## THE KINGDOM OF THAILAND FEASIBILITY REPORT

# ON LOWER QUAE YAI REGULATING DAM PROJECT

OCTOBER 1976

JAPAN INTERNATIONAL COOPERATION AGENCY

### THE KINGDOM OF THAILAND

# FEASIBILITY REPORT ON LOWER QUAE YAI REGULATING DAM PROJECT

OCTOBER 1976

JAPAN INTERNATIONAL COOPERATION AGENCY

JIGA LIBRARY

国際協力事業団 例出 84. 5.14 122 登録No. 114430 MPN

#### PREFACE

The Government of Japan, in response to the request of the Government of the Kingdom of Thailand, entrusted the Japan International Cooperation Agency with the study of the Lower Quae Yai Regulating Dam Project.

The Japan International Cooperation Agency organized Engineering Mission composed of six members and headed by Mr. Shinichi Nojiri of the Electric Power Development Go., Ltd, and carried out field investigations for forty-five days from November 12 through December 26, 1975.

The results of the analyses and studies of the Project on the basis of the field investigations as well as collected data are described in the Report.

Nothing would be more gratifying to our Agency than if the Report could be of any help for promoting water resource development in Thailand, for economic cooperation, as well as promoting closer relationship between Thailand and Japan.

In closing, I would like to take this opportunity to express my sincere gratitude to the officials of the Government of Thailand, Japanese Embassy in Bangkok, the Ministry of Foreign Affairs and the Ministry of the International Trade and Industry for the wholehearted cooperation and assistance extended to us.

October 1976

Shinsaku Hogen

Director General

Japan International Cooperation Agency

#### LETTER OF TRANSMITTAL

Mr. Shinsaku Hogen, Director General Japan International Cooperation Agency Tokyo, Japan

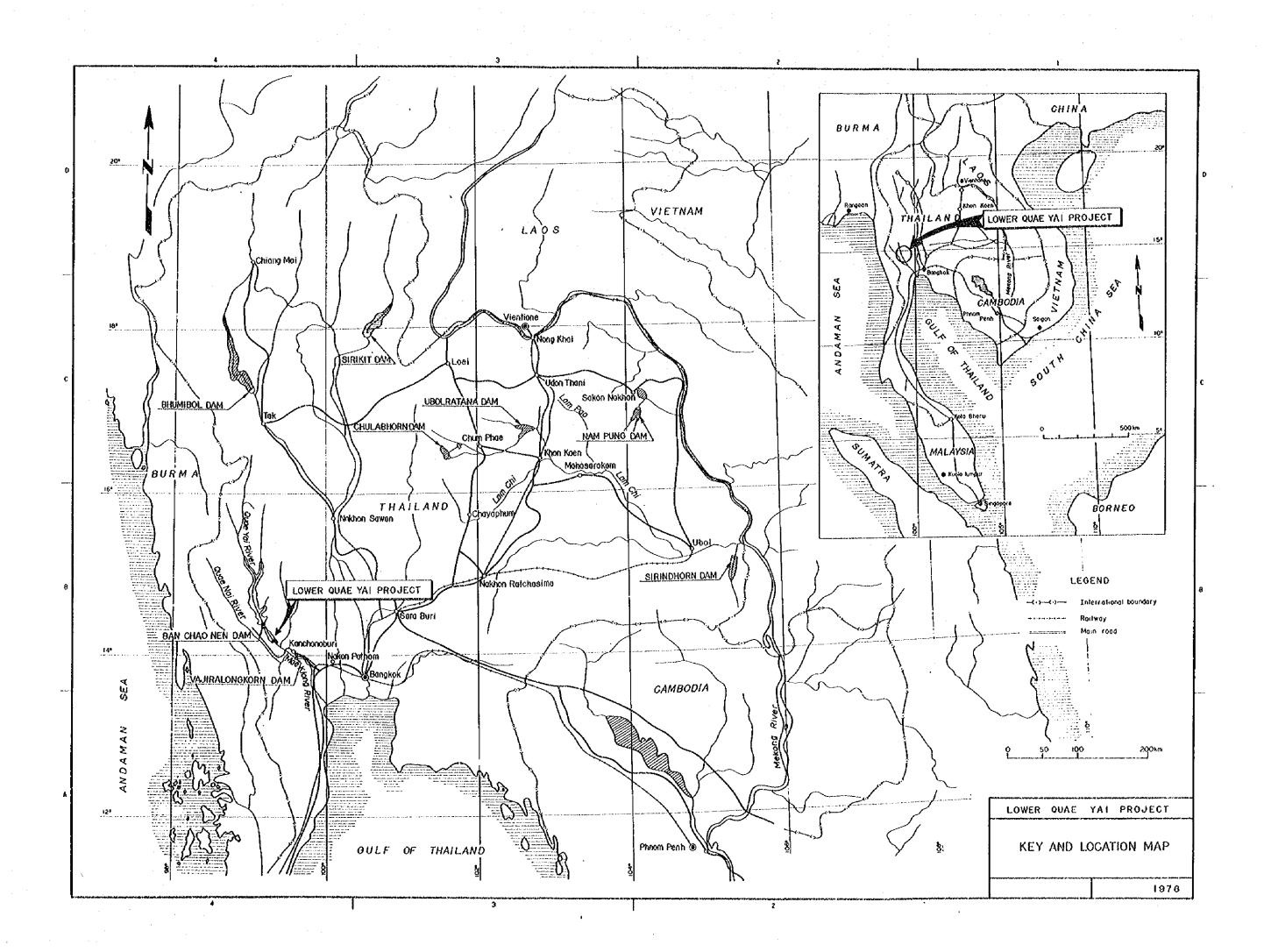
Dear Sir:

Submitted herewith is the Peasibility Report on the Lower Quae Yai Regulating Dam Project in the Kingdom of Thailand.

The Engineering Mission organized for the study of the Project visited Thailand for fourty-five days from November 12 through December 26, 1975 and carried out field investigation with the cooperation of the Electricity Generating Authority of Thailand.

During the stay in Thailand, the Mission collected available data and information for forty-five days from November 12 through December 26, 1975 and carried out the proposed sites and, after return to Japan, prepared the report on the feasibility study of the Regulating Dam Project as well as preliminary study of the pumped-storage scheme using the said regulating reservoir as a lower pondage on the basis of the results of the field investigation and data collected.

It is our wish that the Report will contribute to the further progress of the development of water resources of Thailand.


On the occasion of submitting the Report, I sincerely express my profound gratitude to all persons concerned for their generous assistance and cooperation in performing the studies.

Your respectfully,

Shinichi Nojiri, Chief

Lower Quae Yai Regulating Dam Project

**Engineering Mission** 



## GENERAL DESCRIPTION OF PROJECT

|    | GENERAL L                  | PESCRIPTION OF PROJEC                                                                                                                       | CT                                                   | •                                                            |
|----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
|    |                            |                                                                                                                                             |                                                      |                                                              |
| 1. | Construction purpose       | 1) Providing lower properation of 2nd stage 2) reregulating power Nen project, 3) developmential in downstreatower pendage for fut project. | e Ban Chao<br>discharge<br>loping hydi<br>am basin a | Nen project,<br>of Ban Chao<br>o-electric<br>nd 4) providing |
| 2. | Location                   | Ban Tha Thung Na sit<br>approximately 150 km                                                                                                |                                                      |                                                              |
| 3. | Catchment area             | 11, 428 km <sup>2</sup>                                                                                                                     |                                                      |                                                              |
| 4. | Annual inflow              | $4,410 \times 10^6 \text{ m}^3$                                                                                                             |                                                      |                                                              |
| 5. | Design flood               | $3,000 \text{ m}^3/\text{sec}$                                                                                                              |                                                      | •                                                            |
| 6. | Reservoir                  |                                                                                                                                             |                                                      |                                                              |
|    | High water level           | 59, 70 m                                                                                                                                    |                                                      |                                                              |
|    | Low water level            | 55, 50 m                                                                                                                                    |                                                      |                                                              |
|    | Total storage capacity     | $56.3 \times 10^6 \mathrm{m}^3$                                                                                                             |                                                      |                                                              |
|    | Effective storage capacity | $27.7 \times 10^6 \text{ m}^3$                                                                                                              |                                                      |                                                              |
|    | Available drawdown         | 4, 20 m                                                                                                                                     |                                                      |                                                              |
| 7. | Dam                        |                                                                                                                                             |                                                      |                                                              |
|    | Туре                       | Concrete gravity with and rockfill with cent                                                                                                |                                                      |                                                              |
|    | Crest elevation            | 63, 00 m                                                                                                                                    |                                                      |                                                              |
|    | Height                     | 30 m                                                                                                                                        |                                                      |                                                              |
|    | Crest length               | 860 m                                                                                                                                       |                                                      |                                                              |
|    | Volume                     | 350, 000 m <sup>3</sup><br>(concrete : 50, 000 m <sup>3</sup> a                                                                             | and rockfil                                          | 1: 300, 000 m <sup>3</sup> )                                 |
|    | Slope                      | Upstream surface:                                                                                                                           | Vertical 1:2.5                                       | (concrete)<br>(rockfill)                                     |
|    |                            | Downstream surface:                                                                                                                         | 1:0.8<br>1:2.0                                       | (concrete)<br>(rockfill)                                     |
|    | Spillway gates             | 6 radial gates, 12.50 i                                                                                                                     | n x 7.00 r                                           | n                                                            |

8. Intake

Type

Reinforced concrete structure

Screen

5 sets, 6.80 m x 17.23 m

Control gates

4 roller gates with hoisting devices,

7. 30 m x 13, 50 m

9. Powerhouse

Reinforced concrete structure

10. Power generating facilities

Installed capacity

37,000kW

Turbine

Type

Vertical shaft, Kaplan turbine

Number of units

2

Rated head

15, 10 m

Power discharge

145 m<sup>3</sup>/sec

Rated output

19,000 kW

Revolution per minute

125 rpm

Generator

Type

Three phase, AC, synchronous generator

Number of units

2

Capacity

20,600kVA at rated power factor 0,9 lag

Frequency

50 Hz

Transformer

Type

Three phase, oil immersed, forced air cooled

transformer

Number of units

2

Capacity

20,600 kVA

Voltage

115/11 kV

11. Transmission line

Location

From Ban Tha Thung Na power plant to 115 kV transmission line between Kanchanaburi and

Ban Chao Nen power plant

Length

Approximately 2.5km

Voltage

115 kV

Number of circuits

lect,  $\pi$  connection

12. Telecommunication equipment

Type

Power line carrier system

#### 13. Construction cost

Total cost 847, 400, 000 Baht

Foreign currency 486,600,000 Baht

Domestic currency 360,800,000 Baht

14. Annual energy production 155, 000, 000 kWH

15. Benefit cost ratio (B/C) 1.32

16. Construction schedule

Proposed commencement date December 1977

Proposed operation date October 1980

Construction period 35 months

#### CONTENTS

| PREFACE   |                                                            |    |
|-----------|------------------------------------------------------------|----|
| LETTER O  | F TRANSMITTAL                                              |    |
| KEY AND L | OCATION MAP                                                |    |
| GENERAL I | DESCRIPTION OF PROJECT                                     |    |
| CHAPTER 1 | INTRODUCTION                                               | 1  |
| 1.1       | History                                                    | 1  |
|           | Purpose of investigation                                   | l  |
| 1.3       | Members of Mission                                         | 2  |
| CHAPTER 2 | CONCLUSION AND RECOMMENDATION                              | 4  |
| 2.1       | Conclusion                                                 | 4  |
| 2.1.1     | Importance of early development of Project                 | 4  |
| 2, 1, 2   | Ban Tha Thung Na reservoir and power generating facilities | 4  |
| 2.1.3     | Ban Tha Thong Mon Pumped-storage Project                   | 6  |
| 2, 2      | Recommendation                                             | 7  |
| CHAPTER 3 | LOAD FORECAST                                              | 9  |
| 3. 1      | Present situation of electric power demand and supply      | 9  |
| 3, 1, 1   | General                                                    | 9  |
| 3.1.2     | Present status of power demand and supply                  | 9  |
| 3.2       | Forecast of electric power demand and supply balance       | 10 |
| 3.2.1     | Forecast of future power demand                            | 10 |
| 3, 2, 2   | Electric power development schedule                        | 11 |
| 3, 2, 3   | Power demand and supply balance in the future              | 12 |
| CHAPTER 4 | GEOLOGY                                                    | 28 |
| 4.1       | General                                                    | 28 |
| 4.2       | Regional geology                                           | 28 |
| 4, 2, 1   | Topography                                                 | 28 |
| 4.2.2     | Geology                                                    | 29 |
| 4.3       | Geology of Ban Tha Thung Na dam site                       |    |
|           | (cf. Fig. 4-1, 4-2, 4-3, 4-5)                              | 30 |
| 4.3.1     | Field investigation                                        | 30 |
| 4.3.2     | Topography                                                 | 30 |
| 4, 3, 3   | Geology                                                    | 31 |
| 4.3.4     | Engineering geology                                        | 36 |
| 4.4       | Geology of Ban Wang Kula dam site                          | 38 |
| 4.4.1     | Pield investigation                                        | 38 |
| 4.4.2     | Geological condition                                       | 38 |
| 4,5       | Geology of reservoir area                                  | 39 |
| 4.5.1     | Field investigation                                        | 39 |
| 4.5.2     | Topography                                                 | 39 |
| 4.5.3     | Foundation rock and overburden                             | 39 |
| 4.5.4     | Watertightness                                             | 40 |
| 4.5.5     | Stability of slopes                                        | 41 |

| 4.6     | Geology at Ban Tha Thong Mon Project 41                       |
|---------|---------------------------------------------------------------|
| 4,6,1   | Field investigations 41                                       |
| 4.6.2   | Topography 41                                                 |
| 4,6,3   | Geology 42                                                    |
| CHAPTER |                                                               |
| 5. l    | General 54                                                    |
| 5.2     | Meteorology and hydrology 54                                  |
| 5, 3    | Runoff at Ban Tha Thung Na site 54                            |
| 5, 3, 1 | Monthly average power discharge of                            |
|         | Ban Chao Nen power plant 54                                   |
| 5, 3, 2 | Runoff from residual basin 55                                 |
| 5.3.3   | Evaporation 55                                                |
| 5.3.4   | Runoff at the site 56                                         |
| 5.4     | Flood discharge at Ban Tha Thung Na dam site 56               |
| 5.4.1   | Time of concentration and maximum flood discharge 56          |
| 5.4.2   | Correlation between daily and hourly rainfall 57              |
| 5.4.3   | Estimation of maximum flood discharge 57                      |
| 5.5     | Sedimentation in regulating reservoir 59                      |
| CHAPTER | 6 BASIC PLAN OF LOWER QUAE YAI                                |
|         | HYDRO-ELECTRIC PROJECT 74                                     |
| 6.1     | General consideration                                         |
| 6.2     | Required reservoir capacity ,                                 |
| 6, 2, 1 | Basic conditions ,, 74                                        |
| 6, 2, 2 | Reservoir capacity in relation to Ban Chao Nen power plant 75 |
| 6, 2, 3 | Reservoir capacity required for Ban Tha Thong Mon Project 76  |
| 6, 2, 4 | Estimation of required reservoir capacity                     |
| 6.3     | Allowable limit of fluctuation of reservoir surface and       |
|         | effective reservoir capacity                                  |
| 6, 3, 1 | High water level                                              |
| 6, 3, 2 | Low water level 77                                            |
| 6, 3, 3 | Effective storage capacity                                    |
| 6.4     | Selection of dam site 78                                      |
| 6.5     | Development scheme of Ban Tha Thung Na power plant 79         |
| 6.5.1   | Present condition of dam site 79                              |
| 6.5.2   | Dam 79                                                        |
| 6.5.3   | Power intake, powerhouse and tailrace 80                      |
| 6, 5, 4 | Switchyard                                                    |
| 6.5.5   | Transmission line 81                                          |
| 6,5,6   | Other facilities 81                                           |
| 6, 5, 7 | Principal features of the project 81                          |
| 6.6     | Construction materials 81                                     |
| CHAPTER |                                                               |
| 7.1     | Basic consideration , 99                                      |
| 7.2     | Construction schedule                                         |
| CHAPTER |                                                               |
| 8.1     | Basic assumptions 102                                         |
| 8 2     | Estimated construction cost                                   |

| CHAPTER<br>9, 1<br>9, 2<br>9, 3 |                                                                                                              | 105<br>105 |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|------------|
| CHAPTER                         | 10 INFLUENCES DUE TO FILLING RESERVOIR AND FLUCTUATION OF RIVER SURFACE                                      | 110        |
| CHAPTER<br>11, 1<br>11, 2       | 11 BAN THA THONG MON PUMPED-STORAGE SCHEME  Location of project                                              |            |
| 11.3                            | energy for pumping-up operation Timing and scale of development Ban Tha Thong Mon pumped-storage power plant | 115        |
| APPENDIX                        |                                                                                                              |            |

.

#### CHAPTER 1 INTRODUCTION

#### 1.1 History

With the rapid expansion of the national economy in Thailand in recent years, both industrial and domestic demands for electric power have been increasing year by year. This trend is remarkable particularly in the metropolitan area. This growth trend which is a relatively high rate is forecasted to continue into the future.

Under the circumstances, the Blectricity Generating Authority of Thailand (hereinafter called BGAT) which owns most of the generating capacity of the country is constructing both thermal and hydroelectric power plants, and is also planning and conducting field studies for future development projects. Since the oil crisis which occured at the end of 1973, the utilization program of lignite, an indigenous energy resource, has been reviewed, the plan for construction of nuclear power plants has been expedited and at the same time the importance of hydropower development has been recognized.

The development plan of the Quae Yai River with the largest hydroelectric potential in Thailand following the Mekong, an international river, has been studied before the oil crisis developed. After tedious geologic investigations it was concluded that the reservoir and dam foundation are watertight, and the first stage construction of the Ban Chao Nen Project started in 1974 immediately after the conclusion was made. It is stated in the Feasibility Report of the Ban Chao Nen Project, which was prepared in March 1968, that construction of hydroelectric projects on the upstream of the Quae Yai River and regulating dam on the downstream should be promoted in succession to the construction of the Ban Chao Nen project. In the Reconnaissance Report of the Upper Quae Yai basin prepared in November 1973, a suggestion was made to construct a pumped-storage power plant with this regulating dam as a lower pondage.

In response to this suggestion, EGAT invited an expert from Japan who in cooperation with EGAT engineers started basic field investigations to promote the various projects on the upstream and downstream of the Ban Chao Nen site. In 1975, EGAT requested through DTEC (Department of Technical and Economic Cooperation) the Japanese Government to dispatch an engineering team to study the feasibility of the regulating dam porject on the downstream of the Quae Yai River.

In response to this request, the Japanese Government dispatched the Engineering Mission to carry out the feasibility study of this project from November 12 to December 26, 1975.

#### 1.2 Purpose of investigation

This investigation concerns with the feasibility study of the Regulating Dam Project which includes a dam and power plant located downstream of the Ban Chao Nen power plant on the Quae Yai River and preliminary studies were also made with regard to the Ban Tha Thong Mon pumped-storage Project which will use this regulating reservoir as a lower pondage.

The Lower Quae Yai Regulating Dam Project plays an important role of providing the lower pondage necessary for pumping up operation of the Ban Chao Nen power plant, reregulating the large fluctuation of power discharge of the same power plant, developing the hydraulic potential in the downstream basin and providing also the lower pondage for the future pumped-storage power plant as described below. Pumping-up operation of the Ban Chao Nen power plant is realized by construction of this regulating dam. For the effective operation of the power system, the Ban Chao Nen power plant will be forced to operate during peak load hours which will cause repeated sharp daily fluctuation of power discharge (798 m<sup>3</sup>/sec at maximum to 0) of the said power plant, however, this sharp fluctuation of the water surface in the downstream basin will be essentially controlled on account of reregulation operation of this reservoir assuring efficient operation of the Ban Chao Nen power plant to meet with power domand. The Ban Tha Thung Na power plant to be constructed adjacent to the dam is to utilize the hydraulic potential in the lower Quae Yai basin to the maximum in view of topographic conditions and, in spite of its relatively small generating capacity, considerable amount of annual energy production will be available due to effective regulation of annual inflow at the upstream Ban Chao Nen reservoir. This reservoir will also provide sufficient storage capacity required for the lower pondage of the future Ban Tha Thong Mon Pumped-storage Project.

As stated above, the Lower Quae Yai Regulating Dam Project plays an important role in the hydro-electric power development schedule of the Quae Yai River on account of direct benefit by power generation as well as effective contribution to the Ban Chao Nen project and is regarded as one of the most important future development projects of EGAT.

The feasibility study of the Lower Quae Yai Regulating Dam Project has been made to meet with the construction purposes mentioned above. The optimum features of the dam and power plant to cope with the design criteria and operation schedule inclusive of pumping-up operation of the Ban Chao Nen power plant were decided and the basic designs of the main structures were then prepared. For the Ban Tha Thong Mon Project, the required reservoir capacity and scale of development are based on the presently available information on the possible power source for pumping-up operation, and preliminary layout were made on the basis of the assumed and available data.

#### 1.3 Members of Mission

The members of the Mission who conducted field investigations, collection of data and studies are as follows.

| Chief   | Shinichi Nojiri, | Electric Power Development Co., Ltd.<br>Senior Civil Engineer   |
|---------|------------------|-----------------------------------------------------------------|
| Members | Hidetoshi Abe,   | Electric Power Development Co., Ltd.<br>Civil Engineer-Planning |
| }       | tsao Otsuka,     | Electric Power Development Co., Ltd.<br>Electrical Engineer     |

Masahiro Shibata, Electric Power Development Co., Ltd.

Geologist

Minaichi Takeoka, Blectric Power Development Co., Ltd.

Civil Engineer-Design

Hiroyoshi Inouc, Japan International Cooperation Agency

Coordinator

#### CHAPTER 2 CONCLUSION AND RECOMMENDATION

#### 2.1 Conclusion

Described in the following paragraphs are the conclusions with respect to the Lower Quae Yai Regulating Dam Project as the result of field investigations, and studies and preliminary designs based on the field works.

#### 2.1.1. Importance of early development of Project

The Lower Quae Yai Regulating Dam Project plays an important role in assuring effective operation of the upstream Ban Chao Nen power plant corresponding to power demand and, accordingly, time schedule requires the completion of construction of the structures related to operation of this reservoir by the time of operation of Units No. 1 and No. 2 of the Ban Chao Nen power plant in September and December 1979.

Commencement of filling the Ban Chao Nen reservoir is scheduled in June 1977 and, if the construction works of this project are carried out during the period of filling the said reservoir, the project construction cost will be remarkably reduced because there is no need of full-scale diversion facilities for care of river.

Under these circumstances, it is essential to start the early development of the Lower Quae Yai Regulating Dam Project and once this timing is missed, it will result not only in impairing the economic advantage of this project but also hindering the generating operation of the upstream Ban Chao Nen project. Therefore, the construction works of the main civil structures must be commenced at around the end of 1977 at the latest taking into account the required time for further field investigations and definite studies, and the preparation works such as construction facilities, etc. at the site must be started a few months ahead of that time.

#### 2.1.2. Ban Tha Thung Na reservoir and power generating facilities

Among three proposed dam sites, Ban Tha Ta On, Ban Wang Kula and Ban Tha Thung Na shown in Fig 2-1, the first priority was given to the Ban Tha Thung Na dam site located at the lowest reach in consideration of the most effective development of hydro-electric potential in the area downstream of the Ban Chao Nen power plant, topography and geology of the site and required reservoir capacity. The general features of the project is described below.

(a) At the Ban Tha Thung Na dam site approximately 28 km downstream of the Ban Chao Nen power plant, there is no unusual technical problems to construct the proposed dam, powerhouse and other structures from a geological point of view.

There will be also no apprehension about watertightness of the surrounding foundation taking into consideration general topography in the reservoir area, geological distribution and structures and information of ground water level.

(b) A concrete dam with spillway structure is to be constructed at the river bed section adjoined on the right wing by a rockfill dam. The generating facilities

such as intake, powerhouse and tailrace are to be constructed on the left bank adjoining the concrete dam. General description of the reservoir and power plant are as follows.

#### Reservoir:

High water level

EL 59, 70 m

Low water level

EL 55.50 m

Effective storage capacity

27, 700, 000 m<sup>3</sup>

Dam:

Height

30 m

Crest length

860 m

Volume

350, 000 m<sup>3</sup> (Concrete

50,000 m<sup>3</sup>)

(Rockfill

300, 000 m<sup>3</sup>)

#### Development scheme:

Maximum discharge

290 m<sup>3</sup>/sec

Rated head

15. 10 m

Maximum output

37,000 kW

Annual energy production

 $155 \times 10^{6} \text{ kWH}$ 

- (c) Electric power produced at this plant will be stepped-up to 115 kV at a switchyard erected near the power plant and 2.5 km long line will tie into the 115 kV transmission line which is recently constructed between the Ban Chao Nen power plant and Kanchanaburi substation.
- (d) Construction schedule of this project was prepared in consideration of advantages that in case the main part of the civil works are constructed during the period of filling the Ban Chao Nen reservoir, the construction cost will be economized as full-scale diversion facilities will not be required, and that the efficient operation of the Ban Chao Nen power plant can be assured as the reservoir will be ready for reregulating operation prior to the start of generating operation of the Ban Chao Nen power plant. In the proposed construction schedule, it is scheduled to start the construction of the main civil works at around the end of 1977 and complete most part of the said works prior to the start of operation of Unit No. I of the Ban Chao Nen power plant in September 1979, and to have the reservoir ready for reregulating operation. The target date of start of operation of this power plant is October 1980 in consideration of period required for manufacturing and installation of main electric equipment—such as turbines and generators—etc., and a total construction period of thirty-five months will be required.

(c) The costs for construction of the Ban Tha Thung Na Project is estimated as follow:

Total construction cost

847, 400, 000 Baht

Domestic currency portion

360, 800, 000 Baht

Foreign currency portion

486, 600, 000 Baht

(f) For the purpose of evaluating the economic justification of the Project, an alternative thermal power plant of 300 MW constructed in Bangkok which is equivalent to the largest size unit of the existing thermal power plant of EGAT was assumed. Annual benefit (B) of a hydro-electric power plant calculated on the basis of annual cost of the alternative thermal power plant and annual cost (C) of this power plant based on the required construction cost are 104, 250, 000 Baht and 78, 890, 000 Baht, respectively and the benefit-cost ratio B/C comes to 1.32 which justifies the economic construction of the Ban Tha Thung Na Project.

#### 2.1.3. Ban Tha Thong Mon Pumped-storage Project

Among three proposed pumped-storage projects ( $D_A$ ,  $D_B$  and  $D_C$ ) located on the right bank of the Ban Tha Thung Na reservoir, the Ban Tha Thong Mon Project ( $D_B$  plan) which is justified to be most economic and has no effect on the Brawan Fall resort is selected. This project has a siting advantage compared with the upstream Huai Klong Ngu pumped-storage power plant proposed as a part of electric power development scheme of the Quae Yai River on account of the short distance from power plants around Bangkok which will supply the electric power for pumping-up operation.

However, development of this project is considered to be after 1990 in view of the studies on reserve capacity as well as possible time of receiving power for pumping-up operation on the basis of load forecast and corresponding power development schedule prepared by EGAT. The scale of development must also be justified when a more firm forecast of power demand and supply after 1990 is made. Following are the general features of the Project at the present stage of studies.

Upper pondage:

High water level

EL 585 m

Low water level

EL 560 m

Effective storage capacity

 $3 \times 10^6 \text{ m}^3$ 

Lower pondage;

Ban Tha Thung Na reservoir

Power development scheme:

Maximum discharge

124 m<sup>3</sup>/sec

Rated head

494.4 m

Maximum output

500,000 kW

Since the Ban Tha Thung Na regulating reservoir is used as a lower pondage of this project, the additional reservoir capacity required for pumping-up operation of this project must be taken into consideration in the study of reservoir capacity of the Ban Tha Thung Na regulating reservoir to assure the possibility of developing this project in the future.

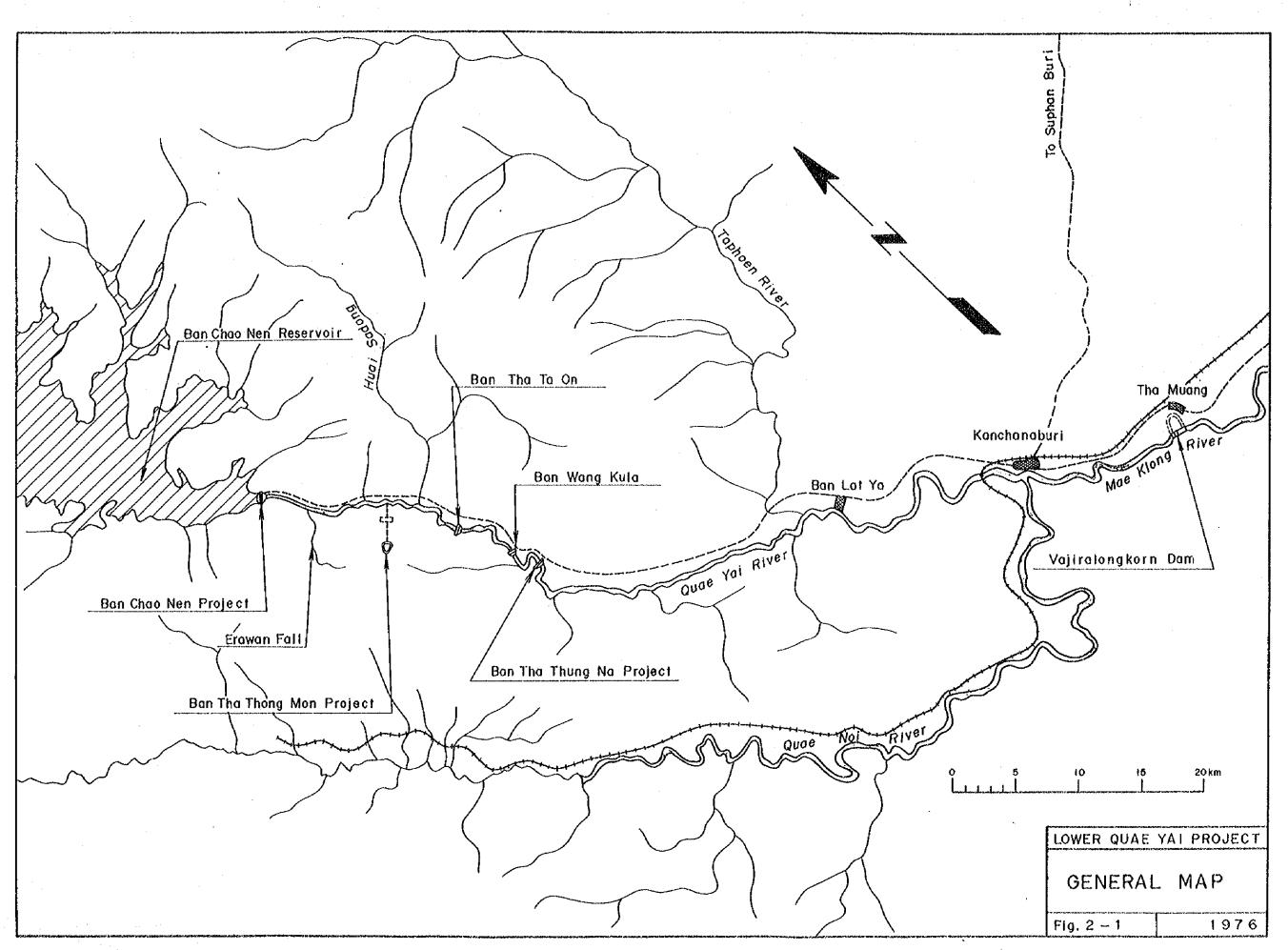
#### 2.2 Recommendation

In order to promote the development of the Ban Tha Thung Na Project, it is recommended to actively proceed with the following field investigations and preparation activities.

#### (a) Early development of Project

In order to assure the effective operation of the Ban Chao Nen power plant being constructed in the upstream and the economical development of this project, the pressing development of the Ban Tha Thung Na Project is required.

#### (b) Geological investigation


In order to enhance the accuracy of the geological maps prepared during the recent field investigations, it is desirable to investigate further the geology around the site on the basis of newly prepared 1:2,000 scale topographic maps. The geology of the foundation rocks at the dam site was essentially confirmed by the said investigations, however, the type of rock strata of the Paleozoic era which forms the foundation of the structures changes at the river bed portion showing possible existence of fault and, therefore, inclined test drilling from both river banks toward the river center is required. A few additional test drilling is also required in the left abutment and test grouting should be executed depending on the results of the test drilling.

#### (c) Field investigation of construction materials

According to the late investigations, it is confirmed that construction materials suitable for concrete aggregates and embankment materials are distributed around the dam site and it is required to ascertain the available quantities and qualities of these materials.

#### (d) Definite studies

All the preparations prior to the construction activities such as the definite design of the dam and power plant, financing, acquisition of land and counter-measures for environmental impact—etc. must be made in such a manner as to meet with the construction schedule.



#### CHAPTER 3 LOAD FORECAST

#### 3.1 Present situation of electric power demand and supply

#### 3, 1, 1. General

The electric power industry of Thailand is being undertaken by the Electricity Generating Authority of Thailand (EGAT) which is mainly in charge of power generation, the Metropolitan Electricity Authority (MEA) mainly in charge of power distribution in the metropolitan area and the Provincial Electricity Authority in the whole country except for the metropolitan area. The most port of electric power produced by EGAT is supplied to MEA and PEA while minor electric power to some industrial enterprises directly.

Total installed generating capacity of EGAT as of March 1976, composed of seven hydro-electric, five thermal, seven gas-turbine and four diesel power plants, is 2,437,350 kW as listed in Table 3-1. Main power plants among them are two large thermal power plants: North Bangkok and South Bangkok near Bangkok city, and two large hydro-electric power plants: Bhumibol and Sirikit, and the maximum power generation of these four power plants amounts to 2,032,500 kW which accounts for more than 83 percent of EGAT's total capacity.

The power system of EGAT is divided into four regions, namely, Region 1 covering the Bangkok metropolitan area, Region 2 covering the north-eastern area, Region 3 covering the southern area and Region 4 covering the northern area of Thailand. Among these regions, three are interconnected except for Region 3 which forms an isolated power system with the key station being Krabi thermal power plant. However, complete power system interconnection of the country connecting Region 1 and 3 is scheduled by the end of 1978. The transmission line system of EGAT is composed of 230 kV trunk line; ring line connecting thermal power plants around Bangkok with substations and main line connecting this ring line with power plants in Region 4, 115 kV transmission line connecting above-mentioned trunk line with power plants in Region 2 and isolated 115 kV transmission line in Region 3. Total length of 230 and 115 kV transmission lines as of September 1975 are approximately 2, 200 km and 4, 100 km respectively as shown in Fig.3-2.

#### 3.1.2. Present status of power demand and supply

Owing to active industrialization policy of the government of Thailand and modernization of public and private facilities in the Bangkok area, past electric power demand in Thailand recorded remarkable growth rate of 20 to 40 percent up to 1969. Thereafter, the high growth rate until that time gradually decreased reflecting the decrease of Viet Nam special procurement, etc. and, especially after the oil crisis in 1973, the growth rate of power demand recorded an abrupt decline as shown in Table 3-2, Fig. 3-3 and Fig. 3-4. The growth rate of 1974 was approximately 5 percent which was extremely low compared with the past records and this might have resulted from switching-off of neon signs, shortening of screening time of cinemas and curtailing of street lights, etc. forced by governmental restrictions to save energy consumption in December 1973. On account of gradual relaxation of the

said restrictions by the end of 1974, the growth rate of 1975 was improved to approximately 12 percent and the maximum power demand in September 1975 was 1,407 MW.

On the other hand, in order to cope with above-mentioned remarkable growth of power demand, Bhumibol hydro-electric power plant (420 MW) was completed in 1964 followed by completion of North Bangkok thermal power plant (237.5 MW) in 1968, South Bangkok thermal power plant (#1 to #4, 1,000 MW) and Sirikit hydro-electric power plant (375 MW) by November 1975, and thus power supply source has been reinforced especially in recent years. Power supply capacity as of September 1975 is approximately 1,972 MW maintaining a reserve capacity of 565 MW or in other words approximately 40 percent compared with the maximum power demand aforementioned.

In parallel with the reinforcement of power supply sources, transmission line system has also been expanded rapidly from around 1968 as shown in Fig. 3-2 in order to transmit to the metropolitan area the power produced at power plants in Regions 2 and 4 and to consolidate the power line system within the metropolitan area.

#### 3.2 Forecast of electric power demand and supply balance

#### 3.2.1. Forecast of future power demand

In September 1976, EGAT forecasted and summarized future power demand by each industry and by MEA, PEA and other enterprises to which EGAT supplies electricity directly. Growth rate of power demand by MEA and PEA, etc. in the next 15 years (first 8 years, 1976 to 1983 and latter 7 years, 1984 to 1990) is forecasted as follows:

- (a) In the MEA area, growth rate of approximately 7 to 9 percent and 6 percent for the first and latter periods, respectively.
- (b) In the PBA area, growth rate of approximately 11 to 17 percent and 8 to 11 percent for the first and latter periods, respectively. These growth rates are considered comparatively high, however, such values were induced from the ground that diffusion of lighting in the PBA area shows very low rate of approximately 20 percent at present and growth rate of about 10 percent of power demand for lighting is deemed to be continuously maintained throughout the next 15 years regardless of economical conditions of the country.
- (c) Growth rate of power demand directly supplied by EGAT to other enterprises is estimated at approximately 2.5 percent through the first and latter periods.

The integrated growth rates of power demand on EGAT are forecasted to be approximately 9 to 13 percent and 6 to 7 percent for the first and latter periods, respectively and these values are lower than those of the last few years. In contrast with actual records of maximum power and annual energy demands of approximately 1,400 MW and 8,200 x  $10^6$  kWH in 1975, forecasted demands in concrete figures are 3,600 MW and 21,400 x  $10^6$  kWH in 1985 and 5,000 MW and 29,500 x  $10^6$  kWH in 1990, in other words, increment of 2,200 MW and 13,200 x  $10^6$  kWH after 10 years and

3,600 MW and 21,300  $\times$  10<sup>6</sup> kWH after 15 years.

The above-mentioned is the forecast of the future electric power demand prepared by EGAT. On the other hand, the macrographical studies on the progressive trend of future power demand is made as follows.

The trend of electric power demand of various countries in the world is shown in Fig. 3-5 in which electricity consumption per capita in 1973 and growth rate of the same between 10 years through 1964 to 1973 are plotted on the abscissa and the ordinate, respectively. And correlation between gross domestic product (GDP) and electricity consumption per capita both in 1973 is shown in Fig. 3-6. According to Fig. 3-5, Thailand is a possible country to make great stride in electricity consumption in the future and comes within the category of growing stage. The tendency of this remarkable growth is also observed in Fig. 3-6 and it is considered, as shown in the same figure, that the growth hereafter will draw closer to average value with rate of a little smaller than that traced since 1970. As described in the above, EGAT estimated growth rates of 9 to 13 percent for the first period and 6 to 7 percent for the latter period in forecasting power demand in the next 15 years and this forecast is considered appropriate.

In this report, the EGAT forecast of the future power demand is applied.

#### 3.2.2. Electric power development schedule

In order to cope with increasing power demand mentioned above, it is required to newly develop power sources of approximately 2, 200 MW and 3,600 MW by 1985 and 1990, respectively. The value for 1990 corresponds to 1.5 times the capacity of existing power facilities (2,400 MW) and requires hereafter capacity addition of approximately 240 MW every year. Electric power projects being constructed by EGAT are the following four.

#### (a) South Bangkok oil fired thermal power plant (Units No. 5)

South Bangkok thermal power plant is being expanded following the completion of Unit No. 4 in November 1975. Units No. 5 (300 MW) is scheduled to be completed in October 1978, and the ultimate installed capacity of the project will be 1, 360 MW.

#### (b) New Mae Moh lignite fired thermal power plant

In addition to two lignite fired thermal power plants (Mae Moh 6.25 MW and Krabi 60 MW), New Mae Moh thermal power plant located in the northern part of Thailand is being constructed for the exclusive use of national resources. Units No.1 and No.2 (75 MW each) are scheduled to be completed in May 1977 and May 1978, respectively.

#### (c) Ban Chao Nen hydro-electric power plant (1st stage)

Ban Chao Nen multi-purpose project located at about 190 km north-west of Bangkok is being constructed for irrigation, flood control and power generation purposes by constructing a rockfill dam of 135 m high across the Quae Yai River. The maximum installed capacity of the first stage Ban Chao Nen project is to be 360 MW (120 MW x 3 units) generating annual energy of 1,160 x 10<sup>6</sup> kWII, and Units No. 1,

No. 2 and No. 3 are scheduled to be completed in September 1979, December 1979 and May 1980, respectively. Furthermore, the second stage Ban Chao Nen project, pumped-storage of 360 MW (180 MW x 2 units), is being promoted with a completion target in October 1986.

#### (d) Pattani hydro-electric power project

Pattani project located in southern Thailand near the border line of Thailand and neighboring Malaysia is in preparation, and its maximum installed capacity and annual energy production are 40 MW (20 MW x 2 units) and 200 x 10<sup>6</sup> kWH, respectively. This project is scheduled to be completed in October 1981.

Besides, there are major proposed projects such as extension of Bhumibol hydro-electric power plant (Unit No. 7, 100 MW), Quae Noi hydro-electric project (290 MW), Lang Suan hydro-electric project (80 MW), new thermal project (300 MW x 2,600 MW x 1, 1,200 MW in total) and nuclear power plant (600 MW). According to the present development schedule mentioned above, new power generation facilities of 4,167 MW in total, consisting of 1,917 MW, 1,950 MW and 600 MW of hydro-electric, thermal and nuclear projects respectively, are scheduled to be completed within the next 15 years by the end of 1990 as shown in Table 3-4 and Fig. 3-7.

#### 3.2.3. Power demand and supply balance in the future

Pollowing are the studies on kW and kWH balance in the future based on the above-mentioned power demand forecast and development schedule. On study of kW balance, maximum installed capacity for nuclear, thermal and gas-turbine power plants and mean value of maximum installed capacity and available capacity at the time of the lowest reservoir surface for hydro-electric power plant are taken as dependable capacities.

Dependable capacity, maximum power demand, normal reserve capacity and reserve capacity at forced outage of the biggest unit in service in the respective years are shown in Table 3-5 and Fig. 3-8. As observed in these figures, some amount of reserve capacity is still maintained even in case of forced outage. The trend is that the reserve capacity will decrease from 1981 and take an upward rise again from 1986 by nuclear power plants going into service.

However, compared with the available reserve capacity of 560 MW in 1975, it decreases to 385 MW (reserve capacity ratio 13%), which is deemed to be critical because in 1982 the total installed capacity will be more than two times of that in 1975. After 1986 there will be no problem with power supply, maintaining sufficient reserve capacity of more than 20% on the condition that the nuclear power plants are put in service as scheduled.

On the other hand, annual energy production, energy demand and reserve energy for average and dry years are shown in Table 3-6 and Fig. 3-9. They generally trace the tendency similar to the case of kW balance and remarkable difference between the two is that energy production is almost equal to energy demand for certain period and this will possibly create a critical situation of supplying energy from 1981 through 1983 than that of supplying power.

The above-mentioned studies on power demand and supply balance are carried out on the condition that the proposed projects of EGAT shall be incorporated in the power system on time, and, therefore, it is indispensable that the projects are completed and put in service as scheduled, especially for those projects to complete after 1981 when the power supply situation is forecasted to aggravate. It may be considered very difficult to timely develop those projects which involve various problems.

It is also important to keep in mind that there is a potential of rapid growth of electric power demand in Thailand, that is, present latent demands may possibly invite sharp growth rate of the same magnitude that were observed in the past, when the economic recession of late years picks up. In view of this situation it is feared that EGAT may face a critical situation to supply power demand resulting from the delay of implementing electric power development programs, especially of nuclear power plants, therefore, the present electric power development program may require revision, and it may be advisable to proceed with the early development of water resources and, at the same time, to study further utilization program of lignite and natural gas in the future.

Table 3-1 Installed Capacity (Nov. 1975)

| Name                | No. of unit | Capacity (MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (llydro)            |             | the later than the second section of the secti |
| Bhumtbol            | 6           | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sirikit             | 3           | 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ubolratana          | 3           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sirindhorn          | 2           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chulabhorn          | 2           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nam Pung            | 2           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Kang Krachan        | 1           | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sub-total           | 19          | 909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (Thermal)           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| North Bangkok       | 3           | 237. 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| South Bangkok       | 4           | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Surat Thani         | i           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mae Moh             | . Î         | 6. 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Krabi               | 3           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sub-total           | 11          | 1, 333.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (Gas turbine)       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| North Bangkok       | 2           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| South Bangkok       | 4           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bang Kapi           | Î           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bangkok Noi         | ī           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Nakhon Ratchasima   | Ī           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Udon Thani          | 1           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Hat Yai             | 1           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sub-total           | 11          | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Diesel)             | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mac Moh             | 9           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chiangmai           | 8           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Phuket              | 4           | 10, 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nakhon Si Thammarat | 2           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sub-total           | 23          | 29.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total               | 64          | 2,437.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table 3-2 Actual Generation Record and Load Forecast

| Blood woon      | Peak   | generation | Energy p              | oduction   | Annual                                                        |
|-----------------|--------|------------|-----------------------|------------|---------------------------------------------------------------|
| Fiscal year     | MW     | Growth (%) | kWH X 10 <sup>6</sup> | Growth (%) | load factor                                                   |
| (Actual record) |        |            |                       |            | an dan maka wa kamani na maka maka kata kata ka sanai maka ka |
| 1963            | 133    | 17.8       | 605                   | 18, 2      | 51. 9                                                         |
| 1964            | 178    | 33, 8      | 780                   | 28. 9      | 50. 0                                                         |
| 1965            | 235    | 32.0       | 1,097                 | 40, 6      | 53.4                                                          |
| 1966            | 319    | 35.7       | 1,529                 | 39. 4      | 54.8                                                          |
| 1967            | 399    | 25. 1      | 2,034                 | 33. 0      | 58. 2                                                         |
| 1968            | 520    | 30, 3      | 2,612                 | 28. 4      | 57. 3                                                         |
| 1969            | 638    | 22.7       | 3,368                 | 28. 9      | 60. 3                                                         |
| 1970            | 748    | 17. 2      | 4,095                 | 21. 6      | 62. 5                                                         |
| 1971            | 873    | 16.7       | 4,793                 | 17, 0      | 62. 7                                                         |
| 1972            | 1,029  | 17. 9      | 5,711                 | 19. 2      | 63, 4                                                         |
| 1973            | 1, 199 | 16.5       | 6,873                 | 20. 3      | 65. 4                                                         |
| 1974            | 1,256  | 4.8        | 7, 259                | 5, 6       | 66. 0                                                         |
| 1975            | 1,407  | 12. 0      | 8,212                 | 13. 1      | 66. 6                                                         |
| (Forecast)      |        |            |                       |            |                                                               |
| 1976            | 1,590  | 13.0       | 9, 205                | 12. 1      | 66. 1                                                         |
| 1977            | 1,775  | 11.6       | 10, 257               | 11. 4      | 66. 0                                                         |
| 1978            | 1,965  | 10.7       | 11,468                | 11. 8      | 66. 6                                                         |
| 1979            | 2, 159 | 9. 9       | 12,658                | 10. 4      | 66, 9                                                         |
| 1980            | 2,372  | 9, 9       | 13,913                | 9, 9       | 67. 0                                                         |
| 1981            | 2,616  | 10. 3      | 15,401                | 10. 7      | 67. 2                                                         |
| 1982            | 2,852  | 9. 0       | 16,794                | 9. 0       | 67. 2                                                         |
| 1983            | 3,100  | 8, 7       | 18,272                | 8. 8       | 67. 3                                                         |
| 1984            | 3,357  | 8. 3       | 19,802                | 8. 4       | 67. 3                                                         |
| 1985            | 3,606  | 7.4        | 21,262                | 7. 4       | 67. 3                                                         |
| 1986            | 3,863  | 7. 1       | 22,767                | 6. 5       | 67. 3                                                         |
| 1987            | 4, 127 | 6. 8       | 24,316                | 6. 8       | 67. 3                                                         |
| 1988            | 4, 407 | 6.8        | 25,957                | 6. 7       | 67, 2                                                         |
| 1989            | 4,704  | 6.7        | 27, 691               | 6, 7       | 67. 2                                                         |
| 1990            | 5,019  | 6. 7       | 29,530                | 6. 7       | 67. 2                                                         |

(Prepared by EGAT)

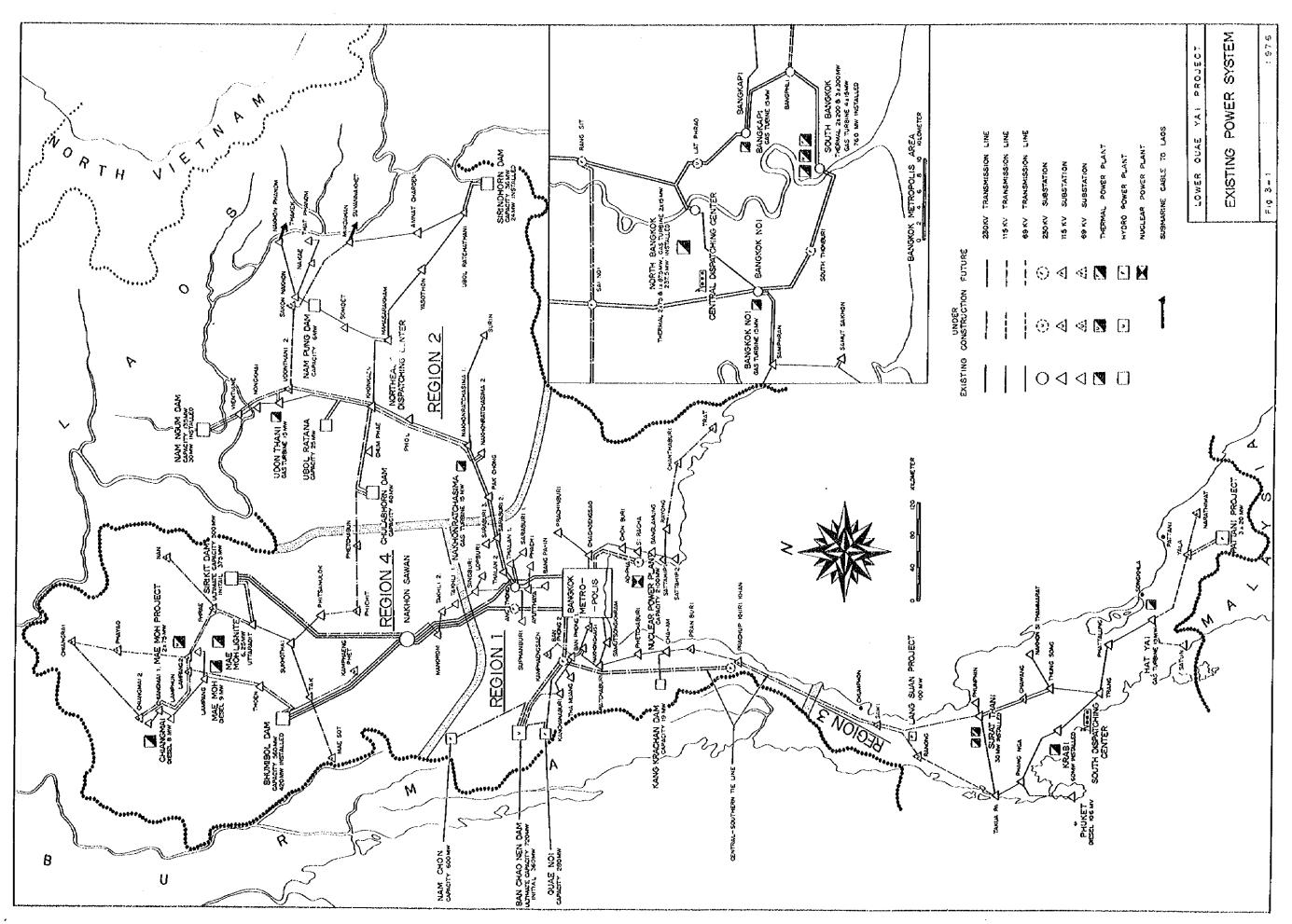
Table 3-3 Gross Domestic Product of Thailand (1969-1975)

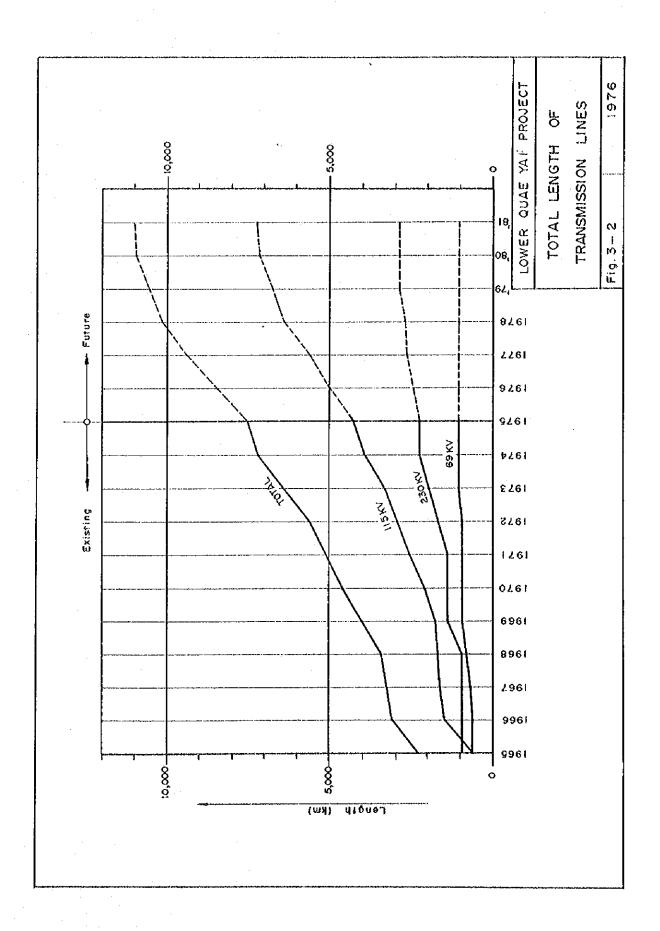
| :          | 1969     | 1970     | 1971     | 1972    | 1973     | 1974     | 1975     |
|------------|----------|----------|----------|---------|----------|----------|----------|
| GDP        | 112, 550 | 120, 730 | 127, 730 | 131,620 | 143, 130 | 153, 355 | 163, 205 |
|            | 7. 3     | 7.3      | 5.8      | 3, 0    | 8.7      | 7, 1     | 6.4      |
| vious year |          |          |          | •       | P. F.    |          |          |

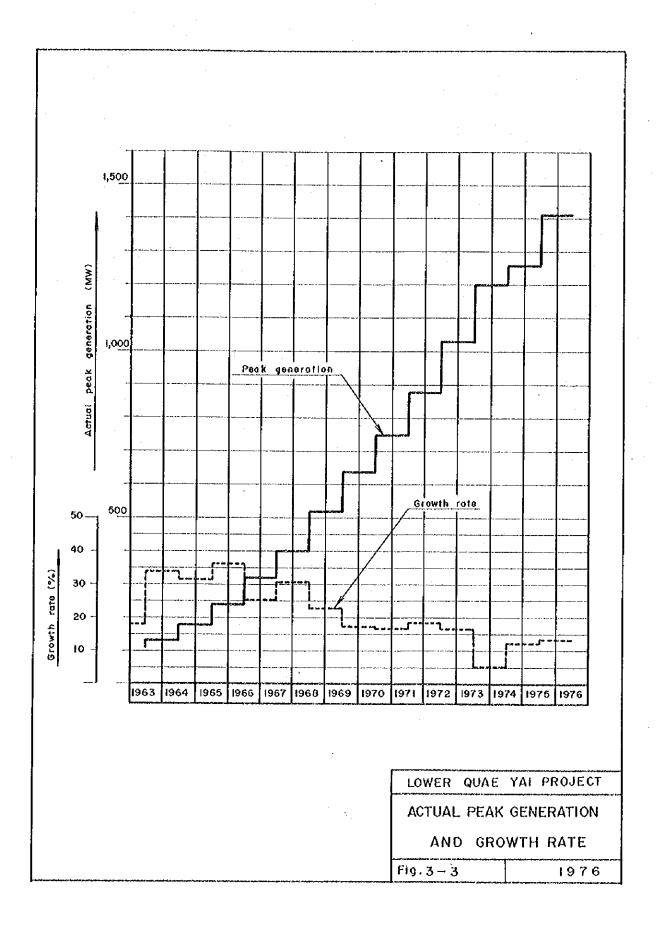
(National Income of Thailand, JETRO)

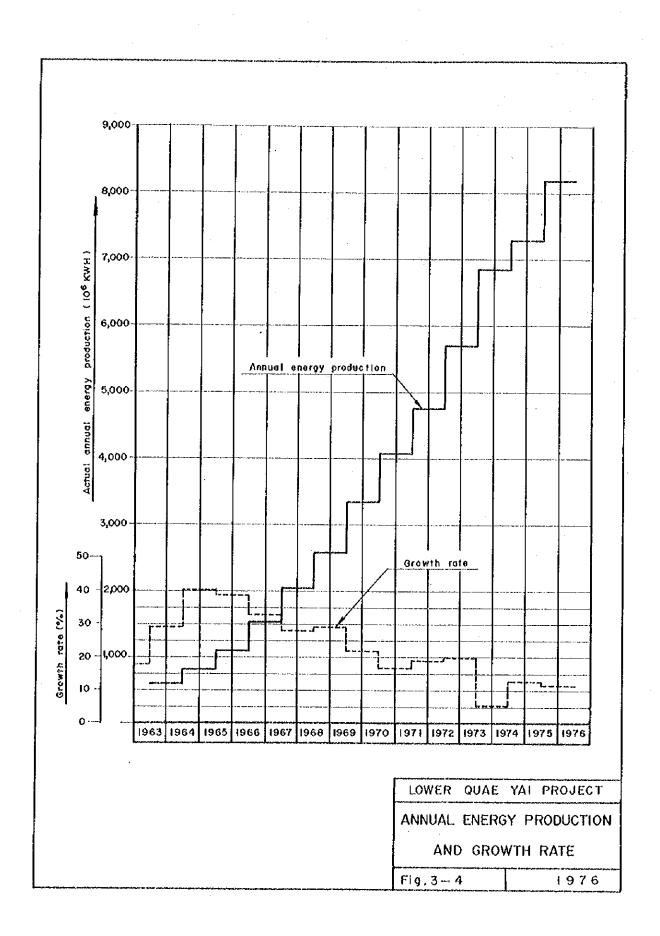
Table 3-4 Development Schedule

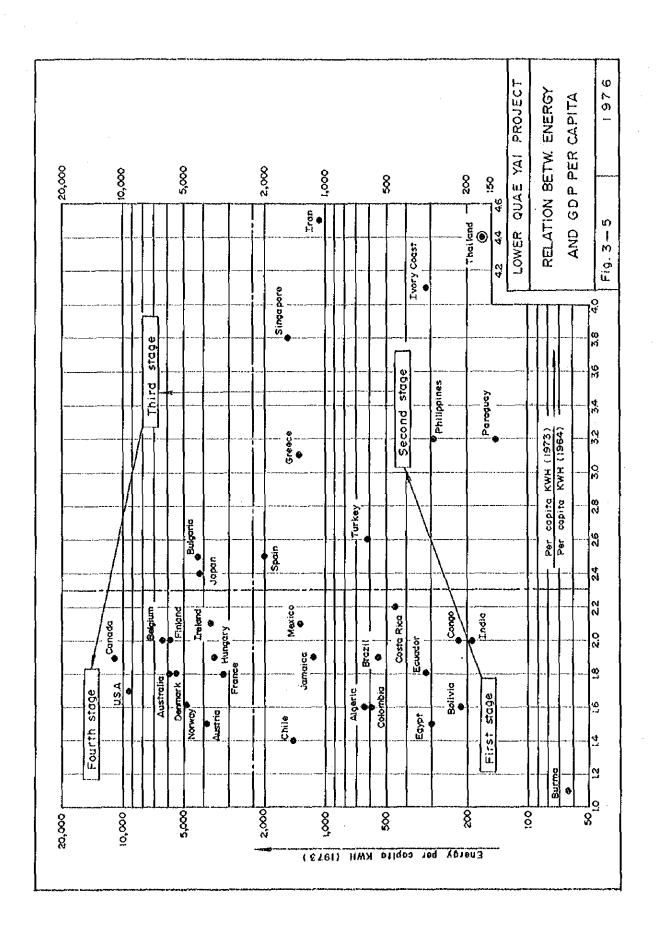
| Calender<br>year | Month |                    | Hydro  | Thermal                                | Nuclear     | Total                                                                                                          |
|------------------|-------|--------------------|--------|----------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|
| 1977             | May   | New Mac Moh #1     | : .    | 75                                     |             |                                                                                                                |
| 1277             | Dec.  | Nam Ngum Surplus   | 50     |                                        |             | 125                                                                                                            |
| 1978             | May   | New Mae Moh #2     |        | 75                                     |             |                                                                                                                |
| 1970             | Oct.  | South Bangkok #5   |        | 300                                    |             | 375                                                                                                            |
| 1070             | Sep.  | Ban Chao Nen #1    | 120    | <del></del>                            |             | aran amatan da amaga pangangga ng pangangga pangangga pangangga pangangga pangangga pangangga pangangga pangan |
| 1979             | Dec.  | Ban Chao Nen #2    | 120    |                                        |             | 240                                                                                                            |
| 1000             | Мау   | Ban Chao Nen #3    | 120    |                                        |             |                                                                                                                |
| 1980             | Oct.  | Ban Tha Thung Na   | 37     |                                        |             | 157                                                                                                            |
| 1981             | Oct   | Pattani #1, 2      | 40     |                                        | <del></del> | 40                                                                                                             |
| 1000             | Jul.  | Bhumibol #7        | 100    |                                        |             | o y min'ny saratra ny fivondrona na mininy mpiyy                                                               |
| 1982             | Oct.  | New Thermal #1     |        | 300                                    |             | 400                                                                                                            |
| 1000             | Sep.  | Lang Suan          | 80     |                                        | ·           |                                                                                                                |
| 1983             | Oct.  | New Thermal #2     |        | 300                                    |             | 380                                                                                                            |
| 1984             | Oct,  | Quae Noi #1, 2     | 290    | •                                      |             | 290                                                                                                            |
| 1985             | Oct.  | Nuclear #1         |        |                                        | 600         | 600                                                                                                            |
| 1986             | Oct.  | Ban Chao Nen #4, 5 | 360    | ······································ |             | 360                                                                                                            |
| 1987             | Oct.  | New Thermal #3     |        | 600                                    |             | 600                                                                                                            |
| 1989             | Oct.  | Upper Quae Yai     | 600    |                                        |             | 600                                                                                                            |
|                  |       | Total              | 1, 917 | 1, 650                                 | 600         | 4, 167                                                                                                         |

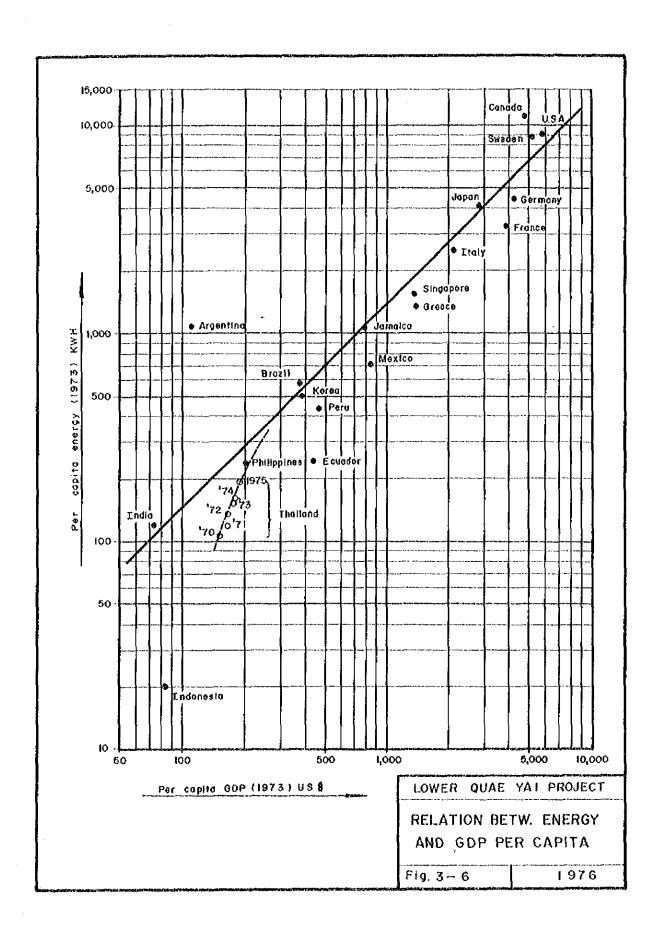

(Prepared by EGAT)

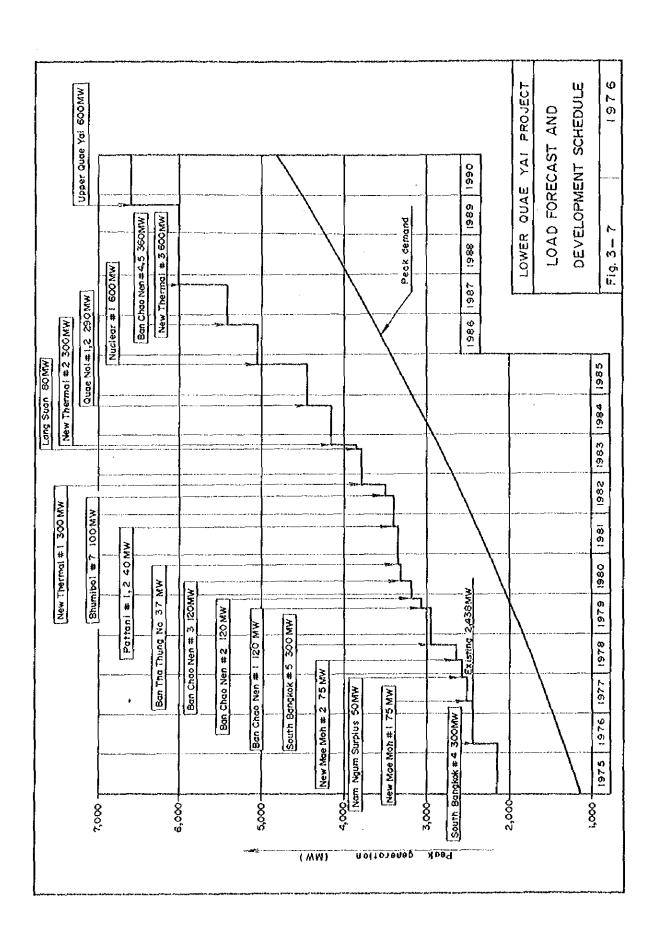

(Prepared by EGAT)

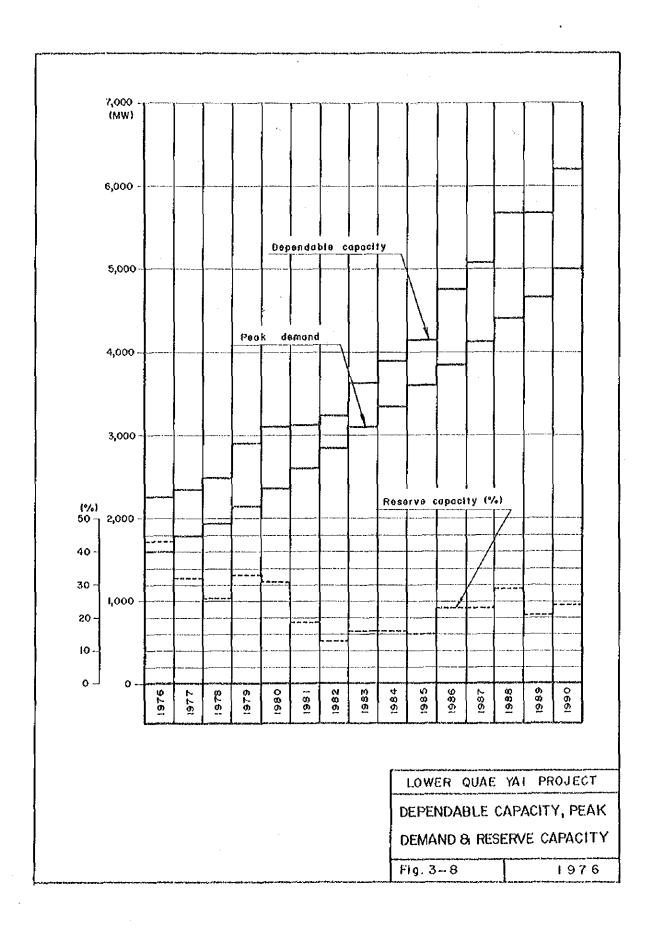

Table 3 - 5 KW Balance

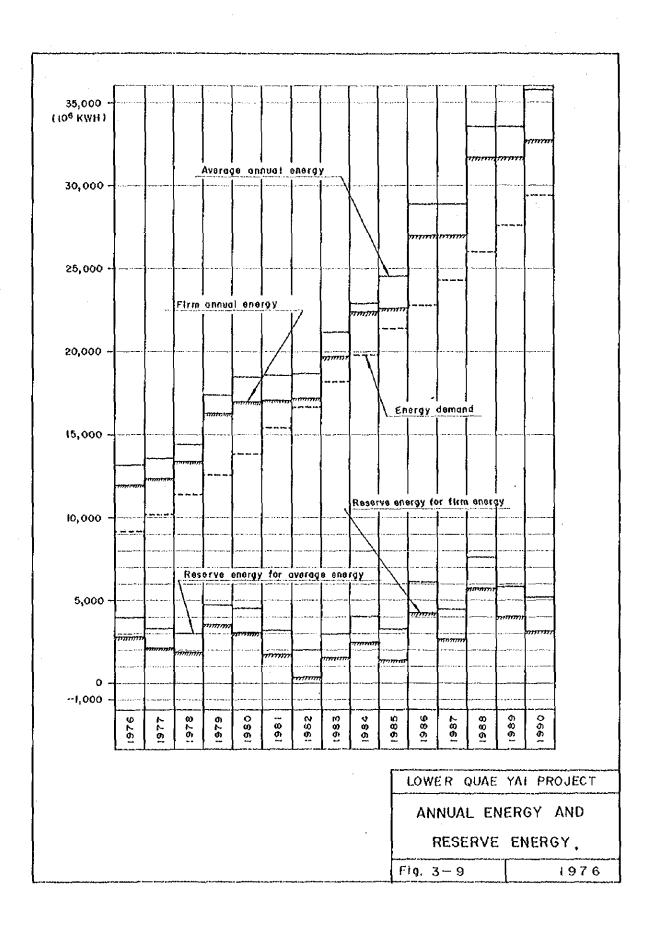

|                                                                                                    |                                                                  |                     |                     | 1     |     |            | Installed Capacity | Sapacity  |     |        |           |                                                    |                              |        | Total                         |                              | Rare of                         | Targest                       | (MW)<br>Reserve       |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|---------------------|-------|-----|------------|--------------------|-----------|-----|--------|-----------|----------------------------------------------------|------------------------------|--------|-------------------------------|------------------------------|---------------------------------|-------------------------------|-----------------------|
| Fiscal Penand Year (Future Development) Year (A) Hydro Thermal Gas and Total Hydro Thermal Nuclear | lostalled Capacity (Existing)  Hydro Thermal Gas and Total Hydro | Gas and Total Hydre | Gas and Total Hydre | Hydro | ě   | Thermal    |                    | elopment) | 196 | Hydro  |           | Total installed Capacity<br>Thermal Nuclear Diesel | apacity<br>Gas and<br>Diesel | Total  | Dependable<br>Capacity<br>(E) | Reserve<br>Capacity<br>(B-A) | Reserve<br>Capacity<br>(B-A/A)% | Thermal<br>or Neclear<br>Unit | Capacity Largest Unit |
| 1,407 909 :.034 195 2.138 0 0                                                                      | 909 1.034 195 2.138 0                                            | 195 2,138 0         | 2,138 0             | o     |     | ٥          | 1                  | 0         | 8   | \$     | 1,034     | 0                                                  | 195                          | 2, 138 | 1, 972                        | \$65                         | 9                               | 300                           | 265                   |
| 1,590 909 1,034 195 2,138 0 300                                                                    | 909 1,034 195 2,138 0                                            | 1,034 :95 2,138 0   | 2,138 0             | 0     |     | 300        |                    | 0         | 300 | 806    | 1.<br>334 | o                                                  | 195                          | 2, 438 | 2, 272                        | 682                          | 4.                              | 8                             | 382                   |
| 1,775 909 1,034 195 2,138 0 75                                                                     | 909 1,034 195 2,138 0                                            | 1,054 195 2,138 0   | 2, 138 0            | 0     |     | <b>5</b> 7 |                    | 0         | K   | 8      | 1, 409    | 0                                                  | 192                          | 2,513  | 2,347                         | 572                          | 32                              | 8                             | 272                   |
| 1,965 909 1,034 195 2,136 50 75                                                                    | 909 1,034 195 2,136 50                                           | 1,034 195 2,138 50  | 2, 138 50           | 20    |     | 7.5        |                    | ٥         | 22  | 959    | 1,484     | Φ.                                                 | 195                          | 2,638  | 2, 472                        | \$07                         | 58                              | 300,                          | 207                   |
| 2,159 909 1,034 195 2,133 120 300                                                                  | 909 1,034 195 2,138 120                                          | 1,034 195 2,138 120 | 2, 138 120          | 120   |     | 300        |                    | o         | 420 | 1.079  | 1,784     | 0                                                  | 195                          | 3,058  | 2,850                         | 721                          | જ                               | 300                           | 421                   |
| 2,372 909 1,034 195 2,138 240 0                                                                    | 909 1,034 195 2,138 240                                          | 1,034 195 2,138 240 | 2, 138 240          | 240   |     | ٥          |                    | 0         | 240 | 1.319  | 1, 784    | ٥                                                  | 195                          | 3, 298 | 3,097                         | 725                          | ត                               | 300                           | 425                   |
| 2,616 909 1,034 195 2,138 37 0                                                                     | 909 1,034 195 2,138 37                                           | 1,034 195 2,138 37  | 2, 138 37           | 8     |     | ٥          |                    | 0         | 37  | 1.356  | 1, 784    | ٥                                                  | 195                          | 3, 335 | 3, 116                        | 8                            | 19                              | 300                           | 200                   |
| 2,852 909 1,034 195 2,138 140 0                                                                    | 909 1,034 195 2,138 140                                          | 1,034 195 2,138 140 | 2, 138 140          | 071   |     | 0          |                    | ٥         | 0+1 | 1.4%   | 1, 784    | 0                                                  | 195                          | 3, 475 | 5, 237                        | 385                          | 13                              | 8                             | <b>\$</b> 8           |
| 3,100 909 1,034 195 2,138 30 300                                                                   | 909 1,034 195 2,138 30                                           | 1,034 195 2,138 80  | 2, 138 30           | 30    |     | 300        |                    | 0         | 380 | 1.576  | 2,084     | 0                                                  | 195                          | 3,855  | 3,60%                         | 8,                           | \$                              | 300                           | 500                   |
| 3,357 909 1.034. 195 2,138 0 300                                                                   | 909 1,034, 195 2,138 0                                           | 1,034 195 2,138 0   | 2, 138 0            | 0     | 0   | 300        |                    | Ö         | 8   | 1.576  | 2, 384    | 0                                                  | 195                          | 4, 155 | 3, 909                        | 552                          | 91                              | 300                           | 252                   |
| 3,600 909 1,034 198 2,138 290 0                                                                    | 909 1,034 195 2,138 290                                          | 1,034 195 2,138 290 | 2, 138 290          | 290   | 290 | ٥          |                    | 0         | 280 | 1,866  | 2, 384    | 0                                                  | 195                          | 4.445  | 4, 149                        | 543                          | 15                              | 300                           | 243                   |
| 3,863 909 1,034 195 2,138 0 0                                                                      | 909 1,034 195 2,138 0 0                                          | 1,034 195 2,138 0 0 | 2, 138 0 0          | · 0   | o   |            | Ü                  | 000       | 8   | 1,300  | 2, 384    | 8                                                  | 195                          | 5, 045 | 4, 749                        | <b>%</b>                     | 23                              | 000                           | 28¢                   |
| 4,127 909 1,034 195 2,138 360 0                                                                    | 909 1,034 195 2,138 360                                          | 1,034 195 2,138 360 | 2, 138 360          | 360   |     | ø          |                    | 0         | 8   | 2,226  | 2, 384    | 900                                                | 195                          | 5,405  | 8,069                         | 342                          | 23                              | 000                           | 275                   |
| 4,407 909 1,034 195 2,138 0 600                                                                    | 909 1.034 195 2.138 0                                            | 1.034 195 2.138 0   | 2, 138 0            | 0     |     | 000        |                    | 0         | 8   | 2, 226 | 2, 98;    | 000                                                | 195                          | 6,005  | 5,669                         | 1, 262                       | 56                              | 8                             | 299                   |
| 4,704 909 1,034 195 2,138 0 0                                                                      | 909 1,034 195 2,138 0                                            | 1,034 195 2,138 0   | 2, 138 0            | 0     | 0   | o          |                    | 0         | ٥   | 2, 226 | 2,984     | 8                                                  | 195                          | 6,005  | 5,669                         | 965                          | 21                              | 8                             | 365                   |
| 5,019 909 1,034 195 2,138 600 0                                                                    | 909 1,034 198 2,138 600                                          | 1,034 195 2,138 600 | 2, 138 600          | 909   | 909 | •          |                    | ٥         | 8   | 2,826  | 2,984     | 8                                                  | 195                          | 6, 605 | 6, 209                        | 1, 190                       | 24                              | 909                           | 290                   |
|                                                                                                    |                                                                  |                     |                     |       |     |            | ١                  |           |     |        | ļ         |                                                    |                              |        |                               |                              |                                 |                               |                       |


Table 3 - 6 KWH Balance














### CHAPTER 4 GEOLOGY

#### 4.1 General

Prior to the recent study, reconnaissance was carried out at two sites, Ban Tha Ta On and Ban Wang Kula, proposed for the Lower Quae Yai Regulating Dam in the Feasibility Report of the Quae Yai No. 1 Hydroelectric Project, 1968.

Investigations at these sites were originally included in this study, however, as it was considered that the Ban Tha Thung Na dam site located further downstream will be most favorable as a result of comprehensive studies on the development plan described in the succeeding chapters, subsequent geological investigations have been concentrated on this site.

This chapter deals with the results of the recent geological investigations, especially with geological features and conditions in the Ban Tha Thung Na dam site. This chapter also provides the results of preliminary studies at a site proposed for the Ban Tha Thong Mon Pumped-storage Project which is one of the subjects of this study.

## 4.2 Regional geology

## 4.2.1 Topography

The Quae Yai River flows generally in a south-easterly direction with local meandering of the river in the project area. A watershed between the Quae Yai River and the Quae Noi River flowing parallel about 15 to 20km away from the right bank of the Quae Yai River forms a mountain range extending toward NW-SE with an elevation of 800 to 900m. On a slope facing the Quae Yai River, there exists many flat plateaus at an elevation higher than 500m, but as a whole, it forms a steep slope facing the river.

On the other hand, the area 2 to 3km away from the left bank of the river is dotted with peaks of 500 to 600 m high, and the hillside of the bank generally forms a steep slope bordering on the Quae Yai River.

Between the Ban Chao Nen and the Ban Tha Thung Na dam sites, fluvial terraces with elevations of 50 to 60 m are formed in various places on both banks of the Quae Yai River. In the area between Ban Chao Nen dam and a site 10 km toward the downstream, terraces are narrow and the width of a valley is only 100 to 150 m at an altitude of 100 m, but at sites further downstream, terraces are larger and the valley width ranges from 1.5 to 2.5 km at the same elevation. At sites further down the river from Ban Tha Thung Na, mountains on both banks of the river become gradually lower with gentle slopes and the valley width becomes wider as a whole,

Between Ban Chao Nen and Ban Tha Thung Na, the average gradient of the stream is 1:1,700 to 1:1,800.

#### 4, 2, 2 Geology

Fig. 4-1 shows the general geology of the Lower Quae Yai Project area and its neighboring areas. From the scope of structual geology, this area forms a part of the Burmese-Malayan geosynclinal belt, where strata formed in the Paleozoic era are distributed, oriented toward NW-SE corresponding to the topographic feature.

The geologic feature of the Lower Quae Yai Project area is as a whole, similar to that of Ban Chao Nen area in the upper stream. With regard to the classification of the strata in the Lower Quae Yai Project area, this report is based on Quae Yai No. 1 Project, Geological Investigations of Reservoir Area, February 1972 by EPDC.

The strata can be classified as given in Table 4-1.

## (a) Metamorphic rocks

Metamorphic rocks with continuous distribution of more than 70km long exist along the mountain range of NE-SE trend forming the watershed between the Quae Yai and Quae Noi Rivers and its south-eastern end crosses the Quae Yai River at the downstream of the Ban Tha Thung Na dam site. Metamorphic rocks are classified as low grade metamorphic rocks consisting mainly of metasedimentary rocks and high grade metamorphic rocks mostly composed of gneiss and crystalline schist, corresponding to the metamorphosing grade.

### (b) Formation A

Formation A is mostly distributed extending over the Ban Chao Nen dam site to the downstream basin and in this project area, there exists narrow distribution on the left bank along the Quae Yai River. Formation A is mainly composed of quartzite, calcareous sandstone, slate and limestone locally interbedded with shale and impure limestone.

#### (c) Formation B

Formation B is distributed on the right bank and in the river bed of the Quae Yai River, and on the left bank beyond the above-mentioned Formation  $\Lambda$ . Formation B is mainly composed of shale, limestone, calcareous shale, calcareous sandstone and local alternation of them.

### (d) Rat Buri limestone

The Rat Buri limestone is widely distributed on relatively higher land of the right bank of the river in the project area and probably overlies the above-mentioned formations in uncomformity. This formation is mostly composed of massive pure limestone and forms karst topography at various spots in this area.

According to the Geological Map of Thailand, 1969, Department of Mineral Resources of Thailand, it is assumed that metamorphic rocks, and formations A and B belong to Tanaosi Group most likely formed in the Silurian, Devonian and Carboniferous periods and that Rat Buri limestone was formed in the periods of the Carboniferous to Permian. Except Rat Buri limestone, each stratum distinctly showed the folded structure and the axis of the folds generally oriented toward NW-SE.

Of faults either actual or assumed, those that indicate NW-SB strike corresponding to the general strike of strata in the project area and NE-SW strike which crosses the NW-SE strike are prevalent. Deposits formed in the Cenozoic era include diluvium and alluvium, with the former being river terrace deposits along the banks of the Quae Yai River and the latter being talus deposits, residual soil for the most part in the mountainous area and deposits on river bed. These Cenozoic deposits directly cover the Paleozoic formations.

## 4.3 Geology of Ban Tha Thung Na dam site (cf. Fig.4-1, 4-2, 4-3, 4-5)

## 4.3.1 Field investigation

Topographical survey and geological explorations of Ban Tha Thung Na dam site were commenced by EGAT in the latter half of 1975. During the field investigation the Mission requested additional test pits and core drillings and the following investigation works were completed by the end of April, 1976.

26 test pits, 78.0 m in total length

16 core drill holes, 483, 85 m in total length

The features of the test pits and drill holes are listed in Tables 4-2 and 4-3, and the locations are shown on Fig. 4-2.

Detailed geological logs of test pits and drill holes are also shown on Fig. 4-5 and Appendix (c, sheet 1 to 33), respectively.

The field geological mapping in the dam site and its vicinity was carried out, in co-operation with EGAT and Mission, using aero-topographical maps (1:5,000 scale) and topographical maps (1:50,000 scale). The results of the said studies are shown on Fig. 4-2 and 4-3. In preparing these figures reference was made to the topographical maps of 1:2,000 scale which was prepared by EGAT at the end of April, 1976.

## 4, 3, 2 Topography

The Quae Yai River menders forming a oxbow at the Ban Tha Thung Na dam site. It flows locally to the south at the dam axis, to east at the upstream and to the west at the downstream, respectively. The gradient of river at the site is approximately 1:2,000.

The valley of the damsite bounds on steep mountain on the left bank and to a gently sloped mountain range beyond a flat terrace of several hundreds meters wide on the right bank. The width of the valley is about 800 m at the proposed high water level of the reservoir.

The river water level is about 40m above sea level and the width of the river channel is about 70m in the dry season.

Fig. 4-3 shows the topographical profile of the dam axis.

#### 4, 3, 3 Geology

### (a) Bedrock

## (1) Rock type and distribution

In the Ban Tha Thung Na dam site and its neighboring areas, most of strata are diluvial and alluvial deposits except for continued outcrops of bedrock on the steep slope of mountains on the left bank of the river. On the right bank, there are only local outcrops along the river and the gentle slope of mountains.

Bedrock in this area are for the most part assumed to have been formed during the Paleozoic era and, judging from scattered outcrops, test pits and cores of drill holes, the types and the distribution of the rocks can be classified as follows:

Namely at the dam site, as illustrated in Figs. 4-2 and 4-3, limestone is distributed over higher parts of the mountain of the left bank, calcareous shale on the outskirts of the left mountains and limestone and calcareous shale along the river. On the right bank of the river, shale is found over flat terrace and skirts of mountains and metasendimentary rocks in the mountainous area. As a whole, these strata show zonal distribution crossing the dam axis.

Details are given below with regard to the types of rocks distributed in this region.

## (Limestone)

Other than on the steep slopes of mountains on the left bank, limestone is exposed only in several locations over the area adjacent to the dam axis and on each side of the river bed, as verified by core drill holes, BL-1, BL-2, BR-1 and BR-6 drilled in the area adjacent to the river bed and the neighborhood.

Limestone distributed in this area is grey and/or greyish black. It is generally fine grained though contains in part sandy or argillaceous matters and is compact and hard. For the most part, it presents banded structure and its bedding is visible.

BC-1 drilled into the river bed shows the presence of whitish, massive, compact and hard limestone, but the range of distribution is considered relatively small.

#### (Calcareous shale)

Calcareous shale is not only exposed on the excavated slope on highway running along the river on the left bank but also found by drill holes BL-2 and BR-2. The calcareous shale is compact and hard, and it features distinct bedding that tends to exfoliate and is brittle as compared to limestone. Also, very thin veins of calcite have generally been developed.

#### (Shale)

Shale crops out at the areas of the mountain foot of the right bank on the proposed dam axis and at places on the river bed of the right bank about 800 m upstream from the dam axis.

The presence of shale has been confirmed by test pits, PR-3, 5, 7, 10, 13, 15, 21, 22 and 25 and core drill holes, BR-3, 4, 5, 7, 9 and 10 drilled at the right bank. This shale is black and non-calcareous. It is in part subjected to metamorphism and composed of slaty facies. Most of the rocks are fine grained, mixed locally with sandy facies. The shale is generally compact and solid, but more exfoliative and fragile than calcareous shale, especially in the weathered portions. Flat area on the right bank shows dominant distribution of black shale, mingled in part with slightly calcareous and noncalcareous sandstone as found in drill hole BR-9.

The alternation of calcareous shale and limestone was found in drill holes, BL-3, 4 and 5 and BC-1 adjacent to the river bed, but no outcrops of these rocks were found. It was observed that beds with thickness of 20-30cm prevailed, but in some limited cases, the thickness reached I meter. The alternation of the strata is unidentified with regard to its overall distribution, but it is assumed with relative certainty that the strata show a dominant distribution along the main stream of the Quae Yai River.

## (Metasedimentary rocks)

It is also considered that metasedimentary rocks are extensively distributed from the dam abutment on the right bank to the inside of mountains, but these rocks are not distributed in the area of the dam foundation. The recent geological investigation discovered a large number of outcrops of sandstone showing schistosed structure in this region, including minor outcrops of calcareous sandstone with schistosed structure and black schist. Though the degree of metamorphism locally varies, the metasedimentary rocks are generally exfoliative.

#### (2) Geological structure

The formations of bedrock, though having undergone local changes in width, appeared in conformity as a whole.

The formations, though locally forming somewhat steep folding structure, show the types of gentle and symmetrical folding structure having axis oriented toward NNW-SSE.

Judging from the outcrops, the strike and dip of strata, except on the dam abutment of the right bank, indicate N  $10^{0}$  -  $30^{0}$  W in strike crossing the dam axis as a whole. As regards the dip of the formation, it inclines to vertical in places from the proximity of the river bed to the flat area, while it varies  $35^{0}$  to  $75^{0}$  NE on the left bank.

Various types of rocks show clear bedding on their outcrops, but the presence of the structures is more evident in shale and calcareous shale, with each type of rocks showing local joints which cross the strike of bedding plane.

Though no major faults have been discovered by the recent field geological investigations, several minor faults have been detected in drill holes, BR-3, 4 and 5. It is unidentified as yet whether the faults are continuous.

Data or other information showing the boundary between black noncalcareous shale and metasedimentary rocks are presently not collected, but it may be inductively assumed that there is the presence of faults judging from the presence of local irregularity in strike and dip of strata. Also, judging from the presence of reconsolidated sheared zone in some of the cores of drill holes, it is assumed that some faults and sheared zones locally exist.

## (3) Weathering

The outcrops of limestone are solid and relatively fresh and have weathered joints or bedding planes. Weathering is limited to these structures.

Weathering occurs to the outcrops of calcareous shale, only to a depth of less than 1 meter where rocks have been discolored or embrittled. The weathered portion of rock is not so thick.

Though alternation of calcereous shale and limestone are not distributed in the river bed, judging from the cores of borings, weathering tends to extend along the calcareous shale. Nevertheless, bedrocks as a whole have not been subjected to serious weathering.

Shale is subjected to weathering more than any other rocks in the foundation of the proposed dam. Partially exposed shale has been discolored and extremely softened due to weathering. According to observation of test pits and core borings, the shale has been badly weathered from the surface to a depth of 5 to 10 m, and become more brittle and fragile.

Schistosed sandstone which is most widely exposed than other sedimentary rocks, is light brown or reddish brown color due to weathering. But, as a whole the outcrops of this sandstone is little, and therefore, information about weathering is insufficient, however it appears that this sandstone is subjected to little deterioration in its characters.

## (4) Solubility of calcareous rocks

Small solution cavities and narrow and shallow open fissures were locally observed in the outcrops of limestone. These are not continuous and form cylindrical shape, with diameters ranging from 20 to 30cm. Bottoms were visible for most of the cavities and fissures, with a part of them being clogged with fine grained materials or secondary lime deposits. The deepest one is estimated about several meters. It often occurs that open fissures spread along bedding planes or joints, with width of 2 to 3cm and depth of less than several meters.

The outcrops of calcareous shale exhibit the phenomenon of solution cavities, though in a smaller scale compared to those of limestone. Of exploratory holes drilled near the river bed or on the left bank, there were portions in BR-1, BR-6, BR-8, BL-1 and BL-5 penetrating calcareous shale over a fair depth where core was not recovered. The drillers attribute this to the presence of solution cavities.

Especially, core recovery is quite poor over a section of 15 m long, as in the case of BR-1, which may be due to the drill extending into a vertical solution cavity.

Also, judging from the results of boring of calcareous rocks, it is assumed that most of individual cavities are formed on a small scale and distributed at a depth of 10 m from rock surface, even though the coreless portions may have been solution cavities.

## (b) Quaternary deposits

## (1) Diluvium

The diluvium near the dam site has for the most part been formed by river terrace deposits. One shows long, slender distribution along the left bank and the other a wide distribution over flat river terrace on the right bank.

A part of the outerops of the diluvium forms a cliff of higher than 10 m along the southern border of the terrace of right bank. Other areas are, as a whole, covered with alluvium and have been penetrated by test pit and core boring in the neighborhood of the dam site. The elevation of the surface of this deposit is up to 60m and down to a minimum of 45 m, directly covering bedrock.

These deposits are mainly composed of clay, silt, sand and other fine grained materials and, generally gravels exist in lower layers. The deposits locally contain small concretions of secondary lime.

Sorting is locally observed in these particles of different diameter, but generally stratification cannot be identified.

Soil of the deposits is in part relatively compact, but is generally loose.

The diluvium will be more than 15m in maximum thickness, with its thickness being 2 to 12m above the dam axis.

## (2) Alluvium

The alluvium is for the most part formed by talus deposits on the slopes and skirts of mountain, flood plain and river bed deposits, and topsoil. Moreover, there are deposits of secondary lime in local, limited area. These deposits are found on diluvium or directly on bedrock.

Talus deposits have a long and slender distribution along the skirts of hills on the left bank and, as verified by drill hole BL-2, it is 4m thick in certain parts, but generally not more than 1m thick. Otherwise, the talus deposits have little distribution, if any, over foot of hills on the right bank.

River deposits are composed of silt, sand and gravel, and are extremely loose as a whole, with thickness varying at locations to a large degree, up to a maximum of about 15 m.

Topsoil is thinner than 50cm as a whole and some layers of secondary lime had a thickness of 1.8m as observed in drill hole BL-5, but their distributions are limited.

### (c) Water table

There is a spring beside a road on the left bank. This is located on a foot of a hill about 80 m upstream of the dam axis, and its elevation is about 64 m. The discharge of the spring was recorded to be about 4 to 5 1/min in the dry season of 1975.

In the neighboring area, no other spring or water flow in hill stream was found during this season.

In the drill holes, water table was measured before and after each permeability test. Table 4-4 shows the water tables in the bore holes during the final stage of permeability test and indicates that underground water is flowing toward the river as a whole with gentle slopes.

Upon recording the geology of a test pit (November 1975) on the right bank, standing water was observed on the bottom of pits PR-7, 10 and 15, but the relationship between the standing water and the water table cannot be identified yet.

## (b) Permeability

Bedrock permeability test was conducted in all bore holes, except BL-4, Figures 4-3 and Appendix (C) show relative results.

Permeability tests were accompanied with boring by means of the single packer injection process. The calculation of the coefficient of permeability (K) was based on the United States Bureau of Reclamation formula:

$$K = \frac{Q}{2\pi LH} - \log_e \frac{L}{r}$$
  $L \ge 10r$ 

Where:

K = Coefficient of permeability

Q = constant rate of flow into the hole

L = length of the portion of the hole tested

H = differential head of water

r = radius of hole tested

loge = natural logarithm

Table 4-5 shows the coefficients of permeability by depth of each drill hole. The results of the permeability tests are as follows:

(1) Permeability in limestone formation varies much with the location. For example, in the case of BR-1, the coefficient of permeability was so great and it did not allow the packer adhesion, whereas in the case of BR-6, some portions did not allow the leakage of water. The coefficient of permeability ranges from 2.2 x 10<sup>-3</sup> cm/sec. to 3.7 x 10<sup>-6</sup> cm/sec.

- (2) The coefficient of permeability for calcarcous shale ranges from 7.5 x 10<sup>-4</sup> cm/sec. to 3.6 x 10<sup>-6</sup> cm/sec. Generally, permeability is relatively low.
- (3) The coefficient of permeability for the alternation of calcarcous shale and limestone ranges from 1.7 x  $10^{-3}$ cm/sec. to 7.8 x  $10^{-6}$ cm/sec. The range of fluctuation is wide.
- (4) The coefficient of permeability for shale ranges from 9.3 x  $10^{-4}$  cm/sec. to 1.3 x  $10^{-5}$ cm/sec. A part of BR-7 and BR-10 is impermeable. Generally, permeability is relatively low.

## 4.3.4 Engineering geology

#### (a) Dam axis

Four possible dam axes were considered for the Lower Quae Yai Project, identified as Sections I, III, IV and V in Fig. 4-2, from topographic conditions and distribution of outcrops of bedrock. Therefore, various investigations were made into these alternative dam axes.

As a result of geological investigations, including the confirmation of the location of the bedrock for the dam foundation, it was found that deposit on the bedrock is the thinnest on Section IV on the left bank and near river bed, and on Section IV and a little upstream on the right bank. Consequently, A-A section was selected as the dam axis as indicated in Fig. 4-2.

#### (b) Foundation of civil works

## (1) Foundation of concrete dam

River deposits, with a thickness of 5 to  $12\,\mathrm{m}$ , are distributed within the foundation of the concrete dam.

The foundation is composed of limestone, calcareous shale and alternation of limestone and calcareous shale. Weathering of the surfaces of the bedrock have not progressed. It appeared that the surfaces of the bedrock might be fairly rugged due to the presence of solution cavities.

As a foundation of the structures, the bedrock shall require some treatment including excavation or dental work to prepare a smooth surface, in addition to removal of river deposits. Also, consolidation grouting will be needed depending on the features of the solution cavities.

Judging from the results of the permeability tests, curtain grouting will be required. Though further studies will be required on the depth of the grouting, it may be tentatively concluded that grout curtains extending to a depth of about 25 m from the surface of bedrock will be required for the structure foundation.

### (2) Foundation of rockfill dam

Diluvium and alluvium, which cover the bedrock of black shale, have a thickness ranging from 2 to 10 m and become thinner toward the right abutment.

The black shale is fragile and embrittled from the surface to several meters deep due to the strong effect of weathering.

In order to prepare the foundation on which to build the relatively higher portion of the fill dam adjoining the concrete dam, the overburden and especially badly weathered portion of shale need to be excavated.

On the right flat area, it will be sufficient to excavate weathered surface of shale in relation to the height of the dam.

Though curtain grout may be required at portions where the dam height is great, it is assumed that no curtain grouting is necessary on the flat area of the right bank, judging from the dam height, the permeability of foundation, water table, etc., and it will be sufficient to execute blanket grouting which will also serve the purpose of consolidation grouting.

## (3) Foundation of intake, powerhouse and tailrace

Overburden with an approximate thickness of 10 to 15 m are distributed at sites proposed for the construction of these structures.

Bedrock is composed of limestone, calcareous shale, shale and alternation of these rocks, but the surface of these rocks is not subjected to excessive weathering as seen in drill hole BL-1 and relatively solid portions are mixed, as found in BL-4 and 5, with portions where core recovery rate is low from the surface to a depth of 5 to 7m due to existence of weathered rock and/or solution cavities. Weathered bedrock should be excavated to prepare the foundation for the intake structure.

Bedrock at the power plant site is designed to be excaveted to elevation 26 m and no specific defects have been found with regard to the geology of this area.

The curtain grout for the dam foundation will be required to be extended over the entire length of the intake structure.

According to the data of drill hole BL-2 (elevation of water table: 54.14 m), the water table at the left bank is higher than the elevation (about 40 m) of the water surface of the main stream during the dry season, but it is lower than the normal high water level (elevation: 59.70 m) of the regulating reservoir. Moreover, considering that the bedrock of the left bank is calcareous rocks, the curtain grout will most probably have to be extended into the left bank.

## 4.4 Geology of Ban Wang Kula dam site

## 4.4.1 Field investigation

Regarding the Ban Wang Kula dam site, preliminary geological reconnaissance was conducted in 1967 (Feasibility Report, Quae Yai No. 1 Hydroelectric Project, 1968).

During the period between 1967 and middle of 1975, topographic map on a scale of 1:2,000 was prepared for the proposed dam site, but no geological investigation was conducted.

Recently, the Mission, with the cooperation of BGAT, carried out field geological mapping of the dam site using the 1:2,000 scale topographic map in order to compare the geology of this project with that of the Ban Tha Thung Na site and to analyse the geological structures in the reservoir area.

### 4.4.2 Geological condition

The Ban Wang Kula dam site is situated about 3.5km upstream of the Ban Tha Thung Na dam site. This dam site faces a steep mountain on the left bank and, on the right bank, there is a river terrace about 400m wide which adjoins a ridge.

The entire configuration of the valley is similar to that of the Ban Tha Thung Na site, but it is slightly narrower than the latter, with a width of about 500 m at the high water level of the regulating reservoir.

The present geological mapping will enable one to get approximate features of geological structure as follows.

- a) Stratigraphically, bedrocks in this site belong to the same geological unit which mainly consists of calcareous rocks distributed in mountains on the left bank of Ban Tha Thung Na dam site.
- b) Outcrops of bedrocks found at the site can be classified as follows:

Left Bank: Calcareous sandstone and sandstone River bed and flat terrace on right bank: Calcareous sandstone Ridge on right bank: Limestone, calcareous shale and shale

- c) One fault with sheared zone of about 30m wide crops out on the slope of the highway just downstream of the proposed dam axis on the left bank, with a strike parallel to the dam axis and vertical dip. By this fault, the geology is divided into different units and the stratification of the strata is disturbed in the vicinity of the fault. The fault is consealed with overburden and it might extend to the right bank crossing the river.
- d) Calcareous rocks are locally exposed on the flat terrace on the right bank. Though relatively small and shallow, there are a few solution cavities of diameters ranging from 1 to 1.5 m on the surface.

e) Close observation of 1:2,000 scale topographical maps will enable one to detect the presence of topographical depressions, though on a small scale, in the flat plains around the dam site. This is suggestive of the existence of solution phenomenon in calcareous rocks immediately below the ground surface.

As a result of geological field reconnaissance performed this time, it may reasonably be concluded that the Ban Wang Kula site is not better than the Ban Tha Thung Na site in view of geological conditions.

## 4.5 Geology of reservoir area

## 4.5.1 Field investigation

Geological investigations of the lower Quae Yai reservoir area have not been executed so far. However, geological investigations around the Ban Chao Nen project was carried out from 1970 to 1973 which included most part of this regulating reservoir area in order to analyse the overall geological structures and the results were compiled in the following reports.

Report on the Reservoir Photogeological survey, Quae Yai No. 1 Project, 1971 by KASC.

Evaluation of Photogeological Survey of Quae Yai No. 1 Project, 1971 by EPDC.

Quae Yai No. 1 Project, Geological Map of Reservoir, 1973 by EPDC.

The recent investigations of the reservoir area were carried out mostly along the river banks and the existing road on the left bank with 1:5,000 aerial map and 1:50,000 map, and geological maps covering the area between the Ban Chao Nen project and a site approximately 5km downstream of the Ban Tha Thung Na Project.

## 4.5.2 Topography

High water level of the Ban Tha Thung Na reservoir is 59.70m above mean sea water level and the length of the reservoir is approximately 28 km. The upstream end of the reservoir reaches to the Ban Chao Nen power plant. Width of the reservoir immediately upstream of the dam is approximately 1.5 km, more than 300 m up to a point approximately 5 km upstream and in the flood plain in the upper stream. Therefore, the reservoir as a whole forms a relatively narrow lake. High water level of the reservoir mostly reaches to the terrace surfaces along both banks of the Quae Yai River and the reservoir water reaches to the steep slopes of the mountains at only a few places. There are many terrace scarps of a few meters to over ten meters high on both banks.

