REFERENCE DATA

- 1. Average Basin Rainfall Calculated by Isohyetal Chart Method
- 2. Correlation between Isohyetal Method and Thiessen Method
- 3. Correlation between \overline{R}_7 and \overline{R}_6 (Monthly Rainfall and 7 Days Rainfall), and Correlation between Rainfall at Pilok and Average Rainfall in Mac Klong Basin
- 4. Time Difference between Peak Occurrence Day of Rainfall at 7 Stations and That of Average of Rainfall in Macklong Basin
- 5. Peak Occurrence Day of Average Basin Rainfall and K-10 Peak Discharge
- 6. 7 Days Rainfall and Peak Discharge
- 7. Base Flow (QB) and Rainfall in Preceding 1 Month
- 8. Error in Average Value Computation
- 9. Observed and Computed Hydrographs (R = 0 after T + 1 for forecasting)
- 10. Observed and Computed Hydrographs (Forecasting of T + 2 days, initial $Q_{\rm B}$ value changed)
- 11. Observed and Computed Hydrographs (Forecasting of T + 2 days; time distribution changed)
- 12. Example of Verification Computation of 4 Cases (Macklong Flood Simulation Data)
- 13. Rating Curve Computation Sheet (Example)

Average Basin Rainfall Calculated by Isohyetal Chart Method

	Remarks									
~ 15 Sep.	2 × 3	212,420	204,000	224,900	238,150	306,450	316,400	442,750	295,500	30,720
2 Sep. ~ 1	3 Average Rainfall (cm)	860	750	650	550	450	350	250	150	80
1966	2 Area (km²)	247	272	346	433	189	706	1771	1970	384
	l Reinfall (mm)	200°	700~800	600~700	200~600	400~200	300~400	200~300	100~200	~100
				11				1	1*****************************	•
	Remarks						ž			
. Sn	2 × 3	512,400	451,350	407,400	455,250	254,550	28,200	2,109,150	300.96	
1966 21. Jul 2 Aug.	3 Average Kainfall (mm)	009	750	350	250	150	09		Rave	
66 21.	Area (rem ²)	854	1003	1164	1821	1691	470	7008		ļ
н 6	1 Rainfall (mm)		400~200	300~400	200~300	100~200	~100	Total		

2,271,290

7008

Total

Rave

Average Basin Rainfall Calculated by Isohvetal Chart Method

1967 9 Aug. ~ 26 Aug.

			F	4			-					de para anno	
Remarks													
. 2. X 5.	106,920	164,350	189,550	204,000	241,150	367,950	323,100	329,350	291,000	271,350	28,450	2,517,170	359.18
Average Rainfall	1080	950	850	750	650	550	450	350	250	150	20		Rave
2 Area (m ²)	6,	173	223	27.2	371	699	718	176	7911	1809	509	7008	
Rainfall	7007	00017006	800 ~ 900	700 ~ 800	600 ~ 700	200 ~ 600	400 ~ 500	300~400	200~300	100 ~ 200	007~	Total	

1967 31 Jul. ~ 8 Aug.

		· · · · · ·							[<u></u>	ì
Remarks								•	3,7,7	
۲ × ع	129,500	113,500	200,250	351,050	374,750	356,700	64,400	1,592,150	227.19	
3 Average Rainfall (mm)	700	550	057	350	250	150	50		Rave	
2 Area ('Am ²)	185	210	445	1003	6771	2378	1288	7 0 0 8		
1 Rainfall (mm)	600~	200~600	400~500	300~400	200~300	100~200	~100	Total		
and a first of the second of t				(*1		(= v=				

27 Aug. ~ 15 Sep.

1961

		Remarks												
		ω χ ω	000 000	443,320	204,000	169,000	190,300	217,350	238,350	343,750	280,500	71,850	1,965,020	280.39
	*	Average Rainfall (mm)	000	000	750	059	550	450	350	250	150	50		Save
	2	Area (im²)	Š	† 07	272	260	346	483	681	1375	1870	1437	2002	
		Reinfall (mm)	0	~000	700~800	600~7009	500~600	400~500	300700	200~300	100~200	~100	Total	
				•										
•	.													
	 	Remarks												
		2 × 3 Remarks	72001	123,130	128,700	244,750	317,700	333,550	442,750	302,850	29,440	1,959,490	279.60	
	ന	(r)	000		650 128,700	550 244,750	450 317,700	350 333,550	250 442,750	150 302,850	80 59,440	1,959,490	Rave 279.60	
	rn ~	64 X 69	C	2								7008 1,959,490		

Average Basin Rainfall Calculated by Isohyetal Chart Method

1969 22 Jul. - 29 Jul.

1969 30 Jul. - 26 Aug.

·						
Remarks						
2 × 3	376,950	399,250	269,250	174,255	1,159,705	165.48
3 Average Rainfall (mm)	350	250	150	45		Rave
2 Area (km²)	1011	1597	1795	2539	7,008	
i Reinfell (mm)	-008	200-300	100-200	7.00	Total	

					-]~~~~	ارا	r
Remerks													
2 × 3	213,840	188,100	252,450	315,750	490,750	055,099	607,500	056,114	216,750	51,900	15,840	3,425,380	488.78
3 Average Rainfall (mm)	1080	056	850	750	650	550	450	350	250	150	80		Rave
2 Area (m²)	198	861	297	421	755	1201	1350	11177	298	346	198	7008	
l Rainfall (mm)	1000-	0001~006	006~008	700~800	600~700	200 ~ 600	400 ~ 200	300 ~ 400	200~300	100~200	~100	Total	
:													

1970 II Jul. ~ 19 Jul.

1971 17 Jul. 29 Jul.

						,		
	* 4	2					- 4	
•	Rainfall (mm)	Area (?ca²)	Average Rainfall (mm)	% X %	Remarks		Rainfall (mm)	¥ . 5
	-009	297	089	201,960			700~	177
	200-600	334	550	183,700			600~700	
	400-500	693	450	311,850			200~600	
	300-400	805	350	281,750			400~200	
	200~300	1486	250	371,500			300-400	
	100-200	1994	150	299,100			200-300	2
	~100	1399	20	056,69			100,200	12
	Total	7008		1,719,810			~100	
			Save	245.41			Total	70

Average Basin Rainfall Calculated by Isohyetal Chart Method

						, , , , , , , , , , , , , , , , , , ,					1.5					
		Remarks														
~ 10 Aug.		м ×		78,800	372,000	386,100	483,450	473,400	528,850	331,250	006,99	13,840	3,134,590	447.28		
~ 5 TAC 6T	m	Average Rainfall		900	750	650	550	450	350	250	150	80		Rave		·.
1972	7	Area (Lm ²)	,	532	967	765	879	1052	1221	1325	977	173	2007			
	; –4	Rainfell (mm)	\\	~008	700~800	902-009	200~600	400~200	300~400	200~300	100~200	001~	Total			
	P								and the second s							
		Remarks														
18 Jul.		2 × 3 Remarks		000,001	188,100	336,600	464,250	426,400	497,200	574,200	542,150	148,500	89,100	3,920	3,460,720	495.82
30 Jun. ~ 18 Jul.	in the second			1100	950 188,100	850 336,600	750 464,250	650 426,400	550 497,200	450 574,200	350 542,150	250 148,500	150 89,100	80 3,920	3,460,720	Rave 495.82
გ 	0	M X	 		ud Spa wan	3 7.7									700S 3,460,720	

Remarks 224,900 175,750 262,650 288,000 265,200 320,100 401,400 515,900 480,000 108,960 3,042,860 434.19 м Х 1973 15 Aug. - 10 Sep. Average Rainfall 1300 950 850 750 650 550 350 250 150 450 Rave **1** 173 (FB2 185 582 Area 309 408 892 681 200 ~ 300 | 1920 7008 384 300 ~ 400 | 1474 4 600 ~ 700 500 - 600 ~ 200 900-1006 800 ~ 300 700~800 400 ~ 500 Rainfall Total 7000T Remarks 4,410 381,000 91,050 242,060 185,250 410,800 470,250 462,600 498,050 2,955,420 209,950 421.72 8 8 8 ~ 30 Jun. Average Rainfall II Jun-086 850 750 650 550 450 350 250 25 Rave 8 (km²) 1973 49 Area 247 396 632 835 1423 1524 607 7008 1028 247 Rainfall (mm) 00ĭ~ 500-600 400~200 300-400 200-300 100-200 800-900 606-700 700~800 Total

Average Basin Rainfall Calculated by Isonyetal Chart Method

	F				· 			· · · ·	·	· 	· ••••••••••••••••••••••••••••••••••••				A ******	.i
		,	Kenatks													
		;	η Κ Ν	209,300	164,350	189,550	213,000	297,700	388,300	451,350	455,350	387,000	144,900	14,800	2,915,600	70.917
28 Aug.	٤	Average	(mm)	1300	950	850	750	650	550	450	350	250	150	80		Rave
Aug. ~ 2	2	Area	(SB ²)	191	173	223	284	857	706	1003	1301	1548	996	185	7008	
1974 9	z-{	0 5 5 7 7 1	(mm)	1000-	0001~006	006~008	700 ~ 800	600 ~ 700	500 ~ 600	400 ~ 500	300 ~ 400	200~300	100~200	~ 100	Total	

Ap-2-1 Correlation between Isolyet Method and Thiessen Method

-	LSONYET	(R-m,m)	THIESSEN (R->m.m)[BY 7 STATION]
	x		у
1	416.04(1974,	9 ^{Aug} · 28 ^{Aug} ·)	420.70
2	434.19(1973,		405.30
3	421.72(1973,		411.80
4		19 ^{Jun} (10 ^{Aug})	391,10
5	493.82(1972,		502,10
6		17 ^{Jul} . (29 ^{Jul} .)	299.00
7	245,41(1970,	11 ^{Jul} . (19 ^{Jul} .)	206.70
8	165.48(1969,	22 ^{Ju1} 29 ^{Ju1})	156,30
9		30 ^{Ju1} , 26 ^{Aug} ,)	482.70
10	280.39(1968,	5 ^{Aug} '18 ^{Aug} ')	234.30
1.1.		9 ^{Aug} · 26 ^{Aug} ·)	301.20
12	279.60(1967,	27 ^{Aug} '15 ^{Sep} ')	254,80
13	227.19(1967,	$31^{\stackrel{1}{\sim}}, 8^{\stackrel{Aug}{\sim}})$	202.20

$$(y = 0.983)$$

 $y = 1.047x - 39.958$

	ISOHYET (R	m.m)	THIESSEN	(R-rm.m)[BY 6
1 21	x	11. 美名:特·迪·		y
1	416.04			377.90
2	434,19			355.20
3	421,72			360.90
4	447.28			351.70
5	493.82			455.90
6	313.65			273.10
7	245.41			163.80
8	165.48		12 1	140.90
9	488.78			435.20
10	280.39			185.90
11	359.18			233.70
1.2	279.60			219.20
13	227.19	er e	,	165.20

 $\gamma = 0.965$ = 0.982x - 59.341

* Thiessen $R_6 \sim R_7$ (N=13) $\gamma = 0.99453$ y = 1.0427x + 30.7259

Ap-3-1 Correlation between R_7 and R_6 (Monthly Rainfall)

9 Years from 1967 to 1975

			·						
		x	у	:	x	у		x	у
Year	Month	R ₆	R ₇	3 32	R	R ₇		R	Ry
1967	Apr.	79.0	76.7	1970	96.8	1.06.1	1973	26.7	26.1
,,,,,	May.	188.4	220.6		190.2	221,2		162.7	180.2
	Jun.	243.2	275.9	200	191.2	243.0	·	472.0	541.9
	Jul.	295.4	351.0		330.3	408.7	,	293.5	397.4
,	Aug.	457.4	568.1		257.7	322.0		350.8	412.3
•	Sep.	264.2	298.5		261:4	300.1		299.5	344.5
	Oct.	158.8	182.6		139,3	154.7		85.8	91.9
!!	Nov.	61.8	62.3		32.1	36.1	•	12.9	13.4
	Dec.	0	0		21.6	20.8		0	0
	Jan.	0	0		0	0		0	0
	Feb.	~ 29.2	27.6		27.3	27.0		17.7	17.6
	Mar.	20.2	19,0	 	47.0	49,8		91.0	89.5
1968		152.3	159.9	1971	95.8	96.6	1974	165.8	170.4
		152.4	159.1		149.1	161.2		365.1	382.4
1		235.8	264.2		388.4	465.7		344.0	371.3
	1 1 1	358.0	428.2		253.1	277.4		495.5	529.0
		282.6	314 .1		180.4	204.6		204.9	225.1
		155.3	156.6		130.4	141.2		180.1	208.2
		9.7	10.7		38.8	37.3		38.4	37.4
		1.0	1.0		1.8	1.7		2.3	2.3
		13.7	13.5		0	0		37.9	42.3
ļ		0.2	0.2		11.5	11.6		22.8	24.4
		38.5	37.1		43.1	45.7		60.4	56.5
1969		68.4	68.2	1972	147.5	155.1	1975	21.1	22,3
		345.1	377.4		192.0	221.8		229.7	235.1
i		268.2	310.2		399.4	457.9		402.0	448.5
1		400.5	427.9		693.7	768.9		244.2	272.3
		461.4	516.6		308.0	363.6		357.7	419.2
		281.9	329.8	,	366.7	382.0	į	249.6	262.4
		153.8	154.8		125.6	138.1	٠.	188.0	198.2
		34.4	34.1		71.9	78.5	}	39.4	40.5
]	0	0		0.1	0.1]	0	0
]	15.6	16.4		0	0		2.2	2.0
		21.8	27.3	ļ	45.0	49.1	L	51.7	49.7

y = 0.99668 y = 1.1396x - 2.9102 N = 108

Ap-3-2 Correlation between \hat{R}_6 and \hat{R}_7 (7 Days Rainfall)

Year	Month	x	у	Pilok	Year	Month	x	у	Pilok
		R ₆	R ₇	Rp		ann a migra wan againt dha njih y sight migra, bay ga, say ann	R ₆	R ₇	R _p
1967	Jul.				1972	Jun.			
	23. ~ 27	134.4	154.2	212.0	· .	4 ~ 10	184.4	222.2	597.8
	Aug. 2 ~ 8	137.4	170.2	603.0	·	Jun, Jul., 27 ~ 3	82.0	100,6	297.8
	Aug.					Jul.			
:	13 ~ 19 Aug. Sep.	147.5	192.1	757.8		3 ~ 9 Jul	91.9	107.2	316.7
·	27 ~ 2	118.5	134.9	344.6	, ;	9 ~ 16	329.3	352,7	668.4
	Sep. Oct. 26 ~ 2	81.2	96.2	249.0		Jul. Aug. 26 ~ 1	123.4	141.6	363,0
1968	Jul.				:	Aug	i, '		1
	23 ~ 29 Aut.	91.9	110,2	334.6		14 ~ 20 23 ~ 29	79.0 58.0	98.9 70.6	350,7 253,5
	29 ~ 4	79.8	90.6	213.0		25 ~ 31	69.8	88.8	324,5
	Aug. 10 ~ 10	133,3	164.5	536.0	ļ, i	Sep. 3 ~ 9	133.5	138.8	185.1
	Aug.					1.7 ~ 23	101.1	1.05.0	129.5
·	16 ~ 22 Sep.	78.3	97.7	307,0		Sep. Oct 29 ~ 5	67.7	79.3	170.0
	8 ~ 14	104.2	120.0	310.2		Jul,	·		
1969	Ju1, 16 ~ 22	110.3	127.1	375.6	1973	22 ~ 28 Jun,	175.8	188.6	355.5
	Jul.	110.3	3.27 + 1	373.0	1913	12 ~ 18	286.2	329.6	775.7
	24 ~ 30	129.5	140.4	297.6		Jul. 8 ~ 14	66.1	105.7	541,1
	Aug. 2 ~ 8	224.9	260.5	629.6		10 ~ 16	91.9	122.7	474.2
	Sep.	01.7	106.0	262.0		16 ~ 22	98.2	122.6	405.7
	2 ~ 8 Sep.	91.7	106.9	263.0		Λúg. 11 ~ 17	68.3	93.6	383.7
	16 ~ 22	121.2	135.5	275.6		22 ~ 28	154.9	177.1	584,7
	Sep. Aug. 27 ~ 3	91.1	93.0	106.4		Sep. 6 ~ 12	60.3	76.6	233,0
1970	Jul.			507	107/	17 ~ 23	109.1	125.6	252,3
	11 ~ 17 Aug.	159.6	201.9	597.4	1974	May. 25 ~ 31	145.1	159.7	377.5
	14 ~ 20	93.1	123.8	457.2		Jun,	92.0	106.6	306.2
	21 ~ 27 Sep.	79.9	96.4	303,2	ļ ļ	6 ~ 12 Jun,	92.0		
107:	1 ~ 7	75.1	96,5	338.2		10 - 16	77,2	98.4	318.1
1971	Jur 5 ~ 11	174.0	222,3	729.9		Jul. 25 ~ 31	99.4	95.1	66.6
	16 ~ 22	109.9	132.9	462.7		Aug.		335.2	799.1
	Jul 8 ~ 14	96,0	117.2	319,4	j	12 ~ 18 Oct	306.8		1
	Jun		ļ	<u> </u>		8 ~ 14	102.6	91.1	160.7
	22 ~ 28	203,8	218,0	476.6		Λας, Sep. 29 ~ 4	83.1	79.7	139.8

 $(R_6 \sim R_7)$

N = 51.

Υ = 0.98390

y = 1.07762x + 10.027

(R_y~ Pilok)

N = 51

 $\Upsilon = 0.80921$

y = 0.29400x + 29.675

Ap-3-3 Correlation between Rainfall at Pilok and Average
Rainfall in Macklong Basin (Isohyetal and Thiessen Methods)

No.	Pilok x	Isohyet Method yı	Thessen Method y2
1	1,094.2	416.04	420,70
2.	1,114.9	434.19	405.30
3	962.9	421.72	411.8
4	872.5	447,28	391.1
5	1,081.0	493.82	503,10
6	705.0	313,65	299.0
7	608.0	245,41	206.7
8	359.8	165,48	156.30
9	1,025.4	488,78	482,70
10	804.2	280,39	234,30
11	712.0	279,60	254.80
12	1,071.4	359,18	301.20
13	680.8	227,19	202,20
14	824.0	324,09	1.
15	506.4	300.96	

* 7 stations covered by Thiesen method

$$x \sim y_1$$
 (N=1.5)
 $\gamma = 0.8575$
 $y_1 = 0.3689x + 41.0186$
 $x \sim y_2$ (N=13)
 $\gamma = 0.8480$
 $y_2 = 0.4166 - 27.0919$

Ap-4-1 Time, Difference between Peak Occurrence Day of Rainfall at 7 Stations and That of Average Rainfall in Macklong Basin

Year	Month	Basin's Average	Sangkla bur i	P 11 .0	, ok	Ban The		Thor Pha Phur			in in		i Mae Noi	Lui Sui	
1967	Jun. Jul.	5 7	5 0 8 1	5	0	3	-2 -4	5 7	0	5	0	5 7	0	5 8	0 1
1	JUL.	24	24 0	24	0	25	1	24	0	22	-2	24	0	26	2
	Aug.	6	4 -2	7.	1	6	0,	3	-3	1.	5	6	0	6	0
ĺ	11	17	17 0	16	-1	16	-1 .	17	0	1.1	- 3	1.7	0	16	1
'	Sep.			Aug		:		Aug.		Aug					
j	'	2	1 -1	31	~2	1	-1	29	-4	31	2	J.	1	1	1
	0et		Aug									١.	•		
		1	28 -4	1	<u> </u>	7	<u></u>	1	0	1	0	$\frac{1}{30}$	0	1 29	$\frac{0}{0}$
1968		29	29 0	26	-3	28	-1	26	-3	29 Jul	0	الالا	1	Z9	0
•	Aug	2	2 0	2	. 0	3	1	2	0	31	-2	3	1	4	2
	1,,	14	13 -1	14	- 0	12	-2	14	0	12	- ?	14	Ô		~3
	-11	21.	19 -2	19	-2	21	0	21	0	20	-1	21	ŏ	21	Ŏ
	Sep	12	11 -1	11	<u>1</u>	11	-Ĭ	11	-1	3.3	1	1.2	0	12	0
1969	May.	28	28 0	28	$-\bar{0}$	30	2	$\overline{28}$	0	29	1	29	1	29	-1
1707	Jun.	18	16 -2	1.8	. 0	20	2	16	~2	19	+1.	18	0	19	1
	Jul.	18	18 0	17:	-1	21	3	18	0	18	-1	19	1	1.7	-1
	11	27	27 0	26	- 1	26	-1	26	-1	27	0	27	0	28	1
	Aug.	6	6 0	6	0	5	-1	6	0	6	0	6	0	7	1
	Sep.	7	7.0	3	-4	5	2	-7	0	78	0	3	-4	8	1
	11	21	19 -2	21	, 0	2.1	0,	21	0	21	0	18	-3	19	-2
	Oc t			Sep	٠, ۸	Sep		,	0	3	1	2	0	Sep 30	-2
	\ \- <u>-</u>	2	$\begin{array}{c c} 2 & 0 \\ \hline 15 & 0 \end{array}$	30 15	-2	$\frac{30}{12}$	-2	2 15	$-\frac{0}{0}$	14	<u>-1</u>	1.5	0	16.	1
1970	Jul.	15 19	19 0	1.9	0	20	 1	19	0	15	4	18	-1	21	2
1	Aug.	24	22 -2	24	0	24	0	24	0	26	2	26	2	25	1
	Sep	.6	6 0	6	0	7	1.	6	ŏ	6	0	5	-1	6	0
1971	Jun	9	- j - j	8	<u>-i</u>	7	-, 2	10	1	11	2	10	1	11	2
* > ; 3	11	20	17 -3	20	0	20	0	20	0	20	0	18	-2	20	0
İ	Jul.	13	14 1	13	0	10	-3	1.4	1	13	0	14	1.	13	0
	11	25	23 -2	23	-2	26	1	23	-2		~].	25	0	31	6
i	Aug.	2.1	22 1	22	.1,	1		21	0	23.	0	21	0	22	-1
	Sep.		Aug.			Aug] .	_	١.		, ,	1
	.	1	31 1	1.		30		31	-1	4	3	1	0	31	-1
j	11	1.8	18 0	18		17		18		18	0	1.8	0	18 10	0
1050	1.	10	9 -1	12		11	$\frac{1}{-2}$	7	$\frac{-3}{1}$	8 7	- <u>-1</u>	1 <u>0</u> 8	0	5	3
1972	Jun,	8	8 0	8	~~~ <u>~</u>				1. 1.	1.7		1.7	0	14	3
	1,	17	17 0	1.6 25		17 28	0		1	26	-2		-5	30	2
İ	i	28	28 0 13 2	8		11		11		12		12	1	11	ō
	Jul,	11	13 2		~	[J. J.		Ľ			- -		

Ap-4-2 Time Difference between Peak Occurrence Day of Rainfall at 7 Stations and That of Average Rainfall in Mae Klong Basin

Year	Month	Basin's Average	Sangkla buri	P11ok	Ban Pa Tho	Thong Pha Phum	Lin Tin	Huai Mae Nam Noi	Lam Sam
1972	Jul. Aug. Sep.	24 18 6 18	24 0 19 1 3 -3 18 0	24 0 18 0 7 1 18 0	24 0 20 2 5 -1 18 0	24 0 18 0 6 0 18 0	24 0 20 2 11 5 24 6	24 0 16 -2 6 0 18 0	21 -3 16 -2 6 0 18 0
1973	Jun Jul. " Aug. Sep.	17 12 16 24 20	15 -2 12 0 16 0 22 -2 23 3	17 0 12 0 16 0 22 -2 22 2	18 1 11 -1 16 0 27 3 16 -4	17 0 12 0 16 0 24 0 18 -2	17 0 12 0 16 0 24 0 18 -2	17 0 12 0 16 0 24 0 21 1	17 0 10 -2 16 0 24 0 17 -3
1974	May Jun. Jul. Aug. Oct. n Ave	29 7 14 23 7 29 16 11	30 1 9 2 14 0 22 -1 7 0 29 0 16 0 52 -0.38	29 0 7 0 13 -1 23 0 5 -2 29 0 15 -1 11 0 53 -0.55	27 -2 7 0 12 -2 25 2 4 -3 25 -4 17 1 6 -5 52 -0.62	30 1 4 ~3 13 -1 23 0 7 0 27 -2 17 1 11 0 53 -0.40	29 0 4 3 11 -3 20 -3 4 -3 26 -3 12 -4 9 -2 53 -0.42	29 0 7 0 15 1 23 0 5 -2 29 0 17 -4 11 0 53 -0.26	31 2 3 -4 14 0 19 -4 7 0 24 -5 15 -1 11 0 53 -0.34
	Ratio of time dif- fer- ence within	, ,	1.29 37/52 =0.712	1.16 41/53 =0.774	1.76 30/52 ≔0.577	1.15 44/53 =0.830	2.07 29/53 =0.54		1.87 34/53 =0.642

In each column

left values:

Date

Eright values: Difference

Ap-5-1 Peak Occurrence Day of Average Basin Rainfall and K-10 Water Stage

Year	ll .	g = 1 e 2 m · 40 m hy chains a sumper a 2	R	Time Difference in Peak Occurrence
	Date	н	Date	between N and R
1967	8 Jun.	34.94	5	3
	12 Jul.	32.91	7	5
	28 Jul.	37.76	24	4
	9 Aug.	41.67	6	3
	20 Aug.	43,80	1.7	3
•	4 Sep.	38,41	2	2
	4 Oct	38,80	1	3
1968	1 Aug.	36.20	29 Jul	3
	5	36.63	2	3
	1.7	41.22	14	3
	24	39,26	2)	3
	15 Sep.	39,97	12	3
1969	1 Jun	35,17	28 May.	4
	22	35.11	18	4
	22 Jul.	37.72	1.8	4
	31	41.06	27	4
	11 Aug.	46,58	6	5
	10 Sep.	37.70	7	3
	24	40.33	21	3
	5 Oct.	38.24	2	3
1970	18 Jul	41,52	15	3
'	22 Aug.	38.95	19	3
•	27	38.51	24	3
	9 Sep.	38,14	6	3
1971	12 Jun.	38.92	9	3
	23	36.93	20	3
}	17 Jul.	38.66	1.3	4
	28	44.74	25	3
[24 Aug.	37.62	21	3
	2 Sep.	37.12	1	1.
	. 20	36.36	18 .	2
	13	34,92	10	3
1972	11 Jun.	41.16	8	3
.	2J.	35.05	1.7	4
l i	1 Jul,	35.60	28 Jun.	3
	1.7	48.57	11	6

Ap-5-2 Peak Occurrence Day of Average Basin Rainfall and K-10 Water Stage

Year	H		R	Timo Difference in Peak Occurrence
	Date	H	Date	between B and R
1972	27 Jul.	44,67	24	3
140	22 Aug	40.05	18	to the second of the second
	9 Sep	40.96	6	3
	21	39,80		3
1973	20 Jun.	44.05	17	3
	15 Jul .	38.98	The state of the s	3
	21	39,51	16	5
1	27 Aug.	42.87	24	3
	25 Sep.	39,76		5
1974	2 Jun	36.11	29 May	4
	12	37.04	the second secon	5
	17	38.27	14	3
	26	35,33	23	3
	10 Jul.	35,38		3
	1 Aug.	35,38		3
	21	49.61	16	5
	14 Oct.	38,73	11	3

n = 53Ave. = 3.377

 $\sigma = 0.874$

2.5 < T1 < 4.25

Ap-6-1 7 Days Rainfall and Peak Discharge

Flood Occur-	Case 1	Case 2	Case 3	Case 4	Neasured
rence Day	R	R	R	R	Discharge
1967 28 Jul.	154.2	110.6	139.0	77.2	558
10 Aug.	170.2	161.7	168.0	130.3	1,239
20 "	192.1	192.1	191.8	154.0	1,668
4 Sep.	134.9	1268	134.9	97.1	1,257
4 Oct.	196.2	102.4	96.2	81.2	727
1968 1 Aug.	110.2	98.0	101.2	78.9	4425
5 n	90.6	90.3	91.8	94.3	468
17 H	164.5	152,6	1,64.2	133.10	1,094
25 ^u	97.7	104.7	97.7	119.2	839
15 Sep.	120.0	121.1	123,80	97.4	879
1969 22 Jul.	127.1	103.8	107.7	83.4	560
31	140.4	125.6	140.6	88.5	1,094
11 Aug.	260.5	228,1	245.4	171.2	2,354
10 Sep.	106.9	90.9	106.9	73.0	581.
24 "	135.5	140.3	135.5	99.6	964
5 Oct.	93.1	83.3	93.0	43.5	635
1970 18 Jul.	201.9	164.2	187.6	109.7	1,165
22 Aug.	123.8	124.9	123.8	1,02.0	709
27 11	96.4	111.3	108.9	100.5	648
9 Sep.	96.5	86.1	96.5	65.3	604
1971 12 Jun.	222,3	143.4	192.6	97.4	708
21 "	132.9	127.9	131.8	106.5	451
17 Jul.	117.2	1,15.1	117.2	99.6	672
28 "	218.0	219.8	212.1	180.0	1,859
1972 11 Jun.	222.2	206,9	216.8	140.8	1,077
1 Jul.	100.6	79.0	77.5	58.1	352
8 Jul.	107.2	100.0	97.9	82.2	503
1.7	352.7	206.4	271.6	119.1	3,026
2 Aug.	141.6	141.6	139.7	136.8	1,709
22	98.9	1.03.4	91.0	90.3	887
28	70.6	60.6	60.0	58.2	705
31	88.8	88.8	88.5	72.1	687
9 Sep.	138.8	120.1	130.5	80.3	1,041
21 "	105.0	73.7	76.7	32.7	850
9 Oct.	79.3	70.9	73.2	63.3	552
27 Jul.	188.6	151.0	158.8	104,2	1,846
1973 20 Jun.	329.6	317.3	329.6	240.4	1,728
10 Jul.	105.7	101.2	102.7	88.4	767

