### 5-2-3 流出計算シミュレーションモデル

#### 1. 概要

従来から採用されている流量計算方式は、K-10上流域については7観測所でも流域平均雨量は低低把握できる事、逆に他の方法による場合は、流域細分割の必要性から分割流域の雨量が的確に把握できない可能性が大きい事、予報対象地域がK-10 下流である事等を考え合わすとほぼ合理的な方法であると考えられる。

そこで、従来の方法の欠点を少しでもカバーする方法を考えた。

従来の方法の問題点として次のものが考えられる。

- ① 計算スタート日が4月1日と固定されている。
- ② 途中段階で実測、推算流量の調整ができない。

とれらの問題点に対して、今回任意日からの計算スタートが可能、推算流量の実 側流量への修正が可能なモデルとした。

2. 検討ケース及びフローチャート

今回4ケースについて検討を行ったが、基本的な考え方は下記のとおりである。

- ① 最新日の $5\sim1$ 日前の雨量データをもとに $Q_S$ を算出し、仮定した $Q_B$ とより流量を算出し実績流量と比較し、 $R_S$ 、 $R_I$ の修正をそれぞれ前5日、3日分行5。
- ② この修正された  $R_S$  、 $R_I$  より  $\beta$  なり  $\alpha$  を逆算して以後の計算に使用する。
- ③ 基本的な定数は従来値を使用する。
- 2-1 各検討ケースの概要

以下の説明において、各記号の意味はP108と同じであり、各記号につけられたサフィックス"M"は修正後の値を示す。

1) 計算流量を実測流量に合致させるための雨量修正計算

 $\phi-$ ス、1、2は $Q_C<Q_O$ の場合は、 $RS_O$ 、 $RI_O$ をもとに $Q_O/Q_C$ の比で拡大し、 $RS_M$ ・ $RI_M$ とするが、 $RE_M=RS_M+RI_M$  がRよりも大となった時は $RE_M=R$ とし、更に $RS_M$ が $RE_M$ よりも大となった時は、 $RS_M=RE_M$ ・ $RI_M=0$ とする。 $Q_C>Q_O$ の場合は $\phi-$ ス1においては、 $RS_O$ 、 $RI_O$ ともに $Q_O/Q_C$ の比で縮少するが、 $\phi-$ ス、2においては

RSOのみ縮小する。これにより、いったんRIM=0となった後において

は、ケース、1にかいては、常にRI=0となりケース、2にかいては、 縮小すれはRI=0 とならない。したがって、ケース1、2にかいては、 拡大時にはREはともに変更するが、縮小時にはケース・1はREを変更 するが、ケース2では変更しないという点で違いがある。

ケース・3においては、RSOのみを $Q_0/Q_C$ の比で拡大、縮小する。拡大した際に、RSMがREOよりも大となれば、RSM=REO、RIM=0とする。なおREは変更しない。

auース、4においては、RSO、RIO、REOともにQO/QCの比で拡大、縮小する。拡大した際にRE $_{
m M}$  がRより大となれば、RE $_{
m M}$ =Rとし、RS $_{
m M}$ RI $_{
m M}$ も同時にR/RE $_{
m M}$  の比で縮小する。

# 2) α,βの計算

この修正された  $RS_M$ ,  $RI_M$ ,  $RE_M$ を使用して $\alpha$ 又は  $\beta$ を逆算する。 ケース・1 においては,  $RE_M$  < R の間は  $\beta$  は変わらず  $\beta_M$  =  $\beta_0$  であり,  $RE_M$   $\geq$  R c  $RS_M$  <  $RE_M$  の間は  $\beta$  は大きくなる。 更に  $RS_M$   $\geq$   $RE_M$  の後は  $\beta$  = 1.0 となり以後は常に  $\beta$  = 1.0 になる以前は  $\beta$  = 1.0 になる。

ケース.3においては,βの値はケース2と同様の挙動をする。

ケース・4はβは常に変わらない。

 $\alpha$  については、ケース 1,4 は常に $\alpha$ 0  $\Xi$   $\alpha$ Mであり、ケース、3 は常に $\alpha$ 0  $\Xi$   $\alpha$ M である。ケース、2 は雨量拡大時はケース、1 に縮小時はケース、3 に同じである。

## 3) (T+1)日以後の計算

f-A. 1.2.3は、 $\alpha$ は7~9日雨量より決定される値をそのまま使用しf-A. 4はfを $\phi$ ( $Q_B$ )から求められる値をそのまま使用する。 f-A. 1.2.3におけるfMはfREMより求められ、fCのfMが 0.55を越える時は、逆計算により求められた値を以後の計算に使用する。 このとき、前3日間の計算されたfMが大きくなる傾向の時は最大値を、逆の時は最小値を使用する。

ケース、4におけるαMはREM/Rより求められ、前3日間の平均値を以

# 後の計算に使用する。

とれら、各ケースの概要を表4.4に示した。

| wit-consessed | (delighted many of the control of th |                                                                               |                                         |                                          | -                                                            |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------------------------|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 5                                                                       | i-4 各ケース                                | くの概要                                     |                                                              |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ケース 1                                                                         | ケース 2                                   | ケース 3                                    | ケース 4                                                        |
|               | $Q_0 \leqslant Q_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ・RS . R I を拡大<br>↓<br>R E も拡大される                                              | ケース1と同じ                                 | ・RSだけ拡大<br>・拡大したRSがRE<br>より大となれば         | <ul><li>RS, RI, REを<br/>拡大又は縮小する</li><li>拡大したREがF</li></ul>  |
| 計算            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ・拡大したREがR<br>より大となった時<br>はRE=Rとする                                             |                                         | RS=RE, RI=0<br>とする。<br>・REは変更しない         | より大となれば<br>RE=Rとし<br>RSも(R/RE)の                              |
| 流量 補          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ・拡大した R S が<br>R E より大となっ<br>た時は                                              |                                         |                                          | 比で拡大後のRS<br>を縮小する                                            |
| 時             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS=RE, RI=0<br>とする。                                                           |                                         |                                          |                                                              |
|               | Q <sub>0</sub> > Q <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ・RS, RI を縮小<br>↓<br>REも縮少される                                                  | ・REは変更せず<br>RSを縮小                       | ・REは変更せず<br>RSを縮小                        |                                                              |
| (             | β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>補正した RE, RS<br/>より求めた β が</li> <li>0.55 を越える時<br/>はその値を使用</li> </ul> | • 同 左                                   | • 同 左                                    | ・φ(Q <sub>B</sub> ) <sub>T-1</sub> より<br>β <sub>T</sub> を求める |
| T<br>+<br>1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ・他は $\phi(Q_B)_{T-i}$ より $\beta_T$ を求める ・いったん $RI=0$                          | <ul><li>同 左</li><li>いったんRI=0と</li></ul> | <ul><li> 同 左</li><li> ケース2 に同じ</li></ul> |                                                              |
| )以後           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | となると以後はす<br>べてRI=0<br>(β=1.0)となる                                              | なっても以後すべ<br>てRI=0となら<br>ない。βは1.0を最      |                                          |                                                              |
| の計算           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | م جد از میل از در از میلاد در                                                 | 大として変化する                                |                                          | D 1.46(T) + D D                                              |
|               | α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul><li>あらかじめ与えられるαは変えない</li></ul>                                            | • 同 左                                   | • 同 左                                    | <ul><li>Rと補正したRE<br/>によりαを求め以<br/>後の計算に使用す</li></ul>         |

