	2	7	5 5	, 29	٠ ج چ	- E	4	\$ 5
	San Ma	ANG\$33 AMB\$34			AR0140						ANGESS					P0129			1F0177		140198			IP021S		12011		1P0355				170384				1P0.5/6	
	£	2.3.0		455	3,0	3	5	450	a à	4	2	4 4	4	455	â.	₹ ₹	472	73	, <u>4</u>	1,1	477	7	488	£ 9	183	\$ a	486	487	489	10	6	4 6	49	\$ 6	5	£ 5	3 3
	Pbr 4	877	4	B	7 4	•	8	<u>ن</u> و	3 2	£ :	₹ 5	3 4	Ř	2	£ 5	5 K3	3	25	2 3	ç	5 7 53	3 2	Ş	የያ ላ	3	÷ ;	99	€ :	3 %	3	4	3 8	=	۲ <u>۲</u> :	4 K	53 5	3 🕏
	25	37.	2	22	8 1	٠,	8	,	ង ន	8	;	- 6	2	R	3	3 ~	,		2 4	000	# 5	2	35	<u>ښ</u> د	33	Ç, t	7	,	. •	ដ	5	. r	7	v, r	יש מ	د	ŭ 'n
	Çe Wart	883	9	2						92										_																	
		mmu												_															_	.
	÷	O, O, D	'n	ភ	.n u	• •	S	v.	v	ı,	ר ע	4	יטי	٠,	<u>ب</u>	יי עי	Ş	•	s w	•	' ע	ישי	.	C U	ď	n u	·	· ·	۰,	5	.	90	S				n '
	Arealith	W 60 6																																			
		v1 47 0		_																																	
	San Na	FA0106 FA0108	FA0113	FA0123A	FA6126	FADIES	FA1157	FA0169	FAU173	FA0174	C. 64.77	3	FA0247	FAB249	18003	FA0254	2025	FA1256	AM0024	Am0030	6H0032	0037	450034	AM0041 AM00424	AMOG45	AR0046	AM0048	AH0049	AMON S1	AND 052	AM0054	A40058	AN 3659	10.00	AMB124	0125	1012B
	₹ 25	401 FA 402 FA			2 2 2 2	. A.			411 FA 412 FA		414	4	17 FA	7.	4 4	2 Z	21 : 21 :	1 . 1 .	12.5 12.5		427 £	. T	30 52			# # # #	36 A	2 ×	: E	4	÷ :		44 FM	5 7	47 41	要を	: * : :::
	-	य गर्ने	*	4	₹ 4	**	4	4 -	4 4	4	4 =	4	•	-		7 -	-	4 4	1 4	Ť	47 4	4	4	4 1	4	4 4	4	4	ŕ	4	4	4 4	4	4 -	4	44	r

(4)	Cu Pb Zn IUnii in ppml																																																	
	Arealith pH																																																	
	Ne San Na																																																	
	rz Isrd	;	,	2 !	3	ş	3	10		•	9 6	χ:	÷,	?	3	₹	ć.	4.	7	5	ń	59	\$	4	44	5	7	ŝ	ភិ	40	Κ. :	<u>.</u>	5	2	; £	Ų	£	ş	2 9	₽ ;	<u>,</u>	8	24							
	nz dd us ti	;	;	` ;	ય	Ç.		•	, y	;	יי	, i	7	ξ.		21	`	•	•.	÷	27	45,	7	35	•	53	ž	ž	2	ಸ	3.0	2	<u> </u>	,	٠,٠	3.0	v	7	23	2	3 :	3 5								
	S. Lings		0 r	-	·,	۵	Ç-	٠,	. 1	3 :	₽.	2	σ.	ş	=	•	2	2	'n	51	7.	9	=	Ð	7	19	۰	æ	73	œ	ν, i	2	2 -	ħψ		^	\$	2	2 .	ς;	₹:	₹:	2							
	Ŧ																								•										,		٠	,	,		ı	•	r							
	Areal 1th	•																															₹ `																	
																								_						E			~ · ·																	
	NO SAN NO		**************************************				/85 PP0254	700 999358			500 PP 1050	, US PP 006.1	714 PPubbe		/1. *** 0056	713 Pr007u	11 +PJU12	715 Pt 0073	/10 PP00/5	/1/ PP0879	BRADIA BL	719 PPD0B4	IZU PYUUAS	721 Pt 0086A		723 PP009U						729 F 50100	, 30 + 2010Z	- 4		/34 + 80114		- 1	7.57 FR0125	• •		740 150224	-							
	5 3	ì	3	3 1	¢	π,	£	97	: ±	3 9	Ç ;	÷.	я,	≈	7	~ ;	83	3	중	8	110	<u>ئ</u>	7	130	3	4	7.	120	Ŕ	96	ş:	S :	3 2	3 4	50	ŝ	9 2	<u>ئ</u> ک	323	2 :	ç.	5	2 3	. .	7	1	; ₽	13	? ;	4 3
	Pb In		3 2	ų .	`		7	,			,	. ;	3	•		. '	٠,	•	1	'n	খ	2	2	13	7	5	÷	ኢ	,	÷		3	S. c	•	1 2	Я	ਲ	ેલ ફ	S :	ŭ i	γ,	4.			2	^	З	. ;		÷ 23
	Cu IUnit	•	3 4	F :	7	o.	35	2	ď	1 :	B 6	no ;	ς,	Α.	7	L'I	٥	1 5																																* 23
	ř.		n -	٠,	`	۲,	-S.	8			٠,	л , С ,	~ ·	٠.	n i	m	٠,																																	2 L
	Areal.1th	•		,	2	प	4	4	,-	, -		4	4	đ	4	4	4	₩3	*	∢	4	4	ۍ.	<u>,</u> ,	-																						na i			u 4
		٠	ر د د													_																							_		_						٠.			
	No San No	10.000					655 AC1193	556 FLU175			10.000 000			661 AC0208					656 ALEZ/1		668 AUU2/1		6/11 ALS1179	871 LAUDU7	6/2 WADD19	673 WAD021	674 PPUGU2	675 PP0004			670 FF001356		680 FF001/0 681 PP0019						667 PF1025R			404 40400		693 PP0034			696 PP0037n		600 000 000	760 PP0042
	ងទួ	2	2 2	3 5	÷ :	77	58	24	5	;	2 5	7 6	g :	g :	2 :	8	à	ĸ	ž.	2	5	2	501	23	Ş	28	110	ድ	120	91	7 5	6 5	? %	2	120	:G	:	2:	7	: :	; 5	? ?	, L	4	29	9	æ :	3 5	9 Y	7 3
	Pb Zn tn pp#)	į] #	3 '	Α.	•	∢		7	: 0	٠.	4	2:	= :	*	53	•	ş	ĭ	6	9	2	<u></u>	۵.	ထ	❖	4	<u>ښ</u>	,	<u>ښ</u>	3 5	ů.	- =	4	22	,	<u>ٿ</u>			. ,		, ,	25	7	≈	7	<u></u>	N.	, 2	: 8:
	Ću lünı	c		•	Ω :	F.	ĸ	5	12	;	7 2	2	T =	7 1	ያ !		ន	8	2	53	77	23	6	1 0	2	ដ	č.	8	150	140	2 1	9 2	3 -	É	30	14	8 2 2	3 °	p a	. 5	; <u> </u>	: 5		: 22	22	ಸ	۲. ۲	90	3 8	3.5
	돐	,																																													M c			
	Arealath																																n α														**	•		-
												_																																			۲.			
	an San Na		20074			604 460085	605 AG0187	606 AC6088					510 AC0003		Daviduay Sid	513 ALUGYYR	614 AC0100	615 AGD1921	616 AC9103M	617 AG01051	61B AC0107	619 AC0109	620 AC0112	621 AC0114	622 AGB116	623 AGD121	624 AG0122	625 AG0124	626 AG0125	627 AC0129	528 ALU131	75190M 620	631 AC0138M	632 AC0141H		634 AC0145	635 AG0147	635 AC0148		6.19 ACI 15.4v	640 AC0156	641 AG0157	642 AGB159	643 960162		645 AG0164	646 AG0166	64/ Abulya	649 AC0176	650 AG0183

