A.3.4.3 Geometric Characteristics of improved Alignment

Caractéristiques Géométriques du Tracé Amélioré

NOTE

Location based on the existing kilometer post suivant au poste kilomètre existante

R : Radius of improved alignment Rayon d'alignement amélioré

Lo : Section length along the existing road : Longueur de tronçon le long de la route existante

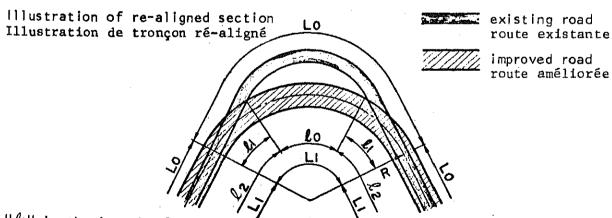
Longueur de tronçon aprés amélioration

 ΔL : = L_1 - L_0 = Reducted road length by improvement Longueur de la route réduite d'amélioration

Length of re-aligned section where road width of improved

road does not overlap on existing road width

Longueur de ré-aligné de tronçon où largueur de route
améliorée ne recouvrement pas sur largueur de route existante


T : Types of improvement Type d'amélioration

a : widening of eixsting road width elargissement largueur de route existante

b : improvement of horizontal alignment amélioration d'alignement horizontal

c : improvement of vertical alignment amélioration d'alignement vertical

new construction by re-alignment (lo section)
 nouvelle construction de ré-aligné (lo tronçon)

" ℓ_1 " is the length of transferring section where width of new road overlaps partially on the existing road. " ℓ_1 " is not shown in Table A-6-6, but is included in the length of widening section " ℓ_2 " and is calculated as follow:

" ℓ_1 " est largueur de tronçon transféré où largueur de nouvelle route recouvrement partial sur route existante. " ℓ_1 " n'est pas fait entrer Tableau A-6-6, mais y compris dans la longueur de tronçon " ℓ_2 " est calculée comme suit:

Σl2 = ΣL1 - Flo

Geometric Characteristics of Improved Alignment Caractéristiques Géométriques du Tracé Amélioré

(Section #10)

ı	~	_	-	+	:	or	,
	O	C	Я	т		m	1

Tra	cement	R	Lo	<u> L</u> 1	ΔL.	l _o	<u>T</u>
•	PK PK	m	m	m	m	m	
Kisangani	3.60 - 3.75	150	150	150			a,b
	3.75 - 3.83	∞	80	80			a,b
	3.83 - 3.93	250	100	100			a,b
	3.93 - 4.33	400	400	390	-10		a,b
	4.33 - 6.05	· oo	1,720	1,720			a,c
	6.05 - 7.10	1,500	1,050	1,045	- 5	250	a,b,d
	7.10 - 7.30	00	200	200		150	a,d
	7.30 - 7.75	500	450	400	-50		a,b
	7.75 - 8.23	œ	480	480		•	a .
	8.23 - 8.75	1,000	520	515	-5	150	a,b,d
	8.75 - 13.00		4,250	4,250			a,c
	13.00 - 13.78	2,000	780	770	-10	350	a,b,d
	13.78 - 16.55		2,770	2,770			а
	16.55 - 16.75	2,000	200	200			a,b
	16.75 - 23.86		7,110	7,110			a
Batiamaduka	23.86 - 24.75	∞	890	880	-10	800	a,b,c,d
	24.75 - 25.45	2,000	700	695	-5		a,b
	25.45 - 27.60		2,150	2,150			a
	27.60 - 28.23	1,000	630	620	-10		a,b,
÷	28.23 ~ 28.50	00	270	260	-10	} 600	a,b,d,
	28.50 - 29.00	1,000	500	470	-30)	a,d
	29.00 - 29.90	3,000	900	890	-10	400	a,d
	29.90 - 31.00	. 🗴	1,100	1,095	-5		a,b
	31.00 - 33.00		2,000	2,000			a
	33.00 - 34.00		1,000	1,000			a,c
	34.00 - 35.50		1,500	1,500			a
	35.50 - 35.90	:	400	400			a,c
Basiku	35.90 - 36.60	500	700	680	-20		a,b,c

	Location							
	Tracement		R 	<u> </u>	<u> </u>	ΔL	L _o	T
	PK	PK	m [*]	m	m.	m	·	
Basiku	36.60 -	36.90		300	300			a,c
	36.90 -	38.00	1,000	ן	J		7	d
	38.00 -	40.00	1,000			•		d
	40.00 -	40.70	1,500					d
	40.70 -	43.30	00	13,100	11,800	-1,300	11,800	d
	43.30 -	47.90	2,500			• 1		d
	47.90 -	48.60	00			•		d
	48.60 -	50.00	3,000	J .			}	d
Bengamis	sa Tot	al	•	46,400	44,920	-1,480	14,500	

(Section #9)

Loc	ation							
Tra	cement		R 	<u>_</u> _o	<u>L</u> 1	ΔL	l _o	T
	PK	PK	m	m	m	· m	m	
Bengamisa	50.00 -	50.20	3,000	200	200		200	a,c,d
	50.20 -	50.80	∞	600	585	~15		a,b,c
	50.80 -	51.50	1,000	700	700		200	a,b,c,d
	51.50 -	52.55	. ∞	1,050	1,040	-10)	a,b,d
	52.55 -	53.10	3,000	550	495	-55	300	a,b,d
	53.10 -	53.65	co	550	550			a,b
	53.65 -	54.15	500	500	485	-15		a,b,c
	54.15 -	54.30	ω	150	150			a
	54.30 -	54.70	400	400	390	-10		a,b
	54.70 -	55.10	∞	400	395	-5		a,b
Bakweme	55.10 -	55.45	350	350	345	-5		a,b
	55.45 -	55.75	œ	300	295	-5		a,b
	55.75 -	56.35	1,500	600	585	-15		a,b
	56.35 -	57.20	∞ ·	850	830	-20	200	a,b,d
	57.20 -	59.40	2,000	2,200	1,700	-500	1,700	d

(Section #9)

	ocation	R	L	L	ΔL	^l o	T
	PK PK	m	<u></u> m	m	m	m	
·	59.40 - 59.60	00	200	200			a,b
	59.60 - 60.14	∞	540	535	-5		a,b
	60.14 - 60.58	1,000	440	410	-30	150.	a,b,d
to.	60.58 - 61.15	00	570	550	-20	150	a,b,c,d
Bangwade	61.15 - 62.65	3,000	1,500	1,475	-25		a,b,c
	62.65 - 63.15	∞	500	495	-5		a,b,c
	63.15 - 63.36	300	210	205	-5		a,b,c
	63.36 - 63.48	∞	120	120			a,b,c,
	63.48 - 63.65	300	170	160	-10		a,b,c
	63.65 - 64.95	∞	1,300	1,290	-10		a,b,c
	64.95 - 65.145	500	195	185	-10		a,b,c
	65.145- 65.50	œ	355	355			a .
	65.50 - 66.45	550	950	975	+25	450	a,b,c,d -
	66.45 - 66.69	∞	240	240			a,c
	66.69 - 67.60	900	910	905	- 5		a,b,c
	67.60 - 68.10	∞	500	495	- 5	200	a,b,c,d
	68.10 - 69.60	1,500	1,500	1,470	-30),400	a,b,d
	69.60 - 70.60	∞	1,000	970	-30	1.	a,b,d
	70.60 - 71.30	1,500	700	660	-40	500	a,b,d
	71.30 - 72.75	∞	1,450	1,435	-15		a,b
	72.75 - 74.05	2,500	1,300	1,275	-25]	a,b,d
	74.05 - 75.75	∞	1,700	1,685	-15		a,b,d
Badombila	75.75 - 76.75	3,000	1,000	995	- 5	2,300	a,b,d
	76.75 - 77.20	œ	450	450			a,b,d
	77.20 - 77.65	500	450	450		J	a,b,d
	77.65 - 78.20	œ	550	540	-10		a,b
	78.20 - 78.80	2,500	600	595	-5	150	a,b,d
	78.80 - 79.50	00	700	695	-5		a,b
	79.50 - 79.77	500	270	265	-5		a,b
	79.77 - 80.08	∞	310	310			a,b
	80.08 - 80.50	500	420	410	-10		a,b
	80.50 - 80.80	∞	300	290	-10		a,b

(Section #9)

Loc	cation						
Tra	cement	R		1	Δ L	l _o	
	(PK) (PK)	(m)	(m)	(m)	(m)	(m)	
	80.80 - 81.35	480	550	575	+25	}1,100	a,b,d
Bambwe	81.35 - 83.00	00	1,650	1,635	-15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a,b,c,d
	83.00 - 84.22	1,000	1,220	1,230	+10	800	a,b,c,d
	84.22 - 84.35	∞	1 30	- 130	•		a,b
	84.35 - 84.62	250	270	265	-5		a,b
	84.62 - 84.88	∞	260	260			a,b
*	84.88 - 85.80	600	920	925	+5	500	a,b,d
	85.80 - 86.34	∞	540	540	•	,	a,b
Bangamboli	86.34 - 87.21	1,000	870	855	-15		a,b
	87.21 - 87.38	∞	170	165	-5		a,b
	87.38 - 88.70	1,500	1,320	1,310	-10	500	a,b,d
	88.70 - 88.80	∞	100	100	•		a,b
	88.80 - 89.90	2,500	1,100	1,095	-5	400	a,b,c,d
	89.90 - 90.35	∞	450	445	- 5		a,b
	90.35 - 90.93	1,000	580	565	-15		a,b
	90.93 - 91.17	œ	240	240	. •		a,b
	91.17 - 91.42	250	250	250			a,b
	91.42 - 91.60	80	180	180			a,b
	91.60 - 91.90	500	300	295	-5		a,b
	91.90 - 93.40	∞	1,500	1,500			a,c
Bahume	93.40 - 93.80	1,000	400	395	-5		a,b,c
	93.80 - 94.33	œ	530	525	-5		a,b
	94.33 - 94.90	1,500	570	560	-10		a,b
-	94.90 - 95.30	œ	400	395	-5		a,b
	95.30 - 96.62	3,000	1,320	1,290	-30	1,000	a,b,d
	96.62 - 99.05	00	2,430	2,400	-30	1,200	a,b,c,d
	99.05 - 99.37	1,000	320	320			a,b
	99.37 - 99.43	00	60	60			а
	99.43 - 100.30	1,500	870	860	-10		a,b
	100.30 - 102.40	œ	2,100	2,100		800	a,b,c,d
	102.40 - 103.20	1,500	800	790	~10		a,b,c
	103.20 - 103.62	œ	420	420			a,c

(Section #9)

Į.	ocation						
	Pracement	R	<u> </u>	<u> L</u> 1	Δ L	l _o	<u> </u>
	PK PK	m	m	m	m	m	
	103.62 - 104.40	4,500	780	770	-10		a,b
	104.40 - 104.85	∞	450	450			a
•	104.85 - 105.18	500	330	320	-10		a,b
	105.18 - 105.28	œ	100	100			a
Badjange	105.28 - 106.10	1,500	820	805	-15		a,b
	106.10 - 106.77	00	670	670			a,c
	106.77 - 107.26	1,500	490	485	-5		a,b,c
	107.26 - 110.63	00	3,370	3,360	-10	500	a,b,c,d
	110.63 - 111.05	750	420	4 00	-20		a,b,c
	111.05 - 111.44	∞	390	390	.e *		a,c
	111.44 - 111.70	750	260	260			a,b,c
	111.70 - 112.15	∞	450	450			a,c
	112.15 - 112.82	4,500	670	660	-10		a,b
Badzaman	e 112.82 - 115.52	∞	2,700	2,680	-20	700	a,b,d
	115.52 - 115.90	750	380	370	-10		a,b
	115.90 - 116.28	00	380	375	- 5		a,b
	116.28 - 116.43	275	150	150			a,b
	116.43 - 116.68	00	250	250			a,b
	116.68 - 116.85	250	170	170			a,b
	116.85 - 117.00	œ	150	145	-5		a,b
	117.00 - 117.47	750	470	455	-15)	a,b,d
	117.47 - 117.95	∞	480	480		} 500	a,b,d
	117.95 - 118.27	500	320	315	- 5		a,b
	118.27 - 118.59	∞	320	315	-5		a,b,c
	118.59 - 119.00	400	410	405	-5		a,b
	119.00 - 119.60	co	600	595	-5		a,b
Bobande	119.60 - 120.00	500	400	400			a,b
	120.00 - 120.30	00	300	300			a,b
	120.30 - 120.93	500	630	630			a,b
	120.93 - 121.35	œ	420	420			a,b
	121.35 - 122.10	3,000	750	750			a,b
	122.10 - 122.60	00	500	500		•	а

	Location							
-	Tracement		R	L _o	<u> L</u> 1	Δ L	L _O	Τ
	PK	PK	m	m	m	m	. —— m	
	122.60 -	123.15	2,000	550	550			a,b
	123.15 -	123.30	∞	150	150			а
	123.30 -	124.80	2,500	1,500	1,490	-10)	a,b,d
	124.80 -	124.84	. 00	40	40		600	a,d
	124.84 -	125.22	400	380	370	-10		a,b,d
	125.22 -	125.83	00	610	610		•	a,b
	125.83 -	126.20	250	370	360	-10		a,b
Bokobana	a 126.20 -	128.05	∞ .	1,850	1,840	-10		a,b
	128.05 -	128.45	4,000	400	395	-5		a,b
	128.45 -	128.85	∞	400	400			a
Banalia	128.85 -	129.00	100	150	150		•	a,b
	Tota	1		79,000	77,690	-1,310	16,500	

(Section #8)

	Location Tracement		R	L _o	L	ΔL	l _o	Т
	PK	PK	m _.	m	m	m	m	
Banalia	a Aruwimi Rv.	٠.						
	129.00 - 12	29.15	100	150	150			a,b
	129.15 - 12	29.50	œ	350	350			a,b
	129.50 - 12	9.95	500	450	450			a,b
Bobenge	129.95 - 13	30.30	∞	350	350			a,b
	130.30 - 13	31.20	1,000	900	900		200	a,b,d
	131.20 - 13	31.40	∞	200	200			a,b
	131.40 - 13	32.10	1,000	700	690	-10	150	a,b,d
	132.10 - 13	32.65	00	550	545	- 5		a,b
	132.65 - 13	3.42	1,000	770	760	-10	200	a,b,d
	133.42 - 13	3.60	œ _.	180	175	-5		a,b
	133.60 - 13	33.91	500	310	305	-5		a,b

(Section #8)

	Location				•			
	Tracement		R	L _o	<u> </u>	ΔL	_l _o	T
	(PK)	(PK)	(m)	(m)	(m)	(m)	(m)	
	133.91 -	138.00	00	4,090	4,050	-40	600	a,b,d
	138.00 -	139.15	1,500	1,150	1,120	-30	1,000	a,b,d
	139.15 -	139.50	œ	350	345	- 5	350	a,b,d
	139.50 -	140.32	1,500	820	810	-10	500	a,b,d
	140.32 -	140.82	90	500	500			a,b
	140.82 -	141.34	450	520	505	-15		a,b
	141.34 -	142.30	€a	960	950	-10		a,b
	142.30 -	143.23	1,000	930	915	-15		a,b
	143.23 -	144.72	œ	1,490	1,480	-10	1,300	a,b,d
	144.72 -	145.46	3,000	740	740			a,b
Bopando	145.46 -	146.85	ω	1,390	1,380	-10	300	a,b,d
	146.85 -	147.80	2,000	950	940	-10		a,b
	147.80 -	148.51	00	710	700	-10		a,b
	148.51 -	149.70	3,000	1,190	1,180	-10	650	a,b,d
	149.70 -	150.65	∞	950	940	-10	200	a,b,d
	150.65 -	151.30	4,500	650	650		600	a,b,d
	151.30 -	152.00	œ	700	695	~5		a,b
	152.00 -	155.80	œ		ז)	d
	155.80 -	157.45	1,500	6,700	5,600	-1,100	5,600	d
	157.45 -	158.30	œ	0,700	7,000	1,100	75,000	d
	158.30 -	158.70	1,500		J			d
	158.70 -	158.80	1,500	100	100			a,b
	158.80 -	159.08	Ø	280	275	-5		a,b
	159.08 -	159.35	500	270	275	+5		a,b
Zambeke	159.35 -	161.45	•	2,100	2,100			a
	161.45 -	163.26	ω	1,810	1,790	-20	1,200	a,b,d
	163.26 -	163.80	2,000	540	540			a,b
	163.80 -	164.50	œ	700	700			a,b
	164.50 -	164.73	300	230	230			a,b
•	164.73 -	165.00	00	270	270			a
	165.00 -	165.43	400	430	420	-10		a,b
	165.43 -	165.59	00	160	160			a,b

	Location									
	Tracement			. R		L _o	<u> </u>	ΔL	^l o	T
	PK		PK		m	П		m r	m m	
	165.59	-	166.02	1,20	00	430	43	0		a,b
	166.02	-	166.24	0	0	220	22	0		a
	166.24		167.05	3,00	00	810	79	5 -1!	5	a,b
	167.05	-	167.75	0	0	700	70	0		a
	167.75	-	168.50	4,50	00	750	74	0 -10)	a,b
	168.50	-	171.63	o	0	3,130	3,08	0 -50	ן כ	d
Bodomi 1 i	171.63	_	177.90	10,00	00	6,270	6,04	0 -230	o	d
	177.90	-	179.50	2,50	00	1,600	1,48	0 -120)	d
	179.50	-	181.90	٥	0	2,400	2,35	0 -50		d
	181.90	-	182.00	1,00	00	100	10	Ö	J .	d
	182.00		183.00	o	٥	ì)		٦	d
	183.00	-	185.30	2,00	00	7,800	6,60	0 -1,200	6,600	d
	185.30	-	189.80	٥	o	J)			d
	189.80	-	191.60	٥	3	1,800	1,77	0 -30) _]	a,b,d
	191.60	-	195.50	4,00	00	3,900	3,78	0 -120	o \$ 4,400	d
	195.50	-	196.20	٥	a	700	69	5 -!	5	a,b,d
	196.20	-	197.40	1,50	00	1,200	1,18	5 -15	5 200	a,b,d
	197.40	-	198.79	α	5	1,390	1,37	0 -20	600	a,b,d
	198.79	-	199.20	50	00	410	39	5 -15	5	a,b
	199.20	-	200.40	α	o	1,200	1,18	-20	1,000	d
	200.40		202.70	4,00	00	2,300	2,22	o –80	1,550	d
	202.70	-	203.33	o		630	61	5 -15	5 250	d
	203.33	-	203.60	1,00	00	270	26	5 -5	200	d
Kole	203.60	_	206.00	α)	2,400	2,00	-400	2,000	d
	To	ta	a l			77,000	73,24	<u>-3,755</u>	41,050	

(Section #7)

	Location Tracement		R	L ₀	<u>L</u> 1	<u>∆ L</u>	l _o	Т
Kole	206.00 - 2	208.00	2,000	,	·]		j	d
	208.00 - 2	211.00	œ	8,600	7,400	-1,200	7,400	d
** ;	211.00 - 2	212.00	2,000	,,,,,,	/,		/,,	d
	212.00 - 2	214.60	00	J	ļ		J	ď
	214.60 - 2	215.52	∞	920	905	-15		a,b
Mombolos	so 215.52 - 2	15.85	500	330	330			a,b
	215.85 - 2	16.05	œ	200	200			a,b
	216.05 - 2	216.59	750	540	520	-20		a,b
	216.59 - 2	217.10	∞	510	500	10		a,b
	217.10 - 2	218.02	2,500	920	910	-10		a,b
	218.02 - 2	218.40	00	380	380			а
	218.40 - 2	19:30	1,500	900	880	20		a,b
	219.30 - 2	219.86	∞	560	550	-10		a,b
	219.86 - 2	220.75	2,000	890	875	-15	400	a,b,d
	220.75 - 2	21.65	00	900	900		200	a,d
·	221.65 - 2	224.00	3,000	2,350	2,315	-35	1,100	a,b,d
	224.00 - 2	224.60	œ	600	600		600	a,b,d
	224.60 - 2	230.50	8,000	5,900	5,700	-200	4,400	ď
	230.50 - 2	231.05	œ	550	530	-20		a,b,d
	231.05 - 2	232.43	2,000	1,380	1,325	-55	1,300	a,b,d
	232.43 - 2	235.00	∞	2,570	2,570)	a,d
Tele	235.00 - 2	235.80	6,000	800	800		-	a,b
	Total			29,800	28,190	-1,610	15,400	

	Location Tracement		R	<u> </u>	L ₁	ΔL	l _o	Т
_	PK	PK	m	m		m	<u>~</u>	
Tele	235.80 ~	241.15	6,000	5,350	5,075	-275	2,700	a,b,d
	241.15 ~	241.70	∞	550	545	-5		a,b
	241.70 ~	242.30	1,000	600	590	-10	100	a,b,c,d
-	242.30 -	242.48	00	180	180			a,b,d
	242.48 ~	243.20	1,000	720	710	-10		a,b
	243.20 -	246.85	00	3,650	3,600	-50	2,150	a,b,d
	246.85 ~	247.70	750	850	815	-35	400	a,b,d
•	247.70 ~	248.60	∞	900	890	-10		a,b
	248.60 -	251.00	1,500	2,400	2,150	-250	1,450	a,b,d
•	251.00 ~	251.20	œ	200	200			a,b
	251.20 -	252.65	1,500	1,450	1,335	-115	1,000	d
	252.65 -	254.20	.	1,550	1,550			a
	254.20 -	254.50	500	300	290	-10		a,b
	254.50 -	254.65	∞	150	145	-5		a,b
	254.65 -	255.05	350	400	420	+20		a,b
	255.05 ~	256.00	∞	950	940	-10		a,b
	256.00 -	256.38	1,000	380	380			a,b
	256.38 -		∞ .	340	325	-15		a,b
	256.72 -	257.20	2,000	480	480			a,b
	257.20 -	-	œ	1,200	1,200			a
	258.40 -		2,000	1,600	1,585	-15	300	a,b,d
	260.00 -		00	550	545	-5		a,b
	260.55 -		500	400	390	-10		a,b
_	260.95 -		00	350	350			a,b
Besore	261.30 -		750	750	740	-10		a,b
	262.05 -	-	00	400	400			a,b
	262.45 -	•	1,500	1,250	1,170	-80	700	a,b,d
	263.70 -		∞	500	495	- 5		a,b
	264.20 -		400	550	535	-15		a,b
	264.75 -	•	ω	100	100			a
	264.85 -	-	1,000	800	790	-10		a,b
	265.65 -	265.85	00	200	200			a,b

Section #6)

l	_ocation							
	Tracement		R	Lo	<u>L1</u>	ΔL	l _o	<u> </u>
	PK	PK	m	m	m	m	m	
	265.85	- 266.89	1,500	1,040	1,010	-30	500	a,b,d
	266.89	- 267.10	. 00	210	210		,	a
•	267.10	- 269.05	1,500	1,950	1,900	-50	\1,150	a,b,d
•	269.05	- 270.05	œ	1,000	990	-10	ļ	d
	270.05	- 271.90	3,000	1,850	1,725	-125]2,400	d
	271.90	- 273.15	1,500	1,250	1,230	-20	}	d ·
	273.15	- 273.83	00	680	680	• .		a,b
	273.83	- 274.16	350	330	320	-10		a,b
	274.16	- 274.60	60	440	440			a ·
	274.60	- 275.30	1,000	700	690	-10		a,b
	275.30	- 276.65	œ	1,350	i,340	-10		a,b
	276.65	- 276.95	250	300	290	-10		a,b
	276.95	- 277.20	∞	250	250			a
r	277.20	- 277.50	750	300	295	-5		a,b
	277.50	- 277.57	œ.·	70	70			a,b
	277.57	- 277.90	750	330	335	+5		a,b
• .	277.90	- 278.90	00	1,000	995	- 5		a,b
	278.90	- 279.42	1,000	520	515	-5		a,b
	279.42	- 279.70	σα.	280	280			a,b
	279.70	- 280.06	400	360	345	-15		a,b
	280.06	- 280.45	00	390	390			a
	280.45	- 280.95	1,000	500	495	- 5		a,b
	280.95	- 281.13	œ	180	180			а
	281.13	- 282.00	1,000	870	850	-20		a,b
Bangbagaton	ne 282.00	- 283.58	00	1,580	1,570	-10	700	a,b,d
	283.58	- 284.21	2,000	630	615	-15		a,b
	284.21	- 284.50	00	290	285	- 5		a,b
	284.50	- 285.15	1,000	650	635	-15	250	a,b,d
	285.15	- 285.52	00	370	360	-10		a,b
	285.52	- 285.80	500	280	275	-5		a,b
•	285.80	- 286.60	∞	800	795	-5		a,b
	286.60	- 289.00	8,000	2,400	2,240	-160]2,500	d
	289.00	- 290.19	œ	1,190	1,150	-40	} 2,500	d