# 2-1-1 各ケースの計算ステップ及びフローチャート

- (1) ケース・1 (図5.7、表5.5参照)
  - ① QBTOを仮定
  - ② QBTOよりφ(QB)<sub>T-1</sub>を求める。
  - ③  $\phi(QB)_{T-1}$  より $\beta_{T-1}$  を求める(以下 $\phi(QB)_{T-1}$ を $\phi_{T-1}$ を あらわす。)

  - (6) RI<sub>iO</sub>=RE<sub>iO</sub>-RS<sub>iO</sub>を求める。
  - ⑥ RSiOを使ってQSTOを求める。

Table 5-5 Computation Steps in Case 1

|          | <u> </u>       | ס                    | <b>T</b> | ·                    |                |                |                                       |                                    |          | ····· |
|----------|----------------|----------------------|----------|----------------------|----------------|----------------|---------------------------------------|------------------------------------|----------|-------|
|          | o,             | m <sup>3</sup> /s.   |          |                      |                |                |                                       |                                    |          |       |
|          | 0,0            | m³/s.d               |          |                      |                |                |                                       | $\widehat{\mathbb{C}}(\mathbb{R})$ | (6)      |       |
|          | 0              | p.s/sm               |          |                      |                |                |                                       | 9 (1)                              | (2)      |       |
| į        | , G            | <u> </u>             |          |                      |                | <del></del>    |                                       | 9                                  | (10)     |       |
|          | -              |                      |          |                      |                |                |                                       | 9                                  | (1)      |       |
|          |                |                      |          |                      |                |                | · · · · · · · · · · · · · · · · · · · | (9)                                | (H)      |       |
|          | (S)            |                      |          |                      |                | 1111           |                                       | 9                                  | (19)     |       |
|          | T.D            |                      |          |                      |                | a s'           |                                       | (9)                                | 10       |       |
|          | :              |                      |          | 1 <u>.2.1.</u> s. s. |                |                |                                       | (9)                                | (10)     |       |
|          | R <sub>S</sub> | mm <sup>3</sup> /s.d | 99       | £ 6                  | <u>(5)</u> (9) | ଫ <u>ି</u> (୭) | 99                                    |                                    |          |       |
|          | 8              |                      | (4)      | (4)                  | £ (E)          | (L) (£)        | (C)                                   | (T)                                |          |       |
|          | р'<br>Б        | шш                   |          |                      |                |                |                                       |                                    |          |       |
|          | Q <sub>B</sub> | m³/s.d               |          |                      |                |                |                                       | £ (2)                              | (E)      |       |
| <u> </u> | 9              | uau                  |          |                      |                |                | $\bigcirc \bigcirc$                   |                                    |          |       |
|          | Q <sub>T</sub> | THE LEWIS CO.        |          |                      |                |                |                                       |                                    |          |       |
|          | T.D.(T)        |                      |          |                      |                |                |                                       | 10(0)                              |          |       |
|          |                | mm/d                 |          |                      | 6)             | 6              | (9)                                   |                                    |          |       |
| $\vdash$ | ඊ .            | =                    | *        | *                    | *              | *              | *                                     | *                                  | *        |       |
|          |                | mm/a                 | (6)      | 6                    | 6              | (9)            | (h)                                   |                                    |          |       |
| ,        | <b>곳</b>       | mm/a                 | *        | *                    | *              | *              | *                                     | *                                  | ×        |       |
|          | DATE           |                      | T - 7.   | Д<br>7-              | T-3            | T-2            | Ţ                                     | E                                  | <b>7</b> | T+2   |

rected) values. \*: Known values. QB: Baseflow (m³/s.d). qB: Baseflow (mm).  $\phi(Q_B)$ : Basin potential. R: Total rainfall. Rp: Infiltration compo. Rs: Surface compo.  $q_T$ : Infiltration (mm). QS.q.: Figures in circles: Determined (cor- $Q_{\rm o}$ : Observed discharge (m³/s.d). T.D.(I), 11.  $\beta$ : Coefficient of surface runoff. T: Starting day of computation. Figures in parenthese: Initial values. Surface runoff (m³/s.d, mm), Q: Computed discharge (m³/s.d). Q T.D.(S): Time distribution.  $\alpha$ : Coefficient of effective rainfall.

- の QCTO =QBTO+QSTO を求めQOTと比較する
- QCTOとQOTに差が生じたらQCTO=QOTの補正をする
  - 1), QCTO < QOTO & &
  - (1)  $i = T 5 \sim T 1$   $K \supset K \subset T$

$$RS_i = P \cdot RS_{iO}$$
  $RI_i = P \cdot RI_{iO}$  と初期のRS、RI、REを引き  $RE_i = RS_i + RI_i$  (  $P = QOT / QC_{TO}$  )

- (n) このとき RE<sub>i</sub> ≥ R<sub>i</sub>となったら  $RE_i = R_i \ge f\delta$
- (\*) 更にRS<sub>i</sub>≥RE<sub>i</sub>となったら  $PS_i = RE_i$ ,  $RI_i = 0$ とする
- 2) QCTO>QOTのとき RS<sub>i</sub>, RI<sub>i</sub>, RE<sub>i</sub>をPで縮小する
- QBT=P.QBTO の補正をする
- ⑩ QSTを RS;から求め QCT=QST+QBTを確認する
- φ<sub>T-1</sub>をQB<sub>T</sub>より求める

 $i = T - 3 \sim T - 1$  K Oh T

(T+1)以後

の計算

 $\beta_i = RS_i / RE_i$  を求める

取 1) B; > 0.55のとき(いずれか1つでも)

$$\beta_{T-3} < \beta_{T-1}$$
  $O \ge \delta \beta K = \max(\beta_{T-2}, \beta_{T-1})$ 

$$\beta_{T-3} > \beta_{T-1}$$
  $\beta_{K=min}(\beta_{T-2},\beta_{T-1})$ とする

(T+1)以後のβはすべてβKとする

2) B; ≤ 0.55のとき

BTをサT-1より求める

TにおけるRE. RS. RIを求める

$$RE_T = \alpha_T \cdot R_T$$

$$RS_T = \beta_T \cdot RE_T$$

$$RI_T = RE_T - RS_T$$

- ⑥ QST+1をすでに求められている RST-4. RST-3. RST-2. RST-1. RST より求める
- 砂 φτをφτ-1, QBT· RIT-3· RIT-2· RIT-1 より求める
- № ゆてよりQBT+1を求める
- QCT+1=QBT+1+QST+1を求める
- ◎ T+2以後も同様にして求める
- ② T+1 においてQC $_{T+1}$ =QO $_{T+1}$ とするためには8以下と同様のステップを経る。
- (2) ケース、 2
  - ① ~ ケース・1と同じ
  - ⑧ QCTO=QOTの補正をする
  - ⑨ 1) QCTo < QOTのとき(RSio, REio, RIioを変更)</li>i=T-5~T-1 について

