ブラジル連邦共和国

スアッペ臨海工業開発計画

資料No. 6

. 1025011[6]

.

BOOK IV - PART 1

.

.

VOLUME 1

.

• ...

	•								
国際協力事業団									
受入 月日 84.3.15	703								
Jo A7.	60								
登録No. 00257	SD								

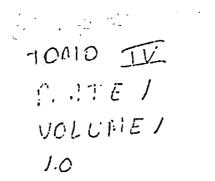

.

TABLE OF CONTENTS

TABLE OF CONTENTS .

BOOK	IV .	PAGE
PART	1 - PORT SYSTEM	
i.0	DIMENSIONING CHANNELS, BASINS AND THE FORE HARBOUR	IV-1/1.1
2.0	OPENING THE PORT ENTRANCE	IV-1/2.1
3.0	PORT PROTECTION WORKS	IV-1/3.1
4.0	DREDGING PLAN	IV-1/4.1
٠	APPENDIX 4-1.A.	. IV-1/4.1
5.0 ′	STUDIES CONDUCTED FOR DIMENSIONING THE PORT COMPLEX	IV-1/5.1
6.0	PHYSICAL PLAN OF THE PORT COMPLEX	IV-1/6.1
7.0	PHYSICAL PLAN OF THE PORT COMPLEX DOCKS	IV-1/7.1
8.0	SUGGESTIONS FOR FISHING FACILITIES AND HANDLING SPECIAL VESSELS	IV-1/8.1
9.0	NAVIGATION SUPPORT	IV-1/9.1
10.0	OVERALL BUDGET	IV-1/10.

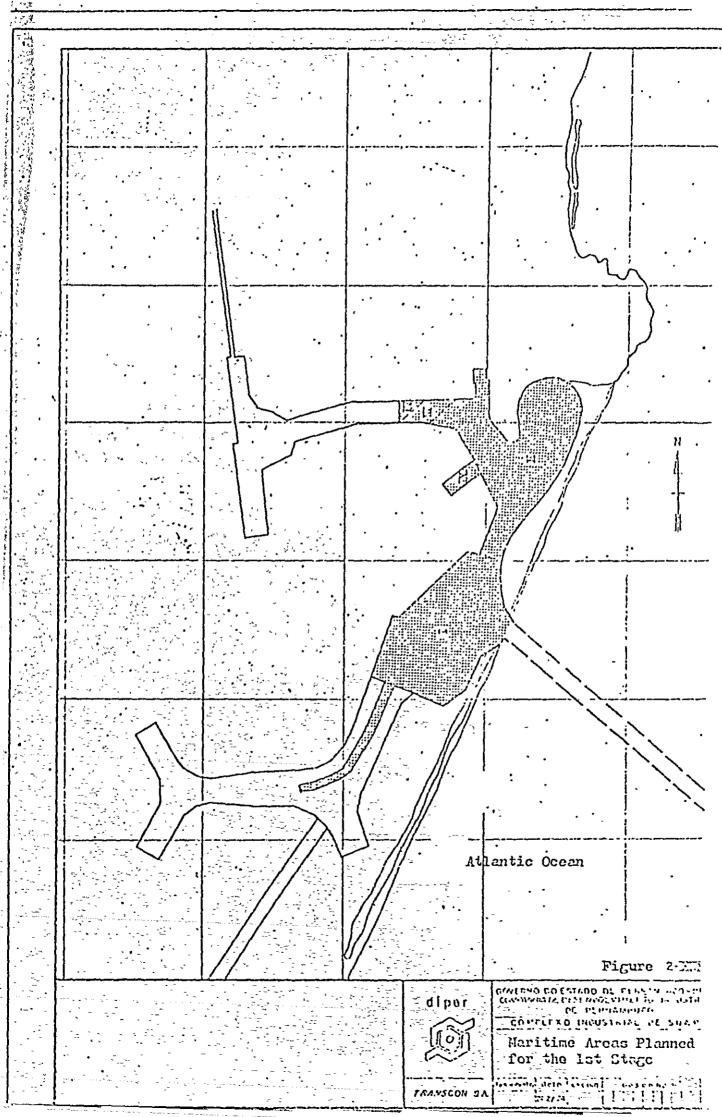
1.0 DIMENSIONING CHANNELS,

BASINS AND THE FORE HARBOR

.*

PART 1 - PORT SYSTEM

DIMENSIONING CHANNELS; BASINS AND THE FORE HARBOR 1.0


1.1 INTRODUCTION

Dimensioning of the channels, basins and the fore harbor followed the criteria defined in Chapter VI of Book II, "Bases for Dimensioning Channels and Basins".

Initially, the large possible vessels to operate in the port areas projected for the 1st stage and their growth over time were studied. Next, the stage was divided into phases and dimensions were established for each phase.

and the second and a set The sketch in Figure 2-XXXIV shows the projected internal port areas on which channel, basins and fore harbor dimensions were based.

\$

1.2 MODEL TYPE OF VESSEL FOR EACH AREA

The model type of vessel conceptualized for each area is a synthesis of the characteristics of the largest Vessels expected to operate in the area. The dimensions will therefore be sufficiently large to cover all vessels.

AREA I

This area includes the petroleum and cement terminals.

For the petroleum terminal it was assumed, based on the 8,000,000 ton level forecast for 1980, that in that year 135,000 tow vessels will be handled.

Since vessels destined to carry petroleum could be of the combined type and consequently could return with cement, it was established that area I should handle 135,000 tdw vessels throughout the entire 1st stage.

Basic dimensions of 135,000 tdw vessels

Tankers - L = 277 m B = 45 m D = 16.50 m Ore carriers - L = 285 m B = 41 m D = 16.20 m Model type of vessel for area I L = 285 m B = 45 m D = 16.50 m

L = Length, B = Beam, D = Draft

IV-1/1.5

791...

AREA II.

1

The largest vessels to call at this area will carry phosphate rock.

An examination of the projected flows of phosphate rock and the possible transport vessels indicated the following rotations:

VESSEL (TDW) Year	30,000	60,000	125,000
1984	. 8	4	2
1985	17	8	4
1986 .	25	12	6
1987 to 2005	33	16	8

Based on this table and the fact that the cargo flow increases rapidly through 1986 and stabilizes after 1987, it was decided that this material will be shipped by 60,000 tdw vessels through 1986 and by 125,000 tdw vessels from 1987 on.

Basic Dimensions

60,000 tdw ore carriers L = 218 m B = 31 mD = 12.20 m125,000 tdw ore carriers L = 278 mB = 40 mD = 15.30 mis productions and a sector

Model type of vessel for area II

through 1986

 $m_{\rm B} L = 218 \text{ m}$ B = 31 m D = 12.20 m

from 1987 .on ---

L = 278 m B = 40 m D = 15.30 m

IV-1/1.6

The largest vessels to call at this area will import wheat. The ships coming from the United States of America will be in the 25,000 to 30,000 tdw range, and those coming from Canada will be in the 30,000 to 60,000 tdw range. A comparison of the additional dredging costs needed to handle the 60,000 tdw vessels from Canada, or even from Rio Grande do Sul, versus the benefits of handling these large vessels, indicated that this area should be dimensioned to handle the vessels throughout the entire first stage.

Basic Dimensions

AREA TII

60,000 tdw bulk carriers - L = 218 m B = 31 m D = 12.20 m

Model type of vessel for area III

L = 218 m B = 31 m C = 12.20 m

AREA VIV

The terminal planned for wheat exports by coastal navigation to ports in Northeastern Brazil was located in this area. Based on the Brazilian ports' draft limitations, on the order of 10 m, 25,000 tdw vessels were adopted for this shipping throughout the entire first stage.

Basic Dimensions

25,000 tdw bulk carriers - L = 165 m B = 22 m D = 9.0 m

Model type of vessel for area IV L = 165 m B = 22 m D = 9.0 m

IV-1/1.7

This area will handle small bulk carriers with small cargos for the fertilizer plant and for inputs to the aluminum plant. Based on trends in the composition of the Brazilian merchant marine fleet, 25,000 tdw bulk carriers were assumed. Basic Dimensions 25,000 tdw bulk carriers L = 165 m B = 22 m D = 9.0 mModel type of vessel for area IX L = 165 m B = 22 m D = 9.0 m 1.3 DEFINITION OF PHASES

In keeping with the model types of vessels proposed for each area, the following two phases were established for the first stage.

1.3.1 PHASE I

Start: 1980

The approach channel and areas I, II, III, IV and IX should be dredged so that they can handle, starting in 1980, the following vessels:

······································	Di	mensions	: (m)
AREA	L	В	D
Approach Channel	285	45	16.50
	285	45	16.50
	- 218	31	12.20
iII [*]	218	31	12.20
VI V	165	22	9.0
IX	165	22	9.0

1.3.2 PHASE II

Start: 1987

In this phase area II should be dredged to handle 125,000 tdw vessels. The approach channel and all the other areas will remain unchanged.

	Dimensions (m)					
AREA	L B	D				
II	278 40	15.30				

IV-1/1.9

1.4 DEFINITION OF DEPTHS

The depths were based on criteria established in Chapter 6.0 of Book I and on the model types of vessels assumed in this chapter. Table 1/1 shows the depths calculated for each area and phase and the various parameters contributing to the depth calculations. TABLE IN DEFINITION OF DEPTHS

	~ \a • • •	from O m	mon m. m.	off from to]3 50°m .	from 16.50 n	50 m	from 10.20 m			:	· .	· · .
й н		rounded off from 19.85 m to 20 m.	.rounded off from 17.90 m to 18 m.	rounded off f 13.30 m to 13		rounded off from 13.30 m to 13.50	rounded off f	1				
[8 =1+5+7)] Calculated	(E)		. 18,00	13 \$50	76,50	13,50	. 10,0	10,0	-			
To	Ē	0 .70 .	0 ° 60	. 0,30	. 0°30	0*30	· 0,20	.0.20	•			
.('5 =2+3+4) Gross Pilot	· (E)	2,65	0.80	. 0 <mark>"</mark> 80	. 0.80	0.80	. 1,00	0,80		•		
, t	(E)	0.50	0,50	0,50	0, 50	0,50	° 0,20	0 \$ 50	•	•		-
Effect of	(E)	0.85	1		• 1. • •	1		1			-	•
(2) Squat		1.30	. 0,30	, 0 . 30	0,30	0,30	0,30	- 0*30	•		••	
1. Sec. 1 . Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec		16.50			15,30 t	12,20	9°0	0'6				-
Phese			T South State			L'É C'LL	T'e II	L C II	-			
		Approach Channel				1/1.1		XI	-			

(*) Jepths refer to zero hvdrographic scale.

,

.

•

_____ ______ 1.5 DEFINITION OF WIDTHS

.

The following table is based on the criteria established in Chapter 6.0 of Book I for one way traffic.

·	Width - w (m)
Approach Channel	W = 5 B
Internal Channels	
Docking on both sides	W = 5.8 B + 50 m
Docking on one side	W = 5.3 B + 25 m
No docking	W = 4.8 B
	·····

NOTE: B = Beam of vessel

IV-1/1.12

Table 1/2 shows the widths calculated for each area and phase. However, for sections where docking on both sides is forecast, the widths will conform to the Maximum Utilization Plan's layout. This is due to the need for heeding the docking structure arrangement.

.•

(1) docking on both sides W = 5.8B + .50(2) docking on one side W = 5.3B + .25ł W = 4,83 W = 58 •• . - DEFINITION OF WIDTHS FOR THE IST STAGE ·(*) · approach channel : (3) no docking • •

•

TYBLES 1/2

· · · · · · · · · · · · · · · · · · ·	میں ہے۔ اور یہ میں اور اور میں میں میں میں میں میں میں میں میں میں	مىنىنىت	· · ·									
VIDTH, (E)		229,80	. 189,30	148,80	282,0	237,0	192,0	229,80	189,30	. 177,60	141,60	177,60
REAN (R)	50	TE		31	, 40 , 40	40	40.	31	31	22	22	22
TYPE		(L).	. (2).	(E)	Э	(2)	(3)	(1)	(2)	(1)	(2)	(1)
HASAHQ.	ICCIT		н, [*]	· · · · ·		. Н		+ - + - - -	\$	I e II		1 1 1 1 1 1
AREAND	Approach			H			•			IV	•	

IV-1/1:14

. .• • 8

1.6 CURVE RADII

1.6.1 CURVE RADIUS FOR THE PORT APPROACH CHANNEL

In compliance with the study described in Chapter 6.0 of Book II, the International Commission on Tankers (Commissão Internacional de Petroleiros) recommendation of radii equal to 5 L was adopted. Given the layout characteristics, a 1,200 m radius was chosen, which will allow direct access for vessels up to 80,000 tdw.

1.6.2 CURVE RADII FOR THE INTERNAL CHANNELS

- ÷

In Chapter 6.0, curve radii of 29 L were adopted for the internal channels.

Since area II should accomodate vessels up to 125,000 tdw in the first stage, a minimum radius of 806 m $(2.9 \times 278 \text{ m})$ was adopted for this area. For the curve of the Massangana River, accessing area III, the minimum radius, calculated for 80,000 tdw vessels, is 696 m $(2.9 \times 240 \text{ m})$. 1.7 OVERWIDTHS

The formula adopted for calculation of overwidths is:

$$\Delta B = \frac{3\alpha}{R} \qquad \frac{V^2}{C} \qquad \frac{L^2}{S}$$

Where

- - - - "

For dimensioning overwidth in the curve at the port approach, the following values were used:

d_1 = 72^o 30' (central angle of the approach curve for the northern internal channel) d₂ = 110^o (central angle of the approach curve for the southern internal channel) R = 1,200 m = 3,937 feet V = 10 knots (considering the worst approach conditions) C = 2 (considered good maneuverability) (1=mediocre, 2=good, 3=very good) L = 240 m = 787 feet (length of an 80,000 tdw vessel) S = 1 mile = 6,111 feet

Substituting these values in the formula, the following overwidth calculations result:

 $\Delta_1 B = 85 \text{ m}$ (overwidth for direct approach to the northern internal channel)

 $\Delta_2^{B} \approx 155 \text{ m}$ (overwidth for direct approach to the southern internal channel)

IV-1/1.16

MANEUVERING AREAS

1.8.1 AREA I MANEUVERING AREA

Two factors must be considered in dimensioning this area: stopping distance and maneuverability.

The study conducted in Chapter 6.0 of Book II concluded that for 210,000 tdw vessels at 4 knots, a stopping distance of 2 L would be necessary for full load reverse without the assistance of tugboats. The diameter of the maneuvering circle for 135,000 tdw vessels is 655 m (2.3 L).

Based on these data, the layout was designed so that a circle with a 700 m diameter can be inscribed in the area in front of the mouth. It should be noted that this diameter is equivalent to 2.46 L (L= length of the 135,000 tdw vessels), and therefore is a largerdiameter than that defined in the referenced study.

1.8.2 AREA II MANEUVERING AREA

This area will serve for ships calling at areas II, III. and IV. Studies described in Chapter 6.0 of Book II indicated a maneuvering circle of 639 m for 125,000 tdw vessels. The layout of area II during the first phase was therefore designed so that a circle with a 650 m diameter can be inscribed.

1.9 FORE HARBOR

The fore barbor was dimensioned to handle four 125,000 tdw bulk carriers at the same time. This dimensioning was based on the assumption that the ships will be tied up to two buoys; one at the prow and the other at the stern.

The fore harbor was located in area II, which meets required surface area, shelter, depth, ease of approach and nature of bottom conditions.

TOMORIUME / PFIRTE /. VOLUME / D.D

2.0 OPENING THE PORT ENTRANCE

•

2.0 OPENING THE PORT ENTRANCE

2.1 ANALYSIS OF AVAILABLE DRILLINGS

The area under study is located in the area of drill holes F-11, F-28, F-49, F-51 and F-55.

Both knowledge of drill hole F-55's profile (over the reef) and the establishment of a drilling network forming a grid with mesh sized 100 m x 100 m, in the Barreta region chosen for opening an "entrance mouth" to the port, are of summary importance for finer detailing.

Drill hole 51, represented schematically in sketch no. 2/I, along with profiles of geophysical sections on both the internal and external sides of the reef, permits the assumption that a "clay cradle" exists under the reef, as shown in the brief schematics numbers 2/II, 2/III and 2/IV. BARRETAREGION

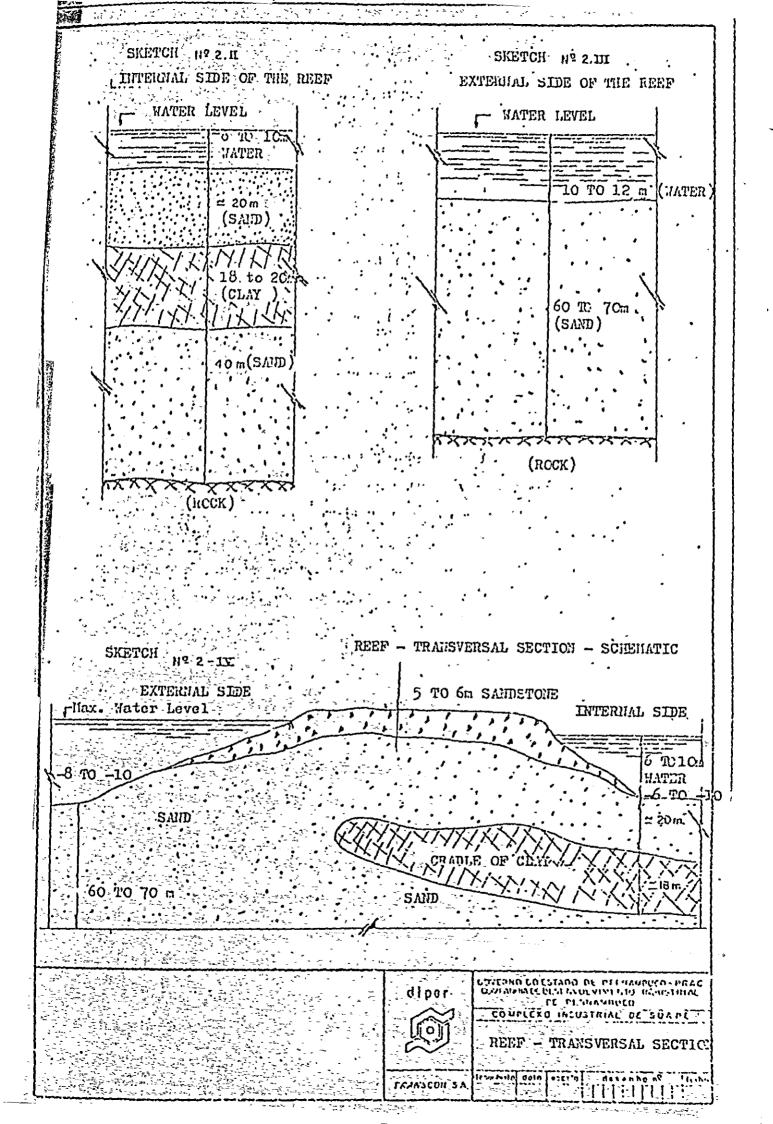
SP-51 SCHEMATIC

-

DEPTH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MATERIAL
	e and a second sec	t +
<u>.</u>	Fine and med: to mediumly o	lum sand, not very compact compact
5 , ,	- same, comp consistency	act turf with sand, soft
₩. T .	× • •	· ,
10		coarse sand, not very silty, spongy
15		fine sand, not very silty; ompact to compact
20	- very soft	silty clay
	an an Treas an Anna an Anna an Anna an	
25	- fine silty	sand, spongy to mediumly
.30	- same, medi very compa	um to coarse, silty,
		š

.

,


-

~1

.

SKETCH No. 2/1

IV-1/2.2

GEOTECHNICAL PARAMETERS CONSIDERED AND HYPOTHESES FORMULATED For preliminary design of the entrance mouth, the land was assumed to have the following characteristics, based on the drilling performed: - Top layer of sandstone (4 to 6 m) (φ = 33° δ = 1.9 $\chi = 0.9$ - Layer of compact sand (\tilde{z} 20 m) (y = 1 $\psi = 28^{\circ}$) $(\chi' = 0.7)$ - Layer of silty clay (- 20 m) $\Psi = 0$ C = 5) According to these asusmptions it was possible to postulate stability of the mouth's embankments as per the configuration shown in sketch no. 2/V. Results of geotechnical and maritime studies made in the field, as well as those of wind and current measurements, solids transport, etc., could modify the mouth protection preliminary design. Since, however, a simple protective covering of a naturally stable embankment was believed to be the most reasonable solution, embankment protection by means of a sea wall was chosen. Besing being of high quality for absorbing the shock of waves, a sea wall is not too difficult to replace if the existence of a substratum of medium to soft clay were confirmed in the future. Obviously, the existence of a thick layer of soft clay would alter the concepts described so far. It is not believed, however, that the cradle of clay runs through the entire transversal section of the reef, because the geophysical profiles of the area indicate sand; it is believed that during dredging of the channel and the turning basin-the clay would be shifted due to the weight of the upper layers. In this case, there would occur a depression of the embankment, which could be replaced by building the _sea wall back up. IV-1/2.5

2.3 ANALYSIS OF THE ENTRANCE MOUTH'S STABILITY

2.3.1 INTRODUCTION

As has been stated, studies were made of the possibility of stabilizing the embankments of the entrance channel's mouth by simply protecting them in a manner that impedes not only massive dislocation but also escape, due to dredging of the channel, of sand lying under the standstone outcropping on the reef.

With these conditions and the adopted parameters, it was possible to arrive at the first approximation embankment shown in sketch no 2/VI.

2.3.2 PRELIMINARY ANALYSIS OF THE STABILITY OF THE

PORT ENTRANCE MOUTH'S EMBANKMENT

A preliminary check revealed the possibility of stabilizing the embankment with the passage of a critical circle at half the height of the clay layer, as shown in sketch no. 2/V.

(1) March and State and Sta State and State

After the nature of the clay substratum is known, a detailed study of the problem should be made, at which time establishment of the embankment's critical circle and of the protective sea wall's stability will be possible.

2.3.3 SUGGESTED SOLUTIONS

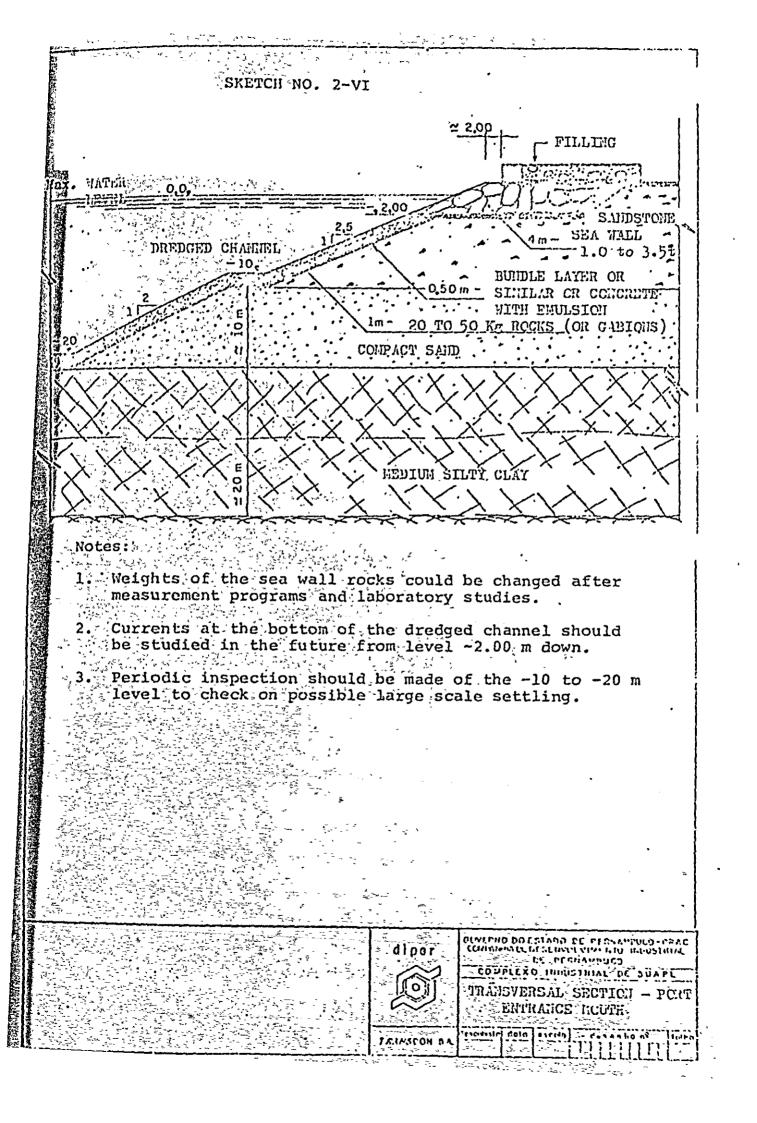
It was decided that only the simplest, most natural

- -

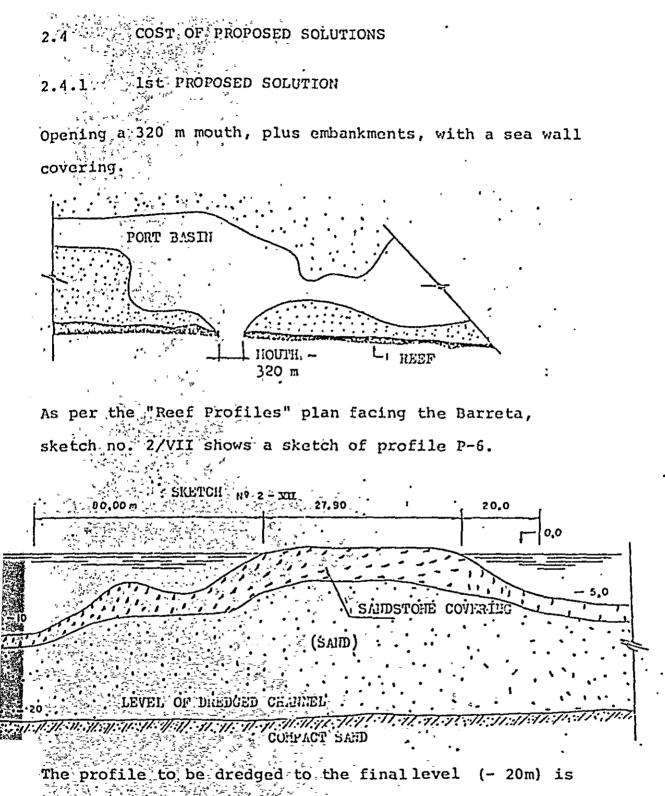
solutions possible, based on the hypotheses, be considered.

IV-1/2.9

Therefore, opening the channel with embankments protected

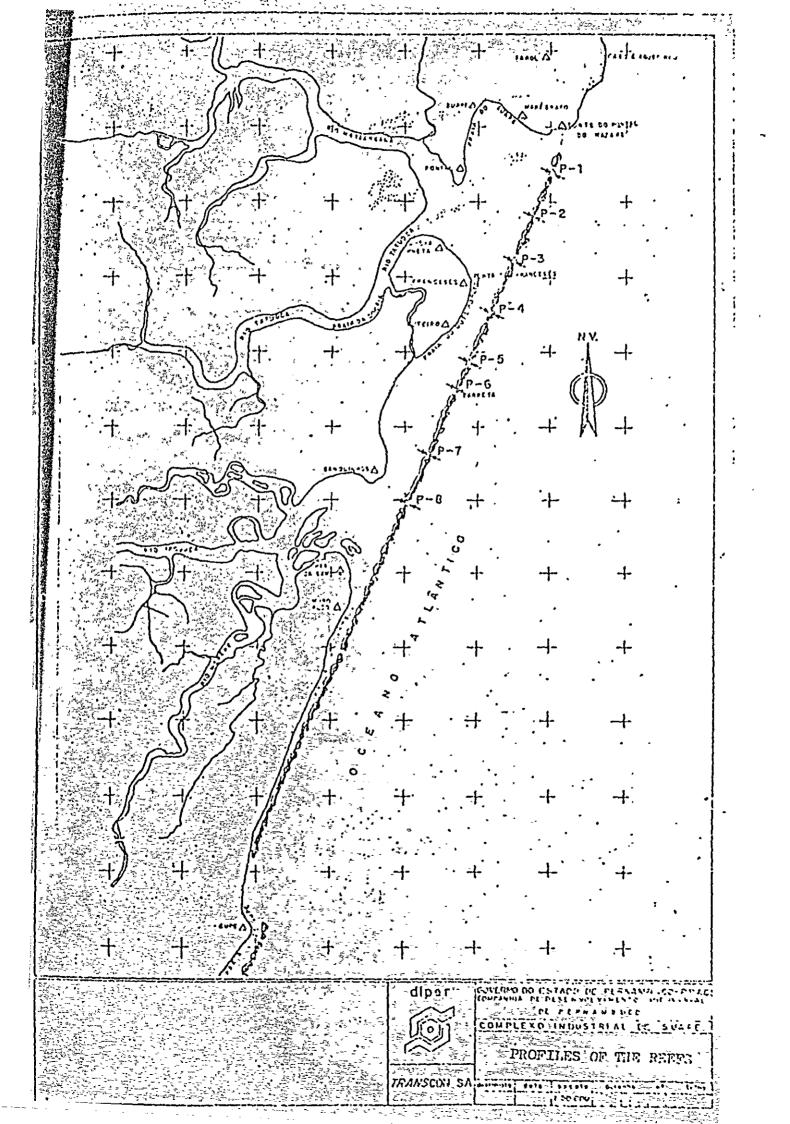

by a sea wall or another similar solution would be the best solution, based on its excellent shock absorbing possibilities and on its low cost when compared with other alternatives.

A comparative cost study of the alternatives was conducted to arrive at a preliminary aid to future laboratory studies of the stability of the port's entrance mouth and entrance channel.


.

.

,




•

approximated by the figure below which represents a

transversal cut in the reef at the Barreta.

-1/2.17_

2.5 BUDGET ESTIMATE

Approximate cost of entrance opening (mouth):

**

a - dredging Cr\$ 11,020,000.00 b - protection of margins Cr\$ 6,000,000.00

<u>Total</u> Cr\$ 17,020,000.00

.

. .

3.0 - PORT PROTECTION WORKS

TOMO IV PrintE / VOLUNIE / 3.0

ی در میں میں دی میں میں بر ا 3.0, 5 -PORT PROTECTION WORKS

3.1 DESCRIPTION OF THE WORKS

· · ·

. To assure complete protection of the Suape port area, to prevent the free rolling of waves through the port entrance or through the reef barrier opening, and to avoid the waves' breaking over the reef barriers, the following constructions were planned:

Construction of two converging breakwaters, a) situated on both sides of the port entrance.

Heightening the reef barrier between the southern b) breakwater and the end of the reef barrier at Pontal do Cupe. Closing the present bar between the extreme end c) of the reef barrier and the Cape of Santo Agostinho. Heightening and lengthening the reef barrier d) 🔬 between the northern breakwater and the Cape of Santo Agostinho. الله بي معد با يتوقد ما و تحقي الم يتحقي

Creation of an artificial beach in the area bordering on this last section where the reef barrier is to be increased.

To facilitate construction and minimize cost, it was decided that the protective works will be constructed of dumped rock. This material can be obtained easily at the site and nonspecialized labor can work with it without difficulty, during both extraction of the rock and building of the protective works.

Each of these works deserved special consideration and an

individual study taking into account each work's importance and degree of exposure to the action of the waves. The works can therefore be grouped into two large categories: the works designed to confront the action of the waves, and those protected from the waves by the artificial beach. These latter works are planned to support the beach's sand and prevent it from shifting to the internal port area. The two breakwaters and the dike to heighten the reef barrier at the south of the port entrance fall into the first category; the remainder constitute the second category.

المراجع والمراجع والم

The elevation of the constructions in the first category was determined per the maximum level of the sea (2.80 m) and the maximum height of the waves that occur in the area (2.50 m). This elevation was fixed at + 3.828 m, in relation to zero C.N.G., which is exactly the height the National Department of Ports and Navegable Waterways adopted to reinforce and restore the reef barrier that protects the Port of Recife.

Transversal sections for the protective works may be found at the end of this section. A 6.0 m width was fixed for the breakwaters, and a 4.0 m width for the dike heightening the reef barrier. The embankment of the area exposed to the action of the sea was fixed at 1:2; the other embankments were set a 1:1.

Based on these decisions, the weight of the stones to be used in the layers of various sections of the work was calculated, using the Hudson formula developed by the U. S. Corps of Engineers. Even though these works were calculated by commonly used technical methods, their importance demands that they be tested in a channel and wave tank at the time that a scale model of the port is tested, and that adjustments be made if necessary.

For constructions to close the present bar and heighten

IV - 1/3.2

the reef barrier on the northern side, the elevation chosen can be markedly less than that chosen for the above described works, since even the waves occurring at high sea will break over the artifical beach constructed in front of the protective works. Therefore the elevation was fixed at +2.50 m in relation to zero C.N.G., with 3.0 m width and 1:1 embankments.

Since these constructions will not be subject to the action of the waves, the design can be developed based on the experience of other similar constructions, and the weight of rock to be used need not be calculated.

also be tested in a scale model.

č

To guarantee maintenance of this beach, a stone sea wall buttress based at the Cape of Santo Agostinho and forming

the northern limit of the beach was planned. Also

planned was the construction of Case type wooden buttresses,

- conveniently spaced to confine the sand between them and
- to prohibit removal of the sand even by rough seas.

CALCULATION OF WEIGHT OF THE ROCKS BY THE U. S. CORPS OF ENGINEERS' HUDSON FORMULA 3.2.1 $W = \frac{W_{r} \times H^{3}}{K_{d} \times (S_{r} - 1)^{3} \times \cot g \sigma}$ Letting $K_d = 3$ and coty $\sigma = 2$, we have \cdot $W = \frac{W_{r} \times H^{3}}{6 (S_{r} - 1)^{3}}$ And, for $W_r = 2.4 \text{ tons/m}^3 = 150 \text{ lb/ft}^3$ and H = 2.5 m = 8.2 feet, the weight of the blocks of rock will be or; as was adopted: - 4 *. * W =: 3 tons By applying the equation found in Design and . 2) Construction of Ports and Marine Structures, by Alonzo D. Quinni For an embankment of 1.2 and a wave height of 2.5 m, we find

W=3 tons

IV-1/3.4

3.3 COST COMPARISONS OF PROTECTIVE WORKS TO THE NORTH

OF THE PORT ENTRANCE WITH AND WITHOUT THE

ARTIFICIAL BEACH

During the first stage the disposal of dredged material will provide sand which could permit formation of a beach to the north of the planned entrance to the port, next to the reef barrier. Immediate consequences would be better reef barrier heightening sections in view of the fact that the waves would break over the beach and would lose force there, and also a reduction in dredging waste disposal costs due to shortening transport distances.

A comparative cost study to determine the advisability of forming a beach follows.