## 4.5.3 Foundation rock and overburden

### (a) Foundation rock

There are outcrops of the foundation rock on the river banks in the reservoir area. The locations of outcrops confirmed by the recent geological investigations generally coincide with the points along the river in Fig. 4-1 showing strikes and dips of strata.

Foundation rock is composed of sandstone, shale, limestone, calcareous shale and calcareous sandstone. The outcrops confirmed are of alternation of sandstone and shale in the area upstream of Huai Sadong which joins the Quae Yai River midway of the reservoir and black non-calcareous shale in the downstream area. Though there exist disturbance of strikes and dips of strata locally, strikes of the foundation rock of N 10° - 40°W which generally conform to the direction of river course in the reservoir area are predominant. Dips in the upper basin are mostly 60° - 75° SE, in the intermediate basin between Huai Sadong and the Ban Wang Kula site irregular and in the lower basin are vertical. As mentioned above, the foundation rock at the most part of the reservoir area is judged to be Formation B and Formation A near the Ban Chao Nen project in consideration of types and geological structures of the foundation rock.

### (b) Overburden

Most part of the regulating reservoir area is covered with diluvium and alluvium. This overburden consists of materials of various sizes and its thickness is more than 10m around the river bed and gradually tapers toward the mountain skirt.

## 4.5.4 Watertightness

In the study of possible leakage through the reservoir foundation composed of calcareous rocks, there are two essential subjects to be examined: analysis of geological structures and undulation of water tables in and around the reservoir area.

Following are the geological conditions concerning the water-tightness of the reservoir foundation revealed from the recent investigations.

- (a) The foundation rock in and around the regulating reservoir is composed of limestone and non-calcareous rocks which are distributed alternately as a whole. Especially, metasedimentary rocks distributed on the right bank of the dam site extend toward the upstream mostly parallel with the reservoir making negative justification of possible leakage through the foundation on the right bank of the reservoir.
- (b) No wide distribution of pure limestone which creates big solution cavities and sinkholes has observed in the reservoir area.
- (c) The foundation rock throughout the reservoir area sustains the folding structures of various grade and extension of each geological unit and its thickness are both varied.
- (d) During the recent investigations, there were running water in some small streams around the reservoir area in spite of the dry season as shown in Fig. 4:1.
- (e) On the left bank of the Ban Tha Thung Na dam site, calcareous rocks are mainly distributed with partial intercalation of non-calcareous rocks. There is a spring at elevation higher than the river surface and water tables measured in drill holes are also higher than the river surface in this area.

The maximum depth of the reservoir created by the dam is only 30 m and there will be small possibility of noteworthy leakage from the reservoir taking the above-mentioned geological conditions into consideration. Furthermore, fine grained materials which may function as a blanket layer under this small water pressure are included in the overburden covering most part of the regulating reservoir area providing a favourable condition for watertightness.

## 4.5.5 Stability of slopes

'The normal high water level of the regulating reservoir borders on diluvium and alluvium as a whole. Locally, these unconsolidated deposits form cliffs with a height of several meters.

It is probable that in such places, some cliffs are subjected to erosion and local slope failure may occur due to fluctuation of water level of the regulating reservoir.

Though detailed investigations have not been initiated against such phenomena, according to our investigations, a large number of cliffs exist below the normal high water level of the regulating reservoir and we assumed that large scale slope sliding will seldom occur even in some of the cliffs above the high water level.

In this area, there have been found no place which will cause landslide or large scale slope sliding.

## 4.6 Geology at Ban Tha Thong Mon Project

### 4.6.1 Field investigations

Initial steps of the field investigation of this project was reconnaissance study conducted by the Mission. Aerial inspection with helicopter was carried out over the proposed area, preliminary to the geological reconnaissance with 1:5,000 and 1:50,000 scale maps in the area where the upper pondage, power plant and outlet of tailrace tunnel are planned. The project area is also included within the region of the photogeological interpretation performed as a part of geological investigations of the Ban Chao Nen reservoir area.

## 4.6.2 Topography

This project is located on the right bank of the Quae Yai River, approximately 9km downstream of the Ban Chao Nen dam or approximately 19km upstream of the Ban Tha Thung Na dam site.

There extends wide table land at an elevation of around 600 m on the upper portion of the right bank of the Quae Yai River, forming a steep slope between the said table land and the Quae Yai River, though comparatively gentle slopes are found at elevation 400 m to 500 m. Therefore, this area provides desirable topographical conditions for the pumped-storage scheme.

The area for the upper pondage is covered with dense vegetation of bamboos, shrubs and arbores, and the ground surface is generally flat with less undulations

showing that this area is corrosion plateau, one of the Karst phenomena usually observed in this region.

The mountain in which the headrace tunnel, powerhouse and tailrace tunnel are planned have some hillstreams on the slope faced to the upstream as viewed from the Quae Yai River and forms a curved and relatively steep slope toward the downstream of the river. There are narrow terraces along the main stream.

### 4.6.3 Geology

Generally, there are few outcrops observed on the mountain in the project area. Only a few outcrops of grey to pale grey and rather massive pure limestone were found at the proposed site of the upper pondage. Also, sandstone and alternation of shale and sandstone outcrops were observed at some places of a small stream located upstream of the tunnel route.

Following are the geological conditions of the project site assumed on the basis of the results of photogeologic interpretation, etc. carried out so far at the Ban Chao Nen project.

- (a) Foundation rock is of the Paleozoic era.

  Rat Buri limestone is distributed at the upper pondage site, and so called Formation B composed of shale, limestone, sandstone, calcareous shale, calcareous sandstone and alternation of these rocks at the proposed outlet structure site.

  Rat Buri limestone probably covers the Formation B in unconformity.
- (b) The entire surface of the proposed upper pondage site is covered with overburden and no outcrop is observed, however the foothill around this area is dotted with outcrops of limestone. Thickness of the overburden is not clarified at present. As this area is assumed to be a part of flat corrosion plateau, the overburden will be mainly composed of residual soil, secondary lime deposits and some topsoil.
- (c) It is assumed that Rat Buri limestone is distributed at the upper section and Formation B at the lower section of the tunnel route. However, the location and features of the boundary of these strata (unconformity plane) have not been confirmed yet. In Fig. 4-4, the location of unconformity plane is tentatively drawn by making reference to the existing data (Quae Yai No. 1 Project, Geological Investigation of Reservoir Area, Feb. 1973 by EPDC).

Table 4-1 Generalized Geologic Sequence of Lower Quae Yai Preject Area

| Era       | Stratigraphic unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rock                                                                                                        | Distribution                                                               | Characteristic                                      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|
| Cenozoic  | Quaternary<br>system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Terrace, flood plain,<br>river bed, talus deposits<br>and topsoil.                                          | Widespread                                                                 | Mainly fino<br>materials,<br>unconsolidated         |
|           | CUnconformity ~~  Rat Buri  limestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Massive pure limestone                                                                                      | Forms cliff and tableland; Quae Noi basin to right bank of Quae Yai River. | Remarkable<br>KARSTIC<br>phenomena<br>gently folded |
| Paleozoic | Ourconformity \\ \( \frac{6}{6} \) \( \frac{6}{6 | Shale, limestone, sand-<br>stone, calcareous shale<br>and sandstone, and<br>alternation of these<br>strata. | Both banks of<br>Quae Yai River.                                           | Folded                                              |
| 144       | Tanaosi group (So-called Kanchanaburi unitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quartzite, calcareous sandstone and slate; locally with impure limestone and shale, beds.                   | Damsite to east-<br>orn mountain area.                                     | Rock is vory hard, but folded.                      |
|           | Metamorphic rocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metasedimentary rocks. Schist and gnelss.                                                                   | Divide between<br>Quae Yai and Quae<br>Not River.                          | Severely folded.                                    |

Table 4-2 List of Test Pits at Ban Tha Thung Na Dam Site

| Pit No. | Top Ele-<br>vation<br>(m) | Dopth<br>(m) | Location                                     | Remarks                                          |
|---------|---------------------------|--------------|----------------------------------------------|--------------------------------------------------|
| PI,- 1  | 47, 33                    | 4.7          | Section III, left bank                       |                                                  |
| PR- 1   | 51.73                     | 4.0          | Section III, right bank                      |                                                  |
| PR- 2   | 49,50                     | 7.0          | 100m upstream of<br>Section I, right bank    |                                                  |
| PR- 3   | 58.78                     | 0.9          | Section III, right bank                      | Weathered shale (bedrock)<br>at 0.8 m to bottom  |
| PR- 4   | 55.31                     | 4.8          | 100m upstream of<br>Section I, right bank    |                                                  |
| PR- 5   | 58.37                     | 1.0          | Section III, right bank                      | Weathered shale (bedrock) at 0.2 m to bottom     |
| PR- 6   | .48.62                    | 5.3          | 100 m upstream of<br>Section I, right bank   |                                                  |
| PR- 7   | 59, 98                    | 1,5          | Section III, right bank                      | Weathered shale (bedrock)<br>at 0.2 m to bottom  |
| PR- 8   | 48.08                     | 5.0          | 100 m upstream of<br>Section I, right bank   |                                                  |
| PR- 9   | 55, 85                    | 1.9          | Section I, right bank                        |                                                  |
| PR-10   | 52.64                     | 4.7          | Section I, right bank                        | Weathered shale (bedrock)<br>at 4,5 m to bottom  |
| PR-11   | 54.26                     | 2.8          | Section I, right bank                        |                                                  |
| PR-12   | 56, 16                    | 3.0          | Section III, right bank                      |                                                  |
| PR-13   | 55, 10                    | 3.0          | Section IV, right bank                       | Weathered shale (bedrock)<br>at 1.3 m to bottom  |
| PR-14   | 59,11                     | 2. 1         | Section IV, right bank                       |                                                  |
| PR-15   | 58.52                     | 1.6          | Section IV, right bank                       | Weathered shale (bedrock) at 1.4 m to bottom     |
| PR-16   | 55.87                     | 2.0          | Section V, right bank                        |                                                  |
| PR-17   | 55.13                     | 3.2          | Section V, right bank                        |                                                  |
| PR-18   | 52.88                     | 3.0          | 120 m downstream of<br>Section V, right bank |                                                  |
| PR-19   | 52.47                     | 3.0          | 130 m downstream of<br>Section V, right bank |                                                  |
| PR-20   | 58,55                     | 3.0          | Section I, right bank                        |                                                  |
| PR -21  | 56.26                     | 2.5          | Section IV, right bank                       | Weathered shale (bedrock)<br>at 2, 3 m to bottom |
| PR-22   | 56.42                     | 0.5          | Section IV, right bank                       | Weathered shale (bedrock)<br>at 0.2 m to bottom  |
| PR-23   | 56,49                     | 3.0          | Section V, right bank                        |                                                  |
| PR-24   | 55,55                     | 3.0          | Section V, right bank                        |                                                  |
| PR-25   | 56.33                     | 1.5          | Section V, right bank                        | Weathered shale (bedrock) at 0.8 m to bottom     |
|         | Total                     | 78.0         |                                              |                                                  |

Table 4-3 List of Drill Holes at Ban Tha Thung Na Damsite

| - 69 60 44 62 20                                                         | 45,48                                             |                               |                                                                  | י סתוב פבו (שו)                                                 | surface(m) | (m)   | (%)   | Fore (mm)   |                   | or pegrock i Completed         |
|--------------------------------------------------------------------------|---------------------------------------------------|-------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|------------|-------|-------|-------------|-------------------|--------------------------------|
| () m 4 v1 -2                                                             | 43.93                                             | Vertical                      | 40.00                                                            | 13.7                                                            | 31.78      | 29.28 | 52.1  | 114 - 49.7  | 57                | Oct. 24 1975<br>Dcc. 3 1975    |
| w 4 n 2                                                                  |                                                   | £                             | 26.20                                                            | 11.20                                                           | 32.91      | 11.30 | 100.0 | 91.3 - 76.2 | SH                | Jan. 23 1976<br>Feb. 13 1976   |
| 4 VI V                                                                   | 54.34                                             | :                             | 24. 20                                                           | L **                                                            | +9.6+      | 8.30  | 63,4  | ÷           | SH, SS<br>CSH     | Uan. 26 1976<br>Feb. 10 1976   |
| ιςι ~0<br>1 !                                                            | 59.91                                             | :                             | 22.00                                                            | 6.7                                                             | \$3.21     | 11.30 | 2.96  | ÷           | SH,<br>Sandy SH   | (Feb. 12 1976<br>(Feb. 21 1976 |
| <b>,</b>                                                                 | 63.02                                             | 2                             | 21.25                                                            | 0                                                               | 63.02      | 6.05  | 64.5  | -           | SE                | Feb. 23 1976<br>Feb. 29 1976   |
|                                                                          | 42.96                                             | :                             | 35.00                                                            | 0.5                                                             | 42.46      | 4.05  | 98.7  | :           | 2.3               | Jan. 23 1976<br>(Feb. 2 1976   |
| 53-7                                                                     | 55.73                                             | i.                            | 45.00                                                            | 7.5                                                             | 48.23      | 12.50 | 70.5  | ;           | ЖS                | Dec. 23 1976<br>Uan. 13 1976   |
| 8 - 8E                                                                   | 55.96                                             | :                             | 21.00                                                            | 6.0                                                             | 49.96      | 05-7  | 6-85  | <i>z</i>    | হ্য               | (Feb. 11 1976<br>(Feb. 16 1976 |
| о-яд                                                                     | 55.00                                             | ż                             | 29-50                                                            | 0.4                                                             | \$1.00     | 7.50  | 92.4  | *           | SH, SS            | Feb. 10 1976<br>Feb. 28 1976   |
| 38-10 "                                                                  | 59.73                                             | =                             | 25.00                                                            | 8.0                                                             | 51.73      | 7.50  | 94.1  | 1,          | SH                | Mar. 3 1976<br>(Mar. 11 1976   |
| BC- 1 River bed                                                          | 39.40                                             | L.                            | 20.50                                                            | 5.5                                                             | 33.90      | 5.40  | 100.0 | 2-92 - 411  | LS<br>SH/CSS      | Feb. 20 1976<br>Feb. 27 1976   |
| SL- 1 Left bank                                                          | 74.47                                             | ŧ                             | 16.20                                                            | 2.1                                                             | 43,27      | 2-90  | 96.3  | 91.3 - 76.2 | રા                | Jan. 10 1976<br>Jan. 12 1976   |
| 2 - TE                                                                   | 65.08                                             |                               | 65.00                                                            | 3.85                                                            | 61.23      | 1.85  | 97.8  | Ē           | LS,<br>CSH        | Man. 10 1976<br>(Feb. 5 1976   |
| 32-3                                                                     | 55.70                                             |                               | 33.00                                                            | 17.4                                                            | 38.3       | 18.00 | 0.66  | 2           | CSH, LS<br>CSH/LS | Mar. 29 1976<br>Mar. 1 1976    |
| BL-4 "                                                                   | 55.59                                             | =                             | 30.00                                                            | 11.8                                                            | 43.79      | 17.00 | 63.2  | =           | LS.               | Mar. 18 1976<br>Mar. 22 1976   |
| 3L-5                                                                     | 48.38                                             | ±                             | 30.00                                                            | 10.2.                                                           | 38.18      | 15.00 | 81.1  | Ξ           | CSH/LS            | Mar. 23 1976<br>Mar. 27 1976   |
|                                                                          |                                                   | Total :                       | : 483,85                                                         |                                                                 |            |       |       |             |                   |                                |
| Abbreviation of rock r<br>LS : Limestond<br>SH : Shale<br>SS : Sandstone | n of rock type<br>Limestone<br>Stale<br>Sandstone | ST/HSO<br>CSH : CS<br>CSH/TSO | Calcareous shale<br>Calcareous sandstone<br>: Alternation of CSF | careous shale<br>careous sandstone<br>Alternation of CSH and LS | SI Pu      | ÷     |       |             |                   |                                |

Table 4-4 Water Table in Drill Hole

| Hole<br>No. | Top Ele-<br>vation(m) | Drillod<br>Depth(m) | Depth to<br>Water<br>Table (m) | El, of<br>Water<br>Table (m) | Dato       | Remarks                             |
|-------------|-----------------------|---------------------|--------------------------------|------------------------------|------------|-------------------------------------|
| BR- 1       | 45,48                 | 40.0                | No record                      |                              |            | ,                                   |
| BR - 2      | 44.11                 | 26, 2               | 3, 6                           | 40.51                        | Feb13-1976 |                                     |
| BR- 3       | 54.34                 | 24.2                | 10.0                           | 44, 34                       | Feb10-1976 |                                     |
| BR - 4      | 59,91                 | 22.0                | 17.0                           | 42.91                        | Feb21-1976 |                                     |
| BR- 5       | 63,02                 | 21.25               | 10.7                           | 52.32                        | Feb29-1976 |                                     |
| BR- 6       | 42.96                 | 35.0                | 2.66                           | 40.30                        | Feb2-1976  |                                     |
| BR- 7       | 55.73                 | 45.0                | 12.68                          | 43,05                        | Jan13-1976 |                                     |
| BR- 8       | 55.96                 | 21.0                | 14.3                           | 41.66                        | Feb16-1976 | ,                                   |
| BR- 9       | 55.00                 | 29.5                | 11.71                          | 43.29                        | Feb28-1976 |                                     |
| BR-10       | 59.73                 | 25.0                | 17.0                           | 42.73                        | Mar11-1976 |                                     |
| BC- 1       | 39, 40                | 20,5                | (+0.8)                         | (*40, 20)                    | Feb27-1976 | *El. of river<br>water sur-<br>face |
| BL- 1       | 44.47                 | 16, 2               | 2.6                            | 41.87                        | Jan19-1976 |                                     |
| BL- 2       | 65.08                 | 65.0                | 10.95                          | 54, 13                       | Jan6-1976  |                                     |
| BI 3        | 55.70                 | 33.0                | 16.0                           | 39.7                         | Apr1-1976  |                                     |
| BL. 4       | 55.59                 | 30.0                | No record                      |                              |            |                                     |
| BL - 5      | 48, 38                | 30.0                | 8.5                            | 39.88                        | Mar27-1976 |                                     |

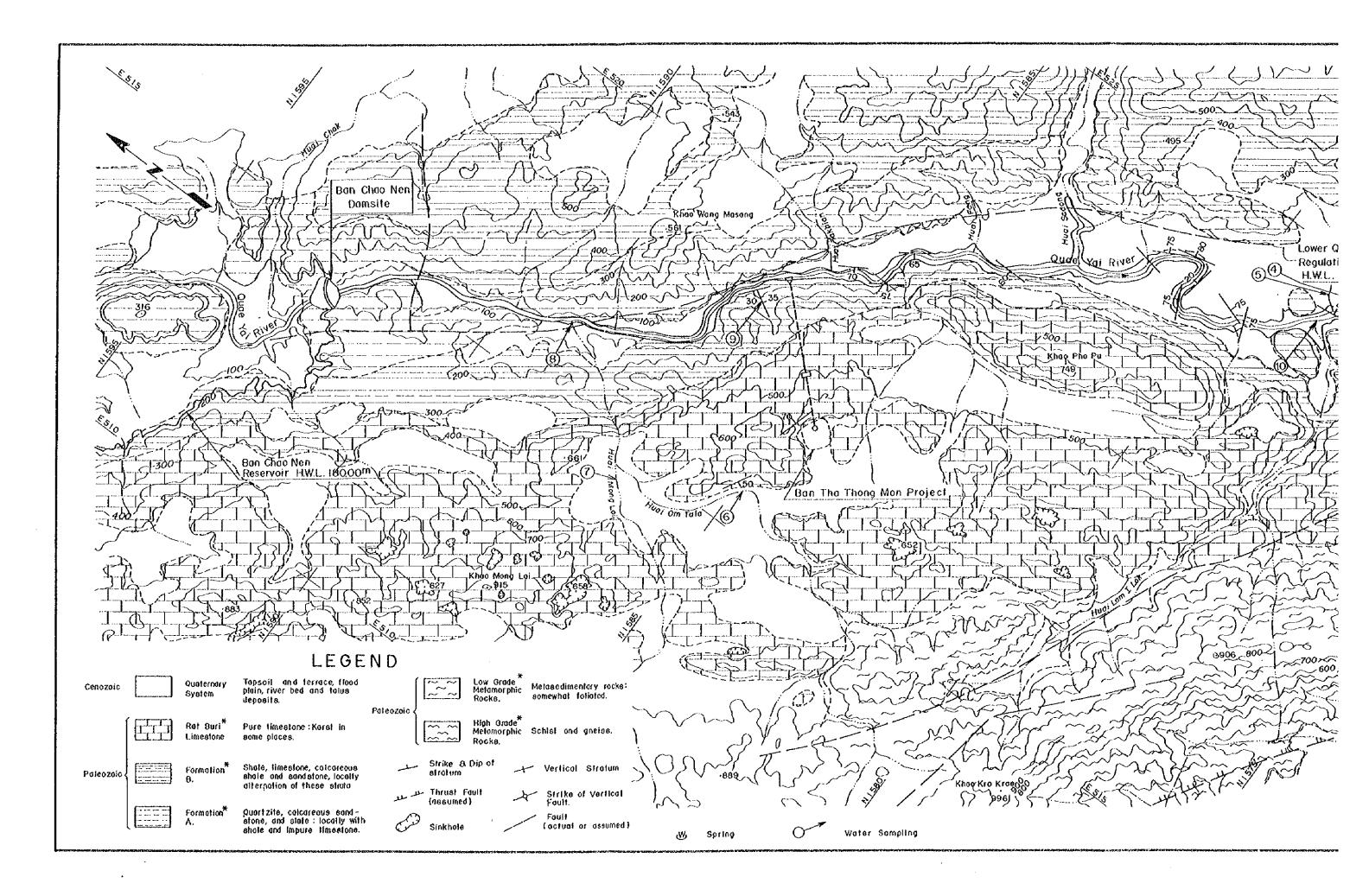
Table 4-5 Coefficient of Permeability of Bedrock

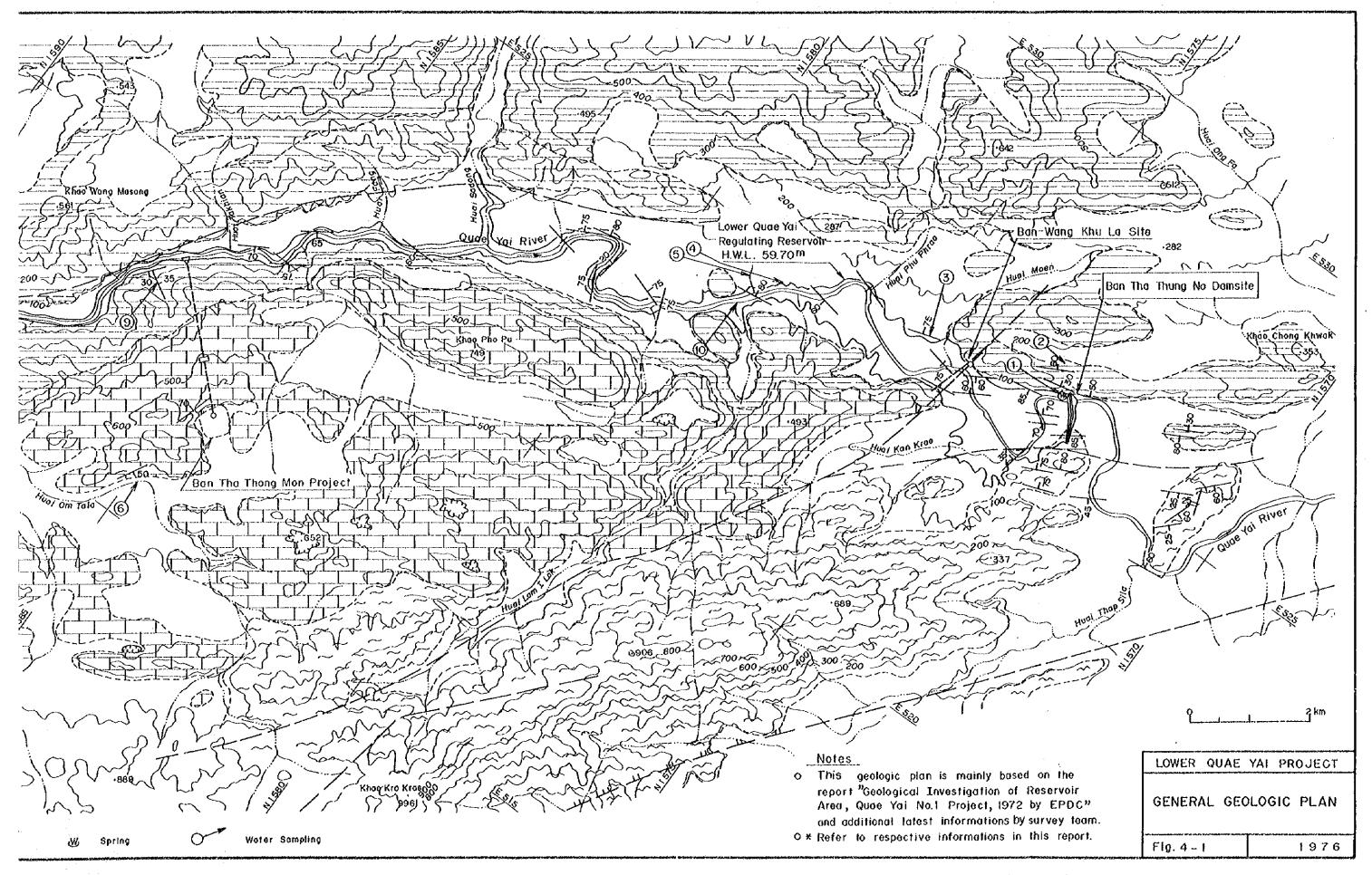
| Hole<br>No. | Tested<br>Depth (m)                                                                        | Coefficient of<br>Permeability<br>(cm/sec)                                      | Rock Type                                | Romarks                                                                                                                     |
|-------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| BR - 1      | 30.3 - 35.3                                                                                | 7.9 × 10 <sup>-4</sup>                                                          | LS                                       |                                                                                                                             |
| BR - 2      | 12.0 - 16.0<br>16.0 - 21.0<br>21.0 - 26.2                                                  | 1.6 x 10 <sup>-5</sup><br>2.7 x 10 <sup>-5</sup><br>4.1 x 10 <sup>-5</sup>      | Calc. SH                                 |                                                                                                                             |
| BR- 3       | 12.5 - 15.0<br>20.0 - 24.2                                                                 | $4.2 \times 10^{-5} \\ 2.2 \times 10^{-5}$                                      | Mainly SH<br>SH and Calc, SH             |                                                                                                                             |
| BR- 4       | 13.0 - 19.0<br>16.0 - 19.0<br>19.0 - 22.0                                                  | 6.1 x 10 <sup>-5</sup><br>5.3 x 10 <sup>-5</sup><br>2.1 x 10 <sup>-4</sup>      | Mainly SH<br>Mainly Sandy SH<br>Sandy SH |                                                                                                                             |
| BR - 5      | 9.0 - 12.0<br>14.0 - 17.0<br>17.0 - 21.25                                                  | 1.3 x 10 <sup>-5</sup><br>1.3 x 10 <sup>-4</sup><br>2.3 x 10 <sup>-5</sup>      | SH<br>u                                  | Including sheared zone<br>Including fault zone                                                                              |
| BR- 6       | 5.3 - 10.3<br>9.65 - 14.65<br>14.95 - 19.95<br>19.6 - 24.6<br>24.35 - 29.35<br>29.0 - 35.0 | 5,2 x 10 <sup>-6</sup> No leakage '' 3,1 x 10 <sup>-5</sup> No leakage ''       | LS<br>H<br>H<br>H<br>H                   | P. max. 3.3 kg/cm <sup>2</sup> P. max. 4.3 kg/cm <sup>2</sup> P. max. 5.3 kg/cm <sup>2</sup> P. max. 5.3 kg/cm <sup>2</sup> |
| BR~ 7       | 14.85 - 22.85<br>22.1 - 27.1<br>27.0 - 32.0<br>32.0 - 37.0<br>35.0 - 40.0<br>40.0 - 45.0   | 9.5 x 10 <sup>-6</sup> 2.3 x 10 <sup>-5</sup> 1.2 x 10 <sup>-6</sup> No leakage | SH<br>10<br>10<br>11<br>11               | P. max. 6.2 kg/cm <sup>2</sup> P. max. 6.2 kg/cm <sup>2</sup> P. max. 6.3 kg/cm <sup>2</sup>                                |
| BR- 8       | 7.0 - 11.0<br>11.0 - 16.0<br>16.0 - 21.0                                                   | 3.7 x 10-6<br>6.3 x 10-4<br>9.5 x 10-6                                          | Mainly LS                                |                                                                                                                             |
| BR- 9       | 15. 25 - 18. 25<br>17. 85 - 22. 85<br>26. 5 - 29. 5                                        | 6.7 x 10 <sup>-4</sup> Failed in test 1.7 x 10 <sup>-4</sup>                    | SS<br>Mainly SS<br>Mainly SH             |                                                                                                                             |

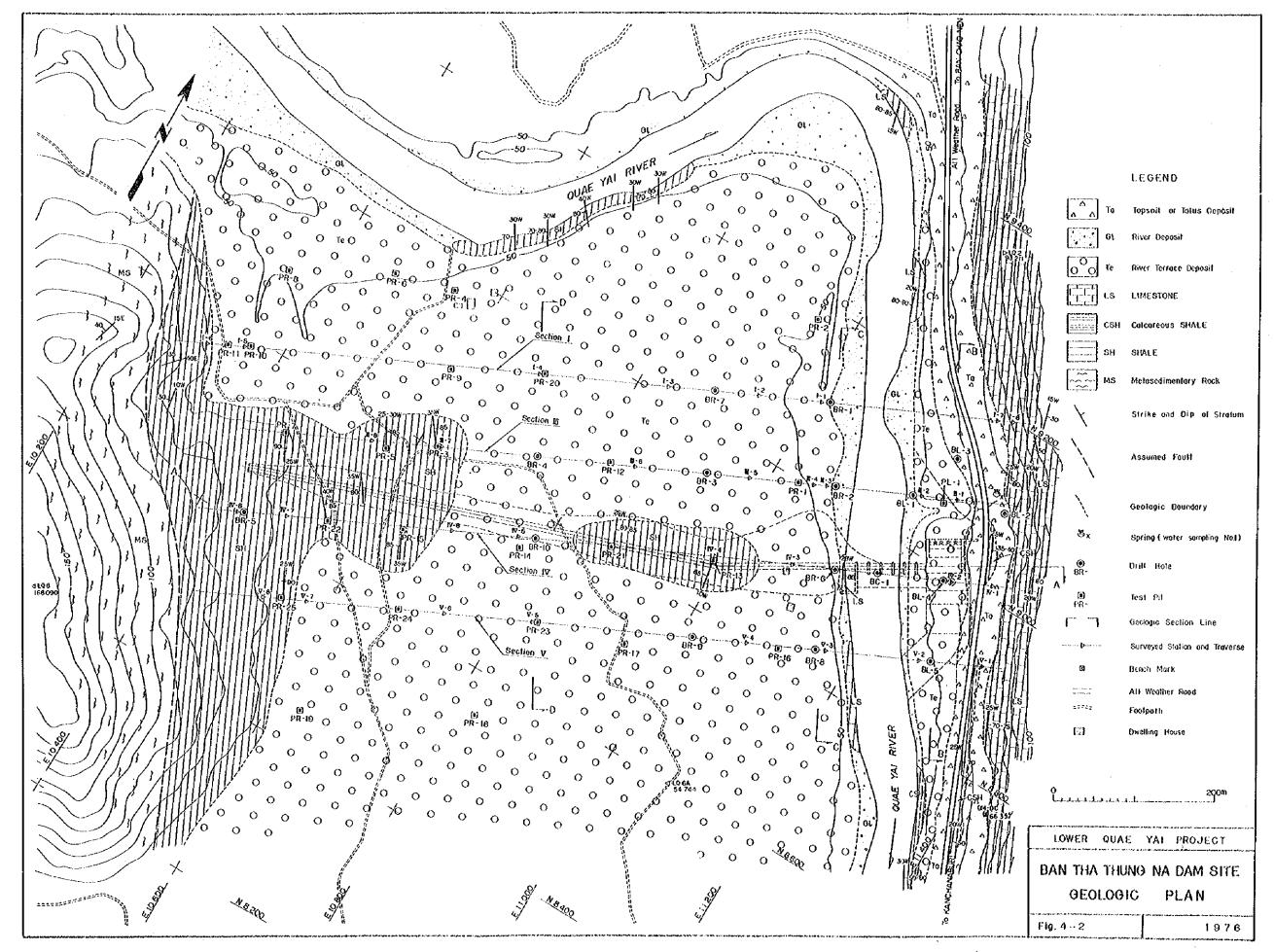
| Holo<br>No. | Tested<br>Depth (m)                                                                                                                                                                          | Coefficient of<br>Permeability<br>(cm/sec)                                                                                                                           | Rock Type                                                    | Remarks                        |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------|
| BR-10       | 9.5 - 14.5<br>14.65 - 19.65<br>21.5 - 25.0                                                                                                                                                   | 5.6 x 10 <sup>-4</sup><br>No leakage<br>9.3 x 10 <sup>-4</sup>                                                                                                       | SH<br>H<br>H                                                 | P. max. 5.7 kg/cm <sup>2</sup> |
| BC 1        | 6.0 - 10.0<br>10.0 - 15.0<br>15.0 - 20.5                                                                                                                                                     | $2.9 \times 10^{-3}$ $4.9 \times 10^{-4}$ $2.2 \times 10^{-5}$                                                                                                       | LS<br>SH/Calc, SS                                            |                                |
| BL- 1       | 5.0 - 8.0<br>8.0 - 13.0<br>12.2 - 16.2<br>14.2 - 16.2                                                                                                                                        | 1.5 x 10 <sup>-3</sup><br>1.1 x 10 <sup>-3</sup><br>1.3 x 10 <sup>-3</sup><br>2.2 x 10 <sup>-3</sup>                                                                 | LS<br>0<br>0                                                 |                                |
|             | 4.0 - 9.0<br>9.0 - 14.0<br>14.0 - 19.4<br>19.0 - 24.0<br>24.0 - 29.0<br>29.0 - 34.0<br>33.3 - 39.0<br>36.0 - 44.4<br>44.4 - 49.0<br>49.0 - 54.0<br>54.0 - 59.0<br>59.0 - 62.0<br>62.0 - 65.0 | 6.7 x 10-4<br>4.7 x 10-5<br>6.5 x 10-6<br>1.0 x 10-5<br>1.1 x 10-4<br>1.6 x 10-5<br>6.4 x 10-5<br>5.2 x 10-6<br>7.5 x 10-4<br>2.1 x 10-4<br>3.3 x 10-5<br>3.6 x 10-6 | LS and Calc. SH Calc. SH " " " " " " " " " " " " " " " " " " |                                |
|             | 17.85 - 22.85<br>23.0 - 28.0<br>28.0 - 33.0                                                                                                                                                  | 5.3 × 10 <sup>-4</sup><br>1.3 × 10 <sup>-5</sup><br>7.8 × 10 <sup>-6</sup>                                                                                           | LS and Calc. SH<br>LS/Calc. SH                               |                                |
|             | 17.0 - 20.0<br>20.0 - 25.0<br>25.0 - 30.0                                                                                                                                                    | $3.4 \times 10^{-4}$ $4.0 \times 10^{-4}$ $1.7 \times 10^{-3}$                                                                                                       | LS/Calc. SH                                                  | ,                              |

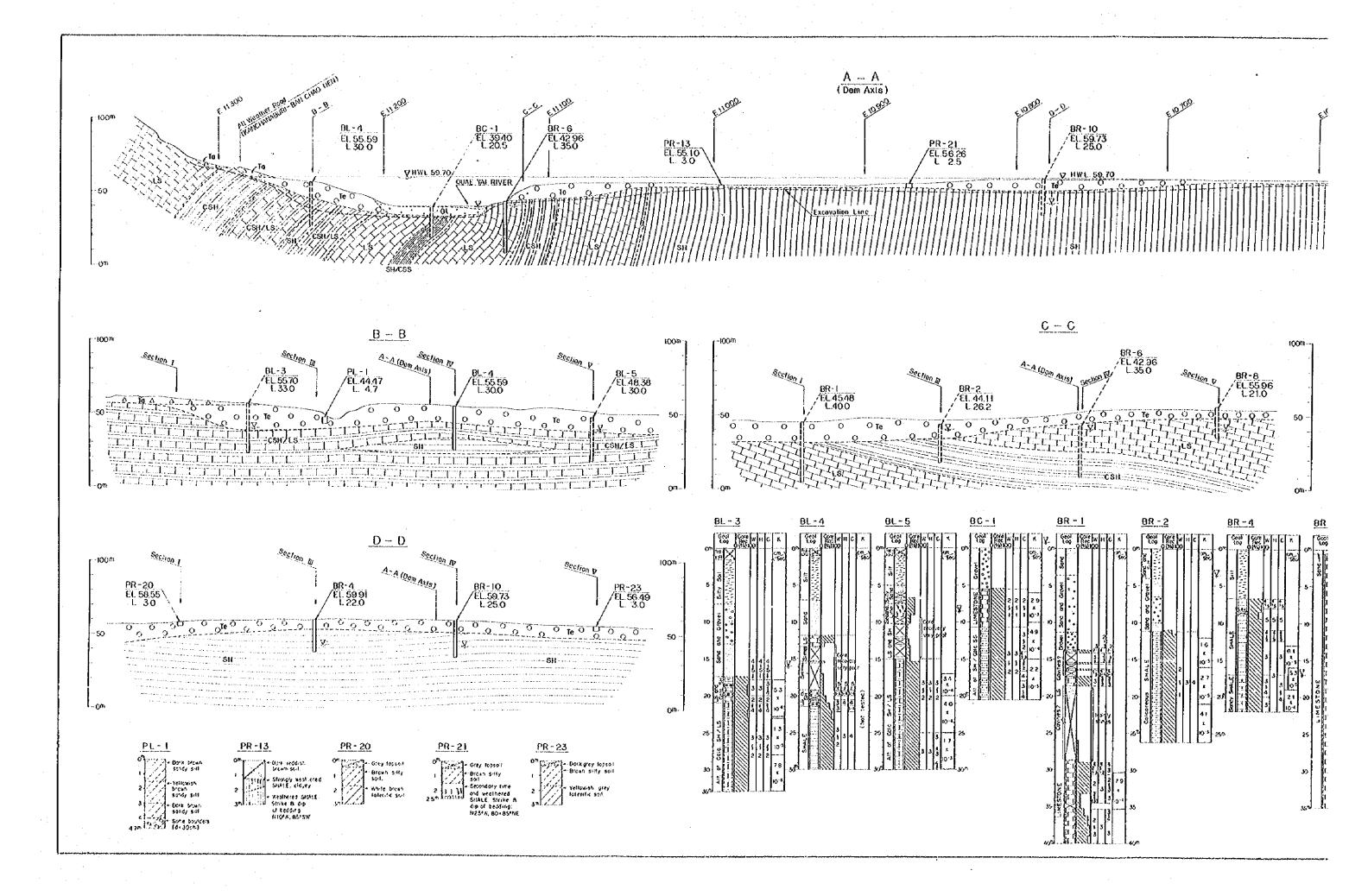
## Abbreviation of rock type

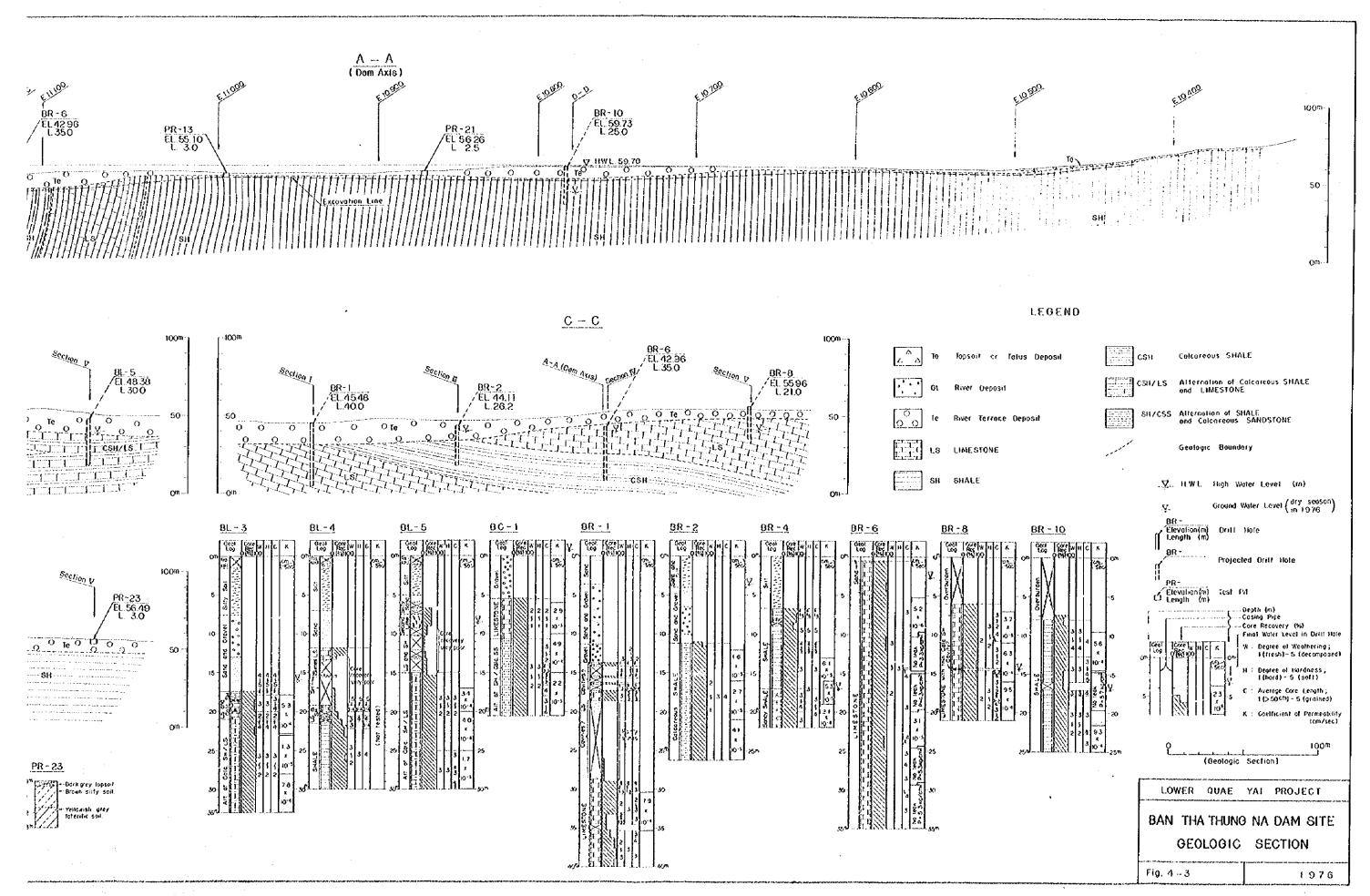
LS: Limestone

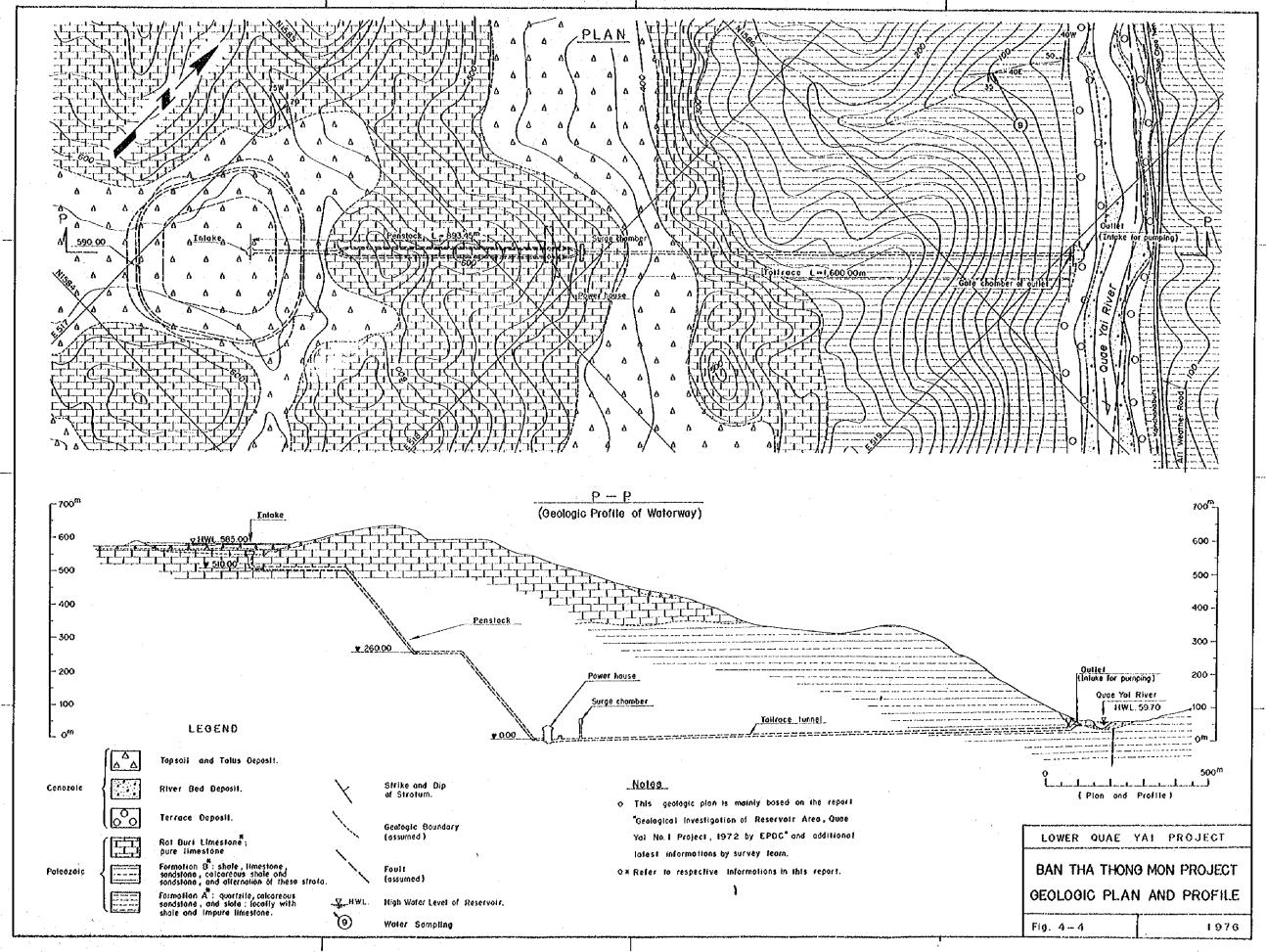

SH: Shale

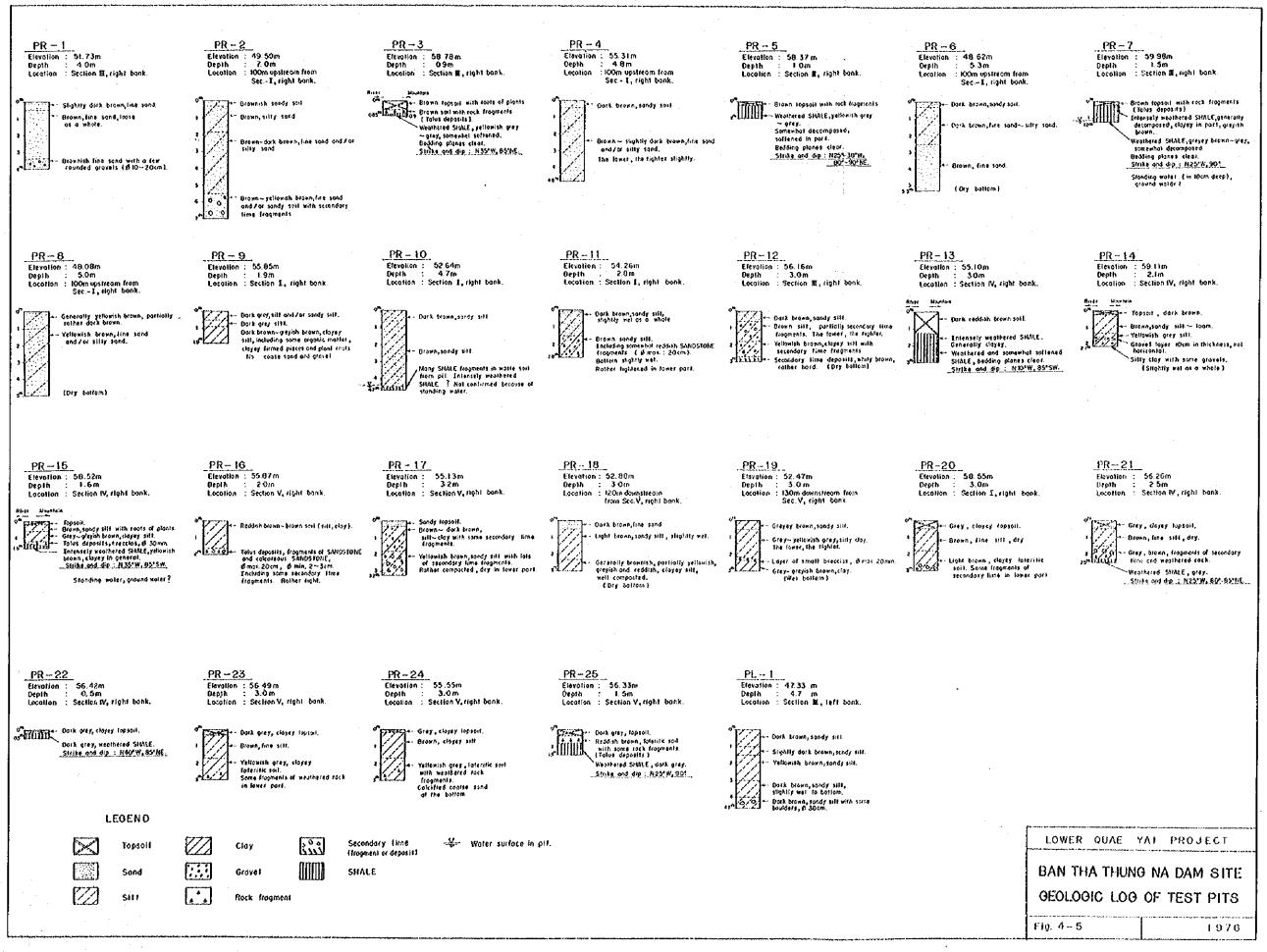

SS: Sandstone


Calc.: Calcareous


SH/LS: Alternation of shale and limestone


P. max. Maximum pressure














#### CHAPTER 5 HYDROLOGY

### 5.1 General

The Quae Yai River which is one of the biggest rivers in Thailand with a total length of about 380km and catchment area of 14,800km2 originates in the mountainous area on the border of north-western Thailand and Burma, flows down southward and is called the Mae Klong River after it merges with the Quae Noi River in the vicinity of Kanchanaburi and finally empties into the Gulf of Thailand at about 100km west of Bangkok. Most part of the drainage basin is mountainous area covered with thick forest and the upper part of the river forms a deep gorge with steep gradient. However, in the lower basin near the Ban Tha Thung Na dam site, the river becomes wide with gentle gradient and on the terraces along the river there are corn, sugar cane and fruit plantations, bamboo groves, settlements and schools. An asphalt paved road is constructed on the left bank of the river from the Ban Chao Nen project site to Ban Lat Ya which leads to Bangkok through Kanchanaburi. People living along the banks of the river use the water for all purposes and cross the river by small boats. There are also sight-seeing boats cruising between Kanchanaburi and the Brawan Pall located approximately 25km upstream of the Ban Tha Thung Na dam site. The Ban Tha Thung Na site with a catchment area of 11,428 km2 is at mid point, 60km, between Kanchanaburi and the Ban Chao Nen project which is under construction.

## 5.2 Meteorology and hydrology

Annual average temperature in this tropical area is approximately 28°C and annual rainfall in the upper and lower basins are about 1,600mm and 1,000mm, respectively. Annual inflow and average discharge at the Ban Tha Thung Na site are approximately 4,400 x 10<sup>6</sup> m<sup>3</sup> and 140 m<sup>3</sup>/sec respectively. Normally, river discharge gradually increases from May reaching its maximum in August through October, and thereafter decreases recording the minimum value in March or April. Monthly average temperature, rainfall and river discharge records are as shown in Figs. 5-1, 5-2 and Table 5-3 (2). Total runoff within three months of August to October and six months of June to November accounts for 60 percent and 85 percent of the annual runoff dividing a year clearly into dry and wet seasons. Rating curve measured at the site is as shown in Fig. 5-3.

## 5.3 Runoff at Ban Tha Thung Na site

After completion of the Ban Chao Nen project, inflow at the Ban Tha Thung Na dam site is calculated as a total sum of power discharge of the Ban Chao Nen power plant and runoff from residual basin between the Ban Chao Nen and Ban Tha Thung Na projects.

# 5.3.1 Monthly average power discharge of Ban Chao Nen power plant

The Ban Chao Nen reservoir (HWL 180.00 m, LWL 159.00 m RWL 178.50 m) is to be so operated as to seasonally regulate annual inflow in consideration of

irrigation, navigation and other requirements during dry season in the downstream area and, accordingly, power discharge of the Ban Chao Nen power plant is inevitably controlled by the said operation plan. Four cases of Ban Chao Nen reservoir operation plans were previously studied as shown in Table 5-1 and mean value deducted therefrom for each month is taken as the monthly average power discharge of the Ban Chao Nen power plant as shown in Tables 5-1 and 5-3 (4).

#### 5, 3, 2 Runoff from residual basin

Runoff from residual basin is calculated by the following formula and on the basis of runoff records at the Ban Chao Nen site shown in Fig. 5-2.

$$Qx = QB \cdot \frac{Ax}{AB} \cdot \alpha$$
,  $QxR = Qx - QB$ 

where.

 $Q_x$ : Runoff at site having catchment area of  $A_x$  (m<sup>3</sup>/sec)

QB: Runoff at Ban Chao Nen site (m<sup>3</sup>/sec)

Ax : Catchment area at site X (km2)

AB: Catchment area at Ban Chao Nen site (10,880km<sup>2</sup>)

α: Coefficient shown in Fig. 5-4 (quoted from Basic Study of Quae Yai No. 1 Hydroelectric Project, 1968). This coefficient was estimated by setting up a cardinal point on records of Kang Rieng gaging station and adopted in this calculation without modification because of the short distance between Ban Chao Nen project and the said gaging station.

QxR: Runoff from residual basin at site X (m<sup>3</sup>/sec)

Figures shown in Table 5-3 (3) are the calculated runoff at the Ban Tha Thung Na dam site from residual basin.

### 5.3.3 Evaporation

Pollowing monthly net evaporation losses estimated in the Feasibility Report, Quae Yai No. 1 Hydroelectric Project are quoted.

| Month | Evaporation (mm) | Month | Evaporation<br>(mm) |
|-------|------------------|-------|---------------------|
| Jan.  | -103.9           | July  | -18.0               |
| Feb.  | -97.2            | Aug,  | -14.6               |
| Max.  | -107.4           | Sept. | -49.1               |
| Apr.  | -91.4            | Oct.  | -50.4               |
| May   | -6.2             | Nov.  | -23.3               |
| June  | -29.0            | Dec.  | -81.9               |

Evaporation losses calculated at the time of mean water level (57,60 m) of the Ban Tha Thung Na regulating reservoir are as shown in Table 5-3 (6).

#### 5.3.4 Runoff at the site

River runoff at the Ban Tha Thung Na dam site, that is, available power discharge of the Ban Tha Thung Na power plant is as shown in Table 5-3 (7).

### 5.4 Flood discharge at Ban Tha Thung Na dam site

Flood discharge at the Ban Tha Thung Na dam site is calculated as a total of spilled water regulated by the Ban Chao Nen reservoir and natural flood discharge from residual basin. The design flood of 2,580 m³/sec at the Ban Chao Nen dam site estimated on the basis of flood hydrograph with maximum discharge of 7,100 m³/sec is planned to be released through spillway structure (2,420 m³/sec) and outlet works (160 m³/sec) as shown in Fig. 5-5. The maximum spill at the Ban Chao Nen dam on the basis of the flood hydrograph computed from rainfall records on October 1963 occurs eight days after maximum daily rainfall as observed in Fig. 5-5 and, on the contrary, peak flood from residual basin is considered to occur within a short time after maximum hourly rainfall and there is big time lag between these two. Taking these circumstances into consideration, the maximum flood discharge at this site was studied on the basis of the above-mentioned rainfall records for the next two cases, that is, at the time of peak flood from residual basin and maximum spill at the Ban Chao Nen dam.

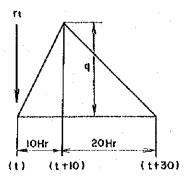
## 5.4.1 Time of concentration and maximum flood discharge

Time of concentration (tp) is estimated by the Linsley Kohler and Paulher formula,

tp = Ct 
$$(\frac{L \cdot Lc}{\sqrt{s}})$$
 0.38 = 10 (Hr)

where,

tp: Time of concentration (Hr)


Ct: Coefficient corresponding to natural conditions in drainage basin, 0.35

L: Length of main stream in the basin, 31.4 miles

Le: Distance between project site and center of drainage basin, 13 miles

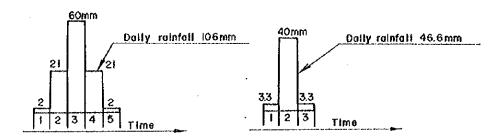
s: Mean gradient of main stream (1: 300)

It is estimated that flood discharge caused by hourly rainfall  ${\bf r}_t$  observed at certain time t will reach its maximum value at approximately 10 hours after the said rainfall.



Assuming that flood hydrograph for unit rainfall is triangular shape with 10 hours increasing period and 20 hours decreasing period as shown in the figure, the maximum flood discharge q at time t+10 is as calculated below.

$$q = \frac{2A \times r_t}{30 \times 3,600} \times 10^3 = 10.1 r_t (m^3/sec)$$


where,

 $\Lambda$ : Residual catchment area (548 km<sup>2</sup>)

rt: Effective hourly rainfall at time t (mm)

### 5.4.2 Correlation between daily and hourly rainfall

Maximum flood discharge at the Ban Chao Nen dam site is estimated on the basis of daily rainfall records as shown in Fig. 5-5, however, hourly rainfall records shall be applied for the case of comparatively small catchment basin. Correlation between maximum daily and hourly rainfall obtained from the observation records from May 1973 through October 1975 is as shown in Fig. 5-6. Effective daily rainfall on the day of maximum precipitation and around the day of maximum flood release in Fig. 5-5 are 106 mm and 46.6 mm, respectively. Applying the correlation shown in Fig. 5-6, maximum hourly rainfall for these two cases are estimated to be 60 mm and 40 mm with triangular hourly distribution shown below.



## 5.4.3 Estimation of maximum flood discharge

The design flood discharge at the Ban Tha Thung Na dam site is estimated as follows on the basis of the above-mentioned conditions.

|               |          | Discharge from |           | Spill at |        |
|---------------|----------|----------------|-----------|----------|--------|
| Case          | Unit     | residual bastn | Base flow | BCN      | Total  |
| Max, rainfall | (m³/sec) | 1,033          | 35        | 1,410    | 2, 478 |
| Max. spill    | (m³/sec) | 466            | 35        | 2, 290   | 2, 791 |

The above-mentioned calculations are based on the rainfall records in October 1963 which is applied for design of the Ban Chao Nen dam as they form a flood hydrograph deriving therefrom the maximum flood discharge at the Ban Chao Nen dam. It is estimated that the maximum daily rainfall in the residual basin of this project will be 92.5 mm taking an average of rainfall records at Kang Rieng and Sri Sawat in October, 1952. The maximum flood discharge at the Ban Chao Nen dam induced from the flood hydrograph based on this rainfall record is smaller than that abovementioned, however, it figures the maximum flood discharge from the residual basin. The results of calculations are shown below.

|               | Unit                  | Discharge from residual basin | Base flow | Spill at BCN | Total  |
|---------------|-----------------------|-------------------------------|-----------|--------------|--------|
| Max, rainfall | (m <sup>3</sup> /sec) | 1, 190                        | 9         | 1, 380       | 2,579  |
| Max. spill    | (m <sup>3</sup> /sec) | 300                           | 9         | 2, 210       | 2, 519 |

Besides, the following alternative calculations are made for reference.

## (a) Estimation by proportional allotment of catchment area

Catchment area at Ban Chao Nen site :  $10,880 \, \mathrm{km}^2$ Max. flood discharge at Ban Chao Nen site :  $7,100 \, \mathrm{m}^3/\mathrm{sec}$ Catchment area at Ban Tha Thung Na site :  $548 \, \mathrm{km}^2$ Max. flood discharge from residual basin =  $7,100 \, \mathrm{x} = \frac{548}{10,880}$ =  $360 \, \mathrm{m}^3/\mathrm{sec}$ Max. flood discharge at Ban Tha Thung Na site = 2,580 + 360=  $2,940 \, \mathrm{m}^3/\mathrm{sec}$ 

### (b) Estimation by envelope curve

According to Fig. 5-7 quoted from "Relationship between Max. Peak Flow and Drainage Area" in "Hydrology and Water Studies, August 1968" compiled by the Royal Irrigation Department (RID) of Thailand, maximum flood discharge for residual catchment area of 548 km<sup>2</sup> is estimated to be approximately 430 m<sup>3</sup>/sec and, accordingly, maximum flood discharge at the Ban Tha Thung Na dam site will be approximately 3,010 m<sup>3</sup>/sec.

Taking these estimations into consideration, the design flood discharge at the Ban Tha Thung Na dam site is decided to be 3,000  $\rm m^3/sec$ , and 2,710  $\rm m^3/sec$  and 290  $\rm m^3/sec$  shall be released through spillway structure and power plant, respectively.

### 5.5 Sedimentation in regulating reservoir

It is considered that all of suspended sediments and bed loads in the area upstream of the Ban Chao Nen dam which creates an extremely big reservoir will be caught and deposited in the said reservoir. Therefore, it is considered appropriate to study the sedimentation problem by suspended sediments and bed load from residual basin only for the Ban Tha Thung Na reservoir. Suspended sediment discharge measured by EGAT at the Ban Chao Nen site is as shown in Appendix (D) and it is observed that the amount of suspended sediment contained in river flow varies remarkably in proportion with river discharge and increases rapidly for bigger discharge. According to Table 5-4 induced from Appendix (D), it seems that more than 80 percent of annual suspended sediment will be carried down when the river flow is more than 500 m<sup>3</sup>/sec.

Fig. 5-8 drawn on the basis of field investigation in 1972 and 1973 shows the correlation between river flow of more than  $500\,\mathrm{m}^3/\mathrm{sec}$  and corresponding amount of suspended sediment discharge, and annual suspended sediment for each year is estimated to be as shown in Table 5-5 applying unit content of suspended sediment per various river flow in Fig. 5-8 and daily runoff records separately prepared. For the case of river flow of less than  $500\,\mathrm{m}^3/\mathrm{sec}$ , the unit content of suspended sediment assumed from Table 5-4 is 0.169 x  $10^{-3}$  tons per unit river discharge. Then it can be estimated that the total amount of suspended sediment trasported into the reservoir will be approximately 146,000 m³/year or 190,000 tons/year at bulk specific gravity of 1.3t/m³. Beside the above, there is bed load which is estimated to be probably 10 percent of the above-mentioned suspended sediment or equivalent to 15,000 m³/year.

Some part of suspended sediment will deposit in the reservoir and the remaining will flow down over the spillway crest, and its percentage varies corresponding to the ratio of reservoir storage capacity and annual inflow as shown in Fig.5-9 which is a method devised by G.M. Brune. At the Ban Tha Thung Na reservoir, approximately 62 percent of total suspended sediment equivalent to 100,000 m<sup>3</sup>/year will deposit in the reservoir and the remaining 38 percent will flow down.

The gross sedimentation in the Ban Tha Thung Na reservoir in 100 years is estimated to be approximately  $10.0 \times 10^6 \mathrm{m}^3$  or 20 percent of the reservoir storage capacity.

Table 5-1 Power Discharge of Ban Chao Nen Project

|         |                    |                                 |                  |                 |              |                           |                                             |                                  |                   |                                          | . Unit in                           | MCM. (           | Unit in MCM. ( ) in $\rm m^3/sec$ |
|---------|--------------------|---------------------------------|------------------|-----------------|--------------|---------------------------|---------------------------------------------|----------------------------------|-------------------|------------------------------------------|-------------------------------------|------------------|-----------------------------------|
|         | Apr.               | May                             | June             | July            | Aug.         | Sept.                     | Oct.                                        | Nov.                             | Dec.              | Jan.                                     | Feb.                                | Mar.             | Total                             |
| Case 1  | 666. 8 (257. 3)    | 666. 8 305. 7 (257. 3) (114. 1) | 268.0 (103.4)    | 218.9           | 234.0 (87.4) | 255.4 (98.5)              | 355.9<br>(132.9)                            | 313.4 (120.9)                    | 229.4 (\$5.6)     | 283.2<br>(105.7)                         | 502.7 (207.8)                       | 775.3 (289.5)    | 4,408.7                           |
| Case 2  | 666.8 (257.3)      | 305.0<br>(113.9)                | 270.4 (104.3)    | 220.5 (82.3)    | 207.7        | 213.6 (82.4)              | 356. 3<br>(133. 0)                          | 356. 3 310. 6<br>(133.0) (119.8) | 225.8<br>(85.6)   |                                          | 281.7 <b>5</b> 02.7 (105.2) (207.8) | 775.3 (289.5)    | 4,336,4                           |
| Case 3  | 666. 8<br>(257. 3) | 304.9<br>(113.8) (              | 263.0<br>(101.5) | 214.6<br>(80.1) | 197.6 (73.8) | 191.7 (74.0)              | 191.7 275.0 308.9<br>(74.0) (102.7) (119.2) | 308.9<br>(119.2)                 | 216.9 (81.0)      | 216.9 281.7 502.7 (81.0) (105.2) (207.8) | 502.7                               | 775.3 (289.5)    | 4, 199, 1                         |
| Case 4  | 666.8<br>(257.3)   | 305.0<br>(113.9)                | 260.5 (100.5)    | 210.6 (78.6)    | 201.4 (75.2) | 225. 0<br>(8 <b>6.</b> 8) | 225.0 326.9 313.7<br>(86.8) (122.1) (121.0) | 313.7<br>(121.0)                 | 230. 5<br>(86. 1) | 281.3                                    | 502. 7<br>(207. 8)                  | 775.3<br>(289.5) | 4, 299. 7                         |
| Average | 666. 8<br>(257. 3) | 305.2<br>(113.9)                | 265.5<br>(102.4) | 216.2 (50.7)    | 210.2 (78.5) | 221. 4<br>(85. 4)         | 221. 4 328. 5<br>(85. 4) (122. 7)           | 311.7 (120.2)                    | 225.7 (84.3)      |                                          | 502.7                               | 775.3 (289.5)    | 4, 311. 2<br>(137. 3)             |
|         | Note:              | Note: Case 1 : Qin 1952.        | . Qin 195        | 2,              |              | Case 2                    | Case 2 : Qin 1957.                          | 57.                              |                   |                                          |                                     |                  |                                   |

Ex. Qin 1952 indicates 20 year hydrological cycle starting 1952

Case 4: Qin 1968,

Case 3: Qin 1963,

Table 5-2 Runoff Record at Ban Chao Nen Project

| 328. 5 523.<br>924. 1 292.<br>565. 1 355.<br>835. 7 305.<br>1,333. 8 308.<br>728. 5 266.<br>459. 7 287.<br>827. 6 230.<br>071. 4 425.<br>956. 2 287. | 510.6 1<br>889.1<br>819.1<br>904.6<br>1,060.1 1<br>1,156.0<br>844.9 1<br>451.0<br>1,959.6 1<br>1,620.0 | 2, 370.4<br>637.5<br>637.5<br>833.9<br>533.9<br>575.9<br>588.6<br>886.6<br>798.6        | 350.9<br>385.7<br>278.6<br>278.6<br>318.7<br>227.7<br>227.7<br>2439.8<br>650.8                                                          | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11111200109497                                                                                                                                       |                                                                                                        |                                                                                         | ,370.4 I.<br>605.3<br>310.7<br>637.5<br>883.9 I.<br>575.9<br>1968.6 I.<br>798.6 I.                                                      | 2 2,370.4 1,<br>5 605.3 4 637.5 7 7 883.9 4,<br>5 575.9 7 575.9 888.6 1,<br>5 888.6 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 739. 2 2, 370. 4 1, 385. 7 605. 3 278. 6 310. 7 329. 4 637. 5 318. 7 883. 9 1, 573. 2 277. 7 575. 9 101. 8 583. 9 942. 8 1, 968. 6 1, 439. 3 886. 6 1, 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. 5 530. | 269.6 739.2 2,370.4 1, 279.4 385.7 605.3 139.9 278.6 310.7 199.6 329.4 637.5 165.9 318.7 883.9 1, 171. 1 573.2 533.0 1, 145.2 227.7 575.9 80.4 101.8 583.9 254.0 942.8 1,968.6 1, 176.3 439.3 886.6 1, 98.5 550.5 798.2 1,                                                                 |
| 11110010100401                                                                                                                                       |                                                                                                        | شش شناش                                                                                 | 2                                                                                                                                       | 6 605.3<br>6 310.7<br>2 883.9 t,<br>5 553.9<br>1 968.6 1,<br>6 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 385.7 605.3<br>278.6 310.7<br>329.4 637.5<br>318.7 883.9 1,<br>573.2 533.0 1,<br>227.7 575.9<br>101.8 583.9<br>942.8 1,968.6 1,<br>439.3 886.6 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 279.4 385.7 605.3<br>139.9 278.6 310.7<br>199.6 329.4 637.5<br>165.9 318.7 883.9 1,<br>171.1 573.2 533.0 1,<br>145.2 227.7 575.9<br>80.4 101.8 583.9<br>254.0 942.8 1,968.6 1,<br>176.3 439.3 886.6 1,                                                                                     |
|                                                                                                                                                      |                                                                                                        | بسر بسر سر                                                                              |                                                                                                                                         | 310.<br>7 4 637.<br>7 533.<br>8 533.<br>8 1,968.<br>9 888.<br>9 583.<br>9 889.<br>9 88 | 278.6 310.<br>329.4 637.<br>318.7 883.<br>573.2 533.<br>227.7 575.<br>101.8 583.<br>942.8 1,968.<br>439.3 886.<br>550.3 798.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 139.9 278.6 310.<br>199.6 329.4 637.<br>165.9 318.7 883.<br>171.1 573.2 533.<br>145.2 227.7 575.<br>80.4 101.8 583.<br>254.0 942.8 1,968.<br>176.3 439.3 886.<br>98.5 550.5 798.                                                                                                           |
| 1 × × × × × × × × × × × × × × × × × × ×                                                                                                              |                                                                                                        |                                                                                         |                                                                                                                                         | 637.<br>7 575.<br>8 533.<br>8 1,968.<br>9 583.<br>9 583.<br>9 583.<br>9 583.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 329. 4 637.<br>318. 7 883.<br>573. 2 533.<br>227. 7 575.<br>101. 8 583.<br>942. 8 1, 968.<br>439. 3 886.<br>550. 3 798.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 199.6 529.4 637.<br>165.9 518.7 883.<br>171.1 573.2 533.<br>145.2 227.7 575.<br>80.4 101.8 583.<br>254.0 942.8 1,968.<br>176.3 439.3 886.<br>98.5 550.5 798.                                                                                                                               |
| 8 10 1- 0 4- 01 1- ×                                                                                                                                 |                                                                                                        |                                                                                         |                                                                                                                                         | 883.<br>575.<br>575.<br>8 1,968.<br>708.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 518. 7 883.<br>573. 2 533.<br>227. 7 575.<br>101. 8 583.<br>942. 8 1, 968.<br>439. 3 886.<br>550. 3 798.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 165.9 318.7 883.<br>171.1 573.2 533.<br>145.2 227.7 575.<br>80.4 101.8 583.<br>254.0 942.8 1,968.<br>176.3 439.3 886.<br>98.5 550.3 798.                                                                                                                                                   |
| 10 1- 0 4 10 1- ×                                                                                                                                    |                                                                                                        |                                                                                         |                                                                                                                                         | 2 533.<br>7 575.<br>8 583.<br>8 1,968.<br>3 886.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 573. 2 533.<br>227. 7 575.<br>101. 8 583.<br>942. 8 1, 968.<br>439. 3 886.<br>530. 3 798.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 171.1 573.2 533.<br>145.2 227.7 575.<br>80.4 101.8 583.<br>254.0 942.8 1,968.<br>176.3 439.3 886.<br>98.5 550.3 798.                                                                                                                                                                       |
| L 0 4 0 L .                                                                                                                                          |                                                                                                        |                                                                                         |                                                                                                                                         | 7 575.<br>8 583.<br>8 1,968.<br>3 886.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 227. 7 575.<br>101. 8 583.<br>942. 8 1, 968.<br>439. 3 886.<br>550. 3 798.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 145.2 227.7 575.<br>80.4 101.8 583.<br>254.0 942.8 1,968.<br>176.3 439.3 886.<br>98.5 550.3 798.                                                                                                                                                                                           |
| 0 4 0 F ×                                                                                                                                            |                                                                                                        |                                                                                         |                                                                                                                                         | \$ 583.<br>\$ 1,968.<br>\$ 886.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101. 8 583.<br>942. 8 1, 968.<br>439. 3 886.<br>550. 3 798.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80.4 101.8 583.<br>254.0 942.8 1,968.<br>176.3 439.3 886.<br>98.5 550.3 798.                                                                                                                                                                                                               |
| 401                                                                                                                                                  |                                                                                                        |                                                                                         |                                                                                                                                         | 8 1,968.<br>3 886.<br>3 798.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 942. 8 1, 968.<br>439. 3 886.<br>530. 3 798.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 254.0 942.8 1,968.<br>176.3 439.3 886.<br>98.5 550.3 798.                                                                                                                                                                                                                                  |
| 2 1.7                                                                                                                                                |                                                                                                        |                                                                                         |                                                                                                                                         | 3 886.<br>3 708.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 439. 3 886.<br>530. 3 798.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 176.3 439.3 886.<br>98.5 550.3 798.                                                                                                                                                                                                                                                        |
| <b>.</b>                                                                                                                                             |                                                                                                        |                                                                                         |                                                                                                                                         | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 550. 3 798.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98.5 550.3 798.                                                                                                                                                                                                                                                                            |
| ,                                                                                                                                                    |                                                                                                        |                                                                                         |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 100                                                                                                                                                                                                                                                                                      |
| <b>-</b> 4                                                                                                                                           | 787.9 1                                                                                                |                                                                                         |                                                                                                                                         | 8 591.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 334.8 591.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 165. 9 334. 8 591.                                                                                                                                                                                                                                                                         |
| Ŋ                                                                                                                                                    | 585. 2                                                                                                 |                                                                                         |                                                                                                                                         | 9 816.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 666.9 816.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 463.9 666.9 816.                                                                                                                                                                                                                                                                           |
| 0                                                                                                                                                    | 1,049.8                                                                                                |                                                                                         | 634.8                                                                                                                                   | 2 634.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 423, 2 634.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204.8 423.2 634.                                                                                                                                                                                                                                                                           |
| 0                                                                                                                                                    | 816.0                                                                                                  |                                                                                         | 857.0                                                                                                                                   | 0 857.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 258.0 857.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 105.0 238.0 857.                                                                                                                                                                                                                                                                           |
| 0                                                                                                                                                    | 613.0                                                                                                  |                                                                                         | 845.0                                                                                                                                   | 0 845.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 259.0 845.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.0 259.0 845.                                                                                                                                                                                                                                                                           |
| 0                                                                                                                                                    | 1,050.0                                                                                                |                                                                                         | 1,090.0                                                                                                                                 | 0 1,090.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 361.0 1,090.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.0 361.0 1,090.                                                                                                                                                                                                                                                                         |
| 765.0 399.                                                                                                                                           | 753.0                                                                                                  |                                                                                         | 658.0                                                                                                                                   | 0 658.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 364.0 658.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.0 364.0 658.                                                                                                                                                                                                                                                                           |
| 476.0 267                                                                                                                                            | 655.0                                                                                                  |                                                                                         | 640.0                                                                                                                                   | 0 640.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 696.0 640.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 274.0 696.0 640.                                                                                                                                                                                                                                                                           |
| 7                                                                                                                                                    | 950.3                                                                                                  |                                                                                         | 852.0                                                                                                                                   | 0 852.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 428.0 852.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 185.5 428.0 852.                                                                                                                                                                                                                                                                         |
| `<br>@                                                                                                                                               | (366.6)                                                                                                |                                                                                         | (318.1)                                                                                                                                 | 8) (318.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6) (159.8) (318.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5) (71.6) (159.8) (318.                                                                                                                                                                                                                                                                    |
| 2445.<br>277.<br>2246.<br>258.<br>3358.<br>359.<br>352.                                                                                              | 1500000 18                                                                                             | 2 720.5<br>8 583.9<br>0 786.0<br>0 702.0<br>0 765.0<br>0 476.0<br>3 939.7<br>6) (350.8) | 9 585.2 720.5<br>8 1,049.8 583.9<br>0 816.0 786.0<br>613.0 440.0<br>0 1,050.0 702.0<br>753.0 765.0<br>655.0 476.0<br>1) (366.6) (350.8) | 34. 8 591. 9 787. 9 1,457. 1<br>56. 9 816. 9 585. 2 720. 5<br>23. 2 634. 8 1,049. 8 583. 9<br>58. 0 845. 0 816. 0 786. 0<br>59. 0 845. 0 613. 0 440. 0<br>61. 0 1,090. 0 1,050. 0 702. 0<br>64. 0 658. 0 753. 0 765. 0<br>96. 0 640. 0 655. 0 476. 0<br>28. 0 852. 0 950. 3 939. 7<br>59. 8) (318. 1) (366. 6) (350. 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 354.8     591.9     787.9     1,457.1       666.9     816.9     585.2     720.5       423.2     634.8     1,049.8     583.9       258.0     857.0     816.0     786.0       259.0     845.0     613.0     440.0       361.0     1,090.0     1,050.0     702.0       364.0     658.0     753.0     765.0       696.0     640.0     655.0     476.0       428.0     852.0     950.3     939.7       (159.8)     (318.1)     (366.6)     (350.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 165.9 334.8 591.9 787.9 1,457.1 463.9 666.9 816.9 585.2 720.5 204.8 423.2 634.8 1,049.8 583.9 105.0 258.0 857.0 816.0 786.0 119.0 259.0 845.0 613.0 440.0 108.0 364.0 658.0 753.0 765.0 274.0 696.0 640.0 655.0 476.0 185.5 428.0 852.0 950.3 939.7 (71.6) (159.8) (318.1) (366.6) (350.8) |

Note: Unit in MCM, ( ) in m3/sec

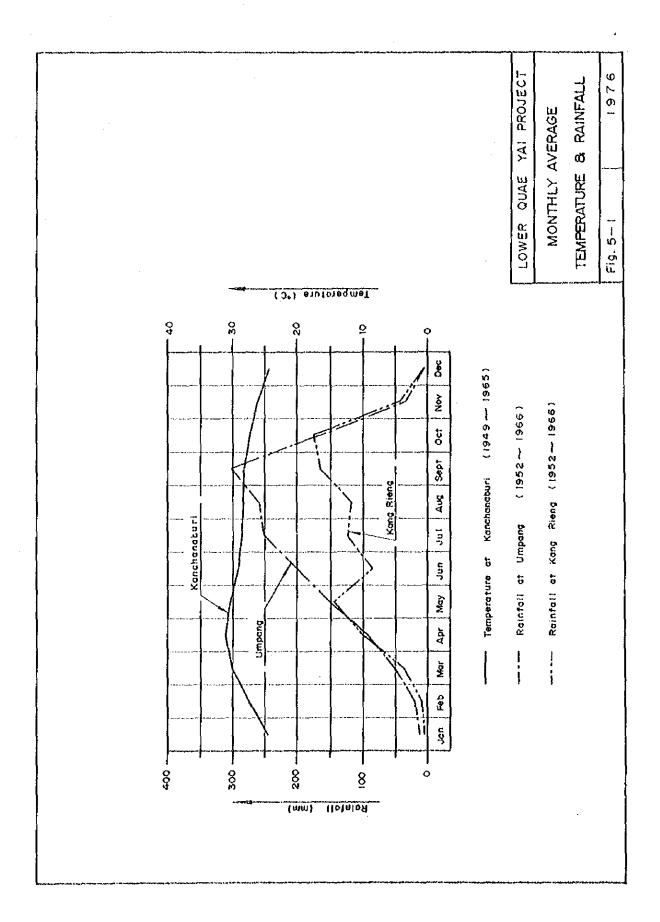
Table 5-3 Discharge at Ban Tha Thung Na Project

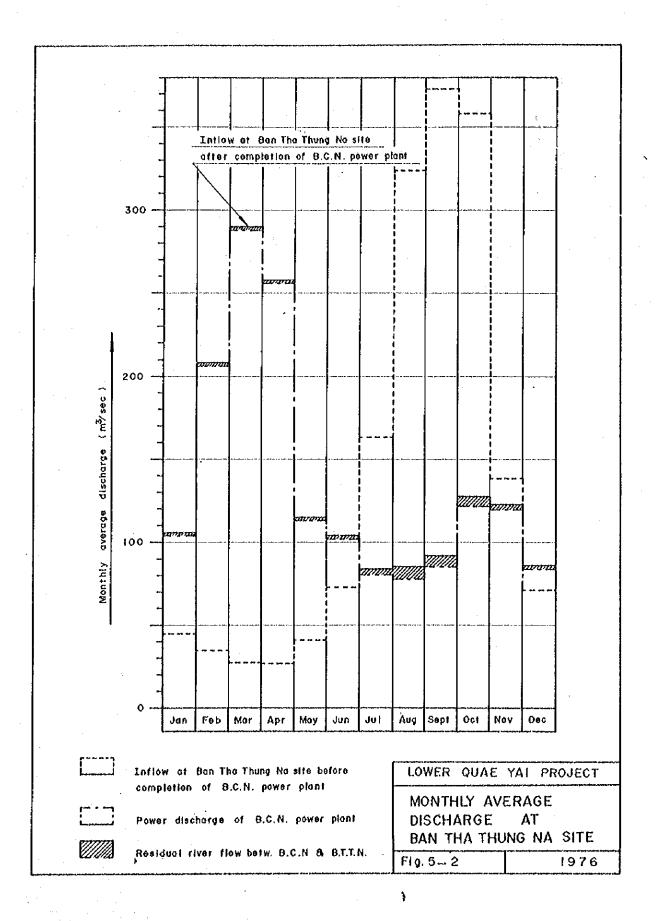
(Unit: m<sup>3</sup>/sec)

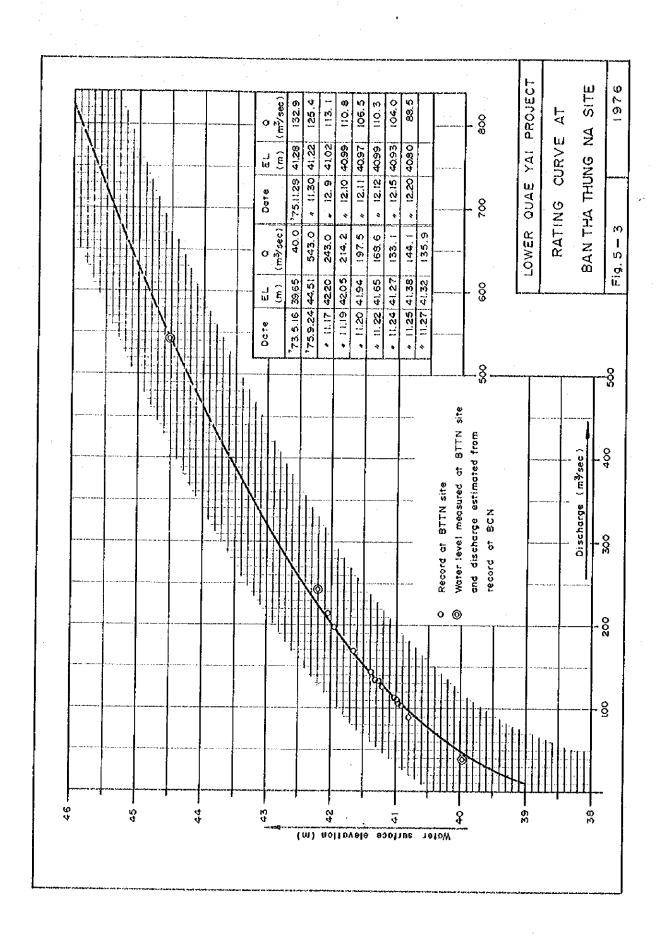
| Month   | Inflow at BCN | Inflow at BTTN | charge betw.<br>BCN & BTTN | Power dis-<br>charge of<br>BCN | Total<br>inflow at<br>BTTN | Evapora-<br>tion | Power dis-<br>charge of<br>BTTN |
|---------|---------------|----------------|----------------------------|--------------------------------|----------------------------|------------------|---------------------------------|
|         | (1)           | (2)            | (3)                        | (4)                            | (5)                        | (6)              | (7)                             |
| Apr.    | <b>26</b> . 3 | 26. 8          | 0. 5                       | 257.3                          | 257. 8                     | -0.2             | 257. 6                          |
| May     | 40, 5         | 41.3           | 0. 8                       | 113.9                          | 114. 7                     | 0                | 114.7                           |
| June    | 71.6          | 73, 0          | 1, 4                       | 102. 4                         | 103. 8                     | -0.1             | 103, 7                          |
| July    | 159. 8        | 162. 8         | 30                         | 80. 7                          | 83. 7                      | 0                | 83. 7                           |
| Aug.    | 318. 1        | 324. 1         | 6. 0                       | 78. 5                          | 84. 5                      | 0                | 84. 5                           |
| Sept.   | 366. 6        | 373. 6         | 7. 0                       | 85. 4                          | 92. 4                      | +0. 1            | 92. 5                           |
| Oct.    | 350. 8        | 357. 5         | 6. 7                       | 122. 7                         | 129. 3                     | <b>40.</b> 1     | 129. 4                          |
| Nov.    | 135. 8        | 138. 5         | 2. 6                       | 120. 2                         | 122. 8                     | -0, 1            | 122, 7                          |
| Dec.    | 70, 0         | 71, 3          | 1, 3                       | 84. 3                          | 85. 7                      | -0.2             | 85,5                            |
| Jan.    | 44. 1         | 44. 9          | 0, 8                       | 105. 3                         | 106, 1                     | -0. 2            | 105.9                           |
| Feb.    | 34, 8         | 35. 5          | 0, 7                       | 207. 8                         | 208. 5                     | - 0. 2           | 208. 3                          |
| Mar,    | 27. 2         | 27. 7          | 0. 5                       | 289. 5                         | 290. 0                     | -0, 2            | 289, 8                          |
| Average | 137, 1        | 139. 7         | 2, 6                       | 137. 3                         | 139, 9                     |                  | 139, 9                          |

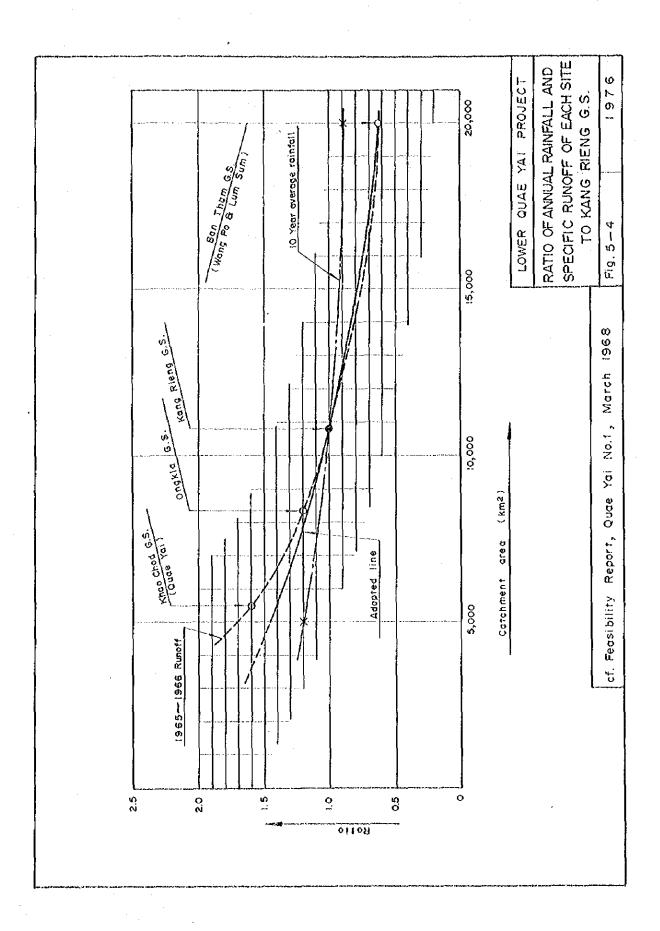
Note: BCN: Ban Chao Nen Project

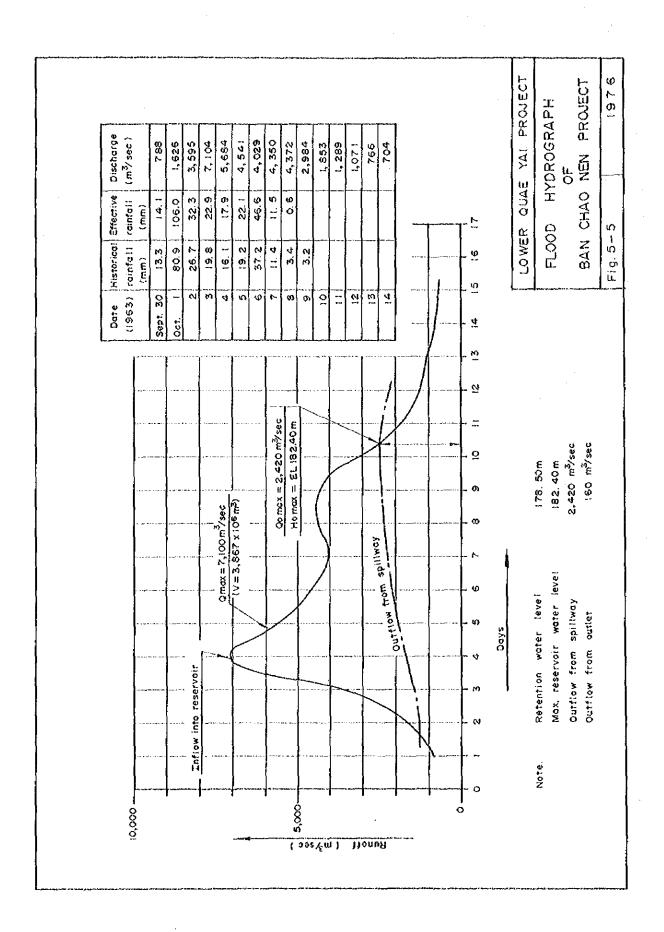
BTTN: Ban Tha Thung Na Project

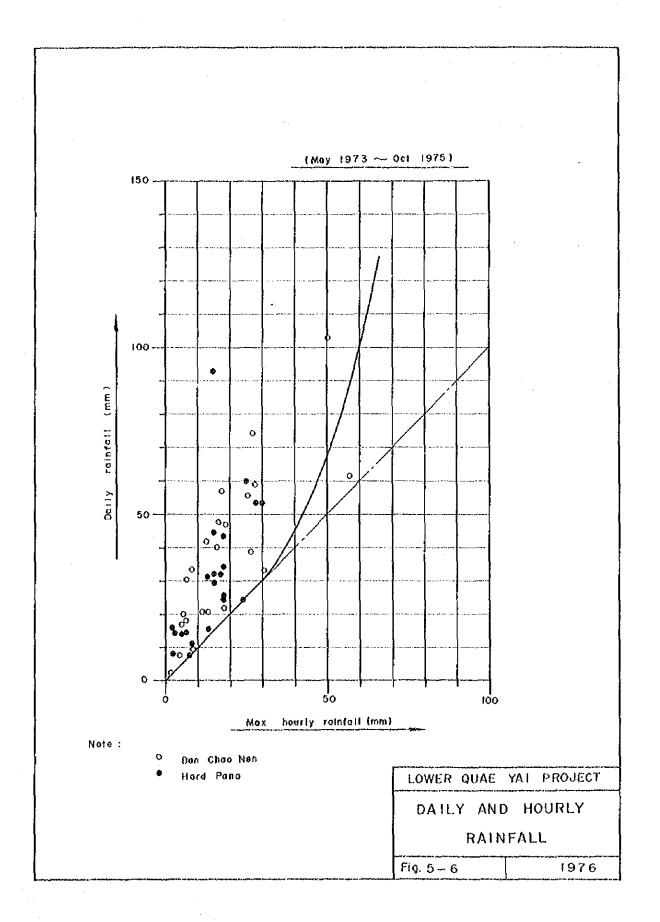

Table 5-4 Suspended Sediment at Ban Chao Nen Site

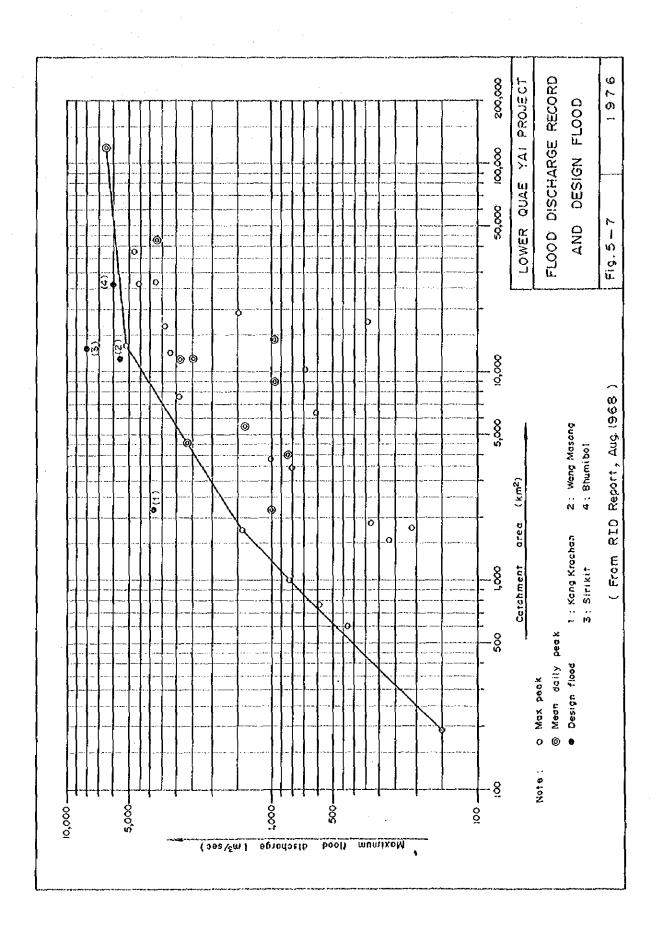

|      | -       | Q< 500                    |      | 300          | 500 <q<750< th=""><th></th><th>750</th><th>750&lt;0&lt;1000</th><th>Q</th><th></th><th>Q&gt; 1000</th><th></th><th>Total</th><th>tal</th></q<750<> |      | 750                                                                                     | 750<0<1000 | Q         |                      | Q> 1000             |      | Total                | tal             |
|------|---------|---------------------------|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------|------------|-----------|----------------------|---------------------|------|----------------------|-----------------|
|      | Runoff  | Sediment                  | neat | Runoff       | Sediment                                                                                                                                           | heat | Runoff                                                                                  | Sediment   | nent      | Runoff               | Sediment            | nent | Runoff               | Runoff Sediment |
|      | (106m3) | (106m3) (103t) (%) (106m3 | 6%   | (106m³)      | (10 <sup>3</sup> t)                                                                                                                                | 88   | $(10^3t)$ (%) $(10^6m^3)$ $(10^3t)$ (%) $(10^6m^3)$ $(10^3t)$ (%) $(10^6m^3)$ $(10^3t)$ | (103t)     | %         | (106m <sup>3</sup> ) | (10 <sup>3</sup> t) | (%)  | (106m <sup>3</sup> ) | (103t)          |
| 1972 | 3,681   | 269                       | 13.4 | 13.4 · 1,284 | 806                                                                                                                                                | 15.5 | 700                                                                                     | 757        | 14.6      | 909                  | 2, 934              | 56.5 | 56.5 6.174 5,194     | 5, 194          |
| 1973 | 3, 223  | 472                       | 20.8 | 20.8 1,454   | 1,269                                                                                                                                              | 55.8 | 226                                                                                     | 533        | 533 23. 4 | •                    | ,                   |      | 4,903 2,274          | 2, 274          |

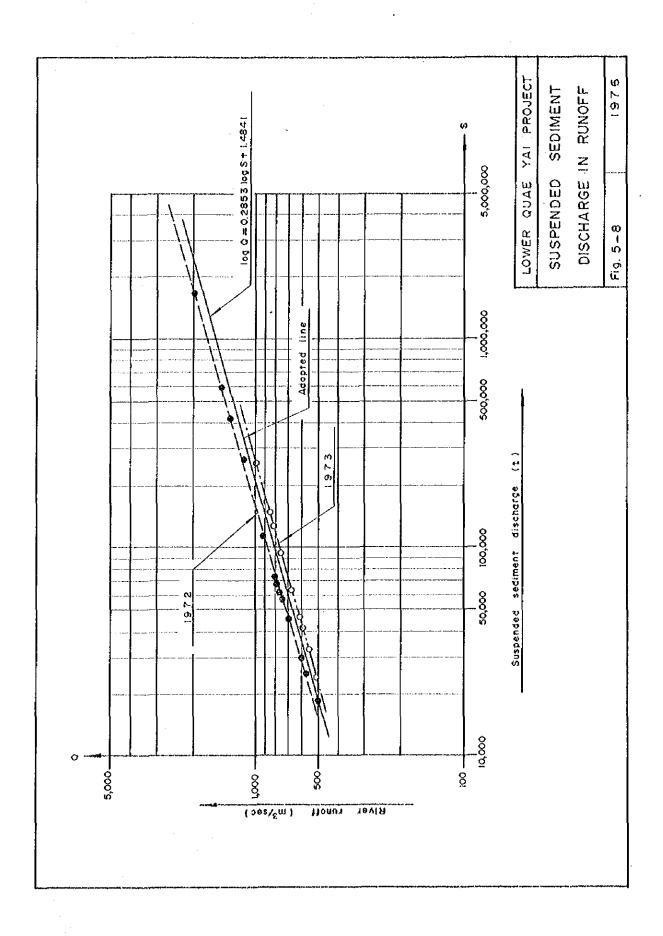

Table 5-5 Annual Suspended Sediment Assumed

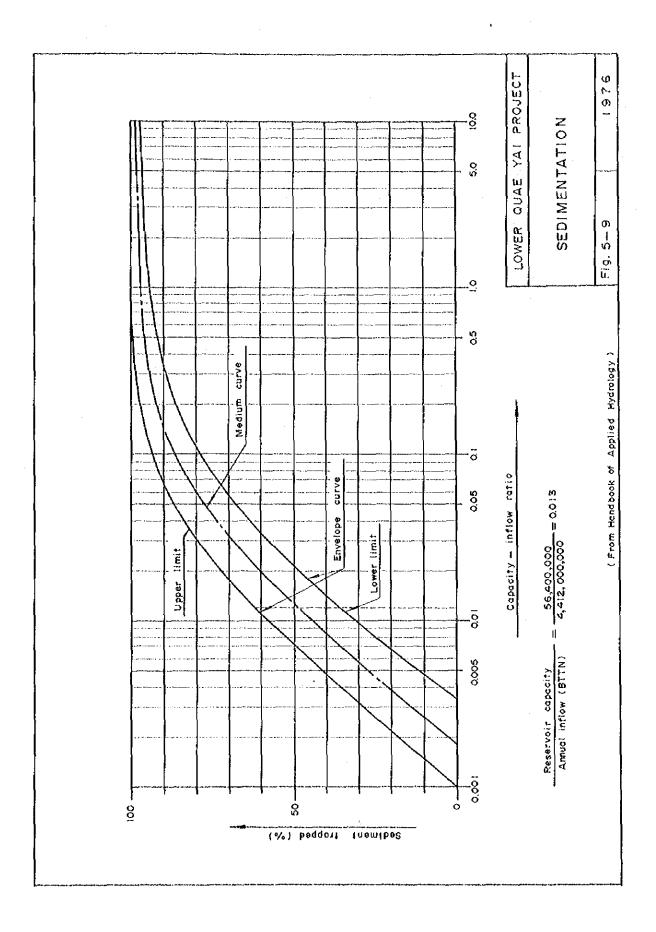

| a graphy (Market Physical pay | Ri     | moff (10 <sup>6</sup> | <sup>5</sup> m³) | Sed   | iment (1 | 0 <sup>3</sup> t)  | 0 11                 | D                             |
|-------------------------------|--------|-----------------------|------------------|-------|----------|--------------------|----------------------|-------------------------------|
|                               | Q<500  | Q>500                 | Total            | Q<500 | Q>500    | Total              | Sediment<br>at BTTN( | Remarks<br>10 <sup>3</sup> t) |
| 1952                          | 3,247  | 1,085                 | 4,332            | 549   | 2,686    | 3,235              | 162                  | Sediment per                  |
| 1953                          | 4,548  | 3,002                 | 7,550            | 769   | 17,021   | 17,790             | 890                  | unit runoff of                |
| 1954                          | 3,466  | 621                   | 4,087            | 586   | 454      | 1,040              | 52                   | less than 500                 |
| 1955                          | 2,923  | 98                    | 3,021            | 494   | 57       | 551                | 28                   | m <sup>3</sup> /sec: 0. 169   |
| 1956                          | 3,775  | 208                   | 3,983            | 638   | 144      | 782                | 39                   | $x 10^{-3} t/m^3$             |
| 1957                          | 3, 105 | 1,476                 | 4,581            | 525   | 2,202    | 2,727              | 136                  |                               |
| 1958                          | 3,488  | 451                   | 3, 939           | 589   | 403      | 992                | 50                   |                               |
| 1959                          | 2,721  | 1,333                 | 4,054            | 460   | 2,855    | 3,315              | 166                  |                               |
| 1960                          | 2,580  | 217                   | 2,797            | 436   | 178      | 614                | 31                   |                               |
| 1961                          | 3,676  | 3,678                 | 7, 354           | 621   | 8,918    | 9, 539             | 477                  | •                             |
| 1962                          | 3, 139 | 1,793                 | 4,932            | 530   | 8,144    | 8,674              | 434                  |                               |
| 1963                          | 3,474  | 2, 166                | 5,640            | 587   | 9,749    | 10, 336            | 517                  |                               |
| 1964                          | 3, 128 | 1,505                 | 4,633            | 529   | 2, 404   | 2,933              | 147                  |                               |
| 1965                          | 3,944  | 228                   | 4, 172           | 667   | 200      | 867                | 43                   |                               |
| 1966                          | 3,318  | 420                   | 3,738            | 561   | 311      | 872                | 44                   |                               |
| 1967                          | 3, 317 | 287                   | 3,604            | 561   | 156      | 717                | 36                   |                               |
| 1968                          | 2,970  | 99                    | 3,069            | 502   | 60       | 562                | 28                   |                               |
| 1969                          | 2,936  | 1,249                 | 4, 185           | 496   | 1,326    | 1,822<br>(5,194)   | 91                   |                               |
| 1972                          | 3,681  | 2,493                 | 6, 174           | 622   | 5,869    | 6, 491<br>(2, 274) | 326                  |                               |
| 1973                          | 3,223  | 1,680                 | 4,903            | 545   | 1,393    | 1,938              | 97                   |                               |
| Average                       | 3,333  | 1,204                 | 4, 537           | 563   | 3, 227   | 3,790              | 190                  |                               |


Note: ( ) sediment in Table 5-4
BTTN : Ban Tha Thung Na Project














#### 6.1 General consideration

In the basic development scheme of the Quae Yai River, this is the lowest hydro-electric development project in the area downstream of the Ban Chao Nen power plant due to topographic conditions and, therefore, the development plan of this project must be to make the most efficient use of hydraulic petentials within the limit of economic justification. However, it should also be noted, in consideration of extremely large capacity of the Ban Chao Nen reservoir, that the said plan shall be inevitably governed by design conditions and operation plan of the Ban Chao Nen reservoir. Namely, the required reservoir capacity varies corresponding to peak duration of the first and second stage Ban Chao Nen power plant (360MW each, 720MW in total) and the allowable fluctuation of reservoir water level, as described later, is subject to design conditions of the Ban Chao Nen project. Main features of this project, such as the installed capacity and number of units, etc. have also close connection with seasonal fluctuation of power discharge of the Ban Chao Nen power plant.