$$RE_i = P.RE_{io}$$
  
 $RE_i = RE_i - RS_i$  とする

 $RS_i = P$ .  $RS_{io}$ 

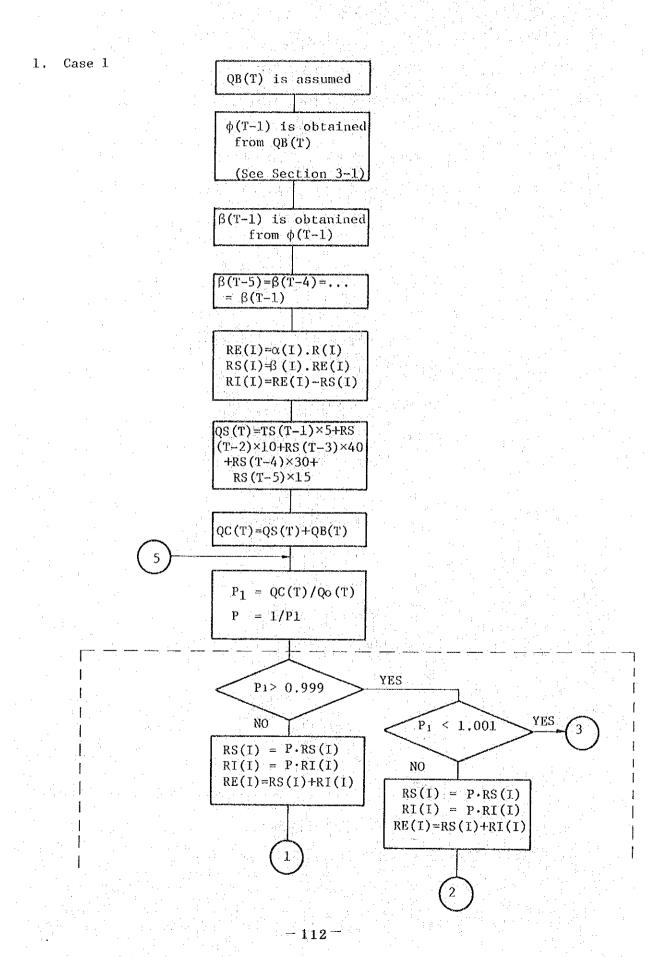
2) QCTO>QOTのとき(REioは変更しない)

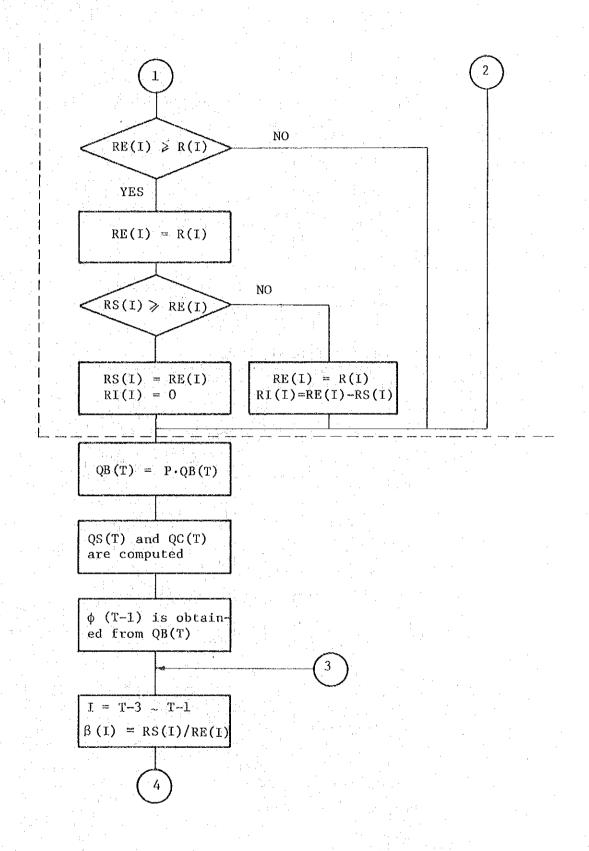
 $RS_i = P \cdot RS_{i,0}$ 

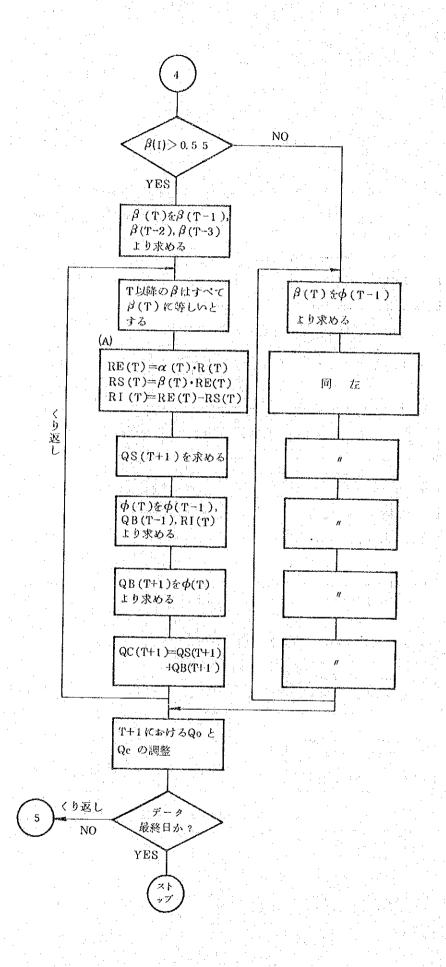
 $RE_{i} = RE_{i0}$ 

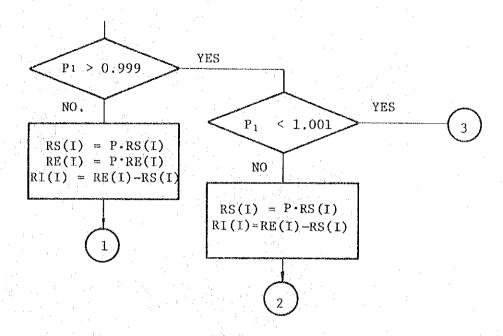
 $RI_i = RE_i - RS_i$  とする

- ① 以下 ケース 1と同じ
- (3) ケース. 3
  - ① ) ケース、1 と同し
  - (7)
  - ⑧ QCTO=QOTの補正をする。
  - ⑨ 1) QC<sub>TO</sub><QO<sub>T</sub>のとき(RE<sub>io</sub>は変更しない) i=T-5~T-1について
    - (1) RSioのみ拡大する