Lo	cation							
Tı	acement	•	R	<u> </u>	<u> </u>	ΔL	<u>l</u> o	T
	PK	PK	m	m	m	m	m	
	290.19 -	290.64	500	450	440	-10		a,b
	290.64 -	291.83	œ	1,190	1,170	-20	÷	a,b
	291.83 -	292.35	2,000	520	520	:		a,b
	292.35 -	293.54	00	1,190	1,185	-5		a,b
	293.54 -	294.06	2,500	520	500	-20		a,b
	294.06 -	294.60	cc .	540	530	-10		a,b
	294.60 -	295.31	1,000	710	690	-20		a,b
Mangbondwa	295.31 -	297.05	∞	1,740	1,670	-70	500	a,b,d
	297.05 -	297.95	3,000	900	890	-10		a,b
• .	297.95 -	298.20	∞	250	250			a
	298.20 -	300.30	3,000	2,100	2,020	-80	1	a,b,d
	300.30 -	302.70	00	2,400	2,340	-60	}2,100	a,b,d
	302.70 -	303.35	750	650	650			a,b
Mese	303.35 -	303.63	∞.	280	280			a
	303.63 -	304.50	1,500	870	850	-20		a,b
	304.50 -	304.67	∞	1 70	170			a,b
	304.67 -	305.25	1,000	580	580]	d
	305.25 -	306.20	∞	950	920	-30	}1,000	d
Yeme	306.20 -	307.35	1,000	1,150	1,130	-20		a,b
	307.35 -	307.63	œ	280	270	-10		a,b
	307.63 -	308.06	1,000	430	410	-20		a,b
	308.06 -	308.40	∞	340	335	-5		a,b
	308.40 -	308.65	1,000	250	250			a,b
	308.65 -	309.40	∞	750	745	-5		a,b
	309.40 -	310.06	2,000	660	650	-10	400	a,b,d
	310.06 -	310.90	∞	840	820	-20		a,b
	310.90 -	311.65	2,500	750	730	-20	400	a,b,d
	311.65 -	313.66	00	2,010	1,985	-25)	a,b,d
	313.66 -	314.60	2,500			-40	2,200	d
	314.60 -	315.00	∞	400	400		J	d
	315.00 -	315.38	1,000	380	355	-25		a,b
	315.38 -	316.10	3,000	720	, 720 -			a,b

(Section #6)

-	Location Tracement	R	Lo	L	ΔL	l _o	T
	PK F	YK m	m	m	m	<u> </u>	
	316.10 - 318.3	30 ∞	2,200	2,175	-25	500	a,b,d
	318.30 - 318.6	57 1,500	370	355	-15		a,b
	318.67 - 319.7	70 ∞	1,030	1,030			a,b
	319.70 - 320.8	30 2,000	1,100	1,090	-10		a,b
	320.80 - 321.0)0 _∞ .	200	200			a,b
	321.00 - 322. ¹	1,500	1,450	1,455	+5		a,b,c
	322.45 - 323.2	20 🚓	750	745	-5		a,b
·	323.20 - 323.4	500	250	250			a :
Buta	323.45 - 324.3	30	850	850			а
	Total		88,500	86,375	-2,125	23,400	

	Location Tracement	_	R	Lo	L	ΔL	l _o	Т
	PK	PK	m	m	m	m	m	
Buta	0 -	1.40	60	1,400	1,400			а
	1.40 -	2.10	1,000	700	690	-10		a,b
	2.10 -	2.70	00	600	595	-5		a,b
	2.70 -	3.45	750	750	730	-20		a,b
	3.45 -	4.90	∞	1,450	1,400	~ 50	800	a,b,d
Makala	4.90 -	5.20	750	300	305	+5		a,b
•	5.20 -	5.80	00	600	6.00			a,b
	5.80 -	6.30	1,500	500	490	-10		a,b,c
	6.30 -	7.66	œ	1,360	1,360			a,b
	7.66 -	8.42	1,000	760	740	-20		a,b
	8.42 -	8.70	00	280	280			а
	8.70 -	9.10	3,000	400	390	-10		a,b
	9.10 -	10.80	œ	1,700	1,680	-20		a,b
	10.80 ~	11.25	1,500	450	435	-15	a.	a,b

(Section #5)

	Location Tracement		R	L _o	L	ΔL	l _o	T
	PK	PΚ	m	m	m	m	—— m	
	11.25 -	11.85	∞	600	590	-10		a,b
	11.85 -	12.30	500	450	435	-15		a,b
	12.30 -	12.40	00.	100	100			a
	12.40 -	13.00	750	600	570	-30		a,b,c
	13.00 -	13.30	∞	300	295	-5		a,b,c
Balia	13.30 -	14.70	4,000	1,400	1,380	-20		a,b,c
	14.70 -	15.90	00	1,200	1,200			a
•	15.90 -	16.60	1,500	7 00	690	-10		a,b
	16.60 -	16.80	00	200	200			a
	16.80 -	18.80	2,500	2,000	2,000			a,b
	18.80 -	19.30	œ	500	490	-10		a,b
	19.30 -	19.80	1,500	500	480	-20		a,b
	19.80 -	21.45	œ	1,650	1,625	-25		a,b
	21.45 -	22.70	1,500	1,250	1,225	-25		a,b
	22.70 -	23.04	∞	340	330	-10		a,b
	23.04 -	23.60	1,000	560	545	-15		a,b
	23.60 -	25.35	∞	1,750	1,750			a
	25.35 -	25.70	500	350	340	-10		a,b
	25.70 -	27.30	00	1,600	1,600			a
	27.30 '-	28.65	1,500	1,350	1,355	+5	300	a,b,d
Paigba	28.65 -	30.20	œ	1,550	1,550			a
	30.20 -	31.05	3,000	850	830	-20		a,b
	31.05 -	32.85	œ	1,800	1,800			а
	32.85 -	33.40	1,000	550	525	-25		a,b
	33.40 ~	34.40	œ	1,000	980	-20		a,b
	34.40 -	35.05	2,000	650	620	-30		a,b
	35.05 -	37.00	∞.	1,950	1,930	-20		a,b
	37.00 -	37.55	2,000	550	550			a,b
Gombo	37.55 -	38.00	∞	450	445	-5		a,b
	38.00 -		1,500	750	730	-20		a,b
	38.75 -	39.00	c a .	250	250			a,b
	39.00 -	39.35	750	350	340	-10		a,b

(Section #5)

	Location						
	Tracement	F	L _o	<u> </u>	<u>∆</u> L	l _o	
	PK	PK	m ii r	m m	m	· m	
	39.35 - 40	.05 1,5	500 700	700			a,b
	40.05 - 40	.20	∞ 150	150			a,b
	40.20 - 42	.00 2,5	300 1,800	1,755	-45		a,b,c
	42.00 - 42	. 90	∞ 900	895	- 5		a,b
	42.90 - 43	.40 2,0	000 500	90	-10		a,b
	43.40 - 43	.60	∞ 200	200			a,b
	43.60 - 44	.60	750 1,000	980	-20	200	a,b,d
	44.60 - 45	.20	∞ 600	580	-20		a,b
•	45.20 - 45	.75 2,0	000 550	540	-10	400	a,b
	45.75 - 46	.65	∞ 900	900			a
	46.65 - 47	.30 2,0	000 650	635	-15		a,b
	47.30 - 47	.95	∞ 650	650	•		a,b
	47.95 - 48	.40 1,0	000 45	0 450			a,b
	48.40 - 49	.70	1,30	0 1,300			a
	49.70 - 50	.10 1,0	000 40	0 385	-15		a,b
Bweke	50.10 - 52	.80	2,70	2,700			а
	52.80 - 53	.20 1,0	000 40	0 400			a,b
	53.20 - 54	.15	∞ 95°	0 930	-20		a,b
	54.15 - 54	.95 3,0	000 80	0 775	-25		a,b
	54.95 - 56	.90	1,95	0 1,950			а
	56.90 - 57	.50 1,0	000 60	0 570	-30		a,b
	57.50 - 57	. 70	∞ 20	0 195	-5		a,b
	57.70 - 58	.30 1,0	000 60	0 600			a,b
	58.30 - 58	. 75	∞ 45	0 440	-10		a,b
	58.75 ~ 59	.30 2,0	000 55	0 530	-20		a,b
	59.30 - 65	. 85	6,55	0 6,550			a
	65.85 - 67	.00	∞ 1,15	0 1,060	-90	800	a,b,c,d
	67.00 - 68	.95	1,95	0 1,950			a
	68.95 - 69	.50	55	0 550			a,c
	69.50 - 74	.50	5,00	0 5,000			a
	74.50 - 74	.95 1,0	000 45	0 430	-20		a,b
Dulia	74.95 - 75	. 50	∞ 55	0 535	-15		a,b
	Total		75,50	<u>74,620</u>	<u>-880</u>	2,500	

	Location Tracement		R	L _o	L ₁	ΔL	l _o	т
	PK	PK	m	m	m	m	m	
Dulia	0	- 1.40	∞	1,400	1,365	-35		a,b
	1.40	- 1.80	1,000	400	400			a,b
	1.80	- 3.00		1,200	1,170	-30	750	a,b,d
	3.00	- 4.70	1,500	1,700	1,705	+5	600	a,b,d
	4.70	- 5.45	00	750	-750			a
	5.45	- 5.90	750	450	445	-5		a,b,c
	5.90	- 6.20	œ	300	300			a,c
•	6.20	- 6.65	750	450	430	-20		a,b
Masipiri	6.65	- 11.90		5,250	5,250			a
•	11.90	- 12.20	350	300	275	-25		a,b
	12.20	- 13.30	00	1,100	1,100			a
	13.30	- 14.75		1,450	1,450			a,c
	14.75	- 16.50		1,750	1,750			a
	16.50	- 16.70	350	200	180	-20		a,b
	16.70	- 16.90	∞	200	200	•		а
		- 19.00	8,000	2,100	2,070	-30	1,500	a,b
	19.00	- 19.15	œ	150	150			а
		- 20.85	2,000	1,700	1,665	-35		a,b
	•	- 21.65	∞	800	775	-25	550	a,b,c
Sasa		- 27.40		5,750	5,750			а
	,	- 27.60	400	200	185	-15		a,b
		- 28.10		500	500			a,c
		- 29.25		1,150	1,150			а
		- 29.75		500	500			a,c
		- 30.40		650	650			а
	.	- 30.75		350	350			a,c
	-	- 33.25	•	2,500	2,500		,	а
		- 33.40	co	150	140	-10		a,b
		- 33.70	500	300	300			a,b
	•	- 33.85	∞	150	150			a,b
		- 34.20	500	350	335	-15	200	a,b,d
	34.20	- 34.60	∞	400	390	-10		a,b

	Location Tracement	÷	R	L _o	L ₁	ΔL	l _o	т
	PK	PK	m	, m	m	m	m	
	34.60	- 34.90	500	300	290	-10		a,b
•	34.90	- 37.30		2,400	2,400			a
	37.30	- 37.55	750	250	220	-30		a,b
Nziro	37.55	- 38.80	œ	1,250	1,250			a
	38.80	- 39.10	350	300	265	-35	200	a,b,d
•	39.10	- 41.90	00	2,800	2,770	-30	600	a,b,d
	41.90	- 42.55	2,000	650	650			a,b
	42.55	- 42.85	∞	300	295	-5		a,b
	42.85	- 44.45	3,000	1,600	1,580	-20		a,b
	44.45	- 44.70	1,000	250	240	-10		a,b
	44.70	- 44.85	œ	150	150			a
	44.85	- 45.15	250	300	275	25		a,b
	45.15	- 48.25		3,100	3,100		,	a
	48.25	- 48.70	750	450	430	-20		a,b
	48.70	- 50.30		1,600	1,600			a
	50.30	- 50.55	750	250	235	-15		a,b
	50.55	- 52.85	∞	2,300	2,295	-5	400	a,b,d
	52.85	- 53.20	750	350	325	-25		a,b
Banang i	53.20	- 59.70		6,500	6,500			a
	59.70	- 60.10	250	400	370	-30	200	a,b
	60.10	- 64.70		4,600	4,600			a,b,c
	64.70	- 65.20	250	500	360	-140		a,b
	65.20	- 65.50		300	300		200	a,d
Likati	То	tal		65,500	64,830	-670	5,200	

	Location				4.		_
<u> </u>	Tracement	R	Lo		ΔL ——	l _o	Т
	PK PK	m	m	m	m	m	
Likati	65.50 - 66.00	00	500	500			a
	66.00 - 66.50	2,000	500	480	-20		a,b
	66.50 - 68.90		2,400	2,400			a
•	68.90 - 69.40	1,000	500	485	- 15		a,b,c
	69.40 - 70.00	•	600	600			a
	70.00 - 70.80		800	800			a,c
	70.80 - 74.10		3,300	3,300			a
	74.10 - 74.70	1,000	600	595	-5		a,b
	74.70 - 74.80	, Ω	100	100			a,b
	74.80 - 75.30	750	500	480	-20		a,b
	75.30 - 75.50	00	200	195	- 5		a,b
	75.50 - 76.00	1,500	500	480	-20		a,b
Libogo	76.00 - 77.30	•	1,300	1,300			a
	77.30 - 78.10		800	800			a
	78.10 - 78.45	00	350	340 .	-10		a,b
-	78.45 - 78.70	1,500	250	250			a,b
	78.70 - 78.90	œ	200	200			a
	78.90 - 79.60	1,500	700	670	-30		a,b
	79.60 - 80.10		500	480	-20		a,b
	80.10 - 80.75	3,000	650	650			a,b
	80.75 - 81.90	œ	1,150	1,130	-20		a,b
	81.90 - 82.10	500	200	180	-15		a,b
	82.10 - 82.30	00	200	200			a,b
	82.30 - 82.70	750	400	390	-10		a,b
	82.70 - 83.40	œ	700	695	- 5		a,b
•	83.40 - 83.60	400	200	200			a,b
	83.60 - 83.70	œ	100	95	-5	•	a,b
	83.70 - 85.10	2,000	1,400	1,375	-25		a,b
	85.10 - 85.50	00	400	385	-15		a,b
	85.50 - 86.45	3,000	950	930	-20	•	a,b
	86.45 - 87.00	∞	550	550			a
•	87.00 - 87.70	750	700	670	-30		a,b

(Section #3)

	Location Tracement	. R	L _o	<u> </u>	ΔL	l _o	Т
	PK PK	m	m	m	m	m	
	87.70 - 87.90	œ	200	200			a,b
	87.90 - 89.00	1,500	1,100	1,065	-35		a,b
	89.00 - 89.10	00	100	100			a
	89.10 - 90.50	3,000	1,400	1,375	-25	500	a,b,d
Nzongfa	90.50 - 90.75	, œ	250	240	-10		a,b
	90.75 - 91.50	1,000	750	730	-20		a,b
	91.50 - 91.75	. 00	250	250			a .
	91.75 - 92.15	500	400	380	-20		a,b
	92.15 - 93.25	00	1,100	1,100			a
	93.25 - 93.60	750	350	335	-15		a,b
	93.60 - 93.80	∞	200	195	-5		a,b
	93.80 - 94.05	500	250	230	-20	-	a,b
	94.05 - 96.70		2,650	2,650			a
	96.70 - 96.80	∞	100	95	-5		a,b
	96.80 - 97.40	1,500	600	575	-25		a,b
	97.40 - 98.25	.	850	845	- 5		a,b
-	98.25 - 98.75	750	500	495	-5		a,b
	98.75 - 98.95	00	200	195	-5		a,b
	98.95 - 99. 5 0	1,500	550	550			a,b
	99.50 - 99.70	∞	200	200			a,b
Binga	99.70 - 100.05	750	350	340	-10		a,b
	100.05 - 100.20	∞	150	150			а
	100.20 - 101.00	1,500	800	785	-15		a,b
	101.00 - 101.20	00	200	190	-10		a,b
	101.20 - 101.60	1,000	400	400			a,b
	101.60 - 101.85	œ	250	245	- 5		a,b
	101.85 - 102.60	750	750	725	-25		a,b
	102.60 - 102.80	œ	200	190	-10		a,b
	102.80 - 103.10	750	300	300			a,b
	103.10 - 103.25	00	150	145	-5		a,b
	103.25 - 104.00	1,000	750	750		400	a,b,d
	104.00 - 104.30	00	300	290	-10		a,b

(Section #3)

Loc	ation						
Tra	cement	R	L _o	<u> </u>	ΔL	L _O	Т
	PK P	K m	m	m	m	m	
	104.30 - 105.4	0 1,000	1,100	1,075	-25		a,b
	105.40 - 106.9	5 ∞	1,550	1,515	-35		a,b
	106.95 - 108.1	0 1,500	1,150	1,140	-10		a,b
	108.10 - 108.6	0 ∞	500	495	-5		a,b
	108.60 - 109.2	2,500	600	585	-15		a,b
	109.20 - 109.8	5 ∞	650	645	-5		a,b
	109.85 - 110.1	5 750	300	295	- 5		a,b
	110.15 - 110.40	0 ∞	250	240	-10		a,b
	110.40 - 110.80	1,000	400	395	-5		a,b
	110.80 - 111.0	5 ∞	250	240	-10		a,b
	111.05 - 112.10	1,500	1,050	1,020	-30	500	a,b,d
Djete-Mondila	112.10 - 112.80	∞ 0	700	685	-15		a,b
	112.80 - 113.30	750	500	490	-10		a,b
	113.30 - 113.40	0	100	95	-5		a,b
	113.40 - 114.2	5 1,000	850	830	-20		a,b
	114.25 - 114.7	5 ∞	500	485	-15		a,b
	114.75 - 115.10	750	350	340	-10		a,b
	115.10 - 116.7	5 ∞	1,650	1,625	-25	500	a,b,d
	116.75 - 117.90	750	1,150	1,120	- 30	400	a,b,d
	117.90 - 118.30) ∞	400	395	-5		a,b
	118.30 - 118.75	750	450	445	-5		a,b
	118.75 - 118.95	ō ∞	200	200			a,b
•	118.95 - 119.45	• -	500	490	-10	700	a,b,d
	119.45 - 120.05		600	590	-10	700	a,b,d
	120.05 - 120.70		650	635	-15		a,b
	120.70 - 121.00) ∞	300	290	-10		a,b
	121.00 - 121.55	• •	550	530	-20	200	a,b,d
	121.55 - 121.70)	150	140	-10		a,b
	121.70 - 122.05		350	350			a,b
	122.05 - 122.50) ∞	450	435	-15		a,b,d
	122.50 - 122.80	• • •	300	290	-10	} 500	a,b
	122.80 - 123.00)	200	195	-5		a,b

	Location Tracement		R	L _o	<u> </u>	ΔL	l _o	т_
	PK	PK	m	m	m	m	m	
	123.00	- 123.55	750	550	530	-20		a,b
	123.55	- 123.75	00	200	195	-5		a,b
	123.75	- 124.00	300	250	240	-10		a,b
	124.00	- 124.10	∞	100	100	- •		a,b
	124.10	- 124.40	300	300	290	-10		a,b
	124.40	- 124.80	700	400	385	-15		a,b
Bondo	124.80	- 125.00	∞	200	200			a,b
	Uele Rv	•		4			:	
	То	tal		59,500	58,465	-1,035	3,700	

(Section #2)

*******	Location Tracement	R	Lo	<u> </u>	ΔL	L _O	Т
	PK PK	m	m	m	· m	m	
Bondo	125.00 - 128.10)	3,100	3,100			a
	128.10 - 128.70	300	600	590	-10		a,b
	128.70 - 129.39	, w	650	650			a,b
	129.35 - 130.09	1,000	700	690	-10		a,b
	130.05 - 130.29	5 ∞	200	200			a,b
	130.25 - 131.50	1,500	1,250	1,220	-30	100	a,b,d
	131.50 - 131.70) ∞	200	200			а
	131.70 - 132.40	750	700	680	-20		a,b
	132.40 - 133.10) ∞	700	680	-20		a,b
	133.10 - 134.50	2,500	1,400	1,400			a,b
Zakila	134.50 - 135.60) ∞	1,100	1,085	-15		a,b
	135.60 - 136.50	1,000	900	860	-40	650	a,b,d
	136.50 - 138.00) ∞	1,500	1,450	-50	600	a,b,d
	138.00 - 138.90	1,000	900	860	-40]	d
	138.90 - 140.2	5 ∞	1,350	1,330	-20	} 2,000	d

	Location Tracement	R	L _o	L,	ΔL	l _o	Ŧ
	PK PK	m	m	<u>-</u> m	m		
	140.25 - 140.90	3,000	650	625	-25	•••	a,b
	140.90 - 142.55	∞ .	1,650	1,615	-35	800	a,b,d
	142.55 - 143.85	2,500	1,300	1,280	-20		a,b
	143.85 - 144.95	00	1,100	1,070	-30		a,b
	144.95 - 145.40	2,000	450	450			a,b
Dekare	145.40 - 145.90	∞	500	495	-5		a,b
	145.90 - 146.30	350	400	390	-10		a,b
	146.30 - 146.50	00	200	175	-25		a,b
	146.50 ~ 147.80	2,000	1,300	1,295	-5	ו	ď
	147.80 - 149.00	∞	1,200	1,175	-25	2,000	d
	149.00 - 149.60	1,000	600	580	-20	,,	a,b
•	149.60 - 150.80	∞	1,200	1,200		ŋ	a,d
	150.80 - 151.00	3,000	200	185	-15	300	a,b,d
	151.00 - 151.70	∞	700	700		,	a,b
	151.70 - 152.60	1,500	900	875	-25		a,b
	152.60 - 153.00	00)]			d
	153.00 - 154.00	1,500	3,200	2,400	-800	2,400	d
	154.00 - 155.80	00	J)		J	d
	155.80 - 156.90	00	1,100	1,100			a,b
	156.90 - 157.15	500	250	240	-10		d
	157.15 - 157.95	co .	800	795	-5		d
	157.95 - 158.20	250	250	235	-15		a,b
	158.20 - 158.30	Φ.	100	100			a,b
		250	200	200			a,b
	158.50 - 158.75	00	250	240	-10		a,b
	158.75 - 159.40	1,500	650	645	-5		a,b
	159.40 - 160.30	00	900	900			a,b,c
Mangala		1,000	•	1,035	-15		a,b,c
	161.35 - 161.40	∞	50	50			a,b
	161.40 - 161.70	300	300	290	-10		a,b
	161.70 - 162.50	ω	800	780	-20		a,b
•	162.50 - 162.75	250	250	250		350	a,b,d
	162.75 - 162.85	∞	100	100		ا عود	a,b,d

(Section #2)
Tronçon

٠	Location		Ð					
-	Tracement		R 	<u> </u>	<u>1</u>	Δ L	l _o	T
	PK	PK	m	m	m	m	m	
	162.85 -	- 163.20	250	350	345	-5		a,b
•	163.20 -	- 163.40	∞	200	200			a,b
	163.40 -	- 163.75	1,000	350	335	-15		a,b
	163.75 -	- 164.70	00	950	945	- 5		a,b
	164.70 -	165.15	750	450	450			a,b
	165.15 -	- 165.30	00	150	150			а
	165.30 -	- 166.85	2,000	1,550	1,545	- 5	1	a,b,d
	166.85 -	- 168.00	00	1,150	1,120	-30	2,000	a,b,d
	168.00 -	- 168.25	300	250	235	-15		a,b
	168.25 -	169.70	∞	1,450	1,450			a,b
Zongo	169.70 -	170.30	1,000	600	600			a,b
	170.30 -	170.95	00	650	645	-5		a,b
	170.95 <i>-</i>	171.40	1,000	450	445	-5		a,b
	171.40 -	171.65	∞	250	250			a,b
	171.65 -	172.30	1,500	650	650			a,b
	172.30 -	174.00	00	1,700	1,695	-5		a,b
	174.00 -	174.50	750	500	490	-10		a,b
	174.50 -	174.90	00	400	380	-20	, ,,,	a,b,d
	174.90 -	175.10	250	200	1 75	-25	} 200	a,b,d
	175.10 -	175.30	00	200	200			a
	175.30 -	176.40	1,000	1,100	1,100			a,b,c
	176.40 -	176.70	∞	300	300			a,b,c
	176.70 -	177.15	350	450	420	-30	100	a,b,d
Mokozo	177.15 -	178.00	∞	850	850			a,b
	178.00 -	178.60	œ	600	600			a,b,c
	178.60 -	179.30	1,500	700	690	-10 -5	700	a,b,c,d
	179.30 -	180,40	∞	1,100	1,095	-5	} 700	a,b,d
	180.40 -	180.75	350	350	350		•	a,b
	180.75 -	181.60	œ	850	840	-10		a,b
	181.60 -	181.95	500	350	350			a,b
	181.95 -	182.10	∞	150	150			a,b
	182.10 -	182.45	1,000	350	350			a,b