Table A-8. Results of Projeto Geoquimica no Vale do Ribeira (DNPM-CPRM) 1978

1.	TABELA	VIII	Cu-AA-Stream Sediment - Subarea Sudelpa - Summary of Data
2.		X	Matrix of Correlation X Number of Stream Sediment Samples — Subarea Sudelpa (Cu)
3.		Xi	Pb—AA—Stream Sediment — Subarea Sudelpa — Summary of Data
4.		וווא	Matrix of Correlation X Number of Stream Sediment Samples — Subarea Sudelpa (Pb)
5.		ΧIV	Zn-AA-Stream Sediment - Subarea Sudelpa - Summary of Data
6.		XVI	Matrix of Correlation X Number of Stream Sediment Samples — Subarea Sudelpa (Zn)
7.		XXIX	Cu-AA-Stream Sediment - Regional Geschemical Prospection - Summary of Data
8.		XXXI	Matrix of Correlation X Number of Stream Sediment Samples — Regional Geochemical Prospection (Cu)
9.		IIIXXX	Pb-AA-Stream Sediment - Regional Geochemical Prospection - Summary of Data
10.		XXXV	Matrix of Correlation X Number of Stream Sediment Samples – Regional Geochemical Prospection (Pb)
11.	X	XXVII	Zn-AA-Stream Sediment – Regional Geochemical Prospection – Summary of Data
12.		XXXIX	Matrix of Correlation X Number of Stream Sediment Samples — Regional Geochemical Prospection (Zn)

CPRM
-a f 1a.

, _							,				(1)
ORES	c ao x am	268	301	199	211	211	54			ırafıa.	
DOS ESTIMADORES	We × De _s	96	139	911	1 08	87	27		possível.	ável. spectrografia.	
	ыс х ре	35	49	89	45	36	14		Anomalia	prov(S= E	
SUDEL PA-SUMÁRIO	GRAU DE DETECÇÃO	235:257	901:501	19:19	19:19	25:26	130:151	MG×DG=Limlar.	MG x DG a MG x DG = An	≥ MG×DG= Anomalia AA=Absorção atômica,	
SUB-ÁREA SU	СОЕРІСІЕИТЕ ВО ОБЗАІЯАУ	1,364	116,0	0,578	0,763	1,097	0,738	9	7 - MG	8 - 8 V - 8	
	DESVIO DESVIO	2,787	2, 176	1,711	1,968	2,432	2,004	OBSERVAÇÕES	յ-ոօրագլ.	nidos e os.	
CORRENTE	AIĢÌM GEOMÈTRICA (ƏM)	12	29	0 4	2.8	15	7	OBSE	a dıstribuição log-narmal.	de valores definidos valores analisados.	
MENTO DE	ROJAV OMIXÀM	120	120	120	85	06 .	06				
SEDIME	AOLAV Minim	2,5	2,5	0,01	5,0	2,5	2,5		ondo-se	ao número ao total de	ground.
COBRE-AA - S	NÚMERO DE SARTSOMA	256	106	19	19	5 6	151	Ф Е	dns'sop		Allo backgrou
TABELA VIII - COBRI	POPUL AÇÕES	ÁREA TOTAL	AÇUNGUI GERAL	AÇUNGUI CLÁSTICO	AÇUNĞUI QUÍMICO	AÇUNGUI INDIFERENCIADO	GRANITOS	1- Dados expressos em p	2-MG e DG são geométricos, supondo	3- Grau de detecção refere-se transformados em relação a 4- MG= Background	۵,2