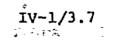
3.3.1 BASIC INFORMATION

a) Volume of the sea wall to heighten the northern reef barrier at the port entrance, using the same profile adopted for the southern zone, i.e., without the artificial beach. 223,590.000 m³

Volume of the sea wall to lengthen the reef barrier, linking it with the Cape of Santo Agostinho, adopting a profile equivalent to that of the breakwaters, for a mean depth of 6.20 m and a width of 40 m

 $\frac{115,318.500 \text{ m}^3}{338,908,500 \text{ m}^3}$

340,000.000 m³


b) Volume of the sea wall to heighten	-
the northern reef barrier at the port entrance,	٠
with the artificial beach	• 41,250.000 m ³
	-

Volume of the sea wall to lengthen the

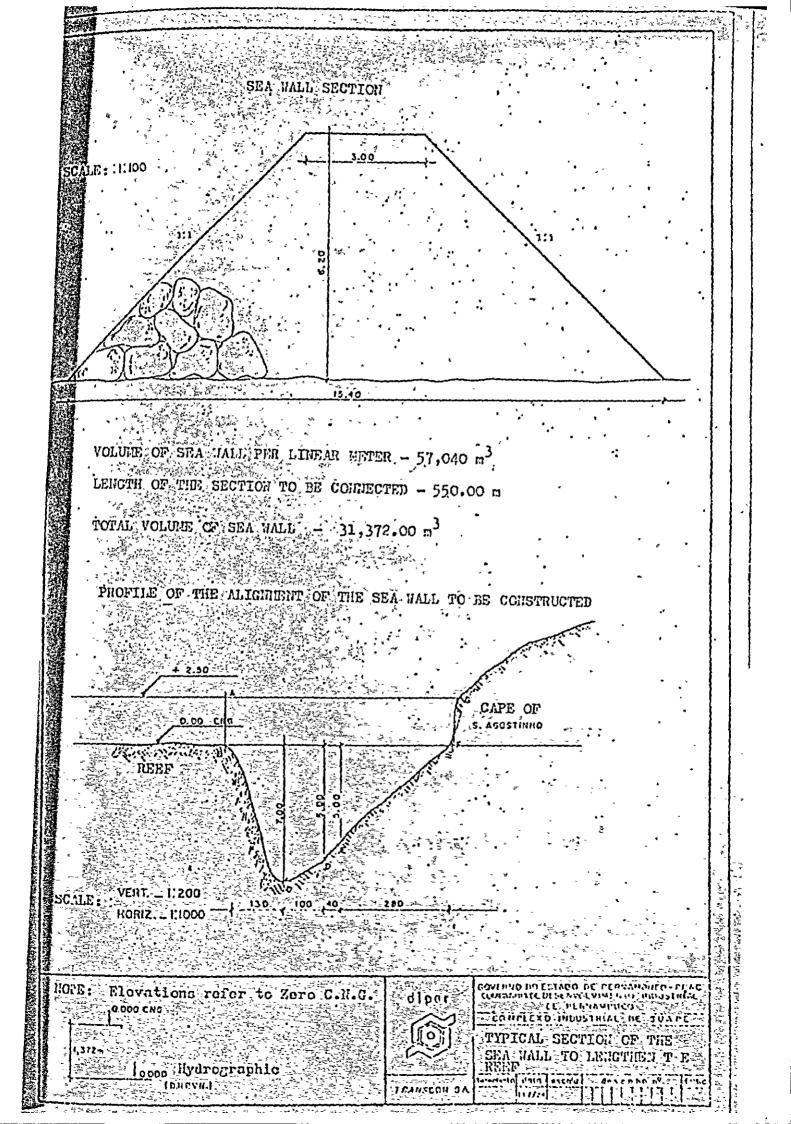
reef barrier, linking it with the Cape of Santo 31,372.000 m³ Agostinho, with the artificial beach Volume Volume of the stone sea wall buttress to protect the artificial beach, based at the <u>41,250</u>.000 m³ Cape of Santo Agostinho 113,872.000 m³ 114,000.000 m³ , ĭ... 3.3.2 COSTS Costs of heightening the northern a) reef barrier at the port entrance, without the artifical beach 340,000.000 m³ x Cr\$ 50.00 = Cr\$ 17,000,000.00 Costs of heightening the northern b) reef barrier at the port entrance, with the artificial beach ار مەربەر -...cost.of.sea walls 114,000.00 m³ x Cr\$ 50.00 = Cr\$ 5,700,000.00 Difference in dredging cost per cubic meter by using a 2,000 m³ hopper dredge instead Cr\$ 2,500,000.00 of a 9,000 m³ dredge Probable cost of a scale model to examine the artifical beach's stability-and longevity 1,000,000.00 Cr\$ Cr\$ 9,200,000.00 c) Cost difference, for port protection works to the north of the entrance بر م تحو Cr\$ 17,000,000.00 Without the artificial beach

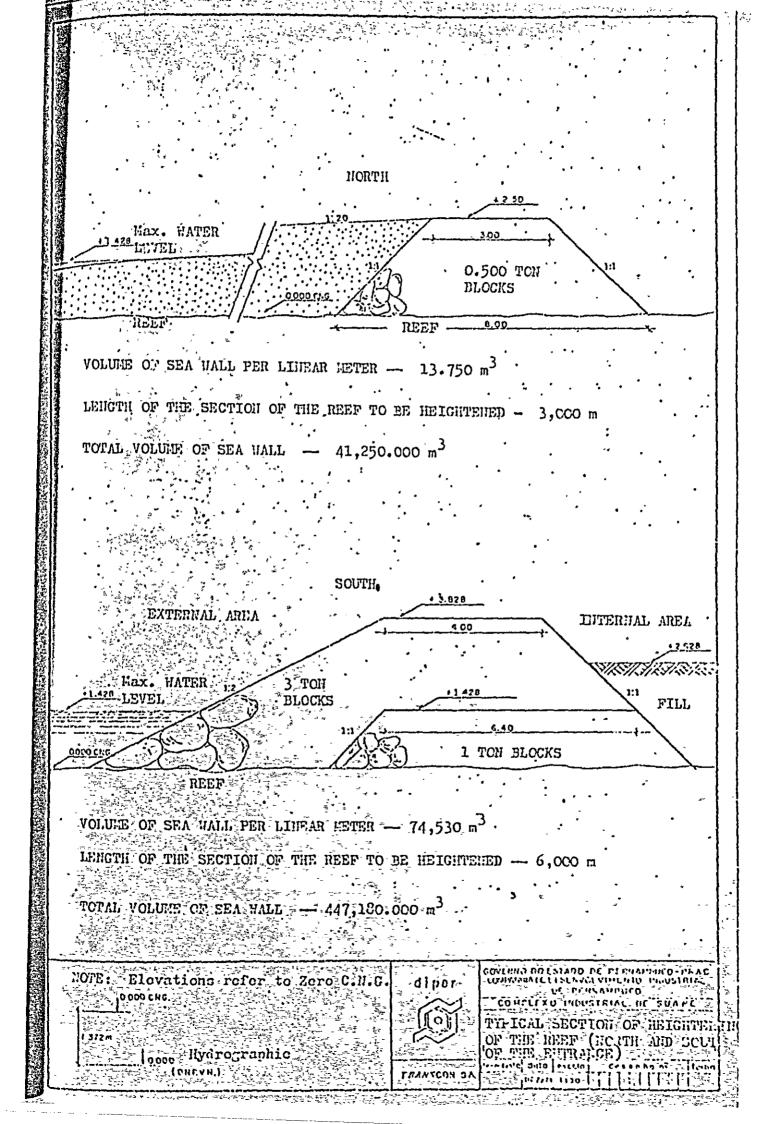
d) Savings to be obtained with the Cr\$ 9,200,000.00 artifical beach Cr\$ 7,800,000.00

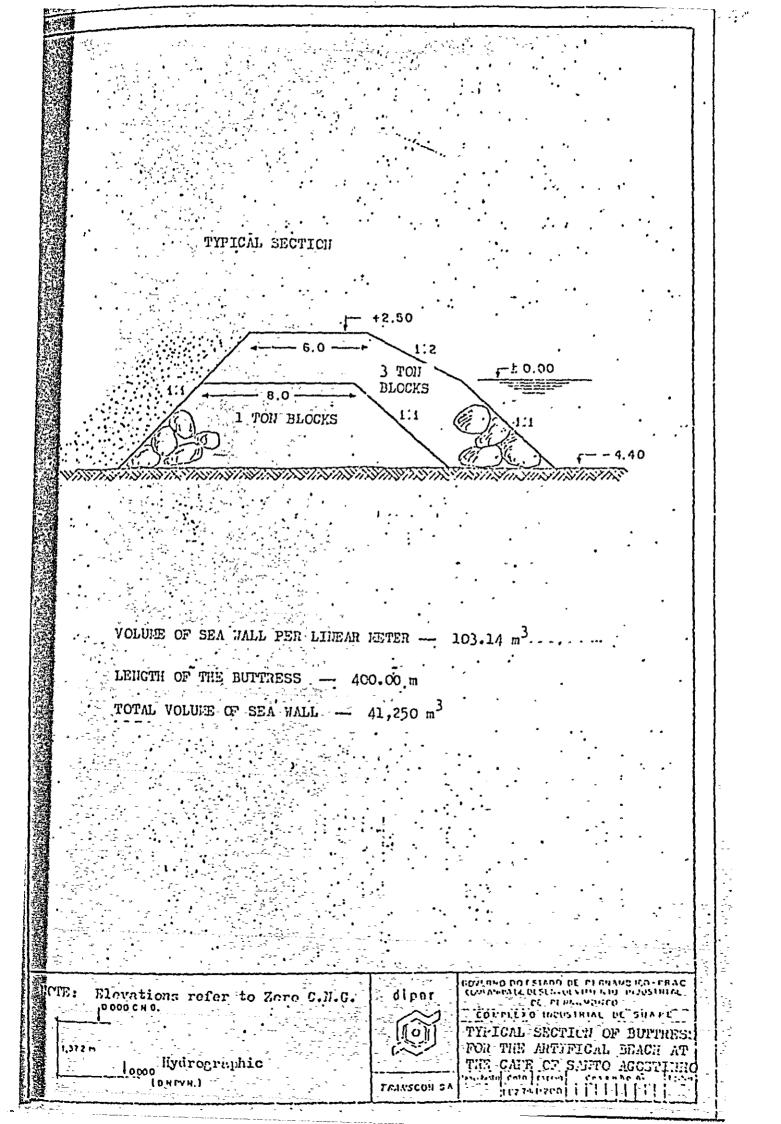
The above analysis indicates the advisability of proceeding to studies of the artifical beach's stability.

•

3.4 BUDGET ESTIMATE


Volume of sea wall to heighten the reef barrier, at the north of the $41,250.000 \text{ m}^3$ port entrance Volume of sea wall to heighten Ithe reef barrier, at the south of the 447,180.000 m³ port entrance Volume of sea wall to lengthen the reef barrier and connect it with 31,372.000 m³ the Cape of Santo Agostinho · · · 3* . Volume of seawall to build the protective breakwaters at the entrance of the port 1,187,289.600 m³ Volume of sea wall for the buttress protecting the articial beach, at the Cape of Santo Agostinho. $41,250,000 \text{ m}^3$ 1,748,341,600 m³ 1,750,000.000 m³ Basic price of sea wall - Cr\$ 50.00/m³


Total cost of sea wall constructions:


IV-1/3.8

1,750,000:000,m³ x Cr\$ 50.00 = Cr\$ 87,500,000.00

1. <u>1</u>. • • Max. +1420 Level 0.000 C.NG Hin. TON'EKC KS-1:1 2 TON BLOCKS 1 TON PLOCKS 15.00 20.050 1:1 0-500 TON BLOCKS ه کر جو م 71. 60 , °, • • • VOLUIE OF SEA MALL PER LINEAR HETER - 1,236.76 m³ LENGTH OF BREAKNATERS: NORTH - 530 m `_____ SOUTH - 430 m TOTAL - 960 m TOTAL - 960 m TOTAL VOLUIE OF SEA HALL - 1,187,289.600 m³ ~ Q. 25.00 --GONTRINO DO STADO DE PTEUNAUCEN-PHAC COMMUNALE DE LEVELONNE MEDITERA NOTE: Elevations refer to gero C.N.G. dlpar DL CEPHANNUNG -10 000 CHG รักรับคนุณา อินารณาที่รักรับครัฐ VERT. - 1.500 SCALE ::: TYPICAL SECTION OF THE 0 HOHIZ. _ 1:500 BREAKUAFERS TO PROFECT THE 1,382# PORT EINER SICE loma liyurogray TEANSEDN A -____(ยาเเหช)-____

TONO TU-CARTE 1 VOLUME1

4.0

.

.

· ·

·

•

· · · •

4.0 DREDGING PLAN

DREDGING PLAN 4.0°

The second PLA 4.1 SUMMARY, And

4.1.1 OBJECTIVE

The Dredging Plan aims at meeting two final objectives: to permit traffic, mfaneuvering and docking of ships in the port, and to provide hydraulic fill for landfill areas.

۰ ۲_۰ Dredging was forecast to be performed in internal port areas and in the approach channel.

. . In general, the Dredging Plan for the Port of Suape can be divided into five parts:

-Dredging the port's approach channel Dredging the internal maritime area -

Dredging to support the opening in the reef

Hydraulic fill to construct landfill areas

when the reef. 1 1.4 C

4.2 DREDGING THE APPROACH CHANNEL

- - - -The approach channel should be dredged up to -20 m. Analysis of geophysical surveys made in the area indicated that all the material to be dredged is sand. Since economic use of this sand is of interest, part of it will be used to form the beach planned for the area between the port entrance and the Cape of Santo Agostinho. According to studies made of the currents, the remainder should be dumped one mile to the north of the channel's center of gravity. For embankments, the most common ratio when using sand is 1:3. Nowever, due to the present state of knowledge of ----. . .

IV-1/4.1

this sand's size consist, and due to the effect that the high speed of ships in the channel will have on its margins, a 1:5 ratio was adopted. It should be clear that the above hypothesis cannot be relied upon and needs to be confirmed by later studies.

The agitation conditions in force in the external area demand that self-carrying dredges be used. A check of these dredges 'operating costs; according to the various hopper volumes, showed a 9,000 m³ hopper to be the most economical. However, this dredge's draft, on the order of 10 m, would' definitely prohibit using sand dredged from the approach channel for formation of the beach. This factor makes advisable use of a dredge with a 2,000 m³ hopper volume and 5.70 m draft. This dredge could evacuate sand to a depth of 7.70 m through opening the doors at the bottom of the hold.

4.1.3 DREDGING THE INTERNAL AREA

.

The internal maritime area is composed of areas I, II, III, IV and IX and the Ipojuca rectification channel.

The largest part of the dredging work will take place up to the start of the 1st phase, when 90% of the 1st part's volume will be dredged. Area II will be the only area dredged after the start of the 1st phase. This area will be deepened and its surface will be slightly increased.

Geophysical research and soils sampling done by drilling showed that the major part of the material to be dredged is sand. There also exist sandy and silty clays and 2 to 3 m thick layers of sandstone.

The dredged material will be shifted to fill areas or to the area along the outside of the reef to the north of the approach channel. The location will dend on whether the material is sand or clay.

IV.1/4.2

An effort was made to plan the dredging so that there will always be the best combination of floating piping - onshore piping lengths. The combination was based on the higher costs and greater head loss for floating piping, and on minimizing the use of boosters.

For embankments, a 1:5 ratio was adopted. For the margins where there are docking structures, embankments were planned to have tops and bottoms coinciding with the alignments Utilization indicated in the Maximum Plan.

Use of sets of self-carrying and suction and pumping dredges was originally intended. However, in view of the objective of using for fill all of the sand dredged from the internal maritime areas, use of only suction and pumping dredges was decided upon. Based on comparative study of a series of dredges' crerating costs, portable 26" dredges were chosen. Besides having lower operating costs, portable dredges have less draft and can be transported by truck. This last factor is significant for the Port of Suape since the present bar next to the Cape of Santo Agostinho doesn't always offer safe conditions for entrance of ships.

4.1.4 OPENING THE PORT ENTRANCE

The indicated method for breaking through the reef barrier and consequently opening the mouth of the port requires creation of a provisional beach between the entrance breakwaters on the This beach will be formed by-sand outside of the barrier. 77. dredged from the approach channel by self-carrying dredges and by sand dredged from the internal maritime areas by suction and pumping dredges. Description of this equipment is found in the itens related to dredging the external and internal areas. Once the mouth is opened, the beach will be dredged from both the external and internal sides and its sand will be used to form a beach to protect the reef. IV-1/4.3

1.5 HYDRAULIC FILL FOR FCRMING LANDFILLS

For hydraulic fill, the Complex's land area was divided into the areas T_0 , T_1 , T_3 , T_3 , T_3' , T_4 , T_5 , T_6 , T_6 , T_7 , T_8 , T_9 , and T_{10} , as shown in Figure 1-I.

The volume of fill needed to raise these areas to the level desired (+2.70 m) is less than the fill forecast in the Utilization Maximum Plan. However it is greater than the fill volume available during the first stage.

Therefore, it was necessary to develop a policy for the 1st stage's hydraulic fill. This policy is based on three principles:

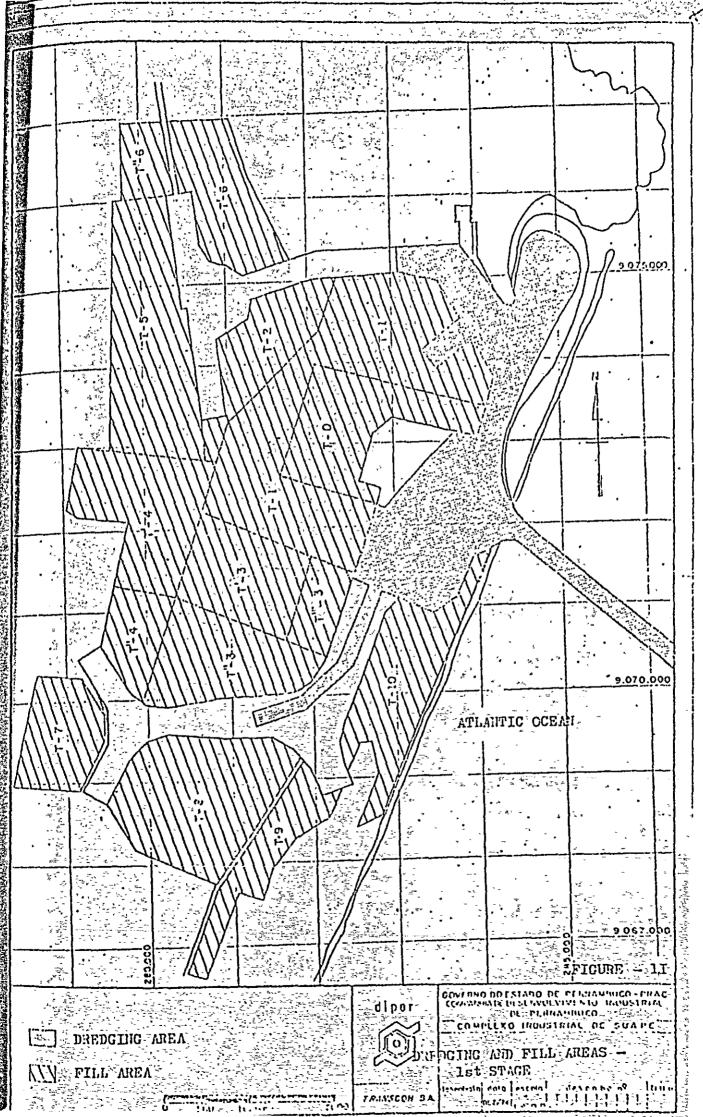
1. Guarantee complete use of the volume of fill available in the 1st stage. The volume originates in the internal areas, since due to the self-carrying dredge's characteristics the material to be dredged in the external area will not be used to form landfills.

Define priority areas, essential to the Complex's functioning, which will be filled to the elevation +2.70 m.
 Define the distribution of the volume of fill still a.ai able in the remaining areas. Evolving use of these areas and estimation of the sand deposits in the maritime areas Utilization foreseen in the Plan should be considered. This would guarantee a lower cost for completing fills after the lst stage.
 The following decisions resulted:

fill areas T_1, T_3', T_4' and T_{10} , considered high priority,

to +2.628 m.

fill areas T_0 , T_2 , T_3^* , T_4^* , T_5 , T_8 and T_9 to the clearance elevation (+1.50 m).


The clearance elevation should be understood as the elevation above the maximum level of the sea.

Areas T_6' , T_6' and T_7 will not be filled during the 1st stage. The dredging - fill counterbalancing therefore was perfectly adjusted for the 1st stage, and rational completion of fill after the 1st stage was guaranteed.

4.1.6 HYDRAULIC FILL FOR FORMING THE REEF PROTECTION BEACH

The most economical solution for protecting the reef was shown to be the construction, by hydraulic fill, of a beach between the mouth of the port and the Cape of Santo Agostinho. This beach will be formed by sand dredged from the approach channel, the internal maritime areas and the beach in front of the north of the approach channel.

The following sections include a description of the equipment to be used in each of the dredging items.

4.2 COUNTERBALANCING

DREDGING FILL The following analysis of Dredging - Fill Counterbalancing aims at optimizing dredging operations and taking advantage of possible surpluses of good quality dredged material to reduce costs of heightening the reef barrier and to concommitantly to afford immediate clearance advantages to the areas to be implemented after the 1st stage. Volumes calculations used in this analysis can be found at the end of this section and the drawings of the dredging and fill sections can be found in the respective book of drawings. The preceding figure shows the dredging and fill areas delimited in the present Plan. · 4.2.1 ANALYSIS OF 1st STAGE COUNTERBALANCING BASIC ASSUMPTIONS FOR THE 1st STAGE Α Areas T_6' , T_6' and T_7 will not be filled during the 1st stage; Areas T_0 , T_2 , $T_3^{"}$, $T_3^{"}$, $T_4^{"}$, T_5 , T_8 and T_9 will 2) be filled to +1.50 m with material dredged from the internal maritime areas; 3) Areas T_1 , T_3 , T_4 and T_{10} will be filled up to

+2.70 m with material dredged from the internal maritime <u>ج کہ ج</u>

areas;

4) The beach will be filled below -7.70 m with material dredged from the approach channel and above -7.70 m

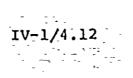
with material from the internal maritime areas;

5)	After opening the mouth of the port, the
	provisional beach will be dredged and the
4	product of this dredging will be used to form
ta	the beach between the mouth and the Cape of
	Santo Agostinho.
6)	Time periods:
۱	lst phase - 2-1/2 years (from mid-1977 to 1980)
	2nd phase - 6 years (from 1980 to 1986
7)	Fill Priorities
1	
2	T ₁₀
3	
4	No priorities set for the remaining areas
В	DREDGING - FILL COUNTERBALANCING DURING THE
	skert, strage
. 1	Sand dredging in the approach channel
1	V1 = 7,685,978 m ³
-2	Sand dredging in the internal maritime areas
	V2 57,471,714 m
3	Fills required to raise areas T_1 , T'_3 , T'_4 and T_{10}
	to the elevation + 2.70 m (fill material to be
	taken from the internal maritime area)
÷	$v_3 = 26,648,025 \text{ m}^3$

 $v_d = 27,915,580 \text{ m}^3$

- 5 Fill required for the beach $V_{\rm m} = 7.316,662 \, {\rm m}^3$
- 5.a Portion to be taken from the approach channel V_{5} ' = 4,422,683 m³
- 5.b Portion to be taken from the internal maritime area $v_5^{"} = 2,893,979 \text{ m}^3$
- 6 Approach Channel dredging fill counterbalancing $V_6 = V_1 - V_5 = 3,623,295 \text{ m}^3$ surplus of dredged sand in relation to the fill
- 7 · Internal maritime area dredging fill counterbalancing $v_8 = v_2 - (v_3 + v_4 + v_5") = 14,130 \text{ m}^3 \text{ surplus in}$ relation to the fill
- C SUMMARY OF DREDGING AND FILL VOLUMES Dredging Volumes during the 1st Stage

A descriptive calculus of the volumes shown in the following tables may be found in Appendix 1-A at the end of this section.


1st STAGE DREDGING VOLUMES

• • •	VOLUMES (m ³)			
	SAND	СГУА	SANDSTONE	TOTAL
Approach channel	7,685,978			7,685,978
Internal channels (FI + FII)	57,471,714	12,034,488	329,700	69,835,902
Total	65,157,692	26,839,043	329,700	92,326,435

•

-

•

54,563,605 m³ 2,310,600 Volume (m²) 4,954,040 1,189,275 1,368,300 3,206,625 1,428,930 11,243,060 2,214,750 27,915,580 FILL UP. TO I. SO M Filled height; * [] Total volume 3 , 1.20 1.80 3,80 2.80 1.50 1.50 FILL UPTO 2:70m Volume (m) 5,073,105 26,648,025 ,230,520 780 9,42395620 (1) - The elevations refer to zero CNG SURFACE AREA 69,300 876,000 407,700 1407250 2,137,750 1,476,500 1,757,250 23,625,800 2,158,250 793,850 2,958,700 1,321,450 408,450 1,420,350 ē E MEAN ELEV 0.30 2.30 The feel to be a list of the T₁₀(2) AREAS ال<mark>الا</mark> (2). Т₃" (2) T₀(2) TOTAL Т<u>1</u>(2) T 1(2) ភ្នំ ÷9£ -94 1 б Н ц Т T7 ت H

IV-1/4.13

FILL VOLUMES - DESCRIPTION BY AREA - 1st STAGE

(2) - Calculated by transverse sections

VOLUME OF FILL FOR THE REEF PROTECTION BEACH -. .

Description	Volumes (m ³)		
Total volume	7,316,662		
Volume from the Approach Channel (1)	4,422,683		
Volume from the internal area	2,893,979		

VOLUME OF FILL FOR THE PROVISIONAL BEACH AT THE RELF OPENING

.

Description	Volumes (m ³)
Total volume	571,500
Volume from the Approach Channel (1)	252,720
Volume from the internal area	318,780
(1) = Using self-carrying, 2,000 m ³ dro a minimum depth of 7.70 m.	dges, reaching to
(2) = Using suction and pumping dredges	
4.2.2 ANALYSIS OF DREDGING - FILL AFTER THE 1st STAGE	
For this analysis, the Complex's area w three regions: Massangana Region - including the marit	
and the shore areas T_2 , T_5 , T_6^1 and $T_6^{"}$ Central Region - including the maritime	
and IX and the shore areas T ₀ , T ₁ , T ₃	• •
	2
IV−1/4.14	-

Ipojuca Region - including the maritime areas VI, VII and VIII and the shore areas T_3^* , T_4^* , T_8 and T_9

A ANALYSIS BY REGION

1) Massangana Region

2) Central Region

In this region only area T_0 will be filled after the 1st stage. The necessary volume of fill (1,602,700 m³) could be taken from area E_0 (1,075,000 m² area), an area which is located in front of T_0 . This area will not be dredged during the 1st stage.

3)

Ipojuca Region

Sand dredging from maritime areas VI, VII and 27,849,000 m³ VIII Filling land areas T_3^* , $T_3^{\prime \prime \prime}$, T_4 , T_7 , T_8 and T_9 11,487,735 m³ Sand to be disposed of 16,367,265 m³

IV-1/4.15

SUMMARY OF DREDGING AND FILL VOLUMES

(in m³) Areas Volume of Sand I II III 130,000 IV 3,669,000 v 10,538,000 VI 18,418,000 VII 2,133,000 VIII 7,298,000 IX Approach Channel Total 42,186,000

. Sand dredging volumes after the 1st stage

IV-1/4.16

Fill Volumes after the lst stage

	(in m ³)
Areas	Fill Volume
T _o ·	1,602,700
T ₁	
^T 2	1,368,300
T'3	-
T"3	2,123,160
T_1'''	666,015
т,	-
T4 ·	925,620
T ₅	3,550,440
T6	6,607,250
T [°] G	2,042,250
T ₇	3,408,840
T 8	2,565,300
T ₉	1,771,800
T ₁₀	
Total	25,658,675

.

4.3 TECHNICO-ECONOMIC ANALYSIS

4.3.1 PRELIMINARY CONSIDERATIONS .

In general, the Port of Suape dredging can be divided into three main parts:

Dredging the port approach channel.

Opening the mouth to the port approach.

Dredging turning basins and internal

circulation and docking channels.

The dredging in question presents a series of factors that should be interconnected during the execution phase. We forsee the use of Hopper dredges to dredge the approach channel and of suction and pumping dredges to dredge the internal areas and the internal (protected) part of the mouth of the port.

Even though the only equipment alternative for dredging the approach channel is the Hopper dredge, dredging of the basins and internal channels could be accomplished by jointly using Hopper and suction and pumping dredges.

Under these conditions, dimensioning of the equipment will be controlled by technico-economic restraints to minimize the overall dredging cost.

We can assume two basic hypotheses to be studied in Nga cha na ƙwallon ƙ determining the minimum dredging cost:

jî wijî firi se çe .

a FIRST: a.1 Dredging the approach channel by Hopper dredge.

> -. · · · · IV-1/4.18

a.2	Dredging the mouth of the port with a Hopper dredge on the external portion and a suction and pumping dredge on the internal portion.
a.3 · · · · · · ·	Dredging the basins and internal channels with a suction and pumping dredge.
ŭ	
ь	SECOND:
b.1	Dredging the approach channel with a Hopper dredge.
b.2	Dredging the mouth with a Hopper dredge on the external portion and a suction and pumping dredge on the internal portion.
b.3	Dredging the basins and internal channels with both Hopper and suction and pumping dredges.
-	
In addition	to the three main parts of the dredging work
indicated	bove, two other secondary aspects should be
considered:	
C	SECONDARY OPERATIONS:
•	
c.1	Hydraulic fill of areas internal to the
۵ د ۱۲۰۰ – ۱۴۰ – ۱۴۰۰ –	perimeter of the port's
- ⁻ 4	with land elevation up to +2.70 m and
۲۵۰۰ ۲۵۰۰ ۲۵۰۰ ۲۵۰۰ ۲۵۰۰ ۲۵۰۰ ۲۵۰۰ ۲۵۰۰	-+1:50 m.
	Dredging the Ipojuca River's rectification
	channel
Theabove	two secondary operations will require small
and nedi un	size suction and pumping dredges.
4.3.2	DREDGING EQUIPMENT AVAILABLE ON THE MARKET
	the different types of dredging equipment
	on the market to the work that should be
performed,	we present the list below, which shows the
range of t	he most common dredging equipment on the
· · · · · · · · · · · · · · · · · · ·	

market.

TU-1 /A-10

from 1,000 m^3 to 10,000 m^3 Hopper volume Total installed potential from 2,500 HP to 20,000 HP Transport rate from 10 knots to 15 knots Hopper yield time with broken up sand from 45 minutes to 70 minutes Loaded draft from 5.0 meters to 10.0 meter Dredging depth from 16 meters to 35 meters Length from 70 meters to 140 meters Beam from 12 meters to 23 meters from 1.6 tons/ m^3 to 2.0 Specific weight of load tons/m³

Suction and Pumping Dredges

Piping diameter

Pump potential

Dredging depth

Hourly production

IV-1/4.20

Length

Beam

Draft

Hopper Dredges

from 14" to 30" from 15 m to 60 m from 6 m to 20 m from 1.0 m to 4.5 m from 700 Hp to 8,000 HP from 100 HP to 3,000 HP from 300 m³/hr to 1,000 m³/hr

from 10 m to 22 m

4.3.3 MATERIALS TO BE DREDGED

Geophysical surveys and soils sampling by geotechnical drilling showed that the major part of the material to be dredged is sand. There are also present sandy and siltly clays, and sandstone in layers of a mean 3.0 meter thickness.

B

λ

4.3.4 PERFORMANCE OF THE DREDGES IN RELATION TO

THE MATERIALS TO BE DREDGED

Even though the number of geotechnical drill holes available is very small in relation to the number that would be desirable for a more accurate estimate, we can assume the following dredge productivity indexes.

A Hopper dredge

Medium broken up sand	-	100
Medium compact sand	+	70
Fine broken up sand	-	70
Fine compact cand	-	50
Soft clay	7	70
Medium clay	-	30
Hard clay.		10
Sandstone		,0

B Suction and pumping dredge

Medium broken up sand	- 100
Medium compact sand	- 90
Fine broken up sand	- 100
Fine compact sand	- 80
Soft clay	- 160
Medium clay	- 70
llard clay	- 40
Sandstone	- 10

IV-1/4.21

4.3.5 DISPOSAL AREAS FOR DREDGED MATERIALS

In order to simulate dredging and hydraulic fill operations,

we are going to develop some hypotheses as to the locations where the dredged materials should be dumped. Basically, the shorter, the transport distance, the lower the cost per cubic meter dredged. x († 11

Taking into consideration the results made of currents in the area, we can set the following disposal locations:

- Dredging of the approach channel disposal of the Α dredged material 1 mile to the north of the channel's center of gravity.
- Dredging of the basins and internal channels disposal В of dredged material along the reefs to the north of the access channel.
- Hydraulic fill of the areas inside the port's С approach line. , **1**

Materials will be disposed of in a manner that minimizes transport distance.

Observation D

1

The above hypotheses were drawn up based on the currents study and the economic factor, and are not fully reliable. At the time when a mobile-bed scale model of the port is studied, the possibility of studying the behavior of the materials disposed of in the manner which we postulate here should be considered. Nonetheless, until proven to the contrary, we consider the assumed hypotheses to be reliable, and we are going to use them as a basis for the proceding study, which establishes a methodology for dredging and fill operations and determines unit costs and conditions that will determine the minimum overall cost.

> ~IV~1/4.22

4.3.6 DETERMINATION OF OPERATING COSTS OF DREDGING EQUIPMENT WHICH COULD BE USED IN DREDGING THE PORTOF, SUAPE. Operating Cost of hopper dredges λ The present study will be conducted in a manner to obtain operating costs of a series of hopper dredges of various theoretical capacities, and to arrive at data needed to optimize the dredging cost. VII Anto We will take as a base a 6,000 m³ volume hopper dredge. This dredge's principal characteristics are: 125 m Length 20 m Beam 8.5 m Draft -* Hopper Volume 6,000 m³ Installed Potential 9,000 HP Loaded Velocity 12.8 knots Crew 35 men 18,000 tons Yield Load capacity 11,000 tons Value of the dredge - US § 1,000.00/ton x 11,000 = US\$ 11,000,000.00 Calculation of monthly operating cost. Personnel 1 Cr\$ 105,000.00 Salaries 1.1 173,250.00 Cr\$ Cr\$ 68,250.00 Social Laws 1,2 Food 30,000.00 Cr\$ 2 IV-1/4.23

3	•
3 Fuel	
0.80 x 9.000 HP x 0.185 1/HP.hr x	
1,00%Cr\$/l x 550 hrs/month	Cr\$ 732,000.00
4 Lubricants (10% of fuel)	Cr\$ 73,200.00
5 Maintenance and insurance - 12% per year	Cr\$ 803,000.00
6 Provisions for biennial overhaul - 10% per year	Cr\$ 669,167.00
7 Interest - 10% per year	Cr\$ 669,167.00
8 Depreciation - 10 years 10 % per year	Cr\$ 669,167.00
9 Unforcseen expenses - 10% of maintenance	Cr\$66,916.00
10 Overhead and profit (5% + 10%)	<u>Cr\$ 777,173.00</u>
	Cr\$3,885,867.00
	Cr\$4,663,040.00
Monthly operating cost -	Cr\$4,663,040.00/month
Economic analysis of monthly operating cost	
1 Working hours	
24 hrs/day x 6 days/week x 4.3 weeks/month	619 hours/month
Nours of operation: 619 x 0.89 = 550 hours	month
2 Personnel cost - P - Cr\$ 173,250.0	00
This cost item will be constant, as it is in	ndependent
of the dredging volume.	

-

3 Food - A - Cr\$ 30,000.00 (same as aboe) 4 Fuel - c

This item is proportional to the total installed potential. To calculate this cost we assume that potential varies linearly with the dredge hopper capacity and the rate.

with these conditions we have:

Installed potential = HP = K. V x
$$v/v$$
.

.

where:

$$K = HP_{O}/V_{O} \text{ in } HP/m^{3}$$

$$V = \text{hopper volume in } m^{3}$$

$$v = \text{dredging rate}$$

$$v_{O} = 12 \text{ knots}$$

$$V_{O} = 6,000 \text{ m}^{3}$$

$$HP_{O} = 9,000 \text{ HP}$$
Thus
$$K = HP_{O}/V_{O} = 9,000/6,000 = 1.5 \text{ HP/m}^{3}$$

$$K = 1.5 \text{ HP/m}^{3}$$

The v/v_0 will be assumed to be 1, based on the operating conditions.

5 . Lubricants - L

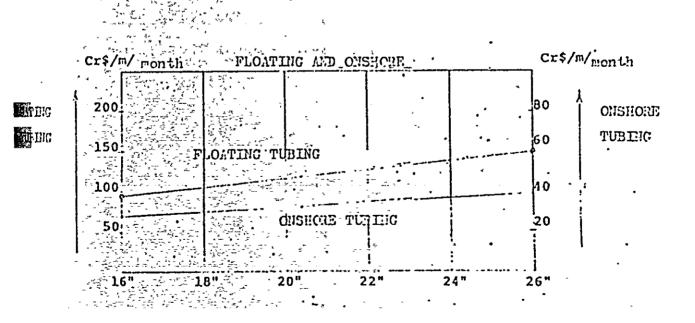
The cost of the lubricants will be calculated as a constant

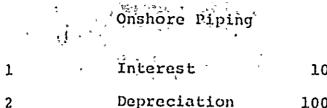
10% of the fuel cost (diesel fuel).