At the first stage of the studies of the lower Quae Yai development scheme, the Ban Tha Ta On and Ban Wang Kula dam sites located at 19.5km and 24.5km downstream of the Ban Chao Nen dam site respectively were proposed only to complement the operation plan including pumping-up operation of the Ban Chao Nen power plant. Thereafter, the Ban Tha Thong Mon Project near the steep cliff located at the right bank in the regulating reservoir area in place of the Huai Klong Ngu pumped-storage hydro-electric project in the upper Quae Yai basin was proposed.

In view of this new situation the Ban Tha Thung Na dam site 3.5km further downstream was newly proposed to cope with the additionally required reservoir capacity and to utilize the undeveloped available head to the maximum. The relative location of those three dam sites and the Ban Chao Nen dam site, and profile of the Quae Yai River in this area are shown in Figs. 6-1 and 6-2, and reservoir capacity curves at the respective dam sites are shown in Figs. 6-3, 6-4 and 6-5.

#### 6.2 Required reservoir capacity

#### 6.2.1 Basic conditions

For study of required reservoir capacity which is one of the foundamental factors in deciding the dam site, the following items must be taken into consideration.

(a) For the efficient operation of the EGAT power system, the first and second stages of the Ban Chao Nen power plant will be required to operate mainly for peak generation and, accordingly, the Lower Quae Yai Project shall be so operated as to re-regulate the power discharge of the Ban Chao Nen power plant in order to meet the requirements for irrigation, domestic water uses and navigation in the downstream basin.

- (b) Sufficient amount of reservoir capacity necessary for pumping-up operation of the second stage Ban Chao Nen power plant shall be secured.
- (c) Taking into account the huge effective storage capacity of 4,740 x 106 m<sup>3</sup> of the Ban Chao Nen reservoir capable of carry-over regulation of the annual inflow, the Ban Chao Nen power plant will be possibly required, in addition to normal scheduled operation, to perform emergency operation in case of forced outage of other hydroelectric or thermal power plants or transmission lines, etc. Therefore, it is necessary to provide some allowance of reservoir capacity to accommodate discharge by such emergency operation.
- (d) It is also required to secure sufficient storage capacity for the Ban Tha Thong Mon Pumped-storage Project.
- 6.2.2 Reservoir capacity in relation to Ban Chao Nen power plant

Following are the analytical studies of operation pattern of the Ban Chao Nen project in the overall operation schedule of EGAT power generation facilities and of the approach to measuring the capacity of re-regulating reservoir required for operation of the said power plant.

- (a) The composite ratios by source of generation of EGAT power system are shown in Table 6-1 and Fig. 6-6. Forty percent is hydro power and sixty percent is thermal power. It is considered that there will be little difference of composite ratios even though the EGAT long term development schedule described in Chapter 3 be realized.
- (b) Daily load represented by daily load duration curve is partially shared at present by the South and North Bangkok thermal power plants for base loads, by the Bhumibol and Sirikit hydro-electric power plants for intermediate loads and by the other hydro-electric, gas turbine and diesel power plants for peak loads as shown in Table 6-2.

At around 1987, it is forecasted that nuclear power plants and some of thermal power plants will supply base loads, the other thermal power plants the intermediate loads, the existing hydro-electric power plants for comparatively long duration peak loads (approximately 10 to 12 hours duration) and future hydro-electric power plants including the first and second stage Ban Chao Nen project for comparatively short duration peak loads. This was induced from the fact that the existing EGAT hydro-electric power plants can be operated for comparatively long equivalent peak duration of 8 to 10 hours, as shown in Table 6-3, on account of abundant inflow.

It is forecasted that the same status of load allotment will be continued until the large scale nuclear power plants will be developed after 1990. As mentioned above, the Ban Chao Nen power plant will be operated to cover the comparatively short duration peak load in the daily load curve and its equivalent peak duration is expected to be around 6 hours.

- (c) The Ban Chao Nen reservoir operation is scheduled as shown in the aforenamed Fig. 5-2 taking into consideration annual inflow and irrigation requirements in the downstream basin and, except for Pebruary, March and April when large amount of water is required for irrigation purpose, the amount of water available for power generation of the first and second stage Ban Chao Nen power plant during the other nine months is very small corresponding to an equivalent peak duration of 3 to 4 hours.

  Therefore, the pumping-up operation to supplement two hour generating operation of the first and second stage Ban Chao Nen power plant will be employed during this period. And the second stage Ban Chao Nen power plant shall be operated for about 5 hours during midnight off peak hours to pump-up water required for the abovementioned two hour generating operation.
- (d) It is difficult to directly define the supplementary reservoir capacity required for emergency operation of the Ban Chao Nen power plant as stated in the preceding paragraph 6.2.1 (c). However, it is assumed that the peak duration to be specially influenced by outage of thermal power plant or transmission line is about 8 hours in total: 2 hour peak duration in the morning, 3 hours in the afternoon and 3 hours in the evening lighting up time and, consequently, it is necessary to take into account the allowance equivalent to 2 hours in addition to normal equivalent peak duration.

## 6.2.3 Reservoir capacity required for Ban Tha Thong Mon Project

As stated in Clause 11.3 of Chapter 11, the expected time of developing this pumped-storage project will be after 1990 when the major part of total generating capacity is nuclear power plants. It is assumed that the peak load in the load duration curve at this stage will be mostly shared by existing and future hydro-electric power projects and this pumped-storage type project will serve for partial or reserve operation with specially short peak duration of about 4 hours in the peak load. Therefore, reservoir capacity required for operation of the Ban Tha Thong Mon Project will be equivalent to the volume of water to be discharged for power generation for about six hours including an allowance of two hours.

## 6.2.4 Estimation of required reservoir capacity

In addition to the above consideration, required reservoir capacity also varies depending upon the operation pattern of the Lower Quae Yai Project, that is, if this plant is operated to supply peak loads the required reservoir capacity is less. However, taking into account imposed restriction on abrupt fluctuation of river surface in the downstream basin, estimation is made for the case of complete re-regulation which gives the biggest reservoir capacity.

(a) Reservoir capacity for operation of the first and second stage Ban Chao Nen project.

In case supplementary peak operation time of the first and second stage Ban Chao Nen power plant by pumped-storage is taken to be two hours in consideration of power source available for pumping-up operation, the correlation between available peak duration and consequently required reservoir capacity at certain daily average discharge available from the Ban Chao Nen reservoir is as shown

in Fig. 6-7 and in this case the maximum required reservoir capacity is estimated at approximately 20 x  $10^6\,\mathrm{m}^3$ . It is, however, deemed sufficient to take into account peak duration of eight hours which was stated earlier on the basis of the assumed load allocation for the first and second stage Ban Chao Nen power plant and for this purpose the required reservoir capacity is approximately  $17.3 \times 10^6\,\mathrm{m}^3$  as shown in the same figure.

(b) Required reservoir capacity for Ban Tha Thong Mon Project. As described in Chapter 11 clause 11.4 the maximum power discharge of this project is assumed to be 124 m<sup>3</sup>/sec and reservoir capacity required for generating operation of this power plant for about six hours is 2.7 x 10<sup>6</sup> m<sup>3</sup>.

Therefore, the required reservoir capacity including this requirement is estimated at 20  $\,\mathrm{x}\cdot 10^6\,\mathrm{m}^{\,3}$ 

# 6.3 Allowable limit of fluctuation of reservoir surface and effective reservoir capacity

Following are the conditions in deciding high and low water levels of this reservoir in relation to the design criteria of the Ban Chao Nen power plant.

## 6.3.1 High water level

The most advantageous arrangement for the total generating capacity of both the upstream and downstream power plants is to coincide the tailwater level of the Ban Chao Nen power plant and the high water level of this reservoir as described below.

- (a) To determine the high water level of the reservoir higher than the tailwater level of the Ban Chao Nen power plant results in a rise of construction cost of the downstream project with no increase of gross head.
- (b) To determine the high water level lower than the tailwater level of the Ban Chao Nen power plant causes undeveloped potential remaining between the two and results in loss of gross head.

Consequently, the high water level of this regulating reservoir was fixed at elevation 59.70m which corresponds to the tailwater level of the Ban Chao Nen power plant at maximum power discharge of 798 m<sup>3</sup>/sec which is after completion of the second stage Ban Chao Nen power plant.

### 6.3.2 Low water level

As the regulating reservoir is planned to be a lower pondage for pumping-up operation of the second stage Ban Chao Nen power plant (360 MW), the low water level of the reservoir is also restricted by the design criteria of the said power plant. Namely, the low water level must be kept so as to maintain the minimum draft head (Hs) which must be secured during pumping-up operation. Though general mechanical dimensions of the second stage Ban Chao Nen power plant are not finally studied yet in detail, it is estimated that the Hs will not be more than 12m according to our latest preliminary study. On the other hand, the elevation of the center of the

reversible pump-turbine for pumping-up water is already fixed to be EL. 43.50m and low water level of the reservoir is thus decided to be EL. 55.50m taking those conditions into consideration.

## 6.3.3 Effective storage capacity

Effective storage capacities at the respective dam sites with high and low water levels of 59, 70 m and 55, 50 m both induced from the above-mentioned studies are as follows:

| Dam site         | Effective storage capacity (m <sup>3</sup> ) |
|------------------|----------------------------------------------|
| Ban Tha Ta On    | 10, 200, 000                                 |
| Ban Wang Kula    | 17, 800, 000                                 |
| Ban Tha Thung Na | 27, 700, 000                                 |

These capacities, however, are calculated on the basis of  $1:5,000\,\mathrm{aerial}$  maps and  $1:50,000\,\mathrm{topographic}$  maps and shall be adjusted on completion of detailed survey.

### 6.4 Selection of dam site

The following are the comparative studies of the effective storage capacity at the three proposed sites with required reservoir capacity above-mentioned.

- (a) The effective storage capacity at the Ban Tha Ta On site is not satisfactory even for operation of the Ban Chao Nen power plant including pumping-up operation and excludes the requirement for the Ban Tha Thong Mon Pumped-storage Project.
- (b) The effective storage capacity at the Ban Wang Kula site seems to barely satisfy the requirement for operation of the Ban Chao Nen power plant, but it is considered still insufficient if sedimentation which will gradually decrease the storage capacity is taken into account. This site also will not create the required storage capacity for the proposed Ban Tha Thong Mon Pumped-storage Project.
- (c) The Ban Tha Thung Na site will provide sufficient reservoir capacity required for operation of both the Ban Chao Nen and Ban Tha Thong Mon power plants, even if consideration is given to sedimentation in the reservoir. Should the Ban Chao Nen power plant be forced to serve an additional and extraordinary operation in consideration of large reserve capacity of the Ban Chao Nen reservoir, the surplus capacity of this regulating reservoir complies easily with such particular condition.

Furthermore, as described in Chapter 4, the geological condition at the Ban Tha Thung Na site will adequately sustain the structures planned to be constructed at the site and the geology is better than that at the upstream sites. Taking all these factors into consideration, the Ban Tha Thung Na site was selected as the dam site and accordingly, investigations and studies have been concentrated on this site.

## 6.5 Development scheme of Ban Tha Thung Na power plant

### 6.5.1 Present condition of dam site

The Ban Tha Thung Na dam site is located midway between Kanchanaburi and Ban Chao Nen dam site and an asphalt road between the same passes by the dam site. A terrace formed by relatively hard rock at the right bank and a steep rock ridge on the left bank causes the river to make a big bend at this site. There are outcrops on both banks and the overburden is relatively thin. Normally the river water surface is about 80 m wide but at the time of the largest recorded flood ( $Q = 2,500 \,\mathrm{m}^3/\mathrm{sec}$ ), the river was about 140 m wide recording about 12 m rise of water surface. The terrace on the right bank is covered with thin forest and there are farm houses with tenants farming small plots of land.

#### 6.5.2 Dam

Taking into account the result of geological studies and topographical conditions as described in Chapter 4, the dam axis was selected where the bedrock is shallow and require less excavation. A concrete spillway structure is to be constructed in the river bed flanked on the right wing with a central core rockfill dam in consideration of the following conditions.

- (a) As described later in Chapter 7 "Construction Schedule", the flood discharge at the dam site is possibly expected to be under 90 m<sup>3</sup>/sec by coinciding the construction period of this project with the period of filling the upstream Ban Chao Nen reservoir and consequently, the river flow can be diverted by coffering half of the river without constructing a full-scale diversion system for care of the river. In this case, the dam should be of concrete construction, otherwise diverting the river flow can be by no means carried out at the second stage coffering of the river.
- (b) In view of economy, a rockfill dam is recommendable on the right wing of the spillway structure as the bedrock is deeply weathered but the permeability is low.
- (c) The most optimum design for a rockfill dam is to construct the spillway in an area separate from the dam, but at this site due to topographical conditions, the dam with spillway structure in the river bed will have to be constructed.

Judging from the results of test borings, two rows of curtain grouting extending to a maximum depth of 25 m and blanket grouting of less than 10 m in depth should be sufficient to improve the relatively good calcareous sandstone foundation existing from the river bed to the left bank of the Quae Yai River. It is considered that no unusual construction method should be required. Taking into consideration the limited working time dictated by filling period of the Ban Chao Nen reservoir, an inspection gallery should be constructed to permit additional curtain grouting from the gallery, provided that, in case an inspection gallery is recognized as unnecessary from the result of the foundation treatment from the rock surface, the gallery can be discarded. The spillway will have six radial gates which can release 2,710 m<sup>3</sup>/sec of the total design flood discharge and the remaining amount of 290 m<sup>3</sup>/sec can be

discharged through the turbines. The rockfill dam is of the central impervious core type with upstream and downstream slopes of 1:2.5 and 1:2.0, respectively and the crest width of the dam will be  $8.0 \,\mathrm{m}$  which is the minimum width achievable taking into account working conditions.

### 6.5.3 Power intake, powerhouse and tailrace

The various facilities for power generation such as power intake, powerhouse and tailrace will be constructed adjacent to the left side of the dam. The reasons for constructing the powerhouse on the left bank are as follows.

- (a) Heavy equipment such as turbines, generators, etc. can be easily hauled in and the design load on the bridge over the spillway structure can be set to a minimum value.
- (b) The extent of excavation is larger on the right bank judging from the bottom elevation of the draft tube.

The power intake will be 40.00m wide and 38.50m high, and will have five trashracks and four control gates.

The number of units and maximum output must be determined before starting on the design of the powerhouse taking the following conditions into consideration.

- (a) Operation of the Ban Chao Nen reservoir is governed by the basic conditions to secure the irrigation requirement (290 m<sup>3</sup>/sec at maximum) and the minimum discharge of 50 m<sup>3</sup>/sec for navigation and other uses. The same conditions are naturally applied to this project and daily average discharge in a year is subject to sharp fluctuation of about 6 times as described above.
- (b) It is considered that this power plant will be required to carry peak loads in accordance with the daily load curve. Fluctuation of power discharge by time will show the same value judging from the discharge at the economical maximum output to be mentioned later.
- (c) Due to the relatively small effective head available, the turbine will be of the Kaplan type. Mechanically, the minimum discharge at which the turbine can be operated is about 20 percent of the discharge at the maximum output, and only one unit of Kaplan turbine may not cope with the big fluctuation of discharge mentioned above.

Taking these reasons into consideration, the number of units was decided as two, and economic comparison was made to determine the maximum installed capacity. The maximum output at each maximum discharge and annual energy production are shown in Table 6-4. After comparative studies described later in Chapter 9, the maximum installed capacity was decided to be 37,000kW at a maximum discharge of 290 m<sup>3</sup>/sec and a rated head of 15.10m. The powerhouse building at EL.44.50m (generator floor) and EL.55.00m (crection bay) are 17.50m x 38.50m and 17.50m x 50m, respectively which are the minimum dimensions to accommodate two units and ancillary equipment. Four draft gates will be installed at the end of the draft tubes.

The tailrace channel will be 35,00 m long and 41,50 m wide at the terminal,

## 6.5.4 Switchyard

The switchyard will be located in an area  $40\,\mathrm{m}/\mathrm{x}/50\mathrm{m}$  adjacent to the power plant. Switching equipment besides two sets of main transformers will be installed there and connected with the power plant by cables installed in cable duct.

#### 6.5.5 Transmission line

One circuit of 115kV transmission line for sending power to the Ban Chao Nen project during construction and in the future for transmitting power to Kanchanaburi is recently constructed and will pass by about 2.5km away from this site. A transmission line from the switchyard will be constructed to tie into the abovementioned transmission line by  $\pi$  connection.

#### 6.5.6 Other facilities

Besides the above facilities, telephone system for communication between Ban Tha Thung Na power plant and Ban Chao Nen power plant as well as Kanchanaburi substation will be installed. Power line carrier relaying system for protection of the 115kV transmission line will also be installed.

## 6.5.7 Principal features of the project

The principal features, preliminary designs and single line diagram for the Ban Tha Thung Na Project are shown in the front table and Figures 6-8, 6-9, 6-10, 6-11, 6-12 and 6-13.

## 6.6 Construction materials

Further detail investigations of the construction materials in the field are required and the results of preliminary field investigations in the vicinity of the Ban Tha Thung Na Project are as follows.

## (a) Impervious core material

Clay and fine silt in diluvium and talus deposit which are distributed at the terrace around dam site and gentle piedmont, and heavily weathered portion of rock foundation mainly composed of shale will be the possible sources for impervious core material.

#### (b) Filter material

River deposits and weathered rocks existing in this area will be the possible sources for filter material.

As far as superficially obserbed, river deposits seems to mostly contain finegrained materials with limited amount of coarse materials. It will be required to investigate sandbars in the river bed. Among weathered rocks, relatively coarse-grained portions of talus deposits and weathered portions of rock foundations will be considered as the sources for filter material.

### (c) Rock material

Among limestone and metamorphic sedimentary rock around the site, schistosed sandstone forming the hills with gentle slopes is the most suitable material for rockfill embankment.

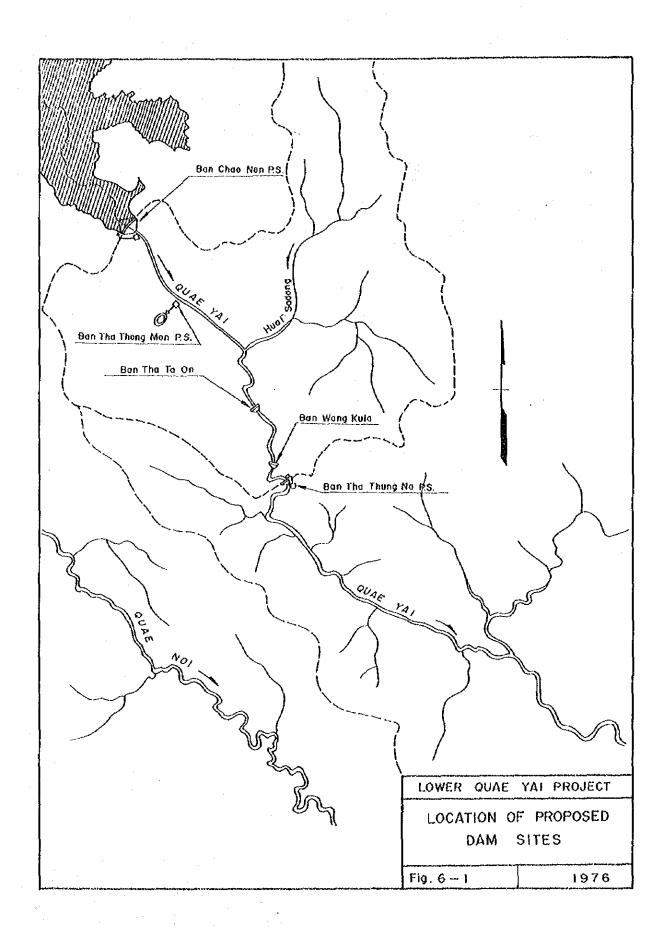
## (d) Aggregate for concrete

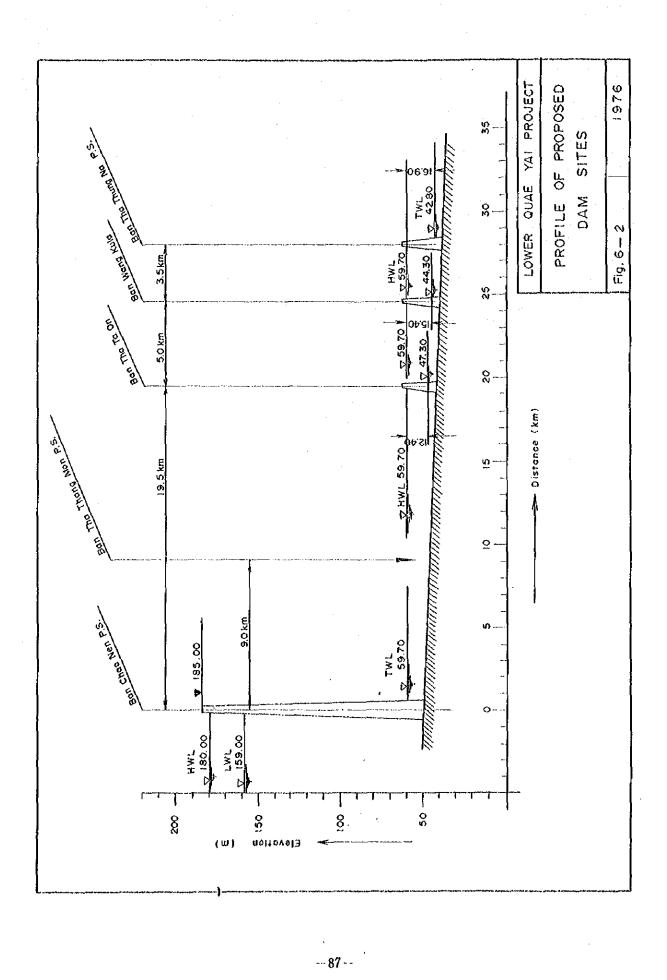
Gravel and sand included in the river deposit or quarry run materials will be used. According to the latest field investigation by EGAT, river deposits include little amount of impure matters and seems to be suitable for fine aggregate both in quantity and quality. It is required to investigate sandbars in the river bed for obtaining coarse aggregate. Limestone and schistosed sandstone will be available for manufactured coarse aggregate, however, it is noted that schistosed sandstone has a exfoliative characteristic.

Table 6-1 Composition of Power Facility

|                | Hydr                          | 0           | Thern                   | nal         | Dieset &                | Gas         | Nucle                   | ar - | Total                   |
|----------------|-------------------------------|-------------|-------------------------|-------------|-------------------------|-------------|-------------------------|------|-------------------------|
| Fiscal<br>year | Installed<br>capacity<br>(MW) | Rate<br>(%) | Installed capacity (MW) | Rate<br>(%) | Installed capacity (MW) | Rate<br>(%) | Installed capacity (MW) | Rate | Installed capacity (MW) |
| 1975           | 909                           | 43          | 1, 034                  | 48          | 195                     | 9           | 0                       | 0    | 2, 138                  |
| 1976           | 909                           | 37          | 1, 334                  | 55          | 195                     | 8           | 0                       | 0    | 2, 438                  |
| 1977           | 909                           | 36          | 1, 409                  | 56          | 195                     | 8           | 0                       | 0    | 2,513                   |
| 1978           | 959                           | 36          | 1,484                   | 56          | 195                     | 8           | 0                       | 0    | 2,638                   |
| 1979           | 1, 079                        | 35          | 1, 784                  | 58          | 195                     | 7           | 0                       | 0    | 3, 058                  |
| 1980           | 1, 319                        | 40          | 1, 784                  | 54          | 195                     | 6           | 0 .                     | 0    | 3, 298                  |
| 1981           | 1,356                         | 41          | 1, 784                  | 53          | 195                     | 6           | 0                       | 0    | 3, 335                  |
| 1982           | 1,496                         | 43          | 1, 784                  | 51          | 195                     | 6           | 0                       | 0    | 3, 475                  |
| 1983           | 1,576                         | 41          | 2, 084                  | 54          | 195                     | 5           | 0                       | 0    | 3, 855                  |
| 1984           | 1,576                         | 38          | 2, 384                  | 57          | 195                     | 5           | 0                       | 0    | 4, 155                  |
| 1985           | 1,866                         | 42          | 2, 384                  | 54          | 195                     | 4           | 0                       | 0    | 4, 445                  |
| 1986           | 1,866                         | 37          | 2, 384                  | 47          | 195                     | 4           | 600                     | 12   | 5,045                   |
| 1987           | 2, 226                        | 41          | 2, 384                  | 44          | 195                     | 4           | 600                     | 11   | 5,405                   |
| 1988           | 2, 226                        | 37          | 2, 984                  | 49 .        | 195                     | 4           | 600                     | 10   | 6,005                   |
| 1989           | 2, 226                        | 37          | 2,984                   | 49          | 195                     | 4           | 600                     | 10   | 6,005                   |
| 1990           | 2,826                         | 43          | 2, 984                  | 45          | 195                     | 3           | 600                     | 9    | 6,605                   |

Table 6-2 Thermal, Gas Trubine and Diesel Power Plant Annual Utilization Factor


| Name                | Unit | Installed Capacity (MW) | Average Annual<br>Energy (10 <sup>6</sup> kWH) | Annual Utilization<br>Factor (%) |
|---------------------|------|-------------------------|------------------------------------------------|----------------------------------|
| (Thermal)           |      |                         |                                                |                                  |
| North Bangkok       | . 3  | 237.5                   | 1,900                                          | 91                               |
| South Bangkok       | 4    | 1,000                   | 7,420                                          | 85                               |
| Surat Thaui         | 1    | 30                      | 210                                            | 80                               |
| Mae Moh             | 1    | 6. 25                   | 50                                             | 91                               |
| Krabi               | 3    | 60                      | 300                                            | \$7                              |
| (Gas Turbine)       |      | · <b>.</b> .            |                                                |                                  |
| North Bangkok       | 2    | 30                      | 26                                             | 10                               |
| South Bangkok       | 4    | 60                      | 53⋅                                            | 10                               |
| Bang Kapi           | l    | 15                      | 13                                             | 10                               |
| Bangkok Noi         | 1    | 15                      | 13                                             | 10                               |
| Nakhon Ratchasima   | 1    | 15                      | 13                                             | 10                               |
| Udon Thani          | l    | 15                      | 13                                             | 10                               |
| Hat Yai             | ı    | 15                      | 13                                             | 10                               |
| (Diesel)            |      |                         |                                                |                                  |
| Mae Moh             | . 9  | 9                       | 8                                              | 10                               |
| Chiangmal           | 8    | 8                       | 7                                              | 10                               |
| Phuket              | 4    | 10. 6                   | 9                                              | 10                               |
| Nakhon Si Thammarat | 2    | 2                       | 2                                              | 10                               |


Table 6-3 Equalized Peaking Load (Existing Hydro-Power Station)

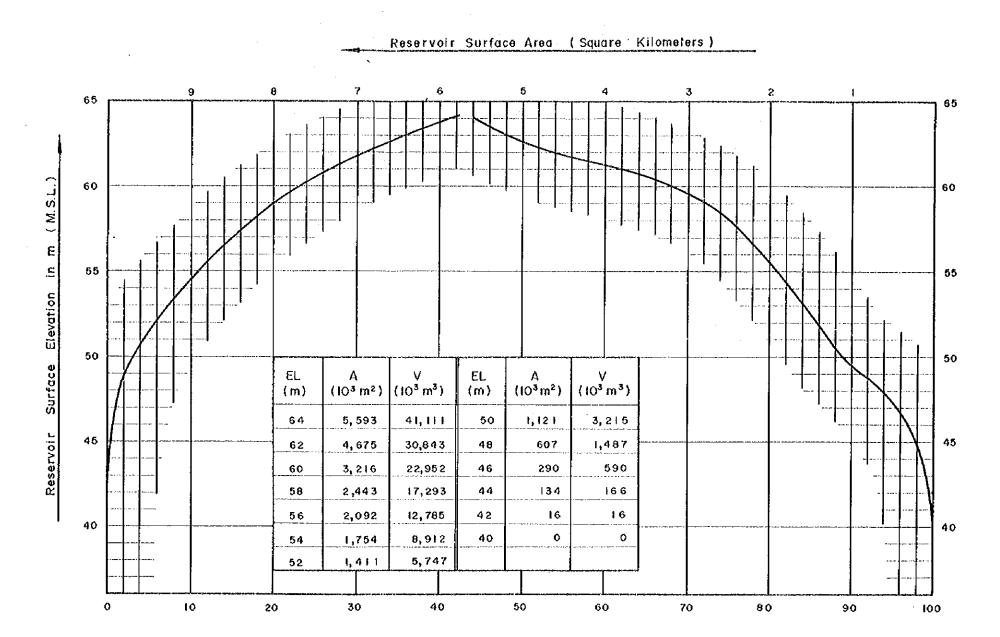
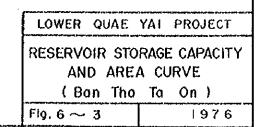
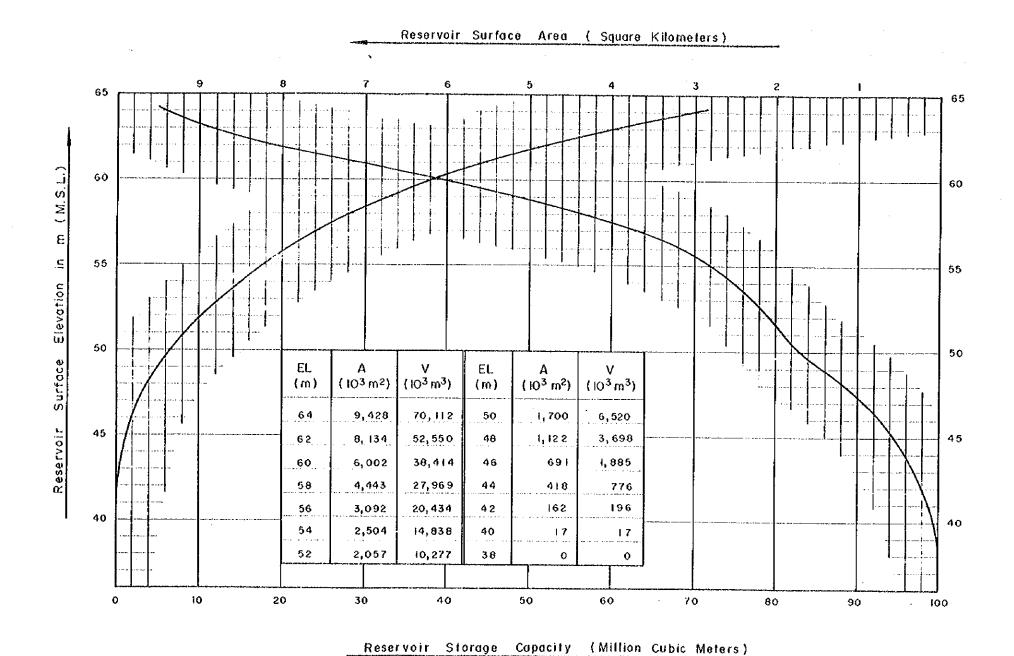

| Name                | Annual Energy<br>(106 kWh) | Daily Energy<br>(MWh) | Equalized Peaking<br>Load (hour) |
|---------------------|----------------------------|-----------------------|----------------------------------|
| Bhumibol (420MW)    | 1,550                      | 4,250                 | 10. 1                            |
| Sirikit (375MW)     | 965                        | 2,640                 | 7. 0                             |
| Ubolratana (25MW)   | 65                         | 178                   | 7. 1                             |
| Sirindhorn (24MW)   | 73                         | 200                   | 8, 3                             |
| Chulabhorn (40MW)   | 115                        | 315                   | 7. 9                             |
| Nam Pung (6MW)      | 15                         | 41                    | 6, 8                             |
| Kang Krachan (19MW) | 70                         | 191                   | 10. 1                            |
| Total               | 2,853                      | 7,815                 | 8. 6                             |

Table 6-4 Maximum Discharge vs Installed Capacity and Annual Energy


| Maximum Discharge<br>(m <sup>3</sup> /sec) | Installed Capacity<br>(KW) | Annual Energy<br>(10 <sup>3</sup> kWh) | Spilled Energy<br>(10 <sup>3</sup> kWh) |
|--------------------------------------------|----------------------------|----------------------------------------|-----------------------------------------|
| 200 (100 x 2)                              | 26,800                     | 146, 900                               | 14,600                                  |
| 220 (110 x 2)                              | 29,200                     | 149, 800                               | 10, 100                                 |
| 240 (120 x 2)                              | 31,400                     | 152, 200                               | 6, 400                                  |
| 260 (130 x 2)                              | 33,600                     | 154, 700                               | 2,800                                   |
| 280 (140 x 2)                              | 35,800                     | 154, 900                               | 900                                     |
| 290 (145 x 2)                              | 37,000                     | 155, 000                               | 0                                       |
| 300 (150 x 2)                              | 38,000                     | 154, 100                               | 0                                       |
| 320 (160 x 2)                              | 39, 700                    | 152, 500                               | 0                                       |



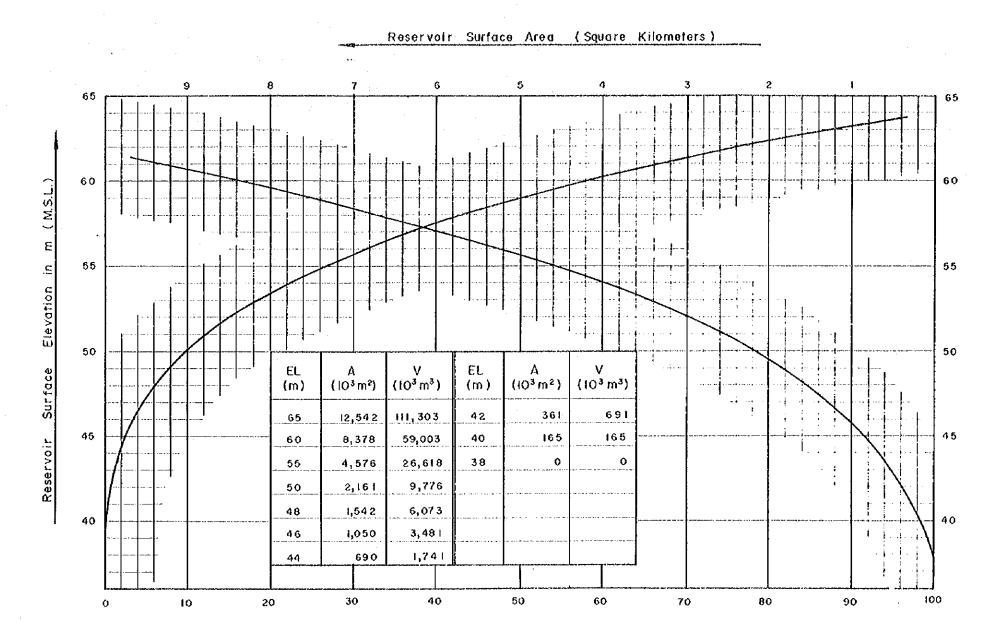





Reservoir Starage Capacity (Million Cubic Meters)

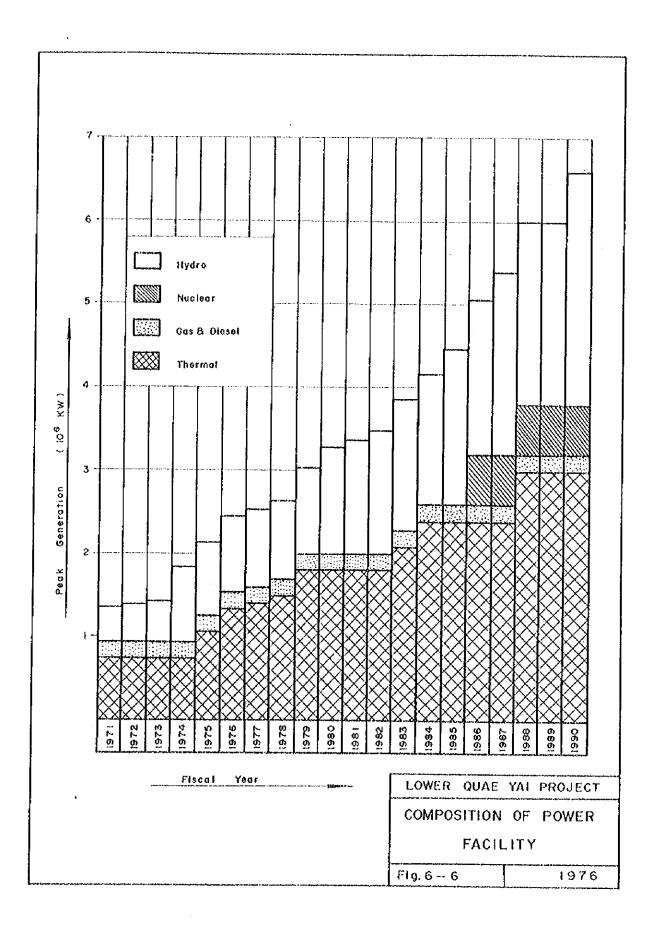


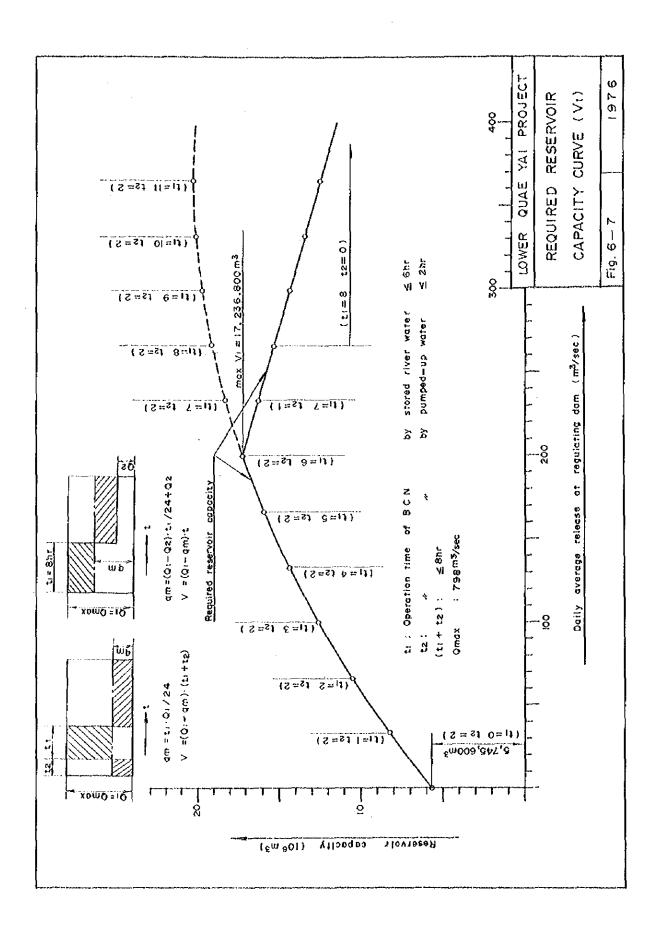


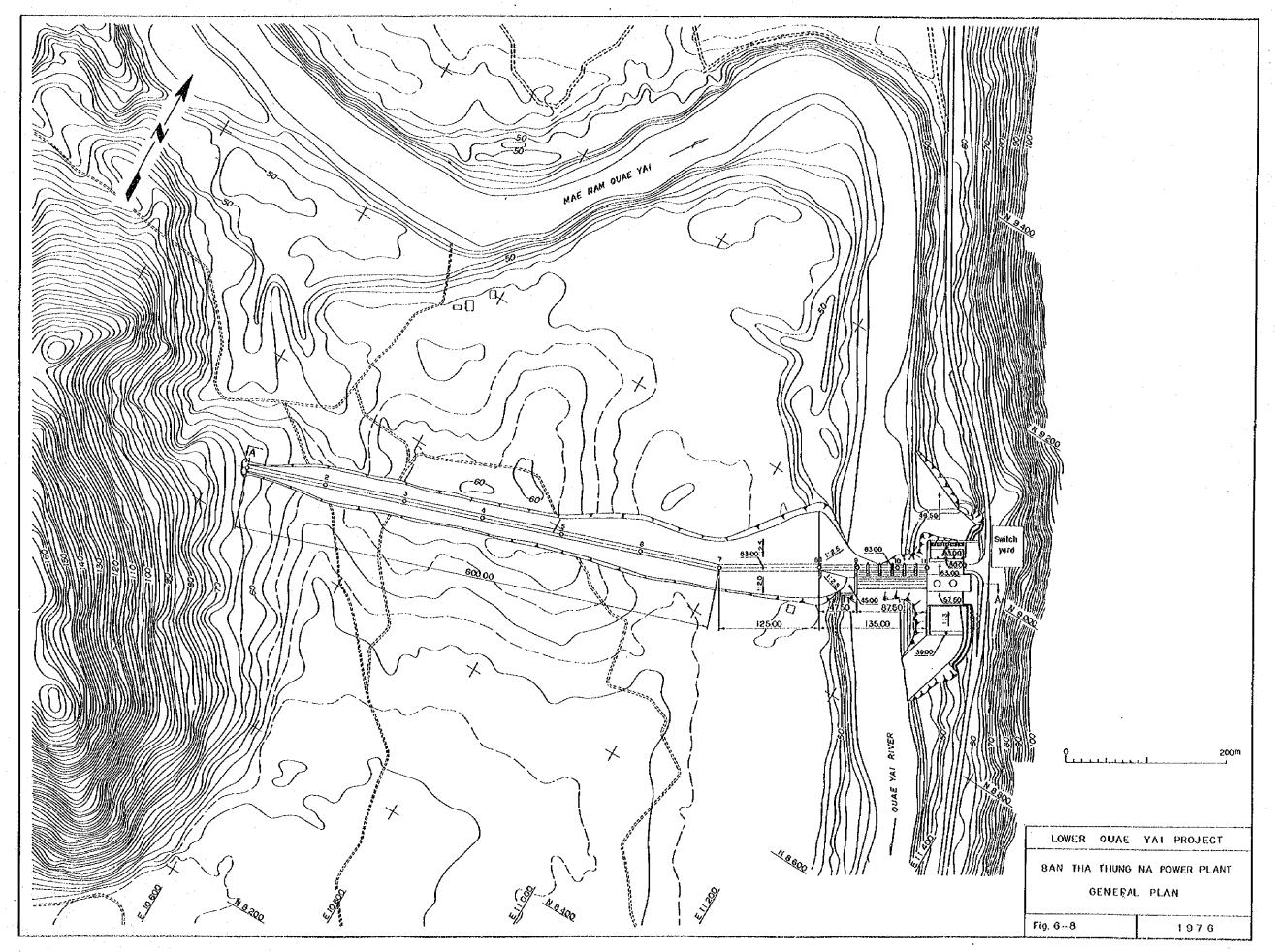

LOWER QUAE YAI PROJECT

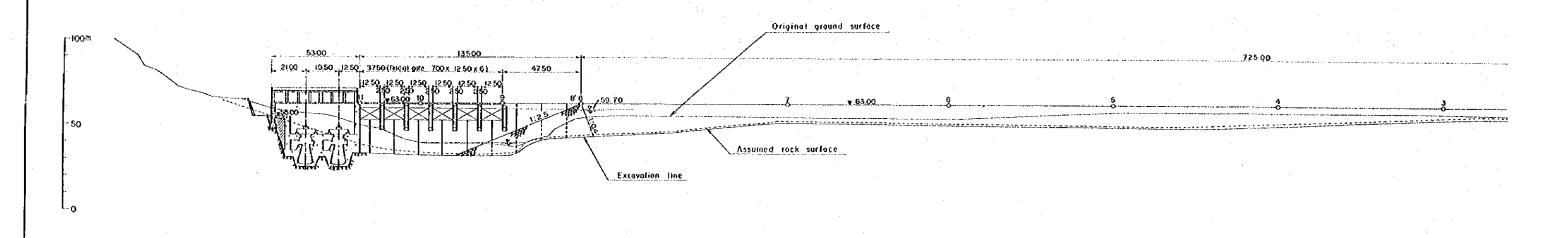
RESERVOIR STORAGE CAPACITY

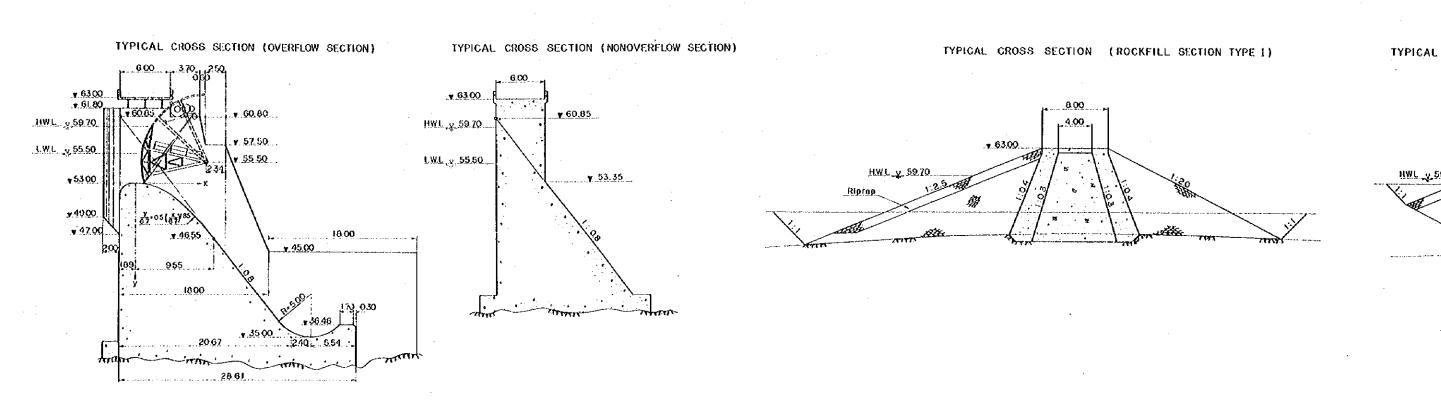
AND AREA CURVE

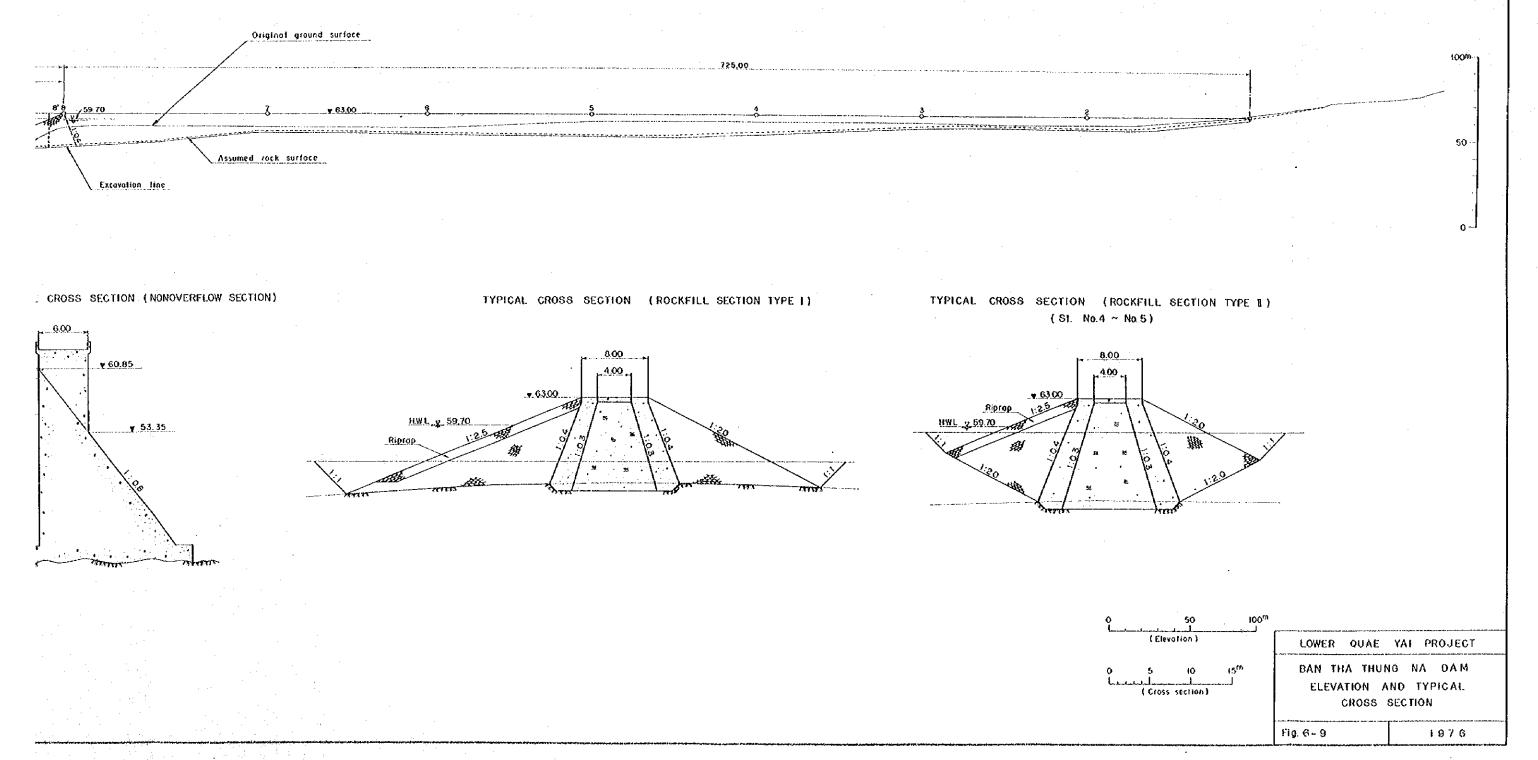

(Bon Wang Kula)

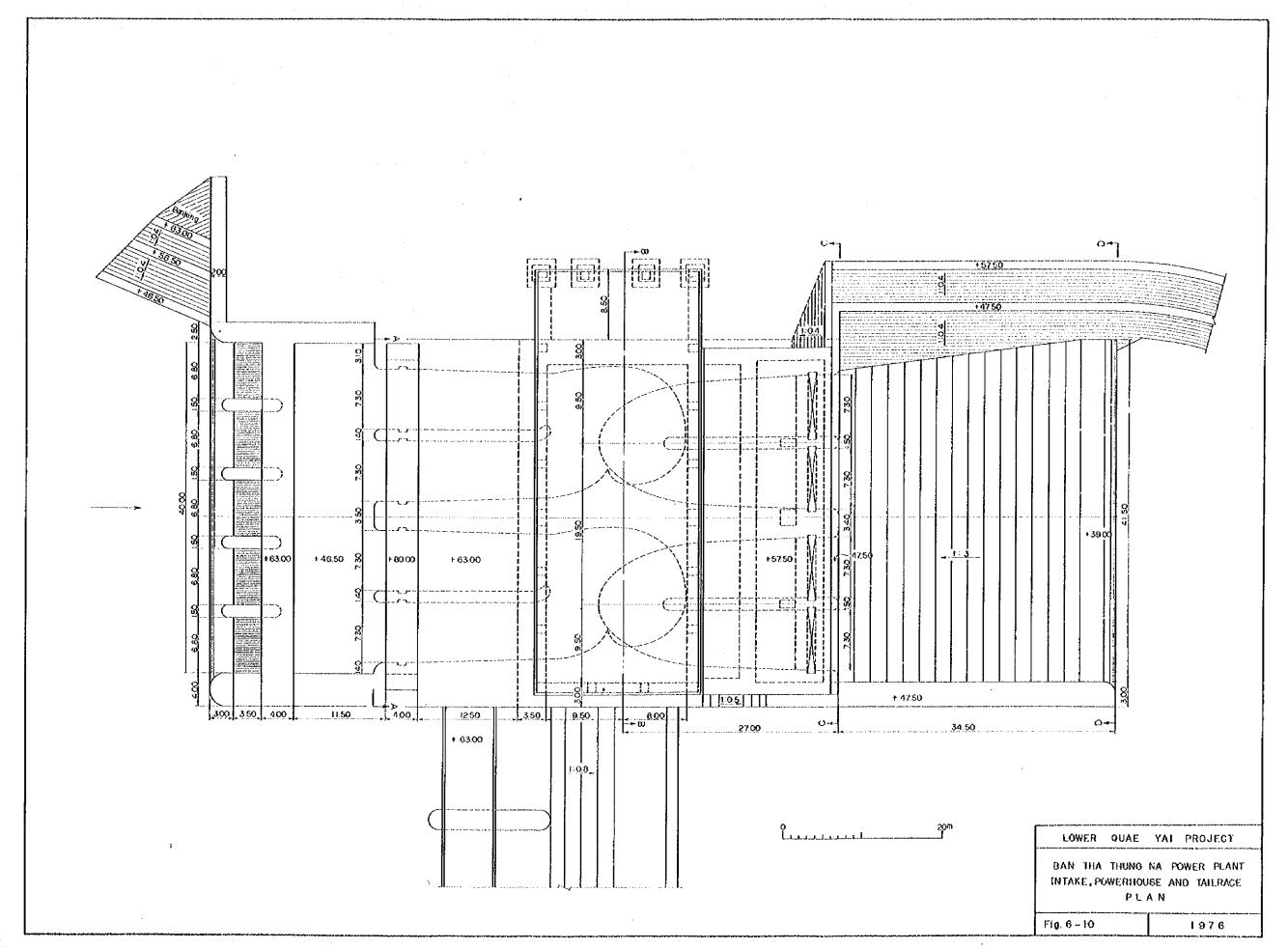

Fig. 6 ~ 4 1976

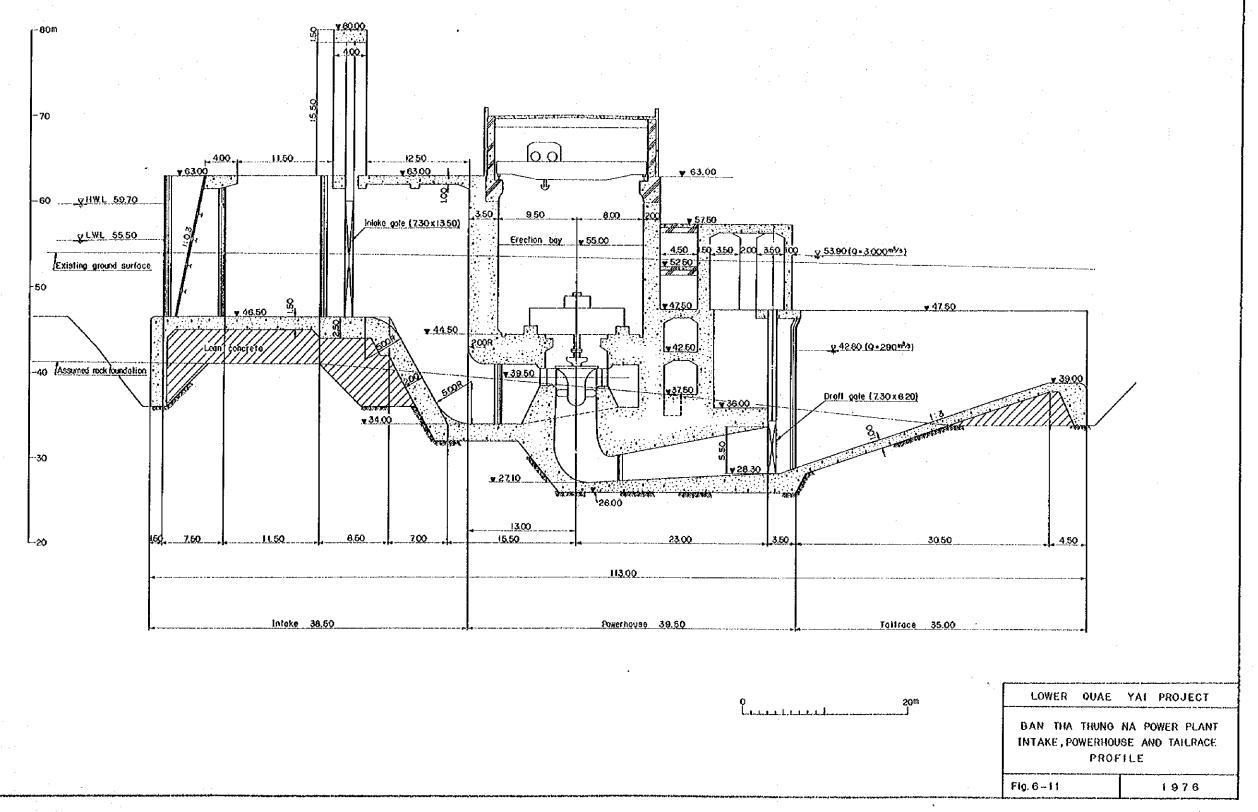


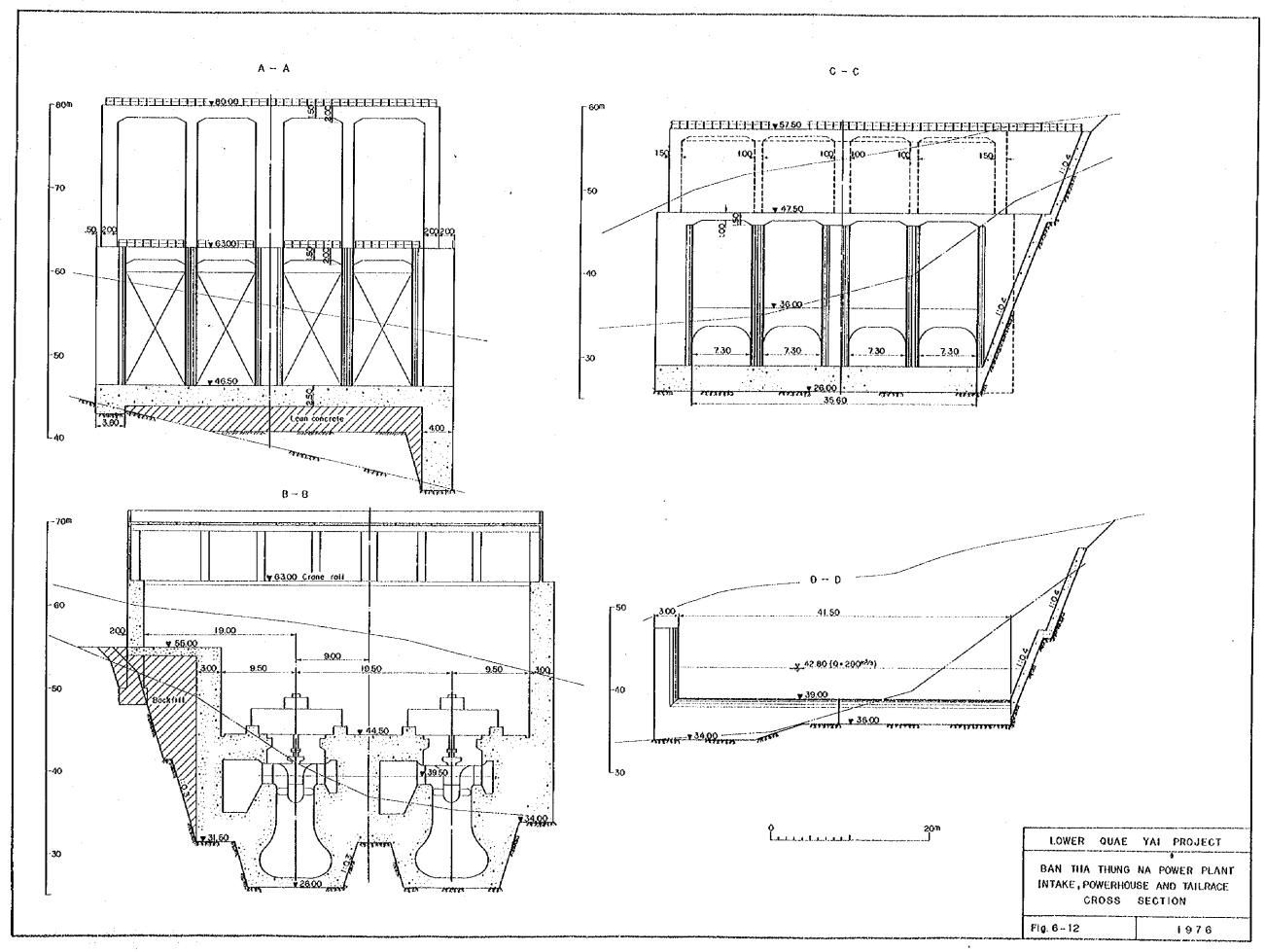


Reservoir Starage Capacity (Million Cubic Meters)

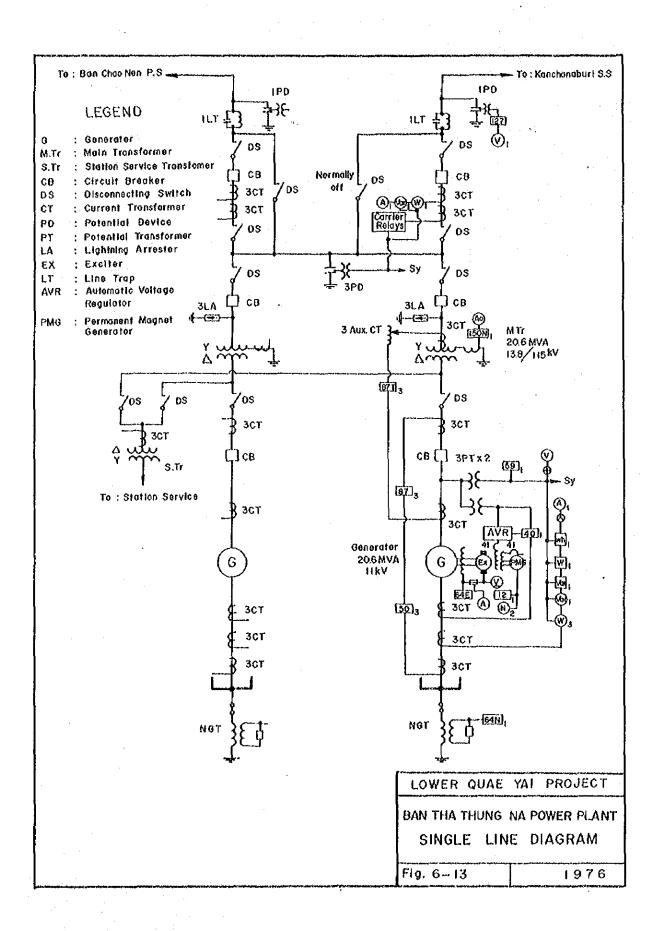

RESERVOIR STORAGE CAPACITY
AND AREA CURVE
(Ban The Thung Na)
Fig. 6~5














## CHAPTER 7 CONSTRUCTION SCHEDULE

#### 7.1 Basic consideration

For the construction of the Ban Tha Thung Na Project, it is essential to take into account the construction schedule of the Ban Chao Nen project which is under construction on the upstream. The main part of the civil works must be completed during the period between commencement of filling the Ban Chao Nen reservoir and start of operation of the Ban Chao Nen power plant for the most economical development of this project and consequently, the construction schedule will be relatively tight.

(a) The commencement dates of filling reservoir and start of operation of the Ban Chao Nen project are as follows.

Filling reservoir : July, 1977

Start of operation : Sept. 1979 (Unit No.1, Q<sub>max</sub> = 133 m<sup>3</sup>/sec)

Dec. 1979 (Unit No.2,  $Q_{max} = 133 \text{ m}^3/\text{sec}$ )

: May, 1980 (Unit No.3,  $Q_{max} = 133 \text{ m}^3/\text{sec}$ )

According to the above-mentioned schedule, it is expected that the power discharge for test operation of the Ban Chao Nen power plant will begin after July 1979 about two months ahead of the start of partial operation of the power plant and it should be noted that the water surface of the regulating reservoir will gradually rise, and sometimes reach higher than the spillway crest elevation.

(b) It is required to complete the construction of all structures which directly face the running water resulting from the rise of the reservoir water surface and/or release over the spillway crest. The installation works of the intake and draft gates must also be finished by that time to enable the installation of the electrical equipment inside the powerhouse building.

#### 7.2 Construction schedule

Fig. 7-1 shows the construction schedule prepared on the basis of these basic considerations. The construction period from the commencement of the civil works to the start of operation is estimated to be 35 months and it will be required to award the contract of the civil works at the latest by October 1977.

Since the period required for manufacturing and installation of the hydraulic equipment is 30 months, the contract therefor must be awarded at the latest by October, 1977 in order to complete the installation works of the intake and draft gates by June, 1979 as stated in preceding paragraph.

The period required for manufacturing and installation of the electrical equipment is also estimated to be 30 months and the contract therefor must be

awarded by March, 1978 in consideration of the construction schedule of the civil works.

The preparation works at the site to be performed in advance of the civil works must start at around July, 1977. The target date of starting operation is October 1, 1980.

The latter half of 1977, which is the first year, will be mainly devoted for preparation works such as temporary camp facilities and power distribution lines etc. by EGAT. After award of the contract, coffering about the areas for construction of left wing of the dam, intake, powerhouse and tailrace structures followed by the partial switching of the Quae Yai River shall be carried out by the end of this year.

In 1978, the second year, excavation, grouting for foundation treatment and concrete placing in the above-mentioned areas will be carried out. Switching the riverflow into the bypass conduits provided in the concrete dam will be performed in November followed by excavation, grouting for foundation treatment and placing concrete in the right half section of the river bed. At the terrace on the right bank where the rockfill section is to be constructed, excavation and grouting for foundation treatment will be carried out during the latter half of this year. The construction of transmission line will also be carried out this year to receive the power for construction purpose before completion of the power plant.

In 1979, the third year, embankment of the rockfill section will be commenced. The installation works of the intake and draft gates shall be commenced by the end of March. In the latter half of the year, the overhead travelling crane will be installed followed by installation of the electrical equipment. The spillway gate frames must be installed in place before the water surface rises to overflow crest.

The year 1980, the fourth year, the work will be mainly architectural works and installation of the electrical equipment. The construction of the switchyard will also be carried out this year. Upon completion of the installation works of the spillway gates, plug concrete will be placed following closure of the bypass conduits in April.

For the smooth execution of the works in accordance with above-mentioned construction schedule, the preparation works including acquisition of land must be started in time. Especially, the detail design, preparation of the tender documents and further field investigations to be probably required therefor must be urgently undertaken.

| Works                    | Quantity               | 1976   |      |          |      |     | 977   |       |      |          | $\Box$ |     |                                            |     | 78            |     |                 |             |      |      |      |    | 97   |     |        |          |                                              |              |          |          | 980 |          | <del></del> |      |    | Remarks                          |
|--------------------------|------------------------|--------|------|----------|------|-----|-------|-------|------|----------|--------|-----|--------------------------------------------|-----|---------------|-----|-----------------|-------------|------|------|------|----|------|-----|--------|----------|----------------------------------------------|--------------|----------|----------|-----|----------|-------------|------|----|----------------------------------|
| YYO1 K 5                 | waamii y               | 9 10 1 | 1 12 | 1 s      | 3 4  | 5   | 6 7   | 8     | 9 10 | $[\Pi]$  | 12     | 1 S | 3 6                                        | 1 5 | 6             | 7 8 | 9 10            | 0 11        | 15 1 | S    | 3 4  | 5  | 6    | 8   | 9 1    | 0 11     | 12                                           | 2            | 3 4      | 5        | 6 7 | 8        | 9           | 0 11 | 12 |                                  |
| (I) Definite study       |                        |        |      |          |      |     |       |       |      | Π        | T      |     |                                            |     |               |     |                 |             |      |      |      | `` |      | Τ   |        |          |                                              |              |          |          |     |          |             |      |    | Includes preparation of          |
| Civil works              |                        |        |      |          |      | +   |       | 1     |      |          | -      |     |                                            |     |               |     |                 |             |      | -    |      |    |      |     |        |          |                                              |              |          |          |     |          |             |      |    | tender documents                 |
| Hydraulic equipment      |                        | -      | -    |          |      | 1-1 |       |       | _    |          |        |     |                                            |     |               |     |                 |             |      |      |      |    |      |     |        |          |                                              |              |          |          |     |          |             |      |    |                                  |
| Electric equipment       |                        |        |      |          |      |     |       | -     |      |          |        |     |                                            |     |               |     |                 |             |      | 1 1  |      |    |      |     |        |          | <u>                                     </u> |              |          |          |     |          |             |      |    |                                  |
| Transmission line        |                        |        | -    |          |      |     |       |       |      |          |        |     |                                            |     |               |     |                 | 1 1         |      |      |      |    |      |     |        |          |                                              |              |          |          |     | <u> </u> |             |      |    |                                  |
| (II) Preparation works   |                        |        |      |          |      |     |       |       |      |          |        |     |                                            |     |               |     |                 |             |      |      |      |    |      |     |        |          |                                              |              |          |          |     |          |             |      |    |                                  |
| Comp facility            |                        |        |      |          |      |     |       |       |      |          |        |     |                                            |     |               |     |                 |             |      |      |      |    |      |     |        |          | ]                                            |              |          |          |     | _        |             |      |    |                                  |
| Highway relocation       | l = 2.6 km             |        |      | -        |      |     |       |       |      | 1        |        |     |                                            |     |               | Ţ   | }               |             |      | ┨ ┃  |      |    |      |     |        | -        |                                              | <u>~ (</u> { | urfa     | cing.    | )   |          |             |      |    | Embankment 150,000m³             |
| Resettlement works       |                        |        |      |          |      |     |       |       |      |          |        |     |                                            |     |               |     |                 |             |      | -11  |      | -  | {    | 7   |        | T        |                                              |              |          |          |     |          |             |      |    |                                  |
| (III) Civil works        |                        |        |      |          |      |     |       |       |      |          |        |     |                                            |     |               |     | 1               |             | 7    | 7-1  |      |    |      | _   |        | 1        |                                              |              |          |          |     |          |             |      |    |                                  |
| Construction facilities  |                        |        |      |          |      |     |       |       |      |          |        |     |                                            |     |               | (C  | omm             | on)         |      |      |      |    |      |     |        |          |                                              |              |          |          |     |          |             |      |    |                                  |
| Clearing                 |                        |        | _i   |          |      | 1-1 |       |       |      |          |        | -   |                                            |     |               |     | M               | J           |      |      |      | 1  |      |     |        |          |                                              |              |          |          |     |          |             |      | ]  |                                  |
| Dam (Excavation)         | 325,600 m <sup>3</sup> |        |      |          | 1    | 1   |       |       |      |          |        |     |                                            | _   |               | -   | 1               | -           | = -  | - (R | oc k | )  |      |     | -      |          |                                              |              |          |          |     |          |             |      | ]  |                                  |
| (Concrete)               | 49,560 m <sup>3</sup>  |        |      |          | 1-1- |     |       |       |      |          |        | 1   |                                            |     | -             |     | <del> </del>  - | -           |      | +-   |      |    |      | 7   |        |          |                                              |              | <u> </u> | <u> </u> | (F  | Yug      | )           |      |    | Dam concrete 48,600n             |
| (Embankment)             | 314,000 m3             |        |      |          |      |     |       |       |      | $\Gamma$ |        |     |                                            |     |               |     |                 |             |      |      |      | -  |      |     |        |          |                                              |              |          |          |     |          |             |      |    |                                  |
| (Grouting)               | 54,000 S               | 1      |      |          |      |     |       |       |      |          |        |     |                                            |     | F             |     | <del></del>     |             |      |      |      | -  |      |     |        |          |                                              |              |          |          |     |          |             |      |    | Drilling 10,500m                 |
| Intake (Excavation)      | 70,000m³               |        |      |          |      |     |       |       |      |          |        | -   |                                            |     |               |     |                 | 1           | -    | -11  |      |    | 1    |     |        |          |                                              |              |          |          |     |          |             |      |    |                                  |
| (Concrete)               | 20,600m³               |        |      |          |      |     |       |       |      |          |        |     |                                            |     | -             |     |                 | -           |      |      |      |    | 1-1- |     |        |          |                                              |              |          |          |     |          |             |      |    |                                  |
| Powerhouse (Excavation)  | 59,000 m <sup>3</sup>  |        |      |          |      |     |       |       |      |          |        |     |                                            | —   |               |     | 11              |             |      |      |      | T  | 1    |     | i      | -        |                                              |              |          |          |     |          |             |      | _  |                                  |
| (Concrete)               | 24,900m³               |        | _    |          |      |     |       |       |      | Ħ        |        |     |                                            |     | -             |     |                 |             |      |      |      | +  |      | -   |        |          |                                              |              |          |          |     |          |             |      | ]  | Superstructure concrete excluded |
| (Superstructure)         |                        |        |      |          |      |     |       |       |      |          |        |     |                                            |     | -             |     |                 |             |      |      |      | -  | 1    |     |        | -        |                                              | -            |          |          |     |          |             |      |    | excluded                         |
| Tailrace (Excavation)    | 94,000 m <sup>3</sup>  |        |      |          |      |     |       |       |      |          |        | -   |                                            | -   |               |     |                 |             |      |      |      |    |      | 1 - |        |          |                                              | _            |          |          |     |          |             |      |    |                                  |
| (Concrete)               | 6,350 m <sup>3</sup>   |        |      |          |      | -   |       |       |      |          |        |     |                                            |     |               |     |                 |             |      |      |      | -  | 1    | -   |        | _        |                                              |              |          | П        |     |          |             |      | ]  |                                  |
| Switchyard (Excavation)  | 10,000 m <sup>3</sup>  |        |      |          |      |     |       | -     |      |          |        |     |                                            |     |               |     |                 |             |      | 1    |      |    |      |     | 177    |          |                                              | $\top$       |          |          |     |          |             |      |    |                                  |
| (Concrete)               | 960 m³                 |        |      |          |      |     |       |       |      |          |        |     |                                            | 1   |               |     | -               |             |      |      |      | T. |      |     |        |          | -                                            |              |          | 4 1      |     |          |             |      |    |                                  |
| (区) Hydraulic equipment  |                        |        |      |          |      |     |       |       |      |          |        |     | ΙΤΤ:                                       |     |               |     |                 |             |      | 77   |      |    |      |     |        | <u> </u> |                                              |              |          |          |     |          |             |      |    |                                  |
| Spillway gate            | 6                      |        |      |          |      |     |       |       |      | $\Box$   |        |     | -                                          |     |               |     |                 |             |      |      |      |    |      | -   |        |          |                                              |              |          |          |     |          |             |      |    |                                  |
| Road bridge              | 6                      |        |      |          |      | -   |       |       |      | 1-1      |        |     |                                            | -   | $\Box$        |     | -               | <b> </b>  - | _    |      | Ţ -  |    | -    |     | $\Box$ |          |                                              |              |          |          |     |          |             |      |    |                                  |
| Closure gate             | 1                      |        |      | -        |      |     |       | -     |      | ГТ       |        |     |                                            |     |               |     | <b> </b>        | T           | 7    |      | 4-   | -  |      | +-  |        |          |                                              | 4-1          |          | -{       |     |          |             |      | [  |                                  |
| Intake gate              | 4                      |        |      |          | -    |     |       | -   - |      |          |        |     |                                            |     | -             | _   | -               |             |      | 47   |      |    |      |     |        |          |                                              |              |          |          |     |          |             |      |    |                                  |
| Draft gate               | 4                      |        |      |          |      |     |       |       |      |          |        | -   |                                            |     | <del>  </del> |     | -               | -           |      |      |      | -  |      |     |        |          |                                              |              |          |          |     |          |             |      | [  |                                  |
| (V) Electrical equipment |                        |        |      |          | 1    |     |       |       |      |          |        | T   | <u>                                   </u> | T   |               |     |                 | $\prod$     |      | 77   |      | 1  |      |     |        |          |                                              |              |          |          |     |          |             |      |    |                                  |
| Turbine & generator      |                        |        |      |          |      |     |       |       |      | 1-1      |        | _   | - -                                        |     |               | -   | <b></b>         | -}}         |      | -    |      |    | 1-1- |     | -      |          |                                              | -            |          |          | _   | -        |             |      |    |                                  |
| Crane                    |                        |        |      |          |      |     | [-:7- |       |      |          |        | 1   |                                            |     |               |     |                 |             |      | 4-4  |      | -  |      |     | -      |          | [                                            | "[           |          | 1-1      |     |          | [           |      |    |                                  |
| Other equipment          | <b>***</b>             | 1      | 1    |          |      |     |       |       |      | 1-1      |        |     | -                                          |     |               |     | -               |             | -4-  |      |      |    | 二    |     |        |          |                                              |              |          |          |     |          | H           |      |    |                                  |
| (立) Transmission line    |                        | 1      |      | $\sqcap$ |      |     |       | †††   |      |          |        |     |                                            |     | 1             |     |                 |             | #    | 1    | _ _  | T- |      |     |        |          | <u> </u>                                     | 1            |          | 77       |     | $\sqcap$ |             |      |    |                                  |
|                          |                        | 1-1-1- |      |          | -    | _   | - -   | 17    |      | 1        |        | 1   |                                            | _   |               |     | - -             | 1 1         |      |      |      | 1  |      | 1   |        |          |                                              |              |          |          |     |          |             |      |    |                                  |
|                          |                        |        |      |          |      |     | 11    |       |      | 1        |        | _   | -                                          |     | -             |     |                 | -11         |      | 1-1  |      | 1  | 1-1- |     |        |          |                                              |              |          |          |     | 1-1      |             |      |    |                                  |

|                      |                                              |                       |                         |    |   |     |      | _     |          |      |                   |                |                  |   | <br>            |           | <br>-               |    |              |       |          |                                       |                 |       |   |                      | <br> |     |     | ········· |    |      |     |      |           |
|----------------------|----------------------------------------------|-----------------------|-------------------------|----|---|-----|------|-------|----------|------|-------------------|----------------|------------------|---|-----------------|-----------|---------------------|----|--------------|-------|----------|---------------------------------------|-----------------|-------|---|----------------------|------|-----|-----|-----------|----|------|-----|------|-----------|
| ent                  | <u> </u>                                     |                       |                         |    |   |     |      |       | <u> </u> |      | 1                 | <del>  -</del> | · <del>  -</del> |   | <br>            | +         | <br>- <del>  </del> |    | <br>ĿĿ       | <br>- |          | <br>                                  |                 |       |   | 出                    |      |     |     |           |    |      |     |      |           |
| 16                   |                                              |                       |                         |    |   |     |      |       |          | <br> |                   |                |                  |   |                 |           | <br>                |    |              | <br>  |          | <br>                                  | <br>            |       | , |                      | <br> |     |     |           |    |      |     |      | ,         |
| Note:                |                                              |                       |                         |    |   |     |      |       | work     | d fr | a ns <sub>i</sub> | porta          | ıtio             | n | <br><del></del> |           | - <b>L</b>          |    | <br><b>6</b> | <br>  |          | · · · · · · · · · · · · · · · · · · · | ,               |       |   | demanded to place an |      | LOW | /ER | QU        | ΑE | YAI  | PRO | DJEC | <u>.т</u> |
| -                    |                                              |                       |                         |    |   |     |      |       |          |      |                   |                |                  |   |                 |           | 3                   |    |              |       |          |                                       |                 |       |   |                      |      | COI |     |           |    | N SC | HEC | UL   | =         |
| ا جمع معصور برموم با | Palporania decentrio del de 19 ficialismo de | Andreigne at dis side | nterior and an angle of | -4 | · | A-1 | <br> | ~ *** |          | <br> |                   |                | *******          |   | <br>            | 25-25-4-4 | <br>                | ·* | <br>         | <br>  | ~q~~q#;~ | <br>                                  | <br><del></del> | ***** |   |                      |      | Fig |     |           |    |      | 1 : | 97€  | ;<br>     |
|                      |                                              |                       |                         |    |   |     |      |       |          | <br> | •,                |                |                  |   | <br>            |           |                     |    |              |       |          |                                       |                 | 10    |   |                      |      |     |     |           |    |      |     |      |           |

#### CHAPTER 8 COST ESTIMATION

### 8.1 Basic assumptions

The construction costs are estimated taking into account the natural and local conditions of the site, present technical standard as well as the following basic assumptions.

## (a) Scope of cost estimation

The estimation includes the costs of the Ban Tha Thung Na dam and power plant, transmission line to be interconnected with the 115 kV transmission line which is constructed between the Ban Chao Nen power plant and the Kanchanaburi substation and telecommunication facilities. It also includes the costs to be required for land acquisition in the reservoir and working areas, indemnification and resettlement, and relocation of existing road which will submerge in the reservoir.

#### (b) Quantities of civil works

Quantities of the civil works are calculated on the basis of the preliminary drawings prepared in accordance with 1/2000 scale maps newly surveyed at the site and the results of field investigations by test pits and core drillings.

- (c) The hydraulic equipment including spillway, intake and draft gates, etc. and electrical equipment including turbines, generators and main transformers, etc, are all assumed to be manufactured and imported from abroad. The costs for equipment are estimated on the basis of FOB prices plus ocean freight, insurance premium, landing charges and custom duties, and the costs for transportation in Thailand and installation at the site.
- (d) The costs of preparation works include acquisition of land in the reservoir and working areas, indemnification and resettlement, relocation of the highway and temporary camp facilities.

#### (e) Interest during construction

Interest during construction is estimated on the basis of annual fund requirements shown in Table 8-2 and the rate of interest is 7.5 percent on both foreign and domestic currency portions.

### (f) Engineering fee

The engineering fee includes the costs for detail design, preparation of the tender documents and supervision service of the construction works.

### (g) Contingency

Reasonable amount of contingency by each item of work is estimated and summarized.

# (h) Classification of foreign and domestic currency funds

The construction costs are estimated by dividing them into foreign and domestic currency portions. The domestic currency portion includes the wages of local workers, living expenses for foreign workers and engineers, the costs of materials procured in Thailand, custom duties levied on imported materials and equipment and transportation cost in Thailand. All other consts are included in the foreign currency portion.

#### 8.2 Estimated construction cost

The total cost required for construction of the Ban Tha Thung Na power plant is estimated at 847,400,000 Baht. Of this amount, foreign and domestic currency portions are 486,600,000 Baht and 360,800,000 Baht, respectively as listed in Table 8-1.

Table 8-2 shows the annual fund requirements estimated on the basis of following terms of payment.

### (a) Civil works

An advance payment equivalent to 10 percent of the contract price will be made upon conclusion of a contract and this advance payment will be recovered in an amount equivalent to 10 percent of each monthly statement until the cumulative of payment covers the said advance payment.

## (b) Hydraulic equipment

Payment for the hydraulic equipment will be made at the rate of 10 percent of the CIF price upon conclusion of the contract, 60 percent at shipment, 20 percent upon completion of the installation works and 10 percent after the issue of the final acceptance certificate. For the installation works, payment will be made at the rate of 20 percent at the start of installation, 40 percent upon completion of the installation works and 40 percent after the issue of the final acceptance certificate.

## (c) Electrical equipment

Payment for the electrical equipment will be made at the rate of 90 percent of the CIF price at shipment and 10 percent after the issue of the final acceptance certificate. For the installation works, payment will be made at the rate of 20 percent at the start of installation, 40 percent upon completion of the installation works and 40 percent after the issue of the final acceptance certificate.

Table 8 - 1 Construction Cost

(Unit: 1,000 Baht)

|     | SIL                          | Estima     | ted construction | ı cost   |
|-----|------------------------------|------------|------------------|----------|
|     | Works                        | FC portion | DC portion       | Total    |
| (A) | Generating facilities        | 373, 357   | 285, 211         | 658, 568 |
|     | (a) Preparation works        | 910        | 41, 190          | 42, 100  |
|     | (b) Civil works              | 116, 355   | 169, 102         | 285, 457 |
|     | (c) Hydraulic equipment      | 44, 092    | 21, 369          | 65, 461  |
|     | (d) Electrical equipment     | 212,000    | 53, 550          | 265, 550 |
| (B) | Engineering fee              | 33,000     | <del>-</del>     | 33, 000  |
| (C) | Interest during construction | 47,800     | 39, 800          | 87, 600  |
| (D) | Contingency                  | 32, 443    | 35, 789          | 68, 232  |
|     | Total                        | 486, 600   | 360, 800         | 847, 400 |

Table 8 - 2 Annual Expenditure Schedule

(Unit: 1,000 Baht)

|                              | 19     | )77    | - 19   | 78      | 19      | 79      | 1980   |        |  |
|------------------------------|--------|--------|--------|---------|---------|---------|--------|--------|--|
| Works                        | FC     | DC     | FC     | DC      | FC      | DC      | FC     | DC     |  |
| Preparation works            | _      | 11,000 | 670    | 24,150  | 240     | 6,040   | -      | _      |  |
| Civil works                  | 11,636 | 16,910 | 39,380 | 64,242  | 46,898  | 65,989  | 18,441 | 21,961 |  |
| Hydraulic equipment          | 2,015  | -      | 14,485 | -       | 19,208  | 15,167  | 8,384  | 6,202  |  |
| Electrical equipment         | -      | •      | 1,400  | 1,200   | 185,800 | 38,330  | 24,800 | 14,020 |  |
| Sub - total                  | 13,651 | 27,910 | 55,935 | 89,592  | 252,146 | 125,526 | 51,625 | 42,183 |  |
| Engineering fee              | 15,500 |        | 6,600  | -       | 6,600   | -       | 4, 300 | •      |  |
| Interest during construction | 1,750  | 1,230  | 4,960  | 6,360   | 17,970  | 15,410  | 23,120 | 16,800 |  |
| Contingency                  | 2,049  | 4,790  | 7,365  | 14,408  | 18,254  | 11,974  | 4,775  | 4,617  |  |
| Total                        | 32,950 | 33,930 | 74,860 | 110,360 | 294,970 | 152,910 | 83,820 | 63,600 |  |

## CHAPTER 9 ECONOMIC JUSTIFICATION

#### 9.1 Selection of alternative thermal power plant

The economic justification of the Ban Tha Thung Na Project is evaluated on the basis of a 300 MW oil fired thermal power plant around Bangkok equivalent to the maximum unit capacity of the existing high efficiency thermal power plant of EGAT. The annual cost of the alternative thermal power plant is broken down into fixed and variable costs which are estimated at 957 Baht/kW and 0.41 Baht/kWH, respectively. The construction cost, general features and annual costs of the alternative thermal power plant are as shown in Table 9-1.

## 9.2 Annual cost factor and benefit of hydro-electric power plant

The annual cost factor of a hydro-electric power plant is estimated, as shown in Table 9-2, at 9.31 percent on the basis of annual interest rate of 7.5 percent and, 50 and 25 serviceable years for civil constructions and generating facilities, respectively. The construction cost of the transmission line is deemed extremely small having no effect on calculation of the annual cost factor and therefore, it is neglected.

The annual benefit of a hydro-electric power plant is calculated on the basis of the benefit per kW and per kWH. The benefit per kW is to be the product of the annual fixed cost per kW of the alternative thermal power plant multiplied by a kW adjustment factor. The thermal power plant has a larger outage factor than the hydro-electric power plant due to accidents and also scheduled maintenance. Therefore, if a thermal power plant is newly constructed, it will need to have additional supply capability corresponding to this outage factor. The necessity of having additional equipment, which is considered to be extra advantage of the hydro-electric power plant over the thermal power plant, is the kW adjustment factor which is taken to be 15 percent in this report. The benefit per kWH is the annual variable cost per kWH of the alternative thermal power plant. Consequently, the benefit per kW and per kWH of a hydro-electric power plant are calculated to be 1,100 Baht/kW and 0.41 Baht/kWH respectively.

## 9,3 Economical justification of Ban Tha Thung Na Project

Table 9-3 shows the results of economic studies of the Ban Tha Thung Na Project based on the above-mentioned values. As the river discharge in the upstream basin is annually regulated by the Ban Chao Nen reservoir, it is capable of producing a large amount of annual energy with comparatively small generating facilities giving large kWH benefit to the Project. The excess annual benefit and benefit-cost ratio of the Project are 25, 360,000 Baht and 1.32, respectively and the project is justified to be feasible.

In Table 9-3, calculations corresponding to 8 cases classified by various power discharges are also shown in order to determine the optimum scale of the power plant. It is concluded that the power plant using the whole of the power discharge of the Ban Chao Nen power plant, that is, the power plant with a maximum

discharge of 290  $\mathrm{m}^3/\mathrm{sec}$  and maximum installed capacity of 37,000 kW is most economical.

Since annual interest rate of 7.5 percent is adopted in the calculation, there will be no substantial effect on the comparative studies mentioned above even some modification of the rate is taken into consideration.

Table 9-1 Alternative Thermal Power Plant

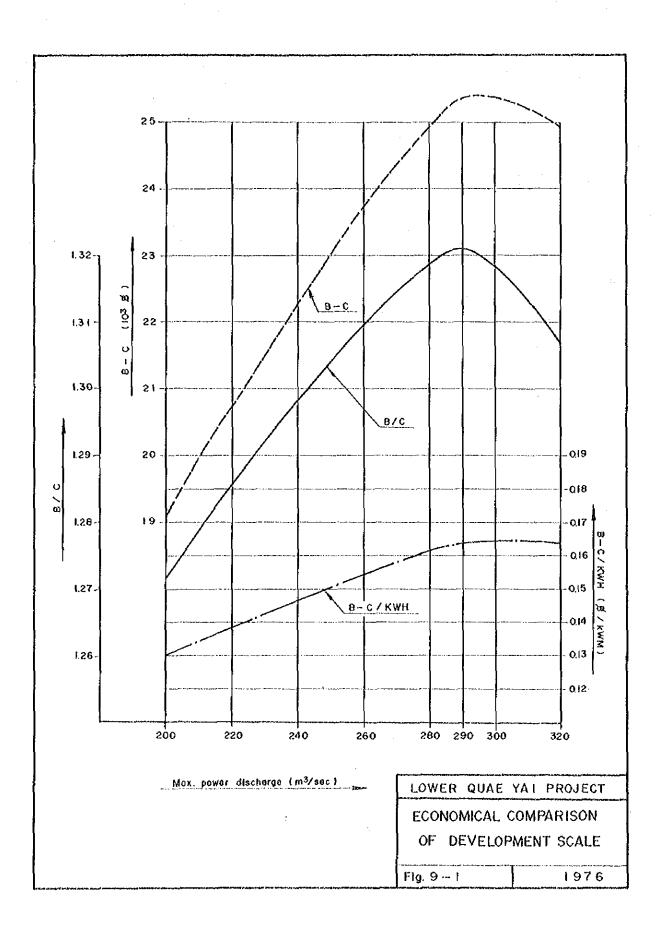

| 300, 000 kW                  |
|------------------------------|
| 70 %                         |
| 1,839.6 million kWH          |
| 5 %                          |
| 36 %                         |
| 2, 400 million B             |
| 25 years                     |
| 7.5 %                        |
|                              |
|                              |
| 215, 280, 000 B              |
| 48, 000, 000 B               |
| 5, 760, 000 B                |
| 3, 840, 000 ß                |
| 272, 880, 000 ß (957 以/kW)   |
|                              |
| 717, 400, 000 ß              |
| 717, 400, 000 ß (0.41 B/kWH) |
| 990, 280, 000 g              |
|                              |

Table 9-2 Annual Cost

| Item                          | Generating plant                 |
|-------------------------------|----------------------------------|
| Serviceable year              | 50 years (Civil constructions)   |
|                               | 25 years (Generating facilities) |
| Annual interest rate          | 7.5 %                            |
| Annual cost                   |                                  |
| (1) Amortization              | 8.01 %                           |
| (2) Operation and maintenance | 1.0%                             |
| (3) Administration            | 0.3 %                            |
| Total                         | 9.31 %                           |

Table 9-3 Economical Comparison of Development Scale

| Max. discharge (m <sup>3</sup> /sec)          | 200     | 220      | 240      | 260      | 280     | 290      | 300      | 320      |
|-----------------------------------------------|---------|----------|----------|----------|---------|----------|----------|----------|
| Effective power (kW)                          | 26, 800 | 29, 200  | 31,400   | 33,600   | 35, 800 | 37,000   | 38,000   | 39, 700  |
| Annual effective energy (10 <sup>3</sup> kWH) | 146,900 | 149,800  | 152, 200 | 154, 700 | 154,900 | 155,000  | 154, 100 | 152,500  |
| kW benefit (10 <sup>3</sup> $B$ )             | 29,480  | 32, 120  | 34, 540  | 36, 960  | 39, 380 | 40, 700  | 41,800   | 43,670   |
| kWH benefit<br>(10 <sup>3</sup> B)            | 60,230  | 61,420   | 62, 400  | 63, 430  | 63,510  | 63, 550  | 63, 180  | 62,530   |
| Total benefit (B) $(10^3  \text{B})$          | 89,710  | 93, 540  | 96, 940  | 100, 390 | 102,890 | 104,250  | 104,980  | 106, 200 |
| Construction cost (10 <sup>3</sup> B)         | 758,000 | 778, 100 | 802,050  | 823, 430 | 838,780 | 847, 400 | 855, 600 | 872,500  |
| Annual cost (C) (10 <sup>3</sup> B)           | 70,570  | 72,440   | 74,670   | 76, 660  | 78, 090 | 78, 890  | 79, 660  | 81, 230  |
| B/C                                           | 1.271   | 1.291    | 1.298    | 1.310    | 1.318   | 1,321    | 1.318    | 1.307    |
| B - C (103 B)                                 | 19,140  | 21, 100  | 22, 270  | 23, 730  | 24,800  | 25, 360  | 25, 320  | 24, 970  |
| (B - C)/kwh<br>(B/kwh)                        | 0.130   | 0.141    | 0.146    | 0.153    | 0.160   | 0.164    | 0.164    | 0.164    |
|                                               |         |          |          |          |         |          |          |          |



# CHAPTER 10 INFLUENCES DUE TO FILLING RESERVOIR AND FLUCTUATION OF RIVER SURFACE

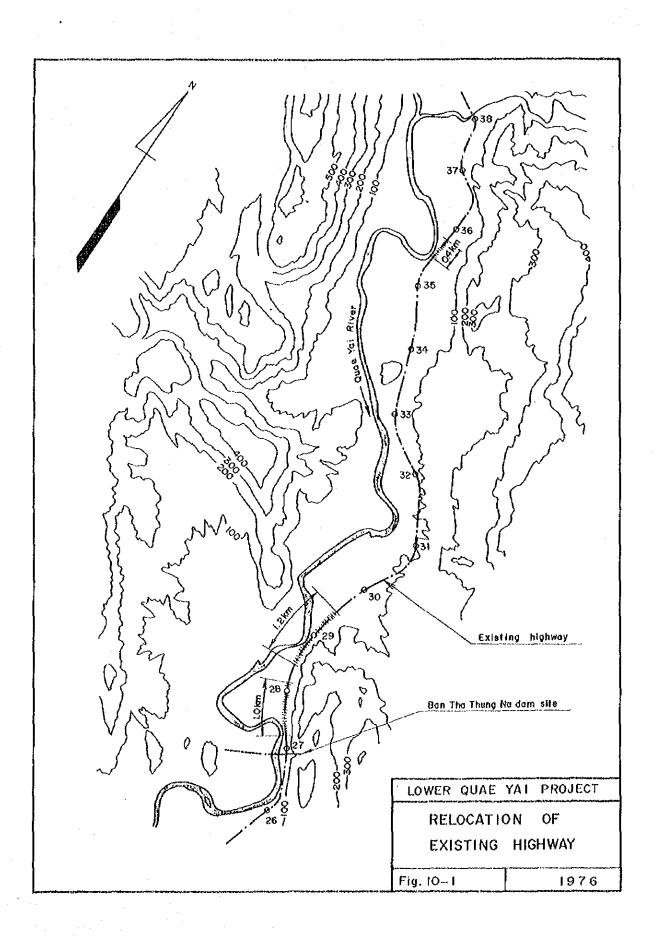
In and around the reservoir and working areas there will be no noteworthy environmental impact caused by construction of the Ban Tha Thung Na power plant. However, the following matters must be taken into consideration and scrupulous research and settlement therefor should be urgently made.

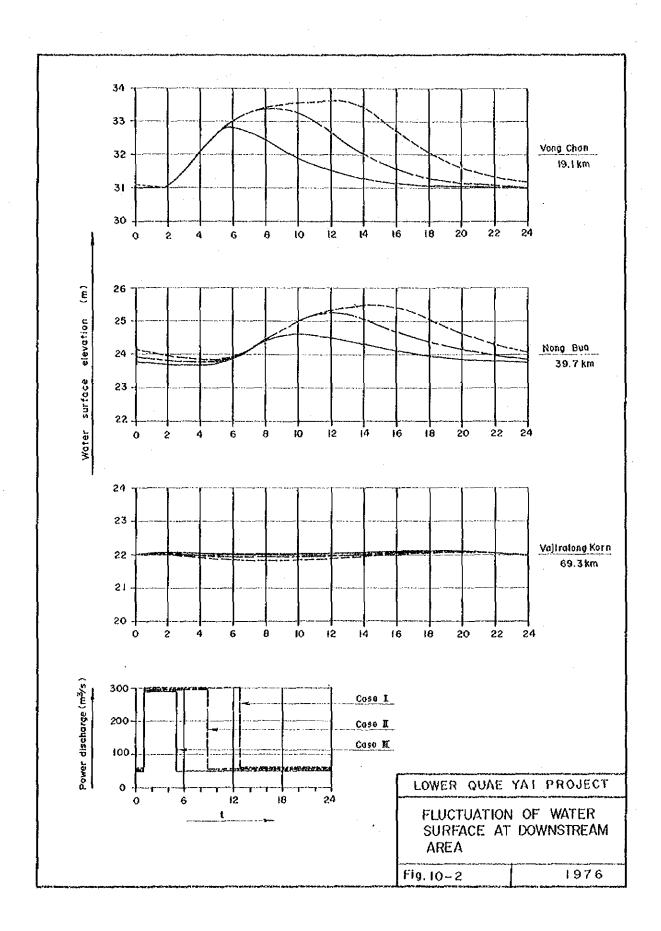
## (1) Influences due to filling reservoir

Some of farm houses and small existing farm lands scattered along the banks of the Quae Yai River between the Ban Chao Nen and Ban Tha Thung Na power plants will be inundated due to filling the reservoir. On a terrace on the right bank just upstream of the Ban Tha Thung Na dam, there is also a wide plantation of sugar cane which will be inundated. There are ferryboats crossing the river near the Erawan Fall, however, practical trouble with ferrying resulting from fluctuating power discharge by peak operation of the Ban Chao Nen power plant will not be happen due to regulation effect of this reservoir.

Asphalt paved highway running along the Quae Yai River will be partially inundated as shown in Fig. 10-1. In relocating sections of this road lower than RL 62.00 m, allowance for wave height above high water level must be taken into account, and it is required to reconstruct three sections of 2.6 km in the downstream of Huai Sadong. The total length which require relocation is equivalent to approximately 6 percent of the existing highway between Ban Chao Nen and Ban La Ya. According to topographic conditions, it seems advantageous to heighten the existing road instead of detouring the existing road. In this case, it is desirable to embank highly permeable materials in consideration of fluctuation of the reservoir water surface and, therefore, direct transportation and embankment of excavated materials from rock foundation for the dam and other structures will be recommendable for economical road construction. The amounts of excavated materials and requirement for embankment will balance and, there is sufficient time before the final finishing works.

Beside the above, there are two schools to be inundated in the area upstream of the dam and the details of the objects to be inundated must be clarified by further field investigations.


# (2) Influence due to fluctuation of river surface


The Ban Chao Nen power plant is required to operate for peak generation and, consequently, the river surface in the downstream basin will be subject to sharp fluctuation resulting from repeated power discharge of 798 m³/sec to nil. However, both the maximum amplitude and hourly movement in the area upstream of this regulating dam will be greatly mitigated by operation of the Ban Tha Thung Na regulating reservoir and no water flow condition will also not occur. For the area downstream of the Ban Tha Thung Na dam, it must be studied taking into consideration the operation pattern of this power plant. Pluctuation of the river surface in the downstream basin varies depending on power discharge and peaking time of this

power plant, and the results of mathematical analysis of fluctuation of the river surface at some downstream places for various peaking times t of 4, 8 and 12 hours are shown in Fig. 10-2 on the conditions that the maximum power discharge Qmax is  $300\,\mathrm{m}^3/\mathrm{sec}$  and minimum required discharge Qmin is  $50\,\mathrm{m}^3/\mathrm{sec}$ . The rise of the river surface at just downstream of dam will reach to 2.70 m for a short time, however, hourly fluctuation of river surface will show gradual decrement at Ban Vang Chan, Ban Nong Bua and the Vajiralongkorn headworks which are approximately 19.1 km, 39.7 km and 69.3 km respectively on the downstream. Especially at the Vajiralongkorn headworks, the said fluctuation becomes very small having no effect on the function of the same.

In the downstream basin of the dam, there are many houses existing along the banks of the Quae Yai River and the daily life of inhabitants seems to have close connection with the river and due consideration for prevention of accident by sharp fluctuation of the river surface must be made, especially in the area within 10km downstream from the dam where the river surface shows comparatively quick rise.

Traffic by boats cruising by the dam site at present must be closed but the said fluctuation of the river surface will have little influence on the boat traffic in the downstream basin.





## CHAPTER 11. BAN THA THONG MON PUMPED-STORAGE SCHEME

## 11.1 Location of project

As a part of the power development scheme in the lower Quae Yai basin, the Ban Tha Thong Mon Pumped-storage Scheme has been planned by utilizing the Ban Tha Thung Na reservoir for lower Pondage. This project was proposed in the Reconnaissance Report, Upper Quae Yai Hydro-electric Project, Appendix B, November 1973 and preliminary studies were made in that Report.