TABELA X — MATRIZ DE CORRELAÇÃO X NÚMERO DE AMOSTRAS SEDIMENTO DE CORRENTE-SUBÁREA SUDELPA

COBRE - ABSORÇÃO ATÔMICA

	ÁREA	TOTAL	AÇUNGU	I GERAL		NGUI STICO	AÇU	MGUI MGUI		HGUI RENCIADO	GRAI	IITOS
	N	Cu-AA	N	Cu-AA	2	Cu-AA	N	Cu-AA	2	Cu-AA	N	Cu-AA
Fe-S	2 31	0	104	•	60	0	19	0	2 5	0	127	•
Mn-S	2 2 9	0	99	•	55	Ď	۱9	•	2 5	•	130	0
Co-S	2 2 2	•	101	0	58	0	18	0	2 5	6	151	0
Cu-S	212	0	102	•	59	•	ι9	0	2 4	0	110	Ð
N1 - S	233	Ð	104	0	60	0	19	0	2 5	0	129	0
Pb-S	2 0 7	(*)	81	•	51	Ō	13	(+)	1 7	•	126	(•)
Cu-AA		•		0		0		0		O		0
Pb-AA	231	0	101	0	61.	•	18	0	2 2	0	130	0
Zn-AA	2 3 5	0	105	•	61	0	19	Ð	2 5	•	130	0

OBSERVAÇÕES:

 $N \leftarrow n^{Q}$ de amostras que entraram no cálculo

S - espectrografia semi-quantitativa p/30 elementas

AA- espectrofotometrio de absorção atômica

• - < 0,30

O - 0,30 a 0,59

O - 0,60 a 0,79

● - ≥ 0,80

()- correlação negativa

		SEDIMEN IO DE	31 N32 N3	ı	SUB-AREA SU	SUDELPA-SUMARIO	DOS	ESTIMADORES	ORES
POPULAÇÕES NÚMERO DE DE AMOSTRAS	SARTSOMA ROJAV OMINIM	ROJAV OMIXAM	AIGÈM GEOMÉTRICA (ƏM)	GEGVIO DESVIO	COEFICIENTE DE OĀQAIRAV	GRAU DE DETECÇÃO	ва×вм	sog x om	[€] aa x aM
AREA TOTAL 257	2,5	280	12	2,060	0,828	251:257	26	23	110
AÇUNGUI GERAL 106	2,5	280	17	2,447	1,108	101:106	4.2	1 04	254
AÇUNGUI CLÁSTICO 61	5,0	280	2 4	2,082	0,844	61:61	5.0	101	217
AÇUNGUI QUÍMICO 19	2,5	110	1 4	2,260	0,972	18:19	3.2	7.2	163
AÇUNGUI INDIFERENCIADO 26	2,5	130	9	2,536	1,173	22:26	23	59	149
GRANITOS 151	2,5	35	1.0	1,583	0,485	150:151	16	2.5	740
1- Dodos expressos em p p m.			OBS	ERVAÇÕE	9 9	MGx DG= Limlar.			
2-MG e DG são geométricos, supond	upondo-se	0	distribuição log-normal	g-normal.	7 - MG	x DG a MG x DG =	Anomalia	possível.	
3- Grau de detecção refere-se ao número transformadas em relação ao total de	ao número ao total de	de valores defini valores analisados	res defi analisad	definidos e lisados.	Λ\	MG x DG = Anomalia	pro	vel.	
4 - MG= Background.					I I D	tabilitation on Albania - 44	l O	Especii ogi u i io.	<u>.</u>
5-MG×DG a MG×DG ² = Alto backgro	ckground.	I							

TABELA XIII — MATRIZ DE CORRELAÇÃO X NÚMERO DE AMOSTRAS SEDIMENTO DE CORRENTE-SUBÁREA SUDELPA CHUMBO — ABSORÇÃO ATÔMICA

	ÁREA	TOTAL.	AÇUNQU	1 GERAL		H O UI STICO	AÇU QUÍ	MICO		NGUI RENCIADO	GRAI	HTO8
	N	РЬ-АА	N	Pb-AA	N	Pb-AA	N	РЬ-ДД	N	Рь-дд	N	Рь-да
Fe-S	247	•	100	0	60	•	18	•	22	0	147	•
Mn-S	245	•	95	(-)	55	•	18	(•)	22	(+)	150	•
Co-S	234	0	97	•	58	•	17	•	22	0	137	•
Cu-S	215	0	98	0	59	•	18	•	21	0	117	0
Ni - S	247	0	100	0	60	•	18	0	22	•	147	•
Pb-S	227	0	81	•	51	•	13	•	17	0	146	•
Cu-AA	231	0	101	0	61	٠	18	0	22	0	130	0
Pb-AA		•		•		•		0		•		0
Zn-AA	251	0	101	0	61	0	18	0	22	0	150	0

OBSERVAÇÕES:

N - nº de amostras que entraram no cálculo

S - espectrografia semi-quantitativa p/30 elementos

AA- espectrofotometria de absorção atômica

• - < 0,30

O - 0,30 a 0,59

O - 0,60 a 0,79

• - ≥ 0,80

() - correlação negativa

(0				·	<u> </u>		<u> </u>]			(5)
DOS ESTIMADORES	MG x DG ³	28 1	420	301	276	305	147		_:	grafia	
	Me x De ²	156	228	200	166	153	95		possível.	ível. spectrografia.	
DOS E	Mexpe	8.7	123	133	100	7.8	09		Anomalia	prove S= E	
SUDELPA-SUMÁRIO	GRAU DE DETECÇÃO	257:257	106:106	61:61	19:19	26:26	151:151	MG×DG=Limlar.	x DG a MG x DG =	MG×DG= Anomalia A=Absorção atômica;	
SUB-ÁREA SI	COEFICIENTE BO OĀQAIRAV	0,638	0,673	0,431	0,547	0,777	0,468	ES 6-M(7-MG	8 - 8 V A - 6	
NTE - S	GEOWĘTRICO DEŚNIO	1,794	1,843	1,511	1,668	1,989	1,580	OBSERVAÇÕE	դ-ոօւաց	definidos e isados.	
CORRENTE -	MÉDIA GEOMÉTRICA (MG)	6 7	.49	88	9	3.9	3.9	OBS	a distribuição log-normal	de valores definivalores analisados	
MENTO DE	яолаv Оміхам	27 0	27 0	0 22	130	130	100			de valores valores anal	
SEDIME	VALOR MINIMO	2,0	5, 0	30,0	20,0	5,0	10,0		ondo-se	ao número Io total de	ground.
	ORIMÚN 30 SARTSOMA	252	1 06	19	19	56	151	e E	cos, sup		Ito back
TABELA XIV -ZINCO-AA-	POPULAÇÕES	А́REA ТОТАL	AÇUNGUI GERAL	AÇUNGU! CLÁSTICO	AÇUNGUI QUÍMICO	AÇUNGUI INDIFERENCIADO	GRANITOS	1- Dados expressos em p	2-MG e DG são geométricos, supondo-se	3- Grau de detecção refere-se ao núm transformados em relação ao total	5-MG×DG a MG×DG ² = Alto backgroul

