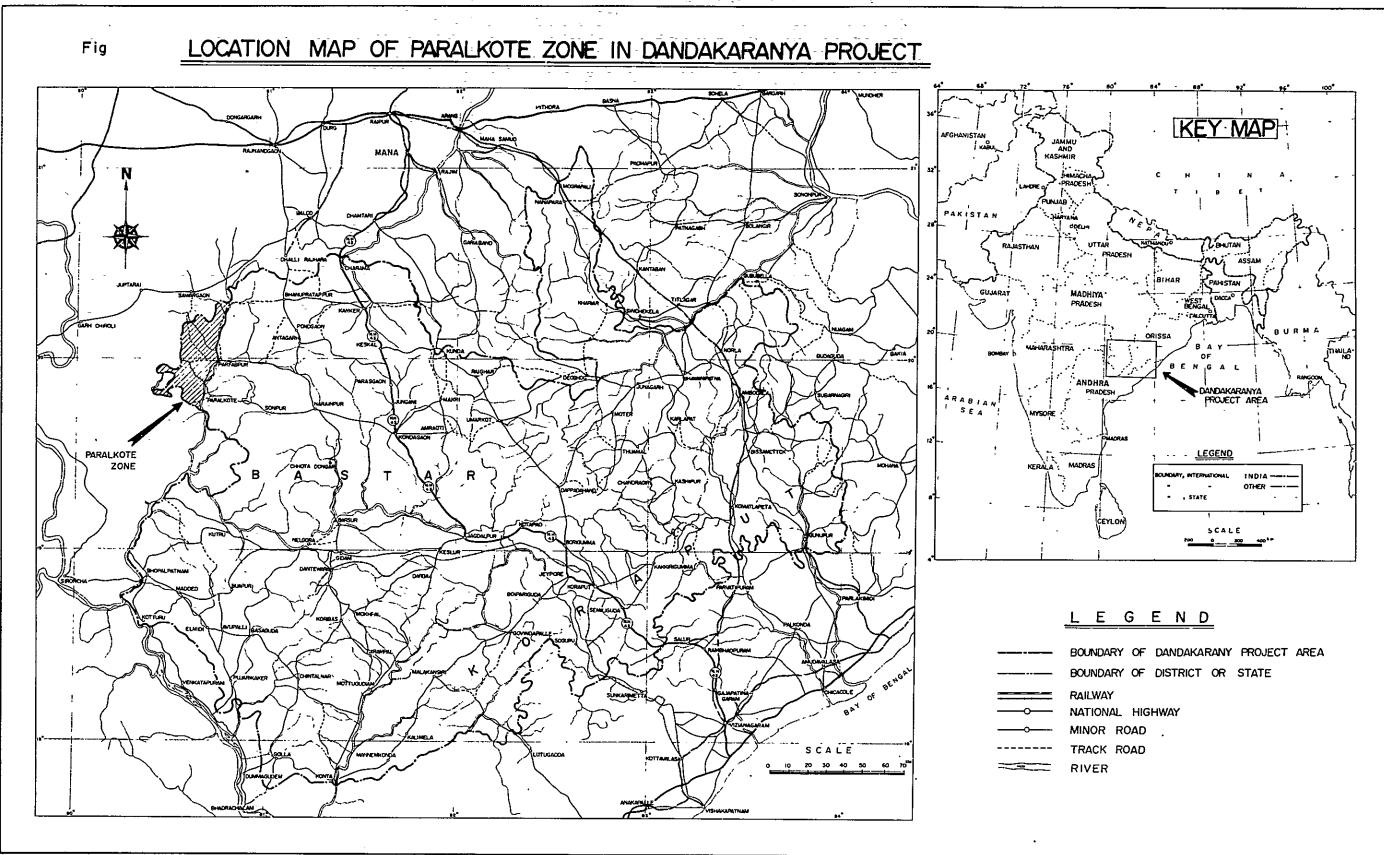

A PARMAN IONE, COMPANYING A OVERSEAS TECHNICAL COOPERATION AGENCY GOVERNMENT OF JAPAN

THE REPORT OF IMPROVEMENT PLAN FOR PAKHANJORE COMMUNITY DEVELOPMENT PROGRAMME

IN INDIA

OVERSEAS TECHNICAL COOPERATION AGENCY GOVERNMENT OF JAPAN


国際協力事	業団
登入 '84. 3.26	107
<u>лн</u> зълз., <u>П1050</u>	80.7
登録No. 01949	AF

Preface

Under the entrust of the Ministry of Foreign Affairs, the Overseas Technical Cooperation Agency despatched a team for the detailed survey of Dandakaranya Development Programme, consisted of a group of experts from almost all agricultural fields. The survey team scrutinized how the Japanese Government can contribute to develop most efficiently this newly-borne vast area, focusing its objective on how to enhance the present agricultural productivity through our technical cooperation. The result of this detailed survey as summarized in this report, together with one issued previously as "fundamental survey report of agricultural development in Dandakaranya" proved feasibility and urgent necessity of the cooperation to be rendered by us. We sincerely hope that through this survey results our agricultural cooperation in this area will be realized as soon and as effectively as possible, so that we can deepen mutual friendship between our two nations.

Kiichi/ataks

(Keiichi Tatsuke) Director General, Overseas Technical Cooperation Agency, Tokyo

REPORT OF IMPROVEMENT FOR PAKHANJORE COMMUNITY DEVELOPMENT PROGRAMME

CONTENTS

Page

VOLUME I. DEVELOPING PLAN FOR PAKHANJORE COMMUNITY

Chapter 1. Introduction

1.1	Objective of the Report	1 - 1
1.2	Background of the Project	1 - 2
1.3	Basic Concept of the Project	1 - 4

Chapter 2. Present Conditions of Pakhanjore Community

2.1	Natura	1 Conditions	2 - 1
	2.1.1	Location and topography	2 - 1.
	2.1.2	Condition of P.V. and area	2 - 1
	2.1.3	Meteorology and hydrology	2 - 3
2.2	Social	Conditions	2 - 6
	2.2.1	Characteristics of the village	2 - 6
	2.2.2	Dandakaranya development plan and	
		settlement conditions	2 - 8
•	2.2.3	Residents	2 - 10
	2.2.4	Traibal	2 - 11
	2.2.5	Education and public facilities	2 - 12
2.3	Economi	c Conditions	2 - 15
	2.3.1	General description of farmer's economy	2 - 15
	2.3.2	Farm products and their marketing	2 - 17
	2.3.3	Living standard of inhabitants and	
		their desire	2 - 20

2.4	Presen	t Situation of Organization	2 ·	-	23
	2.4.1	Village administration	2 ·	-	23
	2.4.2	Cooperative society and its activity	2 -	-	23
2.5	Actua1	Condition of Agriculture	2 ·	-	25
	2.5.1	Cultivated field and farming in P.V.13	2 ·	-	25
	2.5.2	Cultivated field and farming in P.V.14	2 ·	-	28
	2,5,3	Cultivated field and farming in P.V.42	2 -	-	32
	2.5.4	Cultivated field and farming in P.V.43	2 ·	-	34
	2.5.5	Irrigable area and farming of tribal' farmer	2 ·	-	37
2.6	Farmer	's Agricultural Economy	2 -	-	40
	2.6.1	Typical farmer	2 ·	-	40
	2.6.2	Farmer's intention and expectation	2 ·	-	43
	2.6.3	Investment in production material	2 ·	-	45
	2.6.4	Production means and labour distribution	2 -	-	46
2.7	Existi	ng State of Agricultural Facilities	2 ·	-	48
	2.7.1	Irrigation facilities and the state of water utilization	2 ·	-	48
	2.7.2	Fields	2 ·	-	53
	2.7.3	Roads	2 ·	-	54

Chapter 3. Farm Management Plan

3.1	Basic	Conception of Farm Management Plan	3	-	1
	3.1.1	Water for irrigation and drainage	3	-	1
	3.1.2	Land	3	-	1
	3.1.3	Labour	3	-	1
	3.1.4	Production materials	3	-	2
	3.1.5	Techniques	3	-	2
	3.1.6	Selection of farm products at view from distribution aspect	3	-	3

3.2 Cropping Pattern					
3.2.2 Cropping pattern and benefit for P.V.14 3 - 6 3.2.3 Cropping pattern and benefit for P.V.42 3 - 7 3.2.4 Cropping pattern and benefit for P.V.43 3 - 7 3.2.5 Cropping pattern and benefit for tribal 3 - 8 3.3 Cultivation Control Plan 3 - 9 3.3.1 Paddy rice cultivation (Irrigation) 3 - 9 3.3.2 Up Land rice cultivation (Rain-water) 3 - 11 3.3.3 Up Land cultivation 3 - 14 3.4 Mode of Farm Management 3 - 18 3.5 Labour and Equipment Plan 3 - 25 3.7 Machinery for Execution of the Plan 3 - 37 Chapter 4. Land Improvement Plan 4 - 1 4.1 General Description 4 - 2 4.2.1 Principles of improving the main irrigation canal 4 - 2 4.2.2 Estimation of design discharge for main irrigation canal 4 - 3 4.2.3 Design of main irrigation canal and collateral structures 4 - 4 4.3 Determination of Design Modulas for Irrigation and Drainage Scheme 4 - 16		3.2	Cropping Pattern 3	-	4
3.2.3 Cropping pattern and benefit for P.V.42 3 - 7 3.2.4 Cropping pattern and benefit for P.V.43 3 - 7 3.2.5 Cropping pattern and benefit for tribal 3 - 8 3.3 Cultivation Control Plan 3 - 9 3.3.1 Paddy rice cultivation (Irrigation) 3 - 9 3.3.2 Up Land rice cultivation (Rain-water) 3 - 11 3.3.3 Up Land cultivation 3 - 14 3.4 Mode of Farm Management 3 - 15 3.5 Labour and Equipment Plan 3 - 25 3.7 Machinery for Execution of the Plan 3 - 37 Chapter 4. Land Improvement Plan 4 - 1 4.2 Improvement Plan 4 - 2 4.2.1 Principles of improving the main irrigation Canal 4 - 2 4.2.2 Estimation of design discharge for main irrigation canal 4 - 3 4.2.3 Design of main irrigation canal and collateral structures 4 - 4 4.3 Determination of Design Modulas for Irrigation and Drainage Scheme 4 - 16			3.2.1 Cropping pattern and benefit for P.V.13 3	-	5
3.2.4 Cropping pattern and benefit for P.V.43 3 = 7 3.2.5 Cropping pattern and benefit for tribal 3 = 8 3.3 Cultivation Control Plan 3 = 9 3.3.1 Paddy rice cultivation (Irrigation) 3 = 9 3.3.2 Up Land rice cultivation (Rain-water) 3 = 11 3.3.3 Up Land cultivation 3 = 14 3.4 Mode of Farm Management 3 = 15 3.5 Labour and Equipment Plan 3 = 18 3.6 Balance of Economy of Standard Household 3 = 25 3.7 Machinery for Execution of the Plan 3 = 37 Chapter 4. Land Improvement Plan 4 = 1 4.2 Improvement Plan 4 = 2 4.2.1 Principles of improving the main irrigation canal 4 = 2 4.2.2 Estimation of design discharge for main irrigation canal 4 = 3 4.2.3 Design of main irrigation canal and collateral structures 4 = 4 4.3 Determination of Design Modulas for Irrigation and Drainage Scheme 4 = 16			3.2.2 Cropping pattern and benefit for P.V.14 3	-	6
3.2.5 Cropping pattern and benefit for tribal 3 - 8 3.3 Cultivation Control Plan 3 - 9 3.3.1 Paddy rice cultivation (Irrigation) 3 - 9 3.3.2 Up Land rice cultivation (Rain-water) 3 - 11 3.3.3 Up Land cultivation 3 - 14 3.4 Mode of Farm Management 3 - 15 3.5 Labour and Equipment Plan 3 - 18 3.6 Balance of Economy of Standard Household 3 - 25 3.7 Machinery for Execution of the Plan 3 - 37 Chapter 4. Land Improvement Plan 4 - 1 4.1 General Description 4 - 1 4.2 Improvement Plan of Main Irrigation Canal 4 - 2 4.2.1 Principles of improving the main irrigation canal 4 - 2 4.2.2 Estimation of design discharge for main irrigation canal 4 - 3 4.2.3 Design of main irrigation canal and collateral structures 4 - 4 4.3 Determination of Design Modulas for Irrigation and Drainage Scheme 4 - 16			3.2.3 Cropping pattern and benefit for P.V.42 3	-	7
3.3 Cultivation Control Plan 3 - 9 3.3.1 Paddy rice cultivation (Irrigation) 3 - 9 3.3.2 Up Land rice cultivation (Rain-water) 3 - 11 3.3.3 Up Land cultivation 3 - 14 3.4 Mode of Farm Management 3 - 15 3.5 Labour and Equipment Plan 3 - 18 3.6 Balance of Economy of Standard Household 3 - 25 3.7 Machinery for Execution of the Plan 3 - 37 Chapter 4. Land Improvement Plan 4 - 1 4.1 General Description 4 - 1 4.2 Improvement Plan of Main Irrigation Canal 4 - 2 4.2.1 Principles of improving the main irrigation canal 4 - 2 4.2.2 Estimation of design discharge for main irrigation canal 4 - 3 4.2.3 Design of main irrigation canal and collateral structures 4 - 4 4.3 Determination of Design Modulas for Irrigation and Drainage Scheme 4 - 16			3.2.4 Cropping pattern and benefit for P.V.43 3	-	7
3.3.1 Paddy rice cultivation (Irrigation) 3 - 9 3.3.2 Up Land rice cultivation (Rain-water) 3 - 11 3.3.3 Up Land cultivation 3 - 14 3.4 Mode of Farm Management 3 - 15 3.5 Labour and Equipment Plan 3 - 18 3.6 Balance of Economy of Standard Household 3 - 25 3.7 Machinery for Execution of the Plan 3 - 37 Chapter 4. Land Improvement Plan 4 - 1 4.1 General Description 4 - 1 4.2 Improvement Plan of Main Irrigation Canal 4 - 2 4.2.1 Principles of improving the main irrigation canal 4 - 2 4.2.2 Estimation of design discharge for main irrigation canal 4 - 3 4.2.3 Design of main irrigation canal and collateral structures 4 - 4 4.3 Determination of Design Modulas for Irrigation and Drainage Scheme 4 - 16			3.2.5 Cropping pattern and benefit for tribal 3	-	8
3.3.2 Up Land rice cultivation (Rain-water)		3.3	Cultivation Control Plan 3	-	9
3.3.3 Up Land cultivation			3.3.1 Paddy rice cultivation (Irrigation) 3	-	9
3.4 Mode of Farm Management			3.3.2 Up Land rice cultivation (Rain-water) 3	-	11
3.5 Labour and Equipment Plan 3 - 18 3.6 Balance of Economy of Standard Household 3 - 25 3.7 Machinery for Execution of the Plan 3 - 37 Chapter 4. Land Improvement Plan 4 - 1 4.1 General Description 4 - 1 4.2 Improvement Plan of Main Irrigation Canal 4 - 2 4.2.1 Principles of improving the main irrigation canal 4 - 2 4.2.2 Estimation of design discharge for main irrigation canal 4 - 3 4.2.3 Design of main irrigation canal and collateral structures 4 - 4 4.3 Determination of Design Modulas for Irrigation and Drainage Scheme 4 - 16			3.3.3 Up Land cultivation 3	-	14
 3.6 Balance of Economy of Standard Household		3.4	Mode of Farm Management 3	-	15
 3.7 Machinery for Execution of the Plan		3,5	Labour and Equipment Plan 3	-	18
Chapter 4. Land Improvement Plan 4.1 General Description		3.6	Balance of Economy of Standard Household 3	-	25
 4.1 General Description		3.7	Machinery for Execution of the Plan 3	-	37
 4.2 Improvement Plan of Main Irrigation Canal	Chapter	4. L	and Improvement Plan		
 4.2.1 Principles of improving the main irrigation canal		4.1	General Description 4	-	1
 irrigation canal		4.2	Improvement Plan of Main Irrigation Canal 4	-	2
 main irrigation canal			4.2.1 Principles of improving the main irrigation canal	_	2
 4.2.3 Design of main irrigation canal and collateral structures			4.2.2 Estimation of design discharge for main irrigation canal	-	3
 4.3 Determination of Design Modulas for Irrigation and Drainage Scheme			4.2.3 Design of main irrigation canal and	-	4
4.3.1 Irrigation scheme 4 - 16		4.3	Determination of Design Modulas for Irrigation	-	16

.

	4.4	Irrigation and Drainage Scheme	4 -	33
		A A 1 Immigration		33
				37
	15			
	4.5		4 -	37
			л	37
				-
			4 -	44
	4.6	Land Improvement Plan	4 -	49
	4.7	Road Plan	4 -	53
Chapter	5. L	Living Conditions Improvement Plan		
	5.1	Basic Concept	5 -	1
	5.2	Execution Plan	5 -	2
		5.2.1 Plan for the development of drainage facilities	5 -	2
		5:2.2 Plan for the development of information transmission facilities	5 -	2
Chapter	6. A	griculture Cooperative Society Plan		
	6.1	Basic Concept	5 -	1
	6.2	Execution Plan	5 -	2
		6.2.1 Formation of mutual assistance squads	5 -	3
			j ~	
		6.2.3 The establishment of a small-scale multi-purpose agricultural cooperative society		
	<i>c</i> 7		, –	т.
	6.3	The farmer's Cooperative Society Consciousness at the Present Time) –	10
	6.4	Conceivable Farm Village Industry 6	-	11
	6.5	Planned Installation of Rice-Polishing Machine, Oil Presses and Rope-Making Machines	-	13

Chapter	7.	Cost Estimation 7	-	1
Chapter	8.	Economic Justification of the Project .		
	8.1	Introduction	-	1
	8.2	Benefits from Direct Investment	-	1
	8.3	Economicality of the Project	-	1
		8.3.1 Annual incremental net benefit	-	1
		8.3.2 Annual cost and expenditure	-	2
		8.3.3 Annual operation cost 8	-	3
		8.3.4 Benefit-cost ratio 8	-	4

VOLUME II. FINAL DESIGN FOR PAKHANJORE COMMUNITY

Chapter	9.	Outlin	e of the Project	
	9.1	Objec	tive of the Project	9 - 1
	9.2	Basic	Concept of the Project	9 - 2
	9.3	Scale	of the Project	9 - 2
Chapter	10.	Farm	Management Practical Plan	10 - 1
Chapter	11.	Final	Design of Land Consolidation	11 - 1
Chapter	12.	Condi	ical Plan for Improvement of Living tions and Consolidation of Cooperative iation	
		12.1	Practical Plan for Improvement of Living Conditions	12 - 1
		12.2	Plactical Plan for Consolidation of Cooperative Association	12 - 2

Page

			<u> </u>
Chapter	13.	Cost Estimation	13 - 1
Chapter	14.	Annual Schedules for Implementation of the Project	14 - 1
Chapter	15.	Economic Justification of the Project	
	15.1	Economic Justification of the Project	15 - 1
	15.2	Benefits from Direct Investment	15 - 1
	15.3	Economicality of the Project	15 - 1
		15.3.1 Annual incremental net benefit	15 - 1
		15.3.2 Annual cost and expenditure,	15 - 2
		15.3.3 Annual operation cost	15 - 3
		15.3.4 Benefit-cost ratio	15 - 3

VOLUME I. DEVELOPING PLAN FOR PAKHANJORE COMMUNITY

Chapter 1. Introduction

Chapter 1. Introduction

1.1. Objective of the Report

This report consists of two parts - Part 1 describing the results of a survey with respect to the feasibility of improving 500 acres of paddy field fed on the water of Pakhanjore tank at Paralkote in Dandakaranya, India and 120 acres of upland field on the plateau extended along the main irrigation canal, and Part 2 describing a plan for the development of villages, worked out on the basis of a detailed survey of final design for two villages, PV 13 and 14, selected as the bases for the development of the above mentioned 500 acres of field.

The development of this area has been under way since 1960, forming a link in the chain of the Dandakaranya District Development Project under the direct control of the Central Government of India. The first settlement plan has already been carried out, and the settlers are gradually setting down.

The settlers, who are refugees from East Pakistan, have a strong desire to develop the area, but their farming techniques and infrastfucture require much more improvement. In this connection, the Government of India has asked Japan for her cooperation in the development of this area in order to make it a model area for the development of the Dandakaranya district. Japan, therefore, has sent a survey team several times, and has had it negotiate with the Government of India.

The present survey team has been dispatched in order to establish a concrete plan based on the results of the preliminary surveys mentioned above.

The survey team has completed the report based on various data, measurements and valuable experience which are collected, took and acquired while they were surveying the site for about 80 days from November, 1969 to February, 1970.

The survey team submits the report to the Governments of India and Japan on its own responsibility and hopes that it will be a guide of the two Governments in executing the project for the development of this area.

It is also to be noted that the report is completed in full Accordance with Japanese delegation and the Indian specialists who joined in the survey on various fields, and the government officials who extended close assistances to the survey team on the spot.

The survey team is confident that the teamwork of the Japanese specialists and the Indian officials built on their mutual understanding and friendship made the short term survey at Paralkote very successfully but has to admit that there is not a little calling for further investigation.

1.2. Background of the Project

The present project is the comprehensive regional development scheme of the Dandakaranya district, which has been taken up for materializing one of the Indian Government's major policies to provide the refugees from East Pakistan with a stable life in the area and also help indigenous natives of the area to live in a better way.

The Central Government of India set up the Dandakaranya Development Authority in 1958 under the control of the Ministry of Rehabilitation and Labour in order to carry out the project.

The development of this district was started in 1960, and development plans have during these ten years been drawn up for the areas of Umarkote, Paralkote, Raighar and Malakangiri extending over the territories of the States of Orissa, Madya Pradesh and Andra Pradesh. Since then, the Indian Government has been making its effort by itself to the development of the area.

The immigration was started in 1963 and the first stage of it has been completed.

The Dandakaranya Development Authority, belonging to the Ministry of Rehabilitation and Labour in New Delhi, and has its development headquarter

at Koraput in the Dandakaranya district. The Authority also has its local centers of operation in each area, where they are directly in charge of executing the project.

The Central Government of India invests 500 lakh of rupees in the Dandakaranya Project every year in order to carry out the project and construct the main roads in the above mentioned four areas. Judging from the various respects, this is a realy large-scaled project, and the Indian Government displays much enthusiasm for its execution. But since the project has to cover a vast area and is still in its initial stage of progress, the Government's investment is concentrated to major civil construction works, such as dam construction, excavation of the main irrigation canal and road works, and is not enough for terminal facilities. Consequently, no farmer can earn yet an expected income by the crop from the six acres of land given to him at the time of immigration.

In the development of the Paralkote area, the Development Authority invests about one hundred lakh of rupees a year out of which about eighty lakh of rupees is spent in constructing the Paralkote dam and its main irrigation canal. Since they came into this area, the farmers have been trying their utmost to develop the agriculture of this area eagerly in an attempt to make their second home country, but the growth of their farm production has recently come to a standstill. Few of the settlers have abandoned their farms which are situated in the depth of thick forests and where they came as refugees with determined resolution that they cannot find any other place to settle down.but the district.