Ap-6-2 7 Days Rainfall and Peak Discharge

Flood Occur- rence Day	Case 1 R	Case 2 R	Case 3 R	Case 4	Measured Discharge
1973 15 Jul.	122.7	101.2	102.7	88.4	761
21	122.6	122.4	122.6	1.12.4	835
1.7 Aug.	93.6	65.4	71.8	52.6	435
2.7	177.1 \sim	164.8	159.5	137.5	1,465
14 Sep.	76.1	76,6	75.5	47.7	549
25	125.6	83.1	100,5	58,2	872
1974 2 Jun.	159.7	188.8	162.4	165.9	400
12	106.6	102.6	106.5	103.2	493
17	98.4	109.2	103.4	105.3	640
1 Aug.	95.1	102.1	98.0	87.3	374
21	335,2	256.9	311,6	198.5	3,250
14 Oct.	91.1	70.0	79.2	46.5	696
5 Sep.	79.7	64.7	68.6	51.0	543

Correlation coefficient and rogression formula

 $y \rightarrow Case 1, x \rightarrow Case 2, 3, 4$

Case 2 $\gamma = 0.91582$ y = 1.1333x - 1.9133 $\gamma = 0.97773$ y = 1.0712x - 1.02704 $\gamma = 0.77384$ y = 1.22979x + 18.3911

Ap-7 QBase Flow) and Rainfall in Preceding 1 Month

<u> </u>	مريد والمدارية والمد	Jun		Ju	1	Au	3	Se)	0c	<u> </u>
Year	Day	QB	ΣR	o_B	ΣR	$\sigma^{\mathbb{B}}$	ΣR	$Q_{\mathbf{B}}$	ΣR	$Q_{\mathbf{B}}$	Σκ
1967	1	39	220.6	67	275.9	198	351.0	390	568.1	220	298,5
	16	75	338.1	87	199.3	359	617.2	208	354.9	199	
1968	1	29	159.1	48	264.2	1.1.5	289.7	282	428.2	210	314.1
:	1.6	42	183.5	74	244.4	276	429.1	290	376.5	189	
1969	1	74	377.4	97	310.2	270	427.9	328	516.6	212	329.8
ļ	16	110	444,2	1.18	291.8	650	688.8	208	258	149	
1970	1	35	221.2	50	243.0	182	408.7	270	322.0	190	300.1
! !	16	39	218.8	102	430.7	168	264.5	226	363.4	159	
1971	1	32	161.2	124	465.9	390	517.7	250	277.4	165	204.6
	16	125	348.4	1.65	407	250	413.8	175	252,2	158	
1972	1	47	221.8	125	457.9	590	768.9	315	363.6	250	382.0
	16	156	509.5	610	623.3	410	487.5	300	375	191	
1973	1	28,5	180.2	230	541.9	238	397.4	410	412.3	260	344.5
	1.6	46	391.8	214	425	190	312.6	290	449.2	180	
1974	1.	94	382.4	1.02	371.3	159	333.8	420	529	194	225.1
	16	113	526.3	1.22	305.9	299	457.5	252	354.7	165	
1975	1	31.7	235.1	68	448.5	113	272.3	260	419,2	199	262,4
.	1.6	66	332.4	96	356.5	270	398.2	207	291.5	190	

Ap-8-1 | Error in Average Value Computation

Year	Month	Day	N	Case 1	Case 2	Case 3	Case 4	
1967	8	1	15	. 149	.168	,168	2,658	And the same of th
		15	14	,220	.245	.270	1,691	
		16	13	.214	,222	.230	1.486	· ·
		17	12	,425	.272	.257	2.843	
		18	11	,193	,166	.168	1.014	l
		19	10	. 230	.316	.223	220	
. :		20	9	.149	149	133	.263	(
2		21	8	, 217	, 235	237	.327	
1		22	7	.336	,340	.291	.547	1 1
		23	6	1.265	1.237	1.008	1,912	
		24	5	1.039	1.086	.868	.679	
		25	4	.091	.037	,100	.064	
		26	3	.072	.042	.052	148	
·	1000	27	2	,255	149	.010	333	
		28	1	0.000	0.000	0.000	0.000	
		Ave		.237	.235	,219	1,172	
		Ø .		. 084	063	,050	870	}i=9
		Cv	٠	,355	. 269	,226	742	1
		Ave	5.4	,324	311	268	.912	}
		σ	1.1	.342	348	279	854	31=15
		Çv		1.057	1,119	1.041	936	1

$$E = \frac{1}{N} \sum_{i} \left(\frac{Qc - Qo^{2}}{Qop} \right)^{2}$$

where, N : Sample size

i: Number data used for average computation

1 Occurrence day of peak measured discharge

: Time range recording a measured discharge of more than 1,000 m³/s

	∆թ82	•••		TH WACLES	o Value	Competent	1011	
Year	Month	Day	N	Case 1	Case 2	Case 3	Case 4	
1969	7	26	31	1,246	1,232	1.232	6.508	
177		27	30	1.179	1.169	1.175	6.958	
		28	29	.988	,984	,940	3.466	
		29	29	1.041	1.038	1.178	1,908	
		30	2.7	1.105	1,055	1.085	2,663	
	8	31	26	1.122	1.088	1,145	2,450	
		1	25	1.108	1.084	1,095	1,967	
		2	24	.968	.983	1,713	1.614	
ji Kaling		3	23	1.011	1.050	5,695	2.785	
ta ta la		4	22	1,290	1,339	6,235	3.190	
		. 5	21	1.062	1.140	3,243	1.739	
		6	20:	795	,867	,959	2.844	
		8	1.9	809	.835	.809	3.236	
5 1 2 1		. 9	18	.760	758	,998	3.577	·
1 2 12		9	17	1,052	,958	1,451	3.166	
	1 1	1.0	1.6	620	679	.,634	1.501	
r Erikland		11	1.5	654	761	342	1.545	1
1000年12月1日		12	14	757	.865	,383	1.845	ļ ·
	,	13	13	1.168	1.035	.692	2.595	
		14	12	1.540	1,700	.985	3.354	
		15	11	983	1.099	.547	2.854	1
	,	1.6	10	1.032	925	.643	2.997	
	1.57	17	9	1,629	1,161	1.168	2.470	
		18	8	3.283	2.307	2.376	5.701	
		19	7	6.407	4.676	6.257	8.977]
		20	6	7,762	6.038	9.114	7.840]
-		21	5	6.119	5.082	6.613	6.030	
		22	4	4.452	3.770	3.648	3,662	
	l i	23	3	.402	392	,115	.054	[
		24	2	674	,,505	. 269	.140	
		25	1	0.000	0.000	0.000	0.000	
	·\$5,	Aug	ار منت به مربید و م ناق	1.040	1.035	1.493	2.923	
		Ave	•	,243	.211	1.492	1.336	}1≕23
		o C.			1	,999	.457	1,2
		Cy		, 234	.204	*333	1	
		Ave		1.710	1,502	2.024	3.214	
		σ		1,845	1,809	2,275	2.138	}1=31.
		Čv		1.079	.932	1,124	.665	l

Ap-8-3 Error in Average Value Computation

Year,	Month	Day	N	Case 1	Case 2	Case 3	Case 4	
1970	7	14	12	2.651	2,589	2.589	11.714	
i		15	11	2.982	2.928	2,928	12.367	, i
*	100	16	10	4.054	4.406	2,110	1.777	
		17	9	10.068	10.467	7.006	5.562	
		18	8	1.091	2.158	927	3.214	(
	: '	19	7	.796	1.378	.711	1.804	- +
		20	6	1.431	1.719	1.360	.638	
1.5		21	5	3,456	4.511	3,475	1.561	
		22	4	9.812	11.330	12,145	5.083	
F 141		23	3	21,779	20.753	29.007	14.081	
		24	2	5.985	6.647	8.729	4.903	
		25	1	0.000	0.000	0.000	0.000	
		Ave	* 1	3.607	3.988	2.712	6,072	
	14	σ		3.095	3.038	2.084	4.407	}i=6
		Cv		.858	.762	768	.726	
			· .					4. 1
		Ave	•	5.342	5,741	5.916	5.225]
		σ	- ·	5.870	5,641	7.795	4.665	}i=12
		Cv		1.099	, 983	1,318	.893	ļ ·

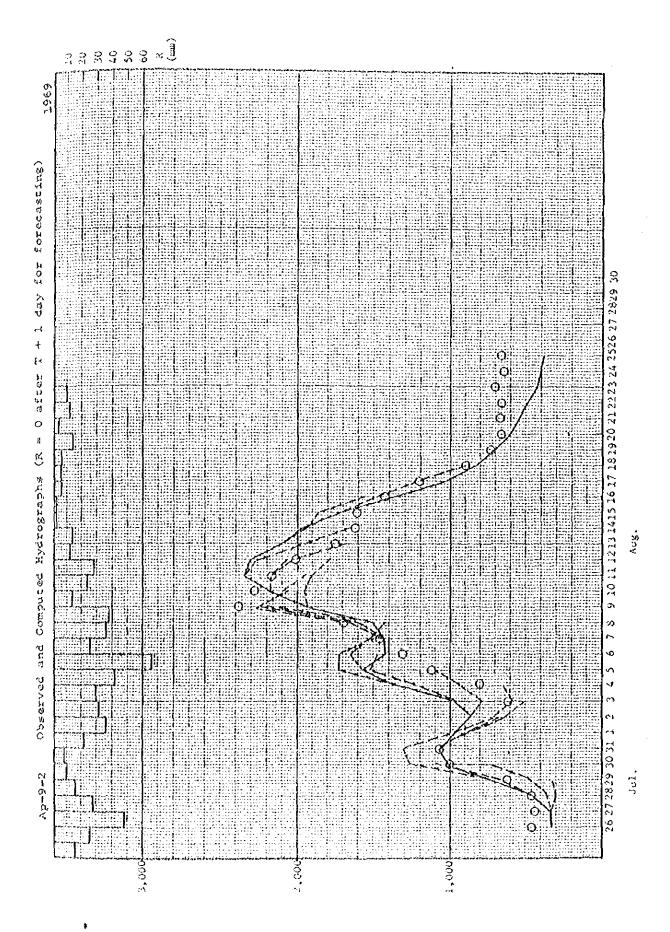
Ap-8-4 Error in Average Value Computation

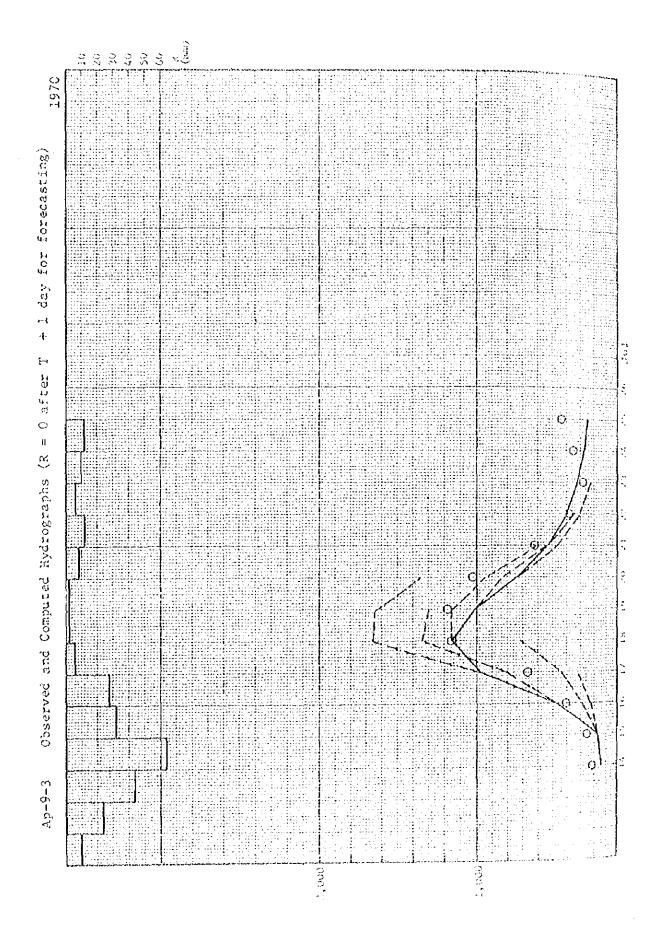
Year	Month	Day	N	Case 1	Case 2	Case 3	Case 4	
1971	7	20	1.8	.459	.459	,940	1.967	
1		21	1.7	510	490	,721	2,946	·
	in the s	22	1.6	.791	,720	,605	5.870	
		23	15	,760	,643	,656	6.953	
	i	24	14	.695≘	,673	,763	6.504	
	* **	25	13	,535	.610	1,101	1.607	1 4
		26	1.2	473	.441	.712	825	[* * [
		27	11	839	.677	.914	.982	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28	10	490	.421	.951	.871	(3)
		29	9	306	.276	.732	520	
		30	8	400	.381	.852	.942	
	1.5	31	7	,727	720	1.239	2.205] 🕴
	8	1.	6	1,693	1.723	2,901	3.973	·
	27.5	2	5	4.639	4.711	8,898	9.260)
1 4		3	4	9.100	9.022	18.136	14.873	Ì
. !		4	3	6.384	6,543	13.057	10.280	
		5	2	2.526	2.762	4,766	4.056	
		6	1.	0.000	0.000	0.000	0.000	
		Λve.		.582	.542	.849	2,683	
		AVC.		.165	.143	1.81	2.278	}i=12
		Cv		284	.263	21.3	,849	,
		Λve		1.740	1.737	3,219	4,146	
		WAG		2.406	2,432	4.900	3,973	} i=1.8
		Cv		1.383	1.400	1.522	958	, , . –

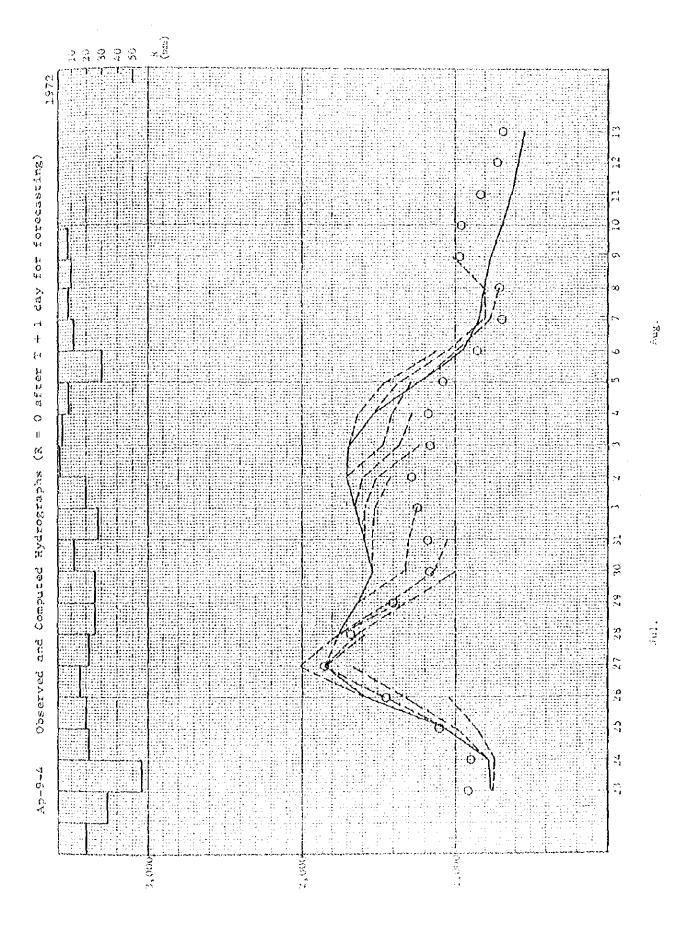
Ap-8-5 Error in Average Value Computation

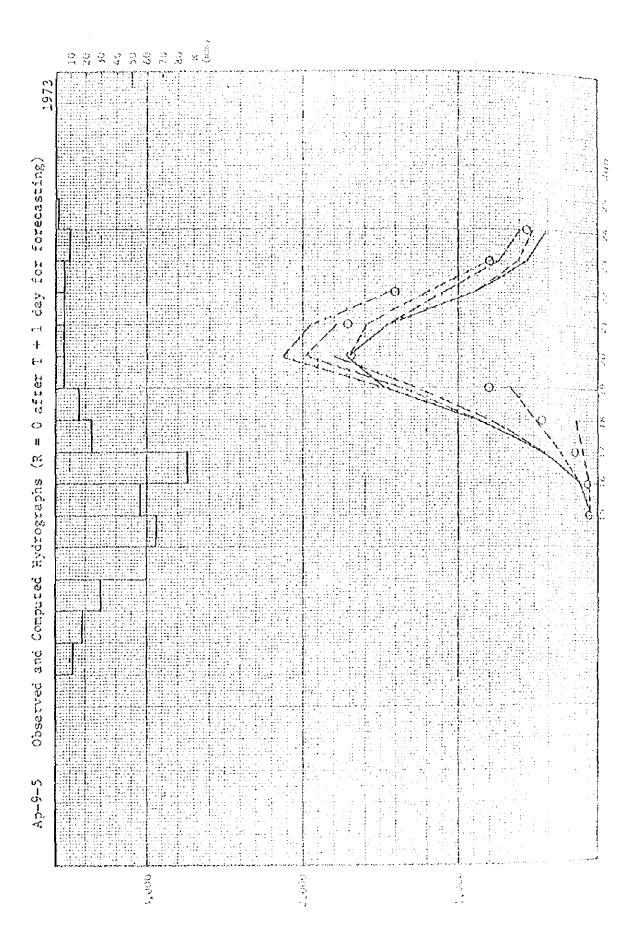
Year	Month	Day	N	Case 1	Case 2	Case 3	Case 4	
1972	7	11	13	1.850	1.850	1.870	5,500	
		12	12	1,912	1.873	1.906	6.221	
		13	11	3.295	3,256	3.243	2.837	1
		14	10	2,216	2,050	2.298	4.973	
	3 avz 1	15	9	3,424	2.802	3.136	5.213	
		1.6		2.737	2.509	2.684	3.835	
		17	8	1,406	1.458	1.466	1.675	[(
		18	6	1,939	2.438	2,390	1.569	
		19	5	4,140	5.620	5,499	4.154	
		20	4	6.133	6.194	6.149	4.475	
		21	3	.830	.894	,856	.844	\
		22	2	.052	.007	,003	.029	
		23	1	0.000	0.000	0.000	0.000	
	·	Λve		2,717	2.813	2,863	3.754	
		o .		1,416	1.585	1,550	1.701	} i=11
	* * * * * * * * * * * * * * * * * * * *	Cν		521	564	541	.458	
				, , , , ,				
		Avé		2.303	2,381	2,423	3,179	Part Control
		d		1.625	1,776	1.760	2.066	}i=13
•		Cv .	1.	706	.746	726	650	

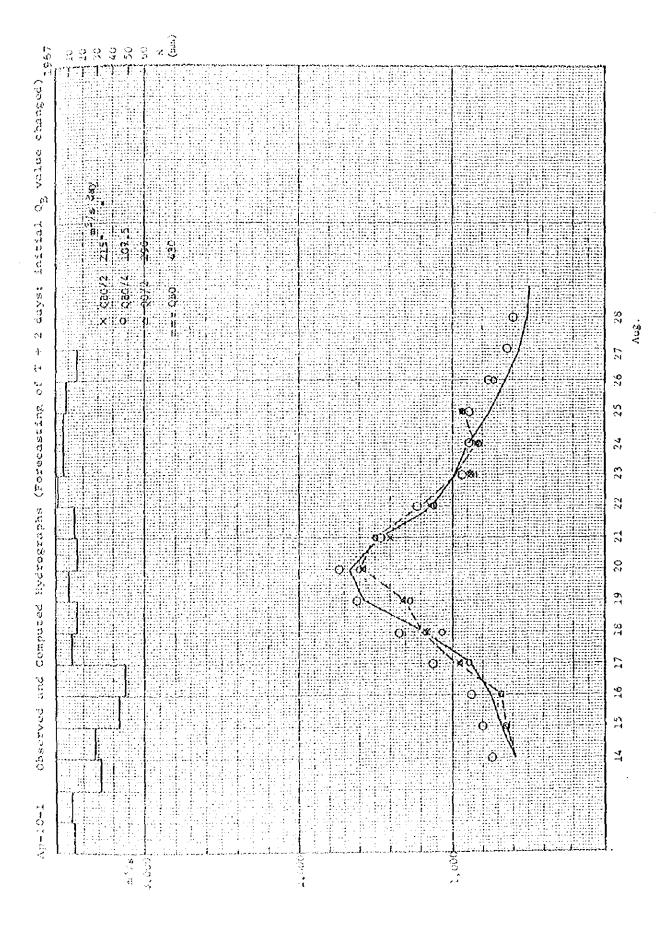
				ا ماد د ساد شد شد است است است است است است است است است است				
rcar	Month	Day	N	Case 1	Caae 2	Case 3	Case 4	
1972	7	23	22	2.558	2.495	2.495	3,401	A STATE OF THE PARTY OF THE PAR
		24	21	2.357	2.313	2.220	2.445	
		25	20	2.211	2,193	1,991	1.880	
		26	19	2.059	2.031	1.734	1,553	
	, A, 34 A,	27	18	2.608	2,485	2.493	2,175	0
		28	1,7	2.552	2,452	2,440	2.080	
		29	16	11.957	1.920	1.612	1.986	
		30	15	31.457	1.450	1.254	3,055	
- 1		31	14	1.495	1.499	1.398	3.329	
	8	1	13	1.565	1.576	1.506	3.328	
		2	12	1.700	1.719	1.664	3,474	
		3	1.1	2.673	2,699	3,101	5.140	
		4	10	2.801	2.890	2,555	3.934	
		5	9	3.350	3.453	2.842	3.245	
		6	8	5.861	5.974	6,936	6.507	
		: 7	7	10.769	10.815	18.953	15.504	
.		⊹ 8 ⊹	6	9.739	10.095	17.523	13,197	
		9	l 5	.361	.663	498	272	Ì
	re h	10	4	126	.089	1,337	644	
17.		11.	3	1,20	,151	685	289	
		12	2	.353	.383	.088	.095	
	19 19	1.3	1	0.000	0.000	0.000	0.000	1
			f		-			
		Ave	1.	2.480	2.476	2.415	3,169	
		σ		1.044	1.078	1.323	1.270	}i=15
		Cv	- 1- 31-	0.421	0.435	0.548	0.401	
1.17			441.5					
		Ave	500	2,667	2.698	3.423	3,524	
		O	ti se st	2,724	2.770	4,884	3.794	}i=22
		Cv		1.022	1.027	1.427	1.077	

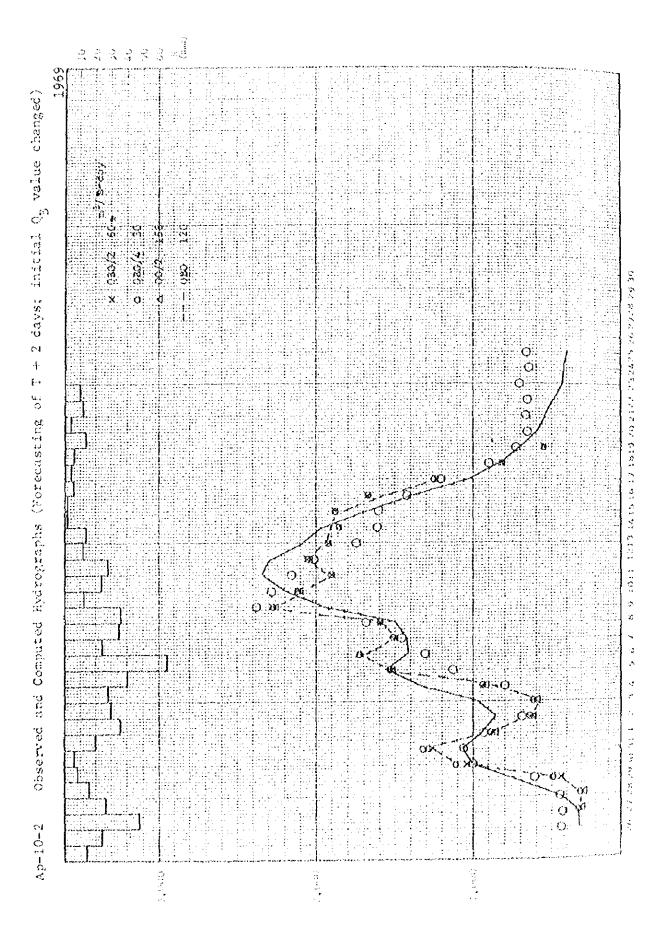

Ap-8-7 Error in Average Value Computation

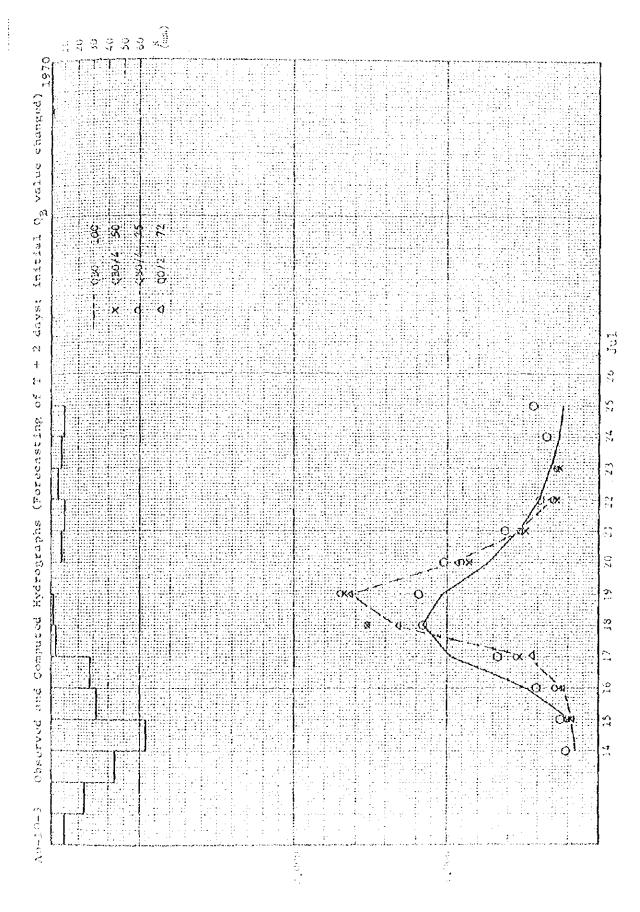

Year	Month	Day	N	Case 1	Case 2	Case 3	Case 4	
1973	6	15.	16	5.856	4.581	4.581	17.451	
		16	1.5	1.835	2,433	1.601	9.286	
		1.7	14	3.301	4.556	1.328	3.021	
Tage Section	1166	18	13	3.620	4.526	1.734	1.758	
		19	1.2	5.056	6.307	2.828	5.690	
		20	11	1.617	2.909	.683	1.885	©
		21	10	1.745	2,676	839	1.876	
- E		22	9	1.988	3.214	940	2.017	t
		23	8	3.561	5.153	2.514	4.446	
		24	7	3.191	4.326	2.578	4.758	
	\$ 1	25	6	1.532	2.307	1,224	4.151	
$\delta = -1$		26	5	526	,909	.422	1.846	
		27	4	.026	.018	042	.161	
		28	3	.024	.068	.017	, 280	
		29	2	0.000	.002	.000	.001	
		30	1	0.000	0.000	0,000	0.000	
			,					
		Ave		3.127	3,900	1.817	5.373	
		a i		1.525	1,234	1,223	5,191	}1≈8
•	100	Cv		488	,316	.673	966	
	1.3							:
		Åνe	* .	2.117	2,749	1.333	3.664	.
		σ	1 1	1.778	2.006	1.239	4.293	}i=16
		Cv		.846≒	730	930	1.172	,