TABELA XVI — MATRIZ DE CORRELAÇÃO X NÚMERO DE AMOSTRAS SEDIMENTO DE CORRENTE-SUBÁREA SUDELPA ZINCO — ABSORÇÃO ATÔMICA

	ÁREA	TOTAL	AÇUNGUI GENAL		AÇUNQUI CLÁSTICO		AÇUMQU) Quimico		AÇUNGUI INDIFERENCIADO		GRAHITOS	
	N	Zn-AA	N	Zn-AA	N	Zn·AA	N	Zn-AA	N	Zn-AA	N	Zn-AA
Fo-S	253	•	105	Ð	60	0	19	0	26	•	148	0
Mn-S	251	0	100	•	55	0	19	•	26	•	151	0
Co-S	239	0	102	•	58	0	18	0	26	0	137	0
Cu - S	219	•	102	•	59	0	19	0	24	•	117	0
Ni - S	252	0	104	0	60	0	19	0	25	•	148	0
Pb-S	228	•	18	0	51	•	13	0	17	٥	147	(•)
Cu-AA	235	•	105	•	61	•	19	0	25	•	130	0
Pb-AA	251	•	101	•	61	0	ΙB	0	22	0	150	0
Zn-AA		0		8		9		•		8		•

OBSERVAÇÕES:

N - nº de amontras que entraram no cátculo

S - espectrografia semi-quantitativa p/30 elementos

AA- espectrofolometria de absorção atômica

• - < 0,30

O - 0,30 a 0,59

● - 0,60 a 0,79

9 - ≥ 0,80

()- correlação negativa

TABELA XXIX — COBRE -AA SEDIMENTO DE CORRENTE — GEOQUÍMICA REGIONAL SUMÁRIO DOS ESTIMADORES												
POPULAÇÕES	NUMERO DE AMOSTRAS	VALOR	VALOR	MEDIA GEOWETRICA (MG)	DESVID GEOMETRICO (DG)	COEFICIENTE DE Variação	GRAU OE Detecção	MG 1 DG	MG r DG ²	MG x DG ³		
ÁREA TOTAL	1288	1,5	390	18	2,250	0,965	1288.1288	41	92	2 07		
GRUPO AÇUNGUI	868	1.5	340	23	2,134	0,881	868-868	48	103	220		
GRUPO AÇUNGUI(AD-20-40)	69	4.0	170	22	2,422	1,090	69:69	53	129	312		
GRUPO ACUNGUI (AD> 40)	22	3,0	100	20	2.247	0,962	22:22	45	101	228		
AÇUNGUI SETUVA	197	3.0	150	26	1,904	0,717	197:197	49	92	176		
AÇUNGUI SETUVA (AD < 5)	8 0	3,0	95	26	1,876	0,697	80.80	50	93	174		
AÇUNGUI SETUVA (AD:5~10)	53	5, 0	110	26	1,773	0,623	53 · 53	46	81	144		
AÇUNGUI SETUVA (AD=10-20)	30	5, 0	150	24	2,116	0,868	30.30	51	109	231		
AÇUNGUI CLÁSTICO	509	3,0	340	23	2,151	0,893	509.509	49	105	225		
AÇUNGUI CLÁSTICO(AD < 5)	147	4,0	150	26	2,002	0.787	147:147	52	103	206		
ACUNGUI CLÁSTICO(AD:5-10)	129	4, 0	340	22	2,234	0,953	125-129	49	108	2 42		
ACUNGUI CL ÁSTICO (AD-10-20)	70	3,0	100	19	2,177	0.912	70:70	42	92	200		
VČNUGAT GAĻWICO	176	1,5	190	18	2,395	1,069	176: 176	43	104	2 48		
AÇUNGUI QUÍMICO (AD <5)	61	1,5	190	19	2,506	1,151	61:61	48	120	301		
ACUNGUI QUÍMICO (AD=5-10)	48	3,0	130	- 2 0	2,32/	1,020	48:48	47	110	255		
AÇUNGUI QUÍMICO (AD-10-20)	3.0	4, 0	120	16	2,434	1,098	30.30	38	93	226		
GRANITOS	3 4 5	1,5	120	11	1.976	0,768	345:345	22	43	85		
GRANITOS (AD < 5)	47	3,0	55	11	2.029	0,806	47 : 47	23	46	94		
GRANITOS (AD:5-10)	95	1,5	120	12	2,213	0.938	95:95	27	60	133		
GRANITOS (AD=10-20)	65	3,0	65	11	1, 965	0,761	65:65	2 I	41	8 1		
GRANITOS (AD > 40)	13	4,0	23	8	1.568	0,474	13: 13	12	19	30		
COMPLEXO GN-MIGMATÍTICO	2 6	7,0	390	21	1.952	0,751	26:26	41	8.0	155		
GRUPO TUBARÃO	27	3,0	80	11	2.083	0.844	27:27	23	48	99		
FORMAÇÃO FURNAS	12	1,5	27	6	2,126	0,876	12:12	13	27	58		

OBSERVAÇÕES

5 - MG = Background

6 - MG x DG a MG x DG²* Alto background

7- MG x DG²=Limiar

8- MG x DG a MG x DG = Anomalia possível.