This district is located in the rainy zone of India, and the annual rainfall amounts to 1,800 to 2,000 mm. As most of the rainfalls in the Kharif season from May to September, rain fed single crop is accomplished at least during that season. Accordingly, people can maintain the minimum standard of living by this single crop without relying on an irrigation dam. This advantage in the natural condition together with the advantage of allotted own land of six acres allows the people in this district to earn a higher level of income a year than the average farmer in India does. It is, however, necessary to make more investment in infrastructure and improve agricultural techniques to a further degree in order to stabilize farming operations in this district. The farmers in this district, who are free from the convention of the caste system common to villages in India and the lands of the tenant system, are willing to accept technical assistance for the improvement thereof with a large potential for successful development, as compared with the other parts of India.

The survey team has come to the conclusion that if the Japanese Government renders technical cooperation as recommended by the team dispatched to India in 1969, the development of the district will be probably successful in the long run in spite of many foreseeable difficulties.

1.3. Basic Concept of the Project

(a) Execution of the Project

The project will be executed in accordance with the agreement signed by the Governments of India and Japan. The Government of India desires the Government of Japan to begin to extend cooperation as quickly as possible. In compliance with this desire, the survey team recommends to the Japanese Governments that the agreement be signed and delivered within April, 1970 so that Japan can dispatch a number of specialists to India before its rainy season of this year breaks.

(b) Objective of the Project

1) It is an objective of the project to develop the villages PV 13 and 14 situated along the main irrigation canal from the Pakhanjore tank, including the land improvement on the right bank of the canal. Another objective is to make a model upland farming area by constructing upland irrigation facilities through the adjacent plateau covering about 120 acres. The project aims finally to make the land consolidation, establish the farm management best suited for the district and organize the farmers cooperative in order to increase the production and improve the farmers' standard of living whereby they can engage in farming under stable conditions.

2) In order to achieve the foregoing objectives, it is necessary to establish agricultural cooperative comprising both the natives and the immigrants, reinforce its organization as a fundamental community in daily life, make it into such a cooperative as every farmer can actively take part in, and furthermore, teach the farmers how to manage the cooperative by themselves. What the farmers of the district eagerly want is the timely water supply in an adequate amount during the dry season and proper drainage during the rainy season. This calls for the improvement of the irrigation canals and the drainage systems, and the consolidation of the land.

3) It is important that the following investment should be made by the Indian Government with its own funds for successful completion of the project, the result or which will effect on further developments of the neighbouring villages. Chapter 2. Present Conditions of Pakhanjore Community

Chapter 2. Present Conditions of Pakhanjore Community

2.1. Natural Conditions

2.1.1. Location and topography

Pakhanjore district is located at the center of Paralkote zone which is situated on the northwest of the Dandakaranya project area, and is in 20°N. and 81°E.

Pakhanjore belongs to the administrative districts of PV 55, Sohagaon, PV 42 PV 13, PV 14 and PV 43 of Baster district in Madya Pradesh province.

The area spreads on the left bank of Anjari river at the elevation of about 300 m and the slope of 1 to 30, and its shape is about 2 km in width by about 8 km northwest to southeast. Upland of the area forms zonal rock hill.

2.1.2. Condition of PV and its area

PV 42, PV 13, PV 14 and PV 43 are newly reclaimed land and they are arranged for village lots to be along a road centering a tank and a well, but Traibal village in Sohagaon are not divided.

PV 42, PV 13 and PV 43 are lack in water as they are situated on hilly land, while Traibal and PV 14 are situated in low land to be supplied with water from Pakhanjore irrigation canal.

It is 10 km distance along the road from Pakhanjore to PV 43 where is the lowest reach in the area.

The area of each PV is measured by rivers and roads as border line on a map as is given in Table 2.1.2-1.

Name of village	Number of farm house	Acreage	Cultivated
Traibal	7	661	136
PV 42	69	818	414
PV 13	45	1,049	270
PV 14	47	530	258
PV 43	65	992	390
Total	233	4,050	1,468

Table 2.1.2-1. Area of Each PV in Pakhanjore in acre

Culivated area is equivalent to 36% of the whole area as is shown in Table 2.1.2-2, and uncultivated area is composed of dense forests.

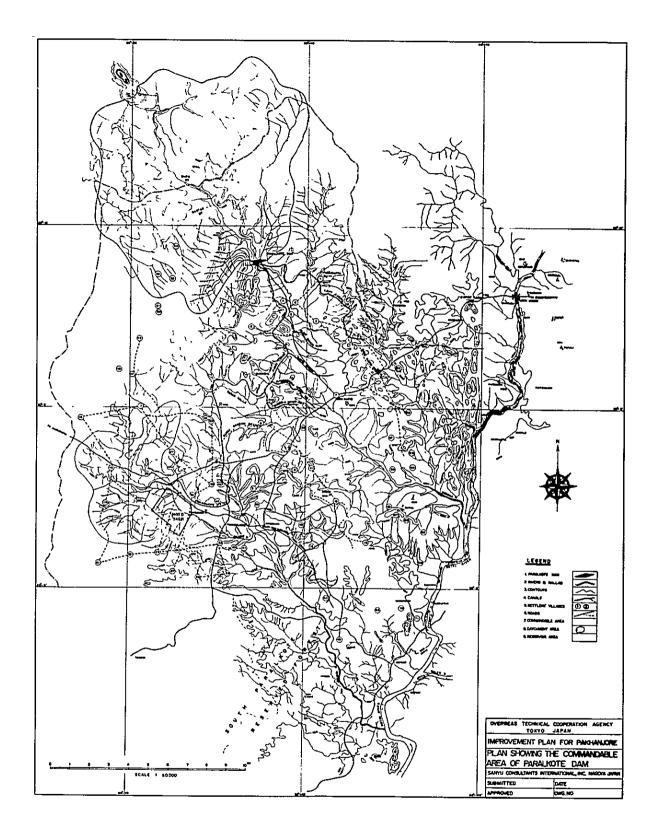

Name of	Rain	ny Season		Dry	Whole
village	Irrigation	Non-Irri.	Sub-total	season	area
Traibal	100	36	- 136	20	136
PV 42	46	368	414	30	414
PV_13	、	220	270	43	270
PV 14	140 -	118	258	116	258
PV 43	233	157	390	20	390
Total	· 569	899	1,468	229	1,468

Table 2.1.2-2 Cultivated Area in acre

One farm household has 2 acres of paddy fields and 4 acres of upland fields, totaling 6 acres, on an average.

In PV 42, out of 69 of farm households, 30 of farmers possess irrigated paddy fields and the rest do not.

In PV 13, out of 45 of farm households, 4 farmers do not own their farm land.

PV 14, out of 47 of farm households, 41 of farmers own 6 acres of paddy fields and 6 are side-work farmers with 2 acres of paddy fields.

In PV 43, only 20 acres of paddy fields are irrigable in the dry season. Irrigation canals catch water from mountains and make it a source for irrigation in the rainy season, and the tanks serve as a water source in the dry season because of no river discharge.

In Tribal and PV 14, main irrigation canals are utilized for vegetables and fruits irrigation, along with paddy irrigation, and both districts seems rather rich than other districts.

2.1.3. Meteorology and hydrology

(1) Meteorology

Being affected by the monsoon, a year is divided into 4 seasons that is, the former monsoon (April to May) with a little rainfall and highest temperature, the monsoon (June to September() in which about 90% of averaged annual rainfall of 1,700 mm is seen, the latter monsoon (October to November) with a little rainfall, and winter (December to March) with little rainfall and lowest temperature.

The agricultural products in this area are much affected by rainfall conditions such as amount, beginning and monthly fluctuation of rainfall owing to insufficient irrigation facilities.

Fluctuation of daily temperature and rainfall are illustrated in Fig. 2.1.3-1 and 2.1.3-2.

(2) Hydrology

No continuous observation data concerned with base flow of Anjari Nalla are available. As the soil and topographic conditions in the

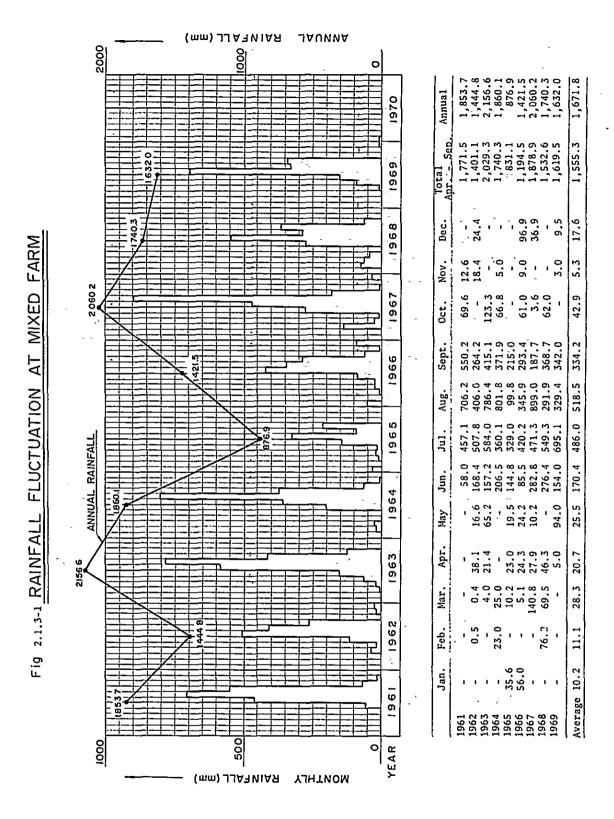
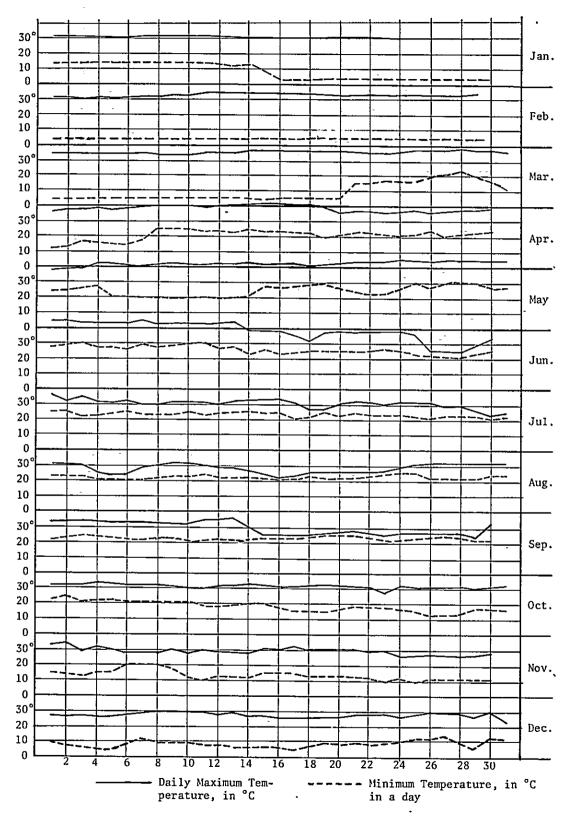



Fig. 2.1.3-2

Flactuation of	Daily Maximum	ß	Minimum	Temperature	at	Paralkote Zon	e
----------------	---------------	---	---------	-------------	----	---------------	---

Pakhanjore area are not much different from that of Mixed Farm, the unit base flow of 0.804 &/sec/sq. km ine Mixed Farm could be applicable for the estimation of the base flow from the catchment area of 15.02 sq.km for Pakhanjore Tank.

2.1.4. Soil

The soil of Paralkote area is classified into the following 6 series according to the soil texture.

- 1. Kapsi series
- 2. Alore series
- 3. Pakhanjore series
- 4. Krohbeda series
- 5. Harangarh series
- 6. Deoda series

The soil of Pakhanjore project area belongs to Pakhanjore soil series, which is acidic and poor in productivity, mainly attributable to the shortage of organic matter and humus. The soil amendment of Pakhanjore series might be possible by applying a large quantity of organic matter and green manure. Fertilization of Potassium compound to this soil would not be so effective because Pakhanjore soil series is rich in mica, on the other hand, the response from phosphorous application might be much higher.

2.2. Social Conditions

2.2.1. Characteristics of the Villages

The villages to be developed with Japanese cooperation are dotted along the main road in the Paralkote area which is about 7 to 10 km east of Pakhanjore, and the center of administration for Paralkote and adjacent areas. These villages are numbered PV 13, PV 14, PV 42 and PV 43 (PV standing for Pakhanjore village) based on the immigration program. According to the general conception, PV does not have any function that the "village" as an administrative unit has, but should more suitably be called just an inorganized community. The PV's are located between the main road and the Pakhanjore tank, and each village comprises 50 to 60 houses.

Each village has been formed in accordance with the basic immigration program of DDA, and is equipped with the minimum facilities for the living of the villagers. Each PV has a tank for living, two artesian wells and two pump wells, which provide the necessary amount of water to each house. The houses are built to a uniform design after the East Pakistani style, and each house comprises a wooden, bamboo and claywalled, slate or zinc board roofed main building of brick foundation (mostly having three rooms), and a separate kitchen, a shed, a shelter for domestic animals, a work-yard in front of the main building and a homestead, each house is arranged on an 800 square-yard site. At the center of a PV is located a public square for gathering and playing, a primary school and other facilities.

The villagers are cooperating with one another in such work as the repairs of roads, but are hardly working together in respect of agriculture, though they apparently used to do so at the beginning. The only exception to this is some mutual help observed among relatives or those who are very intimate with each other. There is no indication, however, among the villagers that the evils of the caste system hinders the development of the villages.

When direct technical cooperation is going to be extended to a particular village, it is needless to say that the objective of such cooperation is to give proper guidance according to the type and nature of that particular village, develop its functions and improve the livelihood of the farmers constituting the village. In this connection, the PVs have the following distinct features:

(a) They are all villages composed of settlers, under the direct control of the Government.

- The farmers came to these villages as settlers at the same time, and are engaged in their farming work under the same conditions.
- 2) They are eager to increase production from their farms.
- 3) There is no division of the villagers into various social classes.
- 4) There is an atmosphere of democracy and independency among the villagers.
- 5) The Government is still the owner of the land.
- 6) Each house has a considerably large piece of farm land (6 acres).

- (b) The farmers are refugees from East Pakistan.
- 1) They are well unified into a community.
- 2) They adjust themselves to the Government's instructions.
- 3) Most of them are young.
- 4) They imherit the agricultural techniques of East Pakistan and furthermore have few negative customs.
- 5) They have neat habits and prefer to live a rational life, probably due to the moslem influence.

(c) The farm production of the PV's considerably differs from one village to another, depending on the physical conditions such as the availability of water during the dry season. Above all, the size of the irrigable paddy fields in a particular village which governs the size of farm production of that village differs from village to village, depending on its land conditions. The same problem exists within each village where the size of irrigable paddy fields owned by each house considerably differs from one house to another.

It is a serious desire of every farmer to secure a sufficient amount of irrigation water, and in this connection, the farmers are expected to cooperate rather enthusiastically in establishing a cooperative body for securing water, e.g., a cooperative association for water utilization.

(d) There is no strong connection between the PV's in any respect. It will take long before several PV's are consolidated and formed into a real village as an administrative unit.

2.2.2. Dandakaranya Development Plan and Settlement Conditions

The Dandakaranya Development Project comprises the development of four zones, i.e., Paralkote, Umarkote, Malakangiri and Raighar. The development of this area began with the transfer of 79,742 acres of land from the State of Madya Pradesh to the Dandakaranya Development Authority, out of which about 43,050 acres was found suitable for agriculture by the land servey. Settlement began in November, 1960, when 646 farm-houses came to live in Chkote Kapsi, followed by settlement of 700 houses into 15 places during the period of about one year. By 1963, a total of 2,255 houses settled into a total of 45 places. At that time, no more settlers were capable of being accepted, but the survey made in 1964 as to the possibility of further settlement proved such possibility subject to the development of the northeastern and western parts of the area, which was consequently carried out.

As a result, a total of 5,395 houses settled in 115 places by 1969.

Year	Villages Opened	Farm-Houses	Immigrated
1960 - 61	15	700	
1961 - 62	19	981	
1962 - 63	11	574	
1963 ~ 64	7	359	
1965 - 66	6	345	
1966 - 67	22	863	
1967 - 68	14	737	
1968 - 69	21	836	
Total	115	5,395	

Villages Opened and Farm-House Immigrated as Listed by Years

Note: The list does not include the 74 native houses which settled in 13 villages.

The Dandakaranya Development Authority allotted to each house six acres of farm land (consisting of four acres of paddy field and two acres of upland field) and 800 square yards of land for a housing lot.

The settlers built their houses by themselves with a loan of about 1,700 rupees from the Authority.

In addition, each house received the following loans from the Authority:

For work cattle	450 rupees
For milk cows and calves	150 rupees
For farm implements	100 rupees
For seed, manure and agricultural chemicals	290 rupees
For weeding work	25 rupees
- Total	1,015 rupees

Furthermore, the Authority provided each household with a subsidy in the amount equal to the standard cost of living for the first harvesting period after its settlement, a half of that cost for the second period and one-fourth thereof for the third period.

An area equal to 25% of the developed farm land was made open for the natives, and 74 houses settled in that area by 1965. The Authority has been paying to each house of such natives a subsidy of 2,600 rupees, and it is also possible for each house to get a loan of about 2,800 rupees for building a residence and proceeding with its farm operations.

The settlers at present have only the right to use the land allotted to them, including the land on which their house lies, and do not hold the ownership thereof.

2.2.3. Residents

It goes without saying that the majority of the residents in the PV's are farmers. The working population and job composition of a certain village are broken down as follows:

Table 2.2.3-1

Fermers	74 persons	69.2%
Wage workers	20	18.7
Carpenters	7	6.5
Primary school teachers	2	1.9
Merchants	2	1.9
V.L.W.	1	0.9
Fisherman	1	0.9
Total	107	100.0

The population of the farm house-hold in the four PV's totals 1,090, each family consisting of 4.8 members on an average. Children occupy about 55% of the whole population, and as regards adults, the number of men is slightly larger than that of women.

2.2.4. Tribal (Natives)

The Tribal of Pakhanjore live in the form of a community similar to that of the settlers, in an area along the upper portion of the stream flowing into the Pakhanjore tank. They are mainly engaged in livestock raising, agriculture, manufacture of jars or working for wages. There does not seem to be any appreciable difference between the Tribal and the settlers in their way of living, except the way they dress and decorate themselves. Contrary to the General trend in India, there is little conflict between the Tribal and the settlers in Paralkote, partly because the Tribal occupy a smaller percentage of the whole population in this area than anywhere else. The Tribal participate in trading on a bazaar day.

The .Tribal live close to a jungle, but are more favored in the quality of land available for agriculture than the settlers. They have a meateating habit, and can apparently withstand heavy work.

They are not appreciably inferior to the settlers in the level of agricultural techniques. If their farming conditions are improved, they are expected to develop steadfastly their agriculture.

The Tribal consider that they are given less aid by the Government than the settlers area, and are in great hopes for more aid toward the future. Their farms are situated along the upstream of the main canal flowing out from the Pakhanjore tank, so that they can rather easily receive a supply of water from this canal during the dry season.

2.2.5. Education and Public Facilities

(a) Education

The Dandakaranya Development Authority has been placing special emphasis on the education of the settlers' children who are supposed to grow up into the driving force for further development of their area.

One primary school has been established in every three to four villages, and manned with one or two teachers, by whom pupils in the first to fifth grades are being taught by turns as if in a private school of old Japanese education system. Education at primary school level is compulsory, and is fully paid for by the Authority.

School is taught in Hindi, which is the official language of India and the subjects being taught are language, mathematics, history, science and art. School buildings, facilities, textbooks, etc. are not good enough, nor is the educational level very high.

Nevertheless, the interest the villagers take in education is so high that nearly 100% of their children who have reached school age attends school regularly. This area has a senior high school, too, though the extent of the pupils who are promoted to high school is still low owing to their economic ability. The number of the students enrolled at the high school has, however, reached 300, including the both sexes, and the students who come from distant places are admitted to the entry of a dormitory.

The villagers who come from East Pakistan speak Bengali.in.their daily life, but many of them understand Hindi. There are fewer illiterates in this area than in any other part of India. In general, the villagers in this area seem to be at a higher educated and cultural level than those in any other Indian villages.

(b) Public Facilities

Roads have been built for communication within the villages in accordance with the settlement programme. Also, there exist passages leading to other villages and fields.

Each village has a gathering place combined with a playground, though not yet fully equipped or arranged. A plan of furnishing the villagers with a set of articles for valley-ball and football, musical instruments, etc. has been devised in order to encourage them to play sports or music on their free time, but has not yet been put into practice.

There is a public hall in every eight to ten villages. But the villagers seldom use it because the hall is not very conveniently located for access from any village, and also because those villages have not yet been socially developed to such an extent that people belonging to as many as eight to ten different villages feel free to have an assembly together.

At present, assemblies are usually held by and between two or three villages, and people are using a school building for an assembly. Thus, the public halls are not being used for their primary purpose, but some of them are at present used as a fertilizer warehouse.

(c) Welfare Facilities

There is a hospital in Pakhanjore, which has an X-ray system, thirty beds and an ambulance car and provides free examination and treatment to the residents of the region.

The hospital is manned with a doctor, three nurses and several assistant nurses, and is capable of surgical, internal and maternity examination and treatment. There is a pharmacist in every two villages, who tends and prescribes medicines for mild cases.

(d) Other Facilities

1) Roads

Truck roads having a total length of 45 miles are provided to connect this area with other areas and also to enable transportation between the principal points within the area. In addition, roads having a total length of 160 miles are available for providing linkage between the villages. Both roads are covered with gravel.

2) Communication

There are no communication facilities in this area, which causes inconvenience to the administrative communications through the villages. At present, automobiles or similar vehicles are used to transfer communications from the central organ to the local organizations. Communications with other areas are regularly conducted by means of the wireless system provided at the zonal headquarters, but such communications are restricted to those between the areas within the district being developed under the present project. Communications with areas beyond the limits of the districts are first sent to the Development Headquarters in Koraput, which in turn relay them to another public communication network. There is a post office in this area, which is engaged in mail, savings and other services.

3) Electricity and Water Service

There is still no complete electric or water service available in this area. An independent electric power plant generates power and send it to the hospital and a part of other public facilities in order to supply electric light to them at night. The supply of power for general use is presently available up to Bhanupratappur which is 40 miles from this area, and plans are under way to extend the power transmission line and also the telephone service line into this area within the current year. The hospital's small water service facilities of the simplified type are the only ones of the kind present in this area. People drink water from the artesian wells.

2.3. Economic Conditions

2.3.1. General Description of Farmers' Economy

The total gross agricultural production of all the villages served by the Pakhanjore tank, i.e., PV13, 14, 42 and 43, for the past year amounts to about 6.6 lakhs of rupees, out of which about 11% or 73,300 rupees in value was produced during the dry season in 1968 - 69 and the remaining 89% or 586,300 rupees in value during the rainy season in 1969. The output per household differed to some extent from one house to another; it was bigger in PV 13 and 14, while being small in PV 42 and 43.