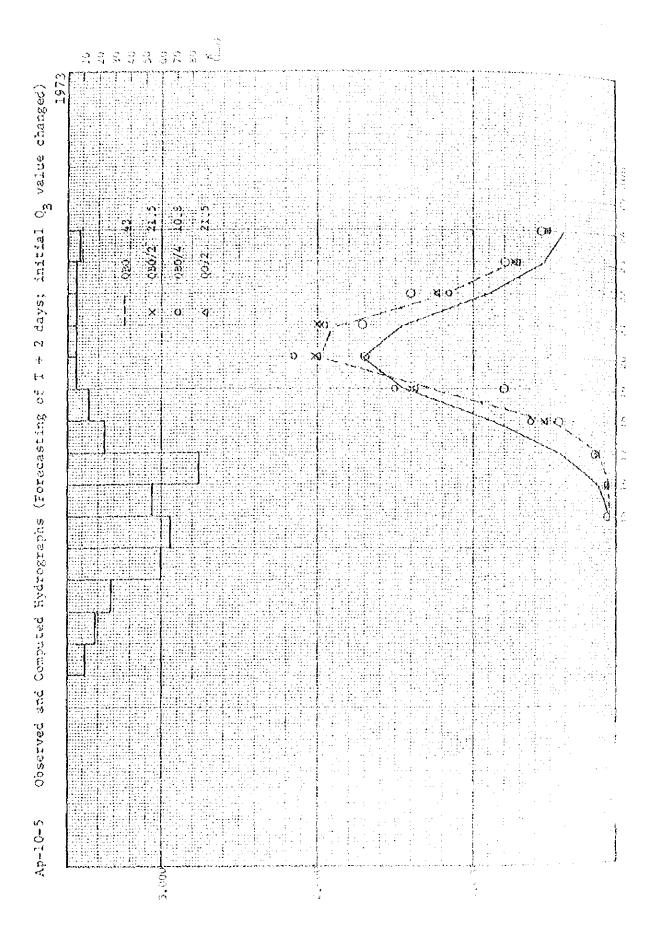

Ap-8-8 Error in Average Value Computation

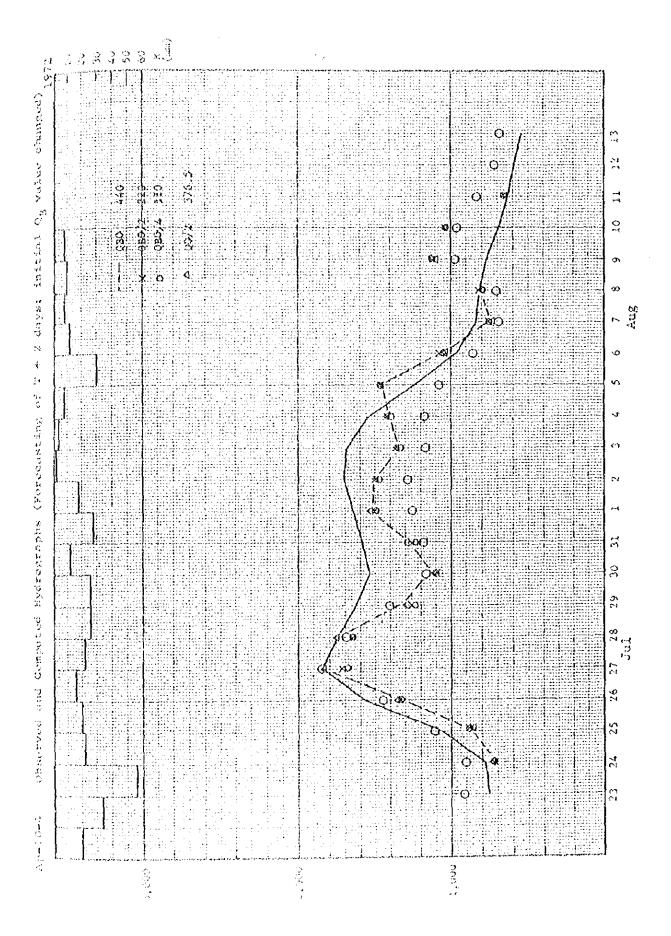

ſ									
	Year	Month	Day	N	Case 1	Case 2	Case 3	Case 4	
1	1974	8	12	20	1.051	1.034	1.034	6.735	
ł			1.3	19	1.167	1.117	1.117	7.068	
١	1.0		16	18	1.141	1,074	1,065	2.854	
١			1,5	17	1.231	1.061	1.246	4.395	
١			1.6	16	1.386	1.184	1.367	4.808	
			17	1.5	1.014	.943	1,144	3.478	
. [1.8	14	1.011	.937	1.005	1.953	
1			1,9	1.3	2,197	1.838	1,944	3.188	
1			20	12	.905	.874	.986	1,081	
1			21	1.1	.362	.442	.466	.575	
			22	10	.246	669	.456	.875	
-			23	9	,619	1.160	.891	1.469	
١			24	8	, 287	.536	368	1.053	
1			25	7	,278	1.02	.090	.679	
-			26	6	.775	. 226	,229	1.151	
Ī	18.5		27	5	, 381	.140	.177	.805	
- 1			28	4	.289	.170	.207	.332	
١			29	3	.829	.496	,620	.181	
- [30	2	.051	.053	.062	.017	
Ţ			31	_1_	0.000	0.000	0.000	0.000	
				1 .					
			Ave		.971	.990	1.007	3.041	
1.	1 7		a	** **	.505	.333	,404	2.099	
			Cv		.520	.337	401	، 690	
				1					
			Ave		.761	703	.724	2.135	
			σ		. 528	.483	.517	2,109	
			Cv.		.694	. 687	.714	.988	

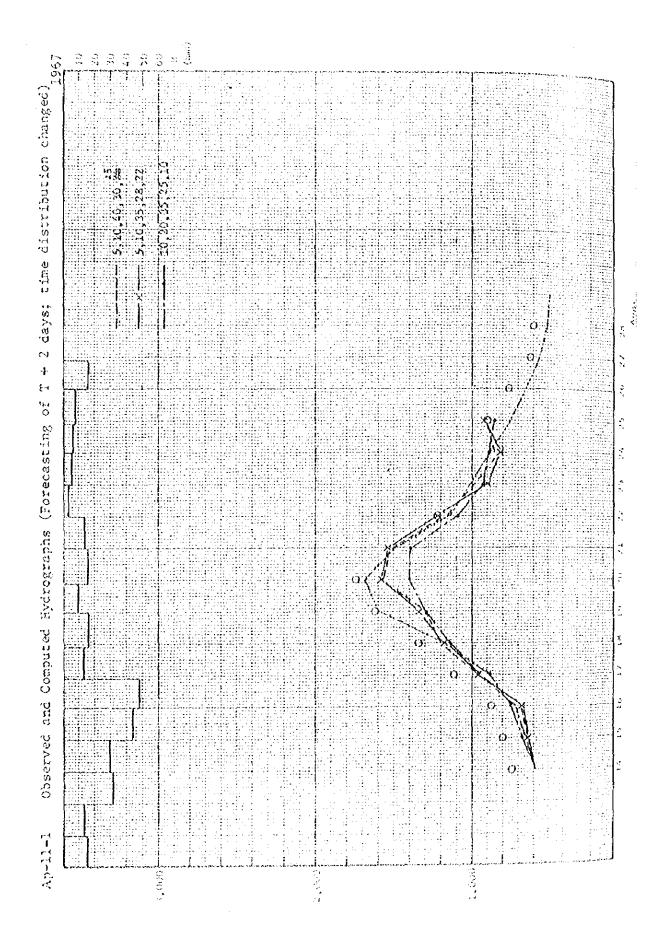

Observed and Computed Hydrographs (R=0 after T+1 day for forecasting) Ap-9-1 3,000

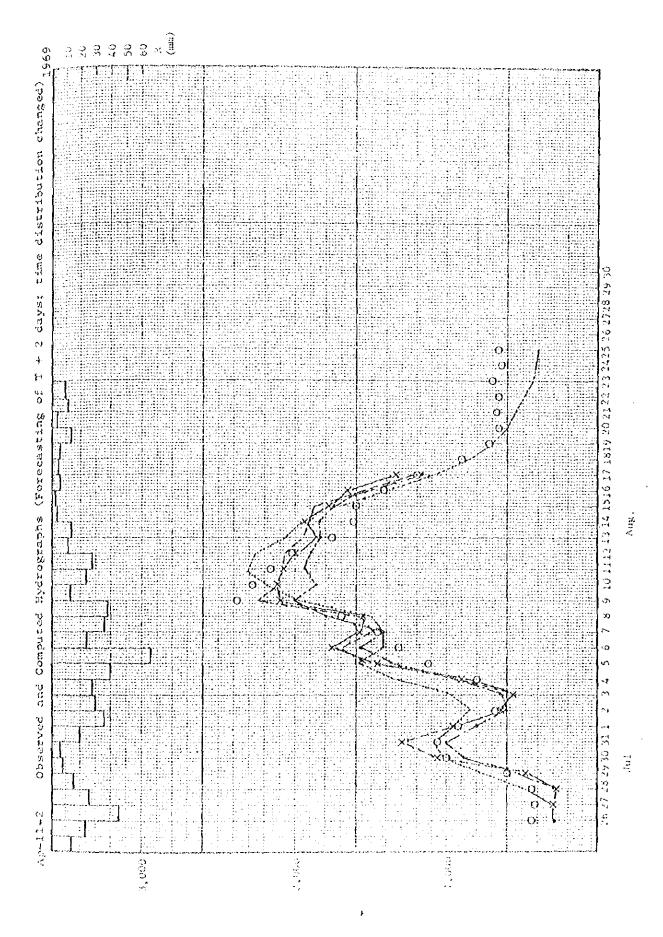


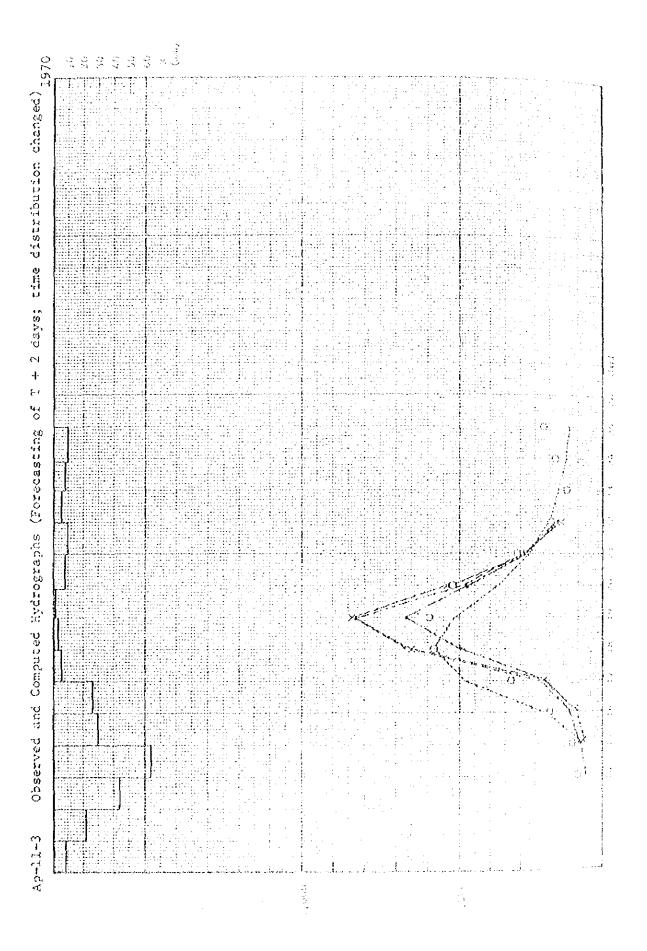


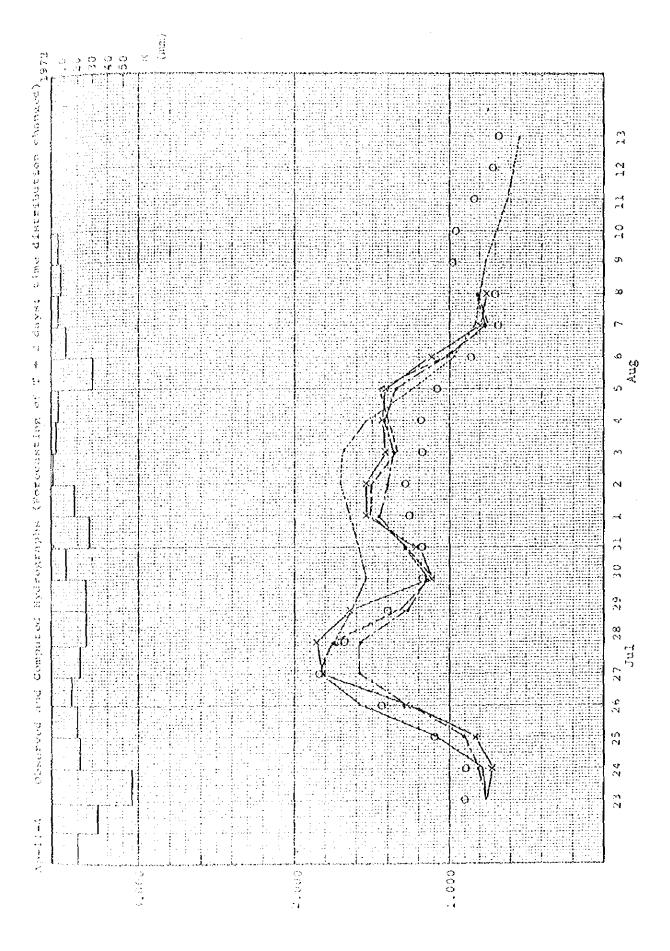


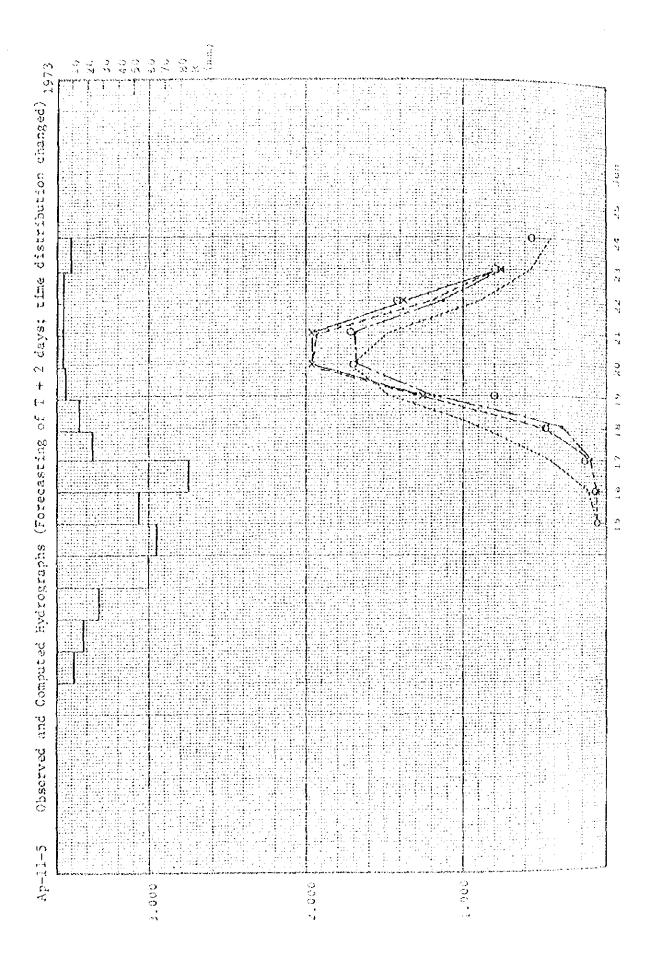












マニケコ ママコン	と、エピスの変				:	1			11 11 11 11 11 11 11 11 11 11 11 11 11	* O rd	*
3,478 A	RE ALPH RI	100	G & G	CCXSD)	α (ωκ.) (κκ.)	ETA	88 (MM)	OS (MM)		(088D)	CONSDY
_04.E0E_44	61,54,0170,30,7	20,777,78	#16,30 <u></u>	45,51	-1,79.0	50.0	30.773	21,15,	. 260, 49.	.406,00	406,00
22 89,90	65,43 1,00,25,8	1.18,46	10.79	48.84	0 48 11	.613	9,62 5	36,43	435,13	534,00	0.40 R
13 63,80	49.74.T.00.19.	63_33_45_	24.57.2	05.42	3,010	61	0.13.14	र्ज के स्व स्व	73 <i>47</i> ,60	J392,00	1392.0
06 46 7 48 ····	33_25.1.00_15_1	12_25.74	-37.54.3	310.20	-3,82,0	.61_2	0,13 22	59.65	1632,80	2143,00	2143.0
\(\frac{1}{2}\)	4.5 00 E 05.54	4 17.36	56,93_3	567.49	~6,53.0	99	9,96 28	0.4 € £ Q	2301.51	2669,00	2669,0
_00_5151_**	<u> </u>	42 22 03	45226	473.36	-5.84.0	99	6,58_310(06.42	2519,64	2993,00	2993_0
17_10,60	10.60.1.00.3.61	6.52	63,315	13,22	-6,33.0	.66	72 66.9	80 . 04	96*864	2497.17	3026,0
000	13,90 2,00 4,73	3_4.32_	61,29.5	124.51	0 \$6.9-	. 66	54 74.6	75.08	1277.56	1792,07	2723.0
	8.60-1,00-2,93	4 - 6	59,22.5	502,12	-6,28_C	.66	5.67.10	59.61	.659_46_	1360,57	2273.0
208_80	6,18.0,70.2,1	0_3.97	57,27 4	-87.74	-6.02 0	. 66	8 90.4	06,42	624,09	कि8 दिल्दा	୦ T ୧୯୯୯
22 7.90	5,53 0,70 1,8	33.04	54,36 4	74.87	O 10 0 10 10 10 10 10 10 10 10 10 10 10 1	. 66	3,65 7	82.21	634,46	ee 6011	2068.0
22_20,20	4.24.01.20.4	81 2.20	50.91	457.72	-5-64-0	46.6	9.233_6	65.75	539,99	997,32	0.000
23 34.20	0.00.00.00.0	0.0	0	437.59	-5.39.0.0		0,0	53,38	\$48 848	\$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50	(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)

*** CASm 4**	RS
	6.7 GB GB GB BETA 10.79.148.89 -1.84.0.61 24.57.244.40 -3.01.0.61 37.54.310.20 -3.82.0.71 56.93.367.49 -4.53.0.80 37.54.310.20 -7.67.0.80 37.97.605.83 -7.47.0.80 58.63.517.23 -6.93.0.80 65.72.542.56 -6.69.0.80
YEAR 1972 MONTH 7	12 83.90 79.29.1;00.31.28.18.46 12 83.90 79.29.1;00.31.28.18.46 13 63.80 60.29.1;00.23.78.33.45 14 34.30 34.30 1;00 3.03.17.36 15 15.10 15.10 1;00 3.03.17.36 15 15.00 13.00 1;00 2.13 4.28 22 17 10.60 13.00 1;00 2.79 2.55 19 8.60 8.60 1.00 2.79 2.55 22 20.20 14.14.0.70 2.84 1.30

*** MAE KLONG RIVER FLOOD SIMURATION ***

~ .	KON13 7	,		-		•			*** CASE	*** 011 11	
CAMAS CO	RE ALPH	R. (XX)	(N X X X X X X X X X X X X X X X X X X	S S S	CHSD	-05 BETA	A RS	@S (MM)	0S (CMSD)	CGSMOO	(CMSD)
63.806	_63_80_1,00_17.65_33.45_	17.65.	33,45	_24.57_	244.40	-3.01_0.61	46.15	15,1414,85		1414.85.1147.60.1392.00.1392.00	1392,00
34,30,34,30		1,00,3,46,25,74	25.74	37.54_	310.20	-3.82.0.72	30,84	34 2259,62	1832,80	2143,00	2143.00
15. OL. 25.	ممنة منجد	q	17.36	56,93	367.49	-4.53_1.00_15_10_2857_49_2301_51_		10_2851_49	2301.51	_2669,00_2659,00_	2659,00
13.00.1	13.00.1.00.		0.0.32.03.	-86.28	473.36	5.84_1,00_13,00	13.(3106,41,2519,64	2993,00	2993.00
\$09°0¥	_\$0_60_100000	0.0	4,28	113,25_	621,90	-7,67_1,00_10,60	0_10.	50 2963,96		2404,10,3026,00	3026.00
13.90 1	13.90 1.00	0 0	0.0	103.81	765.89	-9,44 £.00	- 1	13.90_2404.60_1950_40_2716.28_	050 .40	2716,28	2723,00
8.60	8.60.1.00.00.0	0.0	0.0	95.03		712,02 -6.78 1,00-	1	8,60,1611,15,1306,82,2018,84	.1306,82		2171.00
80	8.806.16.0.700.0.	0.0	0.0	86.83	- 1	665,358,20_1,00	6,16	16 1222,50	991,58	1656.93	1538,00
၂ (၁) ရ	5.53.0.20	0	0 0	79.13	624.51	-7.70 1.00		5.53_1185.80	961.81	_1586_32_1068_00	.068.00
22_20.20_3	24_14_0_70_0.0_	0.0	0.0	71.87	588.45	-7.25_3.00_14.14_1009.25818.61_1407.07	5-24-0	14 1009,25	.818.61	1407,07.	839.00
23.34.20	0.0.0.700.0.	0.0	0.0	0.0	556.39_	6,86_0,0_	l		680.44	1256,83	.753.00

THE STATE OF COURT OF THE STATE
--

*** MAE KLONG RIVER FLOOD SIMURATION ***

YEAR 1972	1972	MONTH 7	٠,٠								[*** CASE	*** CASE 10 ***	*
DAYE	α , , , , , , , , , , , , , , , , , , ,	RAN CXXX	ALPH RI	RICKAN	CXX)	G WW)	ALPH RI QI B.P. QB		BETA	- QB BETA RS OS OS OC OC CMSD) CCMSD) (CMSD) (CMSD) (CMSD)	SS	OS (CMSD)	CGSPO	(CXSD)
55	15, 10	13,63	00 7	0.0	17.36_	56.93	367.49	4.53	1.00	13,63,282	37.49	2301.51	2669_00	15_15_10_13_63_1_00_0_0_17_36_56.93_367_494.53_1.00_13.63_2837.49_2301.51_2669_00_2669.00_
16.	13,00	14.	1,00	0.0	12.03	86,28	473,36	-5,84	1.00.	11,74 310	16,41	2519.64	2993,00	1613.0011_74_1_000.012.0386_28_473.365.84_1.0011.74_3106.41_2519_64_2993.00_2993.00_
341	30,60	9.57	100	d	4.28	113.25	6.21_90_	-7.67	7.00	9.57.29	53.96	2404,30	3026.00	IZ ÎO.60 9.57 Î.00 0.0 4.28 113.25 621.90 -7.67 1.00 9.57 2963,96 2404,10 3026.00 3026.00
84	13,90	12,55	1.00	0.0	0.0	113,22	765.89	44.6-	1.00	12,55,240	09.40	1950,40	2716,28	18 13,90 12,55.1.00 0.0 0.0 113,22 765.89 -9.44 1.00 12,55 2404.60 1950.40 2716,28 2723.00
6.	8.60	7.76	00	0.0	0.0	90.55	765.69	44.6-	12.00	19 8.60 7.76 1.00 0.0 0.0 0.0 90.55 765.69 -9.44 1.00 7.76 1646.02 1335.10 2100.79 2171.00	.6.02	1335,10	2100.79	2171.00
** 20	8 80	6 16	07.0	0.0	0 0	82.62	642.72	1,92	1200	6.16 110	33,78	395.28	3533,00	** 20 8.80 6.16 0.70 0.0 0.0 82.62 642.72 -7.92 1.00 6.16 1103.78 895.28 1538.00 1538.00
22	7.90-	5.53	-07.0.	0.0	0.0	75.17	-604.56	7.45.	1.00-	5,53,107	73,63	870.83	1475.40	21 7.90 5.53 0.70 0.0 0.0 75.17 604.56 -7.45 1.00 5.53 1073.63 870.83 1475.40 1068.00
22.	_20,20.	_14_14_	0.70	0.0	0.0-	68,13	570.75	7-04	1.00-	14.14 91	06.61	746.14	1316,89	22 20,20 14,14 0,70 0,0 0,0 68,13,570,75 -7,04,1,00 14,14 919,90 746,14 1316,89, 839,00
23	متي عق	ģ	0.10	9.0	0.0	0 0	540.56	-6.66	q	0.0	93,59	643,69	1184.25	23 34.20 0.0 0.0 0.0 0.0 540.56 -6.66 0.0 0.0 793.59 643.69 1184.25 753.00

76AR 1972 MONTH 5ATE R RE AL 16 13.00 6.50 1 17 10.60 6.93 1 18 13.90 9.08 7 19 8.60 5.62 1		1 1									
13.00 6.50 13.00 6.93 10.60 6.93 13.90 9.08		1 1	•			٠.	. *	÷ .	*** CASE	호 유	*
13.00 6.50 10.60 6.93 13.90 9.08 8.60 5.62	0.0-00		S.P. G.Y.	(CMSD)	8 8 8 X X	BETA	S S S	SS (MM)	(CRSD)	0S 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C 0C	(GSWD)
10.60 6.93 13.90 9.08 8.60 5.62	0.0 -00.	- (12,03_86,28_473,36_		-5.84 1.00	- 1	8.50_3	106.41	2519.6	8.50_3106.41_2519.64_2993.00_2993.00	2993,00
13.90 9.08 8.60 5.62		ł	4.28_113.25_621.907.67_1.006.93_2963.96_2404.10_3026.00_3026.00	06-1	7.67_7.	00	6.93 2	963.96	2404.3(3026,00	3026.00
6,60_5,62	0000	0 0	13,22,76,59	1	44.6=	1.00	9.08.2	£04.60.	3950-4	2_2716_28	9.08_2404.60_3950_40_2716_28_2723_00_
	1,00_0.0	0.0	90,55_765,699,44_1,00_	69.5	9.44_1		5,62 1	546.02	1335,1(2,2100,79	5.62_1646.02_1335.10_2100.79_2171.00_
20 8.80 4.46.0	4.46.0170.044	0.0	50,92_642,727,92_1,00	2,72	7.92.1	000	4.46	103.78	895.2	3_1538,00	4.46_1103.78895.28_1538.00_1538.00
** 21 7.90 5.53 0.70	20 0 0	0.0	45 52 437.63	- 1	25.40 3.00		5.53	777 17	630.3	7 1068.00	00.8601.00.801.1068.00.1068.00
22 20,20 14,14_0,	24.14_0_30_0_0	o a	40,49,407,85,5,03,1,00	7.85	5.03_1.	- 1	4.14	573.53	546.3.	954,16	14.14 673,53 546,31 954,16 839.00
23_34,20_0,0_0	0,70_0,0	a a	0.0 38	82 93	4.71.0.0	0	0 0	609,25	494,17	7_876,10	753,00.

*** MAG KLONG RIVER FLOOD SIMURATION ***

YEAR 1972 *** CASE 20 ***
DATE R RE ALPH RI OI B.P. QB -QB BETA RS QS QS QC QO CMSD, CMM3 CMM3 CMM3 CMM3 CMM3 CMM3 CMM3 CMM
11 101.40 90.43 0 70 61.68 7.73 -16.30 145.51 -1.79 0.37 28.76 321.15 260.49 406.00 466.00
12_83.90_83.90 1.00_46.87_21.62_13.38_148.891.84.0.42_37.03 536.43 435.11_584.00 584.00
13 63,80 63,80 100 35,64 37,33 30,62 256,25 -3,16 0,44 28,16 1400,24 1135,75 1392,00 1392,00
14 34 30 34 30 1 00 16,97 42,50 56,43 335,71 -4.14 0,51 17,33 2228,17 1807,29 2143,00 2143,00
15 15,10 15,10 1,00 6,27 33,87 92,41,470,28 -5,80,0,58 8,83,2710,76,2198,72,2669,00,2669,00
** 16 13.00 13.00 1.00 5.40 17.49 101.87 652.05 -8.04 0.58 7.60 2886.11 2340.95 2993.00 2993.00
17 10.60 10.60 1.00 4.40 8.15 101.37 701.44 -8.65 0.58 6.20 2219.85 1800.54 2501.98 3026.00
18 13,90 13,90.1,00 5,77 5,27 98,03 698,74 8,61.0,58 8,13 1402,54 1137,61 1836,35 2723,00
38 8 60 8 60 3 57 5 01 94 65 680 94 = 8 40 0 58 5.03 931,51 755,56 1436,50 2171.00
20 8.80 6,16.0,70 2,56 4.84 91,31 663,39 8,18.0,58 3,60 714,77 579,76 1243,14 1538,00
21 7,90 5,53.0,70 2,30 3,71 87,04 646,49 -7,97 0,58 3,23 693,31 562,35 1208,84 1068,00
22 20.20 14.14 0.70 5.87 2.68 82.01 625.56 -7.71 0.58 8.27 590.09 478,62 1104,18 839.00
23 34,20 0,0 0,10 0,0 0,0 0,0 601,72 -7,42 0,0 0,0 490,49 397,84 999,56 -753,00

VEAR 1972 MONTH 7								*** CASE	20 ***	
DATE R RE ALPH RI (MM)	1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &	B D	©8 (CMSD)	(MX)	BETA	RS (MM)	(MM)	0S 	000 Y	CASD)
12_83.90_83.90_1_00.39_11_21.62_13_38_148.89_	1.21.62	13,38,1	48.89	-3-84 <u>-</u> 0	42 4	.4.79	536,43	1.84_0.4244.79536.43435_11_	584.00.584.00	584,00
13 63,80 63,80 1,00 29,74,37,33,30,62,256,25	74_37,33	30,62.2		3_16.0,4434.06	44		400-24	1135.75	1400,24 1135,75 1392,00 1392,00	1392,00
14 34 30 34 30 1,00 13,34 42 50 56 43 335 71	34.42.50	56.43.3	- 1	44.24.0	26	20.96	228 11	1807_29	-4.14.0.61.20.96.2228.17.1807.29.2143.00.2143.00	2143,00
15 15 10 15.10 15.00 4.42 33.87 92.41 470.28 -5.80 0.71 10.68 2710,76 2198,72 2669,00 2669,00	+2_33.87_	92,41.4	70.28	-5.80_0	. 72	10.68	710.76	2198,72	2669,00	2669,00
16_13.00_13.00.1.00.381.17.49.126.49.652.058.04.0.71	31_17.49_1	126,49,6	52,05	-8.04.(17.	61.6	1886,11	2340,95	2886_11 2340,95 2993,00	2993,00
** 17 10.60 10.60 1.00 3.10 6.02.122.05.846.35 -10.46.0.71	6.02	122.05.8	46.35	30.46.0	H (7.50	684 78	2:77.65	7.50 2684 78 2177 65 3026.00 3026.00	3026_00
18_13,90_13,90_1,00_4,07_3,72_115,66_819,76_410,11_0,71	37.5.72	115.66_8	19.76	10.11.	1.72	9.83.1	696,28	1375,87.	9.83.1696.28.1375.87.2195.63.2723.00	2723.00
19 8.60 8.60 1.00 2.52 3.53 109.56 780 30 +9.62 0.71	52_3.53	109.58_7	30.30	-9.62.(.71	6.08	126.61	913,80	6.08_1126.61_ 913.80_1694_10_2171.00_	2171,00
20 8.30 6,16.0,70 3.30	1,80 5,41 103 81 744,48 48 -9,18 0,71	103 81 7	84 45	-9-18	77	4.36_	864.47	701,18	4,36_864,47_701,18_1445,66_1538_00_	1538.00
21 7,90 5,53 0,70 1,62 2,61 97,6	52_2.61	97.65_7	5_712.058.78_0.71	-8.78	3.72	3.91	838,52	680,13	3,91_838,52_680,13_1392,18_1068,00_	1068,00
22_20_20_14_14_0_70_4_14_1_89_	14_1,89_	45.17_678.94	į	-8.37.(17.0	10.00	713.68	8.37.0.71 10.00 713.68 578,87.1257.81	1257.81	839,00
73 34,20 0,0 0,70 0,0	0 0	0	645,87	=7.96.0.0	0	0 0	593.21	481 16	481 16 1126 97	753.00