9- ≥MG x DG = Anomalia provávet

¹⁻Dados expressos em ppm

²⁻MG e DG são geométricos supondo-se a distribuição lag-normat

^{3—}Grau de detecção refere-se ao número de valores defldos etransformados em relação ao total de valores analisados

⁴⁻ AD \cdot Área de drenagem expressa em km 2

TABELA XXXI — MATRIZ DE CORRELAÇÃO X NÚMERO DE AMOSTRAS SEDIMENTO DE CORRENTE-GEOQUÍMICA REGIONAL

COBRE - ABSORÇÃO ATÔMICA

		C	OBRE	-	/	4850	RÇÃO	Α	TOMI
		Cu-AA	Pb-AA	Zn-AA	Ag-AA	Co - AA	HI-AA	Fa-AA	Mn - AA
ÁREA TOTAL	N		1288	1288	12 88	1288	1288	1288	1288
AREA IUIAL	Cu-AA	6	0	0	•	0	•	0	0
BRUPO	N		868	868	868	868	868	868	868
AÇUNGUL	Cu-AA	0	0	•	•	•	•	Ð	O
GRUPO AÇUHGU	N		69	69	69	69	69	69	69
AD 20-40	Cu-AA	0	0	•	(•)	•	8	•	0
AÇUNGUI	N		197	197	197	197	197	197	197
AETUVA	Cu-AA	0	•	0	•	ø	Ð	0	0
AÇUHGUI	N		80	80	80	80	80	80	80
SETUVA AD MEHOR 5	Cu - AA	•	•	0	•	0	0	0	0
AÇUNGUI	N		53	53	53	53	53	53	53
AD 5-10	Cu-AA	•	•	0	•	0	•	•	0
AÇUNGUI	N		30	30	30	30	30	30	30
BETUVA AD 10-20	Cu - AA	0	(+)	0	0	•	Ø	•	0
AÇUNGUI	N		509	509	509	509	509	509	509
CLÁSTICO	Cu-AA	0	0	0	•	•	•	0	0
AÇUNGUI	N		147	147	147	147	147	147	147
CLASTICO AD MENOR 5	Cu -AA	•	0	0	•	0	6	8	0
А ÇUNGUI	N	 	129	129	129	129	129	129	129
CLASTICO AD 5-10,-	Cu-AA	•	0	0	•	0	•	•	0
AÇUNGUI	N		70	70	70	70	70	70	70
CLÁSTICO AD 10-20	Cu-AA		0	•	•	0	8	•	0
AÇUNGU	N		176	176	176	176	176	176	176
oulnico	Cu - AA	0	0	0	0	•	0		0
AÇUNGUI	N		61	61	6!	61	61	61	61
QUÍMICO AO MENOR 5	Cu - AA	0	0	0	0	Ð	•	•	0
AÇUNGU	N	<u> </u>	48	48	48	48	48	48	48
QUÍMICO AD 5-10	Cu - AA	0	0	0	0	•	6	6	0
AÇUNGUI	N		30	30	30	30	30	30	30
AD 10-20	Cu -AA	•	0	0	•	6	0	0	0
	N		345	345	345	345	345	345	345
GRANITOS	Cu - A A		0	•	•	0	0	0	0
BRANITOS	N.		47	47	47	47	47	47	47
AD MENOR 5	Cu-AA	-	0	0	•	0	•	0	0
GRANITOS	N		95	95	95	95	95	95	95
A0 5-10	Cu-AA	9	•	0	•	0	0	0	4 0
CRANITOS	N	- .	65	65	65	65	65	65	65
GRANITOS AD 10-20	Cu - AA	•	0	•	0	0	0	0	0
COMPLEXO	N	<u>-</u>	26	26	26	26	26	26	26
GHÁISSICO- MIGMATÍTICO	Cu - AA	•	(+)	0	0	0	0	0	•
GRUPO	N	<u> </u>	27	27	27	27	27	27	27
OĂRABUT	Cu-AA	•	0	0	•	0	0	0	0
FORMAÇÃO	N	-	12	12	12	12	12	12	12
FURNAS	Cu-AA	0	0	6	•	0	0	0	0
	1-2						-	L	U

OBSERVAÇÕES

- N nº de amostras que entraram no cálculo
- AA- espectrofotometria de absorção atômica
- () correlação negativa
- - < 0,30
- O- 0,30 a 0,59
- O-0,60 a 0,79
- **⊕**-≥0,80
- AD- área de drenagem expressa em km