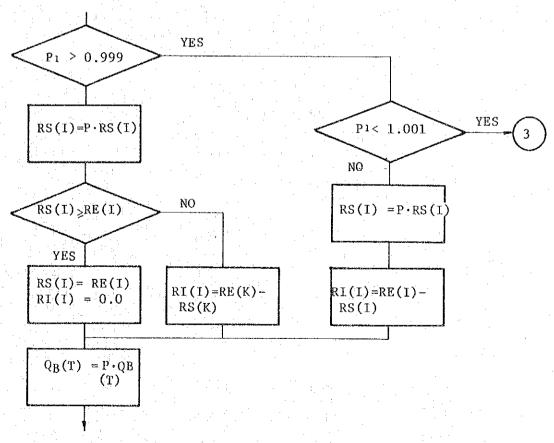

 $RS_i = P \cdot RS_{io}$ 


$$RS_i = P \cdot RS_{io}$$
 $RE_i = RE_{io}$ 
 $RI_i = RE_i - RS_i$ 


(P)  $\geq O \geq \delta RS_i \geq RE_i \geq \alpha h d'$  $RS_i = RE_i$ 

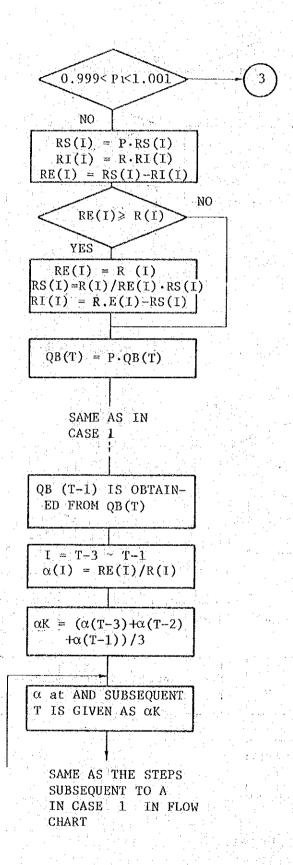

$$RI_i = 0$$
 とする

- 2)  $OC_{TO} > QO_{T}$ のとき( $RE_{io}$ は変更しない)  $RS_{i} = P \cdot RS_{io}$ (縮小)  $RI_{i} = RE_{i} RS_{i}$
- ⑩ 以下 ケース, 1と同じ
- (4) ケース.
  - ① ~ ケース、1と同じ
  - ® QCTO=QOTの補正
  - (9)  $i=T-5\sim T-1 \leftarrow 0$   $RS_i = P \cdot RS_{i0}$   $RI_i = P \cdot RT_{i0}$   $RE_i = RS_i + RI_i$ 
    - 2)  $RE_i \ge R_i$  となったら  $RE_i = R_i$   $RS_i = (R_i/RE_i) \cdot RS_i$   $RI_i = RE_i RS_i$  とする
  - ⑩ ~ ケース、1と同じ
  - (B)  $i = T 3 \sim T 1$  KONT
  - $\alpha_i = RE_i/R_i$ を求める
  - $\Phi$   $\alpha K = (lpha_{T-3} + lpha_{T-2} + lpha_{T-1})/3$ として以降のlphaはすべてlphaKとする  $B_T$ を $\phi_{T-1}$ より求める
  - (6) 以下ケース、1と同じ







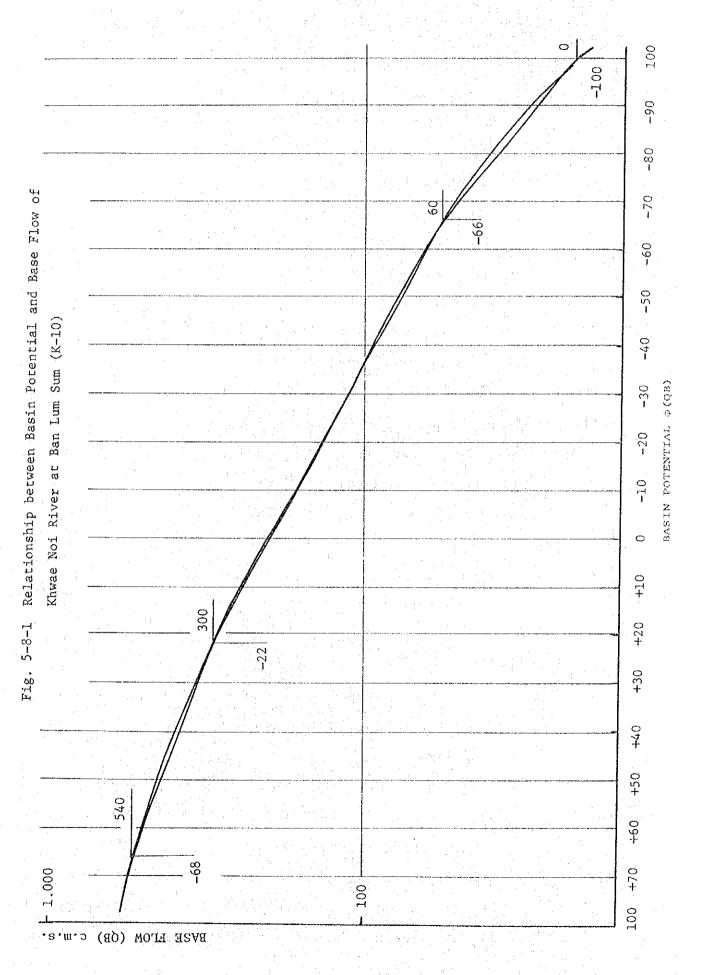

Case 3 (Section boxed in broken line in Case 1 flow chart)

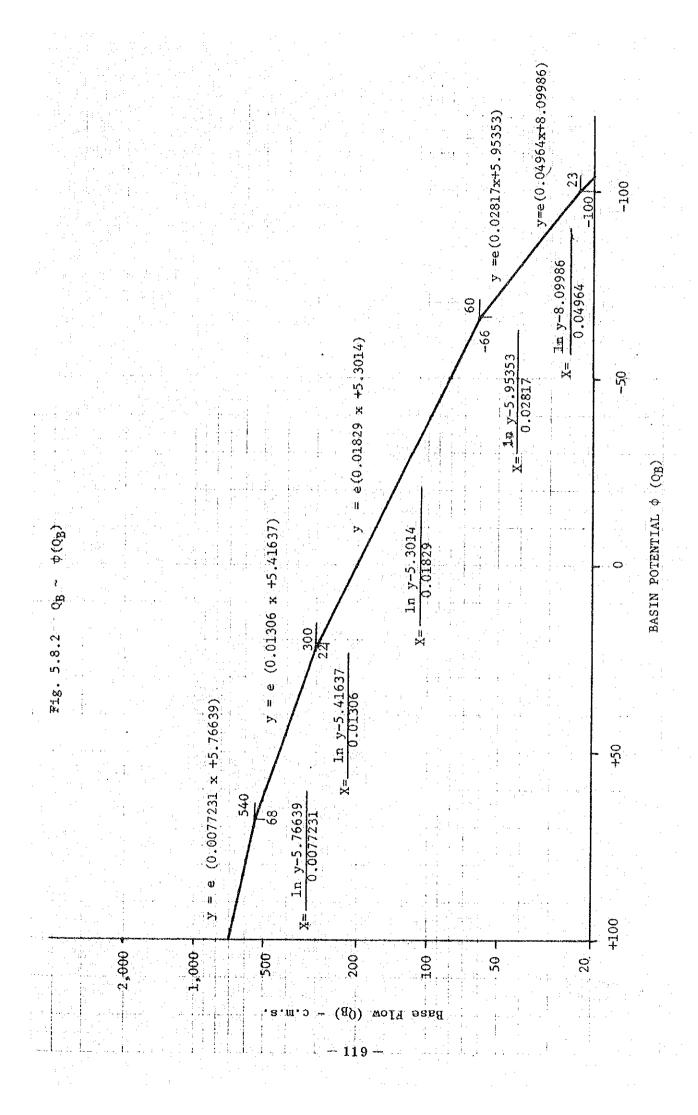


Same as in Case 1

Case 4 (Steps subsequent to the section boxed in broken line in Case 1 flow chart)




### 3. 諸常数及び計算式化


3-1  $\phi(Q_B)\sim Q_B$ の関係 (Fig. 5.8)

従来のものをそのまま用いるが、計算しやすいように次のように折線で近 似した。

- ①  $Q_B \ge 540 \text{ m/S} (\phi(Q_B) \ge 68)$   $Q_B = \text{EXP}(0.0077231\phi + 5.76639)$   $\phi(Q_B) = (1nQ_B 5.76639)/0.0077231$
- ②  $300 \le Q_B < 540 (22 \le \phi < 68)$   $Q_B = EXP(0.01306 \phi + 5.41637)$  $\phi = (1nQ_B - 5.41637) / 0.01306$
- ①  $23 \le Q_B < 60 \ (-100 \le \phi < -66)$   $Q_B = \text{EXP} \ (0.02817 \ \phi + 5.95353)$   $\phi = (\ln Q_B 5.95353) / 0.02817$
- (5)  $Q_B < 23$  (  $\phi < -100$ )  $Q_B = EXP (0.04964 \phi + 8.09986)$  $\phi = (1n Q_B - 8.09986) / 0.04964$
- 3 2 β~φ(QB) 従来のものを使う(Fig. 5.9)
- 3-3 Time Distribution of infiltration Component (Fig. 5.10)
- 3-4 Surfacerunoff Component (Fig. 5.11)
- 3-5 QBの初期値