The pumped-storage project is located, as shown in Fig. 11-1, approximately 9km downstream of the Ban Chao Nen power plant taking advantage of the steep configuration close to the right bank of the Ban Tha Thung Na reservoir. There exists table land favorable for construction of upper pendage at an elevation of about 600 m providing the topography desirable for pumped-storage scheme. This project has also a siting advantage of short distance from the thermal power plants around Bangkok or future nuclear power plants which will supply the power for pumping-up operation.

In the Reconnaissance Report mentioned-above, three sites DA, DB and Dc were proposed taking into consideration topographic conditions for constructing the upper pondage, and economic comparisons were made. It is considered that the said comparisons are still applicable at this stage. However, DA plan which will cause serious damage on the Erawan Fall was dropped from consideration and DB plan was selected as the most feasible site taking also the results of economic comparison into consideration.

It seems that there is little justification to proceed with urgent development of this project in the future power development program of EGAT. Following are the preliminary studies on timing and scale of development of this project.

## 11.2 Future daily load duration curve and energy for pumping-up operation

It is estimated that the present daily load duration curve of the EGAT system will make little change in the future. The annual load factor of the EGAT power system in 1990 is estimated to be about 67 percent which is almost the same as present one of about 66 percent. Accordingly, future load duration curve is drawn on the basis of actual value in 1975.

The following four time targets were picked up for study: 1980, 1985, 1986 when nuclear power plant will be completed providing substantial amount of power source for pumping-up operation and 1990. Actual load allocation to each type of power source by year will be a little different from that of Fig.11-2 in which nuclear and thermal power plants are to be operated in such a manner as to supply base portion of load duration curve up to their maximum capacities in order to find out the maximum available power source for pumping-up operation, and available power sources thus estimated are 500 MW, 430 MW, 940 MW and 930 MW at the respective times shown in the same figure.

## 11.3 Timing and scale of development

Following are the results of studies on timing of development of the Ban Tha Thong Mon Pumped-storage Hydro-electric Project.

Namely, available power source is estimated at approximately 940 MW in 1987 when pumping-up operation of the second stage Ban Chao Nen power plant will be put in service. The required power for pumping-up operation of the said plant will be approximately 400 MW and there remains a margin of approximately 550 MW for pumping-up operation of the other project. The situation will remain unchanged until 1990.

However, as described previously in sub-clause 3.2.3 on power demand and supply balance, nuclear power plants are planned to be completed by 1987 at which time there will be a high rate of reserve capacity of approximately 20 percent, and it is considered not appropriate to construct new pumped-storage power plant at that stage. Furthermore, running cost for pumping-up operation will be rather high around 1987 as it is considered that the required power will be sent from oil fired thermal power plants being operated at present.

Under these circumstances, the timing of development of this pumped-storage project will be after 1990 when nuclear power plants are sufficiently developed and there are sufficient amount of energy available for pumping-up operation. It is forecasted that the total installed capacity after 1990 will be between 5,500 MW and 6,000 MW, and the appropriate development scale of this project will be about 500 MW which is equivalent to approximately 10 percent of the total generating capacity in view of its function of peak supplementation and emergency.

## 11.4 Ban Tha Thong Mon pumped-storage power plant

Owing to scanty information of topography as well as geology in the project area, the design of the power generating facilities is consequently of preliminary stage.

The general layout of the power generating facilities based on the above-mentioned development scale is as described below.

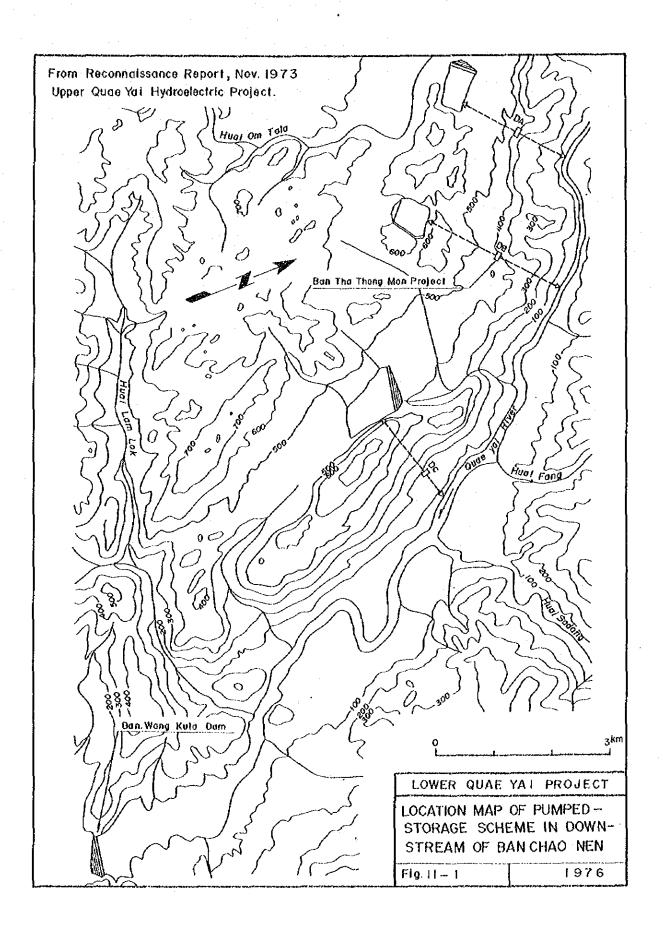
The upper pondage is to be constructed on a table land at elevation of about 600 m. All the inner surfaces made by embankment and excavation works must be protected with impervious asphalt surfacing. High water level, low water level, available drawdown and effective storage capacity of the upper pondage are  $585\,\mathrm{m}$ ,  $560\,\mathrm{m}$ ,  $25\,\mathrm{m}$  and  $3\,\mathrm{x}\,10^6\,\mathrm{m}^3$ , respectively.

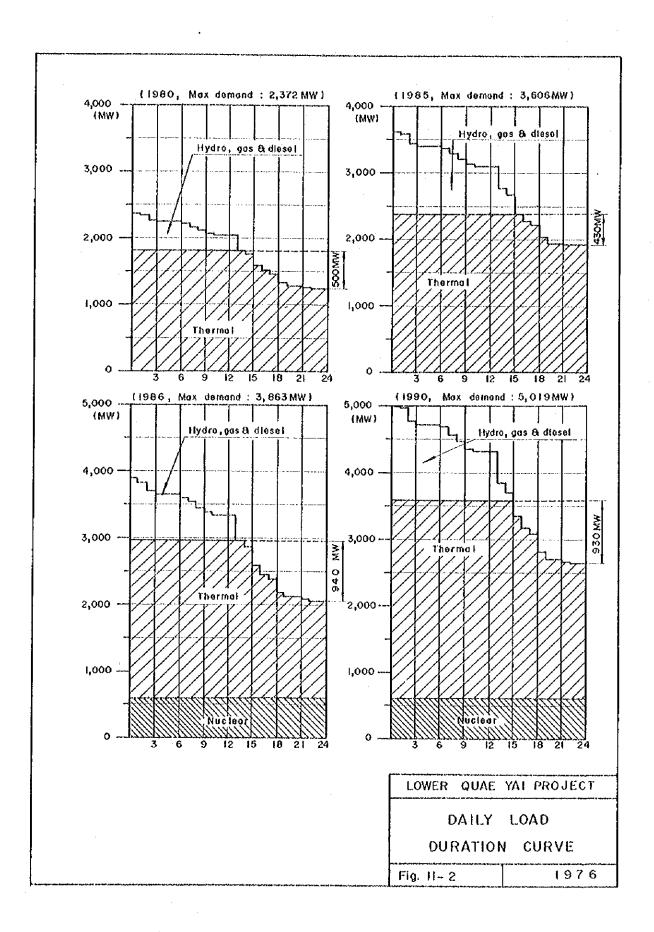
The intake structure is located at the bottom of the upper pondage. Lengths of the headrace tunnel and penstock are 56.56 m and 1131.26 m respectively and the penstock pipe branches midway into two lines. In the underground powerhouse of 22.00 m wide, 106.00 m long and 48.00 m high, two units of vertical shaft reversible Francis turbines, generators and other ancillary equipment will be installed.

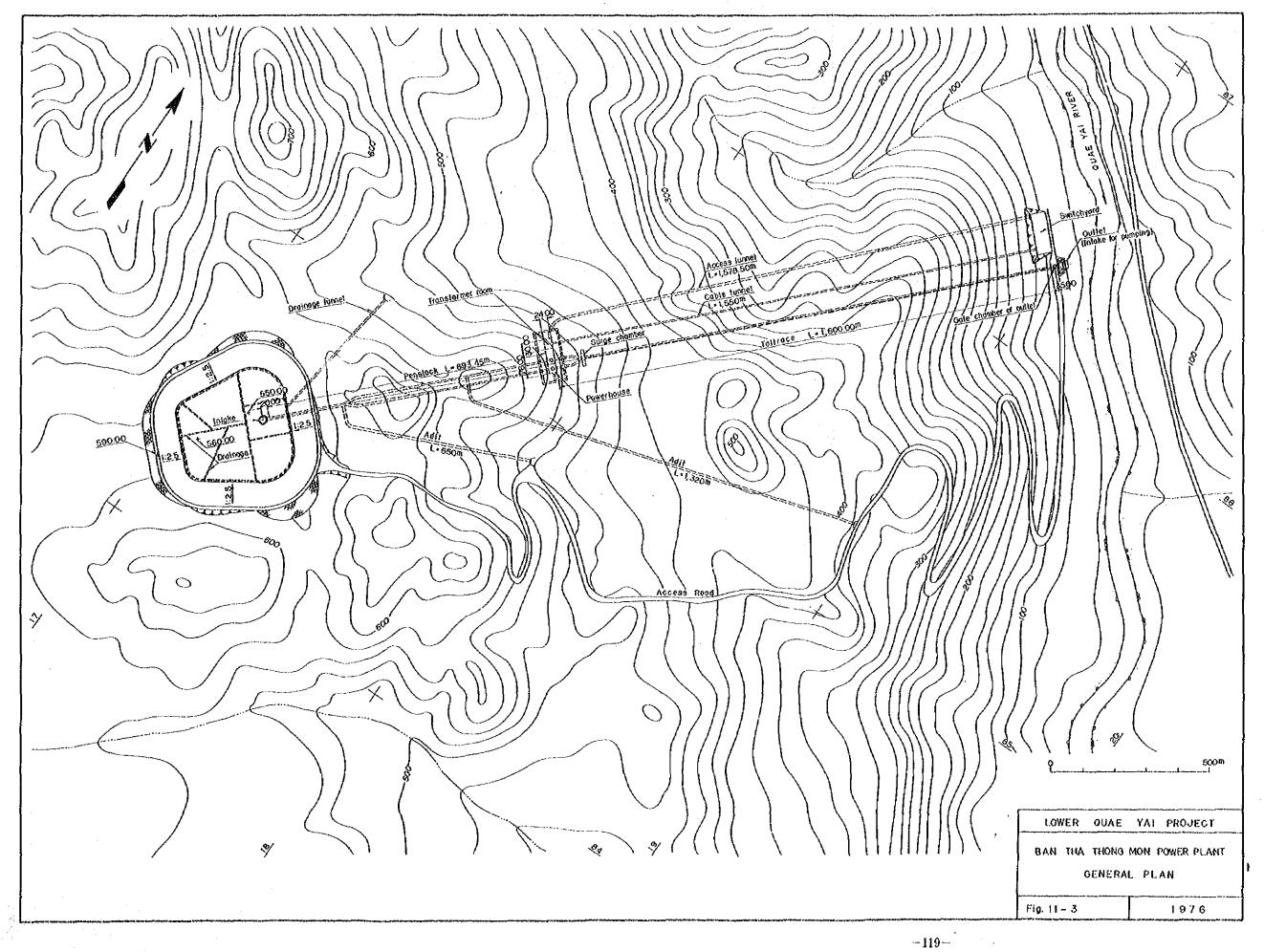
The tailrace tunnel is 1644, 50 m long and its reservoir side outlet functions as an inlet structure during pumping-up operation.

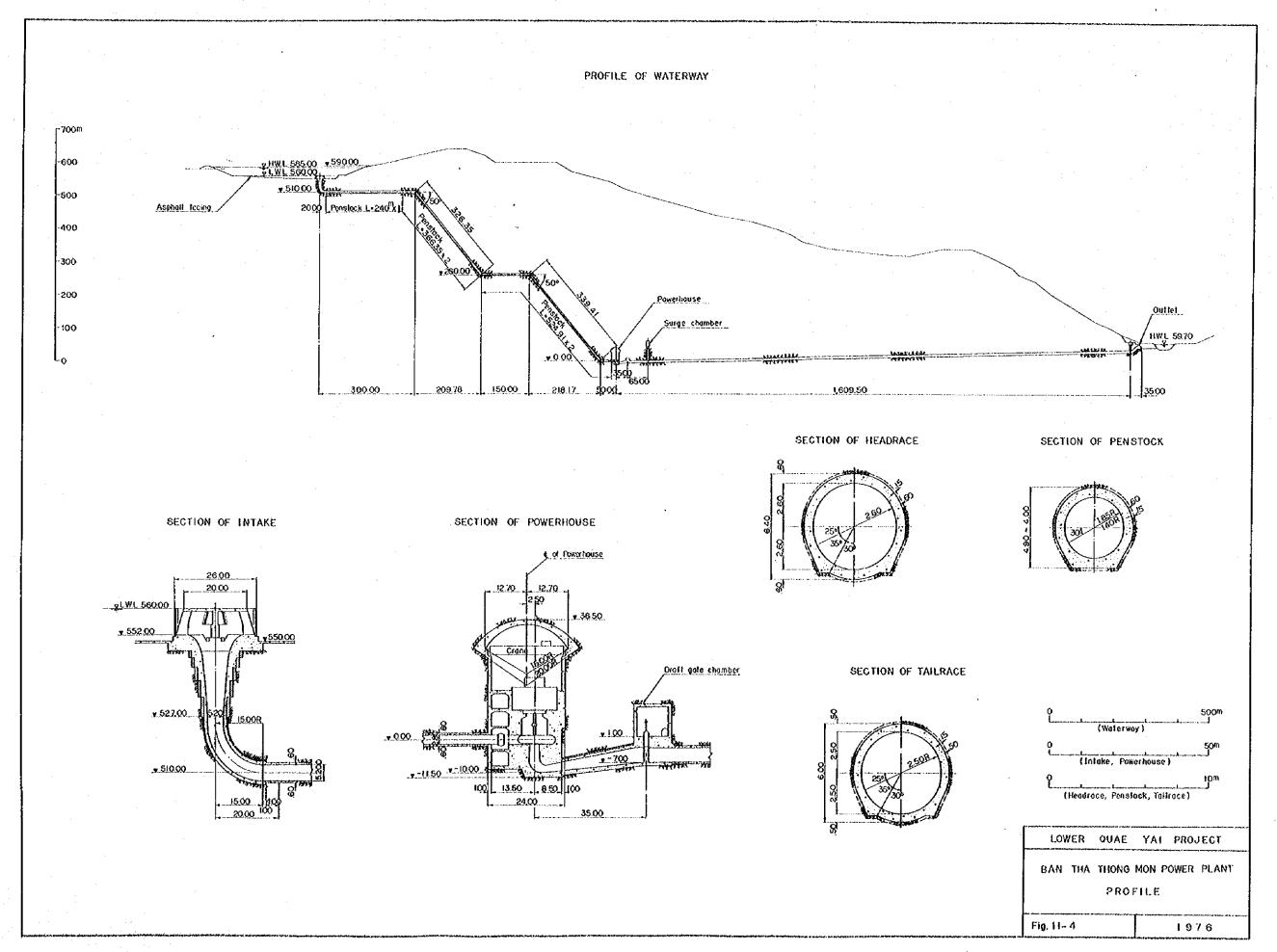
General arrangement and dimensions of principal features are shown in Fig. 11-3 and Fig. 11-4, and power development plan is shown below.

Maximum discharge  $124 \,\mathrm{m}^3/\mathrm{sec}$  (62  $\,\mathrm{m}^3/\mathrm{sec}$  x 2)


2


Gross head 518,40 m


Rated head 494, 40 m


Maximum output 500,000kW

Number of units









# **APPENDIX**

#### APPENDIX

## (A) Topographic map

| Scale                | Sheet | Remarks                                                                                                                                      |
|----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1; 250, 000          | 2     | Sheet No. ND47-7, NE47-11                                                                                                                    |
| 1: 50,000            | 2     | Sheet No. 4837III, 4837IV                                                                                                                    |
| 1; 5,000             | 6     | Covering Ban Chao Nen, Ban Tha<br>Thung Na area No.1 - No.6                                                                                  |
| 1 : 5,000            | 7     | Plan and longitudinal section of<br>Quae Yai River between Ban Chao<br>Nen and Ban Tha Thung Na sites<br>No. 8QY-SV-001, Sheet No. 1 - No. 7 |
| (1: 100<br>(1: 1,000 | 6     | Cross section of Quae Yai River<br>between Ban Chao Nen and Ban Tha<br>Thung Na sites T-001 - T-0074                                         |
| 1; 2,000             | 3     | Ban Tha Thung Na dam site<br>No. 1 - No. 3                                                                                                   |

## (B) Bibliography

- 1. Geologic Reconnaissance of the Mineral Deposits of Thailand, 1953 by Brown, G.F. et al.
- 2. Geological Map of Thailand (1: 1,000,000), 1969 by Department of Mineral Resources, Thailand.
- 3. Evaluation of Photographical Survey of Quae Yai No. 1 Project, 1971 by Electric Power Development Co., Ltd.
- 4. The Greater Me Klong Multi-purpose Project, Thailand, Second Stage Development for Irrigation, Flood Control and Hydro Power, August, 1968 by Royal Irrigation Department.
- 5. Feasibility Report, Quae Yai No. 1 Hydroelectric Project, March 1968 by Electric Power Development Co., Ltd.
- 6. Reconnaissance Report, Upper Quae Yai Hydro-electric Porject, November 1973 by Overseas Technical Cooperation Agency, Government of Japan.
- 7. Handbook of Applied Hydrology by Ven Te Chow

# (C) Log of Core Boring

|            | Location                 | Sheet       | Remarks                                               |
|------------|--------------------------|-------------|-------------------------------------------------------|
|            | Ban Tha Thung Na         | 33          | Sheet No. 1 - No. 33                                  |
| (D)        | Suspended Sediment Disch | arge Record | ere en            |
|            | Location                 | Sheet       | Remarks                                               |
|            | Ban Chao Nen             | 2           | 1972 - 1973                                           |
| <b>(E)</b> | Hourly Reinfall Record   |             |                                                       |
|            | Location                 | Sheet       | Remarks                                               |
|            | Ban Chao Nen             | 29          | May 1973 - Oct. 1975<br>(May 1974 missing)            |
|            | Hard Pana                | 28          | May 1973 - Oct. 1975<br>(June and Sept. 1974 missing) |
|            |                          |             |                                                       |

# (F) Water Level and Discharge Record

| Location      | Sheet | Remarks               |
|---------------|-------|-----------------------|
| Ban Chao Nen  | 4     | Apr. 1972 - Mar. 1974 |
| Khao Salob    | 2     | Apr. 1974 - Mar. 1975 |
| Ban Wang Chan | 6     | Apr. 1972 - Mar. 1975 |
| Ban Nong Bua  | 6     | Apr. 1972 - Mar. 1975 |

| ro 11.30 m Boring machine Acker N  Description                                                                                                                                                                                                                                                                                                        | Pai Sil | msite                                   | 5.48     | ght B<br>4<br>xizonia | evatio<br>gle fr<br>aring             | £te<br>An          |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------|----------|-----------------------|---------------------------------------|--------------------|---------|
| Mostly yellowish brown- light brown, fine grained sand, a few pebbles and gravels (\$2^mm_lomm).  3.6  Mostly white-light brown, medium grained sand, some gravels (\$5 ~ 20^mm).    O-13.7   River deposits.    No record of G.W.L.     Rounded gravels with a few medium grained sand.     Gravel size \$10^mm_lomm_lomm_lomm_lomm_lomm_lomm_lomm_l | 1476    | Ø 635727 m NX, Cdsing Shoe Bit a 114 mm | NX, C.P. | o      <br>           | LIMESTONE Grave! Sand and Grave! Sand | minimization (inch | jov, 28 |

|             | E (e<br>An                                                                                                 | wation<br>glo-fre | Rlghi             | 45<br>rontal  | 90          | m<br>N                          | 8                    | Ol<br>Depth<br>Depth<br>Total<br>Core r | of ave<br>length | of Con                      | Ban Tha Thung Na Boring No. BR-1 (sheet 2-of 2-)  40.0 at Commenced Oct. 24 - 1975  13.7 at Completed Dec. 8 1975  11.30 at Boring machine Acker No.2  52.1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------|-------------|---------------------------------|----------------------|-----------------------------------------|------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                            |                   | <u> </u>          |               |             | [                               | [                    |                                         |                  |                             | Oescription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ere G       | riao<br>O esta                                                                                             | Geology           | Symbol of geology | Core recovery | Cementation | Xinc of bit<br>Diameter of hole | Colour of rack       | Degree of weathering                    | Degree of        | Degree of<br>\$1880fe, GREK | F Pressure South Pres |
| 1           | 1                                                                                                          |                   | X                 |               |             |                                 |                      |                                         |                  | }                           | Oriller reports , cave at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dec 8 Sec 8 | مقال بروي المهار وتزمره ويقابر بريقان ويتقان ويتقاب ويتقارب ويتقارب ويتقارب وترسيد والمروب ويتقارب ويتقارب | LIMESTONE         |                   |               | ΑΧ. C. P.   | \$ 49.7mm AXM.                  | grey<br>dark<br>grey | No (                                    | 3-2              | 2~3                         | 20.66 16.58-20.66.  13.7~29.0  Core recovery very poor due to many cavities.  20.66-26.2  a few slimes, almost core loss. 25.0-26.2  Grey, sandy slimes.  26.2 Sand and grey slimes.  27.0 Slightly sheared, brittle, vertical CALCITE veins.  28.7 Cracky, sheared, brittle.  29.3  30.6  Many CALCITE veins, slightly disturbed as a whole.  33.0  Slightly muddy LS, some what brittle.  34.49 Drifter reports, cavity. 35.3  Cores broken into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Lecation Right Box                                   | 1.11 m<br>90°                                             | Yai Sitt<br>Depth of hote<br>Depth of overburden<br>Total termits of core<br>Core rucovery      | Born The Thung No   Boring   26.2   DO   Commenced   John   11.2   DO   Completed   Feb.   15.00   DO   Machine   United   The Thung No   Do   Do   Do   Do   Do   Do   Do                                               | No. BR-2<br>23 _1976 D<br>13 _1976               | (sheet No. 3<br>(sheet 1 of 2 )<br>which by Yosamuth i S.<br>(UNEX.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date Destr Cestegy Symbol of godocy Symbol of godocy | Cementation<br>Castrol<br>Kind of Dit<br>Diamotor of hole | Colour of rock  Decree of  weather rid  Decree of  Appendix  Decree of  Appendix  Insure, craex | Oescription<br>Aenarks                                                                                                                                                                                                   | S Pressure : sq. cm. 25 Time   S Many December 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Feb. 12   Feb. 11   Feb. 10                          | NX. C. P. NMLC NAC. P. A 76.2mm A 76.2mm A 76.2mm         | 2-1 3<br>4                                                                                      | Topsoil and fine grained sand and/or silt.  Final GW.L. EL. 40.51  V. 3.6  -4.0  Coarse grained sand.  Coarse grained sand.  11.2  Grey calcareous SHALE, fresh, but GRAPHITE films remarkable.  Cores exfoliate easily. |                                                  | S S 10 Smith minimizer S 10 Sm |

|   | <b>£</b>         | ocation<br>Iovatio | n ⊷<br>om hor     | ht Bo           | 4.11 p      | omsi<br>n<br>O°                 | le Y           | Oi<br>Oepth<br>Oepth<br>Total<br>Core ( | of hold<br>of ove<br>langth | Sit<br>o<br>obvrden<br>of oor | e Ban Tha Thung Na Boring No. B  26.2 m Commenced Jon. 23 1  11.2 m Completed Feb. 13 1  15.00 m Boring machine UNEX.  Junior A. I | ~         | 2 (<br>Drille       | sheet                                    |                                                |
|---|------------------|--------------------|-------------------|-----------------|-------------|---------------------------------|----------------|-----------------------------------------|-----------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|------------------------------------------|------------------------------------------------|
| 1 | ε<br>            | Bearing            |                   | <br>            |             | ~                               |                |                                         |                             |                               |                                                                                                                                    |           |                     |                                          |                                                |
|   | Date<br>Contract |                    | Symbol of Ceology | % Core recovery | Cementation | Kind of bit<br>Diameter of hole | Colour of rock | Degree of<br>weathering                 | L                           | Dogree of                     | Remarks                                                                                                                            | Time Time | 8 Water Pressure Te | Loss Water ( / /min.<br>Pressure (ka/em² | Supply water Leakage water ("min."             |
|   | Feb. 13 Feb. 12  | Calcareous SHALE   |                   |                 |             | Ø 76.2 mm                       | grey           | 2-1                                     | <→ 6                        | 4                             | Gray calcareous SHALE, fresh, but GRAPHITE films remarkable.  Cores exfoliate easily.  End of hole at 26.2 m                       |           | Street, Water S     |                                          | S CANAGE TO S TO |

# LOG OF CORE BORING Sheet No. 5

|          |            |          | ·                                  |              | ,            | <b></b>               |                     | .OG                     | U                     |                    | CORE BORING Sheet No. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|------------|----------|------------------------------------|--------------|--------------|-----------------------|---------------------|-------------------------|-----------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Le         | eation   | Right E                            |              |              |                       | e Ya                | l<br>Ocoth              | al hele               |                    | e Ban Tha Thung Na Boring No. BR-3 (sheet 1 of 2) 24.20 m Commenced Jan. 26 1976 Drilled by Yasumuth; S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | E          | evaline  |                                    | 34.3         |              | n                     |                     | Oepth<br>Oepth          |                       |                    | 4.7 m Completed Feb 10 1976 (UNEX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |            |          | om borizon<br>od angle ho          | 181          | _            | ····                  |                     | Total I<br>Core n       |                       |                    | 12.36 as Borney machine UNEX Logged by Junior A.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| r        | т.         | T        | F                                  |              |              | ·                     | 1                   | COID                    | COST                  | •                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |            |          | λά >                               | 1            | .            | rote                  | ļ                   | ı                       | r                     |                    | Description E E C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ١,       | ءِ اب      | ģ        | Symbol of geology<br>Core recovery | . 8          |              | - 6                   | ş                   | ي ۾                     | 2 2                   | 2 2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -   -    | 1000       | Caology  | 0 0                                | Cementation  | ջ            | Kind of 5<br>Diameter | Colour of rock      | Degree of<br>weathering | Degree of<br>hardness | Degree<br>fissure. | Bearys  Supery Coss Water Pressure Time Bressure Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |            |          | Sym (S                             | Š            | 3            | χQ<br>Ş ğ             | S                   | 8                       | ξ¥.                   | 0.3                | Bewarks  Source  Continue  Continue |
| -        | m 9        | ļ        |                                    | 1            | τΙ           | τī                    |                     |                         | <del>∢⇒</del> 5       | 1                  | າວ ການ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |            |          | N #111                             | Ш.           | H            |                       |                     |                         |                       |                    | Topsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1        |            |          | \                                  | П            | П            |                       |                     |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -        |            |          | $M \coprod$                        |              | П            | 1                     |                     |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - {      | 1          |          | <b>W</b> III                       |              | $\ $         | 1 1                   |                     |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |            | Popsoi   |                                    |              | П            |                       |                     |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ı,       | Γ          | Top      | /\ III                             | l            | Ш            |                       |                     |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C        | ١, :       |          | / ////                             |              | '            | ۱ ,                   | ] ,                 |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1        |            |          |                                    | 11           | انه<br>ان    | ք<br>3 mm             | 1                   |                         | ٠                     |                    | [3] [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5        | ,          |          |                                    | IJ           |              | 8 6                   |                     |                         |                       |                    | - 4.7 <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -        |            |          |                                    | <u> </u>     | 刀            | Chopping              |                     |                         |                       |                    | Strongly weathered SHALE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          |            |          |                                    |              | П            | 8                     | gray                | 5                       | 5                     | 5                  | clayey as a whole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ì        |            |          |                                    | ]]           | $\mathbf{l}$ | ĭ                     |                     |                         |                       | <u> </u>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| i        | <u>  .</u> |          |                                    | _            | П            |                       | ļ                   |                         | <u> </u>              | ļ                  | -70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| , -      | -          |          |                                    | 14.<br>16.   | П            |                       | black<br>s<br>brown | 5-101                   | 5-14)                 | 5                  | Black SHALE, flaky cores,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1        | 1          |          |                                    |              | IJ           | 1 1                   | brówn               |                         |                       | ļ                  | weathered along cracks, brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C        | .] :       |          | $\times$                           | $\ \cdot\ $  | ᅫ            | 1                     |                     | No                      | core                  |                    | # Flaky cores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3        | ,          |          |                                    | ∦   <u>-</u> | :            |                       | grey                | 5~(4)                   | 5-(4)                 |                    | 5cm long, all cracks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Į.       | 1 .        |          |                                    | 1 8          |              |                       |                     | 4-5                     | 3                     | 4-5                | weathered and brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1        | (0)        | HALE     |                                    | 31  ~        | ٠ إ          | 1                     | \                   | 14-3                    | ,                     |                    | → <del>V 10.0</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -        |            | H.       | $\sum M$                           | Cementation  |              |                       |                     | No                      | core                  |                    | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | -          | S        |                                    |              |              |                       | yel.                | 5                       | 5                     | 5                  | H.O Black SH, flaky to gravelly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5        | <u>.</u>   |          |                                    |              | ;            |                       | grey                | ļ                       | ļ                     |                    | B.6 - cores, sheared zone?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |            |          | X   X                              | E            | 1            |                       |                     | 1                       | Ì                     |                    | Slimes 129-13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 >      | 1,         | ų,       |                                    | 15           |              |                       | grey                | No                      | eres                  |                    | 25 Core foss SHALE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>\</b> | 1          | Ĕ        | XWX                                |              |              | ပ                     |                     | 5<br>No                 | 5<br>C016             | 3                  | (3.0 — Iflaky cores only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| K        | ۱,         | SANDSTON |                                    |              | ļ            | J W Z                 | black               | i                       | 5                     | 5                  | Flaky coros only , sheared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 400      | 3          | SA.      |                                    |              |              |                       | grey                | <b> </b>                |                       |                    | zone ?  4.3 Grey, hord SANDSTONE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1"       | ١,         | -7:      |                                    |              |              | <sub>€</sub> (        | black               | No<br>3                 | core<br>3             | 4~5                | 4.8 - gravelty cores, Weather - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |            |          | 网络                                 | 1 3          | •            | 2.2 mm                |                     |                         | coro                  |                    | 15.05 ed along cracks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| k        |            |          | 爬引                                 | # E          |              | 6.76                  | black               | <u></u> -               | 3                     | 4~5                | 15.8 Black SH, somewhat shoor-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4        |            |          |                                    |              |              |                       |                     | No<br>6                 | coro                  | -6                 | ed, gravelly cores.<br>16.65—16.7 Fault breccias?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Įũ       | 1          |          | 出数                                 |              | ;            |                       |                     | 3                       | 3                     | 3                  | Black SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| r        |            | w        |                                    |              |              |                       |                     |                         | 5-4                   | 5-4                | Sheared zone ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 12         | HAL      |                                    | ementation   | ;            | 11                    | black               |                         | ļ                     |                    | very week, fike cool.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L.       | .1 .1      | SH       | 翻目                                 |              |              |                       | June                |                         |                       |                    | 18.0-21.2 Black SH, 3-10cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6        |            |          |                                    |              | ا ١          |                       |                     | 3                       | 3                     | 3-4                | cores, very exfoliative elong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ام       |            |          |                                    | إ            |              |                       |                     |                         |                       |                    | ulong cracks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9        | -{ -       |          |                                    |              |              |                       |                     |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|           | Location<br>Elevation<br>Anglo fr<br>Bearing | on hor            | 1 8å<br>5<br>izonta | 1.34   | omsli                           | 9              | Depth<br>Total       | af hole<br>af ove<br>length | rburder<br>of core | 12.36                                                                   |                    | Sheet No. 6  3 (sheet 2.of 3.  Orilled by Yosamuth;  (UNEX)  Longed by | - <u>}</u>            |
|-----------|----------------------------------------------|-------------------|---------------------|--------|---------------------------------|----------------|----------------------|-----------------------------|--------------------|-------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------|-----------------------|
| П         | 7                                            | . ۲               | <u> </u>            | ļ      | <u> </u>                        |                |                      | . 43                        |                    | Qescription                                                             | J/cm²              | Tes:<br>/mio.'<br>/om*<br>/om*<br>eser<br>mio.'                        | П                     |
| Date Care |                                              | Symbol of peology | Z S Core roovery    | Casing | Kind of bit<br>Diameter of hole | Colour of rock | Dogree of weathering | C Degree of                 | J                  | Romarks                                                                 | S Pressure (kg/cm² | ressure ster / / e ' ko                                                | Ar Depth              |
| 10 Feb. 9 | SHALE                                        |                   |                     |        | NM.C<br>Ø 76.2 mm               | black          | 3                    |                             | 3-4<br>4-5         | 21.2<br>Flaky to gravelly cores,<br>exfoliative, not weathered<br>-22.8 |                    | 96 757 36<br>0 X + C - 20 X                                            | meteral march handars |
| Feb       | Sic                                          | 111111            |                     |        |                                 |                |                      | 3                           | 4-5                | Black calcareous SH, not weathered, but sheared as a whole.             |                    |                                                                        | التسيليسية            |
| 3 3 4 4   |                                              |                   |                     |        |                                 |                |                      |                             |                    | End of hole at 24.2 <sup>m</sup>                                        |                    | Supply Water                                                           |                       |

### LOG OF CORE BORING LOG OF CORE BORING Sheet No. 7 River Quae Yal Site Ban Tha Thung No. Barring No. BR-4

| Elevatio<br>Angle &                    | n Sight Bo<br>n 5<br>nm horizonta<br>of angle holi | 9,91m<br>90°          |                | Oepih<br>Total       |                  | ob rudin<br>roo To | 22.0 m Commenced Feb. 12 6.70 m Completed Feb. 2 14.50 m Boring machine UN Junior                                                                                                             | 1 _1976                       | Delles by Yosamuth; (UNEX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------|----------------------------------------------------|-----------------------|----------------|----------------------|------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date 3 Depth Geology                   | Symbol of qeology                                  | Cementation<br>Casing | Colour of rock | Degree of weathering | Degree of        | J                  | Description Remarks                                                                                                                                                                           | Pressure 'kg/em*<br>Time mio. | Water Prossero Toss Loss Water / /mo. Pressero :@/om/ Pressero :@/om/ Pressero :@/om/ Pressero :@/om/ Pressero :@/om/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Feb. 12                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1            |                       |                |                      |                  |                    | Overburden (silt)<br>yellowish soil.                                                                                                                                                          |                               | Water Water State     |
| Feb. 13<br>ulfuludindudindudin<br>Sitt | 1444444                                            | NX. C.P.              |                |                      |                  |                    |                                                                                                                                                                                               |                               | 95-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| is<br>Series Control Control           |                                                    |                       | brown<br>dork  | 4~5                  | 4-5<br>5<br>core | 5                  | Cracky, brittle, weathered along cracks.  800 Fault brecclas, soft, 840 Flaky cores. 8 80 Cracks weathered to brn. Most cores flaky or                                                        |                               | 38 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rep. S. Feb.                           |                                                    | NMLC.                 | blac k         | 5                    | 4-5              |                    | sheared breccias. As a whole sheared zone. II.0 Bedding very clear tooks like SCHIST, 3~30cm cores, cracks 12.0 weathered brown. 12.4 Flaky cores, sheared zone. Black SH with CALCITE veins, |                               | 9)<br>Number of the Control of the Cont |
| r Feb. 16<br>mliniminiminim            |                                                    |                       | 2mm            | 3                    | 3                | 3                  | somewhat sandy generally IO-30 <sup>cm</sup> cores.  at 15.00 15.20 and 15.50 15.70 cracks brown and somewhat sheared and reconsolidated. Final G.W.L. EL. 42.91                              |                               | 95 - 38 j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SHALE                                  |                                                    |                       | 8 76.          | 3-4                  |                  | 3-4                | 7.00 LEL.42.91 7.00 Y 17.0  Sandy SH. 3~5 <sup>cm</sup> cores, cracks brown but hard cores.  18. <sup>25</sup> ~ 18. <sup>70</sup> Reconsolidated sheared zone, hard.                         |                               | 42 57 58<br>14 (C) 6m 7665<br>5 X (C) 6m/585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| €leval<br>Angte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on Rightion — from horing of angle | it Ba<br>6<br>izontal | 9.91                  | m_                              | 9              | Dopth<br>Total I     | of hote<br>of over | o<br>Liberaten<br>O Leona   | Ban Tha Thung Na Boring 22.0 m Commenced Feb.    670 m Completed Feb.    14.5 m Boring machine UI  98.7 % | 2 -19<br>1 -19<br>2 -19        | - 4<br>76 ( | orilled b             | y Yasamu<br>VNE                       | ih, S.<br>X                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|-----------------------|---------------------------------|----------------|----------------------|--------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------|-------------|-----------------------|---------------------------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                       |                       | <u> </u>                        | <u> </u>       |                      |                    | ··                          | Description                                                                                               | <u> </u>                       | آ ۽َ        | 8 2                   | h                                     |                                         |
| Date<br>Oppus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Symbol of geology                  | Se Core recovery      | Cementation<br>Casing | Kind of bit<br>Diameter of hole | Colour of rock | Degree of weathering | Depree of parchess | Degree of<br>fissure, crack | Remarks                                                                                                   | • Drill<br>S. Pressure (Ag/cm) | Time min.   | S Loss Water ( / /min | Pressure : kg/cm² Orvit. Supply water | S / /min.                               |
| حادا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SHALE<br>HININH                    |                       |                       | NMLC.<br>Ø76.2mm                | black          | 3                    | 3                  | 3-4                         | Sandy SH, cracks generally fresh, recemented sheared zone (hard) at 20.8~21.1                             | <b>/</b>                       |             |                       | - 20 T                                | TXICS BASE                              |
| The state of the s |                                    |                       |                       |                                 |                |                      |                    |                             | End of hole at 22.0m                                                                                      | OUT TWO                        |             | SUBSIV Water          | - FOSKOĞE WETEL                       | ການ |

|               |                |               |                                    | er          |                            |                | a i                     |                       | Sit                         | e Ban Tha Thung No Boring No BR-5 (sheet 1 of 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|----------------|---------------|------------------------------------|-------------|----------------------------|----------------|-------------------------|-----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | (              | Etevatio      |                                    | 63. Q       | <u>5 m</u>                 |                | Depth                   | of note               | rteurdéi                    | 21.25 m Commenced Feb. 23 1976 Orded by Tarsonatri S.  Completed Feb. 29 1976 (UNEX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                |               | om horizanta<br>of angla hol       |             | <u>0°</u>                  |                |                         | ecoveri<br>longth     |                             | 13.7 In Boring machine Unex Junior Longed by A-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ſ             | T              | 1             | <u>}</u>                           |             |                            |                |                         |                       |                             | Obscription # 12.55 Company Co |
|               | ا              | e ĝ           | Symbol of geology<br>Core recovery | 8           | of note                    | 8              | 3 8                     | 2.0                   | of<br>crack                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -   {         | o die          | Geo:ogy       | mbol of geolo<br>Core recovery     | Cementation | Kind of pit<br>Diameter of | Colour of rack | Degree of<br>weathering | Degree of<br>nardness | Degree of<br>fissure, crack |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | 1              | n             | \$ %                               | 88<br>      | \$6                        | 8              | l                       | ↔ 5                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                | attiri<br>1   |                                    |             |                            |                |                         |                       |                             | 05.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | <u>ا</u><br>د  | 1             |                                    |             | Sit -                      |                |                         |                       |                             | Completely weathered SHALE, mostly slimes or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - 1           | 3              | TT TT         |                                    | <b>\</b> \  | 8306<br>S300               |                |                         | ·                     | <br> <br>                   | flaky cores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ű             | 2              | Ш             |                                    | n.          | Cesing                     | brwn           | 5<br>5                  | 5                     | 5                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                | HAL           |                                    | X X         | 112                        | }              |                         |                       | 3                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6             | 1              | 35            |                                    |             | ) ñ                        |                |                         |                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4             |                | 7             |                                    |             |                            |                |                         |                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | 1              |               |                                    |             |                            |                |                         |                       |                             | 5.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 15             | 1             |                                    |             |                            | <br>           | A<br>No                 | core                  | 4_                          | 5.75<br>6.00 Fault breccias and<br>6.25 gravelly cores, black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ١             | ,<br>0         |               |                                    |             |                            |                | 5                       |                       |                             | SH.  Black SH, mostly gravelly cores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | ŀ              | 1             |                                    |             |                            | black          | Ť                       | 3                     | 5                           | weatherd brown cracks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4<br> <br>  U |                |               |                                    |             |                            | [brwn          | 1                       | Ĭ                     | Ĭ                           | Black SH, mostly 5 - 10 <sup>cm</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | 12             | 11 L          |                                    |             |                            |                | 4                       |                       |                             | cores, cracks wheathered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | J <sub>o</sub> | SHALE         |                                    |             |                            | black          | №<br>5 - 4              | <u>core</u><br>5 - 4  | 5-4                         | Black SH, sheared Et. 52.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | ].             | , v           |                                    |             |                            | <b>\</b>       | 5                       | 5                     | 5                           | 10.2 zono.<br>10.35-10.40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |                | 1             |                                    |             |                            | gréy           | 4-5                     |                       | 4-5                         | 1107 Fault breccios.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| c<br>c        | ŭ.             |               |                                    |             |                            |                | No                      | ¢018                  |                             | II.8 Black SH, sheared zone somewhat brecciated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14            | 3              |               |                                    |             |                            |                |                         |                       |                             | Like black SCHIST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -             | -              | r trans       |                                    |             |                            | block          | 5                       | 5                     | 5                           | - Gravelly cores with some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | Ŀ              | er des        |                                    |             | <br>  U e                  |                |                         | ı                     |                             | brecciás.<br>Black SH, flaky to 5 <sup>cm</sup> cores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ģ             | ₫.             | Fault         |                                    |             | N L M C                    |                |                         | ļ. <u>.</u>           | <br>                        | Mostly flaky cores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4             |                | Faulf<br>clay |                                    |             | <br>  ''<br>  ''           | grøy<br>brówn  | 5                       | 5<br>3                | 5                           | 15.4 Gray, fault clay. Gravelly cores, partially                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                | SHALE         |                                    |             |                            | block          | 3 4                     | 3-4                   | 5                           | flakey, cracks brown.  16.4 QUARTZ vein.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -             | 1              | QYZ           |                                    |             |                            | white          | 3-2                     | 3-2                   | 4                           | 17.0 Some what siliceous cracks brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 000           | یارہ           | -             |                                    |             |                            | black          | 4-3                     | 4-3                   | 5                           | Flaky to gravelly cores,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |                | ALE           |                                    |             |                            |                |                         |                       |                             | cracks brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Į.            |                | SHAL          |                                    |             |                            |                | 4                       | 3                     | 4                           | 3IO <sup>cm</sup> cores, cracks<br>brown, reconsolidated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | ]2             |               |                                    | Ì           |                            |                | No                      | core                  |                             | 19.56 sheared zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                | UG                      | Ų                     |                    | Sheet No. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|----------------------------------------------|-----------------------|----------------------------|----------------|-------------------------|-----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Ria               | Riv<br>M R                                   | er<br>ank, D          | Qua                        | ~              | <u>ai</u>               |                       | Sit                | te Ban Tha Thung Na Boring No. BR-5 (sheet 2 of 2)  21.25 m Commenced Feb. 23 1976 Onlike by Yarsamuth; S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ocation<br>levatio |                   | 63                                           | . 02 n                | 1                          |                |                         | of hote               | e<br>Obućden       | 0 conduct Feb. 29 - 1976 (UNEX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | om ho             | rzonta                                       | , 9                   | <u>o</u>                   |                |                         |                       | o( cor             | 13.7 Boring geneting UNEX JUNIOF Longed by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eation             | ges to            | la troli                                     | ,                     |                            |                | Core r                  | ecover                | ¥                  | 64.5 % A-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                  |                   | [                                            | Ī                     | <u> </u>                   |                |                         |                       |                    | Oescription E C S C S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | İ                  | Symbol of peology | ફે                                           |                       | noie<br>e                  |                |                         |                       | T é                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oepth<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Geology            | 8 8               | Core recovery                                | ş                     | 25                         | Colour of rack | Degree of<br>weathering | 6 %                   | 69<br>69<br>69     | Pressign State Sta |
| őő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | હૈ                 | 8                 | ě                                            | Cementation<br>Casing | Kind of bit<br>Diameter of | ردره           | egree<br>/eath          | Degree of<br>hardness | Degree<br>fissure, | Time Time Time Time Time Time Time Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | ŝ                 | i                                            | 33                    | ŽΨ.                        | છે             |                         | L                     | ŎΨ                 | 100 Wate 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | $\searrow$        | 1883                                         | <del> </del> -        | 787                        |                | No                      | <→ 5<br>core          | ·                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HS.                |                   |                                              | l                     | 4-N.MC                     | brsh           |                         |                       |                    | -20.25<br>SHALE, 5-10 <sup>cm</sup> cores as a N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                  |                   |                                              |                       | ZQ                         | ð1e A          | 3                       | 3                     | 3-4                | SHALE, 5-10 <sup>cm</sup> cores as a Number of SHALE, 5-10 <sup>cm</sup> cores as a whole, reconsolidated shd. zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       | 1                  | End of hole at 21.25 <sup>m</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   | <b>!</b> !!!!                                | ļ                     |                            |                |                         |                       | l                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            | i              |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              | 1                     |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ĺ                  |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                   |                                              | 1                     |                            |                |                         | <b> </b>              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       |                    | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       | ;                          |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              | <b> </b>              |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                   |                                              | ]                     |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         | ĺ                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   | <b>                                     </b> | }                     |                            |                |                         | 1                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                   |                                              | }                     |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   | 11111                                        | 1                     |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ةً إ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                   | III                                          |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                  |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | <b>'</b>          | 11111                                        |                       | ]                          |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ļ                 | $\parallel \parallel \parallel$              |                       | li                         |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              | )                     |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       | ĺ                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       | Ì                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ]                 |                                              | ]                     |                            |                |                         | •                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                | ļ                       |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       | İ                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         | ]                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            | ·              |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of continue of cont |                    |                   |                                              | [. ;                  |                            |                |                         | ĺ                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |                                              |                       |                            |                |                         |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| الإساســـا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L                  | ــــــ            | للدين                                        |                       | I                          | لمنسا          |                         | L                     | l                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Sheet No. II

| River Qt  Location Right Bonk, Dor  Elevation 42.96 m  Angle from horizontal  Beging of anglo bole     | Depth of hole                                                                                                                                                                                                              | to Ban Tha Thung No Boring for 35.0 m Commonced Jan 20.0 Completed Feb. 34.1 m Boring machine Acks                                                                                                                                                                                                     | 2 _ 1976                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                        |                                                                                                                                                                                                                            | Ooscription                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |
| Date Depth Geology Symbol of seology Symbol of seology Cementation Castria Kind of St                  | Diameter of note Colour of rock  Decree of Meaningring  Meaningring  Diameter of Diameter of Diameter of Diameter of Diameter of Diameter of Diameter of Diameter of Diameter of Diameter of Diameter of Diameter of other | Remarks                                                                                                                                                                                                                                                                                                | Fressure (Run.)  Time (Run.)  Water Pressure Tes  Loss Water (Mprom.)  Doull Supply water  Leskage water  Leskage water  Leskage water  Leskage water  Leskage water |
| Jan. 28       Jan. 23         LIMESTONE       \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 3-2 grey 3                                                                                                                                                                                                                 | On River deposits, silty sand.  Driller reports, cavity at 4.21—4.31, and drilling water completely loss at 4.21.  2.66  Final G.W.L. EL. 40.30  Grey LIMESTONE, many CALCITE veins, generally fresh.  Cores 5~30cm tong.  Though cracks not brown nor weathered, all cracks coated by black GRAPHITE. | No leak wheer maxis—4.5kg/cm²   No leak under maxis—5.5kg/km² 5.2 x 10° em/ese                                                                                       |

| r   |              | oeatio<br>Elevatio<br>Ingle I<br>Bearing | on                | ght C<br>42<br>Izontal | 96                    | Doms<br>M<br>O*                 | e<br>ite       | Depth<br>Depth<br>Total | of hole<br>of ove  | e<br>Irbuirde<br>el cor | te Ban Tha Thung Na Boring No. BR  35.0 m Commenced Jan 23 - 197.  0.5 m Completed Feb 2 - 197.  0.6 34.1 m Boring machine Acker No. 2               | Control by CEGAT) Logged by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|--------------|------------------------------------------|-------------------|------------------------|-----------------------|---------------------------------|----------------|-------------------------|--------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Date<br>Date | 1                                        | Symbol of geology | S. Core recovery       | Cementation<br>Casing | Kind of Dit<br>Diameter of note | Colour of rock | Degree of weathering    | Ocorec of hardness | Degree of frasure, oack | Remarks                                                                                                                                              | S Water Pressure 7est  6 Loss Water (//mn.)  7 Pressure //mn.)  8 Door water  C Leakage water  7 Mun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 000 | 30           | LIMESTONE                                |                   |                        |                       | Diamond Bit NXM.                | grey           | 32                      | 3                  | 3 4 3 3                 | Grey LIMESTONE, many CALCITE veins, generally fresh. Cores 5~30 <sup>cm</sup> long.  23.3 Cracky at 23.3.  23.9 Cracky part.  26.6 27.0 Cracky part. | Permopolity coefficient = No loak under mon. Permopolity (six time) and the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the same to the sa |

|                                         | į       | Elevati<br>Angle | on Rig<br>on -<br>from ho<br>of ang | ht Bo<br>5<br>rizonia | 5.73                 | msi i                           |                              | Depth<br>Total          | of hot<br>of over<br>tength | io<br>crburde<br>. ot cor | e Ban Tha Thung Na Boring No. BR-7 (sheet 1 of 3)  45.00 m Commenced Dec. 23 1975 Onited by Tontil  7.50 m Completed Jan. 13 1976 (EGAT)  26.4 m Boring machine Acker No. 2 Coxed by Tontil  70.5 %                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------|---------|------------------|-------------------------------------|-----------------------|----------------------|---------------------------------|------------------------------|-------------------------|-----------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | Date of | Geology          | Symbol of geology                   | 36 Core recovery      | Cementation<br>Casno | Kind of bit<br>Diameter of hole | Colour of rock               | Degree of<br>weathering | 1 .                         | Depree of fissure, crack  | Description  Loss Water 1 / mn.  Defense water 1 / mn.  Defense water 1 / mn.  Defense water 2 / mn.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dec. Dec. Dec. Dec. Dec. Dec. Dec. Dec. | 6.      | Overburden       |                                     |                       |                      | Diamond C                       | white<br>brown<br>}<br>black | 5-4                     | 4-5                         | 5-4-5                     | Topsoit and fine grained materials (river deposits) with some fragments of secondary time.  75 Fault breccias, white color, soft. 853 Weathered SHALE, recovered only slimes and some pieces of SH. Final G.W.L. EL. 43.05  12.0 Black SHALE, flaky cores, I-3cm Long, oll cracks weathered, brown. 14.0 Cores IO~20 <sup>cm</sup> long, cores hard but cracks brn. weathered. Floky to pieces (5cm) cores, cracks weathered and brn. cores exfoliate easily along laminae. 7.20 Same condition with above, but no brn. cracks. |

| River Control Right Bank, Do Elevation 55.73 m Angle from horszontal 90 Bearing of angle hote                 | Depth of bole Depth of overb                            | burden 7.50 m Completed Jqn. 13 1976 (EGAT)  pl core 70.5 Boring machine Acker No.2 Legged by                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                               |                                                         | Osscription E & S & C & S & S & S & S & S & S & S & S                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Carle Carle Carle Geology Symbol of geology Symbol of geology Cerentation Cerentation Cerentation Cerentation | Kind of the Diameter of Colour of Depree weather hardse |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Jan. 7 Jan. 6   5   15   15   15   15   15   15   1                                                           | black 2 3  black 2 3  black 2 3  black 2 3              | 4 Black SHALE rather massive and hard. Commonly cores 20~30cm long , partially 3-2 cracky.  3-2 25.80 Slimes Black SH. Cores 2~10cm and flaky but no brn. cracks, cores exfoliate easily along laminae.  4-5  Slimes  32.0  Slimes  32.75  As same as at 26.4~32.0 no brn. cracks. 33.9  34.15 Slimes 34.15 Slimes 3-4 5.65cm cores. 34.92 slimes 30.25cm cores, somewhat sheared in general. 36.7 Sheared but recemented.  Slimes  36.7 Sheared but recemented.  Slimes  36.7 Sheared but recemented. |
| 144                                                                                                           |                                                         | sheared as a whole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|                                         |                       | Pist          | er i                  | Опа                        | . Y            | ai<br>ai             |                    | T CH                       | - San Tha Thung No                                        | ∡ N. DD.          | Sheet                                     | No. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------|-----------------------|---------------|-----------------------|----------------------------|----------------|----------------------|--------------------|----------------------------|-----------------------------------------------------------|-------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Locat                                   | ion Rig               |               |                       |                            |                |                      | of hote            | ्राद                       | e <u>Ban Tha Thung Na</u> Borin<br>45,00 m Commenced Occ. | <u>- 23 197</u> 0 | (shee<br>Drilled by                       | t -3- of -3- )<br>_Tanii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Eleva                                   |                       | 5             | 5.73                  | m                          |                |                      | of ove             |                            | 7.50 m Correlated Jan                                     | . 13 1976         |                                           | (EGAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | trom her<br>ng of ang |               | ~~                    |                            |                |                      | tength             |                            | 70 9                                                      | CKET NO. 2        | Logged by                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.000                                   |                       | 10 1000       | ,                     | Y                          |                | Core r               | ecover             | y<br>                      | %                                                         |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | è                     |               |                       | ١                          | <u> </u>       |                      | <b>,</b>           |                            | Description                                               | , com             | Tes:                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | Symbol of geology     | Core recovery | ر ع                   | 8                          | ž              | . 8                  |                    | Š                          |                                                           | Pressure (kg/cm²  | Water Pressure Tes<br>Loss Water ( / /mm. | Drii<br>Subiy water<br>Leakace water<br>//min.<br>Depts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Oate<br>Death                           | ٥                     | § S           | Cementation<br>Casing | Kind of bit<br>Diameter of | Colour of rock | Degree of weethering | Degree of hardness | Degree of<br>fissure, cack | David                                                     | sure              | ate.                                      | yicou<br>y rakao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | ,   §                 | ខ័            | Server<br>Server      | 5 6                        | Jog.           | à i                  | S H                | Deg.                       | Romarks                                                   | Time Time         | \$ 38 Ee                                  | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40                                      | "                     | %             | 00                    | ×α                         | 8              |                      | 4-> 5              | <u> </u>                   |                                                           | 1 S S             |                                           | l Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1                                       |                       |               |                       |                            |                |                      | 1                  | $\Gamma^-$                 | ***************************************                   |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       | $\  \ $                    |                |                      |                    | ·                          | Slimes<br>41.0                                            |                   | A PI B                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.13                                    |                       |               |                       | <u></u>                    |                |                      |                    |                            | Black SH, with GRAPHITE                                   | - INTII           |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S S                                     |                       |               |                       | ∞ I                        | black          | 3                    | 3                  | 4-5                        | flaky cores ( 2~5 <sup>cm</sup> )                         |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| [] ქս                                   | : N 🦈                 |               |                       | Diamond - Ø NXM.           | l              |                      |                    |                            |                                                           |                   | 1萬期                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ijŴ                   |               |                       | ğ<br>M                     |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | 5   X                 |               |                       | il                         |                |                      |                    |                            | Slimes                                                    |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| c d                                     | $\mathbb{A}$          |               |                       |                            |                |                      |                    |                            | Black SHALE,                                              | X                 | 4111111111                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            | 44.4 with GRAPHITE moter                                  | iois],[]]         | <u> </u>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1,3                                     |                       |               |                       |                            | black          | 3                    | 3                  | 4.                         | slightly sheared as a whole                               | 3.                | \$[[]] <u>[</u>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 113                                     |                       |               |                       |                            |                |                      |                    |                            | End of hole at 45,0 <sup>m</sup>                          |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            | •                                                         |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | 1                     |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12                                      |                       |               | i                     |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .                                       |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               | 1                     |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u> 1</u>                               |                       |               | Ì                     |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 2                                     |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3                                       |                       |               |                       | i                          | i              |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4                                       |                       |               |                       |                            | l              |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 5                                     |                       |               | l                     |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u>  4</u>                              |                       |               |                       |                            |                |                      |                    |                            | ,                                                         |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       | ĺ                          |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -4                                      |                       |               |                       | Į                          |                |                      |                    |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4                                       |                       |               |                       | ľ                          |                |                      |                    |                            | ;                                                         |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       |                            |                |                      |                    | l                          |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               | -                     |                            |                |                      | ľ                  |                            |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                       |               |                       | ļ                          | -              |                      |                    | ľ                          |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 1111111111111111111111111111111111111 |                       |               |                       | į                          |                |                      |                    | l                          |                                                           |                   |                                           | le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de le de |
|                                         | 11                    | ШЦ            |                       | l                          |                | l                    |                    | l                          |                                                           |                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# LOG OF CORE BORING Sheet No. 16

|                                        | E<br>A          | fevatio<br>ngte fr | n .               | 1 Bor<br>5<br>Izonial | er (<br>nk, Do<br>5.96 | rnsite<br>m                     | <b>6</b> '     | Oepth<br>Total | of heli<br>of over<br>length<br>ecovery | Sit<br>oburder<br>of core     |                                                                                                                                                                                                       | No. <u>BR-8</u><br>1 _1976<br>6 _1976                      | Sheet No. 16  (sheet 1 of 2)  Drilled by Yasamuth; S.  (UNEX)  Longed by                                                                     |
|----------------------------------------|-----------------|--------------------|-------------------|-----------------------|------------------------|---------------------------------|----------------|----------------|-----------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Descri          |                    | Symbol of geology | S Core recovery       | Cementation<br>Casing  | Kind of bit<br>Diameter of hole | Colour of rook | L              | Degree of Pardness                      |                               | Description<br>Remarks                                                                                                                                                                                | = <u>Dritt</u><br>13 Pressure ikg/cm² '<br>18 Trans (mun). | Water Pressure Test  Loss Water (min.)  Pressure (g/om²)  Supply water  Supply water  Supply water  Supply water  Destrict  Pressure (g/om²) |
|                                        | T&D. 1          | Overburden         |                   |                       | NX.C.P.                | Fishfeil Bit Ø 91,3 mm          |                |                |                                         |                               | Topsoil and yellowish silty river deposits.                                                                                                                                                           | DAN I'me                                                   | RedBILLY COSTICION                                                                                                                           |
| Feb 13                                 | 20 CO           | LIMESTONS          |                   |                       |                        | י אארט.                         | grey           | 2              | 3-2                                     | 3-2                           | 60 60-21.0  Mainly LiMESTONE, Interbedded with thin calcareous SHALE.  Slightly weathered along cracks in general.  106-10.7 Cracky  - Dritler reports. cavity at 14.28-14.44  Final G.W.L. EL. 41.66 |                                                            |                                                                                                                                              |
| 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | rep. to rep. to | Mainty             |                   |                       |                        | ₩₩ 2 9 7 6. 2 mm                |                | 2              | 3-2                                     | 3-2<br>4<br>3-2<br>3-2<br>3-2 | Vertical cracks remarbable.  18.8  19.0  Cracky part.                                                                                                                                                 |                                                            | 25 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                    |

|              |                              |         |                 | D!            |             | Δ                          |                | .UG                  |                       |                             |                               | DURING           |                   | . ~                     | ,<br>,            | Shee                                   | t N                                            | 0. I                          | 7                                             |
|--------------|------------------------------|---------|-----------------|---------------|-------------|----------------------------|----------------|----------------------|-----------------------|-----------------------------|-------------------------------|------------------|-------------------|-------------------------|-------------------|----------------------------------------|------------------------------------------------|-------------------------------|-----------------------------------------------|
|              | Lo                           | cation  | Rig             |               |             | Que<br>amsil               |                | Yai<br>Deoth         | of hot                | Sit                         | e <u>Ban Tha 1</u><br>21.00 m | Commenced        | Boring (<br>Feb ) | ۷o. <u>ك</u><br>ا ــ اد | <u>R−.</u><br>976 | (s<br>Dulled                           | heet                                           | 2 of                          | _2_)<br>th ; S.                               |
|              | Ele                          | evatio  | Λ <u>-</u>      |               | 55.96       |                            |                | Depth                | of ove                | rburde                      | 6.00                          | Completed        | Feb               | 6 19                    |                   | ••-                                    |                                                | NNE )                         | <u>()                                    </u> |
|              |                              |         | om ho<br>ens to |               | ٠ _         | ·                          |                |                      | tength<br>ecover      |                             | 14.8 m<br>98.9 m              | Boring mad       | Junior /          | 1.2                     | -                 | Legged                                 | ъу                                             |                               |                                               |
| Γ.           | 7                            |         | · · · · ·       | Τ             | 1           | T                          | Τ              |                      |                       |                             |                               |                  |                   |                         |                   | 1 %1                                   | <del></del>                                    |                               |                                               |
| 1            |                              |         | )<br>Seology    | چ             |             | note                       | <u> </u>       | г—                   | T                     | - ×                         | Description                   |                  | ······            | , rec                   | Time (mm.)        | Water Pressure Tes                     | Pressure (kg/cm²<br>Dout                       | 18.0°                         | Ĝ.                                            |
| ့<br>ရ       | ş                            | Geology | 8 8             | Core recovery | ទ្ធ         | 2 2                        | Colour of rock | 2 8                  | ខន្ល                  | Degree of<br>frssure, crack |                               |                  |                   | 9                       |                   | SSUL                                   | Loss water (7,7mm)<br>Pressure (kg/cm)<br>Desi | Supply water<br>Leakage water | 1.7 /mm.                                      |
| ឹ            | Depth                        | 8       | Symbol of       | e<br>S        | Cementation | Kind of bit<br>Diameter of | 5              | Degree of weathering | Depree of<br>nardness | 9070e                       | B                             | lomarks          |                   | 75%                     | ě                 | ă                                      | SSUTC                                          | Supp                          | Dest                                          |
|              | u<br>SD                      |         | ŝ               |               | 22          | XU<br>G d                  | ŝ              |                      |                       | 1                           |                               |                  | *                 | a à                     | 1-                | W.3.                                   |                                                |                               | H                                             |
| 9            |                              |         |                 | WH %          | -           | 9 6                        |                | !                    | <b>↔</b> 5            | 1                           | Mainly II                     | MESTONE          | •                 | inni<br>Inni            | ΥΪ                | iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | mi                                             | ıığı                          | TI O                                          |
| Feb. 16      | 1                            | LS.     | ,               |               |             | Ø752mh                     | gray           | s                    | 3-2                   | 3-2                         | munny C                       | illico i o i i c | •                 |                         | N                 |                                        | <b>}</b>                                       | H                             | <u> </u>                                      |
| 125          |                              |         | السا            |               |             | 1 8                        |                |                      |                       |                             | End of hal                    | e at 21.0        | ΩM                | <del>           </del>  | H                 | 11.4                                   | ШИ                                             | ##                            | /                                             |
|              |                              |         |                 |               |             |                            |                |                      |                       |                             | ting of the                   | O U1 21.0        |                   |                         |                   |                                        |                                                | IIIIX                         |                                               |
|              | H                            |         |                 |               | ŀ           |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                | \$                            |                                               |
|              |                              |         |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         | ğΠ                | 1 3                                    | ¥                                              | 18                            | <b>     </b>                                  |
|              | 1                            |         |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        | ů<br>Ç                                         |                               |                                               |
|              | 11.11.1                      |         |                 |               |             |                            |                |                      |                       | Ĭ.,                         |                               |                  |                   |                         | 錷                 | 萬                                      | <u>*</u>                                       | F                             | \$ [.]                                        |
| 1            | and and destroy the section. |         |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         | Ш                 |                                        | II (ři                                         |                               |                                               |
|              | 녈                            |         |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         | Ш                 |                                        |                                                |                               |                                               |
|              | 1                            |         |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | 4                            |         |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              |                              | ı       |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         | Ш                 |                                        |                                                |                               |                                               |
|              |                              |         |                 | Ш             |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
| 1            | 1                            | İ       |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              |                              |         |                 |               |             | i                          |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | 1                            |         |                 | Ш             |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | 1                            |         |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | -4                           | - [     |                 | Ш             |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | يتطيبها ويبطيبه بأسيانين     | Ī       | - 1             |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              |                              |         | ľ               |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | 1                            | ı       |                 |               |             |                            |                | Ì                    |                       | ļ                           |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | -                            | -       |                 |               |             |                            |                |                      |                       | İ                           |                               |                  |                   |                         |                   |                                        |                                                |                               | 1                                             |
|              | 4                            |         |                 |               |             | Į                          |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
| 11           | 닄                            |         | ľ               |               |             | İ                          |                |                      |                       |                             |                               |                  |                   |                         | Ш                 |                                        |                                                |                               |                                               |
|              | 1                            | - [     |                 |               | İ           | ŀ                          |                |                      |                       | ı                           | •                             |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | 4                            | -       | ı               |               |             | l                          |                |                      |                       |                             |                               |                  | ĺ                 |                         |                   |                                        |                                                |                               |                                               |
|              | 3                            |         |                 |               | l           |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
| 11           | 1                            |         |                 |               |             | Ī                          |                | ļ                    |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
| $\mathbf{I}$ |                              |         |                 |               |             |                            |                | i                    | Ì                     |                             |                               |                  |                   |                         | Ш                 |                                        | Ш                                              |                               |                                               |
|              |                              |         | İ               |               |             | İ                          | ľ              | ľ                    |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | <u>.</u>                     |         | ļ               | <b>   </b>    |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               | <u>  </u>                                     |
|              | 1                            |         | ľ               |               |             |                            |                | - 1                  | - 1                   |                             |                               |                  |                   |                         |                   |                                        |                                                |                               | []                                            |
|              | 4                            | Į       |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | 1                            |         | 1               |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
|              | 1                            |         |                 |               |             |                            |                |                      |                       |                             |                               |                  |                   |                         |                   |                                        |                                                |                               |                                               |
| ] [          | 1                            |         |                 |               |             |                            | ľ              |                      |                       |                             |                               |                  | 1                 |                         |                   |                                        |                                                |                               |                                               |
| Land         | 41                           |         | L               | HTT           | L           |                            |                | L                    |                       | L                           |                               | ····             | li                | шШ                      | ШШ                | шШ                                     | ШШ                                             | ШШ                            | ll L                                          |

| Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description    |            | EI<br>An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | evatie<br>igto <i>la</i> | on her          | t Bal | nk, Do<br>55.00       | imsi te                        |                | Oepth<br>Depth<br>Total i           |           | o<br>eburder<br>of con             | 23.6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|-------|-----------------------|--------------------------------|----------------|-------------------------------------|-----------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [                        | 6               |       | <u> </u>              | <u>ر</u>                       |                |                                     |           |                                    | Doscription E G G E S S G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date       | B Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Geology                  | Symbol of geolo |       | Cementation<br>Casing | Kind of 91<br>Diameter of hole | Calour of rock | <u> </u>                            | l         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Simes   Black SHALE, brittle   Black SHALE,   Simes   Black SHALE,   Simes   Black SHALE,   Simes   Black SHALE,   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   Simes   S | П.         | Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Silt                     |                 |       | NX.C.P.               | 91,3mm Auger                   | i              |                                     | -         |                                    | Silt, grey like ash.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| secondary time times.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 Feb. 13 | in the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of | SHALE                    |                 |       |                       | Olemond Bit S NXM.             | black          | 3<br>Siln<br>3-4<br>3<br>4.5<br>3~4 | 3 - 4 - 5 | 4-5<br>4-5<br>3-4<br>3<br>4-5<br>4 | weathered and brown.  Slimes, probably SHALE.  Black SHALE, brittle.  Slimes. Black SH, cracks (SH) brown with seams 5-10cm cores, and gravelly cores.  828  874 874-13.28  Black SHALE, commonly cracky, weathered along cracks and somewhat brittle.  10.65  11.00  12.00  12.00  Slimes.  12.6  Somewhat sheared, sandy in part.  Somewhat sheared, sandy in part.  Somewhat sheared, aid of the part.  Cracks coated by second—  aty lime, 3-15tm cores.  15.31  Slimes, probably SHALE.  1.00  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1.10  1. |

| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ocasion<br>levation<br>ingle fri<br>earing | n<br>om Nor       | Bon<br>Ezontal   | k , Da<br>5.00 | )°                              | e Y                                              | Oi<br>Depth<br>Depth<br>Total I | of hold<br>of over | Sit<br>burder<br>of con     | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40. <u>BR-</u><br>01976<br>01976 | 9. (sh<br>Drated      | No.  neot 2 o  by Annop  (EG)                          | ( 2 )<br>8 Tonii<br>AT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|------------------|----------------|---------------------------------|--------------------------------------------------|---------------------------------|--------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T                                          | J                 |                  |                |                                 | r                                                |                                 | ecovery            | ·                           | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | Tëi :                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oate<br>Deoth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | Symbol of geology | Se Core recovery | Cementation    | Kind of bit<br>Dismeter of Note | Cotour of rock                                   | Degree of weathering            | Decree of          | Degrae of<br>fissure, crack | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S Pressure ikq/cm² :             | 8 Water Pressure Test | Pressure - kg/om <sup>3</sup>                          | S Leakage water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Feb.28 Feb.27 Feb.28 Feb.21   Seb.28 Feb.21   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Seb.29   Se | ANDSTONE SH SAUD-                          |                   |                  |                | Diamond Bit S NXM.              | grey<br>block<br>block<br>block<br>prey<br>block | 3<br>No.                        | 3-2 core 3 5 3     | 3<br>5<br>4<br>5            | SANDSTONE partially inter- bedded with black SHALE.  21.75  22.0 Black SHALE, fresh, 22.6 brittle, not weathered.  Cracks coated by secondary lime films in part.  27.0 ~ 27.4  somewhat sheared.  27.4 - 29.5  Black SH, partially sandy.  Cracks fresh, but sheared as a whole, cracks coated by GRAPHITE.  28.6 Flaky, sheared as a whote somewhat sandy, exfoliative.  End of hole at 29.5m.  Note: Rocks slightly metamorphosed in lower section of this hole. |                                  |                       | Supuly Water 36 65 65 65 65 65 65 65 65 65 65 65 65 65 | Service of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of th |

| <b></b>       | E (c                                              | ovation<br>ute fr | i<br>om hor       | t Bo            |                       | msi te                          | €.             | Depth<br>Depth<br>Total<br>Core r | of hole<br>of ever<br>length | of core                     | Ban Tha Thung Na Boring No. BR-10 (sheet 1 of 2)  25.00 m Commenced Mar. 3 1976 Drilled by Annop a Tonth  8.0 m Completed Mar. 11 1976 (EGAT)  16.0 m Boring machine  Acker No. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|---------------------------------------------------|-------------------|-------------------|-----------------|-----------------------|---------------------------------|----------------|-----------------------------------|------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date          | ∋ Death                                           | Geology           | Symbol of geology | % Core recovery | Gementation<br>Casing | Kind of thi<br>Diamoter of hole | Colour of rock | Degree of weathering              | Cogree of hardness           | Degree of<br>fissure, crack | Opercription  Salvana (Supply water Pressure (Recommended of the Commended |
| Mar. 3        | declarition and declare fragities                 | Overburden        |                   |                 | NX. C.P.              | Auger Orilling A 91.3mm         |                |                                   |                              |                             | O-80 Topsoil and silty river deposits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mar. 6 Mar. 5 | marin of marin marin of marin Same of marine      |                   |                   |                 |                       | Digmond Bit & NXM.              | δισγι          |                                   | 3-4                          | 4                           | Light brown , rather massive SHALE, cracks brown , weathered, gravelly to 10 <sup>cm</sup> cores.  12.7  Black SHALE, mastly 5-10 <sup>cm</sup> cores , cracks weathered and brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mar. 10       | S. Contraction of the second second second second | SHALE             |                   |                 |                       | Diet                            | block          | No<br>3                           | core                         | 4                           | Gravelly cores, very cracky.  Final G.W.L EL 42.73 toss.  7.0 Gravelly to IOam cores. 17.7 Cracks slightly weathered.  Black SH, mostly 10-30cm cores, cracks fresh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| •         | .ocatio             | n                 | 59<br>59         | 731                   | mslte<br>n                      |                | 'Oi<br>Depth<br>Depth | <br>of hole<br>of aver |                             | 10   Ban Tho Thung Na   Boring No.   BR- 0   (sheet 2 of 2 )   25.00 m   Commenced   Mar.   3   1976   Orilled by Apnop A Tonties   6.0 m   Completed   Mar.   11   1976   (EGAT) |
|-----------|---------------------|-------------------|------------------|-----------------------|---------------------------------|----------------|-----------------------|------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | ingtó tr<br>Jearing |                   |                  |                       |                                 |                |                       | ecovery                |                             | Xe 94.1 % Boring machine Longed by Acker No. 2                                                                                                                                    |
|           | 1                   | à                 | ,                |                       |                                 |                |                       |                        |                             | Description E L L L L L L L L L L L L L L L L L L                                                                                                                                 |
| Oate<br>O | Į.                  | Symbol of geology | Sa Core recovery | Comentation<br>Casing | Kind of bit<br>Diameter of hole | Colour of rock | Degree of weathering  | C Dogree of            | Degree of<br>fissure, crack | Decidingsone Tage  Time (mn)  Pressure (kg/cm)  Pressure (kg/cm)  Doil  Suboy water (/mn)  Decidingsone (kg/cm)  (/mn)                                                            |
| Mor. 10   | <u> </u>            |                   |                  |                       | Diamond Bit Ø NXM.              | hlack          |                       | 3-2                    | 3                           | rresh, Generally good coles.                                                                                                                                                      |
| Mar. 11   | SHAL                |                   |                  |                       | Diam                            |                |                       |                        | 3                           | Denit Press 2                                                                                                                                                                     |
| 5 5 5 5   |                     |                   |                  |                       |                                 |                |                       |                        |                             | End of hole at 25.0m                                                                                                                                                              |

|                      | Ç:                                                | tevatio<br>ngto <i>fi</i>  |                   | er B             | ,                     | mslta                           | <b>8</b> Y                  | O i Ocoth Ocoth Total Core | of hor    | of co           | te Bon Tha Thung Na Boring No.  20.50 m Commenced Feb. 20  5.50 m Completed Feb. 27  15.00 m Boring machine. UN  100 %                                                                                                           | o <u>BC</u><br>) <u>1976</u><br>' 1976 | Sheet No. 22  (sheet L of 1 or 1 or 1 or 1 or 1 or 1 or 1 or 1                        | )<br>   |
|----------------------|---------------------------------------------------|----------------------------|-------------------|------------------|-----------------------|---------------------------------|-----------------------------|----------------------------|-----------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|---------|
| Set                  | ∌ Depth                                           | Geology                    | Symbol of geology | Se Core recovery | Cementation<br>Casing | Kind of bit<br>Diameter of hole | Colour of rock              | Degree of<br>weatherno     | Degree of | Degree of       | Remarks V10.8m                                                                                                                                                                                                                   | Pressure ixc/cm²                       | Water Pressure Test Loss Water / mn. Pressure ka'om* Dritt Suboly water Leakage water | 9 Oepth |
| Feb 22 Feb 21 Feb 20 | and the land and an incharge                      | Gravel                     |                   |                  | MX C.P.               | % ∑                             |                             |                            |           |                 | O-55m River deposits, gravel.  River water level EL.40.2  (Water level in drill hole)                                                                                                                                            |                                        | Susely Water  Leakage Water  Parmeability Coefficient                                 | 3       |
| Feb. 24 Feb. 23      |                                                   | LIMESTONE                  |                   |                  |                       | %9i.3mm                         | white                       | 2-1                        | 2-1       | 2-1             | Massive , hard LIMESTONE.<br>Not weathered.                                                                                                                                                                                      |                                        | 29                                                                                    | 7 (4)   |
| Feb. 25              | يبطيطيني فيضاعينا بطيطية بميد                     | E and Calcareous SANDSTONE |                   |                  |                       | .C.<br>8 76.2 mm                | black<br>}<br>grey          | 3-2                        | 3-2       | 3-2<br>4-3      | Alt. of black SHALE and calcareous SANDSTONE. Thickness of each layer 5-20 <sup>cm</sup> boundary gradually change each other. Good cores as a whole.                                                                            |                                        | 35 36 36 36 36 36 36 36 36 36 36 36 36 36                                             | ٠ - ١   |
| + Feb. 26            | in minimum in in in in in in in in in in in in in | Alternation of SHALE       |                   |                  |                       |                                 | black<br>black<br>}<br>gray |                            |           | 3-2<br>4<br>3-4 | Mostly black SHALE with calc. SANDSTONE, cracky but not weathered along cracks.  16.9  Reconsolidated sheared zone.  18.0  Black SH/calc. SS, boundary for each layer gradually changed, no brown cracks.  End of hole at 20.5m. |                                        | 2 2 0 00000000000000000000000000000000                                                | 5       |

|         | E:                                                   | lovatio<br>Ngle ( | n <u>Lef</u><br>no —<br>no mor<br>no mor<br>no no no | 44.           | 47<br>9                                           | omsli<br>n<br>O°                | e Y            | ai<br>Depth<br>Depth                    | ai ho!<br>al eva<br>leagth | Side<br>enterde<br>of cos  | te Ban Tha Thung Na Boring No. BL-1  16.20 m Commenced Jan. 10 1976 12.20 m Completed Jan. 18 1976                                                                                                                                                                                                                                                                             | tel No<br>(sheet -<br>(sheet y Yess<br>(UN      | of 1 )<br>muth; S.<br>EX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|------------------------------------------------------|-------------------|------------------------------------------------------|---------------|---------------------------------------------------|---------------------------------|----------------|-----------------------------------------|----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V.40    | Deptu                                                | Ceo;047           | Sympol of ceology                                    | Core recovery | Cementation<br>Casing                             | Kind of bit<br>Diameter of hole | Colour of rack | Degree of<br>weathering                 | Degree of<br>hardness      | Degree of<br>fissure, cack | Obscription  The Second Advisor Pressure (1975)  Remarks                                                                                                                                                                                                                                                                                                                       | Loss Water (77mm,<br>Pressure : kg/em²<br>Dr.!! | Supply water<br>Leakage vater<br>/ /min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Jan. 18 | الماق بيرون ترويه تتالي ويوروي قيار ميعادية المعودية | LIMESTONE         |                                                      |               | Someonation (Jan.17) 2.90 <sup>m</sup> - NX. C.P. | NM LC.   BX.C.S.B.   BX.C.S.B.  | (et대용)<br>grey | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3 3 3 3 3 - 2              | 3-2                        | River deposits, Driller reports silfy sand. white sand 1.2 at 0 – 1.2.  Some cracks brown.  1.65 No core. 20 Driller reports, cave. Somewhat shaly. 726  Some cracks brown.  2.8 – 30 No core. Driller reports, cave.  Final GWL. EL. 41.87  Generally, grey, fresh and hard LIMESTONE interbedded with thin calcareous SHALE.  Many CALCITE veins and small solution cavities |                                                 | Legkage water as the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E)<br>Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | evatio           | n ⊷<br>om hor     | 8aa<br>65<br>Izonla | er_<br>nk,0ai<br>. 08 n<br>. 90 | nsite                           |                             |    | length    | of core                     | 97.8 Juner                                                                                                                                                                                                                                                                                                              | YS.                         | Lo.                                  | eged by                                                        |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|---------------------|---------------------------------|---------------------------------|-----------------------------|----|-----------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|----------------------------------------------------------------|-----------------|
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S Cepth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ASO;060          | Symbol of geology | Se Core recovery    | Cementation<br>Casing           | Kind of bit<br>Diameter of hole | Colour of rack              |    | Dogree of | Degree of<br>fissure, crack | Description Remarks                                                                                                                                                                                                                                                                                                     | onii<br>S Pressure - kg/cm² | S Time mun.<br>S Water Pressure Test | Loss Water (_min,<br>Pressure :kc/cm²<br>Doill<br>Supoly water | 1 000 CON CONT. |
| 0 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tutter Internation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Overburden? Top- | Δ<br>Δ            |                     | 85m (NX                         | BX Casing Shoe Bit              |                             |    |           |                             | Black soila6  Oriller reports, drilling in boulders, cave at 2.39m. Probably talus.                                                                                                                                                                                                                                     |                             |                                      | 26 Stappy Water 28                                             | ?               |
| 1.4 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 | سيتمال به ايكانيين المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المراس المر | Cate. SHALE      |                   |                     | }                               | β 76.2 mm N L C                 | grey<br>j<br>white<br>black | 32 |           |                             | weathered along cracks, slightly brown.  Partially sheared but reconsolidated.  5.0-5.1 Stikenside.  Final G.W.L. EL. 54.13  10.9 V10.95 Reconsolidated shear zone, 11.8 gravelly cores.  13.7-14.5 Reconsolidated shear zone, many open cracks. Cracks coated by CALCITE crystals or soil.  Reconsolidated shear zone. |                             |                                      | 15 - 19 - 19 - 15 - 15 - 15 - 15 - 15 -                        |                 |

# LOG OF CORE BORING Sheet No. 25

| River QUO Location Left Bonk Domsite Efevation G5.08 m Angle from horizontal 90° Bearing of angle teste | Death of hale 65.0 m Commenced Jon - I                                                                                     | O 1976 Drilled by Yasamulh ; S. 5 1976 (UNEX)  LEX Legged by |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                         | Depth of hate 69.0 m Commenced John Completed Feb.  Total tenath of core 97.8 m Boring machine Junior                      | O 1976 Drilled by Yasamulh ; S. 5 1976 (UNEX)  LEX Legged by |
| 39.0m                                                                                                   | Slightly brecciated by faulting (less fault breccias than upper zone 17 <sup>m</sup> -30 <sup>m</sup> ).  No brown cracks. | 20 30 30 30 SAIC (11.11.11.11.11.11.11.11.11.11.11.11.11.    |

| Etc<br>An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vation<br>do fro | on hor           | Bas<br>65<br>izonlal | er_ (<br>nk, Oe<br>5.081                                    | mslte<br>m                      |                | Depth<br>Depth<br>Total I | of hole      | :<br>rburder<br>of core     | 6 Ban The Thung Na Boring No.  65.0 m Gommonced Jan. 10  3.85 m Gompleted Feb. 5  59.8 m Boring machine UNE  97.8 %                                       | b. <u>BL-2</u><br>_1976<br>_1976<br>X         | Ordied I              | eat 3 of 4                                                                          | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|----------------------|-------------------------------------------------------------|---------------------------------|----------------|---------------------------|--------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date<br>3 Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Geology          | Symbol of georgy | S. Core recovery     | Cementarion<br>Casing                                       | Kind of Dit<br>Diameter of note | Colour of rock | Degree of<br>weathering   | Contractions | Degree of<br>1185urg, crack | Description  Remarks                                                                                                                                      | S Fressure : xg/cm² - 8 Fressure : xg/cm² - 8 | 8 Water Pressure Test | Pressure kg/om² -                                                                   | S Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Feb. 4 Feb. 1 Jan. 31 Jan. 30 Jon. 28 Jon. 22 Jon. 21 Jon. 21 Jon. 22 Jon. 21 Jon. 23 Jon. 21 Jon. 23 Jon. 21 Jon. 23 Jon. 21 Jon. 22 Jon. 21 Jon. 23 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 20 Jon. 2 | Calcareous SHALE |                  |                      | 44.0 <sup>m</sup> Cementation(Jan, 22)—-3(46 <sup>m</sup> C | NLM C. Ø 76.2 mm                | błack<br>błack | 3                         | 3            | 3-4                         | 45.0<br>45.0—60.0<br>Black calcareous SHALE,<br>cores mostly 5 <sup>cm</sup> — 10 <sup>cm</sup><br>partially gravelly, but<br>fresh, no sheared breccias, |                                               | 9                     | 26 26 27 28 28 28 28 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20 | Elementary of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of |

# LOG OF CORE BORING Sheet No. 27

|        |                                              |                   |                          | er                    |                            |                | 'a i                    |                    | Sit                      | e Bon Tha Thung No Bo                                      | oring No. <u>BL-</u> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≧              | (sheet -                                         | 4 01 4                                    | _)       |
|--------|----------------------------------------------|-------------------|--------------------------|-----------------------|----------------------------|----------------|-------------------------|--------------------|--------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|-------------------------------------------|----------|
|        | Locatio<br>Elevatio                          | x1                | 6.                       | . 08                  | m.                         | 9              |                         | of hot             |                          |                                                            | an 10 _ 1976<br>eb _ 5 _ 1976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Otil           | ied by                                           | somoth;                                   | Ś.       |
|        | Angle (                                      | rom hor           | rzenta                   | 9                     | 0*                         |                | ¥ otal                  | tength             | of cor                   | 59.8 Bying machine                                         | UNEX Junior A.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l.og           | ned by                                           |                                           |          |
| ,      | Ocaring                                      | of and            | le hold                  |                       |                            |                | Core                    | ecover             | y                        |                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,              |                                                  |                                           |          |
|        |                                              | 8                 |                          |                       | ٠,                         |                |                         | •                  |                          | Description                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ë              | <u> </u>                                         | ج ج                                       |          |
|        | [ ]                                          | Symbol of geology | Core recovery            | ¢                     | i noie                     | ğ              | 8.                      |                    | š                        | į                                                          | Pressure : Ac/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | į              | Loss Water / /min.<br>Pressure :kg/cm² :<br>Drit | Supply water<br>Leakage water<br>(//mmn.) |          |
| Sate   | Depth<br>Geology                             | ő                 | 9, 9                     | 01210                 | ر<br>دور<br>دور            | 8              | Degree of<br>weathering | Depres of hardness | Degree of<br>frasure, or | Remarks                                                    | SSeries o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5              | Mater<br>Ecre                                    | Vices<br>Sexes                            | E G G    |
|        |                                              | Symo              | Š                        | Cementation<br>Casing | Kind of bit<br>Diameter of | Colour of rock | 9 3                     | 88                 | 8 8                      | 10,10,25                                                   | Dritt<br>Pressu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Pressure | OSS )                                            | ( )                                       |          |
|        | 60<br>m                                      |                   | 3%                       |                       | T-T                        |                |                         | <b>←&gt;</b> 5     | ↓<br>Ţ——                 |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0<br>2        |                                                  | γί<br><del></del>                         | e a      |
| Feb. 4 | 1                                            |                   |                          |                       |                            | l              |                         |                    |                          | 60.0 - 65.0                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш              |                                                  |                                           | Ė        |
| 14.    | F -1                                         |                   |                          |                       |                            |                | ĺ                       |                    |                          | Black calcoreous SHAL<br>mostly 10 <sup>cm</sup> cores, go | THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S |                |                                                  | <b>↓  </b>   <b>Ω</b>                     | Ē.,      |
|        | 1 E                                          | ==                |                          |                       | 1 1                        |                |                         |                    |                          | mostry to cores, go                                        | ,00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ااالا          |                                                  |                                           |          |
|        | SHA                                          | =                 |                          |                       | υĒ                         | black          | 3-2                     | l                  |                          |                                                            | \ <del>\</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                  |                                           |          |
| ŵ      | -                                            |                   |                          |                       | ≥ ້າ                       | DIGUE          |                         | 3-2                |                          |                                                            | I AIIII AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                  |                                           | E.       |
| Feb    | i i                                          | =                 |                          |                       |                            |                |                         |                    | 3-2                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\ \ $         |                                                  |                                           | 1        |
| (L     | Lastandia<br>Calcareous                      |                   | M                        |                       | . ×                        |                | İ                       |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           |          |
|        | ij                                           |                   |                          |                       |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 議                                                | 1111111                                   |          |
|        | , ,                                          | =                 | $\{\!\{\!\{\!\}\!\}\!\}$ |                       |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           | Ē,       |
|        | 1                                            |                   |                          |                       |                            |                |                         |                    |                          | End of hole at 65.0 <sup>th</sup>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           | Ė        |
|        | •                                            |                   |                          |                       |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           |          |
|        | 1                                            |                   |                          |                       |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  | <b> </b>     <b> </b>                     |          |
|        | 1                                            |                   |                          | i                     | į                          |                |                         |                    |                          | •                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           |          |
| 11     | 1                                            |                   |                          | ľ                     |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш              |                                                  |                                           | 1        |
|        | 5                                            |                   |                          |                       |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш              |                                                  |                                           |          |
|        | 1                                            |                   | $\  \  \ $               | ŀ                     |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           |          |
| 11     | 1                                            |                   |                          | Ì                     |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш              |                                                  | <b> </b>                                  | 2        |
|        | Tara                                         |                   |                          | Ī                     |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\  \ $        |                                                  |                                           | i.       |
|        |                                              |                   |                          |                       |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш              |                                                  |                                           |          |
|        |                                              |                   |                          |                       |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           | -        |
|        | 1                                            |                   |                          |                       |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           |          |
|        | <u>,                                    </u> |                   |                          |                       |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           | ,        |
|        | 1717                                         |                   |                          |                       |                            |                | İ                       |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           |          |
|        | 2.5                                          |                   |                          |                       |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           | ,        |
|        | 11  <br>12                                   |                   |                          |                       |                            | ı              |                         | i                  |                          | •                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           | -        |
|        | 4                                            |                   |                          |                       |                            |                | ļ                       |                    | - 1                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           | 4        |
|        | 1                                            | ĺ                 |                          | ł                     |                            |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш              |                                                  |                                           | 1.       |
|        |                                              |                   |                          |                       | Ì                          | 1              | ľ                       |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           | -3       |
| 11.    | 1                                            |                   |                          |                       | Ī                          | - 1            |                         |                    | ĺ                        | ,                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           |          |
|        |                                              | ı                 |                          |                       |                            |                |                         |                    | ļ                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш              |                                                  |                                           | 5        |
| ,      | . [                                          |                   |                          |                       | J                          |                |                         | ļ                  | ]                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш              |                                                  |                                           | <u> </u> |
| [      | ]                                            |                   |                          | 1                     | I                          | J              |                         |                    | 1                        | •                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\ \ $         | <u>                                     </u>     |                                           |          |
| ,      |                                              |                   |                          |                       | ŀ                          |                |                         |                    | - 1                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           |          |
|        | ]                                            |                   |                          |                       |                            |                |                         |                    | - 1                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           |          |
|        |                                              |                   |                          |                       | -                          |                |                         |                    |                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           | -        |
| -      | 1                                            |                   |                          |                       |                            | Ì              |                         | ľ                  | -                        |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\  \ $        |                                                  |                                           |          |
| LL.    | .ē                                           | ]]                | ШL.                      |                       |                            |                |                         | l                  |                          | ~~~                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                           | 0        |

|   |                      |              |       |      |               |                    |                  |            | -                |          |         | 1 (4   | v. 20        |             |
|---|----------------------|--------------|-------|------|---------------|--------------------|------------------|------------|------------------|----------|---------|--------|--------------|-------------|
|   |                      | Riv          | /er   | Quae | Yai           | Site Bar           | i Tha Ti         | nung Na    | Boring N         | lo. BL-  | 3 (0)   |        | 1. of 2      | ,           |
|   | Location             |              |       |      | Depart of the | <sub>1a</sub> 33.  | 00 m             | Commence   | d M <u>ar 21</u> | 9 1976   |         | by An  | nop & Ta     | <u>init</u> |
|   | Elevation            |              | 5.701 |      | Depth of ove  | erburden <u>17</u> | 40 m             | Convicted  | Apr 1            | <u> </u> |         | (      | EGAT)        |             |
|   |                      | m horizonti  |       |      | Folal length  | of core 99.        | 45. m            | Boring mad | chine Acka       | 1 No. 2  | Logges  | by     |              |             |
|   | Bearing o            | if angle ho! | e     | •    | Core recover  | y                  | <del>Y</del> - % | •-         |                  |          |         |        |              |             |
|   |                      | - T          | 1     |      |               | Oasorij            | ption            |            |                  | E 5      | <u></u> | i      |              | 77          |
|   | $\ \cdot\ _{\infty}$ | رُو مُوْ     |       | ğ    | 8 0           | ğ                  |                  |            |                  | 3        | [g] 5   | o<br>V | water<br>was |             |
| ø | [5] 8 [              | 7 1 3        | 5     | 4 6  | 8 2 2 2 3 3   | 8 8                |                  |            | ľ                |          | 18      | -      | > &          | c           |

| r-      | ٦      | J                              | 3                   | ı               | <sub>1</sub>          | 1                               |                               | ·           |             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı <del>-</del>                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|--------|--------------------------------|---------------------|-----------------|-----------------------|---------------------------------|-------------------------------|-------------|-------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |        |                                | à                   | ]<br>,          |                       | ٠,                              |                               | <del></del> |             |                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E S                                   | Test<br>min.<br>er<br>er<br>stor<br>hin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3,0     | 5 Cest |                                | - Symbol of sectory | % Core recovery | Comentation<br>Casing | Kind of bit<br>Diameter of hole | Colour of rock                | <b></b>     | C Degree of | Degree of<br>fissure, crack | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drii:<br>S Pressure 'mo/sm'<br>8 Time | S Loss Water Creasure Tea  Pressure Recent Doug Scooly water C Cakage water C Ceakage water C Ceakage water S Dooth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mar. 30 |        | g LS GR River Deposits Topsoil |                     |                 | NX.                   | 8 76.2mm                        | bro.<br>grey<br>black<br>grey | 1-643       | 3 3 3       | 3                           | Topsoil , black  10 Grey soll.  15 60  Grey soil  L5-60  Grey soil  L5-60  Frohably terrace deposits.  60  No core  7.63  Boulders of grey LS, top and bottom of cores.  8.69 - coated by secondary lime.  9.65  No core.  7.36 - 13.0  Several cores of boulders, 25 - 35 cm long.  Probable rock surface.  17.4 - 17.8  Calcareous SH, softened due to weathering. 6.W.L.  7.50  17.8 - 18.5  Calc. SH, very clear to weathering. 6.W.L.  7.8 - 18.5  Calc. SH, very clear to weathering. 6.W.L.  7.8 - 18.5  Calc. SH, very clear to weathering. 6.W.L.  7.8 - 18.5  Calc. SH, very clear to weathering. 6.W.L.  7.8 - 18.5  Calc. SH, very clear to weathering. 6.W.L.  7.8 - 18.5  Calc. SH, very clear to weathering. 6.W.L.  7.8 - 18.5  Calc. SH, very clear to weathering. 6.W.L.  7.9 - 10.0  Secondary lime. 10.0  Secondary lime. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, 25 - 35 cm long. 10.0  Several cores of boulders, |                                       | ESX (Start property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coefficient property of the coe |

|         | Elevat<br>Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion<br>from i     | ift Bo        | nk,0ai<br>5.70r | nsite<br>n<br>O°           |                | Orpth<br>Oepth<br>Total | of hote<br>of ove<br>length<br>ecover | os con<br>spirigo<br>i      | Ban Tha Thung Na Boring  33.00 m Commenced Mar.  17.40 m Completed Apr.  14.45 m Boring machine Act  99.0 % | No. <u>BL3</u><br>29 <u>-197</u> 6<br>1 - 1976 | Drifted by AD                                     | 2 of 2 )<br>nop 8 Tanit<br>EGAT )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-----------------|----------------------------|----------------|-------------------------|---------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dare    | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Symbol of analogy | Core recovery | ē               | of hole                    | , je           | , <u>g</u>              | ្ន                                    | , ž                         | Description                                                                                                 | Pressure (kg/cm² - Time (min.)                 | 550re Test<br>et ( / /mun,<br>kg/cm² ;            | Supry water<br>Leskage water<br>//min.<br>Desth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ő       | e S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sympol            | Š<br>Natr     | Cementation     | Kind of bit<br>Digmeter of | Colour of rock | Degree of weathering    | Degree of thandness                   | Degree of<br>fissure, crack | Romarks<br>20.0                                                                                             | Presser                                        | S Loss Water / Pressure Pressure (/ Pressure (xg. | Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Supple Su |
| 30      | ntransfanta<br>2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |               |                 |                            | grey           | 2                       | 2                                     | 2                           | Hard and fresh LS. 21.0 Black calcareous SHALE.                                                             |                                                | y Water<br>oe Water                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mar     | , 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |               |                 |                            | block          | 3 – 2                   | 3-2                                   | 3-2                         | 22.81 22.86                                                                                                 | 23822                                          | GQU:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mar. 31 | ilmestone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |               |                 |                            |                |                         |                                       |                             | No core.  21.2-33.0  Alternation of black calcareous SH and grey                                            |                                                | 98                                                | 089/296<br>089/296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | diminadiane<br>us SHALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                 |               |                 | W M.                       | grey           |                         |                                       |                             | LS. Thickness of each<br>bed 20-30 <sup>cm</sup><br>No brown cracks.<br>Generally 5-20 <sup>cm</sup> cores. | 450                                            | 28                                                | ائىيسىلتىيىس<br>ئىيسىلتىيىس                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | d Caicareous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ירלו              |               |                 | 76.2mm N V                 |                | 3-2                     | 3-2                                   | 3-2                         | Generally 3- 20 cores.                                                                                      |                                                | 40                                                | و المالية المالية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Apr     | .i c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-1-             |               |                 | 9                          |                |                         |                                       |                             |                                                                                                             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\         | 26                                                | (C) = 8 - m/xe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                 |                            |                |                         |                                       |                             |                                                                                                             |                                                |                                                   | X 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | -                 |               |                 | JI                         |                |                         |                                       |                             | End of hole at 33.0 <sup>m</sup>                                                                            |                                                |                                                   | indication in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | S. marrie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |               |                 |                            |                | į                       |                                       |                             | ·                                                                                                           |                                                |                                                   | Source Coer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | يستناسيسيتين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |               |                 |                            |                |                         |                                       |                             | $^{2}/\Lambda_{p}$                                                                                          |                                                |                                                   | Fermer<br>Tanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | entra interior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               |                 |                            |                |                         |                                       |                             |                                                                                                             |                                                |                                                   | 11/21/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|        | E.I     | evation<br>sple fo          | Om 1960           | Bon<br>55<br>zonta | er<br>ik, Do<br>. 59 n | msite<br>n<br>o                 | ,              | Depth<br>Total (     | of hold<br>of over<br>length | i<br>Burder<br>of core    | Ban The Thung Na Boring Solve Mar. 1  11.8 m Completed Mar. 2  11.5 m Boring reschine Ack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. <u>BL4</u><br><u>8 -1976</u><br>2 -1976 | (sheet 1 of 2.)  Drilled by Annop & Yaniir  (EGAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|---------|-----------------------------|-------------------|--------------------|------------------------|---------------------------------|----------------|----------------------|------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0,400  | 3 Depth |                             | Symbol of ceology | es Cora recovery   | Cementation            | Kind of bit<br>Diameter of note | Catour of rock | Degree of weathering | Degree of                    | Degree of firsture, erack | Description Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S Pressure kg/cm² - g Time (min.)           | essure<br>or ke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mar 18 | 1       | Sand Silt Fine Silt Topsoil |                   |                    |                        | Ø 91.3 mm (Auger Orilling)      |                |                      |                              |                           | Brown topsoil.  -1.0  Light yellow fine silt.  -5.0  Light yellow silt.  No record of G.W.L.  -7.0  Light yellow sand.  10-11.8  River deposits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OI JON |         | SH.                         |                   |                    |                        | Ø 76.2 mm U.X.M.                | reddi<br>brow  | sh<br>n<br>5         | 5<br>3-4                     | 5 3-4                     | White LS. Weathered. Boulder? -13.3  Stimes.  Reddish brown SH, flaky cores.  No core. Reddish SH, flaky. LS with small solution cavities. some what sheared with the solution cavities. Some what sheared are some what sheared the sheared with the sheared the sheared with the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared the sheared | 450                                         | Supply Woler Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of Statement of State |

| €ld<br>An        | evatier<br>gle In | n                 | 1 Bo<br>55<br>Izonial | . 59        | omsit<br>m<br>O°                | d e<br>e                 | Yai<br>Depth         | el bold<br>of ove<br>length | Sil<br>o<br>roundo<br>of con | CORE BORING  Ban Tho Thung Na Boring  30.00 m Commenced Mar.  11.8 m Completed Mar.  11.5 m Boring machine Ack                                                                                                                                                                                | <u> 22 1976</u>                                         | 4 (shee                                           | No. 31 et 2 of 2 ) Annop a Tonit (EGAT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|-------------------|-------------------|-----------------------|-------------|---------------------------------|--------------------------|----------------------|-----------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                   | λ,                |                       |             | ي                               |                          | ,                    |                             | · · · · · ·                  | Description                                                                                                                                                                                                                                                                                   | - July                                                  | Tes:                                              | Ster<br>water<br>man,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date<br>BS Death | Geology           | Symbol of enelocy | S Core recovery       | Cementation | Kind of bit<br>Diameter of noie | Calour of rock           | Degree of weathering | Decree of                   | Degree of                    | Remarks                                                                                                                                                                                                                                                                                       | e <u>Driil</u><br>3. Pressure -kq/cm²<br>5. Time : ain. | 8 Water Pressure Tea                              | Pressure to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to compare to |
| Mar. 19          | Black SHALE       |                   |                       |             | ν×ν.<br>Ø 76,2 mm               | black<br>grey f<br>black | No<br>3<br>No<br>3   | 4 core                      | 1 4                          | 20.5   Black SH, floky core exfoliotive. 21.0   LS, gravelly, 21.4   sheared breccias? 21.4   Black SH, gravelly to 20cm cores, cracks fresh, no brown.  22.3 - 30.0   Black SHALE, not weathered along cracks, commonly core length less than 10cm, very exfoliative.  End of hole at 30.0 m |                                                         | 8 69 68 69 68 68 68 68 68 68 68 68 68 68 68 68 68 | E final de de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la constant de la cons |

|        |       |            |                           |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L              | .OG                     | O                  | F                  | CORE BORING Sheet No. 32                                                                                      |
|--------|-------|------------|---------------------------|-----------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------|
|        |       |            | ) eti                     |                             |                       | Qua e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                         |                    |                    | to Ban Tha Thung Na Boring No. BL-5 (sheet 1 of 2)  30.00 in Commenced Mar. 23 1976 Drilled by Andre & Tentil |
|        |       | evation    |                           | 4                           | 9. 30                 | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | Depth<br>Death          | of hole<br>of over | )<br>charates      | 10.2 Completed Mar. 27 1976 (EGAT)                                                                            |
|        |       |            | on hor                    | 20018                       | 9                     | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | Total i                 |                    |                    | ID.UU O masking HUNGE HUNG Lossing bu                                                                         |
|        | Be    | aring      | of angl                   | e hote                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Core r                  | ccover             | Y                  | 81.1 %                                                                                                        |
|        | П     |            | [                         | ,                           | 1                     | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ]              |                         |                    |                    | Description                                                                                                   |
| 1      | } '   |            | Symbol of geology         | Ġ,                          | 1                     | ğ<br>Ř                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \              | 1                       | ·                  | ే                  |                                                                                                               |
| 8      | Death | Geology    | 8                         | Core recovery               | ş                     | ă ;;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Colour of rock | Degree of<br>weathering | 3 6                | 6 0.<br>6 0.       | Pressure (kg/                                                                                                 |
| [6     | 8     | မိ         | Ř                         | 9                           | 8 8                   | Kind of bit<br>Diameter of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ö<br>5         | 90,69                   | Degree of hardness | Dopree<br>1:55ure, | Romarks S of A S S OF S                                                                                       |
| ı      |       |            | Sym                       | Ö                           | Cementation<br>Casing | X Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3              | ă,                      | ŏ"                 | ŏ ≆                |                                                                                                               |
| -      | n)    |            |                           | %<br>1111                   | ļ                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 1                       | ↔ 5                | 1                  |                                                                                                               |
|        | ٤     | liosdoT    | $ \mathbf{X} $            |                             | 1                     | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | }              | <u>'</u>                | Ì                  |                    | Grey, fine grained soil.                                                                                      |
|        |       | <u>ē</u> . | $\mathbb{Z}_{\mathbb{Z}}$ |                             |                       | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                         |                    |                    | 1-10 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]                                                                  |
| 1      | 13    |            | ::                        | 1111                        | \ \                   | and Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | \<br>                   | 1                  | <b>[</b>           | 10-50                                                                                                         |
| -      | Ш     |            |                           |                             |                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | }              | l                       |                    | ł                  | Reddish yellow silt.                                                                                          |
| ļ      |       |            |                           |                             |                       | [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ              | ;                       |                    |                    |                                                                                                               |
| 23     | 13    |            |                           | Ш                           | ] [                   | \tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\t |                |                         | •                  |                    | 896-13.18                                                                                                     |
| ^      |       | Silt       |                           |                             |                       | Cosing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                         |                    |                    | Driller reports                                                                                               |
| Mar    |       | S          | ]                         |                             |                       | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | ]                       | Ì                  |                    | quickly drilling.                                                                                             |
| 2      |       |            | ]-:                       | Ш                           |                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>'</b>       |                         |                    |                    |                                                                                                               |
| 1      |       |            |                           | 1111                        | 1 1                   | Orilling with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | '              |                         | l                  |                    | 50                                                                                                            |
|        |       | _          |                           | Ш                           |                       | [តី                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         | •                  |                    | Grey sitty                                                                                                    |
| -      | [.]   | Sand       |                           | Ш                           |                       | <b>                                     </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [              |                         |                    |                    | 60 sand.                                                                                                      |
| 1      |       |            | $\mathbb{N}$              |                             | ] '                   | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Core                    | loss               |                    |                                                                                                               |
| [      | H     | Silty      |                           | 311                         | نه                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                         |                    |                    | 16.7<br>7.0                                                                                                   |
| 1      |       | Ś          | $\times$                  |                             | ن                     | 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Core                    | loss               |                    |                                                                                                               |
|        |       | 2          | 11                        |                             | ×                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                         |                    |                    | 7.56                                                                                                          |
| ì      |       | ည်စ        | 13                        |                             | 1                     | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ]              | <u>'</u>                |                    |                    | Secondary Jaso                                                                                                |
|        | [,]   | Secondary  | , , ,                     | $\mathfrak{A}$              |                       | ந்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                         |                    |                    |                                                                                                               |
| 1      |       | <u>w</u> _ | ļ ļ                       |                             |                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | }              |                         |                    |                    | 9.26 (-LS, fresh.                                                                                             |
|        | 10    |            | IXI                       | 3                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>!</b>       | No                      | соге               | 1                  |                                                                                                               |
|        |       | LŠ         |                           |                             | [ [                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | grey           |                         |                    |                    | los - LS, gravelly 9                                                                                          |
| <br> - | [ ]   |            | $\sqrt{\Lambda}$          |                             |                       | 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                         |                    |                    | to locincores.                                                                                                |
| 4      |       |            | IXI                       |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | No                      | COLE               |                    | cove? / LS, clear = E.                                                                                        |
|        |       |            | V N                       |                             | ]                     | $\Pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                         | Ì                  |                    | Solution E Cracks.                                                                                            |
| Mar    |       | LS         | 紀到                        |                             |                       | $\prod$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grey.          |                         | .,                 |                    | 12.0                                                                                                          |
| }      |       | '          | lΧI                       |                             | 1 1                   | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ነ              | No                      | CO16               | Ì                  | Solution cracks.                                                                                              |
| 1      |       | LS         | (rea)                     |                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QEBY.          |                         |                    |                    | 43.55.5000 (4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                           |
| -      |       |            | $ \nabla  $               |                             | 1 1                   | 8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>{</b>       |                         | ١                  | 1                  |                                                                                                               |
| 1      | H     |            | Μ                         | 3111                        |                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | No                      | COLE               |                    | host brown hold 5                                                                                             |
| l      |       | 15         | (12:3)                    |                             | Į Į                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | grey           |                         |                    |                    | 14.69 1 600 Blown 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                       |
|        |       | LS,        |                           | 111                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | black          |                         |                    |                    | 3 10.0 **********************************                                                                     |
|        |       |            |                           | $\mathcal{H}_{\mathcal{U}}$ | 3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,000          | <b> </b>                | 1                  |                    | 150-200<br>Alternation of grey LS                                                                             |
|        |       | S          |                           | 栩                           | Ì                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>\</b>       |                         | 1                  | 1                  | and colcareous SH.                                                                                            |
|        |       | / LS       |                           |                             | }                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | <u> </u>                |                    |                    | No brown cracks, mostly                                                                                       |
|        | 悁     | SH/        |                           |                             | 1                     | <b>                                     </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 3-2                     | Ì                  |                    | cores 5-25cm long.                                                                                            |
| 25     |       |            |                           |                             | 1                     | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OLBA           | l                       | , ,                | 1                  | 1                                                                                                             |
|        | 1     | Sale.      | 団                         |                             | 1                     | Eg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                         | 3-2                |                    | Solution crocks at 15.7-                                                                                      |
| Ş      | -     | of (       |                           | 捌                           | 1                     | 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | !                       |                    | 3-2                |                                                                                                               |
| ן"     | 14    | Alt.       |                           |                             | 1                     | '0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                         | 1                  |                    |                                                                                                               |
|        | 14    | ব          |                           | 141                         | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                         |                    |                    | 20.0                                                                                                          |
| L_     | 150   | L          | U=\$1)                    | THE                         | L                     | ⊥ <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l              | l                       | L                  | 1                  | 111/10/11111111111111111111111111111111                                                                       |

| <b></b> | E fo                                                                                                           | eratio<br>gle fr                | 1,01<br>• —<br>on hor | l Bo          | nk, D<br>8. 38<br>9 | Quae<br>omsit<br>m<br>o*        | Yo             | li<br>Depth | of hold<br>of over<br>length | Sit<br>:<br>:burder<br>of core | CORE BORING  Ban Tha Thung No Boring No. 2000 m Commenced Mar. 2 10.2 m Competica Mar. 2 16.05 m Boring machine Ack                                                                                                                                                                                                         | <u>3 - 1976</u><br>?1976    | 5<br>0ա        | cd oy A                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|----------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|---------------|---------------------|---------------------------------|----------------|-------------|------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                |                                 | ć                     | 2             |                     | ا بو                            | <br>           | r           |                              |                                | Description                                                                                                                                                                                                                                                                                                                 | , E 6                       |                | cano.                                    | water<br>/min, :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Da:e    | ao<br>Beoth                                                                                                    | Geology                         | Symbol of geology     | Core recovery | Comentation         | Kind of bit<br>Diameter of hole | Colour of rock | Degree of   | C Degree of                  | Degree of<br>fasure, crack     | Bemarks                                                                                                                                                                                                                                                                                                                     | Drill<br>S Pressure 'kg/cm² | Water Pressure | S Loss Water / /min. Pressure - kg/cm² - | Supply water Supply water Supply water Supply water Supply water Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply Supply |
| Mar. 26 | en in de la factoria de la compania de la compania de la compania de la compania de la compania de la compania | Alternation of Calcareous SH/LS |                       |               |                     | NXM. Ø 76.2 mm                  | grey           | 3-2         | 3-2                          | 3 4 3                          | Alternation of grey-black, fresh, hard, calcareous SH and LS alternation.  No brown cracks, mostly cores 5~10 <sup>cm</sup> long.  25.0  Alternation of grey-black, calc. SH and LS.  Vertical bedding planes.  Somewhat cracky in part, but no brown cracks.  Cracky at 27.2 - 27.4 and 29.2 - 29.3.  End of hole at 30.0m | - Orlit Pressure            | Print We       | SUDDIY Wefer / 56                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