(Section #2) Tronçon

	Location Tracement		R	L _o	L ₁	Δ.L	· Lo	Т
	PK	Pł	K m	m	m	m	m	
	182.45	- 183.3	<u> </u>	900	895	- 5		a,b,c
	183.35	- 184.60	4,000	1,250	1,220	-30	2,100	d
	184.60	- 186.80) ∞	2,200	2,080	-120	J	a,b,d
	186.80	- 187.49	5 500	650	625	-25		a,b
Pelepel	e 187.45	- 188.30) ∞	850	840	-10	400	a,b,d
	188.30	- 188.89	1,000	550	540	-10		a,b,c
	188.85	- 189.69	5 ∞	800	790	-10		a,b
	189.65	- 190.0	1,000	400	400			a,b
	190.05	- 191.00) ∞	950	950			а
	191.00	- 191.5	750	550	540	-10		a,b
	191.55	- 192.60) ∞	1,050	1,050			a,b
	192.60	- 193.10	1,000	500	495	-5]	a,b,d
	193.10	- 193.90) ∞	800	790	-10	500	a,b,d
	193.90	- 194.30	750	400	400			a,b,c
	194.30	- 194.5	5 ∞	250	250	•		a
	194.55	- 195.09	2,000	500	490	-10		a,b
	195.05	- 196.25	5 ∞	1,200	1,195	- 5		a,b,c
	196.25	- 196.5	750	300	290	-10		a,b
	196.55	- 196.79	5	200	190	-10		a,b
	196.75	- 197.49	750	700	695	- 5		a,b,c
	197.45	- 198.30) ∞	850	850		200	a,d
	198.30	- 198.9	750	650	635	15	100	a,b,d
	198.95	- 200.00) ∞	1,050	1,035	-15		a,b
	200.00	- 200.80	750	800	770	-30	400	a,b,c,d
	200.80	- 201.1	5 ∞	350	350			a,b,c
	201.15	- 202.05	1,500	900	885	-15		a,b,c
Bangwan	202.05	- 202.9	5 ∞	900	895	-5		a,b
	202.95	- 203.4	1,000	500	495	-5		a,b
	203.45	- 204.0	5 ∞	600	590	-10		a,b
•	204.05	- 204.5	750	500	490	-10	200	a,b,d
	204.55	- 204.6	∞ .	100	100			a,b
	204.65	- 205.20	1,000	550	540	-10		a,b

190 -10 a,b

(Section #2)

	•	r '	Tronçon "	2 /			
	Location						
s	Tracement	R	Lo	L ₁	Δ L	l _o	Τ
	PK PK	m	m	m	m	m	
	205.20 - 205.80	. 00	600	590	-10		a,b
	205.80 - 206.25	500	450	445	-5	•	a,b
	206.25 - 206.60	∞	350	350			a,b
	206.60 - 208.05	2,000	1,450	1,420	-30	800	a,b,d
	208.05 - 210.15	QQ,	2,100	2,085	-15		a,b
	210.15 - 211.55	1,500	1,400	1,385	-15		a,b
	211.55 - 212.05	∞	500	490	-10	•	a,b
	212.05 - 212.50	500	450	450	•		a,b
	212.50 - 212.80	· ∞	300	300			a
Lobi	212.80 - 213.45	1,500	650	650			a,b
	213.45 - 215.25	00	1,800	1,775	-25	7 400	a,b,d
•	215.25 - 215.40	250	150	145	-5		a,b,d
	215.40 - 217.30	00	1,900	1,865	-35	1,200	a,b,d
	217.30 - 217.70	1,000	400	385	-15		a,b,d
	217.70 - 218.00	∞	300	295	-5	J	a,b,d
Gaya	218.00 - 218.40	1,000	400	395	- 5		a,b
	218.40 - 219.05	. 00	650	640	-10		a,b
	219.05 - 219.30	350	250	-240	-10]	a,b,d
	219.30 - 219.80	00	500	485	- 15	} 500	a,b,d
	219.80 - 220.10	500	300	280	-20		a,b
	220.10 - 220.90	00	800	785	-15	500	a,b,d
	220.90 - 221.60	750	700	680	-20	500	a,b,d
	221.60 - 222.20	œ	600	580	-20		a,b
	222.20 - 222.90	1,500	700	690	-10		a,b
	222.90 - 223.75	00	850	850			a,b
	223.75 - 224.15	4,000	400	400			a,b
	224.15 - 226.50	∞	2,350	2,335	-15	900	a,b,d
	226.50 - 226.80	750	300	300			a,b
•	226.80 - 227.35	∞	550	540	-10	1,000	a,b,d
	227.35 - 228.30	2,000	950	920	-30	}1,000	a,b,d
	228.30 - 229.00	∞	700	700			a,b

229.00 - 229.20

500

200

(Section #2) Tronçon

	Location						
	Tracement	R	Lo	<u>L</u> 1	ΔL	l _o	Т
	PK PK	m	m	m	m	m	**-=**
	229.20 - 230.70	œ	1,500	1,500			а
	230.70 - 230.90	300	200	190	-10		a,b
	230.90 - 231.45	∞	550	550	• .		a
	231.45 232.15	750	700	680	-20		a,b
	232.15 - 232.50	∞	350	350			а
	232.50 - 232.75	750	250	245	- 5		a,b
	232.75 - 232.85	00	100	100			a,b
	232.85 - 233.35	750	500	490	-10		a,b
	233.35 - 233.60	300	250	250			a,b
Faka	233.60 - 233.80	∞	200	200			a
	Bili Rv.						
	233.80 - 234.50	∞	700	690	~10		a,b
	234.50 - 235.00	400	500	480	~20		a,b
	235.00 - 235.40	00	400	395	-5		a,b
	235.40 - 235.70	250	300	290	-10	250	a,b,d
	235.70 - 236.55	00	850	760	-90]	a,b,d
	236.55 - 236.90	250	350	345	- 5	700	a,b,d
	236.90 - 237.05	∞	150	150)	a
	237.05 - 237.35	400	300	295	- 5		a
	237.35 - 238.20	∞	850	850		1	a,b,c,d
	238.20 - 238.65	500	450	445	-5	600	a,b,d
	238.65 - 239.15	∞	500	495	-5	J	a,b,d
	239.15 - 239.90	750	750	750			a,b
	239.90 - 240.30	œ	400	395	-5		a,b,c
Tanza		1,000	500	500			a,b,c
	240.80 - 240.90	∞	100	95	-5		a,b
	240.90 - 241.20	1,500	300	300		-	a,b
	241.20 - 242.45	∞	1,250	1,245	- 5		a,b
	242.45 - 243.00	750	550	530	-20	1	a,b,d
	243.00 - 243.10	00	100	95	-5	300	a,b,d
	243.10 - 243.40	300	300	290	-10	J	a,b,d
	243.40 - 244.05	00	650	645	- 5		a,b,d

(Section #2)

	Location Tracement		R	L _o	<u> </u>	ΔL	l _o	T
	PK	PK	m	m	m	m	m	
	244.05 -	- 244.30	300	250	245	-5		a,b,d
	244.30 -	- 246.60		2,300	2,300		•	a,b,c
	246.60 -	- 247.40	750	800	* 790	-10		a,b
	247.40 -	247.70	00	300	295	-5		a,b
	247.70 -	- 247.95	230	250	225	-25	j	a,b,d
	247.95 -	- 248.30	∞	350	335	- 15	500	a,b,d
	248.30	- 248.80	750	500	485	-15)	a,b,d
Monga	248.80	- 250.00		1,200	1,200			a,b
	To	tal		125,000	122,335	<u>-2,665</u>	24,250	

	Location Tracement		R	Lo	L	Δ L	l _o	T
	PK	PK	m	m	m	m	m	-
Monga	250.00 -	250.15	∞	150	145	~5		a,b
-	250.15 -	250.40	230	250	245	-5		a,b
	250.40 -	250.85	œ	450	450			а
	250.85 ~	251.25	350	400	390	-10		a,b
	251.25 -	251.65	00	400	395	- 5		a,b
	251.65 -	252.00	750	350	345	-5		a,b
	252.00 -	252.30	∞	300	300			а
	252.30 -	252.55	750	250	250			a,b
	252.55 -	252.75	α.	200	190	-10		a,b,c
	252.75 -	253.15	1,000	400	385	-15		a,b
	253.15 -	253.70	∞	550	550			a,b
	253.70 -	254.05	1,000	350	345	- 5		a,b
Lumande	254.05 -	254.55	, ∞	500	495	-5		a,b
	254.55 -	254.80	750	250	250			a,b
	254.80 -	254.95	00	150	145	-5		a,b

	Location Tracement		R	L _o	L,	Δ L.	l _o	T
•	PK	PK	m	m	m	m		***************************************
	254.95	- 255.20	750	250	245	-5		a,b
	255.20	- 256.10	œ	900	895	-5		a,b
	256.10	- 257.10	2,000	1,000	980	-20		a,b
Fakula	257.10	- 258.65	00	1,550	1,535	-15		a,b
	258.65	- 259.10	500	450	435	-15		a,b,c
	259.10	- 259.70		600	600			a,b
	259.70	- 260.10	1,000	400	395	- 5		a,b
-	260.10	- 260.30	00	200	190	-10		a,b
	260.30	- 260.80	1,000	500	485	-15		a,b
	260.80	- 261.20	· co	400	400			a,b
	261.20	- 261.40	350	200	195	-5		a,b
	261.40	- 262.15	00	750	740	-10		a,b
	262.15	- 262.60	750	450	435	-15		a,b
	262.60	- 265.10	∞	2,500	2,500			a,b,c
	265.10	- 265.95	750	850	850		800	a,b,d
	265.95	- 266.15	00	200	195	-5		a,b
	266.15	- 266.50	750	350	340	-10		a,b
		- 267.10	∞	600	600			a
	,	- 267.55	1,000	450	430	-20		a,b
		- 267.75	œ	200	200			a,b
		- 268.85	2,000	1,100	1,095	-5		a,b
	-	- 270.00	00	1,150	1,120	-30	500	a,b,c,d
		- 270.55	•	550	455	-95		a,b,c
		- 270.90	500	350	340	-10		a,b
		- 271.10	oo	200	200		300	a,b,d
		- 271.55	350	450	420	-30		a,b,d
		- 271.85	ω	300	290	-10	•	a,b
		- 272.25	500	400	380	-20		a,b
		- 272.35	∞ 2.000	100	100		F00	a
		- 273.80 - 274.00	3,000 ∞		1,450	. 10	500	a,b,d
		- 2/4.00 - 283.00		200	190	-10	3	a,b
		- 284.30	2,000·	10,300	7,500	-2,800	7,500	∘d d

Section #1)

•	Location							
•	Tracement		R	Lo	<u> </u>	<u> </u>	l _o	Т
	PK	PK	m	m	m	. m	m	
	284.30 -	285.55	4,000	1,250	1,230	-20		a,b
Dogba	285.55 -	286.00	∞	450	435	-15		a,b
	286.00 -	287.40	1,500	1,400	1,370	-30	} .	a,b,d
	287.40 -	288.20	00	800	765	-35	1,800	a,b,d
	288,20 -	289.00	2,000	800	770	-30	150	a,b,d
	289.00 ~	291.15	ထ္	2,150	2,130	-20	1,500	a,b,d
	291.15 -	291.90	1,500	750	740	-10		a,b
	291.90 -	292.30	œ	400	390	-10		a,b
	292.30 -	292.70	500	400	390	-10		a,b,c
	292.70 -	292.95	œ	250	240	-10		a,b,c
	292.95 -	293.10	300	150	145	· - 5		a,b,c
	293.10 -	293.20	œ	100	95	-5		a,b,c
	293.20 -	293.35	250	150	145	-5		a,b
	293.35 ~	293.50	œ	150	150			a,b
	293.50 ~	294.00	750	500	495	-5		a,b
	294.00 -	294.20	. 00	200	200			a,b
	294.20 -	294.60	750	400	395	- 5		a,b
	294.60 -	294.70	00	100	100			a,b
	294.70 -	295.15	750	450	445	-5		a,b,c
	295.15 ~	296.80	∞	1,650	1,620	-30		a,b
	296.80 ~	297.30	4,000	500	500			a,b
	297.30 -	298.15	00	850	840	-10		a,b,c
	298.15 -	298.55	250	400	395	-5		a,b,c
	298.55 -	298.65	00 ·	100	100			а
	298.65 -	300.05	1,000	1,400	1,370	-30		a,b
	300.05 -	301.25	1,500	1,200	1,170	-30	400	a,b,d
	301.25 -	301.50	QQ	250	250		200	a,b,d
	301.50 -	302.00	500	500	500			a,b
	302.00 -		co	500	490	-10		a,b
	302.50 -	303.10	750	600	580	-20		a,b
	303.10 -	304.15	¢a	1,050	1,030	-20		a,b,c
	304.15 -	304.40	500	250	250			a,b,c
	304.40 -	304.60	∞	200	200			a,b,c

Location Tracement	R	Lo	L	ΔL	l _o	T
PK PK	m	m	m	m	m	
304.60 - 304.80	7 50	200	190	-10		a,b,c
304.80 - 305.25	œ	450	450			а
305, 25 - 306. 55	2,500	1,300	1,275	-25		a,b
306.55 - 306.95	ω	400	385	-15		a,b,d
306.95 - 307.40	450	450	435	-15	450	a,b,d
307.40 - 307.90	00	500	490	-10		a,b
307.90 - 308.60	750	70 0	705	+5		a,b,c
308.60 - 308.80	œ	200	195	~ 5		a,b
308.80 - 309.05	250	250	240	-10		a,b
309.05 - 309.55	œ	500	490	-10		a,b
309.55 - 309.75	230	200	195	-5		a,b
309.75 - 309.90	œ	150	150			a,b
309.90 - 310.25	230	350	345	- 5	200	a,b ʻ
310.25 - 310.45	œ	200	195	- 5		a,b
310.45 - 311.25	1,000	800	785	-15	300	a,b
311.25 - 311.90	ω	650	645	- 5		a,b
311.90 - 312.70	2,500	800	790	-10		a,b
312.70 - 313.60	œ	900	780	-120		a,b
313.60 - 313.90	400	300	200	-100		a,b
313.90 - 314.10	, 00	200	190	-10		a,b
314.10 - 314.50	500	400	400			a,b
314.50 - 314.80	00	300	300			а
314.80 - 315.20	1,500	400	395	-5		a,b
315.20 - 315.35	∞	150	150			a
315.35 - 316.95	2,000	1,600	1,550	-50		a,b,c
316.95 - 318.15	œ	1,200	1,185	- 15		a,b,c
318.15 - 318.30	350	150	140	-10		a,b
318.30 - 318.80	∞	500	500			a
318.80 - 319.10	500	300	290	-10		a,b
319.10 - 319.35	00	250	245	-5		a,b
319.35 - 319.75	300	400	390	-10		a,b
319.75 - 321.15	œ	1,400	1,390	-10		a,b

Soa

	cation acement	R	Lo	<u> </u>	Δ L	l _o	T
	PK PK	m	m	m	m	. m	
	321.15 - 321.50	250	350	335	-15		a,b
	321.50 - 322.00	∞	500	500			a,b
Ndu	322.00 - 322.40	250	400	395	-5		a,b
Bangassou	Bomu Rv.						
	Total		72,400	68,285	-4,115	14,600	
	G. Total		718,600	698,955	-19,645	161,100	

A.3.4.4 Culverts

(1) Calculation of Run-Off

The run-off can be calculated by several methods, but the rational formula was adopted in this study, taking into account the hydrologic data obtained.

$$Q = \frac{1}{3.6} \cdot C \cdot r \cdot A$$

where, Q = Peak amount of run-off (m^3/sec)

C = Coefficient of run-off = 0.1

r = Average rainfall intensity during

flood reaching time (mm/h)

A = Basin area (Km²)

(2) Longitudinal Slope of Rivers

Since the longitudinal slope of rivers cannot be obtained from the available maps on scale of 1:50,000 without contour-line, major rivers were measured, and the results were used to estimate the longitudinal slopes of other rivers as follows:

Name o	f Distance from Kisangani (Km)	Measured Slope of Water Surface (%)	Average Slope of Water Surface (%)
Lindi	36.8	0.04	
Ngula	58.2	0.025	
Aruwim	i 129.0	0.025	
Zambek	e 159.1	0.025	
Kole	196.4	0.010	
Tele	235.9	0.033	0.024
Yeme	309.1	0.017	
Rubi	323.9	0.025	
Makala	327.5	0.017	
Longa	332.3	0.020	
			PK 8 + 0.00 (from Buta)

Name of River	Distance from Kisangani (Km)	Measured Slope of Water Surface (%)	Average Slope of Water Surface (%)
Kotili	352.1	0.010	
Bilo	370.5	0.010	0.010
Likati	464.3	0.025	PK 46 + 2.00
Likati	477.6	0.025	(from Buta)
Uélé	524.8	0.025	0.021
Bili	633.6	0.010	
			PK 372 + 0.00 (from Dulia)

•

(3) Calculation of Rainfall Duration (Flood Reaching Time)

The flood reaching time can be calculated by various methods, but since there are only a few available data for calculation, the following method was adopted:

The slope of rivers calculated by using the above estimated values are as follows:

Section	H/L	(H/L) 0.6	v (KM/h)
from Kisangani PK 36 + 800~ from Buta PK 8 + 0	0.00024	0.0067	0.482
from Buta PK 8 + 0 ~ from Dulia PK64 + 200	0.00021	0.0060	0.432
PK 64 + 200 ~ from Dulia PK 322 + 0	0.0001	0.0039	0.281

(4) Probable Rainfall Intensity

According to L'Intensité des Plivies au Congo et au Ruanda-Urundi, the probable rainfall intensity observed at weather stations in Haut Zaire are as given in the following table: The above values were converted into 60-minute rainfall intensity by the following formula, and they were plotted on logarithmic normal probability paper to obtain the probable rainfall intensity graph of respective return year. (See Plate A.3.4.4-(1))

$$I = R \times \frac{60}{t} \quad (mm/h)$$

Where: I = 60 minutes rainfall intensity (mm/h)

R = Probable rainfall (mm)

t = Rainfall duration (min)

Probable Rainfall Intensity (mm/hour)

			,	æ	e t u	r n	year					-
		2 ye	years	 		5 ye	years	p.,		10 years	rs	
		Q	ura	tion	1 O £	ч	a i n	ત પન	1 1	(minutes)	es)	
Location	10	30	9	06	10	30	09	06	10	30	9	06
LIBENGE	24.5	47.7	63.0	76.6	28.7	56.0	80.5	91.1	31.9	62.3	90.1	102.1
BUNIA	21.0	40.8	51.0	55.3	24.4	47.7	59.7	64.9	26.9	52.9	66.3	72.1
KINDU	23.4	49.3	63.9	69.7	27.6	58.5	76.1	83.1	30.7	65.4	85.3	93.2
BOENDE	27.1	54.3	68.8	72.6	31.6	63.2	80.4	84.7	34.9	70.3	89.2	93.8
MBANDAKA	24.1	47.2	59.2	66.4	28.1	55.1	69.3	77.8	31.1	61.1	76.9	86.4
KISANGANI	24.1	47.0	64.3	69.4	28.1	54.9	75.5	81.5	31.1	60.8	84.0	90.6
BASOKO	23.0	46,6	56.0	63.5	26.9	54.6	65.6	74.6	29.7	9.09	72.8	82.6

(5) Design of Crossing Culverts

For calculation of the cross-sectional areas of crossing culverts, the culvert diameters were determined by the graph (Plate A.3.4.4-(2), (3)) by the following Manning's formula:

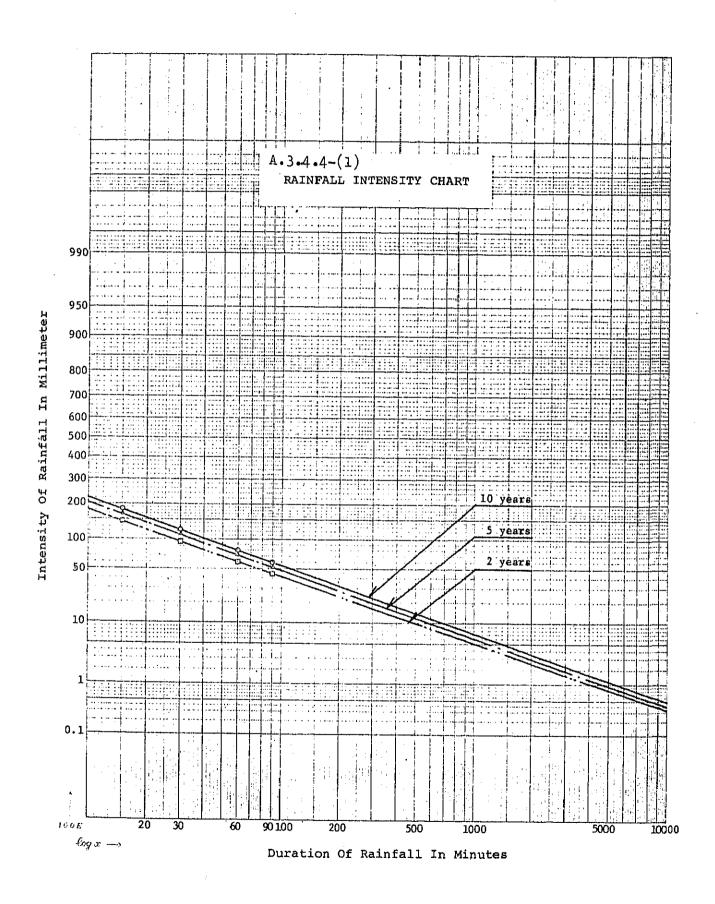
$$Q_{O} = \frac{1}{n} \cdot R^{\frac{2}{3}} \cdot I^{\frac{1}{2}} \cdot a$$

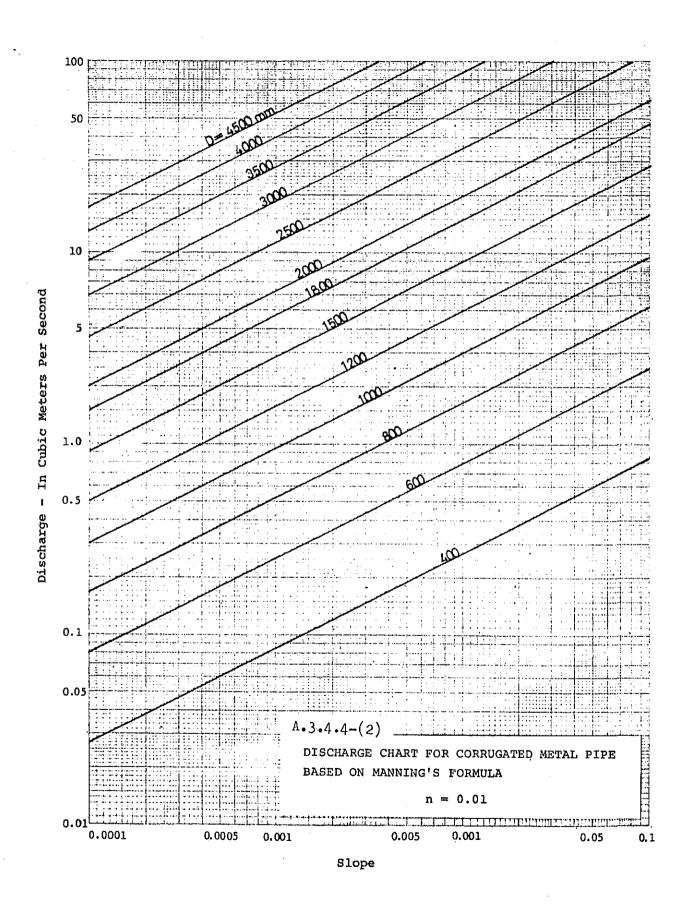
Where: $Q_0 = Flowing capacity of culvert (m³/sec)$

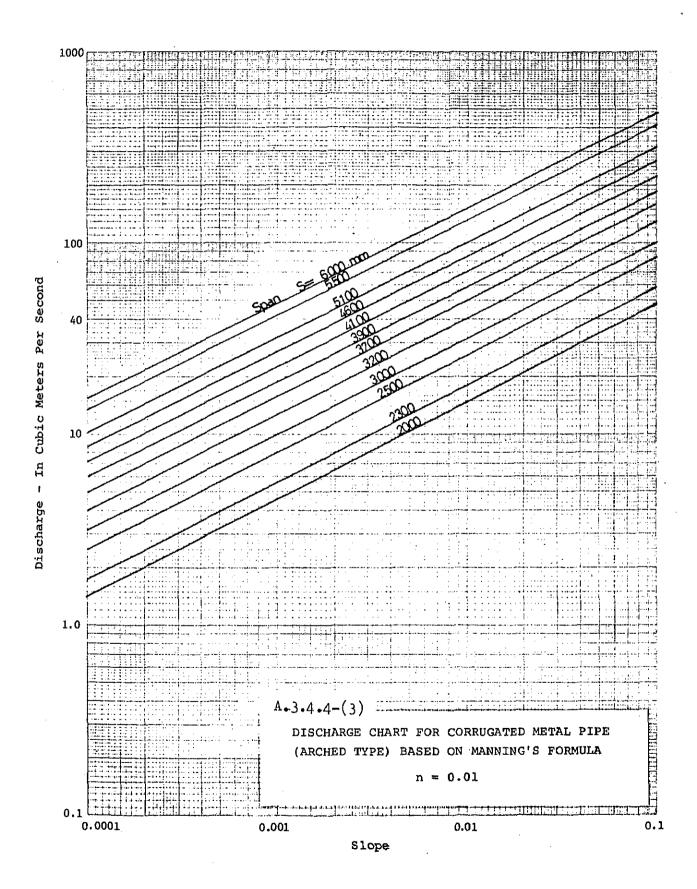
n = Coefficient of roughness = 0.1

R = Hydraulic mean depth (m)

I = Slope of culvert


A = Cross-sectional area of culvert (m^2)


The culverts shown in Calculation Table A.3.4.4-(4) are only those for the rivers which can be recognized as rivers on the available maps on a scale of 1:50,000. Therefore, these culverts in the Table 3.4.4-(2) are not all of the existing ones, and the rest existing culverts and those for the places requiring additional culverts where the crossing streams flow over—the road, and those recognized their existance on the spot are all included in Plates B.1.1 to B.1.19.