_____ 6 Costs that depend on the value of the equipment: C_c

26"	Dredge - Value - US\$ 2,000,000.00	Cr\$	14,600,000.00
1	Personnel		
2	Social Benefits		120,290.00
3	Food		
4	Fuel 67.01 x 4,585		307,195.00
5	Lubricants		30,719.00
6	Capital costs 0.43/.2 x 14,600,000.00		523,170.00

Cr\$ 981,374.00


GRAPH OF SUCTION AND PUMPING . . DREDGE MONTHLY COSTS :" .! 1 . ٠, 10³ cr\$. 5 1000 900 : - X 800 700 600 50Ò 1 400 300 200 100 i 0 22" 26" 20" - 24" -18" * 1 :"a=" • ٤ . . Ŧ 4 . 1


Determination of operating cost of auxiliary 2 eguipment Work schedule - same as for dredges Crew Job Total No. Salary Dredge Masters 4 2,000.00 8,000.00 Engineers : 2 2,000.00 4,000.00 2 1,000.00 2,000.00 Deck Hands 8 14,000.00 Average salary = $14,000.00 \div 8 = 1,750.00$ overtime - 120 hours/month for each crew straight time = 1,750.00 + 200 = 8.75 Cr\$/hr (average) Overtime = $.1.5 \times 8.75 = 13.125 \text{ Cr}/\text{hr}$ (average) Operating cost for 16" dredge Same equipment as for dredges up to 20" Value = US\$ 350,000.00 = Cr\$ 2,555,000.00 Power = $2 \times 150 = 300$ HP Personnel 1 $Salary - 8 \times 1,750.00 = 14,000.00$ Overtime - 8 x 120 x 13.25= 12,600.00 26,600.00 26,600.00

Social Benefits ... 0, 65, x 26, 600.00 2 17,290.00 Food 7,000.00 3 - 5 50,890.00 50,890.00 Fuel 67.01 x 300 4 20,100.00 Lubricants - 10% of fuel 5 2,010.00 Capital costs - 0.43/12 x 2,555,000.00 ਓ 91,560.00 Cr\$ 164,560.00 Operating cost for 26" dredge -Will be the same as for dredges from 22 to 26". Value = US\$ 500,000.00 = Cr\$ 3,650,000.00 -Power = $2 \times 225 = 450$ HP Personnel and Food 1 50,890.00 Fuel 67.01 x 450 2 30,150.00 Lubricants - 10% of fuel 3 3;015.00. Capital costs 4 0.43/12 x 3;650,000.00 130,790.00 Cr\$ 214,845.00 Operating cost of floating and onshore piping 3 This cost will be calculated by meters of piping, in order to derive costs for each piping set. Basically the cost will be calculated per the value of capital invested.

For cost calculations we will use the following standard. <u>.</u> Floating piping Maintenance 1 .2.5% per year Provisions for overhaul 2.5% per year 2 3 Interest 10.0% per year Depreciation 4 Piping - 0.15 x 100% 4.1 15.0% per year Equipment 0.85 x 30% 4.2 25.5% per year 55.5% per year 18" Piping Monthly cost/meter = $0.555/12 \times 2,022 = Cr$ 93.5/m/month$ 20" Piping Monthly cost/meter = $0.555/12 \times 2,628 = Cr$ \$ 121.5/m/month 26" Piping = 0.555/12 x 3,204.7 = Cr\$ 148.2/m/month

GRAPH OF MONTHLY COST PER METER OF PIPING

10% per year 100% per year 110% per year

16" Piping

4.3.7 HYDRAULIC FILL

Counterbalancing the sand dredging and the hydraulic fill needs, at this phase of the dredging we have available $57,471,714 \text{ m}^3$ of sand to make $26,648,025 \text{ m}^3$ of fill for areas T1, T'3, T'4 and T10 up to an elevation of 2.70 m and a volume of 27,915,580 m³ of sand to fill areas T0, T2, T3", T3'', T4", T5, T8 and T9 up to a clearance level of +1.50 m. This amounts to a total of 54,563,605 m³, leaving a balance of 2,906,109 m³ which could be used to form the beach. The volume of sand to be dredged from the port's approach channel is not included in the above computations

The table of the distribution of volumes of sand to be dredged shows that the largest volumes are concentrated between sections S_6 and S_{20} , and that the remaining volumes represent less than 10% of to total to be filled, and therefore are not strategically significant to the areas

to be filled. IV-1/4.30

Filling-Area Tl

1

• •

λ

Section of area Tl located to the north of Area T0.

This area will absorb a volume of 3,775,170 m³, which could come from the Massangana River rectification channel, with a volume of 3,443,470 between sections SD-19 and SD-23. However, it would be more advisable to use this material in the area Tl section to the west of area TO, and leave the section to the north of TO to absorb the volume of sand to be dredged in the region of the Suape beach, and therefore avoid using a booster to pump this material.

Therefore, the section of area T1 to the north of area T0 will receive material from the basin next to the Suape beach, using 1,500 meters of floating pipcentering at point I and distributing the sand with up to 2,000 meters of of onshore piping.

To determine the cost of this section's fill, we can assume that 1,900,000 m³ will be pumped with 1,000 m of onshore piping and that 1,875,170 m³ will be pumped with a maximum of 2,000 m of onshore piping.

The costs will be:

1 Dredge	980,000.00
2 Aux: equipment	215,000.00
3 1,500 m floating pipe	224,000.00
4 1,000 m onshore pipe	_38,000.00
	,457,000.00
Production will be 800 m ³ /hr, equi	valent to 800 x 400 ^{hrs} month
$= 320,000 \text{ m}^3/\text{month}$	* . • -

The cost per cubic meter will be $1.2 \times 1,457,000.00 = 5.46 \text{ Cr}^{3}$. . . 320,000 Time period for performing the work -1,900,000 ÷ 320,000 = 5.94 months For the most adverse conditions, the cost will be: Cr\$ 1,457,000.00 cost with 1,000 m onshore piping 38,000.00 additional 1,000 m of onshore piping Cr\$ Cr\$ 1,495,000.00 Production will be 730 m^3/hr , equivalent to 730 x 400 = 292,000 m /month. The cost per cubic meter will be: $\frac{1.2 \times 1,495,000.00}{292,000} = 6.14 \text{ Cr}^{3}$ Time period for performing the work = 1,875,170 ÷ 292,000 = 6.42 months * ; × e ==, Total cost will be: 1,900,000 m³ x 5.46 Cr\$/m³ = Cr\$ 10,374,000.00 $1,875,170 \text{ m}^3 \times 6.14 \text{ Cr} / \text{m}^3 = \text{Cr} 11,514,000.00$ Total = Cr\$ 21,888,000.00 2 Filling the section of area Tl located to the west of Area TO. The second secon This area will be filled with material from the Massangana channel. Piping will be: 500 m floating + 2,500 m onshore - 600,000 m³ of fill 1 500 m floating + 3,500 m onshore - 685,660 m³ of fill 2

IV-1/4-32

.

	•
The cost will be:	
1 Dredge	980,000.00
Aux. equipment	215,000.00
500 m floating piping	75,000.00
2,500 m onshore piping	95,000.00
Cr	\$ 1,365,000.00
Production will be 800 $m^3/hr = 800$	$x 400 = 302,000 \text{ m}^3/\text{month}$
The cost per cubic meter will be:	$\frac{1.2 \times 1,365,000.00}{320,000}$ 5.12 Cr $$/m^3$
The time period for performing the 600,000 ÷ 320,000 = 1.88 months	work will be
2 Cr\$ 1,365,000.00 cost	
<u>Cr\$ 38,000.00</u> addit Cr\$ 1,403,000.00	ional 1,000 meters
Cr\$ 1,403,000.00	
Production will be $730 \text{ m}^3/\text{hr} = 730$	$0 \times 400 = 292,000 \text{ m}^3$
The cost per cubic meter will be:	
	5.67 Cr\$/m ³
The time period for performing the	e work will be:
$685;660 \text{ m}^3 - 292;000 \text{ m}^3/\text{month} = 2$.35 months
The cost of the fill will be:	
n a state water with the state of the state	072 000 00
$600,000 \times 5.12 = Cr $ 3	
$685,660 \times 5.67 = Cr $ 3	,888,000.00
Cr\$ 6	,960,000.00
It should be noted that we propos	e performing part of the
fill at a rate of 4.0 m/s to avoi	d using the booster

for a relatively small-volume.

Filling the section of area Tl located to 3 the south of area TO. ، بر قریب دون بر بر هم از این بر است می وارد بر بر هم از این بر است می وارد This section will also receive sand from the area next to the Suape beach since this area has a close to 15,000,000 m³ reserve and should be dredged. A maximum of 1,500 m of floating piping will be used, entering through point I, and running across Tl (north side) and TO to the center Cl, where it will distribute the fill. The I-Cl distance is 2,800 m, and the the farthest point to be reached is 1,400 m from Cl. We therefore would have the following, for the least favorable conditions. 1,500 m of floating piping and 4,200 m of onshore piping With 1,500 m of floating piping we can reach 1,500 m with onshore piping, which is equivalent to total utilization of 3,400 dredge HP; at a rate of 4.3 m/s, and corresponds . to approximately 3,600 m of onshore tubing. The booster dimensioned in item 4 would satisfy the objective of reaching 2,700 meters, since the booster HP = 3,400 x 2,700 = 2,550 HP. We will use a 2,250 HP booster, which 3,600 will solve the problem, since the dimensioning situation is critical. We can assume that 2/3 of the area to be filled will be filled with 800 m of onshore piping and 1/3 with 1,400 m starting out from Cl. We can therefore calculate a unit price, with 1,000 m of onshore pumping in addition to Cl. IV-1/4.34

Thus we have: 1,500 m.floating piping + 3,800 m onshore piping The cost will be: 26" Dredge 980,000.00 Aux. equipment 215,000.00 . 1,500 m floating piping 224,000.00 3,800 m onshore piping 144,000.00 26" booster 330,000.00 Cr\$, 1,893,000.00 production will be = 850 $m^3/hr \times 400 hrs/month = 340,000 m^3/month$ The cost per cubic meter will be = $\frac{1.2 \times 1,893,000.00}{340,000}$ = 5.568 Cr\$/m³ The time period for performing the work will be = 4,178,790 -340,000 = 12.29 months $4,178,790 \text{ m}^3 \times 5.568 \text{ Cr}/\text{m}^3 = \text{Cr} 23,268,000.00$ The cost will be: B FILLING AREA T10 with about $9,000,000 \text{ m}^3$ already having been used, there still will remain about 6,000,000 m³ from the area next to the Suape beach and about 4,500,000 m³ between sections SD-18 and SD-20, amounting to a total on the order of $10,500,000 \text{ m}^3$. Due to Area T10's position, we will have to use even more material from this zone, and therefore areas T'4 and T'3 should absorb volumes from this zone. Area T10 will be filled with sand from sections bounding area TO. The volume of fill for area T10, 5,073,105 m³, can be taken from dredging done between sections SD-6 and SD-8.

Piping for this fill will be:

500 m of floating piping centered at III + 1,000 m of onshore piping to fill 2/3 of the volume and 500m of floating piping + 2,000 m of onshore piping for the remaining 1/3, with small economically insignificant volumes at 2,500 m onshore.

For 500 m floating + 1,000 m onshore, production will be 930 m³/hr, and for 500 m floating + 2,000 m onshore, production will be 830 m³/hr. Mean production will be = $\frac{2 \times 930^{\circ} + 1 \times 830}{3} = 897 \text{ m}^3/\text{hr}$

The time period for performing the work will be:

5,073,105 - 359,000 = 14.13 months

The monthly cost will be:

9,000,000 m3

26" dredge	980,000.00	
Aux. equipment	215,000.00	
500 m floating piping	75,000.00	
2,000 m onshore piping	76,000.00	

The cost per cubic meter will be: $\frac{1.2 \times 1,346,000.00}{359,000} = 4.5 \text{ Cr}/\text{m}^3$ The total cost will be: 5,073,105 x 4.5 = Cr\$ 22,828,972.00 c Hydraulic fill of areas T3' and T'''3 The volume of fills for these areas will be 6,294,055 m³, for an elevation of + 2.70 m in T'3 and + 1.50 m in T'''3. Because of its location, we will have to transport sand from the area next to the Suape beach, dredging the fore harbor from which we have so far taken, in round numbers, about

Cr\$ 1,346,000.00

The transport distance will be 1,000 m of floating piping from the dredge to point I, where the transition is made from floating piping to 5,000 m of onshore piping.

Assuming a rate of 4.5 m/s, the dredge with 1,000 m of floating piping would reach only to a length of 1,600 m on shore. Thus, the remaining 3,400 m would have to be propelled by a booster, whose power would be:

 $HP = \frac{3,150}{3,400} \times 3,400 = 3,150 HP$ We therefore propose to use two 2,250 HP boosters which will permit reaching a distance of 6,000 m. Hourly production will be 830 m^3/hr , and monthly production: $400 \times 830 = 332,000 \text{ m}^3/\text{month}$ In this case, the cost will be: 26" Dredge 980,000.00 215,000.00 Aux. equipment 900 m floating piping 134,000.00 5,000 m onshore piping 190,000.00 2 26¹ boosters 660,000.00 Cr\$ 2,179,000.00 The cost per cubic meter will be: $\frac{1.2 \times 2,179,000.00}{332,000} =$ 7.8800 Cr\$/m³. The total cost will be: 6,249,055 x 7.88 = Cr\$ 53,645,000.00 The time period for performing the work will be: 6,249,055 ÷ 332,000 = 18.96 months

Hydraulic fill of area T To fill this area, a volume of 7,230,520 m³ of sand from the area bordering on the port entrance mouth will be used. The pumping distance will be 1,000 m of floating pipe and 2,200 m of onshore piping. The dredge, alone is sufficient to perform this fill at a rate of 4.3 m/s. ้ เชรี่ ม The cost will be: 25" Dredge 980,000.00 Aux. equipment 215,000.00 1,000-m floating piping 149,000.00 2,200 m onshore piping 84,000.00 Cr\$ 1,428,000.00 Monthly production will be: 400 x 850 = 340,000 m³/month The cost per cubic meter will be: $\frac{1.2 \times 1,428,000.00}{340,000} = 5.1 \text{ Cr/m}^3$ The cost of the work will be: 7,230,520 x 5.1 = Cr\$ 36,876,000.00 The time period for performing the work will be: 7,230,520 ÷ 340,000 = 21.3 months D -----Filling Area TO --The volume of this area is 2,310,600 m³ and the distance to be pumped will be approximately 1,000 m of floating piping and 2,000 m of onshore piping. The dredge alone can perform the work at a rate of 4.3 m/s. Monthly production will be 400 x 850 = 340,000 m³/month.

Maintenance and insurance 6.1 12% per year Provision for biennial 6.2 👷 🗉 overhaul 10% per year Interest on invested capital 6.3 10% per year Depreciation - 10 years 6.4 10% per year Unforeseen contingencies -6.5 10% of maintenance and insurance 1% per year. Total 7 43% per year In sum, we have a mathematical expression which reflects the operating cost C, of a dredge with a V m³ hopper volume whose value is US\$1,000.00/t.c.c. (t.c.c. = load capacity in tons), t.c.c. = $j \times V$ where: j'= specific weight of the load 1.833 tons/m V = rated volume of the hopper $\mathbf{C} = \mathbf{P} + \mathbf{A} + \mathbf{c} + \mathbf{1} + \mathbf{C}_{\mathbf{A}}$ P = Cr\$.173,250 which gives Cr\$ 175,000.00/month $A = Cr_{30,000,00/month}$ c = 0.80, x K.V v/v x 0.185 hrs/HP.h x 1,000 Cr\$/hr x $5 \text{ hrs/month} = \text{Cr} \$ 1.4 \text{ K.V. v/v}_{0}$. . . which for K = 1.5 and $v/v_0 = 1$ gives: c = Cr 81.4 x 1.5 x 1 x V c = Cr\$, 122.1 x V 1 = 0.1 c (lubricant) $C_{\alpha} = 0.43/12 \times US$ 1,000/ton x 1.833 tons/m³ x V x 1.3 Cr$/US$$ Cc = Cr\$ 479.48 x V.m." 1 = Cr 12.21 x V Thus: C = 175,000 + 30,000 + 122.1 V + 12.21 V + 479.48.VC = (613.70 - x/V + 205,000) Cr\$/month

For a 6,000 m³ dredge werhave: $C = 613.79 \times 6,000 + 205,000 = 3,682,740 + 205,000$ = 3,887,740.00 Ĉ cost with overhead and profit -- C' = 1.20 c $C' = 1.20 \times 3,887,740.00 = 4,665,288.00$ In summary, we have the following table for dredges with a transport velocity of 12 knots, and the draft x hopper volume graph. 3*. Hopper Volume - V Monthly Operating Cost - C' 1,000 m Cr\$ 982,548.00 2,000 m Cr\$ 1,718,880.00 3,000 m Cr\$ 2,455,644.00 4,000 m Cr\$ 3,192,192.00 5,000 m⁻³ Cr\$ 3,928,740.00 .6,000 m³ Cr\$ 4,665,288.00 7,000 m Cr\$ 5,401,836.00 87000 m Cr\$ 6,138,384.00 9,000 m Cr\$ 6,874,932.00 10,000[°]m Cr\$ 9,611,480.00 VELOCITY miles/hour DRAMI (n 10,0 15,0 9,0 بسرويية 14,0 -VELOCITY X HOPPER VCLUE 13,0 .8.0 12,0 11,0 7,0 DRAFT X HOPPER VOLUME 10,0 6.0 5.0 .(m³) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 GRAPH - DRANT X HOPPER YOLUNE X VELCCITY

Monthly operating cost of suction and pumping dredges

we are going to define a series of 16" and 26" suction and pumping dredges and auxiliary equipment needed to perform the services in question.

Dredging outfit

In general, the dredging outfit is composed of:

- 1 Suction and pumping dredge
- 1 Oil and water barge
- 1 Flush deck barge
- 1 15 ton grane
- 1 Service and support launch
- 1 Tugboat

2,000 m floating/onshore piping

Characteristics of the dredges

In order to obtain the lowest operating cost, we are going to base our study on a series of portable dredges whose characteristics should satisfy to a large extent the dredging that should be performed. Only for dredging sandstone will dredges of greater disaggregator potential be needed.

The following list defines the principal characteristics of this equipment, by diamter of the pumping piping.

В

TYPE OF DREDGE L(m)		B (m)	d (m) .	HP PUMP	HP AUX.	· HP DISAGC.	
1.6 "	21.00	6.70	1.00	850	335	250	
18"	21.00	6.70	1.10	1125	335	250	
20"	30.00	.9.70	1.25	1700	670	400	
22"	35.00	9.70	1.40	1950	670	400	•
24"	40.00	11.00	1.50	2250	850	500	
26"	40.00	11.00	1.70	3400	1185	800	

Determination of the expected production for each type of dredge and material to be dredged.

16" Dredge

. . Initially we will consider the minimum permissible velocities • 1.3 for each type of material dredged, in view of its settling in the pumping pipe.

а

For sand w = 3.6 m/s

For hard clay and sandstone - $v_m = 6.2 \text{ m/s}$ b

c For soft clay -
$$v_m = 3.0 \text{ m/s}$$

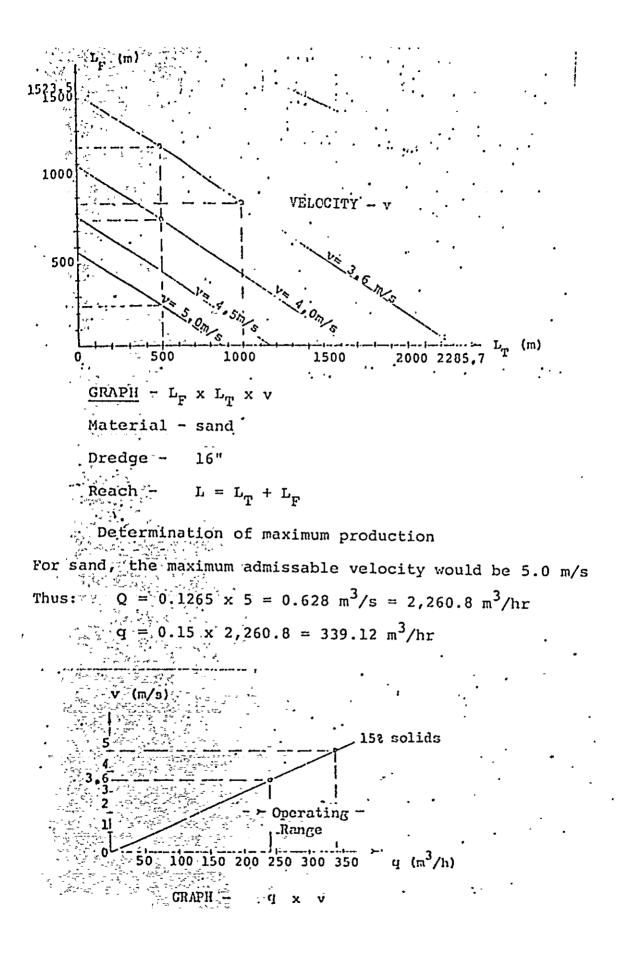
Determination of the maximum reach For sand $\int D = 16" = 0.40 \text{ m}$ h = 2.8 m/100 mHead loss for v = 3.6 m/s

IV-1/4.42

:

Calculation of the specific weight of the mixture $j=0.15 \times 2.0$ + 0.85 x l=1.15 tons/m³ with 15% solids. Head loss for the mixture - rectilineal/without unions $h_T = 1.15 \times 1.0 \times 2.8 = 3.22 \text{ m/l00 m}$ Head loss for the mixture - floating piping, with unions $h_F = 1.5 \times 3.22 = 4.83 \text{ m/l00 m}$

Calculation of maximum reaches:


 $HP = \frac{j \cdot x \cdot Q \cdot x \cdot M}{75 \cdot x \cdot n}$ $Q = A \times v$ $A = 0.785 \times 0.4^{2} = 0.1256 \text{ m}^{2}$ v = 3.6 m/s $Q = 0.1256x3_{0}6 = 0.452 \text{ m}^{3}/\text{s} = 1627.7 \text{ m}^{3}/\text{hr}$ $q = 0.15 \times 1627.7 = 244.16 \text{ m}^{3}/\text{hr}$ n = 0.60 $H = \frac{75 \times n \times HP}{1.15 \times 1,000 \times 0.42} = 73.6 \text{ m} H_{2}0$ $H = 73.6 \text{ m} H_{2}0$

The maximum length of the rectinlinear piping without unions will be:

 $L_{T} = H/h_{T} = \frac{73.6}{3.22} = 100 = 2,285.7 \text{ m}$

The maximum length of the floating piping with unions will be:

 $L_F = H/h_F = \frac{73.6}{4.83} \times 100 = 1,523.8 \text{ m}$

Determination of the curve
$$L_{\rm F} \times L_{\rm T}$$
 for velocities:
 $v = 4.0 \text{ m/s}$, $v = 5.0 \text{ m/s}$ and $v = 4.5 \text{ m/s}$
 $v = 4.0 \text{ m/s}$ $h = 3.5\text{m}/100 \text{ m}$
 $h_{\rm T} = 1.15 \times 3.5 = 4.03 \text{ m}/100 \text{ m}$
 $h_{\rm F} = 1.5 \times 4.03 = 6.04 \text{ m}/100 \text{ m}$
 $Q = 0.1256 \times 4 = 0.503 \text{ m}^3/\text{s}$
 $H = \frac{75 \times 0.60 \times 850}{1.15 \times 1,000 \times 0.502} = 66.26 \text{ m/H}_20$
 $L_{\rm T} = H/h_{\rm F} = \frac{66.26 \times 100}{6.04} = 1,097.0 \text{ m}$
 $L_{\rm F} = \text{H/h}_{\rm F} = \frac{66.26 \times 100}{6.04} = 1,097.0 \text{ m}$
for $v = 5.0 \text{ m/s}$ $h = 5.4 \text{ m}/100 \text{ m}$
 $h_{\rm T} = 4.15 \times 5.4 = 6.21 \text{ m}/100 \text{ m}$
 $h_{\rm F} = 1.15 \times 1,000 \times 0.628$
 $L_{\rm T} = H/h_{\rm F} = \frac{52.96 \times 100}{6.21} = 352.8 \text{ m}$
 $L_{\rm T} = H/h_{\rm F} = \frac{52.96 \times 100}{9.32} = 568.2 \text{ m}$
 $L_{\rm T} = h/h_{\rm F} = \frac{52.96 \times 100}{9.32} = 568.2 \text{ m}$
 $L_{\rm T} = h/h_{\rm F} = \frac{52.96 \times 100}{9.32} = 568.2 \text{ m}$
 $L_{\rm T} = 1.15 \times 4.4 = 5.06 \text{ m}/100 \text{ m}$

iv-1/4.45

•

•

$$h_{\rm F} = \frac{1.50 \times 5.06}{1.15 \times 1.00} \times \frac{850}{1.15 \times 1.000} = \frac{7.59 \text{ m}}{1.00 \text{ m}} \quad q = 305.2 \text{ m}^3/\text{hr}$$

$$H = \frac{75 \times 0.60 \times 850}{1.15 \times 1.000 \times 0.565} = 58.87 \text{ m} \text{ H}_2\text{O}$$

$$L_{\rm T} = \frac{\text{H}}{h_{\rm T}} = \frac{58.87 \times 100}{5.06} = 1.163.4 \text{ m}$$

$$L_{\rm F} = \frac{\text{H}}{h_{\rm F}} = \frac{58.87 \times 100}{7.59} = 775.6 \text{ mm}$$

18" Dredge

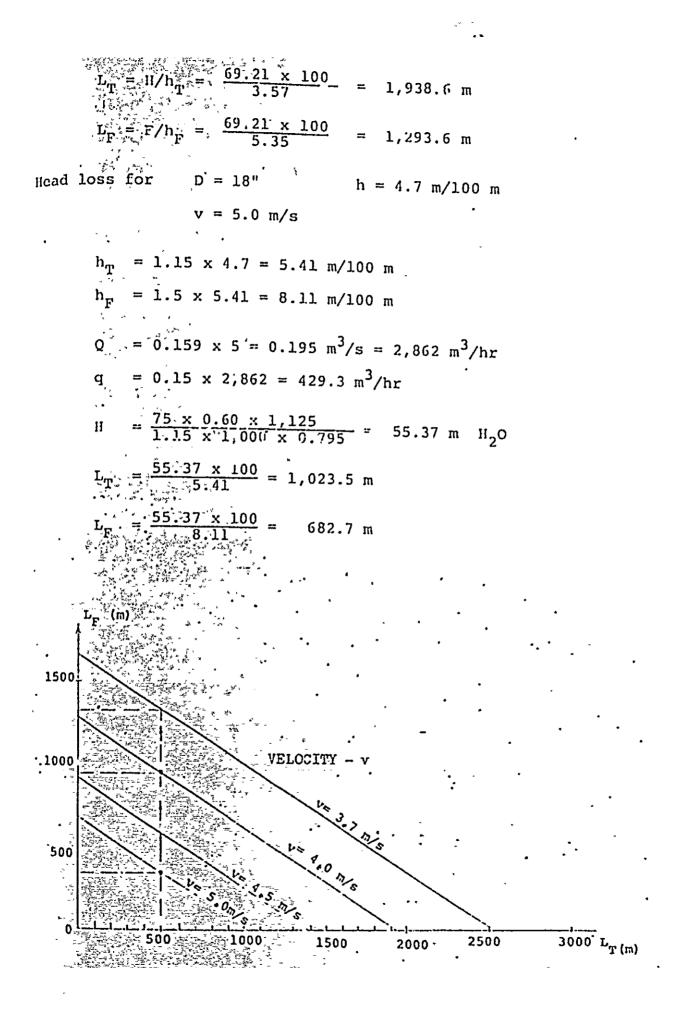
We will initially consider the minimum permissable rates for each type of material in view of sedimentation in the dredge pumping piping.

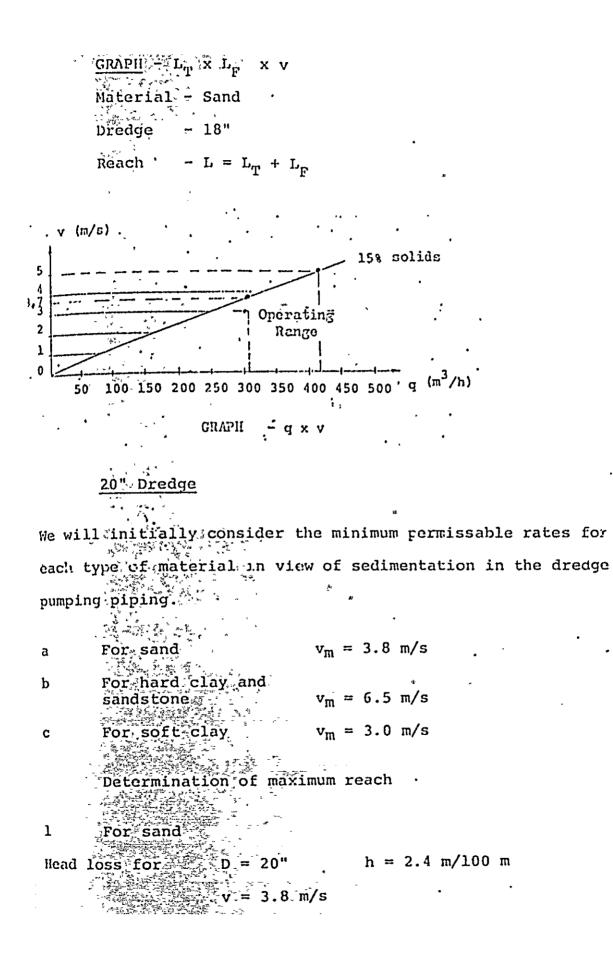
a	For sand $-v = 3.7 \text{ m/s}$
b	For hard clay and sandstone - vm = 6.3 m/s
С	For soft clay - vm = 3.0 m/s Determination of maximum reach
1	For sand
Head	$\log for_{t}^{2} D = 18" = 0.45$ h = 2.60 m/100 m
	v = 3.7 m/s $h_T = 1.15 \times 2.6 = 2.99 \text{ m/100 m}$ $h_F = 1.5 \times 2.99 = 4.48 \text{ m/100 m}$ $A = 0.785 \times 0.45^2 = 0.159 \text{ m}^2$ v = 3.7 m/s

$$Q = 0.159 \times 3.7 = 0.5*8 \text{ m}^3/\text{s} = 2,117.8 \text{ m}^3/\text{hr}$$

$$q = 0.15 \times 2,117.8 = 317.6 \text{ m}^3/\text{hr}$$

$$H = \frac{75 \times 0.60 \times 1,125}{1.15 \times 1,0000 \times 0.588} = 74.86 \text{ m} \text{ H}_2\text{O}$$


$$L_T = H/h_F = \frac{74.86}{4.48} \times 100}{1.15 \times 1,000 \times 0.588} = 74.86 \text{ m} \text{ H}_2\text{O}$$


$$L_T = H/h_F = \frac{74.86 \times 100}{4.48} = 1,670.9 \text{ m}$$
Head loss for D = 18" ,h = 3.1 m/100 m
v = 4.0 m/s
h_T = 1.15 \times 3.1 = 3.57 m/100 m
h_F = 1.50 \times 3.57 = 5.35 m/100 m
Q = 0.159 \times 4.0 = 0.636 m^3/\text{s} = 2,289.6 m^3/\text{hr}
$$q = 0.15 \times 2,289.6 = 343.4 \text{ m}^3/\text{hr}$$

$$H = \frac{75 \times 0.60 \times 1,125}{1.15 \times 1,000 \times 0.636} = 69.21 \text{ m} \text{ H}_2\text{O}$$
Head loss for v = 4.5 m/s
D = 18" h = 3.85 m/100 m
h_F = 1.50 \times 4.43 = 6.64 m/100 m
h_F = 1.50 \times 4.5 = 0.716 m^3/\text{s} = 2,575.8 m^3/\text{hr}
$$q = 0.159 \times 4.5 = 0.716 \text{ m}^3/\text{s} = 2,575.8 m^3/\text{hr}$$

$$H = \frac{75 \times 0.60 \times 1,125}{1.15 \times 1,000 \times 0.716} = 61.48 \text{ m}$$

$$L_T = H/h_T = \frac{61.48 \times 100}{4.43} = 1,387.9 \text{ m}$$

$$h_{T} = 1.15 \times 2.4 = 3.76 \text{ m/103 m}$$

$$h_{T} = 1.15 \times 2.76 = 4.14 \text{ m/100 m}$$

$$A = 0.785 \times 0.508^{2} = 0.202 \text{ m}^{2}$$

$$v = 3.6 \text{ m/s}$$

$$Q = 0.002 \times 3.8 = 0.767 \text{ m}^{3}/\text{s} = 2.763.36 \text{ m}^{3}/\text{hr}$$

$$q = 0.15 \times 2.763.36 = 414.5 \text{ m}^{3}/\text{hr}$$

$$H = \frac{75.\times0.60 \times 1.700}{1.15 \times 2.763.36} = 414.5 \text{ m}^{3}/\text{hr}$$

$$H = \frac{75.\times0.60 \times 1.700}{1.15 \times 1.000 \times 0.767} = 86.73 \text{ m} \text{ H}_{2}\text{O}$$

$$L_{T} = W/h_{T} = \frac{86.73}{2.76} \frac{\times 100}{4.14} = 2.094.9 \text{ m}$$
Head loss for
$$D = 20^{\text{m}} \text{ h} = 2.7 \text{ m/100 m}$$

$$v = 4.0 \text{ m/s}$$

$$h_{T} = 1.55 \times 2.7 = 3.105 \text{ m/100 m}$$

$$Q = 0.202 \times 4.0 \pm 0.808 \text{ m}^{3}/\text{s} = 2.908.8 \text{ m}^{3}/\text{hr}$$

$$H = \frac{75.\times0.60 \times 1.700}{3.105} = 4.657 \text{ m/100 m}$$

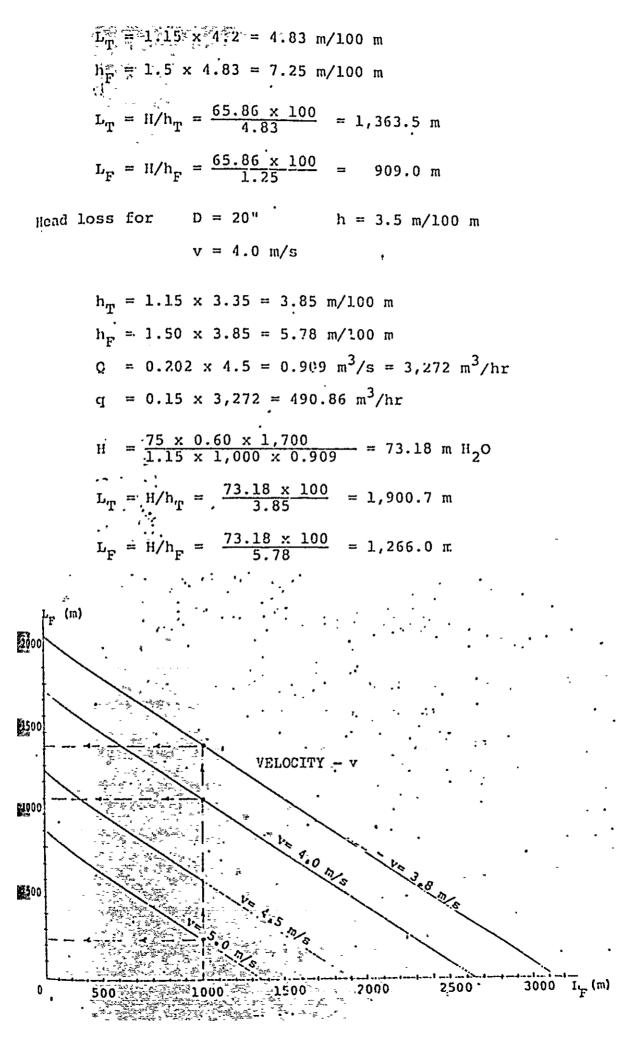
$$Q = 0.15 \times 2.909.8 = 436.32 \text{ m}^{3}/\text{hr}$$