TABELA XXXIII — CHUMBO-AA — SEDIMENTO DE CORRENTE — GEOQUÍMICA REGIONAL SUMÁRIO DOS ESTIMADORES											
POPULAÇÕES	NUMERO DE AMOSTRAS	VALOR	VALOR MÅXIMO	MEDIA GEOMETRICA (MG)	DESVIO GEOMETRICO	COEFICIENTE OF DE VARIAÇÃO	GRAU DE DE TECÇÃO	MG x DG	MG x DG	MG E DG ³	
ÁREA TOTAL	1288	1,5	1300	16	1,904	0,717	1288.1288	30	56	108	
GRUPO AÇUNGUI	868	1,5	1300	15	2,010	0,793	838.888	31	61	123	
GRUPO ACUNGUI(AD-20-40)	69	3.0	50	14	1,701	α, 57 ι	69.69	24	40	69	
GRUPO ACUNGUI (AD> 40)	22	5,0	50	16	1,800	0,642	22:22	29	52	94	
AÇUNGUI SETUVA	197	4,0	380	12	1.773	0,623	197:197	19	32	53	
AÇUNGUI SETUVA (AD < 5)	8 0	4,0	40	1.1	1,620	0,512	80.80	18	29	46	
AÇUNGUI SETUVA (AD:5-10)	53	5, 0	40	12	1,576	0,480	53:53	20	31	49	
AÇUNGUI SETUVA (AD: 10-20)	30	4,0	50	13	1,885	0,703	30:30	24	46	87	
AÇUNGUI CLÁSTICO	509	3.0	1300	16	1,860	0,686	509: 509	30	55	103	
AÇUNGUI CLÁSTICO (AD < 5)	147	3,0	170	16	1,764	u, 617	147.147	28	50	89	
ACUNGUI CLÁSTICO(AD=5-10)	129	4.0	510	15	1,861	0.686	129. 129	29	53	99	
ACUNGUI CL ÁSTICO (AD-10-20)	70	5, 0	100	15	1,608	0,503	70:70	24	39	62	
AÇUNGUI QUÍMICO	176	1,5	1300	19	2,561	1,192	176 176	49	125	319	
AÇUNGUI QUÍMICO (AD <5)	61	4,0	1300	2 D	2,654	1,262	61:61	53	144	382	
ACUNGUI QUÍMICO (AD=5-10)	48	1.5	1300	19	2.751	1,336	48.48	53	145	3 9 9	
ACUNGUL QUÍMICO (AO-10-20)	3 0	1,5	160	16	2, 235	u, 954	30.30	35	79	176	
GRANITOS	3 45	4,0	100	17	1,636	2, 524	345-345	27	45	73	
GRANITOS (AD < 5)	47	4,0	40	16	1,618	0,510	47:47	25	41	67	
GRANITOS (AD:5-10)	95 .	4,0	65	17	1,758	1,612	95:95	29	51	90	
GRANITOS(AD= 10-20)	65	7,0	100	18	.620	1,512	65.65	29	48	77	
GRANITOS (AD > 40)	13	8.0	20	14	1,393	1,341	13 13	19	27	38	
COMPLEXO GN-MIGMATÍTICO	26	7.0	35	14	.556	1,465	26 26	21	33	52	
GRUPO TUBARÃO	27	6,0	60	13	1,716	J. 582	27:27	22	38	66	
FORMAÇÃO FURHAS	12	4,0	22	10	1,632	1,520	12 12	16	27	43	

OBSERVAÇÕES

5 - MG = Bockground

6 - MG x DG a MG x DG²= Alto background

7 - MG x DG = Limiar

8 - MG x DG a MG x DG = Anomalia · possível

9- ≥ MG x DG = Anomolio provovel

¹⁻Dodos expressos em ppm

²⁻MG e DG são geometricos supondo-se a distribuição log-norma!

^{3—}Grau de detecção refere-se ao número de valores defidos etransformados em relação ao total de valores analisados

⁴⁻AD=Área de drenagem expressa em km²

TABELAXXXV— MATRIZ DE CORRELAÇÃO X NÚMERO DE AMOSTRAS SEDIMENTO DE CORRENTE-GEOQUÍMICA REGIONAL

СНИМВО ——	ABSORÇÃO	ATÔMICA
CHUMBO	VOSOUPHO	AIUMICA

							<u> </u>		
		Cu-AA	Pb-AA	Zn - AA	Ag·AA	Co - AA	NI * A.A	Fe-AA	Ma - A
ÁREA TOTAL	N	1288		1288	1288	1288	1288	1288	1288
	Рь - АА	0	•	0	0	0	•	0	0
GRUPO	N	868		868	868	868	868	868	868
AÇUHGUI	Pb - AA	0	0	0	0	0	0	0	0
GRUPO AÇUNGUI	N	69	<u></u> .	69	69	69	69	69	69
AD 20-40	Рь - АА	0	•	•	•	•	0	0	•
AÇUNGUI	N N	197		197	197	197	197	197	197
8ETUVA	РЬ - АА	•	•	0	0	0	•	•	•
AÇUNGUI	N	80		80	80	80	80	80	80
SETUVA AD MENOR 5	Pb - AA	•	•	0	0	0	•	0	•
AÇUNGUI	N	53		53	53	53	53	53	53
SETUVA AD 5-10	Pb - AA	•	0	0	•	0	•	0	•
AÇUHGUI	N	30		30	30	30	30	30	30
AD 10-20	РЬ - АА	(+)	•	•	٠	•	(+)	(-)	•
AÇUNGUI	И	509		509	509	509	509	509	509
CLÁSTICO	Pb -AA	0	0	0	0	0	0	0	0
AÇUNGUI	N	147		147	147	147	147	147	147
CLÁSTICO AD HENOR S	Pb - AA	0	0	0	0	0	0	0	•
AÇUNGUI	N	129		129	129	129	129	129	129
CLASTICO AD 5-10	Pb - AA	0		0	0	0	0	0	0
AÇUNGUI	N	70		70	70	70	70	70	70
CLÁSTICO AD 10~20	РЬ - АА	0	0	0	0	0	0	0	
AÇUNGUI	N	176		176	176	176	176	176	176
DOINTED	Pb - AA	0	•	0	0	0	0	0	0
AÇUNGUI	N	61	<u> </u>	61	61	61	61	61	61
QUÍMICO AD MENOR 5	РЬ - АА	0		0	0	0	0	0	0
AÇÜNGUL	N	48		48	48	48	48	48	48
QUÍMICO AD 5 10	Pb - AA	0	•	O.	0	0	•	0	
AÇUNGUI	N	0.6		30	30	30	30	30	30
QUÍMICO AD 10-20	Pb - AA	0	•	0	•	0	0	•	0
	N	345		345	345	345	345	345	345
GRANITOS	Рь - АА	0	6	0	•	0	•	•	0
COTINARD	И	47		47	47	47	47	47	47
AD MENOR 5	Pb - AA	o	•	0	0	0	•	0	0
GRANITOS	N	95	<u> </u>	95	95	95	95	95	95
AD 5-10	Pb - AA	•	•	•	•	0		•	•
09419705	N	65		65	65	65	65	65	65
GRANITOS AD 10-20	Pb - AA	0	8	0	0	0	0	0	•
COMPLEXO	N	26		26	26	26	26	26	26
GHAISSICO- MIGMATÍTICO	Pb - AA	(0)	8	•	0	-	•	•	0
GRUPO	N	27	-	27	27	27	27	27	27
TUBARÃO	Pb - AA	0	•	0	4	0	0	0	0
COBULCIO	N	12	- <u>-</u> -	IS	12	12	12	12	12
FORMAÇÃO FURHAS	Pb - AA	0	0	0	0	0	0	6	12
	I'U AA	∟			•)	-	_	