Of the sizes of culverts in Calculation Table;

Alternative (a): Culverts diameters were determined by calculation of run-off from the maps on a scale of 1:50,000.

Alternative (b): Culverts diameters were determined by finding the past flood marks found on the spots or informed by local inhabitants to estimate the run-off at the time of flood.

	*	74 12 13		off Calcu	ulation a	and Size o	Run-off Calculation and Size of Culverts for Existing	Existing Streams
	•	4)-+•+•/•	_	ul de ruisse ant existant	isselleme :ant	ent et Gro	Calcul de ruissellement et Grosseur des ponceaux pour courant existant	eaux pour tube de
						;		
$0 = \frac{1}{3.6} \times$	$\frac{1}{3.6} \times C \times Y \times A \text{ (m}^3/\text{sec)}$	ec)	+ - -	$\frac{L}{V}$. Durée	ion of re de préci	Duration of rainfall (min) Durée de précipitation pluviale	in) pluviale Pcor	Corrugated metal pipe Tuyau ondulé en fer
C : Coeff	Run off coefficient 0.1 Coefficient de ruissellement 0.1	.l llement (Run off distance (m) Longueur en thalweg	stance (en thalwe	Run off distance (m) Longueur en thalweg principal	J d-	Concrete pipe Tuyau en béton
Avera	Average rainfall intensity (mm/h) Intensité de la pluie moyenne	nsity (mr moyenne	>	Average ru Vélocité d	un off ve du courar	run off velocity (m/sec)	/sec)	Reinforced concrete box culvert
	Basin area (KM2)		,	Diameter c	of pipe ((E)	3	
A : Bassi	Bassin versant		О :	Diamètre d	de tuyau			Corrugated metal pipe
				. '			S	. (arched type) . Tuyau onduleé en métal
								ulverts
							Crosseur de	ponceaux
Station	River	(KM)	t (min)	(mm/h)	(KM ²)	0 (m ³ /sec)	Alternative (Remarks Alternative (h) Remarque
	107.			(ii /iiiii)		(225 / 111)		
50 + 200		12.0	1,492.0	4.9	55.0	7.4	Pcor \$2.5	Pcor \$2.9
+ 500		13.5	1,680.0	4.4	26.0	3.1	4-61.2	4-61.2
006 +		29.0	3,610.0	1.9	92.0	4.9	62.5	2-62.7
24 + 600		25.0	3,112.0	2.2	0.44	2.7	4-61.2	4-61.2
55 + 200		15.0	1,867.2	3.8	16.0	1.7	ø1.8	2-\$2.0
61 + 450	Angwande	0.4	497.9	15.0	10.9	4.2	6-61.2	3-61.2
63 + 250	Azame	8.0	995.0	7.1	12.6	2.5	62.0	C-Box 2-(0.8x1.3)
94 + 600	Abolo	10.0	1,244.8	5.6	14.6	2.3	8.18	8-60.6
99 + 900	Takao	21.0	2,614.1	1.6	58.2	2.6	62.0	5-44.5

Size of Culverts

Remarque					,													••		
Alternative (b)	PC &0.6		PC 60.6	Pcor 5-40.9	11 2-61.0		Pcor Ø1.2	2-53.6	11 Ø1.5	PC \$0.6	Pcor \$0.9	43.0	PC &0.6	Pcor 3-51.8	2-51.5	2-61.2	PC 60.6	Pcor Ø1.2	Pc 60.8	Pcor ø1.2
ative (a)	. ø1.5	61.5	8.0%	5-61.2	2-61.5	61.5	ø1.5	2-53.0	2-01.8	61.5	61.5	62.5	ø1.2	2-51.8	2-51.5	2-61.5	61.5	8.1%	2-61.0	2-61.5
Alter	Pcor	=	PC	Pcor	=	Ξ	Ξ	Ξ	=	<u>=</u>	Ξ	=	=	=	=	=	=	Ξ	=	Ξ
(m3/sec)	1.1	1.0	9.0	3.1	3.2	*	6.0	7.9	4.0	1.0	1.1	4.8	0.5	0.4	3.0	1.9	6.0	2.2	6.0	5.6
(KM2)	1.6	2.0	9.0	12.7	12.3	27.0	1.0	58.0	12.1	1.3	8.	43.4	0.3	28.5	36.4	6.6	1.2	9.9	7.0	8.5
(mm/h)	25.0	19.0	38.0	8.9	9.4	1.5	34.0	4.9	12.0	28.0	22.0	4.0	0.19	5.0	3.0	6.9	27.0	8.2	47.0	11.0
(min)	186.7	286.3	161.8	809.1	746.8	249.0	186.7	1,493.8	9.489	248.9	311.2	1,804.9	87.1	1,431.5	2,302.9	1,058.0	249.0	871.4	124.5	622.4
(KM)	1.5	2.3	1.3	6.5	0.9	2.0	1.5	12.0	5.5	2.0	2.5	14.5	0.7	11.5	18.5	8.5	2.0	7.0	1.0	5.0
Rivière		٠			Tongbala			Bode				Mobe		Ambisode	Anbutuge	Atemae				Andakode
Position	70 + 600	79 + 100	80 + 400	80 + 550	92 + 450	+ 800	93 + 450	98 + 650	99 + 800	101 + 400	102 + 600	105 + 750	106 + 800	111 + 180	113 + 0	+ 500	114 + 900	116 + 150	117 + 300	118 + 650
	Rivière (KM) (mm/h) (KM ²) (m3/sec) Alternative (a) Alternative (b)	Rivière (KM) (min) (mm/h) (KM ²) (m3/sec) Alternative (a) Alternative (b) 1.5 186.7 25.0 1.6 1.1 Pcor Ø1.5 PC Ø0.6	Rivière (KM) (min) (mm/h) (KM ²) (m3/sec) Alternative (a) Alternative (b) 1.5 186.7 25.0 1.6 1.1 Pcor Ø1.5 PC Ø0.6 2.3 286.3 19.0 2.0 1.0 " Ø1.5	Rivière (KM) (min) (mm/h) (KM ²) (m3/sec) Alternative (a) Alternative (b) 1.5 186.7 25.0 1.6 1.1 Pror øl.5 PC ø0.6 2.3 286.3 19.0 2.0 1.0 " øl.5 1.3 161.8 38.0 0.6 0.6 PC ø0.8 PC ø0.6	Rivière (KM) (min) (mM/h) (KM ²) (m3/sec) Alternative (a) Alternative (b) 1.5 186.7 25.0 1.6 1.1 Pcor Ø1.5 PC Ø0.6 2.3 286.3 19.0 2.0 1.0 " Ø1.5 1.3 161.8 38.0 0.6 0.6 PC Ø0.8 PC Ø0.6 6.5 809.1 8.9 12.7 3.1 Pcor 5-Ø1.2 Pcor 5-Ø0.9	Rivière (KM) (min) (KM ²) (KM ²) (m3/sec) Alternative (a) Alternative (b) 1.5 186.7 25.0 1.6 1.1 Pcor	Tongbala (KM) (min) (mm/h) (KM ²) (m3/sec) Alternative (a) Alternative (b) Alternative (b) Alternative (c) Alternative (c) Alternative (d) Alternative (d) Alternative (e) Alternative (d) Alternative (e) Alternative (d) Alternative (e) Alternative (e) Alternative (d) Alternative (e) Al	Triver (KM) (min) (MM/h) (KM ²) (m3/sec) Alternative (a) Alternative (b) Alternative (c) Alternative (d) Alternative (e) Alte	Rivière (KM)	Rivière (KM) (min) (KM²) (KM²) (M3/sec) Alternative (a) Alternative (b) 1.5 186.7 25.0 1.6 1.1 Pcor & 1.5 Pc & 60.6 2.3 286.3 19.0 2.0 1.0 " & 61.5 1.3 161.8 38.0 0.6 Pc & 60.8 Pc & 60.6 6.5 809.1 8.9 12.7 3.1 Pcor 5-61.2 Pcor 5-60.9 Tongbala 6.0 746.8 9.4 12.3 3.2 " 2-61.5 " 2-61.0 2.0 249.0 1.5 27.0 1.1 " & 61.5 1.5 186.7 34.0 1.0 0.9 " & 61.5 1.5 186.7 34.0 1.0 0.9 " & 61.5 5.5 684.6 12.0 12.1 4.0 " 2-53.0 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 2-61.8 " 61.5 5.5 684.6 12.0 12.1 4.0 " 4.0 " 4.0 " 4.0 1.0 5.5 684.6 12.0 12.1 4.0 " 4.0 " 4.0 1.0 1.0 4.0 1.0	Rivière (KM) (min) (KM²) (KM²) (m3/sec) Alternative (a) Alternative (b) 1.5 186.7 25.0 1.6 1.1 Pcor & 61.5 Pc & 60.6 2.3 286.3 19.0 2.0 1.0 " & 61.5 1.3 161.8 38.0 0.6 0.6 Pc & 60.8 Pc & 60.6 6.5 809.1 8.9 12.7 3.1 Pcor 5-61.2 Pcor 5-60.9 746.8 9.4 12.3 3.2 " & 2-61.5 " & 2-61.0 2.0 249.0 1.5 27.0 1.1 " & 61.5 1.5 186.7 34.0 1.0 0.9 " & 61.5 1.5 186.7 34.0 1.0 0.9 " & 61.5 2.0 249.8 4.9 58.0 7.9 " & 2-83.0 " & 61.5 2.0 248.9 28.0 1.3 1.0 " & 61.5 Pc & 60.6 2.0 248.9 28.0 1.3 1.0 " & 61.5 Pc & 60.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.5 684.6 12.0 12.1 4.0 " & 61.5 Pc & 60.6 5.0 248.9 28.0 1.3 1.0 " & 61.5 Pc & 60.6 5.0 248.9 28.0 1.3 1.0 " & 61.5 Pc & 60.6 5.0 248.9 28.0 1.3 1.0 " & 61.5 Pc & 60.6 5.0 5.0 5.0 5.0 5.0 T.3 T.0 T.3 T.3 T.0 T.3 T.	Rivière (KM) (min) (mM/h) (KM²) (m3/sec) Alternative (a) Alternative (b) Alternative (c) Alternative (c) Alternative (d) Alternative (d) Alternative (d) Alternative (d) Alternative (e) Alternative (d) Alternative (d) Alternative (e) Alternative (d) Alternative (e) Alternative (d) Alternative (e) Alternative (d) Alternative (e) Alt	Rivière (KM)	Rivière	Rivière (KM)	Rivière (KM)	Ravière (KM) (min) (MM/h) (KM2) (m3/sec) Alternative (a) Alternative (b) Alternative (b) 1.5 186.7 25.0 1.6 1.1 Poor 61.5 PC 60.6 2.3 286.3 19.0 2.0 1.0 " 61.5 3.3 161.8 38.0 0.6 0.6 PC 60.8 PC 60.6 6.5 809.1 8.9 12.7 3.1 Pcor 5-61.2 Pcor 5-60.9 1.5 186.7 34.0 1.0 0.9 " 2-61.5 " 2-61.0 1.5 186.7 34.0 1.0 0.9 " 61.5 Pcor 61.2 1.5 186.7 34.0 1.0 0.9 " 61.5 Pcor 61.2 1.5 186.7 34.0 1.0 0.9 " 61.5 Pcor 61.2 1.5 186.7 34.0 1.1 " 61.5 Pcor 61.5 2.0 248.9 28.0 1.3 1.0 " 61.5 Pcor 60.6 2.5 311.2 22.0 1.8 1.1 " 61.5 Pcor 60.6 Ambisode 11.5 1,431.5 5.0 28.5 4.0 " 2-51.8 Pcor 3-51.8 Anbutuge 18.5 2,302.9 3.0 36.4 3.0 " 2-51.5 " 2-61.2 Atemae 8.5 1,058.0 6.9 9.9 1.9 " 2-61.5 " 2-61.2	Mary Ray Mary Mar	Rivière (KM) (min) (MM/h) (KM ²) (MM ²)	Rivière

Remarks Remarque																				
Norts ponceaux Alternative (b)	or S-1.8		S-4.8		2-53.6	ø1.2 2-ø1.0	ø1.0	ø1.0	2-61.8	2-01.0	ø1.0	ø2.0	5-4-3	ø1.0		2-60.8		r 2-52.4	2-62.6	2-63.8
'등 레 .	Pcor		=		=	= =	Ξ	=	Ξ	÷	=	=	Ξ	Ξ		PC		Pcor	=	Ξ
Size of Culverts Grosseur de poncea Alternative (a) Alter	r S-3.0	2-61.2	\$-2.3	S-3.2	S-3.0	61.8	ø1.2	ø2.0	2-61.8	2-61.5	2-61.5	2-62.0	5-4.1	ø1.8	61.5	2-61.5		S-2.5	2-\$2.26	2-62.5
Alte	Pcor	Ξ	Ξ	Ξ.	Ξ	Ξ	=	Ξ	Ξ	=	Ξ	=	=	=	Ξ	Ξ		Ξ	=	Ξ
0 (m3/sec)	4.4	1.2	2.7	3.2	4.1	1.7	8.0	2.5	3.6	2.8	2.0	5.6	9.3	8.	1.3	2.0		3.2	12.6	8.2
A (KM ²)	32.3	1.7	55.2	7.8	39.9	3.2	0.7	7.4	13.7	10.6	3.9	29.5	120.0	2.4	1.0	4.2	39.5	23.9	70.0	102.3
را (mm/h)	6.4	27.0	1.8	15.0	3.7	19.0	39.0	12.0	9.4	9.4	19.0	6.9	2.8	27.0	47.0	17.0		4.8	6.5	2.9
t (min)	1,493.8	249.0	2,489.6	497.9	1,867.2	373.4	161.8	622.4	746.9	746.9	373.4	1,058.1	2,489.6	249.0	124.5	435.7		1,493.8	1,120.0	2,427.4
L (KM)	12.0	2.0	20.0	4.0	15.0	3.0	1.3	5.0	0.9	0.9	3.0	8.5	20.0	2.0	1.0	3.5	15.5	12.0	9.0	19.5
River Rivière	Akolia	Menueke				Sangara		Mombulubulu	Saela	Malembazabene	Lengelewa					Bengolobo	Kole	Banzua		Mopondo
Station	124 + 900	135 + 50	143 + 400	144 + 800	148 + 400	173 + 100	174 + 900	175 + 800	178 + 700	181 + 800	185 + 900	188 + 200	194 + 500	198 + 500	201 + 100	202 + 100	203 + 900	231 + 600	232 + 600	236 + 800

S
Ţ
i_
้อ
>
_
⊃
S
ч
Ö
U
Φ.
Ν
1-
S
-,

	Remarques																					
onceaux	Alternative (b)	PC 2-60.8	Pcor 2-61.2	2-61.2	2-61.2		3-61.0	3-61.8	3-40.9	3-61.0	8.1%	2-61.0	2-61.0	8-4.0	S-Ø1.0	8-4.0	8-4.0	28-5.0	ø3.0	2-61.0	ø3.0	61.0
Grosseur de ponceaux	Alternative (a) A	Pcor 2-61.5 P(2-62.0 Pc		2-61.5	8-4.0	3-61.0	3-61.5	3-61.5	3-61.2	8.18	2-61.0	2-61.5	S-2.5 "	5-61.2	\$-2.0	8-3.0	S-3.2 "	62.0	2-61.5	ø2.5 "	3-61.5
			=	=	=	=	=	Ξ	2	Ξ	=	Ξ	Ξ	Ξ	11	=	=	Ξ	Ξ	Ξ	Ξ	=
c	(m3/sec)	3.1	6.8	2.3	3.1	9.4	1.3	4.0	3.1	1.9	2.9	6.0	1.9	3.0	9.1	2.0	4.7	5.0	2.6	3.2	3.2	4.0
۷	(KM^2)	18.4	-	4.9	11.7	64.1	2.5	27.5	12.7	6.4	8.0	1.0	1.5	11.4	5.7	5.7	12.9	0.66	9.7	12.6	7.7	12.0
>	(mm/h)	6.0	22.0	17.0	9.5	5.3	19.0	5.3	8.9 6.9	11.0	11.0	34.0	47.0	9.5	12.0	13.0	13.0	1.8	9.5	7.8	15.0	12.0
	(min)		-311.2	435.7	746.9	1,369.3	373.4	1,244.8	809.1	9.489	622.4	186.7	124.5	746.9	9.489	560.1	560.1	2,489.6	746.9	933.6	497.9	9.489
	(KM)	9.5	2.5	3.5	0.9	11.0	3.0	10.0	6.5	5.5	5.0	1.5	1.0	6.0	5.5	4.5	4.5	20.0	0.9	7.5	4.0	5.5
River	Rivière	Lembumbu				Mbe		Ejongo	Bnogamaga	Bondo	Bondua			Bode	Bode-Manene	Yagî					Mabagamu	
\ 	Position	237 + 800	242 + 700	243 + 800	245 + 500	249 + 600	251 + 700	261 + 900	262 + 800	266 + 100	268 + 0	270 + 0	271 + 500	277 + 0	+ 200	288 + 200	292 + 700	294 + 900	299 + 300	302 + 550	310 + 600	315 + 800

Size of Culverts Grosseur de ponceaux
--

a de la companya de	Remarks Remarques																			
ulverts ponceaux	Alternative (b)				Pcor øl.9	11 ø3.0	\$3.0	11 61.2	11 S-3.0	11 2-63.5	63.0	3-64.0	" ø1.2		Pcor 2-61.0	11 2-61.0	" S-3.2	11 S-3.0	41.0	S-3.0
Size of Culverts Grosseur de ponceaux	Alternative (a)			Pcor #1.2	61.5	11 ø2.5	" \$2.5	61.5	" S-3.2	" ø2.0	11 62.5	3-63.0	61.8		Pcor 2-ø1.8	2-61.0	8-3.0	8-3.0	61.5	S-3.0
	(m ³ /sec) A			9.0		2.3	2.2	9.0	3.5	2.9	3.6	14.1	1.7		1.8	0.7	5.7	4.3	1.5	4.4
	(KM ²)			1.0	3.0	18.7	12.4	2.0	27.4	350.0	27.2	510.0	2.3		4.5	9.0	77.0	44.5	3.0	45.5
	γ (mm/h)			27.0	8.8	4.4	6.5	11.0	4.6	0.3	4.8	1.0	24.0		14.0	43.0	2.7	3.5	18.0	3.5
	t (min)			252.3	827.6	1,655.2	1,137.9	620.7	1,551.7	13,953.5	1,604.7	5,581.4	279.1		558.1	139.5	2,581.4	2,093.0	418.6	2,093.0
	(KM)			1.8	4.0	8.0	5.5	3.0	7.5	100.0	11.5	40.0	2.0		4.0	1.0	18.5	15.0	3.0	15.0
	River Rivière				Ngura	Malikuta	Lingiba	Kon	Gombo	Maze	Mafarī	Bilo	,		Mogengia	Masipiri	Maburuka	Nabuma	Makusi	Nagobero
	Station	317 + 400	From Buta de Buta	2 + 600	13 + 50	14+ 0	19 + 500	22 + 100	41 + 300	54 + 700	58 + 150	96 + 50	69 + 250	From Dulia de Oulia	2 + 300	11 + 800	13 + 900	16 + 900	21 + 0	26 + 800

Remarks Remarques														,					¥		
Size of Sulverts Grosseur de ponceaux Alternative (a) Alternative (b)	Pcor 2-61.0	2-61.0	ø1.5		81.0	5-3.0	8.18	62.5	2-61.0	2-61.0	61.5	61.0	0.1%	61.0	ø1.0	2-61.0	2-61.0	\$1.5	62.5	61.0	ø1.0
Sulv de po	PC	Ξ	=		Ξ,	=	=	=	Ξ	Ξ	=	=	=	=	=	Ξ	Ξ	η=	=	Ξ	Ė
Size of Sulverts Grosseur de ponceaux Frnative (a) Alternat	r 2-ø1.0	2-61.0	62.5	61.2	ø1.0	S-3.0	62.5	62.5	2-61.5	ø1.5	ø1.8	\$2.5	\$2.0	ø1.8	ø2.5	61.8	\$2.0	ø1.5	\$2.5	ø1.0	0.10
Alte	Pcor	Ξ	Ξ	=	=	=	=	=	=	<u></u>	Ξ	=	Ξ	=	=	Ξ	=	=	=	Ξ	= .
0 (m3/sec)	0.9	0.7	3.7	0.5	0.3	4.7	3.6	5.3	2.2	-	2.1	3.5	2.9	2.4	4.4	2.4	2.8	0.8	4.6	0.4	4.0
(KM ²)	0.8	9.0	22.3	4.0	0.2	65.0	56.0	39.7	5.8	3.9	3.0	11.0	9.0	4.8	11.3	12.3	10.0	4.7	78.0	0.3	3.0
γ (mm/h)	43.0	43.0	6.0	43.0	55.0	2.6	2.3	4.8	14.0	10.0	25.0	3.5	11.5	18.0	14.0	6.9	10.0	6.5	2.1	43.0	13.0
t (min)	139.5	139.5	1,186.0	139.5	97.7	2,790.7	2,930.0	1,534.9	558.1	697.7	279.1	627.9	627.9	418.6	558.1	1,046.5	697.7	1,116.2	3,279.0	139.5	558.1
(KM)	1.0	1.0	8.5	1.0	0.7	20.0	21.0	11.0	4.0	5.0	2.0	4.5	4.5	3.0	7.0	7.5	5.0	8.0	23.5	1.0	4.0
River Rivière		Nangende				Mango	Namenimbala	Kpoyo								Malikambe	Bolongo	Maniuna			
Station Position	29 + 500	30 + 550	33 + 450	37 + 250	38 + 750	39 + 200	43 + 400	47 + 300	48 + 700	+ 900	51 + 600	52 + 900	55 + 600	99 + 99	69 + 300	70 + 300	75 + 100	82 + 200	83 + 600	88 + 80	00+ + 06

	Remarks																					
ulverts ponceaux	Alternative (b)	Pcor 2-\$1.0	2-61.0		0.10	ø1.0	0.1%	ø1.0		2-61.0	2-61.0	ø1.5	61.0	2-61.0	61.0	2-61.0	2-61.0	ø1.5	ø1.0	63.5	ø1.0	ø1.0
Size of Culverts Grosseur de poncea	(e)	Pcor 2-øl.2 Pc	1 2-61.2 11	5-19	61.5	1 8.1%	1 ø1.5 !!	2-61.8	1 2-61.8	1 2-61.2 "	1 2-61.0 !!	11 62.5 II	1 2-61.2 "	1 2-61.5	11 8-4.6	11 0.10	1 2-61.5 "	2-61.5	" ø1.5 "	42.5 "	11 61.5 11	11.5 "
	0 (m3/sec) A	8.	2.3	1.4	1.5	2.1	1.0	3.4	3.4	1.6		4.6	1.5	1.6	10.01	0.2	3.0	2.8	1.0	5.0		1.6
	(KM2)	10.5	8.8	2.0	2.5	5.1	1.4	18.7	10.8	6.3	1.6	39.1	3.6	8.9	139.4	0.2	27.3	10.1	0.8	54.9	6.0	2.6
	γ (mm/h)	6.2	9.4	25.0	21.5	15.0	25.0	6.5	11.5	9.4	25.0	4.3	15.0	8.7	2.6	43.0	4.8	10.0	43.0	3.3	43.0	22.0
	t (min)	1,116.2	767.4	279.1	320.9	488.3	279.1	1,116.2	627.9	767.4	279.0	1,674.4	488.3	837.2	2,790.7	139.5	1,534.9	697.7	139.5	2,372.1	139.5	307.0
	(KM)	8.0	5.5	2.0	2.3	3.5	2.0	8.0	4.5	5.5	2.0	12.0	3.5	0.9	20.0	1.0	11.0	5.0	1.0	17.0	1.0	2.2
	River		Kulumonene						Keda	Mizaka	Masingi	Kule	Bangoloma	Gindi	Kingile		Mangalo	Dibgo	Mabali	Maluga	Bagu	
	Station Position	91 + 500	98 + 700	106 + 300	108 + 400	110 + 0	1111 + 0	113 + 0	118 + 400	120 + 550	124 + 80	131 + 500	135 + 400	137 + 100	141 + 300	143 + 900	146 + 500	147 + 700	0 + 151	152 + 900	160 + 600	162 + 200