Table 2.3.1-1 Gross Agricultural Production of Vaillages Served by the Pakhanjore Tank

	Dry Season (1968-69) in 1,000 rupees	Rainy Season (1969) in 1,000 rupees		in	-	isehold in ,000 yen
Total	73.3	586.3	659.6	2,890	ŧ	140
PV 13	25.3	138.6	163.9	3,640	÷	175
14	30.1	159.2	189.3	3,800	÷	183
42	17.9	182.2	150.0	2,180	ŧ	104
43	-	156.3	156.4	2,870	ŧ	138

Ratio of Commercialization of Farm Product

The results of a hearing survey indicate that about 3.4 lakhs of rupees or 51.6% of the entire production have been commercialized instead of being consumed by the farmers themselves. But if it comes to rice only, the rate of commercialization is as low as 32.5% This means that the present economic status of the farmers in this area is just a little above the stage of self-sufficiency.

Production Cost and Rate of Income

The cost of production required all over the area is estimated at about 40,000 rupees (or 170 rupees per house), 47% of which is spent on manure, 14% on agricultural chemicals, 17% on agricultural implements and 22% on other materials. 2 - 15

Table 2.3.1-2 Production Cost

Total			Break-down	
	Manure	Agricultural Chemicals	Agricultural Implements	Others
Rs. 39,500	46.7%	13.9%	17:3%	22.1%
		· · ·		

• The rate of agricultural income which is calculated on the basis of the above production cost and gross production cost, and gross production is about 94%. This figure indicates that the farm work is mostly being done by human labor in this area.

Gross Income of a Farm-House

The gross income of each house averages about 3,400 rupees including some from stockbreeding and from a job other than farming. This amount is about 30% greater than the average gross income of the farm-houses in Paralkote which is 2,544 rupees. Out of 3,400 rupees, 85% is earned from farming, 9% from stockbreeding and 5.5% from other sources.

Table 2.3.1-3 Gross Income of Farm-House

From Farming	From Stockbreeding	Sub-Total	From Other Jobs	Grand Total
Rs. 2,893	Rs. 315	Rs. 3,208	Rs. 185	Rs. 3,393
85.3%	9.3%	94.5%	5.5%	100%

If the amount of 185 rupees in this table is earned from wage labor, which makes two rupees a day, it follows that the farmers do two different kinds of labor for about 93 days.

Cash Income of a Farm-House

This is roughly calculated as follows:

The sum of the income from farming and that from stockbreeding, i.e., 3,208 rupees, multiplied by the rate of commercialization, i.e., 51.6%,

2-16

۰.

makes 1,655 rupees, to which the income of 185 rupees from other jobs is added. The amount of 1,840 rupees thus obtained is considered as the average cash income of a farm-house. The production cost amounting to 170 rupees is deducted from 1,840 rupees, and the resultant figure of 1,670 rupees is the average net income in cash.

Living Cost of a Farm-House

The average living cost in cash per house is estimated at 1,318 rupees, out of which 878 rupees or two-thirds is spent on seasonings and food. The farm products and stock eaten by the members of the house amount to 1,553 rupees (3,208 rupees less 1,655 rupees). Accordingly, the cost of food totals 2,431 rupees. The total cost of living including both purchase from outside and consumption of self-products is 2,871 rupees; hence, the Engel's factor of the farm-house amounts to as high as 84.7% on an average.

	Tab	ole 2.3.1-4	Living	Cost of Farm-	-House	
Total	Self-sufficient food component	Purchase fr Seasonings			Persònal Ornaments etc.	
Rs.2,871	Rs.1,553	• •	Rs.188 (14.2%)	Rs. 166 (1246%)	Rs.86 (6.5%)	Rs.1,318 (100%)
100.0%	84.7%	i	6.5%	5.8%	3.0%	

The foregoing description of the farm-house economy based on factual figures will hereinafter be more generally supplemented.

Some of the immigrant farmers employ annual employees to have them help their farm work (or in the area where the Tribals are predominant they employ the immigrants as annual employees), and some others apparently rely on temporary employees for the agricultural work. And some others seem to buy the rice for their own consumption. In a certain village, eight houses out of 49 are said to employ a number of annual employees, who are being paid 80 rupees a month. About 60% of the houses seem to be relying

more or less on temporary employees for help during the rainy season. Some of the settlers run a store of daily necessities in their village, act like a merchant at a bazaar, go on a peddling tour, or go to work at a dam construction site.

It is unavoidable that failure to do the right work at the right time due mainly to labor shortage, bad weather, damage by blight and insects, shortage of water, etc. make the agricultural income more or less unstable. As a natural consequence, the farmers are inclined to put their energies into jobs other than farm work. At the same time, it is an undeniable fact that their skill in farm work and management is inherently not high enough to keep their income stable. Thus, various degrees of difference are observed to exist among the farmers with respect to the level of agricultural techniques, income and standard of living. It is anticipated that such difference among the farmers will become greater and greater in proportion to the growth of agricultural production and the expansion of commercialization of farm products.

2.3.2. Farm Products and their Marketing

It is paddy that is the most important product in the area served by the Pakhanjore tank, whether during the rainy or dry season. As shown in the table below, the production of paddy during the last year amounted to 1,750 tons, which is worth about 4.2 lakhs of rupees or 71% of the gross agricultural production. The second largest is til, amounting to 110 tons or 1.02 lakhs of rupees, which occupies 15% of the entire gross production. The third is maize, which amounted to 110 tons, and 33,000 rupees or 5% of the whole farm production. Other major products of the area are mesta, araha and wheat.

Table 2.3.2-1 Quantity and Value of Farm Products

Rainy Season (1969)

Name of Producť	Quantity Produced (tons)	<u>Value</u> (in thousand rupees)	Percentage in Value (%)
Paddy	1,570	418.6	63.5
Maize	68	18.2	2.8
Sesame (Til)	109	101.6	15.4
Kenaf	64	25.7	3.9
Araha (Bean)	55	22.1	3.3
Total		586.3	88.9

Dry Season (1968-69)

÷

Name of Product	Quantity Produced (tons)	<u>Value</u> (in thousand rupees)	Percentage in Value (%)
Wheat	15	7.8	1.2
Paddy	185	49.4	7.5
Hy. maize	46	14.7	2.2
Vegetables	3	1.3	0.2
Pea	trace	trace	0.0
Gram	trace	trace	0.0
Total		73.3	11.1
Grand Total		659.5	100.0

All of these products are sold at the Pakhanjore Bazaar, except about 70% of the paddy which is consumed by the farmers and their families. A bazaar is held at Kapsi nearby, too, but only on a much smaller scale than at Pakhanjore. The annual deal at the bazaar in Pakhanjore amounts to about 39.7 lakhs of rupees, or over eleven times as much as the volume of the farm products sold by the four villages served by the Pakhanjore ' tank, i.e., about 3.4 lakhs of rupees. Every Wednesday, the farmers bring their products collected or prepared during the preceding week to the site of a bazaar, carrying them on the head, shouldering them by means of a pole

and baskets or in a bullock cart. The majority of the edible products produced by the farm-houses in this area are presently being consumed by themselves or somebody else within the area, while the kenaf, til and products of similar nature are delivered outside of the area through . merchants or the Agricultural Cooperative Association.

Raipur is believed to be the best market outside the area, where a fairly profitable trade is expected if the products are directly shipped to and sold there, but the size of production is not yet large enough to allow much to be placed on the market at Raipur. Raipur has a population of about 300,000, and is about 160 miles from Pakhanjore. The road is paved along about half the distance between the two towns, which are linked to each other by the bus service available twice a day and also by the truck service available to a certain extent. Bilai, a town of mines, has a population of about 35,000, and is 70 miles from Pakhanjore. The conditions of the road from Pakhanjore to Bilai are not bad, and bus and truck services are also available. Very close to Bilai, there is another town of mines named Dawairajera, which supplies iron ores and coal to the former. The latter's population is about 15,000. At a distance of 250 miles from Pakhanjore, there is a town named Raigarh, where bags and mats are made of kenaf. About twenty-five thousand people live in the urban part of this town.

These towns will have to be evaluated as promising markets for food and raw materials as the farm production increases and the means of transportation is developed and improved.

2.3.3. Living Standard of Inhabitants and their Desire

(a) Food

Each family spends 2,431 rupees on food a year on an average, which comes to somewhere between 347 and 486 rupees per capita. Thus, food occupies a very high percentage in the cost of living here in this area, i.e., 84.7% on an average. They live on paddy, wheat and hy. maize, and eat those which they themselves produce. The nutrition they take is far from suffi-

cient, and malnutrition is the cause of illness they most often suffer from. Members of the survey team who visited the houses in this area witnessed a sick person lying in bed in every five to ten houses. The coarseness of food which they eat may be obvious from the following list of the kitchen utensils which they use:

Kitchen Utensils Possessed by Standard House (Probably, of the Upper Middle Class)

Name	Quantity Possessed
Iron cookpot	3
Bowl	5
Platter (enameled)	3
Plate	4
Scoop	1
Overturner for frying	1
Water jar	3
Bucket	2
Bamboo basket	1
Stone block for chopping	1

Cooking is done in a thatch-roofed, bamboo-walled shed separate from the main house. This shed generally measures about two and a half meters by four meters. There is a hearth at the same level as the earth floor, and adjacent the hearth is a stand on which water jars are placed. They do not have a cooking stand, but stoop down on the earth floor when doing cooking. Water is drawn from an artesian well, and carried in a jar or bucket to the cooking shed.

(b) Clothes.

Adults generally wear simple clothes such as shirts and saris, but some children do not have anything on the upper half of their body. Both adults and children mostly have bare feet, and few wear sandals. They have several every day clothes and some holiday clothes, though they have so few clothes that all the clothes owned by a particular family can even be put in one or two wooden cases measuring approximately 40 cm by 80 cm each. There is no other container for clothes. If it comes to bedding, only the favored few have mattresses and that thin ones, and generally, people sleep on a thin sheet laid on the earth floor.

(c) Housing

The main house is built of wood and earth, and the central room adjacent the entrance approximately measures four meters square and is sandwiched between two smaller rooms approximately measuring three meters by five. A paddy tank is placed on the higher-leveled floor of each of the two smaller rooms. The central room has a small altar in one of its corners in some houses, and serves as the main bedroom. One or both of the smaller rooms are usually used as a bedroom. The floors of the rooms are all of earth, and are 40 to 50 cm above the ground level. The houses are all of single-story, and roofed with slates or zinc plates. The paddy tanks are of bamboo-reinforced, earth construction, and are around one and a half meters both in diameter and in depth.

Several houses have one or two beds and chairs. Recesses made in the walls of the rooms are being used for shelves. These are all the furniture they have in their houses. The rooms are divided by earth walls, and have no door at their entrance. Each room has a window, but the wooden cover provided on the window prevents both ventilation and lighting.

Each house has an entrance each on its front, right and left sides, the entrances being provided with wooden doors. The houses are kept neat and clean.

(d) Desire

The immigrants have a strong desire to improve their standard of living, but do not seem to be extraordinary but very sound in their way of thinking.

Many of them want to raise their income to somewhere between four and five thousand rupees in the not distant future, while there are some who aim at six thousand rupees. The amount of an adequate income largely depends on the size of a particular family, and therefore, does not permit a general statement. They are much interested in acquiring advanced farming techniques and introducing better implements as they believe an elevated standard of farm production to be the key to a better life. During their stay in the villages, members of the survey team often heard people express their desire to undergo training or visit farms in Japan if they are favored with chances. They, however, do not seem to be desirous of having a broader knowledge of various things in the world. If the mass-media come to permit them to know much about the outer world, their desire in general will be enhanced, and their productive energies kindled.

2.4. Present Situation of Organization

2.4.1. Village administration

Each PV is the terminal unit of administration. The village chief and deputy chief are elected democratically by villagers at every three years. All the important problems of each PV are decided by villagers' votes. Thus the autonomous system is tentatively enforced upon each PV, but villagers' action is on the developing way, and practically it seems that they are still in the conventional inclination of being governed by authority's will.

Such social activities as the road improvement, road repair, building of houses, maintenance & control of community wells are now being carried out by villagers as one of the community activities.

2.4.2 Cooperative society and its activity

At present there is a cooperative society called "Paralcote Marketing Society" (hereinafter called P.M.S.) which is organized for the welfare of the Paralcote district. It is only a short time since this P.M.S. was established in 1968, so the members are 1,100 persons which means only 203. of about 5,400 villagers in the Paralcote district. The reason of such a low rate of joining the P.M.S. is said to be due to the short time since the foundation as well as farmer's less investment and inability of sharing payment, but there seems some other reasons are involving - the detail is set forth in the paragraph "Plan of Cooperative Society." From the villages in the Pakhanjore tank District 22 farmers joined the P.M.S. i.e., 11 persons from the PV14 district and 11 persons from the PV 42 district.

The P.M.S. is carrying on business in selling several kinds of products and in purchasing farming materials. The business scope may be estimated by the dealing results in the last one year. Sales - the handling amount was about 115,000 Rupees. Of this 115,000 Rupees the shipment from the Pakhanjore tank district was 13,750 Rupees, Hy Maize 100,000 Rupees, Sesame 15,000 Rupees and Araha (pigeon pea) some amount. Purchasing - the handling amount was about 148,000 Rupees. Of this 148,000 Rupees, the purchase for the Pakhanjore tank district was 11,800 Rupees, in which fertilizer 133,000 Rupees, Hy Maize seed 15,000 Rupees (Yen 12, 124).

Since the P.M.S. is in its early days and no fully stabilized yet, it is now under the care and guidance by the officials in charge of the district agriculture. There is no exclusive wholesale market nor similar facilities provided yet. The staff officers of the P.M.S. are not elected nor full time staff are appointed yet. Thus everything is in the state to grow in the future. It can be said natural, because the agricultural production in Paralcote has recently attained to a level to meet the demand in the district and their commercial activity is no more than a primitive state to carry products into bazaar on their heads. In the future, however, when agricultural production expands and commercial activity develops more active, farmers will realize the necessity of the P.M.S. and its management will be carried out positively by farmers.

As for the other society, there is a fishermen's society called "Jaliban Society" that consists of 58 members but there is no farmer who joined this "Jaliban Society" from the Pakhanjore village. This fishery society is showing little activity and its fishing techniques are not

still advanced. There is another consumers' society organized by the Government Staff called "Staff Consuming Society," but it is showing no noteworthy activity at present.

2.5. Actual Condition of Agriculture2.5.1. Cultivated field and farming in PV.13

According to the practical data obtained on the field investigation, the cultivated area in this PV13 is 270 acres including 43 acres of paddy field which are irrigable directly from the Pakhanjore tank through the trunk canal. In this village, 45 farmers have been working up the farming in systematic management gradully to the present self-sustaining stage since they settled and started farming in 1961.

The PV13 has irrigable field, 1 acre for one farmer on the average. Out of these farmers 4 farmers possess 2 acres respectively but 4 farmers who settled later have no irrigable field yet. A typical farmer's field in this PV13 is shown in the following table. The extreme fragmentation of the field is one of the causes of the labour shortage.

Block	Area (acre)	Number of plot	Area on average	Distance from house	Soil Condition
				(meter)	
1	2.00	16	0.14	2,200	Half way up a hill and soil condition is poor
2	1.20	6	0.2	400	Dry sand field
3	0.70	3	0.23	200	Near pond and suitable for rice growing
4	0.30	3	0.27	200	Beside a pond but up- land and suitable for dry field.
5	1.00	4	0.25	1,000	Good dry field sui- table for cultivating beans

As seen in the above table, the cultivated field 6 acres are dispersed sporadically far and side into 5 small blocks of about 0.25 acres. Furthermore, the farthest field is remoted more than 2,000 meters from farmhouse without noteworthy path, so it is very inconvenient to transfer farming materials.

Crops and Productivity

The crops generally cultivated by farmers and their income are as tabulated hereinafter.

"A" farmer

Summer (Kharif) cropping in the rainy season

Crop	Cultivat- ed area	Yield per acre	Unit cost	Benefit per acre	Yield per area	Gross income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	2.5	30	24	720	75	1,800
Hy. maize	0.15	33	20	660	0.5	10
Kenaf	1.00	3	30	90	3.0	90
Sesame (Ti	1) 5.00	Yi	ield was	less		
Total	8.65					Rs. 1,900

Winter (Rabi) cropping

Crops	Cultivat- ed area	Yield per acre	Unit cost	Benefit per acre	Yield per acrea	Gross income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	1.00	50	24	1,200	50	1,200

Gross income	: Summer (Kharif) cropping	Rs. 1,900
	Winter (Rabi) cropping	Rs. 1,200
	Total	Rs. 3,100

Production cost :

Crop	Fertilizer (Rupee)	Labor (Rupee)	<u>Farming</u> (Rupee)	<u>Total</u> (Rupee)
Rice	180	105	40	325
Hy. Maize	20	-	5	25
Total	200	105	45	350

Net income	income	:	Income	Rs.	3,100
			Production Cost	Rs.	350
			Net Income	Rs.	2,745

"B" farmer (superior farmer)

Summer (Kharif) cropping in the rainy season

Crop	Culti- vated area	Yield per acre	Unit cost	Benefit per acre	Yield per acre	Gross Income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	1.3	50	24	1,200	65	1,560
Kenaf	1.0	5	30	150	5	150
Hy. Maize	0.3	13.3	18	239	4	72
Sesame (Ti	1) 2.0	0.5	65	35	1	65
Gram	0.7					
Total	5.7					Rs. 1,847

Winter (Rabi) cropping

Crop	Culti- vated area	Yield per_acre	Unit Cost	Benefit per acre	Yield per acre	Gross Income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	1.0	55	24	1,320	55	1,320

Gross income	:	Summer (Kharif) cropping	Rs. 1,847
		Winter (Rabi) cropping	Rs. 1,320
		Total	Rs. 3,167

Production cost :

Crop	Fertilizer (Rupee)	Labor (Rupee)	Farming (Rupee)	<u>Total</u> (Rupee)
Rice	100	250	20	370
Hy. Maize	50	-	10	60
Total	150	250	30	430

Net Income	:	Gross Income	Rs.	3,167
		Production Cost	Rs.	430
		Net Income	Rs.	2,737

Judging from the above data of the yield by the A and B farmers, the benefit made by rice is generally high. Especially it is in the rice cultivation in the dry season in which a high yield is 'realized as 50 - 55 mounds per acre. This high yield seems to be due to the fact that the cultivation is made in such small scale cultivating area of only 1 acre, and due to the cultivating variety IR-8 that is called "High Yielding Species", and also due to the comparatively careful cultivation.

The yield of upland field crops is generally low. This is due to the cultivation depending upon uncertain rainfall. As for the Hy. Maize and Til the yield would sometimes be practically nothing by drought damage if the sowing period is delayed and no rain would fall during their growth period.

In this village the purchase cost of fertilizer per farmer is 110 Rupees. If nitrogen fertilizer is assumed to be 2 Rupees 50 paise, the 110 Rupees are equivalent to 44 kg of nitrogen fertilizer and this is enough for cultivating one acre of rice field. The other crops are cultivated without applying fertilizer. The farming cost is about 35 Rupees on an average per farmer.

The investment for the farming materials is extremely low, i.e., 30 Rupees for farming implements and 50 Rupees for the other materials. The farmer's thinking directly heard from some farmers is "we don't want to give fertilizer, because the rain might wash it away." This tells the low level of their farming economy.

2.5.2. Cultivated field and farming in RV.14

According to the data obtained from Indian Government Authorities, the total cultivated field of the PV14 district is 258 acres in which 116.32 acres are irrigable field and 141.68 acres are upland field. In this PV14 district, 47 farmers settled and working diligently in farming. Of these 47 farmers, 41 farmers are exclusively engaged in farming 6 acres but the 6 farmers are farming only 2 acres and have side jobs. Generally speaking each farmer possesses 6 acres including a homestead - (0.36 acre the premises including homestead), 2.7 acres upland field and 3 acres irrigable field which may be said to be more irrigable field than that of the other PV areas. Moreover, this irrigable field is expanding wide and far on the southern side of the village, that is a favored groundplot condition for farming management.

The investigation team had no chance to practically inspect the dispersing condition of this cultivated field, but in this irrigable area expanding in front of the village, each farmer possesses 3 acres of irrigable field and 2 blocks of upland fields. The main crops which are now being cultivated are as follows.

"A" farmer

Crops	Culti- vated area	Yield per acre	Unit cost	Benefit per acre	Yield per area	Gross income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	3.0	50	24	1,200	150	3,600
Kenaf	0.7	12	30	360	8	240
Araha (Bean)	1.0	4	30	120	4	120
Total	_	,			R	ls. 3,960

Summer cropping in the rainy season

Winter (Rabi) cropping in the dry season

Crops	Culti- vated area	Yield per acre	Unit cost	Benefit per acre	Yield per area	Gross income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Wheat	1.3	2.3	40	92	3	120
Hy.maize	0.5	14.0	20	280	7	140
Green pea	0.3	10.0	40	400	3	120
Mustard	0.7	-	-	-	10 kg	-
Beans	0.15	-	-	-	10 kg	-
Total						Rs.380

Production cost :

	Fertilizer (Rupee)	<u>Farming</u> (Rupee)	Labor (Rupee)	<u>Total</u> (Rupee)
Summer cropping in the rainy season	100	50	380	530
Winter cropping in the dry season	150	-	100	250
Total	250	50	480	780
Net Profit :	Gross income		Rs. 4,3	40
	Farming Cost		Rs. 7	80
	Net profit		Rs. 3,5	60

"B" farmer

Summer (Kharif) cropping in the rainy season

Crop	Cultivat- ed area	Yield per acre	Unit cost	Benefit per acre	Yield per area	Gross income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	2.3	50	24	1,200	1.5	2,760
Sesame	(Til) 3.3	1	65	65	3.5	231
Total	5.6					2,991

Winter (Rabi) cropping in the dry season

Crop	Cultivat- ed area	Yield per acre	Unit cost	Benefit per acre	Yield per area	Gross income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Riçe	0.8	25	24	600	20	480
Total	0.8					480

Gross income : Summer (Kharif) cropping in the rainy season Rs.2,991 Winter (Rabi) cropping in the dry season Rs. 480 Total Rs.3,471

Production cost	:	Fertilizer (Rupee)	Farming Cost (Rupee)	Labor (Rupee)	Total (Rupee)
Unhulled rice (Kharif)		200	45	500	745
Unhulled rice (Rabi)		80	-	-	80
Total					825
Net Profit	:	Gross income Production Cost Net Profit	Rs. 3,471 Rs. 825 Rs. 2,646		

In consideration of the condition of cultivated crops by the above 2 typical farmers, it is well understood that in the rainy season, the rice crop is showing a considerably high yield about 50 maunds on the average by introducing IR-8. Such upland field crops as mesta, araha and til are showing low yield. This may be judged to be a decrease due to overgrown weed. In the dry season, even though the A farmer planted over 35 acres, but gross income resulted only 380 Rupees that is merely 100 Rupees per acre. Especially, the yield of mustard and green pea 20 kg in one acre is extremely low. The question to be considered about this low yield is an insufficient irrigation water. The A farmer complains that "Water was insufficient in the latter part of growing period." The B farmer also cultivated rice in 0.8 acre but the yield per acre is showing 25 maunds per acre which is just the half of the summer cropping in the rainy season. Generally speaking, the rice crops should show more yield in the dry season than that in the rainy season but in this P.V.14 district, the resultant data are showing a decrease due to short irrigation water during the growing period.