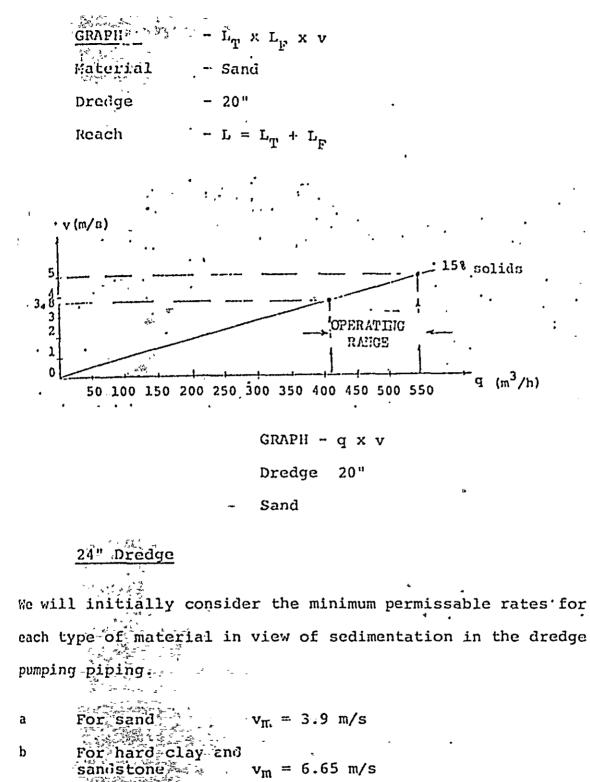
$$H = \frac{75.\times0.60 \times 1.700}{3.105} = 2.651.5 \text{ m}$$

$$L_{T} = H/h_{T} = \frac{82.33 \times 100}{3.105} = 1.767.7 \text{ m}$$
Head loss for
$$D = 20^{\text{m}} \text{ h} = 4.2 \text{ m/100 m}$$

$$v = 5.0 \text{ m/s}$$

$$Q = 0.202 \times 5.0 = 1.01 \text{ m}^{3}/\text{s} = 3.636 \text{ m}^{3}/\text{hr}$$


$$H = \frac{75.\times0.66}{3.105} \times 100 \text{ m} = 0.767.7 \text{ m}$$
Head loss for
$$D = 20^{\text{m}} \text{ h} = 2.551.5 \text{ m}$$


$$L_{T} = H/h_{T} = \frac{82.33 \times 100}{3.105} = 1.767.7 \text{ m}$$
Head loss for
$$D = 20^{\text{m}} \text{ h} = 4.2 \text{ m/100 m}$$

$$V = 5.0 \text{ m/s}$$

$$Q = 0.202 \times 5.0 = 1.01 \text{ m}^{3}/\text{s} = 3.636 \text{ m}^{3}/\text{hr}$$

$$H = \frac{75.\times0.660 \times 1.700}{1.15 \times 1.000 \times 1.01} = 0.5.86 \text{ m} H_{2}O$$

- For soft clay С $v_{\rm m} = 3.0 \, {\rm m/s}$

Determination of maximum reach, For sand 1 B_{Head} loss for: D = 24" = 0.61 h = 2.0 m/100 m v = 3.9 m/s $h_{rp} = 1.15 \times 2.0 = 2.3 \text{ m/l00 m}$ $h_{\rm p} = 1.5 \times 2.3 = 3.45 \text{ m/l}.00 \text{ m}$,*Pr 24, ⁵ 3 7 $\Lambda = 0.785 \times 0.61^2 = 0.292 \text{ m}^2$ v = 3.9 m/s $Q = 0.292 \times 3.9 = 1.139 \text{ m}^3/\text{s} = 4,101 \text{ m}^3/\text{hr}$ $q = 0.15 \times 4,101 = 615.159 \text{ m}^3/\text{hr}$ $H_{-} = \frac{75 \times 0.60 \times 2,250}{1.15 \times 1,000 \times 1,139} = 77.30 \text{ m H}_{2}0$ $L_{T} = H/h_{\tilde{T}} = \frac{77.30 \times 100}{2.3} = 3,360.8 \text{ m}$ $L_{F} = H/h_{\tilde{F}} = \frac{77.30 \times 109}{3.45} = 2,240.5 \text{ m}$ Head loss for: v = 4.0 m/sh = 2.15 m/1C0 mhm = 1.15 x 2.15 = 2.47 m/100 m $h_{F} = 1.5 \times 2.47 = 3.70 \text{ m/l00 m}$ $Q = 0.292 \times 4.0 = 1.168 \text{ m}^3/\text{s} = 4,204.8 \text{ m}^3/\text{hr}$ $q = 0.15 \times 4,204.8 = 630 \text{ m}^3/\text{hr}$ $H = \frac{75 \times 0.60 \times 2,250}{1.15 \times 1,000 \times 1,168}$ -- ^{*}= 75.38 m H₂O llead loss for: v = 4.5 m/s h = 2.7 m/100 m

IV-174.53

$$h_{T} = 1.15 \times 2.7 = 3.105 \text{ m/100 }\text{ m}$$

$$h_{F} = 1.5 \times 3.105 = 4.66 \text{ m/100 }\text{m}$$

$$Q = 0.292 \times 4.5 = 1.314 \text{ m}^{3}/\text{s} = 4.730.4 \text{ m}^{3}/\text{hr}$$

$$q = 0.15 \times 4.730.4 = 709.56 \text{ m}^{3}/\text{hr}$$

$$H = \frac{75 \times 0.6 \times 2.250}{1.15 \times 1.000 \times 1.314} = 67.00 \text{ m H}_{2}0$$

$$L_{T} = H/h_{T} = \frac{67.00 \times 100}{2.47} = 3.051.8 \text{ m}$$

$$L_{T} = H/h_{F} = \frac{75.38 \times 100}{2.47} = 3.051.8 \text{ m}$$

$$H = \frac{75 \times 0.60 \times 2.250}{1.15 \times 1.000 \times 1.46} = 60.30 \text{ m H}_{2}0$$
Head loss for:

$$D = 24^{\circ} \text{ h} = 3.3 \text{ m/100 m}$$

$$h_{F} = 1.5 \times 3.795 = 5.692 \text{ m/100 m}$$

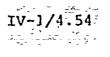
$$h_{F} = 1.5 \times 3.795 = 5.692 \text{ m/100 m}$$

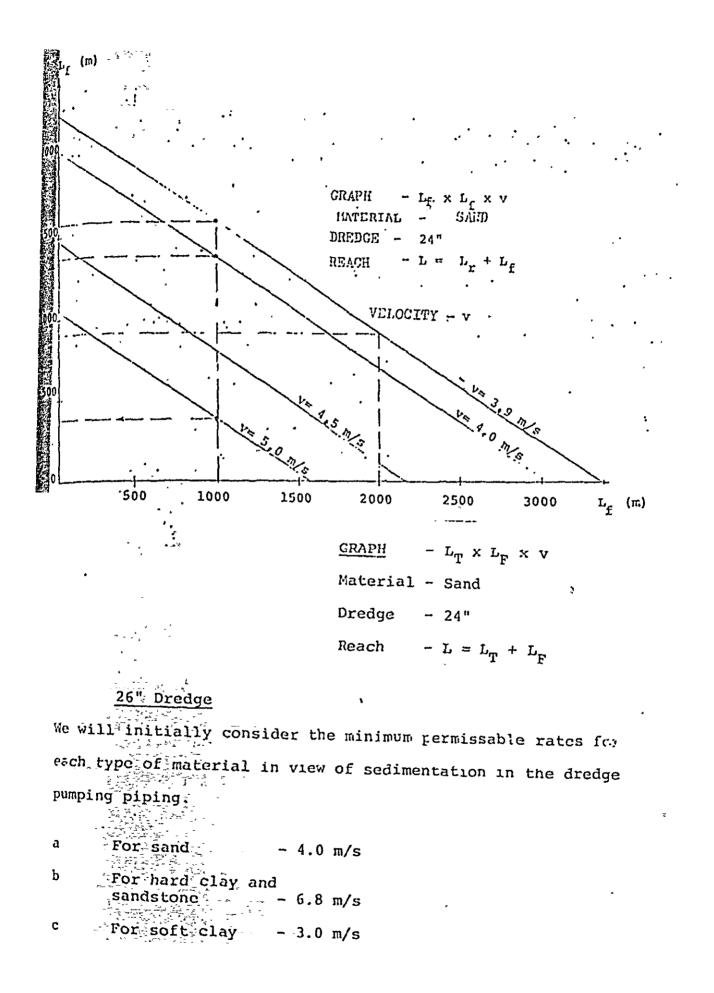
$$Q = 0.292 \times 5.0 = 1.46 \text{ m}^{3}/\text{s} = 5.256 \text{ m}^{3}/\text{hr}$$

$$L_{T} = H/h_{T} = \frac{60.30 \times 100}{3.795} = 1.589.0 \text{ m}$$

<u>،</u> -

•

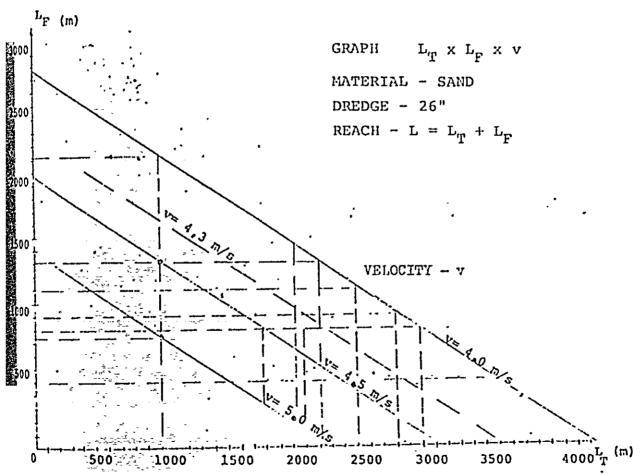

.

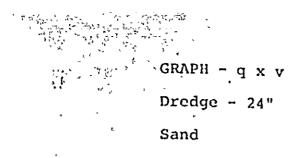

.

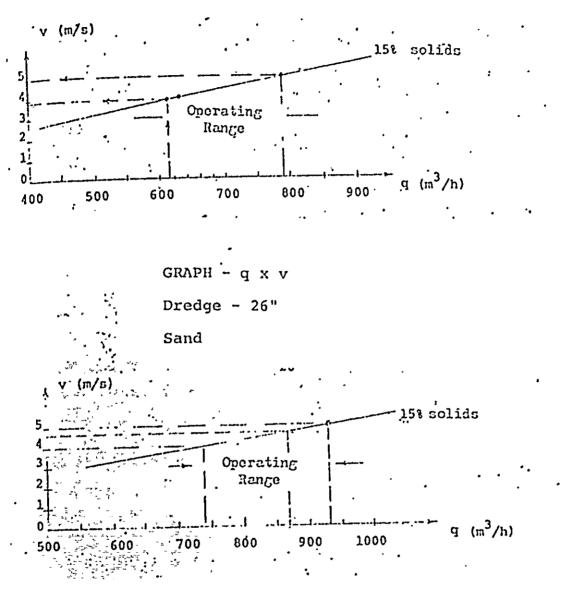
•

.

A 4 | AF 7 ~

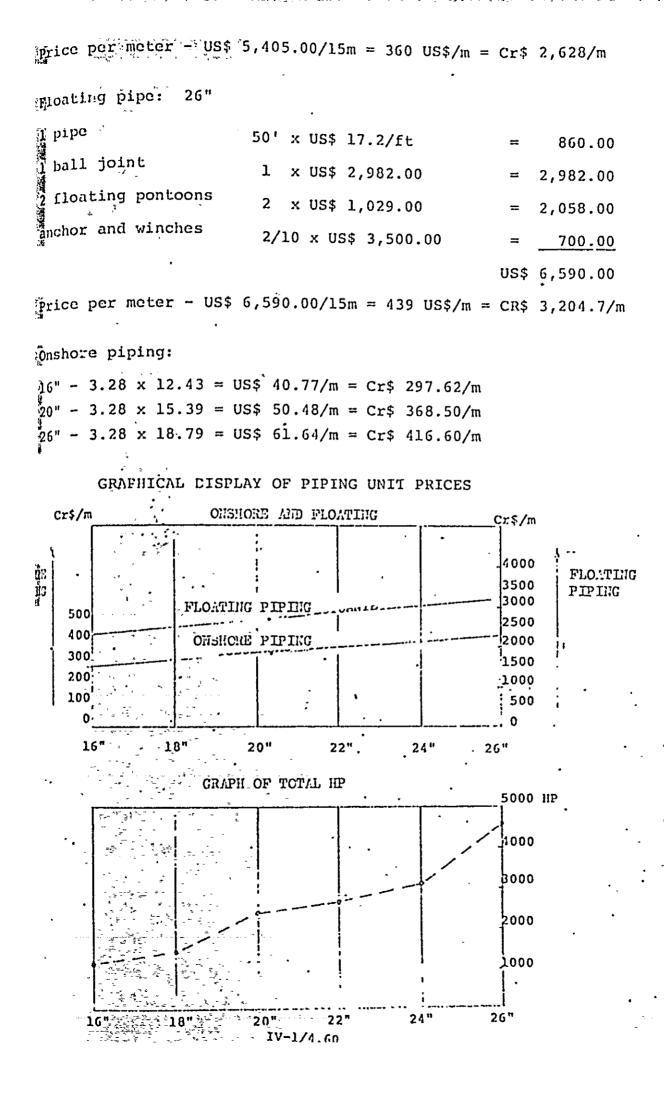



Determination of maximum reach For sand 1 Head loss for: D = 26" = 0.66 m h = 1.95 m/l00 mv = 4.0 m/s $\Lambda = 0.785 \times 0.66^2 = 0.342 \text{ m}^2$ v = 4.0 m/s $Q = 0.342 \times 4.0 = 1.368 \text{ m}^3/\text{s} = 4,924 \text{ m}^3/\text{hr}$ $q = 0.15 \times 4,924 = 738.6 \text{ m}^3/\text{hr}$ $H = \frac{75 \times 0.60 \times 3,400}{1.15 \times 1,000 \times 1,368} = 97.25 \text{ m} \text{ H}_2\text{O}$ $h_{\rm m} = 1.15 \times 1.95 = 2.24 \text{ m/100 m}$ $h_{\rm F} = 1.50 \times 2.24 = 3.36 \text{ m/100 m}$ $L_{T_{1,2,2}} = \frac{h}{h} h_{T} = \frac{97.25 \times 100}{2.24} = 4,341.5 \text{ m}$ • $L_{F_{1}} = \frac{H/h_{F}}{M/h_{F}} = \frac{97.25 \times 100}{3.36} = 2,894.3 \text{ m}$ lead loss for: D = 26" h = 3.00° ~ v = 5.0 m/s $h_m = 1.15 \times 3.00 = 3.45 m/100 m$ $h_{r=1}^{2} = 1.50 \times 3.45 = 5.17 \text{ m/100 m}$ $Q_{\pm} = 0.342 \times 5 = 1.71 \text{ m}^3/\text{s} = 6,156 \text{ m}^3/\text{hr}$ $q = 0.15 \times 6.156 = 023.4 \text{ m}^3/\text{hr}$ $H_{-H_{-}} = \frac{75 \times 0.60 \times 3,400}{1.15 \times 1,000 \times 1.71} = 77.80 \text{ m H}_{2}0$ $L_{T} = H/h_{T} = \frac{77.80 \times 100}{3.45} = 2,255.0 \text{ m}$ $L_{F} = H/h_{F} = \frac{77.80 \times 100}{5.17} = 1,504.8 \text{ m}$


For D = 26" h = 2.4 m/100 m

$$v' = 4.5 m/s$$

 $h_T = 1.15 \times 2.40 = 2.76 m/100 m$
 $h_F = 1.5 \times 2.76 = 4.14 m/100 m$
Q = 0.342 × 4.5 = 1.539 m³/s = 5,540 m³/hr
q = 0.15 × 5,540.4 = 831.0 m³/hr
H = $\frac{75 \times 0.60 \times 3,400}{1.15 \times 1,000 \times 1.539} = 86.45$ in B_20
 $L_T = h/h_T = \frac{86.45 \times 100}{2.76} = 3,132.2 m$
 $L_F = H/h_F = \frac{86.45 \times 100}{4.14} = 2,088.2 m$



IV-1/4:57

GRAPHICAL DISPLAY OF THE VALUES OF SUCTION AND PUMPING DREDGES AND AUXILIARY EQUIPMENT 2000_ 180d 1600 SUCTION AND NUIPING DREDGES 1400 1200 1000 800 600 AUXILIARY EQUIPHENT 400 200 . 000-16" 18" 20" 22" 24" 26" 1 oil and water barge US\$ 120,000.00 70,000.00 1 Flush deck barge-80,000.00 50,000.00 1 Tuqboat - head 200,000.00 160,000.00 \$ 1-Service launch 100,000.00 70,000.00 •••• US\$ 500,000.00 350,000.00 Ċ Determination of the value of floating and onshore piping for the average dredge types Floating pipe: 16" 1 pipe - length - 50' x US\$ 11.12/ft = 556.00 1 x US\$ 1,663.10 1,663.00 1 ball joint <u>.</u> = 2 floating pontoon 2 x US\$ 722.00 1,444.00 = anchor and winches 2/10 x US\$ 2,500.00 = 500.00 US\$4,163.00/15 m ــَـَّه. - بـَـَّهُــَرِّ - بـُـ Price per_meter - US\$ 4,163.00/15m = 277.00 US\$/m = Cr\$ 2,022/m ÷.,-- -----Floating pipe: 20" 615.00 50' x 12.30 US\$/ft 1 pipe -- length -= 1 ball joint 1 x US\$ 2,142.00 = 2,142.002 x US\$ 1,029.00 = 2,058.002 floating pontoons anchor and winches $2/10 \times US$ \$ 3,000.00 = 600.00 US\$ 5,405.00/15 m IV-1/4.59


```
Composition of Suction and Pumping Dredges' Operating Cost
D
We are going to determine the operating cost of the dredges and
their outfit of auxiliary equipment.
          Dredge
      1
      2
          Auxiliary equipment
          Floating and onshore piping
      3
      Dredge Cost
1
      Work schedule:
Available hours - 24 hrs/day x 6 days/week x 4.3 weeks/month
= 619.2 hours/month
Assuming a coefficient of operational efficiency equal to
65% we have:
Hours of operation - 0.65 \times 619.2 = 402.5 hrs/month
       • • • • • • •
      Crew
      Job
                        No.
                              Salary
                                              Total
      Dredge operator
                          4
                              2,000.00
                                             8,000.00
                          4
      Engineer
                              2,000.00
                                             8,000.00
      Coal bunkers
                          6
                              1,000.00
                                             6,000.00
                          6
                              1,000.00
                                             6,000.00
      Deck_hands
      Foremen
                         _2
                              2,000.00
                                            4,000.00
        ,
                         22
                                         Cr$32,000.00
```

The average salary will be $32,000 \div 22 = 1,454.50$ Overtime - 120 hrs/month for each crew Average straight time hourly rate = 1,454.5 ÷ 200 = 7.27 Cr\$/hr Average overtime hourly rate = 1.5 x 7.27 = 10.90 Cr\$/hr Calculation of operating cost 16" Dredge - Value = US\$ 500,000.00 = Cr\$ 3,650,000.00 1 Personnel salaries $-22 \times 1,454.5 = 32,000.00$ overtime $22 \times 120 \times 10.90 = 28,780.00$ 60,780.00 2 Social Benefits $0.65 \times 60,780.00$ 39,510.00 • Fôod 3 20,000.00 Fuel ----4 0.90° x 0.185 1/HP.h x Cr\$1.00/1 x 402.5 hrs/month x 1,185 HP x 67.01 x 1,185 79,415.00 5 Lubricants - 10% of fuel 7.940.00 6 Costs of capital ۱. $0.43/12 \times 3,650,000.00$ 130,790.00 338,435.00 Cr\$. . ĩ -

IV-1/4.62

. .

18" Dr	edge - Value = US\$ 800,000.00	= Cr\$ 5,840,	000.00
1	Personnel	60,780.00	
2	Social Benefits	39,510.00	
3.	Food	20,000.00	120,290.00
4	Fuel 57.01 x 1,460.00		97,820.00
5	Lubricants		9.782.00
6	Capital costs $0.43/12 \times 5,8$	340,000.00	209,266.00
			Cr\$437,156.00
20" Dx	redge - Value - US\$ 1,100,000.	.00 x Cr\$ 8,0:	30,000.00
1 2	Personnel Social Benefits		120,290.00
3	Food		
4	Fuel 67.01 x 2,370	•	158,790.00
5	Lubricants		15,874.00
r -			
6	Capital costs 0.43/12 × 8,	030.00	<u>287,740.00</u> Cr\$582,699.00

•

22" Dr	edge - Value - US\$ 1,400,000.00 =	Cr\$ 10,220,000.00
1	Personnel	
-	Social Benefits	120,290.00
3.	Food	
4	Fuel 67.01 x 2,620	175,540.00
5	Lubricants	17,550.00
6	Capital costs 0.43/12 x 10,220,000.00	336,220.00
	• •	Cr\$ 679,600.00
24" Dr	edge - Value - US\$ 1,700,000.00 = Cr\$	12,410,000.00
1	Personnel	
2	Social Benefits	120,290.00
3	Food	·
4	Fuel 67.01 x 3,100	207,700.00
5	Lubricants	20,770.00
6.	Capital costs 0.43/12 x 12,410,000.00	444,690.00
		Cr\$ 793,450.00

,

The monthly cost will be: . . . ý.-26" Dredge 980,000.00 Aux. equipment 215,000.00 1,000 m floating pipe 1,490,000.00 2,000 m onshore piping ____7<u>6,000.00</u> Cr\$1,420,000.00 The cost per cubic meter will be: $\frac{1.2 \times 1,420,000.00}{340,000} = 5.1 \text{ Cr}/\text{m}^3$ The total cost of the work will be: 2,310,600 x 5.1 = Cr\$ 11,784,060.00 The time period for performing the work will be: $2,310,600 \div 340,000 = 6.8$ months Filling area T2 Ē The volume to be filled is $1,368,300 \text{ m}^3$. Using 3,300 m of onshore piping between points I and II and 500 m of floating pipe, the total transport distance will be 3,800 m. The rate of 4.5 m/s dredged reached 2,300 m. We will have to use a 2,250 HP booster, whose reach would be: _3,100 m - 3,400 x 2,250 $2,250 \times 3,100 = 2,051 \text{ m}$ 3,400

If we increase the rate to 4.7 m/s, the dredge reaches 2,000 m, and the booster will reach

• •

2,600 - 3,400				
x 2,250				
x $\frac{2,250 \times 2,600}{3,400}$ = 1,720 m, which is compatible				
The cost will be:				
26" dredge 980,000.00				
Aux. equipment 215,000.00				
500 m floating pipe 75,000.00				
3,300 m onshore piping 126,000.00				
1 26" booster : <u>330,000.00</u>				
Cr\$ 1,726,000.00				
Production will be: $400 \times 870 = 348,000 \text{ m}^3/\text{month}$				
The price per cubic meter = $\frac{1.2 \times 1.726,000.00}{348,000} = 5.95 \text{ Cr}/\text{m}^3$				
The total cost will be: 1,368,300 x 5.95 = Cr\$ 8,141,385.00				
The time period for performing the work will be: 1,368,300 ÷ 348,000 = 3.93 months				
F Filling area T5				
The volume of fill for this area is 11,243,060 m, of which				
4,775,000 will be from the area close to the fore harbor,				
with a pumping distance of 5,000 m on shore and 700 m floating.				
The dredge, at a rate of 4.3 m/s, will reach up to 2,500 m.				
A booster will be necessary to reach the additional 2,500 m onshore.				

•

ł

The power will be:
$$3,400 - 3,600 \text{ m}$$

x 2,500
x $\frac{3,400 \times 2,500}{3,600} = 2,360 \text{ HP}$

We conclude that the 2,250 booster will be sufficient if a rate of 4.2 m/s is used.

The monthly cost will be:

26" Dredge		980,000.00
Aux. equipment		215,000.00
700 m floating pipe		105,000.00
5,000 m onshore pipi	.ng	190,000.00
1 26". booster		330,000.00
	Cr\$	1,820,000.00

Production will be: $400 \times 800 \text{ m}^3/\text{hr} = 320,000$

The cost per cubic meter will be = $\frac{1.2 \times 1,820,000.00}{320,000}$ =

 6.82 Cr^{3}

The cost of this portion will be: 4,775,000 x 6.82 = Cr\$ 32,565,000. The time period for performing the work will be -4,775,000 ÷ 320,000 = 14.92 months The remaining 6,468,060 m³ will be taken from the same area. Using 700 m of floating pipe, the distance to be covered with onshore piping will be 6,300 m.

At a rate of 4.7 m/s, the dredge will reach 1,700m onshore, making necessary 3 2,250 HP boosters to reach 4,600 m.

The required power will be: 6,015 HP The monthly cost will be: .26" Dredge 980,000.00 Auxiliary equipment 215,000.00 '700 m floating pipe 105,000.00 6,300 m onshore piping 240,000.00 2 26" boosters <u>990,000.00</u> Cr 2,530,000.00 Production will be 400 x 870 - 348,000 m^3 /month The price per cubic meter will be: $\frac{1.2 \times 2,530,000}{348,000} = 8.72 \text{ Cr}/\text{m}^3$ The cost of this portion will be: 6,468,060 x 8.72 = Cr\$ 56,401,483.00 The time period for performing the work will be: 6,468,060 ÷ 348,000 = 18.58 months Filling areas T3" and T4" G The volume to be filled is 4,950,040 m³ and 1,428,930 m³. With 500 m of floating pipe, entering by point IV, the transport distance will be : At a rate of 4.5 m/s, the dredge reaches 2,300 m. For the remaining 1,500 m, a booster will be necessary. Based on previous experience, we can therefore increase the rate to 4.7 m/s. :

TV-1/4.68

The dredge will therefore reach 2,000 m and the remaining 1,800 m will be impelled by the booster. Power = 2,353 HP, which is satisfactory. We will use a rate of 4.6 m/s. The cost will be: 26" Dredge 980,000.00 * Auxiliary equipment 215,000.00 500 m floating pipe 75,000.00 3,800 m onshore piping 145,000.00 1 booster 330,000.00 Cr\$ 1,745,000.00 production will be 400 x 860 = $344,000 \text{ m}^3/\text{month}$ The price per cubic meter will be = $\frac{1.2 \times 1,745,000.00}{344,000.00}$ = 6.08 Cr\$/m The total cost will be: 673827970, x 6.08 = Cr\$ 38,808,457.00 The time period for performing the work will be = 6,382,970 -344,000 = 18.55 months Filling areas T8 and T9 H Using 1,500 m of floating pipe and entering at area T10 by point III, the transport distance will be 6,800 m, of which 5,300 m will be by onshore piping. The dredge will reach 850m onshore, and the remaining 4,450 m will be impelled by booster at a rate of 4.5m/s. Power will be: 4,803 HP:

IV=1/4.69

We can consider the rate of 4.5 m/s as valid for all the work since only a small volume will be pumped at the maximum distance above.

Therefore, 2 2,250 HP boosters will be sufficient.

The monthly cost will be:	
26" Dredge 👎	980,000.00
Auxiliary equipment	215,000.00
1,500 m floating pipe	224,000.00
5,300 m onshore piping	202,000.00
2 26" boosters	660,000.00

Cr\$ 2,281,000.00

Monthly production will be $400 \times 830 \text{ m}^3/\text{hr} = 332,000 \text{ m}^3/\text{month}$ The cost per cubic meter will be $= \frac{1.2 \times 2,281,000.00}{332,000} =$ 8.24 Cr\$/m³

The total cost will be: 5,421,375 m³ c 8.24 = Cr\$ 44,672,130.00

Time period for performing the work = $5,421,375 \div 332,000 = 16.33$

4.3.8 DREDGING CLAY AND SANDSTONE

Dredging Clay

A

i test test test

We are going to consider four basic situations:

1 Dredging the rectification of the Massangana River and disposing material over the reef, at a maximum floating distance of 2,500 m.

IV-1/4.70

:

2 Dredging the strip parallel to the reef, disposing at 1,000 m.

3 Dredging the T₁ spill area (north) with a 1,000 m disposal distance up to the reef.

⁴ Dredging the area boundering on areas T_1 (south) and T_0 , outside of a radius of 1,000 m, with center at 0, whose maximum pumping distance will be 2,500 m.

In these cases, only floating piping will be used, and as a consequence of the distances, all the clay could be dredged with a dredge only, without requiring a booster, since with a rate of 4.0 m/s a distance of 2,900 m could be reached.

The costs will be:

.1

For the 1st case we would have:

Cost will be calculated based on production for a distance of 1,700 m, from the area's center of gravity to the disposal point (this will be an average cost), using 2,500 m of piping. The volume to be dredged will be: 2,217,519 m³ of clay. Production will be: $400 \times 850 \text{ m}^3/\text{hr} = 340,000 \text{ m}^3/\text{month}, \text{ at } 4.7 \text{ m/s and}$ 15% solids 980,000.00 The cost will be: 26" Dredge .215,000.00 Aux. equipment 2,500 m floating pipe 373,000.00 Cr\$ 1,568,000.00 Cost per c: bic meter: $\frac{1.2 \times 1,568,000.00}{340,000} = 4.54 \text{ Cr}/\text{m}^3$ 340,000

IV-1/4.71

: Ps: . '* 343 $2,217,519 \times 5.54 = Cr$12,285,055.00$ Total cost: Time period for performing the work: 2,217,519 - 340,000 = 6.52 months For the second case we will have: In this case, the rate could be approximately 5.5 m/s and $400 \times 1,300 \text{ m}^3 \times \frac{0.20}{0.15} = 693,334 \text{ m}^3/\text{month}$ production will be: Correcting for 20% solids, the cost will be: '26" Dredge 980,000.00 Aux. equipment 215,000.00 1,000 m floating pipe <u>149,000.00</u> Cr\$ 1,344,000.00 $\frac{1.2 \times 1,344,000.00}{693,334} = 2.33 \text{ Cr} \text{/m}^3$ Cost per cubic mater: Volume to be dredged: 1,557,149 m³ Total cost: 1,557,149 x 2.33 = Cr\$ 3,628,157.00 The time period for performing the work will be: $1,557,149 \div 693,334 = 2.24$ months For the third case we will have: The volume will be: 135,000 m³ There is no sense in estimating only cost for this case. We assume a 10% higher cost, or 2.56 Cr\$/m³. Production would be 0.9 x 693,334 = $625,000 \text{ m}^3/\text{month}$.

IV-1/4.72

\$

Total cost: $135,000 \times 2.56 = Cr$$ 346,000.00 Time period for performing the work: 135,000 - 625,000 = 0.22 month For the fourth case we will have: We will calculate the cost based on 2,500 m of floating pipe. The production will be 400 x 830 x $\frac{0.2}{0.15}$ = 442,667 m³/month The cost will be: 26" Dredge 980,000.00 . Aux. equipment 215,000.00 2,500 m floating pipe373,000.00 ¥ . Cr\$ 1,568,000.00 The cost per cubic meter will be: $1.2 \times 1,568,000.00$ $= 4.25 \text{ Cr}^3/\text{m}^3$ 442,667 The volume to be dredged will be: 8,124.520 m³ Total Cost: (34,530,485.00)10.00 Time period for performing the work: $8,124,520 \div 442,667 = 18.35$ months Dredging Sandstone В Dredging of sandstone can be performed using only a dredge and floating pipe, with disposal over the reefs. For calculation purposes, the volume of sandstone can be considered as the material that the dredge can produce, at ىكى ئۆلۈر بېرىيى ئېرىكى ئېلىكى بىلەر بىر. مەربىر ئېرىكى ئەرچىي ئەربىي ئەربىر بىر 10% of its production rate for sand.

۰.

[IV-1/4.73

sandstone exists between sections SD-9 and SD-11 and between sections SD-20 and SD-25.

Therefore the costs would be: For the sandstone in the area between SD-9 and SD-11, the cost will be: cost per cubic meter: $\frac{4.25}{.0.10} = \text{Cr} \pm 42.5/\text{m}^3$ Volume to be dredged: 73,800 m³ Total cost: 73,800 x 42.5 = Cr $\pm 3,136,500.00$ The time period for performing the work will be: 73,800 ÷ 44,266 - 1.67 months For dredging sandstone in the SD-20 and SD=25 areas the cost will be: $\frac{5.54}{0.10} = \text{Cr} \pm 55.4/\text{m}^3$ The volume to be dredged will be: 255,900 m³ The total cost will be: 225,900 x 55.4 = Cr $\pm 14,176,860.00$ The time period for performing the work will be: 255,900 \div

34,000 = 7.52 months

4.3.9 . Dredging the Approach Channel

We will analyze the operating cycle of the hopper dredge that will operate in this area, dredging the channel and depositing the material along the reef. As we are interested in using the maximum amount of sand possible in constructing the beach, meaning an economic use of sand, and since the dredge will reach material to a maximum depth of 16.0 meters, we believe that a 2,000 m³ dredge, one of the most common on the market,

IV-1/4.74

would be the most practical.

.*

Assuming a mean transport distance on the order of 2.5 miles and a mean velocity of 10 knots, since the dredge will not have time to attain maximum speed, we will have:

> Filling time 1.0 hours Traveling time $\frac{2 \times 2.5}{10}$ 0.5 hours

Unloading time	0.3 hours
Total time	1.8 hours

The cycle will therefore be 1.8 hours.

Assuming transport of 0.9 x 2,000 = 1,800 m³ per cycle, the dredge will produce 1,800 m³ \div 1.8 hours = 1,000 m³/hr.

Working 500 hours per month, the production will be:

 $550 \times 1,000 = 550,000 \text{ m}^3/\text{month}$

The cost per cubic meter will be:

· · · · · ·

 $Cr\$ 1,718,880.00 = 3.12 Cr\$/m^3$

Time period for performing the work: $\frac{7,685,978.00}{550,000} = 13.97$ months

4.3.10 HYDRAULIC FILL OF THE BEACH

- martin 11-1

The beach will require 7,316,662 m^3 of sand. This volume will be provided in the following manner:

VOLUME M ³	ORIGIN	DREDGE
252,720	Provisional beach	Self-carrying
4,169,963	Approach Channel	Self-carrying
318,780	Provisional beach	Suction and Pumping
2,575,199	Internal area	Suction and Pumping
7,316,662	Total	-

The cost of the volume taken from the approach channel by self-carrying dredge has already been computed in the cost of dredging the approach channel.

a) fill with volume dredged from the provisional beach by a 200 m^3 hopper self-carrying dredge.

Monthly production: $550,000 \text{ m}^3/\text{month}$ Cost per m³: = $\frac{1.2 \times 1,718,880}{550,000}$ = Cr\$ 3.75/m³ Time period: $\frac{252,720}{550,000}$ = 0.45 months Total Cost: 3.75 x 252,720 = 947,700

b) fill with volume dredged from the provisional beach by a suction and pumping dredge.

This volume will be dredged two times: first, from the

internal maritime area for the provisional beach in front of the port's entrance mouth, and then from this beach to the reef protection beach.

.

For the first dredging, 1,000 m of floating piping may be assumed.

The cost will be: 26" Dredge - 980,000.00 Aux: equipment - 215,000.00 1,000 m floating piping - <u>149,000.00</u> 1,344,000.00

Assuming v = 4.7 m/s and 15% solids, production will be: 400 x 850 m³/s = 340,000 m³/month The cost per cubic meter will be: $C_1 = \frac{1.2 \times 1,344,000}{340,000} = Cr$ 4.74/m^3$ The time period will be: $\frac{318,780}{340,000} = 0.93$ months

For the second dredging, 200 m of floating piping and 2,000 m of onshore piping may be assumed.