Size of Culverts Grosseur de ponceaux

Remarks Remarque																·			ı		.
Alternative (a) Alternative (b)	r ø1.0	ø1.0	2-61.0	ø1.0	61.5	ø1.0	61.0		0.1%	0.10	61.5	2-61.0	ø1.0	61.0	ø1.0	ø1.0	61.0	2-61.0	ø1.0	5-3.7	ø1.0
a) Ai	Pcor	Ξ	Ξ	Ξ	= .	Ξ	Ξ		Ξ	=	Ξ	=	Ξ	=	Ξ	Ξ	Ξ	Ξ	, =	=	Ξ
native (a	\$2.0	61.5	2-61.5	ø1.5	61.5	61.0	0.10	81.8	0.1%	\$2.5	\$2.5	2-191.5	ø1.5	61.5	61.0	2-61.5	61.5	0.10	2-61.5	5-3.7	ø1.0
Alter	Pcor	=	=	Ξ	- =	Ξ	2	Ξ	=	=	=	-	Ξ	Ξ	=	=	Ξ	=	=	Ξ	=
(m ³ /sec)	2.4	1.0	9.1	1.4	1.4	0.3	0.3	9.1	4.0	3.0	3.9	2.7	1.1	6.0	4.0	1.8	8.0	0.3	1.7	10.0	4.0
(KM^2)	7.6	1.4	6.1	2.5	12.4	0.2	0.2	3.3	0.2	16.7	29.5	13.6	1.6	1.7	0.3	10.5	1.1	1.4	2.5	450.0	0.5
γ (mm/h)	11.5	25.0	11.5	20.0	4.1	56.0	56.0	18.0	71.0	6.5	4.8	7.2	25.0	20.0	43.0	6.5	27.0	6.5	25.0	0.8	32.0
t (min)	627.9	2,79.1	627.9	348.8	1,744.2	97.7	7.76	418.6	69.7	1,116.2	1,534.9	976.7	279.1	348.8	139.5	1,116.2	251.1	1,116.2	279.1	6,976.7	209.3
(KM)	4.5	2.0	4.5	2.5	12.5	0.7	0.7	3.0	0.5	8.0	11.0	7.0	2.0	2.5	1.0	8.0	1.8	8.0	2.0	50.0	1.5
River Rivière	Mangolî	Bavula	=	Namangava	Mambia			Lobi	=	Duo (Nduo)	Yangola	Monbulu	Mabulu	Ξ		Digbala		Digbala		Lobi	
Station Position	162 + 750	163 + 100	+ 900	165 + 700	167 + 900	176 + 0	+ 500	181 + 400	184 + 800	186 + 950	188 + 500	192 + 600	193 + 100	194 + 200	195 + 900	197 + 100	198 + 150	199 + 900	204 + 600	212 + 100	216 + 300

(A)
+~+
Ļ
ø
>
_
⊃
ပ
φ
ze
•-
S

	Kemarks Remarque																	
ıceaux	Alternative (b)	r \$1.0	0.10	ø1.0	8.1%	0.10	2-61.0	61.0	5-3.7	8-3.0	0.10	ø1.5	5-3.2	S-3.2 ,	61.5	ø1.8	8-3.0	5-3.0
le poi		Pcor	=	=	=	=	Ξ	=	=	=	=	=	Ξ	=	=	Ξ	=	-
Grosseur de ponceaux	Alternative (a)	61.0	61.5	8.18	2-61.8	61.2	8.18	2-61.5	2-61.5	ø1.8	2-61.5	8-3.9	5-3.2	s-3.9	62.0	ø2.5	8-3.9	5-2.5
9	Alter	Pcor	Ξ	=	=	=	=	Ξ	:	=	=		=	=	=	=	=	<u> </u>
	(m3/sec)	0.4	1.3	1.7	3.8	0.7	1.9	5.6	2.4	1.7	2.3	7.5	5.8	7.4	5.6	3.7	7.8	3.5
s	(KM ²)	0.3	3.1	3.1	21.0	0.8	5.9	15.6	13.4	0.9	6.3	56.5	43.4	189.0	9.01	13.3	122.6	17.7
٠.	γ (mm/h)	43.0	15.0	20.0	6.5	32.0	11.5	0.9	6.5	10.0	13.0	4.8	4.8	1.4	8.7	10.0	2.3	7.2
,	(min)	139.5	488.3	348.8	1,116.2	209.3	627.9	1,186.0	1,116.2	697.7	558.1	1,534.9	1,534.9	4,465.1	837.2	697.7	2,930.2	907.0
	(KM)	1.0	3.5	2.5	8.0	1.5	4.5	8.5	8.0	5.0	4.0	11.0	11.0	32.0	0.9	5.0	21.0	6.5
i	Rivière		Pangabiso		Duku	Makuru	Bafumbu	Ingumbio		Dindo (II)	(131)	Logbo	Luba	Balinga (Boloko)	Bainga	Рормо		Yabongo locations
	Station	222 + 600	230 + 900	236 + 600	237 + 900	240 + 300	243 + 100	245 + 500	248 + 400	250 + 400	252 + 700	265 + 100	276 + 100	292 + 800	295 + 0	300 + 500	303 + 500	316 + 600 Yabongo Total 167 locations

In this project road improvement additional pipes of \emptyset 1.0m are constructed at 406 locations where are considered to be necessary through the field survey and are all shown in Plates B.1.1 - B.1.19.

Dans la route ameliorée de projet additionémelle les tuyaux de \$1.0m ont construit à locations 406 où ils ont considéré nécessaire à cause de additionnelle les tuyaux de $\phi 1.0 \mathrm{m}$ ont construit à locations qui ont indiqué toutes les Planches B.1.1 - B.1.19.

Distribution of Soils along Project Road and Appropriate Payement Types

Distribution des sols le long de la Route de projet et types du revêtement approprié

œ.	
Н	
ы	
ρ.,	
approprie	
Н	
Ω	
Ò.	
άď	
•	į
u	1
Ή.	
75	
ä	
ж	
ж.	
Ø	
Ve	
eve	
revêtement	
du revê	

A.3.4.5

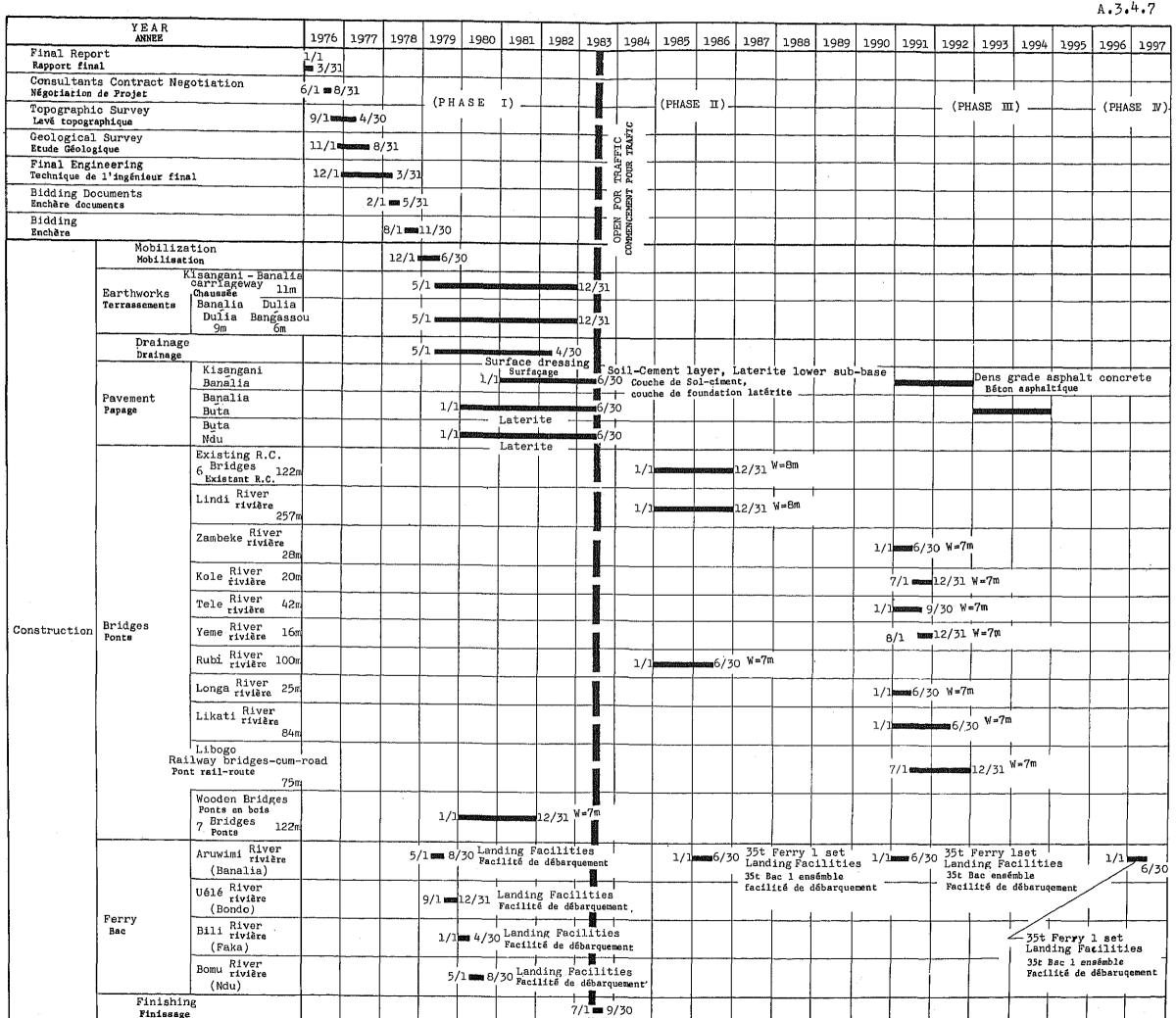
		>		==							ļ					ļ .	lter-	= 0	0
Pavement Types	revêtement	II III IN	ternative	0						0	0	0		0			Alternative Alter-	0	0
· 		Casagrande	AA	3.5	o JS	SC			SC	os.	כר	SC	o 3S	38	SC		A	SC	SC
Classification cation des Sols		A-7-5 A-7-6														:			c
Soils Classi Classification	ASHO	-7 A-4 A-6		0						0	0	0		0					
	A	4 A-2-6 A-2-7			0								0		•			0	
		A-2-4				0	-		0	-			;		0				
Length along	Toposion du long	de route existante	Ϋ́	24.9	6.5	15.0	46.4		4.0	14.0	21.3	13.5	1.95	19.15	5.1	79.0		19.0	6.0
	Station	Point d'étude	i) PK PK	3.6 - 28.5	28.5 - 35.0	35.0 - 50.0	Total	(a)	50.0 - 54.0	54.0 - 68.0	68.0 - 89.3	89.3 - 102.8	102.8 - 104.75	104.75 -123.9	123.9 - 129.0	Total		129.0 - 148.0	148.0 - 154.0
	Section	Tronçon	(Kisangani)		10			(Bengamisa				δ					(Banalia)	c	9

es		>	Alter-	;= -	0	0	。	0	。	0	0	0	0	0			0	0]		0	0	0	0
Pavement Types	Types du revêtement	A III	-		0		0		0		0		0					0			0		0	
Pave	ŭ	=	Alternative	•		0		0		٥		0		o			0					0		0
!	ļ	Casagrande	_	SC	SC	SC)S	SC	SC	35	SC	38	ЭS	JS.			SC	38			c	SC	ЭS	ЭS
tion Sols	 	A-7-6			٥						0													
Classification cation des Sol		A-7-5																						
Soils Classificat Classification des	0	4 A-6					0		0				0					0			0		0	
Soils Classifi	AASH	A-2-7 A-4		0		0		0		0														
		A-2-6 A-							1								_							
												0		О			0					0		0
•		A-2-4								!			i .									} }		i
Length along Existing Road	Longuent du long	e i	km	4.0	1.0	1.7	1.05	1.05	2.3	3.0	12.3	7.9	3.2	14.5	77.0		24.0	5.8	29.8		1.2	1.5	2.0	6.4
E, L	Zuo'I		PK	3.0	0.1	7	161.75	8.	,	1.1	4.	.3	.5	.0		-	0.	8.			.0	.5	.5	6.
	Station	Point d'étude	A X	154.0 - 158.0	158.0 - 159.0	159.0 - 160.7	160.7 - 161	161.75 -162.8	162.8 - 165.1	165.1 - 168.1	168.1 - 180.4	180.4 - 188.3	188.3 - 191.5	191.5 - 206.0	Total		206.0 - 230.0	230.0 - 235.8	Total		235.8 - 237.0	237.0 - 238.5	238.5 - 240.5	240.5 - 246.9
	Section	Tronçon						,	×						j	(Kole)	7			(Tele)		9		

		Length along Existing Road		Soils		ficat	ion sols		Pav	Pavement Types	lypes	
Section	Station	Longueur du long	j	AASH	0 н		1		H	types au revêtement	a ent	
Tronçon	Point d'étude	de route existante	A-2-4 A-2-6	A-2-7 A-4	4 A-6	A-7-5	A-7-6	Casagrande	<u>-</u>		2	_
	PK PK	km		:		•	!		A) ten	Ξ	- 4 <u>c</u>	Alter- native
	246.9 - 251.4	4.5			0			SC		0	0	=
	251.4 - 280.0	28.6		0			!	J9	 	0	0	ا ا
	280.0 - 299.0	19.0		0				38		٥	٥	1 _
<u>,</u> 9	299.0 - 302.0	3.0					0)SC		0	0	ـ ا
-	302.0 - 309.5	7.5	О		!			JS .	0		0	۔ ا
	309.5 - 310.85	1.35			0			SC		٥	0	. ا
	310.85- 314.4	3.55	0					SC	0		0	٠.
	314.4 - 317.4	3.0			0			ЭS		٥	0	ـ ا
	317.4 - 324.3	6.9		0				SC		0	0	0
	Total	88.5							ļ			Ī
(Buta)									_ 	=	δ 2	1
	0 - 7.0	7.0		0				SC	0	0	0	
	7.0 - 33.0	26.0	0)S	c		0	l <u>.</u>
5	33.0 - 36.0	3.0			0			ΟS		0	٥	١.
	36.0 - 74.0	38.0	0					SC	0		0	l _1
	74.0 - 75.5	1.5	0					SM	0		C	_
	Total	75.5						-			·	ļ
(Dulia)												i
	0 - 5.95	5.95	0		:		i	SM	0		0	1
7	5-95 - 12.2	6.25	0					SC	0		0	· _
	12.2 - 18.6	6.4			0			SC		0	0	_
	18.6 - 20.2	1.6	0			,		SC	0		0	1 .
												1

Se		M	Alter- native	= 0		0	، ا	0	0		0	0	۱.			· 	0	。	0		0	,	۱.	، ا
Pavement Types	lypes au revêtement	N III		0		0		0		0		0		0				0		0		0		
Pav	. Ā	-	Al ternative		0		0		0		0		0				0		0		0	!	0	(
		Casagrande	Ì	SC	ЭS	SC	SC	SC	SC	SC	SC	35	SC	SC	i .		25	35	SC	35	35	35	MS	23
ion sols		A-7-6																				!	:	
Classification ication des so		A-7-5						 	:	i								:						
441	0	4 A-6		٥		٥		0	i i	0		٥		0				0		0		0		
Soils	0	A-2-7 A-4	 			i											0		! !		i			
	- 1	A-2-6			0		0	:	0		0		0						0		0	ï	0	
	- 1	A-2-4			 											<u> </u>	i							
Length along Existing Road	Longueur de long		κ	1.75	4.9	7.65	0.65	8.85	2.0	3.5	4.0	5.3	2.5	4.2	65.5		4.0	8.1	1.0	1.95	2.65	3.75	8.9	22 OF
ш			P.K	21.95	26.85	34.5	35.15	44.0	46.0	49.5	53.5	58.8	61.3	65.5			69.5	77.6	78.6	80.55	83.2	86.95	95.85	1179
	Station	Point d'étude	ዋ ች	20.2 -	21.95-	26.85-	34.5 -	35.15-	44.0 -	46.0 -	49.5 -	53.5 -	58.8 -	61.3 -	Total	1	65.5 -	69.5 -	- 9.77	78.6 -	80.55-	83.2 -	86.95-	95 85- 1
	Section	Troncon			·	·	•	4	•	•		•	•	•		(Likati)	'			<u>س</u>	1	ļ		

S	ı	7	Alter- native	= 0	<u> </u>	1	0	。	0	0	。	 o	0	0	0	0	0	0	0	0	0	0	0	0	0
Pavement Types	Types du revêtement	III N	Alternative I p	0			0		0			0		0		0		o		0		0	,	0	
Pave	Ĥ		Alter	-			,	0		0	0		0		0		0		0		0		0		0
		Casagrande	-	CL			ر د	ĴS	วร	วร	ეე	วิร	SC	วร	วร	SC	ЭS	SC	JS.	JS.	SC	SC	SC	38	SC
ication des Sols		7-5 A-7-6		0			0		0							0						0	-		
Soils Classification Classification des Sol	AASHO	A-2-7 A-4 A-6 A-7-5										0		0				Ö		o				0	
		A-2-4 A-2-6						0		0	0		0		0		0		0		0		0		0
Length along Existing Road	Longueur du long	de route existante	Ä.	7.1	59.5		4.0	2.7	7.6	23.95	2.75	3.2	0.75	5.25	4.0	0.95	14.55	2.85	2.45	1.0	8.5	1.25	20.5	2.75	6.2
	Station	Point d'étude	РК РК	117.9 - 125.0	Total		125.0 - 129.0	129.0 - 131.7	131.7 - 139.3	139.3 - 163.25	163.25- 166.0	166.0 - 169.2	169.2 - 169.95	169.95- 175.2	175.2 - 179.2	179.2 - 180.15	180.15- 194.7	194.7 - 197.55	197.55- 200.0	200.0 - 201.0	201.0 - 209.5	209.5 - 210.75	210.75- 231.25	231.25- 234.0	234.0 - 240.2
	Section	Tronçon		~		(Bondo)			٠					2											


		. سے	Alter- native		. ا	ا ما	,			١ ـ				1 -								,	•	
ypes	nt	١٨	Α I	= 0	0	0	<u> </u>		-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pavement Types	Types du revêtement	M III II	Alternative I	0		0			, 0		0		0		0		0		0		0		0	0
		_	A		0		<u>.</u>							0		0		0		0		0		_
		Casagrande	•	SC	JS	SC	-		SC	МĐ	CL	GW	SC	SC)S	SC	НЭ	SC	SC)S	SC	SC	SC	38
on sols		A-7-6				0			0		0								<u> </u> 					0
icati des		A-7-5									 						0				!			
		4 A-6		0				:					0		0	. !			o		٥		0	
Soils Classíí	AASH	S A-2-7 A-4										·								j				
		A-2-4 A-2-6			0					0		0		0		0		0		0		0		
Length along Existing Road	Longueur du long	de route existante	km	0.75	6.3	2.75	125.0		4.0	30.8	0.3	7.5	0.3	1.7	0.65	4.75	1.7	1.7	0.3	9.55	1.2	1.95	1.2	1.4
	Station	Point d'étude de	PK PK	240.2 - 240.95	240.95- 247.25	247.25- 250.0	Total		250.0 - 254.0	254.0 - 284.8	284.8 - 285.1	285.1 - 292.6	292.6 - 292.9	292.9 - 294.6	294.6 - 295.25	295.25- 300.0	300.0 - 301.7	301.7 - 303.4	303.4 - 303.7	303.7 - 313.25	313.25- 314.45	314.45- 316.4	316.4 - 317.6	317.6 - 319.0
	Section	Tronçon			2			(Monga)																

Pavement Types	Types du	I II III N NI	Alternative 1 Alter-	0	
	l	Casagrande		SC	
Soils Classification Classification des sols	AASHO	A-2-4 A-2-6 A-2-7 A-4 A-6 A-7-5 A-7-6 Casagrande		0	
Length along Existing Road	Longueur du long	de route existante	Кm	3.4	72.4
	Station	Point d'étude	PK PK	319.0 - 322.4	Total
	Section	Tronçon	(npn)		

Types du revêtement I, II, III et IV ont indiqué dans le Tableau sont dans le cas d'Alternative I. Note: 1. Pavement Types 1, 11, 111 and 1V shown in the Table are in the case of Alternative 1.

2. In the case of Alternative II, pavement types of sections of #10 and #9 in Alternative I are adopted. The rest sections are not paved in Phase I, and sections #8, #7 and #6 are paved with Type V in Phase III. Dans le cas d'Alternative II, types du revêtement de tronçons 10 et 9 dans le Alternative I ont adopté. Le reste des tronçons n'a pas pavé dans Phase I, et tronçons 8, 7 et 6 n'ont pas pavés avec Type V dans Phase III.