In this P.V. 14 district an average investment per farmer is as follows, fertilizer 90 Rupees, agricultural chemicals 25 Rupees, farming implement 30 Rupees and the other miscellaneous 50 Rupees in which the fertilizer and the agricultural chemicals are shown lower investment than those of the P.V.13 district.

2.5.3. Cultivated field and farming in P.V.42

The total area of cultivated fields in the PV42 district is 414 acres. In this PV42 district, 69 farmers settled and are engaged in farming since they started settling in 1861 and at present it seems that they find their self-sustaining ways in somehow or other.

A total cultivated area per farmer is 6 acres including the premise and homestead 0.36 acre and the remaining 5.64 acres of a cultivated field. Out of these 69 farmers 30 farmers possess 1 acre of irrigable field but the remaining 39 farmers have no irrigable field and depending upon rain water.

In this PV42 district, the cultivated fields are dispersed into 4 blocks as in the other PV districts, and the state of cultivated field and its dispersing condition of a typical farmer is as follows.

Block	Area	Number of plot	Average acre of a plot	Distance from house	Remarks
	(acre)		(acre)	(meter)	
1	0.7	3	0.23	1,000	Irrigable and mainly for rice crop
2	1.5	20	0.07	100	Situated lower than near pond and soil is good
3	1.2	12	0.1	2,000	Dry-field and mainly for til
4	2.25	23	0.1	500	For dry field crop but cropping is resulted unsatisfactory

The irrigable field 0.7 acre in the above Table is remoted about 1,000 meters from the farm-house and no noteworthy farming path is open yet from farm-house to field.

The cropping and the farmer's income by a mean farmer in this PV42 district are as follows.

A certain farmer 45 years old, a family of 9 persons, settled in 1963.

Crop	Cultiva- ted area	'Yield per acre	Unit cost	Benefit per acre	Yield per area	Gross income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	3.00	20	24	280	60	1,200
Hy. Maize	0.15	Less y	vield due	to seldom	rain and too	late sowing
Sesame	0.7	0.7	30	21	0.5	15
Kenaf	2.0	0.25	65	17	0.5	33
Total	5.85					Rs. 1,248

Summer (Kharif) cropping in the rainy season

Winter (Rabi) cropping in the dry season

Crop	Cultiva- ted area	Yield per acre	Unit cost_	Benefit per acre	Yield per area	Gross income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	0.7	26	24	480	18	432

Production cost	:	Crop	Labor (Rupee)	<u>Total</u> (Rupee)
		Rice	225	225

Breakdown of labor cost		
Rice planting labourer 6 Harvesting labourer 1	60 mandays _] 15 mandays	75 mandays x 3 Rupees = 225 Rupees

Net profit	:	Gross income	Rs.	1,680
		Production cost	Rs.	225
		Net profit	Rs.	1,455

In the farm management of this farmer, the yield of paddy rice is low. This is mainly due to the shortage of irrigation water and to no fertilizer cultivation in both rainy and dry seasons. As for the species, the IR-8 is generally introduced, but its yield is very low showing about 20 maunds per acre. Since planted with all the 60 mandays labourers, an increased yield should have been raised at least twice of the present results if fertilized in proper application and in proper time.

As for the dry-field crops, the yield of Hy. Maize, Mesta and Til are low. The reason is that the sowing and planting was compelled to carry out at one stroke in an early raining season and in consequence the soil preparation for planting was inevitably rough. Consequently the field was so much overgrown with weed by abundant rain added with blessed temperature that the farmer failed to weed out even with some manpower.

In this PV42 district, an average farming investment per farmer is; fertilizer 75 Rupees, farming cost 20 Rupees, farming implements 30 Rupees and the other miscellaneous 30 Rupees, farming implements 30 Rupees and the other miscellaneous 30 Rupees, which are showing less in comparison with those in PV13 and PV14 districts.

The reason why the investment in fertilizer is especially lower than that of the other PV13 and PV14 is that the cultivation and cropping were mainly in the rainy season and difficult to control overgrowing weed and the elaborately applied fertilizer resulted to help weed grow arbitrarily and crops could not absorb fertilizer. Farmers say that "The fertilizer will be washed away by rain even if applied elaborately."

2.5.4. Cultivated field and farming in PV43

The total cultivated field area in this PV43 district is said to be 390 acres. In this PV43 district, 50 farmers settled in 1963, 10 farmers in 1966 and 5 farmers in 1967, since then they have been enduring in scanty self-sustaining farming depending on rain water.

In this district, the field is dispersed into 3 blocks of irrigable field, dry-field and remote field. Taking an example of a farmer, the dispersing condition is as follows.

Block	Area	Number of plot	Average area per plot	Distance from house	Remarks
· · · · · · · · · · · · · · · · · · ·	(acre)		(acre)	(meter)	
1	2.0	18	0.11	200	Situated near an irrigation pond and suitable for rice crop
2	2.85	19	0.15	3,600	Suitable for dry-field for cultivating maize, sesame and beans
3	0.85	4	0.21	3,200	It takes 2 hours from home and left unculti- vated.

In this PV43 the irrigable field is located in the distance about 5,000 meters from farm-house and the soil seems to be comparatively fertile and good for rice crops.

The dry-field is located in the distance about 1,000 meters from the farm-house. The soil texture is a sandy loam which is infertile but nothing is cultivated in the dry season, and covered with overgrown weed just like a waste-land. Supposing to start planting and cropping in the rainy season it is doubtful if farmers can cultivate really with those primitive plows and farming tools by the help of thin bullocks.

• Another remote field is located in the distance about 3,200 meters and since it takes 2 hours from farm-house on foot, it is left uncultivated.

According to the data submitted by an Indian Authorities the crop and yield in this PV43 district are as follows.

Cropping in the rainy season

Crop	Cultivated area	Gross yield income	Yield per acre	Gross profit
	(acre)	(maund)	(maund)	(Rupee)
Rice -	336	5,509	16.3	110,180
Hy. Maize	18	215	11.9	4,300
Kenaf	35	224	6.4	6,720
Sesame (Til) 92	425	4.5	29,750
Beans	32	180	5.6	5,400
Total	514			Rs.156,350

NOTE: The sesame and beans were cultivated in group with rice.

The cropping system and income yielded by a mean farmer in this PV43 district are as follows.

A certain farmer, 36 years old, a family of 9 persons, settled in 1963.

Crop	Cultivated area	Yield per acre	Unit cost	Benefit per acre	Yield per area	Gross income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	3.3	17	24	408	56	1,344
Kenaf	0.66	1.5	30	45	1	30
Sesame (Til)	0.50	4.0	65	260	2	130
Uncultivated	1.34					
Total	5.80					Rs. 1,504

Cropping in the rainy season

Cropping in the dry season

Crop	Culti- vated area	Yield per acre	Unit Cost	Benefit per acre	Yield per area	Gross income per area
	(acre)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Hy. Maize	1.00	5	20	100	5	100

Gross income in th	e rainy season	Rs.	1,504
Gross income in th	e dry season	Rs.	100
Total		Rs.	1,604
Production cost:	Fertilizer cost	Rs.	225
Net profit :	Gross income	Rs.	1,604
	Production cost	Rs.	225
	Net profit	Rs.	1,379

The greatest problem in this PV42 district is to ensure an irrigation water. As seen in the above farming results, Hy. Maize is showing extremely low yield as 5 maunds in one acre. This extremely low yield was due to the drought damage by the shortage of water occurred during the growing period in which maize ceased vivid growing but only weed grew about 2 feet.

rice is also showing low yield. This was due to rice blight that generated in growing period but no counter measures was practiced against pest control.

The farming investment of a mean farmer in this PV42 district is only 60 Rupees of fertilizer which is very low in comparison with that of the other villages.

2.5.5. Irrigable field and farming of tribal farmer

According to the data obtained by an Indian Authorities the total area of the tribal villages locating in the district Pakhanjore Tank is 136 acres including irrigable field 45 acres.

In this tribal village 7 tribal farmers are cultivating in both old and new method or in considerably advanced way even though they cannot get rid completely of primitive farming.

Almost all the cultivated fields that sporadically located in this tribal village are surrounded by woods. Being reclaimed lands, many stumps of cut-trees are seen being left as they are in the field or some fields are covered with overgrown weed. On the other hand, paddy fields are completely levelled and prepared, the soil is cultivated deep enough and well fertiled suitably for rice crop.

Generally, the cultivated fields are scattering around the farm-houses but no noteworthy farming path is cut through nor the land consolidation of the field is made yet. According to the data submitted by an Indian Authorities the farming condition in his tribal village is as follows.

Tribal farmer		Labor	bor Cultivat- ed area Cropping in the rainy Croppin season in 1969 season						ng in the dry (1969 - 1970)	
				Crop	Culti- vated	Yield	Crop	Culti- vated	Yield	
A	6	3	62	Rice	33	165	Rice	9	*Ü C	
				Hy mai:	ze 0.5	6	Rape	0.3	*D P	
				Pulse	3	Nil	Wheat	0.5	*U C	
B	10	5	21	Rice	15	90	-	÷ -	-	
				Ragi	I	1	-	-	-	
				Pulse	1	0.5	-	_	_	
С	8	2	7	Rice	5	8				
D	4	2	5	Rice	5	40	-	-	-	
E	5	1	11	Rice	5	32 _	-	-	-	
F	8	3	22	Rice	12	35	Wheat	2.5	*U C	
				Ragi	1	0.5	-	-	_	
				Kodo	3	1	-	-	_	
G	3	2	8	Rice	5	28			·	
				Pulse	2	_ 10 kg	-	-	-	

NOTE: * UC means under cultivation DP means damaged by pest

General crops are showing extremely low yield. The probable cause of this low yield may be due to: -

- a. Insufficient land adjustment and preparation
- b. Sowing or planting is of usual seed species
- c. Let-grow-alone after sowing
- d. Cultivation without Fertilizer
- e. No control against pest and vermin

As seen in the above table, the rape-seed cultivated in 0.3 acres by the farmer is damaged of Aphid attack and showing complete failure but no counter measures against such a damage were taken at all.

Ox-dung-compost is used for homesteads which are palisaded with bamboo and located near each farm-house but generally no fertilizer is used.

When the investigation team visited a village chief, they could see by chance the planting condition of rice in the dry season. In this rice planting the species IR-8 and high yielding species were used, and ideal young plants with 5.5 leaves were being transplanted in proper planting time. Moreover, the land level was nearly in perfect condition, and well fertilized by applying about 1,000 kg fertilizer per acre after plowing. The investigation team estimated that wonderful yield might be resulted if such manuring operation was continued. However, the investigation team heard that the yield turned out about 30 maunds or 40 maunds at the most. This might be due to the let-grow-alone system without continuing manuring operation after planting.

On the other hand, the rice cropping in the rainy season is also showing extremely low yield only 5 - 6 maunds per acre. This poor yield is turned out from the primitive cultivation of scattering seed-rice without making a perfect preparation of field and also due to the let-grow-alone farming waiting rain water, and only harvesting when all rice plants come into ears.

In an effort of developing agriculture, the Indian Government Authorities are taking good care of farmers by distributing superior grade seeds and established a demonstration farm for practical manuring method giving their helping hand to develop and enlighten the farmers' agriculture.

When the investigation team visited this tribal village, the team received hearty welcome by the villagers headed by the village chief. They made the following petition to the investigation team.

a. We are the native farmers born in this district, but the Government Authorities are giving every kind of help to develop the settlers' farming more than ours and we are always left behind, so we hope the Government will extend the same help to our farming as is always extended to settlers.

- b. Fertilizer is necessary for increased yield of crops but we cannot
 afford to purchasing it at high cost. It is hoped that the
 counter measure should be considered.
- c. We will execute our utmost to develop and improve our farming so we hope the Government Authorities will extend their help and guidance.

Judging from the above positive intention, the farming development should be more fruitful than expected if they are well helped and guided with new techniques.

2.6. Farmer's Agricultural Economy

2.6.1. Typical farmer

Set forth in this paragraph are the outline of actual condition of farm-houses which we picked up at random among the various class farmers. but may besaid to be a certain class representing rather upper class who possesses cultivated acreage 5.7 - 6 acres respectively.

```
"A" farmer in PV14
```

Name of householder	:	S.B. 30 years old, Graduated from 7 year course of elementary school.
Settled	:	in 1961
Family	:	7 persons, adult 3 and child 4
Labor force	:	2 persons
Farming implement	:	Plow, Harrow, Dheuki, Shovel, Akushel, Kudhal, l set each
Domestic animal	:	Adult milk cow 2 heads, Adult bullock 2 heads, Calf 1 head

Crops	Cultiva- ted area	Yield	Monetary value	Cash income	Production Cost
	(ha)`	(kg)	(Rupee)	(Rupee)	(Rupee)
Rice	1.2	5,625	3,750	1,250	102
Kenaf	0.4	113	90	90	50
Hy. maize	0.4	-	-	-	-
Beans	0,28				

Farming production

Gross income	Rs. 3,840
Farm production cost	Rs. 152
Cash income	Rs. 1,340
Income of side job	none
Living cost Rs. 1,110 7	
Estimate of self consumption of crop Rs. 2,500	Rs. 3,610

"B" farmer in PV13

Name of householder	:	N.S.H. 23 years old, Graduated from 3 year course of middle school.
Settled	:	In 1961
Family	;	9 persons grandmother, parents, householder, wife, brother 3, daughter 1
Labor force	:	3 persons
Farming implement	:	Sickle 4, Plow 2, Dheuki 1, cultivator 1 Hoe 1, Ox-cart 1.
Domestic animal	:	Adult milk cow 2 heads, Adult bullock 1 head (one bullock dead lately)
Farming production		Domestic fowl 1

Crop	Cultivat- ed area	Yield	Monetary value	Cash income	Production Cost
	(ha)	(kg)	(Rupee)	(Rupee)	(Rupee)
Rice	1.4	3,260	2,088	ר -	
Hy. maize	0.4	375	450	450	
Kenaf	0.4	450	360	360 }	460
Sesame (Til)	0.2	19	33	33	
Beans	Cultivate	ed in group	-	_)	

Gross income	Rs.	2,931
Production cost	Rs.	460
Cash income	Rs.	843
Income of side job (Dam construction)	Rs.	600
Living expense (cash)	not	clear
Estimated amount of self-consumed crops	Rs.	2,088
Economical surplus	not	clear

"C" farmer in PV13

Name of householder	:	S.B. 60 years old, No history of school
Settled	:	In 1961
Family	:	7 persons (adult 5, child 2)
Labor force	:	2 persons
Farming implement	:	Sickle 2, Plow 2, Harrow 2, Dheuki 1, Hoe 1, Small hand-cart 1
Domestic animal	:	bullock 1 head (one bullock dead 6 months ago)

Farming production:

Стор	Cultivated area	Yield	Monetary value	Cash income	Production Cost
	(ha)	(kg)	(Rupee)	(Rupee)	(Rupee)
Rice	1.0	2,810	1,800	600	205
Hy. maize	0.06	19	10	10	25
Kenaf	0.4	113	90	90	-
Sesame (Til)	0.52	-	No yield d and less r	lue to too : ain in Augu	late sowing ust
Rice	0.4	1,875	1,200	1,200	125

Gross income		Rs. 3,100
Production cost		Rs. 355
Cash income		Rs. 1,360
Income of side job	None	
Living expense	⁹⁹⁰ ך	
Estimated self-con- sumption of crop	1,200	Rs. 2,190
Economical surplus		Rs. 15

"D" farmer in PV14

Name of householder	: R. B. 35 years old. Finished 5 year course of elementary school
Settled	: In 1961
Family	: 7 persons, (adult 3, child 4)
Labor	: l person
Farming implement	: Sickle 1, Plow 1; Harrow 1, axe 1, Hoe 1
Domestic animal	: Adult milk cow 1 head, Young calf 3 heads, Adult bullock 2 heads.

Farming production

Crop	Cultivated area	Yield	Monetary value	Cash income	Production Cost
	(ha)	(kg)	(Rupee)	(Rupee)	(Rupee)
Rice	0.92	5,625	3,600	2,160	745
Kenaf	1.32	112	262	262	-
Sesame (Til)	0.32	700	480	480	80

Gross income	Rs.	4,342
Production cost	Rs.	825
Cash income	Rs.	2,902
Income of side job (peddling)	Rs.	1,000
Living expense Estimated self-consumption of cre	^{2,000} ^{op}	Rs. 3,440

2.6.2. Farmers' intention and expectation

Almost all the farmers are of blight looking faces despite their low income and living levels. They have some intention to improve agricultural management and to increase income as well. Their deep concern is irrigation water saying "When we can use enough water to realize rice cropping even in the dry season." The kind of crop which they always think of is rice if they are in the position to irrigate enough water. Especially they think of such superior species of I.R.8 and Tai-chung, vegetables and land Kenaf. As for the farming equipment they ask for such tilling equipment as plows, harrows, cultivators, mowers as well as agricultural chemicals

and always ask for better implements saying that "Isn't there any improved farming machines" or "I have not seen new implements but want to see". This tells the fact that they seem to be not enough enlightened on mechanized farming. In some districts, however, a farmer said "I want to learn the technique to increase farming products by using some advanced farming equipment." This will tell the fact that farming would progress in the future. A farmer whose bullock died, is asking for another bullock. Some farmer said "I want a hand cart - for instance a wheel barrow - to transport farming goods." Some farmers have wooden carts of their own hand make. This tells their deep desires for handy carts.

The farmers are satisfied with the given land area distributed to them by the Government Authorities yet there are still some areas which are left uncultivated due to the far distance without any irrigable water and .also there is no noteworthy farming path cut through from their houses to field.

As for fertilizer and agricultural chemicals almost all farmers have not enough fertilizer nor agricultural chemicals. One of the reasons is that they can not afford enough to purchase.

They have some concern about the cooperative society but at present feel no immediate concrete necessity yet. They think the cooperative soceity is good but practically think that they can go in somehow or other without participating in the society. When they asked what they would expect by joining the cooperative society, they replied that they hope the society would sell farming products at high prices and would purchase necessary materials at cheap prices. Some farmer said they want a common use of farming equipment and implements. In this community their farming opinions are diversed, some farmers say they want to crop individually, some farmers disagree to the common work, because all the participants are not always dilligent.

As for the current living condition, all farmers may be classified into two living levels - the one is on "Probably satisfactory" level and the other is on "not so satisfactory" level. The farmers who live on satisfactory level like the D farmer in the preceding paragraph is very few. The income standard that a majority of farmers desire may be 4,000 to 5,000 Rupees while some farmers require 3,000 to 6,000 Rupees. It may be that the way of thinking is relatively realistic and practical.

As for the education of children, they have an earnest desire to make their sons (except those who have to succeed to their farther's farming) doctors or pharmacists.

The farmers' present expectation from the Government is said to be the following eight problems in which the priority is disregarded.

- a. To pave the farming pathes with stone in the village or if possible with asphalt.
- b. To provide the irrigation facilities around each farm-house or for all farming fields if possible.
- c. To make a drainage plan in the rainy season
- d. To introduce improved or new farming equipments and implements
- e. To complete education facilities
- f. To promote social education
- g. To expand the education of agricultural techniques.

2.6.3. Investment in production material

The investment in various materials for farming production is about 170 Rupees in value per farmer i.e., 30 Rupees per acre which means only 6% of the gross production amount. This 170 Rupees consists of 80 Rupees (47%) for fertilizer, 24 Rupees (14%) for agricultural chemicals, 30 Rupees (17%) for farming implements, and the remaining 38 Rupees (22%) for the other miscellaneous. Every farmer knows well that the fertilizer and agricultural chemicals consumed so far are still less and that more rich crops will result by more increased investment. The fertilizer now used is inorganic fertilizer but no organic fertilizer is used. Such organic fertilizer as rice straw should be used for improving and maintaining the soil fertility. Compost is not prepared and stable-dung is not available because all domestic animals are kept loose.

It may be necessary to pay a special consideration to raise the soil fertility of this district where no fertile soil will flow in by periodical flood like the Ganze Basin in Bengal. Since the application of agricultural chemicals is less and the pest control equipment are not enough, the pest control is left much to be desired. There are a few knapsack type sprayer and handcart type sprayer but it seems apparently that pest control is impossible with less equipment. The present condition being such, a necessity is to increase the investment in agricultural chemicals and equipment enough for pest control.

2.6.4. Production measures and labor distribution

The farming implements and equipments which settlers possess are very simple ones in a few kinds and as a whole all settlers have the same things in number and kinds. The spades and cattle power plows are the main ones which are not used for tilling operation and each farmer possesse the following implements.

- a. 1 or 2 spades, blade width about 2.1 cm, handle length 73 cm.
- b. Cattle power plows drawn by 2 bullocks by means of a yoke 223 cm. The plow dimension - 30 cm iron blade fixed to a crooked wooden arm. The length from blade edge to handle end about 106 cm. Each farmer has this plow but such a simple plow can only scratch the soil but is impossible to turn round the soil.
- c. One mattock, blade width 46 cm, handle length about 80 cm, width 30 cm. It looks like a ladder. This is used for preparing paddy field. For harvesting - each farmer possesses the following implements.
- d. 2 5 pieces of semicircular sickles. Blade length about 25 30 cm, the handle 15 cm. The upper class farmers keep many sickles more than necessity. These excessive sickles may be necessary for hired laborers.

e. Wooden plank, width about 30 cm, length 1 m. They use this wooden plank for threshing ear crop. Besides, each family has the crowbar, bamboo windows, bamboo bars with wooden hooks to gather up straw, manpower rice hulling machine (foot stepping type) and Dheuki, and stone mills are used for grinding grains to fine powder. The bullock carts for transportation are only several sets in the village.

Almost all farmers raise at least 2 bullocks which are usually used for transportation or in cultivation. One or two milk cows are also kept in each farm-house. These domestic animals ramble round the open fields to eat dry grass in a group in the daytime and return to respective stall of owners' farm-house. Children take charge of watching the roaming bullocks in the daytime.

The settlers raise no other domestic animals than bullocks, while the tribal farmers keep sheep, cocks baside the above said bullocks. Some wild pigs are seen in the village but not so many as the bullocks.

The manpower of each settler is 1 or 2 persons or 3 persons at the most. Women are engaged in nursing or infants, cooking and the other house work but not engaged in the outdoor labor. A farmer said that he would not want to let his housewife go to outdoor work because she had much house works in addition to the women's duty of rice hulling and the work with Dhueki. In the tribal village it seems that women work in the field and may be working harder rather than men.