Letting v = 4.7 m/s and 15% solids, production will be: 400×850 m³/s = 340,000 m³/month

1-1/4.77

\$

. • The cost will be: 26" Dredge 980,000.00 Aux. equipment 215,000.00 · · · · · 2,000 m onshore piping 76,000.00 200 m floating piping 29,800.00 1,300,800.00 Cost per cubic meter $C_2 = \frac{1.2 \times 1,300,800}{340,000} = Cr + 4.59 m^3$ The time period will be: $\frac{318,780}{340,000} = 0.93$ months $C = C_1 + C_2 = Cr + 9.33/m^3$ Total cost: . Time period: $0.93 \times 2 = 1.86$ months Total cost: Cr\$ 9.33 x 318,780 $m^3 = Cr$2,974,217.00$ fill with sand dredged by suction and pumping c) 🐪 dredges from the internal area. Assuming 800 m of floating piping and 1,500 m of onshore piping. Letting v = 4.7 m/s and 15% of solids $400 \times 850 \text{ m}^3/\text{s} = 340,000 \text{ m}^3/\text{month}$

The cost will be: 26" Dredge - 980,000.00 Aux equipment - 215 000.00

Aux. equipment - 215,000.00 800 m floating piping - 119,200.00 1,500 m onshore piping - <u>57,000.00</u> t 1,371,200.00

Cost per cubic meter:

 $\frac{1.2 \times 1,371,200}{340,000} = \text{Cr} \$ 4.83/\text{m}^3$

Total cost:

.*

4.83 x 2,575,199 = Cr\$ 12,438,211.00 Time period: $\frac{2,575,199}{340,000} = 7.57$ months

IV-1/4.79

BUDGET ESTIMATE FOR THE 1st STAGE 4.4

TOTAL COST OF DREDGING WORK 4.4.1 •

The following tables result from the preceeding analysis and calculations.

. .

7

Total cost of the work Cr\$ 462,234,076.00 Total volume dredged 77,760,470 m³ Mean unit cost Cr 5.94/m^3$ Time period for performing the work -30 months Number of dredges used

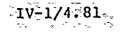
80 <u>IV-1/4</u>

For suction and pumping dredges

.

TYPE OF WORK	Execution Time (Months)		
• •	lst Phase	2nd Phase	
Filling the beach	9.43	-	
Landfills	138.02	24.36	
Dredging clay and sandstone	31.04	. 5.48	
Total ·	• 178.49	29.84	
Time period	30	72	
Number of dredges	6	1	

b)


~

For self-carrying dredges

	Execution Time (Months)		
TYPE OF WORK	lst Phase	2nd Phase	
Dredging the approach channel	13.97		
Total	13.97		
Time period	30		
Number of dredges	1		

a)

•

4.4.3 COST OF LANDFILLS

.

.

(Computation of the cost of dredging sand from the internal area)

FILL Area .	AVERAGE COST (Cr\$/m ³)	VOLUME	COST .	EXECUTION TIME (MONTHS)
To	5.10	2,310,600	11,784,060.00	6.80
T1-N a)	5.46	1,900,000	10,374,000.00	5.94
TI-N b)	6.14	1,875,170	11,514,000.00	6.42
Ti-0 a).	5.12	600,000	3,072,000.00	1,88
T1-0 b)	5.67 ·	·685,660	3,888,000.00	2.35
T1-S .	5.57	4,178,790	23,268,000.00	12.29
т2'	5.95	1,368,300	8.141,385.00	3.93
T'3 & T3'	7.88	6,294,055	49,597,153.00	18.96
T'4	5.10	7;230,520	36,876,000.00	21.30
T"3 & T",4	6.08	6,382,970	38,808,457.00	18.53
T5 a)	6.82	4,775,000	32,565,000.00	14.92
T5 b)	8.72	6,468,000.	56,401,483.00	18.58
т8 & Т9	8.24	5,421,375	44,672,130.00	16.33
T10	4.50	5,073,105	22,828,972.00	14.13
Total		54,563,605	353,790,640.00	162.38
		-	•	
Average 1	mit cost .	- <u>353,790,640</u> 54,563,605	= Cr\$ 6.4	8/m ³

4.4.4 COST OF WASTE MATERIALS

(Here the costs of dredging, from the internal channels and turning basins, clay and sandstone that cannot be used for fill are computed.)

•

AREA	UNIT COST (Cr\$/m ³)	VOLUME	COST Cr\$	EXECUTION TIME (MONTHS)
Clay a)	5.54	2,217,519	12,285,055.00	6.52
Clay b)	2.33	1,557,149	3,628,157.00	2,24
Clay c)	2.65	135,000	346,000.00	0.22
Clay d)	4.25	8,124,820	34,530,485,00	18.35
Sandstone SD11-SD9		73,800	3,136,500.00	1.67
Sandstone SD20-SD25	55.4	255,900	14,176,860.00	7.52
Total	ب مد ا مر ه	12,364,188	68,103,057.00	36.52
Average, uni	t cost -	<u>68,103</u> 12,364		Cr\$ 5.50/m ³

ŧ.

.

WORK	Cr\$/m ³ UNIT COST	VOLUME (m ³)	COST (Cr\$)
Landfills	6.48	54,563,605	353,790,640.00
Dredging clay and sandstone	5.50	12,364,188	68,103,057.00
Dredging approach channel	3.12	7,685,978	23,980,251.00
Filling the beach	5.19	3,146,699	16,360,128.00
Total	-	77,760,470	462,234,076.00
Average unit cost	- <u>462,234</u> 77,760	,076 ,470 ≕ Cr\$ 5.9	 94/m ³

.

4.4	4.4.5 COST OF DREDGING THE APP ROACH CHANNEL							
4		UNIT COST CR\$	VOLUME (m ³)	COST F Cr\$	(MONTHS) XECUTION TIME			
	· ·	* 3.12	7,685,978	23,980,251.00) 13.97			
Tot	al	3.12	7,685,978	23,980,251.00) 13.97			

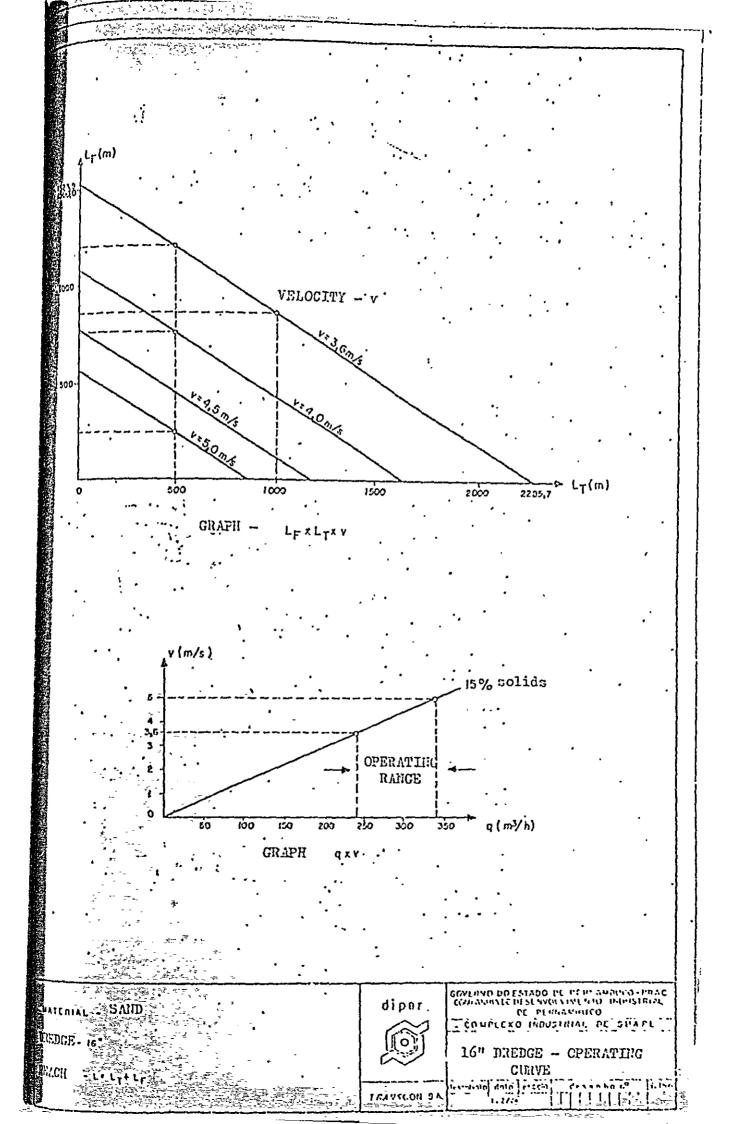
•

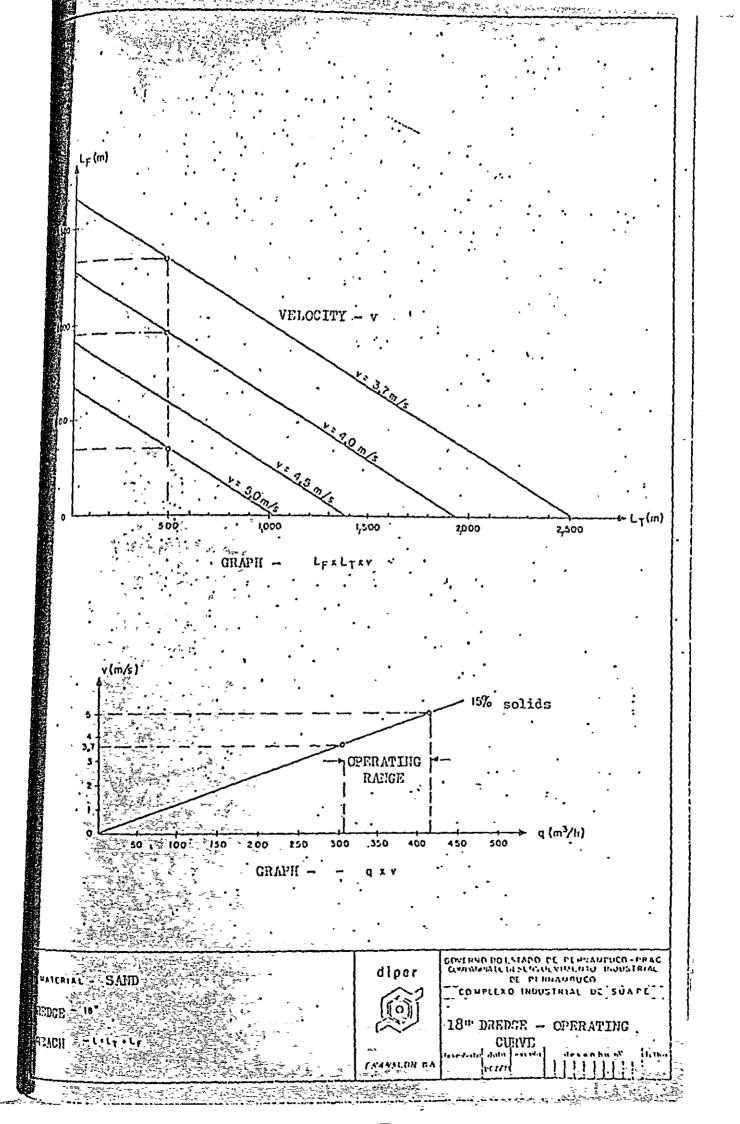
.

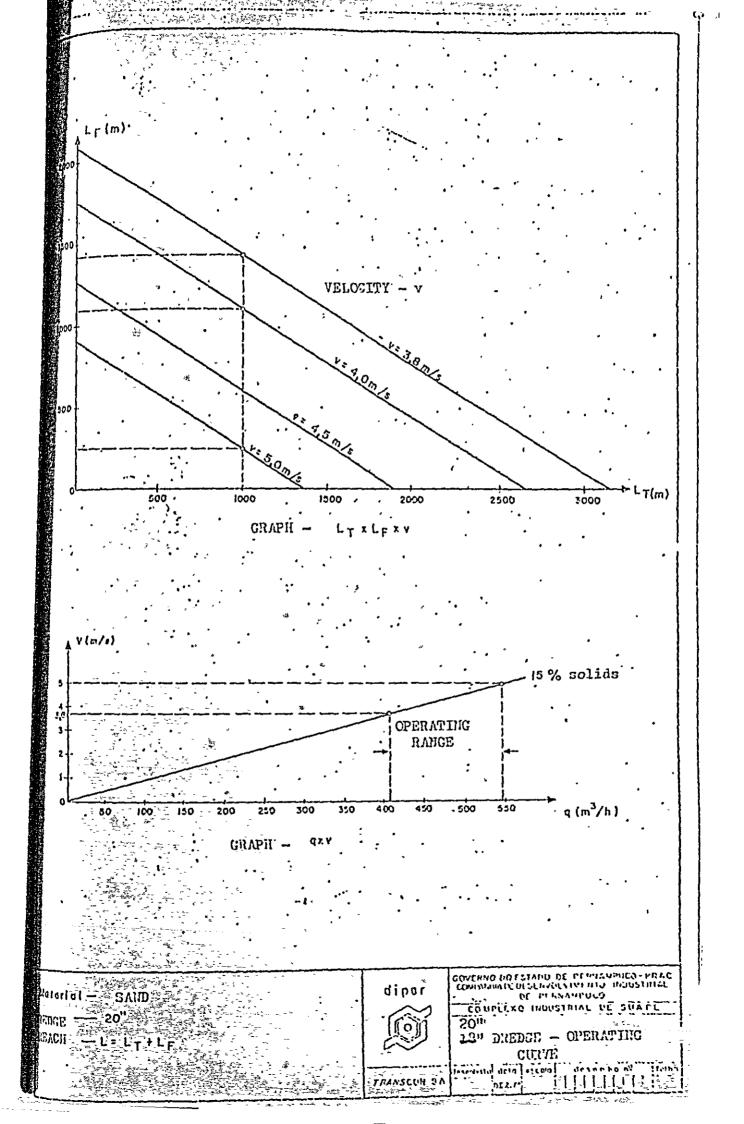
.

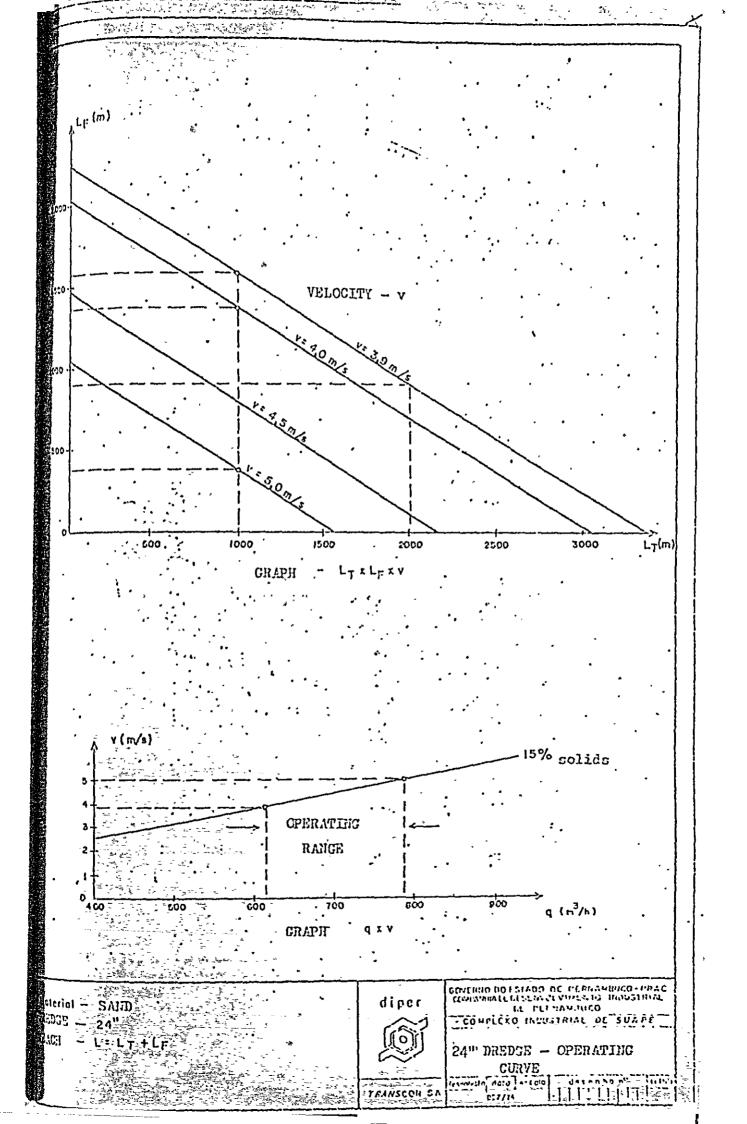
×

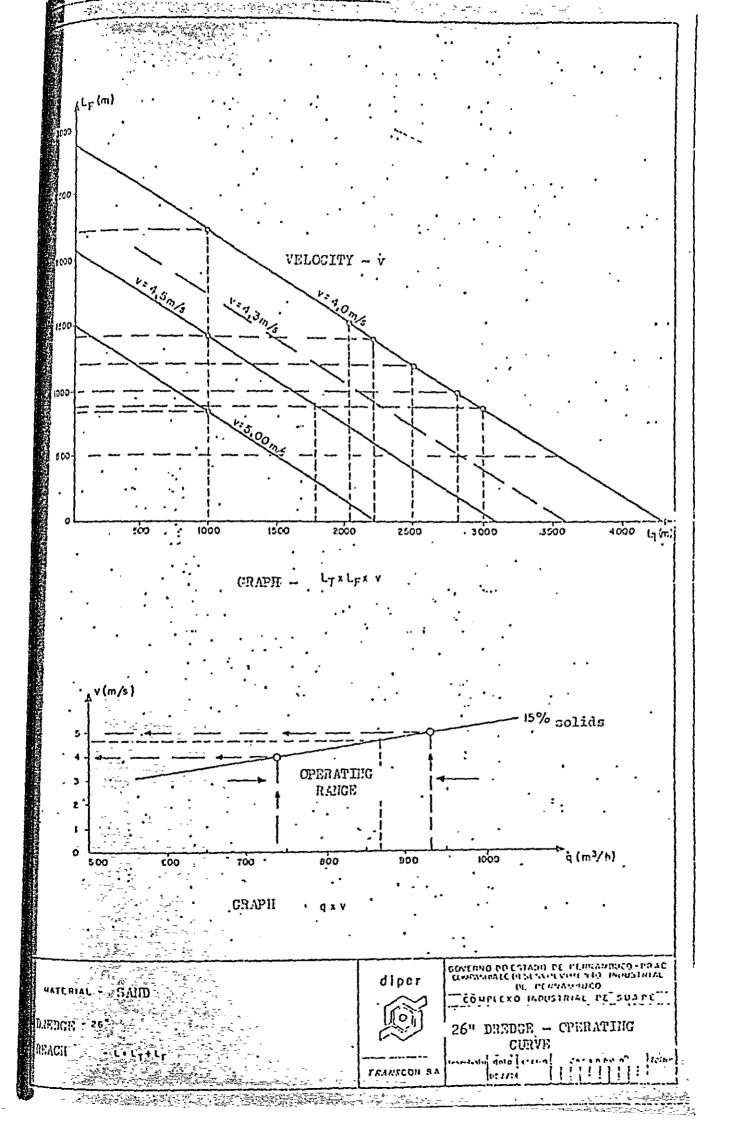
,


Average unit cost - Cr\$ 3.12/m³


,


4.4.6 COST OF THE BEACH


FILL AREA	UNIT COST (Cr\$/m ³)	Voluting	:	EXECUTION TIME (MONTHS)
Beach - a	3.75	252,7:	111,220	0.45
Beach - b	9.33	31.8,7.	• 1,217	1.86
Beach - c	4.83	2,575,111		7.57
Total .	-	3,146,(**)	, : : 8	
Average Unit cost		<u>16,360,:</u> 3,146,175	- t 4.19/	′m ³


•

TOMO IL MOLLINE / VOLLINE / PINDIX I-A 4.0

4.0 DREDGING PLAN APPENDIX 1 - A CALCULATION OF DREDGING AND FILL VOLUMES

۰.

5

.

FILL VOLUMES - 1st STAGE

•

•

3

.

•

• • • •

٠

.

.

•

.

•

.

•

.

•

DREDGING VOLUMES AFTER THE 1st STAGE in m³ x 10³

🖁 🛛 🗄 🖁	TOT VOLI	TOT VOL ²	TOT VOL ¹ AFTER 1st	-2 VOL SAID After 1st St				' VOL SAIDSI After 1st		
	PLAN		STAGE	5	v	3		2	<u>v</u>	• •
	38,432	38,432		89	-	10	-	1.	~	· •.
	40,919	40,919	·	89,8		10		0.2	, -a	
	1,376	1,167 (0)	209	62 ·	130	28	59	10	20	
	8,620	502 (6	8,118	45,2	3,669	50	4,059	4.8	390	
	26,344	• • * * • • ••	26,344	40	10,538	60	15,806		Ξ,	•
	27,189	· 877 (2	26,312	70	18,418	30	7,894			· · ·
	3,047	-	3,047	70	2,133	30	914	-	'	
	12,163	<u>.</u> - · ·	12,163	60	7,298	10	4,865	-	-	
	1,334	1,334		80	-	20	-	-	-	-
1	· ·			ļ	•				•	. ·
ļ	7,686	7,686	-		-			-	-	
1	•		76,193	}	42,185		33,597		410	

 $S-III = 78,300 \text{ m}^2$

= 1.4 m) h . pd = = 14,9 + h

p =13,5 m)

 $V = 78\frac{1}{300} \times 14.9 = 1.166.670 \text{ m}^3$

 $\frac{1}{2}$)s-IV = 37,500 m² (surface area of area IV, dredged during the first stage)

Ξ.

h = 1.4 m) p = 12 m) $\dot{v} = 37500 \times 13.4 = 502500 \text{ m}^3$ C) V_{SD-1} - SD-5 = 876,762 m³

10-1/4.1

CALCULATION OF FILL VOLUME FOR THE BEACH - 1st STAGE

.

··· · · ·

•

SECTION	AREA	DISTANCĘ	VOLUME (m ³)
ST. 39	,952.50		
	ŧ	1,600,00	2,604,000.00
ST.40	2,302.50		
		1,210.00	2,882,825.00
sr,41	2,462.50		
	:	850.00	1,829,837.00
ST.42	1,843.00		
Total	•-		7,316,662.00

Calculation of fill volume for the provisional beach (in front of the mouth)

.

5

•

 $V = 952.50 \times 600 = 571,500 \text{ m}^3$

-

1V-1/4.2

V FILL VOLUCES - DESCRIPTION BY AREA

	EAN (1)	SURFACE	FILL TO 2	•70 m	FILL TO 1.	50 m
			REIGHT FILLED (m) VOLUME (m^3)	i HEIGHT FILLED (m)	VOLUME (m3)
0(2)	ļ	1,876,000		•		2,310,600
1(2)		4,407,700	•	9,239,620	•	
	0,30	1,140,250		· · ·	1,20	1,368,300
אָן 1) (2)		•		5,104,780		
7] *	-1.30	1,769,300	3		2,80	4,954,040
j+++ (2)		•••	· • , •		•	1,189,275
142 (2)		2,158,250		7,230,520	•	
, ¹¹	-0,30	,793,850	×	τ •	1 ₁ 80	1,429,930
5	-2.30	2,958,700	z	•	3,80	11,243,060
6'		1,321,450	a i	•		
, "		408,450	•	• •		
1		1,420,350				
)		2,137,750		· ·	1,50	3,206,625
•	•	1,476,500		•	1,50	2,214,750
0(2)		1,757,250		5,073,105		
otal		23,625,800	、 、	26,648,025		27,915,580

1st STACE

,

•• .

54,563,605

;

 $f^{(1)}$ The elevations refer to zero CNG.

[(2) Calculated by transversal sections

CALCULATION OF FILL VOLUME USING A SELF-CARRYING DREDGE . AREA - BEACH

۰ ·

.

AREA	SURFACE AREA (m ²)	DISTANCE	VOLUME (m ³)
ST.39	421.20		
		1,600.00	1,421,120.00
ST.40	1,355.20		
		1,210.00	1,806,590.50
ST:41	1,630.90		
-		850.00	1,194,972.50
ST.42	1,180.80		
Total			4,422,683.00 m

Calculation of fill volume for the provisional beach (in front of the mouth) using self-carrying dredges.

- $V = 421.20 \times 600 = 252,720 \text{ m}^3$

CALCULATION OF FILL VOLUME - ELEVATION 1.5 AREA T-0

· ·

.

AREA	SURFACE AREA (m ²)	DISTANCES (m)	VOLUMES (m ³
ST-6b	1,135		<u></u>
		300	516,300
ST-19	2,307		
		150	298,700
ST-20	1,675		*****
		150	270,000
ST-21	1,925		
• • • •		300	475,500
ST-22	1,245	•	
<u>i, _ias</u>		300	454,500
ST-23	1,785	`	
		220	295,600
ST-12b	902		
Total			2,310,600

IV-1/4.5

CALCULATION OF FILL VOLUME - 2.70 AREA T-1 : .

• • •

•

4

AREA	SURFACE AREA (m ²)	DISTANCES	VOLUMES (m
		180	479,700
5T-1	2,665		
	-	300	811,950
ST-2	. 2,748		
		300	525,000
ST-3	[•] 752		
	•	300	699,750
st-4	· · · · · · · · · · · · · · · · · · ·		
+ a		120	485,400
ST-5	4,177		
		180	773,370
ST6	4,416		
·····		-	-
ST-6a -	1,480		
5+ =		- 300	313,950
ST-7	613		
······		150	98,625
ST-8	702		
۷ ۲۰۰۰ ۴۰۰ میں		150	56,325
ST-9	49	-	

•

Continuation - 2.70 Area T-1

۰,

.

·• · · · ·	· · · ·	300	190,050
ST-10	1,218		*** •= ***
ST-11	587	300	270,750
• •		220	355,960
s T-12 a	2,649 .	-	
ST-12 .	4,693		
- 		380	1,984,740
ST-13	5,753		
		300	1,602,450
ST-14	4,930		
		120	591,600
Total			9,239,620

x

:

•

•

-

.

.

•

•

CALCULATION OF FILL VOLUME - AREA T'3 ELEVATION 2.70 M

۰ .

AREA	SURFACE AREA (m ²)	DISTANCE (m)	VOLUME (m ³)
		160	705,280
ST-15	4,400		
		300	1,304,250
ST-16	4,287		
		300	1,489,500
ST-17	5,624		
•		300	1,605,750
ST-18	5,062		
Total	×.	*	5,104,780 m

١

.

.

5

4

-

-

.

CALCULATION OF FILL VOLUME - ELEVATION 1.50 m , 4 AREA TITA •

· -

.

AREA	SURFACE AREA (m ²)	DISTANCE (m)	VOLUME (m ³)
		160	164,400
ST-15	1,027.00		
σ.		300	330,375
ST-16	1,175.00		· · · ·
		300	352,500
ST-17	1,175.00		
		300	342,000
ST-18	1,105.00		
Total			.1,189,275 ·

CALCULATION OF FILL VOLUME (ELEVATION 2.70 m) T'-4

٩.

••

.

AREA	SURFACE AREA (m ²)	DISTANCE (m)	VOLUME (m ³)
ST-32	4,973 .		
· ·		250	1,303,375
st-33	5,454		
•		300	1,722,000
st-34	6,026		
		300	1,679,700
ST-35	5,172		
ST-357	3,124		
	· · · · · · · · · · · · · · · · · · ·	300	949,050
ST-36	3,203		-
ی ہے 10 - 10 - 10 10 - 10 - 10 - 10 - 10 - 1		300	940,200
ST-37	3,065		· · · · · · · · · · · · · · · · · · ·
		210	636,195
ST-38	2,994		
Total		•	7,230,520

•

-

1

.

CALCULATION OF FILL VOLUME (ELEVATION 2.70 m) AREA T-10

• •

مدر

AREA	SURFACE AREA (m ²)	DISTANCE (m)	VOLUME (m ³)
ST-26	9.639		
		165	1,430,055
ST-27	7,695	•	
		170	• 1,030,965
ST-28	4,434		
		180	742,230
ST-29	3,813		-
•		120	613,020
ST-30	6,404		
	•	230	1,256,835
ST-31	4,525		
Total			5,073,105

IV-1/4.11

,

FILL VOLUMES AFTER THE 1st STAGE

-

ŧ

-

•

а <u>г</u> с 200 с С ди Р Г с

۰.

.

•

,

٩

:

•

•

-

• •

LANDFILLS AFTER THE 1st STAGE

1)

In accordance with the basic assumptions adopted for the 1st stage and with the maximum utilization plan's priorities, the following work will be performed after the 1st stage.

- Filling areas T'6, T"6 and T7 to the elevation of 2.70 m.
- 2) Fill to raise the elevation from 1.50 m to 2.70 m in areas T0, T2, T"3, T"4, T5 T8 and T9.
- 3) No further work will be performed on areas T1, T'3, T'4 and T10, since they will have already been filled during the first stage.

IV-1/4.13

\$

FILL VOLUMES AFPER THE 1st STAGE (m³)

••

• •

.

.

• ;

AREAS	FILL TO 2.70 m	lst STAGE FILL .	FILL AFTER 1st STAC
То .	3,913,300	2,330,600	1,602,700
TI '	9,239,620	9,239,620	-
т2	2,736,600	1,368,300	1,368,300
T ['] 3	5,104,780	5,104,780	-
T ₃	7,077,200	4,954,040	2,123,160
$T_3^{\dagger \dagger}$	1,855,290	1,189,275	666,015
T4	7,230,520	7,230,520	· · · -
TA	2,381,550	1,428,930	952,620
T5	14,793,500	11,243,060	3,550,440
TG	6,607,250.	-	6,607,250
T 6	2,042,250	· · · ·	2,042,250
T 7	3,408,840	- ·	3,408,840
T 8	5,771,925	3,206,625	2,565,300
Tg	3,986,550	. 2,214,750	1,771,800
T10	5,073,105	5,073,105 .	
Total	81,222,280m ³	54,563,605	26,658,675

FILL VOLUMES - DESCRIPTION BY AREA

		•		•		
		HE/N	SURFACE AREA	FILL TO 2.	70 m	, • • •
·	AREAS	ELEV(1) (m)	(m ²)	HEIGHT FILLED (m)	VOLUME (m ³)	· · ·
•	то (2)	•	1,876,000	•	3,913,300	
	T1 (2)	•	·4,407,700		9,239,620	
	. T2	. 0,30	1,140,250	2,40	2,736,600	
•	т3(2)	*	1,533,000		5,104,780	•
	· T3 '	-1,30	1,769,300	4.00	7,077,200 .	• • •
•	; T ¹ ; (2	þ	493,500		1,855,290	
	T4(2)		2,158,250	•	7,230,520	
	т4	-0,30	793,850	3,00	2,381,550	
	T5	-7,30	2,958.700	5,00	14,793,500	
	Т6	2.30	1,321,450	5,00	6,607,250	
•	Тő	-2,30	408,450	- 5,00	2,042,250	
, •	T7	0,30	1,420,350	2,40	3,408,840	
	тв	0	2,137,750	2.70	5,771,925	•
	T 9	0	1,476,500	2.70	3,986,550	•
*	T10(2)		1,757,250	•	5,073,105 .	. •
•	Total	مينية من	25,652,300		81,222,280m ³	•

1

2

NAXINUM UTILIZATION PLAN . .

.

(1) The elevations refer to zero CNG. (2) Calculated by transversal sections. :

FILL VOLUME CALCULATION - ELEVATION 2.70m AREA T-0

.

.

AREAS	SURFACE AREAS (m ²)	DISTANCES (m)	VOLUMES (m ³)
st-Gb	2,936		· · · · · · · · · · · · · · · · · · ·
*	· · · ·	300	1,009,200
sT-19	-3,792	· · · ·	
· · ·	• •	150	· 470,300
ST-20	2,479		· · · ·
		150	399 ₇ 600 '
ST-21	. 2,849	• •	
		300	772,700
ST-22	2,302	· .	
مېر ۱۰ پې ۱۰ ۲۰ پې ۲۰		. 300.	747,600
ST-23	2,682		· · ·
۲۳۵۶ ۲۰۰۵ - ۲۰۰۵ ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵		220	519,900
ST-12b	2,044	• • •	
Total		• • •	3,913,300

IV-1/4.16

ÁREA T'''3

,

٠

* . . * .. .

IREAS .	SURFACE AREAS (m ²)	DISTANCES (m)	VOLUMES (m ³)
	• •	160	. 253,440
-15	1,584		
		300	498,450
1-16	1,739		•
•		300	, 521,700
й Т-Л	1,739	· · ·	• •
57-18	· 2,139 · .	300	581,700
OTAL	· · · · ·	÷	· 1,855,290.

• •

1V-1/4.17

DREDGING VOLUMES DURING THE 1st STAGE

1

.

ĩ

.

.

	•	•• • •		•
		VOLUMES (m ³)		
	· SAID	CLAY	SAUDSTOME	TOTAL
proach Channel	, 7,685,978		•	7,685,978
• • • • •	• • •	• •		•
tornal Channols 1 c FII)	57,471,714	12,034,488	329,700	69,835,902
angrove Suamp		14,804,555	• • •	14,804,555
otal	65,157,02	26,839,043	329,700	92,326,435

•	·····	:	••	•
IND TICH	AREAS	AVERAGE AREAS	DISTANCES (m)	VOLUME (m ³)
5D)	· · · ·	· · · · · · · · · · · · · · · · · · ·	· •	••
;	4860.00	• •		•
÷.,		4351,37	110	478,705,700
,	3843,75		•	
,		3540,50	130	460,265,000
3, ¹	3237,25	:		
•••		2913,0	140	407,820,000
۰. ۲ ر	2588,75			•
•	•	2931,25	295	864,718,750
·····) · · ·	3273,75			
		2611,87	• 110	287,305,700
Ł	1950.00	•		
• • • •		.1811.87	· 280	507,323,600
2	1673,75			
*		1393,75	400	557,500,000
3 .	1113,75		•	
		990,00	1475	1,460,250,000
4.	866,25			-
ر عجد ا		857,50	1700	1,457,750,000
5	848,75		· ·	Ļ.
		. 721,25		952,050,000
6	593,75	•	· · ·	
		471,25	275	129,593,750
7	348.75		· · ·	
		231,50	530	122,695,000
8	1114 25			P*
<u>، ترجم میں اور اور اور اور اور اور اور اور اور اور</u>	<u>- 114,25</u>		T · .	7,685,978,000
οτλι		•	· .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ALL THE DREDGED HATERIAL WILL BE SAID.

IV-1/4.20

CALCULATION OF DREDGING VOLUMES FOR INTERNAL CHAINELS

.

٠,

-3

. •

.

۰.

•, . lst STACE PHASE I

.

•

••

.

: .

.