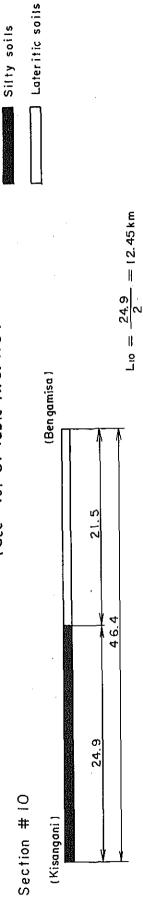
CONSTRUCTION SCHEDULE (ALTERNATIVE-I) A.3.4.6 PLAN DE CONSTRUCTION YEAR 1981 1982 1983 1984 | 1985 | 1986 | 1987 1988 1989 1990 1991 1992 1993 1994 1995 1978 1979 1980 1976 1977 1/1 m 3/31 Final Report Rapport final Consultants Contract Negotiation 6/1 8/31 Négotiation de Projet Topographic Survey Levé Topographique 4/30 (PHASE II) (PHASE I) Geological Survey Etude Géologique 11/1 **201**8/31 Detailed Design Technique de l'ingénieur final 12/1 Bidding Documents 2/1 5/31 Enchère document Bidding 8/1 20 11/30 Enchère Mobilization 12/1 6/30 Mobilisation Earthworks Terrassements Drainage 2/31 -Drainage Lower sub-base includes Soil cement layer Sous-couche de Sol-ciment Surface Dressing Surfaçage Pavement Dense Grade Asphalt Concrete Papage 1/1 Kisangani - Banalia Béton asphaltique Lindi River rivière 12/31 1/1 257m Aruwimi River .2[31 Rubi River Construction 12/31 100m Bridges Ponts Likati River **m**6/30 Libogo River 12/31 Small Bridges
Petits Ponts 18 Bridges 1/1 L2731 9/lam 12/31 Landing Facilities Uélé River rivière Pacilité de débarquement (Bondo) Landing Facilities Bili River rivière Ferry Facilité de débarquement (Faka) Bomu River 5/1 8/30 Landing Facilities Facilité de débarquement (Ndu) 7/1 9/30 Finishing Finissage

Nombre de places de courbure sur route existante et améliorée par rayon Number of Curves on Existing and Improved Road by Radius A.3.4.8

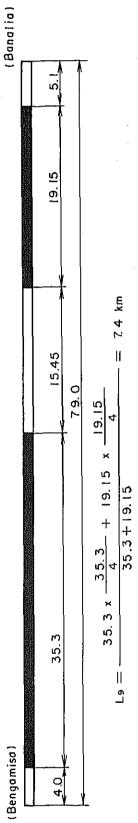
•				A.3.4	.8					1
67 24	193	169	89 	192 54	115 54	75 54	99 241	230	173	1,450
2	o	∞	m	. 9	4	2	m	4	m	44
9	69 22	53	27 9.	33	36 26	وا 5	40 21	43 37	33 19	344
2	17	4	2	10	7	თ	22	27	21	121
7	7.	2	0	2	=	31	17	∞	15	86
5	91	17	M	7	2	7	σh .	Ξ	7	₩8
pose	7	~	0	m	9		m	20	14	62
53	108	99	74	155	77	6 7	86 0	176	133	1,022
Existing Road/Route existante 10 Improved Road/Route améliorée	Existing Road/Route existante 9 Improved Road/Route améliorée	Existing Road/Route existante suproved Road/Route améliorée	Existing Road/Route existante 7 Improved Road/Route améliorée	Existing Road/Route existante 6 Improved Road/Route améliorée	Existing Road/Route existante simproved Road/Route améliorée	Existing Road/Route existante Improved Road/Route améliorée	Existing Road/Route existante simproved Road/Route améliorée	Existing Road/Route existante 1 Improved Road/Route améliorée	Existing Road/Route existante Improved Road/Route améliorée	Total Improved Road/Route améliorée
	Existing Road/Route existante 53 5 9 9 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	Existing Road/Route existante 53 5 2 9 1 2 1 1 2 2 1 1 2 2 1 1 Existing Road/Route existante 108 16 5 1 7 5 2 9 1 1 1 7 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Existing Road/Route existante 53 5 7 2 11 2 Improved Road/Route existante 108 16 5 17 5 9 Existing Road/Route existante 99 17 5 4 4 17 8	Existing Noad/Route améliorée 53 5 7 2 9 67 Existing Noad/Route améliorée 108 16 5 17 69 9 193 Existing Road/Route améliorée Ristante Road/Route améliorée 99 17 2 4 17 8 169 Existing Road/Route améliorée Ristante Road/Route améliorée 74 3 8 33 Improved Road/Route améliorée 74 3 8 89	Existing Noad/Route existante métiorée 53 5 7 2 9 67 64 Existing Noad/Route existante metiorée metiorée de Noad/Route amétiorée metiorée metiorée metiorée metiorée metiorée metiorée metiorée métiorée métione métiorée métione métiorée métiorée métiorée métione métiorée métione métiorée métione métiorée métione métiorée métione métion	Existing Road/Route existante 53 5 7 2 11 2 Existing Road/Route existante improved Ro	Existing Road/Route améliorée 53 67 2 9 67 64 67 64 67 64 <t< td=""><td>Existing Road/Route amilitorie 13 16 17 19 19 19 19 19 19 19</td><td>Existing Road/Route existante Ingered Road/Route améliorée 13 5 17 2 13 54 24 Existing Road/Route existante Improved Road/Route existante Road/Route Road/Road/Road/Road/Road/Road/Road/Road/</td><td>Existing Road/Route ameliorée 13 5 1 5 7 2 11 2 44 Existing Road/Route ameliorée 1 1 16 5 17 69 9 193 Existing Road/Route ameliorée 1 1 16 3 4 53 9 163 Existing Road/Route ameliorée 10 1 3 3 4 17 6 3 18 Existing Road/Route existante Inproved Road/Route ameliorée 10 3 7 1 7 2 10 3 11 Existing Road/Route existante Inproved Road/Route existante existante Inproved Road/Route existante existante Inproved Road/Route ameliorée 40 1 7 2 4 4 5 4 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 4 5 5 5 4 5</td></t<>	Existing Road/Route amilitorie 13 16 17 19 19 19 19 19 19 19	Existing Road/Route existante Ingered Road/Route améliorée 13 5 17 2 13 54 24 Existing Road/Route existante Improved Road/Route existante Road/Route Road/Road/Road/Road/Road/Road/Road/Road/	Existing Road/Route ameliorée 13 5 1 5 7 2 11 2 44 Existing Road/Route ameliorée 1 1 16 5 17 69 9 193 Existing Road/Route ameliorée 1 1 16 3 4 53 9 163 Existing Road/Route ameliorée 10 1 3 3 4 17 6 3 18 Existing Road/Route existante Inproved Road/Route ameliorée 10 3 7 1 7 2 10 3 11 Existing Road/Route existante Inproved Road/Route existante existante Inproved Road/Route existante existante Inproved Road/Route ameliorée 40 1 7 2 4 4 5 4 4 5 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 4 5 5 5 4 5

A.3.4.8

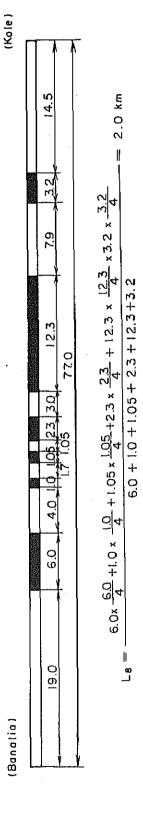
A.3.5.1 ACCUMULATED LENGTH BY TERRAIN OF EXISTING AND IMPROVED ROADS

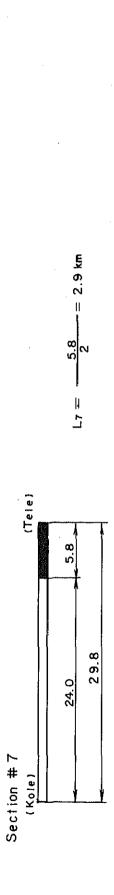

E

ti S

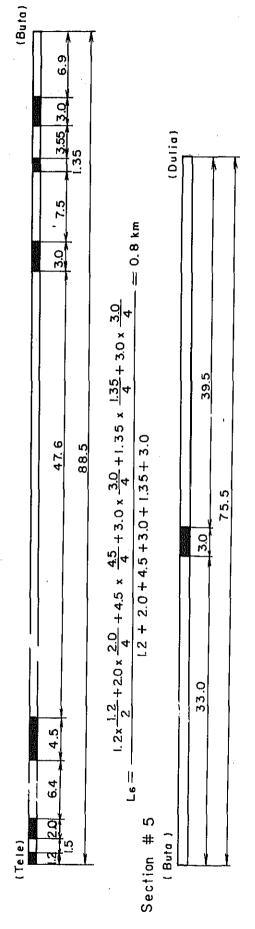

9,286 1,678 10,964 5,798 7,584 5.245 8,133 1,433 11,429 479 4,004 3,260 2,331 545 2,337 13,828 11,90838 295 5,591 6,291 17,847 24,138 3,461 13,360 18,606 12,395 21,173 25,177 12,039 i.267 99, 154 13,306 DENSE FORTE FORÊT Unite AUX 20,202 ROAD LENGTH IN FO LONGUEUR DE ROUTE 8,308 24,080 10,889 5,087 6,000 2,528 MEDIUM MOYENNE 35,944 11,375 6.780 18,155 4,251 9,421 20,310 9,180 30,463 30,536 24,264 21,064 37,970 46,278 15,298 3,381 18,679 28,331 11,087 26,764 26, 792 204,924 52,252 SPARCE CLAIRSEMEE 3,346 19,614 32,290 12,7947,776 35,218 24,400 5.387 110 1,150 4.450 24,514 7.259 4,632 7,978 26,160 337 20,584 4,204 42,893 20,053 20,347 8,874 33,274 205,085 20,773 30,432 20,764 39,422 12,471 16,921 30,322 61,190 16,500 77,690 30,420 14.500 2,500 54,765 3,700 53,685 14,600 44,920 32,195 15,400 28,190 5,200 161,100 41.050 12,790 23,400 86,375 59,630 73,245 62,975 72,120 74,620 64,830 58,465 122,335 68,285 98.085 24,250 537.855 TOTAL / ROUTE PROPOSEE BRI DGE 276 276 36 27 27 63 48 116 116 90 901 0 48 42 0 0 42 0 75 24 101 0 101 0 0 7 0 0 824 (640) 27 (640) 851 PONT (049) (640)IMPROVED ROADS 57,880 13,705 71,585 28,506 12,807 40,667 60,897 19,813 80,710 4,298 133,440 13,561 732 51,245 27,106 35,995 12,056 51,737 24,863 68,369 57,006 61,304 53,736 16,516 65,259 64,501 2,491 69, 101 94,361 110,877 13,522 509,163 FOREST Forêt VILLAGE 3,038 3,274 2,768 5,055 8,696 3,285 5,549 6,042 2,593 3,645 1,078 3,977 1,768 5.413 27,868 27,633 55,501 3,641 692 1,962 3,587 902 3,445 1,943 3,026 2,523 3,425 , 209 4,654 3,700 7,734 1,434 / ROUTE EXISTANTE ROUTE LOREE ROUTE EXISTANTE ROUTE AMELTOREE / EXISTANTE / ROUTE TOREE ROUTE EXISTANTE RAELTOREE ROUTE EXISTANTE ROUTE IOREE LFOREE ROUTE EXISTANTE ROUTE IOREE ROUTE EXISTANTE RRUTEOREE ROUTE FXISTANTE ROUTE TOREE ROUTE ROUTE AMELIOREE - ROUTE EXISTANTE ROUTE AMEL TOREE FXLSTANTE NEI FORES TYPE Total EX1ST ING ROUTE TMPROVED ROUTE EXISTING ROUTEVED ROUTEVED ROUTE ING ROUTE VED ROUTE VED HPROVED EXISTING ROUTE ROUTE ROUTE EXTSTNG FOUTE IMPROVED RCUTE EXTSTING ROUTE IMPROVED ROUTE EXISTING ROUTE IMPROVED KOUTE Total EXISTING ROUTE LEBUSEVED EXISTING RAPKEVED ROUTE IMPKOVED ROUTE EXUSE ING Fotal Total otal Total Total Total Total Total ROUTÉ EXISTANTE EXISTING ROAD 46,400 79,000 29,800 77,000 38,500 75,500 65,500 Kisangani 59,500 125,000 72,400 718,600 Banalia Bondo Bufa ηpN TRONCON SECTION TOTAL 0 ത ∞ **^** φ ഗ 4 3 S

A.3.5.1-(2) Weighted Average Distance of Long-Haul Earth Moving

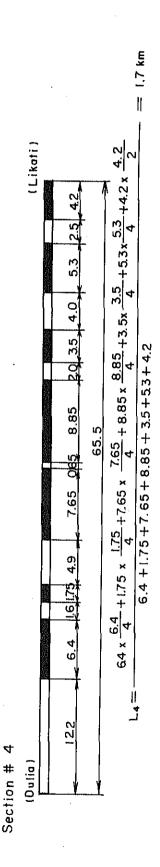

(See Vol 3. Table A. 3.4.5)

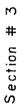


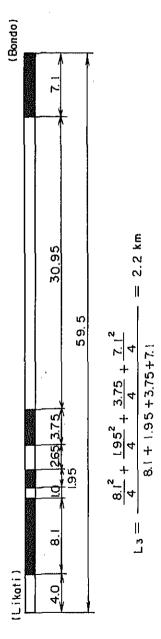
19.15 Section # 9 (Bengamisa)

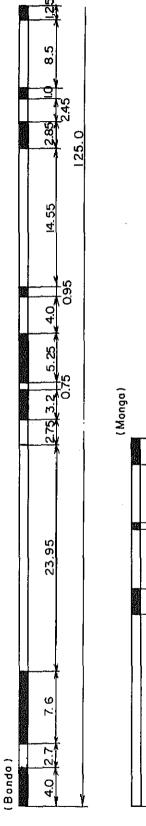


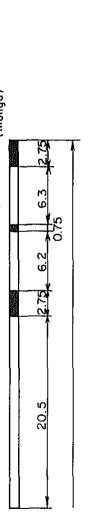
Section # 8






Section #6


 $L_{S} = \frac{3.0}{4} \approx 0.8 \text{ km}$



Section # 2

$$L_{2} = \frac{40^{2} + \frac{76^{2} + \frac{32^{2} + 5.25^{2} + 0.75^{2} + 2.85^{2} + \frac{1.0^{2} + \frac{1.25^{2} + 2.75^{2} + 0.75^{2} + 2.75^{2}}{4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 2} = 1.3$$

30.8	 7.5	1.7	4.75	71.7	9.55	C)	214 3.4

$\frac{4.0^2 + 0.3^2 + 0.3^2 + 0.65^2 + 1.7^2 + 0.3^2 + 1.2^2 + 2.6^2}{2}$	4.0+0.3+0.3+0.55+1.7+0.3+1.2+2.6

									···		``	
Average Long-	of Laterite	12.45 km	7.4	2.0	2.9	0.8	0.8	1.7	2.2	<u></u>	1.0	
Length	Silty Sections	24.11 km	53.55	24.59	22.7	14.69	2.96	37.26	20.535	31.66	10.42	242.475
Accumulated	Lateritic Sections	20.81 km	24.14	48.655	5.49	71.685	71.66	27.57	37.93	90.675	57.865	456.48
Length of	Road	44.92	77.69	73.245	28.19	86.375	74.62	64.83	58.465	122.335	68.285	698.955
Saction	10000	Q: #	σ #	œ #	· #	9	# 5	#	#	7 #	- #	Total

A.3.5.2 (ALTERNATIVE I) PHASE I NET COSTS OF IMPROVEMENT / COÛTS NETS D'AMELIORATION From de Kisangani à Bangassou (698.955 km) Unité: Zaire

M. 3.5.2			COSTS OF TH					le Kisangai	nı a ban	900000 (0)0	.955 Km) Unité: Zaire		
ITEM	ITEM ARTICLE DESCRIPTION UN		DIVISION	- IV	DIVISIO	DN - III	DIVISIO	N - 11	DIVIS	ION - 1	TOTAL		
ARTICLE			QUANTITY QUANTITE	COST COÜT	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COÜT	QUANTITY QUANTITE	COST COÛT	
CLEARING DEBOISEMENT				210,670		396,850		350,010		363,450		1,320,980	
Clearing Deboisement	Medium Vegetation Végétation moyenne	m ²	1,123,000	56,150	1,701,000	85,050	1,841,000	92,050	1,761,000	88,050	6,426,000	321,300	
Clearing & Grubbing Déboisement &	Sparse Forest Végétation clairsemée	m ²	996,000	39,840	1,168,000	46,720	1,383,000	55,320	1,584,000	63,360	5,131,000	205,240	
1'essouchment	Medium Forest Végétation moyenne	m ²	934,000	74,720	1,524,000	121,920	1,528,000	122,240	1,416,000	113,280	5,402,000	432,160	
II	Dense Forest Végétation forte	_m 2	333,000	39,960	1,193,000	143,160	670,000	80,400	823,000	98,760	3,019,000	362,280	
EARTHWORKS TERRASSEMENTS				5,221,490		2,707,355		1,861,980		2,366,455		12,157,280	
Embankment Remblai	Short Haul Transport court	m3	502,000	602,400	981,000	1,177,200	734,000	880,800	1,404,000	1,684,800	3,621,000	4,345,200	
11	Long Haul Transport long	m3	934,000	4,613,000	444,000	1,528,300	332,000	726,000	332,000	639,550	2,042,000	7,506,850	
Cut Déblai		m3	17,400	6,090	5,300	1,855	14,800	5,180	120,300	42,105	157,800	55,230	
Subgrade Replacement Hérrison de replacement		m ³	ı	-	-	-	19,500	250,000	_	_	19,500	250,000	
SIDE SLOPES Talus				157,900		245,100		281,000		272,300		956,800	
Slope Shaping Façonnage d'un talus	Manual Labor Travail de manoeuvre	m ²	1,042,000	104,200	1,625,000	162,500	1,945,000	194,508	1,885,000	188,500	6,497,000	649,700	
Grassing Gazonnement		m ²	537,000	53,700	826,000	82,600	870,000	87,000	838,000	83,800	3,071,000	307,100	
DRAINAGE DRAINAGE				1,295,900		1,657,842	·	1,447,674		1,646,230		6,047,646	
Side-ditch Excavation Contre-fossé	Laterite Latérite	lm	40,900	61,350	114,300	171,450	127,600	191,400	137,500	206,250	420,300	630,450	
11	Silt Limon	lm	71,400	185,640	55,700	144,820	56,500	146,900	38,600	100,360	222,200	577,720	
Side-ditch in Village Area Contre-fossé au Village	_]m	10,000	256,000	17,500	523,900	13,500	353,000	14,400	369,000	55,400	1,501,900	
Stone-pitched Ditch Fossé maçonne en pierre] m	6,700	249,600	900	63,600	3,800	144,100	7,600	300,200	19,000	757,500	

Note: In unit in ditches ls indicated in linear meter of road, consequently the real length of ditches is two times of the figure in the table.
Unité en dans les fossés a indiqué dans mètre linéaire de la longueur de route, par conséquent bobine de longueur de fossé est deux
temps de ces figures dans le tableau.

ITEM	DE0001071011	UNIT	DIVISI	ON - IV	DIVISI	I ON - 111	DIVISIO	N - II	DIVIS	ION - I	TO:	TAL
ARTICLE	DESCRIPTION	UNITE	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COUT	QUANTITY QUANTITE	COST COUT	QUANTITY QUANTITE	COST COUT	QUANTITY QUANTITE	COST
Pipe-Culvert Pipe-ondulée	₫0.6m	ìm	72	1,728	13	312	_	-	-	-	85	2,040
LThe-oughtee	ø0.8]m	- .	_	13	494	-	-	-		13	494
	61.0	lm	2,006	174,522	2,058	179,046	2,352	204,624	2,310	200,970	8,726	759,162
	ø1.2]m	559	55,900	252	25,200	147	14,700	63	6,300	1,021	102,100
	61.5	Jw	441	83,790	504	95,760	231	43,890	651	123,690	1,827	347,130
	ø1.8	mí	124	27,280	147	32,340	189	41,580	105	23,100	565	124,300
	ø2.0	1m	63	15,750	210	52,500	42	10,500	42	10,500	357	89,250
	62.5	lm	-	-	105	36,750	168	58,800	84	29,400	357	124,950
	ø3.0	lm	105	59,850	42	23,940	126	_71,820	63	35,910	336	191,520
	ø4.0	ìm	42	39,060	147	136,710	105	97,650	147	136,710	441	410,130
	ø5.0] m	21	29,400	42	58,800	-	-	21	29,400	84	117,600
Inlet & Outlet Entrée & sortie	60.6	plece	10	360	2	120		-	<u> </u>	_	12	480
	ø0.8	plece		-	2	150	, -	-	·	-	2	150
	\$1.0	piece	202	13,440	192	21,640	224	16,860	220	16,840	838	68,780
	ø1.2	plece	60	6,230	24	4,170	14	1,560	6	600	104	12,560
	ø1.5	piece	42	10,420	48	17,200	22	5,660	62	15,700	1 74	48,980
	ø1.8	piece	14	4,480	14	6,320	18	6,030	10	3,200	56	20,030
•	ø2.0	piece	6	2,700	20	12,440	4	1,960	4	2,060	34	19,160
	\$2.5	piece		_	10	8,260	1.6	10,720	8	5,440	34	24,420
	ø3.0	piece	01	8,800	4	4,920	12	10,920	6	6,000	32	30,640
	\$4.0	piece	4	5,600	14	27,800	10	15,000	14	20,800	42	69,200
	ø5.0	piece	2	4,000	4	9,200		_	2	3,800	8	17,000
PAVEMENT PAVAGE				6,359,700		8,603,100		7,767,700		6,571,750		29,302,250
Type - I	Short Haul Transport court	m ²	221,000	1,106,300	442,000	2,503,950	754,000	3,824,700	814,000	3,850,350	2,231,000	1,285,300
Type - II	Short Haul Transport court	_m 2	96,000	504,000	583,000	3,449,650	234,000	1,205,900	-	_	913,000	5,159,550
Type - III	Long Haul Transport long	m ²	562,000	4,749,400	325,000	2,649,500	436,000	2,737,100	306,000	1,889,800	1,629,000	2,025,800
Type - N	Short Haul Transport court	m ²	•••	•••	-	-	-	-	252,000	831,600	252,000	831,600
BRIDGES PONTS				2,009,250		5,229,000		1,458,500		108,000		8,804,750
Angokpa	R.C. l span R.C. l travée]m	7.5	30,000	-	- 1	-		_		7.5	30,000
Aqudī	R.C. span R.C. travée	lm	10.5	42,000	-	-	_	_	_	-	10.5	42,000
Lindi	Plate G. 6 spans Poutre entôles 6 travées	lm	257.5	1,673,750		-		_	-	-	257.5	1,673,750
Gula	P.C. l span P.C. l travée	lm	27	121,500		-	-	-	-	-	27	121,500
Badjoge	R.C. 1 span R.C. 1 travée]m	10	40,000	•	-	-		1 -191	Jan.	10	40,000

(continued)

ITEM		UNIT	DIVISIO	N - IV	DIVISION	ı - III	DIVISIO	11 - NC	DIVIS	ION - I	(continue) TOTAL		
ARTICLE	DESCRIPTION	UNITE	QUANTITY QUANTITE	COST COOT	QUANTITY QUANTITE	COST COOT	QUANTITY QUANTITE	COST COOT	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COUT	
Longala	R.C. l span R.C. l travée]-m	13	52,000	. =	_	-	-	en.	-	13	52,000	
Bokokua	R.C. span R.C. travée	l m	12.5	50,000	-	-	_	-	-	<u>.</u>	12.5	50,000	
Aruwimi	Plate G. 16 spans Poutre entoles 16 travées	1m	-	_	640	4,160,000	-	-	-	_	640	4,160,000	
Zambeke	P.C. 2 spans P.C. 2 travées	} m	-	-	28	126,000	-	-	-	-	28	126,00	
Kole	R.C. 1 span R.C. 1 travée	l m	-	_	20	90,000	-	-	*		20	90,00	
Tele	P.C. 4 spans P.C. 4 travées	lm	-	_	42	189,000	•	-	-	-	42	189,00	
Yeme	R.C. 1 span R.C. 1 travée	lm	<u>-</u>		16	64,000		-	-	-	16	64,00	
Rubi	P.C. 4 spans P.C. 4 travées	l m	_	_	100	600,000	· -			-	100	600,00	
Maka la	R.C. l span R.C. l travée	lm	-	-	· •••	_	16	64,000	<u>-</u>	-	16	64,00	
Longa	P.C. 1 span P.C. 1 travée	1 m	-		-		25	112,500	₹	. -	25	112,50	
Koteli	R.C. 1 span R.C. 1 travée	lm	-	_	-	_	18	72,000	-	-	18	72,00	
Maze II	R.C. 1 span R.C. 1 travée	lm		_	-	_	18	72,000	24	-	18	72,00	
Bilo II	R.C. 1 span R.C. 1 travée	l m	-	-	•••	_	17	68,000	-	-	17	68,00	
Bilo III	R.C. 1 span R.C. 1 travée	1 m	-	-	-	-	12	48,000	-	-	12	48,00	
Mborge	R.C.) span R.C. 1 travée] m:	-	-	<u></u>	_	17	68,000	-	-	17	68,00	
Likati	P.C. 3 spans P.C. 3 travées	l m	_		-	,	84	504,000		_	84	504,00	
Libogo	P.C. 3 spans P.C. 3 travées] m	-	1			75	450,000	_	-	75	450,00	
Zakili	P.C. i span P.C. i travée	1 m	_	_	****	-	_	_	24	108,000	24	108,00	
FERRY BAC								18,000		23,000		41,00	
Uele (Bondo)	Landing Facilities Facilité du débarquemen	ìm		-			120	18,000		-	120	18,00	
Bili (Faka)	Landing Facilities Facilité du débarquemen	t 1m	-	-		-		-	50	7,000	50	7,00	
Bomu (Ndu)	Landing Facilities Facilité du débarquemen	t lm	-	_		-	-		100	16,000	100	16,00	
T	DTAL			15,254,910		18,839,247		13,185,364		11,351,185		58,630,70	

Note: Net cost of improvement do not include contingencies, and costs of final engineering and supervision of construction.

Coûts nets d'amélioration non compris faux frais divers et surveillance de construction.

NET COSTS OF IMPROVEMENT BY DIVISION A.3.5.3-(1) (ALTERNATIVE | PHASE |) DIVISION IV

4,000

1,300

l m

l m

25 ~

30 -

100,000

39,000

Cut

TALUS

Village Area

Stone-pitched

village

Ditch

pierre

Contre-fossé au

Fossé maçonne en

COUTS NETS D'AMELIORATION PAR DIVISION SECTION - 10 SECTION ITEM UNIT TRONCON DESCRIPTION ARTICLE UNITE QUANTITY UNIT COST COST QUANTITY UNIT COST QUANTITE PRIX UNIT COUT QUANTITE PRIX UNIT CLEARING DEBOISEMENT 80,950 Clearing Medium Vegetation 409,000 0 0 9 20,350 716,000 Deboisement 0.05 Végétation moyenne Sparse Forest Clearing & m² 346,000 0 0 4 13,840 650,000 Grubbing 0.b4 Végétation clairsemée Deboisement & Medium Forest 1'essouchment m^2 31,760 397,000 80.0 o.b8 537,000 Végétation moyenne 11 Dense Forest m^2 125,000 0 12 15,000 208,000 0.12 Végétation forte **EARTHWORKS** 1,546,760 TERRASSEMENTS Embankment Short Haul m3 174,000 1,20 208,800 328,000 1.20 Remblai Transport court 11 Long Haul m3 6 50 205,000 4.50 1,332,500 729,000 Transport long m3 5,460 15,600 0 35 1,800 0.35 Déblai Subgrade replacement Herisson 1 m de replacement SIDE SLOPES 58,600 Slope Shaping Manual Labor _m2 01.10 0.110 390,000 39,000 652,000 Faconnage d'un Travail de talus manoeuvre Grassing m² 196,000 01.10 19,600 341,000 0.10 Gazonnement DRAINAGE 313,766 DRAINAGE Side-ditch Laterite Excavation 18,700 1 . 5∮ 1.50]m 28,050 22,200 Contre-fossé Latérite Silt] m 22,000 216d 49,400 57,200 2.60 Limon Side-ditch In

6,000

5,400

26.