The rainy season is a precious period to grow crops within a limited term, all farmers must work restlessly. Even with restless work, it seems not so easy to manage about 5 acres completely with insufficient manpower. An adequate period of farming time is thus limited, a necessity is to complete the sowing and planting within a short period of time and as soon as a rainy season comes all farmers at once go out to cultivate their own field. No such farming method as the community planting is not employed yet but only thing is the mutual aid with each other among brother or blood relation. Extremely busy farmers used to hire temporary manpower. They say that about 60% farmers used to employ temporary laborers. In a certain village 8 farmers out of 49 farm-houses used to hire temporary laborers a year. The yearly employees are mainly tribals or some vagrant settlers. The wage for yearly employees is said to be 80 Rupees per month which seems to be high in comparison with an average level.

In the dry season, almost all the fields are left unclutivated because of less water but a small-scaled field about 1 acre is located close to farm-house. The farming operation is carried out in this small-scaled field during the dry season. During this dry period of time, the cropped rice stacked near farm-houses are threshed by striking against the wooden plank and threshed ears are steamed and kept in a tank which is made with mud and bamboo within each farm-house. Another farming operation during the dry season is of the land kenaf. The land kenaf is soaked in a tank of the village and unsheathed after drying them in direct sunbeam. There is no more operation than the above, so farmers used to go for side jobs as the dam construction, and some farmers go to the bazaar once a week to open barbar's. On an average they are engaged in such a side job for about 90 or 95 days.

2.7. Existing State of Agricultural Facilities

2.7.1. Irrigation facilities and the state of water utilization

In Pakhanjore district there are two irrigation facilities, a main irrigation canal of 9,840 m and Pakhanjore tank reservoir to store rainfall water in the rainy season.

The dimension of Pahkanjore tank reservoir is described as follows.

Item	Quantity	Remarks	
Effective capacity of reservoir	2,467 x $10^3 m^3$		
Dam height	12.80 m		
Catchment area	15.02 km ²		
Reservoir area	2.35 km ²		
Designed discharge	0.453 m ³ /s	16 c.v.s.	
Full water level	EL 307.238 m	(1,005 feet)	

Table 2.7.1-1 Pakhanjore Tank Reservoir

Runoff coefficient of the catchment area is measured to be 75%, and evaporation from free water surface is assumed as stated in Table 2.7.1-2.

Table 2.7.1-2	Averaged	Monthly	Evaporati	ion ir	n mm
---------------	----------	---------	-----------	--------	------

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.
Evapora- tion (mm	180.8	216.4	396,2	560.8	796.0	382.0	169.2	155.4	145.3

_	Oct.	Nov.	Dec.	Total
	173.2	159.5	148.8	3,483.6

.

÷

Cross sectional area of the main canal was decided with conveyance losses of 15% and longitudinal slope of 1 to 7,000.

Table 2.7.1-3 Main Canal Dimension

Item	Quantity	Remarks
Length	9,839 m	Free-board of 0.61 to 0.46 m
Bottom width	2.44 to 1.22 m	Side slope of 1 to 1
Water depth	0.58 to 0.43 m	
Discharge	0.457 to 0.134 m ³ /s	
Velocity	0.38 to 0.30 m/s	

Main structures for the canal are stated in the following Table. 2.7.1-4

Item	Quantity	Remarks
Aqueduct	1	\$800 mm (2.5 feet)
Siphon	6	-ditto-
Closed conduit	6	-ditto-
Turnout	34	5 made of concrete

•

Table 2.7.1-4 Main Structures

The area irrigated by the tank reservoir is 470 acres as shown in Table. 2.7.1-5

f village	Paddy field	Remarks
	-	

Table 2.7.1-5 Irrigated Area in Acre

Name of village	Paddy field	Remarks
Tribal'	65.8	
PV 42	28.5	
PV 13	70.6	
PV 14	177.5	
PV 43	34.3	
PV 55	93.0	lift irrigation area

The standard cropping pattern and water requirements for each crop are shown in Table 2.7.1-6 and 2.7.1-7.

.

Season	Name of crops	Cropping ratio
Kharif	Paddy	60
	Lesser Millet	10
	Oilseeds and Groundnuts	10
	Sugarcane	5
	Garden Crops	10
	Miscellaneous	5
Rabi	Wheat	15
	Dalna Paddy	5
	Pulse	10
	Sugarcane	5
	Garden Crops	5
	Miscellaneous	10

Table 2.7.1-6 Standard Cropping Area

Season	Month	Paddy	Sugar- cane	Lesser Millet	Ground- nuts	Garden crops	Wheat	Pulse	Miscel- laneous
Kharif	Jan.		254			76			
	Feb.		254			76			
	Mar.		254			[~] 76			
	Apr.		254			102			
	May	5	254	102	102	178			102
	Jun,	122	254	102	102	178			102
	Jul.	356	254	102	102	178			102
	Aug.	356	254	102	102	- 178			102
	Sep.	254	254	102	102	152			102
	Oct.	178	203	51	51	127			51
	Nov.	127	203			127			
	Dec.		254			127			
	Total	1,398	2,946	561	561	1,575			561
Rabi	Jan.	254					89	77	26
	Feb.	254					89	51	26
	-Mar.	305					89		26
	Apr.	203					89		26
	May								
	Jun.								
	Jul.								
	Aug.								
	Sep.								
	Oct.								
	Nov.	51							
	Dec.	102					89	77	77
	Total	1,169					445	205	181

Table 2.7.1-7	Water	Requirements	in n	n n

The existing agricultural facilities do not seem functioning well, and improvement plans for the facilities could be summarized as follows,

- 1. To increase the storage capacity of the tank by improvement of the spillway, to raise the full water level, for the purpose of saving lack of irrigation water.
- 2. To readjust the cross sectional area of some part of the canals owing to sedimentation of sand.
- 3. To construct transitional canals before and behind of the aqueducts, siphon_and closed conduits.
- 4. To lower the sill elevation of No.6 closed culvert.
- 5. To improve the dimension works by setting gates or reconstructing them to concrete structures for rational water supply, and also to set check gates in the main canal for rational diversion.
- To reconstruct the inlet devices to catch water effectively from mountains.
- 7. To install a pumping station for upland irrigation.
- 8. To provide service roads for maintenance and operation of the canals.

2.7.2. Fields

Size of farmland blocks is small, about 10 m by 10 m, and its shape is out of trim, that cause uneffective farming. In many of farmland blocks difference in height of 0.2 to 0.3 m can be seen, that cause uneffective irrigation.

In order to save the defects of farmland blocks stated above, read-

justment of field, enlargement of a farmland block area to be rectangular, making a farmland surface even, is necessary.

Plot-to-plot irrigation method due to shortage of terminal canals result in uneffective irrigation.

2.7.3. Roads

The existing unpaved road with 5 m width seems to be in good condition. Wooden bridges are being reconstructed to the concrete bridge.

Farm roads are less than 4 m in width and they are in bad condition. As there are no bridges or culverts at a point of intersection of the farm road and the canal, traffic is inconvenient.

It is required fortraffic and transportation in the area to construct farm roads at the same time of readjustment of farmland. Chapter 3. Farm Management Plan

Chapter 3. Farm Management Plan

3-1. Basic Conception of Farm Management Plan

3-1.1. Water for irrigation and drainage

It is water that constitutes one of the biggest factors in planning farm management in this area. That is to say, torrential rainfall which is beyond anybody's imagination in the rainy season and shortage of water to the extreme degree in the dry season pose a great problem.

As regards cropping in the dry season, it is necessary to work out a reasonable cropping plan with the unit water consumption, kinds of crops and the crop area properly combined.

3-1-2. Land

The farm land belonging to each farm household consists of a remote land, upland and irrigable field which are located apart from one another, creating waste in labor in the farm management. This is, however, unavoidable from the distribution status. Such being the case, the crops most suitable for the respective land should be cultivated, i.e. a combination of crops which do not require much care-taking for a remote land and crops which require rather high degree of intensive cultivation should be considered.

Furthermore, such basic land arrangements as construction of agricultural roads, irrigation and drainage waterways and farmstead reclamation should be completed.

3-1.3. Labor

Although the number of workers per farm household is statistically

2.5 men, in practice, they comprise one man as a substantial worker with women, children and old men and women are not working much. It is, therefore, not easy to cultivate 6 acres of land with such a small labor force using only two buffalos. This situation calls for necessity of having some degree of combination of extensive agriculture and intensive agriculture. Furthermore, from the standpoint of labor distribution, a combination between labor and work system comprising preparation of a rice nursery, sowing of direct-sowing rice plants, sowing of upland crops, rice transplantation and fertilization control in their order is important in farm management.

Moreover, utilization of machinery can be considered in future, but in this case an emphasis will be placed on soil preparation at the beginning of the rainy season, so that such practices as common use and or hiring of tractors are desirable.

1

Furthermore, prevention and removal of blight and noxious insects are indispensable for increasing the yield by cultivating excellent varieties, and then mechanization of such prevention and removal should also be considered.

3-1-4. Production Materials

a. Fertilizer

A setup capable of supplying proper fertilizers for each crop should be established.

b. Agricultural chemicals and materials for preventing and removing blight and noxious insects

When the yield is to be increased by fertilizing an excellent variety, there will occur more damages are likely to occur ocean blight and noxious.insects.

Countermeasures and arrangements for supplying materials to meet such situation should also be properly taken into consideration same as in the case of fertilizer.

c. Weedicides

Since weeding constitutes a great problem for upland crops cultivated in the rainy season, guidance should be given so that tilling and sowing techniques in which weedicide are used can be established in future.

3-1-5. Techniques

Establishment of cultivation techniques will be carried out in the Mixed Farm, but this should be also displayed in farmers' fields within each village. For this purpose, about 5 persons comprising younger generation and men at the prime of life should be selected for training in cultivation techniques for about a year while managing their own farms. And farmers within the P.V. should be encouraged to follow such examples so as to improve their techniques.

3-1-6. Selection of Farm Products as viewed from Distribution Aspect

In view of the absence of consuming area around villages, such farm, products as are storable and convenient in transportation are preferable, so that cereal crops should be cultivated as the main product in the initial stage.

Once farmers in general acquire basic knowledge in agricultural techniques and farmers' organization such as Agricultural Cooperative Society are formed, farmers will come to study joint marketing and marketing channels and also introduce garden crops.

3-2. Cropping Pattern

The 6 acres of farm land which one farm household is alloted is, in principle, based on the standard of 2 acres of irrigable field, 2 acres of upland and 2 acres of remote land. Based on this standard, a cropping pattern is examined as follows.

Crops for the rainy season:	
• Irrigable field (Low land)	Rice,-transplanting (High yield variety)
• Dry field (Medium-height land)	Rice,-direct-sowing (Up land rice) Maize, Kenaf
° Remote land (Upland)	Beans, Sesame (Til)
Crops for the dry season:	
° Irrigable field (Low land)	Ricer transplanting (High yield variety)
" (Medium-height land)	Wheat, Maize, Rape
" (Upland)	Vegetables

Many plants including bananas, papayas and mangos are planted around a house and they are growing well even without care-taking. If these plants of better varieties and of the same qualities are produced, a considerable cash income will result. Especially, mangos are promising.

The profitability due to the cropping pattern and improved cultivation for each P.V. is shown below.

Note: The area under the plan in which irrigation is available was made the object of examination for the crops for the dry season.

3-2-1. Cropping Pattern and Benefit for P.V. 13

Total arable area	270	acres
Irrigable area	130	acres
Number of farm households	45	

Crops for the rainy season;

Crops	Acreage	Crop- ping ratio	Yield per acre	Unit Price per maund	Benefit per acre	Total yield	Total benefit
	(acre)	(%)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	143	52.7	50	24	1,200	7,150	171,600
Maize	23	8.8	40	20	800	920	18,400
Kenaf	47	17.5	14	30	420	658	19,740
Sesame(Fil) 57	21.0	6	75	450	342	25,650
Total	1 270						235,390

Crops for the dry season;

Crops	Acreage	Crop- ping ratio	Yield per acre	Unit Price per maund	Benefit per acre	Total yield	Total benefit
	(acre)	(%)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	23	18	60	24	1,440	1,380	33,120
Wheat	46	35	40	40	1,600	1,840	73,600
Rape	33	26	20	50	1,000	660	33,000
Potato	12	9	150	25	3,750	1,800	45,000
Beans	16	12	10	30	300	160	4,800
Total	130						189,520

Total benefit:

Crops for the rainy season	Rs.	235,390
Crops for the dry season	Rs.	189,520
Total	Rs.	424,910

3-2-2. Cropping Pattern and Benefit for P.V.'14

Total arable area	258 acres
Irrigable area	177 acres
Number of farm households	47

Crops for the rainy season;

Crops	Acreage	Crop- ping ratio	Yield per acre	Unit price per maund	Benefit per acre	Total yield	Total benefit
	(acre)	(%)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	135	32	50	24	1,200	6,750	162,000
Sesame(7	[il] 47	18	6	75	450	282	21,150
Kenaf	47	18	14	30	420	658	19,740
Beans	8	3	10	30	300	80	2,400
Maize	21	9	40	20	800	840	16,800
Total	258						222,090

Crops for the dry season;

Crops	Acreage	Crop- ping ratio	Yield per acre	Unit price per maund	Benefit per acre	Total yield	Total benefit
	(acre)	(%)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	31	17	60	24	1,440	1,860	44,640
Wheat	62	35	40	40	1,600	2,480	99,200
Rape	62	35	20	50	2,250	1,240	62,000
Potato	22	13	150	25	3,750	3,300	82,500
Total	177					-,	288,340

Total benefit:

Crops for the 1	rainy season	Rs.	222,090
Crops for the d	dry season	Rs.	288,340
Total		Rs.	510,430

3-2-3. Cropping Pattern and Benefit for P.V. 42

Total arable area	414	acres
Irrigable area	39	acres
Number of farm households	69	

Crops for the rainy season;

Crops .	Acreage	Crop- ping ratio	Yield per acre	Unit price per maund	Benefit per acre	Total yield	Total benefit
	(acre)	(%)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	174	42	50	24	1,200	8,000	192,000
Maize	66	16	40	20	800	2,540	50,800
Kenaf	66	16	14	30	420	964	28,920
Sesame(Ti	1) 66	16	6	75	450	396	29,700
Beans	42	9	10	30	300	420	12,600
Total	414						314,020

Crops for the dry season;

Crops	Acreage	Crop- ping ratio	Yield per acre	Unit price per maund	Benefit per acre	Total yield	Total benefit
	(acre)	(%)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	39	100	60	24	1,440	2,340	56,160

Total benefit:

Crops f	for	the	rain	y	seaso	n	Rs.	314,020
Crops f	for	the	dry	se	eason		Rs.	56,160
To	otal						Rs.	370,180

3-2-4. Cropping Pattern and Benefit for P.V.'43

Total arable area	390	acres
Irrigable area	134	acres
Number of farm households	65	

Crops A	creage	Crop- ping ratio	Yield per acre	Unit price per maund	Benefit per acre	Total yield	Total benefit
	(acre)	(%)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	129	33	50	24	1,200	6,450	154,800
(Water fie	ld rice)	ł			·	•	
Rice (Upland'ri	129 ce)	33	30	24	720	3,870	92,880
Maize	31	3	40	20	800	1,240	24,800
Kenaf	23	6	14	30	420	322	9,660
Sesame(Til) 78	20	6	75	450	468	35,100
Total	390						317,240

Crops for the rainy season;

Crops for the dry season;

Crops	Acreage	Crop- ping ratio	Yield per acre	Unit price per maund	Benefit per acre	Total yield	Total benefit
	(acre)	(%)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	44	33	60	24	1,440	2,640	6,336
Wheat	44	33	40	40	1,600	1,760	70,400
Maize	23	17	40	20	800	9,200	184,000
Beans	16	12	10	30	300	160	4,800
Potato	7	5	150	25	3,750	1,050	26,250
Total	134					-	348,810

.

٠

٠

Total benefit:

Crops for	the rainy season	Rs. 317,240
Crops for	the dry season	Rs. 348,810
Total		Rs. 666,050

3-2-5. Cropping Pattern and Benefit for Tribal

Total arable area	158 acres
Irrigable area	158 acres
Number of farm households	7

Crops for	r the	rainy	season;
-----------	-------	-------	---------

Crops	Acreage	Crop- ping ratio	Yield per acre	Unit price per maund	Benefit per acre	Total yield	Total benefit
	(acre)	(%)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rice	95	60	35	24	840	3,325	79,800
Deccan grass	32	20	8	32	256	256	8,392
Maize	16	10	40	20	800	640	12,800
Beans	15	10	8	30	240	120	1,600
Total	158						102,592

Crops for the dry season;

Crops	Acreage	Crop- ping ratio	Yield per acre	Unit price per maund	Benefit per acre	Total yield	Total benefit
	(acre)	(%)	(maund)	(Rupee)	(Rupee)	(maund)	(Rupee)
Rape	94	60	15	50	750	1,410	70,500
Wheat	48	30	30	40	1,200	1,440	57,600
Rice	16	10	60	24	1,440	960	23,000
Total	158						151,140

Total benefit:

Crops fo	or the rainy season	Rs.	102,592
Crops fo	or the dry season	Rs,	151,140
Tot	tal	Rs.	253,732

3-3. Cultivation Control Plan

3-3-1. Paddy Rice Cultivation (Irrigation)

a. Varieties

lligh-yield varieties 1R-8, J-10, Padma

b. Rice Nursery

- Soil Preparation
 Deep ploughing and elaborate stamping
- 2. Type of rice nursery

A combination type in which sowing is done in a upland field condition and after sprouting, water is introduced into only ditches thereby to raise young rice plants.

- Amount of seeds to be sown
 20 kg per acre
- Area for rice nursery
 1/20 of the main rice field
- 5. Fertilization for rice nursery N = 20 kg, P = 25 kg, K = 18 kg Initial fertilizer comprising N = 15 kg, P = 25 kg and K = 18 kg should be given and 30 days before transplantation, N = 5 kg should be given as an additional fertilizer depending on the growing status of the young rice plants.
- Nursery period
 Until 5-6 regular leaves come out. (Around 20 days)

c. Main Field

- Soil preparation for the main field Deep ploughing and elaborate stamping
- Fertilizer
 The all amount of the initial fertilizer comprising N = 30 kg,
 P = 30 kg and K = 15 kg should be given all the layers of soil.

An additional fertilizer comprising approximately N = 15 kg should be given 2-3 days before the young head forming period according to the growth status.

3. Rice transplantation

The plants should be transplanted straight up so as not to be bent. Shallow water should be present while transplanting.

- Density in transplantation The density varies according to the soil and fertilizer conditions, but generally it should be 30 cm between rows and 15 cm between plants.
- 5. Cultivation and Weeding This is performed by using Japanese paddyfield tilling wheel. Weedicide can be used for a field in which water can be kept well.
- 6. Prevention and removal of blight and noxious insects Proper measures should be taken through early detection of blight and noxious insects.
- Harvesting Harvesting at proper time should be encouraged.

3-3-2. Up Land Rice Cultivation (Rain-water)

a. Varieties

Since sowing and harvesting are carried out in the rainy season, the varieties of short growing-period and of high yield should be selected.

° Growing period	95 days
	CR.42/38, Bluebale, Dolar, B-76
 Growing period 	110 days
	Padma, CH-45, N-22

b. Soil preparation

As soon as there is the first rainfall over the field which is drided up in the dry season, tilling and stamping should be carried out selecting a day of suitable temperature, followed by elaborate land levelling.

- c. Amount of seeds to be sown ⁴0 kg per acre
- d. Sowing

Sowing should be carried out in drills, with about 30 cm of distance between drills.

e. Fertilizer

Since the varieties can grown much on initial nutrition, they are generally of highly growable varieties on the basic nutrition, emphasis should be placed on the initial fertilizer. The entire amount of the Basal fertilizer comprising N = 20 kg, P = 30 kg and K = 15 kg should be given to all the layers and an additional fertilizer comprising N = 10 kg aroud the period of forming young panicles according to the growing status of the rice plants.

Weeding

- Method using weedicides
 - a. 15 kg of granular NIP should be scattered immediately after sowing
 - b. 2,400 cc of "Stam" emulsion dissolved in 400 litres of water should be sprayed over the entire surface when a weed has shot 2 regular leaves.
- Manual weeding
 - A manual weeding hoe is used

• Weeding using cattle

'Weeding by having a buffalo pull a horse-hoe

g. Harvesting

Although weather may still remain unseasonable immediately after the rainy season, a fine day should be selected and crops be harvested starting with those which are ripe.

Cultivation Control Plan in which Tiller and weedicide are used

a. Varieties

• Varieties of short-halm, multi-offshoot and high bend-resistance

° Varieties of	short	growing p	period	
Growing	period	95	days	Bluebale
11		110	days	Padma

b. Soil preparation and sowing

Sow the seeds of about 40 kg in weight over the entire surface of the untilled field and scatter fertilizer over it. Then, till the soil elaborately to the depth of about 10 cm several times. Make drainage at an interval of about 10 meters.

c. Fertilizer

Initial fertilizer:	Magnesia lime about 1 ton
	Chemical fertilizer (N=15%, P=18%, K=15%)50kg
	These fertilizers should be given at the time
	of sowing so as to pass into deep soil.
Additional fertilizer:	This should be given whenever necessity arises according to the growing status of
	crops.

d. Weeding

Weedicides are used.

- lst time: Spray 4 kg of P.C.P. hydrate or SWEP.M hydrate dissolved into 400 litres of water, immediately after sowing.
- 2nd time: Spray 2,400 cc of "Stam" Emulsion dissolved into 400 litres, when the weed have shot out 2 leaves.

e. Draining

No water should be kept in the soil during the period from sowing to sprouting. See to that water is properly drained in case of much rainfall.

f. Prevention and removal of damage by blight and noxious insects

To Moxious insects, spray "Endrine" or E.P.M. emulsion, to blight, spray "Kitajin Blaesu", to sheath blight of rice plant, spray "Monzet" and to bacterial leaf blight of rice plant spray "Serujion".

3-3-3. Upland Cultivation

The kinds of Upland crops cultivated here include maize, kenaf, sesame (til), beans, ragi and vegetables for limited area in the rainy season and wheat, rape, maize and potato in the dry season.

Excellent varieties should be selected for each crop, with fertilization most suitable for the respective crops performed.

The proper amount of fertilizer to be given each crop is as follows.