YEAR 1972 MONTH	MONITY A
DATE R RE (MM) (MM)	ALPH RI GI B.P. QB BETA RS QS QS QC QO CMSD (MM) (MM) (CMSD) (CMSD) (CMSD) (CMSD)
13_63.80_63_80	13 63.80 63.80 1.00 21.56 37.33 30.62 256.25 -3.16.0.44 42.24 1400.24 1135.75 1392.00 1392.00
14, 34,30, 34,30	14_34,30_34,30_1_00_8,30_42,50_56,43_335,714,14_0,61_26,00_2228,17_1807,29_2143,00_2143,00_
01,51,01,51,51	10 1.00 1.86 33.87 92.41 470.28 -5.80 0.88 13.24 2710.76 2198,72 2669.00 2669.00
1613_00_13_00	16_13_00_13_00_11_00_11_60_17_49_126_49_652_058_04_0_8811_40_2886_11_2340_95_2993_00_2993_
09,01,00,60,10,60	lo.60_10_60 I.00_1.30_6.02_149.92_848.3510_46 0.889.30_2684_78_2177.65_3026_00_3026_00_
06 21 06 21 81 82	13.90 100 171 1,56 138,951016,65-12,53.0,88 12,19,2103,71,1706,34,2723,00,2723,00
398.608.60	8.60.1.00_1.06_1.48_128,92_934.0511,52.0.867.54_1397.21_1133,29_2067,34_2171,00_
20_8.806.16	16 0.70 0.76 1.43 119,70 864,43 10.66.0.88 5.40.1072,11 869,60 1734,02 1538,
£2,200,75	53_0_70_0_68_1_10_10_87_804_9992_0_884.85_1039_92843_49_1648.48_1058.00_
22 20.20 14.14	14_14_0_70_1_174_0.79_102_40_751_949.27_0.8812.40885,09717,91_1469,85839,00
23_34,20_0.0	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.68.0.0.0.0

*** MAE KLONG RIVER FLOOD SIMURATION ***

VEAR 1972 MONTH 7			*** CASE 20 ***
DATE R RE ALPH RI GI B.P. QB (MM) (CMSD)	-08 BETA RS (MM) (MM)	CMMD	65 0C 00 0C 00 0C 00 0C 0CMSD)
14_34.30_34.30_1.00_7.00_42.50_56.43.335.714.14_0.61_27.30_2228.17_1807_29_2143.00_2143.00	-4.34-0.63-	27.30_2228.17	1807_29_2143_00_2143_00_
15 10 15 10 15 10 1 10 2 10 2 3 87 92 41 470 28 -5.80 0.88 13,91 2710,76 2198,72 2669,00 2669,00	. +5,80,0,88.	13,91 2710,76	2198,72 2669,00 2669,00
16 13.00 13.00 1.03 17.49 126.49.652.05 -8.04.0.92 11.97 2886.11 2340.95 2993.00 2993.00	£8,04.0,92	11.97.2886.11	2340_95_2993_00_2993_00_
17_10.60_10.60_1.00_0.64_6.02_149_92_848_3510.46_0.929.76_2684_78_2177.65_3026.00_3026.00_	-10.46_0.92_	9.76_2684.78	_2377,65.3026,00.3026,00_
18 13,90 13,90 1,00 1,10 1,56,145,291016,65,-12,53,0,92,12,80,2103,71,1706,34,2723,00,2725,00	-12,53.0,92	12,80 2103,71	1706.34 2723.00 2723.00
** 18 8.60 8.60 1.00 0.68 0.95 134 15 980.89 -12.09 0.92 7.92 1467.26 1190.11 2171.00 2171.00	12.09.0.92	7,92,1467,26	1190-11-2171-00-2171-00-
20_8.80_6.16_0.70_0.49_0.92_123.97_900.0311.10_0.92_5.67_1125.86_913.20_1813.23_1538.00	-11.10.0.92	5.67_1125.86	913_20_1813:23_1538,00
21 7.90 5.53.0.70.0.44.0.71.114.42.832.01.10.26.0.925.09 1092.07 885.79 1717.80 1068.00	_10,26_0,92	5.09 1092.07	885,79 1717,80 1068,00
22 20,20 14,14 0,70 1,12 0,51 105,40 772,84 -9,53 0,92 13,02 929,47 753,90 1526,74 839,00	-9.53.0.92	13.02 929 47	753,90,1526,74,839,00
<u> 73 34,20 0,0 0,70 0,0 0,0 0,0 720,85 -8.89.0.0 0.0 772,59 626,65 1347,50 753.00</u>	-8.89.0.0	_0.0772,59	626,65 1347,50753.00

*** MAE KLONG RIVER FLOOD SIMURATION ***

VFAR 1972 **** CASE **** **** CASE **** CASE **** CASE **** CASE *** *** CASE *** CASE ***	1	so (SS)	-00-69	33,00-	26.00_	23,00-	72.00-	38.00_	58.00	700*65	53,00
VFAR 1972 MONTH 7 *** CASE 2 0ATE R R ALPH RI GI E.P. GB -0B SETA RS 0S xs 15 10 10 15 10 1:00 3.30 33.87 92.41 470.28 -5.80 0.88 11.80 2710.76 2198.72 266 15.10 15.10 1:00 3.30 33.87 92.41 470.28 -5.80 0.88 11.80 2710.76 2198.72 266 15.10 15.10 1.23 0.76 2198.72 269 15.00 1.00 2.84 17.49 126.49 652.05 -8.04 0.92 10.16 286.11 2340.95 299 15.00 1.00 2.32 6.02 149.92 846.35 -10.46 0.72 8.28 2684.78 2177.65.34 272 16.13 0.16 1.23 40.95 299 16.10 2.82 268.11 2340.95 299 16.10 2.82 268.11 2340.95 299 16.10 2.12 20.78 11.00 3.71 176.39 11.217 16.13 0.70 1.21 21.39 27.63 42 -9.41 0.78 4.81 954.97 774.58 153 16.13 0.70 1.21 21.39 299 16.10 2.78 11.05 27.88 39 639.47 132 16.10 2.70 1.30 2.71 26.139 299 17.13 2.72 20.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00	*	cos (Cos	9.00 26	3,00 299	6.00_302	3.00 272	1.00.237	8.00.15	5,34_106	5.52_8	1.26 7
ΥFAR 1972 MONTH γ ΠΑΤΕ R ALPH RI GI E.P. GB -GB BETA RS GS GS <td>ASE 2</td> <td>8 X X X</td> <td>72_266</td> <td>95 299</td> <td>65 302</td> <td>,34_272</td> <td>11,217</td> <td>58 153</td> <td>33_147</td> <td>47_132</td> <td>53 118</td>	ASE 2	8 X X X	72_266	95 299	65 302	,34_272	11,217	58 153	33_147	47_132	53 118
VFAR 1972 MONTH 7 DATE RE ALPH RI GI E.P. GB - GB BETA RS GS 15.15.10 15.10.100.3.30.33.87.92.41.470.285.80.0.88.11.80.2720.7 16.13.00.13.00.1.00.3.30.33.87.92.41.470.285.80.0.88.11.80.2720.7 16.13.00.13.00.1.00.3.30.33.87.92.41.470.285.80.0.88.11.80.2720.7 18.13.90.13.90.1.00.3.04.1.56.145.291016.65.12.53.0.78.10.86.2103.7 18.13.90.13.90.1.00.3.04.1.56.145.291016.65.12.53.0.78.10.86.2103.7 22.20.20.14.14.0.70.1.21.1.95.99.00.724.018.93.0.78.4.81.954.9 23.34.20.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	**	&S CASE	6.2198	1 2340	8_2177.	1_1706.	6_1190	7 774	0_751.	9_639.	2 531
YEAR 1972 MONTH 7 DATE RE ALPH RI GI B.P. GB -GB -GB BETA RS 15 15.10 15.10 1.00 3.30 33.87 92.41 470.28 -5.80 0.88 11.80 16 13.00 1.00 2.84 17.49 126.49 652.05 -8.04 0.92 10.16 17 10.60 1.00 2.32 6.02 149.92 848.35 -10.46 0.78 10.16 18 13.90 1.00 3.04 1.56 145.291016,65 -12.53.0,78 10.86 19 8.60 1.00 3.04 1.56 145.291016,65 -12.53.0,78 10.86 20 8.60 1.00 3.04 1.56 14.95 99.00 178 4.81 21 7.00 8.60 1.21 1.21 1.95 99.00 12.09 178 4.81 22 20.20 14.14 0.70 3.09		OS (MM)	2710.7	2886,1	2684.7	2103.7	1467.2	956	926,3	788.3	655,3
YEAR 1972 MONTH 7 DATE R R ALPH RI QI E.P. QB -QB BETA 15 15.10 15.10 10.00 3.30 33.87 92.41 470.28 -5.80 0.88 16 13.00 13.00 1.00 2.84 17.49 126.49 652.05 -8.04 0.92 17 10.60 1.00 2.32 6.02 149.92 848.35 -10.46 0.78 18 13.90 1.00 3.04 1.56 145.291016,65 -12.99-0.78 19 8.60 1.00 3.04 1.56 145.291016,65 -12.09-12.53 0.78 19 8.60 1.00 3.04 1.56 145.291016,65 -12.09-12.53 0.78 21 7.90 8.60 1.00 1.21 1.95 99.00 72.401 -8.93.0.78 22 20.20 14.14 0.70 3.09 1.41 91.95 68.07 78 29.00 78 78 29.00 78 78 78		RS (MM)	11.80.	10.16	8.28	10.86	6.72	4 81	4.32	11.05	0.0
YFAR 1972 MONTH 7 DATE R ALPH RI GI E.P. GB - GB 15 (MM) (MM) (MM) (MM) (MM) (CMSD) (MM) 16 13.00 13.00 1.00 2.84 17.49.126.49.652.05 - 8.0 16 13.00 13.00 1.00 2.84 17.49.126.49.652.05 - 8.0 17 10.60 10.60 1.00 2.32 6.02.149.92.848.35 - 10.46 18 13.90 1.00 3.04 1.56.145.291016.65 - 12.5 18 13.90 1.00 3.04 1.56.145.291016.65 - 12.5 19 8.60 1.00 3.04 1.56.145.291016.65 - 12.0 22 20 23 34.20 - 3.00 1.21 1.95 97.763.42 - 9.4 23 34.20 0.70 1.21 1.95 99.00 724.01 - 8.9 23 34.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00		887.A	0-0-88	1.0.92	5 0 73	3.0.78_	9_C.78_	0.78	3_0.78_	87.0-6	0 0
YEAR 1972 MONTH 7 DATE R RE ALPH RI GI E.P. GB 15 15.10 15.10 1.00 3.30 33.87 92.41 470.28 16 13.00 13.00 1.00 2.84 17.49 126.49 652.05 17 10.60 10.60 1.00 2.32 6.02 149.92 848.35 18 13.90 13.90 1.00 3.04 1.56 145.291016.65 19 8.60 8.60 1.00 3.04 1.56 145.291016.65 22 20 20 14,14 0.70 1.21 1.95 99.00 724.01 23 34.20 0.0 0.0 0.0 0.0 0.0 0.0 649.72		(KK)	-5.8(-8.04	-10.4	.412,5	-12,0	7 6-	6.8	3.44	-8.0
VFAR 1972 MONTH 7 DATE R R RE ALPH RI 15 10 15 10 15 10 15 10 16 13 16 13 16 13 16 13 17 10 18 13 18 13 18 13 18 13 18 13 18 13 18 13 19 8 60 13 19 8 10 13 21 70 22 25 20 20 21 20 22 20 23 34 24 20 25 34 26 30 27 30 20 30 21 30 30 30 <td></td> <td>(CKSD)</td> <td>470.28</td> <td>652,05</td> <td>848.35</td> <td>1016,65</td> <td>980,89</td> <td>763.42</td> <td>724.01</td> <td>-686.05</td> <td>549.72</td>		(CKSD)	470.28	652,05	848.35	1016,65	980,89	763.42	724.01	-686.05	549.72
VEAR 1972 MONTH 7 DATE R RE ALPH RI GI 15 15.10 15.10 1.00 3.30 33.87 16 13.00 13.00 1.00 2.84 17.49 18 13.90 13.90 1.00 3.04 1.56 19 8.60 8.60 1.00 3.04 1.56 21 7.90 5.53 0.70 1.21 1.95 22 20.20 14.14.0.70 3.09 1.41 23 34.20 0.0 0.70 0.0 0.0 0.0		0 (X X)	92,41	126,49	149.92	145,291	112,83	105.97	99.00	91,95	0
VEAR 1972 MONTH 7 DATE R RE ALPH RI 15 15.10 15.10 1.00 3.30 16 13.00 13.00 1.00 2.84 18 13.90 13.90 1.00 2.37 18 13.90 13.90 1.00 3.09 22 20 20 14.14 0.70 3.09		((KK)	33.87_	64.27	6.02	1.56	26.0	2.55	.38° t	142	0 0
YEAR 1972 MONTH 7 DATE R RE ALPH 15 15 10 15 10 1 00 16 13 00 13 00 1 00 18 13 90 13 90 1 00 18 8 60 8 60 1 00 70 21 7 90 5 53 0 70 22 20 20 14 14 0 70		W.Y.	3,30	2.84	2 32	3.04		135	1.2	3.09	0
VEAR 1972 MON DATE R RE 15 15 10 15 1 16 13 00 13 0 16 13 00 13 0 18 13 90 13 8 19 8 60 8 6 21 7 90 5 5 22 20 20 14	TH 17	AL PH	00.1.00	٥٠.٤ <u>.</u> ٥٥	مهر تر مر	00 T 06	00.1.00	16.0.70	53.0.70	14.0.70	or o
VEAR 1972 15.14 15.15.14 16.13.06 18.13.96 18.13.96 22.20.26 23.34.26	XO L	i I	5.25.1	JC	3 20 6	0_13.5	8 6	0 6.1	2.5.0	014_1	70 0
YFAR 0A4E 15 15 15 22 22 22 22 22	1972		35, 10	13,00	10.6)6 et	8 6	8	16.2	20.2	34.2
	YFAR	DATE.	15.	36.	je le-	*1	61	22.20	27	22	23

VEAR 1972 MONTH 7 TO CMSD C		*** MAE KLONG RIVER FLOOD SIMURATION ***	本本本	
R RE ALPH RI GI E.P. GB -GB BETA 13.00—13.00 1.00—4.61—6.02_149.92 848.35 -10.46 0.78 13.90—13.90 1.00—4.61—6.02_149.92 848.35 -10.46 0.78 13.90—13.90 1.00—3.74—0.95 112.83 980.89 -12.09.0.57 8.60—8.60—1.00—3.74—0.95 112.83 980.89 -12.09.0.57 7.90—5.55 0.70—2.68—2.55—64.73.763.42—9.41_0.57 20.20—14.14—0.70—6.14—2.81—58.70_506.73—6.25_0.57 34.20—0.0—70—0.0—0.0—0.0—484.46—5.97.0.0				CASE
16 15.00 13.00 1.00 5.65.17.49.126.49.652.05 -8.04.0.92 17 10.60 10.60 1.00 4.61 6.02.149.92 848.35 -10.46 0.78 18 13.90 13.90 1.00 3.74 0.95.112.83 980.89 -12.09.0.57 19 8.60 8.60 8.60 1.00 3.74 0.95.112.83 980.89 -12.09.0.57		RE ALPH RI GI B.P. (MM) (MM)	69-	OS OS OC (MM) (CMSD) (CMSD)
17 10.60 10.60 1:00 4.61 6.02 149.92 848.35 -10.46 0.78	16_13.	.0013.00_1.005.65_17.49_126.49_65	32.058.04_0.92_	7,35_2886,11_2340,95_2993,00_2993,00_
18 13.90 13.90 100 56.145 291016.65 12.53 0.57 19 6.60 8.60 1.00 3.74 0.95 112.83 980.89 12.09 0.57 70 8.80 6.16 0.70 2.68 2.55 64.73 763.42 -9.41 0.57 ** 21 7 90 5.55 0.70 2.68 2.88 62.14 524.11 -6.46 0.57 22 20 20 14 2.81 58.70 506.73 -6.25 0.57 23 34.20 0.0 </td <td>17_10</td> <td></td> <td>18.35 -10.46 0.78</td> <td>5,99 2684,78 2177,65 3026,00 3026,00</td>	17_10		18.35 -10.46 0.78	5,99 2684,78 2177,65 3026,00 3026,00
8.60	18 13	13,90	6.65 -12.53 0.57	7.86_2103_71_1206,38_2723_00_2723_00_
8.80 6.16 0.70 2.68 2.55 64.73.763.42 -9.41.0.57 7.50 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5		-8.60-1.00-3.74-0.95-112.83	10.8912.09.0.57	4.86 1467,26 1190,11 2171,00 2171,00
7 90 5,55 0,70 2,40 3,88 62,14 524,11 -6,46 0,57 20,20 14,14 0,70 6,14 2,81 58,70 506,73 -6,25 0,57 34,20 0,0 0,0 0,0 0,0 484,46 -5,97.0,0	70 8.	.80. 6.16 0.70 2.68 2.55 64,73.76		3.48 .954.97 774.58 1538.00 1538.00
20.20_14_14_0_70_6_14_2_81_58_70_506_736_25_0_57 34.20_0_0_70_0_0_0_0_0_0_0_0_484_465_97_0_0_				3.13_670,55_543,89_1068_00_1068_00_
34.20 0.0 0.70 0.0 0.0 0.0 484.46 5.97.0.0 0.0 474.38 384.78 869.24	T I	14,14_0_70_6_14_2,81	16.73 -6.25_0.57_	8,00_570_72_462,91969,64_839,00_
		0.0 0.0	4.465,97.0.0	474,38384,78869,24

** MAE KLONG RIVER	FLOOD SIMURATION ***		
YEAR 1972 MONTH 7			*** CASE 50 ***
DATE R RE ALPH RI	GI B.P. QB - QB BETA	FA RS @S	08 0C 00 00 00 00 00 00 00 00 00 00 00 00
11.101.40.70.98.0.70.40.485.2718.15.145.51	5.27 -18.15.145.51 -1.79.0.46	46_30.50_321.15260.49_	5260.49_ 406.00_ 406.00
1283_9083_90_1_00_45_07_18_41_	18.41 8.85 143,95 -1.77.0.43 38.83	43_383_542,53_	
13 63.80 63.80 1,00 36,38.27	27.51 18.97.235.88 -2.91 0.43	- 1	27.42 1425.35 1156.12 1392.00 1392.00
1434.3034.30.1.00.16.57.39.39.44.43.2	39.39.44.43.283.833.50.0.52		17.73_2292,13_1859,17_2143,00_2143_00_
	34.10_83.21_402.074.96_0.59		2266,93,2669,00,2669,00
** 16_13_00_13_00_100_5_30	5.30.47.43.93.13.607.32. +7.49.0.59		7.70 2941.25 2385.68 2993.00 2993.
	7.98 93.03.655.67 -8.08_0.59	- 1	5.28_2242.34 1818.79 2474.45 3026.00_
13.5013.90.1.005.66_	5.17_90.12_655.1448.08_0.59_	98_24_1409_59	1145,53 1798,47
19 8.60 8.60 1,00 3.50	4.92 87 14 640 61 -7.90 0.59	9_510_946.53	767,74_1408,35_
	4.7584.17.626.047.72.0.59	. !	3.65724.36587.54_1213_58_1536.00
_ 217.90 5.53 0.702.25_	3.64_30.27_611.847.54_0.59	9 3.28 _ 702.62	569,90 1181,74 1068,00
22 20-20 14 14 C 70 5.76	2.63_75.58_593.66_=7.32_0.59	598.01	485.05 1078.71 839.00
	0.0 0.0 572.55 -7.06.0.0	0.0	497.07_403.18_975.73. 753.(

### MAE KLONG RIV ### MAE KLONG RIV ### MAE KLONG RIV #### MAE KLONG RIV #### MAE KLONG RIV ####################################	IG RIVER FLOOD SIMURATION ***	#** CASE 30 *** RE ALPH RI NI B.P. QB -QB BETA RS QS QC GO (WM) (WM) (WM) (CMSD) (CMS	3.56 17.42 119.19 60	7 68 2742 15 2224 19 10 07 1723 78 1398 18 6 23 1157 51 938 86	\[\text{70} \] \text{30} \] \(\text{32} \) \(\text{52} \) \
The party are not the first are and the for the first are	₩ ₩ ₩	2 MONT RE M) (MM) -90 83.50	8063.80 	5.6060 5.903.90 1.608.60	

CF24 8467	the MEXICS						*** 00
					ĺ		
DATE R	RE ALPH RI (MM)	. (WW) (WW) ((CVSD)	(MM)	RS 6S -(MX) (MX)	@S (CMSD.)	&C &C &C &C &C &C &C &C &C &C &C &C &C &
13_63_80	1363_80_63_80_1,00_21,81_	27.53	18-97_235.88	-2.91_0.43_	41.99 1425.35	35_1156,12_	1156,12_1392.00 1392.00_
	1434,3034,30.1.067,14.39,39		44,43_283.83_	-3,50_0;63_27,16		2292,13_1859,17_2143,00	2143.00 2143.00
15 15,10	15 20 1 00 3	40 34 10 83 21	402.07	16 0 96 5	13,70,2794.	85_2266,93	2794.85_2265.93_2669.00_2669.00_
_16_13_00_	_13_00_1_00_ 	1,20_17,41_119_19_	607,32	16.0.64.7*	11,80_2941.	25_2385,68.	11.80_2941.25_2385.68_2993.00_2993.00_
17. 10,60	17. 10.60 10.60 100 0.0298	85468_144_11	.801.81	-9.89.0.91	9.62.2742.15	.2224,19	3026,00,3026,00
** 18 13 90.	13 90 1 00 51	29 1.48 133.30	972.02	12.080.11-	12.61.2158.75		1750,98,2723,00,2723,00
_196_60_	8_60_I_000.80_1.12_123_40_	0_1.12.123.4(894.1711.02.0.91.	7,80,1449.	7,80,1449,59,1175,77,2069,95	2069.95 2171.00
20 - 8 - 60	8.80 6.16 0_700.57_	7_1.08_114,26_828.31_10,21.0,91	6_828_31_	10.21.0.91_	5.59_1109_34	34899.80.1728.11	1728,11,1538,00_
2: 7.50	5.53.0.70.0.53.0.83.105,52	3.501.83.00.1	171.89	-9.52.0.91	5.02 1076.04	04 872 78	872_78_1644.68_1068.00_
22_20_20	20.20_34.14.0170_1.31	0.00	27.27.72.79	-8.90_0.91	12,83	915.83_742.84_	742.84_1464.63_839.00_
23_34,20	23_34,200,0_0_10_10_0_0	0.0.0.0.0.0	676,97	-8.35_0.0	0.0_761.	.25617.46_	_617,46.1294,42753,00
						-	

	. **
	1
*** MAE KLONG RIVER FLOOD SIMURATION ***	
YEAR 1972 MONTH 7	*
TATE R RE ALPH RI 01 B.P. 08 -08 BETA RS 0S 0S 0C 00 CMSD) (CMSD) (CMSD) (CMSD) (CMSD) (CMSD)	Soy
14 34,30 34,30 1,00 5,81,39,39 44,43,283,83 -3,50,0,63,28,49,2292,13,1859,17,2143,00,2143,00	3,00
15_15.10_15_10_1.00_0.73_34_10_83_21_402_074.96_0.91_14_37_2794.85_2266.93_2669.00_266	2669,00_
16 13.00 13.00 1.00 0.63 17.41 119 19.607.32 -7.49 0.95 12.37 2991.25 2385,68 2993.00 2993.00	3.00
	9.00
	3.00
** 19 8.50 8.50 1.00 0.42 0.58 128,49 937.82 -11.56 0.95 8.18 1520 35 1233,17 2171,00 2171.00	100
8_806_16_0_700_300_56_118_43_861_58_+10_62_0_955.86_1163_50943_73_1805_30_1538_00	8.00_
21 7.90 5.53 0.70 0.27 0.43 109,04 797,17 9,83 0,95 5,26 1128,57 915,39 1712,57 1068,00	3.00
52 20.20 14.14 0.70 0.68 0.31 100.21 741.37 -9.14 0.95 13.46 960.54 779.10 1520.47 839.00	00 6
23 34,20 0.0 0.70 0.0 0.0 692.50 -8.54 0.0 0.0 798,41 647,60 1340,10 75	753.00_

t : [• • • • • • • • • • • • • • • • • •		
	・ Pri Pri Pri Pri Pri Pri Pri Pri Pri Pri	
	** O CAC IN THAT ALL	てこ りょうしく ひくご ままを

•	YEAR 1972	MONTH 7					÷		14		*** CASE	# * 00 U	*
, 1	DATE R	RE ALPH	ALPH RI GI B.P. 08	(MM)	0 0 d	OS (CMSD)	(KKK)	BETA	RS (XXX)	98	0S -(C88D)-	0S 0C 0O (CMSD) (CMSD)	00 (CMSD)
•	15_15_10_15_10_1_00_1_00_2_86_34_10_83_21_402_074,96_0,91_12.24_2794_85_2266.93_2669.00_2669.00_	15,10-1,00	2.86	34.10	.83,21	402.07	-4.96	.0.91	12,24	2794.85	2266.93	2669,00	2669.00
	16 13,00 13,00 1,00 2,46 17,41,119,19,607,32,-7,49,0,95 10,54 2941,25,2385,68 2993,00 2993,00	13,00 1,00	2,46	17.41.1	19,19	507,32	65-1-	0.95	10,54	2941,25	.2385,68	2993,00	2995.00
-	77 10,60	77 10.60 10.60 1.00 2.01 5.68 144 11 801 81 -9.89 0.81	2.01	5.68	44	301.81	-9.89	0.83	8 59	27.42,15.	2224,19	<u>_3026,00</u>	8.59.2742.15.2224,19.3026,00.3026,00.
	18.13.90	18_13,90_13,90_1.00_2,63_1.18_139,47_972,0211,98_0,81_11,27_2158_75_1750,98_2723,00_2723,00	2,63	त्त्र क्षा स्टब्स्	39,47	972.02	-11,98	0.81	11,27	2158,75	1750,98	.2723,00	2723,00
	19 8.60	19 8.60 8.60 1.00 1.63 0.58 107.75.937.82-11.56.0:81	1.1.63	0.58.1	07.75	937.82	-11,56	0.82	6.97	1520,35	1233,17	2171,00	6.97_1520_35.1233.17.2171.00 2171.00
	** 20 8.80 6.16 0.70 1.17 2.20 100 90 734.01 -9.05.0.81	22.0.95.9	7 1 2 7	2,20.3	00 00	734.01	20.6=	0.83	4 99	991,22	86.503	1538,00	4.99 991,22 803,99,1538,00,1538,00
	21 7,90 5,53.0,70 1,05 1,69 94,01,696,21 -8,58.0,81	5.53.0.70	-20.1	69.	94.03	696,21	-8.58	0.81	4.48	74-196-	779,86	_1476.07	4.48_961.47_779.86_1476.07_1068.00_
	22.20.20	22_20,20,14,14.0,70,2,68_1,22,87,09_660,11,8,14.0,81_11,46_818,32_663,75_1323,85_839,00	32.68-	1,22	-60,78	660,11	41.8-	0.81	11.46_	818,32	663.75	1323,85	839.00
	23 34,20	23 34 20 0 0 0 0 0 0 0 0 0 0 525.77 -7.72 0.0	0	0 0	0 0	525,77	-7.72	0	0	51,089	551,71	23.77.45	0.0 680,19 551,71,117,49 753,00

	*
	NOLLE
-	NOTEASON
***************************************	1000 Ju
	R1VER
:	COOLUMN MICHON MICHON MICHON
	Į Į
	*

*** CASE 30 ***	0S 0S 0C 0C	7.63_2941.25_2385.68_2993.00.2993.00_	6.22.2742.15.2224.19.3026.00.3026.00.	8,15_2158,75_1750,98_2723,00_2723,00_	_937.8211.56.0.595.05_1520.35_1233.17_2171.00_2171.00_	_734.019.05.0.593.61991.22803_99.1538_00.1538_00	** 21 7.90 5.53 0,70 2,29 3,69 59.17 503,74 -6,21 0,59 3,24 695,67 564,26 1068,00 1068,00	22_20,20_14,14_0;70_5,84_2,67_55,83_467,436,01.0,598,30_592,09_480,25_967,68_839,00_	
	RS G	7.63_294			5.05_152	3.61_99	3.24 69	8,30_59	
	-08 BETA	_607.327.49_0.95_		<u> 13,90 15,90 1,00 5,75 1,18 139,47 972,02 11,98 0,59 </u>	11.56.0.59	-65.0750.6-	6.21 0.59	-6.01.0.59	1
	QS (CMSD)	9_607.32	1_801,81	7 972 02	5_937.82		7.503.74	3 467,43	
	RI QI B.P.	16.11.00.13.00.1.00.51.7.41.19.19	5.68.144.1	1,18,132,4	298_608_60_1,003_550.5807_75	208.806.16_0.702.552.20_61.69	3.69.59.1	2,67_55,8	
_		00_5.37	00-4.38	00 5,75	00_3_55_	70.2.55	20_2.29	70_5,84_	:
KON1H 1	RE ALPH	13.00.1	-30,60.3	13,90.1.	\$ 60.1	6.16.0	0 553	-24-24-6-	•
YEAR 1972	DATE R	16_13.00	17_10.60.	18 13,90	19 6.60	.20 8.80.	21 7.90	22 20,20	