OBSERVAÇÕE\$

- N nº de amostras que entraram no cálculo
- AA- espectrofotometria de absorção atômica
- () correlação negativo
- - < 0,30
- O- 0,30 a 0,59
- **0** 0,60 a 0,79
- •-≥0,80
- AD- área de drenagem expressa em km²

(11)

	 									(11
TABELA XXXVII — ZII	VCO - AA	5	EDIME	NTO D	SUMÁR	IO DOS	ESTIMAD	UÍMICA ORES	REGI	ONAL
POPULAÇÕES	NUMERO .DE AMOSTRAS	VALOR MÍNING .	VALOR MÁXIMO	MEDIA GEOMÉTRICA (MG)	DESVIO GEOMETRICO (DG)	COEFICIENTE DE Variação	GRAU DE DETECÇÃO	MG & DG	MG x DG	MG x DG ³
ÁREA TOTAL	1288	3,0	710	47	1,847	0,676	1288: 1288	88	162	2 9 9
GRUPO AÇUNGUI	868	4,0	710	52	1,865	0,689	868:868	98	182	340
GRUPO AÇUNGUI(AD:20-40)	69	7,0	140	46	1,986	0.775	69.69	92	183	364
GRUPO ACUNGUI (AD> 40)	22	5,0	120	50	2,078	0.841	22:22	104	217	451
AÇUNGU! SETUVA	1 97	9,0	700	58	1,693	0,565	197 - 197	94	154	2 53
AÇUNGUI SETUVA (AD < 5)	80	12,0	180	55	1,743	0,601	80:80	96	167	290
AÇUNGUI SETUVA (AD=5-10)	53	9, 0	110	61	1.576	0.480	53:53	97	153	241
AÇUNGUI SETUVA (AD=10-20)	30	25,0	120	57	1.570	0,475	30:30	90	141	221
AÇUNGUI CLÁSTICO	509	5,0	390	52	1,669	0.692	\$09,509	98	182	341
AÇUNGUI CLÁSTICO(AD < 5)	147	13,0	170	58	1,729	0,592	147:147	101	175	3 02
ACUNGUI CLÁSTICO(AD:5-10)	129	12,0	170	50	1,879	0,699	129: 129	94	177	333
ACUNGUI CLÁSTICO (AD-10-20)	70	6,0	150	49	1,910	0,721	70:70	93	178	340
AÇUNGUI QUÍMICO	176	4,0	710	46	2,115	0,863	176:176	96	2 0 4	43 0
AÇUNGUI QUÍMICO (AD <5)	61	4, 0	150	43	2,061	0,829	61:61	89	183	377
ACUNGUI QUÍMICO (AD:5-10)	48	9,0	710	52	2,363	1,046	48:48	124	292	689
AÇUNGUI OUÍMICO(AD:10-20)	3 D	13,0	120	44	1.852	0.680	30.30	82	1 52	282
GRANITOS	345	10,0	120	40	1,521	0,439	345:345	61	92	140
GRANITOS (AD < 5)	47 .	11,0	120	39	1,622	0,513	47 : 47	64	103	167
GRANITOS (AD=5-10)	95	13,0	110	41	1,505	0,426	95: 95	61	92	138
GRANITOS(AD=10-20)	65	12,0	90	39	1,597	0,495	65: 65	62	99	158
GRANITOS (AD > 40)	13	11,0	50	29	1.440	0.377	13:13	42	60	87
COMPLEXO GN-MIGMATÍTICO	26	40.0	240	69	1,526	0,442	26:26	105	160	244
GRUPO TUBARÃO	27	6,0	50	19	1.747	0,604	27:27	33	58	101
FORMAÇÃO FURNAS	15	3,0	90	14	2.577	1,205	12:12	36	93	239

OBSERVAÇÕES

5 - MG = Background

 $6 \leftarrow \text{MG x DG a MG x DG}^2*$ Alto background

7- MG x DG * Limiar.

8- MG x DG a MG x DG Anomatia possívet.

9- ≥MG x DG = Anomalia provávet.