(T-1)日から前1カ月間の雨量と(T)日の $Q_B$  との関係を示すと図 5.12のとおりとなり(THE DEVELOPMENT OF PILOT FLOOD FORECASTING IN THE MAE KLONGRIVER BASIN(3rd pevision)よりの計算結果(8-7))かなり明確な関係がみられたので、このグラフにより $Q_B$  の初期値を求める。もちろんこれが $Q_O$  より大となればこれは $Q_O$ とする。更に、この初期値は任意日のスタートの際に



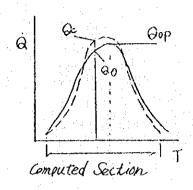


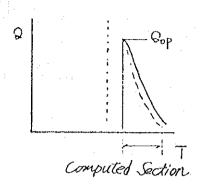
| iationship between Surface Runoff Coefficient and Basin Potential of |                |  |
|----------------------------------------------------------------------|----------------|--|
| Fig. 5-9 Relat                                                       | (A) andividies |  |

|              | (a intai                   |             |           |               |   |
|--------------|----------------------------|-------------|-----------|---------------|---|
| *            | 50 44.                     | 502         |           |               |   |
|              | 40<br>30 90                | 8           |           |               |   |
| Désertbucton | 20                         | 20%         |           |               |   |
| FR.          |                            | Time - day  |           |               |   |
|              |                            | 3           |           | Sinds the     |   |
|              | Fig., 5=10                 | Time Discri | burtan Af | Infiltration  | 6 |
|              |                            |             |           |               |   |
|              |                            |             |           |               |   |
|              |                            |             |           |               |   |
|              | (II)                       |             |           |               |   |
| <b>Z</b>     | Sgring<br>Sgring<br>Sgring |             |           |               |   |
| 8            | 40                         | 40%         |           |               |   |
| a la si      | 30                         |             | 30%       |               |   |
| 4            |                            | 107         | 15%       |               |   |
|              |                            | 7 Tine      | - day     |               |   |
|              | 4gv 5=11                   | 3           | <b>,</b>  | urface Runoff |   |

のみ使用されるものであり、一たん計算が行われれば、以後は計算の  $Q_B$  を使用する。

3-6  $\alpha$ 


| (1) | 1 Apr. ~1              | 5              | α  | = 1%      |
|-----|------------------------|----------------|----|-----------|
| (2) | 16Apr. ~               | 3 0            |    | 1 0       |
| (3) | May. ~Jur              | i ·            |    |           |
|     | 8 Ri                   | <b>≤</b> 1 4 0 | mm | 1.5       |
|     | 1 4 0 <                | $\leq 220$     |    | 4 0       |
| ٠.  | 2 2 0 <                |                |    | 8.0       |
| (4) | ) Jul.                 |                |    |           |
|     | Σ R i                  | <b>≦</b> 1 4 0 |    | 4 0       |
|     | 1 4 0 <                | <b>≦2</b> 5 0  |    | 7.0       |
|     | 250<                   |                |    | 100       |
| (5) | Aug.                   |                |    |           |
|     | Σ Ri                   | <b>≤</b> 1 0 0 |    | 6 0       |
|     | 1 0 0 <                | <b>≦2</b> 15   |    | 7 0       |
|     | 2 1 5 <                |                |    | 1 0 0     |
| (6) | Sep.                   |                |    |           |
| :   | $\sum_{1}^{7} Ri$      | <100           |    | 5 0       |
|     | 1 0 0≦                 | < 150          |    | 6 0       |
|     | 1 5.0 <                |                |    | 100       |
| (7) | Oct.                   |                |    | to plante |
|     | $\sum_{i=1}^{7} R_{i}$ | <5 0           |    | 3 0       |
|     | 5 0 <                  |                |    | 5 0       |
| (8) | Nov                    |                |    | 3 0       |
| (9) | De c                   |                |    | 10        |


# 4. 結果と問題点

各ケースについて表 5.6の8洪水について計算を実施し、誤差の状況を

 $E = \frac{1}{N} \Sigma \left( \frac{Q_C - Q_O}{Q_{op}} \right)^2$  (ことで、 $Q_{op}$ : 計算区間内の実測ピーク流量、 $Q_C$ : 計算

旅量、 $Q_0$ :同日の実御流量、ただし、 $Q_{op}$  は、1 ハイドログラフの実測ピーク流量ではなく計算を 1 日ずらして実施するのでピーク後は計算開始日の $Q_0$  となる)





| -   |      |           | <u> </u>                                            |                                                                        |                                               |                                                  |                                | :                                          |
|-----|------|-----------|-----------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|--------------------------------|--------------------------------------------|
| No. | Year | Month     | Ob-<br>served<br>Peak<br>Dis-<br>charge<br>(m³/s.d) | Discharge<br>Observed<br>on Start-<br>ing Com-<br>putation<br>(m³/s.d) | Start-<br>ing Day<br>of Com-<br>puta-<br>tion | Rain-<br>fall<br>in<br>pre-<br>ceding<br>1 Month | Ini-<br>tial<br>Value<br>of QB | Ver-<br>ifi-<br>ca-<br>tion<br>Peri-<br>od |
| 1.  | 1967 | Aug       | 1,668                                               | 580                                                                    | 14                                            | 569                                              | 430                            |                                            |
| 2.  | 1969 | Jul.~Aug. | 2,354                                               | 316                                                                    | 26                                            | 362                                              | 120                            | . ;                                        |
| 3.  | 1970 | Jul.      | 1,165                                               | 144                                                                    | 14                                            | 295                                              | 100                            |                                            |
| 4   | 1971 | Jul.~Aug. | 1,859                                               | 416                                                                    | - 20                                          | 382                                              | 140                            |                                            |
| 5.  | 1972 | Jul.      | 3,026                                               | 406                                                                    | 11                                            | 362                                              | 120                            | :                                          |
| 6.  | 1972 | Jul∼Aug.  | 1,846                                               | 753                                                                    | 23                                            | 625                                              | 440                            |                                            |
| 7   | 1973 | Jul.      | 1,728                                               | 43                                                                     | 15                                            | 344                                              | 43                             |                                            |
| 8.  | 1974 | Aug.      | 3,250                                               | 239                                                                    | 12                                            | 312                                              | 150                            |                                            |
|     |      |           |                                                     |                                                                        |                                               |                                                  |                                |                                            |