*** MAE KLONG RIVER FLOOD SIMURATION ***

	VEAR 1972	MONTE				=							*** CASF 40	04	**	
) 	C Lu H	. : u		1		C	a c							· (. !
-	- 1		0 1. 3 4	- 1	CMC	CGSMDD CMMD CMMD THE	GSWDD		: 1	X 1100		Cost	WS WY WY WAS CHED'S TOWN WAS TO WAS T	CCMSC	3	MSD)
		74.92	0.64	37,46	7.73	-14.62	2_145_5	, , , ,	1-79_(7.50	37.46_	_321.15	260,45	9-406	00	£06.00
	12_83,90_66,13.0,69.33.06,17,69_15	66,13	.0.69	.33,06	17.69	15,33	3_153.5) 68 · 1	50.	33.06	530,70	.33_153.541.89_0.5033.06_ 530.70430_46_ 564.00_ 584.00	5 - 564	00	584,00
	13 63,80 53,61 0,84 24 12 32,71 33,25 265,56 -3,27 0,55 29,48 1388,76 1126,44 1392,00 1392,00	53.61	0.84	22, 22	32,72	33,25	\$ 265.5	36 -	3.27.5	2.55	29.48	1388,76	1126,44	1392	00	392,00
	14_34.30_27_07_079_12_18_27_07_57_33_347_454.28_0.55_14_89_2213_69_1795_55_2143_00_2143_00	Z7.0Ż	62.0	12,18	_27.07_	57.3	3_347.4	1	4.28_(55.	14.89	2213,69	1795.55	5,2143	00_2	143.00
		12,27	0.8	. 5.48.	19.66	87.55	9.475.8	35	5.87(55.	-6-69	2703.88	2193,14	.2669.	00.24	969,00
.¥	** 16 13.00 10 55 0 81 4 75 12.56 92.40 628.20 -7.74 0.55 5.80 2915.50 2364 79 2993.00 2993.00	10.55	0.81	4.75	12.56	92,40	628.2	0,	7.74 (3.55	5.80	2915,50	23.64.75	2993	00 2	993.00
	17 10.60 8.60.0,81 3.87 6.60 90.96.651.99 -8.04.0.55 4.73.2071.86.1680,51.2332,49.3026.00	8,60	0.81	3.87	6.60	36.06	5_651.9	66	3,04.	55.	4.73	2071,86	1680,51	2332	49.30	326,00
.	18_13.90_11[28 0_81_5_08_4_53_87_64_644_787.95_0.55621_1238_24_1004_35_1649_13_2723_00_	11,28	6.0	5.08	4.63	.87.64	+_644	8.	7.95.0	2.55	6.21	1238.24	1004,35	1649	13 27	23,00
	79 8.60 6.98 0.81 3.14 4.41 84.31 628 46 -7.75 0.55 3.84 734.57 595.82 1224.28 2171.00	6.98	0 83	314	4.41	.6.48	6287	79	7.75	3,55	3.84	734.57	58,582	1224	28.21	71.00
•]	20 8.80 7.14.0.81 3.21 4.26 81.01.612.46 -7.55.0.55	7,14	0,31	3,21	4.26	81.0	1_612,4	9	7,55. (3,55		545.05	3,93 545,05 442,09 1054,55 1538,00	1054	55.15	38,00
	<u> </u>	6.41	0.81	2,89	3,55	77.2(597.0	20	7.36 (0.55		535,29	3,53 535,29 434,18 1031,25 1068,00	1031.	25 10	68.00
	22 20,20 16,40 0,81 7,38 3,10 73,15 579,76 -7,15 0,55 9,02 467,65 379,32 959,07 839,00	16,40	0.81	7,38	3.10	13.1	25.5	<u>- 92</u>	7,15 (255	9,02	467,65	378,32	959	07.0	
	23 34,20 0.0 0.70 0.0 0.0 0.0 561,92 -6.93.0.0	0.0	0_70_	0 0	0.0	0.0	561.5	32 =	6.93_(0.0	0.0	445,78	0.0 445,78 361.57 923,49 753,00	. 923	64	53,00

*** MAE KLONG RIVER FLOOD SIMURATION ***

	\$	*** MAE KLONG RIVER FLOOD SIMURATION ***
VEAR 1972	372	*** CASE 40 ***
ਹੈਕਾਂਵ	2 3	RE ALPH RI GI B.P. QB -QB BETA RS QS QS QC QO CMX) (MM) (MM) (MM) (CMSD) (CMSD) (CMSD)
13.6	53,80_	13_63,80_63,80_0;84_14,92_32,71_33,25_265,563,27_0,55_48,88 1388,76_1126,44_1392,00_1392,00
4	34,30	14 34,30 34,30 1,00 9,62,27,07_57,33_347,454,28,0,55_24,68 2213,69 1795,55 2143,00 2143,00
ur Fr	5.10	15 10 15 10 1 00 4 01 19 66 87 59 475 55 +5 87 0 55 11 09 2703 88 2193 14 2669 00 2669 00
3.6	13.00_	16_13.00_13.00_1.00_3.38_12.56_126_11_628_20774_0.559.62_2915.50_2364_79_2993.00_2993.00_
1 1	10.60	17 _10.60 _10.60 1.00 _3.15 _7.85 1.55 28 845,84 _10.43 0.557.45 2687,87 2180,16 3026,00 3026,00 _
\$ 18	13.90	13 90 1:00 6 26 3 44 145 651059 56 -13.06 0.55 7.64 2050 82 1663 44 2723,00 2723.00
19	8 60	8.60 8.60 3.00 3.87 4.13 137.65 983.63 -12.13 0.55 4.73 1200.62 973.84 1957.47 2171.00
20	8 80	8.80 8.80 1.00 3.96 4.92 131.17 924.70 11.40 0.55 4.84 853.18 692.02 1616,72 1538.00
2:	7.90	7 90 1.00 3.56 4.37 124.70 879.54 -10.84 0.55 4.34 745.13 604.38 1483.92 1058.00
22	20-20-	20_20_20_20_20_100_9_09_3.82_118.20_836.6810.32_0.5511.11600.43487.01_1323.69839.00_
23	34,20_	23_34.200.0_0.0_0.0_0.0_0.0_0.0_795.74_79.81_0.0_0.0_549.17_445.44_1241.19_753.00_

*** MAE KLONG RIVER FLOOD SIMURATION ***	
YEAR 1972 MONTH 7	*** CASE 40 ***
DATE R RE ALPH RI QI B.P. QB -QB BETA RS (MM) (MM) (MM) (MM) (MM)	0S 0C 0C 0C
	4,28_0,5527,37_2213,69_1795_55_2143_00_2143_00_
15_15_10_15_10_1500_2_79_19_66_87_59_475_855.87_0.5512_31_2703_88_2193_14	2703,88 2193,14 2669,00 2669,00
16 13.00 13.00 1.00 2.33 12,56 126 11 628,20 -7.74 0.55	10_67_2915_50_2364_79_2993_00_2993_00_
3 17 10.60 10.60 1.00 2.34 7.85 155,28 845.84 -10.43.0.55 8.26	8.26.2687.87.2180.16.3026.00 3026.00
36_13.90_13.90_13.90_5.42_3.44_159,051059,5613.06_0.55	8,48,2050,82,1663,44,2723,00,2723,00
** 19 8.60 8.60 3.87 3.26 148.871090.93 413.45.0.55 4.73	4.73_1331.60_1080.07_2171.00_2171.00_
20 8.80 8.80 3.96 4.34 140 771008.37 -12,43.0.55 4.84	4.84 943,67 765,42,1773,79,1538,00
21 7.90 7.90 3.56 4.21.133,30.947,27-11,68.0,55. 4,34	318,61663,98 1611,26 1068,00-
22 20,20 20,20 1,00 9,09 3,82 126,10 894,16 -11,02 0,55 11,11	1 637.64 517,19 1411,35 839.00
23 34,20 0.0 0.0 0.0 0.0 0.0 845,77-10,43-0.0 0.0	561,68_455,59_1301,36_753,00_

*** MAE KLONG RIVER FLOOD SIMURATION ***

DATE R RE ALPH RI QI B.P. QB - QB BETA RS QS QS QS QC CMSD, CCMSD,	İ	YEAR 1972	1972	MONTH	T.									** CAS	*** CASE 40 ***	**
15 15.10 13.09 1.00 2.42 19.66 87.59 475.85 -5.87 0.55 10.67 2703.88 2193.14 2669 16 13.00 11.27 1.00 2.02 12.56 126.11 628.20 -7.74 0.55 9.25 2915.50 2362.79.2993 27 10.60 9 19 0.87 2.03 7.85 155.28 845.84 -10.43 0.55 7.16 2687.87 2180.16 3026 18 13.90 12.05 0.87 4.70 3.44 159.051059.56 -13.06 0.55 7.35 2050.82 1663.44 2723 28 20 20 17.46 0.87 3.36 3.26 130.401090.93 -13.45 0.55 4.10 1331.60 1080.07 2171 22 20.20 17.51 0.87 3.08 3.65 116.82 828.21 -10.21 0.55 3.77 709.79 575.72 1403. 23 34.20 0.0 0.0 0.0 0.0 0.0 749.34 -9.24 0.0 0.0 487.02 395.03 1144	1	DATE) () () () () () () () () () (RECENS	AL PH	R1 CMM)	1 1	1 1	(GSX2)		BETA	RS	Second	KGSMD)	OC CCMSD3.	90 (CASD)
16_13.00_11_27_1.00_2.02_12.56_126_11_628.207.74_0.559.25_2915.50_2364_79_2993_ 17_10.60919_01872.037.85_155.28_845.84_=10.43_0.557.16_2687.87_2180_16_3026_ 18_13.90_12_05_0.874.703.44_159.051059.56_=13.06_0.557.35_2050.82_1663.44_2723_ 18_13.90_12_05_0.874.203.44_159_051059.56_=13.06_0.557.35_2050.82_1663.44_2723_ 18_13.90_12_05_0.873.363.26_130_401090.9313.45_0.554.10_1331.60_1080.07_2171_ 22_20_8.807.63_0.873.65116_82_828.2110.78_0.554.20818.23663.67_1538_ 22_20_20_17_51_0.877.883.31_110_42_7.87_279.71_0.559.63552.87448.44_1235_ 23_34.200.0_0.0_0.0_0.0_0.0_0.0_749.349.24.0.0_0.0_0.487.02395.03_1144_	- {	54	-01,21	13,09	-0071	2.42	19.66	_87.59	475.85	-5.87	.0.55	10.67	2703.88	2193,14	_2669,0	2669.0
77 10.60 9 19 0.87 2.03 7.65 155.28 845.84 -10.43 0.55 7.16_2687.87 2180.16 3026. 18 13.90 12.05 0.87 4.70 3.44 159.051059.56 -13.06.0.55 7.35 2050.82 1663.44 2723. 19 8.60 7.46 0.87 3.36 3.26 130.401090.93 -13.45 0.55 4.10 1351.60 1080.07 2171. ** 20 8.80 7.63 0.87 2.43 3.76 123.38 874.33 -10.78 0.55 4.20 818.23 663.67 1538. 22 20.20 17.51 0.87 7.88 3.31 110.42 7.87 27 -9.71 0.55 9.63 552.87 448.44 1235. 23 34.20 0.0 0.70 0.0 0.0 0.0 749.34 -9.24 0.0 0.0 487.02 395.03 1144	-	16.	13,00	11.27	00.1	2.02	12,56	126_11	628.20	72-1-	. 0.55	9.25	2915,50	2364.79	2993.0(2993.0
18 13.90 12.05 0.87 4.70 3.44 159.051059.56-13.06.0.55 7.35 2050.82 1663.44 2723. \$\tilde{1}\$ 8.60 7.46 0.87 3.36 3.26 130.401090.93 -13.45 0.55 4.10 1351.60 1080.07 2171. \$\tilde{1}\$ 8.80 7.63 0.87 3.43 3.76 123.38 874.33 -10.78 0.55 4.20 818.23 663.67 1538. \$\tilde{2}\$ 20.20 17.51 0.87 7.88 3.31 110.42 7.87.27 -9.71 0.55 9.63 552.87 448.44 1235. \$\tilde{2}\$ 3.4.20 0.0 0.70 0.0 0.0 749.34 -9.24 0.0 0.0 487.02 395.03 1144.	ļ	1	10.60	9.19	7870	2.03	7.85	155.28	845.84	=10.43	10.55	7.16	2687.87	2180.16	3026.0(3026.0
19 8.60 7.46 0.87 3.26 130.401090.93 -13.45.0.55 4.10.1351.60.1080.07.2171 20 8.80 7.63 0.87 3.26 123.38 874.33 -10.78 0.55 4.20 818.23 663.67 1538 21 7.90 6.85 0.87 3.08 3.65 116.82 82.828.21 -10.21 0.55 3.77 709.79 575.72 1403 22 20.20 17.51 0.87 7.88 3.31 110.42 7.87.27 -9.71 0.055 9.63 552.87 448.44 1235 23 34.20 0.0 0.0 0.0 749.34 -9.24 0.0 0.0 487.02 395.03 1144	ļ	8	33,90	12,05	.0.87_	-07.4	3.44	159,05	1059,56	-13.06	.0.55_	7.35	2050,82	_1663,44	2723.00	2725.0
\$\frac{20}{22}\$ \ \frac{20}{20}\$ \ \frac{2}{20}\$ \ \frac{2}{20	ļ	65	8.60	7.46	.0.87	3.36.	3.26	130 40	1090,93	-13,45	5-0-55	4.10	1331,60	1080,07	2171.00	0.2171.0
22 7.90 6.85-0.87 3.65.116.82 82.828.21 10.55 3.77 709.79 575.72 1403 22 20.20 17.51.0.87 7.88 3.31.110.42 7.87.27 9.71.0.55 9.63 552.87 448.44 1235 23 34.20 0.0 0.0 0.0 0.0 487.02 395.03 1144	1	** 20	8.80	7.63	78.0.	2.43	3.76	123,38	874-33	=10.78	3-0-55	4.20	818,23	663 <u></u> 54	1538,00	1538.0
22 20,20 17,51 0,87 7,88 3,31 110,42 7.87,27 -9,71 0,55 9,63 552,87 448,44 1235, 23 34,20 0,0 0,70 0,0 0,0 0,0 749,34 -9,24 0,0 0,0 487,02 395,03 1144,	1	12	7.90	9	5-0,87-	3.08.	3.65	116,82	828,21.	_10.21	.0.55_	3.77.	.709.79	575,72	1403,92	1068.0
Ī	- 1	22	20,20.	17.51	0.87	7.88	3,32	210.42	7.8727	1.6-7	1_0,55	9,63	552,87	448.44	1235,7	839,00
	Į	23	34,20	0 0	0.70	0	0.0	1	749.34	-9.24	0 0 4	0.0	487.02	395.03	144.3	753.00

*** MAR KLONG RIVER FLOOD SIMURATION ***
VEAR 1972 MONTH 7
DATE R RE ALPH RI GI B.P. QB -QB BETA RS QS QC QC QC (MM) (MM) (MM) (MM) (MM) (CMSD) (CMSD) (CMSD)
16_13.00_8_57_1.00_1.54_12.56_126_11_628.207_74_0.557.04_2915.50_2364_79_293.00_2993.00_
17.10,60 6,99 0,87 1,54 7,85 155,28 845,84 10,43 0,55 5,45 2687,87 2180,16 3026,00 3026,00.
IR IS 90 9 17 0.66 3.58 3.44 159,051059,56 -13.06 0.55 5.59 2050,82 1663 44 2723,00 2723,00 -
19 8.60 5.67 0.66 2.55 3.26 130,401090,93 13,45 0.55 3.12 1331,60 1080,07 2171,00 2171,00
20_8.80_5.80.0.662.61_3.76_87.97.874.3310.78_0.553.19_818,23663.67_1538.00_1538.00_
** 21 7.90 5.21 0.66 2.34 2.78 82.98 630.04 -7.77 0.55 2.87 539.96 437.96 1068.00 1068.00
22 20.20 13.32.0.66 6.00 2.52 78.02.606.20 7.47.0.55 7.33 420.58 341.14 947.35 839.00
23_34.200.0.0.700.0_0.0_0.0_583.457.19_0.00.0_370.49_300.51_883.96_753.00_
ERR= 0 844223805-02 @P= 1068.0

Ap-13-1 Rating Curve Computation Sheet (I)

Date: 1974

Station No.

Curve (), From To

·			·			
Rive Syst	·	River	Mae Kl	ong Station K-10		K-10
No.	Н	H ²	Q		√ő	IJ∕Q
1	32.0	1024	60	7	.74597	247.8709
2	33.0	1089	120	10	,95445	361.4969
3	35.0	1225	280	16	.7332	585.6620
. 4	38.0	1444	600	24	.4949	930.8061
5	40.0	1600	865	29	.4109	1176.4352
6	43.0	1849	1350	36	.7423	1579.9208
7	46.0	2116	2040	45	.1664	2077.6525
8	49.0	2401	3015	54	.9090	2690.5417
9	50.0	2500	3420	58	.4808	2924.0383
			 	L		

$$Q = a^{2} (H \pm b/a)^{2}$$

$$Q = 7.53457 (H-29.14505)^{2}$$

Date: 1974

Station No.

Curve (), From To

 $n[H/Q] = 9 \times 12574.424 = 113169.81$

[H] $(\sqrt{Q}) = 366 \times 284.63788 = 104177.46$

 $n[11^2] = 9 \times 15248 = 137232$

 $[H]^2 = 366^2 = 133956$

 $[H^2][\sqrt{Q}] = 15248 \times 284.63788 = 4340158.3$

 $[H][H\sqrt{Q}] = 366 \times 1.2574.424 = 4602239.1$

 $a = \frac{n[H\sqrt{Q}] - [H][\sqrt{Q}]}{n[H^2] - [H]^2} = \frac{113169.81 - 104177.46}{137232 - 133956} = \frac{8992.35}{3276} = \frac{2.7449}{3276}$

b = $\frac{[H^2][\sqrt{Q}] - [H][H|Q]}{n[H^2] - [H]^2} = \frac{4340158.3 - 4602239.1}{3276} = \frac{-262080.8}{3276} = \frac{-80.0002}{3276}$

 $a^2 = 2.7449^2 = 7.53457 \div$

 $b/a = -80.000^2/2.7449 = -29.14505 \neq$

 $Q = a^2 (Hbb/a)^2 = 7.53457 (H - 29.14505)^2$

RAINFALL AND WATER-LEVEL TELEMETERING SYSTEM STANDARD SPECIFICATIONS

RAINFALL AND WATER-LEVEL TELEMETERING SYSTEM STANDARD SPECIFICATIONS CONTENTS

Z1/3 5 7 / 11	ENTS
1 1 1 1 1 1 1 1 1	1. (4)
1.1311	1.11 1.1

		Page
CHAPTER	1 GENERAL	375
	1-1 Scope	375
i. Heriotzak	1-2 Special Range	
	1-3 Ambient Conditions	375
	1-4 Power Requirement	376
	1-5 Electrical and Mechanical Strength	377
100 A.	1-6 Construction	377
· .	1-6-1 Telemetering equipment for master station and monitoring equipment	377
* 1	1-6-2 Répeater equipment	377
• 4	1-6-3 Telemetering equipment for gauging station	377
	1-7 Coating	378
	1-8 Nameplates	378
<u>ሮዘ</u> ለውፕዌው	2 SYSTEM CONFIGURATION AND FUNCTIONS	370
Olizii 112K		
	2-1 System Configuration	379
	2-2 Description of Operation	379
	2-3 System Functions	380
	2-3-1 Calling mode	380
	2-3-2 Response mode	381
	2-3-3 Data code check system	381
	2-3-4 Printing and dieplay	381
	2-3-5 Number of connectable transmission lines	382
•	2-3-6 Repeating system	382
٠	2-3-7 Voice communication	383

	* .		
2	-4 Tre	nusmission System	Page 383
	2-4-1	General	383
	2-4-2	Calling signal system	384
	2-4-3	Gauging station receiving and responding system	387
CHAPTER 3	EQUI1	PMENT COMPOSITION AND SPECIFICATIONS	393
3	l-1 Mas	ster Station Equipment	393
•••	3-1-1	Equipment composition	393
	3-1-2	Functions and ratings	395
	3-1-3	Additional functions	409
3	-2 Gai	iging Station Equipment	613
	3-2-1	Equipment composition	413
	3-2-2	Functions and ratings	434
•	3-2-3	Additional functions	416
	3-2-4	Gauging equipment current consumption	417
	3-2-5	Raingauge and water-level gauge connection conditions	43.7
3	-3 Rep	peater Station Equipment	422 -
,	3-3-1	Equipment composition	422
	3-3-2	Functions and ratings	425
	3-3-3	Repeater equipment current consumption	428
3	-4 Moi	itoring Station Equipment	428
	3-4-1	Equipment composition	428
	3-4-2	Functions and Specifications	430
÷	3-4-3	Optional functions	431
	3-4-4	The conditions of monitoring operation	433
	3-4-5	Data processing	433
	3-4-6	System expansion function	434

CHAPTER Ú GENERÁL

j.j (Scope)

These specifications cover the rainfall and water-level telemetering system (called "this system" hereinafter) installed by the Mintstry of Construction for river, dam and road management. Special operations and additional functions not covered by these specifications shall conform with the Specifications For Special Items (called "SSI" hereinafter)

1-2 (Special Range)

The basic system stipulated in these specifications cannot be modified by the previously mentioned SSI.

[COMMENT 1]

- 1. "Basic system" is the system specifications.
- 2. In principle, the functions that may be added by SSI shall be within the range given in these Specifications.

1-3 (Ambient Conditions)

This system shall satisfy the ratings given in these Specifications under the following conditions:

Classifica		Master station eq. and monitor- ing station eq.	Repeater station eq.	Gauging station eq.
	Temp.	~5°C ~ +40°C	-10°C ∿ +40°C	10°C ∿ +40°C
Electrical section	Relative humidity	90% or less	90% or less	95% or less
Mechanical	Temp.	+5°C ∿ +40°C		
section	Relative humidity	40% ∿ 90%		

[COMMENT 2]

- 1. To operate the master station equipment and monitoring station equipment stably for an extended period of time, air conditioning and dustproofing measures should be considered.
- 2. "Mechanical section" Indicates the typewriter.

3. When the relative humidity, one of the ambient conditions of the repeater station equipment, exceeds 90%, the cabinet shall employ a moisture proof construction by specification of SSI. However, in this case, the additional functions shall be mounted in a separate cabinet.

1-4 (Power Requirement)

The power supply operating range and ratings guaranteed range of this system shall be as follows.

		Operating range	Ratings guaranteed range
Master station eq. and Monitoring station eq.	Telemetering eq. and monitoring eq.	(1) DC 21,6V \(DC 26.4V \) (+ ground) Ripple 3% or less Noise voltage 5mV or less (2) Single-phase AC 100V ± 10% 50Hz or 60Hz	(1) DC 21.6V v DC 26.4V (+ ground) Ripple 1% or less Noise voltage 5mV or less (2) Single-phase AC 100V ± 10% 50Hz or 60Hz
	Typewriter	Single-phase AC 50Hz or 60Hz	100V ± 10%
Repeater station eq. and Gauging station eq.	Repeater eq. and Telemetering eq.	DC 10.5V \\ DC 16.5V (- ground) Ripple 3% or less Noise voltage 5mV or less	DC 10.8V ∿ DC 14.5V (~ ground) Ripple 1% or less Noise voltage 5mV or less

[COMMENT 3]

- 1. Whether the power supplied to the master station equipment and monitoring station equipment is DC24V or AC100V must be specified in the SSI. However, even when this power is DC24V, the power supplied to the typewriter shall be AC100V.
- 2. The power supply unit installed shall be for AC or BC depending on whether the power supplied to the master station equipment and monitoring station equipment is AC or BC.
- 3. Because of the supply voltage of the newest circuit elements, DC power supply ground is normally (-) ground, but is made (+) ground when power is shared by multiplex radio equipment, telephone exchange or other similar equipment.

4. DC24V can be supplied to the repeater equipment and telemetering equipment by adding a DC-DC converter at each equipment.

1-5 (Electrical and Mechanical Strength)

No electrical or mechanical abnormalities shall occur after this system has been left standing for 4 fours under the following conditions.

- (1) Ambient temperature -20°C and +50°C
- (2) Relative humidity 95% (ambient temperature +35°C)

[COMMENT 4]

1. "Electrical and mechanical strength" indicates normal operation when restored to the ambient conditions of para. 1-3 after standing under the above ambient conditions with the power of each equipment turned OFF.

1-6 (Construction)

Printed circuit boards shall employ a plug-in system for easy mounting and dismounting, as standard. Inspection, adjustment and other operations shall be performed from the front of each unit.

1-6-1 (Telemetering equipment for master station and monitoring station)

Bay dimensions shall be 2,350 mm high, 520 mm wide and 250 mm deep or less. The front door shall be constructed to open outward to both sides from the center. Connections to external devices shall be made at the top or bottom of the bay,

1-6-2 (Repeater equipment)

Bay dimensions shall be 2,000 mm high, 520 mm wide, and 250 mm deep or less. The front door shall be constructed to open outward to both sides from the center.

Connections to external devices shall be made at the top or bottom of the bay,

However, In the case of moistureproof construction, such construction shall be specified by SSI, and in this case the above bay dimensions, etc. shall not apply.

1-6-3 (Telemetering equipment for gauging station)

The cabinet shall be a wall-mount type having dimensions of 600 mm high, 600 mm wide, and 300 mm deep or less, and shall use packing considering motsture proofing.

in the separation of the separate separ

[COMMENT 5]

1. A mounting base shall be necessary when the telemetering equipment for gauging station is not used as wall-mount type.

1-7 (Coating)

- 1-7-1 The bay and cabinet coating shall be baked coating after rust-resisting processing.
- 1-7-2 The color of the bay and cabinet shall be Munsell 2,586/3.
- 1-7-3 The color of operating console, etc. shall be specified separately by color sample, etc.

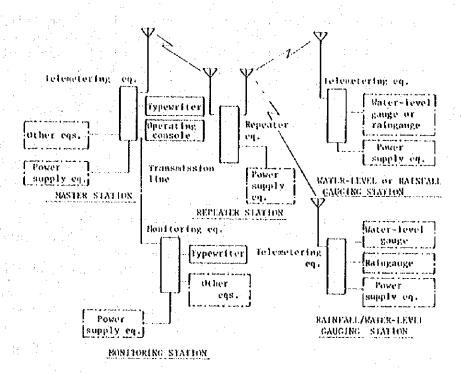
1-8 (Nameplates)

1-8-1 (Equipment nameplate)

The equipment name, model, serial No., date of manufacture and manufacturer's name shall be entered on the equipment nameplate.

1-8-2 (Equipment main sections and main electrical parts indication)

The main sections of the equipments shall be indicated by nameplates, engraving or stamping. Symbols or numbers of main electrical parts that can be collated with the circuit diagrams shall be indicated. Moreover, special handling precautions shall be indicated in red at the required points.


[COMMENT 6]

1. When radio equipment are mounted, the radio equipment nameplate shall be installed, together with the nameplate of the equipment to which it is mounted.

CHAPTER 2 SYSTEM CONFIGURATION AND FUNCTIONS

2-1 (System Configuration)

This system shall consist of one master station and a maximum of 30 gauging stations (including repeater stations and monitoring stations as required), and shall have the system configuration shown below.

TELIMETERING SYSTEM CONFIGURATION (Example)

Legend: 1. Standard configuration equipments.

2. Equipments outside the scope of these specifications.

[COMMENT 7]

- 1. In the telemetering system configuration diagram, the master station and repeater station are connected by a simplex radio link, but may also be connected by a multiplex radio link.
- 2. The monitoring station equipment may also be connected via a repeater station, or directly to the master station by a simplex radio link or multiplex radio links or other similar links.

2-2 (Description of Operation)

2-2-1 The master station shall gather and print rainfall, water level

and other data by calling the gauging stations.

- 2-2-2 The gauging stations shall automatically send the data from a raingauge, a water-level gauge, etc. by the calling from the master station.
- 2-2-3 The monitoring station shall receive and print the rainfall and water-level data from the gauging stations via the master station, the repeater station or directly.
- 2-2-4 When repeater stations are provided in this telemetering system, the repeater stations shall be automatically started before calling of the gauging stations, and shall be stopped after the end of control of the gauging stations.

2-3 (System Functions)

2-3-1 (Calling mode)

1) Automatic calling

This calling shall be started automatically by a clock, and shall call all the gauging stations, except the stations that are shutdown, in the predetermined order.

The setting of the calling interval shall be made the following 6 intervals:

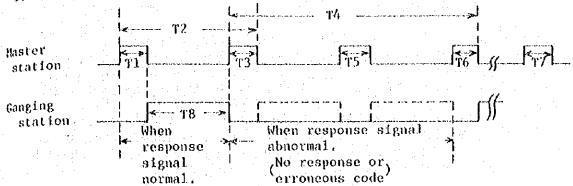
10 minutes, 15 minutes, 30 minutes, 1 hour, 3 hours, and 12 hours.

Moreover, automatic calling shall have priority over obter callings.

2) Manual calling

This calling shall be started manually and call all the gauging stations or the gauging stations arbitrarily selected, in the predetermined order.

3) External start calling


This calling shall permit calling of gauging stations by start signal from external devices.

4) Re-calling

When a error code has been detected in the data code from a gauging station, or there is no response from a gauging station, that gauging station shall be automatically re-called one time. If there is an error code or the called gauging station failed to respond again, a visual and audible alarm shall be actuated and the system shall shift to the next operation.

[COMMENT 8]

1. The operation sequence of this system shall be as follows:

- Tl: Date and time printing and No.1 station calling (including reperator station starting when there is a repeater station)
- T2: No.1 station processing
- T3: No.1 station printing and No.2 station calling
- T4: No.2 station processing
- T5: No.2 station re-calling
- T6: No.2 station printing and No.3 station calling
- T7: Final station printing (including repeater station stopping when there is a repeater station)
- T8: Response signal transmission

2-3-2 (Response mode)

The gaugi-g station called from the master station shall convert the measured values to digital signals and then send the measurement code to the master station.

2~3~3 (Data code check system)

The master station shall perform the following code checks each time a data code is received:

- 1) Odd parity check at each digit
- 2) Check of total number of bits

2-3-4 (Printing and display)

The data code shall be received from the gauging stations, and the following printing and display operations shall be performed at the master station:

- 1) When the received data code is normal, the measured value and additional information shall be printed at the predetermined station position, and the data shall be digitally displayed.
- 2) When the received data code is faulty, printing and display for faulty code shall be performed. However, when total bits and station number bits are normal, processing for faulty code shall only be performed for the faulty digit,
- 3) Printing format shall be page tabulation by a typewriter, The date, time, measured values and additional informations for one measuring operation or monitoring operation shall be printed at the predetermined printing positions.

2-3-5 (Number of connectable transmission lines)

The telemetering equipment for master station and monitoring equipment shall be connectable to a maximum of 3 transmission lines by arbitrarily combining the following transmission lines. However, the data code form the transmission lines of 2 or more directions shall not be input simultaneously at the monitoring equipment.

- 1) Simplex radio links
- 2) Multiplex radio links
- 3) Wire line

2-3-6 (Repeating system).