SUSPENDED SEDIMENT DISCHARGE

|            | ROFFATZ        | BAN CE         | IAO NKN   |                          |            | ONET        | TON         |            |           | YEAR    | 1833    |         |
|------------|----------------|----------------|-----------|--------------------------|------------|-------------|-------------|------------|-----------|---------|---------|---------|
| DAYS       | APA.           | МЛҮ            | ижв       | JOLY                     | ANG.       | SRM.        | OCT.        | NOV.       | D8C       | JAN.    | F ER    | MAR.    |
| 1          | 65.3           | n2. 6          | 65, 2     | 378.0                    | 72,600,0   | 8, 270. 0   | 61, 100.0   | 2,110.0    | 2, 180, 0 | -333.0  | 161, (1 | 102.0   |
| 2          | 04. 5          | 56. 8          | 66. 3     | 368.0                    | 48, 300, 0 | 6,770.0     | 44, 500, 0  | 1,890,0    | f, 730, D | 323. 0  | 158.1)  | 102.0   |
| 3          | 64.5           | 54. 2          | 75.6      | 328.0                    | 24,800,0   | 6, 100.0    | 27, 900, 0  | 1.670 0    | 1,440.0   | 313. 0  |         | 102, 0  |
| 1          | 77. 5          | 50, 4          | 95, 5     | 308.0                    | 16, 600, 0 | 4,860.0     | 28, 200.0   | 1,510.0    | 1, 270, 0 | 303. 0  | 152.0   | EUL (1  |
| 5          | 60, 8          | 49, 1          | 93, 2     | 378, 0                   | 12, 500, 0 | 3, 940, 0   | 29, 500.0   | 1, 370, 0  | 1, 130.0  | 294, 0  | 149, () | 97.8    |
| 6          | 60, 8          | 47.9           | 136, 0    | 485. U                   | 8,510,0    | 3, 490. B   | 62, 300. 0  | 1,310.0    | 1,000.0   | 285, 0  | 146, 0  | 97.8    |
| 7          | 75,6           | 19. 1          | 223, 0    | 145.0                    | 7, 070, 0  | 5, \$20.0   | 93, 700, 0  | 1, 250, 0  | 912 U     | 280.0   | 146. U  | 97. 8   |
| 8          | 60.3           | 46, ń          | 186, 0    | 629.0                    | 6,210,0    | 66,600,0    | 38, 200, 0  | 1,410.0    | 869. U    | 275, 0  | (43.0   | 25      |
| ų.         | 62.6           | 45. 4          | 257. 0    | 507. 0                   | 4,620,0    | 414,000.0   | 22, 700.0   | 1,690.0    | 849. 0    | 26a, II | 143, 0  | 101. 0  |
| 10         | 58, 1          | 41.1           | 583, 0    | 439.0                    | 3,760.0    | 263,000,0   | 16, 500, 0  | 1,750.0    | 912 U     | 257. U  | (4),0   | 102. (  |
| 11         | 58. 1          | 41.6           | 313.0     | 439.0                    | 3, 070, 0  | 47, 100, 0  | 14, 300, 0  | 1,870.0    | 899. U    | 257. U  | 138, 0  | 104, 0  |
| 12         | 64, 5          | 40, 4          | 323.0     | 1, 130, 0                | 2, 930, 0  | 21, 300.0   | 10, 700.0   | 1, 440, 0  | 859, 11   | 247. U  | 136.0   | 104.0   |
| 13         | 114.0          | 39. 2          | 266.0     | 16,200,0                 | 2, 850, 0  | PS, 300, 0  | 8,750.0     | 1, 290, 0  | 799, 0    | 234, D  | 134. (1 | 97. 8   |
| 13         | 83. (          | 38, 1          | 211. u    | 61, 100, 11              | 3, 280, 0  | 13,600.0    | 8, 190. 0   | 3, 160.0   | 718.0     | 231, 0  | 132, 0  | 93.     |
| 15         | 106, 0         | 38. 4          | 182, 0    | 29, 200, 0               | 3, 670, 0  | 9, 450, 0   | 8,930. U    | 1,000.0    | 683, Q    | 227.0   | 129, 0  | 88.     |
|            | 125.1)         | 36, 9          | [6], II   | 15,300, 0                | 3, 430, 0  |             | 11,500.0    | 1,030.0    | 665. 0    | 223.0   | 127, 0  | 93.1    |
| 14<br>17   | SS, 9          | 38, 1          | 135, 0    | 12,009.0                 | 4, 370, 0  | 7, 070, 0   | 12,7(9). () | 1,050.0    | 6113, (1  | 215.0   | 127, 0  | 95.     |
|            | 81.2           | 45.4           | 134.0     | 10,800,0                 | 11,000.0   | 5,810,0     | 9, 280, 0   | 976. D     | 560, (1   | 2(5, 0  | 125, 0  | 90.5    |
| 18         | 95.5           | 68, 2          | 141.0     | 9, 280, 0                | 14, 700. D | 35,200.0    | 11,600.0    | 1,070,0    | 531, 0    | 205, 0  | 125. 0  | 142.0   |
| 19<br>20   | 90. 0<br>37. 5 | 114.0          | 231.0     | 5, 400, 0                |            | 1,670,000,0 | 10, 100, 0  | 989, 0     | 597. 0    | 203. 6  | 123.0   | 143.1   |
|            | 68. Z          | 146, ()        | 266. 9    | 3, 700, 0                | 16, 200, O |             | 8, 2711.0   | 925.0.     | 479.0     | 199, 0  | 120, 0  | 167.1   |
| - 51       | 60. 8          | 120, (         | 223, Ú    | 3, 160, 0                | 13, 600, 0 |             | 6,770.0     | 1,060.0    | 459, 0    | 193, 0  | 137. 0  | 138.    |
| 22         | 56. X          | 112.0          | 203.0     |                          | 10,500.0   |             | 5,670.0     | 1,340.0    | 439, 0    | 186. 0  | 112.0   | 136. 0  |
| 23         | 55. 5          | 302, 1)        | 170, 0    | 2,360.0                  | 7.690.0    |             | 5,030.0     | 1, 400, 0  | 419,0     | 182.0   | 110.0   | 141     |
| 2-1        | 55. 5          | 97. 8          | 152, 0    | 5, 400, 0                | 6, 590, 0  |             | 4, 130. 0   | 1,250.0    | 405. U    | 179, 0  | 109, 0  | 149,0   |
| 25         |                | (101.0)        | 146.0     | 21,600,0                 | 5,850,0    |             | 3, 610. 9   | 19, 600, 0 | 393, U    | 176.11  | 105.0   | (36.    |
| 26         | 62. 6          | 95. 5          | 134.0     | 18, 100, 0               | 6,650.0    |             | 3, 190. 0   | 7, 830, 0  | 353, 0    | £73, U  | 100, 0  | 125.    |
| 27         | 54. 2          | 79.3           | 149.0     | 14, 800, 0               | 5,950.0    |             | 3,030.0     | 4,700.Q    | 373.0     | £70, U  | 104.0   | 125.    |
| <b>?</b> % | 55. 1          |                | 143.0     | 56, 100, 0               | 5, 950, 0  |             | 2,950.0     | 3.880.0    | 358.0     | 167, 0  |         | (12.4   |
| 29         | 93, 2          |                |           | 45,400.0                 | 6, 950, 0  | 61, 100, 0  | 2,770.0     |            | 348.0     | 164. 0  |         | 109, 0  |
| 30<br>31   | 59. 4          | 68. 2<br>64. 5 | 219.0     | 45, 400. U<br>50, 500. Q | 7,690.0    | 01, 100, 0  | 2, 110. 0   | £, 734. 0  | 343. 0    | 161.0   |         | 101.    |
| TOTAL      | 2, 175, 1      | 2.164.4        | 5, 676, 8 | e a letter e lette       |            | 3,715,370,0 |             | 75.810.0   |           | 7,142.0 | 3,674,9 | 3, 463, |

ANNUAL SUSPENDED SEDIMENT DISCHARGE \* 5, 193, 857 TON

SUSPENDIO SEDIMENT DISCHARGE

| STA      | STATION        | DAN C    | HAO NBN     |             |                 | UNIT        | ROL        |          |         | YBAR      | 1973      |         |
|----------|----------------|----------|-------------|-------------|-----------------|-------------|------------|----------|---------|-----------|-----------|---------|
| DAYS     | APR.           | MAY      | jonr        | <b>JULY</b> | AUG.            | SEPT.       | oct.       | NOV.     | DEC.    | JAN.      | PBh.      | MAR.    |
|          | 117, 0         | 80. Ø    | 215.0       | 433. 0      | 1,650.0         | 54,300,0    | 42,000,0   | 1,060.0  | 406. O  | 202.0     | (35. 0    | 140.0   |
| 2        | 132. 0         | 80,0     | 225.0       | 391.0       | 1.570.D         | 31, 300, 0  | 51,200.0   | 963. 0   | 391.0   | 200.0     | 133. 0    | 110. U  |
| .)       | 106, 0         | 101.0    | 218.0       | 440. 0      | 1,570.0         | 22,300.0    | 34,600.0   | 882. 0   | 376. 0  | 397. D    | 131. 0    | 110. U  |
| 4        | 105, 0         | 131.0    | 209, 0      | 433. 0      | 1.390.0         | 17, 700, 0  | 27, 600, 0 | 824. 0   | 369. 0  | 194, 0    | 127. Ų    | ION, t  |
| 5        | 103, 0         | 125.0    | 228, 0      | 373, 0      | 1, 280.0        | 13,700,0    | 51,800.0   | 790. 0   | 363. 0  | 191.0     | 125, 0    | LUKL (  |
| 6        | 104, 0         | 148.0    | 205, 0      | 373.0       | 1, 190, 0       | 9,780.0     | 60, 700, 0 | 757.0    | 359.0   | 189. 0    | 123. ()   | 110.0   |
| 1        | 105, 0         | 129, 0   | 194. D      | 42D, ()     | 1.120.D         | 7, 140. 0   | 46, 300, 6 | 723.6    | 350. 6  | 186. 0    | 123.0     | 114.0   |
| *        | 105.0          | \$23, () | 244. 0      | 565. 0      | 2, 020, 0       | 5, 720, 0   | 39, 500, 0 | 689. 0   | 345.0   | 183, 0    | 123. 0    | 112.    |
| ő        | 106, 0         | 114.0    | 273.0       | 591, 0      | 2, 490, 0       | 5, 050, 0   | 22, 300, 0 | 656.0    | 335, 0  | 183, D    | 123. 0    | 114.1   |
| 16       | 105, 0         | 121.0    | 363.0       | 824. 0      | 2,070,0         | 4,810.0     | 24, 100, 0 | 639. 0   | 321.0   | 181. 0    | 123. 0    | 140.4   |
| ii       | 99.0           | 123.0    | 326.0       | 2, 880, 0   | 1,620,0         | 4, 930, 0   | 31,308.6   | 715.0    | 317.0   | 178.0     | 127.0     | 112.    |
| 12       | 97. 5          | 114.0    | 292, 0      | 15, 800, 0  | 1,390.0         | 4, 220, 0   | 18, 500, 0 | 631. 0   | 313, 0  | 178. 0    | 125. 0    | 103.    |
| 13       | 94.5           | 131.0    | 241.0       | 4, 390. O   | 1, 230.0        | 3,630,0     | 12, 200, 0 | 639. 0   | 303, 0  | 175.0     | 125.0     | 105.    |
| 14       | 93, 0          | 133. 0   | 225.0       | 2, 730, 0   | 1,470.0         | 4,570.0     | 8,590.0    | 715.0    | 299. () | 172, 0    | 125. 0    | 105.    |
| 15       | 91.5           | 133.0    | 228. 0      | 2,120,0     | 1,520,0         | 4,310.0     | 6,640,0    | 799. O   | 292.0   | 169. O    | 123. 0    | 106.    |
| 16       | 90. 1          | 135. 0   | 313. 0      | 1. 970. 0   | 1,650.0         | 3, 980, 0   | 5, 360, 0  | 904. D   | 281.0   | 166.0     | 123, 0    | 110.    |
| 17       | 88.6           | 129.0    | 689. 0      | 2,140,0     | 1, 470, 0       | 3,670.0     | 4, 870, 0  | 916. 0   | 273.0   | 163.0     | 123. 0    | 110,    |
| 18       | 88, 6          | 133. 0   | 11.800.0    | 3,210.0     | 1,420.0         | 3, 240, 0   | 1, 140, 0  | 723, 0   | 269. 0  | 463. U    | 123. O    | 112.    |
| (4       | 94.5           | (33,0    | 41,000,0    | 2, 730, 0   | 1, 970, 0       | 6,090.0     | 4, 180, 0  | 673. 0   | 262.0   | 161. 0    | 131.0     | t 10,   |
| 20       | 97. 5          | 127.0    |             | 2, 930, 0   | 3,400.0         | 9, 180, 0   | 3, 630, 0  | 681.0    | 258.0   | 158. D    | 131.0     | 105.    |
| 21       | 93.0           | 123.0    |             | 3, 590, 0   | 5, 050, 0       | 40,000.0    | 2, 930, 0  | 782.0    | 254. 0  | 156, 0    | 135.0     | 110.    |
| 22       | 94.5           | 117.0    | 5, 970, 0   | 3,670.0     | 3, 900, 0       | 32,900.0    |            | 851. U   | 251, 0  | 150. 0    | 159.0     | 110.    |
| 23       | 93.0           | 116.0    | 2,660.0     | 3,590.0     | 4, 660, 0       | 23, 300. 0  |            | 715.0    | 247. 0  | 148. 0    | 131.0     | 103.    |
| 24       | 88. 6          | 127. 0   | 1, 490, 0   | 2,860,0     | 7,570.0         | 53,000.0    | 1, 970, 0  | 624. 0   | 238.0   | 146.0     | 125.0     | 101.    |
| 25       | 85.7           | 146.0    | 1.070.0     | 2.340.0     | 30,000.0        | 257, 000, 0 | 1,770.0    | 578, 0   | 231.0   | 144. 0    | 169. U    | 110.    |
|          | 82. Y          | 163. D   | 939, 0      | 2,270.0     |                 | 94,800.0    | 1, 600, 0  | 545. 0   | 228.0   | 141.0     | 116.0     | 110.    |
| 26<br>27 | 82. 9          | 238.0    | 815.0       | 2,140.0     |                 | 47, 500, 0  | 1, 440, 0  | 505, 0   | 218.0   | 142, 6    | 164. U    | 108.    |
| 26       | 82. 9          | 181.0    | 689.0       | 2,660.0     |                 | 32, 100, 0  |            | 479. 0   | 218.0   | 140.0     | 112.0     | 165.    |
| 28<br>29 | 82. 9<br>81. 1 | 200.0    | 515.0       | 2,340,0     |                 | 63,000. D   |            | 446.0    | 215.11  | 138. ((   |           | 44      |
|          | 80, ()         | 175.0    | 465.0       |             | 149,000.0       | 59, 200, U  |            | 427, 0   | 209. 0  | 138. U    |           | 44.     |
| 30<br>31 | 80, O          | 173.0    | 40.5, 11    |             | 127, 000.0      | ψ1, ευσ. t  | 1, 190, 0  |          | 205. B  | 135. 0    |           | ¥¥.     |
| TOTAL    | 2,864, 7       |          | 142, 331, 0 |             | when the second | 923, 120, 0 | 519,680.0  | 21,331,0 | 8,996.0 | 5, 170, 0 | 3, 524. 0 | 3, 343. |

ANNUAL SUSPENDED SEDIMENT DISCHARGE + 2,273,987 TON

|                                                                                     |      | STAT | ION            | 8_   | AN C | IAO | NEN |         |   |    |          | UNCE | mm   |      |              | MON  | `H       | AIA.         |     | <u></u> |      | YRAR         |             | 973   |              |
|-------------------------------------------------------------------------------------|------|------|----------------|------|------|-----|-----|---------|---|----|----------|------|------|------|--------------|------|----------|--------------|-----|---------|------|--------------|-------------|-------|--------------|
| DATE                                                                                | 1    | 2    | 3              | 4    | 5    | 6   | 7   | 8       | y | 10 | 11       | 12   | 13   | Н    | 15           | 16   | 17       | 18           | 19  | 20      | 21   | 22           | 23          | 24    | JATOT        |
| <u>l</u>                                                                            |      |      |                |      |      |     |     |         |   |    |          |      |      |      |              |      |          | 26. 2        | 4.0 | 5.0     | 1.3  |              | 0, 3        |       | 38.6         |
| 3                                                                                   |      |      |                | <br> |      |     |     | 0.2     |   |    |          |      |      | S. U | 0, 8<br>0, 2 |      | 1.1      | 8.5          | 7.0 |         |      | 0. 8<br>0. 2 | <b>9.</b> 3 |       | 11.7         |
| 5<br>6                                                                              |      |      |                |      |      |     |     |         |   |    |          |      | 3.8  | .458 | 0.2          |      |          |              |     |         |      |              |             |       | 4,8          |
| 5                                                                                   |      |      |                |      |      |     |     |         |   |    |          |      |      |      |              |      |          |              |     |         |      |              |             |       |              |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 |      |      |                |      |      |     |     |         |   |    |          |      |      |      |              |      |          |              |     |         |      |              |             |       |              |
| 10                                                                                  |      |      | <u></u> -      |      |      |     | 0.2 | <u></u> |   |    | <b>]</b> |      |      |      |              | -    | <u> </u> |              |     |         | 0. 2 |              |             |       | 0.2          |
| 13                                                                                  |      |      |                |      |      |     |     |         |   |    |          |      | 0, 6 |      |              | 1.5  |          |              |     |         |      |              |             |       | 0.6          |
| 15                                                                                  |      |      |                |      |      |     |     |         |   |    |          |      |      | 0.8  | 17.6         | 0.8  | 0, 2     | 25. B        | 0.4 | 0.6     | 1, 0 | 0, 2         |             |       | 18.6<br>19.0 |
| 18                                                                                  | 0, 2 |      |                |      |      | 0.2 |     |         |   |    |          |      |      |      |              |      |          |              |     |         |      |              |             |       | 0.4          |
| 18                                                                                  |      |      |                |      |      |     |     |         |   |    |          |      |      |      | 1, 2         |      |          |              |     |         |      |              |             |       | 1.2          |
| 20                                                                                  |      |      |                |      |      |     |     |         |   |    |          |      |      |      |              |      |          |              |     | -       |      | Ů. 2         |             |       | 0.2          |
| 22                                                                                  |      | -    |                |      |      |     |     |         |   |    |          |      |      |      |              |      |          |              |     |         | 0. 2 | 0, 2         |             | 0.2   | 0,6          |
|                                                                                     | •    |      |                |      |      |     |     |         |   |    |          |      |      |      |              |      |          | 2. 2<br>9. 1 | 0.6 | j. 0    | 2 0  | 0.2          |             |       | 2.8          |
| 24<br>25<br>20<br>27<br>28<br>29<br>30                                              |      |      | - <del>-</del> |      |      | 0.2 |     |         |   |    |          |      |      |      |              | 0. 2 | 0.2      |              |     |         |      |              |             |       | 0.4          |
| 28                                                                                  |      |      |                |      |      |     |     |         |   |    |          |      |      | <br> |              |      |          |              |     |         |      |              |             |       |              |
| 30                                                                                  |      |      |                |      |      |     |     |         |   |    |          |      |      |      |              |      |          |              |     | 10. 2   | 1.2  | 1.8          |             | (1, 2 | 20.6         |
| 31                                                                                  |      |      | L              |      | L    | I   | Ī   | L       | L | L  | l        | L    | L    | L    | L            | L    | Ĺ        | <u> Li</u>   | L   | 10.2    | 1. 2 | 7.8          | 1.4         | 11, 2 | 20,8         |

TOTAL 148.2 MAX, 26.2

### HOURLY RAINFALL

|                                                                                                                                                   |            | STAT                 | HON | R    | an c         | BAO                  | NEN    |                  |            |          |            | UNIT |          |     |              | MONI    | `H  | JUNI | 3        |     |            | RABY   | 1    | 973_       |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|-----|------|--------------|----------------------|--------|------------------|------------|----------|------------|------|----------|-----|--------------|---------|-----|------|----------|-----|------------|--------|------|------------|---------------------|
| DATE                                                                                                                                              | ı          | 2                    | 3   | 4    | 5            | 6                    | 1      | 8                | 9          | 10       | 11         | 15   | 13       | 14  | 15           | 15      | 17  | 18   | 19       | 20  | 21         | 22     | 23   | 24         | TOTAL               |
| 1                                                                                                                                                 |            |                      |     |      |              |                      |        |                  |            |          |            |      | <b> </b> |     | · • · · ·    |         |     | :    |          |     |            |        |      |            |                     |
| 3                                                                                                                                                 |            |                      |     |      |              |                      |        |                  |            |          |            |      |          |     | 24.2         | 0, 2    |     |      | 0.4      | 0.8 | 0.6<br>Q.4 |        |      |            | 26.2                |
|                                                                                                                                                   |            |                      |     |      |              |                      |        | i                | 0.2<br>0.6 |          |            |      |          |     | <sup>1</sup> |         |     |      |          |     | .2.1       | 0.4    |      |            | 0.6                 |
| 5 7                                                                                                                                               |            |                      |     |      |              |                      |        |                  |            |          |            |      |          | 9.8 | 3, 2         | 0.6     |     |      |          |     | 1.4        | 0, 2   |      |            | 4.8<br>13.6         |
| 8                                                                                                                                                 |            |                      |     |      | 0, 2         |                      |        |                  |            |          |            |      |          | 0.2 |              | 0.2     |     |      |          |     |            |        |      |            | 9.4                 |
| 10                                                                                                                                                |            |                      |     |      |              |                      |        |                  |            |          |            |      |          |     |              | . U. Z. |     |      |          | 0.6 | 0.6        | 0.6    |      |            | 0.2<br>1.8          |
| 11 -                                                                                                                                              |            |                      |     |      | 0, 2         |                      |        |                  | ·          |          |            |      |          |     | 2.2          |         |     |      |          |     | ·          |        |      |            | 2.2                 |
| 13                                                                                                                                                |            |                      |     |      |              |                      | ****** |                  |            |          |            |      |          |     |              |         |     |      | 0.2      |     |            |        |      | -          | 0.2                 |
| 15                                                                                                                                                |            |                      |     |      |              | 0.2                  |        | ا مديد.<br>پاميد | 1.8        | 0.4      | 1.2        | 0.2  | 0, 8     |     | 0. 2         |         |     |      |          |     |            |        |      | 0, 1       | 5.2                 |
| 17                                                                                                                                                | 0.4<br>1.0 | 0. 4<br>0. 2<br>0. 2 | 0.4 |      | 0. 7<br>3. 0 | 0.8                  | 2, 8   | 0.2              | .1.0       | 1.1.     | 4.1        | 8.1  | 17.6     | 3.1 | .0.2         |         |     |      | 0.2      | 0.8 | 1, 2       | . 2, 0 | 11.0 | 8,6<br>8,2 | 26.0<br>56.2<br>5.4 |
| 18                                                                                                                                                | 1, 4       | 0. 2                 |     | 0. 2 | 3, 0         | 0. 8<br>0. 2<br>0. 7 | · ·    |                  |            |          | 0.2        |      | 0.2      | 0.2 | 0.4          |         | 1.0 | 0.2  | <b> </b> |     |            |        |      |            | 5. 4<br>2. 0        |
| 20                                                                                                                                                |            |                      |     |      |              |                      |        |                  |            | 0.2      |            |      |          |     |              |         |     |      |          |     |            |        |      |            | 0,2                 |
| 22                                                                                                                                                |            |                      |     |      |              |                      |        |                  |            |          |            |      |          |     |              | -       |     |      |          |     |            |        | :    |            |                     |
| 23                                                                                                                                                |            |                      |     |      |              |                      |        |                  |            |          | <u> </u> - |      |          |     | 7.6          | 2.2     |     |      |          |     |            |        |      |            | 9.8                 |
| 8<br>9<br>10<br>11<br>112<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>22<br>23<br>24<br>25<br>27<br>28<br>29<br>30<br>30<br>31 |            |                      |     |      |              |                      |        |                  | 0.2        |          |            |      |          |     |              |         |     |      |          |     |            |        |      |            | 0.2                 |
| 27                                                                                                                                                | ,          |                      |     |      |              |                      |        |                  | 0.2        |          |            |      |          |     |              |         |     |      |          |     |            |        |      |            | 0,2                 |
| 29                                                                                                                                                |            |                      |     |      |              |                      |        |                  |            |          |            |      |          |     |              | 26.0    | 1.6 | 9, 0 |          |     |            |        |      |            | 10. 4<br>27. 6      |
| 31                                                                                                                                                |            |                      |     |      |              |                      |        |                  |            | <u> </u> |            | L    |          |     |              | 20.0    |     |      |          |     |            |        |      | <u> </u>   |                     |

TOTAL 194.4
MAX. 26.0

|                                |             | STAT | ION  | n             | 18 C   | HAO    | NEN  |     |      |             |       | UNIT | nım     |      |          | мом     | re         |            | je <b>r</b> , | ·            |         | YEAR | !              | 97.1 |                      |
|--------------------------------|-------------|------|------|---------------|--------|--------|------|-----|------|-------------|-------|------|---------|------|----------|---------|------------|------------|---------------|--------------|---------|------|----------------|------|----------------------|
| 11/11                          | ı           | 2    | 3    | 1             | 5      | 6      | 7    | δ   | 9    | 10          | 11    | 12   | 1.3     | 11   | 15       | 11      | 17         | 18         | 19            | 20           | 21      | 22   | 23             | 24   | TOTAL.               |
| 1                              |             |      |      |               | ļ<br>! |        |      | ··· |      | , , · · · - |       |      |         |      |          |         |            | , <b>.</b> |               |              | 10.000  |      | ·<br>- · - • • |      |                      |
| ] 3 ]                          |             | · .  | ]    |               |        |        |      |     |      |             |       |      |         |      | 5.8      |         |            |            |               |              |         |      |                |      | 5.8                  |
| 3                              |             |      |      |               |        |        |      |     |      |             |       |      |         |      |          |         |            | 0, 7       | 0, 2          |              |         |      |                |      | .0,4                 |
|                                |             | 0.2  | 0, 2 | 2.8           |        |        | 0.2  | 1.8 | 1.6  |             |       |      |         |      |          |         | <u>v.6</u> | 10, 2      |               |              |         |      | 13.4           |      | 3.6<br>5.6           |
| 8                              |             |      |      | . 'a <u>e</u> |        | . !, ! |      |     |      |             |       |      |         |      |          |         |            |            |               |              |         |      |                |      | ·                    |
| 8<br>9<br>10<br>11<br>12<br>13 |             |      |      |               |        | 0.7    | 0.8  | 0.4 |      | 2000        |       | 0, 2 |         |      |          |         |            |            |               |              |         |      |                |      | <u>0,4</u><br>3,0    |
| 11                             |             |      | 0.8  |               | 11.3   |        |      |     |      |             |       |      | 0, 2    |      | ;        |         |            |            | 0.4           |              |         | U. 2 |                |      | l.6_                 |
| 13.                            |             | -    |      | 3. N          | 2, ?   | 3.0    | (0.6 |     | 0, 2 | 0.2         | 0, 2  |      |         |      |          |         |            |            |               |              |         |      |                |      | 10.0                 |
| Lis T                          |             |      |      |               |        |        |      |     | 3.8  |             |       | ~~   |         | 1.8  | 1, 2     |         |            |            |               |              |         |      |                |      | 3.8<br>3.0           |
| l6<br>17                       | • • • • • • |      |      |               |        | 0.8    | 2.6  | 1.2 | 0.4  | 0.2         | 1), 2 |      | 0, 2    | 2    | <u> </u> |         |            |            |               |              |         | ,    |                |      | 5.6                  |
| 18<br>19<br>20<br>21           |             |      |      | 0, 4          | 0.2    |        |      | 0.1 | 0.6  | 0.6         | .15.2 |      |         | 5. 2 | 0.2      | <b></b> | 3, 4       | 0.2        |               |              |         |      |                |      | 1, 8<br>9, 6<br>2, 0 |
| 20                             |             |      |      |               |        | -      | 10.2 |     |      |             |       |      |         |      |          |         | .1.8       | 0. 2       |               |              |         |      |                |      | 2.0<br>0.2           |
| 1 22 1                         |             |      |      |               |        | ļ      |      |     |      |             |       |      |         |      |          |         |            |            |               |              |         |      |                |      |                      |
| 34                             |             |      |      |               |        |        |      |     |      |             |       |      |         |      |          |         |            |            |               |              |         |      |                |      |                      |
| 25<br>24<br>25<br>26<br>27     |             |      |      |               |        |        |      |     |      |             |       |      |         |      |          | \       |            |            | 1.4           | 0, 2         | <u></u> |      |                |      | 1.6                  |
| 27<br>28                       |             |      |      |               |        |        |      |     |      |             |       |      |         |      |          |         |            |            |               |              |         |      |                |      |                      |
| 28<br>19<br>30                 |             |      |      |               |        |        |      |     | 6.2  |             |       |      | <b></b> |      |          | }       |            |            | 0.4           | 0, 1<br>0, 2 | 0.2     | 0.2  |                |      | 1,0                  |
| 30                             | •           |      |      |               | 0. 2   |        |      |     |      |             |       |      |         |      |          |         | 11, 4      | 9, 0       |               | <u> </u>     |         |      |                |      | 20,6                 |

TOTAL 82.6
MAX. 11.4

### HOURLY RAINFALL

|                                              |             | STAT   | KON         | íi.  | N C  | IAO :  | NEN      |          |     |       |    | UNIT        | min       | -    |      | мом         | H         | ΛUG          | នោ         |             |            | YEAR |      | 973   |                      |
|----------------------------------------------|-------------|--------|-------------|------|------|--------|----------|----------|-----|-------|----|-------------|-----------|------|------|-------------|-----------|--------------|------------|-------------|------------|------|------|-------|----------------------|
| DAD.                                         | ı           | 2      | 3           | 4    | 5    | 6      | 7        | 8        | 9   | 10    | 11 | 12          | 13        | 14   | 15   | 16          | 17        | 18           | 19         | 20          | 21         | 22   | 23   | 24    | TOTAL                |
| 1                                            |             | [      |             | [    |      |        |          |          |     |       |    |             |           |      |      |             | 20.8      | 12.8         | t. a       |             |            |      |      |       | 34.6                 |
| 2                                            |             | 26.0   | 3.1         | 0, 2 |      | 0, 2   |          |          |     |       |    |             |           |      |      |             |           | ļ            | 9.2        | l. Z.       | 22.2       |      |      |       | 58.6<br>10.3         |
| - 🛟                                          | · - • ·     |        |             |      |      |        |          | <i>-</i> | Q.2 |       |    |             |           |      |      |             | - 8.0     | lc5          |            |             |            |      |      |       |                      |
| 5                                            | - 1 - 1 - 1 |        |             |      |      |        |          |          |     |       |    |             |           |      |      |             |           |              |            |             | 6.2        |      |      |       | 0.2                  |
| 7                                            |             | 0, 2   |             |      |      | 0.2    |          |          |     |       |    |             |           |      |      |             |           |              | 0.4        | <u>0. 2</u> |            |      |      |       | 0,8                  |
| 8                                            |             | Ü, 2   |             |      |      | .221.5 |          |          |     |       |    |             |           |      |      |             |           |              | 0.4        | 1.0         |            |      |      |       | 1.0                  |
| 8<br>9                                       |             |        |             |      |      |        |          |          |     |       |    |             |           |      |      |             |           |              |            |             | 2, 2       |      |      | 0. 6  | 1.6                  |
| 10                                           | 11, 2       |        |             |      |      |        |          |          |     |       |    |             |           |      | 0.2  |             |           |              | 0.2        |             | ·          |      |      |       | 0.4                  |
| 12                                           |             |        |             |      |      |        |          |          |     |       |    |             |           | 3.7  |      |             |           |              |            |             |            |      |      |       | U. 2<br>3. 7<br>1. 0 |
| (3<br>(4                                     |             | L      | ļ. <b>.</b> |      |      |        |          | ļ        |     | «-    | ]  | ]- <i>-</i> | ]         | يا.[ |      |             | <b></b> - | }            | }. <b></b> |             | }          |      |      | 0.2   | 0.2                  |
| 15                                           |             |        |             |      |      | *****  | · • - •- |          |     |       |    |             |           |      |      |             |           | l            |            |             |            |      |      |       | <u>2</u> 2 <u>2</u>  |
| 16<br>17                                     |             |        |             |      |      |        |          |          |     |       |    |             |           |      |      |             | ļ         |              |            |             | <u> </u>   |      |      |       |                      |
| -17                                          |             |        |             | •-   |      |        |          |          |     | ****  |    |             | ·         |      |      |             |           | <del> </del> | i          |             | ļ          |      |      |       |                      |
| 18<br>19<br>20                               |             |        | 0.2         |      |      |        |          |          |     |       |    |             |           |      |      |             |           |              |            |             |            |      |      |       | 11.2                 |
| 20                                           | 0.2         |        | 10.00       |      | 0. 2 |        | - 26     |          |     | ~ ~ ~ |    |             | <b></b> . | ļ:   |      | 9.2         | 0, 2      | ļ            |            |             | ļ <b>.</b> | ļ    |      | 0.3   | U. 6<br>8. 2         |
| 21                                           | . 9. Z      |        |             |      |      |        | 6.0      | 0.2      |     | 0.2   |    |             | }         |      |      | / · • • / - | 0.8       |              | 0.2        | 0.4         | 0. 2       |      | U. 2 | 34.5. | 2. 13                |
| 23                                           |             | 0.7    | 0.8         | 0.2  | 0.2  |        | 0. 2     |          |     |       |    |             |           |      | 5. 2 | 4A-         |           | -:           |            |             |            |      |      |       | 2. II<br>1. 6        |
| - 24                                         |             |        |             | 0.2  | ~    |        |          |          |     |       |    |             |           |      | 3, Z | 1.2         | 1.8       | 1.2          | 0.4        | 1, 2        |            | 0, 2 |      |       | 9.4                  |
| 26                                           |             |        |             |      |      |        |          |          |     | ····  |    |             |           | 0, 2 | 0.6  |             |           |              |            |             |            |      |      |       | <u>(j. 8</u>         |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 |             |        |             |      | 0.1  | Ö. 1   |          |          |     |       |    |             |           |      |      |             |           |              |            |             |            |      |      |       |                      |
| 26                                           |             |        |             |      | .57  |        | · ·      |          |     |       |    | ·- ·        | }         | }    | Ì'   |             |           |              |            |             |            |      |      |       |                      |
| 30                                           |             |        |             |      |      |        |          |          | 0.2 |       |    |             |           | 8.5  | 1, 5 |             |           |              |            | 0, 8        | 0.8        | 0.4  |      | 0.2   | 12.4                 |
| 31_                                          |             | لــــا | نــا        | 0.6  | 0. 2 | L      | L        | 0.2      | L., | L     | L  | l           | L         | L    | l    | L           | L         | 2.5          | l          | L           | l          | لسسا | L    | 1     | 3.5                  |

TOTAL 155.9 MAX. 27,2

|                                        |              | STAT       | ION         | R    | IN C | OAN  | NEN          | •            |       |         |           | UNIT       | inn | •    |       | MON          | ж —          | <u> </u> | <u>SŅBRI</u> | R    |             | RABY       |          | 973                  |                          |
|----------------------------------------|--------------|------------|-------------|------|------|------|--------------|--------------|-------|---------|-----------|------------|-----|------|-------|--------------|--------------|----------|--------------|------|-------------|------------|----------|----------------------|--------------------------|
| DATE                                   | ı            | 2          | 3           | 1    | 5    | 6    | ,            | 8            | 9     | 10      | 11        | 12         | 13  | 14   | 15    | 16           | 17           | 18       | 19           | 20   | 21          | 22         | 23       | 24                   | TOTAL                    |
| 1                                      |              | Ī          |             |      |      |      |              |              |       |         |           | 4.4        | 1,2 |      |       |              |              | 0,6      | 0.4          |      |             |            | 0.2      |                      | 5.6<br>1.2<br>0.2<br>1.2 |
|                                        |              |            |             | ·    | ~    |      |              |              |       | <b></b> |           |            |     |      |       |              | 0.2          | 2.9      |              |      |             | <b>-</b> ' | w 25.5   | ,                    | 0.2                      |
| 3                                      | · · · •      | }··        |             |      |      |      |              |              |       |         |           |            |     |      |       | 0. 2         |              | 0.4      |              |      |             |            |          |                      | 1.2                      |
| . 5                                    |              |            |             |      |      | 0, 2 |              |              |       |         |           |            |     |      |       |              |              |          |              |      |             |            |          |                      | 0.2                      |
|                                        |              |            |             |      |      |      | ·            |              | /     |         |           | ~~         |     |      |       | . ~          | 0, 2         | <b></b>  | 0.4          | 0.3  | 0, 2        |            |          |                      |                          |
| 8                                      |              | · ·        | ļ           | 0.2  |      |      | ļ            |              |       |         |           |            |     |      |       |              |              |          | 1.2          | 0.2  |             | 0, 2       |          |                      | 1.0<br>1.8<br>4.1        |
| 9                                      |              |            |             |      | -    |      |              |              |       |         |           |            |     |      | 3.9   | 0.2          |              |          |              |      |             |            |          |                      | 1.1                      |
| . t0<br>                               |              |            |             |      |      |      |              |              | Ö, 2  |         |           |            |     |      |       |              | ļ            |          | [            |      | اا          |            |          |                      | - 63                     |
| 12                                     |              |            |             |      |      |      |              |              | -U. Z |         |           |            |     |      |       | 0.4          |              |          | 0.2          | 0.2  |             |            | 2.0      | 0.2                  | 0 2<br>3.0               |
| 13<br>14<br>15<br>16                   | •            |            |             |      |      |      |              |              |       |         |           | <u> </u>   |     |      |       |              |              |          |              |      |             |            |          |                      |                          |
| 11                                     |              |            |             |      |      |      | 0, 2         |              |       |         |           |            | 2.9 | 3, 0 |       |              | _3 <u>_1</u> |          |              |      |             |            |          |                      | 7.2                      |
| 15                                     |              | <b> </b> - |             |      |      |      | _0.2         |              |       |         |           |            |     |      |       | ·            |              | ļ        |              |      |             |            | 0.8      | 8.0                  | 0.2                      |
| 17                                     | 0. 1         |            | f           |      |      |      | :            |              |       |         |           | i          |     | 0.8  |       | 0.4          |              | 0.8      | 2.0          |      |             |            | 0. 4     | 0. 8<br>0. 8<br>0. 4 | 1.6<br>5.6<br>14.6       |
| 18<br>19<br>20                         | 4. 1<br>0. 2 | 0.4<br>0.2 | 0, 2        |      |      |      |              |              |       |         |           |            |     |      |       |              | .,           |          |              | 1.4  | 6.0         |            | 0, 2     | 0.4                  | 14.6                     |
| 19                                     | 0, 2         | 0.2        | 0. 2        |      |      |      |              |              |       |         |           |            |     |      | _3∟₹. |              |              | .Q. #    | 0.1          |      | _0.2<br>5.4 | 0.2        |          | 0.8                  | 6.8                      |
| 21                                     |              |            |             |      |      | **:  |              |              |       |         |           |            |     |      |       |              |              |          |              |      | <u> </u>    |            |          |                      |                          |
| 22                                     |              | 0.6        |             |      |      | Ú. 2 | 8, U         |              |       | l       | 0, 2      | [ <u> </u> |     |      |       |              |              |          |              |      |             |            |          |                      | 9, 0<br>3, 8<br>7, 8     |
| 23                                     |              |            |             |      |      |      | 0.2          | 0.2          |       |         |           |            |     | —    | 1.8   | 1.9          |              | <b> </b> |              |      |             |            |          |                      | 3.8                      |
| 24                                     |              |            |             | 2.0  | 4.0  | 1.1  | - W. T.      | <u>  0.2</u> |       |         |           |            |     |      |       | <del> </del> |              |          |              |      |             |            |          | .,                   |                          |
| 26                                     |              |            | <del></del> |      |      |      |              |              |       |         | <u>  </u> |            |     |      | 0.2   | 0.2          |              |          |              |      |             | 0.2        | 0.6      | 0.6                  | 1.8                      |
| 23<br>24<br>25<br>26<br>27<br>28<br>29 | 1.0          | 0. 3       | 0, 2        |      |      |      |              |              |       | ,       |           |            |     |      | 4.5   | <u>5. 2</u>  | 3. 4         | 3.6      | 0, 2<br>4, 8 |      | 1           | 0.2        | 0.2      |                      | 13,3                     |
| 28                                     | 0. 2         |            |             | 0. 2 |      |      | 0.4          | 1.0          | 0, 4  |         | -         |            |     |      |       | [—           | 1.2          | 0.8      |              | ≱.,& | .13         | - Y. F.    | -77.3    |                      | 16.2                     |
|                                        | 0.2          |            |             |      |      |      | <u>6-4</u> - | Y. 2. 2      | 3     |         |           | l          |     |      | 0.2   |              |              | -¥.V.    |              |      |             | l          |          |                      | 0.1                      |
| 30<br>31                               |              |            | ~~          | \    |      |      | l            |              |       |         |           |            |     |      | l     |              |              |          |              |      |             | <u></u>    | <u> </u> |                      |                          |

TOTAL 119.7 MAX. 8.0

### HOURLY RAINFALL

Ì

|                            |               | STAT         | ION  | <u> a</u>    | IN C        | HAO      | NBN        |                |             |    |            | UNIT       | ento.   |          |         | уюм  | rr         | OCTO     | BER      |        |                      | YBAR         | 1    | 973         |                     |
|----------------------------|---------------|--------------|------|--------------|-------------|----------|------------|----------------|-------------|----|------------|------------|---------|----------|---------|------|------------|----------|----------|--------|----------------------|--------------|------|-------------|---------------------|
| TIME                       | ı             | 2            | 3    | 1            | 5           | 6        | 7          | 8              | 9           | 10 | 11         | 12         | 13      | t4       | 15      | 16   | 17         | 18       | 19       | 20     | 21                   | 22           | 23   | 24          | TOTAL               |
|                            |               |              |      |              |             |          |            |                |             |    |            |            |         |          |         |      |            | 8.0      | 6.0      |        |                      |              |      |             | 11.0                |
| 3                          | 0, 2          |              |      | ļ            |             |          | i          |                |             |    |            |            | 2. [    |          |         |      | <u>-</u> . |          |          | 0, 2   | 1. 4                 | 3.4          | 4.4  | 3, 2        | 0. 2<br>16. 7       |
| Ť                          | 5. 2<br>11. 6 | 0.8<br>0.6   |      |              |             |          |            |                |             |    |            | 3.3        | 0.8     | 5. 2     | 0.8     |      |            |          |          | 1.0    | 3, 2                 | 1.0          | 9. 2 | 3.2<br>16.6 | 42.1                |
| 5                          | 11.6          | 0.6          |      | 3. 1<br>0. 2 | 0.2         |          | 2, 2       | 6.8            | <u>0. e</u> |    |            |            |         |          |         | ļ    |            | ļ        |          | 0.4    | 1. 4<br>3. 2<br>3. 4 | 3. 6<br>1. 2 | 0, 2 | 0.3         | 39. 6. 7            |
| -,                         |               |              |      |              | 4. 2        |          |            | 1.2            |             |    |            |            |         |          |         |      |            |          |          |        |                      |              |      |             | 5, 1<br>2, 1        |
| 8                          | 0. 2          |              |      |              |             |          | <b> </b> - |                |             |    | <b> </b> - |            |         |          |         |      | 6.1        | 3.0      | 10.4     | . 3. 4 | 3.6                  | 0.8          | 0.2  | 2.9         | 19.0                |
| 10                         | 0.8           | 0.5          | 0. 2 | 0.4          | -2          |          |            |                |             |    |            | ·          |         |          |         |      |            |          |          |        |                      |              |      |             | 1. <sup>4</sup>     |
| 12                         |               |              |      |              | 0. 2        |          |            |                | ····        |    |            |            |         |          |         | 2. 1 |            |          |          |        |                      |              |      |             |                     |
| 13                         |               |              |      |              |             |          | }          |                |             |    | <b> </b>   |            |         |          |         |      |            |          | ·        |        |                      |              |      |             |                     |
| 15                         |               |              |      |              |             |          |            |                |             |    |            |            |         |          |         |      |            |          |          |        |                      |              |      |             |                     |
| 16                         | 0.8           | 0. 8<br>8. 1 |      | /            | 0.2         |          | 0, 2       |                |             |    |            | ļ          |         |          |         |      |            |          |          |        |                      |              |      |             | <u>ارا</u><br>المات |
| 18                         | V. 6          | 0, 1         | 0, 2 |              | <u>y. 4</u> | <u> </u> | ]          | <u> </u>       |             |    |            |            |         |          |         |      | Ì          |          |          |        |                      |              |      |             | Q.                  |
| 19                         |               |              |      | ļ            |             | 0, 2     |            |                |             |    |            | <b> </b> - |         |          |         |      |            |          |          |        |                      |              |      |             | Q.                  |
| 21 22                      |               |              |      |              |             |          | 0, 2       |                |             |    |            |            |         |          |         |      |            |          |          |        |                      |              |      |             | 0.                  |
|                            |               |              |      |              |             |          | l          |                |             |    |            |            |         |          |         |      |            |          |          |        |                      |              |      |             |                     |
| 23<br>24<br>25<br>26<br>27 |               |              |      |              |             | 0.7      |            |                |             |    |            |            |         |          |         |      |            |          |          |        |                      |              |      |             | 0,                  |
| 25                         |               |              |      | ]··          |             |          | }          | \ <sup> </sup> |             |    |            |            | -       | <u> </u> |         |      |            |          |          |        |                      |              |      |             |                     |
| 27                         |               |              |      |              |             |          | 0.2        | 0.2            |             |    | ,          |            |         |          |         |      |            |          |          |        |                      |              |      |             | Q.                  |
| 28<br>29<br>30             |               |              |      |              |             |          |            |                |             |    |            | <u> </u>   |         |          |         |      |            |          |          |        |                      | ~~~~         |      |             |                     |
| 30<br>31                   |               |              |      |              | 0, 2        |          |            |                |             |    |            |            | <b></b> | Ì        | <b></b> |      |            | <b>]</b> | <u> </u> |        | ]                    | <b> </b>     |      |             | 0.                  |

TOTAL 169.6 MAX, 16.6

|                                        |      | STAT                 | KOI  | R    | N C        | HAO I | KBK  |   |       |    |    | UNIT | aum.    |          |      | MONT     | н          | NOVE | MBKR |           |         | YBAR |     | 973 |                          |
|----------------------------------------|------|----------------------|------|------|------------|-------|------|---|-------|----|----|------|---------|----------|------|----------|------------|------|------|-----------|---------|------|-----|-----|--------------------------|
| TIBR<br>DATE                           | l    | 2                    | 3    | 1    | 5          | 4     | 7    | 8 | 4     | 10 | 11 | 15   | 13      | 14       | 15   | 16       | 17         | 18   | 19   | 20        | 21      | 55   | 23  | 24  | TOTAL                    |
| 12                                     |      |                      | ~    |      |            |       |      |   |       |    |    |      |         |          |      |          |            |      |      |           |         |      |     |     |                          |
| 3                                      |      |                      |      |      |            | 0.2   |      |   |       |    |    |      |         |          |      |          |            |      |      |           |         | -3   |     | ··- | 0.2                      |
| 5                                      |      |                      |      |      |            |       |      |   |       |    |    |      |         |          |      |          |            |      |      |           |         |      |     |     |                          |
| 6                                      |      |                      |      |      |            |       |      |   |       |    |    |      |         |          |      |          | , <u>-</u> |      |      |           |         |      |     |     |                          |
| 8 9                                    |      |                      |      |      |            |       |      |   |       |    |    |      |         |          |      |          |            |      |      |           |         |      | ,   |     |                          |
| <u>10</u>                              |      | 4, 9                 |      |      |            | 0.2   | ļ.,  |   |       |    |    |      |         |          |      | 1.2      |            |      |      |           | <u></u> |      |     |     | 1.2<br>5.1<br>0.4<br>2.8 |
| 12                                     |      |                      | 0, 4 | 0, 2 | 0, 2       | 0, 2  | 0.2  |   | 0.2   |    |    |      |         |          | 0, 2 | 0.6      |            | 0.2  | 0.2  | 0, 2      | 0.2     |      |     |     | 2.8                      |
| 14                                     | 1.4  | 0, 1                 |      | 0.3  |            |       |      |   | _ 4 - |    |    |      |         |          | 0.2  |          |            |      |      |           |         | 0.6  | ÷   |     | 7.8                      |
| 16                                     |      |                      |      | 0.2  |            | 0.2   |      |   | i     |    |    |      |         | <u> </u> |      |          |            |      |      |           |         |      |     |     | 0.2<br>0.2<br>0.6        |
| 14<br>15<br>16<br>17<br>18<br>19<br>20 | 0, 2 | 0, 2<br>1, 8<br>0, 2 | 0.4  | 2.0  | 3.2<br>0.4 | 0.4   | 0, 2 |   |       |    |    | 2.6  | 0.6     |          |      |          | 9.2        |      | 0.6  | <br>افران | .2.3    | 0,4  | 0.2 | 0.4 | 14.6                     |
| 20<br>21<br>22                         |      | 0. 2                 | -,   |      | 0.4        | 0, 2  | 0, 2 |   | 0.7   |    |    |      |         |          |      |          |            |      |      |           |         |      |     |     | 9.2                      |
| 22                                     |      |                      |      |      |            |       |      |   |       |    |    |      | <u></u> |          |      |          |            |      |      |           |         |      |     |     |                          |
| 24                                     |      |                      |      |      | 0. 2       |       |      |   |       |    |    |      |         |          |      |          |            |      |      |           |         |      |     |     | 0,2.                     |
| 23<br>24<br>25<br>26<br>27             |      |                      |      |      |            | 0. 2  |      |   |       |    |    |      |         |          |      |          |            |      |      |           |         |      |     |     | 0.2                      |
| 28                                     |      | <u>-</u>             |      |      |            | 0.2   |      | } |       |    |    |      |         |          |      | <u>-</u> |            |      |      | -         |         |      |     | ļ   | 0.2                      |
| 30<br>31                               |      |                      |      |      |            |       |      |   |       |    |    |      |         |          |      |          |            |      |      | <u> </u>  |         |      |     |     |                          |

TOTAL 30.3

### HOURLY RAINFALL

|                                        |            | STAT     | 10X      | <u>b</u> | AN C | IIVO :       | NEN      |     |   |    |            | UNIT | ium | _        |    | MONI     | л                                            | DRCI | MBER |    |     | ¥BAR |    | 973 |       |
|----------------------------------------|------------|----------|----------|----------|------|--------------|----------|-----|---|----|------------|------|-----|----------|----|----------|----------------------------------------------|------|------|----|-----|------|----|-----|-------|
| DATE                                   | 1          | 2        | 3        | -1       | 5    | 6            | 7        | 8   | 9 | 10 | <b>1</b> 1 | 12   | 13  | 14       | 15 | 16       | 17                                           | l8   | 19   | 20 | 21  | 22   | 23 | 24  | TOTAL |
|                                        |            |          | 0. 2     |          |      |              |          |     |   |    |            |      |     |          |    |          | <u>                                     </u> |      |      |    |     |      |    |     | 0, 2  |
| 2                                      |            |          |          |          |      |              | ļ        |     |   |    |            |      |     |          |    |          |                                              |      | ·    |    |     |      |    |     |       |
| 1-3                                    |            |          |          |          |      |              | ļ—       |     |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     |       |
| \$                                     | -          |          |          |          |      |              |          |     |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     |       |
| 6.                                     |            |          | ļ        |          |      |              |          |     |   |    |            |      |     |          |    | <b> </b> |                                              |      |      |    |     |      |    |     |       |
| 8                                      |            | <b>∤</b> |          |          |      |              |          |     |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     |       |
| . 9                                    |            |          |          |          |      |              |          |     |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     |       |
| 01                                     |            | ļ        | Ī        | ļ        |      |              |          | ·   |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     |       |
| 12                                     | \ <u> </u> |          | <u> </u> |          |      |              | ļ        |     |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     |       |
| 13                                     | 4          |          |          |          |      | 0.2          | ļ        |     |   |    |            |      |     |          |    |          |                                              |      |      |    | ļ.— |      |    |     | 0.2   |
| 14                                     | -          | l        | }        |          |      | . U, 2       |          |     |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     |       |
| 16                                     | 1          |          |          |          |      |              |          | 0.2 |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     | 0.2   |
| 17                                     |            | ļ        |          |          |      | 0.2          |          | L   |   |    |            |      |     | <u> </u> |    |          |                                              |      |      |    |     |      |    |     | 0.2   |
| 18                                     |            | ļ.—-···  |          |          |      |              |          | 0.2 |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     | 0.2   |
| 20                                     | 1          |          |          |          |      |              |          | ı   |   |    |            |      |     |          |    |          | ļ                                            |      |      |    |     |      |    |     | 0.2   |
| 21                                     | ·}         | ļ        |          |          | [    | <del> </del> |          | 0.2 |   |    |            |      |     |          |    |          | P                                            |      |      |    |     |      |    |     |       |
| 25                                     | -          |          |          |          |      |              |          |     |   |    |            |      |     |          | *  |          |                                              |      |      |    |     |      |    |     |       |
| 24                                     |            | L        |          |          |      |              | <b> </b> |     |   |    |            |      |     |          |    | ļ        |                                              | -    |      |    |     |      |    |     |       |
| 25                                     |            |          | ļ        |          |      |              | ļ        |     |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     |       |
| 24<br>25<br>26<br>27<br>28<br>29<br>30 |            |          |          |          |      |              | 0, 2     |     |   |    |            |      |     |          |    |          |                                              | ļ    |      |    |     |      |    |     |       |
| 28                                     |            |          |          |          |      |              |          |     |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     |       |
| 30                                     |            |          |          |          |      |              |          |     |   |    |            |      |     |          |    |          |                                              |      |      |    |     |      |    |     |       |
| 31                                     | L.,        |          | L        | L        | L    | L            | L        | L   | l | L  | L          | L    | L   | L        | L  | <u></u>  | L                                            | l    | L    | L  | L   | i    | I  | i   | LJ    |

TOTAL 1.1.

|                                  |    | STAT | ION | B | N C        | HAQ | NRN     | •           |                |          |          | USIT | wia      |            | :          | KOM          | H1          | IANU | ARY              |          |           | YBAR           | المنا        | 974         |                 |
|----------------------------------|----|------|-----|---|------------|-----|---------|-------------|----------------|----------|----------|------|----------|------------|------------|--------------|-------------|------|------------------|----------|-----------|----------------|--------------|-------------|-----------------|
| TIRE                             | 1  | 2    | 3   | 1 | 5          | 6   | 7       | 8           | 9              | 10       | 11       | 12   | 13       | 14         | 15         | 16           | 17          | 18   | 19               | 20       | 23        | 22             | 23           | 24          | TOTAL           |
| i                                |    |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              |             |      |                  |          |           |                |              |             |                 |
| - l<br>- 2<br>- 3                |    |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              |             |      |                  |          |           |                |              |             |                 |
|                                  |    |      |     |   | à <b>.</b> |     |         | <b> </b>    |                |          |          |      |          |            |            |              |             |      |                  | <b></b>  |           | <b> </b> -     |              |             | _ <del></del> - |
| 5                                |    |      |     | l |            |     |         |             |                |          |          |      |          |            |            |              |             |      |                  |          |           |                |              |             |                 |
| <del></del>                      |    |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              |             |      |                  |          |           |                |              |             |                 |
| - <del>-</del>                   | -, |      |     |   |            |     |         | <i></i> -   |                |          |          |      | ļ        |            |            | <b> </b> -   | <b>├</b> ── |      | }- <del></del> - |          |           | <del> </del> - |              |             |                 |
| 9                                |    |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              |             |      |                  |          |           |                |              |             |                 |
| 8<br>9<br>10                     |    |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              |             |      |                  | ļ        |           | <b></b>        |              |             |                 |
|                                  |    |      |     |   |            |     |         |             |                |          |          |      |          |            | ļ <u>-</u> |              |             |      | <u> </u>         |          |           | <del> </del> - |              |             |                 |
| 12<br>13<br>14<br>15<br>16       |    |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              |             |      |                  |          |           |                |              |             |                 |
| -14                              | ~  |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              | ļ           |      |                  |          | l—        | ļ              |              |             |                 |
| 13                               |    |      |     |   |            |     |         |             | ļ              |          |          | ·    | <u> </u> | <b> </b>   |            | <del> </del> | ļ           | -,   | \                |          | ļ         |                |              |             |                 |
| 17                               |    |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              |             |      |                  |          |           |                |              |             |                 |
| 18                               |    |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              |             |      | <b> </b>         |          |           | <b> </b> -     | <b> </b>     |             | <u></u>         |
| 20                               |    |      |     |   |            |     |         |             |                | ··       | <u> </u> |      | ļ        | <b> </b> - |            |              |             |      | <b> </b>         | <u> </u> |           | ·              | <b> </b> -   |             |                 |
| 71                               |    |      |     |   |            |     |         | /           |                |          |          |      |          |            |            |              |             |      |                  |          |           |                |              |             |                 |
| 21<br>22<br>23                   |    |      |     |   |            |     | <b></b> |             |                |          |          |      |          |            |            | <b>_</b>     |             |      |                  | L        | <b>!</b>  |                |              |             |                 |
| -23<br>-24                       |    |      |     |   |            |     |         |             | <del> </del> — |          |          |      |          |            |            | <u> </u>     |             | ļ    | <del> </del>     |          |           |                | <del> </del> |             |                 |
| 25                               |    |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              |             |      |                  |          |           | <u> </u>       |              | -           |                 |
| 20                               |    |      |     |   |            |     |         |             |                |          | _~       |      |          |            |            |              |             |      |                  |          | <b></b> . | <u></u>        |              |             |                 |
| -28                              |    |      | •   |   |            |     | l       | · /· ~ ·· - |                |          |          |      |          |            |            |              |             |      |                  |          |           | <del> </del>   |              |             |                 |
| 25<br>26<br>27<br>28<br>29<br>30 |    |      |     |   |            |     |         |             |                |          |          |      |          |            |            |              | <u> </u>    |      |                  |          |           |                |              |             |                 |
| _30                              |    |      |     |   |            |     |         |             |                |          |          |      |          |            | <b></b> -  |              |             |      |                  |          |           |                |              |             |                 |
| 31                               |    |      |     |   | L          | L   | L       | L           | 1              | <u> </u> | l        | L    | L        | L          | J          | Щ            | ا           | L    | L                | L        | L,        | ı              | 1            | <del></del> | L               |

| TOTAL | 0.0 |
|-------|-----|
| MAX.  |     |

### HOURLY RAINFALL

|                                              |   | STAT | 108      | , n       | N C  | IAO I | NRN_       |   |   |    |    | UNIT | nini       |          |    | МОМ      | m   | PBBR | UARY     | ·<br> |     | YBAR | 1       | 974 |             |
|----------------------------------------------|---|------|----------|-----------|------|-------|------------|---|---|----|----|------|------------|----------|----|----------|-----|------|----------|-------|-----|------|---------|-----|-------------|
| DATE                                         | 1 | 2    | 3        | 4         | 5    | ð     | 7          | 8 | 9 | 10 | 11 | 12   | 13         | 14       | 15 | 16       | 17  | 18   | 19       | 20    | 21  | 3.5  | 23      | 24  | TOTAL       |
| 1                                            |   |      |          |           |      |       | <u></u>    |   |   |    |    |      |            |          |    |          |     |      |          |       |     |      |         |     |             |
| 1                                            |   |      |          |           |      |       |            |   |   |    |    | i    |            |          |    |          | ~~~ |      |          |       |     |      |         |     |             |
| 4 5                                          |   |      |          |           |      |       |            |   |   |    |    |      |            |          |    |          |     |      |          |       |     |      |         |     |             |
| 6                                            |   |      |          |           |      |       |            |   |   |    |    |      |            |          |    |          |     |      |          |       |     |      |         | _   |             |
| 8                                            |   |      |          |           |      |       |            |   |   |    |    |      |            |          |    |          |     |      |          |       |     | ,    |         |     |             |
| 10                                           |   |      |          |           |      |       |            |   |   |    |    |      |            |          |    |          |     |      |          |       |     |      |         |     |             |
| -11                                          |   |      |          |           |      |       |            |   |   |    |    |      |            |          |    |          |     |      |          |       |     |      |         |     |             |
| 13                                           |   |      |          |           |      |       |            |   |   |    |    |      |            |          |    |          |     |      |          |       |     |      |         |     |             |
| 15<br>16<br>17                               |   |      |          |           |      |       |            |   |   |    |    |      |            |          |    |          |     |      |          |       |     |      |         |     |             |
| 16                                           |   |      |          |           |      |       |            |   |   |    |    |      |            | <u> </u> | ļ  | <u> </u> |     |      |          |       |     |      |         |     |             |
| - (ě - ` [                                   |   |      |          |           |      |       |            |   |   |    |    |      |            |          |    |          |     |      |          | 13.0  | 7,4 |      |         |     | 20.4<br>0.2 |
| 19<br>20                                     |   |      |          |           | 0, 2 |       |            |   |   |    |    |      |            |          |    |          |     |      |          |       |     |      |         |     | V.4         |
| 21                                           |   |      |          |           |      |       |            |   |   |    |    |      | - <i>-</i> | ļ        |    |          |     |      |          |       |     |      | <u></u> |     |             |
|                                              |   |      |          |           |      |       |            |   |   | ,  |    |      | <u>-</u>   |          |    |          |     |      |          |       |     |      |         |     |             |
| 25                                           |   |      |          |           |      | ~     |            |   |   |    |    |      |            | <u> </u> |    |          |     |      |          |       | ~   |      |         |     |             |
| 26                                           |   |      | <b>-</b> |           |      |       | ļ <b>-</b> |   |   |    |    |      |            |          |    |          |     |      | <u> </u> |       |     |      |         |     |             |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 |   |      |          |           |      |       |            |   |   |    |    |      |            |          |    |          |     |      | ļ        |       |     |      |         |     |             |
| 30                                           |   |      |          |           |      |       | <u></u>    |   |   |    |    |      |            |          |    |          |     |      |          |       |     |      |         |     |             |
| 31                                           |   | l    |          | <b></b> _ | l    | L     | L          | l | J | L  | L  | L    | L          | i        | L  | ـــــ    | L   | J    | L        | L     | L   |      | L       | J   | L           |

| TOTAL | 20, 6 |
|-------|-------|
| MAX.  | 13. 0 |

|                                                                            |      | STAT       | ION | Į. | AN C | IIAO     | NEN |           |   |    |    | UNET | am.      |          |      | MON | rti | МАГ     | ксн           |          |              | YHAR | !   | 974     | · .          |
|----------------------------------------------------------------------------|------|------------|-----|----|------|----------|-----|-----------|---|----|----|------|----------|----------|------|-----|-----|---------|---------------|----------|--------------|------|-----|---------|--------------|
| DATE                                                                       | ı    | 2          | 3   | 4  | 5    | ¢        | 7   | 8         | ý | 10 | II | 12   | 13       | 14       | 15   | 16  | 17  | 18      | 19            | 20       | 51           | 22   | 23  | 24      | TOTAL        |
| J. L.                                                                      |      | l          | ļ   |    |      | <u> </u> |     |           | Í |    |    |      |          |          |      |     |     |         |               |          |              |      |     |         |              |
| 3                                                                          |      |            |     |    |      | Ì        |     |           |   |    |    |      |          |          |      |     |     |         |               | ļ·       |              |      |     |         | :            |
| 11                                                                         |      |            |     |    |      |          | ]   |           |   |    |    | - ~  |          |          |      |     |     |         |               |          | ļ            | -3.7 |     |         |              |
| 5                                                                          |      |            |     |    |      |          |     |           |   | 1  |    |      |          |          |      |     | ,:  |         |               |          |              |      |     |         |              |
| 6<br>7<br>8<br>9                                                           |      |            |     |    |      |          |     |           |   |    |    |      |          |          | 15.3 | 0.4 | 3.7 |         |               |          | ļ. <u></u> . |      |     |         | 3.7          |
| 9                                                                          |      |            |     |    | 0.2  |          |     |           |   |    |    |      |          |          |      |     |     |         | 4, 0          |          |              |      |     |         | 0.2          |
| 11                                                                         |      |            |     |    |      |          |     |           |   |    |    |      |          |          |      |     |     | ••• i-, | 7,0           |          |              |      |     |         | 1.0          |
| 12                                                                         |      |            |     | ~  |      |          |     |           |   |    |    |      |          |          |      | ļ   |     |         |               |          |              |      |     |         |              |
| H                                                                          |      |            |     |    |      |          |     | 0, 2      |   |    |    |      |          |          |      |     | 1.6 | 0, 6    |               |          |              |      |     |         | 5, 2<br>0, 2 |
| 16                                                                         |      |            |     |    |      |          |     |           |   |    |    |      |          |          |      |     |     |         |               |          |              |      |     |         |              |
| 18                                                                         |      |            |     |    |      |          |     |           |   |    |    |      |          |          |      |     |     | -       | 6.1           | 3.5      | <del> </del> | :    |     |         | 9.6          |
| 19                                                                         |      |            |     |    |      |          |     |           |   |    |    |      |          |          |      |     | 1.0 |         |               |          | ļ            |      |     |         | 9,6          |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>17<br>18<br>19<br>20<br>21 | 18.2 | 0.2        |     |    |      |          |     |           |   |    |    |      |          |          |      |     |     |         | 0.6           |          | 2.8          |      |     |         | 21.8         |
| 73                                                                         |      | <u>-</u> . |     |    |      |          |     | . <b></b> |   |    |    |      |          | <u> </u> |      |     |     | 1, 2    |               | 10.1     | 11.0         |      |     |         | 22,6         |
| 24                                                                         |      |            |     |    |      |          |     |           |   |    |    |      |          |          |      |     |     |         |               |          |              |      |     | <b></b> |              |
| 76                                                                         |      |            |     |    |      |          |     |           |   |    |    |      |          |          |      |     |     |         |               |          |              |      |     |         |              |
| 24<br>25<br>26<br>27<br>28<br>29                                           |      |            |     |    |      |          |     |           |   |    |    |      |          |          |      |     |     |         |               | <u> </u> |              |      |     |         |              |
| 29<br>30                                                                   |      |            |     |    |      |          |     |           |   |    |    |      |          |          |      |     |     | i. 6    | 0, 2<br>13, 4 | 3. 2     | 0.4          | 1.8  | 0.4 | 0.4     | 21.2         |
| 31                                                                         |      |            | l   |    |      |          |     | 0.2       |   |    |    |      | <u> </u> | L        |      |     |     | 3.6     | 0.2           |          | L            |      |     |         | 4.0          |

TOTAL \_\_\_\_\_109.4 \_\_\_\_\_ MAX. \_\_\_\_\_18.2

### HOURLY RAINFALL

|                      | ! | TATE | lON | <u>R</u> | W CI | IAO | NEN  |   |     |    | _   | UNIT | <u>mm</u> |    |          | MON | т<br>Н | APR      | 11,  |            |     | YBAR  | !   | 974      | <del></del>   |
|----------------------|---|------|-----|----------|------|-----|------|---|-----|----|-----|------|-----------|----|----------|-----|--------|----------|------|------------|-----|-------|-----|----------|---------------|
| 1441<br>DATE         | ı | 2    | 3   | +        | 5    | 6   | 7    | 8 | 9   | 10 | 11  | t2   | 13        | 14 | 15       | 16  | 1.7    | 18       | 19   | 20         | 21  | 22    | 23  | 24       | тогаі,        |
| i<br>2               |   |      |     |          |      |     |      |   |     |    |     | ···  | /         |    | 5.3      |     | ļ      | <b> </b> |      | 3. 2       | 1.2 | 7.0   | 2.6 | 0.2      | 19.5          |
| 3                    |   | 4.4  | 0.3 | 0.4      | 0. 2 |     |      |   |     |    |     |      |           |    |          |     |        |          |      |            |     |       |     |          | 5.,3,         |
| 3<br>6<br>7          |   |      |     |          |      |     |      |   |     |    |     |      |           |    |          |     |        |          |      |            |     |       |     |          |               |
| 7<br>8<br>9          |   |      |     |          |      |     |      |   |     |    |     |      |           |    |          |     |        |          |      |            |     |       |     |          |               |
| 10 I                 |   |      |     |          |      |     |      |   |     |    | 0.6 |      |           |    |          |     |        | 20. D    | 2.0  |            |     |       |     | <u> </u> | 0, 6<br>22, 4 |
| 11<br>12             |   |      | 0.2 |          |      |     |      |   |     |    |     |      |           |    | 0.2      | 1.1 |        |          | 0. 2 | 0.6<br>0.4 | 1.4 | 1.0   |     |          | 3. 2<br>2. 2  |
| 13<br>14<br>15       |   |      |     |          |      |     |      |   |     |    |     |      |           |    |          |     |        |          |      |            |     |       |     |          |               |
| 15<br>16             |   |      |     |          |      |     |      |   |     |    |     |      |           |    |          |     |        |          |      |            |     |       |     |          |               |
| 18<br>19             |   |      |     |          |      |     |      |   |     |    |     |      |           |    |          |     |        |          |      |            |     |       |     |          |               |
| 20                   |   |      |     |          |      |     |      |   | , - |    |     |      |           |    | <u> </u> |     |        |          |      |            |     | · · - |     |          |               |
| 21<br>21             |   |      |     |          |      |     |      |   |     |    |     |      |           |    |          |     |        |          |      |            |     |       |     |          |               |
| ?3<br>24             |   |      |     |          |      |     |      |   |     |    |     |      |           |    |          |     |        |          |      |            | L   |       |     |          |               |
| 25<br>26<br>27<br>28 |   |      |     |          |      |     |      |   |     |    |     |      |           |    |          |     |        |          |      |            | ļ   |       |     |          |               |
| 28                   |   |      |     |          |      |     | **** |   |     |    |     |      |           |    |          |     |        |          |      | ļ <u> </u> |     |       |     |          |               |
| 29<br>30<br>31       |   |      |     |          |      |     |      |   |     |    |     |      |           |    |          |     | ļ      |          |      |            | ţ   |       |     |          |               |

TOTAL 53.2 MAX. 20.0

### HOURLY RARREALL.

|                                                                                                    |         | STAT | ion | R    | AN C      | IAO          | NEN   |       |                   |      |      | UNIT | na <sub>k</sub> n |          |       | MONI         | H          | JUN   | K    |       |     | YEAR       | !    | 97¢ | <del></del> -                                               |
|----------------------------------------------------------------------------------------------------|---------|------|-----|------|-----------|--------------|-------|-------|-------------------|------|------|------|-------------------|----------|-------|--------------|------------|-------|------|-------|-----|------------|------|-----|-------------------------------------------------------------|
| DATE.                                                                                              | ı       | 2    | 3   | 4    | 5         | 6            | 7     | 8     | y                 | 10   | 11   | 12   | 13                | 14       | 15    | ló           | 17         | 18    | 19   | 20    | 21  | 22         | 23   | 24  | TOTAL                                                       |
| 1 2                                                                                                |         |      |     |      |           |              | 0.2   | Ö, 1  | 0, 2              |      |      |      | υ, 4              |          |       |              |            |       |      |       |     |            |      |     | 0.4                                                         |
| 1 3                                                                                                | · · · : |      |     |      |           |              |       | _:::2 | . 77.4<br>        | 11.4 |      |      |                   | 0.0      |       | \$ <u>.6</u> | 0.2        | 0.2   | 1.2  | 0,2   |     |            |      |     | 5.6                                                         |
| <u>\$</u>                                                                                          |         | 0, 2 |     |      | ,         |              | 10. 2 | 0, 2  | 1.1               | 0.8  |      |      |                   |          |       | - 271.2      | - <u>*</u> |       | - 24 |       |     | 0, 2       |      |     | 2.6                                                         |
| Ž.                                                                                                 |         |      |     |      | 11.2      | U. 2<br>O. 4 |       | (1, 2 |                   |      |      |      |                   |          | 11, 2 |              |            |       |      |       |     |            |      |     | 0.6                                                         |
| 6<br>7<br>8<br>9                                                                                   |         |      |     |      |           |              |       |       |                   |      |      |      | 2, 1<br>n, 8      | 0.2      | 7.8   | 1.4          |            |       |      |       |     |            |      |     | U.8<br>6.6<br>2.7<br>2.6<br>0.4<br>0.6<br>1.0<br>2.0<br>5.0 |
| 11                                                                                                 |         |      | 0.2 | 0, 2 | .,        | 0, 1         | 0, 2  |       |                   |      |      |      |                   |          |       |              |            |       |      | 4), 2 |     | 0.2        |      |     | 0.8                                                         |
| 13<br>14                                                                                           |         |      |     |      |           |              |       |       |                   |      |      |      |                   |          |       |              |            |       |      | 0, 2  |     | 0.2        |      |     | 0.4                                                         |
| 15                                                                                                 |         |      | 0 2 |      | 1004      | 1.7          |       |       |                   | 0.4  | 0.4  | 0. 8 | 0, 2              |          |       |              |            |       |      |       |     |            |      |     | 5,1                                                         |
| 17                                                                                                 |         |      |     |      | • • • • • |              |       |       |                   |      |      |      |                   |          |       | 0, 7         |            |       |      |       |     |            |      |     | 0. 2                                                        |
| 19<br>20                                                                                           |         |      |     |      |           |              |       |       |                   |      |      |      |                   | 6, N     |       | 0.2          |            |       |      |       |     | 0.2        | . ,  |     | 13, 4                                                       |
| 21<br>22                                                                                           |         |      |     |      |           |              |       |       |                   | 0, 8 | 0, 8 |      |                   |          | 16.3  | 0, 4         |            | 1). 2 |      |       | 0.2 | 0.7        | 0.4  |     | 1.6                                                         |
| 23<br>21                                                                                           |         | 0.2  |     |      | ~ ~ ~     |              |       |       | حد د<br>ابر د د د |      |      |      | 1.6               |          |       | 5, 8         |            | .17.2 |      |       |     | 0.7        |      |     | 8. 4<br>0. 2                                                |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>74<br>25<br>26<br>27 |         |      |     |      |           |              |       |       |                   |      |      |      |                   | <u> </u> |       | 0.1          |            |       |      |       |     | U.2<br>U.2 | 0. 2 |     | 0, 4<br>0, 2<br>0, 4                                        |
| 28                                                                                                 |         | <br> |     |      |           |              |       | <br>  | ·                 |      |      |      |                   |          |       |              |            |       |      |       |     |            |      |     |                                                             |
| 28<br>29<br>30<br>3)                                                                               |         |      |     |      |           |              |       |       |                   |      |      |      |                   |          |       | 3.6          | 1.6        | 6.6   | 4.4  | 1.3   | 0.4 |            |      |     | 21.0                                                        |

TOTAL 23.9 MAX. 16.2

### HOURLY RAINPALL

|                                        |                   | <b>5</b> ያልፕ | KOF  | 8.   | AN O | ITAO  | NEN  |     |            |      |    | URIT | inm |          |     | монт | ru           | for.   | ۲     |      |            | YEAR |     | 974  |                         |
|----------------------------------------|-------------------|--------------|------|------|------|-------|------|-----|------------|------|----|------|-----|----------|-----|------|--------------|--------|-------|------|------------|------|-----|------|-------------------------|
| OATE S                                 | ı                 | 2            | 3    | 1    | 5    | 6     | 7    | 8   | 9          | ιo   | 11 | 12   | 13  | 14       | 15  | 16   | 17           | 18     | 19    | 20   | 21         | 55   | 23  | 24   | TOTAL                   |
| 1                                      |                   |              |      |      |      |       |      |     |            |      |    |      |     |          |     |      |              |        |       |      |            |      |     |      |                         |
| 3                                      |                   |              |      |      |      |       |      |     |            |      |    |      |     |          |     |      |              |        |       |      |            |      |     |      |                         |
| 5                                      | · · · · · · · · · |              |      |      |      | 0.2   |      |     |            |      |    |      |     |          |     |      |              |        |       |      |            |      |     |      | 0.2                     |
| -6                                     |                   |              | ·    |      |      | 1), 2 | 0. 2 | 0.1 |            | 0, 2 |    |      |     | 0.6      | 0.8 | 0.6  |              |        |       |      |            | 0, 2 |     |      | 2.6<br>0.8              |
| 8 9                                    |                   | 0.2          |      |      |      |       | l    | 0.3 | 0. 2       |      |    |      |     |          |     |      |              |        |       | 0. 2 |            | 0. 2 |     |      | 0.6<br>U.4              |
| 10 1                                   |                   |              | 0.2  |      |      |       |      |     |            |      |    |      |     | <b> </b> |     |      |              |        |       |      | ļ. <u></u> |      |     |      | 0,2                     |
| 11<br>12<br>13<br>14<br>15             |                   |              |      |      |      |       |      |     |            |      |    |      |     |          |     |      |              |        |       |      |            |      |     |      |                         |
| 14                                     |                   |              |      |      | 0, 2 |       |      |     |            |      |    |      |     |          |     |      |              |        |       |      |            |      |     |      | 0. 2                    |
| 16                                     |                   |              |      |      |      |       |      |     |            |      |    |      |     |          |     |      |              |        |       |      |            |      |     |      |                         |
| 18                                     |                   |              |      |      |      |       |      |     |            |      |    |      |     |          |     |      |              |        |       |      |            |      |     |      |                         |
| 16<br>17<br>18<br>19<br>20             |                   |              |      |      |      |       |      |     | <u>.</u> . |      |    |      |     |          |     |      |              |        |       |      |            |      |     |      |                         |
| 21 -                                   |                   |              |      | ···• |      |       |      |     |            |      |    |      |     |          |     |      |              |        | ····- |      |            |      |     |      |                         |
| 23<br>24                               |                   |              |      |      |      |       |      |     |            |      |    |      |     |          |     | 6.0  | 25. 2        | 0,6    | 12.0  | 3, 0 | 5.8        | 1.8  | 0.6 | 1.1  | 56.2                    |
| 25<br>26                               | 0.6               |              |      |      |      |       | 0, 2 |     |            |      |    |      |     |          |     |      | 4.0          | . J. Q | 1.0   | 2.2  | 0.2        | 0.4  |     | 0, 2 | 3.6<br>0.8<br>2.8       |
| 27                                     |                   |              |      |      |      | -,,   |      |     |            |      |    |      |     |          |     |      |              |        |       |      | 1. 2       | 1.2  | 0.2 | 0.2  | 2.8                     |
| 24<br>25<br>26<br>27<br>28<br>29<br>30 |                   |              | 0.2  | .5.4 | 1 2  | 2.6   | 1, 6 | 0.8 | 0.3        |      |    | ,,   |     |          |     |      | 1.8          | 0.2    |       | 0.8  |            |      |     | 0.2  | 20.0                    |
| 31                                     |                   |              | 9.2. |      |      | . 2   | L    |     |            |      | l  | L    |     | 0, 2     |     |      | 1, 8<br>0, 6 | 0, 1   |       |      | <u> </u>   |      |     |      | 2 <u>(), ()</u><br>1, 2 |

TOTAL 90.0 MAX. 25,2

|                |      | STAT    | (ON      |      | AN C     | HAO  | NEN  |              |              |        |           | UNIT | บเนิย        | -            |            | мом  | F41  | AUG      | UST  |       |                   | YSAR     |        | 974    | ****                 |
|----------------|------|---------|----------|------|----------|------|------|--------------|--------------|--------|-----------|------|--------------|--------------|------------|------|------|----------|------|-------|-------------------|----------|--------|--------|----------------------|
| DATE           | 1    | 2       | 3        | 4    | 5        | 6    | 7    | S            | 9            | 10     | 11        | 12   | 13           | 14           | 15         | 16   | 17   | 18       | 19   | 20    | 21                | 22       | 23     | 24     | TOTAL                |
| 1              |      |         |          | 1    |          |      |      |              |              |        |           |      |              |              |            |      |      |          |      |       |                   | 0.1      |        |        | (6, 1                |
| 3              |      |         |          | 0, 4 |          |      |      |              |              |        |           |      |              |              |            |      |      |          |      |       |                   |          |        | 25.0   | 0. 4<br>26. 2        |
| 1              | 3, 0 | 2.1     | 0.6      | 0.2  |          |      |      |              |              |        |           |      |              |              |            |      |      | ,        |      |       |                   |          | . 5. 6 | 2.73.4 | 5.9.                 |
|                |      |         |          |      |          |      |      |              |              |        |           |      |              |              | 0.2        | 0.2  |      | 1.0      | 0.4  |       |                   |          |        |        | 1.0                  |
| 5 6 7          |      | 0. 2    |          | ļ    | <b>-</b> |      | ~    |              | 0, 2         |        | 2. 2      | 0, 2 | 2.8          |              | <u>U.</u>  |      |      |          |      |       |                   |          |        |        | 1. 6<br>3. 1<br>2. 8 |
| 8              |      |         |          |      |          | 0, 2 |      |              |              |        |           |      |              |              |            |      |      |          |      |       |                   |          |        |        | 0,2                  |
| 9              |      |         |          |      |          |      |      |              |              |        |           |      |              |              | ļ          |      |      |          |      |       |                   |          |        | •      |                      |
|                |      |         |          |      |          |      |      |              |              |        |           |      |              | 5175         |            |      |      |          |      |       | 0.6               |          |        |        |                      |
| 13             |      | 1.8     | 0.4      | 0, 2 | 1.4      | 0.2  |      |              |              | · /*** |           |      | 0.6          | 1. 1<br>0. 2 | 1. 2       |      |      | 0.2      | 5, 2 | 2.8   | U.D               |          | 5.6    | 1, 2   | 18.8<br>4,6          |
| 1 12 -1        |      |         |          |      | 1, .3    |      |      |              |              |        |           | 9.8  |              | l            |            | 0. 2 | 0.6  |          |      |       |                   |          |        |        | 10.6                 |
| 15<br>16<br>17 |      | -• ·· · | 0.1      | 3. U | 1.0      | 0.3  | 0.8  | 0. 2<br>0. 2 | 0. 2         | 0. 4   |           |      |              | 0. 1         |            |      | 0.8  | 0.4      | 0.2  | 0,2   | 0.4<br>0.4<br>0.2 | 0.1      | 0.2    | 0.6    | 6.1                  |
| 17             | 0. ι | 1.8     | 1.8      |      | 0,8      |      | 0.4  |              | 3, 8<br>0, 2 | 0.8    | 0.6       | 0.6  | 5. 7<br>0. 8 | 0. 2         | 2.8<br>0.6 | 0, 2 | 0, 2 | 0.2      | 0.6  | 0.2   | 0. 2              |          | 0.2    | 0.6    | 30, 2                |
|                | 6.0  | 1.8     | 0.2      |      |          | 0.2  | 0. 2 |              | 0. 2         | 0, 6   | 0.2       | 1,0  | 0.8          | 2, 8         | 0.6        |      |      |          |      |       |                   | 0.2      |        | 0. 7   | 18.6                 |
| 19<br>20       |      |         | <u> </u> |      |          |      |      |              |              |        |           |      |              |              |            |      |      |          |      |       |                   |          |        |        |                      |
| 21             |      |         |          |      |          |      |      |              |              |        | <b></b> ÷ | ļ    |              | ·            |            | ļ i  | ·    | <b> </b> |      | ···   |                   | <u> </u> |        |        |                      |
| 73 - 1         |      |         |          |      |          |      |      |              |              |        |           |      | 0.2          | 0, 2         | 1.0        |      |      |          |      |       |                   |          |        |        | <u>l.1</u> -         |
| 24             |      |         |          |      |          |      |      |              | • • • • • •  |        |           |      |              |              |            | 0.2  |      | 0.8      | ·    |       |                   |          |        |        | 1.0                  |
| 24<br>25<br>26 |      |         |          |      |          |      |      | 0. 2         |              |        |           |      |              |              |            | 4. 8 | 1, 0 | 0.6      |      |       | 0.2               |          |        |        | 6.8                  |
| 27<br>28       | 0. 2 | 0.6     | 1.0      | 0.6  | 0. 6     | 0.8  | 0.2  | 0.8          | 0, 2         |        |           |      |              |              |            |      |      |          | 0, 3 | Q. 3. |                   |          |        |        | 6.2<br>0.2           |
| 29<br>30       |      | 0. 2    |          | \    |          |      |      |              |              |        |           |      | 0.8          |              |            |      |      |          |      |       |                   |          |        |        | 1,0                  |
| 30_<br>31      |      |         |          |      |          |      |      |              |              |        |           |      |              | 0, 8         |            |      |      |          |      |       |                   |          |        |        | 0.8                  |

TOTAL 153.4 MAX. 25.0

### HOURLY RAINPALL

|                                                        |             | TAT  | ION        | R    | AN C       | IAO  | NEN  |      |          |            |             | UNIC           | mu   |        |      | иои           | 11     | SHIT  | EMBE         | R            |               | YEAR   |            | 974         |                                                |
|--------------------------------------------------------|-------------|------|------------|------|------------|------|------|------|----------|------------|-------------|----------------|------|--------|------|---------------|--------|-------|--------------|--------------|---------------|--------|------------|-------------|------------------------------------------------|
| DANE                                                   | ŧ           | 2    | 3          | 4    | 5          | ь    | 7    | 8    | 9        | 10         | ш           | 12             | 13   | 14     | 15   | 16            | 17     | 18    | 19           | 20           | 21            | 22     | 23         | 24          | JATOT                                          |
| 1                                                      |             |      |            |      | ļ          |      |      |      |          |            |             |                |      |        |      |               | 0.1    |       |              |              | l             |        |            |             | 0.1                                            |
| 1<br>2<br>3                                            |             |      |            |      |            |      |      |      |          |            |             |                |      |        |      | 2, 3          | 1,2    |       | 0.4          | 0. 1         |               |        |            |             | 1.3                                            |
| 3                                                      |             |      |            |      |            |      | 0, 2 |      |          |            |             |                |      |        |      | 0.2           |        | 0.2   |              |              |               |        |            |             | 0.6.                                           |
| - <del>1</del> - 5 - 6 - 7                             |             |      |            | ·    | <b>}</b>   |      |      |      |          |            |             |                |      | 0. 5   |      |               |        |       |              | 0, 2         |               |        |            |             | 0, 7<br>0, 2                                   |
| <u>6</u>                                               |             |      |            |      |            |      |      | 0.2  |          | ·          |             |                |      | - 31.3 |      |               |        |       |              | l            |               |        |            |             | 0, 2                                           |
| 7                                                      |             |      |            |      |            |      |      |      |          |            |             |                |      | 5, 6   | 2, 5 | 0.2           | _0, 4. | 1,3   | 0. 1         | 0.4          | 0.2           |        |            | 0.          | 11, 3<br>11, 4<br>0, 4                         |
| 8                                                      | 0.4         | 0, 4 |            |      | 0.2        |      |      |      |          |            |             |                |      |        |      | 0,6           |        |       | 5.0          | .1.9         | 0.6           | 0.2    |            |             | !!                                             |
| <u> </u>                                               |             |      |            |      | -2.1       |      |      |      | ·        |            |             |                |      |        |      | 0. 2          |        | 0.2   |              |              |               |        |            | *****       | 0.4                                            |
| <u> </u>                                               |             |      |            |      |            |      |      |      | <b>├</b> | <br>       |             |                |      | 14, 2  | D. 2 |               |        | -3    |              |              | 1             |        |            |             | 15.5.                                          |
| 12                                                     |             |      |            | 8. 2 |            |      |      |      |          |            |             |                | 0. 9 |        |      |               |        |       |              |              |               |        | -2-3       | Ŏ. 2        | 1.1.                                           |
| 8<br>9<br>10<br>11<br>12<br>13<br>14<br>(5<br>16<br>17 |             |      |            |      |            |      |      |      | ====     |            | ļ <u></u> . |                |      |        |      |               |        |       | 0, 2         | 0, 8         |               | 1.0    | 0.2        | <u>U. 4</u> | 1, 1<br>2, 2<br>2, 6                           |
| -!:                                                    | Ũ. <b>2</b> |      | ļ          |      | ·          |      | ,    |      |          |            |             | <del>-</del> - |      | 0. 4   |      |               | ,      |       | 0.2          |              |               | 132.¥. | - 2:.2     |             | 0.8<br>10.4<br>0.6<br>33.4<br>5.9              |
| 18                                                     | -21.2       |      | 0.2        |      |            |      |      | 0, 2 | 0.6      | 0, 2       | 0.2         |                |      |        |      | 0.6           | 7.2    | 1. 2  |              |              |               |        |            |             | 10.4                                           |
| 17                                                     |             |      |            |      |            |      |      |      |          |            |             |                | 0.6  |        |      | [             |        |       |              | ., .         | l <del></del> | 3. 0   | 1.8        | 3. 0        | 0.6                                            |
| 18                                                     |             |      |            |      | L          |      |      |      |          | ļ          |             |                |      |        |      | 1.8           |        |       | J            | 0. 4         | 19. 4         |        |            | 3. 0        | 5.0                                            |
| 19<br>20                                               | 1.8         | 0, 2 | 0. 2       |      | <b> </b> - |      |      |      |          |            |             |                |      |        |      | 2.6           |        | ····- |              |              | 0. 2          | 1.0    | 2.3        | 0, 2        | 4.6                                            |
| 2]                                                     | 0.2         |      |            |      |            | ~    |      |      |          |            |             |                | 0.4  |        |      |               |        |       |              |              |               |        |            |             | 0, 6                                           |
| 22                                                     |             |      |            | 0.2  | 0, 2       |      | 0, 7 |      |          |            |             | 0.8            |      | 1.4    | 0.8  |               |        |       |              | ļ            | ļ             |        |            |             |                                                |
| 23                                                     |             |      | ~ %' %'    | 1,9  |            |      |      |      |          | .~         |             |                |      | 7      | 7676 |               | - 7 1  | 2 3   |              | ادَ اهَ ا    | ļ             | 1.0    | 3.5<br>1.2 | 0, 2        | 3.4                                            |
| }-25                                                   |             | 6.9  | 7.3<br>3.6 | 1.3  | 6          | 0, 2 |      | 3. 1 | 3.0      | 1.2        | 1.0         | 9              | 0.1  | 0.2    | 7.   | ). 4<br>12. 6 | 0, 4   | 2.3   | 0, 2         | 9. 2<br>0. 8 | 1             |        | 0.6        |             | 4, 6<br>0, 6<br>4, 1<br>3, 7<br>33, 4<br>41, 8 |
| 23<br>24<br>25<br>26                                   | 0.6         |      |            | ¥    |            | 0.4  | 1    |      |          |            | 1           |                | 1    |        |      |               |        | 4.2   | 0, 2<br>2, 6 | 0.6          |               |        |            |             | 8.4                                            |
| 27                                                     |             |      |            |      |            |      |      |      |          | ļ <u>.</u> | ļ           |                |      | ļ      |      |               |        |       |              |              | <b></b>       |        |            |             |                                                |
| 28<br>29<br>30<br>31                                   |             |      |            |      |            |      |      |      |          | ļ          |             |                |      |        |      |               |        |       |              |              | ·             |        |            |             |                                                |
| 30                                                     |             |      |            |      |            |      |      |      |          | ·          |             |                |      |        |      |               |        |       |              |              |               |        | 1.9        | 1.7         | 3.6                                            |
| 35                                                     | 1.3         | 0.2  | 0.2        |      |            |      |      |      |          |            |             |                |      |        | \    |               |        |       |              |              | <u> </u>      | L      |            |             | 1.7                                            |

TOTAL 201.7 MAX. 19.4

|                                              |              | STAT | 108         | R            | IN C | HAO   | NEN      |      |      |      |            | UNIT  | min.          |               |                   | мом   | et       | осто | BBR  |      |      | яля        |       | 974   |                     |
|----------------------------------------------|--------------|------|-------------|--------------|------|-------|----------|------|------|------|------------|-------|---------------|---------------|-------------------|-------|----------|------|------|------|------|------------|-------|-------|---------------------|
| DATE                                         | ١            | 2    | 3           | 1            | 5    | 6     | 7        | S    | 9    | 10   | ii_        | 12    | 13            | į.į           | 15                | 16    | 17       | 18   | 19   | 20   | 21   | 22         | 23    | 24    | TOTAL.              |
|                                              |              |      |             |              |      |       |          |      |      |      |            |       |               |               |                   |       |          |      |      |      |      |            |       | ,     |                     |
| 3                                            |              |      | · · · · · · | <b> </b>     |      | ļ     | ·· · · · |      |      |      |            |       |               |               |                   | ···   | 0.1      |      |      |      |      |            |       |       | 0.1                 |
| 11                                           |              |      |             |              |      |       | ~~~      |      | 0. 2 |      |            |       |               |               |                   |       |          |      | 0, 2 |      |      |            |       |       | 0.1                 |
| 5<br>6<br>7<br>8<br>9<br>10                  |              |      |             | 0, 2<br>2, 9 |      |       |          | 0, 2 |      | <br> |            |       |               |               | 0.6               |       |          |      |      |      |      | ****       |       | 1.0   |                     |
|                                              | 1.0          | 0.6  |             | 2.9          | 0.2  | 0.4   | i        | 0, 2 |      |      |            |       |               | 4. 2          | 0.6<br>7.9<br>0.4 |       | 0.2      |      |      | ~    | 0.2  | 0.2        |       |       | 13. 4<br>5. 2       |
| 9                                            | 0. 4<br>2. 5 | 0.2  |             |              | -    | 0.2   | 0.2      | 0.8  | 6.6  | 2.8  | ).0<br>0.4 | 0, 2  | 0. 6<br>28. 0 |               | L                 | 0,6   | 15. 4    | 0. 2 |      | 0.2  | 0. 2 | 0.2<br>2.0 | 2. O  | 2.9   | 31. 7<br>70. 6      |
| 11                                           |              | 0.2  |             | U, 6         |      |       |          | 0.0  | 1.0  |      | 0, 1       | 11. 9 | 28. 0         | 10.7          | 0.2               |       |          | 21.6 | 50.0 | 12.6 | 4.8  |            |       | 3.0   | 102.9               |
| 13                                           | 1.8          | 0.6  | ļ           |              | 0. 2 |       |          |      |      |      |            |       |               |               |                   | 16. 6 | 21.2     | 0.2  | 1.0  | 5.0  | 1.3  | 1.0        |       |       | 19.3                |
| 12<br>13<br>14<br>15<br>16<br>47<br>18<br>19 |              |      |             |              |      |       |          |      |      | **** |            |       | 2.6           |               | 1.2               |       |          |      |      |      |      | 11.0       |       | 0.2   | 27.9                |
| 16                                           | 2.4          | 2.6  | 11.1        | 1.1          | 2, 2 | 0.4   |          |      |      |      | 0,3        | 3.0   | 2.0           |               |                   | 1.7   |          |      |      |      |      |            | 2.6   | l. ?  | 12.3<br>24.8<br>0.8 |
| 17                                           |              |      |             |              | .,   |       | ļ        |      |      |      |            |       |               | 0.6           |                   | 0.2   | <u>-</u> |      |      |      |      |            | i     |       | 0,8                 |
| 19                                           |              |      |             |              |      |       |          |      |      |      |            |       | 1.6           | 10, Ó<br>0, 4 |                   |       |          |      |      |      |      |            |       |       | 10.0                |
| -20<br>-21<br>-22                            |              |      |             |              |      |       |          |      |      |      |            | B. J  | 1.0           | **- *         |                   |       |          |      |      |      |      |            | 3.7   | 1,5   | 2.7                 |
| 32                                           | 2.0          |      | 3.0         |              | 4.4  | (t, 2 |          | 0, 2 |      |      |            |       |               |               |                   |       |          | [1년] | 0.6  |      |      |            |       |       | 9.0<br>5.2          |
| 21                                           |              |      |             |              |      |       |          |      |      |      |            |       |               |               |                   |       |          |      |      |      |      |            |       |       |                     |
| 24<br>25<br>26<br>27<br>28<br>29<br>30       |              |      |             |              | .,   |       |          |      |      |      |            |       |               |               |                   |       |          |      |      |      |      |            |       |       |                     |
| 27                                           |              |      |             |              |      |       |          |      |      |      |            |       |               |               |                   |       |          |      |      | 13.0 | 1, 6 |            | 21, 4 | 3,6   | 41.5                |
| 29                                           | 1, 2         |      |             |              |      |       |          |      |      |      |            |       | ]             |               |                   |       |          | ļ    |      |      |      |            | 2?    | Q. 4. | 9.3_                |
| 31                                           |              |      |             | •            |      |       |          |      | 0. 2 |      |            |       |               |               |                   |       |          |      |      |      |      |            | 4.0   | 2.2   | 6.1                 |