この結果表 5.7 に示す様に、Eの平均値、変動係数からみてすべての洪水に対して平均的によい適合をみせたケース、1 を採用する事とした。

ケース・1のハイドログラフを図5.13に示した。

又, ケース, 1の計算結果を表 5.8 K, 各ケースの計算の 1 例を参-1 2 K 示した。

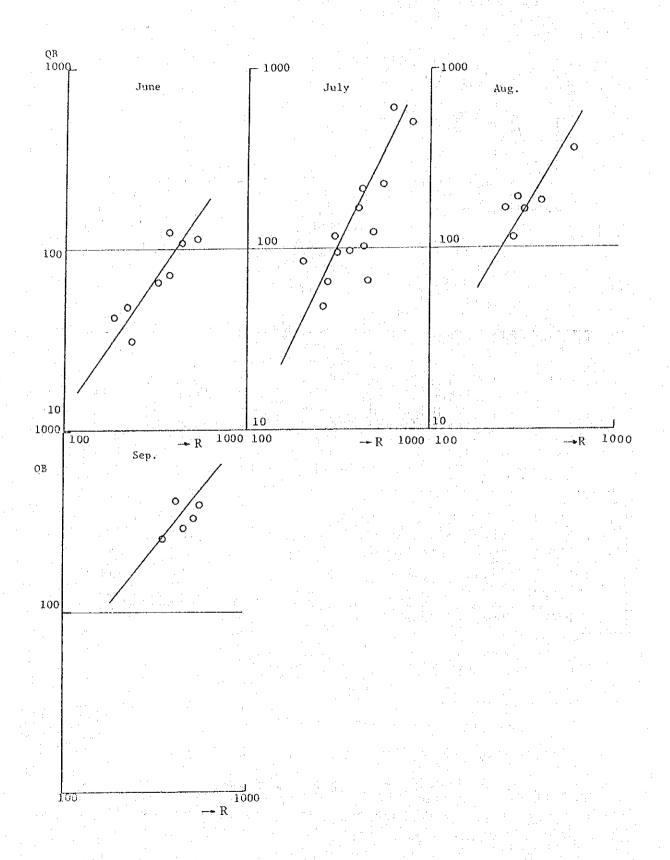



Table 5-7 Data of Error Computations (from Ap-8)

|         |      |         |               |               |       | -               |               |                          |       |         |
|---------|------|---------|---------------|---------------|-------|-----------------|---------------|--------------------------|-------|---------|
| Vear    |      | A       | Average Value | lue           | -     | Coeff           | icient of     | Coefficient of Variance  |       | Remarks |
|         | · ·· | Case 1  | 2             |               | 7     | Case 1          | 2             | 3                        | 4     |         |
| 1967    |      | 0.237   | Δ 0.235       | 0 0.219       | 1.172 | 0.355           | 0.355 A 0.269 | 0 0.226                  | 0.742 |         |
| 1969    |      | Δ 1.040 | 0 1.035       | 1.493         | 2.923 | Δ 0.234 0 0.204 | 0 0.204       | 0.999                    | 0.457 |         |
| 1970    |      | Δ 3.607 | 3.988         | 0 2.084       | 6.073 | 0.858           | 0 0.762       | o 0.762 \D 0.768   0.726 | 0.726 |         |
| 1971    |      | △ 0.582 | 0 0.542       | 0,849         | 2,683 | 0.284           | Δ 0.263       | 0 0.213                  | 0.849 |         |
| 1972 (  | (1)  | 0 2.712 | Δ 2.813       | 2.863         | 3.754 | 0 0.521         | 0.564         | 0.564 \ \ \ 0.541        | 0.453 |         |
| 1972 (  | (2)  | 2.480   | Δ 2.476       | 0 2.415       | 3.169 | 0 0.421         | △ 0.435       | 0.548                    | 0,401 |         |
| 1973    |      | Δ 3.12  | 3.900         | 0 1.817       | 5.373 | Δ 0.488         | 0 0.316       | 0.673                    | 0.966 |         |
| 1974    |      | 0 0.971 | 066.0 √       | 1.007         | 3.041 | 0.520           | 0 0.337       | Δ 0.401                  | 0.690 |         |
| Average | 90   | △ 1.845 | 1.997         | 0 1.593 3.524 | 3,524 | △ 0.460         | 0 0.394       | 0,548                    | 0.661 |         |
|         |      |         |               |               |       |                 |               |                          |       |         |

o First in four cases

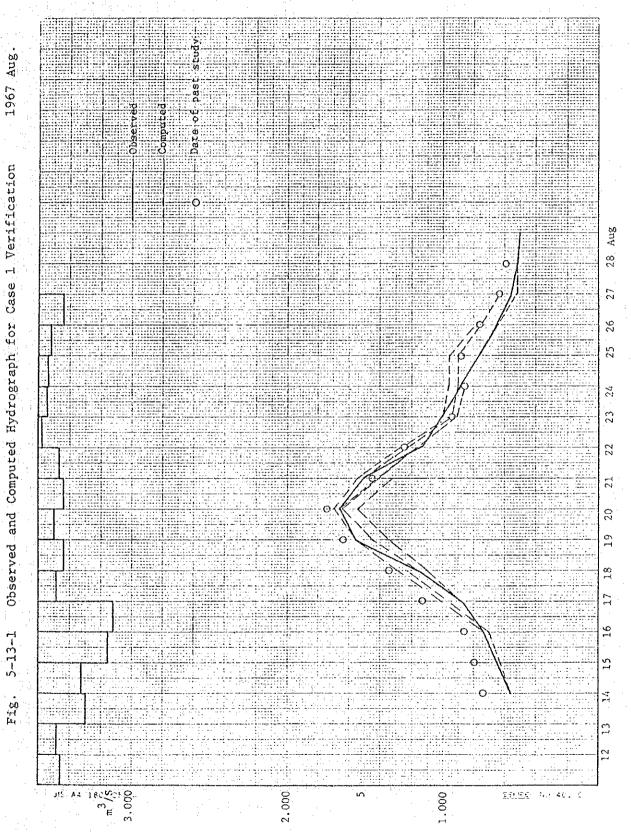
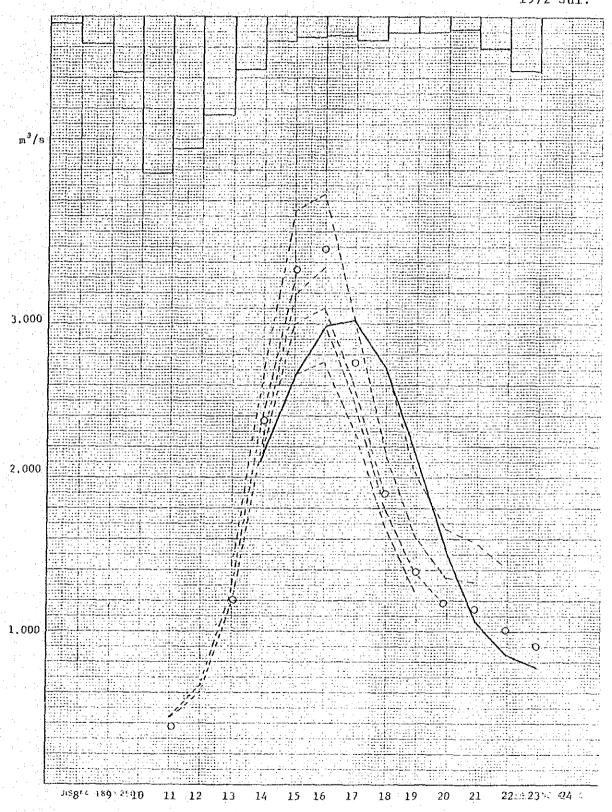
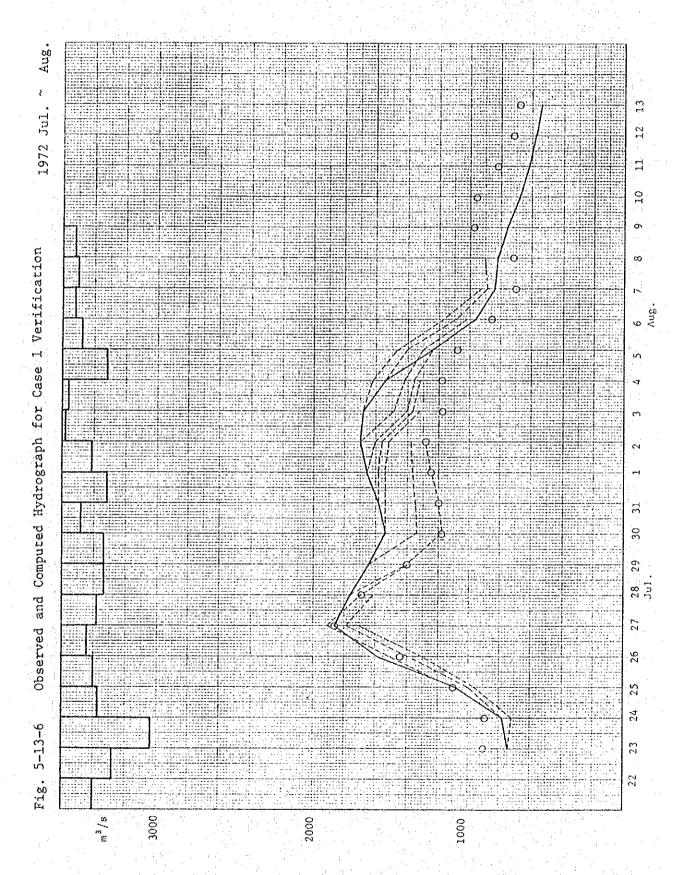