	۱۳۸	EAS (m	²)	DIST. BETW.	VOL	U Й Е (m ³)	
	SAID	CLAY	SANDSTIT	SECTICIS (m)			· · · · · · · · · · · · · · · · · · ·
IOIS		<u>. (onvri</u>	1.11.60.011	· ()#/	SAID	CLAY	SAIDSTOIR
50-1	-370	· · ·	******			•	
4		· · ·		780	288,600		
so-2	370		<u> </u>				
11	<i></i>	 		620	218,860		
<u>5</u> D-3	336 🖉 🕁		<u> </u>	•			
7	· · · ·			580	144,942		· · · · · · · · · · · · · · · · · · ·
ED-4	163,8						
N	`*			· 400	224,360	}	
50-5	958.			•			
3		•		120	394,680	320,280	
<u>s</u> ō6-5.	5620	5338					
ų	*				-		
sdc-c	10910	10452,5					•
		4	1	. 240	3,228,480	1,815,180	
50-7	15994	(4674)		1			
	, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		2	520	7,726,290	3.149,640	1
sŋ-8	13722,5	7440					1
3.12			1.27 M	350	5,295,937	1,831,900	
	16540 🛼	3028	240	[•		
	чар (1977) ул. 1977 — 1977 1977 — 1977 — 1977 1977 — 1977 — 1977			330	4,545,750	809,820	59,400
50-10	1.103.0	1880	120				
3	4		*	480	3,726,480	188.000	14,400
<u>10-11</u>	4517,5	م مراجع میں میں میں میں میں میں		[1
				200	576,400		
<u>12</u>	1247,4	<u></u>		1	} <u></u>		1
	- * x	م تو بیش می		670	1,766,790	101.505	
13	4027.4						· · ·
17 17		<u>م</u>		860	7,963,170	130,290	
0- 14	14192			1			
		- 		390 .	4,234,815	74,587	•
50 -15	7225			1.			
ă ·				<u>· 350</u>	2,412,900	. 432, 775	
0-16	6563.2	1708		1	_		
ij				170	-		ļ
1. 1.			مىلىكى بىلىكى بىلىكى بىلىكى مەربىي بىلىكى بىلىكى مەربىي بىلىكى		1	1	<u>∔</u>

IV-1/4.21

50-18	11231					1	-1
		 	 	340	2,040,000		•
5D-19	6500,2				······································		
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	·	590	2,675,945	189,464	-
SD-20	2571,6	1284,5	, •				
	3	~		260	737,490	360,581	3,120
SD-21	31.02 .	1489,2	48			· · · ·	
·	- ~ F	`	-	390	1,193,010	514,644	104,910
SD-22	3016	1150	490			·	· '
	3			290	746.170	263,900	111,650
5D-23	**2130****	670			••••	· · · · · · · · · · · · · · · · · · ·	
				-			
SD-24	1130	1000	·. 30 ·			•	· ·
			*	· 540	766,800	135,000	23,220
SD-25	1710	•	56				
Total	by type	of inster	ial.		50,907,869	10,317,566	316,700
		•••	_	Total :	61,542,	135 m ³	

CALCULATION OF DREDGING VOLUMES FOR THE INTERNAL CLAIMMELS. . . . - 18 :

· · ·

•

•.

.

•.

•

1st STAGE PHASE II

.

• •

. .

	•	•				•	•
	· /.	REAS (m ²)	DIST. BETT. SECTIONS (m)	VOJ,	UHE (m ³)	·
510.1S	SAD	CLAY	SVIDSLC	IE (m)	S^'D	CLAY	<u>s dorone</u>
	1203 [.] .		•	* *	•		
		*		200	543,200		
-12	4229	,	• • • • • • • • • • • • • • • • • • • •				
	•••	953		670	1,525,255	159,627	·
1-13	324						
		·	•	860	976,960	204,895	
13 13-13 13-14	1948			•			,
				390	799.500	975	·····
1-15 1-16	2152	· 10				49,000	······································
				350	430,325		
0-16	307	.560					
		C.,		170	792.965	403.495	· · ·
<u>5</u> -17	9022	¹ ⊷ 4 <u>)</u> 87					•
2442	•	·	<u> </u>		-		
1 0-18	2678		<u> </u>	•		•	
	م پېټې ۸ سر پې	· * ·	•	·	450,000	•	
20-1 9	1707 🔅	* ***************	· ·	<u> </u>	· ·	·	
	**************************************	- 1 180 '	³ - •	590	584.985	174. 5	
<u>(</u>)-20	<u>, 276 s s</u> '	, , , , , , , , , , , , , , , , , , ,					
			<u> </u>	260 .	194,870	353,600	1,885
\$ - 21	1223	: 1540 : :]≩ ₌_29-	29 .	· · ·		
			<u>}</u>	390	265.785	371.280	11.115
∰-22	a 140 mil		28	<u> </u>			
				·	.6,563,845	1.716.922	13,000
	1		1	· TOTAL	8,293,7	67 m ³	• •

Phase I. + Phase II Sandstone - 329.700 m³ Total - 69.835.902 m³

DREDGING VOLUMES AFTER THE 1st STAGE

.

.

- . - . DREDGING VOLUMES CALCULATION TANK WAS THEN WAS T

		200		, , , , , , , , , , , , , , , , , , ,		>	- DNVS	V. 0	CLAY	V. SP	SANDSTONE
AREAS	N. U.	5.]	Creation of the second se	(103 = 3)	(103 = 3)	10	103 m3	50	. Em EOI	61	10 ³
	1,880,000	19,47 19,47	36.472	1, 1,960 ·	38,432	" 68 7	34,205	ŗo	3,843	ў , м.	384
	2,306,400	ч • •	33,212	7,707	40,919	- 89 s	36,745	10	4,092	0,23	82
	78,300	ະ ເດີ ເດີ ເດີ	1,245	151	1,376	62	853	· 28	. 385	ទ	J 38
AL.	SI9,500	14,9	7,741	. 879	8,620	45,2	3,896 -	50	4,310	80 **	. 41,4
> •	.1,762,600	14.0	24,676	1,668	26,344	40	10,538	60	15,806	•	- - -
, IV	1,230,000 .	18,8	23,124	4,065	27,169	. 02	19,032	30	8,157		
. IIA	144,100	15,4.	. 2,219	. 828	3,047	20	. 2,133	30	.516	•	•
IIIA .	713,800	14.1	. 10,065	2,098	12,163	, 60	7,298	40	. 4,365 .		
XI	97,200	11.5	1,118	. 216	1,334	80	1,067	20	. 267		• •
Approach	•		;	•			••			•	• •
Channel	•		•		7,686	100	7,686				
Total	•			19,552	167,110		123,453		42,639	• <u>•</u> ••••••••••••••••••••••••••••••••••	1,018

д + ይ tl

рd

dredging denth (refers to zer, CNC ł ъ Сч

depth required by area's type of vessel 1 ρ. 4

here's area's land. For area II, h=-2m. For the other areas, h=1.4m (or zero CNG) ł

Vtal - Volume to be dredged for embankment Vc · - volume of the bottom of the channel total volume to be dredged t 44 V

·IV-1/4.25

DREDGING VOLUMES AFTER THE 1st STAGE .

Approach Channel - will not be dredged
Areas I, II and IX - will not be dredged
Area III - should be dredged from -13.5m to -14.5m
Area IV - only a small portion will be dredged during the
first stage
Area VI - the volume to be dredged will be that calculate 1
for the maximum utilization plan, less the
volume dredged for the Ipojuca rectification
Areas V, VII, VIII - since these areas will not be
dredged during the lst stage, the
dredging volume will be calculated
after the first stage for the
Maximum Utilization Plan

.

TOMO :; 1:1-=1 VCL MP 2 1 A. C

•

•

*

•

--

- - -

` - - - - -

. . •

٠ • .

• • .

=

5.0 - STUDIES CONDUCTED FOR DIMENSIONING THE PORT COMPLEX

.

٠

STUDIES CONDUCTED FOR DIMENSIONING THE PORT COMPLEX 5.0

PROJECTED CARGO FLOWS 25.1

-___

. Table 5/I shows the projected cargo flows for the port complex during the 1st stage.

.

3

and the second second

EXPORTS - Wheat (*)	JECTED CARGO FLOWS THROUGH THE FORT (IN LAND TOWS)
- Sugar - Molasses	5031-5031-2031-2031-1022 00021 6531 2531 2531 5531 5531 5531 2631 7631 7631 7631 8231 8231 2231 2231 5231 5231 2231 2231 2231 2
ble oils	[3225 2421 2431 2431 2431 2431 4241 4241 4341 43
2	
- j 	10 34 40 45 52 14 40 45 52 52 52 52 53 54 55 55 55 55 55 55 55 55 55 72 72 72 73 72 73 74 75 74 75 74 75 75 75 7 11352 11352 11452 12511 25254 20254 20257 21702 20559 21702 20142 25450 25176 25911 27772 28957 29252 29554 21715 2259 2259 2259 22574 72172 12551 125
L L	13 131 131 133 735
 Aluminum Oxide Coke Coal 	
, - Pitch - Fluoride - Clinker (*)	10 <
×	358 2623 2636 5011 3132 3227 3011 2917 2917 3151 3151 3668 3557 4254 4223 4255 4755 442 443 449 446 431 427 421 427 425 415 415 415 415 415 415 415 425 425 378 16445 16495 16597 16592 16534 19331 29346 19342 19393 19395 21912 21917 21947 21947 21942 21942
- Petroleum Derivativeş.	8453 6434 6511 6705 9732 9642 9851
TOTAL IMPORTS	17515 17528 17765 17527 15209 25511 25709 24203 24822 54795 28772 25422 30150 30145 30175 33506 34547 34828 35152 35450 37551 5755 52120 2755 52752 53755 52750 5755
TOTAL EXPORTS	· · · · · · · · · · · · · · · · · · ·
TOTAL CARGO FLOW	•

(*) - By Coastal Navigation.

••••

۰.

5.2 DEFINITION OF TYPES OF SHIPS since the largest ships to call at the Port of Suape will require that the port have the same characteristic's as the ships' ports of origin and destination, a study of these ports was conducted.

A description of the port characteristics follows, ground by cargo types.

- 5.2.1 WHEAT CARRYING SHIPS
- A STUDY OF THE PRINCIPAL PORTS OF ORIGIN AND THEIR CHARACTERISTICS

CANADA

- Baic Comeau, Quebec: depth = 40 feet
- Chaimenus, British Columbia: depth = 52 feet
- Halifax, Nova Scotia: Silo facilities for
 5,152,000 bushels, 72,000 bu/hour (-900 tons/
 hour) unloading capacity; 45 foot draft
 - Lakehead Harbour, Ontario: 150,000,000 silos
 - Quebec, Chicebec: depth = 50 feet
 - Sorel, Quebec: depth = 50 feet
 - Vancouver, British Columbia: 90,000 bu/hour loading capacity

UNITED STATES OF AMERICA

- Baltimore, Maryland: depth = 42 feet
- Baton Rouge, Louisiana: depth = 40 feet
- Beaumont, Texas: depth = 40 feet

BRAZIL

Port of Rio Grande: Capacity for handling
 70,000 tdw ships

ARGENTINA

- Buenos Aires: depth = 23 feet
- Diamante: depth = 18 feet, 50,000 tdw capacity silo
- Mar del Plata: depth = 30 feet, 25,000 lw
 capacity grain elevator

STUDY OF PORTS OF DESTINATION - COASTAL NAVEGATION

RECIFE

3

Maximum depth: 10 m

Facilities for handling 100 tons/hour of wheat, with conveyors and two silos with a total storage capacity of 38,535 tons.

 Possibility of loading wheat into trucks or railroad cars.

NATAL

- Maximum depth: 6.50 m
- Facilities for handling 30 tons/hour of wheat, with a total storage capacity of 4,800 tons.
 - Wheat loaded into railroad cars or trucks.

MACEIÓ

- Maximum depth: 10 m
 - by pncumatic elevators - Wheat unloaded into trucks/and transported
 - to two silos with a total capacity of
 - 10,320 tons.

IV-1/5.4

CABEDELO

- Maximum depth = 8 m
- Unloading of wheat by portable 12 tons/hour effective capacity pneumatic elevators or by 10 tons/hour stationary pneumatic elevators.
- 5,700 ton silo storage capacity

C COMMENTS

Ĵ

The following conclusions were derived from the port descriptions above:

Port of Origin limitations:

- Canadian ports: ships with a maximum draft of 12 m and approximately 60,000 tdw
 American ports: ships with a maximum draft of 10 m and 30,000 tdw
- Port of Rio Grande: ~ 60,000 tdw ships
- Argentinian ports: ships with 7 to 9.50 m draft
- Ports in Northeastern Brazil: 10 m maximum
 draft, 25,000 tdw maximum

Since most of the wheat to be imported will originate in the United States and Canada, the ships that will most frequently call at the port will be in the 25 to 30 thousand tdw range (American ships) and in the 30 to 60 thousand (maximum) range (Canadian ships).

The average ship will be assumed to be 38,000 tdw with a 30,400 ton cargo \approx 30,000 tons per voyage, using 80% of the tdw, and with a maximum draft of $\frac{2}{34}$ (10.20 m).

For export for coastal trade, we assume an average ship to be 10,000 tdw with a 8,000 ton cargo.

TYPE OF SHIPPING	VESSEL		CARGO/ VOVACE	(E) .	BEAM (m)	DRAFT (m)	DEPTH (m)
For coastal trade export Ship	Cargo t Ship	10,000	- (tons) - 8,000	155,0	24,30	3,0	. 0T°6 -
	Caryo Shin	15.000	- 12,600	210,0	28,5	9,50	- 10, 60
-	Lull Carrier	25,000	- 20,000	165 ¢0	22,0	0*5	10,50
For long run import (high frequency)	Bulk Carrier	38,000	- 30,000	I84.0	25.0	10.2 .	11,50
For long run import (lower frequency)	l Bulk Carrier	 60,000	- 48,000	217.0	31,0	12.2	13,50

1V-1/5.6

•

5.2.2 SUGAR CARRYING SHIPS

A STUDY OF PRINCIPAL PORTS OF DESTINATION AND THEIR CHARACTERISTICS

JAPAN

- CHIBA

Depth: 12 to 16 m

18 silos with 40,000 ton capacity 20,000 and 37,000 ton silos

- KAGOSHIMA

Depth: 9 m

- KAWASAKI

Depth: from 3 to 15.50 m for 120,000 grt ships

- SHIMIZU

•

Depth: 13.5 m for 70,000 tdw ships

- TOBATA

Depth: 13.60 m for 70,000 tdw ships

- Уоконама

Depth: 9.5 m for sugar terminal

Capacity: 15,000 grt

Other ports with depth varying from 10 to 12 m.

¢

CHINA

DAIREN

Mandles 30,000 tdw ships

- TSAMKONG

maximum depth = 36 feet (11 m), 10,000 tdw ships

- Other ports, restricted by tides, handle

100,000 tdw ships

HONG KONG

- depth up to 44 feet (13.4 m)

 facilities for 80 tons/hour pneumatic loading and 21,000 ton warehouses for grains

INDIA

- average depth up to 37 feet (11.30 m)
maximum depth = 13.80 m

. IRAN

- depth up to 70 feet (21.3 m) for tank
 (KHARG ISLAND)
- other ports with up to 43.5 feet (13.30 m) depth
- average depth = 10.50 m

INDONESIA

- AMBOM any draft
- BALIKPAPAM 10 m depth (low tide)
- BENGRALIS anchorage 200 to 300 m away from

the pier; 9 to 11 m depth

- FULAU SAMBU port depth = 12 m
- (channel depth = 16 m)

an Indiana Realization

ÎV-1/5.8

SURABATA - anchorage up to 18 m

- port depth = 9.00 m (low tide)

IRAQ

BASRAH - 65,000 ton silo, 1,000 tons/hc r
 capacity; maximum draft = 9.15 m

- KHOR-AL AWYA - depth = 22.5 m

ISRAEL

- EILAT: anchorage up to 36 m
- HAIFA: ships with up to 35 foot drafts can enter the port; docks with 11.50

<u>JORDAN</u> - depths up to 60 feet = 18 m

KOREA: YOSI: 20.5 m to 40 m depths

- INCHON 30 feet (9m) depths; unloading of fertilizers: 1,500 tons/day cement:
 1,500 tons/day grains: 1,700 tons/ day
 grains: 1,100 tons/day
- POHANG: depth from 15 up to 63 feet

KUWAIT - depth up to 65 feet

LEBANON

IV-1/5.9

- SIDOM - 50 foot depth - 1 mile from the coast

:

ARABIA: Maximum depth = 36 feet, docking facilities for 5 ships with a

depth of at least 20 m.

UNITED STATES OF AMERICA: 40 to 42' depth

COMMENTS

B

The descriptions of the ports show the following limitations:

- Japanese ports: handle 100,000 tdw ships
- Middle Eastern ports: 9 to 18 m depths
- Chinese ports: handle up to 30,000 tdw ships, 7 to 11 m depths.
- American ports: 25 to 30 thousand tdw ships for 10 m draft.

Judging by the growth trends in the worldwide market, it is probable that the relative position of the Middle East, China and Japan will influence the use of ships in the 30 to 100,000 tdw range. The United States, however, will probably not use ships larger than 30,000 tdw.

Due to the Chinese ports' equipment limitations and rather shallow waters, the product to be exported to China will be shipped in sacks in cargo ships with a maximum of 20 to 25 thousand tdw. Significant changes in Chinese port capacities are to be expected, according to current Chinese port improvement schedules.

		· .		•			
•	DEPTH (m)	12,00			16 . 50		· · · · · · · · · · · · · · · · · · ·
•	(m) (m)	06.01		13,30	15 . 30		
	BEZU: (m)	33,00		34,00	00	,	• • •
		257,00	•	240,00	278,00	•	
•	CARGO/' · I VOYAGE (tons)	20,000	~	64 ₁ 000	00		•
•	TDW	25,000		80,000	125,000	~	· · · ·
•	VESSELS	Cargo Ship		Bulk Carrier	Bulk Varrier		· · · · · · ·
	TYPE OF SHIPPING	Export. of sacked product.	Export by long run	(hiah fraquancy)	Export by long run (low frequency)	•	••••
			•		-1/5.11	•	• •

الله المحموم المحمول ا والمحمول المحمول المحمو المحمول المحمول

• • • • • •

5.2.3 BULK SOLID CARRIERS

λ

В

STUDY OF THE PRINCIPAL PORTS OF DESTINATION AND THEIR CHARACTERISTICS.

MOLASSES

- Rotterdam, Holand: depth = 12.65 m
- USA: depth = 10 to 20 m
- Ravena, Italy: depth = 8 m
- Canary Islands: depth = 10.50 m

ALCOHOL

Not very significant; various ports of destination.

VEGETABLE OILS - Germany: maximum dpeth = 14 m - USA: depth = 12 to 12.80 m

- Canary Islands: depth = 10.50 m

COMMENTS

Based on the above descriptions and the fact that in some cases these products represent only a fraction of the ships' cargo, small size ships were postulated, to be loaded to capacity with the mentioned products.

The following types of ships therefore result:

LARGO	TYPE OF		CARGO/ VOYAGE(t)	LENGT	I BEAM	DRAFT	MIN. DEPTI
COILS	CARGO SHIT TANKER TANKER	15,000 25,000 38,000	20,000	210,50 164,00 190,59	28,50 24,50 27,40	9,50 10,90 11,60	12,00

5.3

. .

QUANTIFICATION OF FACILITIES' OPERATING CAPACITIES AND NUMBER OF BERTHS

The working hypotheses assumed for sizing the port complex's berth's took into consideration the types of ships, length of time in the berth and equipment operating capacity in order to achieve various equipment utilization rates with tolerable waiting lines. The length of time 60,000 tdw ships spend in specialized international ports, close to 4 to 5 days, was used to size loading and unloading equipment.

The following basic data were used:

• :=	1)	Equ	ipament efficiency = 80%
	2)	Hou	rs worked = 20 hours/day
	3)	Bas	ic equation
• -	R	хе	$x H x d x \sigma = T$, where:
	R _n	=	Rated yield
	e	=	Equipment efficiency
	Н	Ħ	Work hours per day
#	đ	=	Working days per year
	Ф	=	Berth utilization rate in %
-	T	=	Projected tonnage
	4)	Max	imum berth utilization rate = 50%
• •		(Cor	ngestion rate of up to 5% is tolerable.)

(1) Ports of the World - BENN Brothers Limited.

1/5.13

WHEAT FACILITIES

5.3.1 ...

Working Hypotheses

Possible working days per year = 270 days

Using the basic equation:

 $R_{n} \times e \times H \times d \times \sigma = T$ $R_{n} \times 0.80 \times 20 \times 270 \times \sigma = T :$ $R_{n} = \frac{T}{4,320} \times \frac{1}{\sigma}$ $= \frac{T}{4,320} \times \frac{1}{R_{n}}$

د نېږي. د پارلو د DETERMINATION OF THE THEORETICAL CAPACITY (R,) CAPABLE OF MEETING THE PROJECTED DEMAND; WITH A 50% to 40% UTILIZATION RATE; FOR ONE BERTH

Year	T	R _t (50%)	R _t (40%)
,A			·
1980	612	283	· 354
1981 `	. 642 ·	297	372
1982 .	673	312	390
1983	705	326	. 408
1984 :	739 .	342	428
1985	775	359	449
1986	808	374	468 -
1987,	842 -	390	488
1988	878	407	508
1989	. 915	424	530
1990	954	442	552
. 1991	995	461	576
1992	· · 1037	: 480 ·	. 600
1993	1082	501	626
1994 ·	· 1128	522	· 653
1995	· · 1176 ·	544	681 .
1996	. 1191	. 551	• 690
1997 .	· - 1207	559	699
1998	. 1224		. 709 .
1999	1240	57,4	718
2000	.1257	582	729
2001	1274		738
2002	. 1292	598 -	. 748
2003	1309 .	606 .	. 758
2004	1327	614	768
2005	i345 ·	622	* 779*
		1	•

IV-1/5.15

.

A reasonable estimate of the type of equipment to be used may be obtained, based on these results. In short, for 150 tons/hour modules, starting with 2 modules, the utilization rates for 2, 3 or 4 modules (σ_2 , σ_3 , σ_4) would be:

San Barran Barran

	1			<u> </u>
Year	<u> </u>	σ ₂ (MOD)	σ ₃ (MOD)	• σ ₄ (MOD)*
			• • •	•
· 1980 .	612 .	. 47 .	. 31	24
1981 .	. 642	.49	33	25
1982	673	51	• 35 .	26
1,983 .	705 ·	54	36 .	27 ·
1984	,739 [']	· 57	38-	• 28 _
1985	775	. 60	t 40	30
1986	808	62	41 .	. 31
1987	. 842	65	. 43	. 32
1988	* 878	68	.45	34
1989	• 915	71 '	. 47	35
1990	954	74	49	· 37 [·]
1991	. 995	77	` 51	38
1992	1037	80	- 53	40
1993	1082	. 83	55	42
1994 -	1128 -	. 87	58	43
1995	1176	91	60	45
1996	1191	92	61	46
1997	1207	93	62	46
1998	1224	94	63	47
1999	1240	90		48
2000	1257	97	65	48
2001	1274	98	66	. 49
2002	1292	100	67.	50
2003	_1309	101	. 67 · `	50
2004	1327	• • •	68	51
2005	1345	- -	69	52
- 4 21 - 42 				

· IV-1/5.16

Analysis of the preceeding table shows that the utilization rate increases rapidly when the number of modules is

decreased. This would mean including new equipment in short periods of time, to the detriment of the functioning of the port's permanent facilities.

Opting for an equipment module with a 400 tons/hour rated capacity and adding a second equipment module in 1985 results in the following:

Year	T .	400 L/h 01 :	800 L/h 02 .
1980	612	· 35 ·	18.
1981	• 642 -	37 °.	. 12
1982	673	39	20
. 2983	. 705	41 .	21 .
1984	739	· 43	21
÷1985	775	45 .	22
1380	° . 803	47	23 .
1907	842	19	. 24
1900	878 .	51	25
1909	915	53	. 27
1990	954	, 55 [.]	28
2991 ⁻	995 ·	58	29
· 1992	1037	60 · · ·	30
1993	1082	• 64	. 31
1994	3128	65	33 -
` 1995 *	2276.	68	
1996	1191 🕺	69	35 .
1997	1207 .	• 70	35
·· 1 9 28 *	1224	71	35 • •
1997	1240	72 .	36
2000	1257	73	. • 36
2001	. 1274	74	• 37
2002	3292	· 75 ·*	37 -
2003	1309	76	38
2002	1307		38
2005	1345	78	- 39
	·. [• • •	• ,

A Constant of the second s

EXPORTING WHEAT BY LAND AND COASTAL TRADE

The working hypotheses for this type of shipping are the same as those mentioned above.

Calculation of utilization rates for equipment with rated vields of 300, 600 and 800 tons/hour, for coastal trade.

From the basic equation = $\sigma = \frac{T}{4,320} \times \frac{1}{R_n}$, yields:

For T = 215,000 tons/year, invariable over the course of the project, the result is:

 $\sigma_{300} = 17\%$ $\sigma_{600} = 8\%$ $\sigma_{800} = 6\%$

ς, ι

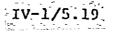
As can be seen, the utilization rate results are not very significant for coastal trade ships. Variation in the transport system capacity does not represent important cost variations since the structural elements remain virtually constant, notably around 500 tons/hour.

This assertion, and the fact that the lower the utilization rate; the greater the economies for navigationdue to more available berths for other cargos on the same docks, led to the adoption of a 600 tons/hour capacity.

FREQUENCY OF IMPORT AND EXPORT VESSELS

<u>,</u>,

Types of vessels: - 30,000 tons/voyage for import 400 tons/hour until 1984 800 tons/hour after 1984 - 8,000 tons/voyage for export 600 tons/hour


•				•••	
YEAR	IMPORT,	LAY DAYS	YEAR	,IMPORT VESSEL	LAY DAYS
1980	20	75	••1993 •	36	· 72
1961	21	73	1994	- 30	70 .
1982	22	. 83 .	1995 -	39	78 .
1983	24	90 ·	1996	40	80
1984	25	94	, 1997	40	80
1285	26	52	1928	41	, 82
1986	.27	54	,1999 ·	41 .	62
1967	20	56	2000	42	• 84
1918	29	58	2001	42	84
1389	31	62	2002	43	86 -
1990	· 32	64	2003	41	. 08
)991	33	00	2004	* 44	88 ·
1992	1 - 25	70	2005	45	90

Import ship's length of time in the berths: Up to 1984 - 3.75 days/ship

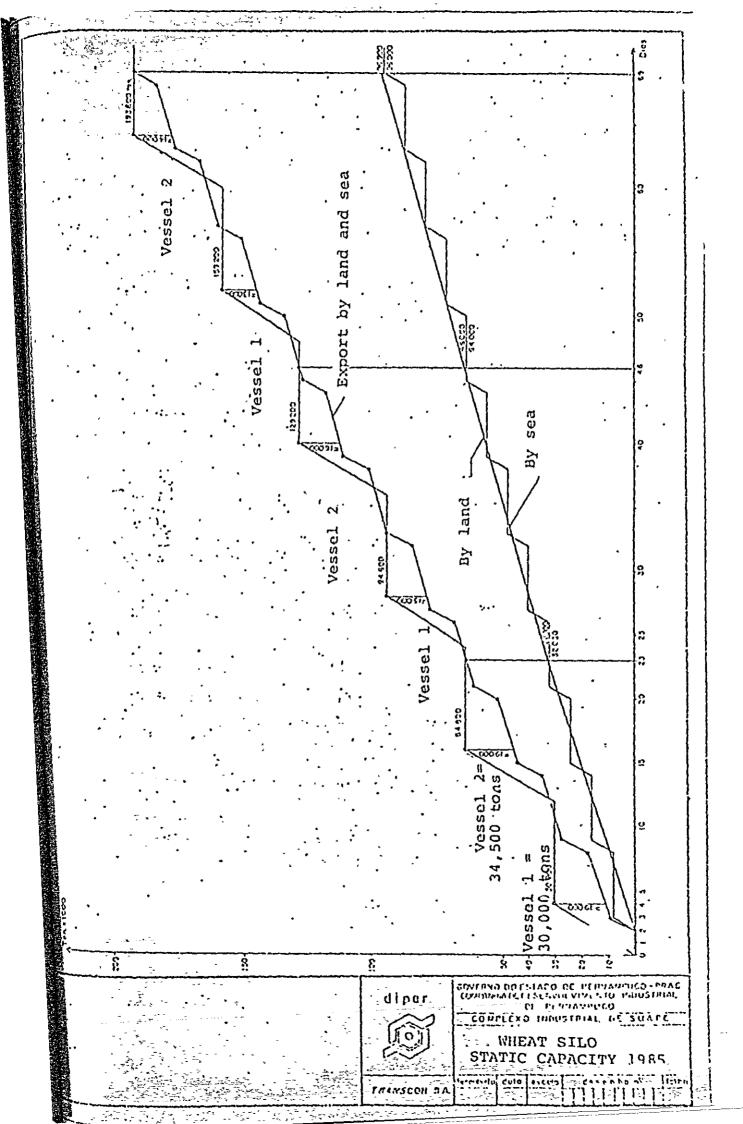
After 1984 - 2 days/ship

An average of 27 coastal trade ships per year, with an average stage of only 1 day, is expected.

5.3.2	DETERMINATION OF THE WHEAT SILO'S STATIC CAPACITY
λ	WORKING HYPOTHESES FOR PRE-DIMENSIONING
1a)	Equipment capacities up to 1985
	Input = 400 tons/hour
	Output = 800 tons/hour, as follows:

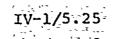
 a) By land = 200 tons/hour b) By coastal trade = 600 tons/hour 2a) Yields after 1985 Input = 800 tons/hour Output = 800 tons/hour, as follows: a) By land = 200 tons/hour b) By coastal trade = 600 tons/hour 3a) Shipping by land: Working hours per day = 8 hours Working days per month = 23 days 4a) Maritime shipping: Working hours per day = 20 hours Working days per month = 23 days B WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports (coastal trade) = 18,000 tons/month
 2a) Yields after 1985 Input = 800 tons/hour Output = 800 tons/hour, as follows: a) By land = 200 tons/hour b) By coastal trade = 600 tons/hour 3a) Shipping by land: Working hours per day = 8 hours Working days per month = 23 days 4a) Maritime shipping: Working hours per day = 20 hours Working days per month = 23 days b) WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year
<pre>Input = 800 tons/hour Output = 800 tons/hour, as follows: a) By land = 200 tons/hour b) By coastal trade = 600 tons/hour b) By coastal trade = 600 tons/hour 3a) Shipping by land: Working hours per day = 8 hours Working days per month = 23 days 4a) Maritime shipping: Working hours per day = 20 hours Working days per month = 23 days B WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000 tons/year</pre>
Output = 800 tons/hour, as follows: a) By land = 200 tons/hour b) By coastal trade = 600 tons/hour Ja) Shipping by land: Working hours per day = 8 hours Working days per month = 23 days 4a) Maritime shipping: Working hours per day = 20 hours Working days per month = 23 days B WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000 tons/year Monthly imports : 775,000 tons/year
 a) By land = 200 tons/hour b) By coastal trade = 600 tons/hour 3a) Shipping by land: Working hours per day = 8 hours Working days per month = 23 days 4a) Maritime shipping: Working hours per day = 20 hours Working days per month = 23 days B WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year
 b) By coastal trade = 600 tons/hour 3a) Shipping by land: Working hours per day = 8 hours Working days per month = 23 days 4a) Maritime shipping: Working hours per day = 20 hours Working days per month = 23 days B WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year
 3a) Shipping by land: Working hours per day = 8 hours Working days per month = 23 days 4a) Maritime shipping: Working hours per day = 20 hours Working days per month = 23 days B WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year
<pre>Working hours per day = 8 hours Working days per month = 23 days 4a) Maritime shipping: Working hours per day = 20 hours Working days per month = 23 days WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year</pre>
<pre>Working days per month = 23 days Aa) Maritime shipping: Working hours per day = 20 hours Working days per month = 23 days WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year</pre>
 4a) Maritime shipping: Working hours per day = 20 hours Working days per month = 23 days B WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year
<pre>Working hours per day = 20 hours Working days per month = 23 days WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year</pre>
<pre>Working days per month = 23 days B WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year</pre>
B WHEAT FLOWS FOR 1985 Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year
Determination of monthly imports and exports: Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year
Projected imports: 775,000 tons/year Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year
Monthly imports : 775,000/12 = 64,583 tons/month or Projected exports (coastal trade) = 215,000 tons/year
Projected exports (coastal trade) = 215,000 tons/year
Monthly exports (coastal trade) = 18,000 tons/month
-
Monthly exports by land = 46,666 tons/month
No. of export ships (per year) = $215,000/8,000 =$
27 ships per year
•
· · ·

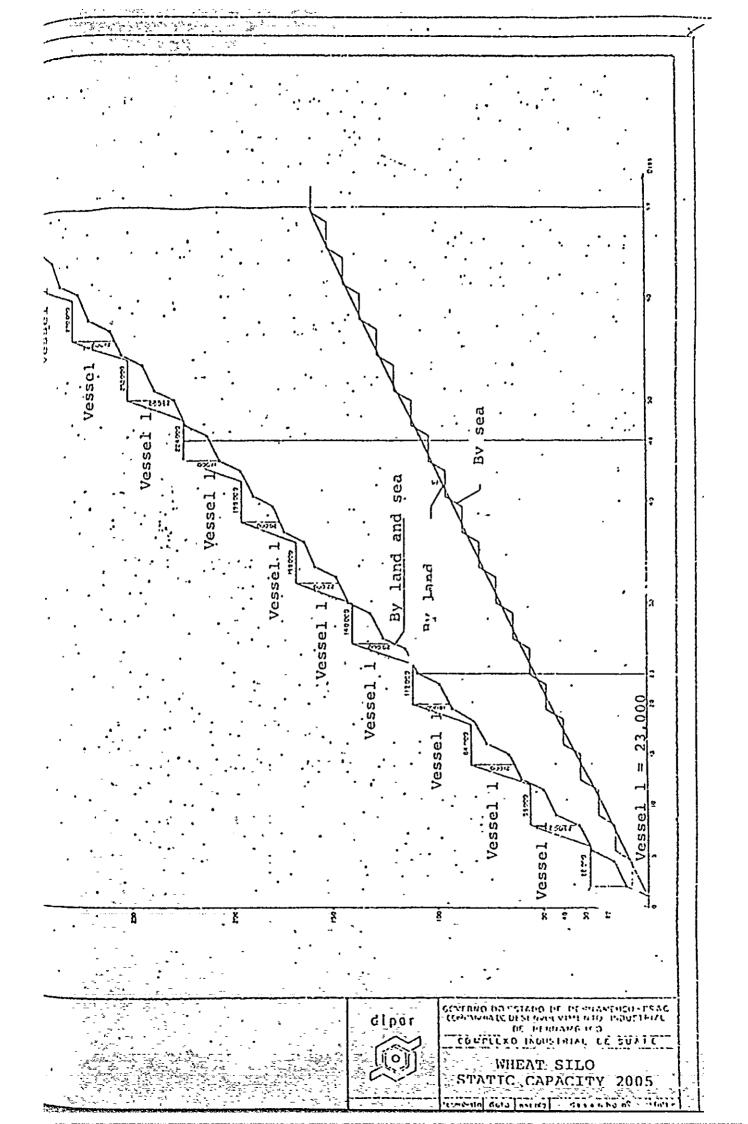
•


1V-1/5.20

No. of vessels (per.month) for export = 27/12 = 3/monthNo. of vessels (per month) for import = (1 30,000 vessel alternating)1 34,583 vessel Cyclc for coastal trade wheat carrier $C_{TE} = \frac{23 \text{ days}}{\text{month}}$ $\frac{3 \text{ vessels}}{\text{month}} = 7 \text{ days/vessel (total cycle)}$ = C_{mp} adopted = 7 days/vessel C cargo = 8,000 tons/voyage + 600 tons/hour = 13 hours/ voyage Cycle of cargo adopted = C cargo = 1 day since low operating yields will occur for small ships EXPORT BY LAND This type of export was assumed to be a continuous daily flow amounting to a linearly increasing accumulated demand, as shown in graph I. Cycle for import wheat carrier $C_{TI} = \frac{23 \text{ days}}{\text{month}} = \frac{2 \text{ vessels}}{\text{month}} = 11.5 \text{ days/vessel}$ - 12 days per vessel C unloading = 30,000 tons/vessel :(400 tons/hour x

20 hours/day) = 3.75 days/voyage Cycle adopted for unloading = C unloading = 4 days/vessel


IV-1/5.21


-


```
A period of three months was considered; this would yield
a total of 23 days \times 3 = 69 days.
The silo was assumed to be empty.
       WHEAT FLOWS FOR THE YEAR 2005
С
       Determination of monthly imports and exports
       Projected imports = 1,345,000 tons/year
       Monthly imports = 1,345,000 + 12 = 112,083 tons/month
       Exports unchanged
       Cycle for coastal trade wheat carrier
       Number unchanged
       Cycle for import wheat carrier
       No. of vessels per year = 45 vessels
       No. of vessels per month = 4 vessels/month
       C_{TI} = \frac{23 \text{ days}}{\text{month}}
                        : \frac{4 \text{ vessels}}{\text{month}} = 5.75 \stackrel{:}{=} 6. \text{ days/vessel}
       C unloading = 30,000 tons/voyage : 800 tons/hour =
       37.5 hours = 2 days/vessel
       Export by land
```

Same as for 1985.