39.

210,600

From .de	Kisangani	To à Bana	alia	(122.61	Uni O km) Uni	t .té: Zaire	
					ТО	TAL	
COST					QUANTITY QUANTITE	COST COUT	<u> </u>
129,720						210,670	
35,800					1,123,000	56,150	
26,000					996,000	39,840	
42,960	<u> </u>				934,000	74,720	
24,960					333,000	39.,960	
3,674,730						5,221,490	
393,600					502,000	602,400	
3,280,500					934,000	4,613,000	
630					17,400	6,090	
					_	-	
99,300						157,900	,
65,200					1,042,000	104,200	
34,100					537,000	53,700	
982,134						1,295,900	
33,300					40,900	61,350	
128,440					71,400	185,640	
156,000					10,000	256,000	

249,600

6,700

ITEM		UNIT	SI TI	ECTION RONÇON	.]	0	S	ECTION RONCON	9		T	OTAL
ARTICLE	DESCRIPTION	UNITE	QUANTITY	UNIT CO	DST	COST	QUANTITY	UNIT COS PRIX UNI			QUANTITY QUANTITE	COST COUT
Pipe-Culvert	ø0.6m] m	59	24	-	1,416	13	24.	312		72	1,728
Pipe-ondulée	ø0.8	l m	=	-		=		-	_			_
	ø1.0] m	620	87	-	53,940	1,386	87.	120,582		2,006	174,522
·	ø1.2	lm	104	100	-	10,400	455	100	45,500		559	55,900
	ø1.5] m	84	190	-	15,960	357	190	67,830		441	83,790
	ø1.8	1 m	_			-	124	220.	27,280		124	27,280
	ø2.0	lm	-	-		-	63	250	15,750		63	15,750
	ø2.5]m	-			1	-	-	_		-	-
	ø3.0] m	-			-	105	570	59,850	·	105	59,850
	ø4.0	lm	-	-		-	42	930	39,060		42	39,060
	ø5.,0	lm	_	-		-	21	1,400	29,400		21	29,400
Inlet & Outlet Entree & sortie	ø0.6	piece	8	35	-	280	2	40	80		10	360
PHILIPSE & SOILTS	ø0.8	plece	-	-		Visit .	· •	-	_			-
	ø1.0	piece	70	60	-	4,200	132	70	9,240		202	13,440
	ø1.2	piece	14	100	-	1,400	46	105	4,830		60	6,230
	ø1.5	piece	8	240		1,920	.34	250	8,500		42	10,420
	ø1.8	piece	<u> </u>	-		_	14	320.	4,480		14	4,480
	ø2.0	piece				-	6	450	2,700		6	2,700
	≼2. 5	piece	_	-		_		-	-		-	-
	ø3.0	piece					10	880	8,800		 10	8,800
Ì	ø4.0	piece	_	-			4	1,400	5,600		4	5,600
	ø5.0	piece				-	2	2,000	4,000		2	4,000
PAVEMENT PAVAGE						2,320,500			4,039,200			6,359,700
Type - 1	Short Haul Transport court	m ²	143,000	4	. 90	700,700	78,000	5.20	405,600		221,000	1,106,300
Type - II	Short Haul Transport court	m ²	_				96,000	5.25	504,000		96,000	504,000
Type - III.	Long Haul Transport long	m ²	178,000	9	10	1,619,800	384,000	8.15	3,129,600		562,000	4,749,400
Type - N	Short Haul Transport court	m ²	_			•	~	-			<u>-</u>	_
BRIDGES PONTS						1,745,750			263,500			2,009,250
Angokpa	R.C. 1 span R.C. 1 travée	1 mi	7.5	4,000	_	30,000	-	_	-		7.5	30,000
IbupA	R.C. 1 span R.C. 1 travée	1w	10.5	4,000	_	42,000	-	•••			10.5	42,000
Lindi	Plate G. 6 spans Poutre entôles 6 travées)m	257.5	6,500	-	1,673,750	-	_	_		257.5	1,673,750
Gula	P.C. l span P.C. l travée	lm	-	-		1	27	4,500	121,500		27	121,500
Badjoge	R.C. l span R.C. l travée	lm	-	-		-	10	4,000	40,000		10	40,000

ITEM		UNIT		SECTION TRON C ON		10	S T	ECTION RONÇON	- 9			······································		Т	OTAL
ARTICLE	DESCRIPTION	UNITE	QUANTITY QUANTITE	UNIT C	OST	COST	QUANTITY QUANTITE	UNIT CO	057	COST				 QUANTITE QUANTITE	COST COOT
Longala	R.C. 1 span R.C. 1 travée	1m		-			13	4,000.		52,000				13	52,000
Bokokua	R.C. 1 span R.C. 1 travée]m	_	-		_	12.5	4,000.		50,000				12.5	50,000
Aruwimi	Plate G. 16 spans Poutre entoles 16 travées]m									<u> </u>				
Zambeke	P.C. 2 spans P.C. 2 travées]m													
Kole	R.C. l span R.C. l travée	l m								· · · · · · · · · · · · · · · · · · ·					
Tele	P.C. 4 spans P.C. 4 travées	1 m													
Yeme	R.C. l span R.C. l travée	lm													
Rubi	P.C. 4 spans P.C. 4 travées)m						1	 						
Haka 1a	R.C. l span R.C. l travée	lm							- 		**************************************			}	
Longa	P.C. l span P.C. l travée	lm -												-	
Koteli	R.C. span R.C. travée	lm	·										- 		
Maze II	R.C. l span R.C. l travée	lm			1										
Bilo II	R.C. span R.C. travée	1m													
Bilo III	R.C. l span R.C. l travée]m													<u> </u>
Mborge	R.C. l span R.C. l travée	ļm				i	**************************************	,							
Likati	P.C. 3 spans P.C. 3 travées	1m									***************************************				1,
Libogo	P.C. 3 spans P.C. 3 travées	lm													
Zakili	P.C. 1 span P.C. 1 travée	lm							_						
FERRY BAC									1				- -		
Uele (Bondo)	Landing Facilities Facilité du débarquement	1m									· · · · · · · · · · · · · · · · · · ·				
Bili (Faka)	Landing Facilities Facilité du débarquement	l			+								_		
Bomu (Ndu)	Landing Facilities Facilité du débarquement	1			+						·				
то	DTAL					6,066,326				9,188,584					15,254,910

A.3.5.3-(2) (ALTERNATIVE | PHASE |) DIVISION || NET COSTS OF IMPROVEMENT BY DIVISION COUTS NETS D'AMELIORATION PAR DIVISION

From Banalia To Buta (187.810 km)

Unit Unité: Zaire

ITEM		UNIT	S T	ECTION _ RONÇON	8	S T	ECTION RONÇON - 7	,	SE TR	CTION - 6		тс	TAL
ARTICLE	DESCRIPTION	UNITE	QUANTITY QUANTITE	UNIT COST PRIX UNIT		QUANTITY QUANTITE	UNIT COST PRIX UNIT		QUANTITY QUANTITE	UNIT COST		QUANTITY QUANTITE	COST COOT
CLEARING DEBOISEMENT					167,730			59,010			170,110		396,850
Clearing Deboisement	Medium Vegetation Végétation moyenne	m ²	645,000	0.0	5 32,250	249,000	0.05	12,450	807,000	0.05	40,350	1,701,000	85,050
Clearing & Grubbing	Sparse Forest Végétation clairsemée	_m 2	448,000	0.0	4 17,920	1.84,000	0.04	7,360	536,000	0.04	21,440	1,168,000	46,720
Deboisement & 1 essouchment	Medium Forest Végétation moyenne	m ²	496,000	0.0	8 39,680	271,000	0.08	21,680	757,000	0.08	, 60,560	1,524,000	121,920
11	Dense Forest Végétation forte	m ²	649,000	0 1	2 77,880	146,000	0.12	17,520	398,000	0.12	47,760	1,193,000	143,160
EARTHWORKS TERRASSEMENTS					1,536,860			340,750			829,745		2,707,355
Embankment Remblai	Short Haul Transport court	m3	421,000	1 2	505,200	28,000	1.20	33,600	532,000	1.20	638,400	981,000	1,177,200
11	Long Haul Transport long	m3	217,000	4 7	1,030,750	118,000	2.60	306,800	109,000	1 75	190,750	444,000	1,528,300
Cut Déblai		m3	2,600	0 3	910	1,000	0.35	350	1,700	0 35	595	5,300	1,855
Subgrade Replacement Harrison de replacement		1m	1	-	_	-	-	-	_	-		-	_
SIDE SLOPES TALUS					98,300			37,500			109,300		245,100
Slope Shaping Façonnage d'un talus	Manual Labor Travail de manoeuvre	m ²	661,000	0. ī	66,100	251,000	0.10	25,100	713,000	0 1.0	71,300	1,625,000	162,500
Grassing Gazonnement		_m 2	322,000	0.1	0 32,200	124,000	0.10	12,400	380,000	0.10	38,000	826,000	82,600
DRAINAGE DRAINAGE					609,258			240,433			808,151		1,657,842
Side-ditch Excavation Contre-fossé	Laterite Latérite	1m	42,600	1.5	63,900	4,700	1.50	7,050	67,000	1 50	100,500	114,300	171,450
H	Silt Limon	lm	21,900	2.6	56,940	20,100	2.60	52,260	13,700	2 60	35,620	55,700	144,820
Side-ditch in Village Area Contre-fossé au Village]m	8,700	30	261,000	3,300	28	92,400	5,500	31 -	170,500	17,500	523,900
Stone-pitched Ditch Fossé maçonne en pierre		lm	600	70	42,000	-	_		300	72 -	21,600	900	63,600

	والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراع										· · ·	contini	
ITEM		UNIT	S F	ECTION - 8		SE Ser	CTION - 7 ONCON - 7		SE	CTION - 6		Τί	TAL
ARTICLE	DESCRIPTION	UNITE	QUANTITY	UNIT COST	COST	QUANTITY	UNIT COST	COST	YTITMAUQ	UNIT COST	COST	QUANTITY	COST
Pipe-Cuivert	ø0.6m		QUANTITE	† · · · · · · · · · · · · · · · · · · ·	COÛT	QUANTITE	PRIX UNIT		QUANTITE :	PRIX UNIT	содт	QUANTITE	COUT
Pipe-ondulée	#0.8	im	13	24 -	312	-	-	- Lab		-	- I	13	312
	ø1.0	\m\ 1			_	13	38 -	494	-		· -	13	494
		1m	798	87	69,426	357	87 -	31,059	903	1	78,561	2,058	179,046
	ø1.2	1m	21	100 -	2,100	42	100 -	4,200	189	100	18,900	252	25,200
	ø1.5 ø1.8	1 m	84	190 -	15,960	-	-	-	420	190	79,800	504	95,760
	ø2.0	1m	63	220 -	13,860			-	84_	220	18,480	147	32,340
	62.5]m	105	250	26,250	42	250	10,500	63	250	15,750	210	52,500
	ø3.0]m	<u> </u>	-		84	350	29,400	21	350	7,350	105	36,750
,	ø4.0	lw.	21	570 -	11,970		-		21	570	11,970	42	23,940
	ø5.0]M	-21	930 -	19,530		-		126	930	117,180	147	136,710
inlet & Outlet		im					-	···	42	1,400	58,800	42	58,800
Entree & sortie	ø0.6 ø0.8	piece	2	60 -	120		-			 -	-	2	120
	ø1.0	plece			-	2	75	150		100	10 000	2	150
	ø1.2	piece	72	110 -	7,920	34	100	3,400	86	120	10,320	192	21,640
		plece	2	165 -	330	4	150	600	18	1.80 -	3,240	24	4,170
:	ø1.5 ø1.8	piece	8_	350 -	2,800	-			40	360	14,400	48	17,200
·	<u></u>	piece	6_	440 -	2,640		-	-	8	460	3,680	14	6,320
)	\$2.0	piece	10	600 -	6,000	4	590	2,360	6	680	4,080	20	12,440
	ø2.5	piece	-	-		8	820	6,560	2	850	1,700	10	8,260
	ø3.0	piece	2	1,200 -	2,400		-! [-	2	1,260	2,520	4	4,920
	64.0	piece	2	1,900	3,800		- -		12	 	24,000	14	27,800
	ø5.0	piece				-			4	.2,300	9,200	4	9,200
PAVEMENT PAVAGE					3,671,350			1,149,700			3,782,050	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	8,603,100
Туре - І	Short Haul Transport court	m ²	147,000	5.90	867,300	162,000	5,30	858,600	133,000	5 85	778,050	442,000	2,503,950
Туре - 11	Short Haul Transport court	m ²	199,000	5.95	1,184,050	-	-	_	384,000	5 90	2,265,600	583,000	3,449,650
Type - III	Long Haul Transport long	m ²	180,000	9 -	1,620,000	41,000	7. 10	291,000	104,000	7.10	738,400	325,000	2,649,500
Type - N	Short Haul Transport court	m ²	-	_	na .	_		1	-	-	a m.	-	_
BRIDGES PONTS					4,736,000			189,000			664,000		5,229,000
Angokpa	R.C. 1 span R.C. 1 travée	lm											
Aqudi	R.C. l span R.C. l travée	lm											
Lindi	Plate G. 6 spans Poutre entôles 6 travées	lm											
Gula	P.C. i span P.C. i travée	1m				· · · · · · · · · · · · · · · · · · ·							
Badjoge	R.C. span R.C. travée	lm											

ITEM	PE0 00 1 DE 1011	UNIT	S E	CTION RONCON	- 8		S T	ECTION	7	S	ECTION RONGO	N _	6	TO	TAL
ARTICLE	DESCRIPTION	UNITE		UNIT CO	0.ST		QUANTITY	UNIT COST	COST	QUANTITY OUANTITE	ו דו אטן	COST	COST COÛT	QUANTITY OUANTITE	COST COÚT
Longala	R.C. 1 span R.C. 1 travée	1m									÷				
Bokokua	R.C. l span R.C. l travée	l m													
Aruwimi	Plate G. 16 spans Poutre entoles 16 travées	īm	640	6,500	-	4,160.000		_	_	-	f :	-	_	640	4,160,000
['] Zambeke	P.C. 2 spans P.C. 2 travées	1m	28	4,500	-	126,000		-	_			-	-	28	126,000
Kole	R.C. l span R.C. l travée	1 m	20	4,500	-	90,000	-	_	-		·	-	***	20	90,000
Tele	P.C. 4 spans P.C. 4 travée	lm	**			_	42	4,500 -	189,000	-		-	-	42	189,000
Yeme	R.C. l span R.C. l travée	lm	•	-		_	-	_	-	16	4,00	0.	64,000	16	64,000
Rubí	P.C. 4 spans P.C. 4 travées	[]] m	-	-		-	_	_	_	100	6,00	0	600,000	100	600,000
Makala	R.C.) span R.C. 1 travée	l m													
Longa	P.C. l span P.C. l travée	1 m													
Koteli	R.C. l span R.C. l travée	lm													
Maze II	R.C. span R.C. travée] m									•				
Bilo II	R.C. l span R.C. l travée) m													
Bilo III	R.C. span R.C. travée) m													`
Mborge	R.C. I span R.C. I travée] m					,]				Į.	
Likati	P.C. 3 spans P.C. 3 travées	l m	, t.,												
Libogo	P.C. 3 spans P.C. 3 travées	l m			<u> </u>										
Zakili	P.C. span P.C. 1 travée	1 m	i				,								
FERRY BAC															
Uele (Bondó)	Landing Facilities Facilité du débarquement	mſ			1										
Bili (Faka)	Landing Facilities Facilité du débarquement]m													
Bomu (Ndu)	Landing Facilities Facilité du débarquement]m													
то	TAL					10,459,498		·	2,016,393				6,363,356		18,839,247

A.3.5.3-(3) (ALTERNATIVE I PHASE I)

DIVISION II NET COSTS OF IMPROVEMENT BY DIVISION COUTS NETS D'AMELIORATION PAR DIVISION

From Buta To Bondo (197.915 km)

Unit Unité: Zaire

		· ·	s	ECTION			SECTION .			ECT LAN			
ITEM	DESCRIPTION	UNIT	T	RONÇON -			rronçon - 1			ECTION RONÇON -		TO	OTAL .
ARTICLE	DESCRIPTION	UNITE	QUANTITY QUANTITE	UNIT COS	1	QUANTITE QUANTITE	UNIT COST PRIX UNIT	COST COUT	QUANTITY QUANTITE	UNIT COS PRIX UNI	1	QUANTITY QUANTITE	COST COUT
CLEARING DEBOISEMENT					123,510	·		122,850			103,650		350,010
Clearing Deboisement	Medium Vegetation Végétation moyenne	m ²	691,000	0 (34,550	613,000	0.05	<u> </u>	537,000	0.0			92,050
Clearing & Grubbing	Sprase Forest Végétation clairsemée	_m 2	579,000	0 (23,160	397,000	0.0	15,880	407,000	0.0	16,280		55,320
Deboisement & 1'essouchment	Medjum Forest Végétation moyenne	m ²	581,000	0 (38 46,480	537,000	0.0	3 42,960	410,000	0.0	32,800	1,528,000	122,240
11	Dense Forest Végétation forte	m ²	161,000	0 1	12 19,320	278,000	0.12	33,360	231,000	0.11		670,000	80,400
EARTHWORKS TERRASSEMENTS					437,960			750,580			673,440		1,861,980
Embank ment Rembl a i	Short Haul Transport court	m3	347,000	1 2	416,400	142,000	1.20	170,400	245,000	1 '20			880,800
()	Long Haul Transport long	m3	12,000	1, 7	75 21,000	188,000	2.10	394,800	132,000	2 35	310,200	332,000	726,000
Cut Déblai		m3	1,600	0, 3	35 560	11,800	0.35	4,130	1,400	0 35	490	14,800	5,180
Subgrade replacement Hérisson de replacement		1 m	==	-	_	14,500	12.50	181,250	5,000	13 75	68,750	19,500	250,000
SIDE SLOPES TALUS					105,900			92,600			83,000	44.443	281,500
Slope Shaping Façonnage d'un talus	Manual Labor Travail de manoeuvre	m ²	731,000	0.1	0 73,100	641,000	0.10	64,100	573,000	0, 10		1,945,000	194,500
Grassing Gazonnement		m ²	328,000	0, 1	32,800	285,000	0.10	28,500	257,000	0.10	25,700	870,000	87,000
DRAINAGE DRAINAGE					596,081			459,969			391,624		1,447,674
Side-ditch Excavation Contre-foss é	Laterite Latérite	lm	66,300	1.5	99,450	26,400	1.50	39,600	34,900	1 50	52,350	127,600	191,400
н	Silt Limon	lm	2,800	2 60	7,280	34,900	2,60	90,740	18,800	2.60	48,880	56,500	146,900
Side-ditch in Village Area Contre-fossé au village		1m	5,400	27 -	145,800	3,400	25	85,000	4,700	26	122,200	13,500	353,000
Stone-piltched Ditch Fossé maçonn e en pierre		lm	1,900	44 -	83,600	1,300	29	37,700	600	38	22,800	3,800	144,100

ITEM		UNIT	S E T I	CTION	- 5		S	ECTION _ RONÇON _	4	SE TE	CTION - 3		Т	OTAL
ARTICLE	DESCRIPTION	UNITE	QUANTITY	UNIT CO PRIX UN		T200 TÛCO	QUANTITY	UNIT COS PRIX UNI	T COST	QUANTITY	UNIT COST PRIX UNIT	COST	QUANTITY QUANTITE	COST
Pipe-Culvert	ø0.6m	1m		-		_	=		_		_			
Pipe-ondulée	ø0.8	1 m	-	-		-	4	-	_		-		-	_
	ø1.0	1'm	903	87	-	78,561	777	87 -	67,599	672	87	58,464	2,352	204,624
	ø1.2	1m	21	100	-	2,100		_	_	126	100	12,600	147	14,700
	ø1.5	1m	42	190]_	7,980	105	190 -	19,950	84	190	15,960	231	43,890
	ø1.8	1m	21	220	-	4,620	63	220 -	13,860	105	220	23,100	189	41,580
	ø2.0	1m	-	_		-	21	250 -	5,250	21	250	5,250	42	10,500
	62.5]m	42	350	-	14,700	84	350 -	29,400	42	350	14,700	168	58,800
	63.0	ηm	42	570	-	23,940	84	570 -	47,880	_	~	-	126	71,820
	ø4.0	Im	105	930	-	97,650			_		-	-	105	97,650
	ø5.0]m	-	-		_		-	-	_	-	•	**	-
inlet & Outlet Entree & sortie	ø0.6	piece	-	-		-	-	-		-	- (-	-	-
	ø0.8	piece		-		-		-		-	-		—	-
	ø1.0	piece	86	80	-	6,880	74	70	5,180	64	75	4,800	224	16,860
	ø1.2	piece	2	120		240	-	-		12	11,0	1,320	14	1,560
	ø1.5	piece	44	270	-	1,080	10	250	2,500	8	260	2,080	22	5,660
	ø1.8	plece	2	340	-	680	6	325	1,950	10	340	3,400	18	6,030
	ø2.0	piece	**	-	_	-	2	480	960	2	500	1,000	4	1,960
	ø2.5	piece	. 4	700	-	2,800	8	650	5,200	4	680	2,720	16	10,720
	ø3.0	piece	4	930	1	3,720	8	900	7,200	_		-	12	10,920
	ø4.0	piece	10	1,500	-	15,000	<u></u>	-	-		-		10	15,000
	ø5.0	piece	-			•			_	-	-		-	-
PAVEMENT PAVAGE						2,874,850			2,520,800			2,372,050		7,767,700
Type - i	Short Haul Transport court	m ²	466,000	5	30	2,469,800	199,000	4.5	5 905,450	89,000	5.05	449,450	754,000	3,824,700
Type - II	Short Haul Transport court	m ²	50,000	5	. 35	267,500	_	,	_	184,000	5.10	938,400	234,000	1,205,900
Type - III	Long Haul Transport long	m ²	21,000	6	. 55	137,550	267,000	6.0	5 1,615,350	148,000	6.65	984,200	436,000	2,737,100
Type - N	Short Haul Transport court	m ²	-			P44	<u>-</u>	_		-	-	_	-	_
BRIDGES PONTS						436,500			572,000			450,000		1,458,500
Angokpa	R.C. 1 span R.C. 1 travée	1m												
lbupA	R.C. l span R.C. l travée) m												
Lindi	Plate G. 6 spans Poutre entôles 6 travées	lm												
Gula	P.C. i span P.C. 1 travée	Jw												
Badjoge	R.C. l span R.C. l travée	Jm												

1 700 100 100			,	ECTION TRONÇON	- 5			SECTION -	4	S	ECTION -	· 3	тот	AL
ITEM ARTICLE	DESCRIPTION	UNIT UNITE	QUANTITY	UNIT CO	ST	COST COÛT	OUANTITY	UNIT COST	COST	QUANTITY QUANTITE	UNIT COS	COST COUT	QUANTITY QUANTITE	COST COÛT
Longala	R.C. 1 span R.C. 1 travée) m												
Bokokua	R.C. 1 span R.C. 1 travée] m												
Aruwimi	Plate G. 16 spans Poutre entoles 16 travées	ļm												
Zambeke	P.C. 2 spans P.C. 2 travées]m												
Kole	R.C. l span R.C. l travée]m												
Tele	P.C. 4 spans P.C. 4 travées]m					**************************************							
Yeme	R.C. l span R.C. l travée]m												
Rubl	P.C. 4 spans P.C. 4 travées]m												
Makala	R.C. i span R.C. i travée]m	16	4,000	-	64,000			-	-	-	-	16	64,000
Longa	P.C. I span P.C. I travée] m	25	4,500.	-	112,500	844	-	_	-	-	_	25	112,500
Kotell	R.C. span R.C. travée	lm	18	4,000	-	72,000		-	-		-	_	18	72,000
Maze II	R.C. I span R.C. I travée	}m	18	4,000	-	72,000	-	_	<u>.</u>	_	_	_	18	72,000
Bilo II	R.C. i span R.C. i travée)m	17	4,000	-	68,000	-	-		_	_		17 -	68,000
Bilo III	R.C. span R.C. travée]m	12	4,000	-	48,000	-	-	_	_	-	-	12	48,000
Mborge	R.C. 1 span R.C. 1 travée]m	_	_		-	17	4,000 -	68,000	_	_	_	17	68,000
Likati	P.C. 3 spans P.C. 3 travées	lm	•••	_		_	84	6,000 -	504,000	_	-	_	84	504,000
Libogo	P.C. 3 spans P.C. 3 travées]m	-	_		-	-	-	_	75	6,000.	450,000	75	450,000
Zakili	P.C. I span P.C. I travée]m												
FERRY BAC												18,000		18,000
Uele (Bondo)	Landing Facilities Facilité du débarquement]m	-				-		-	120	150.	- 18,000	120	18,000
Bili (Faka)	Landing Facilities Facilité du débarquement	lm												
Bomu (Ndu)	Landing Facilities Facilité du débarquement	1												
.тс	TAL					4,574,801			4,518,799			4,091,764		13,185,364