A Second in four cases

Table 5-8-1 Date of Case 1 Computation (I)

| DATE | R    | Re    | α    | RI   | Time D: | istribut: | ion qI   | В.Р.         | QB                  | -oB   | β           | RS       |       | ****  | T.D.          | 7                 |       | qs                | Qs     | Qc     | Qo     |
|------|------|-------|------|------|---------|-----------|----------|--------------|---------------------|-------|-------------|----------|-------|-------|---------------|-------------------|-------|-------------------|--------|--------|--------|
|      |      |       |      |      |         |           |          |              |                     |       |             |          |       | ····  |               | х10 <sup>-2</sup> |       | x10 <sup>-2</sup> |        |        |        |
|      | mm   | mm    |      | min  | 0.3     | 0.5       | 0.2 mm   | mm           | ໜ <sup>3</sup> /s.d | mm    |             | mm       | 5     | 10    | 40            | 30                | 15    | mm                | m³/s.d | m³/s.d | m³/s.d |
| 9    | 11.9 | 8.23  | 0.70 | 3.75 |         |           |          |              |                     |       | 0.55        | 4.58)    |       |       |               |                   |       |                   |        |        |        |
| 10   | 9.1  | 6.37  | 0.70 | 2.87 |         |           |          |              |                     |       | 0.55        | 3.50     |       |       |               |                   |       |                   |        |        |        |
| 11   | 14.6 | 10.22 | 0.70 | 4,60 |         |           |          |              |                     |       | 0.55 (4)    | 5.62 (5) |       |       |               |                   |       | . :               |        |        |        |
| 12   | 14,4 | 10.08 | 0.70 | 4.54 |         |           |          | 40)          |                     | : -   | 0.55        | 5.54     |       |       |               |                   |       |                   |        |        | :      |
| 13   | 12.5 | 8.75  | 0.70 | 3.94 |         |           |          | (2)<br>49.57 |                     |       | (3)<br>0.55 | 4.81     |       |       |               |                   |       |                   |        |        |        |
| 14   |      |       |      |      | 1.18    | 2.26 0    | ,92 4.37 |              | (1)<br>430.0        | -5.30 |             |          | 24.06 | 55.44 | 5)<br> 224,84 | 105.10            | 68.72 | 478.17            | 387.85 | 817.85 | 580.0  |

Table 5-8-1 Date of Case 1 Computation (II)


| ·    |      | <del></del> | ·     |     | <u> </u> | 1   | m •  | ~ .              | **:  | ı     | r <del></del> |               |       | <u> </u> |    | <del></del> |          | <del></del> | ············· |        |                   | ·      |                         | · · · · · · · · · · · · · · · · · · · |            | · ·    |
|------|------|-------------|-------|-----|----------|-----|------|------------------|------|-------|---------------|---------------|-------|----------|----|-------------|----------|-------------|---------------|--------|-------------------|--------|-------------------------|---------------------------------------|------------|--------|
| DATE | R    | Re          |       | α   | RI       |     |      | e Dis-<br>oution |      | Ip    | В.Р.          | QB            | -qb   | β        |    | RS          |          |             |               | T.D.   | ×10 <sup>-2</sup> | 1      | qs<br>x10 <sup>-2</sup> | Qs                                    | Qc         | Qo     |
| :    | mm   | mm          |       |     | mm       |     | 0.3  | 0.5              | 0.2  | mm    | mm            | m³∕s.d        | mm    |          |    | mm          |          | 5           | 10            | 40     | 30                | 15     | mm                      | m³/s.d                                | m³/s.d     | m³/s.d |
| 9    | 11.9 | 5.91        |       |     | 2.66     |     |      |                  |      |       |               |               |       | 0.55     |    | 3.25        |          |             |               |        |                   |        |                         |                                       |            |        |
| 10   | 9.1  | 4,52        |       |     | 2,03     |     |      |                  |      |       |               |               |       | 0.55     |    | 2.48        |          |             |               | 1.1294 |                   |        |                         |                                       |            |        |
| 1.1  | 14.6 | 7.25        | . (9) |     | 3.26     |     |      |                  |      |       |               |               |       | 0.55     | 13 | 3,99        | <b>9</b> |             |               |        |                   | -      |                         |                                       |            |        |
| 12   | 14.4 | 7.15        |       |     | 3.22     | (9) |      |                  |      |       | 1             |               |       | 0.55     |    | 3.93        |          |             |               |        |                   |        |                         |                                       |            |        |
| 13   | 12.5 | 6.21        |       |     | 2.79     |     |      |                  |      |       | (12)<br>23.26 |               |       | 0.55     |    | 3.41        |          |             |               |        | · .               |        |                         |                                       |            |        |
| 14   | 31.7 | 22.19       | 15)   | 0.7 | 9.99     | 15) | 0.84 | 1.61             | 0,65 | 3.10  | ①<br>22,60    | 10<br>354.95  | -3.76 | 0.55     |    | 12.20       | §)       | 17.06       | 39.32         | 159.45 | 74,54             | 48.74  | 339.11                  | (1)<br>275.05                         | 8<br>580.0 | 580    |
| 15   | 28.7 | 20.09       |       | 0.7 | 9.04     |     | 3.00 | 1.40             | 0.64 | 5.04  | 23.91         | (B)<br>303.32 | -3.74 | 0.55     |    | 11.05       |          | 61.02       | 34.13         | 157.27 | 119.59            | 37.27  | 409.27                  | 331.97                                | 634.29     | 675    |
| 16   | 43.9 | 30.73       |       | 0.7 | 13.83    |     | 2.71 | 5.00             | 0.56 | 8.27  | 28.38         | 307.53        | -3.79 | 0.55     |    | 16.90       |          | 55.25       | 122.05        | 136.52 | 117.95            | 59.79  | 491.55                  | 398.70                                | 706.24     | 740    |
| 17   | 47.9 | 33.53       | 1     | 0.7 | 15.09    |     | 4.15 | 4.52             | 1.99 | 10.67 | 35.02         | 326.03        | -4.02 | 0.55     |    | 18.44       |          | 84.51       | 110.50        | 486.18 | 102.39            | 58,98  | 844,55                  | 685.02                                | 1011.05    | 889    |
| 18   | 12.7 | 12.70       |       | 1.0 | 5.72     |     | 4.53 | 6.92             | 1.81 | 13.25 | 43.89         | 355.59        | -4.38 | 0.55     |    | 6.98        |          | 92.21       | 169.02        | 441.98 | 366.14            | 51.19  | 1120.53                 | 908.87                                | 1264.47    | 1177   |
| 19   | 14.7 | 14.70       |       | 1.0 | 6,61     |     | 1,72 | 7.55             | 2.77 | 12.03 | 50.99         | 399,24        | -4.92 | 0.55     |    | 8.09        |          | 34.93       | 184.42        | 676.06 | 331.49            | 183.07 | 1409.95                 | 1143.63                               | 1542.86    | 1576   |
| 20   | 9.0  | 5.40        |       | 0.6 | 2.43     |     | 1.98 | 2.86             | 3.02 | 7.86  | 53,45         | 438,04        | -5.40 | 0.55     |    | 2.97        |          | 40.43       | 69.85         | 737.66 | 507.05            | 165.74 | 1520.72                 | 1233.47                               | 1671.51    | 1668   |
| 21   | 15.0 | 10.50       |       | 0.7 | 4.73     |     | 0.73 | 3.31             | 1.14 | 5.18  | 53.05         | 452.34        | -5.58 | 0.55     | T  | 5.77        |          | 14.85       | 80.85         | 279.40 | 553.25            | 253.25 | 1181.87                 | 458.62                                | 1410.96    | 1493   |
| 22   | 13.4 | 13.40       | `     | 1.0 | 6.03     |     | 1,42 | 1.22             | 1.32 | 3.96  | 51.46         | 450.00        | -5.55 | 0.55     |    | 7.37        |          | 28.88       | 29.70         | 323.40 | 209.55            | 276.62 | 868.15                  | 704.16                                | 1154.16    | 1160   |