TOTAL 438.5 MAX. 50.0

# HOURLY RAINPALL

|                                  |            | STA1         | ю    | R   | AN C         | нло   | NEN |      |      |          |    | UNIT         | nten |     |                | мом   | н        | NOVE                                    | LIBBR    |          |          | YBAR  | 1    | 974  |                |
|----------------------------------|------------|--------------|------|-----|--------------|-------|-----|------|------|----------|----|--------------|------|-----|----------------|-------|----------|-----------------------------------------|----------|----------|----------|-------|------|------|----------------|
| DATE                             | 1          | 2            | 3    | -1  | 5            | 6     | 7   | 8    | 9    | 10       | 11 | 12           | 13   | 14  | 15             | 16    | 17       | 18                                      | 19       | 20       | 21       | 22    | 23   | 24   | TOT'A1,        |
| l<br>2                           |            |              |      |     |              |       |     |      |      | ,,,,,    |    |              |      |     | 0.4            | 12, 2 |          |                                         |          |          | [        |       |      |      | 12,6           |
| 3                                |            |              |      |     |              |       |     |      |      | <b>~</b> |    | [            | **** |     |                |       |          | ļ                                       | <b>-</b> |          |          |       |      |      |                |
| 4                                |            |              |      |     |              |       |     | }    | 6, 2 |          |    |              |      |     |                |       | 1.4      | Ŏ. 2                                    |          | 1, 1     | 0.6      | 0. 2  |      |      | 3, 7           |
| 5                                |            |              |      |     | 0. 2         |       |     |      | 0, 2 |          |    |              |      |     |                |       |          |                                         |          |          |          |       |      |      | 0.2            |
| <del>7</del><br>8<br>9           |            |              |      |     |              |       |     |      |      |          |    |              |      |     |                |       |          |                                         |          |          |          |       |      |      |                |
| 9                                |            |              |      |     |              |       |     | ļ    | 0.2  | <b> </b> | }  |              |      | [   | ļ              |       |          |                                         |          |          |          | 17. 8 | 1, 2 | 3, 2 | 0. 2<br>22. 2  |
| 10<br>11<br>12<br>13<br>14       | 1.5<br>2.4 | 0, 2<br>2, 8 | 0.1  |     | 7 2          | 2.3   |     |      |      |          |    |              |      | 0.2 |                | 5.2   | 2.0      | 2 2                                     |          | 0.2      |          |       |      | 9.4  | 11, 3<br>33, 7 |
| 13                               | 2.9        | _4_0         |      |     | 7. 2<br>0. 2 | -1.3  |     |      |      |          |    |              |      |     | . <u>9.</u> Ų. |       | 2.4      |                                         |          | .V4.A.   | <b> </b> |       |      |      | 0.2            |
| 15                               |            |              |      |     |              |       |     |      |      |          |    |              |      |     |                |       |          | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          | -        |          |       |      |      |                |
| .16<br>.17                       | 1, 0       |              | 0.8  | 0.2 | 0.4          | 0.8   | 0.1 | 0.2  | 0.4  | 0.4      |    | <del>-</del> |      |     |                |       | <b></b>  |                                         |          | <b> </b> | ļ        | 0.2   |      | 0,2  | 0.4            |
| 18                               |            |              | ,,   |     |              |       |     |      |      |          |    | ~~~~         |      |     |                |       |          |                                         |          |          |          |       |      |      |                |
| 19<br>20<br>21                   |            |              |      |     |              |       |     | 0. 2 |      |          |    |              |      | :   |                |       |          |                                         |          |          |          |       |      |      | 0.2            |
| 22                               |            |              |      |     |              |       |     |      |      |          |    |              |      |     |                |       |          |                                         |          |          |          | <br>  |      |      |                |
| 23                               |            |              | 0, 2 |     |              |       |     |      |      |          |    |              |      |     |                |       |          |                                         |          |          |          |       |      |      | 0.2            |
| 22<br>23<br>24<br>25<br>26<br>27 |            |              |      |     |              |       |     |      |      |          |    |              |      |     |                |       | <b>-</b> |                                         |          |          |          |       |      |      |                |
| 27                               |            |              | ·    |     |              | ***** |     | 0, 2 |      |          |    |              |      |     |                |       |          |                                         | ļ        |          |          |       |      |      | 0.2            |
| 28<br>29<br>30                   |            |              |      |     |              |       |     |      |      |          |    |              |      |     |                |       |          |                                         |          |          |          |       |      |      | ¥-=            |
| 30                               |            |              |      |     |              |       |     |      |      |          |    |              |      |     |                |       |          |                                         |          |          | <u> </u> |       |      |      |                |

TOTAL 89.7 MAX. 17.8

|                                        |             | STAT      | ION | R | M C | нао | NEN  |   |     |    |     | UNIT | IBAL         |    |          | MON      | ан         | DECE | MBER |    |              | YBAR     | <u></u> | 974 |       |
|----------------------------------------|-------------|-----------|-----|---|-----|-----|------|---|-----|----|-----|------|--------------|----|----------|----------|------------|------|------|----|--------------|----------|---------|-----|-------|
| DVI<br>GATS                            | 1           | 2         | 3   | 1 | 5   | Ú   | ,    | 8 | 9   | ιo | II. | 12   | 13           | 14 | 15       | 16       | 17         | 18   | 19   | 20 | 21           | 35       | 23      | 21  | JATOT |
| <u>1</u>                               |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          |          |            |      |      |    |              |          |         | •   |       |
| 3                                      |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          |          |            |      |      |    |              |          |         |     |       |
| - 3-                                   |             |           |     |   | ••  |     |      |   | · · |    |     |      |              |    |          |          |            |      |      |    |              |          | •       |     |       |
| 6                                      |             | •         |     |   |     |     |      |   |     |    |     |      |              |    |          |          |            |      |      |    |              | <b>]</b> |         |     |       |
| R                                      |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          |          |            |      |      |    |              |          |         |     |       |
| 9<br>0                                 |             |           |     |   |     |     |      |   |     |    |     |      | <sub>1</sub> |    | <u> </u> | <b></b>  | <u> </u> - |      | ļ    |    |              |          |         |     | ·I    |
| 11                                     |             | ***       |     |   |     |     |      |   |     |    |     |      |              |    |          |          |            |      |      |    |              |          |         |     |       |
| 11<br>12<br>13<br>14<br>15             |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          |          | }          |      |      |    |              |          |         |     |       |
| 15                                     |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          |          |            |      |      |    |              |          |         |     |       |
| 10<br>17                               |             |           |     |   |     |     |      |   |     |    |     |      | <u> </u>     |    |          |          |            |      |      |    |              |          |         |     | i     |
| 17<br>18                               |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          |          | [          |      |      |    | ļ            | ļ        | - ~- ·  | ļ   |       |
| 19<br>20                               |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          |          |            |      |      |    |              |          |         |     |       |
| 21                                     | • • • • • • |           |     |   |     |     | ···- | ] |     |    |     |      |              |    |          | ]        |            | Ì    |      |    |              |          |         |     |       |
| 73                                     |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          | }        | ļ          |      |      |    | <del>[</del> |          |         |     |       |
| 25                                     |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          |          | ļ          | I    |      |    |              | Ī        |         |     |       |
| 27                                     |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          |          |            |      |      |    |              |          |         |     |       |
| 24<br>25<br>26<br>27<br>28<br>29<br>30 |             | / <b></b> |     |   |     |     | ]    |   |     |    |     |      |              |    |          | <u> </u> |            |      | Ì    |    |              |          |         |     |       |
| <u>30</u><br>31                        |             |           |     |   |     |     |      |   |     |    |     |      |              |    |          |          |            |      |      |    | ļ            | ļ        |         |     | ļ     |

| TOTAL | 0.0 |
|-------|-----|
| MAX.  |     |

|                |             | STAT | ION  | 19  | AN C | нао  | NEN  |      |      |                    |    | UNIT        | am       |    |    | MON      | ш    | JANU     | ARY_ |          |    | YBAR        | !    | 975      |       |
|----------------|-------------|------|------|-----|------|------|------|------|------|--------------------|----|-------------|----------|----|----|----------|------|----------|------|----------|----|-------------|------|----------|-------|
| PATE:          | ł           | 2    | 3    | 4   | 3    | 6    | 7    | 8    | 4    | 10                 | 11 | 12          | 13       | 14 | 15 | 16       | L?   | ŧs.      | 19   | 20       | 21 | 55          | 23   | 24       | TOTAL |
|                |             |      |      |     |      | ļ    |      |      |      |                    |    |             |          |    |    |          |      |          |      |          |    |             |      |          |       |
| 2 3            | · · · · · • |      |      |     |      |      |      |      |      |                    |    |             |          |    |    |          |      |          |      |          |    |             |      |          |       |
| 1              |             |      |      |     | 22.4 |      |      |      |      |                    |    |             |          |    |    |          | ð. 2 |          |      |          |    |             |      | ~        |       |
| . S            | •           |      | •    |     | 0. 3 |      | į    |      |      |                    |    | Ì           |          |    |    | <u> </u> |      |          |      |          |    |             |      |          | 0.4   |
| 7 8            |             |      |      |     |      |      |      |      |      |                    |    |             |          |    |    |          |      |          |      |          |    |             |      |          |       |
| 9              |             |      |      |     |      |      |      |      | 2.74 |                    |    |             | ·        |    |    | 1.0      |      |          | 0.4  |          |    |             | 0, 2 |          | 1.2   |
| i0             | ··          |      |      |     |      | 0, 2 | 2    |      | 0, 2 |                    |    |             |          |    |    | 0.6      | ļ    | 0.2      | 0.4  |          |    | Ì           |      |          | 2.0   |
| 12<br>13<br>14 |             |      | ~~~~ |     |      |      |      |      |      |                    |    |             |          |    |    |          |      |          |      |          |    |             |      |          | 2, 6  |
| H              |             | 0, 2 | 0.8  | 0.8 | 0.   | 0, 2 |      | 0. 2 |      |                    |    |             |          |    |    |          |      |          |      |          |    |             |      |          | 2.6   |
| 15<br>16<br>17 |             |      |      |     | ļ    |      | 0, 2 |      |      | · <b>-</b> - · - · |    |             |          |    |    |          |      | <u> </u> |      | ··       |    | ļ. <b>-</b> |      | <b>-</b> | 0, 2  |
| 17             |             |      |      |     |      |      |      |      |      | ~~                 |    |             |          |    |    |          |      |          | ~    |          |    |             |      |          |       |
| 19             |             |      |      |     |      |      |      |      |      |                    |    |             |          |    |    |          |      |          | ~-~- | <u> </u> |    |             |      |          |       |
| 20<br>21       |             |      | •    |     |      |      |      |      |      |                    |    |             |          |    |    | 2.6      |      |          |      |          |    |             |      |          | 2.6_  |
| 22             |             |      |      |     |      |      |      | 0, 2 |      | ~                  |    |             |          |    |    |          |      |          |      |          |    |             |      |          | 0.2   |
| 23<br>24<br>25 |             |      | ,    |     |      |      |      |      |      |                    |    |             |          |    |    |          |      |          |      |          |    |             |      |          |       |
| 25             |             |      |      |     |      |      |      | 0.2  |      | <u>.</u> .         |    |             |          |    |    |          |      |          | ļ    |          |    | <b> </b>    |      |          | 0. S  |
| 26<br>27       |             |      |      |     |      |      |      |      |      |                    |    |             |          |    |    |          |      |          |      |          |    |             |      |          |       |
| 28<br>29       |             |      |      |     |      |      |      |      |      |                    |    |             | <u> </u> |    |    | <u> </u> |      |          |      |          |    |             |      |          |       |
| 30<br>31       |             |      |      |     |      | 0, 2 | [    |      |      |                    |    | ļ. <b>-</b> |          |    |    |          |      |          |      |          |    |             |      |          | 9.2   |

TOTAL 14.2 MAX, 2.6

## BOURLY RAINFALL

|          |             | STAT     | 10N      | R             | AN Ç | HÃO | NEN      |               |        |             |          | UNIT        | (iiii) |    |    | мом     | и        | FERR        | UARY |         |     | YBAR         | P            | 975 | <b>-</b> |
|----------|-------------|----------|----------|---------------|------|-----|----------|---------------|--------|-------------|----------|-------------|--------|----|----|---------|----------|-------------|------|---------|-----|--------------|--------------|-----|----------|
| 114E     | 1           | 2        | 3        | 1             | 5    | 6   | 7        | 8             | 9      | 10          | 11       | 12          | 13     | 11 | 15 | 16      | 17       | t8          | 19   | 20      | 21  | 22           | 23           | 24  | TOTAL    |
|          |             |          | <b>.</b> |               |      |     |          |               |        |             |          |             |        |    |    |         |          |             |      |         |     |              |              |     |          |
| 3        |             |          | 1. 2     |               |      |     | }        |               |        |             | •        | ]·          |        |    |    |         |          | ļ           |      |         |     |              |              |     | 1. 2     |
| . 4      |             |          |          |               |      |     |          |               |        |             |          |             |        |    |    |         |          |             | 0. 2 |         |     |              |              |     | 0.2      |
| 5        |             |          |          |               |      |     |          | 0, 2          | **-**- |             |          |             |        |    |    |         | · — - ·  |             |      |         |     |              |              |     | 0, 2     |
|          |             |          |          |               |      |     |          |               |        |             |          |             |        |    |    |         |          |             |      |         |     |              |              |     |          |
| 8        |             |          |          |               |      | i   |          |               |        | <b>.</b>    |          |             | ·      |    |    | ļ       | ļ        | ļ           | ļ    |         | ļ   |              |              |     |          |
| 9<br>10  | • • · · · · |          |          |               |      |     |          |               |        |             |          | · · · · · · |        |    |    |         |          | [           |      |         |     |              |              |     |          |
| 11       |             |          |          |               |      |     | 1        |               |        |             |          |             |        |    |    |         |          |             |      |         |     |              |              |     |          |
| 12       |             |          |          |               |      |     |          |               |        |             |          |             |        |    |    |         |          |             |      |         |     |              |              |     |          |
| Ĩ4 I     |             |          |          |               |      |     |          |               |        |             |          |             |        |    |    |         |          |             |      |         |     |              |              |     |          |
| 15       |             | <b>.</b> |          |               |      | ļ   | ļ        |               |        |             | <b> </b> |             |        |    |    | ļ       | ļ        |             |      | <b></b> |     | <del>-</del> |              |     |          |
| 17       | •           |          |          |               |      |     | 1        |               |        |             |          |             |        |    |    |         |          |             |      |         |     |              |              |     |          |
| [8<br>[9 |             |          |          |               |      |     |          |               |        |             |          |             |        |    |    |         |          |             |      |         |     | ····         |              |     |          |
| 20       | ·           |          |          |               | [    |     |          | ļ ;           |        |             | [ ·      |             |        |    |    |         |          |             |      |         | ļ   |              |              |     | <b></b>  |
| 2]       |             |          |          |               |      | 1   |          |               |        |             |          |             |        |    |    |         |          | [           |      |         |     | ļ            |              |     | _,       |
| 23       |             |          |          | ļ <b>.</b> ., |      |     | ļ        |               |        |             |          |             |        |    |    |         |          |             |      |         |     |              |              |     |          |
| 24       |             |          | l        |               |      |     | [        |               |        |             |          |             |        |    |    |         |          |             |      |         |     |              |              |     |          |
| 25<br>26 |             |          |          |               |      |     |          | Į             |        |             |          |             |        |    |    | ····· • |          |             |      |         |     |              |              |     |          |
| 27       |             |          |          |               |      |     |          |               |        |             | 1        | Ì           | l::::: |    |    |         |          |             |      |         | 1   |              |              |     |          |
| 28       |             | ,,       |          | [ ·           |      |     |          |               |        |             |          |             |        |    |    | Į       | <b>]</b> | ļ <u></u> . |      |         | ļ · |              | <del>-</del> |     |          |
| 29<br>30 |             | l        |          |               |      | }   | }        | · · · · · · · |        | · · · · · · | Ì        | ]           |        |    | Ì  | 1       |          | ) <i>-</i>  |      |         | 1   |              |              |     |          |
| 31       |             |          |          | <u></u>       |      | L   | <u> </u> |               | L      | L           |          |             | L      | L  | L  | L       | <u></u>  | l           | L    | L       | L   | I            |              | J   |          |

TOTAS. 1.6

|                                  |       | STAT | ION     | R        | AN C      | нао     | NEN  |         |     |          |      | USUF | 1010  |         |                 | MOST                                    | Ш  | MA           | RCH |          |      | YEAR  |           | 975    |          |
|----------------------------------|-------|------|---------|----------|-----------|---------|------|---------|-----|----------|------|------|-------|---------|-----------------|-----------------------------------------|----|--------------|-----|----------|------|-------|-----------|--------|----------|
| 1170                             | 1     | 2    | 3       | 4        | 5         | ı       | 7    | 8       | 4   | 10       | 11   | 12   | 13    | 11      | 15              | 16                                      | 17 | 18           | 19  | 20       | 51   | 22    | 23        | 24     | TOTAL    |
| 1                                |       |      |         |          |           |         |      |         |     |          |      |      |       |         |                 |                                         | [  | 19. 4        | [   | 0, 8     |      | 0.2   |           |        | 20.4     |
| 2                                |       |      |         |          |           |         |      |         |     |          |      |      |       |         |                 |                                         |    | ļ            |     |          |      |       |           |        |          |
| ĭ                                |       |      |         |          | ļ         |         |      |         |     | <b>;</b> |      |      |       |         |                 | ** ***                                  |    | <del> </del> | •   |          |      | - 2 a | <u></u>   | · •    |          |
| 5                                | ··· [ |      |         |          |           |         |      |         |     | ~        |      |      |       |         |                 |                                         |    |              | . / |          |      |       |           |        |          |
| 6                                |       |      | Ì · ··· |          | ] · · · · |         |      |         |     |          | Ì    | Ì    |       |         | ]               | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | *  |              |     |          |      | ,     |           |        |          |
| 7                                |       |      |         |          |           |         |      |         |     |          |      |      |       |         |                 |                                         |    |              |     |          |      |       |           |        |          |
| 8                                |       | :    |         |          | ļ         |         |      |         |     |          |      |      |       |         |                 |                                         |    |              |     |          |      |       |           | .,     | 4.6      |
| 9                                |       |      |         |          |           |         |      |         |     |          | ···· | ··•  |       |         |                 |                                         |    |              |     |          |      |       |           |        | ···      |
| 10                               |       |      |         |          |           |         |      |         |     | ···      |      |      |       |         | :               |                                         |    |              |     |          |      |       |           |        |          |
| 12                               |       | :    |         | , ·      |           |         | ~    |         |     |          | ··   |      |       |         |                 |                                         |    |              |     |          |      |       | · - · · · |        |          |
| 13                               |       | ***  | ,       |          |           |         |      | 1       |     |          |      |      |       |         |                 |                                         |    | 1            |     |          |      |       |           |        |          |
| 13<br>14<br>15<br>16<br>17<br>(8 |       |      | ,       |          |           |         |      |         |     |          |      |      |       |         |                 |                                         |    |              |     |          |      |       |           |        |          |
| 15                               |       |      |         |          | Į         |         |      |         |     |          |      | ,    |       |         |                 |                                         |    |              |     |          | '    |       |           | . ,    | <b>{</b> |
| 16                               |       |      |         |          | {         |         |      |         |     |          |      |      |       |         |                 |                                         | ~  |              |     | ···      | 10.3 | 1.8   | 2.1       |        | 41.4     |
| - 16                             |       |      |         | ļ-·· • · | ~         |         |      |         |     |          |      |      |       |         |                 |                                         |    |              |     | l        |      |       |           |        |          |
| 19                               |       |      |         |          |           | ···-··• |      |         |     |          |      | ļ    |       | .,44    |                 |                                         |    |              |     |          |      |       |           |        |          |
| 20                               |       |      |         |          |           |         |      |         |     |          |      |      |       |         |                 |                                         |    |              |     | 0. 2     | 3.8  | 0. 2  |           |        | 4. 2     |
| 20<br>21                         |       |      |         |          |           |         |      |         |     |          |      |      |       |         |                 | ļ                                       |    |              |     |          |      |       |           | }      | 0, 2     |
| 22 ]                             |       |      |         |          |           |         |      |         | 0.2 |          |      |      |       |         | <i>-</i>        |                                         |    |              |     |          |      |       |           |        |          |
| 23                               |       |      |         |          |           | •       |      |         |     |          |      |      | ••••• | ļ       | 35.6            | 5.8                                     |    |              |     |          |      |       |           | ~ * *- | 61.4     |
| 4                                |       |      |         |          |           |         | 0, 2 |         |     |          |      |      |       | (1.000) | \ <u>***</u> .* |                                         |    | ~            |     |          |      |       |           |        | 0, 2     |
| 26                               |       |      |         |          |           |         |      |         | - / |          |      |      | 1     |         |                 |                                         |    |              | 1   |          |      |       |           |        |          |
| 24<br>25<br>26<br>27             |       |      |         |          |           |         |      | I i     |     |          |      |      |       |         | l               |                                         |    | 1            |     | L        |      |       |           |        |          |
| 28                               |       |      |         |          |           |         |      | <b></b> |     |          |      |      |       |         |                 | ļ                                       |    | ļ            | ļ   | [        |      |       | ··        |        | ļ        |
| 29<br>30                         |       |      |         |          | ļ         |         |      | ļ       |     |          | ļ    |      |       |         |                 |                                         |    |              |     | ļ        |      |       |           |        | ļ        |
| 30                               |       |      |         | •        |           |         | J    |         |     |          |      | •    | ***** |         |                 |                                         |    |              |     | <b>}</b> | ~    | 10.0  | 43 ñ      | 2,6    | 55.6     |

ТОГАІ. <u>191.2</u> МАХ. <u>55.6</u>

#### HOURLY RAINFALL

|                      |      | STAT | 108   | 8 | AN C | iivo | NEN_ |   |   |         |          | UNIT | . (9D). |     |                                      | KON | rii | APR  | )[,  |      |      | YBAR         | !  | 975  |              |
|----------------------|------|------|-------|---|------|------|------|---|---|---------|----------|------|---------|-----|--------------------------------------|-----|-----|------|------|------|------|--------------|----|------|--------------|
| E MI                 | ı    | 2    | 3     | 4 | 5    | 6    | 7    | 8 | y | 10      | 11       | 12   | 13      | 14  | 15                                   | 16  | 17  | 16   | 19   | 20   | 21   | 22           | 23 | 24   | TOTAL        |
| 1 2                  | 2,8  | 1,4  |       |   | Ì    |      |      |   |   |         |          |      |         |     |                                      |     |     | 2.2  | 2.2  | 0.2  |      |              |    |      | 8.8.         |
| 3                    |      |      |       |   |      |      |      |   |   | <u></u> |          |      |         |     |                                      |     |     |      |      |      |      |              |    |      |              |
| 5                    |      |      |       |   |      |      |      |   |   |         |          |      |         |     | <br>- <u>1</u> - <u>1</u> - <u>1</u> |     |     |      |      |      |      |              |    | 0, 8 | 0, 8<br>9, 2 |
| 7                    | 0.2  |      |       |   |      | 0, 2 |      |   |   |         |          |      |         | 8.6 | 0.2                                  |     |     |      | 0, 2 | ·    |      |              |    |      | 0, 2         |
| 8 L                  | 0.2  |      |       |   |      |      |      |   |   |         |          |      |         |     |                                      |     |     |      |      | 0.6  | 0, 2 |              |    |      | 0, 8         |
| 10                   |      |      |       |   |      |      |      |   |   |         |          |      |         |     |                                      |     |     |      |      |      |      |              |    |      |              |
| 12                   |      |      |       |   |      |      |      |   |   |         |          |      |         |     |                                      |     |     |      |      |      |      |              |    |      |              |
| 13                   |      |      |       |   |      |      |      |   |   |         |          |      |         |     |                                      |     |     |      |      |      |      |              |    |      |              |
| 15<br>16<br>17       |      |      |       |   |      |      |      |   |   |         |          |      |         |     |                                      |     |     |      |      | <br> | <br> |              |    |      |              |
| 17<br>18<br>19       |      |      |       |   |      |      |      |   |   |         |          |      |         |     |                                      |     |     |      |      |      |      | ·· <b>-·</b> |    |      |              |
| 20                   |      |      |       |   |      |      |      |   |   |         |          |      |         |     | <b></b>                              |     |     |      |      |      |      |              |    |      |              |
| -21<br>-22           |      |      |       |   |      |      |      |   |   |         |          |      |         |     |                                      |     |     | 0. 4 | 0. 1 | 0, 2 |      |              |    |      | 1.0          |
| ~53                  | 0, 2 |      | ***** |   |      |      |      |   |   |         |          |      |         |     |                                      |     |     |      | 0, 1 | 0.2  |      |              |    |      | 0.6<br>0.2   |
| 24<br>25<br>26<br>27 | .v4  |      |       |   |      |      |      |   |   |         |          |      |         |     |                                      |     |     |      |      |      |      |              |    |      | <u>v. e</u>  |
| 26                   |      |      |       |   |      | . ,  |      |   |   |         |          |      |         |     |                                      |     |     |      |      |      |      |              |    |      |              |
| 28<br>29             |      |      |       |   |      |      |      |   |   |         |          |      |         |     |                                      |     |     |      |      |      |      |              |    |      |              |
| 30<br>31             |      |      |       |   |      |      |      |   |   |         | <b>.</b> |      |         | ".  |                                      |     |     |      |      |      |      |              |    |      |              |

TOTAL 21.8
MAX. 8.6

|                            |   | STAT | TON  | (6 | AN C | HAO      | ини      |   |   |     |          | UNIT     | _mm          |            | ;            | мом          | iii  | МА     | ۲    |            |          | YBAR   | 1    | 975                                    |                     |
|----------------------------|---|------|------|----|------|----------|----------|---|---|-----|----------|----------|--------------|------------|--------------|--------------|------|--------|------|------------|----------|--------|------|----------------------------------------|---------------------|
| DATE                       | 1 | 2    | 3    | 4  | \$   | 6        | 7        | 8 | 9 | 10  | 11       | 12       | 13           | 11         | 15           | 16           | 17   | 18     | 19   | 20         | 21       | 55     | 23   | 24                                     | TOTAL               |
| 1                          |   |      |      |    |      |          |          |   |   |     |          | <br>     |              |            |              |              | 0,2  | 0,2    | 0, 4 |            | 0. 1     | . 0. 2 |      |                                        |                     |
| 2                          |   |      | ļ    |    |      |          | 0.2      |   |   |     | -,,-     |          | 2, 2         |            | 2.0          |              | 0.2  |        |      |            |          |        |      |                                        | 21.8                |
| -15                        |   | 1.3  | 0, 4 |    |      | 0, 2     | U, 2     |   |   | 0.2 | 0.0      | 4. 2     |              | 1.2<br>7.0 | 0 2<br>5 4   | 2. 8         | 18.6 | 13. 0  | 2. 2 | 0.8        |          |        |      |                                        | 46.8                |
| 6                          |   |      | <br> |    |      |          |          |   |   |     |          |          |              | 0.6        | 5. 4         | 0. 2         |      |        |      |            |          |        |      |                                        | 12.2                |
| 3 9                        |   |      | 0.4  |    |      |          | ]        |   |   |     | ]        | <u></u>  |              |            |              |              |      |        |      | .0.4       | 7.0      | 0.3    | ,    |                                        | 3.B                 |
| 1-10<br>11                 |   |      |      |    |      |          |          |   |   |     |          | <u> </u> | <del>-</del> |            |              |              |      |        |      |            |          |        |      |                                        |                     |
| 12<br>13<br>14             |   |      | . ,  |    |      | Ì        |          |   |   |     |          |          |              | _/         | 0.8          |              |      | _ L.S. | 0.8  | 0.1        | 0.2      |        |      |                                        | 1.0                 |
| 15                         |   |      |      |    |      |          |          |   |   |     |          |          |              |            |              |              |      |        |      |            |          |        |      |                                        |                     |
| 16<br>17                   |   |      |      |    |      |          |          |   |   |     |          |          |              |            |              |              |      |        |      |            |          |        |      |                                        |                     |
| 18                         |   |      |      |    |      |          |          |   |   |     |          |          |              |            |              | 0, 2         | 4.6  | 0.3    |      |            |          |        |      |                                        | 4.8<br>0.2          |
| 20<br>21                   |   |      |      |    |      |          |          |   |   |     | <u> </u> |          |              |            | 0, 2<br>0, 7 | 0. 2<br>9. 8 | 0, 2 | _1.0   | 1.0  | .0.1       |          |        |      |                                        | <del>6</del> 4      |
| 22                         |   |      |      |    |      |          | <b>-</b> |   |   |     |          | ļ        |              | 19.0       |              | 9.8          |      |        |      | 0.2<br>0.4 | 0.4      | 0. 2   | 0. 2 |                                        | )1,5<br>23,2<br>0,6 |
| 24<br>25                   |   |      |      |    |      |          |          |   |   |     |          |          |              |            |              |              |      |        |      |            | 0, 1     |        |      | 0, 2                                   |                     |
| 24<br>25<br>26<br>27<br>28 |   | 0. 2 | 0. 2 |    |      |          |          |   |   |     |          |          |              |            |              |              |      |        |      |            |          |        |      |                                        | 0.2<br>0,2          |
| 29                         |   |      |      |    |      | <u> </u> |          |   |   |     | <u> </u> |          |              |            |              |              |      |        |      |            |          |        |      | ــــــــــــــــــــــــــــــــــــــ |                     |
| 30<br>31                   |   |      |      |    |      |          |          |   |   |     |          |          | ļ            |            |              | 6.8          |      |        |      |            | <u> </u> |        |      |                                        | 6,8                 |

TOTAL 150.3 MAX. 20.6

# HOURLY RAINFALL

|                      |              | STAT | (ON  |      | un c | нмо  | NeN   |      |     |     |          | UNIT     | mar | -    |      | ком  | III  | IUN        | ß                  |            |      | YUAR                 | <u>t</u> | 975   |            |
|----------------------|--------------|------|------|------|------|------|-------|------|-----|-----|----------|----------|-----|------|------|------|------|------------|--------------------|------------|------|----------------------|----------|-------|------------|
| TOVE<br>DATE         | ı            | 2    | 3    | -3   | 5    | 6    | 7     | 8    | 9   | 10  | Ð        | 12       | 13  | 14   | 15   | 16   | 17   | 18         | 19                 | 20         | 21   | 22                   | 23       | 24    | TOTAL      |
| 1 2                  | j            |      |      | 1.4  | 0. 2 | 0, 2 |       |      |     |     |          |          |     |      | 1.6  | 0, 6 | 0, 2 |            |                    |            |      |                      |          |       | 4.0<br>5.2 |
| 3 -                  | 6, 2         | 0.2  | 1. 2 |      |      | 0, 2 |       | 0. 7 |     |     |          |          |     |      | 0.6  |      | 0.4  | 0, 2       |                    |            |      |                      |          |       | 3. (       |
| 5                    | τ.0          | 0.2  |      | 0. 4 | 0, 2 |      | -     |      | 0.2 |     | 1.0      | <u></u>  |     |      |      | 1.6  | 0.2  |            |                    |            |      | 0, 2                 | 0, 2     |       | 2.7<br>3.0 |
| 7                    |              |      |      |      | -    |      | t). 8 |      |     |     |          |          |     | [-   | 0, 4 |      | - بـ |            |                    |            |      |                      |          |       | <u></u>    |
| 8 9                  |              |      | 0. 2 |      | 1.2  | 4. 8 | 1.4   | 1.4  |     |     |          | _        |     |      | 0. 2 |      | 0.6  |            |                    | 0, 6       | 0. 2 | 0. 2                 |          |       | 10,<br>0.  |
| 10                   |              |      |      |      | ļ    |      |       |      |     |     |          |          | 0.8 |      |      |      |      |            | 1.5                | 0.2        |      |                      |          |       | 2.         |
| 13                   |              |      |      |      |      |      |       |      |     |     |          |          |     |      |      |      |      |            |                    |            |      |                      |          |       | 0.         |
| 15                   |              |      |      |      |      | ]    |       |      |     | 0.2 |          |          |     |      |      |      |      |            |                    |            |      |                      |          |       |            |
| 16                   |              |      |      |      |      |      |       |      |     |     |          |          | 0.2 | 1, 2 |      |      |      |            |                    |            |      |                      |          |       | 0.<br>0.   |
| 18                   |              |      | 0.6  |      |      |      |       |      |     |     | 17. 0    |          |     |      |      |      |      |            |                    |            |      |                      |          |       | 17.        |
| 20<br>21             |              |      |      |      |      |      |       |      |     |     | <u> </u> |          |     |      |      |      |      | 0.8<br>9.6 | 0, 2               | 0 2<br>2 8 | 0, 2 | 0.6                  | 0.2      | . 1.2 |            |
| 22                   | 0. 2<br>0. 8 | 0.6  | 0. 2 |      |      | 0.2  |       |      |     |     |          | <u> </u> |     |      |      |      | 3.8  | 1.6        | 0, 2<br>4.6<br>0.2 | 0,2        | 0.1  | 0. 6<br>2. 4<br>0. 4 | 0, 2     |       | 8.         |
| 23<br>24             |              |      |      |      |      |      |       |      |     |     |          |          |     |      |      |      |      |            |                    |            |      |                      |          |       |            |
| 24<br>25<br>26<br>27 |              |      |      |      |      |      |       |      |     |     |          |          |     |      |      |      |      |            |                    |            |      |                      |          |       |            |
| 27<br>28<br>29       |              |      | 0.6  | 0.6  | 0. 2 | 0.2  |       |      |     |     |          | ļ        |     |      |      |      |      |            |                    |            |      |                      |          |       |            |
| 29<br>30<br>3)       |              |      |      |      |      |      |       |      |     |     |          |          |     |      |      | 0.6  |      |            |                    |            |      |                      |          |       | 0,1        |
| 3)                   |              |      | L    |      |      | L    | L     |      |     |     |          | L        |     | L    | l    |      | L    |            | L                  | L          | L    |                      |          | L     | 1          |

TOTAL 85.2 MAX. 17.0

ŧ

# HOURTY BAINFALL

|                |      | STAT        | 10%      | н         | AN C | HAO :    | NEN   |      |              |          |            | USIT | hon      | _          |                            | мом        | H            | jut.      | Y          |          |              | YEAR    | 1         | 975     | ·····        |
|----------------|------|-------------|----------|-----------|------|----------|-------|------|--------------|----------|------------|------|----------|------------|----------------------------|------------|--------------|-----------|------------|----------|--------------|---------|-----------|---------|--------------|
| DATE.          | t    | 2           | 3        | 1         | 5    | 6        | 7     | 8    | y            | 10       | ıı         | 12   | 13       | 11         | 15                         | 16         | 17           | 18        | 19         | 20       | 21           | 22      | 23        | 24      | TOTAL        |
| 1              |      |             |          | 0,2       | n. 2 |          | }     |      |              |          |            |      |          |            |                            |            |              |           |            |          |              |         |           | i       | 0.4          |
| - <u>2</u>     | ĺ    | ,           |          |           |      |          |       |      |              |          |            |      |          | ļ <u>-</u> |                            | 5.0        |              |           |            |          |              |         |           |         | 5,6          |
| . 3            |      | l           | 1        |           |      |          |       | 0, 2 |              |          |            |      |          | 0, 4       |                            | .,         |              |           |            |          |              |         |           |         | 0.6          |
| . 4            |      | ļ           |          |           |      |          |       | i    |              |          |            | [    | 1,0      | ,          | l- <i></i>                 |            | 0, 6         | ļ         |            |          |              |         |           |         | 1.6          |
| 5              |      |             | l        |           |      |          |       |      | * - 1,1 - 7- |          |            |      |          |            |                            |            |              |           |            | I        |              |         |           |         |              |
| . 6            |      | ì           |          |           |      |          |       |      |              |          |            |      |          |            |                            |            |              |           |            |          |              |         |           |         |              |
| 7              |      |             |          |           |      |          |       |      |              |          |            |      |          |            |                            |            |              |           |            |          |              |         |           |         | , 8.8        |
| 8              |      |             |          | ļi        | i ·  | <b>,</b> |       |      |              |          |            | 0, 2 | 6.8      | .1.8       | <b>~- ·</b> -              |            |              | ļ         |            |          |              | <b></b> |           |         |              |
| .9             |      |             |          | ,         |      |          |       |      |              |          |            |      |          |            |                            | ļ          | ļ            |           |            |          | ~            |         |           |         |              |
| 10             |      | 0, 2        | į        |           |      |          |       |      |              |          |            |      |          |            |                            |            |              |           |            | 0.4      | 1.3          | 1.0     | 63        | 0.8     | 7, 0         |
| 11             |      |             |          |           |      |          | .35.3 |      | 0.6          |          |            |      |          | . ~        |                            |            |              |           |            | -25.2    | <u> </u>     | -:      |           | _::-::  |              |
| 13             |      |             |          |           |      |          |       |      |              |          | · · · · ·  |      |          |            | · · · · · <del>· ·</del> · |            |              |           |            |          |              | ·       | · · · · · |         |              |
| 14             |      |             |          |           |      |          |       |      |              |          |            |      | ļ        | /          |                            |            |              |           |            | , •      |              | 1       |           |         |              |
|                |      |             | ļ        |           |      |          |       |      |              |          |            |      |          |            |                            |            |              |           |            |          |              |         |           |         |              |
| [5]            |      |             |          |           |      |          |       |      | • • • • •    | ****     |            |      |          | <i></i>    | 5, 2                       | 2. 1       | 0.8          | 0.6       | 0.4        | 0. 2     |              | 0.2     |           | 0.2     | 10.0         |
| 16<br>17       | 0, 2 | }           | ]        |           |      |          |       |      |              | 0.2      | <b>)</b> ' |      | ·        | }          |                            |            |              | 1         | 1          |          |              | 0.2     |           |         | 0.6          |
| 18             |      | - *         |          |           |      |          | 0.2   |      |              |          | <u> </u>   |      |          |            |                            | ļ          |              |           |            |          | l            | l       |           |         | 0.2          |
| 18<br>19<br>20 |      |             | ···      | · · · · · |      |          |       |      |              |          |            |      |          |            |                            |            |              |           |            |          |              |         |           |         |              |
| 20             | 21.6 | 3, 0        | 0.2      |           | Ð 2  |          |       |      | *            |          |            |      |          | 1          | i                          |            |              |           |            |          | 2.0          | 2.2     | 0.4       |         | 31.6<br>3.6  |
| 21             |      |             | 0, 2     |           |      |          |       |      |              |          |            |      |          | 1          |                            |            |              | 0, 6      | 0. 2       | 1.6      | 0.8          | 0.2     |           |         | 3,6          |
| 22             | *    | 0, 2        |          |           |      |          |       |      |              |          |            | I    |          | ľ.         |                            |            | i            |           |            |          | 0.6          | 10.6    | 0.2       |         | 1. 6<br>2. 0 |
| 23<br>24<br>25 |      |             | l        |           |      |          |       |      |              |          |            |      |          | 0.4        | I                          |            |              | 0. 2      | 0.6        |          | 0, 2         | 0. 3    | 0.2       | 0, 2    | 2,0          |
| 24             |      | · · · · · · | ·        |           |      |          |       | 1    |              |          |            |      |          | j          | L                          | L          |              | <b></b> . |            |          | <b></b>      | \       |           | _;      |              |
| 25             |      | L           |          |           |      |          |       | L    |              | l        |            | l    | <b> </b> | I          | l                          | <b> </b>   | ļ. <b></b> . |           |            |          | i            | ļ       | .2.4      | 0.2     | 9.6          |
| 25             |      | I <u></u> . | 1        | 1         | 0, 2 | l        |       |      |              | <b>.</b> |            |      |          | 0, 2       |                            |            |              | l         |            |          |              |         |           |         | 0.4          |
| 27             |      | ļ           | L        |           | į    | 1        |       |      |              |          |            | L    |          |            |                            | 0.8<br>5.0 | .1, 3        | 0.2       | 1.4<br>2.4 | 3.4      | 1. 8<br>0. 2 | ļ       | 0,4       | 0, 2    | 10.4<br>16.8 |
| 28<br>29       | 0, 2 | ł           | ļ        |           |      |          |       |      |              |          |            |      |          |            | 4. 0                       | [.§.0]     |              | 1.6       | 1.4        | 3.4      | - v. z       | ····    |           |         | 5            |
| 29             |      | J           |          |           | ļi   |          |       |      |              |          |            | 0. 2 |          |            |                            |            |              |           |            |          | l            | l       | ···       | ļ       | 0. 2         |
| .30            |      | <b>}</b>    | <b>]</b> |           | J    |          | ļ     | ļ    |              |          | ļ          | 0. 2 | <b> </b> |            |                            |            |              |           | · ·        |          | <del>[</del> | }··     | ļ ·       |         |              |
| 31             |      | ı           | ı        | 1 1       | ì    |          | Į     | 4    |              | ı        | 1          |      | i        | i          | 1                          | i          | i .:         | 1         | 1          | <u>i</u> | L            | L       | <u> </u>  | <u></u> | I            |

TOTAL 113.0 MAX. 24.6

#### HOURLY RAINFALL

|                                                    |      | STAT | KOL        | 8   | AN C     | НАО      | NUN  |       |        |       |          | UNII     | min   | -                                            |          | МОИ      | LH  | ΛUX       | UST  |      |       | YEAR                 | 1    | 975    |                                        |
|----------------------------------------------------|------|------|------------|-----|----------|----------|------|-------|--------|-------|----------|----------|-------|----------------------------------------------|----------|----------|-----|-----------|------|------|-------|----------------------|------|--------|----------------------------------------|
| 114t<br>53.16                                      | 1    | 2    | 3          | 1   | 5        | 6        | 7    | 8     | 9      | 10    | 11       | 12       | 13    | 14                                           | 15       | 16       | 17  | 18        | 19   | 20   | 51    | 22                   | 23   | 24     | TOTAL,                                 |
| ı                                                  |      |      |            |     |          |          |      |       |        |       |          | .,,,,,,, |       |                                              | 0.4      |          |     |           |      |      |       |                      |      |        | 0. 4<br>3. 0                           |
| 3                                                  |      |      |            |     | i        | ļ        |      | j     |        |       | . 27.3   | ļ        |       |                                              |          |          | 1.8 | 1, 2      |      |      |       |                      |      |        | 3.0                                    |
| 3 }                                                |      |      | ļ          |     |          |          |      | 0.2   |        |       | 0, 2     | ļ        |       |                                              | <u> </u> |          |     | ,         |      |      |       |                      |      |        | 0. 2<br>0. 2                           |
| 5                                                  |      |      |            |     |          | 2, 0     | 0.8  |       |        | 0, 2  |          |          | i     |                                              | ·        |          |     |           |      |      |       |                      |      |        | 4. 4                                   |
| 5<br>6<br>7                                        |      |      |            |     |          |          |      |       |        |       | 0, 2     |          |       |                                              |          |          |     |           |      |      |       | ,                    |      |        | 0.2                                    |
|                                                    |      |      |            |     |          | <b>J</b> |      | ļ     |        |       |          |          | ļ     | 2, 2                                         | 2.8      |          |     | - · · · · |      |      |       |                      |      |        | 4. 4<br>0. 2<br>5. 0<br>7. 0           |
| -8                                                 |      |      |            |     |          |          |      |       |        | · • - |          |          |       |                                              | f · :    | 7.0      |     |           |      |      |       |                      |      |        |                                        |
| 10                                                 |      |      |            |     | *        |          | ·    |       |        |       |          | f        |       |                                              |          |          | ·-· |           |      |      |       |                      |      | /      |                                        |
| 9<br>10<br>11<br>12<br>13<br>14<br>15              |      |      |            |     | 9. 6     | 0, 2     | 0, 2 |       |        |       |          |          |       |                                              |          | 0. 2     |     | 0. 2      |      |      | 1.0   | 0.6                  | 0, 2 |        | 3. 4<br>3. 8<br>8. 6                   |
| 12                                                 |      |      | ļ <u>.</u> |     |          | ļ        | ļ    | 0.2   | 0.4    |       |          | <u>-</u> |       |                                              |          |          |     | 1.1.1     | 1.6  |      |       | 0, 2                 |      |        | 3.8                                    |
| ä                                                  |      |      |            |     |          |          |      |       | 0.2    |       | 4.0      |          | 0.6   | 0.2                                          |          |          |     |           |      |      |       |                      |      |        | 1.2                                    |
| 15                                                 |      |      | ···-       | -   |          |          |      |       |        |       |          |          |       | 34.5                                         | 0.8      | 20. 2    | 4.0 | 0.8       |      |      | 0, 2  |                      | 0.2  | 0.2    | 26. 4                                  |
| 16                                                 |      |      |            |     |          |          |      |       |        | [     |          |          |       |                                              |          | <b>.</b> | l   |           |      |      |       |                      |      |        |                                        |
| 17                                                 |      |      |            |     |          |          |      |       |        |       |          | 0,2      | 0.1   |                                              | 0.8      | 0.2      |     |           |      |      |       |                      |      |        | L.6.                                   |
| 18                                                 |      |      | ···        |     |          | {        | ļ    | [     | ····   |       | <u> </u> | <u> </u> | ·     | <del> </del> -                               |          |          |     |           |      |      |       | · - · · <del>-</del> |      |        |                                        |
| 20                                                 |      |      |            |     |          |          |      |       |        |       |          |          |       |                                              |          |          |     |           |      |      |       |                      |      |        |                                        |
| 21                                                 |      |      |            |     |          |          |      |       |        |       |          |          |       |                                              |          |          |     |           |      |      |       |                      |      |        |                                        |
|                                                    |      |      |            |     |          |          |      |       |        |       |          |          |       |                                              | 1.8      | 0, 2     |     |           |      |      |       |                      |      |        | 2.0                                    |
| 24 -                                               |      |      |            |     |          |          | 0.2  | ···   |        |       |          |          |       |                                              |          |          |     |           |      |      |       |                      |      |        | 0.2                                    |
| 25                                                 |      |      |            |     |          |          |      |       |        |       |          |          |       | 2.0                                          |          | 4.2      | 0.6 | ]         | () 2 |      |       |                      |      |        | 7.0                                    |
| 26                                                 |      | 78.3 | 0.4        |     |          |          |      |       |        |       | 0.6      | ļ        | 4.2   | 0. \$                                        | ļ        |          | [   | 0.2       | U. 2 | ļ ·  | 0, 2  |                      | 0, 2 | - i. d | 0.4                                    |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31 | 0.2  | 0.7  | 1 3        | 10  | 0.2      | ļ.,,     |      | 0.2   | . 0. 2 |       | U. 0     | <b></b>  | 1.3.3 |                                              |          |          |     |           |      |      | 143.4 | #\.f.                |      |        | 2.0<br>0.2<br>7.0<br>0.4<br>3.6<br>4.8 |
| 29                                                 |      |      | l          | 1   |          |          |      |       |        |       |          |          |       | 0.4                                          |          | 0.2      |     | ļ         | 0.6  |      | 0.6   | 1.0                  | 1.0  | 0.4    |                                        |
| 30                                                 | 0. 2 | 0. 4 |            | 0,4 | 0, 2     |          |      |       |        |       |          |          |       |                                              |          |          |     |           |      | 0. 2 | 0.6   | 0.4                  | 0.2  |        | 2.8                                    |
| 31                                                 |      | 0. 2 | 1 .        |     | <b>I</b> | L        | l    | لتحجا | L      | L     | L        | L        | L     | <u>.                                    </u> | 0. 2     | L        | l   | l         | L    | L    | 0, 4  | L                    |      | 0.8    | 1.6                                    |

TOTAL 96.8 MAX. 20.2

|                      |               | STAT         | ROS   | 0.   | an ci | HAO | NEN |      |     |               |            | UNIT      | mm            |         |      | MONI     | н          | SEPT | BMBE         | R    |       | YBAR | !   | 975  |                     |
|----------------------|---------------|--------------|-------|------|-------|-----|-----|------|-----|---------------|------------|-----------|---------------|---------|------|----------|------------|------|--------------|------|-------|------|-----|------|---------------------|
| t DE L               | ŀ             | 2            | 3     | •    | 5     | b   | 7   | 8    | y   | 10            | (1         | 12        | 13            | 14      | 15   | 16       | 17         | 18   | 19           | 20   | 21    | 22   | 23  | 24   | TOTAL               |
|                      | 0,4           | i            |       |      |       |     |     |      |     |               |            |           |               |         |      |          |            |      |              |      | 1. G  | 0.6  |     |      | 0.4                 |
| 3                    | - • - <br>• - |              |       |      |       |     |     |      |     |               |            |           |               |         |      |          |            |      |              |      | 0. 2  |      |     |      | 1.6                 |
| 5                    | 1.1           | 3, 8         | 3.8   | 0.6  |       |     |     | 3.4  | 1.6 | _1, 2<br>3, 8 | 1.0        |           |               |         | 1.4  | .1,6     |            | U.2  | _2.6<br>_1.2 | 0.2  | _1.0  | _0,2 |     | _1.0 | 21.6<br>20.2        |
| 5<br>6<br>7          | 0.2           | 0. 2         |       |      |       |     | 0.2 |      |     |               | J.0        | 0.7       |               |         |      |          |            |      |              |      |       |      | 0.2 | 0.8  | 6, <u>2</u><br>0, 4 |
| 8                    |               |              |       |      |       |     |     |      |     |               |            |           |               |         |      |          |            |      |              |      |       |      |     |      |                     |
| 10 1                 |               |              |       |      |       |     |     |      |     |               |            | • • • • • | [             |         |      |          |            |      | ~            |      |       |      |     |      |                     |
| 11-12                | ;             |              |       |      |       |     |     |      |     | }             | ļ <b>.</b> |           | ļ             |         |      |          | 3.0        | 7.6  | 2.8          | 1.0  | 0. 2  | 0. 2 |     | 0.2  | 15, 2               |
| 13<br>14<br>15<br>46 | 0.4           | 0. 1         | 3, 2  | 0. 2 |       |     |     |      |     |               |            |           | J             |         |      |          |            |      |              | 0, 2 |       |      |     |      | 1.2<br>0,2          |
| 15                   |               |              |       |      |       |     |     |      |     |               |            |           |               |         |      |          | 0, 4       |      |              | .,٧  |       |      |     |      | 0.4                 |
|                      |               |              | 0.2   |      |       |     |     | [    | ,   |               |            | 0.8       |               |         |      | 0. 6     | 1.8<br>1.2 | 1. 1 | 0.6          |      |       |      |     |      | 4. 8<br>5. 0        |
| 18                   |               |              |       |      |       |     |     |      |     |               |            |           | 0.1           |         |      |          | ļi         |      |              |      |       |      |     |      | 0.4                 |
| 2/3                  |               |              |       |      |       |     |     |      |     |               |            |           |               |         |      |          |            |      |              |      |       |      |     |      |                     |
| 21                   | -             |              |       |      |       |     |     |      |     | •             |            | -··-      | <del></del> - | <u></u> |      | 1.6      | 6.2        | 0.8  | 0, 2         |      | 0. 2  |      | 0.4 | 0.6  | 10, 2<br>35, 0      |
| 21                   | 0.4           | 0. 2<br>0. 4 |       |      |       |     |     |      |     |               |            |           |               |         | 11,2 | ·        |            |      | . <u>7.6</u> | 5.0  | 6.6   | 2. 4 | 0,8 | 0.8  | 35.0<br>2.6         |
| 25                   |               |              |       |      |       |     |     | 1. 0 |     |               |            |           |               |         |      |          |            |      |              |      | 3, 2  |      |     |      | 2,6<br>3,2<br>1.0   |
| 20<br>27<br>28<br>29 |               |              | ***** |      |       |     |     |      |     |               |            |           |               |         |      |          | 0, 8       |      |              |      |       |      |     |      | 0.8                 |
| 28                   |               |              |       |      |       |     |     |      |     |               |            |           | 0. 2          | ļ       |      | <u> </u> | 8.4        |      |              |      |       |      | 8.6 | 1, 4 | 18, 4               |
| 30<br>31             | J. 6          | 0.8          | (0. 2 | 0.2  |       |     |     |      |     |               |            |           |               |         | 6.6  |          | <b></b>    | 4.0  | 1.4          |      | 27, 0 | 25.6 | 6.6 | ļ    | 74.0                |

TOTAL 279. 2
MAX. 27. 0

## HOURLY RAINFALL

|                                              | :   | STAI     | 10N | ę. | AN <sub>(</sub> CI | нао ј | NEN  |      |   |    |    | UNIT | -iini) |    |              | MONI | TES          | ост   | OBBR |       |              | YEAR | !   | 975      |                          |
|----------------------------------------------|-----|----------|-----|----|--------------------|-------|------|------|---|----|----|------|--------|----|--------------|------|--------------|-------|------|-------|--------------|------|-----|----------|--------------------------|
| TESTE<br>DATE                                | 1   | 2        | 3   | 4  | 5                  | 6     | 3    | 8    | 9 | 10 | 11 | 12   | 13     | 34 | 15           | 16   | 17           | 18    | 19   | 23    | 21           | 55   | 23  | 24       | JATOT                    |
|                                              | 0.2 |          |     |    |                    |       |      |      |   |    |    |      | i      |    |              |      |              |       |      |       | . 2-12-1     |      |     |          | 0, 2                     |
| · · · 3 - · ·                                |     |          | 0.2 |    | 0.2                |       |      |      |   |    |    |      |        |    |              |      | 1, 0         | 0.8   |      | 30. 4 | 0.6          | 0.2  |     |          | 32.6                     |
| 4<br>5                                       |     | ·· ··· · | . " |    | <u>.</u>           |       |      |      |   |    |    |      | 0.6    |    | 0.6          |      |              |       |      |       |              |      |     |          | 1. 2                     |
| 6                                            |     |          |     |    |                    |       |      |      |   |    |    |      |        |    |              | 13.8 | 0, 2         | 0.6   | 1, 2 |       |              |      |     |          | 15.8                     |
| 8                                            |     |          |     |    |                    |       |      |      |   |    |    |      |        |    |              |      |              |       |      | 0.6   | 0.0          |      |     |          |                          |
| 9                                            |     |          |     |    |                    |       | Ú. 2 |      |   |    |    |      |        |    |              |      |              | 25. 1 | 1.8  | 0.6   | 0, 8<br>1, 2 | 2.6  | 0.6 |          | 32, 2                    |
| 11                                           |     | 0.2      |     |    |                    | 0. 2  | 0.4  | 0. 2 |   |    |    |      |        |    |              |      | ] <b>-</b> - |       |      |       |              | 2.0  | 0,6 | 0.2      | 0.2                      |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 |     | 0.4      | 0,8 |    |                    |       |      |      |   |    |    |      |        |    | <del>-</del> |      | 0. 2         |       | 0, 2 |       | 1.6          |      | 1.0 | 0. 8     | 3.6<br>2.0<br>3.0<br>8.4 |
| 15                                           | 1.5 |          |     |    |                    | 0.6   | 3.5  | 2.8  |   |    |    |      |        |    |              |      |              |       |      |       |              | -    |     |          | 0.2                      |
| 17                                           |     |          |     |    |                    |       |      |      |   |    |    |      |        |    |              |      |              |       |      |       |              |      |     |          |                          |
| 19                                           |     |          |     |    |                    |       |      |      |   |    |    |      |        |    |              |      |              |       |      |       |              |      |     |          |                          |
| 20<br>21                                     |     |          |     |    |                    |       |      |      |   |    |    |      |        |    |              |      |              |       |      |       |              |      |     |          |                          |
| 22                                           |     |          |     |    |                    |       | ·    |      |   |    |    |      |        |    |              |      |              |       |      |       |              |      |     |          |                          |
| 22<br>23<br>24<br>25                         |     |          |     |    |                    |       |      |      |   |    |    |      |        |    |              |      |              |       |      |       |              |      |     |          |                          |
| 26<br>27                                     |     | ,        |     |    |                    |       |      |      |   |    |    |      |        |    |              |      |              |       |      |       |              |      |     |          |                          |
| 28<br>29                                     |     |          | . , |    |                    |       |      |      |   |    |    |      |        |    |              |      |              |       |      |       | <b></b>      |      |     | <u> </u> |                          |
| 29<br>30                                     |     |          |     |    |                    |       |      |      |   |    |    |      |        |    |              |      |              |       |      | L     |              |      |     |          |                          |
| 31                                           |     |          | L   |    |                    | L     | l    |      | L | l  |    | L    | l      | i  | L            | J    | 1            | L     | L    |       | <u> </u>     | l    | L   | <b>.</b> | L                        |

TOTAL 103.8 MAX. 25.4

|                                                                                                                |           | STAT      | ION | - 11  | ARD | PANA |   |           |   |          |    | UNET    | mo  |            |              | MONI      | řii    | MAY      | <u>.                                    </u> |      |          | YEAR     | !     | 973      | ,                 |
|----------------------------------------------------------------------------------------------------------------|-----------|-----------|-----|-------|-----|------|---|-----------|---|----------|----|---------|-----|------------|--------------|-----------|--------|----------|----------------------------------------------|------|----------|----------|-------|----------|-------------------|
| 514t<br>611t                                                                                                   | 1         | 2         | 3   | +     | 5   | 6    | , | 8         | 9 | 10       | ΙL | 12      | 13  | 11         | 15           | 16        | 17     | 18       | 19                                           | 20   | 21       | 22       | 2.3   | 24       | TOTAL             |
|                                                                                                                |           |           |     |       | į į |      | l | lj        |   | l        |    |         | اا  |            | [            | l         | 9.5    |          |                                              | ļ    | <u> </u> |          |       |          | 9.5               |
| 2                                                                                                              |           |           |     |       | : . |      |   | - <i></i> |   |          |    | ļ       |     |            | -376         | 0.5       |        |          | 15.0                                         | 11.0 | 1.5      | 1.0      | 0, 5  |          | 32.0<br>3.5       |
|                                                                                                                |           |           |     |       |     | .,   | , |           |   |          |    |         |     |            | 2.Y          | <u></u> 3 |        |          |                                              |      |          | \$20,000 |       |          |                   |
| ] 3                                                                                                            |           |           |     |       |     |      |   |           |   |          |    |         |     |            |              | 0.3       | ]      |          |                                              |      | ]        |          |       | <b>-</b> | 0.3               |
| 0                                                                                                              |           | ·         |     | (1, 4 |     |      |   |           |   |          | ļ  |         |     |            | ,            | <b>-</b>  | •      |          | f                                            |      |          |          |       | ···      | 0, 4              |
| 7<br>6<br>9                                                                                                    |           |           |     |       |     |      |   |           |   |          |    |         |     |            |              |           |        |          |                                              |      |          |          |       |          |                   |
| %                                                                                                              |           |           |     |       |     |      |   |           |   | ,        |    |         |     |            |              |           |        |          |                                              |      |          |          | · . • |          |                   |
| 11                                                                                                             |           |           |     |       |     |      |   |           |   |          |    |         |     | 4.0        | 14.0         |           |        |          |                                              |      |          |          |       |          | 18.0              |
| 12                                                                                                             |           | • • • • • | 1   |       |     |      |   |           |   |          |    | ļ       |     | <b></b> ·· | ļ·           |           | ļ      |          |                                              |      |          |          |       |          |                   |
| 14                                                                                                             |           |           |     |       |     |      |   |           |   |          |    |         |     | 0.5        |              | 3.5       | 1.0    |          |                                              |      |          |          |       |          | 6.0               |
| - 15                                                                                                           | ••••      |           | ,   |       |     |      |   | :         |   |          |    |         |     |            |              |           | ļ ·    | 0, 7     |                                              |      | 9.5      |          |       |          | 0,7               |
| 13                                                                                                             |           |           |     |       |     |      |   |           |   |          |    |         |     |            |              |           |        |          |                                              |      |          |          |       |          |                   |
| . 18                                                                                                           | •         |           |     |       |     |      |   |           |   |          |    |         |     |            | 1.0          |           |        |          |                                              |      |          | ļ        |       |          | 1.0               |
| 20                                                                                                             |           |           |     |       |     |      |   |           |   |          |    |         |     |            |              |           |        |          |                                              |      | 0, 7     |          |       |          | 0, 7              |
| 31                                                                                                             |           |           |     |       |     |      | • |           | l |          |    |         |     | 6.0        |              | 0,1       |        |          |                                              |      | j        |          |       | l        | 7.1<br>6 (t       |
| 23                                                                                                             | • • • • • |           |     |       |     |      |   |           |   | <u> </u> |    |         |     |            | 0.4          | ļ         |        |          |                                              |      | l        |          |       |          | 6. U<br>0. f      |
| -21                                                                                                            |           |           |     |       |     |      |   |           | ļ |          |    |         | 0.4 |            |              |           | 1.5    | <b> </b> | ·                                            | 0.5  | 3.0      | 2.0      |       | ·        | <u>5.4</u><br>3.5 |
| 10<br>11<br>12<br>13<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>21<br>22<br>23<br>24<br>25<br>26 |           | . ~       |     |       |     | ,    |   |           |   |          |    |         |     |            | ļ            |           |        |          |                                              |      |          |          |       |          |                   |
| 27                                                                                                             |           |           |     |       | ]   | .,   |   |           |   |          |    | <b></b> |     | <u> </u>   | }            | <b> </b>  | 7.0    | 100      | 40                                           | 1,0  |          | 0, 5     | }     | }        | 10.5              |
| 28<br>29<br>30                                                                                                 |           |           |     |       |     |      | [ |           |   |          |    |         |     |            |              |           | -E1.Y_ | 1.0      | 6.0                                          |      |          |          |       | ļ        | 10.5<br>4.0       |
| 30<br>31                                                                                                       |           |           |     |       | ]   |      |   | ]         |   |          |    |         | }   | }          | <del>}</del> | <b>]</b>  |        | 10, 0    | }                                            | 0.3  | }        | 1.0      | 0.3   | }        | 15, 3             |

TOTAL 179.1 MAX, 15.0

## HOURLY RAINGALL,

|                                        |            | stat          | (ON     | fl  | ARD | PANA  |             |        |             |             |          | UNIT | nan      |              |                  | MONI         | 11       | JUN        | R          |             |     | RANY       |               | 973        |                          |
|----------------------------------------|------------|---------------|---------|-----|-----|-------|-------------|--------|-------------|-------------|----------|------|----------|--------------|------------------|--------------|----------|------------|------------|-------------|-----|------------|---------------|------------|--------------------------|
| FINE.<br>DATE                          | 1          | 2             | 3       | -\$ | 5   | 6     | 7           | 8      | 9           | 10          | 11       | 12   | 13       | 1.4          | 15               | 16           | 17       | 18         | 39         | 20          | 21  | 22         | 23            | 24         | TOTAL,                   |
| 1                                      |            |               |         | 1   |     |       |             |        |             |             | 1.0      |      |          |              |                  |              |          |            |            |             | 1.0 | 5.5        |               |            | 7. 5                     |
| . 2                                    |            |               |         |     |     |       |             |        |             |             |          |      |          |              |                  | [            |          |            | <u> </u>   | 0, 5        | 0.5 |            | · <del></del> |            | 1.0                      |
| 3                                      | •          |               |         |     |     |       |             |        | 1           |             |          |      | ·        |              | ]                |              | 0.5      | —          | 0.5        | - <u>**</u> |     |            |               | i          | 1.0                      |
| 5                                      |            |               |         |     | ,   |       |             |        |             |             |          |      |          |              | 0.5              | 2.0          | 0. 2     |            |            |             |     |            |               |            | 1.0<br>2.7<br>0.3<br>4.0 |
| 6<br>7                                 |            |               |         |     | [   |       |             |        | .~          |             | ļ        |      |          |              | - <del>,-,</del> |              |          | 0.3        | <b>  .</b> |             |     |            |               |            | 0.3                      |
|                                        | 1: 0       |               |         |     |     |       | ···         |        | [- <b>-</b> |             | <u> </u> |      |          | 0.3          | 0.5              | 1, 0<br>2, 0 | 1.0      | .1.0.      |            |             |     |            |               | <b>-</b>   | 9.0                      |
| 8<br>9<br>10                           | 0.6        |               |         |     |     | /     |             |        |             |             |          |      |          | 0. 5<br>1. 0 |                  |              |          |            |            |             |     |            |               |            | 1.6                      |
|                                        |            |               |         |     |     |       |             |        |             |             | - ~-     |      |          |              | <b>!-</b>        | ļ            | <b>.</b> |            |            |             |     | ·          |               |            | }- <i>-</i>              |
| 11                                     |            | i             |         |     | J   |       |             |        |             |             |          |      |          |              | <del> </del> -   |              |          | ļ-—·       |            |             |     |            | ·· <b></b>    | <b> </b> - | ļ.——                     |
| 13                                     |            |               |         | 1   |     |       |             |        |             |             |          |      |          |              |                  | 5.0          | 0.5      |            |            |             |     |            |               |            | 7.6                      |
|                                        |            |               |         |     |     |       |             |        |             | 7.7         |          | ļ    |          |              |                  |              | 0.5      |            |            |             |     |            |               |            | 0, 5<br>4, 0             |
| 15<br>16                               |            |               | 0.5     | 1,0 |     | 0.5   | 1.0         | 1.0    | 1,0         | !v <b>r</b> | 0.5      | [    |          |              |                  |              | <u> </u> |            | 1.0        | 1.0         |     |            |               | 2.0        | 2.5                      |
| 17                                     | 2.0<br>2.0 | 1.0<br>2.0    | 2:2     | }   |     | 3.0   | 10.0<br>1.0 | -20.3. | (4.0        | 15.0        | 15.0     | 12.0 |          | 2, 0         |                  | j            |          |            |            | .2. 9.      |     |            | 2.0           | 10.0       | 93.0.                    |
| 18                                     | 2.0        | 2,0           |         | 2.0 | 1.0 | _ 5.0 | 1.0         | 1.0    |             | ٠           | ļ        |      | 1.0      |              | 1,0              |              | LQ.      | 1.0<br>6.5 | 1.0        |             |     |            |               |            | 2), 0<br>12, 5           |
| 16<br>17<br>18<br>19<br>20             | •          |               |         |     |     |       |             | ·      | Lell.       | 10          | \·       | t.0. |          | \            | }                |              | -        | .U. 3.     | . 14.9.1   |             |     |            |               |            | 14.3.                    |
| 21                                     |            |               |         |     |     |       |             |        |             |             |          |      |          |              |                  |              |          |            |            |             |     |            |               | ſ          |                          |
| 23                                     |            |               |         |     | ļ   |       |             |        | ļ           |             | <b> </b> |      |          | <b>]</b> —   |                  | ļ            |          |            |            |             |     | ļ          |               |            |                          |
| -23                                    | <b>-</b>   |               |         |     |     |       | }           |        |             |             | h        |      |          |              |                  |              | 1,2      |            |            |             |     |            |               |            | 1. 2                     |
| 25                                     |            |               |         |     |     |       |             |        |             |             | [        |      |          |              |                  | [            |          |            |            | [           |     |            |               |            |                          |
| 24<br>25<br>26<br>27<br>28<br>29<br>30 |            |               | <b></b> |     |     |       |             |        |             |             |          |      |          |              |                  |              |          | •          |            |             |     | } <u>-</u> |               |            | ļ                        |
| 28                                     |            |               | ·-·     |     |     | ·     |             |        |             |             |          |      |          |              |                  |              |          |            | 2.0        |             |     |            |               |            | 2.0                      |
| 29                                     |            |               |         |     |     |       |             |        |             |             |          |      |          |              | 3.0              | 1.8          |          | 0.5        |            |             |     |            |               |            | 2.0<br>7.8<br>0.5        |
| _30                                    |            | <b>-</b> , •• |         |     |     |       |             |        |             |             |          |      | <b>-</b> |              |                  |              |          | N. 2       |            |             |     |            |               |            |                          |

TOTAL 186.7 SIAX. 15.0

|                                                                                       |             | STAT        | 108 | 11      | ARD      | PANA            |      |              |     |           |     | UNIT     | mm       | -            |     | MON      | rH         | JUL          | Y             |                                        |         | YBAR                                   | !   | 973                                          |                                        |
|---------------------------------------------------------------------------------------|-------------|-------------|-----|---------|----------|-----------------|------|--------------|-----|-----------|-----|----------|----------|--------------|-----|----------|------------|--------------|---------------|----------------------------------------|---------|----------------------------------------|-----|----------------------------------------------|----------------------------------------|
| DATE                                                                                  | ì           | 2           | 3   | 1       | 5        | 6               | 7    | 8            | 9   | ιO        | 11  | 112      | 13       | 14           | 15  | 16       | 17         | 18           | 19            | 20                                     | 21      | 55                                     | 23  | 21                                           | TOTAL                                  |
| į                                                                                     |             |             |     |         |          |                 |      |              |     |           |     |          |          | ļ            |     |          |            |              |               |                                        |         |                                        |     |                                              |                                        |
| 2                                                                                     |             | <b></b>     |     | wen 100 |          |                 | ļ    |              |     |           |     |          |          |              |     |          |            |              |               |                                        |         |                                        |     |                                              |                                        |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>12<br>13<br>14<br>15<br>16<br>17 |             |             |     |         |          |                 |      |              |     |           |     |          |          |              |     | -~       | 3.0        |              |               |                                        |         |                                        |     |                                              | 3,0                                    |
| 5                                                                                     | -           |             |     |         |          |                 | ·    |              |     |           |     |          |          |              |     |          |            |              |               |                                        |         |                                        |     |                                              |                                        |
| 6                                                                                     |             |             |     | 1.0     | 1.0      | . 2, 0<br>1, 1) |      |              |     |           |     |          | 5.0      |              |     |          |            |              | اي_ا_         | 3.0                                    |         |                                        |     | ļ                                            | 13.0<br>1.3                            |
|                                                                                       |             |             |     |         |          | 1.0             | 0, 3 |              |     | <b></b>   | ١   |          | ·        |              | \   |          |            |              |               |                                        |         |                                        |     |                                              |                                        |
| 8                                                                                     |             |             |     |         |          |                 |      |              |     |           |     |          |          |              | 1.0 |          |            |              |               |                                        |         |                                        |     |                                              |                                        |
|                                                                                       |             |             |     | <u></u> | 1, 0     |                 |      |              | 0.2 |           |     |          |          | t            |     | ~        | <b> </b> ~ |              |               |                                        |         |                                        |     |                                              | 1, 0                                   |
| 111                                                                                   |             |             |     |         |          |                 |      |              |     |           |     |          |          |              |     | ~~~      |            |              |               |                                        |         |                                        |     |                                              |                                        |
| 15                                                                                    |             |             |     |         |          |                 |      |              |     |           | 4.0 |          |          |              |     |          |            |              |               |                                        |         |                                        | n   |                                              | 4                                      |
| 13                                                                                    |             | ļ. <b>.</b> |     | 1,0     |          |                 | 7.5  |              |     |           |     |          |          | Ì            | Ì   | ì        | }          | <b>}</b>     |               |                                        |         | }                                      |     |                                              | 4.1<br>1.5                             |
| - [2 - ]                                                                              |             |             |     |         |          |                 | 0,4  | <del>-</del> |     |           |     |          |          |              |     |          |            |              |               |                                        |         |                                        |     |                                              |                                        |
| ĭř-l                                                                                  |             |             |     |         | <u>-</u> |                 |      | ļi           |     | <b></b> - | ļ   |          |          |              |     |          |            |              |               |                                        |         |                                        |     | 0.7                                          | 9.0                                    |
| 17                                                                                    |             |             |     |         |          | 0.7             | 2.0  | 2, 0         | 2.0 | 2.0       |     | 0.3      |          |              |     |          |            |              |               |                                        |         |                                        |     |                                              | 9.1                                    |
| 18                                                                                    |             |             |     |         |          |                 |      |              | 0.1 |           | ļ   |          |          |              |     |          |            |              | ļ             |                                        |         |                                        |     | ļ                                            | 0.5                                    |
| 19                                                                                    | <del></del> |             |     |         |          |                 |      | <b> </b> -   |     | <b>]</b>  | ļ   | 0.8      | 0.9      |              |     |          | 0. 2       | l            |               |                                        | <u></u> |                                        |     |                                              | 0.5                                    |
| 20                                                                                    |             |             |     |         |          |                 |      | ~            |     |           |     |          | 0. 9     |              | ·   |          |            |              |               |                                        |         |                                        |     | 10,000                                       |                                        |
| 20<br>21<br>22                                                                        |             |             |     |         |          |                 | -    |              |     |           |     |          |          |              |     |          | 1          |              |               |                                        | I       |                                        |     |                                              |                                        |
| 23                                                                                    |             |             |     |         |          |                 |      |              |     |           |     | <u> </u> |          | <u> </u>     |     |          |            |              |               |                                        |         |                                        |     |                                              | ļ                                      |
| 24                                                                                    |             |             |     |         |          |                 |      |              |     |           |     | ·        | <b>-</b> | \ <u>.</u>   |     |          |            | ~            |               |                                        |         | <b>!</b> -                             |     | <b>}</b>                                     | <b> </b>                               |
| 25                                                                                    |             |             |     |         |          |                 |      |              |     |           | J   |          | ļ        |              |     |          |            |              | 24.0          |                                        |         |                                        |     |                                              | 24.6                                   |
| 23<br>24<br>25<br>26<br>27                                                            | •           | ·—          |     |         |          |                 |      |              |     |           |     |          |          | <del> </del> | 1   | <b> </b> |            | <del> </del> | <u></u>       |                                        | l       |                                        |     | <del> </del>                                 | 1                                      |
| 28<br>29<br>30                                                                        |             |             | ·   |         |          |                 |      |              |     |           | ļ   |          |          | <u> </u>     |     |          |            | 1. B<br>2. O |               |                                        |         |                                        |     |                                              |                                        |
| 29                                                                                    |             |             |     |         |          |                 |      |              |     | [         |     |          | [        | 1            |     | L        |            | 5.0          | <b>i.</b> .Q. | 0,4                                    | 1.0     | 2.0                                    | 2.0 | 1.0                                          | 3,1                                    |
| 30                                                                                    |             |             |     |         |          |                 |      |              |     | ļ.—       |     |          |          |              | 2.0 | 1.0      | ļ          |              |               | ļ <sup>`</sup>                         | լս      | <u>2.0</u>                             | 3.0 | լուջ                                         | J2.12                                  |
| 31                                                                                    |             | i           |     | i l     | i I      | 1               | 1    | I            | l   | l         |     | L        | L        | l            | L   | L        |            | L            | <u></u> _     | ــــــــــــــــــــــــــــــــــــــ | L       | ــــــــــــــــــــــــــــــــــــــ | L   | <u>ı                                    </u> | _ ــــــــــــــــــــــــــــــــــــ |

TOTAL 75.2 MAX. 24.0

#### HOURLY RAINFALL

|                      | :           | STAT     | ION |      | IARD     | PANA |      |      |            |              |            | UNITE    | mm         | _           |     | монт | H   | AUG  | тен |          |          | YBAR         | 1   | 973        |                      |
|----------------------|-------------|----------|-----|------|----------|------|------|------|------------|--------------|------------|----------|------------|-------------|-----|------|-----|------|-----|----------|----------|--------------|-----|------------|----------------------|
| FIME<br>DATE         | 3           | 2        | 3   | 4    | 5        | 6    | 7    | 8    | 9          | 10           | 11         | 12       | 13         | 14          | 15  | 16   | 17  | 18   | 19  | 20       | 21       | 22           | 23  | 24         | TOTAL                |
| <u>l</u>             |             |          |     |      |          |      |      |      |            |              | <b> </b>   |          |            | 0.4         |     |      |     | 1.1  |     |          |          | 0.3          |     |            | 1.8                  |
| - 2 -                |             |          |     |      |          |      |      |      |            |              | <b> </b> - | ļ        |            | 0.3         |     | 1.0  | 0.3 |      | 6.0 |          |          |              |     |            | 1.3                  |
|                      |             |          |     |      |          |      |      |      |            |              |            |          |            |             |     |      |     |      |     |          |          |              |     | -          |                      |
| 4<br>5<br>6          |             |          |     |      | <u> </u> |      | l    |      |            |              |            |          |            | - ~         |     |      |     |      |     | 1.0      | 2.0      | 0. S<br>2. C | 0.5 |            | 1.0                  |
| 7                    | i. 0        |          |     |      | <b> </b> |      |      |      | <b> </b> - | <del> </del> | ļ          | <b> </b> | <b> </b>   |             |     |      | -~- |      |     |          | 1.0      | 2. C         | 3.0 | 5, 0       |                      |
| 8<br>9<br>10         | <u> </u>    |          |     |      |          |      |      |      |            |              |            |          | 1.0        | <b>C.</b> 8 |     |      |     |      |     |          |          |              |     |            | 1.0                  |
| 11-1-                |             |          |     |      |          |      |      |      |            |              |            | <b> </b> |            |             |     |      |     |      |     |          |          |              |     |            | <u> </u>             |
| 13                   |             |          |     |      |          |      |      |      |            |              |            |          | <u> </u>   |             |     |      | :   |      |     |          |          |              |     |            |                      |
| 14                   | [           |          |     |      |          | 0.5  |      |      |            |              |            |          |            |             |     |      | 1.0 |      | 1.0 |          |          |              |     |            | 2.5                  |
| 15                   |             |          |     |      |          |      |      | ~~~  |            |              |            |          |            |             |     |      |     |      |     |          |          |              |     |            | ļ                    |
| 16<br>17             |             |          |     |      |          |      |      |      |            |              |            |          |            |             |     |      |     |      | 1.0 |          | 0.3      |              | 0.5 |            | 1.3                  |
| 18                   |             |          |     |      |          |      |      |      |            |              |            |          |            |             |     |      |     |      |     |          |          | 1.5          | 0.3 |            | Z. V.                |
| 20<br>21             | =           | -        |     |      |          | 2. 0 | 2.0  |      |            |              |            |          |            | Ž;          |     |      | •   |      |     | 1.0      | 1.0      |              |     |            | 5.6                  |
| 22                   |             | <u>.</u> |     |      |          |      |      | 0. 2 |            |              |            |          |            |             |     |      |     |      |     |          |          | 1.0          |     |            | 5, 6<br>1. 2         |
| 23                   | ]           |          | 0,6 |      |          |      |      |      | 0.5        |              | <b></b>    | <b> </b> | <b> </b> - | 1.0         | 1.3 | ·    | 0.5 | 1. 0 | 1.0 | 1.0      | <u>-</u> |              |     | <b> </b> - | 7. 1                 |
| 25                   |             |          |     |      |          |      | 0.8  |      |            |              |            |          |            |             |     |      |     |      |     |          |          | 1.0          |     | 0.3        | 7. 1<br>1. 8<br>0. 5 |
| 24<br>25<br>26<br>27 |             |          |     |      |          |      | U. 2 |      |            |              |            |          |            |             |     |      |     |      |     |          |          |              |     |            |                      |
| 28 (                 | <u>0. 5</u> | 2.0      | 0.4 | 0, 8 | 0.3      |      |      |      | 0, 2       |              | ļ          | ļ        |            |             |     | 8.0  |     |      | ŀ   | <u>-</u> |          |              |     | 0.6        | 1.8                  |
| 30 I                 |             | 2,0      |     |      |          |      | ,    |      |            |              |            |          |            |             |     | 8. O |     |      |     |          |          |              |     |            | 11.0<br>1.3<br>7.0   |

TOTAL 70.5

## HOPRLY RAISPALL

|                            |   | STAT | ION      | <u></u> | ARD | PANA |          |     | 9.4         |            |     | UNIT | enRi | . <u>.</u> |          | MON  | TH         | SHI                   | TUMB | KR.                      |            | YBAR        |               | 73         |                                 |
|----------------------------|---|------|----------|---------|-----|------|----------|-----|-------------|------------|-----|------|------|------------|----------|------|------------|-----------------------|------|--------------------------|------------|-------------|---------------|------------|---------------------------------|
| PHI<br>DATE                | 1 | 2    | 3        | -1      | 5   | 6    | 7        | 8   | 9           | 10         | 11  | 12   | 13   | 14         | 15       | 16   | 17         | 18                    | 19   | 20                       | 51         | 22          | 23            | 24         | TOTAL.                          |
| 1                          |   |      |          |         |     |      |          |     |             | 1.4        |     |      |      |            |          |      |            |                       |      |                          |            | .,          |               |            | 1.1.                            |
| 1<br>2<br>3                |   |      |          |         |     | ¦    |          | ٠   |             |            |     |      |      |            |          | 3, 0 | <u>-</u>   |                       |      |                          |            | **.         |               | <u>0.5</u> | 3.5.                            |
| 1 3                        |   | }    |          |         |     |      |          | /   | <u>Ω, 5</u> |            |     |      |      |            | _0_5     |      |            |                       |      |                          |            |             |               |            | J.Q.                            |
| 5                          |   |      |          |         |     |      |          |     |             |            | ļ   |      |      |            |          |      |            |                       |      |                          |            |             |               |            |                                 |
| 7 8                        |   |      |          |         |     |      |          |     |             |            |     |      | ļ    | 2.0        |          |      |            |                       |      | 2.0                      | ī.ā        | 1.0         | 0. 2          | <u>-</u> - | 2.0<br>4.2<br>4.2               |
| 10<br>10                   |   |      |          |         |     |      |          |     |             |            |     |      |      |            |          | 3.0  | 1.2        |                       |      |                          |            |             |               |            |                                 |
| 11                         |   |      |          |         |     |      |          |     |             |            |     |      |      |            | 5, 0     | 4.0  | 3.8        |                       | 3.0  | · · · · · · · ·          |            |             |               |            | 12. 8                           |
| 13                         |   |      | <u> </u> | 0.2     |     |      | <u> </u> | ]   |             |            |     |      |      | 2.0        | <u> </u> |      |            | 0.3                   | 3.0  |                          |            |             | 5 0           | 9.8        | 12. &<br>15. ((<br>2. 2<br>8. 0 |
| 15                         |   |      |          |         |     |      |          |     |             |            |     |      |      |            | <b> </b> | 7.0  | 1.0        |                       | 16.0 | 2.0                      | 0.8        |             | • • • • • • • |            | 8, 0<br>18. 8                   |
| 16<br>17<br>18             |   |      |          |         |     |      |          |     |             |            |     |      | 0.5  |            |          | 0.5  | 5, 5       | 20 ñ                  |      | 1.0                      | 1.0        |             |               |            | 18.8<br>0.5<br>37.0<br>18.5     |
| 18                         |   |      |          | ī. ô    |     |      | 1.0      |     | 3.0         | 1. 5       |     | 0, 5 |      |            |          |      |            | 29, 0<br>0, 5<br>1, 0 | 2, 0 | 3, 0                     | 1.0<br>2.5 |             |               |            | Jñ. S                           |
| 19                         |   | 0,5  | 0.1      | Οţ      |     |      |          |     | 0.8         | <u>t.0</u> | 1.9 | ·    | 1.0  |            | 2.5      | [    | 0.5        | 1.0                   | 3.0  | 1.0<br>3.0<br>3.0<br>4.0 | 0.5        |             |               |            | 12,0<br>11,5<br>10,0            |
| 21                         |   |      |          | 1,0     | 1.0 | 4, 0 | 1, 5     |     |             |            |     |      |      |            |          | ?.5  | ļ          |                       |      |                          |            |             |               |            | 10.0                            |
| 23                         |   |      |          |         |     |      |          |     |             |            |     | 3.8  |      |            |          |      | 0, \$      | 13.0                  | 7.0  |                          |            |             |               |            | 21.3<br>1.5                     |
| 25                         |   |      |          |         |     |      |          | 1.0 | 0.5         |            |     |      |      |            |          |      |            |                       |      | - 2-7                    |            |             |               | 0.5        | 14.0                            |
| 23<br>24<br>25<br>26<br>27 |   |      |          |         |     |      |          |     |             |            |     |      |      |            | 11.5     |      | 0.8        | 1                     |      | 1,0                      |            |             |               |            |                                 |
| 28                         |   |      |          |         |     |      |          |     |             |            |     | 0.5  |      |            |          | 0.5  | 0.5        | Įī.ē                  | 8.0  | 14.0                     | 0.5        | 18.Q<br>0.5 | 0.5           | 0, 5       | (3, 5<br>3, 5<br>12, 0          |
| 30                         |   |      |          |         |     |      |          |     |             |            |     | _v.s | 11.5 |            |          | -    | 0.5<br>0.5 |                       |      |                          |            |             |               |            | 12.0                            |
| 31                         |   |      | Li       |         |     | L    |          | l   | l           |            |     | L    | L    | <u> </u>   | L        | ļ    | l          | L                     | Ĺ    | L                        | <u></u>    | L           | L             | L          | l                               |

FOTAL 261.4 MAX. 29.0

## BOURLY RAINFALL

|                |      | STAT   | KOI | B        | OBA  | PAÑA  |     |     |      |    | •        | UNIT | mm  |    |     | MONT | H     | oc1 | ODER         |               |       | YBAR          |                   | 973  |                             |
|----------------|------|--------|-----|----------|------|-------|-----|-----|------|----|----------|------|-----|----|-----|------|-------|-----|--------------|---------------|-------|---------------|-------------------|------|-----------------------------|
| DATE           | í    | 2      | 3   | 4        | 5    | 6     | 7   | 8   | 9    | 10 | 11       | 12   | 13  | 14 | 15  | 16   | 17    | 18  | 19           | 20            | 21    | 22            | 23                | 24   | TOTAL                       |
| ı              |      |        |     |          |      |       |     |     |      |    |          |      |     |    |     | 1.8  | 2.0   |     |              |               |       |               |                   |      | 8.8                         |
| 3              |      | ·      |     |          |      |       |     |     |      |    | 0.7      | 1.5  |     |    | 0.3 |      | ,<br> |     |              |               |       | 0.5           | 1.0               | 12.0 | 0.3<br>15.7                 |
| 4<br>5         | _3.0 |        |     |          | 1. 0 | 4, 0  | 7.0 | 0.5 |      |    | ļ        |      |     |    | 3.0 |      |       |     |              | 1,0           | 7.5   | 18, U<br>5, O | 1.0<br>6.0<br>3.0 | 0.2  | 15.7<br>34.0<br>28.2<br>0.3 |
| 1 4            |      |        |     |          |      |       |     | 0.3 |      |    |          |      |     |    |     |      |       |     |              |               | ~ ~~. |               |                   |      |                             |
| 8 9            |      |        |     |          |      |       |     |     |      |    |          |      |     |    |     | 3.0  | 3.0   | 2.0 | 5. 0<br>2. 0 | 15. 0<br>1. 5 | 3.0   | 2.0           | 0.5               | 0.8  | 25. 8<br>12. 5              |
| 10             | 0. 5 | 1, 0   | 2,5 |          |      | 0, 5  | 1.0 | 1.0 |      |    |          |      |     |    |     |      |       |     |              |               |       |               |                   |      | 6.5                         |
| 12             |      | 6.0    | 6.5 |          |      |       |     |     |      |    | 0.3      |      |     |    |     |      |       |     |              |               |       |               |                   |      | [2.5<br>0.3                 |
| 14             |      |        |     |          |      |       |     |     |      |    |          |      |     |    |     |      |       |     |              |               |       |               | 0.1               |      | 0.4                         |
| 16             |      | <br>   |     |          | 0.2  |       |     |     |      |    |          | 1.0  |     |    |     |      |       |     |              |               |       | ·             |                   |      | 1.5                         |
| 18             |      | 0.3    |     |          | 0.7  | <br>L |     |     |      |    |          |      |     |    |     |      |       |     |              |               |       |               |                   |      |                             |
| 19<br>20       |      | - 2.24 |     |          |      |       |     |     |      |    | <u></u>  |      |     |    |     |      |       |     |              |               |       |               |                   |      |                             |
| 21             |      |        |     |          |      |       |     |     |      |    | <b> </b> |      |     |    |     |      |       |     |              |               |       |               |                   |      |                             |
| 23<br>24<br>25 |      |        |     |          |      |       |     |     |      |    |          |      |     |    |     |      |       |     |              |               |       |               |                   |      |                             |
| 26             |      |        |     |          |      |       |     |     |      |    |          |      |     |    |     |      | -··—  |     |              |               |       |               |                   |      |                             |
| 27             |      | 0.5    | 2.0 | 6.3      |      |       | 0.8 |     | 0, 2 |    |          |      | 1.0 |    | 0.5 |      |       |     |              |               |       |               |                   |      | 2.5<br>2.8                  |
| 29<br>30       |      |        |     |          |      |       |     |     |      |    |          |      |     |    |     |      |       |     | Z            |               |       |               |                   |      |                             |
| 31             |      |        |     | المداجمة |      |       |     |     |      |    |          |      |     |    |     |      |       | L   |              |               |       |               |                   |      |                             |

TOTAL 152,1 MAX, 16.0

|                      | ·            | STAT      | ION | 1           | ARD  | PANA |     |      |       |          |    | UNIT | ģīrā |          |      | MONI | H    | NOV | BMBB | R          |     | YBAR |     | 973 |                    |
|----------------------|--------------|-----------|-----|-------------|------|------|-----|------|-------|----------|----|------|------|----------|------|------|------|-----|------|------------|-----|------|-----|-----|--------------------|
| DATE                 | 1            | 2         | 3   | 4           | 5    | ь    | 7   | 8    | 9     | 10       | 11 | 12   | 13   | 14       | ŧ5   | 16   | 17   | 18  | 19   | 20         | 21  | 72   | 23  | 21  | TOTAL              |
| <u>t</u>             |              |           |     |             |      |      |     |      |       |          |    |      |      |          |      |      |      |     |      |            |     |      |     |     |                    |
| 3                    |              |           |     |             |      |      |     |      |       |          |    |      |      |          |      |      |      |     |      |            |     |      |     |     |                    |
| 5                    |              |           |     |             |      |      |     |      |       |          |    |      |      |          |      |      |      |     |      |            |     |      |     |     |                    |
| 7                    |              |           |     |             |      |      |     |      |       |          |    |      |      |          |      |      |      |     |      |            |     |      |     |     |                    |
| 9                    |              |           |     |             |      |      |     |      |       |          |    |      | 6.4  |          |      |      |      |     |      |            |     |      |     |     | 6.4                |
| 11                   |              | 0.8       |     | 1.2         | 1, 0 | 2.0  |     |      |       |          |    |      |      | 0.8      | 3. 2 |      | 0.5  |     | 1.5  | 1.0        | 0.5 | 0.5  | 0.4 | 0,6 |                    |
| 13<br>(4<br>15<br>16 | 1. O<br>0. S | -2.5      |     | <u> 6.2</u> | 1,0  | 0.5  |     | 0. 7 | 0.3   |          |    |      | -    |          |      |      |      |     | 1, 0 | 1.3        |     |      | 0,5 |     | )4,0<br>6,4<br>0,5 |
| 15                   |              |           |     |             |      |      |     |      | · · · |          |    |      |      |          |      |      |      |     |      |            |     |      |     |     |                    |
| 1 18 1               |              |           |     |             |      |      |     |      |       |          |    |      |      |          |      |      |      |     |      |            |     |      |     |     |                    |
| 20                   |              | 0.8       |     | 0.5         |      |      | 1.2 | 1.0  |       | 0.5      |    | 0.3  | 1.0  | 1.0      |      | 1,0  | 2, 4 | 0,6 | 0.5  |            |     |      |     |     | 10.8               |
| 21                   |              |           |     | ,,,,,,,     |      |      |     |      |       |          |    |      |      |          |      |      |      |     |      |            | -   |      |     |     |                    |
| 23                   |              |           |     |             |      |      |     |      |       |          |    |      |      |          |      |      |      |     |      |            |     |      |     |     |                    |
| 25<br>26<br>27       |              |           | *** |             |      |      |     |      |       |          |    |      |      |          |      |      |      |     |      | <b>-</b> - |     |      |     |     |                    |
| 27                   |              |           |     |             |      |      |     |      |       |          |    |      |      | <u> </u> |      |      |      |     |      |            |     |      |     |     | <u> </u>           |
| 28<br>29<br>30<br>31 |              |           |     |             |      |      |     |      |       |          |    |      |      |          |      |      | ~    |     |      |            |     |      |     |     |                    |
| [31]                 |              | <b></b> _ | L   | L           | L    | ·    | I   | L.,  | L     | <u> </u> | l  | L    | L    | L        | L    | i    | Ĺ    | L   | L    | L          | L   | L    |     | L   |                    |

TOTAL, 38.1

## HOURLY RAINFALL

|                |                | STAT | ION | <u>+</u>     | IARD     | PANA | ·        |     |   |    |    | UNIT | mas      | •  |         | FROM     | rtt | DEC | KMOE     | R            |                | YBAR |    | 973 |       |
|----------------|----------------|------|-----|--------------|----------|------|----------|-----|---|----|----|------|----------|----|---------|----------|-----|-----|----------|--------------|----------------|------|----|-----|-------|
| DATE           | 1              | 2    | 3   | 1            | 5        | 6    | 7        | 8   | 9 | 10 | 11 | 12   | 13       | 14 | 15      | 16       | 17  | 16  | 19       | 20           | 21             | 22   | 23 | 24  | TOTAL |
|                |                |      |     |              |          |      |          |     |   |    |    |      |          |    |         |          |     |     |          |              |                |      | -  |     |       |
| 3              | <b></b>        |      |     |              |          |      |          |     |   |    | ·  |      |          |    |         |          | v   |     |          |              | <del> </del> — |      |    |     |       |
| 4 5            |                |      |     |              |          | 0.4  |          | 0.6 |   |    |    |      |          |    |         |          | [== |     |          |              |                |      |    | _   | 1.0   |
| 6              |                |      |     |              |          |      | ļ        |     |   |    |    |      |          |    |         |          |     |     |          |              |                |      |    |     |       |
| 7              |                |      |     |              |          |      | <u> </u> |     |   |    |    |      | <u> </u> |    |         |          |     |     |          | <del> </del> |                |      |    |     |       |
| 9              |                |      |     |              |          |      |          |     |   |    |    |      |          | _  |         |          |     | /   |          |              |                |      |    |     |       |
| 11             |                |      |     |              |          |      |          |     |   |    |    |      |          |    |         |          |     |     |          |              |                |      |    |     |       |
| 13             |                |      |     |              |          |      |          |     |   |    |    |      | _        |    |         |          |     |     |          |              |                |      |    |     |       |
| 14<br>15       | · · <i>-</i> - |      |     |              | <b> </b> |      |          |     |   |    |    |      |          |    | <b></b> |          |     |     |          | \            | -              |      |    |     |       |
| 16,            |                |      |     |              |          |      |          |     |   |    |    |      |          |    |         |          |     |     |          |              |                |      |    |     |       |
| 18             |                |      |     |              |          |      |          |     |   |    |    |      |          |    |         |          |     |     |          |              |                |      |    |     |       |
| 19             |                |      |     | <del> </del> |          |      | <b>]</b> |     |   |    |    |      |          |    |         |          |     |     |          |              |                |      |    |     |       |
| 21             |                |      |     |              |          |      |          | ~   |   |    |    |      |          |    |         |          |     |     |          |              |                |      |    |     |       |
| 23             |                |      |     |              |          |      | [        |     |   |    |    |      |          |    |         |          |     |     |          |              |                |      | _  |     |       |
| 24<br>25       |                |      |     |              |          |      |          |     |   |    |    |      |          |    |         |          |     |     |          |              |                |      |    |     |       |
| 25<br>26<br>27 |                |      |     |              |          |      |          |     |   |    |    | _    |          |    |         |          |     |     | <u> </u> | -            |                |      |    |     |       |
| 28             |                |      |     |              |          |      |          |     |   |    | -  |      |          |    |         |          |     |     |          |              |                |      |    |     |       |
| 30             |                |      |     |              |          |      |          |     |   |    |    |      |          |    |         |          |     |     |          |              |                |      |    |     |       |
| 31             |                | l    |     | Ι.           | l        | 1 .  | I        | I   | 1 |    | l  | l    | J        | l  | L       | <u>і</u> | l   | Ē   | L        | L            | L              | l    | l  | L   | l     |