Analysis of the graphs shows a static capacity on the order of 19,000 to 20,000 tons for the two situations studied, and therefore a 25,000 tons capacity for stored wheat was assumed.

On the other hand, if we were to consider the arrival of 60,000 tdw vessels -- a possibility which was previously discussed and which would be perfectly feasible in terms of factors such as lay days, equipment quality and economic freight handling, as well as the port's physical facilities -- a second criteria based on the 60,000 tdw vessel's cargo would be assumed.

Thus, for the course of the first stage and assuming: Forecast arrival of 60,000 tdw vessel Silo completely empty Continuous daily shipments by land 100% equipment efficiency Forecast arrival of a 10,000 tdw coastal trade vessel we would have:

EXPORT: tdw = 10,000 80% cargo = 8,000 tons IMPORT: tdw = 60,000 80% cargo = 48,000 tons Receiving capacity = 800 tons/hour Shipping capacity = 200 tons/hour - by highway (for 8 hours/day) 600 tons/hour - by coastal trade (for 20 hours/day)

\$

IV-1/5.29

pay i	Receivals (tons)	Export by Land (tons)	Export by Sea (tons)	Difference
lst.	16,000	1,600	ø	14,400
2nd	16,000	1,600	8,000	20,800
3rd	16,000	1,600	Ø	35,200

According to the criteria and using a coefficiency of safety of 25%, the result would be 45,000 tons.

.

•

D FINAL CALCULATION OF STATIC CAPACITY OF THE SILO

BINS AND SUB-BINS

Bin unit	Normal internal diameter Height Net volume Tonnage (0.75 tons/m ³)	= 8.50 m = 42.00 m = $2,109 \text{ m}^3$ = $1,580 \text{ tons}$
Sub-bin unit	Net volume Tonnage (o.75 tons/m ³)	= 340 m^3 = 255 tons
Arrangement }	four bins per line seven lines of bins PACITY	
Sub-bins Nowever, using	the most realistic value f	590 tons 830 tons for the product's
weight, which i bin's, we would	ncreases in value due to c have:	compaction in the

IV-1/5.30

Bins : $7 \times 4 \times 2,109 \times 0.80 = 47,242$ tons Sub-bins : $6 \times 3 \times 340 \times 0.80 = 4,896$ tons total = 52,138 tons

AREA NEEDED FOR THE BASIC LAYOUT:

E

A total area of around 3,600 m² is forecast based on a 25° m wide lifting tower, 9.00 external diameter per bin, for seven lines of four bins cach.

For parking, an area of $5,500 \text{ m}^2$ is projected to allow good conditions for circulation of vehicles.

IV-1/5.31

- -

5.3.2. SUGAR TERMINAL

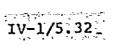
Specific Working Hypotheses

- Sugar season = 8 months = 240 days
- Working days per year (d) = 180 days/year

Basic Equation

Α

 $R_n \times e \times H \times d \times \sigma^- = T$


For the parameters defined, the equation yields:

 $R_n = \frac{T}{2,880} \times \frac{1}{\sigma}$ or $\sigma = \frac{T}{2,880} \times \frac{1}{R_n}$

Pre-Dimensioning

Sugar exports from the Port of Suape will be divided into bulk and sacked sugar. It was assumed that export of sacked sugar will make up 21% of the total projected flow, which is equal to the import volume for China corresponding to the north northeastern section.

			· · · · ·				
\therefore (in tons x 10 ³)							
.y. * 1	1975	1980	1985	1995	2005		
Asia	- 900	2.585	<u>3.895</u>	<u>5.185</u>	5.215		
China .	300	- 900	1.000	1,100'	1.100		
Middle East	- 325	1.050	i.885	2.600	2.600		
Japan	50	100	130	. 170 .	180		
Others -	225	5 <u>35</u>	880	1.315.	1.335		

Therefore, for the year 2005:

Total imported by China	=	1,100	thousand tons
Total imported by Asia	8	5,215	thousand tons
Chinese imports as a ł of Asian imports	=	$\frac{1,100}{5,215}$	x 100 = 21%

B

CALCULATION OF THEORETICAL CAPACITY OF EQUIPMENT TO MEET THE PROJECTED DEMANDS, WITH THE UTILIZATION RATE FIXED AT $\sigma_1 = 40$; $\sigma_2 = 50$?

EAR	т	$n_t(\sigma_1)$	$\dot{R_t}(\sigma_2)$	YFAR	г Т 	$R_{t}(\sigma_{1})$	$R_t(\sigma_2)$	ואמצ	. т	$R_{t}(\sigma_{l})$	Rt (02)
1980	650	564	451	1.989	1829	1588	1270	1998	2668	2316 [,]	1853.
1981	761	661	528	1990	1944	1688	1350	1999	2677	2323	1859
1982	891	773	619	1991	2068	1795	1436	2000	2686	2332	1865
1983	1044	⁻ 906	725	1992	2199	1909	1527	2001	2696	2340	1872
1984	1222	1000	849	1993	2338	2030	1624	2002	2705	2348	1878
1985	1430	1241		1994	2487	2159	1727	2003	2715	2357	1885
1986	1520	1319	1056	1995	2640	2292	1833	2004	2725	2365	1892
1987	1617	1404	1123	1996	2649	2300	1840	2005	2735	2374	1899
:988	1719	1492	1194	1997	2659	2308	1847				•

Assuming a 1,000 tons/hour capacity for bulk sugar and a 240 tons/hour capacity for sacked sugar, we will proceed to study the utilization rates for the equipment, taking into account the fact that for the year 2005, with rates between 40% and 50%, the theoretical capacity would be, according to the table above, 2,374 tons/hour and 1,899 tons/hour, respectively. These data represent the sum of bulk and sacked export capacities.

IV-1/5:33

С

CALCULATION OF UTILIZATION RATE () FOR BULK SUGAR EXPORT; WITH A 1,000 TONS/HOUR MODULE

· YE	AR	·T (1.000)	$(1000 \text{ L/h}) \sigma_1$	$(2000 t/h) \sigma_2$
1.980	,]	513	· 18 · ·	9
1981		. 601 '	21	- 10
1.982	.	704	24	.15
1983	; -	825	29	14
1984		965	34	• 17
· 1985	;	. 1130 .	39	20 ·
1986	;]	1201	42	21
1987	, }	· .1277 ·	. 44	22
1988)	1358	47	24
1989		1445	50 [′]	2.5
1990) [1536 · Č	53	27
1991	.	1634	57 '	28
1992		1737	. 60 .	20
1993	1 - 1	1847 .	64	32
1994		• 1965	68	34
,1995		2086 -	÷ 72	36
1996		2093	73	36
1997	'	2101	73	36
1998		2108	73	. 37
1999)]	2115	73	37
2000) {	2122	74 .	37
2003	.	2130	74	37
2002	:	~ 2137	.74	37
2003		2145	74	37
2004		2153 -	75	37
2005	;	2161.	75	_ 38

It can initially be seen that starting in 1990 a second module will be needed to maintain the berth utilization rate within the limit of tolerance. The exact determination of the year in which this module should be put into operation will be shown later in this work after all the utilization rates for the other products have been determined.

-1/5.34

D

CALCULATION OF UTILIZATION RATE FOR EXPORT OF SACKED SUGAR (21%) WITH A 240 TONS/HOUR MODULE

. YEAR	T × 1000	σ1.	σ _{.2} · ·
1980	137	20	. 10 .
* 1981	160: •	23	12
1982	. 187	27 .	14
1983	2Ì9	32	16
1984	257	37	19
1.985 .	300	43	· 22
1986	319 .	46	23
1987 .	340	49	. 25
1988	361 -	52	26 •
1989	384	56 .	28
1990	408	59	30
.1991	434	63 .	31
1992 ,	462	67	33
1993	491	73.	36
1994	522	• 76 • •	. 38
1995	554 ·	80	40
1996	556	80	40 .
, 1997	. 558	81	40
1998	560	*81 -	41 .
1999	562	81	. 41
2000	564	. 82	41 .
. 2001	566	82	41
2002	568	82	. 41
2003	- 570	82	41
- 2004 -	572	83	41
2005	· 574	83	- 42

In this case, the second equipment module will start to operate in 1980 when the utilization rate reaches 52%.

IV-1/5.35

FREQUENCY OF VESSELS FOR BULK AND SACKED SUGAR

1,000 tons/hour until 1990 Bulk: 80,000 tdw - 64,000 tons/voyage 2,000 tons/hour Model Type of Ship after 1990

Ē

Sacked: 25,000 tdw - 20,000 tons/voyage - 480 tons/hour

•	Bulk Su	ıqar	Sacked	Sugar
Year	Vessels Der vear	' Lay Days	Vessels per veau	Lay Days
1980	8		•	
1985	1 .	26	7	18
1982	9	29	8.	· 20 ·
. 1983	• 11	35	9 ·	23
1983	13	42	11	28
	15	. 48 .	13	33
1985	18	, 58	15	38
.1986	19	· 61	16	40
1987-	20	- 64	17	. 43
1988	21	67	18	45
1989	23	74	19	48
1990 ·	24	77	20	50
~19 <u>9</u> 1	26 . •	÷ ; 52	.22	55
1,992	27.	÷ 54	23	58
1,993	29	58	25	63 ·
1994 ·	31 ·	62	26	65
.1995	33	66	28	, 70
1996	.33	66	. 28	70
1997	· 33	°. 66	28	70
1998	33 -	66	· 28	70
· 1999 · :	• 33	66	28	70
2000	33	66	· 28 ·	70
2001	33	66	28	70
. 12002	33 .	66	. 28	70
2003 .	34	68	29	73
2004	34	68	29	73
2005	34 .	68	29	73
- <u>*</u>		L ⁰⁴		•

Lay days for bulk sugar carriers:

until 1990 - 3.2 days after 1990 - 2.0 days

Lay days for sacked sugar carriers: 2.5 days

2

IV-1/5.36

DETERMINATION OF THE STATIC CAPACITIES OF BULK AND SACKED SUGAR WAREHOUSES

Based on the reasoning employed to dimension the wheat silo static capacity, i.e., assuming arrival of the largest vessel that would carry this cargo, which, for sugar, would be 125,000 tdw, with 100,000 tons of cargo per voyage, the results would be:

BULK SUGAR BY 100,000 TONS/VOYAGE VESSEL

maximum receiving capacity by railroad = 500 tons/hour
 maximum receiving capacity by highway = 250 tons/hour
 750 tons/hour

- receiving hours per day = 8 hours $750 \times 8 = 6,000 \text{ tons/day}$

- 'loading' capacity per shiploader = 1,000 tons/hour

- shipping hours per day = 20 hours

الالم المعالي المعالي

. for the year 2005 : $2 \times 1,000 \times 20 = 40,000$ tons/day

Days	Receiv	ing	Shippi	ing	Differer	ices
D	6,000	tons	40,000	tons	-34,000	tons
D + 1	6,000	tons	^{40,000}	tons	-68,000	tons
D + 1.5	3,000	tons	20,000	tons	-85,000	tons
TOTAL	15,000	tons	100,000	tons	-85,000	tons

Therefore using the same coefficient of safety as used for wheat (25%) we have: 85,000 tons + 25% = 106,250 tons.

Considering this product's season and the not unrealistic possibility of a second vessel's arriving at the end of eight days, as shown below:

- Projected sugar exports for 2005 : 2,161,000 tons

2,161,000 tons/year - 100,000 tons/vessel - 22 vessels/year

IV-1/5.37

or 22 vessels/year - 8 months/year - 3 vessels/month

F

or:
$$\frac{23 \text{ days}}{\text{month}}$$
 = 3 vessels/month = 1 vessel/8days

The cycle would be:

ARRIVALS	VESSEL 1 ARRIVAL	VESSEL 1 CARGO	VESSEL 2 Arrival	VESSEL 2 CARGO	TOTAL DAYS
. DAYS	0	2.5	5.5	2.5	10.5

Therefore:

- receiving capacity per 10.5 days = $10.5 \times 6,000 = 63,000$ tons
- shipping in 10.5 days = 200,000 tons (2 100,000 vessels)
- difference: 137,000 tons

Assuming a 25% margin, the result is: 137,000 tons + 25% = 171,200 tons · • G

SACKED SUGAR FOR 20,000 TONS/VOYAGE VESSELS

By the same line of reasoning we arrive at the choice of a 25,000 ton warehouse.

Ħ AREA NEEDED FOR THE BASIC LAYOUT

It is estimated than an area 140 m x 160 m will be sufficient for construction of a $13,200 \text{ m}^2$ sugar warehouse; the projected area will provide the needed space for circulation of vehicles.

5.3.3. FACILITIES FOR LIQUIDS

A ALCOHOL

Working Hypotheses:

For alcohol we adopted the same working hypotheses as were adopted for sugar, including the same product season. Calculation of theoretical capacity for utilization rate limits of: $\sigma_1 = 30$, $\sigma_2 = 40$, $\sigma_3 = 50$ %

YEAR	т.	- R _n .(σ ₁)	$R_n (\sigma_2)$	R _n (σ ₃)
1980	: 113	87	. 65	52
1981	120	· 93	69	56
1982 .	127 .	. 98	74	59
1983 -	134	103	78	62
1984	142	. 110	82	66
1985	151	· 117	87	70
1986	154	. 119	89	71
1987	· 156	· 120	90	72
1988	159	· <u>1</u> 23	92	74
1989 *	162	125	94	75
1990	165	. 127	95	76
1991 •	168	. 130	· · 97 ·	78
1992	171	132	99	79
1993 •	• 174	• 134	101	81
1994 *-	• · 178	• -137	103	. 82
1995	181	140	105	84
1996	181	140	105	84
-	181	140	105	84
1998	181	140	195	<u>84</u>
2000	181	140	_ 105 ·	84
2001 2001	181	• 140	105	84
2002=	181 .	140	105	84
2003.=	181	140	105	84
2004	181	140	105	84
2005	181	140	- 105	84
		•		

1V-1/5.39 -

- Calculation of the utilization rate of assuming a 150 tons/ hour, flow capacity for each module.

	· · · ·	· .	• 2
1		· · ·	· ·
		,	•

	*			•	•	
• - • #		, •	1 F T	• • • •	• •	

, ``	YEAP		ا بر د د ه م ـ ا	⁰ 1, ⁽¹⁵⁰⁾	· · · · · · · · ·	**	., ⁰ 2 ⁽³⁰⁰⁾
	1980	1 wybw 2 . 4		17	۰. ۱۰	· ·	· ' 9
	1981	• 3 5 .	• · ·	19	_	•	9
• • •	1982	•	•	20	•		10
¥	,	* ,	·	· 21		•	. 10
	1984		· · ·	· 22	. :	• •	. 11
et . *	. 1985	٠		23		•	12
	1.986			24			. 12
; , ,	1987		· ·	24	•	• •	. 12 '
	1988	•	•	25		• •	12
、 ,	1989		•	25	. •		13
	1990	• •	•-	25	•	• •	13
•	1991			26		•	13
-	1992		•	26			13
	1993	· •••	•	· 27 : · ·	•		13
•	1994		•	27			14
`.	1995		р	28			14
	1996	5 - 5 - 5 - 4 		28 -	•		14
	1997.	•		. 28	•		14
5	1998	· · · ·	• , •	28 • •			· 14
1	1999.	* *		28 -	• •		14
	2000		*	28.			14
* • 1	2001	•		28 .			14
• ;	2002	•	- <u>-</u>	28	•		14
7	2003	tg.™ () () ⊸ ≉ ⊊		28			• • 14 •
	2004			28			14
• ••	2005			28 · ·	•	• •	14

A 300 tons/hour capacity was adopted. FREQUENCY OF SHIPS

wodel vessel type: 25,000 tdw tanker - 20,000 tons/voyage ٠,

IV-1/5.40

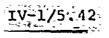
Shipping capacity: 300 tons/hour Lay days per ship: 20,000 : 300 : 20 = 3 days

.

YEAR	1.000 T	Number of	Lay Days	
I EAR		Vessels		
1980	113	б	. 1.8	
1981	120	. 6	18	
1982	127	. 6	- 18	
1983	. 134.	7	21	•
1984	142	· · · · ·	21	
1985	151	8	24	
1986	154	8	. 24	•
1987 .	156	. 8	24	•
1988.	159	8	24	
1989	162	• 8	24	
1990	165	. 8	. 24	
1991	,168	8	** 24	
1992	. 171	. 9	. ²⁷ .	
1993	. 174	9	• • • 27	
1994	178	9	, 27	
1995	- 181	• 9	• 27	
1996	181	, ⁹ ,	27	
1997	• 181	. 9 .	. 27 ·	
1998 7	181	. 9	27	
1999	181	. 9	27	
2001	181	9	27	
2002	181	9 .	• _ 27	•
2003	· 181 ·	9	• 27	
2004	181	; 9 .	. 27	
2005	181	9		

•

IV-1/5-41


.

Determination of the tankage static capacity. Three basic years were chosen to get an idea of the increases in total capacity necessary, according to the criteria, to establish each tank's capacity, assuming that tankers will not arrive every month.

Year Exp.	19	1990			2005		
2	Per Year	Per Month	Per	Year	Per Month	Per Year	Per Month
Tonnage	113,000	14,125	165	,000	20,625	181,000	22,625

Assuming tanks with the following characteristics:

Dimensions: $\emptyset = 25 \text{ m}$ h = 12.00 m V = 5,891 m³ Capacities: a) 4,700 tons b) 5,890,500 liters we would have the following: No. of tanks necessary = $\frac{14,125}{4,700}$ = 3,000 ~ 3 tanks (1980) $\frac{20,625}{4,700}$ = 4.4 ~ 5 tanks (1990) $\frac{22,625}{4,700}$ = 4.8 ~ 5 tanks

د

Working Hypotheses:

Since molasses is a sub-product of the sugar industry, we adopted the same hypotheses as used for sugar. .*

Calculation of the theoretical capacity for a utilization rate limit: $\sigma_1 = 25$?

YFAR '	۲ [.]	<u> </u>	* • •	. R _n (0 ₁)
1980 .	109		•	151 .
1981	· · 170			236
1982	234			325
1983	302	• • • •		419
1984	374	•	•	519
1985	450		•	625
1986	485	• .		674
1987	521	•	•	724
1988	558		•	775
1989	. 595	•	'	. 826
1990	• 634	•		881
3.991 -	673		·	. 934
1992 · ·	· 714	٠	•	992
1993	756	· • •		1.050
1994	798 [`]	•	• • •	1.108
1995	842	*	•	1.169
1996	- 850		•	1.181
1997 •	858	•		1.192
1998	867	•	•	1.204
1999	875	•		1.215
2000	· 883		• •	- 1.226
2001 •	89,2	• •	•	1.239
2002	900	•	•••	1.250
2003		•		1.261
<u>2004</u>	917			1.274
*2005	925		• .	1.285

IV-1/5.43

Calculation of the utilization rate (σ) for the capacities below:

·...

۰.

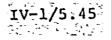
13 8 6 4 20 13 10 7 27 16 14 9 35 23 16 12 43 29 22 14 52 35 26 17 56 37 28 19 60 40 30 20 65 43 32 22 69 46 34 23 73 49 37 25 76 52 39 26 83 55 41 28 88 58 44 29 92 62 46 31 97 65 49 33 98 66 50 33 100 67 50 34 101 68 51 34 103 69 52 35 106 71 53 35 107 71 54 36	· ······	Modules		
13 6 6 4 20 1.3 10 7 27 18 14 9 35 23 18 12 43 29 22 14 52 35 26 17 56 37 28 19 60 40 30 20 65 43 32 22 69 46 34 23 73 49 37 25 76 52 39 26 83 55 41 28 86 58 44 29 92 62 46 31 97 65 49 33 98 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 35 106 71 53 35 107 71 54 36	۳ ₁ (300)	σ ₂ (450)	σ3 (600)	. σ ₄ (900
20 1.3 10 7 27 16 14 9 35 23 16 12 43 29 22 14 52 35 26 17 56 37 28 19 60 40 30 20 65 43 32 22 69 46 34 23 73 49 37 25 78 52 39 26 83 55 41 28 60 56 44 29 92 62 46 31 97 65 49 33 98 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 35 106 71 53 35 107 71 54 36	13			A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	•	•
35 23 16 12 43 29 22 14 52 35 26 17 56 37 28 19 60 40 30 20 65 43 32 22 69 46 34 23 73 49 37 25 78 52 39 26 88 56 44 29 92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 35 106 71 53 35 107 71 54 36				
43 29 22 14 52 35 26 17 56 37 28 19 60 40 30 20 65 43 32 22 69 46 34 23 73 49 37 25 78 52 39 26 88 58 44 29 92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 35 105 70 53 35 106 71 53 35 107 71 54 36	,		,	
52 35 26 17 56 37 28 19 60 40 30 20 65 43 32 22 69 46 34 23 73 49 37 25 78 52 39 26 83 55 41 28 88 58 44 29 92 62 46 31 97 65 49 33 98 66 50 33 100 67 50 34 101 68 51 34 102 66 51 34 103 69 52 34 104 69 52 35 106 71 53 35 107 71 54 36				• •
56 37 28 19 60 40 30 20 65 43 32 22 69 46 34 23 73 49 37 25 78 52 39 26 83 55 41 28 68 58 44 29 92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 35 106 71 53 35 106 71 53 35 107 71 54 36				
60 40 30 20 65 43 32 22 69 46 34 23 73 49 37 25 78 52 39 26 83 55 41 28 80 58 44 29 92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 34 104 69 52 35 106 71 53 35 107 71 54 36				
65 43 32 22 69 46 34 23 73 49 37 25 78 52 39 26 83 55 41 28 88 58 44 29 92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 34 104 69 52 35 105 70 53 35 106 71 53 35 107 71 54 36	•			
69 46 34 23 73 49 37 25 78 52 39 26 83 55 41 28 88 58 44 29 92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 35 105 70 53 35 106 71 53 35 107 71 54 36			•	•
73 49 37 25 78 52 39 26 83 55 41 28 68 56 44 29 92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 $.69$ 52 35 105 70 53 35 106 71 53 35 107 71 54 36				
78 52 39 26 83 55 41 28 88 58 44 29 92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 $.69$ 52 34 104 $.69$ 52 35 105 $.70$ 53 $.35$ 106 $.71$ 53 $.35$ 107 $.71$ 54 $.36$			37	
83 55 41 28 88 58 44 29 92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 35 105 70 53 35 106 71 53 35 107 71 54 36		•		
88 58 44 29 92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 $.69$ 52 34 104 $.69$ 52 35 105 $.70$ 53 $.35$ 106 $.71$ 53 $.35$ 107 $.71$ 54 36		•		
92 62 46 31 97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 34 104 69 52 35 105 70 53 35 106 71 53 35 107 71 54 36	••	•		
97 65 49 33 98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 $.69$ 52 34 104 $.69$ 52 35 105 $.70$ 53 $.35$ 106 $.71$ 53 35 107 $.71$ 54 36	•			
98 66 49 33 99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 34 104 69 52 35 105 70 53 35 106 71 53 35 107 71 54 36	• *			
99 66 50 33 100 67 50 34 101 68 51 34 102 68 51 34 103 $.69$ 52 34 104 $.69$ 52 35 105 $.70$ 53 $.35$ 106 $.71$ 53 35 107 $.71$ 54 36				
100 67 50 34 101 68 51 34 102 68 51 34 103 69 52 34 104 69 52 35 105 70 53 35 106 71 53 35 107 71 54 36	*			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•			
102 .68 51 34 103 .69 52 34 104 .69 .52 35 105 .70 .53 .35 106 .71 .53 .35 107 .71 .54 .36	<u>.</u>		•	
103 .69 52 34 104 69 52 35 105 70 53 35 106 71 53 35 107 71 54 36	1.00			
104 69 52 35 105 70 53 35 106 71 53 35 107 71 54 36	103			
105705335106715335107715436	* ¹			
106715335107715436	,			•
107 71 54 36				
		· ·		
	• • •	• • • • • • • • • •	• • • -	•
	<u>د</u>	•	•	

A minimum capacity of 600 tons/hour was chosen to assure lay days = 30,000 tons : 600 tons/hour : 20 hours/day = 3 days

\$

IV-1/5-44

FREQUENCY OF VESSELS


_Model[~]type of vessel

* * 38,000 tdw tanker - 30,000 tons/voyage .

.

.

YEAR	•	No	. of SHI	PS		of SHIPS MONTH
1980 -		4	• • •	•	Tiess	thar 1
1981.	170		. G	• •	Less	thar l than l
1982	• 234		• • • 8	•	Less	than 1
1983	302		10 `			1
1984	374		13	_	•	1
1985	450	•	. 15	• • •	· ·	1 · · ·
1986	485	•	16			·1
1987	: [521	ð	17 1			1 .
1988	- 558		19	-	,	2
1989	595	· ·	20			2
1990:	634,	•	° 21		*	. 2
1991	673-	•	. 22			. 2
1992	714	•	2.4	4		2.
1993 .	756	•	25			2
1994	, 798 .		27	•		2
1995	842		28			2
1996	850	•	• 28			2
1997	858		29			. 2
1998	867	•	29	•		2 .
1999	875	: -	29	• •	•	2.
2000	883	•	29		-	2
2001	892	-	30		• •	3
2002	¯ <u>9</u> 00	<u>_</u> ₹, •	. 30	•	•	3
2003	908	, 1 , 1	30	· -		3
2004	917	•	· 31		• . •	3

Static capacity of the tanks:

according to the calculation criteria adopted, for the years 1980, 1990 and 2005 we would have:

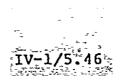
Year	1980		. 199	0	2005	
Export	Year	Month	Year '	Month	'Year	Month
Tonnage	109,000	13,625	634,000	79,250	925,000	115,625

Tank adopted for molasses: $\emptyset = 25 \text{ m}$

h = 14.50 m $v = 7,118 \text{ m}^3$

Capacity: a) 10,300 tons

b) 7,117,660 liters 1980 ---- $\frac{13,625}{10,300} = 1.3 - 2$ tanks 1990 ---- $\frac{79,250}{10,300} = 7.7 - 8$ tanks


 $2005 --- \frac{115,625}{10,300} = 11.23 - 12 \text{ tanks}$

C VEGETABLE OILS

3 -

Working Hypotheses:

Same as previously used, with the exception of season, which does not exist.

CALCULATION OF UTILIZATION RATE FOR 150 tons/hour CAPACITY PER MODULE:

уелі —	. 1.000 T	· · ·	σ ₁ (150)	σ (300)
980 .	30	•	5	· ·
981	34	•••	5	3
982	. 40	•	6	. 3
983	46	r*	. 7	4
984	. 52	•	8	4
985 .	. 60	• ••	; 9 _.	5.
986	, 61		. 9	. 5
987 .	62	-	. io	·5 · '
988	. 63	•	. 10	5
989	64	•	10.	5
990	65	• •	10	5
991	66	· ·	· 10 ·	5
992	67		- 11	5
993-	. 68	·	. 11	<u> </u>
994	69	• • •	11	• 5
995	70	• • • •	. 11	5
996	71	•	11	5
997	72		. 11 . '	• 5
998	. 73	•	• 11	5
999	- 74		·12	· · · 6
000	75	•••	12	· 6
001	76	•	. 12 ·	6
ວັດ2	~ · · · · · · · · · · · · · · · · · · ·	•	· 12	6
003	. * 78	•	. 12	· 6
004	79		· 12	6
005 - E	80	•	. 12 .	6

.

•

For berth arrangement purposes, a 300 tons/hour capacity was adopted:

FREQUENCY OF VESSELS

.

.

ĸ

٠

Model type of vessel: 15,000 tdw bulk carrier -· 12,000 tons/voyage

· Capacity = 200 tons/hour

*

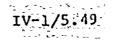
Year · · · ·	1.000	Т		NUMBER	OF	SHIP
1980		•	•	• •	3	
1981	34	•	•	•	ʻ 3 [°]	
1982	40				3	
1983	46	•			5	
1984	, 52	•	•		4	
1985	. 60	•.			5	
1986	. · 61	•			5	-
.1987	·, 62		٠	•	5	
. 1988 · .	63	•		• • •	5	
1989	. 64	-			5	
1990	·- 65	•			6	
1991	66	• • •	•	,	6	
1992	. 67	•	• •		6	
1993	68		•		6	
1994	69	• .		•	б	
1995	70	•			б	•
1996	,71		•		6	
1997 - •	72		. '	٠	6	
1998	73		•		6	•
1999	74	• •		-	6	
2000	. 75	•	-		G	
2001	. 76				6	•
2002	77	•	••	•	6	
2003	78		۰.	۰ ۲	7	
2004	' 79		•	•	7	•
2005	. 80	•	•		7	
- <u></u>	2 • •				•	

4 . Static capacity of the tanks:

Based on the same reasoning as used for the other liquids, we have:

Year	19	80	1990		2005	
Export	Year	Month	Year	Month	Year	Month
Tonnage	30,000	2,500	65,000	5,417	80,000	6,667

Tank adopted:


Dimensions: $\emptyset = 20 \text{ m}$ h = 9 m $V = 2,827 \text{ m}^3$ Capacities: in tons - 2,700 tons in liters 2,827,430 liters

No. of tanks necessary:

 $1980 --- \frac{2,500}{2,700} = 0.93 - 1 \text{ tank}$

 $1990 --- \frac{5,417}{2,700} = 2.04 - 2 \text{ tanks}$

 $2005 --- \frac{6,667}{2,700} = 2.47 - 3$ tanks

TUMD IT. PATTE I ICLURIT D G.C

6.0 PHYSICAL PLAN OF THE PORT COMPLEX

.

PHYSICAL PLAN OF THE PORT COMPLEX

The area destined for the port complex is priviledged in terms of topography. It has large flat areas with estensive filled and leveled ground by the waterfront area on the order of 18 to 20 hectares, as well as approximately 12 hectares of flat backland in the direction of the fishing port.

Since the site also has elevations of up to 60 m, it is intended to construct platforms by cutting into the hillsides to make use of the force of gravity, rather than pumping equipment, for loading liquids onto ships.

Finally, it was decided that the valley existing in the area to the north of the waterfront area would be used for access to the port complex. The valley possesses the required technico-economic characteristics, such as ample curves and gentle slopes.

6.1 FINAL ARRANGEMENT

6.0

Based on the berth utilization rates, a summary of which is presented below, it can be seen that by the end of the first stage four sections of docks will be needed to meet the import and export demand that will occur in the Suape port complex, without the danger of reaching the maximum tolerable utilization rate.

SUMMARY TABLE OF UTILIZATION RATES

· · · · · · · · · · · · · · · · · · ·	s ***	·	· · · · · ·	•	· ·	· · · · · · · · · · · · · · · · · · ·	•	•	•
Yea Product	r Bulk Sugar	Sacke Sugar		asses lcoho		Wheat (Impor	Wheat t)(Expo		L TOTAL 4 Berths
1980	- 18	10	G	1.9	" 2	·. 35	 12	.92,	23
1961	21	× 12 °)0 °	. 9	3.	37	12.	104	26
1982	21	• 14	. 14	10	3	39	13	117	-29
1983	29		· 10	10-	· 4	41	14	132	33
1984	34	19.	22	11	4	• 43	- 14	147	-37
1985	: 39	* 22	26	12	5	45	15	164	41
1906	;42	23	12	12	. 5	· 23	16	140	35
1987	44	25	. 20	12.	5	24	.16	146	36,5
8861	47	26	. 22	12	5	2.5	17.	154	38;5
1989	50	2.8	23	13	5	27	. 18 .	.164	41 ·
- 1390	- 33	. 30	25	13	, - ; 5	28 •	19	173	~43
1991	- 28	31	26	13,	5	29	20	152	38
1992	. 30	33	28	23	5	30	21	160	40
1993		36	29	23	5,1	31	. 22	168	. 42
5 1	"34 	38	31	• 14	5	, 33	23-	178	44.5
1995	. 36	40	33	14	5	34	24	186	46,5
1995	36	10	- 33	14	s	35	24	187	-47
1997	-36 · ·	40	33	14	5.	35	24	191	-47
- 1998	37	~ 41	34	14	5	· 35 .	25	193	-48
1990	37	41	34	14		36	25 -	193	-48
•••••7000	•	41	31	14	G	36	25	194	-48
2001	7,137. 137 .⊡⊺		- 34	14	6	- 37	25	196	48,5
2001	2	44.2	35	24	-	37	25	196	49
	- 37			Ľ .	6 6	- 38	26.	190	-49
2003	1 37 1. - 37	(41). 	- 35	14 14	- 6 - 6	38	26	197	. "49
2004	37	41	35			1,	1		50,5
2005	38	42	្ល់36	- 14	. 6	39	27	202	20,2
			لكي من ال		<u> </u>	L	<u> </u>	l:	L

ŝ

ν-1/6.2 Ιν-1/6.2

;

A basic layout for the projected facilities thus remains to be established.

Each type of product to be imported or exported through the port complex possesses inherent characteristics that require that a separate analysis be conducted for each.

For wheat, the type of soil for foundations is important because there will be a large concentration of cargo in a small area. Analysis of existing geophysical studies and drillings shows that the soil improves markedly when approaching the hills in the area. It was therefore decided to locate the wheat silo in this region, without, however, placing it so far away from the docks that high costs are conveyor belts are incurred. The summary table also suggests, in terms of utilization rates, the opening of two berths, one for export by coastal trade and the other for import by long run vessels.

For <u>sugar</u>, the required area is large and favors a more uniform load on the soil. It was therefore decided that the sugar terminal should be located as close as possible to the apron of the dock, allowing an appropriate distance for traffic in the waterfront area. The requirements of a bagged terminal for small ships would conflict with the requirements of a bulk sugar terminal for 125,000 tdw bulk carriers since the smaller ships used to export bagged sugar would underutilize the depths offered in the area. It was therefore decided to place a closing dock at the extreme west of the port complex since the channel opened there will be well utilized if a fishing terminal is opened in the area.

For the liquids, the slopes of nearby hills were used to optimize the trade-off between the elevations of the tank bases and the technico-operational difficulties involved in constructing an access road to the tanks to take advantage of gravity when unloading the truck cargos.

IV-1/6.3

حربة بأيريد المتح

For <u>alcohol</u>, however, the hazardous nature of this product influenced the choice of the rear hillside for the tanks; the hollow formed there will also be used for the pipeline descent. This hollow could also be used to form a retaining basin to protect the port complex in the event that overflows or fires occur. The 25 m elevation there will provide, according to studies conducted, a flow rate of approximately 500 tons/hour, which is higher than that projected for determination of utilization rates; this increase due to total use of gravity balances the cost of installing the underground ducts. The low viscosity of the product will require that it be pumped to receiving areas.

. . . .

For <u>vegetable oils</u>, which are more viscous than alcohol, the hillside facing the docks was chosen. The +15 m elevation of the site will decrease the pipeline length and will attain, according to studies conducted, the same flow rate as for alcohol, 500 tons/hour, with a considerable margin in relation to the flow rate used to calculate the berth utilization rates.

For molasses, a very viscous product with a high specific weight (-1.4 tons/m^3) , it was decided to locate facilities at a lower elevation (+5 m), which will shorten the pipeline length. Use of pumping equipment to attain a 900 tons/hour flow rate will assure rapid loading of the product. These pipelines, like the vegetable oil pipelines, will run at ground level to the pumping houses, and the high temperatures in the area will increase the liquids' fluidity. From there the liquids will be pumped through underground pipes with inspection posts at regular intervals. These inspection posts will be located in a manner so that they don't interfere with waterfront vehicles.

Finally, the large area of naturally level ground behind the sugar terminal was chosen for the administration buildings, maintenance and repair shops and other facilities.

IV-1/6.4

6.2.1° SUGAR TERMINAL.

FUNCTIONALITY

6.2

4. A.

As already mentioned, the physical location of the sugar terminal, to the west of the port, would be optimized in terms of draft (16.50 m); since the gross tonnage of the largest vessel projected, 125,000 tdw, would call at the docks for bulk sugar, and the smaller ships for bagged sugar would call at the closing docks, at a 90° angle to the bulk sugar docks, in waters of a minimum depth of -12 m.