¹⁻Dados expressos em ppm

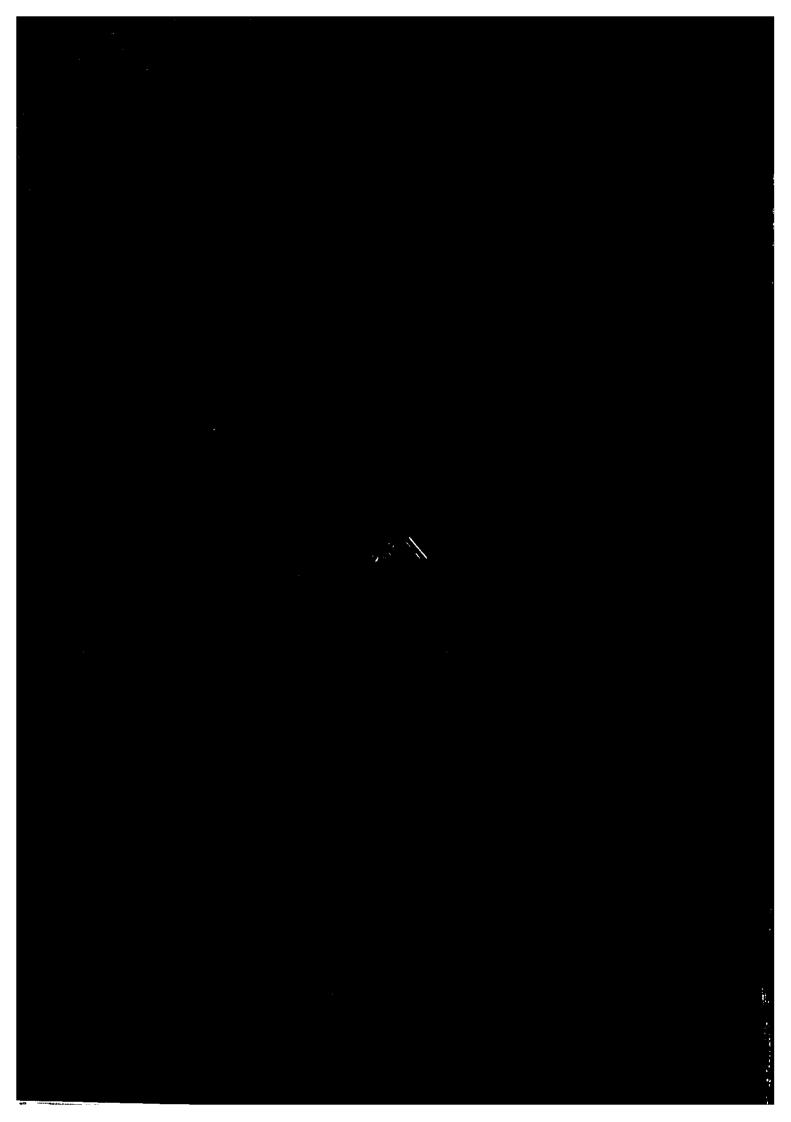
²⁻MG e DG são geometricos supondo-se a distribuição tog-normal

³⁻Grou de detecção refere-se ao número de volores defldos etransformadas em relação ao total de valores analisados

⁴⁻AD=Área de drenagem expressa em km²

TABELAXXXIX- MATRIZ DE CORRELAÇÃO X NÚMERO DE AMOSTRAS SEDIMENTO DE CORRENTE-GEOQUÍMICA REGIONAL

ZINCO - ABSORÇÃO ATÔMICA


		Z	ИСО	_	A	BSO	RÇÃO	A 1	LOWI
		CH-AA	Pa-AA	Zn *AA	Ag-AA	Co - AA	AA" IN	Fa AA	Mn - A
ÁMEA TOTAL	N	1288	1288		1288	1286	1288	1288	1288
AREA IUIAL	Zn -AA	0	0	•	•	0	0	0	0
GRUPO	N	868	868		868	868	868	868	868
AÇUHQUI	Zn -AA	•	0	0	•	(0	0	0	0
GRUPO AÇUNGUL	N	69	69		69	69	69	69	69
AD 20-40	Zn-AA	9	0		(•)	0	6	9	0
AÇUNGUI	N	197	197		197	197	197	197	197
SETUVA	Zn-AA	0	0	•	•	•	0	0	0
АСПИВИ	N	80	80		80	80	80	80	80
AVUTBE AD MENOR 5	Zn-AA	0	0		•	0	0	0	0
AÇUNGUI	N	53	53		53	53	53	53	53
SETUVA AD 5-10	Zn - AA	0	0	0	•	6 0	0	0	0
ACUNGUI	N	30	30		30	30	30	30	30
GÉTUVA AD 10°20	Zn - AA	0	•	0	0	0	0	0	0
	N	509	509	- <u>-</u> -	509	509	509	509	509
A ÇUNGUI CLÁSTICO	Zn - A.	0	0	0	•	0	9	0	0
AÇUHGUI	N	147	147	<u> </u>	147	147	147	147	147
CLÁSTICO AD MENOR S	Zn - AA	0	0	0	•	0	•	0	0
ACUNGU!	N N	129	129	<u> </u>	129	129	129	129	129
CLÁSTICO	Zn - AA	0	0	0	•	6 0	6	0	0
AD 5-10 ACUNQUI	N	70	70		70	70	70	70	70
CLASTICO	Zn-AA	0	0	0	•	0	8		0
AD 10-20 AÇUNGUI	N N	176	176		176	176	176	176	176
GRINICO	Zn - AA	0	Ð	•	0	•	60	6	1
AÇUNGUI	N	61	61		61	61	61	61	61
QUÍMICO AD MENOR 5	Zn - AA	0	0	0	ō	0	•	•	0
AÇÜHGU!	N	48	48		48	48	48	48	48
QUÍMICO	Zn - AA	6	a D	•	0	0	0	0	0
AD 5-10 AÇUNGUI	N	30	30		30	30	30	30	30
QÚ(MICO AD 10-20	Zn - AA	0	0	0	•	O	0	6	O
XD10 20	N N	345	345		345	345	345	345	345
GRANITOS	Zn - AA	0	0	0	•	0	0	0	0
GRANITOS	N	47	47	_	47	47	47	47	47
AD MENOR 3	Zn - AA	-	0	•	7,	0	•	0	0
	N N	95	95		95	95	95		
GRANITOS AD 5-10	Zn - AA	93	90	•	•	90	95	95 O	95 O
	ZR - AA	65			65	65			
GRANITOS AD 10-20	Zn - AA		65 O	0	93	6 0	65 O	65	65 O
COMPLEXO		26			-			0	
GNAISSICO-	7 2 4 4	26	26		26	26	26	26	26
MIGHATÍTICO	Zn-AA	27	<u> </u>	•	27	0	0	0	0
GRUPD Tubarão	N	27	27	<u> </u>	27	27	27	27	27
	Zn - AA	<u>•</u>	0	•	•	0	•	0	0
FORMAÇÃO	N	12	12	l	12	12	12	[2]	12
FURHAS	Zn - AA		0	•	0		0	0	0

OBSERVAÇÕES

- N nº de amostras que entraram no cálculo
- AA- espectrofolometrio de absorção atômica
- () correlação negativa
- - < 0,30
- O- 0,30 a 0,59
- O-0,60 a 0,79
- **0**-≥0,80
- AD-dred de drenagem expresso em km

	•		