TOTAL 1.0

|          |          | STAT | 108 | (1 | ARD    | PANA     |   |         |    |          | UNIT | min       | -        |                  | МОИ     | M  | JAN | IARY |      |          | YBAR |    | 974 |            |
|----------|----------|------|-----|----|--------|----------|---|---------|----|----------|------|-----------|----------|------------------|---------|----|-----|------|------|----------|------|----|-----|------------|
| 03F      | 1        | 2    | 3   | 1  | 5      | 6        | 7 | \$<br>9 | 10 | 11       | 12   | 13        | 14       | 15               | 16      | 17 | 18  | 19   | .50  | 21       | 55   | 23 | 24  | TOTAL,     |
| l.       |          |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      |      |          |      |    |     |            |
| - 3      |          |      |     |    | ·      |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      |      |          |      |    |     |            |
| 5        |          |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      |      |          |      |    |     |            |
| <u> </u> |          |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      |      |          |      |    |     |            |
| 8        |          |      |     |    |        |          |   | <br>    |    |          |      |           | <u></u>  |                  |         |    |     |      | , ,  |          |      |    |     |            |
| 9        |          |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      | ~    |          |      |    |     |            |
| 12       |          |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      |      |          |      |    |     |            |
| 13       |          |      |     | }  | ,<br>, |          |   | <br>    |    |          |      |           |          | موسسر.<br>در کور |         |    |     |      |      |          |      |    |     |            |
| 14       | <b>.</b> |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  | -       |    |     |      |      |          |      |    |     |            |
| 16       |          |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      |      |          |      |    | ļ   |            |
| 18       |          |      |     |    |        |          |   | <br>    |    | <u> </u> |      |           |          |                  |         |    |     |      |      |          |      |    |     |            |
| 19<br>20 |          | •    |     |    |        |          |   | <br>    |    |          |      | [         |          |                  |         |    |     |      |      |          |      |    |     |            |
| 21<br>22 |          |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      | ļ    |          |      |    |     |            |
| -23      |          |      |     |    |        | <u> </u> |   | <br>    |    |          | ļ    |           |          |                  |         |    |     |      |      |          |      |    |     |            |
| 21<br>25 |          |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      |      |          |      |    |     |            |
| 25       |          |      |     |    |        |          |   | <br>    |    | <b> </b> |      | <b></b> - | <u> </u> |                  | <u></u> |    | }   |      | <br> |          |      |    |     |            |
| 28       |          |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      |      |          |      |    |     | [ <b> </b> |
| 30       |          |      |     |    |        |          |   | <br>    |    |          |      |           |          |                  |         |    |     |      |      | <b> </b> | ļ    |    | ļ   |            |
| 33       |          | L    | l   | L  | Ĺi     | L        | L | <br>L   | L  | L        | L    | 1         | L        | L                | L       | L  | J   | L    | L    | L        | 1    | 11 | J   | L          |

| TOTAL | 0.0 |
|-------|-----|
| MAX.  |     |

# HOURLY RAINFALL

|                  |     | STAT | ION      | !!        | ARD  | PANA |   |        |             |           |          | UNIT | WHY          |                  |              | MOM      | TH        | PRE    | RUAR       | Y   |                | YBAR          |         | 974          |        |
|------------------|-----|------|----------|-----------|------|------|---|--------|-------------|-----------|----------|------|--------------|------------------|--------------|----------|-----------|--------|------------|-----|----------------|---------------|---------|--------------|--------|
| TIME<br>Date     | ,1  | 2    | 3        | 1         | 5    | 6    | 7 | 8      | 9           | 10        | 13       | 12   | 13           | 14               | 15           | 16       | 17        | 18     | 19         | 20  | 21             | 22            | 23      | 24           | TOTAL. |
| 1                |     |      |          |           | [ ·  | Ì    | } |        |             |           | 1        |      |              | ļ                |              | ļ.       | 1 .       |        |            |     |                |               |         |              |        |
| 2                |     | ~    |          | \ · · · - |      | ~    |   | \-··-· |             |           |          |      |              |                  |              |          |           |        | \          |     |                |               |         |              |        |
| 3                |     |      |          |           |      |      |   |        |             |           |          |      |              |                  |              |          |           |        |            |     |                | ,             |         |              |        |
|                  |     |      |          | - /       |      |      |   |        |             |           |          |      |              |                  |              |          |           |        |            |     |                |               |         |              |        |
| 5                |     |      | <b></b>  | <b></b>   |      |      |   | ٠      | ļ           | <b></b>   | <b>.</b> |      | \ <b>-</b> - | ļ                |              |          | ļ <b></b> | ļi     | <b> </b>   |     |                |               | <b></b> |              | ļ      |
| <u>\$</u>        |     |      |          | ļ · · ·   |      |      |   |        | <b>.</b>    |           | ·        |      |              |                  |              | ļ        | .~        |        | ·          |     | ·              |               |         |              |        |
|                  | ~~~ |      |          |           | **** |      |   |        |             |           |          |      |              | <del>  -</del> - |              |          |           |        |            |     |                |               |         |              |        |
| 8                |     |      |          |           |      |      |   |        |             |           |          |      |              |                  |              | l        |           |        |            |     |                |               |         |              |        |
| 76 l             |     |      |          | <u>}</u>  |      | ]    | , | }      | · · · · · · |           |          |      |              | 1                |              | ì        |           | 11     |            |     | ] " "          | Ì             |         | 1            |        |
| 10               |     |      |          |           |      |      |   |        |             |           |          |      |              |                  |              |          |           |        |            |     |                |               |         |              |        |
| 12"              |     |      |          |           |      |      |   |        |             |           |          |      |              |                  |              |          |           |        |            |     |                |               |         |              |        |
| 13               |     |      | }        |           |      |      |   |        |             |           | \'       | }    |              | ١                | ^ - ~ -      | L        |           | اــــا | \ <b>-</b> |     | \ <sup> </sup> |               |         |              |        |
| 14.              |     |      |          | <b>!</b>  |      |      |   |        |             |           | ļ        |      |              | ļ                |              |          |           |        |            |     | <b></b>        |               |         |              |        |
| 15               |     |      |          | ·         |      |      |   |        |             | ~         |          |      |              |                  |              | <b>!</b> |           |        |            |     |                |               |         |              |        |
| 16               |     |      |          | ·         |      |      |   |        | <b>[</b> -  | [··—      | [j       |      |              | ļ                |              | l        |           |        | ·-·        |     |                | <u> </u>      |         | ···          |        |
| 18               |     | ·    |          |           |      |      |   |        | l           |           |          |      |              | i                |              |          |           |        |            |     | 2.0            | 0.5           | 1.0     |              | 3.5    |
| ·iš - [          |     |      |          |           |      |      |   |        |             |           |          |      |              |                  |              | ···      |           |        |            |     |                |               |         |              |        |
| 20               |     |      |          |           |      |      |   | 1      | i           |           |          |      |              |                  |              |          |           | 18. 0  | 7.0        |     |                |               |         |              | 25,0   |
| 21               |     |      |          | 7.0.4.5   |      |      |   |        |             |           |          |      |              |                  |              |          |           |        |            |     |                |               |         | \            | L      |
| 55               |     |      |          | L         | ļ    | L    |   | l      |             |           |          | l    |              |                  | ļ            |          |           |        | <b> </b>   |     | L              |               |         |              |        |
| 23               |     |      |          |           |      | J    |   |        | ļ           |           |          |      |              |                  | ļ            |          |           |        |            |     |                |               |         | <b> </b>     |        |
| 24<br>23<br>26   |     |      |          |           |      |      |   |        |             |           | <u> </u> | ~~   |              |                  |              | ļ        |           |        | l          |     |                |               | [·      |              |        |
| <del>7</del> 3 - |     |      |          |           |      |      |   |        |             |           |          |      |              | ·                | ~            | }        |           |        | ļ·         | ·   | **             |               | ŀ       | <del> </del> | ļ      |
| 27               |     |      | <i>-</i> | · - · -   |      |      |   |        | •           | <b> -</b> | ·        |      |              | ·                | ļ <b>-</b> - |          |           |        | ····       | · · |                | - <del></del> |         | · - · - · -  |        |
| <del>"</del>     |     |      | ···-     |           |      |      |   |        |             | ···-      |          |      |              | •                |              |          |           | }      |            | ·   | ]              |               |         | l            |        |
| 29               |     |      |          | `````     |      |      |   | 1      |             |           |          |      |              |                  |              |          |           |        |            |     |                | l             |         |              | I      |
| 30               |     |      |          |           |      |      |   |        |             |           |          | Ì    |              | [                |              |          |           |        |            |     |                |               |         |              | J      |
| 31               |     |      |          | }         |      | 1    | Ī | L      | L           |           |          | l    | L.           | L                |              | l        | L         | L      |            | l   | L              | L             | L       | l            | Ĺ      |

| TOTAL | 28.5 |
|-------|------|
| MAX.  | 18.0 |

|                                        |     | STAT | gO <sub>N</sub> | 11       | ARD | PANA |             |     |      |          |         | UNCT                                  | ina        |     |           | MON | и            | MAR | icii _ |             |        | YBAR | <u>L</u>     | 974 |               |
|----------------------------------------|-----|------|-----------------|----------|-----|------|-------------|-----|------|----------|---------|---------------------------------------|------------|-----|-----------|-----|--------------|-----|--------|-------------|--------|------|--------------|-----|---------------|
| DATE:                                  | 1   | 2    | .3              | -1       | 5   | 0    | 7           | Ж   | v    | 10       | 11      | 12                                    | 13         | 14  | 15        | 16  | 17 :         | 18  | 19     | 20          | 21     | 22   | 23           | 24  | TOTAL         |
| 1                                      | . , |      |                 |          | Ī   |      |             |     |      |          |         |                                       |            |     |           |     |              |     |        |             |        |      |              |     |               |
| 3                                      |     | l l  |                 | } .      |     |      |             |     |      |          |         |                                       |            |     |           |     |              |     |        |             |        |      |              |     |               |
| 3                                      |     |      | İ               |          |     |      |             |     |      |          |         |                                       |            |     |           |     |              |     |        |             |        |      |              |     |               |
| 6                                      |     |      |                 | 1        |     |      |             |     |      |          |         |                                       |            |     |           |     |              |     |        |             |        |      |              |     |               |
| 7                                      |     |      |                 | ļ.,,, .  |     |      | ï, ñ        | 3.0 |      | *****    |         |                                       |            |     | . <b></b> |     |              |     |        |             |        |      | ·· —         |     | 3.0           |
|                                        |     |      |                 |          |     |      |             |     |      |          |         |                                       |            | ~   |           | ~   | 7. 0         | 5.0 | 1.0    | 0.7         |        |      |              |     | 1.7           |
| 10                                     |     |      |                 |          |     |      |             |     |      |          |         |                                       |            |     |           |     |              | J   |        |             |        |      |              |     | !!!!          |
| 12<br>13                               |     |      |                 | [        |     |      |             |     |      | ļ        |         | <b></b>                               |            |     |           |     |              |     |        |             |        |      |              |     |               |
| 111                                    |     |      |                 |          |     |      | ***         |     |      |          |         |                                       |            |     |           |     | U. 5<br>2. 0 |     | U, Ş   |             |        |      |              |     | 0. S<br>2. 5  |
| 15                                     |     |      | i               |          |     | 2    |             |     |      |          |         |                                       |            |     |           |     |              |     |        |             |        |      | ••=••<br>••: |     |               |
| 17                                     |     |      |                 |          |     |      |             |     |      |          |         | ~ ~                                   |            |     |           |     |              |     |        |             |        |      |              |     |               |
| 19                                     |     |      |                 |          | .,  |      |             |     |      |          |         |                                       |            |     |           |     |              |     |        |             | 1 7    | 1.0  |              |     |               |
| 18<br>19<br>20<br>21                   | ·   |      |                 |          |     |      |             |     |      |          |         |                                       |            |     |           |     |              |     | 0.9    |             | 100.00 |      |              |     | 0.9           |
| 22                                     |     |      |                 |          |     |      |             |     |      |          | <b></b> |                                       |            |     |           |     |              | 0.3 |        |             |        |      |              |     | 0.5           |
| ñ                                      |     |      |                 |          |     |      |             |     |      |          |         |                                       |            |     |           |     |              |     |        |             |        |      |              |     |               |
| 25                                     |     |      |                 | <b>-</b> |     |      |             |     |      | <u> </u> |         |                                       |            |     |           |     |              |     |        |             |        |      |              |     |               |
| 23<br>24<br>25<br>26<br>27<br>28<br>29 |     |      |                 |          |     |      |             |     |      |          |         |                                       |            |     |           |     |              |     |        |             | 1.0    | 0.7  |              |     | 1.7           |
| 29                                     |     |      |                 |          |     |      |             |     | 0. 2 |          |         | • • • • • • • • • • • • • • • • • • • |            | 2.6 |           |     |              | 4.4 | 6.0    | 2.0         |        |      |              |     | 14. 2<br>8. 2 |
| 30                                     |     | [-·· | - · · · ·       |          |     |      | ļ <i></i> - |     |      |          |         |                                       | - <b>-</b> | ~   |           |     |              |     |        | · · · · · · |        |      |              | L   | L             |

TOTAL <u>\$6.2</u> MAX. <u>8.2</u>

#### HOURLY RAINFALL

|                |          | STAT | ION        |     | ARD       | PANA |   |   |   |    |    | UNIT | 1900    |     |      | HON  | OHE          | Ara                                          | <u> </u> |      |      | YEAR       |      | 974 |            |
|----------------|----------|------|------------|-----|-----------|------|---|---|---|----|----|------|---------|-----|------|------|--------------|----------------------------------------------|----------|------|------|------------|------|-----|------------|
| TOST<br>DATE   | 1        | 2    | 3          | 1   | 3         | Ü    | 7 | 8 | 9 | 10 | 11 | 13   | 13      | 13  | 15   | 16   | 17           | 18                                           | 19       | 20   | 21   | 22         | 23   | 21  | TOTAL      |
|                |          |      | [          |     |           |      |   |   |   |    |    |      |         |     |      |      |              |                                              |          | 4.0  | 3.0  | 13. D      |      | 6.0 | 31,0       |
| 3              | 0, 5     |      |            |     | • • • • • |      |   |   |   |    |    |      |         |     |      |      |              |                                              |          |      | 31-1 |            | 38.2 |     | 0.5        |
|                | :        | Ì    |            |     |           |      |   |   |   |    | }  |      |         |     |      | 0.5  |              | ]i                                           |          |      |      |            |      |     | 0.5        |
| 6              |          |      |            |     |           |      |   |   |   |    |    |      |         |     |      |      |              |                                              | ··       |      |      |            |      |     |            |
| . 3            |          |      |            |     |           |      |   |   |   |    |    | ,    |         |     | 7, 0 | 0.5  | 0. 2<br>9. 8 |                                              |          |      |      | <b> </b>   |      |     | 1.7        |
| 10             |          |      | <u> </u>   |     |           |      |   |   |   |    |    |      |         |     |      | 1.3  | 9.8          |                                              |          |      |      | 0.2        | ~    |     | ) t, t     |
| 12             |          |      |            |     |           |      |   |   |   |    |    |      |         |     |      | 2.0  | 0.8          | <u>                                     </u> |          |      |      |            |      |     | 2.8        |
| 13<br>14<br>15 |          |      |            |     |           |      |   |   |   |    |    |      |         |     |      | 3. 0 | 0.3          |                                              |          |      |      |            |      |     | 0,3<br>3,0 |
| 16             |          |      |            |     |           |      |   |   |   |    |    |      |         |     |      |      |              |                                              |          |      |      |            |      |     |            |
| 17             | ·        |      |            |     |           |      |   |   |   |    |    |      |         |     |      |      |              |                                              |          |      |      |            |      |     |            |
| 19             |          |      |            |     |           |      |   |   |   |    |    |      |         |     |      |      |              |                                              |          |      |      |            |      |     |            |
| 20<br>21       |          |      |            |     |           |      |   |   | · |    |    |      |         |     |      |      |              |                                              |          |      |      |            |      |     |            |
| 22<br>23       | <b>.</b> |      |            |     |           |      |   | ļ |   |    |    |      | <u></u> |     |      |      |              |                                              |          |      |      |            |      |     |            |
| 24             |          |      |            |     |           |      |   | [ |   |    |    |      |         |     |      |      |              |                                              |          |      |      |            |      |     |            |
| 25<br>26       |          |      |            |     |           |      |   |   |   |    |    |      |         |     |      |      |              |                                              |          | 0. 5 | 3 0  | 0.5<br>1.0 |      | 1.0 | 0.<br>3.   |
| 27<br>28<br>29 | Ţ, j     | 2.0  | 1.0<br>0.2 | 2.0 | • · ·     | i    |   |   |   |    |    |      |         |     |      |      | 1, 5         |                                              |          |      |      | 8, 2       |      |     | 6.7        |
| 30             | أ. ح     | - ,  | 0, 2       |     |           | 0.1  |   |   |   |    |    |      | 1.5.    | 4.5 |      |      |              | 0.8                                          |          | ·    |      |            |      |     | 8.5        |
| 31             |          |      |            |     |           |      |   | L | İ |    |    | L    | L.,     | J   | L    | L    |              | L                                            | L        | L    | l    | l          | L    | J   |            |

TOTAL 71, 9 MAX. 13, 0

|                |     | STAT | ION   | 13   | IARĐ | PANA | ·<br>· · · · · · · · · · · · · · · · · · · |   |          |          |                    | UNIE   | ma  |    |              | MOST     | W      | MAY            |                                        | <u> </u>      | _        | YEAR          | !   | 974  |             |
|----------------|-----|------|-------|------|------|------|--------------------------------------------|---|----------|----------|--------------------|--------|-----|----|--------------|----------|--------|----------------|----------------------------------------|---------------|----------|---------------|-----|------|-------------|
| DATE           | ١   | 2    | 3     | -3   | 5    | n    | 7                                          | 8 | 9        | 10       | 11                 | 12     | 13  | 14 | 15           | lò       | 17     | 18             | 19                                     | 20            | 2)       | 22            | 23  | 21   | TOTAL       |
| 1 2            |     |      |       | ,    | 1    |      |                                            |   |          |          |                    |        |     |    | أيحينا       | 1.8      |        |                |                                        |               |          |               | ~~~ |      | 1.8         |
| . 3            |     |      | <br>1 |      |      |      |                                            |   |          |          | er sage<br>No sage |        |     |    | 0, 1<br>3, 1 |          | 1.0    |                | 1,0                                    | · · · ·       |          |               |     |      | <u>U.</u> ] |
| 5              |     |      |       |      |      |      |                                            |   |          |          |                    |        | 0.3 |    |              |          |        |                |                                        |               |          |               |     |      | 0.3.        |
| 7              |     |      | •     |      |      |      |                                            |   |          |          |                    |        |     |    |              |          | ,      | <br>  <b>-</b> |                                        |               |          |               |     |      |             |
| 8<br>          | - : |      |       |      |      |      |                                            |   |          |          |                    |        |     |    |              |          | 2. ()  |                |                                        |               |          | <b>b</b> . 11 |     | 1, 0 | 4.0         |
| 10             | 1,0 | 1, ( |       |      |      |      |                                            |   |          |          |                    |        |     |    |              |          | .5.!!. | 77             |                                        |               |          | 1.0           |     |      | 3.17<br>7.8 |
| 12             |     |      |       |      |      |      |                                            |   |          |          |                    |        |     |    |              |          |        | 7.8            |                                        |               |          |               |     |      | -2.6        |
| 14<br>15       |     |      |       |      |      |      |                                            |   |          |          |                    |        |     |    |              |          |        |                |                                        |               |          |               |     |      |             |
| 16             |     |      |       |      |      |      |                                            |   |          |          |                    |        |     |    |              |          | , ,    |                |                                        |               |          |               |     |      |             |
| 18<br>19<br>20 |     |      |       |      |      |      |                                            |   |          |          |                    | ,, ,,, |     |    |              |          |        |                |                                        | ~. •=.<br>~., | . ,      |               |     |      |             |
| 20<br>21<br>22 |     |      |       |      |      |      | <br>                                       |   |          |          |                    |        |     |    |              |          |        |                |                                        |               |          |               |     |      |             |
| 22<br>24       |     |      |       |      |      |      |                                            |   |          |          |                    |        |     |    |              |          |        |                | ************************************** |               | ::<br> : |               |     |      |             |
| 25             |     |      |       |      |      |      |                                            |   |          |          |                    |        |     |    |              |          |        |                |                                        |               |          |               |     |      |             |
| 26<br>27       | .,  |      |       | <br> |      |      |                                            |   |          |          |                    |        |     |    |              |          |        |                |                                        |               |          |               |     |      |             |
| 28<br>29       |     |      |       |      |      |      |                                            |   |          |          |                    |        |     |    |              |          |        |                |                                        | ļ             |          |               |     |      |             |
| 29<br>30<br>31 |     |      |       |      |      |      |                                            |   | <u> </u> | <u> </u> |                    |        |     |    | L            | <u> </u> |        |                | L                                      |               |          |               |     |      |             |

TOTAL 22.1.
MAX. 2.8

## HOURLY RAINGALL

|                      |   | STAT | ION  | 11           | ARD | የሐየላ  |   |                                        |   |      |   | UNIT | <u>mm</u> |     |     | MONI | nH      | ior.       | Y    |            |     | YBAR                 | )     | <b>474</b>    |                 |
|----------------------|---|------|------|--------------|-----|-------|---|----------------------------------------|---|------|---|------|-----------|-----|-----|------|---------|------------|------|------------|-----|----------------------|-------|---------------|-----------------|
| DATE                 | ı | 2    | 3    | 1            | 5   | 6     | , | 3                                      | 9 | 10   | 1 | 12   | 13        | 14  | 15  | 16   | 17      | 18         | 19   | 20         | 21  | 22                   | 23    | 24            | тогаі,          |
| ı,                   |   |      |      |              | ļ   |       |   |                                        |   |      |   |      | <b>.</b>  |     |     |      |         |            |      |            |     |                      |       |               |                 |
| 3                    |   |      |      |              |     |       |   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |   |      |   |      |           |     |     |      |         |            |      |            |     |                      |       |               |                 |
| 5                    |   |      | 0, 2 |              | ,   |       |   |                                        |   |      |   |      |           |     |     |      |         |            |      |            |     |                      |       | <b>B</b> , () | 1.2             |
| 6                    |   |      |      | 0.4          |     | 0.5   |   |                                        |   |      |   |      | 0.1       | 1.7 |     |      |         |            |      | 0.3        |     |                      |       |               | 1, ()<br>2, ()  |
| 8 9                  |   |      |      | <br>         |     | ļ     |   | 0.4                                    |   |      |   |      |           |     |     |      |         |            |      |            |     |                      |       |               | 0,4             |
| 10                   |   |      |      |              |     | ļ     |   |                                        |   |      |   |      |           |     |     |      |         |            |      |            |     |                      |       | ,,            |                 |
| 11                   |   |      |      |              |     |       |   |                                        |   |      | ļ |      |           |     |     |      |         |            |      |            |     |                      |       |               |                 |
| 12<br>13<br>14<br>15 |   |      |      |              |     |       |   |                                        |   |      |   |      |           |     |     |      |         | •          |      |            |     |                      |       |               |                 |
| 15                   |   |      |      |              |     |       |   |                                        |   |      |   |      |           |     |     | 0, 1 |         |            |      |            |     |                      |       |               | 0.1             |
| 17                   |   |      |      |              |     |       |   |                                        |   |      |   |      |           |     |     |      |         | ·          |      |            |     |                      |       |               |                 |
|                      |   |      |      |              |     |       |   |                                        |   |      |   |      |           |     |     |      |         |            |      |            |     |                      |       |               |                 |
| 20<br>21             |   |      |      |              |     | 1, 2  |   |                                        |   |      |   |      |           |     | 1.0 |      |         |            |      |            |     |                      |       |               | 2.2             |
| 22                   |   |      |      |              |     |       |   |                                        |   |      |   |      |           |     |     |      |         |            |      |            |     |                      |       | 1,0           | 1,0             |
| 24<br>25             |   |      |      |              |     |       |   | 0.3                                    |   | 0.5  |   |      |           |     |     |      |         | 17.0       | 1. 2 | 7.8        | 2,8 | 6.0                  |       | 1.2           | 32. U           |
| 26<br>27             |   |      |      |              |     |       |   |                                        |   |      |   |      |           |     |     |      |         |            |      | 1.0        |     | 0.8                  | ••••• | 0. 2<br>J. 0  | 3.0<br>25.2     |
| 28                   |   |      |      |              |     |       |   |                                        |   |      |   |      | 5.8       |     |     |      |         | 0.3        |      | 3''3       |     | 17. 2<br>2. 1<br>9.5 |       | 2. 2<br>17. 9 | 25.2            |
| 29<br>30<br>31       |   | 0.2  |      | #, I<br>3, 0 |     | 13. 2 |   | 0. j<br>1. b                           |   | 0. 1 |   |      |           |     |     | 0, 1 | / · - · | 0.7<br>2.0 |      | 3.3<br>1.0 |     | 9.5                  |       | 55            | 24. N<br>18. 19 |
| 31                   |   | 0.8  |      | L            |     | l     |   |                                        | L |      | l | L    |           | L   | L   | L    | L       | L          | l    | L          | J   | i                    | I     | ļ             | 0.8             |

TOTAL 188.5 MAX, 17.4

#### LIASKIAR YLBUON

|                      |       | STAT  | 108    |          | ARD     | PANA      |          |            |     |     |            | UNET      | mm   | -       |           | MON         | re      | AUG                                    | ist.         |           |         | YEAR  | _!          | 771  |       |
|----------------------|-------|-------|--------|----------|---------|-----------|----------|------------|-----|-----|------------|-----------|------|---------|-----------|-------------|---------|----------------------------------------|--------------|-----------|---------|-------|-------------|------|-------|
| DATE DATE            | ŧ     | 2     | 3      | 1        | 5       | U         | 7        | 8          | 9   | 10  | 13         | 12        | 13   | 11      | 13        | 36          | 17      | 18                                     | 19           | 20        | 21      | 25    | 53          | 24   | TOTAL |
|                      |       |       |        |          |         |           |          |            |     |     |            |           | "    |         |           |             |         |                                        |              |           |         | l     |             |      |       |
| . l                  |       |       |        |          |         |           |          |            |     |     |            |           |      |         |           |             |         |                                        |              |           |         |       |             |      |       |
| 3                    |       |       |        |          |         |           |          |            |     |     |            |           |      |         |           |             |         |                                        |              |           |         |       |             | ,,   | ļ     |
|                      |       |       |        |          |         | 1.        |          |            |     |     |            |           |      |         |           | ·           |         |                                        |              | ~         | ·- · ·  |       |             |      | f     |
| . 5                  |       | l-:   |        |          |         |           | 4        |            |     |     |            |           |      | -:-     |           |             |         |                                        |              |           | ~ - · - |       | ·           |      |       |
| - 5                  |       |       |        |          | ,       |           |          |            |     |     |            |           |      |         |           |             |         |                                        |              |           | ******  |       |             |      |       |
| 6                    |       |       |        | <b>(</b> |         | . <b></b> |          |            |     |     |            |           |      | } ~·    | ·         |             | l- ···- |                                        |              |           | l       |       | ļ           |      |       |
| . 3                  |       |       |        |          |         |           |          |            |     |     |            | -         | -, * |         |           | · · · · · · | -:      |                                        |              | - /-      |         |       |             |      |       |
| 10                   |       |       |        |          |         |           |          |            |     |     |            |           |      |         |           | l           |         |                                        |              |           |         |       |             |      |       |
| 11                   | •     |       |        | ,        |         |           |          |            |     |     |            |           |      | 1       |           |             |         |                                        |              |           |         |       |             |      |       |
| 12                   |       |       |        |          |         |           |          |            |     |     |            |           |      |         | 0, 3      |             |         | 0.3                                    | <b></b> ,    | 0.5       |         |       | ~~,         | i. 8 | 2, 8  |
| 13<br>14<br>15       |       |       |        |          | 4.1     |           | }        |            |     |     | ] <u> </u> | 1. 2      |      | 0.2     | ]         | ]           |         |                                        | ]-::         |           |         |       |             |      | (5,1) |
| 14 }                 |       |       | ****** |          |         |           |          |            |     | -,  |            |           |      |         | <b> </b>  |             |         | <u>n 9</u>                             | <u> U. 3</u> | ļ         |         |       |             |      | (1.4  |
| -12 -1               |       |       |        |          | l       |           |          |            |     |     |            |           |      |         |           |             |         | 0, 1                                   |              | 0.5       |         | 0.5   | 0.5         | 1,0  | 4.5   |
| 16<br>17<br>18<br>19 | 20    | 2. ñ  | 2.5    | 2, 5     |         |           | 0.9      | 1.5<br>1.0 | *** |     | 1.3        | 3.4.      |      |         | 0.6       |             |         | V/                                     |              | V; .V.    |         | 0,2   |             |      | 15.1  |
| ::                   | *4.77 | -2-11 | 10.7   | 1.0      | 1       | 1, 0      |          |            |     | 0.6 | 1.0        | 2.4       | 2.7  |         | 1-7       | 0, 7        |         |                                        |              |           |         |       | 1           |      | 10.1  |
| 19                   |       |       | *****  | 57.      |         | 32        | ******   |            |     |     |            | , 22 - 23 | **** |         |           |             |         |                                        |              |           | [       |       |             |      | l     |
| 20                   |       |       |        |          |         | ,         |          |            |     |     |            |           |      |         |           |             | 2.2     | .,                                     |              |           |         |       | ļ           |      | 2.2   |
| 21<br>22             |       |       |        |          |         |           |          | /          |     |     |            |           |      |         |           |             |         |                                        |              |           |         |       |             |      | 0.9   |
| -22<br>-23           |       |       |        | į        |         |           |          |            |     |     |            |           |      | <b></b> | <b></b>   | 0.4         |         |                                        |              |           | ··      |       |             |      |       |
| $-\frac{23}{24}$     |       | .,    |        |          | ·       |           |          |            | ļ   |     |            |           |      |         | 0.5       |             |         | 0.5                                    |              | ļ·        | ·       | · · · |             |      | 1,0   |
| 25                   |       |       |        |          | • • • • | ~~        |          | · i        |     |     |            |           |      |         | 1.0.9     |             |         | 3. U                                   |              |           |         |       |             |      | 3.0   |
| 26                   | ·     |       |        |          |         |           |          |            |     |     |            |           |      |         |           | 2.0         |         | 9. 2                                   |              | 0, 5      |         | 0.5   |             |      | 3.0   |
| 26                   |       | 11.5  |        | 0.5      | 1, 0    |           |          |            |     |     | 1          |           |      | 1       | ţ         |             |         | 1                                      | 1            | · · · · · | 1       | 1     | · · · · · · |      | 2,0   |
| 28                   |       |       |        |          |         |           |          |            |     |     | I          |           |      |         |           | 1.9         |         |                                        |              |           | ļ       |       |             |      | 1.9   |
| 29                   |       | ]     |        |          |         |           | <b> </b> | L          |     | ļ   | ļ          |           |      | ļ       | Į <i></i> |             |         |                                        |              | ļ         |         | ļ     | ļ           |      |       |
| _30_                 |       |       |        |          |         |           |          | "          |     |     |            |           |      |         |           |             |         |                                        |              |           |         |       | <b>}</b>    |      |       |
| _39                  |       | L     | L      | L        | L       | L.,,      | i        | L          | l   | ł   | L          | l         | L    | 1       | l         | I           | L       | ــــــــــــــــــــــــــــــــــــــ | L            | F         | L       | ــ    | l           | L    | L     |

TOTAL 54.0 MAX. 4.1

# HOURLY MAINPALL

|           |           | STAT | 108         | <u>.</u> | IARĐ     | PANA |   |     |       |            |             | UNII | inin |         |            | MON | B           | OC1 | .OBRK      |        |         | YEAR      |      | <del>974</del> |       |
|-----------|-----------|------|-------------|----------|----------|------|---|-----|-------|------------|-------------|------|------|---------|------------|-----|-------------|-----|------------|--------|---------|-----------|------|----------------|-------|
| PA16      | 1         | 1    | 3           | 4        | 5        | 6    | 7 | 8   | 9     | 10         | 13          | 12   | 13   | 14      | 15         | 16  | 17          | 18  | 19         | 20     | 33      | 22        | 23   | 24             | TOTAL |
|           | / · · · · |      |             | ,        |          |      |   |     |       |            |             |      |      |         | ļ <u>.</u> |     |             |     |            |        |         | ~ · · ·   |      |                |       |
| 3         |           |      |             |          |          |      |   |     |       | ļ <u> </u> | :           |      |      |         |            |     |             |     |            |        |         |           |      |                |       |
| 1         |           |      |             |          | *        |      |   |     |       | 1          |             |      |      |         |            |     |             |     |            |        |         |           |      |                |       |
| 5         |           |      |             |          |          |      |   |     |       |            |             |      |      |         |            |     |             |     |            |        |         |           |      |                |       |
| 6         |           |      |             |          | ·        |      |   |     |       |            |             |      |      |         |            |     |             |     |            |        | ļ       |           |      |                |       |
| 8         |           |      |             | i        | ···      |      |   | ^   |       |            |             |      |      |         |            | ļ   | l           |     |            |        |         |           |      |                |       |
| 19        |           |      |             |          |          |      |   |     |       |            |             | [    |      |         |            |     |             |     |            |        |         |           |      |                |       |
| _10<br>11 |           |      |             |          | ļ ·      |      |   |     |       |            |             |      |      | ~       |            |     |             |     |            |        |         |           |      |                |       |
| 12        |           |      |             |          |          |      |   |     |       |            |             |      |      |         |            |     |             |     |            |        |         |           |      |                |       |
| 14        |           |      |             |          | ~        |      |   |     |       |            |             |      |      | <b></b> |            |     |             |     | '          |        |         |           |      |                |       |
| 15        |           |      | ·           | ·        |          |      | * |     | •     | · · ·      | · · · · · · |      | •    |         |            |     |             |     |            |        |         | n. 10 n/* |      |                |       |
| 16        |           |      |             |          |          |      |   |     |       |            |             |      |      |         |            |     |             |     |            |        |         |           |      |                |       |
| 17        |           |      | · · · · · · |          |          |      |   |     |       |            |             |      |      | ļ       | ··         |     |             | 1.0 |            |        | ļ       |           | ·•·- |                | 1.0   |
| 19        |           |      |             |          |          |      |   |     |       |            |             |      |      | ļ       | ***        |     |             |     |            |        |         |           |      |                |       |
| 20        |           |      |             |          |          |      |   |     |       |            |             |      |      | 1.5     |            |     |             |     |            | 0. 1   |         |           |      |                | 1.5   |
| 21        |           |      |             |          |          | ¦    |   |     |       |            |             |      |      |         |            |     |             |     | 0.8        | . 0. 1 |         |           |      |                | 0.8   |
| 23        |           | 0.6  |             | 1.0      |          |      |   |     | • . ' |            |             |      |      |         |            |     |             |     | . 27.2     |        |         |           |      |                | 1.6   |
| 24        |           |      |             |          |          |      |   |     |       |            |             | ļ ·  |      | -:      | <b>_</b>   | .,  | 5. U        |     |            |        | ļ       |           |      |                | 5.0   |
| 25<br>26  |           |      |             |          | }        |      |   |     |       |            |             |      |      | ~       | i          | 0.2 |             |     | <b>-</b> - |        |         |           |      |                | 0.2   |
| 1 27 1    |           |      |             |          |          |      |   |     |       |            |             |      |      |         |            |     |             |     |            |        |         |           |      |                | 2, 2  |
| 28<br>29  |           | 0.3  |             |          |          |      |   |     |       |            |             |      |      |         | ļ          |     | 3.3         |     |            |        | <b></b> |           |      |                | 0,3   |
| 30        | 0.7       |      |             |          | <u> </u> |      |   |     |       |            |             |      | 4    | ]<br>   |            |     |             |     |            |        | 0.5     |           |      |                | 1.2   |
| 31        | 7.4       |      |             |          |          | Ĺ.,, | l | [ J | L     |            |             | l    |      | l       | l          |     | l. <b>.</b> | L   | L          | L      | l       |           | L    | L              | 7.1.  |

TOTAL 21.33

# HOURLY BAINVALL

|                      |                   | STAT  | 108 |               | <b>t</b> ARD | PAN/  | <u>.</u> |         |                 |             |    | ONIT  | om |      | ,   | MONI     | ru    | NOV | RMUE    | R   | ·   | YEAR   |      | 1974 |              |
|----------------------|-------------------|-------|-----|---------------|--------------|-------|----------|---------|-----------------|-------------|----|-------|----|------|-----|----------|-------|-----|---------|-----|-----|--------|------|------|--------------|
| DAD.                 | 1                 | 2     | 3   | 1             | 5            | ь     | 7        | ĸ       | y               | 10          | 11 | 12    | 13 | 14   | 15  | 16       | 17    | 18  | 19      | \$0 | 21  | 21     | 5.7  | 24   | TOTAL        |
| l<br>2               |                   |       |     |               |              |       |          |         |                 |             |    |       |    |      |     | <b> </b> |       |     |         |     |     |        |      | <br> | ., . ,,,     |
| 3                    |                   |       |     |               |              |       |          |         |                 |             |    |       |    |      |     |          |       |     |         |     |     | -2.55. |      |      |              |
| 5                    |                   |       | - : |               |              |       |          |         |                 |             |    | 1,0   |    |      |     |          | .R.0. | 4.0 | 3.11    | 1.5 |     |        |      | 9. [ | 12.6         |
| 7                    |                   |       |     |               |              |       |          |         |                 |             |    |       |    |      |     |          |       |     |         |     |     |        |      |      |              |
| 8<br>9<br>10         |                   |       |     | ]             |              |       |          |         |                 |             |    |       |    |      |     |          | 10.5  |     |         |     |     |        | 14.5 | 4, 5 | 29.5         |
| 11<br>12<br>13<br>14 | 1.8               | . 0.9 |     |               |              |       |          |         |                 |             |    | _2. j |    | 3, 9 | 2.0 |          |       |     |         |     |     |        |      |      | 3, 7<br>6. 0 |
| 13                   |                   |       | 0.5 |               |              |       |          |         |                 |             |    |       |    |      |     |          |       |     |         |     |     |        |      |      | 0,8          |
| 15<br>16<br>17<br>18 |                   |       | - : |               |              |       |          |         |                 |             |    |       | 4  |      |     |          |       |     |         |     | 0.2 |        |      |      | 0 2          |
| 18<br>19             | U <u></u><br> *** |       |     | <u>11.</u> 1. | .43.7        | , (.) |          | . 17 0. | . J\ <u>6</u> . |             |    |       |    |      |     |          |       |     |         |     |     |        |      |      |              |
| 20<br>21<br>22       |                   |       |     |               |              |       |          |         |                 |             |    |       |    |      |     |          |       |     |         |     |     |        |      |      |              |
| 71                   |                   |       | ,   |               |              |       |          |         |                 |             |    |       |    |      |     |          |       |     |         |     |     |        |      |      |              |
| 24<br>25<br>26<br>27 |                   |       |     |               |              |       |          |         |                 |             |    |       |    |      |     |          |       |     |         |     |     |        |      |      |              |
| 26<br>27             |                   |       |     |               |              |       |          |         |                 |             |    |       |    |      |     |          |       |     |         |     |     |        |      |      |              |
| 28<br>27             |                   |       |     |               |              |       |          |         |                 |             |    |       |    |      |     |          |       |     |         |     |     |        |      |      |              |
| <u>30</u>            |                   |       |     |               |              |       |          |         |                 | · • · · · · |    | ··    |    |      |     | - (      |       |     | <u></u> |     | L   |        |      |      |              |

TOTAL 67.5

## HOURLY RAINFALL

|                      |     | STAT    | 108 |     | IARD         | NAN'A         |     |   |   |       |        | UNIT. | Bug         |           |       | MONE | H        | DEC            | EMBI | R       |           | YEAR       | ·           | 1974     |       |
|----------------------|-----|---------|-----|-----|--------------|---------------|-----|---|---|-------|--------|-------|-------------|-----------|-------|------|----------|----------------|------|---------|-----------|------------|-------------|----------|-------|
| JIMI<br>AH-          | 1   | 2       | 3   | •   | 5            | b             | 7   | 8 | y | 10    | 11     | 12    | 13          | 14        | 15    | 16   | 17       | 18             | 19   | 20      | 21        | 22         | 23          | 24       | TOTAL |
| 12                   |     |         |     |     |              |               |     |   |   |       |        |       |             |           | ~ .   |      |          |                |      |         | <br>      | l          | , <b>.</b>  |          |       |
|                      |     |         |     |     |              |               | į   |   |   |       |        |       |             |           |       |      |          |                |      |         |           | <b>]</b>   |             |          |       |
| 3                    |     |         |     |     | ļ            |               |     |   |   |       |        |       | ,           | J         |       |      |          |                |      |         |           |            |             |          |       |
| ·                    |     |         |     | i   | ļ            |               |     |   |   |       |        |       |             |           |       |      |          |                | •    |         | ļ         |            |             |          |       |
| . <u>\$</u>          |     |         |     |     | } <i>-</i>   |               | Į   |   |   |       |        |       | ,- <b>-</b> |           |       |      |          |                |      | ·       | ···       | l          | ·····       | ···      |       |
| 7                    |     | · · • • |     |     |              | ļ             | f • |   |   |       |        |       |             |           |       |      | <b>!</b> | <del> </del> - |      |         | } ·-·~    |            |             |          |       |
| 8                    |     | ****    |     |     |              |               |     |   |   |       |        |       |             |           |       | l    |          |                |      |         |           |            |             |          |       |
| 9                    |     |         |     |     |              |               |     | · |   |       |        |       | ->          |           |       |      |          |                |      |         |           |            |             |          |       |
| 10 I                 |     |         |     |     |              |               |     |   |   | *     |        |       |             |           |       | I    |          |                |      |         | 1         |            |             |          |       |
| រ ្                  |     |         |     |     |              |               |     |   |   |       |        |       |             |           |       |      |          |                |      | ,       | I         |            |             |          |       |
| 2                    |     |         |     |     | I            |               |     |   |   |       |        |       |             |           |       |      |          |                |      |         |           |            |             |          |       |
| 13                   |     |         |     |     | l            | /             |     |   |   |       |        |       |             |           |       |      |          |                |      |         |           |            |             |          |       |
| 14                   |     |         |     |     |              |               |     |   |   |       |        |       |             |           |       |      | ,        |                |      | ļ       |           | ļ <b>.</b> |             |          |       |
| 5                    |     |         |     |     | <b> </b>     | ļ. <b>.</b> . |     |   |   |       |        |       |             |           |       |      |          |                |      |         | ļ-···     |            |             |          |       |
| i}- [                | }   |         |     |     |              | ļ-···-        | }   |   | · |       |        |       |             |           |       |      |          |                |      |         |           |            |             |          |       |
| 6                    |     |         |     |     | ļ            |               |     |   |   | ***** |        |       |             |           |       |      |          |                |      |         |           |            |             |          | *     |
| 9                    |     |         |     |     | <b>}</b>     |               |     |   |   |       |        |       |             |           |       |      |          |                |      |         |           |            |             | <u>-</u> |       |
| NO I                 |     |         |     | *   |              |               |     |   |   |       |        |       |             |           |       |      |          |                |      |         | ļ         | *****      | ~ - ~ - ~ - |          |       |
| 21                   |     |         |     | 1   | Ì            |               | J   |   |   |       |        |       |             |           |       |      |          |                |      |         | İ         | 1          |             |          |       |
| 22                   |     |         |     |     |              |               |     | l |   |       |        |       |             |           |       |      |          |                |      |         |           |            |             |          |       |
| 23                   |     |         |     |     | 1            |               |     |   |   |       |        |       |             |           |       |      |          |                |      |         |           | ]          |             |          |       |
| 74                   |     |         |     |     |              |               |     |   |   |       |        |       |             | <b></b> . |       |      |          |                |      |         |           |            |             |          |       |
|                      |     |         |     |     | ļ <b>.</b> . |               |     |   | , |       |        |       |             |           |       |      |          |                |      |         | ļ         |            |             |          |       |
| 23<br>25<br>26<br>27 |     |         |     |     |              |               | ,   |   |   |       |        | 1     |             |           |       |      |          |                |      | <b></b> |           | ļ          |             |          |       |
| 77                   |     |         | •   |     |              |               |     |   |   |       |        |       |             |           |       | ļ    |          |                |      |         |           |            |             |          |       |
| 8                    |     | ···· •  |     |     |              |               |     |   |   |       |        |       |             |           |       | ···  | ,        |                |      |         |           |            |             |          |       |
| 29                   |     |         |     |     |              |               |     |   |   |       | ****** |       |             |           |       |      |          |                |      | · ·     | · · · · · | i          |             | l · · ·  |       |
| 10                   | *** |         |     | ÷ , |              | '             |     |   |   | ···   |        |       |             |           | ····· |      |          |                | ;    | 1       | }·····    |            |             |          |       |

| TOTAL | <br> | 0.0 |
|-------|------|-----|
| MAX.  |      |     |

|                |            | STAT | 108   |            | RARD | PANA     | 1           |     |   |     |       | UNIT | mio |            |     | MON  | TH     | JANU | ARY     |         |     | YBAR     |    | 975              |             |
|----------------|------------|------|-------|------------|------|----------|-------------|-----|---|-----|-------|------|-----|------------|-----|------|--------|------|---------|---------|-----|----------|----|------------------|-------------|
| 4180<br>0.010  | 1          | 2    | 3     | 1          | 3    | 6        | 7           | 8   | 9 | 10  | 11    | 12   | 13  | 14         | 15  | 16   | 17     | 18   | 19      | 20      | 21  | 22       | 23 | 24               | TOTAL       |
|                |            |      |       |            |      |          |             |     |   |     |       |      |     | <b> </b>   |     |      |        |      |         |         |     |          |    |                  |             |
| 3              |            |      |       |            |      |          |             |     |   | ~ , |       |      |     |            |     |      |        |      |         |         |     |          |    |                  |             |
| 5              | 0.7        |      |       |            |      |          |             |     |   |     |       |      |     |            |     |      |        |      | 0. 7    | .1.3    | 2.0 |          |    | ; <del>-</del> - | 0.7         |
| 6              |            |      | 41, 2 |            |      |          |             |     |   |     |       |      |     |            | 0.3 |      |        |      |         |         |     |          |    |                  | 0.3         |
| 8 1            |            |      |       |            |      |          |             |     |   |     |       |      |     |            |     | ***- |        |      |         |         |     |          |    |                  |             |
| 10             | <b>-</b> - |      |       |            |      | <b>.</b> | 0,7         |     |   |     |       |      |     |            |     | 1, 1 |        |      |         |         |     |          |    |                  | <u>2. 1</u> |
| 11             |            |      | [     |            | 1.3  |          |             |     |   |     | 11, 9 | _,   |     | <u></u>    |     |      |        |      |         |         |     |          |    |                  | 22          |
| 13<br>13       |            | *    |       | 0.6        | 0, 6 | 5        | 3.5         | 1.0 |   |     | 2.1   |      |     |            |     |      |        |      |         |         |     |          |    |                  | 8_1         |
| 13             |            |      |       |            | •••  |          |             |     |   |     |       |      |     |            |     |      | ****** |      |         |         |     |          |    |                  |             |
| 15<br>16<br>17 |            |      |       |            |      |          |             |     |   |     |       |      |     |            |     |      |        |      |         |         |     |          |    |                  | 6,0         |
| 18<br>19<br>20 |            |      |       | . <b>.</b> |      |          |             |     |   |     |       |      |     |            |     |      |        |      |         |         | 6.0 |          |    |                  | ÷·          |
| 20             |            |      |       |            |      |          |             |     |   |     |       |      |     |            |     |      | 1.8    |      |         |         |     |          |    |                  | l.§         |
| 23<br>22<br>23 |            |      |       |            |      |          | • • • • • • |     |   |     |       |      |     |            |     |      |        |      |         |         |     |          |    |                  |             |
| 24<br>25       |            |      |       |            |      |          |             |     |   |     |       |      |     |            |     |      |        |      |         | ****    |     |          |    |                  |             |
|                |            |      |       |            |      |          |             |     |   |     |       |      |     |            |     |      |        |      |         |         |     |          |    |                  |             |
| 27<br>28       |            |      |       |            |      |          |             |     |   |     |       | ļ    |     | <b> </b> - |     |      |        |      |         | <b></b> |     |          |    |                  |             |
| 29             |            |      | ,     |            |      |          |             |     |   |     |       |      |     |            |     |      |        |      | <b></b> |         |     |          |    |                  |             |
| 30             |            | ļ    |       |            |      |          |             |     |   |     |       |      |     |            |     |      |        |      |         |         |     | <u> </u> |    | <u> </u>         |             |

TOTAL 25.4 MAX. 6.0

#### HOUREY RAINPALL

|                |              | STAT | 108      | E        | IARD | PANA    |          |     |             |          |    | ONIT | <u>ann</u> |          |    | MON      | nt       | FEB       | RUAR | Υ       |            | YBAR | ·       | 1975         |        |
|----------------|--------------|------|----------|----------|------|---------|----------|-----|-------------|----------|----|------|------------|----------|----|----------|----------|-----------|------|---------|------------|------|---------|--------------|--------|
| DATE:          | 1            | 2    | 3        | -1       | 5    | 6       | ,        | 8   | 9           | 10       | 11 | 12   | 13         | 14       | 15 | 16       | 17       | 18        | 19   | 20      | 21         | 22   | 53      | 24           | TOTAL  |
|                |              |      |          |          |      |         |          |     |             |          |    |      |            | ļ        |    |          |          | ļ         |      |         |            |      |         |              |        |
| . <u>2</u><br> | <del>.</del> |      |          |          | 1    | ,       |          |     |             | <b>-</b> |    |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 4              |              |      |          |          | ·    |         | 1        |     |             |          |    |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 5              |              |      |          |          |      |         |          |     |             |          |    |      |            |          |    |          |          |           |      |         | *****      |      |         |              |        |
| 6 ]            | .,.          | ]    | ]        | <b>}</b> | ]    |         | <b>]</b> |     |             |          | ]  | ļ    |            | <b>]</b> |    | }        | }        |           |      | <b></b> | ] <u>-</u> |      |         |              |        |
| 7              |              |      | ļ        |          |      | <b></b> |          |     |             |          |    |      |            | [ ·      |    |          |          |           |      |         |            |      |         |              |        |
| 8              |              |      |          |          |      |         |          |     | *           |          |    |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 10             |              |      |          |          |      |         |          |     |             |          |    |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 11             |              |      | ļ        | ļ        |      |         |          |     | ·           |          | i  |      | !          |          |    | ļ        |          | •,~ · · • |      |         | اـا        |      | <b></b> |              |        |
| 12<br>13       |              |      |          |          |      |         |          |     |             | ~        |    | i:   |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 44             |              | f    |          |          |      |         |          |     |             |          | ,  |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 15<br>16       |              |      |          |          |      |         |          |     |             |          |    |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 10             |              |      |          |          |      |         |          |     |             |          |    |      |            |          |    |          |          | . ,       |      |         |            |      |         |              |        |
| 19             |              |      | ·        | )        |      |         |          | ·   | · -         |          |    |      |            |          |    | }-··· -· |          |           |      |         |            |      |         | ] <i>-</i> - |        |
| 19             |              |      | •        |          |      |         |          |     |             |          |    |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 20             |              |      |          |          | .,   |         |          |     |             |          |    |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 21             |              |      | Į;       |          |      |         |          |     |             |          |    |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 22             | •            |      | <b> </b> |          |      |         |          | - · |             | ·        |    |      |            |          |    | ·····    |          |           |      |         |            | ···· |         | <b></b>      |        |
| 21             | • "          |      |          |          |      |         |          |     |             |          |    |      |            |          |    | L        |          |           |      |         |            |      |         |              |        |
| 25             |              |      |          |          |      | _       |          |     |             |          |    |      |            | ļ        |    |          |          |           |      |         | ļ          |      |         | ļ            |        |
| 26<br>27       |              |      |          |          |      |         |          |     |             |          |    |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 28             |              |      |          |          |      |         |          |     | 4. 14       | ··· · ·  |    |      |            |          |    |          |          | •         |      | 5. é    | 5.0        | 3.6  | 0.5     |              | 14, 1, |
| 28<br>29<br>30 |              |      |          |          |      |         | l        | l   |             |          | {  |      |            |          |    |          |          |           |      |         |            |      |         |              |        |
| 30             |              |      |          |          |      |         |          |     |             |          |    |      |            |          |    |          | <b>.</b> |           | l    |         | ·          |      |         |              |        |
| 31             |              | l    | I        | L        | L    |         | l        | 1   | ا . ـ ـ ـ . | L.,      |    | ł    | l          | l        | L  | L        | I        | L         | I    | L       | L          | J    | I       | l            | L      |

TOTAL 14.1
MAX. 5.0

|                                              |      | STAT | ION |   | IARD. | PANA      | · |      |          |            |    | דואט       | mm |            |            | MON      | ii    | AlA   | CH      |      |          | YEAR                                    |          | 1975     |               |
|----------------------------------------------|------|------|-----|---|-------|-----------|---|------|----------|------------|----|------------|----|------------|------------|----------|-------|-------|---------|------|----------|-----------------------------------------|----------|----------|---------------|
| TIME<br>DATE                                 | 1    | 2    | 3   | 1 | 5     | 6         | 7 | 8    | 9        | 10         | 11 | 12         | 13 | 14         | 15         | 16       | 17    | 18    | 19      | 20   | 21       | 22                                      | 23       | 24       | TÓTAI.        |
| I                                            |      |      |     | 1 |       | 1         |   |      |          |            |    |            |    |            |            |          |       |       |         |      |          | 0.6                                     |          |          | 0.6           |
| 3                                            |      |      |     |   |       |           |   |      |          |            |    |            |    |            | ~          |          |       |       | <b></b> |      |          |                                         |          | -,       |               |
| 1 4 1                                        |      |      |     |   |       |           |   |      |          |            |    |            |    |            |            |          |       |       | ~~~     |      |          |                                         |          |          |               |
| 5                                            |      |      |     |   |       |           |   |      |          | <b> </b> - |    |            |    | <b> </b> - |            |          | ļ     |       |         |      |          |                                         |          |          |               |
| 3                                            | ··   |      |     |   |       |           |   |      |          |            |    |            |    |            |            |          |       |       |         |      |          |                                         | ~~~~     |          |               |
| 8 9                                          |      |      |     |   |       |           |   |      | iu       |            |    |            |    |            |            |          | 33. 0 | 14.3  | 1.0     |      |          |                                         | 1, 0     |          | 2, 0<br>47, 3 |
| 10<br>11                                     |      |      |     |   |       |           |   |      |          |            |    |            |    |            |            |          |       | 6.9   |         |      |          |                                         |          |          | 8.9           |
| 11                                           |      |      |     |   |       |           |   |      |          |            |    |            |    |            |            |          |       | -C: Y |         | i    |          |                                         | <u>-</u> |          | 0, 7          |
| 13                                           |      |      |     |   |       |           |   |      |          |            |    |            |    |            |            |          |       |       |         |      |          |                                         |          |          |               |
| t4<br>t5                                     |      |      |     |   |       |           |   |      |          |            |    |            |    |            |            |          |       |       |         |      |          |                                         |          |          |               |
| 16                                           |      |      |     |   |       |           |   |      |          |            |    | ļ. <u></u> |    | <u> </u> - |            | 29. 7    |       |       | J       | 6.0  | H. Ô     | 1.5                                     | 1.5      | 3, 0     | 52.7          |
| 18                                           | 7. 0 |      |     |   |       |           |   |      |          |            |    |            |    |            |            |          |       |       |         |      |          |                                         |          |          | 7,0           |
| 19                                           |      |      |     |   |       | <b></b> . |   | ļ.—— |          |            |    |            |    |            |            | 0.4      |       |       |         |      |          |                                         |          |          | 0.4           |
| 21                                           |      |      |     |   |       |           |   |      |          |            |    |            |    |            |            | 19.0     | 7.5   |       |         |      |          |                                         |          |          | 20.5          |
| 22                                           |      |      |     |   |       |           |   |      |          |            |    |            |    |            |            |          |       |       |         |      | <u> </u> |                                         |          | <u> </u> |               |
| 24                                           |      |      |     |   |       |           |   |      |          |            |    |            |    |            |            | L        | 3.6   |       |         |      |          |                                         | ļ        |          | 5.6           |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 |      |      |     |   |       |           |   |      | <u> </u> |            |    |            |    |            |            |          |       |       |         |      |          |                                         |          |          |               |
| 27                                           |      |      |     |   |       |           |   |      |          |            |    |            |    |            |            | <u> </u> |       |       |         |      |          | • • • • • • • • • • • • • • • • • • • • |          | 0.2      | 0.2           |
| 29                                           |      |      |     |   |       |           |   |      |          |            |    |            |    |            |            |          |       |       |         |      | ļ        |                                         |          |          |               |
| 30<br>31                                     |      | A    | :   | ļ |       |           |   |      |          | <u> </u>   |    |            |    |            | - <b>-</b> |          |       |       |         | 24.8 | 7.0      | 3.0                                     | 4.0      | 2.0      | 40.8          |

TOTAL, 190.0 MAX, 33.0

#### HOURLY RAINPALL

|                |          | rate | ION | <u>(1</u> | ARD | 1767 |   |   |           |    |      | UNIT        | mm       |     |         | MON       |     | APR   | <u>  ,                                   </u> |          |      | YEAR |            | 1975 |               |
|----------------|----------|------|-----|-----------|-----|------|---|---|-----------|----|------|-------------|----------|-----|---------|-----------|-----|-------|-----------------------------------------------|----------|------|------|------------|------|---------------|
| DASE.          | ı        | 2    | 3   | 4         | 5   | 6    | 7 | 8 | 9         | 10 | 11   | 12          | 13       | 14  | 15      | 16        | 17  | 18    | 19                                            | 20       | 21   | 22   | 23         | 24   | TOTAL         |
| 1              |          |      |     |           |     |      |   |   |           |    |      |             |          |     |         |           |     |       |                                               |          |      |      |            |      |               |
| 2_             |          |      |     |           |     |      |   |   |           |    |      |             |          | ;   |         |           |     |       |                                               |          |      |      |            |      |               |
| 3              |          |      |     |           |     |      | ~ | : |           |    |      | ·- •- · • · |          |     |         |           |     |       |                                               | /        |      |      |            |      |               |
| 5              |          | \    |     |           |     |      |   |   |           |    |      |             |          |     |         |           |     |       |                                               |          |      |      |            |      |               |
| - 6            |          |      |     |           |     |      |   |   | - • • • • |    |      |             |          |     |         |           |     |       |                                               |          |      |      |            |      |               |
| 7              |          |      |     |           |     |      |   |   |           |    |      |             |          |     |         | ļ         |     |       |                                               |          | 4. î |      |            |      | 4.1           |
| 8 9            | <b>-</b> |      |     | į         |     |      |   |   |           |    |      |             |          |     |         |           |     |       |                                               |          |      |      |            |      | , <u> </u>    |
| 10             |          |      | ·   |           |     |      |   |   |           |    |      |             |          |     |         |           |     |       |                                               |          |      |      |            |      |               |
| 10             |          |      |     |           |     |      |   |   | ,         |    |      |             |          |     |         |           |     |       |                                               |          |      |      |            |      |               |
| 13             |          |      |     |           |     |      |   |   |           |    |      | ,.          |          |     |         |           |     |       |                                               |          |      |      |            |      | . <del></del> |
| 13             |          |      |     |           |     |      |   |   |           |    |      |             |          | /   |         |           |     |       |                                               |          |      |      | )···-      |      |               |
| 13             |          |      |     |           |     |      |   |   |           |    |      |             |          |     |         |           |     |       |                                               |          |      |      |            |      |               |
| 16             |          |      |     |           |     |      |   |   |           |    | ļ    |             |          |     |         |           |     |       | - ~                                           | <b>-</b> |      |      |            |      |               |
| 17             |          |      |     |           |     |      |   |   |           |    |      |             |          |     |         |           |     |       | ļ                                             |          |      |      |            |      |               |
| -19-           |          |      |     |           |     |      |   |   |           |    |      |             |          |     |         |           |     |       |                                               |          |      |      |            |      |               |
| - 26 - 1       |          |      |     |           |     |      |   |   |           |    | ~~~~ |             | ,        |     |         |           | 1.7 | 13, 5 |                                               |          |      |      |            |      | 15.2          |
| 2(             |          |      |     | <b></b>   |     |      |   |   |           |    |      |             |          |     |         |           | ļ   |       | 1.8                                           |          |      |      | ***        |      |               |
| 22             |          |      |     |           |     |      |   |   |           |    |      |             |          | T.T | 0.9     |           |     |       | L.L.A.                                        | }        |      |      |            |      | 1.8           |
| 26             |          |      |     |           |     |      |   |   |           |    |      |             |          |     | 1       | İ         |     |       |                                               |          | [::  |      |            |      |               |
| 25             |          |      |     |           |     |      |   |   |           |    |      |             | <u> </u> |     | ļ       |           |     | \     |                                               | \        | }    |      | <u>-</u> - |      |               |
| 25<br>26<br>27 |          |      |     | ļ         |     |      |   |   |           |    |      | ļ           |          |     |         |           |     |       |                                               |          | ļ    |      |            |      |               |
| 27             |          |      |     |           |     |      |   |   |           |    |      | , ·         |          |     |         |           |     |       |                                               |          |      |      |            |      |               |
| 29             |          |      |     | ļ         |     |      |   |   |           |    |      |             |          |     |         |           |     |       |                                               |          |      |      |            |      |               |
| 30             |          |      |     |           |     |      |   |   |           |    |      |             | ļ        |     | <b></b> | \ <i></i> |     |       | <b></b> .                                     |          |      |      |            |      |               |
| 31             |          | L    | L   | L         | L   | L    | L | L | L.,       | L  | I    | <u> </u>    | L        | L.~ | L       | L         | J   | L.,   | I                                             | 1        | I    | L    | l          | l    | L,j           |

TOTAL 23.1 MAX. 13.5

|                                              |      | STAT | TON | Н   | ARI) | PANA         | <u> </u> |     |   |          |         | UNIT | mß  | -    |       | MON      | EH ,       | MAY    |             |       |     | YEAR  |      | 1975 |                      |
|----------------------------------------------|------|------|-----|-----|------|--------------|----------|-----|---|----------|---------|------|-----|------|-------|----------|------------|--------|-------------|-------|-----|-------|------|------|----------------------|
| PATE                                         | ı    | 2    | 3   | 1   | 5    |              | 7        | 8   | 9 | 10       | 11      | 12   | 13  | 14   | 15    | 16       | 17         | 18     | 19          | 50    | 51  | 33    | 53   | 24   | TOTAL                |
|                                              |      |      |     |     |      |              |          |     |   |          |         |      |     |      |       | 25.5     | 2.5        | 1.0    | 1.2         |       |     |       |      |      | 33.2                 |
| 3                                            |      |      |     |     |      | <b>-</b> 17. |          |     |   |          | ļ       |      |     | 2, 3 | H. 6  | 1.8      | 1 <u>0</u> |        |             |       |     | ····• |      |      | 18.7                 |
| 1                                            | 0.7  |      | 1.3 | 2.0 |      |              |          |     |   | 1.2      |         |      |     |      | 10    | 5.0      | 1.0        | 1.8    | 12.5        | 2, (1 | 0.5 |       |      | 0,5  | 18.7<br>8.2<br>31. V |
| 6                                            |      |      |     |     |      |              |          |     |   |          |         | 5. 5 | 1.8 | _    | 117.3 |          |            |        |             |       |     |       |      |      | 3.2                  |
| 8                                            | ~    |      |     |     |      |              |          |     | ~ |          |         |      |     |      | 1.7   | <u> </u> | 1.5        |        | 7. 5        | 5. U  |     |       |      |      | [14.0]               |
| 5<br>6<br>7<br>8<br>9                        |      | ļ    |     |     |      |              |          | 2.1 |   |          |         |      |     |      |       |          |            |        |             |       |     |       |      |      | 2.1                  |
| 11 12                                        |      |      | ~   |     |      |              |          |     |   |          |         |      |     | 77   | 4.8   |          |            |        | 1.6         |       |     |       |      |      | 11,0                 |
| 13                                           |      |      |     |     |      |              |          |     |   |          | ļ       |      | 3.9 |      |       | 13       | 1,0        |        |             |       |     |       |      |      | 7.0                  |
| 14<br>15<br>16                               |      |      | ·   |     |      | ļ            | ļ        |     |   |          | ļ       |      |     |      | ļ     |          |            |        |             |       |     |       |      |      |                      |
| 12                                           |      | ,    |     |     |      |              |          |     |   |          |         |      |     |      |       |          |            |        |             |       |     |       |      |      |                      |
| 18                                           |      |      |     |     |      |              |          |     |   |          |         |      |     | 1.5  |       |          |            | 2, 5   |             |       |     |       |      |      | 4.0                  |
| 19<br>20                                     |      |      |     |     |      |              |          |     |   |          |         |      |     |      |       |          |            | 20), 2 | 0.6<br>28.5 | 3.5   | 1.0 |       | 0.5  |      | 0, 6<br>\$3, 7       |
| 21<br>22                                     |      | ٠    |     |     |      | ļ            |          |     |   |          | ···-    |      |     |      |       | 0.5      | 0.5        |        |             |       |     |       |      |      | 0.5                  |
| 23                                           |      |      |     |     |      |              |          |     |   |          | ~~~~    |      |     |      | 8.8   |          | 0.9        |        |             |       |     |       |      |      | 8.8                  |
| 25                                           | 1. 3 |      |     |     |      |              |          |     |   |          |         |      |     |      |       | 7.0      | 0.2        |        |             |       |     | 2.0   | 1,0  | 9.7  | 3.7                  |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | U. 3 |      |     |     |      |              |          |     |   | <u> </u> | <b></b> |      |     |      |       |          |            | 0.5    | <b>υ.</b> Ι |       |     |       |      |      | 1.2.                 |
| 28                                           |      |      |     |     |      |              |          |     |   |          |         |      |     |      |       |          |            |        | 0, 2        | ļ     |     | 1.7   | 0. 5 |      | 2.4                  |
| 30                                           |      |      |     |     |      |              |          |     |   |          | 0.6     |      |     |      |       |          |            |        |             |       |     |       |      |      | 0.6                  |

TOTAL 235.0 MAX. 28.5

## HOURLY RAINFALL

|                                        |     | STAT    | ION      |    | IARD | PANA | ·    |   |              |     |     | UNIT | enn  |          |     | MON     | £Н    | JUNI    | B    |     | -   | YBAR  |              | (975       |             |
|----------------------------------------|-----|---------|----------|----|------|------|------|---|--------------|-----|-----|------|------|----------|-----|---------|-------|---------|------|-----|-----|-------|--------------|------------|-------------|
| OATE                                   | ı   | 2       | 3        | 4  | 5    | 6    | 7    | 8 | 9            | 10  | 11  | 12   | 13   | 11       | 15  | 16      | 17    | 18      | 19   | 20  | 21  | 22    | 23           | 24         | TOTAL.      |
| 1 2                                    |     |         |          |    |      |      |      |   |              |     |     |      |      | 0.8      |     |         | 2.0   |         |      |     |     |       |              |            | 10.0<br>3.0 |
| 3                                      |     | 1.5     | <br>1. ś |    | 1, 5 |      |      |   | () 2<br>() 2 | 0.3 | 2.3 |      |      |          |     | <b></b> | ļ     |         |      |     |     | 1.0   |              |            | 6.0         |
| 4                                      |     |         | 0.8      |    |      |      | 1.5  |   | 0.2          |     |     | 1, 0 |      |          |     |         | 1,0   | <b></b> |      |     |     |       | •            | 0.6        | 2.6         |
| 5<br>6<br>7                            |     |         |          |    |      | ··   |      |   |              |     |     |      |      |          |     |         |       |         |      |     |     |       |              |            | 1.3         |
| 8                                      |     |         | 0. 1     |    |      |      |      |   |              |     |     |      |      |          |     | 2.3     | 2, 3  | 3.0     |      |     | 0.3 |       |              | 1.5.       | 1,7         |
| 10                                     |     |         |          |    |      |      |      |   |              |     |     |      |      | 0.7      | ·   | 1       |       | 3.0     |      |     |     |       |              |            | 0.7         |
| 11<br>12<br>13<br>14<br>15<br>16       |     |         |          |    |      |      |      |   |              |     |     |      |      |          |     | 0.1     |       |         |      |     |     |       |              |            | 0, 1        |
| 13                                     |     | ,       |          |    |      |      |      |   |              |     |     |      |      |          | 2.0 | 0.8     |       |         |      |     |     |       |              |            | 2.8         |
| 15                                     |     |         | ·        |    |      |      |      |   |              |     |     |      |      |          |     |         |       |         |      |     |     |       |              |            |             |
| 17                                     |     |         |          |    |      |      |      |   |              |     |     |      |      |          |     | 2.0     | 4     |         |      |     |     |       |              |            | 2.0         |
| 18                                     |     | 0.5     | 0, 5     |    | 1.0  |      |      |   |              |     |     |      |      |          |     |         | 3.0   | 2.0     | 2, 0 | 1.0 | 2.0 | .2.3  |              |            | 14.3<br>0.7 |
| 19<br>20<br>21<br>22                   |     | Ö, 4    |          |    | 0, 3 |      |      |   |              |     |     |      |      | 0.5      | 3,2 | 4, 8    | _0. 7 |         |      |     | 2.0 |       | 2, D<br>1, O | 0,6<br>1,0 | 3.6<br>15.0 |
| 12                                     |     |         |          |    |      |      |      |   |              |     |     |      |      | <br>     |     |         |       |         |      |     |     | (8.0) |              | 5.1        | 24.6        |
| 23                                     |     |         |          |    |      |      | /    |   |              |     |     |      |      | · · · -  |     |         |       |         |      |     |     |       |              |            |             |
| 23<br>24<br>25<br>26<br>27<br>28<br>29 |     |         |          | */ |      |      | é. 2 |   |              |     |     |      | -,   |          |     |         |       | 2       | l    |     |     |       |              |            | 0.2         |
| 27                                     | • • |         |          |    |      |      |      |   |              |     |     |      |      | 1. 9     | ,,, |         |       |         |      |     |     |       |              |            | 1, ½        |
| 29                                     |     |         |          |    | ļ    |      |      |   |              |     |     |      |      | <u> </u> | 3.0 | 0.8     | 0.7   |         |      |     |     |       |              |            | 4.5         |
| 30<br>31                               |     | <b></b> |          |    |      |      |      |   |              |     |     |      | 9.5. |          | ļ   |         | -     |         |      |     |     |       |              | l          | 0.5         |

TOTAL 101.5
MAX. 18.0

|                                                                                             |     | STAT         | 108 |      | ARĐ  | PANA |   |   |   |     |      | UNIT | uni) |             |              | MONI | н        | Mri | <u></u>  |     |       | YEAR       |               | 1975 |                                       |
|---------------------------------------------------------------------------------------------|-----|--------------|-----|------|------|------|---|---|---|-----|------|------|------|-------------|--------------|------|----------|-----|----------|-----|-------|------------|---------------|------|---------------------------------------|
| JANI<br>DANI:                                                                               | t   | 2            | 3   | 1    | 5    | ı    | 7 | 8 | 9 | to  | t1   | 12   | 13   | 14          | 15           | 16   | 17       | 18  | 19       | 20  | 21    | 22         | 23            | 24   | JATOT                                 |
|                                                                                             |     |              |     |      |      |      |   |   |   |     | 0. 5 |      |      |             |              |      |          |     |          |     |       |            |               |      | 0.5                                   |
| 3                                                                                           |     |              |     |      |      |      |   |   |   |     |      |      |      |             |              |      |          |     |          |     |       |            |               |      |                                       |
| 5                                                                                           |     |              |     |      |      |      |   |   |   |     |      |      |      |             |              |      | 0.4      |     |          |     |       | ··· —      |               |      | 0.4                                   |
| 8                                                                                           |     |              |     |      |      |      |   |   |   |     |      |      |      |             |              |      |          |     |          |     |       |            |               |      |                                       |
| 10                                                                                          |     |              | - / |      |      |      |   |   |   |     |      |      |      |             | 0. 5<br>0. 5 |      | 2,0      | 2.0 | 5. 0     | 4.0 | 15.0  | 3.0        | 1,0           | 1, 0 | 0.5<br>35.3                           |
| 12                                                                                          |     |              | · · | 0.5  | ~    |      |   |   |   |     |      |      |      |             |              |      |          |     |          |     |       |            |               |      | 0.5                                   |
| 14<br>15                                                                                    |     |              |     |      |      | 0.6  |   |   |   | 0.1 | 0.5  |      |      |             |              |      |          |     |          |     |       |            | <del></del> - |      | 1.5                                   |
| 16                                                                                          |     | <u>(0, )</u> | 0.2 | 0.3  | 0. 2 | 0, 5 |   |   |   | 0.8 | 0. 2 | 1.0  | 0.8  | 0, 8        | 0. 2         | 0.5  | 0.5      |     |          | 2.5 | 3.0   |            | 0.5<br>1.0    |      | 1,5<br>7.6<br>1.0                     |
| 19                                                                                          |     |              |     |      |      |      |   |   |   |     |      |      |      | <u>U. 0</u> |              |      |          |     | 5. \$    |     |       |            |               |      | <u> 5.5</u>                           |
| 21                                                                                          |     |              |     | 0, 5 | 0, 5 |      |   |   |   |     |      |      |      |             |              |      |          |     |          | 1.4 | 35, 1 | 2.0        | 1, 9.<br>0, 7 |      | <u>4.0</u> .<br>37, 7                 |
| 23<br>24                                                                                    |     |              |     |      | **** |      |   |   |   |     |      |      |      |             |              |      |          |     |          |     |       | 0.3        |               |      | 0.3                                   |
| 15<br>6 7 7 8 8 9 10 11 12 13 13 14 15 15 16 17 18 19 20 21 22 23 24 25 25 27 28 29 39 39 9 |     |              |     |      |      |      |   |   |   |     |      |      |      |             | <u>.i.o</u>  |      |          |     |          | ·   |       |            | 1,9           |      | 2.2.                                  |
| 27<br>28                                                                                    | 2.1 |              |     |      |      |      |   |   |   |     |      |      | }    |             | <br>         | 9.6  | <u> </u> |     | <b>-</b> | 2.3 | 2.5   | 3.5<br>3.8 | 0,9           | 0, 3 | 22.4<br>7.0                           |
| 30<br>31                                                                                    |     |              |     |      |      |      |   |   |   |     |      |      |      |             | ļ            |      |          |     |          |     | ·     |            |               |      | · · · · · · · · · · · · · · · · · · · |

TOTAL 131.8
MAX. 35.1

#### HOURLY RAINPALL

|                                  |      | STAT      | ION         | Н   | ARD | PANA       |     |         |   |     |         | UNIT | nina_ |      |      | MON        | r8         | AUG        | UST       |     |          | YEAR |                | 1975 |                      |
|----------------------------------|------|-----------|-------------|-----|-----|------------|-----|---------|---|-----|---------|------|-------|------|------|------------|------------|------------|-----------|-----|----------|------|----------------|------|----------------------|
| DATE                             | 1    | 2         | 3           | 1   | 5   | 6          | ,   | 8       | 9 | 10  | 11      | 12   | 13    | 14   | 15   | 16         | 17         | 18         | 19        | 20  | 21       | 22   | 23             | 24   | TOTAL                |
| 1                                |      | Ī         |             |     |     |            | Ī   |         |   |     |         |      |       |      |      |            | ]          |            |           |     |          |      |                |      |                      |
| 2                                |      | ļ         |             |     |     |            |     |         |   |     |         |      |       | 1.5  |      | ļ <u>.</u> |            |            |           |     | <b>-</b> |      |                | ·    | <u>1.5</u>           |
| 1<br>2<br>3                      |      |           |             |     |     |            |     |         |   |     | 1.0     |      |       |      |      | <u> </u>   |            |            |           |     |          |      |                |      | 0,1                  |
| - 5                              |      | ļ         | 0.1         |     | i   | ļ          |     |         |   |     |         |      |       |      |      |            | <b> </b>   |            |           |     |          |      |                |      | . –                  |
| 7                                |      |           |             |     |     |            |     |         |   |     |         |      | 2.0   | 2.0  | 1. 5 |            |            |            |           |     |          |      |                |      | 5.5                  |
| 8                                |      | ļ         |             |     |     | <b>-</b> - | ļ   |         |   |     |         | ŀ    | }     |      |      |            | 0.1        | <b> </b> - |           |     | l        |      |                |      | 0, 1                 |
|                                  |      |           |             |     |     |            |     | 0.5     |   |     | 0.5     |      |       | 0.5  |      |            | 0.3        | 0.8        |           |     | 1, 7     |      |                |      | 0. I<br>1. 3<br>5. 0 |
| 10<br>11<br>12<br>13<br>14<br>15 |      |           |             |     |     | 1.5        | 1.0 | 0.7     |   | 0.3 | J. U. 3 |      |       |      |      |            | 10.3       |            |           |     |          |      |                |      | 1.7                  |
| 13                               |      |           |             |     |     |            | 0.9 |         |   |     |         |      |       |      |      | <b></b>    | }          | ļi         |           |     |          |      |                |      | 0.9                  |
| 15                               |      |           |             |     |     |            |     | 1.3     |   |     |         |      |       | 1.5  | 3.8  |            |            |            |           |     |          |      |                |      | 0. y<br>6. 6         |
| 16                               |      |           | ļ · ·       |     |     |            |     |         |   |     | _       | ļ.—  |       |      |      |            |            |            | ļ         |     |          |      |                |      |                      |
| 18                               |      |           | ,           |     |     |            |     |         |   |     |         |      |       |      |      |            | 0.4        | 0.6        | 0. 1      |     |          |      |                |      | 0.1                  |
| 19                               |      |           |             | w   |     |            |     |         |   |     |         |      |       |      |      | 4.0        | 0.4        |            |           |     |          |      |                |      |                      |
| 21<br>22                         |      | ļ         |             |     |     |            |     |         | ± |     |         |      |       |      |      |            |            | 4.5        |           |     |          |      |                |      | 4.5                  |
| - 23 -                           |      |           |             |     |     |            |     |         |   | -,  |         |      |       |      |      |            |            |            |           |     |          |      |                |      |                      |
| 23<br>24<br>25                   |      |           |             |     |     |            |     |         |   |     |         |      |       |      |      | ļ          | 0.3<br>4.6 |            | A         |     | ļ        |      |                |      | 0. 3<br>4. 6         |
| 26                               |      | <u></u> . |             |     |     |            |     | .,,, ., |   |     |         |      |       | 0.5  | 1.4  |            |            | 1, 2       | Α-1       | 0.4 | 0.1      |      | ō, í           |      | j. 2<br>3. 5         |
| <del>27</del>                    |      | 0.8       | 0.5<br>3.0  | 1.5 |     |            | 0.4 |         |   |     |         |      | 0,2   | U. 8 | !:1  |            | {          |            | · · · · · |     | Ì        |      |                |      | 5,2.                 |
| 28                               | 0, 2 |           |             |     |     |            |     |         |   |     |         |      |       | \$.0 | 4.0  |            | 3.6        |            |           |     | 1.0      | 0.5  | . (. 0<br>(. 0 | 1.0  | 13.9<br>7.6          |
| 30<br>31                         |      |           | <del></del> |     |     |            |     |         |   |     |         |      |       | 0.8  |      |            |            | <u> </u>   | <u> </u>  |     | L.       |      | -11.57         | L    | 0,8                  |

TOTAL 69.8

|                                                                      |               | STAT       | 108       | 31          | ARD      | PANA |             |         |             |     |     | UNIT | _m_      |     |     | MON   | m              | SBPI | LRMBI | KR         |       | VGAR              |             | 1975        |               |
|----------------------------------------------------------------------|---------------|------------|-----------|-------------|----------|------|-------------|---------|-------------|-----|-----|------|----------|-----|-----|-------|----------------|------|-------|------------|-------|-------------------|-------------|-------------|---------------|
| EJY)<br>PATE                                                         | 1             | 2          | ,         |             | 5        | b    | 7           | 8       | 9           | 10  | 11. | 12   | 13       | 14  | 15  | 16    | 17             | 18   | 19    | 20         | 21    | 22                | 23          | 24          | TOTAL         |
| 1                                                                    |               |            |           |             |          | 1    |             |         |             |     |     |      |          |     |     |       |                |      | ļ :   |            |       |                   |             | 0, 2        | 0, 2          |
| . 1<br>. 2<br>. 3                                                    | j.#           | ٠.         |           |             |          | ļ.   |             |         |             |     |     |      | <b></b>  |     |     |       |                |      |       |            |       |                   |             |             | L.Q           |
|                                                                      |               |            |           |             |          |      |             |         |             |     |     |      |          | 2.0 |     | 11. 2 | 1,5            | 1.5  |       |            |       |                   |             |             | 16. 2         |
| 5                                                                    | , , J         |            | 0. 5      | 0. 2        | <b> </b> |      | 0.5         |         |             | 1.6 |     | 1,0  | 3, 8     | 1.0 | 1.5 |       |                | ļ    |       |            |       |                   | ů, s        |             | _U.8 _        |
| 7                                                                    |               | 0.5        | • • • •   | ļ <b>.</b>  |          |      |             | ···-· · |             | 1.0 |     |      | ·        |     |     |       | 3.2            | 0.2  | 0.8   |            |       | <u> </u>          | .4.3        |             | 6. 7<br>3. 7  |
| 8                                                                    |               |            |           |             |          |      |             |         |             |     |     |      |          |     |     |       |                |      |       |            | ļ     |                   |             |             |               |
| 10                                                                   |               |            |           |             | · · · ·  |      | ļ-··        |         |             |     |     |      |          |     |     |       |                |      |       |            |       |                   |             |             |               |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21 |               |            |           |             |          |      |             |         |             |     |     |      |          |     |     |       |                |      | 0.3   |            | 0.5   | 0.2               |             |             | 0.5           |
| 13                                                                   | • · · · · ·   |            |           |             |          |      |             |         | • • • • •   | ·   |     |      |          |     |     |       |                | 0. 5 |       |            |       | ] <del>\\</del> . |             |             | 0.5           |
| !                                                                    |               |            |           |             |          |      |             |         |             |     |     |      |          |     |     |       | υ, 6           | 1.0  | 2. 2  | - 3        |       |                   |             |             | 3. 2<br>0. 8  |
| 15                                                                   |               | 1-         |           |             |          |      |             |         |             |     |     |      |          |     | ·   |       | <u>. 9. p.</u> | 0, 5 | 0.6   | 0.2<br>2.0 | 1,8   |                   |             |             | 4.9           |
| 17                                                                   |               |            |           |             |          |      |             |         |             |     |     |      |          |     |     | 1.3   | 1.8            | [    |       |            |       |                   |             |             | <u>_6,1</u> _ |
|                                                                      |               |            |           |             |          |      |             |         |             |     |     |      |          |     |     |       | ·····          |      |       |            | 3.4   |                   |             |             | 1.4           |
| 20                                                                   |               |            |           |             |          |      |             |         |             |     |     |      |          |     |     |       | 2. 3<br>2. 4   |      | 2,3   |            |       |                   |             |             | 4,6           |
| 22                                                                   |               |            |           | ·· <b>-</b> |          |      |             |         |             | ļ   |     |      | ļ        | ·   | 0.6 |       | 4. 1           |      | 0.4   |            | 0.8   | 1.4               | 2. 4        | 0.1         | 3. 2<br>5. 4  |
| 23                                                                   | 0.8           | 6.2<br>1.0 |           |             |          |      |             |         |             |     |     |      |          |     |     |       |                |      |       |            | l∳. U | 11.0              | <b>25.0</b> | <b>9.</b> D | 60.0          |
| <u>21</u>                                                            | 2.0           | - 1::0     |           |             | <b>.</b> |      | · · · · · - |         | •           |     |     |      | <u> </u> |     |     | l     |                | 7:9  | 1.8   | 0.9        |       |                   |             |             | \$.7<br>1.9   |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                         | ., .          |            |           |             |          |      |             |         |             |     |     |      |          |     | 0.5 |       |                |      |       |            |       |                   |             |             | 0.5           |
| 27                                                                   |               |            |           |             |          |      | J           |         | • • • • • • |     |     |      |          |     |     |       |                |      | ļ     |            |       |                   |             |             |               |
| 29                                                                   |               |            |           |             |          |      |             |         |             |     |     |      |          |     | 0.5 |       |                | ļ    |       |            | [     |                   |             |             | 0.5           |
| _30]                                                                 | 4. ti<br>0. 5 |            | ] · · · · |             | } • • •  |      |             |         |             | 1.9 | 0.2 |      | ]- ····· | }   |     |       | }              |      | 3.9   | <u> </u> - |       |                   | 1.5         | ]           | 0.5           |

TOTAL 152.3 MAX. 25.0

# HOURLY RAINFALL

|                                              |               | 517A1 | non    |              | AND          | PANA |      |      |      |      |     | UNIT | ma       | <b>.</b> |                 | MONT  | m    | OCTO          | яяв   |      |            | YRAR                                  |       | 1975 |                             |
|----------------------------------------------|---------------|-------|--------|--------------|--------------|------|------|------|------|------|-----|------|----------|----------|-----------------|-------|------|---------------|-------|------|------------|---------------------------------------|-------|------|-----------------------------|
| 040                                          | ı             | 2     | 3      | 1            | 8            | O    | ,    | 8    | y    | 10   | 11  | 12   | 13       | 14       | 15              | 16    | 17   | 18            | 19    | 20   | 21         | 22                                    | 23    | 24   | TOTAL                       |
|                                              |               | ļ     |        |              |              |      |      |      |      | 5.0  |     |      |          |          | 10.31           |       |      | <b> </b>      |       |      |            |                                       |       |      | \$.0<br><u>\$.5</u><br>11.9 |
| 3                                            |               |       |        | 7.5          | 0.5          | <br> |      |      |      |      |     |      |          | 5.0      | 0.5             |       | 10.0 | 10.0          | 0. 2  | 14.8 | 6.8        | 0,6                                   |       |      | 31.9                        |
| 3                                            |               |       |        |              | ;            |      |      |      |      |      |     |      |          |          | 2.4             |       |      |               |       | 2,0  | U 2        |                                       |       |      | 2.6                         |
| 9                                            |               |       |        |              |              |      |      |      |      |      |     |      |          |          | 0.8             |       |      | 10, 0<br>0, 8 |       |      | .1, 2      |                                       |       |      | 14.0<br>0.8                 |
| - 8                                          |               |       |        |              |              |      |      |      |      |      |     |      | <b>-</b> | 0.4      |                 |       |      | • =<br>•      |       | 24.2 | 12.3       |                                       |       |      | <u> 16.5</u><br>0.4         |
| 10<br>15<br>12                               |               |       |        |              |              |      |      |      |      |      |     |      | 3,5      | 0, 8     | 0.7             |       |      |               | 10, 5 | 3.0  |            |                                       | 1. \$ |      | 16.5                        |
| 13<br>14                                     |               |       |        |              |              |      |      |      |      |      |     |      |          |          | _2. î           |       |      |               | 0.5   |      | 0 8<br>3.5 | 2.0                                   |       | ,    | 9.0                         |
| 15                                           | 3,4           | 0.1   | 2, 8   | 1. 6.9       |              | 2.1  | 1.0  |      |      |      |     |      |          |          |                 |       |      |               |       |      |            |                                       |       |      | 11.0                        |
| 17                                           | <br>          |       |        |              | 9, 3         |      |      |      |      |      |     |      |          |          |                 |       |      |               | <br>  |      |            |                                       |       | ···· | 0.3                         |
| 18<br>19<br>20                               |               |       |        |              |              |      |      |      |      |      |     |      |          | <br>~    | ماند.<br>معاوضا |       |      |               |       |      |            |                                       |       |      |                             |
| 21                                           |               |       |        | 14, 2        | 3.0          | 2.11 | 1.8  |      |      | <br> |     |      |          |          | 2. 0            |       |      |               |       |      |            |                                       |       |      | 27.1                        |
| 22<br>23                                     |               |       |        |              |              |      |      |      |      |      |     | ļ    |          |          |                 | ***** |      |               |       |      |            |                                       |       |      |                             |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 |               |       |        |              |              |      |      |      |      |      |     |      |          |          |                 |       |      |               |       |      |            | * * * * * * * * * * * * * * * * * * * |       |      |                             |
| 26<br>21                                     |               | -     |        |              |              |      |      | 1. 8 |      |      | 0.2 |      |          |          | <br>!           | 2.5   |      |               |       |      |            |                                       |       |      | 2.5                         |
| 23<br>29                                     | <b>17</b> . 0 | 1     |        |              |              |      | 1.0  |      | 40 A |      |     |      |          |          |                 |       |      |               | 0.9   | .2.0 | . B. Z     |                                       |       |      | 14.9                        |
| 30<br>31                                     | 0, 8          | 2. 2  | , 8, 0 | 4. 0<br>3, 8 | 8. I<br>0. 7 | 3.6  | 8.11 | 2.0  | Ē- Đ |      |     |      |          |          |                 |       |      |               |       |      |            | .1.2                                  |       |      | 40, 3<br>4, 5               |

TOTAL 243.1 MAX. 24.2

#### WATER LEVEL OF AND DISCHARGE (Q)

NAME OF G.S. RAN CHAO NEN. C. A. 10,650 SQKM QUARYAI THAILAND

QUAR YAL RIVER IN THE BASIN OF ME KLONG. UNIT HIM), Q(C.M.S) FOR THE WATER YEAR OF 1972

|      | AP                                      | H.    | N.     | AY .   | ju      | N.       | ַטוּ  | ı [ˈ      | · At   | /G.         | SH     | P.     |
|------|-----------------------------------------|-------|--------|--------|---------|----------|-------|-----------|--------|-------------|--------|--------|
| DATE | 11 ]                                    | Q     | H ]    | Q      | ŧŧ      | Q        | 11    | Q         | Н      | Q           | 11     | Q      |
|      | 0.83                                    | 22.8  | 0,81   | 21,6   | 0.81    | 21.1     | 1.77  | 83, 9     | 6.86   | 805         | 4.64   | 372    |
| 2    | 0,82                                    | 22, 2 | 0, 27  | 19.2   | 0.83    | 22.8     | 1. 75 | 82. 5     | 6.45   | 710         | 4, 41  | 340    |
| 3    | 0.82                                    | 27. 2 | 0.75   | 18.0   | 0, 88   | 25.8     | t. 67 | 76.9      | 5.78   | \$66        | 4.29   | 325    |
| 4    | 0, 89                                   | 26.4  | 0,72   | 46. 2  | 0, 98   | 31.8     | 1, 63 | 74, 1     | 5.35   | 484         | 4, 02  | 141    |
| 5    | 11, 80                                  | 21.0  | 0.71   | 15. à  | - 0, 97 | 31.2     | 1, 77 | 83.9      | 5. 111 | 43 <b>t</b> | 3,79   | 265    |
| 6    | 0,89                                    | 21.0  | U. 70  | 15.4   | 1, 17   | 43.2     | 1. 94 | 95, 8     | 4. 67  | 376         | 3, 61  | 248    |
| 7    | 0,88                                    | 25. K | 11, 71 | 15.6   | 1.44    | 60.8     | 1. SR | 91.6      | 4, 46  | 347         | 4. (3  | 300    |
| 8    | 0,83                                    | 22. K | 19.69  | 14.5   | 1. 34   | 53.8     | 2, 12 | 110       | 4, 31  | 327         | 6.77   | 784    |
| 9    | 4.8)                                    | 21.6  | 0.68   | 14.0   | 1. 52   | 66.4     | t. 97 | 47. 9     | 3, 95  | 285         | 8, 72  | 1,310  |
| 10   | 44,3%                                   | 19.8  | 91, 67 | 13.5   | . 2.04  | 103      | 1.87  | 40.9      | 3. 13  | 258         | 8. (5  | 1,140  |
| 11   | 0, 78                                   | 19, 6 | 0.65   | 12.5   | 1.61    | 74.8     | 1.87  | 90, 9     | 3, 50  | 23)         | 6, 12  | 704    |
| 12   | 0,52                                    | 22.2  | 0.64   | 12.0   | L 66    | 76, 2    | 2, 58 | 147       | 3, 45  | 229         | 5, 63  | 537    |
| 13   | 1.67                                    | 47, 7 | 0.63   | , 11.5 | 1.54    | 67.8     | 5.32  | 479       | 3, 42  | 226         | 5, 17  | 506    |
| 14   | 0.9≥                                    | 28. 2 | 0.62   | 11.0 j | 1,41    | 58.2     | 6, 68 | 763       | 3, 57  | 241         | 5, 13  | 446    |
| 15   | 1. 03                                   | 34.8  | II. 62 | 11, 0  | 1. 33   | 53, 1    | 5. 45 | 600       | 3. 70  | 255         | 4, 7%  | 397    |
| 16   | 1.12                                    | 40, 2 | 0,61   | 10.5   | 1. 26   | 48.6     | 5, 33 | 480       | 3, 62  | 546         | 4, 56  | 360    |
| 17   | 0.95                                    | 30, 6 | 0.62   | 11.0   | 1.21    | 45.6     | 5. 00 | 425       | 3, 50  | 278         | 4, 46  | 347    |
| 18   | 0, 91:                                  | 27, 6 | 0, 68  | 14.0   | 1. 16   | 42.6     | 4. 91 | 412       | 4, 92  | 413         | 4, 23  | 318    |
| 19   | 0.98                                    | 31.8  | 0.84   | 23, 4  | 1, 19   | 44.4     | 4. 76 | 389       | 5, 21  | 460         | 6, 12  | 636    |
| 20   | 0,89                                    | 26, 4 | 1, 07  | 37. 2  | 1, 46   | 62.2     | 4. t4 | 307       | 5, 72  | 554         | 10, 94 | 1,980  |
| 21   | . 0,84                                  | 23, 4 | 8, 21  | 45.6   | 1,53    | 67.8     | 3.70  | 256       | 5, 46  | 594         | 9, 24  | 1,461  |
| 22   | 0.80                                    | 21.0  | 1.10   | 39.0   | 1.44    | 60.8     | 3, 53 | 237       | 5. 13  | 446         | 7, 31  | 985    |
| 23   | 0,72                                    | 19, 2 | 1.06   | 36.6   | 1, 39   | 57.3     | 3, 34 | 218       | 4. 88  | 4007        | 6, 40  | 899    |
| 24   | 0.76                                    | 18.6  | 1.01   | 33. 6  | 1, 29   | 50, 4    | 3, 23 | 207       | 1.56   | 360         | 5. 43  | 596    |
| 25   | 43, 76                                  | 16, 6 | 0, 99  | 32.4   | 1, 23   | 46.8     | 4. 14 | 307       | 4.38   | 336         | 5, 67  | 544    |
| 26   | 0,83                                    | 21.6  | (,00   | 33, 0  | 1, 21   | 45,6     | 5, 77 | 564       | 4, 24  | 319         | 5.81   | 577    |
| 27   | 0.73                                    | 18.0  | 0.98   | 31.8   | 1, 36   | 12.6     | 5, 45 | 502       | 4. 39  | 333         | 6. 15  | 75     |
| 28   | 0.78                                    | 19. 8 | 0, 90  | 27, (1 | 1, 22   | 46.2     | 5, 78 | 566       | 4. 26  | 321         | 6, 80  | 799    |
| 29   | 0, 47                                   | 31.2  | 0, 86  | 24.6   | 1, 20   | #5.0     | 6.60  | 745       | 4. 26  | 321         | 7, 17  | 887    |
| 30   | (1, 79                                  | 20, 4 | 0, 84  | 23.4   | 1, 43   | 60. L    | 6.38  | 694       | 4. 44  | 314         | 6,68   | 763    |
| 31   |                                         |       | 0.82   | 22.2   |         | <b>!</b> | 6.50  | 722       | 4. 56  | 360         |        |        |
| SUM  | • • • • • • • • • • • • • • • • • • • • | 735.6 |        | 666. 3 |         | 1,558.8  | . ,   | 9, 998, 4 |        | (1.78)      |        | 19.541 |
| MAN  |                                         | 24. 5 |        | 21.5   |         | 52.0     |       | 323       |        | 380         |        | 651    |
| MAX  |                                         | 40, 2 |        | 45.6   |         | 103      |       | 263       |        | 805         |        | 1.281  |
| MIN  |                                         | 18, 6 |        | 10.5   |         | 22.6     |       | 74.1      |        | 226         | l .    | 248    |

WATER LEVEL (II) AND DISCHARGE (Q)

NAME OF U.S. BAN CHAO NEW

QUAR YAI RIVER IN THE BASIN OF ME KLONG UNIT HOW OR UNIT HOSD, Q(C.M.S) FOR THE WATER YEAR OF 1972

| QUAB | YAL RIVE | R IN THE   | BASIN OP | MB KLONG   |       | UNIT HAM     | ). Q(С.М.5 | ) 1'OR  | THE WAT | BR YEAR  | OF 19 |          |
|------|----------|------------|----------|------------|-------|--------------|------------|---------|---------|----------|-------|----------|
|      | α        | :T.        | N(       | )V.        | Di    | ic.          | ĮΛ         | N.      | FR      | В.       | M     | NR.      |
| DATE | В        | Q          | 16       | Q          | 11    | Q            | 11         | Q       | Н       | Q        | 11    | Q        |
| 1    | KA_A     | 763        | 3, 13    | 197        | 3. 16 | 2(11)        | 1. 63      | 77.6    | 1.25    | 48. 6    | 1, 01 | 33.6     |
| 2    | 4.34     | 640        | 3, 03    | 185        | 2, 95 | 180          | 1.66       | 76.2    | 1.25    | 48. 0    | 1,0}  | 33.6     |
| 3    | 5. ·XI   | 590        | 2. 92    | 178        | 2, 80 | 167          | 1. 6)      | 74.8    | L 24    | 47.4     | (, 0) | 33.6     |
| 4    | 5.41     | 592        | 2. 83    | 121        | 2.48  | 156          | 1. 62      | 73.4    | 1. 23   | 46.8     | 4, 00 | 33.0     |
| 5    | 5. 96    | 693        | 2, 15    | t62        | 2, 58 | 147          | 1.60       | 72,0    | 1. 22   | 45. ?    | 8, 99 | 32. 4    |
| 6    | 6, 70    | 768        | 2.71     | 159        | 2, 49 | 139          | 1.58       | 70.6    | 1, 21   | 45. 6    | 0, 99 | 32.4     |
| 7    | 7, 13    | H72        | 2,67     | 155        | 2, 42 | 134          | 1.57       | 69.9    | 1. 21   | 45.6     | 0.99  | 32.4     |
| 8    | 6, 20    | 654        | 2, 78    | 165        | 2. 38 | 130          | 1. 56      | 69.2    | 1. 20   | 45.0     | 0.98  | 31.8     |
| 9    | 5, 69    | 545        | 2. 93    | 179        | 2. 36 | 129          | 1.51       | 67.8    | 1. 26   | 45.0     | 1.00  | 33.1     |
| 10   | 5.31     | 482        | 2, 95    | 161        | 2. 42 | 134          | 1, 52      | 65.4    | J. 19   | 44.4     | 1.01  | 33.4     |
| -0 1 | 5.18     | 455        | 3. 02    | [87]       | 2, 41 | 133          | 1. 52      | 66.4    | 1.18    | 43, 8    | 1.02  | 34.1     |
| 12   | 4.90     | 410        | 2, 80    | 167        | 2.37  | 130          | 1.50       | 65.0    | 1.17    | 43.2     | 1.02  | 14.      |
| 13   | 4.70     | 380        | 2, 10    | 158        | 2, 31 | 125          | 1.48       | 63.6    | 1.16    | 42.6     | 0, 99 | 17.      |
| 14   | 4.63     | 370        | 2.60     | 149        | 2.22  | 118          | 1. 45      | 62.2    | 7.15    | 42.0     | 0. 97 | 31.3     |
| 15   | 4,72     | 383        | 2,53     | 143        | 2. 18 | 164          | 1. 45      | 61, \$  | 6.14    | 41.4     | 6.95  | 30.      |
| 16   | 4. 96    | 419        | 2, 51    | ы          | 2. 16 | 113          | 1.44       | 60.8    | 1. 13   | 40.8     | 0, 97 | 31,      |
| 17   | 5, 06    | 435        | 2,52     | 142 }      | 2, 69 | 107          | 1.42       | 59.4    | 1. 13   | 40.8     | 0.93  | 31.6     |
| 18   | 4, 76    | 389        | 2, 47    | 138        | 2, 01 | 103          | 1.42       | 59.4    | 1. 12   | 40, 2    | 0, 96 | 30. (    |
| 19   | 4, 97    | 120        | 2, 51    | 144        | 2, 90 | 100          | £ 40       | 58.0    | 1. 12   | 40.2     | 1.06  | 36, 0    |
| 20   | 4, 85    | 402        | 2, 48    | 138        | 1. 97 | 97, 9        | 1. 39      | 57.3    | 1. 11   | 39.6     | 1, 20 | 45.      |
| 23   | 4.64     | :172       | 2. 43    | 134        | 1, 93 | 95. 1        | 1. 38      | 56.6    | 6. 10   | 39. ¢    | 1.28  | 49.      |
| 22   | 4.41     | 340        | 2, 53    | 143        | 1, 95 | 93, 0        | 1. 36      | 55.2    | 1.08    | 37, 8    | 1. 18 | 43,1     |
| 23   | 4, 24    | 314        | 2, 13    | (6)        | 1, 87 | 20, 9        | 1.34       | 53.5    | 1,06    | 36. 6    | 1. 17 | 13.      |
| 24   | 4.86     | 297        | 2,77     | (6)        | 1,81  | 88.8         | 1. 33      | 59.1    | 1.03    | 36, U    | 1. 19 | 34.      |
| 25   | 3, 84    | 271        | 3, 87    | 274        | 1. 87 | 87.4         | 1. 32      | 52.4    | 1, 04   | 35, 4    | 1.22  | 10.      |
| 26   | 3, 68    | 253        | 5. 55    | 522        | 1. 89 | 66.0         | (, J(      | \$1.7   | 1.03    | 34.8     | 1, 17 | 13.      |
| 27   | 3, 54    | 2 38       | 4, 59    | 363        | 1, 78 | 84.6         | £. 30      | St. Q   | E, NJ   | 34.8     | 1, 12 | 40.      |
| 28   | 3, 49    | 233        | 3, 98    | 288        | 1, 76 | 83, 2        | 1, 29      | 50.4    | 1.02    | 35.2     | 1, 12 | 49.      |
| 29   | 3, 16    | 230        | 3, 77    | 263        | 4, 13 | 81.4         | 1.28       | 19.8    | J       |          | 1, 16 | 36.6     |
| 30   | 3, 39    | 22.1       | 3. 45    | 229        | 1.71  | 79, 7        | 1.27       | 49, 2   |         |          | 1, D4 | 35.      |
| 31   | 3. 25    | 20)        |          |            | 1, 70 | 79.0         | 1. 26      | 48.6    |         |          | 1, 92 | 34. 3    |
| SUM  |          | 13,605     |          | 5.783      |       | 3,605.7      |            | 1,903.3 |         | 1, 165.8 |       | 1,  23.7 |
| MBÁN |          | 439        |          | 193        |       |              |            |         |         | 41.6     |       | 16.      |
| MAX  |          | 872<br>209 |          | 522<br>134 |       | 200<br>79, 0 |            |         |         | 34.2     |       | 49.      |
| MIN  |          | 209        |          | 334        |       | 79.0         |            | 48.6    |         | 34. 2    |       | 40, 0    |

TOTAL = 6, 170 MILLION M

MAX = 1,980

#### WATER LEVEL (H) AND DISCHARGE (Q) S LEYRL OF AND DESCRIPTION C. A. HO, SHO SQKM QUARYAI THAILAND. NAME OF G. S BAN CHAO, NEN. C. A. HO, SHO SQKM QUARYAI THAILAND.