Crops for rainy season:

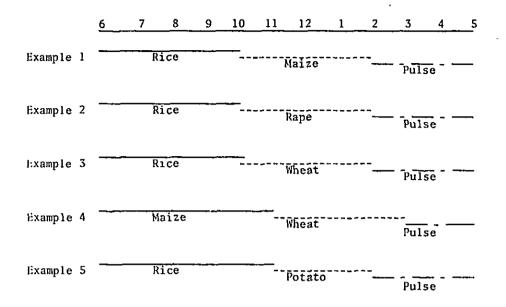
Name of crop	Initi	ial fert	ilizer	Additional	fertilizer
```**	N	Р	K	lst time	2nd time
Maize	30	30	15	10	5
Kenaf	5	15	10	5	-
Sesame (Til)	5	10	-	5	-
Beans	5	20	-	-	-

Dry season:

Name of crop	Initi	ial fert	ilizer	Additional	fertilizer
	N	P	K	lst time	2nd time
Wheat	30	32	15	10	10
Rape	10	10	-	-	-
Maize	30	30	15	10	5
Potato	30	30	15	10	10

3-4. Mode of Farm Management

Distribution of labor force constitutes the basis for farm management plan. Farm management plan should be set up so that work may be performed uniformly throughout the year or labor force may be badly needed at one time and not required at another time. This is particularly important due to the natural condition that in the rainy season crops must be cultivated within a limited period.


Most important is the cropping at the beginning of the rainy season. As the local proverb, "Sleep overnight, hungry throughout a year." says, they work hard all through the night for sowing. In order to mitigate this tight situation, the peak period should be minimized as far as possible by properly selecting cropping area. For example, there can be considered a work system for a combination of paddy rice and upland crops comprising preparation of rice nursery for paddy rice followed by sowing and transplanting of upland crops including upland rice which will be completed in 2 weeks, arrangement of main paddy field, weeding in upland and fertilization control for paddy rice and other crops in their order.

Then, when viewed from cropping seasons, it is desirable to have some degree of extensive type of farm management for crops in the rainy season, because of the following reasons, i.e. crops must be cultivated within the limited period of rainy season and moreover there exist potential, unfavorable conditions in which crops are subject to unexpected damages due to torrential rainfall overnight or damages from drought due to discontinuation of rain during the season, however the farm management may be intensified. As against this, in case of upland crops, the farm management can be intensified to a considerable degree if only favorable temperature, land and water are provided and moreover multiple cropping to some extent is possible.

In the circumstances, efforts should be made so as to increase the yield per hour in case of the cropping in the rainy season and the yield per area in case of the cropping in the dry season.

From the standpoint of land utilization, cultivation for multiple cropping is possible, but it must be carried out after careful examination, in view of its close relation with labor and rather small profit for the expenditure incurred. It will be examined by practical experts based on actual experiment and then put to practice.

For information, cropping pattern conceivable for tripple cropping are shown below.

As regards fertilization, in order to enrich the soil fertility, fertilizers comprising organic matters must be given. For that purpose, barnyard manure made of chopped, raw, rice straws or halms of maize or raw halms as they are should be ploughed into the field to supply organic matters to the soil and to enrich its fertility.

Furthermore, availing of the surplus water in the field, cultivate beans as the third cropping for the purpose of freezing nitrogenous fertilizer and also returning the halms produced to the field.

Moreover, as much green manure crops as possible should be raised in the field as far as such conditions as water distribution permit. They should be ploughed into the soil to enrich its fertility.

The kinds and the growing periods in respect of green manure crops are as follows.

Name of green manure crop	Suitable time for pla	oughing in	Growing period
Dhaincha	Height of grass	90 cm	45 days - 60 days
Sunhemp	Height of grass	90 cm	45 days - 60 days
Cowpea	300 kg (after beans been harves		90 days
Mung	400 kg (")	60 days
Guar	Height of grass	90 cm	60 days
Ipomea	Height of grass	90 cm	60 days
Glricidia	lleight of grass	90 cm	60 days

3-5. Labor and Equipment Plan

For the preparation work for sowing, a tiller should be used in addition to the conventional cattle force. And the work should be alloted in such a way that the field is tilled by a tiller and stamping, levelling and ridge making are done by cattle force.

In the sowing period in the rainy season, 5.7 acres of field is tilled per farm household, in case of P.V. 13. The period required for tilling is 3.5 days. From this, it is necessary to allot one tiller for every 3 farm household. Machines for preventing and controlling damages by blight and noxious insects are indispensable. Judging from the tilling condition in the villages, knap sack type machines (for preventing and controlling blight and noxious insects) will be the best. For example, in case of P.V. 13, the total cultivation area for paddy rice including transplanting and direct-sowing varieties is 3 acres, which approximately consistutes a day's work, so that one unit of tiller will be required for 2-3 households.

As regards cultivation work between ridges, it is recommended to use Japanese tilling-wheel for paddy field and rotary tiller for upland.

As adjustment works, a power grain threshing machine should be prepared for paddy rice and a corn sheller for maize. We must then examine the operating method and maintenance of such machinery. Instead of allowing each farm household to use such machinery, a sort of service association should be set up with a full-time operator employed for operating the machinery.

Besides, we would recommend use of manual machinery including a sowing machine for rice and wheat and a wheel barrow for transporting various materials. The purpose of using a sowing machine is to improve the sowing accuracy and also to facilitate maintenance work. And use of a wheel barrow instead of the conventional method of carrying things on their heads will improve transportation efficiency. (Refer to Table 3-5-1 & 2 and Fig. 3-5-1)

Working	Using Machineries	Efficiency	Working Area	Total Working Hour	Required Working Day	Restricted Working Day	Remarks
		acre/hr	acre	۰ ۲	day	day	
Sebdbed							8 working hours a day
Harrowing	Tiller	0.2	0.15	0.75			Operator 3.5 hr/l family
Stamping	Tiller	0.15	0.15	1			
Seeding	Manpower, Wheel barrow	0.02	0.15	7.5	1		To seed 3 times in 3 days on condition that they help another work.
Inšecticide application	Power sprayer	0.5	0.15	ы	0.5		Contracting work for operator
Weeding	Manpower	0.01	0.15	15	7		
Pulling of rice seedlings	Manpower, Wheel barrow	0.002	0.15	75	9°2		
Field							
Harrowing	Tiller	0.2	1.5	7.5	1		Contracting work for operator
Puddling	Animal forces	0.06	1.5	25	ю		3 times
Manure distribution	Manpower, Wheel barrow	0.25	1.5	9	1		_
Transplantation	Manpower, Wheel barrow	0.02	1.5	75	9.5		
Insecticide application	Power sprayer	0.5	1.5	Μ	0.5		Contracting work for operator
Intertilling	Manpower,Tautiguruma	0.05	1.5	30	4		
Weeding	Manpower	0.01	1.5	150	19		
Additional fertilization	Manpower, Wheel barrow	0.25	1.5	9	I		
Harvest Transportation	Reaping hook Animal forces)	0.03	1.5	50	6.5		
Adjustment	Power thresher	0.3	1.5	¢ر ا			<pre>five men group work 2 men from each family 3 men from contractor</pre>

Working	Using Machineries	Efficiency	Working Area	Total Working Hour	Required Working Day	Restricted Working Day	Remarks
		acre/hr	acre	hr	day	day	
Harrowing	Tiller	0.2	4.2	21	3		
Stamping	Animal forces	0.06	4.2	80	10		
Ridge	Animal forces	0.1	4.2	42	.5.5		
Seeding	Hand operated seed drill	0.1	4.2	42	5,5		
Weeding	Manpower	0.01	4.2	420	52.5		
Intertilling	Tiller	0.3	4.2	14	7		
Insecticide	Power sprayer	0.5	4.2	8.4	1		
Additional fertilization	Мапромег	0.25	4.2	16.8	2		
Harvest	Manpower, Animal forces	0.03	4.2	140	17.5		
Adjustment	Power thresher, Corn sheller	0.3	4.5 0.5	5 1 7		To	To thresh in usual mothod for til and mothod

Table 3.5-2 · Rice-direct sowing and Other Crops

Application of Fertilizer, Agricultural Chemicals and Weedicide in P.V. 13

A. Fertilizer

Fertilizer	3rd Yea	r	4th	5th	Total.	
Fertilizer	Kharif	Rabi	Year	Year	Total	Amount
	kg	kg	kg	kg	kg	
Potassium Sulfate 585	14,300	11,500	25,800	25,800	77,400	
P.C.P. Urea Compound	11,440	1,840	13,280	13,280	39,840	
Urea	6,870	3,580	10,450	10,450	31,350	
Ammonium Sulfate	7,500	2,450	9,950	9,950	29,850	
Superphosphate	12,830	6,140	18,970	18,970	56,910	
Potassium Chloride	1,515	660	2,175	2,175	6,525	
1.B. Compound 604		2,400	2,400	2,400	7,200	

B. Agricultural Chemicals

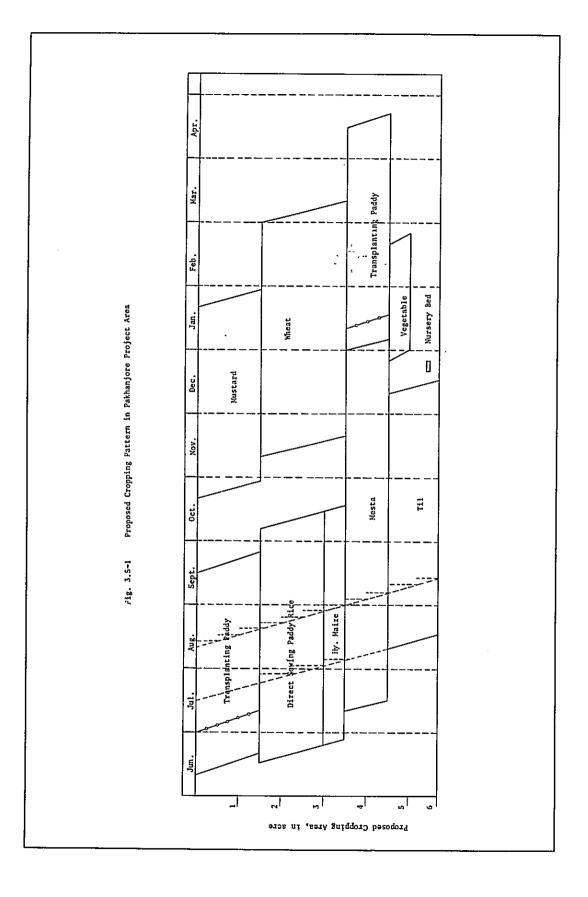
Agricultural	3rd Yea:	r	4th	Sth	Total	Amount
<u>Chemical</u>	Kharif	Rabi	Year	Year		Amount
	Table	et				
Ruberon : Tablet form	2,860 kg	460	3,320	3,320	9,960	
Buraesu : Dust form	1,716 kg	276	1,992	1,992	5,976	
Denapon : Dust form	2,145 kg	345	2,490	2,490	7,470	
E.P.N. : Dust form	1,972	276	2,248	2,248	6,744	
Ekachin : Liquid form		19,800	28,350	28,350	85,050	
E.M.P. (Ruberon)		920 ^{Ta}	28,350 blet 920	920	2,760	
Daijiston : Dust form		96°c0	96	96	288	
Erusan : Liquid form		7,200	7,200	7,200	21,600	

C. Weedicide

Weedicide	3rd Year	4th Year	5th Year	Total	Amount
	g	g	g	g	
Linuron	13,800	13,800	13,800	41,400	

Application of Fertilizer, Agricultural Chemicals and Weedicide in P.V. 14

A. Fertilizer


Fant a linear	3rd Y	ear	4th	5th	Total	A
Fertilizer	Kharif	Rabi	Year	<u>Year</u>	Total	Amount
	kg	kg	kg	kg	kg	
Potassium Sulfate 585	13,500	15,500	29,000	29,000	87,000	
P.C.P. Urea Compound	10,800	2,480	13,280	13,280	39,840	
Urea	6,450	5,000	11,450	11,450	34,350	
Ammonium Sulfate	7,200	3,100	10,300	10,300	30,900	
Superphosphate	12,770	7,740	20,510	20,510	61,530	
Potassium Chloride	1,365	1,240	2,605	2,605	7,815	
I.B. Compound	-	4,400	4,400	4,400	13,200	

B. Agricultural Chemicals

Agricultural	3rd Yea	ar	,4th	5th	Teto 1	
Chemical	Kharif	Rabi	Yèar	<u>Year</u>	Total	Amount
-	Tab	let				
Ruberon : Tablet form	2,700 kg	620	3,320	3,320	9,960	
Buraesu : Dust form	^{1,620} kg	372	1,992	1,992	5,976	
Denapon : Dust form	2,000 kg	465	2,465	2,462	7,386	
E.P.N. : Dust form	1,872 cc	372	2,244	2,244	6,782	
Ekachin : Liquid form		24,800 Tab	31,800	31,800	95,400	
E.M.P. (Ruberon)		1 240	kg 1,240	1,240	3,720	
Daijiston : Dust form	•	176	cc 176	176	528	
Erusan : Liquid form		13,200	13,200	13,200	39,600	

C. Weedicide

Weedicide	3rd Year	4th Year	5th Year	Total Amount
	g	g	g	g
Linuron	12,600	12,600	12,600	37,800

3-6. Balance of Economy of Standard Household

In case new techniques which can be easily introduced are possibly applied at the initial stage to cereals cultivation as the main product on the premise of family labor force, the rough agricultural yield per household after 5 years will be Rs. 9,000 based on the average of 4 P.V. This is 2.8 times the existing yield or an increase by Rs. 5,000. This increase is brought about by an increase in the yield of dry season crops as a result of an increase in the irrigated area, improvement of the cultivation method, improvement of the fertilizing method and an increase in fertilizers, thorough prevention and removal of blight and noxious insects and careful execution of weeding.

In the circumstances, the production cost will remarkably increase, i.e. as shown in Table 3-6-1, it will become Rs. 3,000, which is about 17.5 times the existing cost. After deducting such cost, the net farm benefit will be more than Rs. 5,900, which is about 2 times the existing benefit. As a result, the farm income rate will come down from the exceedingly high rate of 94.6% to 66.3%. The said estimation is based on the assumption that stock-raising is not included in the agriculture and that the scale of the balance of economy is not different from the present. Table 3.6-1 Outline of Balance of Economy in Standard Farm Household

		. <u></u>	Future			Future
Classific	ation	Present	(after ab	out I	Increase	
		Rs	<u>5 years)</u>	<u> </u>	D	Present
		••	Rs		Rs.	Times
Rough farm)	vield*	3,208	8,950		5,742	2.79
Farm product	ion cost*	173	3,020		2,847	17.5
Net farm inc	ome	3,035	5,930		2,895	1.95
Income from	side business	185	100		Δ 85	0.54
income for i	Farm household	3,220	6,030		2,810	1,87
Self-consump products	otion of farm	1,558	2,300		742	1.50
Sales of far	rm products	1,650	6,650		5,000	3,73
Cash income	1	1,835	6,750		4,915	3.68
Disposable o	cash income	1,662	3,730		2,068	2.24
Living cost	(Purchase)	1,318	3,300		1,982	2.50
11	(Purchase + sel	lf-supply)	1			
		2,876	5,600		2,724	1.95
Surplus		344	430		86	1,25
	Rate of farm in	ncome	94.6%	66.3%		
Reference	Ratio of farm p marketed	products	51.5	74.3		
	Ratio of living cashed	g cost	45.9	58.9		

Note: 1. * Includes stock raising

.

2. An average (per household) of P.V. 13, 14, 42 and 43

The income from side business is expected to decrease to one half that at present since the efforts of the settlers will be concentrated on farming. Therefore, the income per farm household will become about 1.9 times that at present or about Rs. 6,000.

Based on the assumption that the self-consumption increases by 50% serving for improvement of their nutrition intake, the sales of farm products will become 3.7 times that at present or a total of more than Rs. 6,000 with an increase by Rs. 5,000. As a result, the ratio of farm products marketed will increase from 51.5% to 74.3%.

The cash income for a farm household including the sales of farm products and an income from side business will total more than Rs. 6,700. The net cash income obtained after deducting production cost from said cash income will become about 2.2 times that at present or more than Rs. 3,700.

As a result, the living cost of the settlers will become 2.5 times that at present or Rs. 3,300 and the overall living cost with the selfsupplying portion included can become about 2 times that of the present level or Rs. 5,600. The ratio of cash purchase in the total living cost will increase from 46% to 59%, with Rs. 430 still reserved for future purchases.

The future values as shown in Table 3-6-1 are the estimation worked out on the assumption that various improvements will have been successfully carried out. In reality, however, with occurrance of unexpected accidents taken into consideration, a range of level between the said estimation and the values 20% - 30% less should be considered as a target on safe side.

3-7. Machinery for Execution of This Plan

A combined use of tiller and cattle is considered as the main produc-

tion factors and the tiller of medium type is selected taking into consideration various conditions including the physiques and the physical strength of the villages, the fields and the agricultural roads.

As to the machine for preventing and exterminating blight and noxious insects, a shouldering portable type for both liquid and powder chemicals is selected so as to suit the field condition and the agricultural roads.

As to grain threshing machine, one with simple construction is selected instead of those having complex mechanism such as automatic feeding device.

Machinery 6						
Ţ	Specifications	Quantity	Unit Price	Amount	Remarks	ırks
	6-7 HP. Diesel engine, Water-cooled radiator or Condenser, Standard equipments, a set of specialized implements for maintenance, a set of spare parts	35	180	6,300		B 35
F	The following attachments are equipped 1) Paddy field wheel 2) Puddling & land leveling board 3) Tine, Straight tine, and Hatched shaped tine 4) Power take-off 5) Washing apparatus 6) Japanese plow 7) Trailer (500 kg) 8) Sheet cover for parking 9) Pipe wheel					
Engine powered duster K with mist sprayer s T	Knapsack type, Standard equipments, a set of specialized implements for maintenance, including spare parts The following attachments are equipped. 1) Sprayug hose (20 m - 30 m) 2) Flame sprayer 3) Grass mover 4) Attachments for spraying	20	15	750		B50
00 U	Single cylinder type, Efficiency 500 - 1,000 kg/hr Standard equipments, a set of specialized implements for maintenance, including spare parts	10	40	400		(B)10
		'n	30	150		B 5
Manual seed drill for rice and wheat		100	5	200	(A)100	
Ð	One wheel is equipped for spare parts	100	10	1,000	A100	
A set of implements for maintenance		2 sets	500	1,000		(B) 2
				9,800		

Machineries for carrying out the Project Table 3.7-1

Machinery	Shecifications	010001		Price	Price: 1,000 year
Rice shelling and pearling machine	Efficiency 200 kg/hr, Diesel engine 5-6 HP A set of standard accessary and spare parts	2	200	Amount 400	Remarks
Peanut husker	Efficiency 300 kg/hr, Diesel engine 2-3 HP A set of standard accessary and spare parts	1	150	150	®
111m lio	The following machineries are combined 1) Grain crasher 2) Oil press 3) Filter press 4) Diesel Engine 7-8 HP	2 sets	500	1,000	B 2
Straw band making machine	Nanmoto Co. Ltd. made A-O type B-O type C-O type D-O type D-O type D-O type D-O type D-O type D-O type D-O type	2 sets	650	1,300	B 2
Grist mill	Efficiency 200 kg/hr, Diesel Engine 5-6 HP A set of standard accessary and spare parts	7	200	400	B
Truck	5 ton load capacity	7	002	1,400	B2
Total				017	

-

3-30

•

Machinery	Specifications	Quantity	Unit Price	Amount	Re	Remarks
Audio-visual machinery Cine projector Film for projector	ló mu	ç	100	100	0 0	
Printing machinery		77	00	000	en e	
Duplicator	including copy paper, 1,000 sheets of B4 size and 1,000 sheets of B5 size	1	100	100	ē	
A set of mimeograph	including 500 sheets of stencil paper	1	50	50	ବି	
A set of developing and enlarging machine	including printing papers and chemicals	1	100	100	(2)	
Conveying machinery Jeep Micro-bus	20-nassenger bus	- د	000	3,500	Š	©
Truck	20 ton load capacity		1,000	1,000	20	