- 1) The repeating system shall be of the following two kinds:
 - (1) Simplex radio link and simplex radio link repeating (Called "V-V repeating" hereinafter.)
 - (2) Multiplex radio link and simplex radio link repeating (Called "N-V repeating" hereinafter.)
- 2) Transmitter and receiver
 - (1) The transmitters shall employ a No.1 unit/No.2 unit changeover system,
 - (2) The receivers shall employ a No.1 unit, No.2 unit parallel operation system.
- 3) Transmitter failure detection and changeover system
 - (1) When the output of a transmitter has dropped to 1/2 or more, failure display shall be actuated and operation shall be automatically switched to the other transmitter. However, switching shall not be performed if the other transmitter is already faulty.

- (2) Forced switching between the No.1 transmitter and No.2 transmitter by the local test buttons shall be possible.
- 4) Receiver failure detection

Receiver failure datection shall be performed by comparison and detection of the presence or absence of squelch voltage at the two receivers.

However, disconnection of the receiver judged to have failed shall be unnecessary. Moreover, the failure display shall be reset automatically when the failed receiver is judged to be normal.

2-3-7 (Voice communication)

Voice communication between the master station and gauging stations shall be possible in this system. Moreover, automatic calling shall have priority over voice communication.

2-4 (Transmission System)

2-4-1 (Ceneral)

			and the second s	
(1) Communication	buston		Cand dies las	communication
TY COMMUNITION TAXIL	System		- ocur-aabrax	COMBUNICATION

(2) Calling signal system 2-frequency series signal

(3) Data code system

Long-short pulse system

(RZ code system)

Long mark (1) 60 ±12mSec

Short mark (0) 20 ±4mSec

Space 20 ±4mSec

(4) Transmission speed 50 bands

(5) Data code check system Parity check at each digit and total number of bits check

(6) Modulation system Subcarrier frequency shift (measurement code) system

(7) Subcarrier frequency (fo) Specified from the following frequencies by SSI.

a. 2635 Hz

b. 2465 Hz

c. 2295 Hz

d. 2125 Hz

e. 1955 Hz

(8) Frequency shift width (Af)

Specified subcarrier frequen-

ey (fo)⊹ → 35 Hz

(9) Frequency shift direction

Mark (fo + Af)

Space (fo -- Af)

(10) Subcarrier shift frequency accuracy

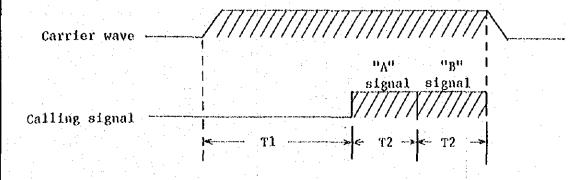
J 6 Hz or less

(11) V-V repeater remote control signal system

2-frequency series signal system

(12) µ-V repeater control system

Ringer signal system (sent at control)


[COMMENT 9]

- 1. Since the former Japan M.O.C. standard is for a transmission speed of 25 bands, the specifications stipulated by these specifications are for a different circuit and cannot be mixed with the above. Therefore, when gauging station equipment of these specifications are placed in an existing system, the transmission speed shall be made 25 bands so that the transmission system shall be matched, and all the equipment shall be changed to 50 bands at the time all the equipment can be changed to the 50 bands stipulated in these specifications in the future.
- 2. In the case of µ-V repeating, a ringer shall be sent at control to prevent abnormal operation of the transmitter by a trouble or momentary interruption of ringer circuit.

2-4-2 (Calling signal system)

1) Calling signal

The calling signal shall be a 2-frequency series signal system using frequencies in the voice band. The calling signals shall be sent in " Λ " signal, "B" signal order. The calling signals shall be sent in accordance with the following time chart,

T1: Unmodulated radio frequency send time: 1000 1100mSec

T2: "A" signal, "B" signal send time: 600 160mSec Moreover, sending of the remote control signal for V-V repeater shall conform to the above.

[COMMENT 10]

1. The unmodulated radio frequency send time shall be as follows, considering control of one repeater station. Required time is 900mSec, but made 1000 ±100mSec, considering the setting accuracy.

	Maste stati		Repe	ater stat	.ton	Gau sta	m . 1	
	Calling control	Tx	R×	Repeat control	Тx	Rx	Signal detect	Total
Required time	50 mSec	100 mSec	200 mSec	100 mSec	100 mSec	200 mSec	150 mSec	900 mSec

2) Signal frequencies

The "A" signal and "B" signal used to call the gauging stations shall be specified from the following frequencies by SSI.

(1) "A" signal

"A" Signal	Frequency
Λ 1	487.5 112
A 2	502.5
Λ 3	517.5
Λ 4	532.5
A 5	547.5
Λ 6	562.5
A 7	577.5
A 8	592,5
A 9	607,5
Λ 10	622.5
Λ11	637.5
Λ 12	652.5
Λ 13	667.5
Λ 14	682.5
λ 15	697.5

(2) "B" signal

"B sig		Frequency	Remarks
B B B B B B	1 2 3 4 5 6 7 8	412.5 Hz 427.5 442.5 442.5 457.5 472.5 382.5 397.5 352.5	Repeating-start signal Repeating-stop signal No.1 > No.2 transmitter changeover signal (Repeater station)
B 9	367.5	No.2 → No.1 transmitter changeover signal (Repeater station)	

[COMMENT 11]

1. Even telemetering equipment designed to these specifications may require a 50 ±25mSec signal spacing between the "A" signal and "B" signal when there are gauging stations based on the former Japan M.O.C. standard in the same system.

2. The calling signals should be allocated as follows:

auging	station		Calling	signal
No,	1			Am . B1
No.	2	:		Am . B2
No.	3			Am , B3
No.	4			Am , B4
No.	5			Am . B5
No.	6	;		Am . Bl
No.	7	:		Am . B2

3. Since allocation of calling signals is associated with radio frequencies, it is decided at the Ministry of Construction.

3) Repeater station control

When there is a V-V repeater station in the transmission links, a repeating-start signal shall be antomatically sent before calling of gauging stations, and a repeating-stop signal shall be send after the end of the measurement operation.

B6, B7, B8 and B9 of the "B" signals added to the "A" signal shall be used as the repeater control signals.

4) Re-calling control

The time interval when re-calling is performed shall be 10 +lsec .

[COMMENT 12]

1. If the accurrey of the calling time and gauging station protective circuit is considered, the re-calling time interval becomes 9,240 mSec, but has been made 10,000mSec (10 secs) \sim 11,000mSec (11 secs), considering the setting accuracy.

(Maximum calling time) + (maximum gauging station protective circuit time) = 2,420mSec + 7,000mSec = 9,420mSec

2-4-3 (Gauging station receiving and responding system)

Each gauging station shall sent a response aignal to the master station only when it has received the calling signal allocated to it.

1) Calling signal receiving time chart. The calling signal receiving time chart shall conform with $u_{\tilde{A}}\tilde{u}^{(i)}$ the following: ալըս signal signal (1) Calling signal reception "A" signal reception delay (2) circuit output "B" signal reception delay (3)circuit output Tl: "A" signal, "B" signal send time: 600 160mSec T2: Delay time for prevention of voice erroneous operation: 450mSec or more (including circuit delay time)

[COMMENT 13]

- 1. Voice noise is generally considered to be 250mSec or less.

 The delay time for prevention of voice erroneous operation has been made 450mSec by addition the 150mSec delay time of the signal detection elements to the 250mSec voice noise, plus a small margin.
 - 2) Response signal transmission time chart

The response signal transmission time chart shall conform with the following:

(1) Carrier wave

(2) Response signal

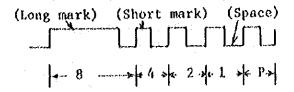
Response signal

T1: llead space 1,500 ±300mSec

T2 : Data code 1,344mSec (shortest code configuration) ~ 2,688mSec (longest

code configuration)

End space


80 ±16mSec

[COMMENT 14]

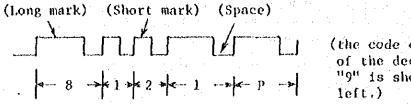
- 1, "Head space" is a signal used before the code to detect the beginning of the response signal from the gauging station at the receiving equipment (master station and monitoring station).
- 2. "End space" is a signal used after the code to detedt the end of the response signal from the gauging station at the receiving equipment (master station and monitoring station).
- 3. The head space shall be 1,200mSec as shown below when control of one repeater is considered, but has been made 1,500 ±300mSec, considering the setting accuracy and other factors.

Gauging st	ation	Repeater station			Maa sta	in 7	
Response control	Т×	Rx	Repeat control	Тх	Rx	Space detect	Total
50 mSec	100 mSec	200 mSec	100 mSec	100 mSec	200 mSec	450 mSec	1200 mSec

4. "Shortest code configuration" is the code configuration when one bit of long mark signal is included at each digit. The code configuration is this case is as follows:

(The code configuration of the decimal number "8" is shown at the left.)

Therefore, the shortest time length per digit becomes as follows:


Shortest time length per digit = $(long mark length - 20%) \times 1 + (short mark length per digit)$ = $(long mark length - 20%) \times 4 + (space length - 20%) \times 5 = (60mSec - 12mSec) \times 1 + (20mSec - 4mSec) \times 4 + (20mSec - 4mSec) \times 5 = 48mSec \times 1 + 16mSec \times 4 + 16mSec \times 5 = 192mSec$

Consequently, the code length in the case of the shortest code configuration conforms with the following equation.

Shortest code length = (shortest code length per digit) × 7 = 192mSec × 7 = 1,344mSec

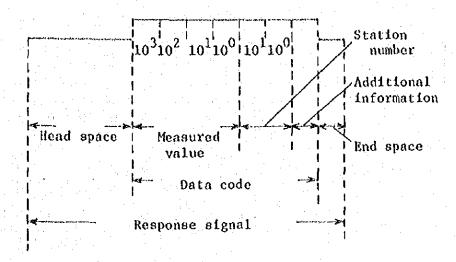
5. "Longest code configuration" is the code configuration when three bits of long mark signal is included at each digit.

The code configuration in this case is as follows:

(the code configuration of the decimal number "9" is shown at the left.)

Therefore, the longest code length per digit becomes as follows:

Longest code length per digit = (Long mark length + 20%) \times 3 + (short mark length + 20%) \times 2 + (space length + 20%) \times 5 = (60mSec + 12mSec) \times 3 + (20mSec + 4mSec) \times 2 + (20mSec + 4mSec) \times 5 = 72mSec \times 3 + 24mSec \times 2 + 24mSec \times 5 = 384mSec


Consequently, the code length in the case of the longest code configuration conforms with the following equation.

Longest code length = (longest code length per digit) \times 7 = 384mSec \times 7 = 2,688mSec

6. The end space is a 4 space length of the code length impossible with the normal code configuration.

3) Response signal configuration

(1) The configuration of the response signal sent in response to calling shall conform with the following:

(2) The data code items and number of digits shall be follows:

Measured value: 4 digits

However, when the number of significant digits of the measured value is 3 digits, the 4th digit (thousands) shall be set to "O" as a dummy code.

Station number: 2 digits

Additional information: 1 digit, 1 item

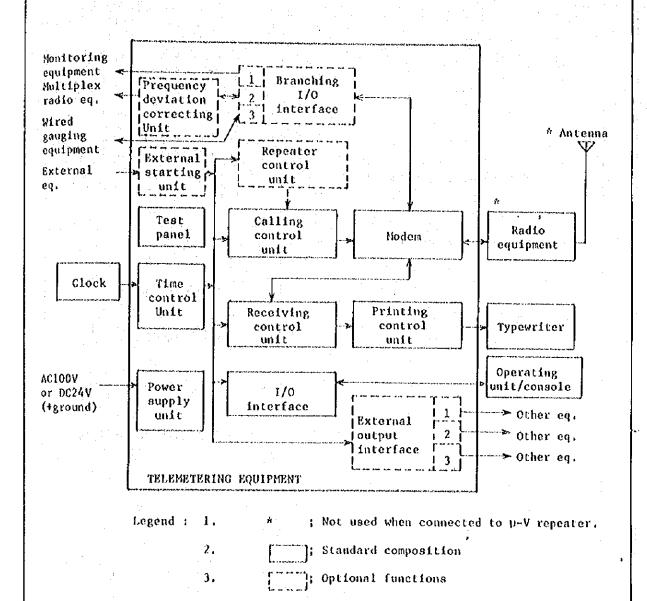
(3) The measured value, station number and additional information shall be binary-coded-decimal code to which a parity bit is added.

[COMMENT 15]

- 1. The correspondence between decimal value and binary-coded-decimal code is as follows:
 - 1: long mark
 - 0: short mark

					De	ė ima	l va	lue			
		0	1	2	3	4	5	6	7	8	9
	8	0	0	0	0	0	0	0	0	1	1
Binary-coded-	4	0	0	0	0	1	1	1	1	0	0
decimal code	2	0	0	1	1	0	0	1	1	0	0
	1	0	1	0	1	0	1	0	1	0	1
	Б	1	0	0	1	0	1	1	0.	0	1

- 2. The raingauge is 3 digits, but the water-level gauge is 3 digits or 4 digits, depending on the measurement site. When the number of measured digits is 3 ditits, the number of digits is made uniform at 4 digits by sending "o" as a dummy signal.
- 3. The station number of gauging station should coincide with the calling order, considering coinstallation of a monitoring system.
- 4. The item of additional information handled by one gauging station shall be one of the following:
 - (1) Power supply voltage drop
 - (2) Power supply abnormal
 - (3) Water level abnormal
 - (4) Housing door open/close
 - (5) Other specified items
- 5. The bit configuration of the additional information is as follows:


Item	Ado	Printing format				
	8	4	2],1	ין	7 (A 1 14/4 c
Normal	0	1	0	1	1	+
Abnormal	0	1	1	0	1	ta

CHAPTER 3 EQUIPMENT COMPOSITION AND SPECIFICATIONS

3-1 (Master Station Equipment)

3-1-1 (Equipment composition)

1) The equipment composition of the master station, including standard composition and optional functions, shall be as follows:

2) Components shall be as follows:

m tragaging garaging data babbas bas into A	Name	Qnt'y	Remarks
1	Telemetering equipment	1	The second secon
- 1	Modem	1	
- 2	Calling control unit	1	
- 3	Receiving control unit	1	
- 4	Printing control unit	1	
- 5	I/O interface 1	1	
- 6	Time control unit	1	
. 7	Test panel	1	
8	Power supply unit	1	
- 9	Bay	1	
-10	I/O interface 2	1	Optional function, Conforms with SSI,
-11	Frequency deviation correcting unit	1	В
-12	External output interface	1,	H.
-13	Repeater control unit	1 ,	$x_{\frac{n+1}{2}} = x_{\mathbf{u}}$
14	External starting unit	1	o in the second
2	Operating unit/console	1.	Conforms with SSI.
3	Typewriter	1	
4 .	Radio equipment	1	Conforms with SSI.
5	Antenna equipment	1	11
- 1	Antenna	1	
- 2	Coaxial arrester	1	40.7
6	Clock		Conforms with SSI.
7	Accessories	1 set	·
- 1	Test cord	1,	
- 2	Adjustment tools	1 set	
- 3	Randset	1	
- 4	Instruction manual	3 copies	Including those for
			each station equip-
- 5	Test date	3 copies	
-6	Technical service card	1 сору	In card case.
	Accessory box	1	THE SHALL SHOW
,			في در در در در در در من مورد و منسفت در او دوای مستون مرسون بر برنوی بر مواهد مدرسو معرب او و و در در

[COMMENT 16]

The "Technical service card" for the master station consists of a block diagram, components diagram, transmitting and receiving radio frequencies table, send level table for each control signal and subcarrier signal frequency table, and has the following contents:

1. Block diagram

- (1) Diagram of each functional block. The operating system and each signal system are clearly entered.
- (2) Symbols which can be collated with the components diagram of item 2 below are entered at each test point.
- (3) The standard level of each transmitting and receiving signal is entered in the system diagram.

2. Components diagram

- (1) The printed circuit boards and other units mounted in the telemetering equipment are clearly indicated in this diagram. Symbols that can be collated with the block diagram are entered at the U-links and other test points.
- (2) The standard level, allowable range and measured value are entered at the transmitting and receiving signal test points.
- 3. Transmitting and receiving radio frequencies table

When the telemetering equipment is equipped with radio equipment, the frequencies and transmitting output of the radio equipment are entered in this table.

4. Send level table for each calling signal

The measured send level of each calling signal is entered in this table.

5. Subcarrier frequency table

The subcarrier frequency of the response signal used in this system is entered in this table.

The technical service card for the gauging stations, repeater stations, and monitoring stations shall also conform with the above.

3-1-2 Functions and ratings

1) Telemetering equipment

Of the following units, the modem, receiving control unit,

printing control unit, time control unit, and power supply unit shall also be applicable when these units are used at a monitoring station.

(1) Modem :

This unit shall send the calling signals and convert the frequency modulated signals to pulse code.

(2) Calling control unit

This unit controls calling of the gauging stations. A maximum calling capacity of this unit shall be 30.

(3) Receiving control unit

This unit shall convert the demodulated series code to parallel code, and perform code checks.

(4) Printing control unit

This unit shall output the following items by means of the parallel code converted by the receiving control unit.

- (a) Numbers and symbols: 1,2,3,4,5,6,7,8,9.0, +, -, & *
- (b) Functions: Space, tabulation, carriage return, and power control

(5) I/O interface

This unit shall exchange signals between the calling control unit, receiving control unit, printing control unit and test panel, and shall exchange signals with external devices as a operating units, etc.

(6) Time control unit

This unit shall be driven by 1 minute pulses from the clock, and shall output the date data and time data to the other units.

The date shall be changed automatically, and number of days of the month shall be set manually.

[COMMENT 17]

- 1. Measuring capacity has been made 30 stations, considering the data gathering time, but up to about 40 stations is possible, if necessary.
- The time control unit may also be incorporated in the clock.

(7) Test panel

Telemetering equipment shall have the following functions for system monitoring and maintenance at the test panel, etc..

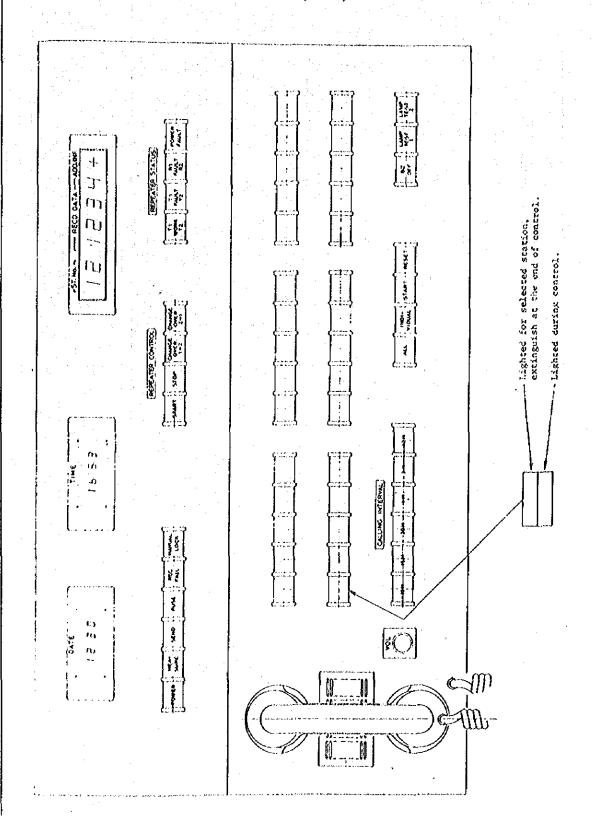
	Function	Opera- tion	Dis- play	Remarks
1	Test calling	o		Individual
2	Resetting	0	- ::	For operation
				resetting
3	Buzzer off	0		
4	Voice communication	0		
5	I/O level measurement	0		At U-links, etc. (By external
				measuring instruments)
6	Lamp test	o ••		
7	Calling frequency transmission	o		
8	Power ON/OFF	0	-	
9	Squelch adjustment	Ö .	<u>.</u>	When equipped with radio
10	Typewriter printing ON/OFF	o.		equipment,
11	Repeating start, stop control	0	••·	When repeater station instal- led.
1,2	Data bit display	<u>-</u>	oʻ.	·
13	Manual lock	~-	0	
14	Receiving failure	-	0	
15	Transmitting		0	
16	Measuring	_	o	
17	Power		0	
18	Monitoring by voltmeter		0	Power supply voltage meas- urement use

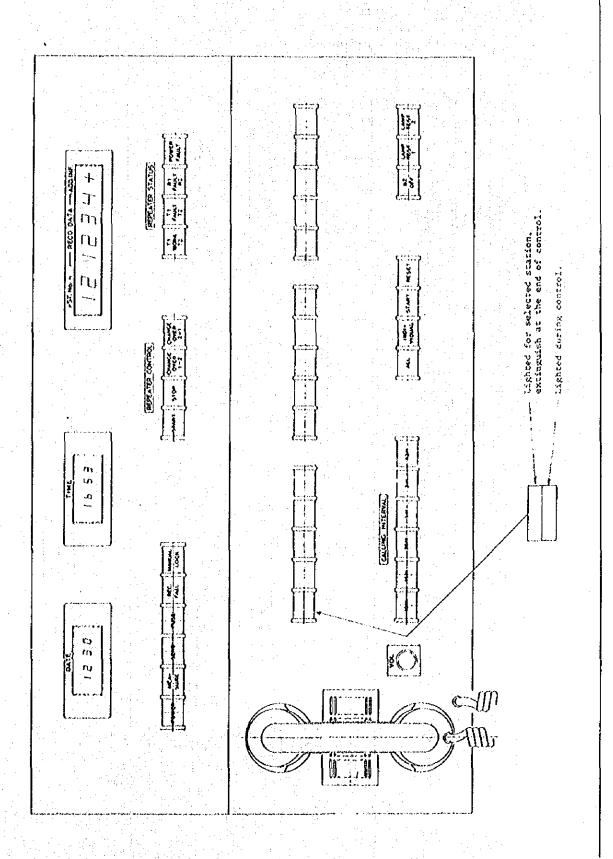
(8) Power supply unit

This unit shall supply the necessary power to each unit, etc. Its input shall be AC100V or DC24V (+ ground).

[COMMENT 18]

- 1. Of the operating functions of the telemetering equipment, test calling and repeating start/stop control can be performed by setting the calling signal by rotary switch, etc., considering space, and economy.
- 2. Of the operating functions of the telemetering equipment, the 1/0 level measurement function is provided for use in measurement of the S/N, etc. of the telecommunication links.


2) Operating unit/console


(1) The operating unit shall be connected to the telemetering equipment and shall perform the following operations and display. It shall be a table-top type. However, it shall be a stand-alone type when an operating console is used.

	Function	Opera- tion	Dis- play	Remarks
1	Station selection	0	•	Meximum 30 stations
2.	Calling interval setting	O		10mins, 15 mins, 30mins, 1hr, 3hrs, and 12hrs
3	Measuring mode selection (All stations or individual stations)	0	••	
4 .	Manual starting, resetting	0	••	
5	Buzzer off	o	-	
6	Voice communication		-	
7.	Transmitting	***	0	
8	Measuring	•••	o	
9	Received data display		o	
10	Responding station		0	
11	Manual lock		0	ļ
12	Receiving failure	4-	0	
13	Time display, correction	o	0	Digital display
14	Power		0	
15	Burnt out fuse	- "	0	
16	Lamp test	o	-	
17	Repeater control and display	o	o	Optional function

(2) The panel layout of the operating unit console shall be as follows.

a. For 30 stations capacity

c. Others

- (a) Dimensions shall be specified by SSI.
- (b) If there is an unnecessary switch, that shall be provided as a spare one, and wiring shall not be performed.
- (c) A time correction function must also be provided at the operating unit/console, in addition to those given above.
- d. When a stand-alone type operating console is required, it shall be specified by SSI.

[COMMENT 19]

- 1. A stand-alone type operating console conforms with the SSI but operation and display shall be within the range of functions of the operating unit, as a rule.
- 2. When the output of the A/D converter in dam water-level gauge or other similar sensor equipment is connected in parallel, a function that constantly displays the dam water level, etc. can be added by SSI.

3) Typewriter

(1) Ratings

(a) Carriage width 13, 18, 24 or 27 inches, specified

by SSI.

(b) Line feed 1/6, 1/4, 1/3 and 1/2 inch (Selectable in 4 steps)

(c) Character size 12 chars/inch

(d) Printing speed 4 chars/sec or greater (alphabet only)

(e) Control keys

Power, carriage return, tabulation, spacing and ribbon selection

(f) Printing keys Numbers and alphabet

(g) Maximum printing (Carriage width - 1 inch) width

(2) The following functions shall be remotely controllable.

(a) Numbers 1,2,3,4,5,6,7,8,9 and 0

(b) Symbols

*, ቀ, _{**},

(c) Others

Carriage return, tabulation, spacing and power control

[COMMENT 20]

- 1. One typewriter shall be connectable to one telemetering equipment,
- 2. The number of gauging stations printable at the typewriter is found as follows:

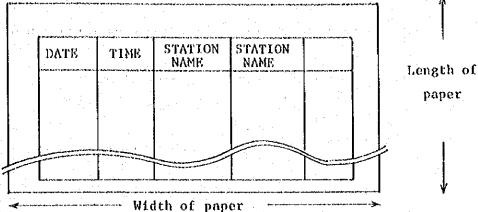
Number of printable gauging stations

[(carriage width - 1 inch) × number of printing characters/inch - (number of date, = time printing characters)]

Number of printing characters/station

(NOTE) Number of printing characters/inch: 12 chars/inch
Number of printing characters/station: 8 chars/station
Number of date printing characters: 8 chars
Number of time printing characters: 8 chars

- 3. Zero suppression not performed.
- 4. Tabulation example


DATE	TIME	No, 1 station	No, 2 station	Remarks
u02u18uu	v12u00uu	U1234U+U	น2345มาน	Example of all stations calling
UO2v18uu	u12u08uu		บ3456นน	Example of indi- vidual station calling.
	Example of	power	Example of	power abnormal

(NOTE) U indicates a space.

5. Deciding the recording paper

The width of the recording paper is decided from the number of gauging stations, and the length of the recording paper is decided from the number of lines printed on one sheat.

(Recording paper example)

(Legend)

The case when JIS standards A size and B size paper is used is shown below.

(Conditions arel/6 inch line feed and 1 inch = 25.4 mm margin at both ends of the paper.)

	Paper size		Number of	Number of			
,	Standard	Width (mm)	Length (nm)	gauging stations	printing lines	Typewriter	
	۸1	594	841	30 or less	186 or less	24 inches or 27 inches	
	Λ2	420	594	19 or less	128 or less	18 Inches	
	Λ3	297	420	12 or less	87 or less	18 inches	
	B2	515	728	25 or less	159 or less	24 inches or 27 inches	
	В3	364	515	16 or less	109 or 1ess	18 inches	
	B4	257	364	10 or less	73 or less	13 inches	

4) Radio equipment

This equipment shall be installed at the telemetering equipment, and shall satisfy the following functions and ratings. Moreover, these specifications shall also be applicable when this equipment is used at the gauging stations, repeater

stations and monitoring stations.

(1) Functions

(a) Autenna matchable range

Standing wave ratio 2.0 or less

(b) Transmitting output check

By external mater

(c) Modulation input check

(d) Demodulated output check

(e) Squelch adjustment

Continuously variable

(f) Demodulated output adjustment

Standard value ±3dB

(g) Monitor speaker volume adjustment

 $0 \sim 0.3W$

(2) Transmitter ratings

(a) Type of emission.

F2, F3

(b) Output

Specified from among 1W, 3W, and 10W by SSI.

Moreover, output rating shall be within +10% at 12.0V power supply voltage. (However, shall be within 110% at 12.0V power supply voltage at normal temperature.)

(c) Frequency

70MHz band or 400MHz band. Prequency used specified separately.

(d) Antenna impedance

50 Ω

(e) Modulation method

Phase modulation

(f) Modulation input

1kHz, linear up to 70%.
Input required for 70% modulation is within -4dBm 13dB.

(g) Allowable frequency error

Within ±10 × 10-6

(h) Maximum frequency deviation

Within 35kHz

(1) Modulation Referred to 1kHz, 30% modulation frequency response 0.3kHz ~10,5dBm ±2dB 2.0kHz + 6.0dBm ±2dB 2,7kHz # 8.5dBm ±2dB + 8.0dBm 12dB 3.0kHz (J) S/N ratio 45dB or greater at 1kHz, 70% modulation (k) Distortion 10% or less at lkllz, 70% modulation (1) Spurious 70 MHz 1mW or less. Moreover, must be 80dB in-band, 60dB or more out-of-band lower than average power of fundamental wave. 400 MHz lmW or less. Moreover, must be 60dB or more lower than average power of fundamental wave. (m) Occupied bandwidth Shall be within 16kHz. (3) Receiver ratings (a) Frequency 70MHz band or 400MHz band. Frequency used specified separately. **50** Ω (b) Antenna impedance (c) Receiving system Superheterodyne Within $\pm 10 \times 10^{-6}$ (d) Allowable local oscillator frequency error 12kHz or greater at 6dB down (e) Bandwidth Within 25kHz at 70dB down (f) Selectivity Referred to 1kHz, 30% modulation (g) Receiving frequency response 0.3kHz110.5dBm 12dB 2.0kHz - 6.0dBm ±2dB - 8.5dBm ±2dB 2.7kHz 3,0kHz ~ 9,5dBm 12dB

(h) S/N ratio

30dB or greater at 15dBpV input

at 1kHz, 70% modulation.

(1) Squelch

Opened at 10dB or less noise suppression input voltage (or 0dBpV or less input field strength). Continuously variable to 20dB noise suppression voltage.

(j) Receiving sensitivity 70MHz band: 3dBµV or less (2dBµV or less at normal temperature)

400MIz band; 4dBpV or less (3dBpV or less at normal temperature)

(k) Spurious response

70MHz bnad: -80dB or less 400MHz band: -70dB or less

(1) Sensitivity suppression effect

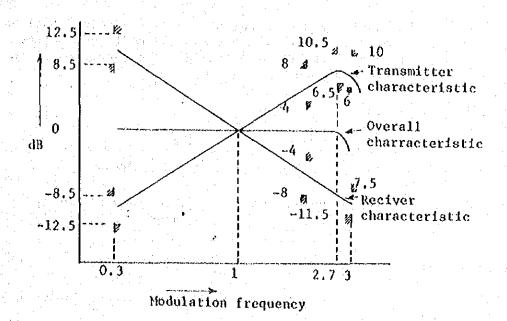
The interferring wave input voltage, when the noise quieting becomes 20dB under the condition that an interferring wave 15kHz from the desired wave in the 70MHz band and 25kHz from the desired wave in the 400MHz band has been applied with the desired wave 6dB higher than the necessary input voltage to achieve a noise quieting of 20dB, is as follows:

70M12 band 80dBpV or greater 400M12 band 70dBpV or greater

(m) Intermodulation characteristic

Noise quieting must be 20dB or less when each interferring wave related to cause on intermodulation is applied at 65dBpV input voltage without any desired wave.