The types of equipment used there, namely those with capacities of 250 tons/hour for receiving sugar from trucks and 500 tons/hour for receiving sugar from railroad cars, and those for loading sugar at a rate of 2,000 tons/hour, are highly mechanized and would require minimum labor inputs:

This terminal would also have highway/railroad access with specific spurs to permit rapid circulation of both railroad cars and trucks. This traffic will be facilitated by the equipment effectiveness and the large parking areas outside of the terminal area. The same can be asserted for the railroad shunting yard.

6.2 WHEAT TERMINAL

Since the wheat silo would be situated in the second line of storage, its internal movement would rarely interfere with port operations; especially since the parking lot was projected to be located behind the silo.

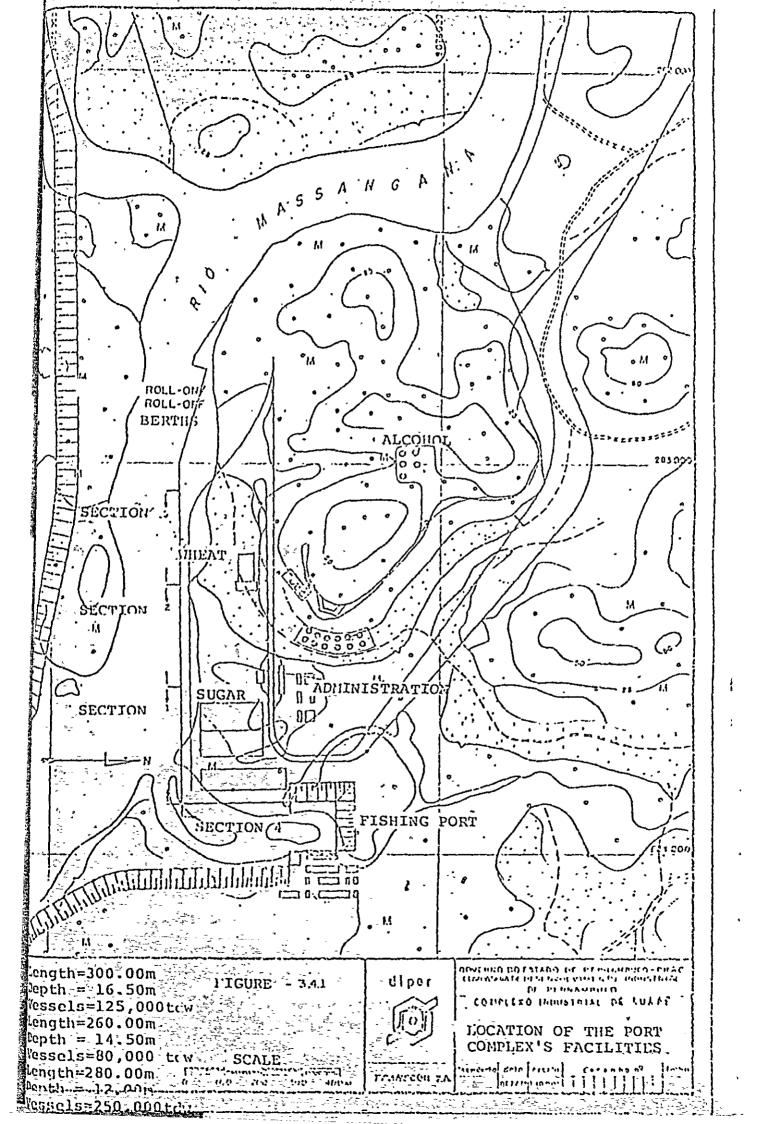
Shipping of wheat by land, with equipment for a rate of 200 tons/hour, was projected for the area between the silo and the hillside.

Wheat will be unloaded by pneumatic elevators mounted on two rolling gantries, with 400 tons/hour capacity each. The second gantry would be implemented in 1985.

IV-1/6.5

Shipping by coastal trade would use the second berth and rolling gantries with 600 tons/hour capacity. If sugar operations were expanded to use this second berth, the wheat equipment would move to the fifth berth, immediately after the berth where importing will be achieved by simple shipping conveyor belt rehandling.

6.2.3 LIQUIDS


The pipelines should run along the entire length of the docks, rathen than to a single terminal designated exclusively for these products. This will minimize slack time in the other berths rather than compromise the utilization rate.

The liquids terminal will have two truck weighing scales to permit rapid throughput for highway shipping.

In general, it was attempted to give the port complex layout ample flocifibility to accomodate unforeseen demands. Large areas, were left free for construction of yards or warehouses.

These areas could accomodate lash barge operations and heavy cargos for the industries being built in the Industrial Complex.

IV-1/6.6

6.3 BUDGET ESTIMATES

_<u>+</u>____

y4

.

6.3.1 WHEAT FACILITIES

A <u>Civil Constructions</u>:

	Block of bins Cr\$	
b)	Lifting tower Cr\$	8,000,000
c)	Conveyor lines infrastructure . Cr\$	400,000
d)	Water and sewage system Cr\$	800,000
e)	Paving, drainage, parking area	
,	and highway access to the silo. Cr\$	600,000
	SUBTOTAL Cr\$	24,800,000

.

B Mechanical Equipment:

.

.

•	Pneumatic unloading equipment (2 pneumatic elevators, 400 (tons/hour capacity each, the	
	lst by 1980 and the 2nd by 1985),	9,200,000
Ъ) -	Equipment to connect the docks to the silo, such as conveyors, galleries, transfer towers and accessories: 2 x 400 m for 400 tons/hour	4,000,000
c)	Internal silo operating equipment such as scales, dusters, valves, etc Cr\$	11,000,000
d)	Internal silo equipment for 800 tons/hour shipping, includ- ing conveyors, weighing equip- ment for shipments, etc Cr\$	3,200,000
e)	Auxiliary equipment, including elevators, hoists, laboratory	
	equipment, compressed air and distribution network Cr\$	900,000

IV-1/6.9

f) Shipping equipment:

1.	Transporting equipment from	
	the silo to dockside; including	
	conveyors, galleries, transfer	
	towers, accessory equipment:	
	2 x 400 m at 800 tons/hour Cr\$ 4,000	0,000
2.	Shiploader for 800 tons/hour Cr\$ _4,50	0,000
	SUBTOTAL	0,000

C <u>Electrical System</u>:

.

,

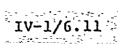
•

•

a)	Substation		•	_			_			CrS	900,000
-											•
b)	Distribution panels	٠	•	•	•	٠	٠	٠	٠	Cr\$	3,200,000
c)	Signalling panels .	•	٠	•	•	٠	•	٠	•	Cr\$	800,000
d)	Control stand	•	•	•	•	٠	٠	•	•	Cr\$	1,500,000
e)	Control equipment .	٠	•	٠	٠	•	•	•	•	Cr\$	900,000
·f)	Highting panels	•	•	•	•	•	•	٠	•	Cr\$	250,000
	,Electrical equipment	•	•	•	•	•	٠	٠	٠	Cr\$	4,000,000
, *	SUBTOTAL	•	•	•	•	•	٠	•	•	Cr\$	12,150,000
	TOTAL (A + B + C	:)	•	•	•	•	٠	•	•	Cr\$	73,750,000

•

6.3.2 SUGAR TERMINAL


Civil Constructions: λ

•	ì	
a)	Horizontal slip, 140 x 160 m Cr\$	44,800,000
b)	Receiving hoppers - 1 for 4 rail- Cr4	550,000
	road cars and 1 for 1 truck Cr\$	50,000
c)	Shops: 30 x 10 m	300,000
(b	Sacked sugar warehouse Cr\$	11,880,000
e)	Sacking facilities with a breathing	
	silo	640,000
f)	Water and sewage system Cr\$	1,000,000
g)	Paying, drainage, parking area,	
	railroad and highway access Cr\$	4,000,000
-	SUBTOTAL Cr\$	63,220,000

5

IV-1/6.10

В	Transporting Equipment:	
	a) Conveyor belt, 140 m for 500 tons/	
	hour	
•	b) Trippers	
•	SUBTOTAL	
с	Shipping:	
	a) Conveyor belts for 500 tons/hour Cr\$ 3,900,000	
	b) Conveyor belt for 1,000 tons/hour . Cr\$ 1,700,000	
	c) Rolling gantry for 1,000 tons/hour	
	(until 1985)	
	d) Rolling gantry for 1,000 tons/hour	
	(after 1985)	I
	e) Galleries, etc Cr\$ 1,000,000	I
	f) Rotary shovels to reclaim sugar Cr\$ 10,000,000)
	g) Weighing station with 2 flow scales Cr\$ 1,500,000) -
	SUBTOTAL)
- D	Sacking Facilities:	
	a) Sacking equipment for 480 tons/hour Cr\$ 1,500,000)
	b) Internal transporting equipment	
	including conveyor belts for bulk	
	and sacked sugar, transfer towers	
	and accessory equipment Cr\$ 500,000)
•	c) Conveyor belts for sacked sugar,	
	40 m long, for 480 tons/hour Cr\$ 120,000)
•	d) Conveyor belts for sacked sugar	
•	warehouse, including transfer	
	tower)
•	c) Direct conveyor belt to the docks,	
-	including transfer tower for 480	
·	tons/hour in 350 m)
_	f) Rolling gantry for 480 tons/hour Cr\$ 4,200,000)
	g) Shiploader, with slewing boom from	
مبر در -	docks to ship Cr\$ 2,000,000	2
-	SUBTOTAL)
	a Talanga ana tang tang pang pang pang tang ang tang tang tang tang tang ta	

•

Е	Electrical and Other Systems:
	a) Electrical installations, auxiliary
	equipment, utilities, etc Cr\$ 10,000,000
•	SUBTOTAL
	GRAND TOTAL
•	· · ·
6.3.3	LIQUID BULK TERMINAL .
	, k
А	Molàsses:
	Civil Constructions
	a) Landfill, cuts, embankment treatment,
	drainage, paving
	b) Tanks: $12 \times 7,150 \text{ m}^3$ Cr\$ 12,870,000
	c) Infrastructure to support pipelines. Cr\$ <u>150,000</u>
	SUBTOTAL
	Mechanical Equipment:
	a) Receiving equipment, including
	troughs, piping, valves, etc Cr\$ 120,000
	b) Shipping equipment, including piping,
	force pump, accessory equipment, etc.Cr\$ 900,000
	SUBTOTAL
	GRAND TOTAL
	- , 5
• B_	Alcohol:
	Civil Constructions
	a) Landfills, cuts, etc Cr\$ 1,500,000
	b) Tanks: $5 \times 5,900 \text{ m}^3$ Cr\$ <u>4,425,000</u>
	SUBTOTAL
	Mechanical Equipment
	a) Receiving equipment including pumps,
:	piping system, etc Cr\$ 23,000

-

IV-1/6.12

_

Shipping equipment including underb) ground pipeline, accessory equip-: • 1,000,000 SUBTOTAL . 1,023,000 Cr\$ 6,948,000 GRAND TOTAL . Cr\$ С Végetable Oils: -Civil Constructions Cuts, landfills, etc. Cr\$ 294,000 a) $3 \times 2,850 \text{ m}^3$. Tanks: 1,282,500 b) Cr\$ Receiving pipeline infrastructure . Cr\$ c) 30,000 1,606,500 SUBTOTAL . Cr\$ Mechancial Equipment Receiving equipment, including a) troughs, piping, valves, etc. . . . Cr\$ 24,000 b)Shipping equipment, including under-Ground piping, joints, valves, etc. Cr\$ 900,000 924,000 SUBTOTAL . Cr\$ 2,530,500 Cr\$ GRAND TOTAL D Fuel Oil: Civil Constructions 30,200 Cuts, landfills, etc. . . . Cr\$ a) Tank: 5,900 m³ x 150/m³ Cr\$ 885,000 b) SUBTOTAL . . . Cr\$ 915,200 Mechanical Equipment Receiving equipment, including piping, a) valves, force pump, etc., 20 x 230 . Cr\$ 4,600 Shipping equipment, including under-.b) ground pipeline; suction and pumping pumps, accessory equipment, 320 x 600 د. بره ردم و بير ه رغم ه 792,000 Cr\$ SUBTOTAL 796,600 Cr\$ _•___ GRAND TOTAL 1,711,800 Cr\$

TTT 1 / C 1 7.

Auxiliary Equipment and Constructions: E a) 2 highway weigh scales and accessory 400,000 equipment Control house and office, covered b) weighing yard, etc., 10 x 40 m . . . Cr\$ 600,000 Highway access to the tank area . . . Cr\$ c) 1,800,000 d) Water, sewage, fire prevention 1,500,000 e) Electrical installations Cr\$ 2,000,000 SUBTOTAL Cr\$ 6,800,000 6.3.4 GENERAL WORKS IN THE PORT COMPLEX Α Administration Area: 300,000 Administration buildings: 10 x 30 m . Cr\$ a) 'Work site, sanitary, customs, Ġ) medical and police stations: 20 x + 1 600,000 Shops, covered yard: 40 x 30 m . . . Cr\$ 1,000,000 c) d) Water, light, power and sewage 2,000,000 e) Landfills, paving, drainage of 240,000 4,220,000 . . . Cr\$ SUBTOTAL Highway/Railroad Access: B Road to the Administration area . . . Cr\$ 1,575,000 a) Local railroad access Cr\$ 2,200,000 b} Railroad yard, with marshalling c) tracks, parking, surface treatment, dredging of the site \ldots \ldots Cr = 1,900,0005,675,000 SUBTOTAL . Cr\$ 6.3.5 RANGE OF CHANNELS AND LANDFILLS FOR 125,000, 80,000, 60,000 and 25,000 TDW VESSELS 3 Landfills 4,000,000 Cr\$ Railroad spur drainage Cr\$ 2:400.000 Treating landfill surfaces,

	
c)	Water, sewage, light, power and
÷	vessel servicing systems Cr\$ 3,000,000
d)	Landfill of the area Cr\$ 2,496,000
	SUBTOTAL
Dock	<u>s</u> :
1.	Platform
2.	Simple Piles
3.	Sheet Piles
4.	Reconstitution of Land Cr\$ 18,700,000
5.	Preliminary Services Cr\$ 30,000,000
6.	Tie up Posts
	SUBTOTAL
	GRAND TOTAL (A + B) Cr\$ 149,388,000
	d) <u>Dock</u> 1. 2. 3. 4. 5.

. .

٠

.

. •

.

•

.

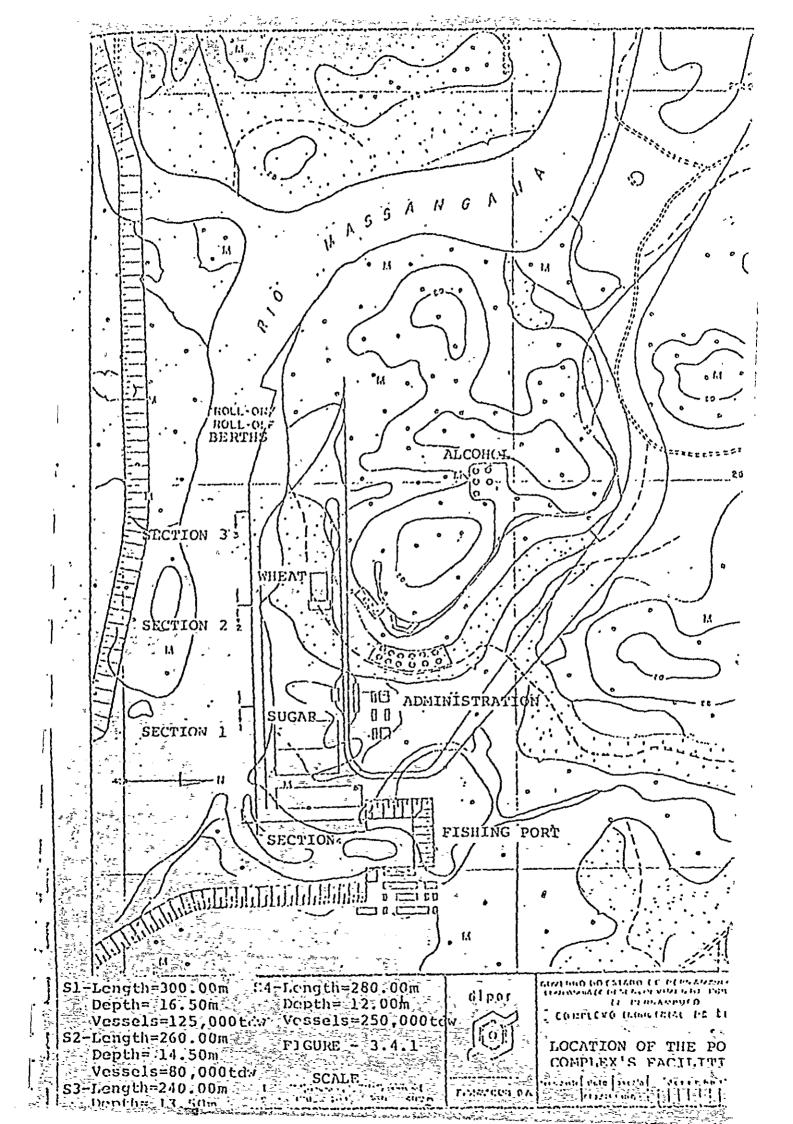
۰. س______

7.0 PHYSICAL PLAN OF THE PORT COMPLEX DOCKS

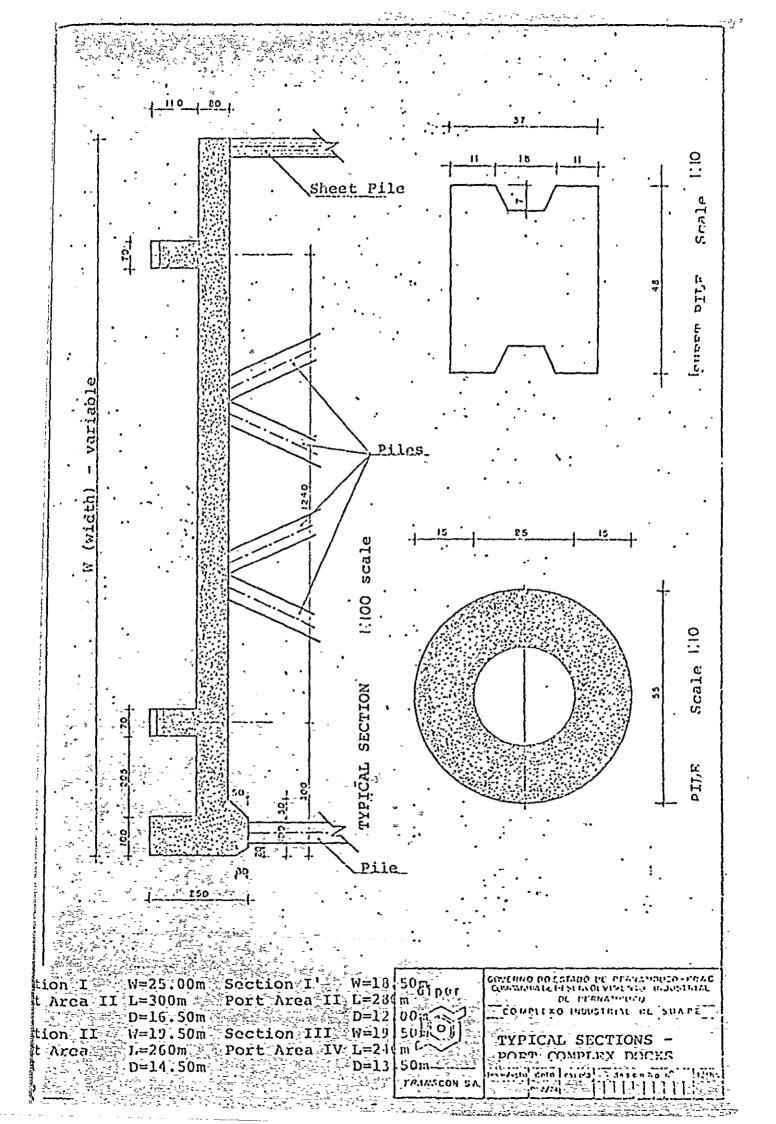
re and the second se

i

7.0 PHYSICAL PLAN OF THE PORT COMPLEX DOCKS


7.1 DESCRIPTION

In view of the site's geotechnical conditions, the soft to very soft layer of clay between depths of 7.0 to 20.0 meters, and because of the minimum depths of the waters, from 13.00 to 16.50 meters, it was decided that platform docks. with a curtain of sheet piles would be used.


This solution presents two alternatives: either partial or total dredging of the clay layer. The first alternative would require a considerable increase in the platform width and the sheet pile dimensions, as well as necessitate partial dredging of the clayey layer due to construction conditions imposed by the clay layer embankment's stability. In view of this factor and other economic aspects, removal of the entire clayey layer was decided upon.

Embankment ratios of V:H::1:5 were assumed for estimating dredging volumes. More detailed geotechnical studies could dictate lower dredging volumes.

After dredging, reformation of land areas by hydraulic fill, with 1:3 embankments, was planned. As soon as the pilings are set in place the platform docks and curtain of sheet piles will be constructed. After this phase the embankments between the dock facing and the curtain of sheet piles should be protected by a sea wall with 1:2.5 embankments. Finally, backland should be completed behind the curtain of sheet piles.

. . . ne i je ne • SFCTION I Mydrograph#? 7.511-111:1:-Sand 2% Water 13,561 "" Dredging from the 1st phase of the 1st stage • SECTION II 0.0 llydrographi 71 11 11 11 11 11 Sand . Water 11.5(e) ;L4.3_ 70.0 SECTION III 0.0 Hydroarachildenner man ------Sand Water Clay / _0.01+ (+2.0.51₊ SECTION IV 4,0, No Hydrographic vil Milelit. Water. and 7.7.7.7 z12.0(~] Clay ::0.0 . · • • CONTRACTOR STADO DE PERSAURICO-CRAC CAMBRACEDESCASDERIN, DE BONSTAN DE PERSAURICO dipor ີ ເດັກກໍ່ໄປ XO ນີ້ມອບຈາກເລບູ ຍະ [ຣມີລຸດຊັ Sand [o] Clay RECONSTITUTUION OF PORT, COMPLEX LAND Reconstituted Land assisted data esc-n fear 1.7 Additional Dredging TRANSCON SA 19890 ÷

TONIO I. PARTE / VCLUNII / 8.0

8.0 SUGGESTIONS FOR FISHING FACILITIES

TAND HANDLING SPECIAL VESSELS

8.0 SUGGESTIONS FOR FISHING FACILITIES AND HANDLING د منه چي کلو SPECIAL VESSELS

- . Fishing A

In an attempt to expand the fishing industry in the future, the implementation of fishing facilities at Suape was suggested. Encouragement of local fishing on a craft scale is mandatory for any development of the fishing industry.

The fishing layout must therefore be flexible enough to permit the takeoff of intense industrialization of the craft level fishing, starting with the formation of fishing cooperatives.

Based on this last statement, the following chronological order for implementation of fishing facilities was suggested:

> 1st phase

Υ.

. .

Hall for receiving and preparing the fish

Yard for direct sale -

Refrigeration facilities and ice factory

Navigation support - maintenance and servicing 2nd phase

Maritime facilities to handle the large vessels the will probably be used for tuna fishing

-Industry for fish products and sub-products

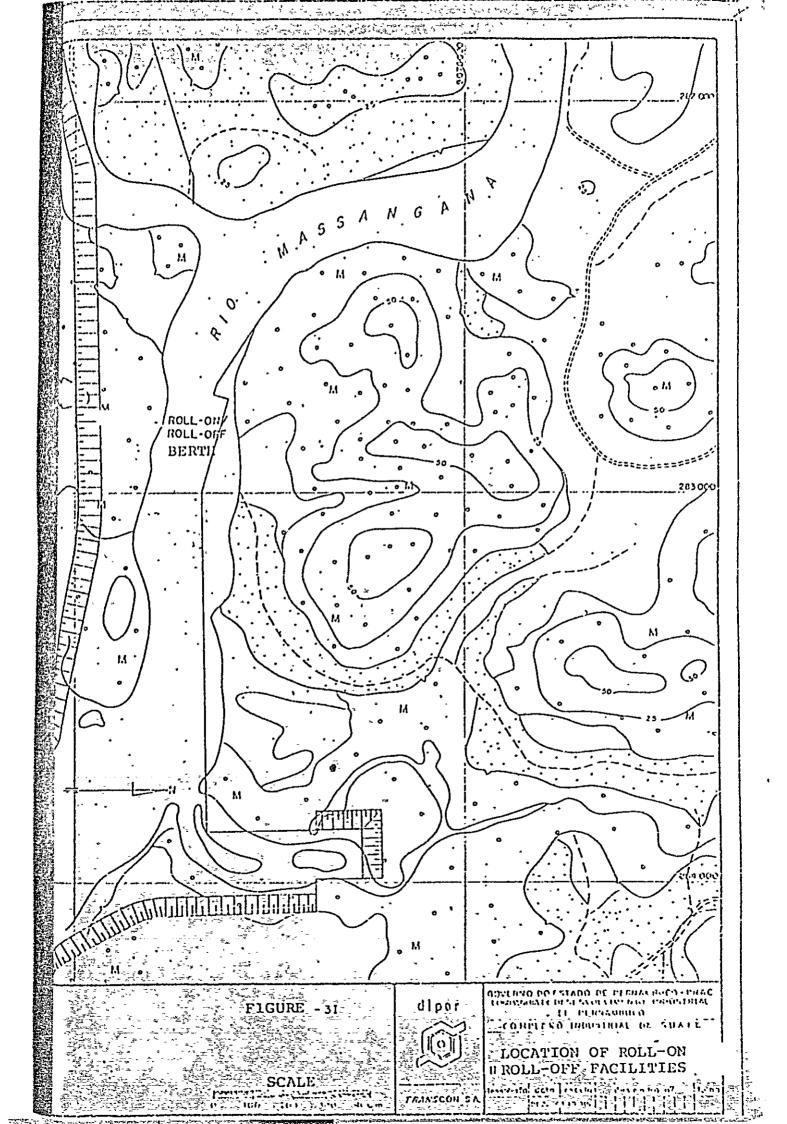
Navigation support facilities and facilities to support: the cooperatives, such as equipment and provisions stores, canteens, etc.

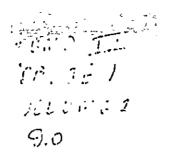
3rd phase

Expansion of the two previous phases

> IV-1/8.1

- Installation of lifting facilities, such as slipways, Sincro-lift, shops, etc., for ship repairs


In this manner the port would be equipped to handle the demands of industrializing the fishing activities, giving Suape a fishing center capable of supplying the local consumer market and perhaps even capable of exporting fish.


- В
- Roll-on/Roll-off and Lash

Given SUNAMAM's support for the implantation of this type of very functional navegation, and the fact that definite facilities for handling these vessels are projected only for the Master Plan, it is suggested that the port complex have, from the start, provisional facilities capable of receiving Ro-Ro vessels and Lash barges. The latter could anchor in the fore harbour at the Suape beach. This suggestion was motivated by the fact that the Port of Recife is limited and at present is not equipped and does not have sufficient physical space available to handle these special vessels.

-

IV-1/8.2

9.0 NAVIGATION SUPPORT

•

9.04 - S.NAVICATION, SUPPORT

ان به به در این از به به منه از این از میکند. پر این از میکند به به به میکند از این از میکند.

With the growth in vessel sizes -- one of the most marked phenomena in the present day Merchant Marine fleet, especially for petroleum and ore carrying vessels -- the difficulties in maneuvering these large ships increases substantially, for maneuvers in port entrances and in internal channels and basins, and imposes large scale modifications in port infrastructures.

In order to handle these vessels, the physical plan of a modern port must incorporate very special depth, width, curve radii and shelter conditions so that the vessels encounter the necessary safety and maneuvering ease when moving from one port area to another as well as when approaching docking areas, when docking, and when leaving the docks.

To minimize operating difficulties, large ports have started to be concerned with not only their physical plan characteristics but also with electronic equipment and devices which are grouped under the generic heading "Navigation Support". This equipment is designed to aid navigation of ships in the different port areas, safeguard the navigation maintain ease of communication between the ship and the port and, finally, process loading and unloading heavy volumes of cargo for which the normal port -resources are insufficient.

Naturally the larger the vessels projected to call at the port, the more sophisticated the electronic equipment and devices should be, and the more experienced the steersmen and ships pilots should be. This will require considerable resources, but the high requirements will be largely compensated by vessel safety and will be reflected

in lower freight costs or freight expenses.

. .

Among the mandatory equipment for a large, modern port, especially one which intends to handle large vessels, the most important are tugboats and cranes.

In general, Brazilian ports are not very concerned about this type of equipment, whether in terms of the number of tugboats and their power being compatible with the vessels to be handled, or in terms of the cranes' capacity and height hoisted.

This lack of concern, which is not advised even for a port at which medium sized vessels will call, virtually prohibits handling of vessels of 120,000 tdw or more.

In the case of the Port of Suape, for which the design criteria have tried to incorporate the most modern concepts on port activities, this practice will have to be overcome and the practice of obliging all the vessels, or at least the larger ones, to move in the port area only with the aid of tugboats will have to be adopted.

Experience has shown that for handling 60,000 tdw vessels two tugboats are sufficient; for 60,000 to 120,000 tdw vessels, three tugboats; for 120,000 to 170,000 tdw vessels, four tugboats; and for larger vessels, five tugboats. It was therefore planned that the port should have two 1,500 HP tugboats during the initial implementation phase.

To complement this tugboat projection, the port should also have launches to transport personnel that will have to board the ships, and water and oil barges to service an increasing number of ships as the port activity increases.

IV-1/9.2

At a more advanced stage, the port should have a 200,000 ton crane to unload or load large units of cargo which cannot be disassembled.

For moving large vessels in the internal port areas and to facilitate their conditions for approaching the port, the following should be fully assured:

a) Clearly signal the external approach channel so that the vessels can set a course long before coming alongside the first buoys;

b) detect and identify the vessels whose course the port. This includes measures to leave the channel open for these large ships;

c) maintain complete signalling of the internal and external channels not only along their centerlines but also along both lateral limits;

d)

determine the position, velocity, direction and trends in the movements of these large vessels and communicate with them to transmit information pertinent to their navigation;

e) gather nautical and meteorological information needed for ship handling, such as visibility conditions, winds, currents, height of the sea, waves, water temperature, etc.

f) routinely transmit this information to the vessels;

g) maintain permanent contact with vessels in or heading for the port;

IV-1/9.3

h) maintain the vessel's position and velocity under control when it is approaching or leaving the docks.

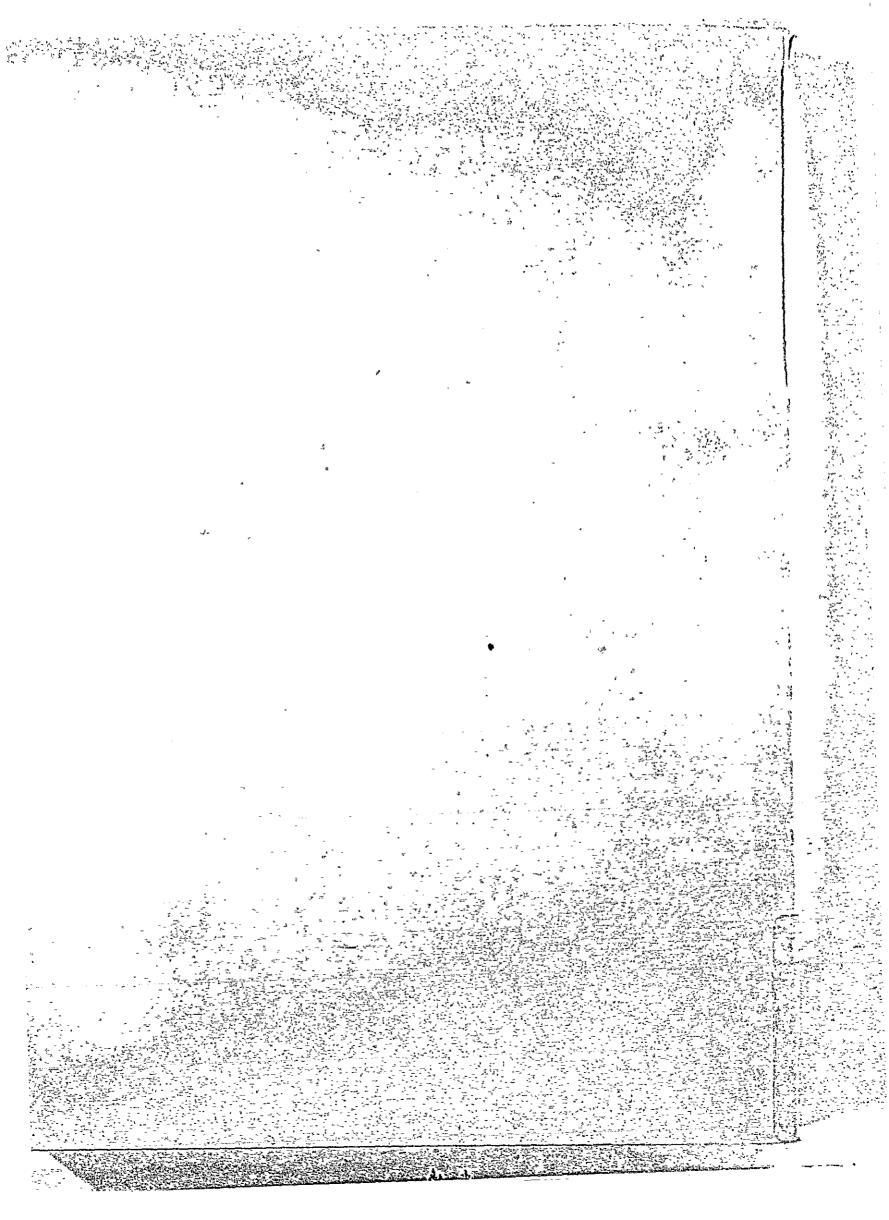
To fulfill this program, the port's external and internal areas should be perfectly signalled with radio beacons, blind buoys and light buoys whose positions are constantly under control. The port should also have electronic equipment, such as radar and decca. This equipment is constantly becoming more and more sophisticated.

The most modern types of radar equipment for ports permit permanent control over port traffic, since they are equipped with special devices for verifying buoy positions in the channels, and providing a security system for the vessels.

The use of Decca equipment, such as the Decca Navigator, permits knowledge, by direct reading, of the distance separating a vessel from the channel's centerline and 'margins.

These vessel position controls and the information gathered and analyzed at the port's meteorological and hydrographic station could be constantly communication to the ship to assure the maximum safety possible in the port area. To this end, the port should adopt a VHF station and maintain direct communication with all vessels.

Such electronic installations are evolving rapidly and becoming more and more perfect. In order that the port be equipped with the most modern equipment to be found on the market, this equipment should be selected and acquired close to the end of the first phase of the first stage of work.


IV-1/9.4

T.OMO TU CRATE 1 LOUGHE 1 JC.O

*

10.0 OVERALL BUDGET

		TOTAL BUDGET TOT	DTAL FOR WORK
	Dredging the Approach Channel Dredging for Landfills Dredging clay and sandstone Dredging to form the beach	23,980 353,791 68,103 16,360	462,234
Complex	Wheat Terminal Wheat Terminal Sugar Terminal Liquid Bulk Terminal Complementary Works Docks	112 070 33 080 9 895 149 388	8 8 7 8 8 7 8 7 8 8 7 8 7 8 7 8 7 8 7 8
Protective Works	Sea wall to heighten the Reef; south of the entrance Sea wall to heighten the Reef; north of the entrance Linking the Reef to the Cape of Santo Agostinho Sea wall buttress at the Cape of Santo Agostinho Protective Breakwaters at the Port Entrance	22,359 2,063 1,569 782 59,364	
Navigation Support	Signalling Decca Radar Location System Radar Station * Meteorological, Hydrographic and Mareographic Station VHF Radio-Telephone Station Tugboats Auxiliary Vessels	3,000 3,000 1,500 1,500 4,000	25,000
* . Already computed	in the Telecommunications budget.	TOTAL =	951,554