Total				6,150		

÷

Table 3.7-3 Machineries for Demonstration

•

Table 3.7-4 Year-wi	Year-wised Machineries and Equipments for P.V.	ries and l	Equipments	for P.V.	
					Price: 1,000 yen
Machinery	lst Year Quantity	Amount	2nd Year Quantity A	ear Amount	Remarks
Tiller			35	6,300	
Engine powered duster with mist sprayer			50	750	
Power thresher			10	400	
Corn sheller			ŝ	150	
Mannual seed drill for rice and wheat	100	200			
Wheel barrow	100	1,000			
A set of implements for maintenance			2 ^{sets}	s 1,000	
Total		1,200		8,600	
Table 3.7-5 Year-wis	Year-wised Industrial Machineries in Agricultural Districts	il Machine	eries in Ag	ricultural D	istricts
					Price:1,000 yen
Machinery	lst Year Ouantity A	Lr Amount	2nd Year Ouantity Am	ear Amount	Remarks
Rice shelling and pearling machine			2	400	
Peanut husher			1	150	
Oil mill			2 sets	1,000	
Straw band making machine			2 sets	1,300	
Grist mill			2	400	
Truck			2	1,400	
Total				4,650	

	lst Year	г.	2nd Year	ar	
Machineries	Quantity	Amount	Quantity	Amount	KATE NO
Projector	1	100			
Film for projector	10	300	10	300	
Duplicator	1 set	100			
A set of mimeograph	1	50			
A set of developing and enlarging machine	1	100			
Jeep	3	2,100	7	1,400	
Micro-bus	1	1,000			
Truck	1	700			
Total		4,450		1,700	

Table 3.7-6 · Year-wised Machineries for Demonstration

Implements	Standard	Quantity	Quantity Unit Price	Remarks
Tool caddie	Two stage type	7	15,000	
Socket wrench set	A set of 28 pieces	1	18,000	Box wrench
Double offset wrench set	for mm, a set of 6 pieces	1	2,500	Offset wrench
Double offset wrench set	for in, a set of 6 pieces	Ţ	2;500	
Adjustable.angle wrench	Length 200 mm	1	600	
Adjustable angle wrench	Length 300 mm	1	006	
Adjustable angle wrench	Length 375 mm	-	2,500	
Double ended wrench	for mm, a set of 6 pieces	2	1,000	
Double ended wrench	for in, a set of 6 pieces	1	1,000	
Ignition spanner	for mm	1	600	Ignition wrench set
Scissors	Length 200 mm	1	700	
Hollow wrench set	A set of 7 pieces	м	700	Hexagon wrench
Side cutting plier	Length 200 mm	1	700	Cutting plier
Combination plier	Length 200 mm	1	400	
Thin straight plier	Length 200 mm	1	500	
Single-handed hammer	Weight 450 g	1	250	
Single-handed hammer	Weight 670 g	1	300	
Plastic hammer	Weight 450 g		400	
Copper hammer	Weight 670 g	ч	1,500	
Pitch gauge	for mm	1	150	
Pitch gauge	for in	г	150	

Table 3.7-7 Implements for Maintenance and Consolidation

Implements	Standard	Quantity	Unit Price	Remarks
Screw driver	Length 170 mm	1	150	
Screw driver	Length 250 mm	1	200	
Screw driver	Length 300 mm	1	250	
Cross point screw driver	Pit No.1	1	150	Philips driver
Cross point screw driver	Pit No.2	1	200	•
Cross point screw driver	Pit No.3	1	200	
Cross point screw driver	Pit No.4	ŗ	250	
Snap-ring plier	A set of 4 pieces	l	2,500	
Parts caddie	with 3 stage hinged door	1	15,000	
Parts plate	400 x 250 x 100	7	500	
Thickness gauge		1	250	
External micrometer	A set of 6 pieces 0 - 150 mm	1	35,000	
Cylinder gauge	50 - 150 mm (carl-mahr)	1	000 6	
Vernier Caliper	with depth 200 mm	1	3,000	
Torque wrench	Standard type 0 - 18 kg-m	1	6,000	
Tap and die set	Tap die 6 - 18 mm with 3 handles	1	000'6	
Adjustable reamer	A set of 11 pieces	1	24,000	
Fender tool set	Hammer 3, spoon 3, iron plate 4	1	7,000	
Silicone rectifier	Small sized high auto	Ħ	15,000	
Compression gauge	For Diesel	T	14,000	
Nozzle tester		г	15,000	
Rigid rack	3,000 kg	1	1,400	

Implements	Standard	Quantity	Unit Price	Remarks
Rigid rack	5,000 kg		2.500	
Oil hydraulic auto crane	1,000 kg	1	160.000	
Oil hydraulic press	1,500 kg	1	78.000	
Washing apparatus for each parts	Large size	4	70,000	
Cylinder gauge	50 - 150 mm (carl-mahr)		9,100	
External micrometer	0 - 25 mm	Ч	2.000	
External micrometer	25 - 50 mm	-	3.000	
External micrometer	50 = 75 mm	F -1	4.000	
External micrometer	75 - 100 mm	1	4,500	
Ekternal micrometer	100 - 125 mm	Ч	4.700	
Extèrnal micrometer	125 - 150 mm	П	5.000	
Shock socket wrench	for mm	Γ	4 500	
Shock socket wrench	for in	•	5.500	
Timing light	Neon tube type	1	1.800	
Telescoping gauge	A set of 6 pieces		000,6	

Chapter 4. Land Improvement Plan

Chapter 4. Land Improvement Scheme

4.1. General Description

Although the existing developed areas have main irrigation facilities such as the Pakhanjore Tank and main irrigation canals, of which capabilities and elements were described in previous Chapter 2.7, these facilities do not function under the present conditions. Namely, the stored water in Pakhanjore tank during the rainy season only used for the irrigation of homestead during the dry season, and almost all these stored water is wasted without no irrigation of the existing fields, which are mainly utilized for paddy fields during the dry season by relying on the rainfed irrigation.

The scheme of this project aims to raise the high utilization of the stored water, to promote the rational water management, to introduce the mechanical farming, and to promote the agricultural productions, by improving and constructing the following subjects.

- a. The areas of 510 acres (206.4 ha) in Low Land located in the right bank of the main irrigation canal, and the area of 128 acres (51.8 ha) in Up Land located in the left bank of that, totaling 638 acres (258.2 ha), are selected as the project area, and irrigation and drainage scheme is to be established according to the projected plan.
- b. Main irrigation canal of approximately 10 km extending from the Pakhanjore Tank to P.V. 43, and its related structures, such as siphons, bridge, outlet, spillway and as forth, will be improved, and some facilities will be provided, if required.
- c. Rational and reasonable water distribution systems of the main irrigation canal will be established.

- d. To increase the available storage capacities of the Pakhanjore tank, the existing spillway will be improved.
- e. Land consolidation works, such as land readjustment works, land leveling works and improvement or construction of farm roads, irrigation and drainage canals, and terminal facilities, will be carried out over the whole project area.
- f. For the irrigation of Up Land area of 128 acres (51.8 ha), pumping facilities will be installed near the site of the main irrigation canal.
- 4.2. Improving Plan of Main Irrigation Canal
- 4.2.1. Principles of Improving the Main Irrigation Canal

Improvement of the main irrigation canal will be conducted on the basis of following principles.

- (a) To make gravity irrigation possible for the Low Land area located at the right side of the Main irrigation canal, while the Up Land area is planned to be irrigated by pumps, the design water level at distribution point of water is devided, considering the elevation of field.
- (b) To determine the cross sectional area of the main irrigation canal enough to convey the flood discharge which is bigger than the volume of maximum required irrigation water because this canal has a role of the irrigation canal as well as the drainage canal. In improving the canal, existing longitudinal section shall be kept to reduce the construction cost required.
- (c) To make the most use of the existing siphons, culverts and aqueduct by

providing the transitional canal at the both sides of upstream and downstream of them, except the some one under no good condition.

- (d) To construct diversion works with a gate, because the existing ones are defective in material, form and size.
- (e) To construct spillways at the site upstream of siphon to discharge the flood from the watershed of main irrigation canal during the rainy season.
- (f) To protect the canal with wet masonry from scouring and errosion at the both sides: of upstream and downstream of structures provided, and the canal section shall be improved for sliding owing to much excavation for toe of slope, if required.
- (g) To line the canal with wet masonry to lower the loss water, especially for the alignment of canal around R.D. 27 to R.D. 28.
- (h) To install the measuring gauge and check gate for the purpose of rational water management.
- 4.2.2. Estimation of Design discharge for Main Irrigation Canal

As stated in previous paragraph, main irrigation canal has two roles, main irrigation canal and drainage canal during the rainy season, therefore, the examinations of design required cross sectional area of the canal shall he made in the two cases, by applying the maximum irrigation water requirement and the maximum flood discharge in the rainy season.

Estimation of Maximum Irrigation Requirement

Based upon the proposed cropping pattern by villages and the required irrigation water by crops, maximum irrigation water requirement is computed as shown in Table 4.2.2-2 and Table 4.2.2-1 summarizes these computations. In this computations, effective rainfalls are not taken into account, since no rainfall consequtive day more than 10 days can be seen in spite of the rainy season.

From Table 4.2.2-1, the maximum water requirement is estimated to be 0.360 cu.m/sec for the project area of 638 acreas, assuming that operation hours of pumps are 24 hours per day for the irrigation of Up Land areas. However, the operation hour of pumps of 24 hours is not desirable for operation and maintenance of pump. Consequently, operation hours of pumps are decided at 12 hours in a day. In this case, the maximum irrigation water requirement is estimated to be 0.407 cu.m/sec, as shown in Fig. 4.4.1-1.

Maximum Flood Discharge

The area located in the left side of the main irrigation canal being utilized for upland crops by rainfed irrigation during the rainy season, unit drainage discharge for upland field of 0.0306 cu.m/sec/ha is used for estimation of the maximum flood discharge.

Fig. 4.2.2-2 indicates the catchment and the maximum flood discharge.

Improving Cross Section of Main Irrigation Canal

In consideration at utilizing the existing structures as stated in 4.2.1, longitudinal slope is decides as follows;

Statio	n No.	Slope
RD.0 -	RD.10 + 56.50 m	1 to 3,500
RD.10 + 56.50 m -	RD.25 + 265.80 m	1 to 3,000
RD.25 + 265.80 m -	RD.28 + 1,053 m	1 to 2,000

As for the cross sectional area, bottom width is designed to be 1.00 m

4-4

Villages	4	5	6	2	8	6	10	11	12	I	2	3	Total
Tribal	23.2	ι	89.3	89.3 213.0	214.3	214.3 184.1	40.4		135.9	77.2 135.9 121.5	41.3	37.2	1,177.4
P.V. 42	56.6	ı	23.2	10.8	61.2	51.9	ì	,	29.6	33.4	45.5	57.0	419.2
P.V. 13	45.2	ų	7.77	202.6	204.0	173.1	16.9	55.4	110.8	103.8	40.0	49.6	1,079.1
P.V. 14	45.0	Ľ	80.6	210.4	241.4	218.1	52.7		72.0 152.8	135.1	65.4	63.0	1,336.5
P.V. 43	75.6		80.0	80.0 208.8	210.3	210.3 178.4		44.2	111.9	15.0 44.2 111.9 112.9	81.6	99.3	1,218.0
Sub-total	245.6	,	350.8	895.6	931.2	805.6	931.2 805.6 125.0 248.8 541.0 506.7 273.8 306.1	248.8	541.0	506.7	273.8	306.1	5,230.2
Periphery 109.7	109.7	90.5	86.2	86.2	86.7		76.6 76.4 71.6	71.6	98.4	98.4 94.4		50.0 94.6	1,021.3
Total	355.3	90.5	437.0	981.8	5 437.0 981.8 1,017.9 882.2 201.4 320.4 639.4 601.1 323.8 400.7	882.2	201.4	320.4	639.4	601.1	323.8	400.7	6,251.5

Maximum Irrigation Water Requirement Without Effective Rainfall Table 4.2.2-1

Maximum irrigation water requirement can be estimated to be 0.360 cu.m/sec for the Pakhanjore project area of 638 acres. as shown below; Note:

 $Q = \frac{931.2 \times 10^3}{86,400 \times 30} = 0.359 \text{ cu.m/sec}$ $\frac{1}{2} 0.360 \text{ cu.m/sec}$

4-5

Area to be Irrigated (acre) Paddy Upland 16 95 95 Net Irrigation Upland 65.2 132.3 Net Irrigation Paddy 286.8 118.1 308.1 Requirement Upland 56.2 132.3 Irrigation Nater 56.2 132.3 Furm Head Gate Paddy 286.8 118.1 308.1 Requirement Upland 56.8 118.1 308.1 Requirement Upland 285.8 147.6 385.1 Requirement Upland 23.2 54.9 55.3 Diversion Re- Paddy 23.2 54.9 55.3 Diversion Re- Paddy 23.2 54.2 24.2 Diversion Re- Paddy 23.2 54.2 24.2 Diversion Re- Paddy 35.3 24.2 24.2 Diversion Re- Paddy 39.0 39 39 Diversion Re- Paddy 35.5 34.2 24.2	Description	App. May	Jun.	Jul.	Aug.	Sep.	i.	Nov.	Dec.	Jan.	Feb.	Mar.	Remarks
Upland 63 Paddy 236.8 118.1 Upland 236.8 118.1 Upland 566.2 66.2 Upland 235.8 147.6 Upland 538.5 147.6 Upland 235.5 147.6 Upland 23.2 56.8 1 Paddy 23.2 56.8 1 Paddy 23.2 56.8 1 Upland 23.2 56.8 1 Upland 9.0 41.1 1 Upland 33.2 56.8 1 Upland 39 30 31.1 Upland 39 33 31.1 Upland 39 31.1 1 Upland 36.0 41.1 23.5 Paddy 38 39 1 Upland 39 30 31.8 Upland 286.8 118.1 1 Upland 286.6 33.5		16	95	95	95	95			16	16	16	16	
Paddy 286.8 118.1 Upland 66.2 Upland 66.2 Paddy 286.8 118.1 Upland 285.5 147.6 Upland 358.5 147.6 Upland 235.2 56.8 Paddy 23.2 56.8 Paddy 23.2 56.8 Paddy 23.2 56.8 Paddy 23.2 56.8 Upland 9.0 41.1 Upland 39 39 Upland 56.6 33.5 Paddy 39 39 Upland 39 39 Upland 356.8 118.1 Upland 356.8 118.1 Upland 358.5 147.6 Upland 56.6 23.3 </td <td></td> <td></td> <td>63</td> <td>63</td> <td>63</td> <td>63</td> <td>157</td> <td>142</td> <td>142</td> <td>142</td> <td>48</td> <td>48</td> <td></td>			63	63	63	63	157	142	142	142	48	48	
Uplånd 66.2 Upland 236.8 118.1 Paddy 236.8 118.1 Paddy 353.5 147.6 Upland 23.2 56.8 1 Paddy 353.5 147.6 Paddy 23.2 56.8 1 Paddy 23.2 56.8 1 Paddy 23.2 56.8 1 Paddy 23.2 56.8 1 Upland 23.5 32.5 Paddy 39 39 Upland 33 39 Upland 23.5 147.6 Paddy 39 39 Upland 39 39 Upland 23.5 147.6 Paddy 356.8 118.1 Upland 358.5 147.6 Upland 236.8 118.1 Upland 236.8 118.1 Upland 236.8 118.1 Upland 236.8 147.6 Upland 236.8 147.6 Upland 236.8 147.6 Upland 256.6 23.3 Paddy 56.6 23.3 Paddy 56.6 23.3	Paddy	286.8	118.1	308.1	310.2	263.2			150.0	169,4	230.8	288.8	
Paddy 286.8 118.1 Upland 286.8 118.1 Paddy 358.5 147.6 Upland 358.5 147.6 Upland 23.2 56.8 Paddy 23.2 56.8 Paddy 23.2 56.8 Paddy 20.0 41.1 Upland 23.5 32.5 Paddy 29.0 64.6 Paddy 39 39 Upland 39 39 Paddy 39 318.1 Upland 286.8 118.1 Upland 286.6 23.3 Paddy 358.5 147.6 Upland 56.6 23.3 Paddy 56.6 23.3 Paddy	Upland		66.2	132.3	133.0	117.6	33.1	69.8	112.0	97,5	60.5	36.6	
Paddy 286.8 118.1 Upland 238.5 118.1 Paddy 358.5 147.6 Upland 23.2 56.8 Paddy 23.2 56.8 Paddy 23.2 56.8 Paddy 23.2 56.8 Paddy 9.0 41.1 Upland 9.0 41.1 Upland 39 32.5 Paddy 39 39 Upland 39 30 Paddy 39 39 Upland 39 30 Paddy 38.5 118.1 Upland 286.8 118.1 Upland 286.8 118.1 Upland 286.8 147.6 Upland 58.5 147.6 Upland 58.5 147.6 Upland 56.6 23.3 Paddy 56.6 23.5 Upland 24.7 147.6 Upland 56.6													
n) Upland 101.8 Paddy 358.5 147.6 Upland 23.2 56.8 Paddy 23.2 56.8 Paddy 23.2 56.8 Paddy 23.2 56.8 Paddy 9.0 41.1 Upland 9.0 64.6 Paddy 39 39 Upland 39.0 64.6 Paddy 39 39 Upland 39 39 Upland 39 39 Upland 39 39 Upland 286.8 118.1 Upland 286.8 118.1 Upland 286.8 147.6 Upland 58.5 147.6 Paddy 56.6 23.3 Paddy 56.6 23.3 Upland 28.2 147.6 Upland 56.6 23.3 Paddy 56.6 23.3 Paddy 21.8		286.8	118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
Paddy 358.5 147.6 Upland 358.5 147.6 Paddy 23.2 56.8 Paddy 23.2 56.8 Paddy 9.0 41.1 Upland 9.0 41.1 Upland 9.0 64.6 Paddy 39 39 Upland 39 39 Paddy 39 39 Upland 39 39 Paddy 39 39 Upland 39 39 Upland 39 39 Upland 39 39 Upland 386.8 118.1 Upland 358.5 147.6 Paddy 358.5 147.6 Paddy 358.5 147.6 Upland 56.6 23.3 Paddy 56.6 23.5 Paddy 25.5 147.6 Upland 23.5 147.6 Paddy 21.8 16.9			101.8	203,5	204.6	180.9	50.9	107.4	172.3	150,0	93.0	56.3	
Upland 127.3 Paddy 23.2 56.8 Paddy 23.2 56.8 Paddy 9.0 41.1 Upland 9.0 41.1 Upland 9.0 41.1 Upland 9.0 41.1 Paddy 39.0 41.1 Upland 9.0 64.6 Paddy 39 39 Upland 23.5 118.1 Upland 286.8 118.1 Upland 258.5 147.6 Paddy 58.6 23.5 Paddy 56.6 23.5 Paddy 26.6 23.5 Paddy 21.8 16.9 Upland 21.8 16.9 Paddy 21.8 16.9	Paddy	358.5	147.6	385.1	387,8	329.0			187.5	211,8	288.5	361.0	
Paddy 23.2 56.8 Upland 32.5 Paddy 9.0 41.1 Upland 9.0 41.1 Upland 9.0 41.1 Upland 9.0 41.1 Upland 9.0 64.6 Faddy 39 39 Paddy 39 39 Upland 39 39 Paddy 39 39 Upland 286.8 118.1 Upland 286.8 147.6 Upland 56.6 23.3 h Upland 26.6 23.3 h Upland 26.6 23.3 h Upland 21.8 16.9 Upland 21.18 16.9	Upland		127.3	254.4	255.8	226.1	63.6	134.3	215.4	187,5	116.3	70.4	
Upland 32.5 Paddy 9.0 41.1 Upland 23.5 ec) 9.0 64.6 paddy 39 54.6 paddy 39 53.5 paddy 39 54.6 paddy 286.8 118.1 upland 286.8 118.1 upland 558.5 147.6 upland 56.6 23.3 h Upland 56.6 23.3 paddy 256.6 23.3 paddy 21.8 16.9 paddy 21.8 16.9		23.2	56.8	1148.1	149.1	126.5			12.1	13,7	18.7	23.4	
Paddy 9.0 41.1 Upland 23.5 ecc) 9.0 64.6 Paddy 39 30 Paddy 39 30 Paddy 39 30 Paddy 39 39 Paddy 286.8 118.1 Upland 286.8 118.1 Paddy 286.8 118.1 Upland 286.8 118.1 Paddy 286.8 118.1 Paddy 358.5 147.6 Upland 56.6 23.3 Paddy 56.6 23.5 Paddy 26.6 23.5 Upland Upland 23.5 Paddy 25.6 23.5 Paddy 21.8 16.9 Upland Upland 16.9 Paddy 21.8 16.9			32.5	64.9	65.2	57.6	40.4	77.2	123.8	107.8	22.6	13.7	
Upland 23.5 ecc) 9.0 64.6 Paddy 39 59.0 Upland 39 39 Paddy 286.8 118.1 Upland 286.8 118.1 Nay Jun. Paddy 286.8 118.1 Upland 286.8 118.1 N Upland 118.1 Paddy 286.8 118.1 Paddy 286.8 118.1 N Upland 286.8 118.1 N Upland 286.8 118.1 N Upland 286.8 118.1 N Upland 286.8 147.6 Upland 256.6 23.5 N Upland 25.1 23.5 N Upland 21.8 16.9 Upland Upland Upland 23.5 N Upland 21.18 16.9 Upland Upland Upland 16.9	Paddy	9.0	41.1	55.3	55.7	48.8			14.0	5,1	7.7	8.7	
sec) 9.0 64.6 Paddy 39 30 Paddy 39 39 Upland 39 59 Paddy 286.8 118.1 Upland 286.8 118.1 Paddy 286.8 118.1 Upland 285.5 147.6 Paddy 558.5 147.6 Upland 55.6 23.3 h Upland 21.8 16.9 Paddy 56.6 23.5 h Upland 21.8 16.9 Paddy 25.6 23.5 h Upland 21.8 16.9	Upland		23.5	24.2	24.3	22.2	15.1	29.8	46.2	40,2	9.3	5.1	
Apr. May Jun. Paddy 39 39 Upland 39 39 Paddy 286.8 118.1 Upland 286.8 118.1 N Upland 118.1 Paddy 286.8 118.1 Upland 285.5 147.6 Upland 358.5 147.6 Upland 56.6 23.5 h Upland 28.5 147.6 Upland 358.5 147.6 Upland 256.6 23.5 h Upland 56.6 23.5 h Upland 21.8 16.9 Upland Upland 10.9 10.9	sec)	9.0	64.6	79.5	80.0	71.0	15.1	29.8	60.2	45, 3	17.0	13.8	