(4) Others


This equipment shall be provided with functions which protect the transmitter and receiver against opening or shorting of the antenna system and excessive input. Moreover, external connections shall be made with N-type connectors.

[COMMENT 21]

1. Since this system uses audio band frequencies at the calling signals and response signals, the overall frequency response between the master station and gauging stations must be considered.

The installation of a repeater station in the radio links has an

especially large affect. Therefore, the conventional specifications have been modified as the characteristics shown below.

Moreover, the overall characteristic is flat from 0.3kHz to 2.7kHz because it has been determined from the minimum and maximum frequencies of the signals to be transmitted.

2. The standing wave ratio of the matchable load for the transmitter and receiver has been made 2.0 by the following reason. The standing wave ratio of the antenna is a maximum 1.5, but the standing wave ratio is generally assumed to be about 2.0 when the affects of insertion of a coaxial arrester and connectors, etc. are considered.

5) Antenna equipment

The antenna equipment shall adequately satisfy the following specifications.

The specifications shall also be applicable when this equipment is used at gauging stations, repeater stations and monitoring stations.

(1) Antenna

(a) Frequency 70MHz band or 400MHz band. Specified by SSI.

(b) Type Specified by SS1.

(c) Impedance 50Ω

(e) Standing wave ratio 1.5 or less at the specified frequency

(f) Polarization

Vertical as standard

(2) Coaxial arrester

A coaxial arrester which grounds lightning shall be provided between the antenna and radio equipment. This arrestor shall not hinder the functions of the radio equipment.

a. Ratings

(a) Impedance

50 Ω

(b) Insertion loss

0.5dB or less

(c) Standing wave ratio

1.2 or less at the specified frequency

[COMMENT 22]

1. The kinds and typical ratings of applicable antenna elements are as follows:

Kind	Gain (GIS)	Front-rear ratio	Frequency width in SWR rating (1.5)	
3-element folded	8 dB	13 dB	Specified frequency only	
Yagi antenna	or more	or more		
4-element folded	9.5 dB	13 dB	do	
Yagi antenna	or more	or more		
5-element folded	11 dB	13 dB	do	
Yagi antenna	or more	or more		
Braun antenna	2 dB or more	440 AM 300 AM AM	do	
Sleeve antenna	2 dB or more	**********	do	
Wideband 3-clement	6 dB	10 dB	5 MHz	
folded Yagi antenna	or more	or more		
Wideband 5-clement	9 dB	10 dB	5 MHz	
folded Yagi antenna	or more	or more		

2. Since the gain and directivity will deteriorate substantially relative to the other frequency when a general antenna is used in a radio link having different transmitting and recceiving frequencies and is set to only one of these frequencies, a wideband type antenna or separate transmitting and receiving antennas should be used when there is not so nuch margin in that radio link.

6) Clock

The clock shall adequately satisfy the following specifications.

(1) Accuracy

Daily error within ±3 seconds

(2) Output signal

1 minute pulse signal

(3) Power failure guarantee time

30 minutes or more by floating charge system

[COMMENT 23]

Operation by applying an external 1 minute pulse to the time control unit is also possible. In this case, the clock is unnecessary. Moreover, when several clocks must be installed at the same station, the time control unit of each clock should be driven by a 1 minute pulse from the main clock.

3-1-3 (Additional functions)

The following functions may be added to the telemetering equipment by SSI.

Moreover, these specifications shall be applicable when the following units are used at the gauging stations and repeater stations.

1) I/O interface 2

This unit is used for connection to multiplex radio equipment and wire gauging equipment. It shall satisfy the following ratings.

(1) 1/0 level

Settable within

0 ∿ --25dBm.

(2) I/O impedance

600Ω ±20% balanced

[COMMENT 24]

- When the data code is sent to another point, the received FS signal can be sent directly by branching circuit (hybrid transformer, etc.).
- The number of I/O paths is a maximum of 3 paths.
 The number of paths equipped must be specified by SSI.
 - 2) Frequency deviation correction unit

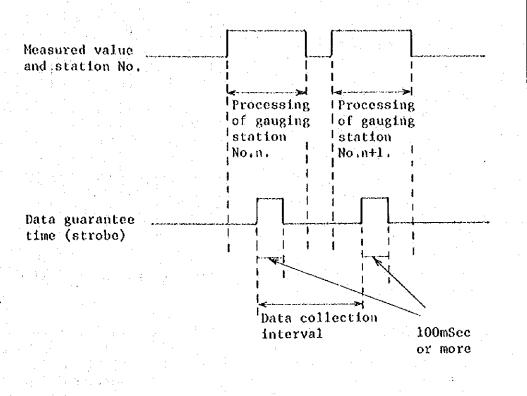
This unit is inserted when the frequency deviation caused by the multiplex radio circuit exceeds 1Hz. It shall satisfy the following ratings. (1) Maximum correctable frequency deviation Within ±15Hz

(2) Correction accuracy

: ±0.5H2 →

3) External output interface

This unit is used for connection to a display unit, etc. It shall satisfy the following conditions.


- (1) Shall be no-voltage contacts.
- (2) Shall close contacts by logic "1", Load conditions shall be 50V, 50mA or less.
- (3) Kinds of output signals

a. Output format

		والجاوية واستحمامها فللمساح المستحم المساح المساح والمساجي والمساجي والمساجية والمساجية والمساجية	and the state of t
Output signal name	Output signal contents	Signal format	Remarks
Measured value	BCD 4 digits 20 bits	Momentary signal	With odd parity bit at each digit,
Station No.	BCD 2 digits 10 bits	do ,	do.
Current time	BCD 4 digits 13 bits	Continuous signal	Without parity bit
1 minute pulse	1 bit	do.	
Calling time interval	6 bits	do.	
Periodic measurement	1 bit	do,	
Manual measurement	l bit	do.	
Measuring	1 bit	do,	
Master station power abnormal	1 bit	do .	
Strobe		Momentary signal	

b. Data guarantee time

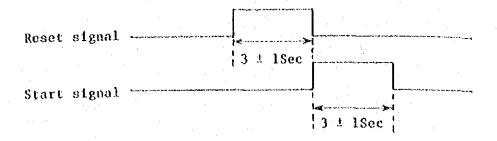
Output of data shall conform with the following time chart,

[COMMENT 25]

- 1. The maximum number of output paths shall be 3. The number of paths equipped must be specified by SSI.
- 2. The kinds of output signals must be selected and specified by SSI after an adequate study of the connected devices.

4) Repeater control unit

This unit shall have repeater station start/stop, transmitter switching, and receiving and processing function of repeater station status signal.


5) External starting

This unit shall have functions that permit starting of the telemetering equipment from the outside. Control by external starting shall be specified from among the following by SSI.

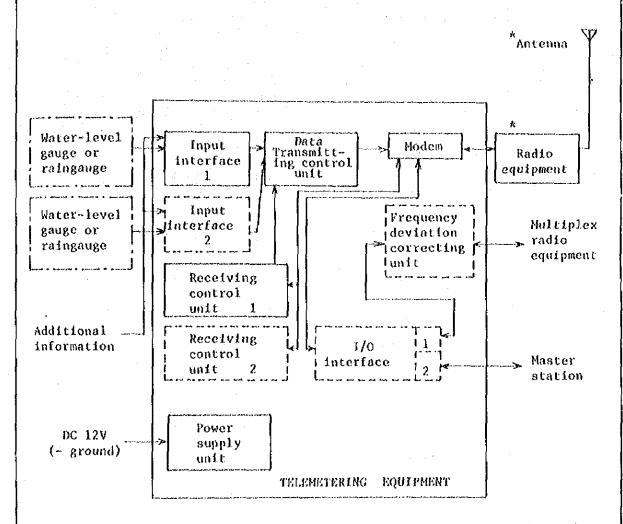
- a, All gauging stations
- b. Gauging stations set at the operating unit

c. Gauging stations specified beforehand

The time chart shall conform with the following:

The reset signal and start signal shall be relay contact input. Load capacity shall be 50V, 50mA or less.

[COMMENT 26]


- 1. The reset signal at external starting resets all operations other than at automatic calling.
- 2. Of the additional functions of the telemetering equipment, those given in item (1) below are wired or provided space at the time of delivery and may be added at the site after installation.

 Nowever, addition and modification for the additional functions given in item (2) below at the site after installation is uneconomical, and may be installed in a separate bay from the standpoint of space, etc., depending on the contents.
 - (1) Additional functions addable at the site after installation
 - a. Connection to multiplex radio equipment
 - b. Connection to wire gauging equipment
 - c. Connection to monitoring equipment
 - d. Connection to external interruption device
 - e. Connection to operator console
 - (2) Additional functions which must be provided for at the time of delivery
 - a. Connection to a display unit
 - b. Connection to an automatic gate control equipment
 - c. Connection to other equipment
 - d. Addition of repeater control function

3-2 (Gauging Station Equipment)

3-2-1 (Equipment composition)

1) The equipment composition of the gauging stations, including standard composition and optional functions, shall be as follows.

Legend: 1. * Not used when connected to multiplex radio equipment or directly to telemetering equipment.

2. Standard composition

3. Composition

4. Equipments outside the scope of these specification.

2) Components shall be as follows:

والمهاد والمواجعة المواجعة الم	Name	Qnt!y	Remarks
]	Telemetering equipment	1	
- 1	Modem	1.	
- 2	Data transmitting control unit	1	
- 3	Receiving control unit 1	1	
- 4	Input interface 1.	1	
- 5	Power supply unit	1	
- 6	Cabinet	1	
- 7	I/O interface	1	Optional function, Conforms with SSI,
- 8	Frequency deviation correcting unit	1	n
· <u>.</u> 9	Receiving control unit 2	1	TI II
-10	Input interface 2	1	ú
2	Radio equipment	1	Conforms with SSI.
,3	Antenna equipment	1	Conforms with SSI.
- 1	Antenna	1	
- 2	Coaxial arrester	1	
4	Repeater control unit	1	Conforms with SSI,
5	Accessories	1 .	
~ 1	Hand microphone	1	
- 2	Test cord	1	
3	Adjustment tools	1 set	
- 4	Instruction manual	1 сору	
5	Test data	1 сору	
6	Technical service card	1 сору	In card case
- 7	Accessory box	1	

3-2-2 (Functions and ratings)

1) Telemetering equipment

(1) Modem

This unit shall have a modulation function which converts pulse code to a frequency modulated signal, and a demodulation function which receives the gauging station calling signal.

(2) Transmitting control unit

This unit shall have a function which converts the input signals from the rain gauge and water-level gauge into a response signal.

(3) Receiving control unit 1

This unit shall perform frequency discrimination of the calling signal (2-frequency series signal) from the master station and provide an output to the transmitting control unit only when the unique frequency allocated to its own station has been received.

The number of stations controllable at this unit shall be 1, but addition of one more station shall be possible by SSI.

(4) Input interface 1

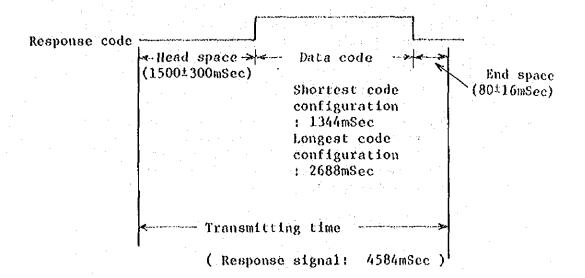
This unit shall be connected to the raingauge, water-level gauge, etc. and shall have a function which interface these devices to the transmitting control unit. The number of gauges connectable to this unit shall be one, as standard, but shall be expandable by one by SSI.

(5) Power supply unit

This unit shall supply the necessary power to each unit. Its input shall be DC12V (- ground).

(6) Others

a. The following operations shall be performed.


• 1	Item	Remarks
1	Speech	Hand microphone, speaker, volume adjustment
2	Data code test transmission	
3	Transmitter input level	Measured by U-link
4	Receiver output level	11
5	Calling signal selection (filter input level	Measured by U-link or check terminal
6	FS modulator input signal level	

b. Protection circuit

A protection function that halts transmission after a fixed period of time to prevent the telemetering equipment from transmitting continuously because of a failure in the transmitting control unit shall be provided.
This protection circuit shall have a time length of 6 ±1 seconds.

[COMMENT 27]

1. The setting time of the protection circuit is 4,584mSec as shown below, considering the maximum time of the response signal, but has been made 6,000 ±1,000mSec considering the setting accuracy.

2) Repeater control unit

This unit shall be installed at the telemetering equipment, and shall have a function which sends the repeating-start signal and repeating-stop signal. It shall have a portable construction. This unit is installed by specifying SSI.

[COMMENT 28]

The repeater control unit has a printed circuit board construction, and can be used by installing it at the telemetering equipment. Moreover, it may be easily carried by placing it in a special box.

3-2-3 (Additional functions)

The following functions may be added to the telemetering equipment by specifying SSI.

1) Receiving control unit 2

Reception of one more calling signal from master stations shall be possible by adding this unit.

2) Input interface 2

Connection of one more gauging quantity shall be possible by adding this unit. In this case, the station No. shall be given separately.

3-2-4 Gauging station equipment current consumption

The current consumption of the gauging station equipment shall satisfy the following ratings at 12.0V power supply voltage.

Item		Current consumption
Stand-by		15 mA or less
Receiving	3	150 mA or less
	1 W	2.0 A or less
Transmitting	3 W	2.5 A or less
	10 W	5.5 A or less

[COMMENT 29]

- 1. Note that the following current consumption are added when a waterlevel gauge is connected to the telemetering equipment.
 - (1) A water-level gauge current consumption of about 0.5A may be necessary when a water-level gauge is connected directly to the telemetering equipment.
 - (2) When the entry of the voltage induced from the outside into the telemetering equipment is considered, elimination of the induced voltage by inserting a relay circuit between the telemetering equipment and water-level gauge is necessary. In this case, the current consumption of the relay circuit is about 1.0A.

3-2-5 (Raingauge and water-level gauge connection conditions)

Connection of the telemetering equipment to a rainguage, water-level gauge, etc. which satisfy the following conditions shall be possible. However, the minimum detection units of the raingauge shall be 1mm, and the minimum detection units of the water-level gauge shall be 1cm.

- 1) Electrically connected raingauge, water-level gauge
 - (1) Output format

: No-voltage make contacts (Closed by logic 1)

(2) Code format

a. Water-level gauge

: BCD code with odd parity bit at each digit

(maximum 4 digits),

b. Raingauge

: BCD code with odd parity bit at each digit

(maximum 3 digits).

Or contact signal of every

lmm (1 pulse/mm).

[COMMENT 30]

1. The following conditions are satisfied by gauging equipment requiring a gauging command.

(1) Response time

: Within 1 sec (Time from issuing of gauging command to transfer of data to telemetering

equipment)

(2) Data

: Data are continuous up to release of

gauging command

2. Water-level gauging equipment connected mechanically

When connected to gauging equipment that does not output an electrical signal is added. Connection to this converter shall be mechanical connection.

The converter satisfies the following conditions:

Revolution of shaft

: 1 revolution/m

Torque

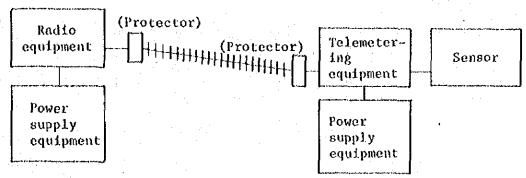
: 500 g.cm or less

Direction of rotation

: Clockwise as viewed from the shaft

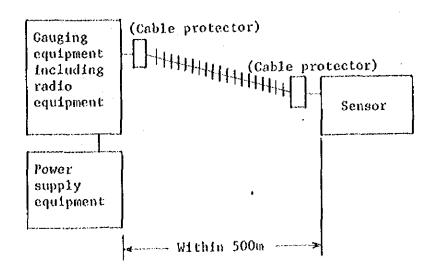
3. Since connection of water-level gauge and raingauge to telemetering equipment employs the following system, consideration must be given to their installation.

(1) Water-level gauge

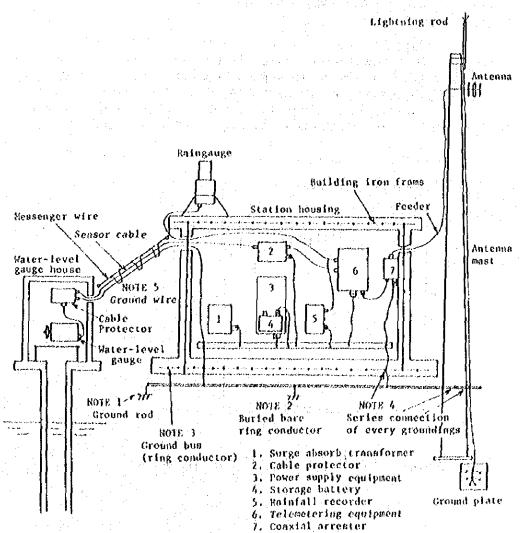

Usually, A/D converter is installed in the water-level gauge to output electrical signal, which is converted to response signal at the telemetering equipment.

As there are various kinds of format in output of the waterlevel gauge, consideration must be given to it.

(2) Raingauge


To obtain rainfall data, A/D converter is installed in the raingauge, or pulse counter, which counts 1 mm pulses from raingauge, is installed in the telemetering equipment.

4. In principle, the AC transmission system illustrated below (FS signal is desirable when the telemetering equipment and radio equipment are separated.


Connection cable: 0.9 \$\phi\$ cable, as standard.

However, the DC transmission system illustrated below may be used when unavoidable, but the distance between the telemetering equipment and gauging equipment (sensor) is limited to approximately 500m. Since this system is easily struck by lightning, its use should be avoided in areas where lightning occurs frequently.

Connection cable: 0.9ϕ cable, as standard.

- 5. Careful attention must be given to lightning damage when the telemetering equipment and gauging equipment (sensor) are separated. Lightning countermeasures including the facilities inside the station building, such as the following, must be taken when installed in areas where lightning frequently occurs.
 - (1) In principle, installation of a lightning rod and surge absorb transformer and cable protector, etc.
 - (2) Series connection of every groundings,
 - (3) Installation of ring conductors inside and around the station housing,
 - (4) Connection of structures inside the compound (from tower, equipment, etc.) to the nearest ring conductor.
 - (5) In principle, ground wire shall be 14mm² or larger copper wire, and connections shall be by telmit welding.
 - (6) A target value of grounding resistance shall be 50Ω or less.
 - (7) Example of grounding facilities of a gauging station is shown below.

NOTE 1 Ground rod

The number of rods is increased according to the grounding resistance by driving rods (1.5m) into the ground at intervals of 3m or more, or a grounding resistance reducing agent is used.

NOTE 2 Buried bare ring conductor

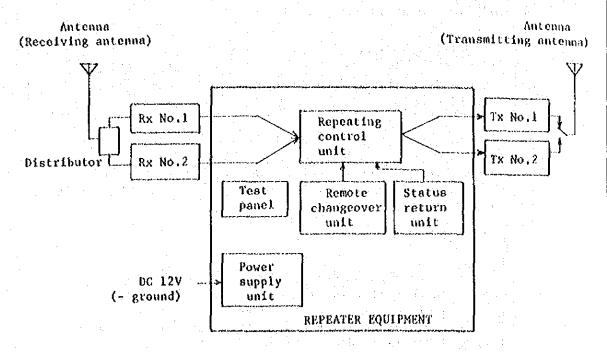
The various ground electrodes, etc. are connected. The wire is bare conductor of about 220, and grounding resistance reducing agent is used, as required.

NOTE 3 Ground bus (ring conductor)

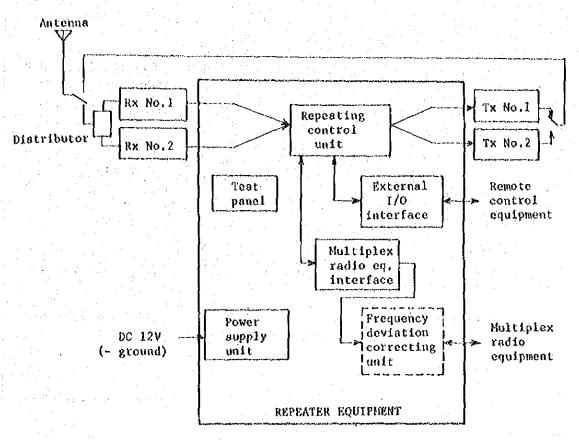
The ground points of each facility inside the housing are connected in common.

NOTE 4 Series connection of every groundings

The various grounds and conductors and equipment installed in the same compound are connected in series by conductor of the necessary thickness.


NOTE 5 Ground wire

Ground wire is laid when necessary grounding resistance cannot be obtained at the water-level gauge installation site. When the water-level gauge is separated from the station housing, a cable protector is installed and a separate ground cable of 14° or greater is laid and connected to the other ground wire.


3-3 (Repeater Station Equipment)

3-3-1 (Equipment composition)

- 1) The repeater station equipment, including the standard composition and optional functions, shall be as follows.
 - (1) For V-V repeater

Legend: 1. Standard Composition

- Legend : 1. Standard composition
 - 2. [] Optional function

2) Components shall be as follows:

	Name	Qnt¹y	Remarks
1	Repeater equipment	1	
- 1	Repeating control unit	1	
- 2	Remote changeover unit	1	Installed for V-V repeating
~ 3	Status return unit	1	$oldsymbol{u}$, $oldsymbol{u}$, $oldsymbol{u}$
- 4	Test panel	1	
~ 5	External I/O interface	1	Installed for µ-V repeating
~ 6	Multiplex radio eq. interface	1	u
- 7	Power supply unit	1	
- 8	Bay/Cabinet	1	
- 9	Frequency deviation correcting	1	Optional function
2	Radio equipment	1	Conforms with SSI,
- 1 - 2	Transmitter Receiver	2	
3	Antenna equipment	1	Conforms with SSI,
1	Antenna	1	
- 2	Distributor	1	Installed at repeater equipment
- 3	Filter	1	Conforms with SSI.
- 4	Coaxial arrester	1	
4	Accessories	1 set	
- 1	Test cord	1	
- 2	Adjustment tools	1 set	
- 3	Hand microphone	1	
4	Instruction manual	1 сору	
<u> </u>	Test data ,	1 сору	
- 6	Technical service card	1 сору	In card case
- 7	Accessory box	1	

3-3-2 (Functions and ratings)

1) Repeater equipment

(1) Repeat control unit

This unit shall perform the receiver output repeating operation, and receiver failure detection and automatic changeover by transmitter failure.

(2) Remote changeover unit

This unit shall be equipped at V-V repeating, and shall permit changeover of the transmitters by control signal from the master station.

(3) Status return unit

This unit shall be equipped at V-V repeating, and shall return the status of the repeater equipment to the master station. This unit shall use the telemetering equipment, and shall convert the repeater information to numbers and transmit it to the master station.

However, in this case, repeater information shall be handled as one gauging station, and conversion of numerics shall be as follow.

Item	1,000 digit	100 digit	10 digit	1 digit
Transmitter No. 1 working	1			
Transmitter No. 2 working	2			•
No transmitter failure		0	[]
Transmitter No. 1 failure	1	1		
Transmitter No. 2 failure		2		
No receiver failure	•	4.4	0	
Receiver No. 1 failure			1	1
Receiver No. 2 failure	1		2	

Station No.; Station No. given to repeater station.

Additional information; Shall be 1 digit (power supply information)

[COMMENT 31]

1. Since the repeater information which should be transmitted from the repeater station to the master station covers many items, the signal transmission system has been made the same as that of the gauging station.

Moreover, if the same equipment as that of the gauging station equipment is installed as the repeater status return unit, this system is employed to simplify the processing method at the master station because the same maintenance as the telemetering equipment is possible and the signal format is the same.

2. Repeater information typeout example

DATE	TIME	Station A	Station B	Repeater station
02 18	12 00	1234 +	2345 +	1020 +

NOTES: (1) The above is an example when the repeater station has been allocated to the 3rd station.

(2) Transmitter No.1 working no transmitter failure, receiver No.2 failure and power normal is illustrated above.

(4) Test panel

The following functions shall be provided at the test panel for system monitoring and maintenance at the repater equipment.

	Function	Opera- tion	Dis- play	Remarks
1.	Power ON/OFF	0		
2	Transmitting display		0	
3	Speech	0	-	
4	Repeating-start	0		V-V repeating only
5	Repeating-stop			
6	Transmitter No. 1 working	0	0	Including change- over operation
7	n 2 n			
8	" 1 failure	4.0	0	
9	2 и	~-	0	
10	Receiver No. 1 failure	-	0	
11	g 2 0	~	0	
12	Display OFF	0		May be replaced by door switch.
13	Transmitter changeover lock	0	~	
14	Receiver No. 1 disconnect	0		
15	2 19 1 H 1 2	0	-	

(5) External I/O interface

This unit shall be installed at μ -V repeating, and shall satisfy the following conditions.

- a. Input conditions
 - a) Shall be relay contact input.
 - b) Shall close the contact by logic 1. Load capacity shall be 50V, 50mA or greater.
 - c) Signal length shall be 200 ±100mSec.
 - d) Kinds of control items
 - (a) Transmitter changeover No. 1 → No. 2
 - (b) " No. $2 \rightarrow No. 1$
 - (c) Receiver No. 1 disconnect
 - (d) Receiver No. 2 disconnect
 - (e) Receiver parallel connection
- b. Output conditions
 - a) Shall be relay contact output.
 - b) Shall close the contact by logic 1.
 Load conditions shall be 50V, 50mA or less.
 - c) Kinds of output signals
 - (a) Transmitter No. 1 working
 - (b) Transmitter No. 2 working
 - (c) Receiver No. 1 failure
 - (d) Receiver No. 2 failure
 - (e) Transmitter No. 1 failure
 - (f) Transmitter No. 2 failure
- (6) Multiplex radio eq. interface

This unit shall be equipped for \$\mu-V\$ repeater equipment and shall have a function that connects multiplex radio equipment and shall satisfy the following input/output conditions.

a. I/O level

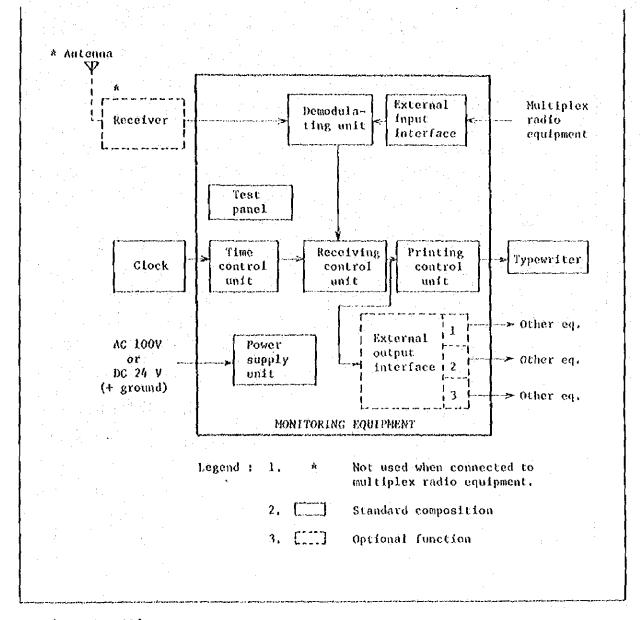
Settable over 0 ∿ -25dBm range

(7) Power supply unit.

This unit shall supply the necessary power to the other units. Its input shall be DC 12V (- ground).

3-3-3 (Repeater equipment current consumption)

The current consumption of the repeater station equipment shall satisfy the following conditions at 12.00 power supply voltage,


Item		Current consumption
Stand-by		50 mA or less
Receivi)g	1.3 A or less
and the Manager of the Control of th	1 W	3.0 A or less
Repeating	3 W	3,5 A or less
	10 W	4.7 A or less

However, the current consumption at repeating shall increse 1.0A at status return unit operation (for V-V repeater).

3-4 (Monitoring station Equipment)

3-4-1 (Equipment composition)

1) The equipment composition of the monitoring station, including standard composition and optional functions, shall be as follows:

[COMMENT 32]

Monitoring performed by connection to multiples radio equipment shall be the standard composition, and antenna equipment and receiver shall be installed as optional functions in the case of a simplex radio link.

2) Components shall be as follows:

EBANGULAN AMERIKAN BARA	Name	Qnt y	Remarks
1	Monitoring equipment	1	
- 1	Demodulating unit	1	
~ 2	Receiving control unit	1	
~ 3	Printing control unit	1	
- 4.	External input interface	1	
- 5	Test panel	1	
- 6	Time control unit	1	
- 7	Power supply unit	1	
8	Bay	1	
- 9	External output interface	1	Optional function
2	Typewriter	1	Same as para. 3-1-2 3)
3	Receiver	1	Conforms with SST,
4	Antenna equipment	1	Conforms with SSI.
~]	Anteuna	1	
- 2	Coaxial arrester	1	
5	Clock	1	Conforms with SSI,
6	Accessories	1 set	·
- 1	Test cord	1.	
- 2	Adjustment tools	1 set	
- 3	Instruction manual	1 сору	
- 4	Test data	1 сору	
5	Technical service card	1 сору	In card case
~ 6	Ассеввоту саве		

3-4-2 Functions and specifications

1) External input interface

This unit is used to connect to multiplex radio equipment. Its input conditions shall satisfy the following specifications.

(a) Input level Settable over the 0 \circ -25dBm range

(b) Input impedance 6000 120% balanced

2) Monitoring equipment

(1) Test panel

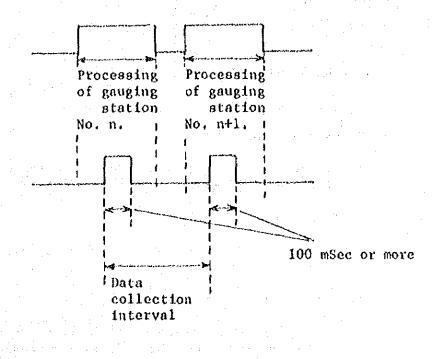
At the monitoring equipment, the following functions shall be provided at the test panel for system monitoring and maintenance.