A.3.5.3-(4) (ALTERNATIVE | PHASE |) DIVISION | NET COSTS OF IMPROVEMENT BY DIVISION From de Bondo To Bangassou (190.620 km) Unit Unité; Zaire

ITEM	DEC 401 07 101		S	ECTION - 2		S	ECTION RONÇON	1		To	ΓAL
ARTICLE	DESCRIPTION	UNITE	QUANTITY QUANTITE	UNIT COST PRIX UNIT	COST	QUANTITY QUANTITE	UNIT COS			QUANTITY QUANTITE	COST COUT
CLEARING DEBOISEMENT					234,650			128,800			363,450
Clearing Deboisement	Medium Vegetation Végétation moyenne	m ²	1,109,000	0.05	55,450	652,000	0 0	32,600		1,761,000	88,050
Clearing & Grubbing	Sparse Forest Végétation clairsemée	m ²	830,000	0.04	33,200	754,000	0 0	30,160		1,584,000	63,360
Deboisement & 1 tessouchment	Medium Forest Végétation moyenne	m ²	1,009,000	0.08	80,720	407,000	0.0	32,560		1,416,000	113,280
11	Dense Forest Végétation forte	m ²	544,000	0 .1.2	65,280	279,000	0.1:	33,480		823,000	98,760
EARTHWORKS TERRASSEMENTS					965,390			1,401,065			2,366,455
Embankment Remblai	Short Haul Transport court	m3	488,000	1 20	585,600	916,000	1.2	1,099,200		1,404,000	1,684,800
	Long Haul Transport long	m3	169,000	2 -	338,000	163,000	1.8	5 301,550		332,000	639,550
Cut Déblai	,	m3	119,400	0 3	41,790	900	0.3	5 315		120,300	42,105
Subgrade Replacement Hárisson de replacement		1 m	-	-	_		-				_
SIDE SLOPES TALUS					174,000			98,300			272,300
Slope Shaping Façonnage d'un talus	Manual Labor Travail de manoeuvre	m ²	1,202,000	0.10	120,200	683,000	0, 1	0 68,300		1,885,000	188,500
Grassing Gazonnem ent		m ²	538,000	0, 10	53,800	300,000	0.1	0 30,000		838,000	83,800
DRAINAGE DRAINAGE					1,045,108			601,122			1,646,230
Side-ditch Excavation Contre-fossé	Laterite Latérite	l m	82,000	1 50	123,000	55,500	1 . 50	83,250		137,500	206,250
114	Silt Limon	l m	28,800	2 60	74,880	9,800	2.60	25,480		38,600	100,360
Side-ditch in Village Ar ea Contre-fossé au village		l m	11,400	25	285,000	3,000	28	84,000		14,400	369,000
Stone-pitched Ditch Fossé maçonne en pierre] m	3,400	29	98,600	4,200	48	201,600		7,600	300,200

ITEM		UNIT	S	ECTION -	2	S	ECTION -	1	r	OTAL
ARTICLE	DESCRIPTION	UNITE	QUANTITY	UNIT COST	T COST	QUANTITY	UNIT COST	COST	QUANTITY QUANTITE	COST COOT
Pipe-Culvert	ø0.6m	l m		-	-	_	_	-	-	
Pipe-ondulée	ø0.8] m	-	-	-	-	-	-		-
	ø1.0]m	1,554	87	135,198	756	87.	65,772	2,310	200,970
	ø1.2	m	63	100	6,300	=	-	-	63	6,300
	ø1.5]m	609	190	115,710	42	190	7,980	651	123,690
	ø1.8	lm	105	220	23,100	100	-	-	105	23,100
	ø2.0] m	21	250	5,250	21	250	5,250	42	10,500
	ø2.5) m	63	350	22,050	21	350	7,350	84	29,400
	ø3.0] m	_			63	570	35,910	63	35,910
·	ø4.0]m	84	930	78,120	63	930	58,590	147	136,710
	ø5.0	lw	21	1,400	29,400	-		-	21	29,400
inlet & Outlet	ø0.6	plece	-	-	_		-	· -	-	
Entree & sortie	ø0.8	plece	_	-	_		_	<u>-</u>	-	_
	ø1.0	piece	148	70	10,360	72	90 -	6,480	220	16,840
	ø1.2	piece	6	100	600	-	-		6	600
	ø1.5	piece	58	250	14,500	4	300 -	1,200	62	15,700
	ø1.8	p.i ece	10	320 -	3,200	-	-	-	10	3,200
	ø2.0	piece	2	470	. 940	2	560 -	1,120	4	2,060
	ø2.5	plece	6	650 -	3,900	2	770 -	1,540	. 8	5,440
	ø3.0	piece	•	-	-	6	1,000 -	6,000	6	6,000
	ø4.0	piece	_ 8	1,400 -	11,200	6	1,600 -	9,600	14	20,800
	ø5.0	piece	2	1,900	3,800	-	-	-	2	3,800
PAVEMENT PAVAGE					4,380,050			2,191,700		6,571,750
Type - 1	Short Haul Transport court	m ²	651,000	4 (2,994,600	163,000	52	25 855,750	814,000	3,850,350
Type - II	Short Haul Transport court	m ²	-	-	_	-	_	-	-	_
Type - III	Long Haul Transport long	m ²	229,000	6.0	05 1,385,450	77,000	6.5	55 504,350	306,000	1,889,800
Type - N	Short Haul Transport court	m ²	_	_	_	252,000	3 . 3	831,660	252,000	831,600
BRIDGES PONTS	·				108,000)		-		108,000
Angokpa	R.C. 1 span R.C. 1 travée) m								
IbupA	R.C. 1 span R.C. 1 travée	l m								
Lindi	Plate G. 6 spans Poutre entôles 6 travées)m								
Gula	P.C. i span P.C. i travée	lm								
8adjoge	R.C. 1 span R.C. 1 travée	lm								

5 mps ps 14			SE	CTION _ RONÇON	2		SECTION _ TRONCON	·]				inuée' OTAL
ITEM ARTICLE	DESCRIPTION	UNIT UNITE	QUANTITY QUANTITE	UNIT COS	COST	QUANTITY QUANTITE	UNIT COS	T COST		,	QUANTITY QUANTITE	COST
Longala	R.C. 1 span R.C. 1 travée	lm									QUANTILE	COOL
Bokokua	R.C. 1 span R.C. 1 travée	lm										
Aruwimi	Plate G. 16 spans Poutre entoles 16 travées	1m										
Zambeke	P.C. 2 spans P.C. 2 travées	lm										,
Kole	R.C. 1 span R.C. 1 travée	lm										
Tele	P.C. 4 spans P.C. 4 travées	lm										
Yeme	R.C. i span R.C. i travée	1m										
Rubl	P.C. 4 spans P.C. 4 travées]m										
Makala	R.C. span R.C. travée	lm										
Longa	P.C. span P.C. travée	m										
Koteli	R.C. 1 span R.C. 1 travée	1m										
Maze II	R.C. l span R.C. l travée) m										
Bilo II	R.C. l span R.C. l travée	Jw										.,
Bilo III	R.C. l span R.C. l travée] m										
Mborge	R.C. l span R.C. l travée	lm .										
Likati	P.C. 3 spans P.C. 3 travées	lm										
Libogo	P.C. 3 spans P.C. 3 travées	ļm										
Zakili	P.C. 1 span P.C. 1 travée]m	24	4,500.	108,000	399	_	_			24	108,000
FERRY BAC					7,000			16,000				23,000
Uele (Bondo)	Landing Facilities Facilité du débarquement]m						, , , , , ,				2,,000
Bili (Faka)	Landing Facilities Facilité du débarquement]m	50	140.	7,000		_	-			50	7,000
Bomu (Ndu)	Landing Facilities Facilité du débarquement]m	-	-		100	160	16,000			 100	16,000
ТО	TAL				6,914,198			4,436,987				11,351,185

ALTERNATIVE-I NET COSTS OF IMPROVEMENT COÛTS NETS D'AMERIORATION

(<mark>Unit</mark>: Zaire)

							DIVISION	1 IV			
	ITEM	DESCRIP -TION	UNITE	5	ECTI UNIT P PRIX U	ON I	0 6881	S QUANTITY QUANTITE	ECTION S UNIT PRICE PRIX UNITAIRE	<i>y</i>	TOTAL
PAVEMENT PAPAGE	Densegrade osphalt-concrete Bēton asphaltique	t=5 ^{cm}	m ²	321,000	3	03	972,630	558,000	3 62	2,019,960	2,992,590

(unit (mité : Zaire)			9,243,527	5 70,866,823	3,697,393	4, 3,081,094	5 6,778,487	0 77,645,310
	Division	11,351,185	1,702,670	13,053,855	681,071	567,534	1,248,605	14,302,460
f Improvement аmélioration	Division II	13,185,364	1,977,837	15,163,201	791,122	659,287	1,450,409	16,613,610
Gross Costs of Improvement Coûts brut d'amélioration	Division III	18,839,247	2,825,890	21,665,137	1,130,350	941,913	2,072,263	23,737,400
Alternative	Division IV	15,254,910 2,992,590 18,247,500	2,737,130	20,984,630	1,094,850	912,360	2,007,210	22,991,840
A•3•5•5		Phase I Phase II Sub_Total			génieur finale			
		Net improvement Cost Coûts nets d'amélioration	Contingency Faux frais divers	Total	Final Engineering Technique de l'ingénieur	Supervision Surveillance	Total	Grand Total

A.3.5.6 ALTERNATIVE II PHASE I

NET COSTS OF IMPROVEMENT COÛTS NETS D'AMELIORATION

From de Kisangani To Bangassou (698.955 km)

Unit Unité: Zaire

ITEM		UNIT	DIVISIO	N− IÁ	DIVISI	ON-III	DIVIS	10N-11	DIVISI	0N- I	TOTAL	
ARTICLE	DESCRIPTION		QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COÛT
CLEARING DEBOISEMENT				168,630	,	279,570		237,330		227,890		913,42
Clearing Deboisement	Medium Vegetation Végétation moyenne	m ²	1,123,000	56,150	1,701,000	85,050	1,841,000	92,050	1,761,000	88,050	6,426,000	321,30
Clearing & Grubbing	Light Vegetation Végétation clairsemée	m2	725,000	29,000	725,000	29,000	790,000	31,600	805,000	32,200	3,045,000	121,80
Deboisement & 1'essouchment	Medium Vegetation Végétation moyenne	m²	679,000	54,320	950,000	76,000	866,000	69,280	720,000	57,600	3,215,000	257,20
н	Heavy Vegetation Vegetation forte	m2	243,000	29,160	746,000	89,520	370,000	44,400	417,000	50,040	1,776,000	213,12
EARTHWORKS TERRASSEMENTS				4,071,590		1,342,355		,037,2 3 0		1,665,705		8,116,98
Embankment Remblai	Short Haul Transport court	m ³	395,000	474,000	466,000	559,200	431,000	517,200	993,000	1,191,600	2,285,000	2,742,00
n	Long Haul Transport long	m3	719,000	3,591,500	232,000	781,300	127,000	264,950	216,000	432,000	1,294,000	5,069,75
Cut Déblai		t _m	17,400	6,090	5,300	1,855	14,800	5,180	120,300	42,105	157,800	55,2
Subgrade Replacement Hériason de replacemer	ıt	m ³	-	-	-	-	19,500	250,000	-	-	19,500	250,00
SIDE SLOPES TALUS	· ·			116,300)	151,800		129,700		103,300		501,10
Siope Shaping Façonnage d'un talus	Manual Labor Travail de manoeuvre	m ²	625,000	62,500	955,000	95,500	1,073,000	107,300	1,033,000	103,300	3,686,000	368,60
Grassing Gazonnement		m ²	538,000	53,800	563,000	. 56,300	224,000	22,400	_		1,325,000	132,50
DRAINAGE DRAINAGE				1,178,071		1,547,239	j	,225,500		1,365,721		5,316,5
Side-ditches Excavation Contre-fossés	Laterite Latérite	-1 m	40,900	61,350	114,300	171,450	127,600	191,400	137,500	206,250	420,300	630,45
n .	Silt Limon	Jm	71,400	185,640	55,700	144,820	56,500	146,900	38,600	100,360	222,200	577,7
Side-ditches in Village Area Contre-fossés au village		lm	10,000	256,000	17,500	523,900	13,500	353,000	14,400	369,000	55,400	1,501,90
Stone-pitched Ditches Fossés maçonne en pierre] m	6,700	249,600	900	63,600	3,800	144,100	7,600	300,200	19,000	757,50
Pipe-Culverts Fûts	60.6m	lm.	47	1,128		168	l	_	_	-	54	
1.000	ø0.8] m	-		7	266	· · · · · · · · · · · · · · · · · · ·	-		-	<u> </u>	21
	ø1.0] m	1,554	135,198				4	1,243		5,737	1
	ø1.2] m	442	44,220		18,200		 	33		723	1
	ø1.5 ø1.8]m	341	64,790	· · · · · · · · · · · · · · · · · · ·			 	341	64,790	1,106	" · · · · · · · · · · · · · · · · · · ·
	β1.0 β2.0		116	25,520	~		1	T	55	12,100	232	T
	#2.5	1""	48	1:2,000	140				22 44	5,500 15,400	T	1
	ø3.0] m	82	46,740	1			1 ""	33		229	
	ø4.0	l m	34						77			1
	ø5.0	l m	9						11			86.8

ITEM	prodpination.	UNIT	DIVISIO	N- IV	DIVISIO	N-111	DIVISI	ON-II	DIVIS	I ON-1	TOTAL		
ARTICLE	DESCRIPTION	UNITE	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COÛT	QUANTITY QUANTITE	COST COÛT	
Inlets & Outlets	ø 0.6	plece	6	215	1	60	-,	-	-		. 7	275	
Entreés & sorties	ø0.8	piece	-		1	75	-	-	1	-	1.	75	
	ø1.0	plece	191	12,760	220	24,700	230	17,330	226	17,260	867	72,050	
	ø1.2	piece	55	5,710	26	4,400	16	1,800	6	600	103	12,550	
	ø1.5	plece	38	9,420	44	15,760	20	5,160	62	15,700	164	46,040	
	ø1.8	piece	14	4,480	14	6,320	20	6,710	10	3,200	58	20,710	
1	ø2.0	plece	6	2,700	20	12,440		1,960	4	2,060	34	19,160	
	ø2.5	piece	-	_	12	9,920	16	10,720	- 8	5,440	36	26,080	
	ø3.0	piece	10	8,800	6	7,320	12.	10,920	6	6,000	34	33,040	
	ø4.0	piece	4	5,600		38,800		15,000	14	20,800	48	80,200	
	ø5.0	piece	1	2,000	6	13,600	••		2	3,800	9	19,400	
PAVEMENTS PAVAGES				6,359,700		1,371,450		1,838,100		1,790,900		1,360,150	
Type - 1	Short Haul Transport court	m ²	221,000	1,106,300	-		-	-	-		221,000	1,106,300	
Type - II	Short Haul Transport court	m ²	96,000	504,000	-		_	-		——————————————————————————————————————	96,000	504,000	
Type - III	Long Haul Transport long	m ²	562,000	4,749,400	_	-	•	-	-	_	562,000	4,749,400	
Laterite lower Subbase	t=40cm short haul " transport court	m ²	-	-	752,000	752,000	-		-		752,000	752,000	
Latérite sous- couche	t=40cm long haul " transport long	m ²	_	_	374,000	619,450	_		-	_	374,000	619,450	
TYPE VI	t=50cm short haul "transport court	m ²	_	-	•••		890,000	1,157,000	,040,000	1,352,000	1,930,000	2,509,000	
(172 4)	t=50cm long haul " transport long	m ²		-	_	-	419,000	681,000	295,000	438,000	714,000	1,120,000	
BRIDGES Ponts		<u> </u>				***		343,000		96,000		439,000	
Makala	R.C. span R.C. 1 travée] m	_		_]		16	56,000	-	_	16	56,000	
Kotell	R.C. 1 span R.C. 1 travée	l m	_	_			18	63,000	_	-	18	63,000	
Maze II	R.C. span R.C. travée] m	<u></u>	-	-	_	18	63,000	-		18	63,000	
Bilo II	R.C. 1 span R.C. 1 travée] m	_	_		-	17	59,500		-	17	59,500	
Bilo III	R.C. span R.C. travée] m	_	-	-	_	12	42,000	-	_	12	42,000	
Mborge	R.C. 1 span R.C. 1 travée] m	_	***	_	-	17	59,500	B-4	_	17	59,500	
Zakili	P.C. span P.C. travée] m.	-	-		-	-		24	96,000	24	96,000	
FERRIES BACS				***		16,800		18,000		23,000		57,800	
Aruwimi (Banalia)	Landing Facilities Facilité du débarquemen		_	_	120	16,800	_		_		120	16,800	
Uele (Bondo)	Landing Facilities Facilité du débarquemen	nt] m	-	-	_	_	120	18,000	_	-	120	18,000	
Bili (Faka)	Landing Facilities Facilité du débarquemen] m	_	_			_	_	50	7,000	50	7,000	
Bomu (Ndu)	Landing Facilities Facilité du débaruques Facilité du débaruques		_	-	-	_	-		100	16,000		16,000	
elitetassa en esta el colòmbia del como en esta el como en esta el como en esta el como en esta el como en est	TOTAL		1	1,894,291		4,709,214		4,828,960	Olemania de la compansión de la compansi	5,272,516		6,704,981	

ALTERNATIVE II PHASE ! NET: COSTS OF IMPROVEMENT COUTS NETS D"AMELIORATION

DIVISION IV

From Kisangani To Banalia (122.610 km) Unit : Zaire

! TEM	DECCRIPTION	UNIT	SEC TRO	0		CTION ONÇON	_	9			TOTAL			
ARTICLE	DESCRIPTION		QUANTITY (UNIT COS		COST COÛT	QUANTITY QUANTITE						QUANTITY QUANTITE	COST COÛT
CLEARING DEBOISEMENT						64,950				103,680				103,680
Clearing Deboisement	Medium Vegetation Végétation moyenne	m ²	407,000	0.	05	20,350	716,000	0.	05	35,800			 1,123,000	56,150
Clearing & Grubbing	Light Vegetation Végétation clairsemée	m ²	252,000	0.	04	10,080	473,000	0.	04	18,920			 725,000	29,000
Deboisement & 1'essouchment	Medium Vegetation Végétation moyenne	_m 2	292,000	0.	p8	23,360	387,000	0.	30	30,960			 679,000	54,320
11	Heavy Vegetation Végétation forte	m2	93,000	0.	12	11,160	150,000	0.	12	18,000	·		 243,000	29,160
EARTHWORKS TERRASSEMENTS						1,344,860				2,726,730				4,071,590
Embankment Remblai	Short Haul Transport court	m ³	152,000	1.	20	182,400	243,000	1.	20	291,600			395,000	474,000
П	Long Haul Transport long	m3	178,000	6.	50	1,157,000	541,000	4.	50	2,434,500			 719,000	3,591,500
Cut Déblai		_m 3	15,600	0.	35	5,460	1,800	0.	35	630			17,400	6,090
Subgrade Replacement Hérisson de replacemen	t	lm		_			-	-	Ì	_			 _	
SIDE SLOPES TALUS	,					43,100				73,200				116,30
Slope Shaping Façonnage d'un talus	Manual Labor Travail de manoeuvre	m ²	235,000	0.	10	23,500	390,000	0.	10	39,000			625,000	62,500
Grassing Gazonnement		m ²	196,000	0.	10	19,600	342,000	0.	. 10	34,200			538,000	53,80
DRAINAGE DRAINAGE						298,499		-		879,572				1,178,07
Side-ditches Excavation Contre-fossés	Laterite Latérite	Îm	18,700	1.	50	28,050	22,200	1.	50	33,300			40,900	61,350
14	Silt Limon]m	22,000	2.	60	57,200	49,400	2 .	60	128,440			71,400	185,64
Side-ditches in Village Area Contre-fossés au village]m	4,000	25.		100,000	6,000	26.	-	156,000			10,000	256,000
Stone-pitched Ditches Fossés maçonne en pierre		1 m	1,300	30.		39,000	5,400	39	. –	210,600			 6,700	249,600
Pipe-Culverts Fûts	ø0.6m] m	38	24.	-	912	9	24.	-	216			47	1,12
raca	ø0.8] m	-	-		-	-			P44			 -	······································
	ø1.0	1 m	496	87.		43,152			_	92,046			 1,554	135,19
	ø1.2	l m	104	100.	<u> </u>	10,400		100.	<u> </u>	33,800			 1,42	44,200
	ø1.5	l m	67	190.	-	12,730		190.	+	52,060		+	 341	64,790
	ø1.8 ø2.0] m		<u> </u>	 -		116	220,	-	25,520		+-	 116	25,520
	ø2.5	''' m	<u>=:</u>	<u> </u>			48	250.	F	12,000		- - -	 40	12,000
	ø3.0	1 m			\vdash	_	82	<u> </u>	<u>L</u>	46,740		+	 82	46,74
	ø4.0] m		-	H		34	<u>570.</u> 930		31,620		++	 34	
	ø5.0] m	· · · -		_		9	ר או או	-	12,600		++	 9	31,62 12,60

ITEM		UNIT	SEC TRO	0	S T	ECTION RONÇON	-	9					ТО	TAL		
ARTICLE	DESCRIPTION	UNITE	QUANTITY QUANTITE	UNITCO	ST	COST	QUANTITY QUANTITE	UNITC	08	COST					QUANTITY QUANTITE	COST COÛT
Inlets & Outlets	ø0.6	plece	5	35.	+	1 75	1	40		40	<u></u>		77		6	215
Entreés & sorties	ø0.8	piece			\Box	_	-	_					1-1	<u> </u>	-	h-
	ø1.0	piece	61	60.		3,660	130	70.	_	9,100			1-1		191	12,760
	ø1.2	plece	13	100.		1,300	42	105		4,410			-	···	55	5,710
	ø1.5	piece	8	240	H	1,920	30	250	-	7,500		-}	11		38	9,420
	ø1.8	piece		240.	f	1,320	14	320		4,480	· · · · · · · · · · · · · · · · · · ·	- 	+-		14	4,480
	ø2.0	piece			\vdash	,	6	450	<u> </u>	2,700			┼┤		6	2,700
	\$2.5	plece			\vdash		<u> </u>	- 00	┪	2,700			┿	·····		2,700
	ø3.0	plece	<u> </u>		╂┷┼		10	880		8,800			┼┥	**************************************	10	8,800
	64.0	plece		 	+		4	1,400		5,600			╅	·	4	5,600
	ø5.0	plece	<u> </u>		H			2,000		2,000				 		2,000
PAVEMENTS	0.0	Prece					<u>'</u>	2,000	_	2,000					·	2,000
PAVAGES	Short Haul					2,320,500			_	4,039,200						359,700
Type - I	Transport court	m ²	143,000	4.	ÞO	700,700	78,000	ļ	20						221,000	,106,300
Type - II	Short Haul Transport court	m ²	•	***		-	96,000	5	2:	504,000					96,000	504,000
Type - III	Long Haul Transport long	m ²	178,000	9.	10	1,619,800	384,000	8.	1	3,129,600					562,000	+,749,400
Laterite lower Subbase	t=40cm short haul "transport court	m ²	_	-		-									-	
Latérite sous- couche	t=40cm long haul "transport long	m ²	_	_		en l	<u></u>	-	,						_	_
TUDE	t=50cm short haul " transport court	m ²	_	_		-	-	-		- hu						-
TYPE VI	t=50cm long haul " transport long	m ²	_			-	_	_		-					-	,
BRIDGES PONTS																
Makala	R.C. l span R.C. l travée	lm														
Koteli	R.C. l span R.C. l travée]m														
Maze II	R.C. l span R.C. l travée]m														
BI lo El	R.C. span R.C. travée]m								ı						
Bilo III	R.C. l span R.C. l travée] m														
Mborge	R.C. span R.C. 1 travée]m														
Zakili	P.C. l span P.C. l travée	lm.														
FERRIES BACS							·									
Aruwimi (Banail <i>a</i>	Lugarite on depardnemen															
Uele (Bondo)	Landing Facilities Facilité du débarquemen	nt 1m						\						\		
8111 (Faka)	Landing Facilities Facilité du débarquement	nt 1 ^m												-		
Bomu (Ndu)	Landing Facilities Facilité du débaruqemen															
7	OTAL					4,071,909				7,822,382						11,894,2

Note: Net costs of improvement do not include contingency and costs of final engineering and supervision of construction.

Coûts nets d'amélioration non inclu faux frais divers et surveillance de construction.