QUAR YAL RIVER IN THE BASIN OF MR KLONG

UNIT HIM), QIC.M.S) FOR THE WATER YEAR OF 1973

|      | Ar Ar  | ·a.   | M-     | AY        | ĮU.   | N.        | JU.    | i.,     | AU     | G.         | SE     | r.               |
|------|--------|-------|--------|-----------|-------|-----------|--------|---------|--------|------------|--------|------------------|
| DATB | 31     | Q     | н      | Q         | H     | Q         | н      | Q       | н      | Q          | 1)     | Q                |
|      | 0, 99  | 32.4  | 0.76   | 18.6      | 1, 34 | 57.3      | 1, 90  | 93, 0   | 3.05   | 1941       | 6. 83  | <del>(-3</del> 9 |
| , ,  | 0.46   | 30, 6 | 0.76   | 18.6      | 1. 42 | 59.4      | 1.81   | 88.8    | 3,00   | 485        | 5.69   | 548              |
| 3    | 0, 93  | 28.8  | 0.91   | 27.6      | 1, 49 | 58.0      | 1.98   | 93,7    | 3, 00  | 185        | 5, 42  | 497              |
| 4    | 0.92   | 28, 2 | 1, 06  | 36, 6     | 1. 37 | 55.9      | t. 90  | 9, 30   | 2.89   | 175        | 5, 23  | 401              |
| Š    | 0.91   | 27.6  | 1 (6)  | 34.8      | 1, 43 | 60, 1     | t. \$0 | \$6.0   | 2, 81  | 168        | 5, 02  | 158              |
| 6    | 0, 90  | 27,0  | 1.14   | +1.4      | 1.36  | 55.2      | 08.1   | 86.0    | 2.74   | 162        | 1.23   | 384              |
| 7    | 0, 92  | 28.2  | 4, 05  | 36.0      | 1. 32 | 52.4      | 1.88   | 91.6    | 2.69   | 157        | 4.45   | 346              |
| 8    | 0, 92  | 28, 2 | 1.02   | 34,2      | 1.48  | 63.6      | 2, 10  | 108     | 3, 22  | 206        | 4, 22  | 316              |
| 9    | 0.93   | 28.8  | 0, 97  | 3), 2     | 1.56  | 69. 2     | 2.14   | D1      | 3, 41  | 252        | 4.11   | 303              |
| ιĎ   | 0, 92  | 28. 2 | 1, 01  | 33.6      | 1,77  | 83. 9     | 2, 43  | 134     | 3. 24  | 203        | 4, 07  | 298              |
| u    | 1), 59 | 26.4  | 1, 02  | 34,2      | 1.69  | 78.3      | 3, 57  | 241     | 3, 03  | 188        | 4.09   | 310              |
| 12   | 0.88   | 25, 8 | 0.97   | 31.2      | 1.61  | 72.7      | 5, 14  | 448     | 2, 89  | 175        | 3.94   | 283              |
| 13   | 0. 86  | 24.6  | 1.86   | 36.6      | 1, 47 | 62.9      | 3, 98  | 288     | 2. 77  | 164        | 3, 79  | 265              |
| 14   | 0.85   | 24.0  | 1, 07  | 37. 2     | 1.42  | 59.1      | 3. 51  | 235     | 2. 94  | 189        | 4, 02  | 292              |
| 15   | 0.84   | 23. 4 | 1, 197 | 37. 2     | 1, 13 | 1,04      | 3. 28  | 210     | 2. 97  | 182        | 3, 46  | 185              |
| 16   | 0, 83  | 22, 8 | (.03   | 37.8      | 1.66  | 76.2      | 3. 20  | 501     | 3. 05  | 190        | 3.85   | 276              |
| 17   | 0, 82  | 22, 2 | 1.05   | 36.0      | 2, 27 | 122       | 3. 27  | 201     | 2, 91  | 180        | 3, 80  | 266              |
| 18   | 11, 82 | 22.2  | 1.07   | 37, 2     | 4. 89 | 408       | 3, 68  | 253     | 2.91   | 177        | 3, 87  | 274              |
| เย็า | 0.86   | 24,6  | 1, 97  | 33.2      | 5, 90 | 590       | 3, 51  | 235     | 3. 20  | 204        | 4.26   | 324              |
| 20   | 0.88   | 25.8  | 1 05   | 36.0      | 6.11  | 634       | 3.59   | 243     | 3, 73  | 258        | 4. 67  | 376              |
| 21   | 0.85   | 24.0  | 1, 02  | 34.2      | 5, 21 | 160       | 3.78   | 261     | 4.11   | 303        | 5, 88  | 586              |
| 22   | 0.86   | 24.6  | 0, 99  | 32.4      | 4. 26 | 321       | 3, 80  | 266     | 3. 86  | 273        | 5, 73  | \$56             |
| 23   | 0.85   | 24,8  | 0.98   | 31.6      | 3.48  | 232       | 3.78   | 264     | 4,01   | 295        | 5. 10  | 504              |
| 24   | 0, 82  | 22, 2 | 1.04   | 35.4      | 2, 95 | 180       | 3.56   | 240     | 4. 50  | 352        | 6.11   | 634              |
| 25   | 0, 80  | 21.0  | 1. 43  | 40.8      | 2, 65 | 154       | 3. 35  | 219     | 5.66   | 542        | 7, 50  | 97 <b>t</b>      |
| 26   | 0, 78  | 19, 8 | 1.21   | 45,6      | 2, 54 | 144       | 3, 32  | 216     | 6, (0) | 611        | 6, (4) | 715              |
| 23   | 9,78   | 19.8  | 1.46   | 62.2      | 2, 42 | 134       | 3, 27  | 211     | 6.12   | 636        | 6.02   | 615              |
| 28   | 0.78   | 19,8  | 1.27   | 49.2      | 2, 27 | 122       | 3, 48  | 232     | 6. 01  | 613        | 5, 7t  | 552              |
| 29   | 0, 17  | 19.2  | 1.31   | 53.8      | 2.07  | 106       | 3. 35  | 514     | 6. 17  | 617        | 6, 25  | 665              |
| ,30  | 0, 76  | 18, 6 | 1.25   | 48.0      | 1, 95 | 96.5      | 3, 17  | 201     | 7.00   | \$40       | 6. 20  | 654              |
| 31   |        | ļ     | 1, 24  | 47, 4     |       | ļ         | 3, 15  | 199     | 6.85   | 800        |        |                  |
| SUM  |        | 742.8 |        | 1, 154. 0 |       | 4, 728. i |        | 6,084.1 |        | 9,674      |        | 13,646           |
| MBAN |        | 24.8  |        | 37, 2     |       | 158       |        | 196     |        | 312<br>540 |        | 455              |
| MAX  |        | 32.4  |        | 62.7      |       | 63-1      |        | 448     |        |            |        | 971              |
| MIN  | L.     | 18.6  | l      | 18.4      | Ĺ     | 52, 4     |        | 86.0    | L      | 157        | L      | 265              |

# WATER LEVEL (II) AND DISCHARGE (Q)

NAME OF G. S PAN CHAO NEN. C. A. 10.850 SQXM QUAEYAI THAILAND

E YAI RIVER IN THE BASIN OF ABE KLONG UNIT H(M), Q(C.M.S) FOR THE WATER YEAR OF 1973

| \ \ \ \ \ \ | α     | er.    | 80    | <b>)V</b> . } | Di    | EC.       | 18         | N       | FV     | <b>35.</b> | M4     | <b>L</b> R. |
|-------------|-------|--------|-------|---------------|-------|-----------|------------|---------|--------|------------|--------|-------------|
| BTAC        | 11    | Q      | н     | Q             | H     | Q         | 11         | Q       | H      | Q          | Ð      | Q           |
|             | 5, 92 | 594    | 2.66  | 153           | 1. 86 | 90, 2     | 1. 35      | 51.5    | 1.03   | 32, 8      | 0. 95  | 30,         |
| 2           | 6, 68 | 628    | 2.56  | 145           | 1. 84 | 88. 8     | 1.31       | 53.8    | 1, 07  | 37.2       | 0.95   | 30          |
| 3           | 5, 77 | 56#    | 2.49  | 689 ]         | 1,81  | 86, ?     | 1, 31      | 53. i   | 1,06   | 36.6       | 11, 95 | 30          |
| 4           | 5, 69 | 531    | 2, 43 | 134           | 1, 79 | 85.3      | 1.32       | \$2.4   | 1.04   | 35. 4      | 0,94   | 29          |
| 5           | 6, 09 | 630    | 2, 39 | 131           | £. 77 | 83, 9     | 1. 3B      | 51.7    | 1. 03  | 34, 8      | 0, 94  | 2.9         |
| 6           | 6. 22 | 658    | 2, 35 | 128           | 1.76  | 8.3. 2    | 1, 30      | 51.0    | 1.02   | 34.2       | 0, 95  | 30          |
| 7 )         | 6.00  | 611    | 2.31  | 125           | 1, 74 | 81.5      | 1. 29      | 50, 4   | 1.02   | 34.2       | 0.97   | 31          |
| 8           | 5. 87 | 584    | 2, 27 | 172           | 1, 73 | 8t. i     | 1.28       | 19. 8   | 1, 02  | 34.2       | 0,95   | .311        |
| 9 ]         | 5. 42 | 497    | 2, 23 | 118           | 1.71  | 79, 7     | 1. 28      | 49.8    | 1.02   | 34.2       | 0, 97  | 31          |
| 10          | 5. SO | 512    | 2, 21 | 117           | 1, 68 | 77, 6     | 1. 27      | 49. 2   | 1, 02  | 34.2       | 11, 95 | 30          |
| n }         | 5, 69 | 548    | 2.30  | 124           | 1.67  | 76.9      | 1. 26      | 48.6    | 1.01   | 35.4       | 0.96   | 39          |
| 12          | 5. 27 | 470    | 2, 20 | 116           | 1.66  | 76.2      | 1. 26      | 4K.6    | 1.03   | 34.8       | 0. 91  | 29          |
| 13          | 4. 92 | 413    | 2, 21 | 117           | 1.64  | ₹4.8      | 1. 25      | 48.0    | 1.03   | 34.8       | 0.92   | 28          |
| 14          | 4.61  | 367    | 2, 30 | 174           | 1.63  | 74.1      | 1. 24      | 47.4    | 1, 03  | 34.8       | (0, 92 | 28          |
| 15          | 4.37  | 335    | 2, 40 | 137           | 1.61  | 72.7      | 1, 23      | 46.8    | 1.02   | 34.2       | 0, 93  | 28          |
| 16          | 1, 16 | 309    | 2, 51 | 141           | 1, 58 | 70,6      | 1. 22      | 46.2    | 1. ()2 | 34. 2      | 0, 95  | 30          |
| 17          | 4.08  | Jen    | 2,52  | 142           | 1.56  | 69. 2     | 1, 21      | 45.6    | 1, 02  | 34.2       | EL 95  | 30          |
| 18          | 3.72  | 280    | 2, 31 | 125           | 1. 55 | 68.5      | F. 21      | 45.6    | \$. O2 | 34.2       | 0.96   | .10         |
| 19          | 3, 93 | 282    | 2, 25 | <b>)2</b> 0   | 1, 53 | 67. 1     | 1.20       | 45. Đ   | £.06   | 36.6       | 0, 95  | 30          |
| 20          | 3, 79 | 265    | 2.25  | 831           | 1.52  | 55.4      | 1. 19      | 11.4    | 1.06   | .36. te    | 0, 92  | 28          |
| 21          | 3, 59 | 243    | 2, 38 | 130           | 3.51  | 65.7      | . 1.18     | 43.8    | 1.08   | 37, 8      | 0, 95  | .30         |
| 22          | 3, 46 | 230    | 2.46  | 137           | 7, 50 | 65. ()    | 1.15       | 42.0    | 1, 35  | 42.4       | 0, 95  | 36          |
| 23          | 3, 32 | 216    | 2, 30 | 24            | 1. 49 | 64.3      | J. 14      | 41.4    | 1, 06  | 36.6       | 0, 41  | 27          |
| 24          | 3, 20 | 204    | 2 19  | 115           | 1.46  | 62.2      | 1.13       | 44.5    | 4.43   | 34.8       | 8,90   | 27          |
| 25          | 9, 12 | 196    | 2. 12 | t10           | 1.41  | 60.8      | 1. 12      | 40, 2   | 1, (6) | 33.0       | Ð. 95  | 30          |
| 26          | 3,412 | 187    | 2. 07 | 106           | 1, 43 | 60. i     | 1. 12      | 49, 2   | 0.95   | 30, 8      | 1), 45 | 30          |
| 27          | 2, 92 | 178    | 2, 01 | 101           | J. 40 | 5 % (1)   | .1.31      | 39.6    | 0, 97  | 36.2       | 0.94   | 39          |
| 28          | 2, 90 | 176    | 1, 97 | 97. 9         | 1, 49 | 54.4      | 3.10       | 39,6    | 0,96   | 30,6       | 11, 41 | 28          |
| 29          | 2, 88 | 174    | 1. 92 | 94.4          | 1.39  | 57.3      | 1,03       | 38.4    |        | i          | 0, 69  | 26          |
| 30          | 2, 82 | 169    | 1, 89 | 92.3          | 1, 37 | 55.9      | 1.09       | 38.4    |        | 1          | 0, 69  | 26          |
| 31          | 2. 74 | 162    |       |               | 1.36  | 55. 2     | 1,03       | 37.8    |        |            | 0. 84  | 26          |
| รับผู้      |       | 11.513 |       | 3 651, 6      |       | 2, 217, 3 | 1          | 1.429,5 |        | 980); 4    |        | 107         |
| MAN         |       | 171    |       | 123           |       | 71.3      | l ·· ··    | 45.9    | •      | - 35 is 1  |        | 29          |
| MAX         |       | 655    |       | 151           | 1     | 90.2      | l· • • • • | 51.5    |        | 12.0       |        | 31          |
| MIN         |       | (62    |       | 92.3          |       | 35.2      | ]          | 12.8    | 1      | 30.6       |        | 76          |

FOTAL = 4, 991 MILLION M<sup>3</sup>

MAX = 971

#### WATER LEVEL (II) AND DISCHARGE (Q)

NAME OF G.S.

KHAO SLOB (B. C. N)

C. A. 10,880 SQKM

QUARYAL THAILAND

| OUAR VAL  |       |     |      |       |     |     | 11    |
|-----------|-------|-----|------|-------|-----|-----|-------|
| OUTAR VAL | RIVES | 1.0 | THIR | HASIN | OK. | 616 | KLUNG |

UNIT B(M), Q(C,M,S)

FOR THE WATER YEAR OF....

|  | 19 | 2 | 1 | ı |  |
|--|----|---|---|---|--|
|  |    |   |   |   |  |

|              | A(    | PR.     | M       | AY      | jι     | IN.       | טנ    | l.      | ٨١     | KG.    | SF    |         |
|--------------|-------|---------|---------|---------|--------|-----------|-------|---------|--------|--------|-------|---------|
| DATE         | H     | Q       | Н       | Q       | 11     | Q         | 11    | Q       | 11     | · Q    | .!!   | Q       |
|              | 0,63  | 32.8    | 1.07    | 67.6    | 1.41   | 95.9      | 1.30  | 86,0    | 2.88   | 2+7    | 3, 35 | 304     |
| 2            | 0.63  | 32, 8   | 1.25    | 82.0    | 1, 33  | 88.7      | 1.32  | 87, 8   | 2, 74  | 231    | 3.46  | 347     |
| 3            | 0, 62 | 32.0    | 1.50    | 304     | 1, 41  | 95. 9     | 1, 25 | 87.0    | 2, 46  | 20 L   | 3, 65 | 315     |
| 4            | 0, 85 | 50.0    | 0.98    | 60.4    | .1, 32 | 87.8      | 1, 23 | 80, 1   | 2, 30  | 283    | 3, 70 | 349     |
| 5            | 0,71  | 38.8    | 0, 84   | 49.2    | 1.63   | 116       | 1, 19 | 77.2    | 2, (1) | 162    | 3, 56 | 330     |
| 6            | 0,70  | 38, 0   | 0, 76   | 42,8    | 1, 97  | 149       | 1, 22 | 79, 6   | 2,00   | (\$2   | 3, 39 | 305     |
| 7            | 0, 67 | 35.8    | 0, 70   | 38.0    | t. 71  | 123       | 1,36  | 91, 4   | 2.07   | 159    | 3. 21 | 285     |
| 8            | 0.60  | 3/6.5   | 0.65    | 34.2    | 1, 68  | 120       | 1.51  | 108     | 2, 33  | 186    | 3, 16 | 279     |
| 9            | 0,58  | 29.1    | 6. 63   | 32.8    | 1.65   | , us      | 1.83  | 135     | 2, 47  | 3(1)   | 3, 39 | 303     |
| 10           | 0.57  | 28. 4   | 0.60    | 30.5    | 1, 74  | 126       | 1. 79 | 131     | 2, 23  | 175    | 3, 38 | 3116    |
| #L           | 0.60  | 30, 5   | 0. 76   | 42.8    | 2, 77  | 235       | 1. 91 | 146     | 2. 19  | (7)    | 3, 24 | 295     |
| 12           | 0, 68 | 36, 5   | .0, 67  | 35.8    | 2, 22  | 174       | 1, 83 | 135     | 2, 12  | 161    | 3, 29 | 295     |
| 13           | 0, 68 | 36,5    | 0.64    | 33.5    | 1, 92  | 144       | 1.74  | 126     | 2, 40  | 144    | 3. 22 | 386     |
| 14           | 0, 66 | 35, tt  | 0.61    | 33.5    | 1, 27  | 129       | 1.89  | 141     | 3, 06  | 257    | 3.34  | 301     |
| 15           | 0. 65 | 34.2    | 0.64    | 33.5    | 1.72   | 124       | 1, 78 | 130     | 5, 56  | 662    | 3. 20 | 264     |
| 16           | 0, 75 | 42.0    | 0, 69   | 37.2    | 1.72   | 124       | 1, 66 | 118     | 4, 97  | 544    | 3, 01 | 265     |
| 17           | 0.61  | 33.5    | . 0, 70 | 38.0    | 1.70   | 122       | 1,60  | 113     | 5, 35  | 660    | 2, 85 | 211     |
| 18           | 0, 60 | 30, 5   | 0.23    | 40.4    | 1, 62  | 115       | 1, 50 | 104     | 6, 59  | 971    | 2.81  | 239     |
| 19           | 0.56  | 27.7    | 0.78    | 44.4    | 1. 59  | 112       | 1, 49 | 103     | 7, 97  | 1,250  | 2. 94 | 253     |
| 20           | 0.56  | 27.7    | 0.82    | 47.6    | 1. 51  | 105       | 1,53  | 107     | 7, 98  | 1,250  | 2, 95 | 254     |
| 21           | 0, 87 | 51.6    | 0. 93   | 56.4    | 1. 42  | 96.8      | 3.49  | t03     | 6,50   | 860    | 2, 96 | 256     |
| 22           | 0.54  | 26. 3   | 1, 17   | 75.6    | 1. 47  | 103       | 1. 85 | 137     | 5, 68  | 682    | 3, 0) | 271     |
| 23           | 0.53  | 25,6    | t. U9   | 69.2    | 1. 47  | 101       | 1. 97 | 149     | 4, 98  | \$45   | 3, 23 | 288     |
| 24           | 0.52  | 21, 9   | l. J2   | 21.6    | 1. 43  | 102       | t. 9t | 143     | 4, 64  | 487    | 3, 57 | 331     |
| 25           | 0, 52 | 24.9    | 1. 24   | 81.2    | 1, 46  | 100       | .92   | 144     | 4,20   | 420    | 4.12  | 108     |
| 26           | 0, 56 | 27.7    | 1, 29   | 85. 2   | 1, 51  | 105       | 1. 92 | 154     | 4, 05  | 398    | 5, 33 | 613     |
| 27           | 0. 61 | 31.2    | 1. 31   | 86. 9   | 4, 57  | 110       | 1, 84 | 136     | 4.07   | 401    | 7, 20 | 1,050   |
| 28           | 0. 62 | 32.0    | 1. 24   | 81.2    | 1. 53  | 197       | 2, 20 | 172     | 3. 94  | 383    | 5. 74 | 702     |
| 29           | 0.76  | 42.8    | 1. 29   | 85. 2   | 1, 45  | 99.5      | 2. 29 | 182     | 3.77   | 359    | 4, 66 | 491     |
| 30           | 0, 90 | 54,0    | 1.51    | (05     | 1, 37  | 92.3      | 2.49  | 201     | 3, 67  | 345    | 4.05  | 398     |
| <b>3</b> l   |       |         | 1.45    | 99. S   |        |           | 2, 67 | 224     | 3, 51  | 323    |       | <b></b> |
| SUM          |       | 1,023.3 |         | 1,825.2 |        | 3, 518. 9 |       | 3,919.4 |        | 13,257 |       | 10,652  |
| <b>BJRAN</b> |       | 34.1    |         | 58. 9   |        | 317       |       | 126     |        | 428    |       | 355     |
| MAX          |       | \$4.6   |         | 105     |        | 235       |       | 224     |        | 1,250  |       | 1,030   |
| MIN          |       | 24.9    |         | 30.5    |        | 87.8      |       | 77.2    | 1      | 152    |       | 239     |

#### WATER LEVEL ON AND DISCHARGE (Q)

NAME OF G.S

KHAO SLOB (RCN)

C. A. 10,880 SQKM

QUABYAL THAILAND

QUAR YAL RIVER IN THE BASIN OF ME KLONO

UNIT H(M), Q(C.M.S)

FOR THE WATER YEAR OF 1974

DEC. FER NOV. Q Q 11 Q 11 Ħ н Н DATB 3. 72 3. 48 3. 44 3. 25 3. 17 53.2 352 319 314 290 280 3. 49 3. 69 3. 77 138 1, 22 79. 6 321 1, 86 51.6 58.0 57.2 61.8 62.8 348 359 134 130 1, 21 1, 20 78.8 78.0 0.87 1.01 1, 28 305 272 128 125 1. 19 1, 17 t. 76 77. 2 1.01 62.5 75.6 1.03 62.8 0, 87 51.6 3. 10 f. 73 0, 99 0, 95 0, 96 0, 95 61.2 60.4 259 278 286 268 245 74.8 74.8 75.6 17.2 0.85 50.0 3. 15 3. 18 2. 99 3. 10 3. 42 123 120 1. 16 278 2, 99 47.6 46.0 46.0 0,82 1.68 1.66 1.67 282 259 3. 15 3. 22 3. 07 2. 86 1.16 58.8 58.0 56.4 118 I. 17 I. 19 8 9 10 0, 80 0, 81 272 46.8 0.93 317 1. 18 76.4 3. 06 3. 14 3. 18 3. 04 2. 87 1, 59 1, 55 1, 52 46.0 44.4 5, 20 7, 74 9, 87 6, 21 6, 60 267 132 1. 18 76.4 0.80 11 12 13 14 15 587 108 106 103 101 77. 2 78. 8 79. 6 82. 0 54.0 53.2 52.4 1,060 277 1. 19 1. 21 41. 4 42. 8 42. 0 0, 78 0, 76 1.850 1,320 901 265 246 1, 49 1, 47 1. 22 1. 25 0.88 0, 75 100 98.6 97.7 95.9 93.2 41, 2 40, 4 51, 6 83, 6 78, 8 76, 4 91, 4 58, 7 899 801 671 574 576 227 215 1, 27 1, 23 51.6 50.8 0, 74 0, 73 16 17 18 19 6, 58 6, 12 5, 60 5, 13 5, 14 2, 70 2, 59 1. 16 1. 14 1. 13 1. 11 0.87 0, 86 0, 86 0, 85 0, 85 50. 8 50. 0 210 239 239 2.55 2.81 1. 16 1. 36 49. 2 0, 89 46. 0 1. 33 20 2, 81 1.3\$ 517 491 431 417 371 98, 6 85, 2 78, 0 74, 8 0,84 0,83 0,83 0,82 0,82 2. 56 2, 41 2. 32 2. 23 2. 17 92, 3 90, 5 89, 6 86, 9 0,82 47.6 21 22 23 4, 82 4, 66 4, 34 4, 18 3, 86 112 1.37 1.67 49. 2 45 4 48 4 0, 78 0, 76 44.4 42.6 195 185 175 169 1. 44 1. 29 1. 20 47,6 47,6 0, 77 0, 74 43.6 41.2 1. 3t 1. 39 24 25 86. 0 1.16 n, 73 40.4 3#2 317 162 156 1. 28 1. 27 84. 4 83. 6 1. 12 71.6 0.88 46. R 2, 10 2, 04 26 27 28 29 30 0, 73 1.04 65. 2 16 B 402.4 3, 46 0.72 39.6 3, 36 1.0s 1.06 1.01 68, 4 66, 8 65, 2 47, 6 2.60 152 1, 27 83.6 0.52 304 34.6 34.6 3, 43 3, 44 313 314 1, 26 1, 25 82,8 82,0 0, 72 39.6 81,2 1.03 64.4 339 31 1, 414.8 45.6 58.0 39.6 1,511,2 54.0 63.0 46.8 3,210.3 2, 136. 1 16,366 104 MARIA 78.6 119 81.2

TOTAL = 5,720 MILLION M3

MAX = 1,850

61.4

#### WATER LEVEL (II) AND DISCHARGE (Q)

NAME OF G.S.

BAN WANG CHAN

C. A. 31,353 SQKM

QUARYAL THAILAND

| QUAR YAI RIVER IN THE BASIN OF ME KLONG | OUAR YAL | RIV88 | IN T | HB BASIN | OF | MR KLONG |
|-----------------------------------------|----------|-------|------|----------|----|----------|
|-----------------------------------------|----------|-------|------|----------|----|----------|

UNIT H(M), Q(C.M.S)

POR THE WATER YEAR OF 1972

|      | AF    | R.    | M     | 41     | JU    | к.      | jti     | ſ.     | AL    | Ю,     | SE     | P      |
|------|-------|-------|-------|--------|-------|---------|---------|--------|-------|--------|--------|--------|
| DATE | 11    | Q     | 1)    | Q      | Н     | Q       | 11      | Q      | Н     | Q      | H      | Q      |
| l    | 0.91  | 19.5  | 0. 92 | 20, () | 0, 99 | 23, 5   | 1. 62   | 67.6   | 6.08  | 653    | 4.41   | 382    |
| 2    | 1, 92 | 25.2  | 0,91  | 19.5   | 0, 92 | 20,0    | 1, 86   | 87.4   | 5, 78 | 596    | 4.19   | 348    |
| 3    | 1,00  | 24.0  | 0, 87 | 17, 5  | 0.91  | 19.5    | 1.78    | 80.4   | 5, 51 | 548    | 4, 08  | 333    |
| . 4  | 0.98  | 23.0  | 0.85  | 16.5   | 0.94  | 21.0    | 1.78    | 80.4   | 5. 38 | 526    | 3. 92  | 313    |
| 5    | 0.91  | 21.0  | 0, 81 | 14.5   | 1. 07 | 28.2    | 1. 72   | 75.6   | 5, 24 | 5122   | 3, 69  | ₹84    |
| 6    | 0.93  | 20.5  | 0.80  | 14.0   | 1.09  | 29.4    | - 1, 89 | 90. 1  | 5. 07 | 476    | 3, 53  | 265    |
| 7    | 0.92  | 20.ก  | 0.78  | 13. 2  | 1, 30 | 43.0    | 1.94    | 94.6   | 4. 91 | 452    | 3.68   | 281    |
| 8    | 11.98 | 22.6  | 0.77  | 12.8   | 1. 45 | \$9.0   | 1.93    | 93. 7  | 4.80  | 435    | 5.40   | 524    |
| 9    | 0,97  | 22.5  | 0, 75 | 12.0   | 1. 5? | 59.6    | 2, 12   | \$11   | 4.53  | 394    | 1. 95  | 1,060  |
| 10   | 1, 05 | 27,0  | 0, 73 | 11, 2  | 1. 78 | 86.4    | t. 95   | 95. 5  | 4. 27 | 358    | 8. 70  | 1,250  |
| 11   | 0,94  | 21.0  | 0, 72 | 10.8   | 1.87  | 58, 3   | 1. 9(   | 91.9   | 3.74  | 290    | 6. 79  | 795    |
| 12   | 0.91  | 19.5  | 0.70  | 10.4   | 1.56  | 62.8    | 2.05    | 104    | 3.56  | 268    | 5, 54  | 353    |
| 13   | 1.13  | 31. 8 | 0.70  | t0. o  | 1.49  | 57. 2   | 2.99    | 200    | 3. 40 | 219    | \$ 20  | 496    |
| t4   | 1, 23 | 38.1  | 0, 70 | 10,0   | 1.40  | 50. 0   | 5.42    | 532    | 3, 37 | 245    | 4, 96  | 459    |
| 15   | 1.11  | 30.6  | 9.70  | 10,0   | 1.38  | 48.6    | 5.50    | 5#6    | 3, 46 | 250    | 4. 57  | \$00   |
| 16   | 1, 30 | 43.0  | 0.70  | 10.0   | 1. 33 | 45.3    | 5, 07   | 476    | 3.44  | 254    | 4. 29  | 361    |
| 17   | 1, 25 | 39.5  | 0.88  | 18,0   | t. 30 | 43.0    | 4.66    | ] 414  | 3.37  | 245    | 4.22   | 352    |
| 18   | 3, 12 | 31.2  | 9, 99 | 23.5   | 1. 29 | 12, 3   | 4.54    | 396    | 3. 97 | 3(9    | 4, 03  | 327    |
| 19   | 1.01  | 26. 4 | 1, 08 | 28.8   | 1. 31 | 43.7    | 4.51    | 392    | 4. 48 | 357    | 4.52   | 393    |
| 20   | 1, 01 | 26.4  | 1, 21 | 35.7   | 1. 42 | 51.6    | 4. 28   | 359    | 4. 45 | 383    | 8.36   | 1,170  |
| 2)   | 1, 06 | 24.0  | 1.25  | 39.5   | 1. 59 | 65.2    | 3, 66   | 280    | 4, 41 | 377    | 19, 86 | 1,880  |
| 55   | 0.95  | 21.5  | 1, 30 | 43, 0  | 1, 57 | 63.6    | 3.38    | 247    | 4, 37 | 372    | 7. 52  | 961    |
| 23   | 11.90 | 49.0  | 1.22  | 37.4   | 1. 53 | 60. 4   | 3. 22   | 227    | 4, 29 | 361    | 6.45   | 731    |
| 24   | 0.88  | 18.0  | 1, 20 | 36.0   | 1.48  | 56.4    | 3.01    | 206    | 4, 21 | 350    | 5, 77  | 594    |
| 25   | 0.86  | 12.0  | 1. 17 | 34.2   | 1.39  | 49.3    | 3.35    | 243    | 1, 13 | 340    | 5, 47  | 541    |
| 26   | 0.86  | 17.0  | 1. 14 | 32. 4  | 1. 33 | 45.1    | 4.39    | 375    | 4.04  | 328    | 5.44   | \$36   |
| 27   | 0.91  | 19.5  | 1.15  | 33.0   | 1.28  | 41.6    | 4.82    | 438    | 1, 03 | 327    | 5. 88  | 615    |
| 28   | 0,89  | 18,5  | 1.13  | 31.8   | 1, 26 | 40, 2   | 4. 81   | 436    | 4, 07 | 332    | 6, 57  | 749    |
| 29   | 0, 91 | 19,5  | 1.06  | 27.6   | 1, 33 | 45.1    | 5. 59   | 561    | 3.98  | 320    | 6. 86  | 018    |
| 30   | 0.96  | 22.0  | J. 03 | 25.8   | 1.35  | 46.5    | 5, 79   | 598    | 4, 03 | 333    | 6. 68  | 772    |
| 31   |       |       | ), na | 24.0   |       |         | 5.61    | 565    | 4. 22 | 352    |        | l      |
| SUM  |       | 728.2 |       | 654.1  | [     | 1,424.6 | ]       | 8563.2 |       | 11,628 |        | 18,512 |
| MBAN | [     | 24, 3 |       | 22.1   |       | 42.5    | 1       | 216    | 1     | 375    | [      | 618    |
| MAX  |       | 43.0  |       | 43.0   | ]     | 88.3    |         | 598    |       | 653    |        | 1,850  |
| MIN  | 1     | 17.0  |       | 10.0   |       | 19. 5   | 1       | 67.6   | ]     | 245    | I      | 265    |

#### WATER LEVEL (B) AND DISCHARGE (Q)

NAME OF G.S.

BAN WANG CHAN

C. A. 11,353 SQXM

QUAEYAL THAILAND

QUARYAL RIVER IN THE BASIN OF MR KLONG

UNIT HIM), Q(C.M.S)

FOR THE WATER YEAR OF 1972

0 11 Q н Q 11 н Q Ħ 3. 11 3. 03 2. 97 2, 88 2, 63 3. 21 2. 93 2. 89 1. 81 1. 79 1. 78 1. 39 49.3 1. 13 31.8 6, 28 6, 31 5, 78 82.9 1 2 691 214 205 226 45. 6 47. 9 47. 2 697 596 81. 2 80, 4 t. 38 L. 37 1. 13 31.8 3 4 5 198 169 5. 74 5. 57 589 558 188 182 2. 86 2. 75 186 174 1.76 1.74 78. 8 77. ? 1, 12 31.2 1.35 75.6 74.8 73.2 71.6 45, 8 45, 1 44, 4 43, 7 43, 7 5. 96 7. 11 6. 22 5. 60 5. 24 1.31 1. 11 30.6 2. 78 177 2. 66 161 1.72 1.11 30.6 30.6 2, 73 2, 69 2, 91 2, 98 2. 56 2. 46 2. 42 153 143 139 866 171 680 563 502 167 194 1. 69 1. 67 1 32 70.0 32.4 ŧĐ 197 7. 43 110 1.65 1.31 1, 14 4, 92 4, 83 4, 57 453 440 400 2, 91 2, 87 2, 75 2. 40 2. 35 2. 32 70, 0 43. 0 42. 3 32.4 11 12 13 14 15 191 137 1.65 187 174 132 1. 63 1. 62 68. 4 67. 6 31.8 1. 29 1, 28 1, 27 1, 27 11.6 40.9 40.9 30.6 29.4 66.0 65.2 4, 44 382 2,66 2,59 164 156 127 1,60 1,59 28.8 2, 54 2, 54 2, 56 2, 49 2, 57 4, 69 4, 97 4, 63 4, 60 4, 60 151 151 153 117 1. 58 64.4 1. 26 40, 2 1. 08 28.8 418 2, 19 16 17 18 19 20 460 410 405 405 39, 5 38, 8 38, 1 37, 4 2, 16 2, 13 2, 10 2, 67 114 1.56 1.55 62.8 62.0 1. 25 1. 14 1. 09 32, 4 29, 4 146 154 109 1. 53 1. 52 60.4 59.6 1, 23 1, 22 1. 13 31.8 47. 2 48. 6 1, 21 1, 20 36. 7 35. 0 1.36 1.38 4, 56 4, 34 2, 49 2, 45 101 104 1. 51 1. 50 58.8 58.0 399 146 2. 01 21 22 23 24 25 368 112 2. 01 2, 69 2, 86 3, 08 35, 4 34, 8 34, 2 316 167 97, 3 95, 5 1. 48 56. 4 54. 8 1, 19 1, 18 1.34 1.39 45. 8 49. 3 4, 10 3, 91 3, 77 315 293 186 208 1.25 1. 92 92.8 1. 45 54, 0 1. 17 1.38 48.6 275 259 251 5, 35 4, 79 4, 10 \$20 434 336 91, 9 53.2 1. 16 1. 15 33.6 1, 35 46.5 42.3 26 27 28 29 1. 93 1.44 3, 62 1.90 91. 0 89. 2 1.43 57. 4 51. 6 33.0 32.4 1, **29** 1, **27** 3. 18 3. 42 1. 14 3, 69 3, 31 284 238 1, 85 86, 5 85, 6 1.41 1.40 50.8 1, 23 1, 20 38. I 36. I 30 3, 34 242 1.84 1. 18 34.8 229 1. 82 83.8 50. 0 31 2,002.1 6, 181 206 526 142 3, 930, 6 1,141.0 40.8 1, (66. 8 35. 7 SUM MEAN 13, 750 61.6 19.3 32.4 MAX 866 50.0

TOTAL + 6,020 AULTION AD

MAX. = 1,889

#### WATER LEVEL (II) AND DISCHARGE (Q) NAMB OF O. S BAN WARRI CHAN C. A. 11,353 SQKM QUARYAL THAHLAND

QUAR YAL RIVER IN THE BASIN OF ME KLONG

UNIT HIM), QIC.M.S) FOR THE WATER YEAR OF 1973

|    | 1973 |  |
|----|------|--|
| -, |      |  |

|      | AP     |         | M      | w T          |       | 8.        | 10    | (. l                                           | λU    | G.     | 58     | P.      |
|------|--------|---------|--------|--------------|-------|-----------|-------|------------------------------------------------|-------|--------|--------|---------|
| DATE | u (    | Q       | Н [    | Q            | it i  | Q         | 11    | 0                                              |       | Q      | н      | Q       |
| 1    | 1, 16  | 31.6    | 0, 67  | 17.5         | 1.45  | 54.0      | 1.97  | 99. 1                                          | 2. 97 | 198    | 6.16   | 668     |
| 3    | 1, 13  | 31, 8   | 0.88   | 18.0         | 1.51  | 58.8      | 1. 94 | 94.6                                           | 2.98  | 199    | 5. 59  | 561     |
| 3    | 1, 10  | 10. U   | 1.32   | 44.4         | 1,52  | 59.6      | 1. 92 | 92,8                                           | 2. 42 | 192    | 5. 22  | 199     |
| 4    | 1.09   | 29.4    | 1.06   | 27.6         | 1.51  | 61, 2     | 1.94  | 91.6                                           | 2 84  | 189    | 6. 07  | 054     |
| 5    | 1.67   | 28.2    | 1, 14  | 32.4         | 1, 49 | 57. 2     | 1, 90 | 91.0                                           | 2.79  | 178    | . 4.80 | 435     |
| 6    | 1.05   | 27.6    | 1.23   | 38.1         | t. 51 | 58.8      | t. 85 | 86.5                                           | 2, 75 | 174    | 1.56   | 399     |
| 7    | 1, 07  | 26.2    | 1.23   | 38.1         | 1, 44 | 53, 2     | t. 86 | 87, 1                                          | 2, 66 | 164    | 4, 29  | 361     |
| 8    | 1, 09  | 29, 4   | 1.15   | 33.0         | 1.51  | 58.8      | 2, 01 | 101                                            | 2, 53 | 188    | 4. 03  | 327     |
| 9    | 1.07   | 18.2    | L(1    | 30.6         | 1.51  | 61.2      | 2, 15 | <b>, 114                                  </b> | 3. 26 | 232    | 3, 88  | 307     |
| 10   | 3. 1)  | 30,6    | 1.11   | 30, 6        | 1.72  | 75. 6     | 2, 24 | 122                                            | 3, 16 | 220    | 3, 82  | 300     |
| 11   | 1, 116 | 27.6    | 1. 12  | 31.2         | 1.85  | 86. 5     | 2,68  | 166                                            | 3. 11 | 214    | 3, 86  | 305     |
| 12   | 1.01   | 25. 8   | 1, 11  | 30, 6        | 1.69  | 73. 2     | 4,68  | 417                                            | 2.88  | 185    | 3. 74  | 290     |
| 13   | 1.01   | 24. 6   | 1, 14  | 32.4         | 1, 63 | 70.0      | 4, 12 | 339                                            | 2. 76 | 175    | 3, 59  | 272     |
| 14   | 1.00   | 24. ()  | 1, 17  | 34.2         | L-55  | 62.0      | 3, 52 | 263                                            | 2, 81 | 180    | 3, 70  | 285     |
| 15   | 0, 99  | 23. 5   | 1.16   | 31.8         | t. 54 | 61.2      | 3.25  | 231                                            | 2.84  | 183    | 3. 74  | 290     |
| 16   | 0, 93  | 23, 0   | 1. [8] | 31,8         | 1, 55 | 62.0      | 3, 11 | 211                                            | 2, 72 | 192    | 3 66   | 280     |
| 17   | 0, 97  | 22.5    | 3, 17  | 34.2         | 2.01  | 101       | 3. 07 | 209                                            | 2, 20 | 140    | 3.59   | 272     |
| 18   | 0,96   | 22.0    | 1,16   | 33.6         | 2.76  | 175       | 3.40  | 249                                            | 2, 82 | ist    | 3,62   | 275     |
| 19   | 0, 98  | 23, 0   | E-17   | 34, 2        | 5, 49 | 544       | 3, 39 | 248                                            | 2. 98 | 199    | 3.85   | 305     |
| 20   | 1.08   | 28. 6   | 1, 16  | 33, 6        | 5, 50 | 600       | 3.38  | 247                                            | 3, 26 | 232    | 4, 20  | 349     |
| 21   | 1.02   | 25. 2   | 1.14   | 32.4         | 5, 16 | 539       | 3, 52 | 253                                            | 3, 82 | 300    | 4, 93  | 454     |
| 22   | 1,00   | 24. D   | 1.12   | 31.2         | 4.46  | 384       | 3, 60 | 273                                            | 3. 72 | 287    | 5.79   | 598     |
| 23   | 0.98   | 23.0    | 1, 11  | 30, 6        | 3.68  | 283       | 3. 5S | 271                                            | 3, 76 | 295    | 5.32   | 515     |
| 24   | 0.96   | 22,0    | 1, 13  | 31, 8        | 3.13  | 217       | 3, 49 | 260                                            | 3, 89 | 309    | 5.68   | 577     |
| 25   | 0, 94  | 21.0    | ŧ, 22  | 37, 4        | 2, 78 | 177       | 3. 75 | 231                                            | 4. 92 | 453    | 7.23   | 894     |
| 26   | 0.92   | 20, 0   | 1, 23  | 38.1         | 2.61  | 158       | 3, 22 | 227                                            | 5, 76 | 592    | 6.85   | 808     |
| 27   | 0, 90  | 19.0    | 1.40   | 59, 0        | 2.54  | 15E       | 3, 18 | 523                                            | 5. 87 | 613    | 5.93   | 625     |
| 28   | 0,88   | 18.0    | 1.42   | \$1.6        | 2.37  | 134       | 3, 19 | 224                                            | 5. 93 | 625    | 5.54   | 553     |
| 29   | 0,87   | 17.5    | 1.45   | \$4.0        | 2, 22 | 120       | 3, 29 | 236                                            | 5, 88 | 615    | 5. 60  | \$63    |
| 30   | 0, 87  | 17.5    | 1. 39  | 49, 3        | 2.09  | 105       | 3, 09 | 515                                            | 6. 42 | 719    | 6.18   | 672     |
| 31   | 1 1    |         | 1.33   | 45. €        |       | <b>e</b>  | 3, 09 | 212                                            | 6, 91 | 821    |        |         |
| SUM  | l      | 744. () |        | 1, 095, 4    |       | 4, 704, 3 |       | 5, 198, 0                                      |       | 9, 497 |        | 13, 690 |
| MBAN |        | 25.0    |        | 35.3         |       | 157       |       | 200                                            |       | 306    | 1      | 156     |
| MAX  |        | 33.6    |        | 54.0<br>17.5 |       | 690       |       |                                                |       | £71    |        |         |
| MIN  | { l    | 17.5    | l      | 17.5         | L     | 53.2      | L     | 86.5                                           |       | 164    | 1      | 272     |

#### WATER LEVEL (II) AND DISCHARGE (Q)

NAME OF C.S

BAN WANG CHAN C. A. 11,353 SQKM QUARYAI THAILAND

UNIT H(M), Q(C,M.S) FOR THE WATER YEAR OF 1933

| į     | 00     | т.     | 80     | v. [     | Di    | (C. [   | įλt   | ×. 1    | FB    | a        | MA      | R.    |
|-------|--------|--------|--------|----------|-------|---------|-------|---------|-------|----------|---------|-------|
| DATE  | Н      | Q      | н      | ų        | 11    | Q       | 11    | Q       | Ħ     | Q        | 11      | Q     |
| 1     | 5.65   | 577    | 2.58   | 155      | 1. 90 | 91,0    | 1. 59 | 65. 2   | 1.38  | 48.6     | 1.18    | 31.   |
| 2     | 5.74   | 589    | 2.51   | 148      | 1.86  | 89, 2   | t. 58 | 64.4    | 1.37  | 47.9     | 1.18    | 34.   |
| 3     | 5, 70  | 581    | 2.4+ { | 141 (    | 1, 86 | 87, 4   | 1.58  | 64.4    | 1 36  | 47.2     | J. 17 [ | 34.   |
| 4     | 5. 38  | 526    | 2.39   | 136      | l. 85 | 86.5    | 1, 57 | 63.6    | 1, 34 | 45.8     | 1, 17   | 34.   |
| 5     | 5, 52  | 604    | 2.35   | 132      | 1, 83 | 84.7    | 1.57  | 63.6    | 1, 33 | 45.1     | 1, 18   | 34.   |
| 6     | 6, 05  | 648    | 2. 31  | 128      | 1.81  | 82.9    | 1.56  | 62.5    | 1.32  | 44.4     | 1.15    | 34,   |
| 7     | 5.79   | 598    | 2 28   | 125      | 1, 80 | 82.9    | 1, 55 | 62.0    | 1.31  | 43.7     | £. 19   | 35.   |
| 8     | 5, 73  | 587    | 2.25   | 127      | 78    | 80, 4   | L 54  | 61.2    | 1.30  | 43.0     | 1.20    | 36.   |
| 9     | 5.24   | 502    | 2, 22  | 120      | 1, 22 | 79.6    | 1.54  | 61.2    | 1.30  | 43.0     | 1. 19   | 35    |
| 10    | 5. 10  | 480    | 2. 19  | 117      | 1,77  | 79.6    | 1, 53 | 60.4    | 1 29  | 42. 3    | 1 21    | 36.   |
| B     | \$, 50 | 546    | 2, 20  | 118      | 1. 76 | 78.8    | 1.53  | 60. 4   | 1. 29 | 42, 3    | 1. 12   | 35.   |
| 12    | 5.16   | 490    | 2.24   | 118      | 1, 76 | 78.8    | 1.52  | 59.6    | t. 28 | 41.6     | 1.19    | 35    |
| 13    | 4.76   | 429    | 2.15   | E14 \$   | 1. 76 | 78.8    | 1.52  | 59.6    | l. 28 | 41.6     | 1.16    | 33    |
| 14    | 4, 42  | 379    | 2, 26  | 123      | 1, 74 | 77, 2   | 1.51  | 58.8    | 1.27  | 40.9     | £, 16   | 33    |
| 15    | 4.14   | 341    | 2. 33  | 130      | 1. 74 | 77,2    | 1.51  | 58.8    | 1, 27 | 40. 9    | 1. 15   | 33.   |
| 16    | 3, 95  | 318    | 2. 40  | 137      | 1, 72 | 75.6    | 1.50  | 58.0    | 1. 26 | 40, 2    | 1. 17   | 34    |
| 17    | 3.84   | 302    | 2.46   | 143      | 1, 72 | 75.6    | 1. 49 | 57.2    | 1. 26 | 40, 2    | 1, 17   | 31    |
| 18    | 3, 73  | 289    | 2.32   | 129      | 1, 70 | 74.0    | 1.48  | 56.4    | 4. 25 | 39.5     | 1.20    | 36    |
| 19    | 3.66   | 280    | 2.22   | 120      | 1, 68 | 72.4    | 1. 47 | 55.6    | 1. 29 | 42.3     | 1.20    | 36    |
| 20    | 3, 60  | 273    | 2.26   | 153      | 1, 66 | 70.8    | 1. 46 | 54.8    | 1. 27 | 10.9     | 1. (8   | 34    |
| 21    | 3. 42  | 251    | 2.28   | 125      | 1.66  | 70.8    | 1. 46 | 54.8    | 1. 27 | 40. 9    | 1. 15   | 33    |
| 22    | 3, 29  | 236    | 2, 39  | 136      | 1.66  | 70,8    | 1. 45 | 54.0    | 1. 27 | 40.9     | 1. 24   | 33    |
| 23    | 3, 17  | 221    | 2,30   | 127      | 1, 65 | 70.0    | 1.45  | 54,0    | 1. 28 | 41.6     | J. 16   | 33    |
| 24    | 3, 07  | 209    | 2, 20  | 118 ]    | 1.64  | 69. 2   | 1, 44 | 53, 2   | 1.26  | 40. 2    | 1. 15   | 33    |
| 25    | 3, 00  | 201    | 2.14   | 113      | 1. 63 | 68.4    | 1.43  | 52.4    | 1.24  | 38.8     | 1. 15   | 33.   |
| 26    | 2, 91  | 191    | 2.03   | 107      | 1.63  | 68.4    | 1. 42 | \$1.6   | 1, 22 | 37.4     | 1. 20   | 36    |
| 27    | 2, 83  | 182    | 2.02   | \$02     | 1.62  | 67.6    | 1. 41 | 50, 8   | J. 20 | 36.0     | 1.18    | 34    |
| 28    | 2, 77  | 176    | 1, 93  | 99. 1    | 1, 61 | 66.8    | 1.41  | 50.8    | l. 19 | 35.4     | 1, 16   | 13    |
| 29    | 2, 75  | 174    | 1, 95  | 95, 5    | 1, 60 | 66.0    | 1.40  | 50.0    | İ     |          | 9, 14   | 32    |
| 30    | 2, 73  | 171    | 1.92   | 92.8     | 1,60  | 66.0    | 1,39  | 49.3    |       | <b> </b> | F. 12   | 31    |
| 31    | 2, 66  | 164    |        | <b>I</b> | 1, 69 | 66, 0   | 1. 38 | 48.6    |       |          | 1. 16   | .33   |
| SUM   |        | 1).515 |        | 3,695.4  |       | 2,352,5 |       | 3,777.5 |       | 1,172.6  |         | 1,070 |
| MUN   |        | 37[    |        | 123      |       | 75.9    |       | 57.3    |       | 41.9     |         | 31    |
| 516X  |        | 648    |        | 155      |       | 91.0    |       | 65.2    |       | 48.6     |         | 38    |
| MIN I |        | 161    |        | 92.8     |       | 65.0    |       | 18.6    |       | 35.4     |         | 31.   |

TOTAL, = 4, 970 MILLION M3

MAX. = 894

WATER LEVEL (II) AND DISCHARGE (Q)

NAME OF G.S BAN WANG CHAN

C. A. 11,353 SQKM QUABYAI THAILAND

| OUAS YAL | RIVER | ŧΝ | THE | BASIN | O!? | MB | KLONG |
|----------|-------|----|-----|-------|-----|----|-------|

UNIT HIM), Q(C.M.S) FOR THE WATER YEAR OF 1974

|       | λI     | PA.     | M     | AY       | 11         | N       | JU    | t.        | At    | :G.     | Sŧ     | P.          |
|-------|--------|---------|-------|----------|------------|---------|-------|-----------|-------|---------|--------|-------------|
| DATER | н      | Q       | H     | Q        | ы          | Q       | H     | Q         | 13    | Q       | ł!     | Q           |
|       | 1.21   | 36. 7   | 1.62  | 67.6     | 1.91       | 91.6    | 1,81  | 82.9      | 3, 41 | 250     | 3, 86  | 305         |
|       | 1.22   | 37, 4   | 4.58  | 64.4     | 1,90       | 91.0    | 1, 82 | 83, 8     | 3, 42 | 251     | 3.89   | 3(19)       |
| 3     | 1, 25  | 39, 5   | 2. 16 | (14      | 1, 91      | 91,9    | 1, 79 | 81.2      | 3.12  | 215     | 4,03   | 327         |
| 4     | 1.22   | 37, 4   | 1.75  | 78.0     | 1.84       | ₹5,6    | 1, 75 | 26, 0     | 2, 93 | 193     | 4. 20  | 349         |
| 5     | 3, 26  | 46, 2   | (. 52 | 54.6     | 1, 94      | 91.6    | 1. 2) | 74.8      | 2.73  | 171     | 4. 10  | 336         |
| 6     | 1,30   | 43.0    | 1. 32 | 51.6     | 2.42       | 139     | 1, 70 | 74.0      | 2.60  | 157     | 3.92   | 313         |
| 7     | 1, 24  | +2.3    | 1.33  | 45.0     | 2, 32      | 129     | 1.78  | 80.4      | 2.56  | 153     | 3.76   | 192         |
| 8     | 1.23   | 38, 1   | 1.21  | 36.7     | 2.22       | \$20    | 1.95  | 95.5      | 2. 19 | 178     | 3,65   | 280         |
| 9     | 1.18   | 34.8    | 1.24  | 38.8     | 2. 18      | 116     | 2, 25 | 122       | 2, 99 | 3(K)    | 3, 86  | 305         |
| 10"   | 4, 15  | 33.0    | 1, 21 | 36.7     | 2, 16      | 114     | 2, 32 | 129       | 2, 84 | 183     | 3, 88  | 307         |
| LI I  | F. 16  | .13, 6  | 1.21  | 36, 7    | 2,85       | 184     | 2, 33 | 130       | 2, 76 | 175     | 3, 88  | 397         |
| 12    | 1, 20  | 36, 0   | 1.42  | \$1.6    | 3, 05      | 207     | 2, 44 | 1.18      | 2.65  | 162     | 3.75   | 259         |
| 13    | 1,30   | 43,0    | 1, 27 | 40, 9    | 2.56       | 153     | 2, 26 | 123       | 2, 76 | 175     | 3, 73  | 289         |
| 14    | 1. 25  | 39.5    | 1, 23 | 38.1     | 2.33       | 140     | 2, 36 | 133       | 3, 18 | 254     | 4, 79  | 296         |
| 45    | 1, 26  | 40. 2   | 1, 23 | 38, 1    | 2.21       | 155     | 2, 31 | 434       | 5, 72 | 555     | 3, 78  | 245         |
| 10    | 1,31   | 15.1    | 1.25  | 39.5     | 2, 23      | 121     | 2.19  | 117       | 5,56  | 618     | 3, 52  | 263         |
| 17    | 1.28   | 41.6    | 1, 27 | 40.9     | 2. 2.7     | 121     | 2, 14 | 113       | 5, 86 | 611     | 3, 10  | 249         |
| 18    | 1, 21  | 36, 7   | 1,32  | 44.4     | 2. 18      | U6      | 2, 06 | 103       | 7, 25 | 898     | 3, 31  | 23×         |
| 19    | 1, 16  | 33. 6   | 1.33  | 48.6     | 2, 16      | 134     | 1. 47 | 97, 3     | 8.30  | 1,159   | 3, 46  | 256         |
| 20    | 3, 14  | 32. 4   | 1.44  | 53, 2    | 2, (14     | 101     | 2,05  | 3(14      | 8.99  | 1.340   | 3, 45  | 255         |
| 21    | 1. 27  | 40, 9   | 1, 54 | 63, 2    | 1, 97      | 99. [   | 1.99  | 99.1      | 7.59  | 477     | 3,56   | 268         |
| 22    | . 1.18 | 34.8    | 1, 75 | 78.4     | 1.97       | 99, 1   | 2, 07 | 106       | 6.64  | 755     | 3.51   | 266         |
| 23    | 1. 10  | 39, 0   | 1,69  | 73, 2    | 2,007      | 100     | 2. 53 | 150       | 5,78  | 596     | 3, 80  | 297         |
| 24    | 4, 08  | 28.8    | 1.76  | 78.8     | 1, 98      | 98, 2   | 2. 42 | 139       | 5, 36 | 522     | 4, 117 | 332         |
| 25    | 1.05   | 27, 6   | 1.79  | 81,2     | 2, (3)     | 100     | 2.46  | 143       | 4, 93 | 454     | 4. 55  | 398         |
| 26    | 1.07   | 28.2    | 1.92  | 92, S    | 1, 99      | 99.1    | 2, 42 | 139       | 4, 63 | 410     | 5, 90  | 619         |
| 27    | 0.18   | 34.8    | 1.95  | 95. 5    | 2.05       | 105     | 2. 40 | 137       | 4. 58 | 402     | 7, 63  | 955         |
| 28    | 1, 19  | 35.4    | 1, 90 | 91.0     | 2, 04      | 107     | 2, 55 | 152       | 4. 56 | 399     | 6, 94  | 828         |
| 29    | 1, 21  | 36.7    | 1,89  | 89. 2    | 2, (0)     | 300     | 2, 80 | 179       | 4.34  | 365     | 5. \$9 | 561         |
| 30    | 1,45   | 54.0    | 1,49  | 55. h    | 1.91       | 92,8    | 2.91  | 191       | 4.24  | 314     | 4.82   | 438         |
| 31    |        |         | 2.01  | 101      |            |         | 3, 10 | 213       | 4.19  | 336     |        |             |
| SUM   |        | 1,115.3 |       | 1, 465.5 | ********** | 3,448.0 |       | 3, 740, 0 |       | 13, 151 | [      | 10,852      |
| MBAN  |        | 37, 2   |       | 6).1     |            | 115     |       | i21       |       | 13(     |        | 362         |
| XAM   |        | 54.0    |       | \$14     |            | 201     | [     | 513       |       | 1,340   | \      | <b>9</b> 85 |
| 600   |        | 27.6    | ]     | 36.7     |            | 85.6    |       | 74.0      |       | 153     |        | 238         |

WATER LEVEL UD AND DISCHARGE (Q) NAME OF Q. S

PAN WANG CHAN C. A. 11.353 SQKM QUAR YAI THAILAND

QUAR YAL RIVER IN THE BASIN OF ME KLONG

UNIT H(M), Q(C.M.S) FOR THE WATER YEAR OF 1974

|       |                                         |         |                                                 | ov.   |                | EC.       | ΔL                                    | N         | (+)   | iu.     | NI.   | AR.      |
|-------|-----------------------------------------|---------|-------------------------------------------------|-------|----------------|-----------|---------------------------------------|-----------|-------|---------|-------|----------|
|       |                                         | 70.     |                                                 |       | وكالمحاد متحدد |           |                                       |           |       |         | 11    |          |
| DATE  | Ħ                                       | Q       | li .                                            | Q     | H              | Q         |                                       | Q         |       | Ğ       |       | <u>Q</u> |
| 1     | 4, 43                                   | 360     | 4, 12                                           | 339   | 2, 41          | 138       | 1, 72                                 | 75.6      | 1,52  | 59.6    | 1. 29 | 42, 3    |
| . 2 ( | 4.31                                    | 337     | 4,10                                            | 336   | 2.35           | 135       | 1, 70                                 | 74.0      | 1.51  | 58.8    | 1.36  | 47. 2    |
| 3     | 4. 10                                   | 336     | 4,40                                            | 376   | 2.34           | 131       | 1. 69                                 | 73.2      | 1 50  | 58.0    | 1. 39 | 49. 3    |
| 4     | 3, 91                                   | 311     | 4.07                                            | 332   | 2, 30          | 127       | 1. 68                                 | 72.4      | 1. 56 | 67.8    | 1, 46 | 54.8     |
| 5     | 3, 78                                   | 295     | 3, 85                                           | 304   | 2.27           | 124       | f. 68                                 | 72, 4     | F. 53 | 60.4    | L 38  | 48. 6    |
| 6     | 3, 78                                   | 295     | 3,67                                            | 281   | 2.24           | 122       | 1,69                                  | 73, 2     | 1. 50 | 58.0    | 1.34  | 45.8     |
| , 5 1 | 3, 80                                   | 297     | 3.70                                            | 285   | 2.21           | 119       | 1,63                                  | 72.4      | 1. 47 | 55.6    | 1.31  | 43.7     |
| 8     | 3.60                                    | 273     | 3,75                                            | 291   | 2.19           | 117       | 1.67                                  | 71.6      | 1.46  | 54.8    | 1.29  | 42.3     |
| 9     | 3, 55                                   | 267     | 3, 69                                           | 253   | 2.18           | 116       | 1. 67                                 | 71.6      | -1 44 | 59. 2   | 1,28  | 41, 6    |
| 10    | 3,72                                    | 287     | 3, 71                                           | 286   | 2, 16          | 114       | 1.68                                  | 72, 4     | 1. 43 | 52, 4   | 1.28  | 41.6     |
| 11    | 5. 0)                                   | 47B     | 3.74                                            | 290   | 2. 12          | aı        | 1, 69                                 | 73, 2     | 6, 40 | 50.8    | 1. 29 | 42,3     |
| 12    | 7. 15                                   | 876     | 3, 13                                           | 289   | 2. 0)          | 103       | 1.68                                  | 72.4      | 1.40  | 50.0    | 1, 26 | 40.2     |
| 13    | 10, 78                                  | 1.850   | 3. 59                                           | 309   | 2.05           | 101       | 1.70                                  | 74.0      | 1. 39 | 49.3    | 1. 25 | 39, 5    |
| 14    | 10, 49                                  | 3.770   | 3,67                                            | 281   | 2. 03          | 103       | 1. 72                                 | 75.6      | 1. 38 | 48.6    | 1.24  | 35.8     |
| 15    | 8.03                                    | 1,090   | 3, 55                                           | 267   | 2.01           | 101       | 1. 76                                 | 78.8      | 1. 37 | 47.9    | 1. 22 | 37.4     |
| 16    | 7.59                                    | 473     | 3.34                                            | 242   | 1, 99          | 99.1      | 1,79                                  | 81.2      | 1.36  | 47,2    | 1.21  | 36.7     |
| 17    | 7, 12                                   | 869     | 3. 20                                           | 225   | 1, 97          | 97, 3     | 1.75                                  | 78. O     | 1.35  | 46.5    | 1.20  | 36.0     |
| 18    | 6.18                                    | 677     | 3, 12                                           | 221   | L 95           | 95.5      | 1.69                                  | 73.2      | 1.35  | 46.5    | 1.31  | 47.7     |
| 19    | 6.09                                    | 655     | 3, 23                                           | 220   | 1, 94          | 94.6      | 1.65                                  | 70, 0     | 1.34  | 45.8    | 1, 38 | 48.6     |
| 20    | 5. 92                                   | 623     | 3, 50                                           | 261   | 1, 92          | 92.8      | 1.70                                  | 74, 0     | 1. 34 | 45.8    | 1, 29 | 42.3     |
| 21    | 5, 63                                   | 568     | 3.20                                            | 225   | 1, 90          | 91.0      | . 1, 95                               | 95.5      | 1.33  | 45.1    | 1. 33 | 45.1     |
| 22    | 5. 37                                   | 524     | £n,£                                            | 205   | 1,88           | 89.2      | 2. 05                                 | 101       | 1.32  | 44.4    | 1. 27 | 10.9     |
| 23    | 5, 11                                   | 482     | 2 91                                            | 191   | 1.85           | 85.5      | 1,84                                  | 85.6      | 1.31  | 43.7    | 1. 26 | 40. 2    |
| 24    | 4.85                                    | 444     | 2, 82                                           | 181   | 1.83           | 84.7      | 1, 73                                 | 76.4      | 1.30  | 43.0    | 1. 23 | 38.1     |
| 25    | 4.61                                    | 406     | 2,74                                            | 172   | 1.82           | 83,8      | 1. 67                                 | 71.6      | 1.30  | 43.0    | 1. 21 | 36.7     |
| 26    | 4, 33                                   | 366     | 2,67                                            | 165   | 1, 80          | 82,0      | 1.69                                  | 68.4      | 1 29  | 42.3    | 1, 20 | 36.0     |
| 27    | 4, 12                                   | 339     | 2,61                                            | 158   | 1. 79          | 81.2      | 1.60                                  | 56.0      | 1. 29 | 42.3    | 1.18  | 34.8     |
| 28    | 1, 98                                   | 320     | 2.55                                            | 152   | 1, 27          | 79.6      | 1.58                                  | 61.4      | 1, 28 | 41.6    | 1, 17 | 34. 2    |
| 29    | 4.07                                    | 335     | 7.50                                            | 147   | 1.76           | 78.8      | 1, 56                                 | 62, 8     | 1     |         | 1, 17 | 34, 2    |
| 30    | 4,00                                    | 335     | 2.45                                            | 142   | 1.75           | 78.0      | 1.55                                  | 62.0      | l     | ļ       | 1, 66 | 33.6     |
| 31    | 4. 22                                   | 352     |                                                 |       | 1, 74          | 77.2      | 1, 53                                 | 60.4      |       |         | 1. 17 | 34.2     |
| SUM   |                                         | 17, 409 |                                                 | 7.455 |                | 3, (61. 3 | · · · · · · · · · · · · · · · · · · · | 2, 296, 3 |       | 1.397.4 |       | 1,270.7  |
| PRAN  | A 10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 | 562     |                                                 | 249   |                | 102       |                                       | 74. 1     | i . • | 49, 9   | l     | 71,0     |
| MAX   |                                         | 1.850   | 1 A Sec. 10 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A | 376   |                | 138       |                                       | (0)       |       | 62,8    |       | 51.8     |
| MIN   |                                         | 267     |                                                 | 142   |                | 77.2      | · ····· · · · ·                       | 60, 4     | l     | 41.6    |       | 33.6     |

TOTAL  $\star$  5.840 MILLION  $M^3$ 

MAX. # 1,850

## WATER LEVEL ON AND DISCHARGE (Q)

NAME OF G.S. BAN NONO BUA. C. A. 14,037 SQKM QUABYAI THAILAND

QUAR YAI RIVER IN THE BASIN OF ME KLONG UNIT HIM), Q(C.M.S) FOR THE WATER YEAR OF 1972

| Т    | API    | R.    | M      | ۸Y    | jı     | N.      | 10     | lı,       | λl    | 1G.    | SE                | Р.      |
|------|--------|-------|--------|-------|--------|---------|--------|-----------|-------|--------|-------------------|---------|
| DATE |        | Q     | 11     | Q     | Н      | Q       | 11     | Q         | 11    | Q      | H                 | Q       |
| 1    | 1.00   | 21.0  | 1. 02  | 27.0  | 1, 10  | 26.0    | 1.70   | 86.0      | 6.01  | 701    | 4. 29             | 389     |
| 2    | 1. 63  | 23.0  | i. 00  | 21,0  | 1.08   | 25.0    | 1.94   | 87.6      | 6.03  | 705    | 4. 13             | 364     |
| 3    | 1, 05  | 23.5  | 0, 98  | 20, 2 | 1.06   | 24.0    | 1. \$6 | 80,4      | 5.51  | 602    | 4.03              | 348     |
| 4    | 1, 04  | 23.0  | 0, 95  | 19.0  | , I, U | 26.5    | 1.86   | 80,4      | 5.00  | 507    | 3.90              | 329     |
| 5    | 1.05   | 23,5  | 0.94   | 18.6  | t, 18  | 30.0    | 1. 80  | 75.0      | 4. 75 | 464    | 3, 70             | 300     |
| 6    | 1.00   | 21.0  | 0. 92  | 17. 8 | 1, 21  | 31,6    | 1. 97  | 90, 3     | 4, 44 | 413    | 3, 55             | 279     |
| 7    | 3.03   | 265   | 0, 91  | 17. 4 | 1.42   | 44.4    | 2, 64  | 97.0      | 4, 15 | 367    | 3, 13             | 304     |
| 8    | 1.46   | 24.0  | 0.91   | 17.4  | 1, 56  | 54.8    | 2, 00  | 94.0      | 3, 49 | 342    | 1,47              | 502     |
| 9    | 1, 06  | 24.0  | 0,90   | 17.0  | 1,62   | 59. 6   | 2, 20  | 113       | 3.87  | 374    | 5, 83             | . 283   |
| ιO   | 1, 64  | 23,0  | 0.89   | 16.7  | 1.56   | 80. 4   | 2.63   | 95.0      | 3,59  | 265    | 7,32              | 0,110   |
| 13   | 1, 01  | 21.5  | 0.87   | 16.1  | 2.01   | 91.0    | 1, 98  | 91.2      | 3. 41 | 259    | 6.42              | 787     |
| 12   | 0, 99  | 20.6  | 0,86   | 15.8  | t. St  | 75. 9   | 2, 13  | 106       | 3, 30 | 2-54   | 5, 33             | 568     |
| 13   | 6.15   | 28. 5 | 1), 86 | 15.8  | 1. 83  | 32.7    | 3, 07  | 213       | 3.30  | 144    | 4,99              | 505     |
| 14   | 1,21   | 33, 4 | 0.85   | 15.5  | 1, 70  | 66.0    | 5, 50  | 600       | 3.28  | 2∔1    | 1.83              | 478     |
| 15   | 1. 13  | 27.5  | 0, 84  | 15.2  | 1, 60  | 58.0    | 5.58   | 615       | 3. 47 | 268    | 4, 55             | 431     |
| 36   | 1, 33  | 38,8  | 0.81   | 15. 2 | 1, 51  | 50.8    | 5. 15  | 534       | 3, 45 | 265    | 4, 32             | 394     |
| 17   | 1,31   | 37, 6 | 0.84   | 15. 2 | 1, 45  | 46, 5   | 4,74   | 463       | 3, 42 | 261    | 4.21              | 377     |
| 18   | 1. 16  | 29.0  | 0.84   | 15. 2 | 1, 39  | 42.4    | 4, 62  | 412       | 3.85  | 322    | 4, 06             | 353     |
| 19   | 1.11   | 28.0  | 0, 89  | 16.7  | 1,35   | 40.0    | 4.59   | 437       | 4, 40 | 407    | 4, 22             | 378     |
| 20   | 1, 16  | 29,0  | 1.03   | 25, 0 | 1.52   | \$1.6   | 4. 32  | 394       | 4, 97 | 502    | 6,77              | 867     |
| 21   | 1.08   | 25,0  | 1, 25  | 34.0  | 1.73   | 68.7    | 3. 78  | 311       | 5, 06 | 518    | 9, 45             | 1,640   |
| 22   | 1.01   | 23,0  | 1.37   | 41, 2 | 1.67   | 63, 6   | 3.41   | 259       | 4.80  | 423    | 7, 07             | 942     |
| 23   | 1. 01  | 21,5  | 1, 30  | 37, 0 | 1.62   | 59.6    | 3, 27  | 240       | 4. 57 | 434    | 6. 12             | 724     |
| 24   | 41, 92 | 19.8  | 1.27   | 35.2  | 1.58   | 56.4    | 3.14   | 272       | 4. 36 | 101    | \$.51             | 602     |
| 25   | 0.96   | 19.4  | 1. 23  | 32.8  | i, 49  | 49. 3   | 3, 16  | 225       | 4, 69 | 358    | 5, 28             | 558     |
| 26   | 0.96   | 19, 4 | 1. 18  | 30.0  | 1. 42  | 44. 4   | 4.53   | 125       | 3. 98 | 341    | 5, 33             | 568     |
| 27   | 1.03   | 22.5  | 1. 19  | 30.5  | 1.38   | 41.8    | 4.95   | 500       | 3.93  | 334    | 5. <del>6</del> 1 | 627     |
| 28   | 6, 97  | 19.3  | 1.17   | 29.5  | 1, 35  | 40.0    | 4, 85  | 483       | 4,00  | 344    | 6. 24             | 749     |
| 29   | 1.00   | 21,0  | 1.11   | 26.5  | 1. 12  | 44.4    | 5.66   | 630       | 3. 92 | 332    | 6, 40             | 783     |
| 30   | 1.04   | 23,0  | 1.03   | 25. 0 | 1.45   | 46, 5   | 5, 56  | 670       | 3.98  | 341    | 6, 13             | 790     |
| 31   | 1      | Į     | 1.01   | 23, 0 |        |         | 5.68   | 634       | 4. (0 | 359    |                   | <br>    |
| SUM  |        | 735,8 |        | 697.5 |        | 1,519.9 |        | 9, 376, 9 |       | 11,958 |                   | 17, 928 |
| MBAN |        | 24.5  |        | 22.5  |        | 50, 7   |        | 302       |       | 356    |                   | 598     |
| MAX  |        | 38.8  |        | 41.1  |        | 94.0    |        | 670       |       | 7US    |                   | 1.640   |
| MEN  | F      | (9,4  |        | 15, 2 | i      | 24.0    | 1      | 66.0      | Ī     | 241    | L                 | 279     |

WATER LEVEL (II) AND DISCHARGE (Q) NAME OF 0.5

RAN NONG BUA C.A. 14.037 SQKM QUARYAL THAILAND ONIT HMD, Q(C.M.S) FOR THE WATER YEAR OF 1972 QUAR YAI RIVER IN THE BASIN OF MILKLONG

|      | OX     | Υt.    | 180   | OV.   | Ð     | RC.          | JA    | N.        | 1/8           | .(C.     | Ma    | AR.     |
|------|--------|--------|-------|-------|-------|--------------|-------|-----------|---------------|----------|-------|---------|
| DATE | 11     | Q      | 11    | Q     | 11    | Q            | 11    | Q         | 11            | Q        | 11    | Q       |
| 1    | 6.05   | 710    | 3, 12 | 220   | 3.51  | 278          | 1, 94 | 87.6      | 1, 53         | 52, 4    | 1,29  | 36.4    |
| 2    | 6.09   | 718    | 3, 03 | 208   | 3. 32 | 247          | 1. 92 | 85.8      | 1, 52         | 51,6     | 1.28  | 35.     |
| 3    | 5, 63  | 625    | 2, 96 | 199   | 3, £3 | 221          | 1, 90 | 84.0      | 1.51          | 50.8     | 1, 27 | 35.     |
| 1    | 5, 51  | 602    | 2,90  | 192   | 3, 00 | 204          | 1.88  | 82, 2     | 1,50          | 50, 0    | 1.26  | 34.     |
| 5    | 5, 34  | 570    | 2,84  | 185   | 2. 86 | 187          | 1.86  | 80.4      | 1.50          | 50,43    | 1.26  | 34.     |
| 6    | 5. 60  | 619    | 2, 79 | 179   | 2.76  | 175          | l. 84 | 78.6      | 1, 50         | 50, 0    | 1. 25 | 34.     |
| 7    | 6. 42  | 787    | 2, 75 | 374   | 2.65  | 166          | 1. 53 | 77.7      | 1.49          | 48.6     | J. 24 | 33.     |
| 8    | 5.93   | 684    | 2,78  | 169   | 2. 71 | 169          | 1.82  | 76.8      | 1.47          | 47.9     | 1,24  | 33.     |
| 9    | 5, 40  | 58f    | 3, 12 | 220   | 2. 65 | 162          | 1. 80 | 75.0      | 1. 46         | 47. 2    | 1, 25 | 34.     |
| 10   | 5. 11  | 527    | 2. 91 | 197   | 2. 64 | 161          | 1, 79 | 74.1      | 1, 46         | 47. 2    | 1, 26 | 34,     |
| 34   | 4.90   | 490    | 2, 91 | 193   | 2.63  | 160          | 1.78  | 73, 2     | 1, 45         | 16.5     | 1, 28 | 35.     |
| 12   | . 4.78 | 470    | 2. 93 | 196   | 2. 63 | 160          | 1. 77 | 72,3      | 1,44          | 45.8     | 1, 28 | 35,     |
| 13   | 4. 59  | 437    | 2,77  | 176   | 2. 59 | 156          | 1. 75 | 70.5      | 1, 44         | 15.8     | 1, 27 | 35.     |
| 14   | 4.39   | 405    | 2.70  | 168   | 2.55  | 152          | 1. 73 | 68.7      | 1, 43         | 45.1     | 1. 24 | 33.     |
| 15   | 4.50   | 423    | 2, 65 | 162   | 2, 50 | 1 <b>4</b> 5 | 1. 72 | 67. 8     | Į. <b>4</b> 2 | 44.4     | 1. 22 | 32.     |
| 16   | 4.60   | 439    | 2, 59 | 156   | 2, 47 | 143          | 1.71  | 66.9      | 1.42          | 45.4     | 1, 22 | 32.     |
| 17   | 4.50   | 473    | 2.59  | 156   | 2.40  | 135          | l.70  | 65.0      | 1,41          | 43.7     | 1, 27 | 35.     |
| 18   | 4.60   | 439    | 2.61  | 161   | 2. 34 | 128          | 1.69  | 65. 2     | 1.40          | 43.0     | 1.22  | 32      |
| 19   | 4. 53  | 428    | 2, 55 | 152   | 2. 29 | 123 :        | I. 63 | 61.4      | 6. 4U         | 43. 0    | 1.24  | 33      |
| 20   | 4.61   | 443    | 2,63  | 160   | 2, 24 | 107          | 1.66  | 62.8      | 1.39          | 12. 1    | 1.31  | 39.     |
| 2 t  | 4. 56  | 433    | 2, 53 | 149   | 2. 21 | 114          | 1.65  | 62.0      | 1, 35         | 41.8     | L. 4S | 46.     |
| 22   | 4.34   | 397    | 2, 52 | 148   | 2. 18 | 111          | 1.64  | 61.2      | 1.37          | 41.2     | 1.48  | 48.     |
| 23   | 4, 21  | 377    | 2.68  | 166   | 2. 15 | 103          | 1.62  | 59.6      | 1. 36         | 40.6     | 1, 42 | 41.     |
| 25   | 4.01   | 346    | 2.95  | 198   | 2.12  | 105          | 1.61  | 53.8      | 1.34          | 39.4     | 1.41  | 43.     |
| 25   | 3.86   | 323    | 3, 17 | 226   | 2, 03 | 101 -        | 1.60  | \$\$70    | 1. 33         | 38.B     | 1.43  | 45.     |
| 26   | 3, 69  | 299    | 4,86  | 483   | 2, 06 | 99.0         | 1, 59 | 57, 2     | 1, 32         | 38.2     | 1.46  | 47.     |
| 27   | 3.51   | 273    | 4,73  | 461   | 2, 61 | 97.0         | 1.58  | \$6.4     | 4.31          | 37, 6    | 1.39  | 42.     |
| 28   | 3, 41  | 259    | 4.06  | 353   | 2, 02 | 95, 0        | 1.56  | 54.8      | 1, 30         | 37.0     | 1. 37 | 41.     |
| 29   | 3. 35  | 751    | 3, 79 | 313   | 2.00  | 93,0         | 1. 55 | 54,0      |               | l        | 1, 36 | 40.     |
| 30   | 3/33   | 248    | 3.76  | 306   | 1,93  | 97.1         | 1.55  | 55.0      |               | <u> </u> | 1.31  | 37.     |
| 31   | 3. 22  | 233    |       |       | 1. 97 | 90, 3        | 1, 54 | \$3, 2    |               |          | 1, 28 | 35,     |
| SUM  |        | 14,307 |       | 5,426 |       | 4, 495, 4    |       | 2, 109, 2 |               | 1,254.4  |       | 1, 143. |
| MBAN |        | 462    |       | 214   |       | 145          |       | 68.0      | ~             | 44,8     |       |         |
| XAIA |        | 787    | I     | 483   |       | 278          |       | 87.6      | *********     | 57.4     |       |         |
| NIN  | ]      | 233    | ]     | 148   |       | 90.3         |       | 53, 2     | 1             | 37,11    |       | .32     |

TOTAL = 6,220 MH.J.ION M<sup>3</sup>

MAX + 1,640

#### WATER LEVEL (II) AND DISCHARGE (Q)

NAME OF G.S

BAN NONG BUA C. A. 14,037 SQKM QUARYAI THAILAND

| MIAR | VAL | RIVER | IN | THE | BASIN | OΡ | MK | KLONG |
|------|-----|-------|----|-----|-------|----|----|-------|
|      |     |       |    |     |       |    |    |       |

| <br> | <br> |  |  |
|------|------|--|--|
|      |      |  |  |

UNIT IS(M), Q(C.M.\$) FOR THE WATER YEAR OF 1973

|      | A                     | ·a     | М      | AY        | JL    | JN.     | 50    | Īr.       | JA    | ic.    | SI     | e.      |
|------|-----------------------|--------|--------|-----------|-------|---------|-------|-----------|-------|--------|--------|---------|
| DATB | Ħ                     | Q      | B      | Q         | H     | Q       | ii.   | Q         | 11    | Q      | Н      | Q       |
| 1    | 1, 27                 | 15,2   | 1,02   | 22,0      | 1.66  | 62.8    | 2. 10 | 103       | 2, 97 | 200    | 5. 78  | 654     |
| Ź    | 1, 25                 | 34.0   | 1,00   | 21.0      | 1.61  | 61.7    | 2, 05 | 98.0      | 2, 97 | 2100   | 5, 25  | 55₹     |
| 3    | 1, 22                 | 32, 2  | 1,60   | 58.0      | 1.61  | 61.2    | 2.02  | 95.0      | 2, 91 | 143    | 5.00   | 507     |
| 4    | 1, 20                 | 31.11  | 1, 23  | 32,8      | 1.69  | 65.2    | 2.05  | 98.0      | 2,91  | 193    | 4.69   | 485     |
| 5    | £. 19                 | 30, 5  | 1, 29  | 36 I      | E. 60 | \$8.0   | 2. (3 | 96, 0     | 2.81  | 181    | 4.67   | 451     |
| 6    | 1. 18                 | 30, 0  | 1, 33  | 38.8      | 1.61  | 61.2    | 1. 96 | 89.1      | 2.77  | 176    | 4, 45  | 417     |
| 7    | 1,18                  | 30, 0  | 1, 37  | 41.2      | 1.58  | 55.4    | 1.96  | 89.4      | 2, 70 | 168    | 4.22   | 378     |
| 8    | 8, 17                 | 29. 5  | 1, 28  | 35.8      | 1.57  | 55.6    | 2.11  | 103       | 2, 75 | 174    | 4, 00  | 314     |
| 9    | 1, 17                 | 29.5   | 1, 26  | 34.6      | 1.66  | 62.8    | 2, 20 | 113       | 3, 16 | 225    | 3. 79  | 313     |
| 10   | 1.19                  | 30, 5  | 1. 22  | 32,2      | 1. 77 | 72,3    | 2. 24 | 117       | 3, 13 | 231    | 3. 17  | 319     |
| 11   | 1, 17                 | 29, 5  | 1, 26  | 34.6      | 2.04  | 97.0    | 2, 57 | 154       | 3, 02 | 207    | 3. 76  | 3118    |
| 12   | 1.15                  | 28, 5  | 1, 26  | 31.6      | 1, 82 | 76,8    | 4. 37 | 402       | 2, 86 | 190    | 3, 70  | 300     |
| 13   | l 1.13                | 27.5   | 1, 25  | 34.0      | 1.75  | 70.5    | 4.11  | 361       | 2, 75 | 174    | 3. 58  | 283     |
| 14   | 1, 12                 | 27.0   | 1, 30  | 37.0      | 1, 66 | 62.8    | 3, 48 | 269       | 2.77  | 176    | 3, 61  | 287     |
| 15   | 1, 11                 | 26, 5  | 15, 31 | 37.6      | 1.64  | 61.2    | 3, 22 | 233       | 2.83  | 184    | 3, 70  | 300     |
| 16   | L 1.10 (              | 26,0   | 1, 39  | 37.0      | 1.65  | 62.0    | 3, 07 | 213       | 2.89  | 193    | 3. 64  | 292     |
| 17   | 1.49                  | 25.5   | 1, 32  | 38, 2     | 1, 97 | 90, 3   | 3.02  | 207       | 2, 91 | 193    | 3, 55  | 279     |
| 18   | 1,115                 | 25, 0  | 4, 30  | 37, ()    | 2. 71 | 169     | 3, 26 | 238       | 2. 82 | 182    | 3, 68  | 297     |
| 19   | f. 12                 | 27.0   | t. 31  | 37.6      | 4, 93 | 495     | 3, 33 | 248       | 2, 41 | 193    | 3.83   | 318     |
| 20   | 1.17                  | 29, 5  | 1.31   | 37.6      | 5.30  | 562     | 3, 28 | 243       | 3, 14 | 333    | 4, 05  | 352     |
| 21   | 1.13                  | 27. 5  | 1.30   | 37.0      | 5.20  | 543     | 3, 40 | 258       | 3. 62 | 289    | 4, 52  | 426     |
| 32   | 1.12                  | 27, (1 | 1, 26  | 34.6      | 4, 40 | 407     | 3.49  | 271       | 3, 67 | 296    | 5, 58  | 615     |
| 23   | ] [. <del>1</del> 2 ] | 27.0   | 1,26   | 34.6      | 3.65  | 293     | 3.46  | 266       | 3, 60 | 286    | 5.13   | 530     |
| 24   | 1. 11                 | 26. \$ | 1, 26  | 34.6      | 3, 15 | 224     | 3.44  | 264       | 3, 65 | 243    | 5.28   | 558     |
| 25   | 1.08                  | 25, 0  | 1. 32  | 38.2      | 2, 82 | 182     | 3, 23 | 234       | 4, 45 | 415    | 6.40   | 783     |
| 26   | 1.116                 | 24.0   | 1, 37  | 41.2      | 2.64  | 161     | 3, 18 | 227       | 5.31  | 564    | 8. 37  | 777     |
| 27   | 1.06                  | . 24.0 | 1, 46  | 47.2      | 2.57  | 154     | 3. 15 | 224       | 5. 42 | 585    | -5, 61 | 621     |
| 28   | 1.04                  | 2.1, 0 | 1, 58  | 56.4      | 2.44  | 139     | 3. 10 | 217       | 5, 51 | 602    | 5. 32  | 566     |
| 29   | 1,62                  | 22.6   | 1, 53  | 52.4      | 7, 31 | 126     | 3, 25 | 237       | S. 44 | 589    | 5.27   | 556     |
| 30   | 1. ()2                | 22, 0  | ₹, 55  | 54.0      | 2. 19 | 112     | 3.10  | 217       | 5.74  | 616    | 5.84   | 666     |
| 31   |                       |        | 1. 49  | 49.3      |       | i :     | 3. 07 | 213       | 6. 29 | 760    |        |         |
| SUM  |                       | 832,4  |        | 1, 197. 5 |       | 4,704.3 |       | 6, 196. 8 |       | ¥,  68 |        | 13, 528 |
| MBAN |                       | 27, 7  |        | 38.6      |       | 157     | ·     | 300       |       | 796    |        | 451     |
| MAX  |                       | 35,2   |        | 58.0      |       | \$62    | I     | 402       |       | 760    |        | 763     |
| MM   | <u> </u>              | 22.0   | 1      | 21.0      | 1     | \$5.6   | \     | 89.4      |       | 168    | ,      | 279     |

WATER LEVEL (II) AND DISCHARGE (Q)

NAMB OF G. S BAN NONG BUA, G. A. 11,017 SQKM QUABYAL THAILAND

QUAE YAL RIVER IN THE BASIN OF ME KLONG

UNIT H(M), Q(C,M,S) FOR THE WATER YEAR OF 1973

|       | 00     | T.      | NO    | ov.     | Di        | ;C. [      | DRC. JAN. |         | FR    |        | KB. M. |       |
|-------|--------|---------|-------|---------|-----------|------------|-----------|---------|-------|--------|--------|-------|
| DAT8  | El     | Q       | 11    | Q       | <b>51</b> | Q          | Н         | ે       | 11    | Q      | Н      | Q     |
|       | 5. 11  | 589     | 2.71  | 169     | 2.02      | 95.0       | 1.53      | 52.4    | 1. 28 | 35.8   | 1, 12  | 27. ( |
| 2     | 5.49   | 584     | 2,62  | 159     | 2.00      | 93.0       | 1.52      | 51,6    | 1,27  | 35.2   | t. LL  | 26.   |
| 3     | 5, 46  | 592     | 2,57  | 154     | 1. 99     | 92.1       | 1.51      | 50.8    | 1. 26 | 34.6   | l. It  | 26.   |
| 4     | 5. 25  | 552     | 2,52  | 2-18    | 1.96      | 89.4       | 1, 50     | 50.0    | 1.25  | 34.0   | 1, 10  | 26.   |
| 5     | 5,54   | 603     | 2. 47 | 143     | 1.94      | 87.6       | 1,48      | 48.6    | 1, 24 | 33.4   | 1. 30  | 26.   |
| 6     | 5.71   | 610     | 2.45  | 140     | 1.92      | 85.8       | 1. 47     | 47, 9   | 1.23  | 32.8   | €. 1€  | 26.   |
| 7     | 5.57   | 613     | 2,40  | 135     | 1. 90     | 84,0       | 1, 46     | 47, 2   | 1.22  | 32.2   | t (t   | 26.   |
| 8     | 5.52   | 601     | 2.37  | 132     | 1.83      | 82,2       | 1,46      | 47, 2   | 1.21  | 31.6   | 1, 13  | 27, : |
| 9     | 5.16   | 536     | 2.34  | 128     | 1.85      | 79.5       | 1, 46     | 47.2    | 1.20  | 31.0   | 4, 41  | 26.   |
| 10    | 5. 10  | 525     | 2.31  | 125     | 1.83      | 37.7       | 1, 45     | 46.5    | 1. 20 | 41.0   | I. 12  | 27.   |
| l I   | 5. 39  | 579     | 2, 39 | 124     | t. 81     | 75.9       | 1, 59     | 45.8    | 1.19  | 30. 5  | 1. 12  | 27.   |
| 12    | 5.21   | 545     | 2.34  | 128     | 1. 80     | 75.0       | 1. 44     | 45.8    | 1.19  | 30. 5  | 1. 0   | 26.   |
| 13    | 4.92   | 493     | 2. 27 | 121     | 1. 79     | 74.1       | 1, 43     | 45, 1   | 1.18  | 30.0   | 1, 10  | 26.   |
| 14    | 4,65   | 448     | 2.36  | 131     | 1. 78     | 73.2       | 1.42      | 44, 4   | 1.18  | 30.0   | 1.07   | 24.   |
| 15    | 4.43   | 412     | 2.40  | 135     | 1.76      | 71.4       | 1, 41     | 43.7    | 1. 17 | 29.5   | 1.07   | 24.   |
| 16    | 4, 22  | 378     | 2, 47 | 143     | 1.74      | 69.6       | 1.40      | 43.0    | 1. 17 | 29.5   | 1.07   | 24.   |
| 17    | 4,06   | 353     | 2.53  | 149     | 1, 72     | 67.8       | 1, 38     | 41.8    | 1.16  | 29.0   | 1. (1) | 25.   |
| 18    | 3,85   | 322     | 2.45  | 139     | 1.70      | 66.Q       | 1.37      | 41.2    | 1.16  | 29.0   | 1, 10  | 26.   |
| 19    | 3,74   | 306     | 2, 37 | 132     | 1. 68     | 61.4       | 1, 37     | 41.2    | 1. 20 | 31.0   | 1.13   | 27.   |
| 20    | 3.68   | 297     | 2, 40 | 135     | 1.66      | 62, 8      | t. 37     | 41.2    | 1. 18 | 30.0   | 1, 16  | 29.   |
| 21    | 3, 52  | 275     | 2.38  | 131     | 1. 64     | 61.2       | 1, 36     | 40.6    | 1.18  | 30.0   | 1. 10  | 26.   |
| 22    | 3, 38  | 255     | 2, 46 | 142     | 1. 61     | 61.2       | 1.36      | 40.6    | 1. 18 | 30, 0  | 1.10   | 26.   |
| 23    | 3, 28  | 241     | 2.41  | 139     | 1. 63     | 60.4       | 1. 36     | 40,6    | 1.20  | 31,0   | 1. 12  | 27.   |
| 24    | 3, 17  | 226     | 2.33  | 127     | 1.62      | 59.6       | 1.34      | 39.4    | ı, ts | 30, 0  | 1.08   | 25.   |
| 25    | 3, 10  | 217     | 2.26  | 120     | 1.61      | 58.8       | 1, 33     | 38.8    | 1, 16 | 29, 0  | (. 07  | 24.   |
| 26    | 3, 1)2 | 207     | 2, 22 | 115     | J. 59     | 57, 2      | 1, 32     | 38. 2   | 1. 15 | 28, 5  | 1. 12  | 27.   |
| 27    | 2, 95  | (98     | 2, 17 | 110     | 1.58      | 55.4       | 1. 32     | 38, 2   | 1. 13 | 27, 5  | f, f2  | 27.1  |
| 28    | 2.89   | 191     | 2. 12 | 105     | 1.56      | 51.8       | 1, 32     | 38, 2   | 1.12  | 27.19  | 6.0    | 26.   |
| 29    | 2.89   | 191     | 2 (19 | (OŽ     | 1, 55     | 54.0       | 1.31      | 37.6    |       |        | 1.10   | 26.   |
| 30    | 2, 81  | 185     | 2, 65 | 98      | 1. 51     | 53.2       | 1, 31     | 37.6    |       |        | 4, 67  | 24.   |
| 31    | 2. 78  | 178     |       |         | 1.56      | 53. Z      | r. 30     | 37, 0   |       |        | 1. (2) | 25.   |
| SUM   |        | 12, 337 |       | 3,959.0 |           | 2, 196. \$ |           | 1,349.4 |       | 863, 6 |        | 812.  |
| VIRVN |        | 393     |       | 132     | 4         | 70.9       |           | 43.5    |       | 30 K   |        | 16,   |
| MAX   | I      | 640     |       | 169     |           | 95.0       | 1         | 52.1    |       |        |        | 29,   |
| MIN   | 1      | 178     | 1     | 98. 0   |           | 53, 2      | 1         | 37. 0   |       | 27, U  |        | 24.   |

TOTAL = 4.940 MILLION M<sup>3</sup>

MAX. = 383

#### WATER LEVEL (II) AND DISCHARGE (Q)

NAME OF G. S

BAN NONG BUA

C. A. 14,037 SQKM

QUARYAL THAILAND

| OUAB VAL | BILLER | IN | THE | RASIN | Οľ | WR KLONG |
|----------|--------|----|-----|-------|----|----------|

UNIT HOM), QCC.M.S) FOR THE WATER YEAR OF 1974

|            | AP     | lt.    | M       | AY            | ju    | N.       | ια    | le.       | AU    | 10.    | SE    | Р.     |
|------------|--------|--------|---------|---------------|-------|----------|-------|-----------|-------|--------|-------|--------|
| DATE       | n }    | Q      | 15      | Q             | 34    | Q        | 11    | Q         | Ħ     | Q      | ŧŧ    | Q      |
| -          | 1, 17  | 29.5   | 1.46    | 47, 2         | 2.00  | 93, 0    | 1, 93 | 86. 7     | 3, 30 | 244    | 3.86  | 323    |
| 2          | 1. 15  | 28.5   | 1. 61   | 58.8          | t. 96 | 89.4     | 1, 84 | 78, 6     | 3.38  | 255    | 3.83  | 315    |
| 3          | 1, 27  | 35, 2  | 2, 10   | 103           | 1, 95 | 89. 4    | 1, 85 | 79.5      | 3, 15 | 224    | -3.93 | 334    |
| 4          | 1, 17  | 29.5   | 1.73    | 68.7          | ્રા.શ | 87.6     | 1.82  | 76.8      | 2.98  | 702    | 4, 18 | 372    |
| 5          | 1, 28  | 35, 8  | 1, 47   | - 47, 9       | 1. 76 | 89.4     | 1, 78 | 73.2      | 2, 80 | 850    | 4, 12 | 367    |
| 6          | 1, 24  | 33,4   | 1.36    | 40.6          | 2, 33 | 127      | t. 75 | 70.5      | 2,65  | 162    | 3. 9? | 332    |
| ,          | 1. 20  | 34,0 [ | 1.28    | 35.8          | 2.43  | 138      | 1, 82 | 76.8      | 2, 59 | 156    | 3, 76 | 308    |
| . 8        | 1, 18  | 30, 0  | 1, 21   | 31.6          | 2.28  | 122      | 2,00  | 93.0      | 2, 75 | 121    | 3,66  | 294    |
| 9          | 1. 13  | 22,5   | 1, 17   | 29.5          | 2.25  | 118      | 2, 23 | 116       | 2.95  | 198    | 3, 80 | 314    |
| 10         | 1, 10  | 26,0   | 1. 16   | 29. 0         | 2. 24 | 117      | 2, 38 | 133       | 2, 90 | 192    | 3, 84 | 320    |
| 11         | 1, 119 | 25, 5  | 1.14    | 28.0          | 2.62  | 159      | 2, 36 | 13)       | 2.79  | 179    | 3, 80 | 314    |
| 12         | 1. 16  | 29,0   | 1, 39   | 42,4          | 3.12  | 220      | 2, 47 | 143       | 2.71  | 169    | 3.76  | 308    |
| 13         | 1. 19  | 30.5   | . 1, 20 | 21.0          | 2. 56 | ló i     | 2, 35 | 130       | 2. 75 | 174    | 3, 75 | 307    |
| . 14       | 1, 18  | 30,0   | 1.18    | 30.0          | 2, 13 | 138      | 2, 37 | 132       | 3.07  | 213    | 3, 78 | 311    |
| 15         | 3, 20  | 31.0   | 1.18    | 30.0          | 2.31  | 125      | 2.42  | 137       | 4, 60 | 454    | 3. 39 | 313    |
| 16         | 1. 23  | 32.8   | 13, 12  | 29.5          | 2, 31 | 125      | 2, 31 | 125       | 5. 52 | 103    | 3, 58 | 283    |
| 17         | 1. 23  | 32.8   | 1. 22   | 32, 2         | 2, 28 | 122      | 2, 23 | 116       | 5. 32 | 566    | 3. 47 | 268    |
| ι <b>8</b> | 1. 16  | 29.0   | 1. 24   | 33, 4         | 2.27  | 151      | 2. 45 | ] 108 - ] | 6, 50 | - 805  | 3.38  | 322    |
| 19         | 1. 34  | 28.0   | 1.34    | 37, 6         | 2.20  | 113      | 2.05  | 98.0      | 7.36  | 1,020  | 3, 58 | 283    |
| 20         | 1.10   | 26, 0  | 1, 39   | <b>\$2, 4</b> | 2.16  | 109      | 2, 10 | 103       | 8, 12 | 1,230  | 3.51  | 278    |
| 21         | 1.48   | 25.0   | 1.48    | 48.6          | 2, 95 | 98.0     | 2, 07 | 100       | 7,27  | 445    | 3.64  | 292    |
| 22         | 1, 27  | 35.2   | 1.67    | 63.6          | 2,02  | 95, 8    | 2.01  | 100       | 6.51  | 807    | 3.56  | 260    |
| 23         | 1.08   | 25, U  | 1.62    | 59.6          | 2, 03 | 98.0     | 2.54  | 150       | 5.83  | 661    | 3.85  | 322    |
| - 24       | 1.0( ) | 23.0   | 1.68    | 61.4          | 2, 05 | 98.0     | 2, 49 | 145       | 5. 40 | 581    | 4.08  | 355    |
| 25         | 1. 02  | 22.0   | 1. 69   | 65. 2         | 2.06  | 98.0     | 2, 51 | 147       | 4. 96 | 500    | 4.50  | 423    |
| 26         | 1,02   | 22,0   | 1.25    | 34.0          | 2,02  | 95.0     | 2. 28 | 22        | 4.61  | 441    | 5. 29 | 560    |
| 27         | 1.09   | 25.5   | 1, 58   | 82, 2         | 2, 10 | 103      | 2, 48 | 144       | 1.53  | 428    | 7. 10 | 949    |
| 28         | 1.13   | 27.5   | 1. \$3  | 77.7          | 2, 16 | 109      | 2.55  | 152       | 4.53  | 428    | 6. 72 | 855    |
| 29         | 1, 14  | 28, 0  | 1.80    | 75. O         | 2, 09 | 102      | 2, 19 | 179       | 4, 35 | 399    | 5. 57 | 613    |
| 30         | 1. 28  | 35.8   | 1.97    | 90, 3         | 2. 01 | 94.0     | 2.88  | 190       | 4. 24 | 381    | 4,94  | 497    |
| 31         |        |        | 2.03    | 101           |       |          | 3, 06 | 212       | 4. 13 | 364    |       |        |
| SUM        |        | 870, 0 |         | 1, 590, 2     |       | 3, 456.8 |       | 3,745.1   |       | 13,386 |       | 11,311 |
| MBAN       |        | 29.0   |         | 5), 3         | 1     | 1)5      |       | 121       |       | 432    | 1     | 378    |
| MAX        |        | 35, 8  |         | 103           |       | 220      |       | 212       |       | 1,230  |       | 949    |
| MIN        |        | 22,0   |         | 26.0          |       | 87.6     |       | 70,5      | ł     | 156    | 1     | 255    |

#### WATER LBYEL (H) AND DISCHARGE (Q)

C. A. 14.037 SQKM

QUARYAL THAILAND

NAME OF G.S. BAN NONG BUA QUAR YAL RIVER IN THE DASIN OF ME KLONG

UNIT HEAD, QCC.M.S) FOR THE WATER YEAR OF 1974

|      | - CC  | T,      | N     | sv.   | Di    | ic.      | JAI   | ¥.      | FB       | n.                 | M      | R.        |
|------|-------|---------|-------|-------|-------|----------|-------|---------|----------|--------------------|--------|-----------|
| олтв | li li | Q       | H     | Q     | H     | Q        | Н     | Q       | 11       | Q                  | H      | Q         |
| 1    | 4.9?  | 502     | 4.33  | 395   | 2,65  | 162      | 1.91  | 84.9    | 1.69     | 65. 2              | 1.47   | 47. 9     |
| 2    | 4.71  | 458     | 4, 25 | 363   | 2.61  | 158      | 1.90  | 84.0    | 1.68     | 64.4               | 1.51   | 50.8      |
| 3    | 4.52  | 426     | 4,52  | 426   | 2.57  | 151      | 1, 89 | 83. I   | 1.67     | 63.6               | 1, 53  | 52, 4     |
| 4    | 4, 27 | 386     | 4, 29 | 389   | 2. 53 | 149      | 1. 86 | \$0.4   | 1.70     | 66.0               | L 60   | 58.0      |
| 5    | 4, 09 | 358     | 4.00  | 344   | 2.49  | 145      | t. 85 | 79.5    | 1.68     | 64.4               | 1.51   | 53. 2     |
| 6    | 3, 88 | 326     | 3,84  | 320   | 2, 47 | 143      | 1.84  | 78.6    | 1. 66    | 62.8               | 1.51   | 50.8      |
| 'n   | 3, 96 | 338     | 3,87  | 324   | 2, 43 | 138      | 1.83  | 77.7    | 1.65     | 62.0               | 1.48   | 48. 6     |
| 8    | 1.78  | 311     | 3,90  | 329   | 2, 41 | 136      | 1.82  | 76.8    | 1.62     | 59.6               | 1.46   | 47, 2     |
| ÿ    | 3. 69 | 299     | 3, 85 | 322   | 2, 40 | 135      | 1. 82 | 76.8    | 1.61     | 58.8               | t. 45  | 46. 5     |
| IÓ   | 4.06  | 353     | 3. 70 | 300   | 2, 36 | 133      | 1.84  | 78.6    | 1.60     | 58.0               | t. 45  | 46. 5     |
| ) t  | 5.01  | 509     | 3, 75 | 307   | 2. 35 | 130      | 1, 85 | 79.5    | 1. 59    | 57, 2              | 1.45   | 46.5      |
| 12   | 6.81  | 876     | 3,82  | 317   | 2, 31 | 125      | 1.86  | 80.4    | 1.59     | 57, 2              | 1.44   | 45.8      |
| 13   | 9. 01 | 1,500   | 4, 02 | 317   | 2, 29 | 123      | 1, 87 | 8t. 3   | 1.53     | 56.4               | 1, 43  | 45. l     |
| 14   | 9. 91 | 1.800   | 3, 80 | 314   | 2. 26 | 120      | t. 87 | 81.3    | 1.56     | 54.8               | 1, 42  | 44.4      |
| 15   | 8, 42 | 1,320   | 3, 75 | 307   | 2. 22 | 115      | 1, 88 | 82. 2   | 1. 56    | 54,8               | 1.41   | 43, 7     |
| 16   | 7, 13 | 1,120   | 3,60  | 286   | 2, 21 | 114      | 1.90  | 84.0    | 1.55     | 54.0               | 1.40   | 43, 0     |
| iř   | 7. 39 | 1,030   | 3. 51 | 273   | 2, 20 | 113      | 1, 92 | 85.8    | 1.54     | 53. 2              | 1, 39  | 42. 4     |
| 18   | 7.08  | 914     | 3, 49 | 271   | 2. 17 | 110      | 1. 85 | 79.5    | 1.53     | 52.4               | 1, 44  | 45.8      |
| 19   | 7,00  | 924     | 3, 44 | 264   | 2, 15 | 103      | 1.83  | 77.7    | 1, 52    | 5t. 6              | 1.54   | 53.2      |
| 20   | 6.61  | 829     | 3, 69 | 299   | 2. 13 | 106      | 1.84  | 78.6    | 1, 52    | 51.6               | 1.45   | 16.5      |
| 21   | 6, 23 | 747     | 3, 42 | 268   | 2, 11 | 104      | 2. 04 | 97.0    | 1.52     | 51,6               | 1, 42  | 44.4      |
| 22   | 5.78  | 654     | 3,29  | 243   | 2.08  | (0)      | 2. 25 | 118     | I. \$L   | 50.8               | 1.45   | 40.5      |
| 23   | 5, 52 | 604     | 3, 19 | 229   | 2.07  | 100      | 2. 02 | 95.0    | I. 50    | 50,0               | 1, 44  | 45.8      |
| 24   | 5, 23 | 549     | 3, 09 | 216   | 2, 06 | 99.0     | 1.92  | 85.8    | 1. 49    | 49. 3              | 1, 40  | 43.0      |
| 25   | 4.95  | .498    | 3,03  | 208   | 2. 03 | 96.0     | 1.86  | 80.4    | 1.49     | 49, 3              | 1.40   | 43.0      |
| 26   | 4,71  | 458     | 2, 94 | 197   | 2. 0! | 94.0     | 1. 82 | 76.8    | 1.48     | 48.6               | 1.39   | 42. 4     |
| 27   | 4. 48 | 420     | 2,85  | 186   | 2.00  | 93. 0    | 1. 78 | 73. 2   | 1.48     | 48, 6              | 1.38   | 41.8      |
| 28   | 4. 32 | 394     | 2,79  | 179   | 1. 98 | 91, 2    | 1.76  | 71.4    | 1, 47    | 47.9               | į 1.37 | 41. 2     |
| 29.  | 4, 40 | 407     | 2, 73 | 172   | 1. 97 | 90, 3    | 1.74  | 69.6    | f .      |                    | 1, 37  | 41, 2     |
| 30   | 4. 36 | 401     | 2,70  | 168   | 1,9\$ | 87.6     | J. 72 | 67.8    |          |                    | 1.36   | 40, 6     |
| 31   | ā. 31 | 393     | }     |       | 1.92  | 85.8     | 1.70  | 66.0    | <b>!</b> | ļ .                | 1.36   | 40.6      |
| SUM  |       | 20, 134 |       | 8,584 |       | 3,6\$8.9 |       | 2,511.7 |          | 1, 561. I<br>55. 9 |        | 1, 428. 8 |
| MEAN |       | 649     |       | 286   |       | 118      |       | 81.0    |          | 55. 9              | l      | 16.1      |
| MAX  |       | 1.800   | 1     | 426   | L     | 162      |       | 118     | ]        | 66.0               | 1      | \$8,0     |
| Min  |       | 299     | I     | 168   |       | 85. 8    | _     | 66.0    |          | 47. 9              | 1      | 40, 6     |

122. 61.7 MPN