	Function	Opera- tion	Dis- play	Remarks
1	Resetting	0	•-	For operation resetting
2	Buzzer off	0	-	
3	Receiving tone monitor	→ · ·	0	
4	Input level measurement	0	-	U-link, etc. (By external meas- uring instrument)
5	Lamp test	0		
6	Typewriter printing ON/OFF	0	~	
7	Squelch adjustment	. 0		When receiver equipped
8	Data bit display	-	0	
. 9	Burn out fuse	_	0	
10	Power ON/OFF	0	ļ <u>.</u>	·
11	Power	-	0	
12	Monitoring by voltmeter	0	0	For power supply voltage measurement

3-4-3 (Optional functions)

The following functions shall be addable to the monitoring equipment by specifying SSI.

1) External output interface


This unit is used to connect to a display unit, etc. Its output shall satisfy the following conditions.

- (1) Shall be no-voltage contact.
- (2) Shall close the contact by logic 1. Load conditions shall be 50V, 50mA or less.
- (3) Kinds of output signals
 - a. Output format

Output signal name	Output signal contents	Signal format	Remarks
Measured value	BCD 4 digits 20 bits	Momentary signal	With 1 bit odd parity at each digit
Station No.	BCD 2 digits 10 bits	do 🗥	do.
Current time	BCD 4 digits 13 bits	Continuous signal	Without parity bit
1 minute pulse	1 bit	do.	
Monitoring	1 bit	do.	
Monitor station power abnormal	1 bit	do.	
Strobe		Monentary signal	

1. Data guarantee time

When data (momentary signal) are output to the outside, it shall conform with the following time chart.

[COMMENT 33]

1. The number of output paths shall be up to a maximum of 3 paths.

The number of paths equipped must be specified by SSI.

2. The kinds of output signals must be selected and specified by SSI after an adequate study of the connected devices.

3-4-4 (The conditions of monitoring operation)

The monitoring operation start condition and stop condition shall conform with one of the followings,

- 1) When monitoring is performed by simplex radio links, the monitoring operation shall be started by detection of the subcarrier when the response signal has been directly input from the gauging station and shall be ended by the timer after one series of operations is completed.
- 2) When monitoring is performed by multiplex radio links, the monitoring operation signal (ringer signal) sent by the master station shall be received, and the monitoring operation shall be performed only while this signal is being received.

The operation time chart for this system shall conform with the following.

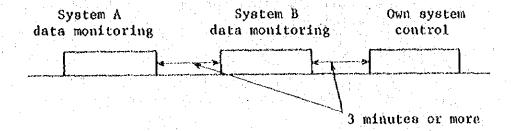
Ringer signal		7/1//
Monitoring operation		1
Data code reception		
	or more response response	

[COMMENT 34]

- 1. Monitoring by simplex radio links conforms with the system that starts operation by detection of the subcarrier.
- 2. When a ringer signal can be used in a monitoring system by multiplex radio links, monitoring by means of this signal is desirable. However, when the ringer signal cannot be used, monitoring should conform with the above.

3-4-5 (Data processing)

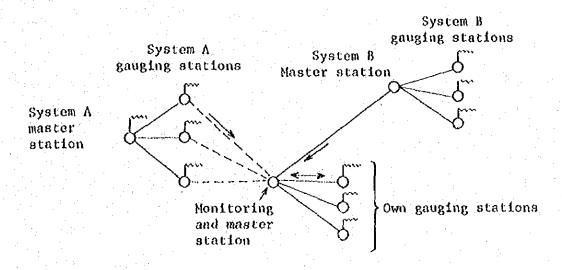
- When the monitoring operation is started by inputting the response signal directly by means of a simplex radio link, all the data shall be printed at both all-station calling and individual station calling.
- 2) When the monitoring operation is started by the ringer signal


of multiplex radio link, only the data code of the gauging station received while the ringer signal is being received shall be printed.

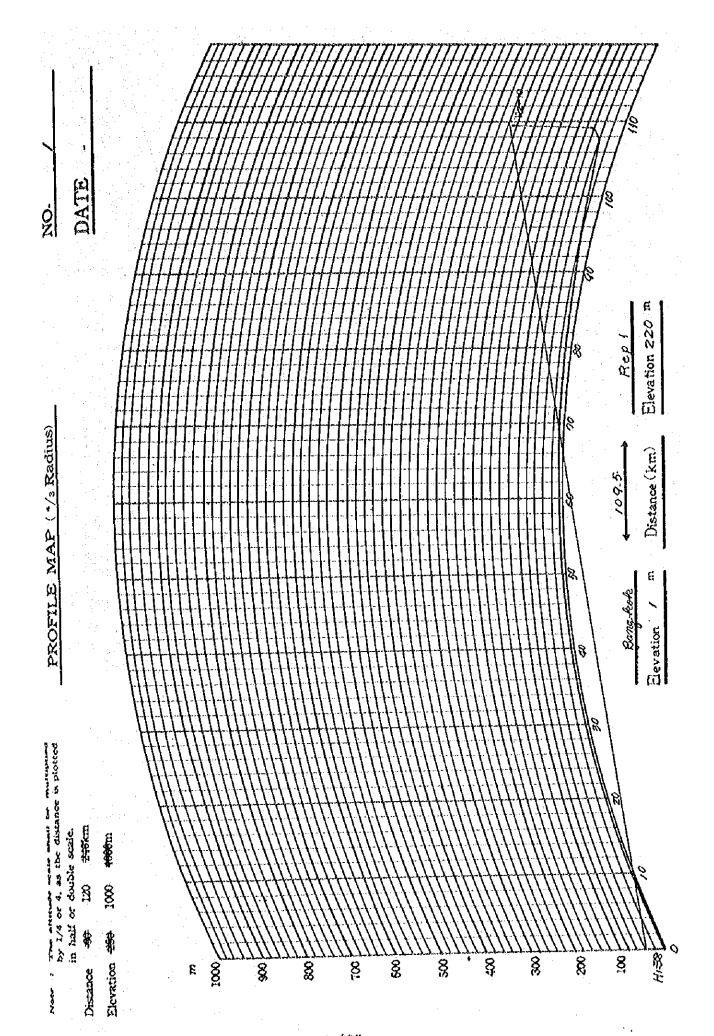
3) The monitoring operation shall be performed from the lower gauging station number to the higher gauging station number, and printing shall not be performed when the station numbers are reversed during one monitoring operation.

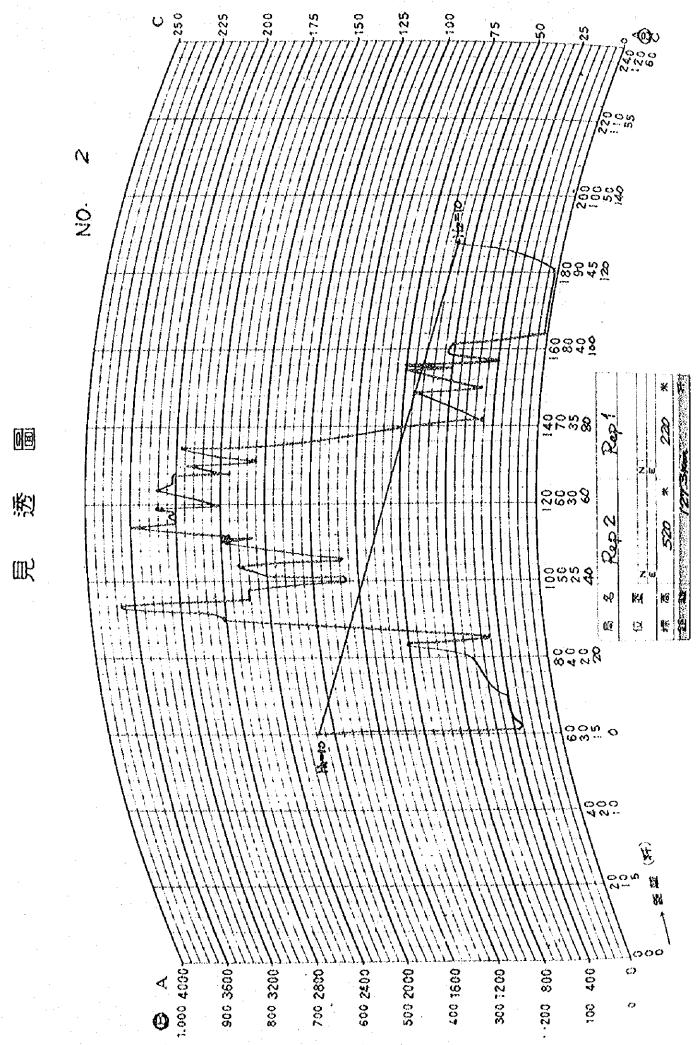
3-4-6 (System expansion function)

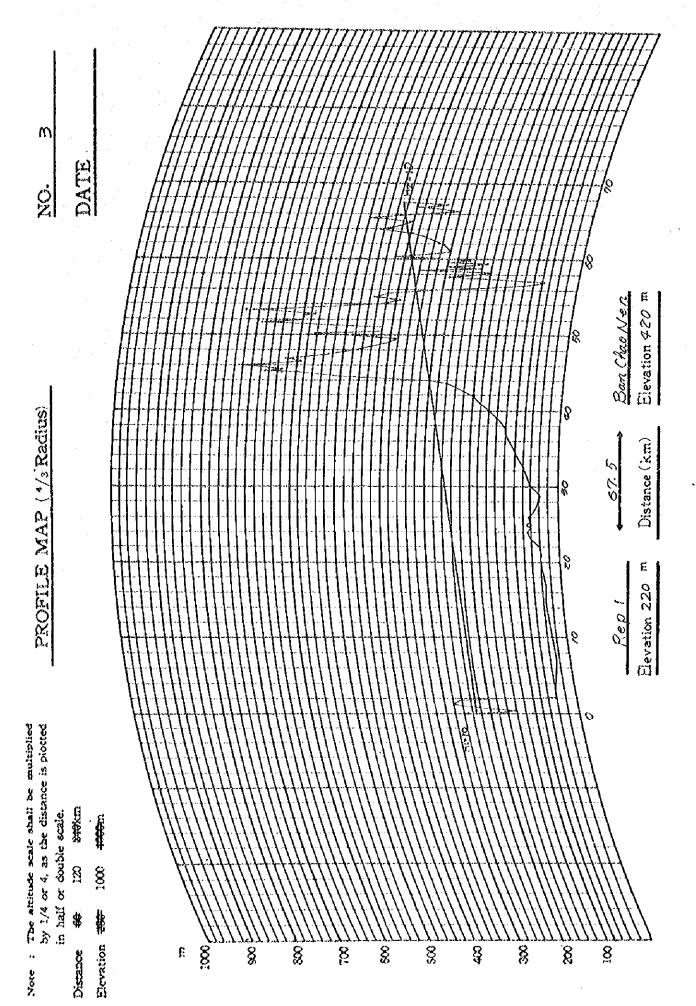
- 1) The number of monitoring systems connectable to this equipment shall be a maximum of two systems.
- 2) The functions of master station shall be addable to this equipment as required.


 In this case the operating time chart shall conform with the following, and the order of each system shall be specified in the SSI.

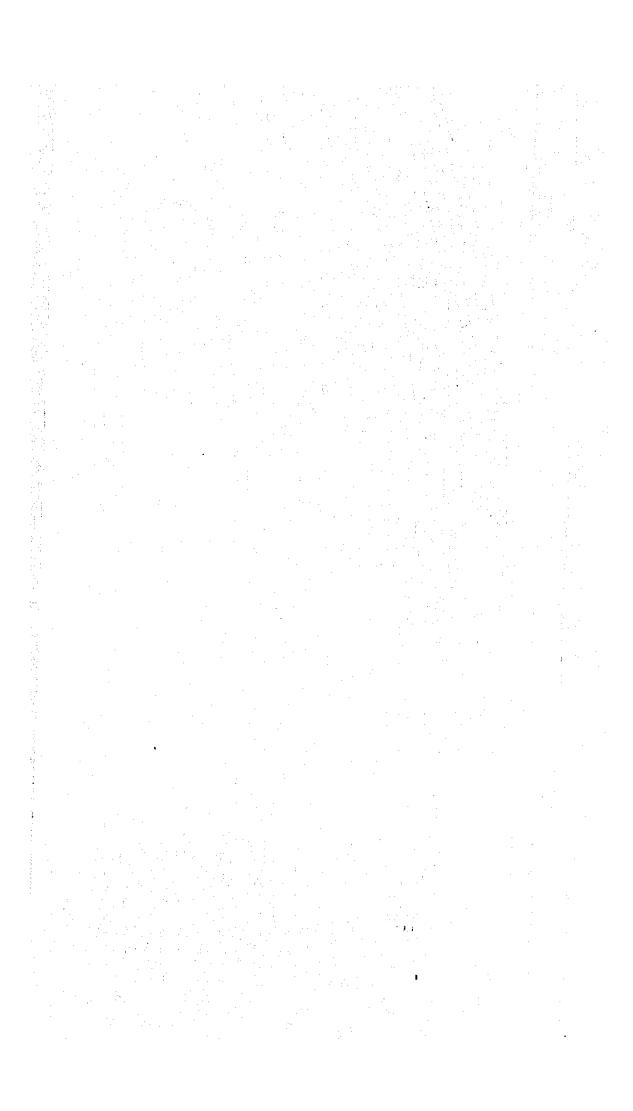
- 3) The total number of gauging stations of the monitoring system and own system shall be within 30 stations. The station numbers in this case shall be one series of numbers for the entire system, and shall be assigned in calling order from low station number to high station number.
- 4) Printing shall be performed in one line for the entire system.

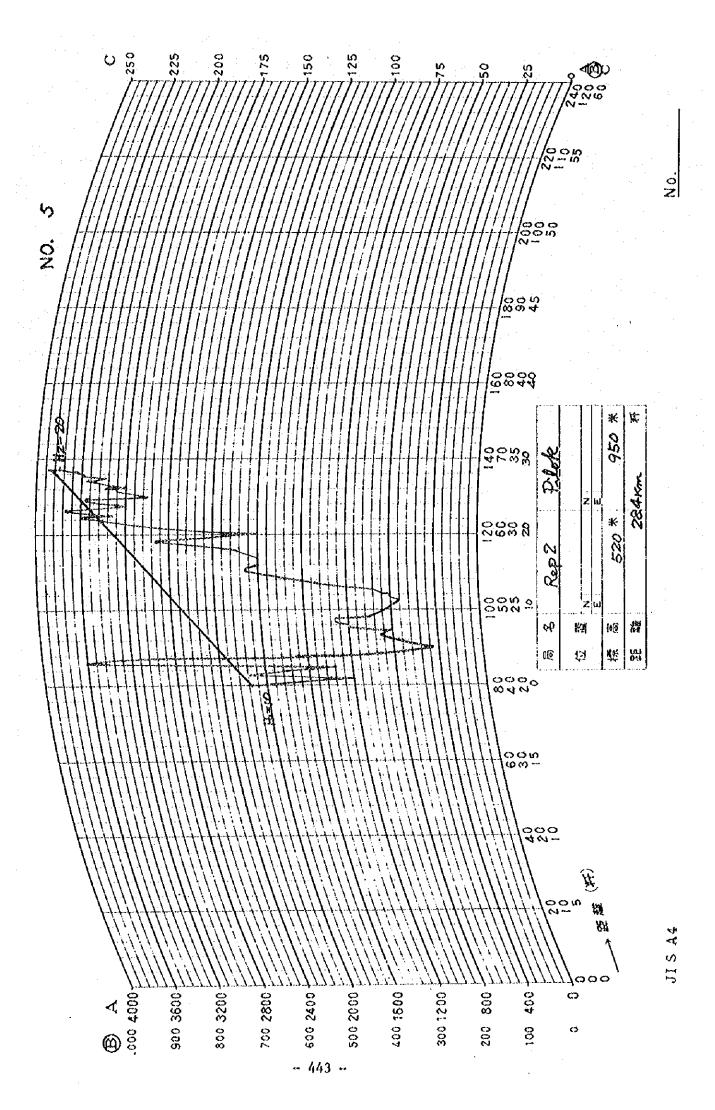

[COMMENT 35]


1. The transmission lines that can be connected to the monitoring/
telemetering equipment of these specifications shall be up to a
maximum of 3 transmission lines by combining simplex radio links,
multiplex radio links, and wire links.
A system example is given below. (A repeater station may also be
installed in the links, but is omitted here.)


- 2. In the system example given above, time management is performed perfectly and all stations can be assumed to be controlled by a single master station.
 As an example of time management, if time management is performed by the clock of each station, the interval of each system (data interval) must be about 3 minutes, considered from the stand point of clock accuracy.
- 3. Since processing is performed by station number, there must not be stations having the same station number, including the station numbers of the own system gauging stations.

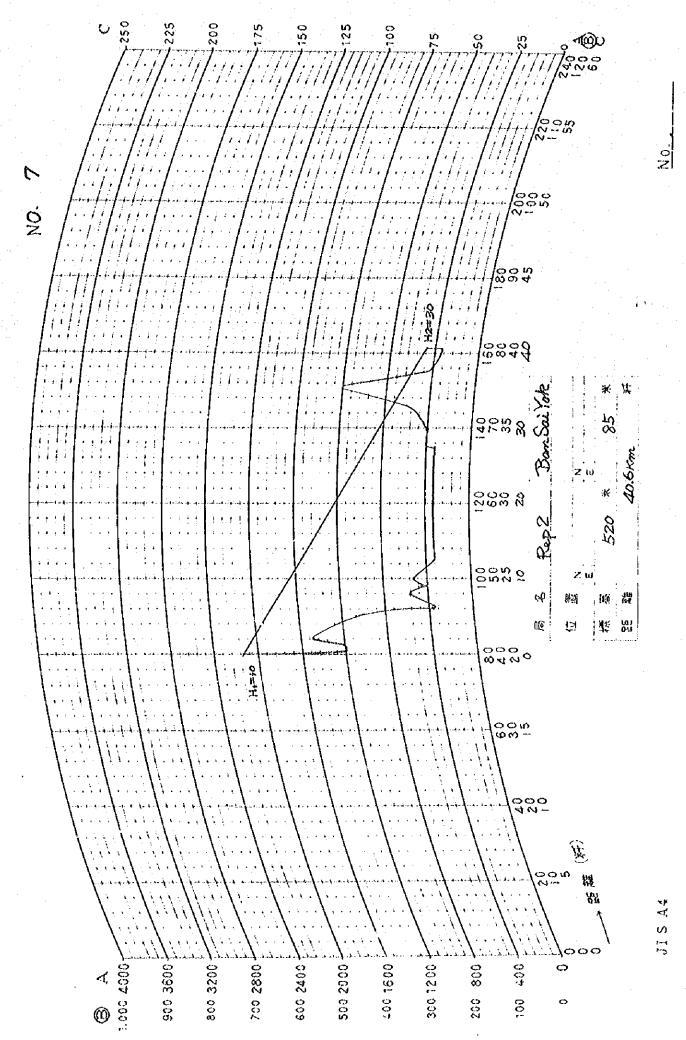
PROFILE MAP

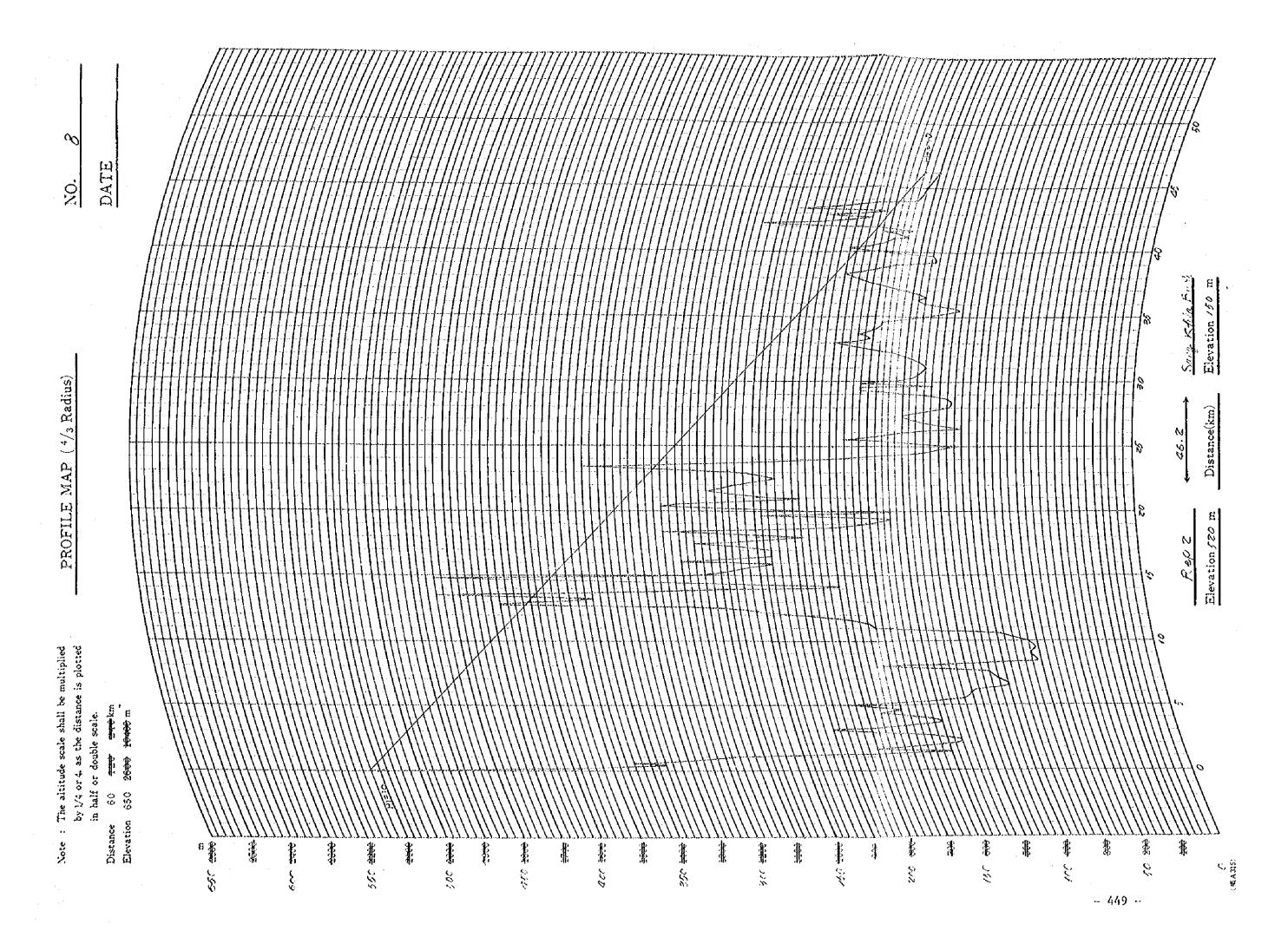




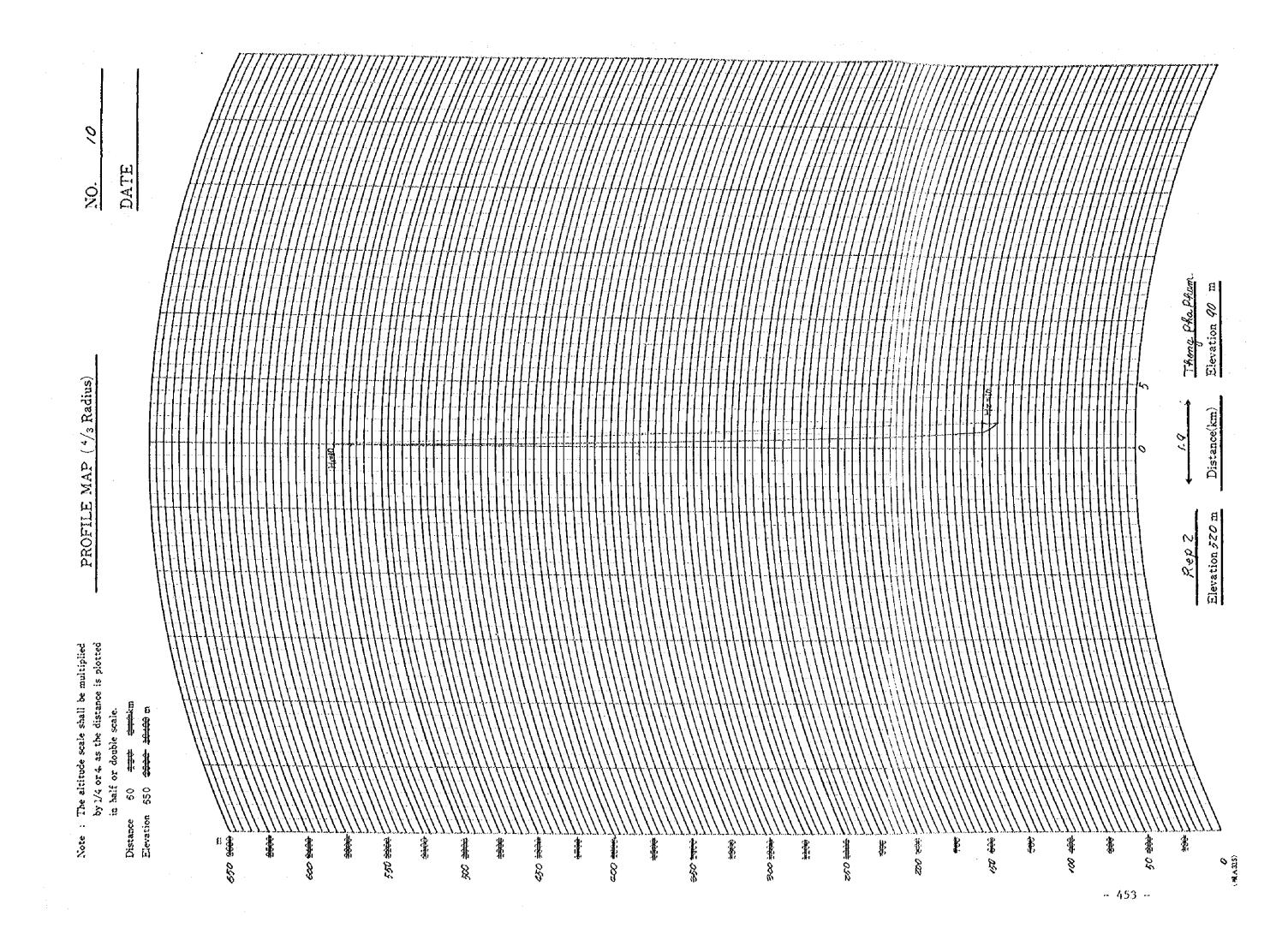
- 438 -

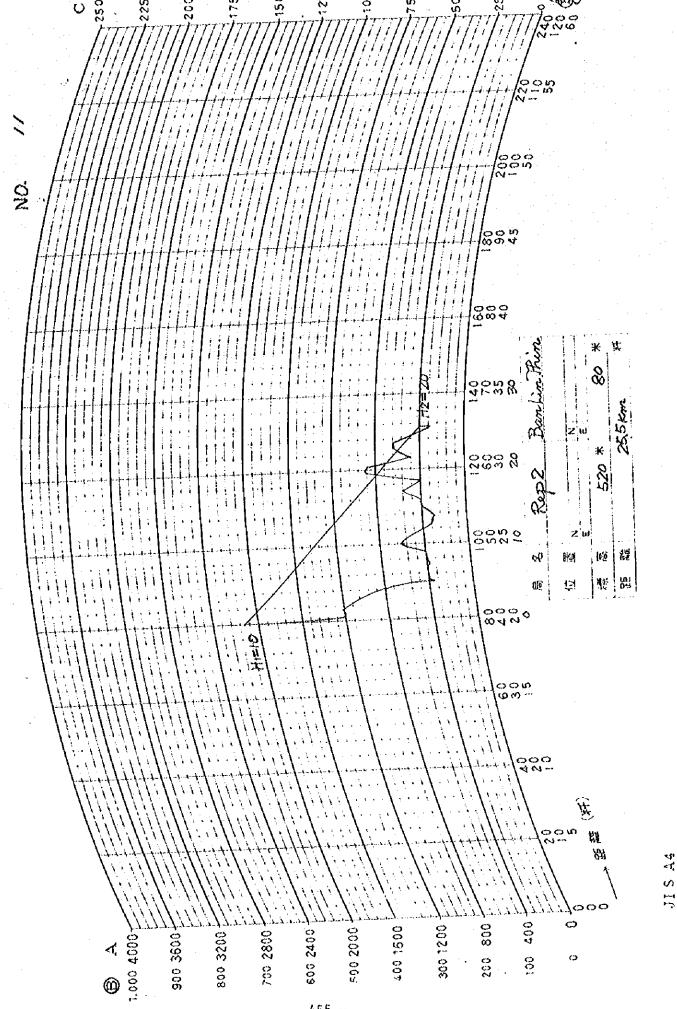
× DATE NO. Ban Lum Sum Elevation 50 m PROFILE MAP (4/3 Radius) Distance(km) 40.7 Elevation 220 m Repi * 777 以業 352 150 8 * m 050 # 000 ±000 550 see 350 1 ₩ 00€ R 華 8% **事業 00岁** PR 002 1950 排件 00/ \aleph - 441 -




DATE NO. Ban Phatho Elevation 105 Distance(km) 0.12 Elevation 520 m Rep 2 Note: The altitude scale shall be multiplied by 1/4 or 4, as the distance is plotted in half or double scale.

Distance 60 + 100 + 1 1 # 052 # # * 38 業 77 # 第777 550 紫華丁 * 200 HAR G00 1000 900 SHAP 1 300 ** 100 (#4.8315) 051 202 - 445 -


W


PROFILE MAP (4/3 Radius)

DATE Elevation 25 PROFILE MAP (4/3 Radius) Distance (km) Elevation 720 m Repi by 1/4 or 4, as the distance is piotted in half or double scale. Note : The airitude scale shall be multiplied 8 Elevation 250 338 002 * Distance £ 150 to ... \$ \$##Q/2 18 # 8º \$ おお 0