— **133** —

**— 134** —

Fig. 5-13-5 Observed and Computed Hudrograph for Case 1 Verification 1972 Jul.





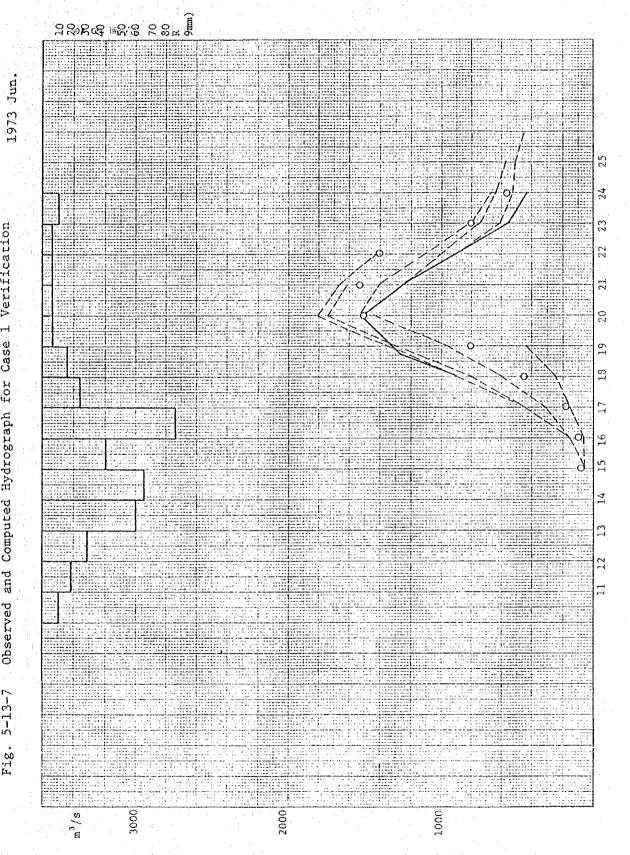
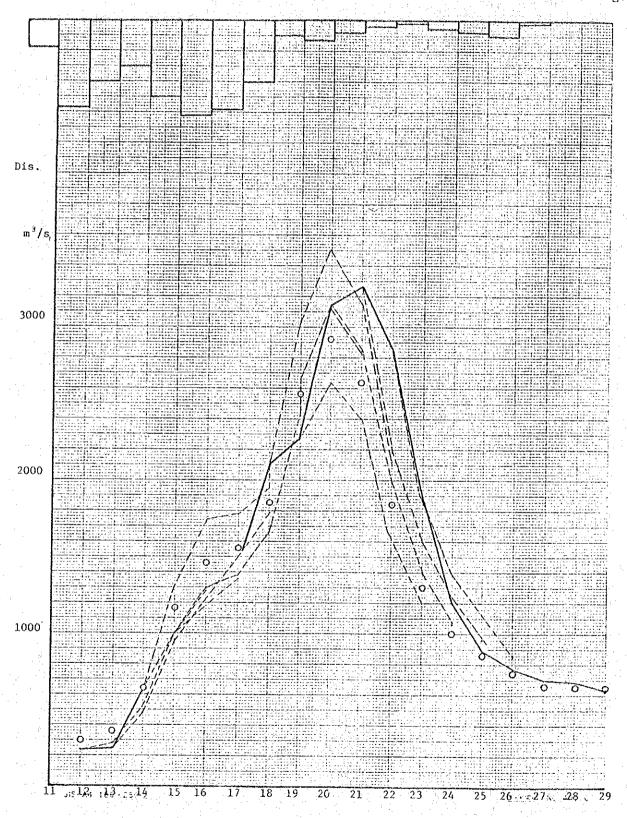




Fig. 5-13-8 Observed and Computed Hydrograph for Case 1 Verification 1974 Aug.



とれより、1967、69、71の3洪水については、ほぼ良好な結果が得られたが、1970、73については、計算スタート直後の計算値がかなり小さかったので、これを実測値に合致させる修正を行った結果ピーク流量が大きくなった。1972(5) は立上り部がかなり良好にもかかわらず、計算値がピークで大きく、ピーク後で小さめとなった。1972(6)、74はピーク後において計算値が小さく出た。

又、実測、推算ハイドログラフの Volume について、計算スタート日と1日後から洪水期間中について比較したところ表 5.9 のとおりであった。これによると、ほとんどの洪水で、実測値にくらべ5~10% Volumeが少な目であった。

表 5.9 実績~推算ハイドログラフVolume比

(m³/sec-day)

| Year | Observed             | Computed             | Difference                 |
|------|----------------------|----------------------|----------------------------|
|      | Discharge            | Discharge            | (%)                        |
| 1967 | 14,344.0             | 14462.4              | 0.825                      |
|      | 13,764.0             | 14264.7              | 3.638                      |
| 1969 | 35,444.0             | 32638.47             | -7.915                     |
|      | 35,128.0             | 32609.21             | -7.170                     |
| 1970 | 6,481.0              | 5499.07              | -15.151                    |
|      | 6,337.0              | 5283.14              | -16.630                    |
| 1971 | 16,255.0<br>15,839.0 | 15413.61<br>14663.81 | -5.176<br>-7.420<br>-1.940 |
| 1972 | 22,305.0             | 21872.29             | -1,940                     |
|      | 21,899.0             | 20768.01             | -5,165                     |
|      | 26,205.0             | 22119.43             | -15,591                    |
| 1973 | 25,452.0<br>9,475.0  | 21923.58<br>6992.63  | -13.863 $-26.199$          |
| 1974 | 9,432.0              | 10798.93             | 14.492                     |
|      | 26,404.0             | 23101.21             | -12.509                    |
| 1    | 26,165.0             | 22403.16             | -14.377                    |

これらの原因については次のことが考えられる。

- ① 流域平均日雨量が正確に把握されていない。
- ② 有効雨量が妥当がどうか
- ③ QB.QSの time distributionが適当か
- ④ 今回検討した修正方法において、ある1日のみの流量に合致させることに した事がよいかどうか、又QB の初期値が妥当かどうか。
- ⑤ 流量が大きくなった場合氾濫を起こすが、これについては流出モデルに考