Apr. May Jun. Paddy 39 39 Upland 286.8 118.1 Paddy 286.8 118.1 Upland 286.8 118.1 h) Upland 118.1 N Upland 286.8 118.1 Paddy 286.8 118.1 Paddy 286.8 118.1 Paddy 286.6 147.6 Upland 56.6 23.3 h) Upland 21.8 16.9 Paddy 25.6 23.3 h) Upland 16.9 Paddy 25.6 23.5 Paddy 21.8 16.9 Upland Upland 16.9 Upland Upland 16.9		İ					ļ						(P.V. 42)
Paddy 39 39 Upland 286.8 118.1 Paddy 286.8 118.1 Upland 286.8 118.1 h Upland 118.1 .Paddy 286.8 118.1 .Paddy 286.8 118.1 Upland 147.6 Upland 56.6 23.3 h Upland 21.8 16.9 Upland 21.8 16.9 Upland Upland 16.9			Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Remarks
Paddy 286.8 118.1 Upland 286.8 118.1 h) Upland 118.1 Paddy 286.8 118.1 Paddy 286.8 118.1 Paddy 358.5 147.6 Paddy 56.6 23.3 h) Upland 21.8 16.9 Paddy 21.8 16.9 Upland 21.8 16.9		39	39	39	39	39			39	39	39	39	
 h) Paddy 286.8 118.1 h) Upland Paddy 358.5 147.6 Upland Paddy 56.6 23.3 h) Upland Paddy 21.8 16.9 Upland 	Paddy Upland	286.8	118.1	308.1	310.2	263.2			150.0	169,4	230.8	288.8	
Gate Paddy 286.8 118.1 month) Upland 147.6 Re- Paddy 358.5 147.6 h) Upland 85.6 23.3 month) Upland 86.6 23.3 Re- Paddy 21.8 16.9 Re- Paddy 21.8 16.9													
Re- .Paddy 358.5 147.6 3 h) Upland 23.3 3 <td>Ŧ</td> <td>286.8</td> <td>118.1</td> <td>308.1</td> <td>310.2</td> <td>263.2</td> <td></td> <td></td> <td>150.0</td> <td>169.4</td> <td>230.8</td> <td>288.8</td> <td></td>	Ŧ	286.8	118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
Re- Paddy 56.6 23.3 month) Upland Re- Paddy 21.8 16.9 Upland	.Paddy Up1and	358.5	147.6	385.1	387.8	329.0			187.5	211.8	288.5	361.0	
Re- Paddy 21.8 16.9 Upland		56.6	23.3	60.8	61.2	51.9			29.6	33.4	45.5	57.0	•
(x/ sec)	Paddy Upland	21.8	16.9	22.6	22.8	20.0			34.3	12.5	18.8	21.3	
Total (%/sec) 21.8 16.9 22.6	ec)	21.8	16.9	22.6	22.8	20.0			34.3	12,5	18.8	21.3	

Monthly Irrigation Water Requirement without Effective Rainfall

Table 4.2.2-2

·

Description		Apr. May	Jun.	.1nL	2.2		25P. VLL. NUV.	NOV.	Dec.	Jan.	reo.	Mar.	Remarks
Area to be	Paddy	23	130	130	130	130			73	22	24	10	
Irrigated (acre)	Upland	16					45	107	107	107	5 5	62 62	
Net Irrigation Requirement	Paddy	286.8 04 5	118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
(mm/month)	niletdo	c.44					48.2	66.6	112.0	101.0	60.5	75.0	
Irrigation Water Requirement								-				1	
Farm Head Gate	Paddy	286.8	118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
	Upland	145.3					74.1	102.4	172.3	155.3	93,0	115.4	
Diversion Re-	Paddy	358.5	147.6	385.1	387.8	329.0			187.5	211.8	288.5	361.0	
quirement (mm/month)	Upland	181.6					92.6	128.0	215.4	194.1	116.2	144.3	
Diversion Re-	Paddy	33.4	77.77	202.6	204.0	173.1			17.5	19.7	10.8	13.4	
quirement (10 ³ m ³ /month)	Up1and	11.8					16.9	55.4	93.3	84.1	29.2	36.2	
Diversion Re-	Paddy	6.21	56.2	75.6	76.2	66.8			20.3	7.4	4.5	5.0	
quirement (£/sec)	Upland	6.8					8,2	21.4	34.8	31.4	12.1	13.5	
Total (1/sec)		1977	56.2	75.6	76.2	66.8	8.2	21.4	55.1	39.1	16.6	18.5	
Description		Apr. May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov	Dar	han	han	1 and	(P.V. 14)
Area to be	Paddy		135									31	2410000
irrigated (acre)	Upland	I			42	42	126	146	146	146	62	62	
Net Irrigation	Paddy	286.8	118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
Kequirement (mm/month)	Upland				90.1	117.6	53.8	63.3		95.5	60.5	36.6	
Irrigation Water Requirement													
Farm Head Gate	Paddy	286.8	118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
	Upland				138.6	180.9	82.7	97.4	172.3	146.9	93.0	56.3	
Diversion Re- autrement	Paddy	358.5	147.6	385.1		329.0			187.5	211.8	288.5	361.0	
(mm/month)	Upland				173.3	226.1	103.4	121.8	215.4	183.6	116.3	70.4	
Diversion Re-	Paddy	45.0	80.6	210.4	211.9	179.7			23.5	26.6	36.2	45.3	
(10 ³ m ³ /month)	Upland				29.5	38.4	52.7	72.0	129.3	108.5	29.2	17.7	
Diversion Re-	Paddy	17.4	58.3	78.6	79.1	69.3			27.2	9,9	15.0	16.9	
(r/sec)	Upland				16.3	14.8	19.7	27.8	48.3	40.5	12.1	20.5	
Total (l/sec)		17.4	58.3	78.6	95.4	84.1	19.7	27.8	85.5	50.4	27.1	37.4	

•

	Description		Apr.	Мау	Jun.	Jul.	Aug.	Sep.	Oct.	Nov	Dec.	Jan.	fah	Mar	(P.V. 43)
trandy 44 14 1361 1310.2 263.2 130.0 130.1 263.1 130.1 263.1 200 130.4 238.8 91 bludy 266.8 118.1 308.1 310.2 263.2 130.1 263.1 270.1 120.0 160.4 230.8 28.8 91.4.3 75.0 91.4.3 75.0 28.6 134.3 75.0 78.1 81.3 7.2 17.1 97.0 120.4 28.6 91.4.3 75.0 28.6 14.4.3 7.2 14.1 21.5 81.4.3 7.2 14.1 21.2 21.6 7.1 91.3 14.3 7.2 14.1 21.2 21.4 4.3 7.2 14.1 21.2 21.4 4.3 7.2 14.1 21.2 21.4 4.3 7	Area to be		:												VCIMEN AS
Upland 16 40 90 90 90 90 90 93 60 Upland 94.5 118.1 308.1 310.2 265.2 118.1 308.1 310.2 265.1 113.0 107.4 46.7 75.0 Upland 94.5 118.1 308.1 310.2 265.1 113.0 107.4 46.7 75.0 Paddy 286.8 118.1 308.1 310.2 265.1 71.3 105.2 288.5 541.0 Paddy 63.8 80.0 208.8 210.3 178.4 125.3 135.4 35.4 37.1 31.4 44.3 Paddy 63.8 80.0 208.8 210.3 178.4 155.7 35.1 36.3 35.1 37.1 41.3 44.3 Paddy 63.8 80.0 208.1 37.2 17.1 25.2 35.7 37.1 37.1 37.1 37.1 37.1 37.1 37.1 37.1 37.1	Area to be Irrigated (acre)	Paddy	44		134	134	134	134			44	44	44	44	
Paddy 286.8 118.1 310.2 353.2 150.0 169.4 230.8 288.8 Upland 94.5 118.1 308.1 310.2 253.2 45.2 65.1 112.0 07.4 45.7 75.0 Upland 145.3 147.6 385.1 387.5 310.2 253.2 71.8 125.0 100.4 20.8 201.0 Upland 145.3 147.6 387.1 387.3 379.0 127.3 165.2 71.8 135.4 64.3 Upland 11.6 20.0 208.8 210.3 178.4 53.4 57.1 64.3 51.1 64.3 51.1 64.3 51.1 64.3 51.1 64.3 51.1 64.3 51.1 64.3 51.1 64.3 51.1 64.3 51.1 64.3 51.1 51.1 51.1 51.1 51.3 51.1 51.1 51.1 51.1 51.1 51.1 51.1 51.1 51.1 51.1 51.1		Upland	16						40	90	06	90	83	60	
Upland 94.5 46.1 75.0 b) Paddy 286.8 118.1 309.1 310.2 263.2 74.1 97.0 122.3 153.4 75.2 b) Upland 145.5 118.1 308.1 310.2 263.2 74.1 97.0 172.3 153.4 361.0 paddy 58.5 147.6 385.1 380.7 310.3 213.2 213.2 213.2 213.2 213.2 213.1 218.5 361.0 th) Upland 111.8 30.0 208.3 70.3 73.2 17.1 20.3 23.1 21.2 21.3 21.2 21.3 21.2 21.1 th) Upland 11.8 30.0 208.4 7.2 17.1 68.0 23.7 31.1 th) Upland 11.4 33.7 31.1 31.2 31.1 31.2 31.1 31.2 31.1 31.2 31.1 31.1 to) Upland 33.4 </td <td>Net Irrigation</td> <td>Paddy</td> <td>286.8</td> <td></td> <td>118.1</td> <td>308.1</td> <td>310.2</td> <td>263.2</td> <td></td> <td></td> <td>150.0</td> <td>169.4</td> <td>230.8</td> <td>288.8</td> <td></td>	Net Irrigation	Paddy	286.8		118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
N) Paddy 266.8 118.1 308.1 310.2 263.2 74.1 97.0 172.3 165.2 71.8 118.4 Paddy 38.5 147.6 385.1 387.8 310.2 263.2 130.1 210.3 135.5 71.8 118.4 Paddy 58.5 147.6 385.1 387.8 310.3 210.3 137.5 118.1 210.3 135.4 317.3 51.4 51.9 14.1 210.3 213.4 317.3 51.4 51.9 51.0 151.4 44.3 (h) Paddy 6.3 80.0 208.8 210.3 78.4 33.7 41.1 21.2 31.1 21.2 31.1 21.2 31.1 21.2 31.1 21.2 31.1 (h) Upland 14.4 59. 89.9 59.9 50.1 21.1 21.2 31.1 21.2 31.1 (h) Upland 14.1 89.9 89.9 52.1 17.1 6	wequirement (mm/month)	Upland	94.5						48.2	63.1	112.0	107.4	46.7	75.0	
	Irrigation Water Requirement														
D) Upland 145.3 147.6 385.1 71.8 155.2 71.8 155.4 Pady 538.5 147.6 385.1 32.6 123.2 211.8 288.5 561.0 Pady 538.5 147.6 385.1 37.8 15.0 92.6 121.3 215.4 205.5 98.8 144.3 Pady 53.8 90.0 208.8 210.5 178.4 35.7 51.4 64.3 thy 21.6 57.9 78.0 78.5 68.8 7.2 17.1 20.5 35.0 35.0 thy 24.6 57.9 78.0 78.5 68.8 7.2 17.1 20.2 35.7 37.1 sci 72 17.1 20.5 78.8 17.2 17.1 20.5 13.1 14 sci 72 17.1 20.5 13.5 137.1 13.5 137.1 14 sci 94.9 89.9 95 120		Paddy	286.8		118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
		Upland	145.3						74.1	97.0	172.3	165.2	71.8	115.4	
	Diversion Re-	Paddy	358.5		147.6	385.1	387.8	329.0			187.5	211.8	288.5	361.0	
	quirement (mm/month)	Upland	181.6						92.6	121.3	215.4	206.5	8.68	144.3	
th) Upland 11.8 15.0 44.2 78.5 57.2 30.2 35.0 Paddy 24.6 57.9 78.0 78.5 68.8 7.2 17.1 29.3 28.1 12.5 13.1 vpland 6.8 57.9 78.0 78.5 68.8 7.2 17.1 29.3 28.1 12.5 13.1 ec) 33.4 57.9 78.0 78.5 68.8 7.2 17.1 68.0 42.2 33.1 31.1 ec) addy i static static static i 12.5 13.1 13.5 13.1 14.1 11.4 ec) paddy i i i i i i i i i i paddy i	Diversion Re-	Paddy	63.8		80.0	208.8	210.3	178.4			33.4	37.7	51.4	64.3	
Paddy 24.6 57.9 78.0 78.5 68.8 38.7 14.1 21.2 24.0 Upland 6.8 57.9 78.0 78.5 68.8 7.2 17.1 29.3 23.1 12.5 13.1 ec) 33.4 57.9 78.0 78.5 68.8 7.2 17.1 68.0 42.2 53.7 37.1 ec) 33.4 57.0 78.5 68.8 7.2 17.1 68.0 42.2 53.7 37.1 ec) Mar. Jun.	quirement (10 ³ m ³ /month)	Upland	11.8						15.0	44.2	78.5	75.2	30.2	35.0	
Upland 6.8 7.2 17.1 29.3 28.1 12.5 13.1 ec) 33.4 57.9 78.0 78.5 68.8 7.2 17.1 68.0 42.2 33.7 37.1 ec) 33.4 57.9 78.0 78.5 68.8 7.2 17.1 68.0 42.2 33.7 37.1 end Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Paddy Upland 131.3 138.9 132.3 133.0 117.6 109.8 81.5 113.0 114 114 Paddy Upland 131.3 138.9 132.3 133.0 117.6 109.4 80.5 113.3 134.5 Upland 131.3 138.9 132.3 132.3 132.0 117.6 109.4 80.5 134.3 Paddy Upland 202.0 213.1 232.3 147.5 202.7	Diversion Re-	Paddy	24.6		57.9	78.0	78.5	68.8			38.7	14.1	21.2	24.0	
ec) 33.4 57.9 78.0 78.5 68.8 7.2 17.1 68.0 42.2 53.7 37.1 on Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. $7eb.$ Mar. paddy Paddy 114 89 89 89 89 95 120 120 114 114 Paddy Diland 131.3 138.9 132.3 133.6 117.6 109.8 81.5 112.0 107.4 60.5 113.3 Paddy Diland 202.0 213.7 203.4 204.6 180.9 155.4 172.3 165.2 93.1 174.3 Paddy Diland 202.0 213.7 203.4 204.6 160.7 160.5 113.3 Paddy Diland 237.7 291.4 219.7 147.5 202.7 194.4 109.5 205.1 Paddy Upland 291.7 <td>quirement (l/sec)</td> <td>Upland</td> <td>6.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.2</td> <td>17.1</td> <td>29.3</td> <td>28.1</td> <td>12.5</td> <td>13.1</td> <td></td>	quirement (l/sec)	Upland	6.8						7.2	17.1	29.3	28.1	12.5	13.1	
on Apr. Nay Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Paddy Upland 114 89 89 95 120 120 114 114 Valady Upland 131.3 138.9 132.3 132.3 133.0 117.6 109.8 81.5 112.0 107.4 60.5 113.3 Paddy Valand 202.0 213.3 133.3 133.0 117.6 109.8 81.5 112.0 107.4 60.5 113.3 N Upland 202.0 213.7 203.4 204.6 180.9 188.7 147.5 202.7 194.4 109.5 205.1 Paddy Upland 237.7 251.4 239.4 240.7 212.8 198.7 147.5 202.7 194.4 109.5 205.1 Paddy Upland 237.7 251.4 239.4 240.7 70.6 70.4 71.6 94.4	11		33.4		57.9	78.0	78.5	68.8	7.2	17.1	68.0	42.2	33.7	37.1	
Paddy Paddy <th< th=""><th>Description</th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>100</th><th></th><th></th><th></th><th></th><th></th><th></th><th>(Periphery)</th></th<>	Description					-		100							(Periphery)
Paddy Paddy Upland 114 89 89 89 95 120 120 114 114 Paddy Paddy 131.3 138.9 132.3 133.0 117.6 109.8 81.5 112.0 107.4 60.5 113.3 Paddy Paddy 202.0 213.7 203.5 203.4 204.6 180.9 168.9 125.4 172.3 165.2 93.1 174.3 N Upland 202.0 213.7 203.5 203.4 204.6 180.9 168.9 125.4 172.3 165.2 93.1 174.3 Paddy 237.7 251.4 239.4 240.7 76.6 76.6 76.4 71.6 98.4 94.4 50.5 94.6 h) Upland 209.7 98.7 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.5 77.5 77.7 <td>Intadition</td> <td></td> <td>APT.</td> <td>Мау</td> <td>Jun.</td> <td>Jul.</td> <td></td> <td>vep.</td> <td></td> <td></td> <td></td> <td>Jan.</td> <td>Feb.</td> <td>Mar.</td> <td>Remarks</td>	Intadition		APT.	Мау	Jun.	Jul.		vep.				Jan.	Feb.	Mar.	Remarks
Paddy 131.3 138.9 132.3 133.0 117.6 109.8 81.5 112.0 107.4 60.5 113.3 upland 131.3 138.9 132.3 132.3 133.0 117.6 109.8 81.5 112.0 107.4 60.5 113.3 Paddy upland 202.0 213.7 203.5 203.4 204.6 180.9 168.9 125.4 172.3 165.2 93.1 174.3 Paddy 202.0 213.7 203.4 240.7 212.8 198.7 147.5 202.7 194.4 109.5 205.1 Paddy 237.7 251.4 239.4 240.7 76.6 76.4 71.6 98.4 94.4 50.5 94.6 th) Upland 109.7 90.5 86.2 86.7 76.6 76.4 71.6 91.7 70.5 94.6 67.6 64.3 64.7 59.1 57.0 55.2 73.5 70.5 41.7 70.6	Area to be Irrigated (acre)	Paddy Upland	114	89	68	89	89	68	95	120	120	120	114	114	
Paddy Paddy Upland 202.0 213.7 203.4 204.6 180.9 168.9 125.4 172.3 165.2 93.1 174.3 Paddy Upland 202.0 213.7 203.4 204.6 180.9 168.9 125.4 172.3 165.2 93.1 174.3 Paddy Upland 237.7 251.4 239.4 240.7 212.8 198.7 147.5 202.7 194.4 109.5 205.1 Paddy Upland 109.7 205 86.2 86.7 76.6 76.4 71.6 98.4 94.4 50.5 94.6 th) Upland 109.7 90.5 86.2 86.7 76.6 75.0 55.2 73.5 70.5 41.7 70.6 th) Upland 94.6 67.6 66.5 64.3 63.1 57.0 55.2 73.5 70.5 41.7 70.6	Net Irrigation Requirement (mm/month)	Paddy Upland	131.3	138.9	132.3	132.3	133.0	117.6	109.8	81.5	112.0	107.4	60.5	113,3	
Paddy Upland 202.0 213.7 203.5 203.4 204.6 180.9 168.9 125.4 172.3 165.2 93.1 174.3 Paddy Upland 237.7 251.4 239.4 240.7 212.8 198.7 147.5 202.7 194.4 109.5 205.1 Paddy Upland 237.7 251.4 239.4 240.7 212.8 198.7 147.5 202.7 194.4 109.5 205.1 Paddy Upland 109.7 90.5 86.2 86.7 76.6 76.4 71.6 98.4 94.4 50.5 94.6 Paddy Upland 94.6 67.6 64.3 64.7 59.1 57.0 55.2 73.5 70.5 41.7 70.6 94.6 67.6 66.5 64.3 63.1 57.0 55.2 73.5 70.5 41.7 70.6	Irrigation Water Requirement											-			Irrigation Efficiency:
Paddy Upland 237.7 251.4 239.4 240.7 212.8 198.7 147.5 202.7 194.4 109.5 Paddy Upland 109.7 20.5 86.2 86.7 76.6 76.4 71.6 98.4 94.4 50.5 Paddy Upland 109.7 90.5 86.2 86.7 76.6 76.4 71.6 98.4 94.4 50.5 Paddy Upland 109.7 90.5 86.2 86.7 76.6 76.4 71.6 98.4 94.4 50.5 Paddy Upland 94.6 67.6 66.5 64.7 59.1 57.0 55.2 73.5 70.5 41.7 94.6 67.6 66.5 64.3 59.1 57.0 55.2 73.5 70.5 41.7	Farm Head Gate Req. (mm/month)	Paddy Upland	202.0	213.7	203.5	203.4	204.6	180.9	168.9	125.4		165.2	93.1	174.3	U.os Conveyance Loss: 15%
Paddy Upland 109.7 90.5 86.2 86.7 76.6 76.4 71.6 98.4 94.4 50.5 Paddy Upland 94.6 67.6 64.7 59.1 57.0 55.2 73.5 70.5 41.7 94.6 67.6 66.5 64.3 64.7 59.1 57.0 55.2 73.5 70.5 41.7	Diversion Re- quirement (mm/month)	Paddy Upland	237.7	251.4	239.4	239.4	240.7	212.8		147.5		194.4	109.5	205.1	
Paddy Upland 94.6 67.6 66.5 64.3 64.7 59.1 57.0 55.2 73.5 70.5 41.7 94.6 67.6 66.5 64.3 64.7 59.1 57.0 55.2 73.5 70.5 41.7	Diversion Re- quirement (10 ³ m ³ /month)	Paddy Upland	109.7	3.02	86.2	86.2	86.7	76.6	76.4	71.6	98.4	94.4	50.5	94.6	
94.6 67.6 66.5 64.3 64.7 59.1 57.0 55.2 73.5 70.5 41.7	Diversion Re- quirement (\$/sec)	Paddy Up1and	94.6	67.6	66.5	64.3	64.7	59,1	57.0	55.2	73.5	70.5	41.7	70.6	
	Total (1/sec)		94.6	67.6	66.5	64.3	64.7	59.1	57.0	55.2	73.5	70.5	41.7	70.6	

to 3.00 m adopted to the existing canal, and also limited height of embankment and side slopes are designed at 5.0 m and 1 to 1.5 respectively, considering the stability analysis as illustrated in Fig. 4.2.4-1.

Fig.4.2.3-1 indicates the standard cross section of the canal, and from this figure velocity of flow will range from 0.44 m/sec at max. to 0.14 m/sec at min., which are within a permissible velocity for earth canal.

Siphon, Culvert and Aqueduct

From the result of hydraulic calculation based on the previous longitudinal section and cross section of these structures, since the existing these facilities have an enough ability to make flow the maximum flood discharge, these facilities will be utilized in this project without the improvement. But, to protect the canal, revetment works will be performed with the wet mansonary.

Diversion Works

All diversion works will install a gate for rational water management, and to cross the service road and embankment of canal pipes will be buried.

Spillway

The weir height of spillway is decided so that only the excess water over the irrigation water level flow out, and the surface of service road adjacent the spillway will be paved with wet masonaries.

Inlet Works

The inlet works for flood discharge are lined with the wet masonaries against the danger of breaks due to erosion.

Check Gate

To control the water level, wooden check gates will be required in case of water level drawdown.

Measuring Gauge

At the immediate downstream of Pakhanjore Tank, pershall flume type measuring gauge made of reinforced concrete will be installed for rational water management. Fig. 4.2.3-2 indicates the water depth and discharge curve of this measuring gauge.

Service Road

The service road having the width of 4.0 m will be constructed on the right bank of the main canal for operation of Pakhanjore dam, diversion gates, check gates and rational water management could be expected.

Details of previous structures described shall be refered to drawings, and the construction shall be undertaken on the basis of "the Specification for the Works, Volume 1, 11" published by the Central Public Works Department.

4.2.4. Calculation of Seepage Water and Examination of Stability Analysis of Main Canal

Quantity of seepage water from trapezoid proposed canal as shown in Fig. 4.2.4-1 is given in following formula by Werdernikov.

q = k (B + 2H) in case of deep impervious stratum q = k (B - 2H) in case of shallow impervious stratum where q: unit quantity of seepage water k: coefficient of permeability 2 x 10⁻⁷ m/sec B: width of water surface 4.32 m H: Water depth 0.44 m q = 2 x 10^7 (4.32 ± 0.88) = 10.4 - 6.9 x 10^{-7} cu.m/sec Total seepage along the 9,500 m canal is q = q.l = 10.4 x 10^{-7} x 9,500 = 9.9 x 10^{-3} cu.m/sec Total amount of seepage water from the main canal is less than 3% of the discharge 0.4 cum/sec from the Pakhanjore dam and can be allowable.

However, the result of permeability tests in site have revealed that coefficient of permeability is extremely large in a part along the down stream where the canal should be lined.

 Stability analysis of the canal slope among many proposed methods for analysis of slope stability, slip circle method will be the best for this case.

Factor of safty is given as follows

$$F.S = \frac{\Sigma(N - P) \times tan\phi + C \cdot L}{\Sigma T}$$

where

- N: Normal force to slip circle
- T: Tangential force to slip circle
- P: Pore water pressure
- Angle of friction
- C: Cohesion
- L: Length of slip circle

The result calculated for designed typical section is shown in Fig. 4.2.4-1.

Factor at safety is 2.4 and sufficient.

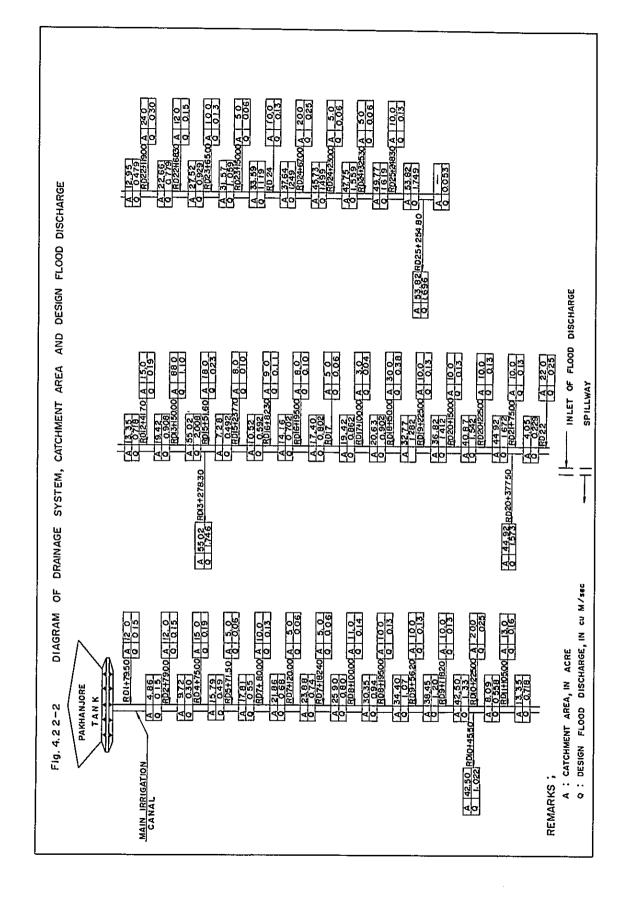
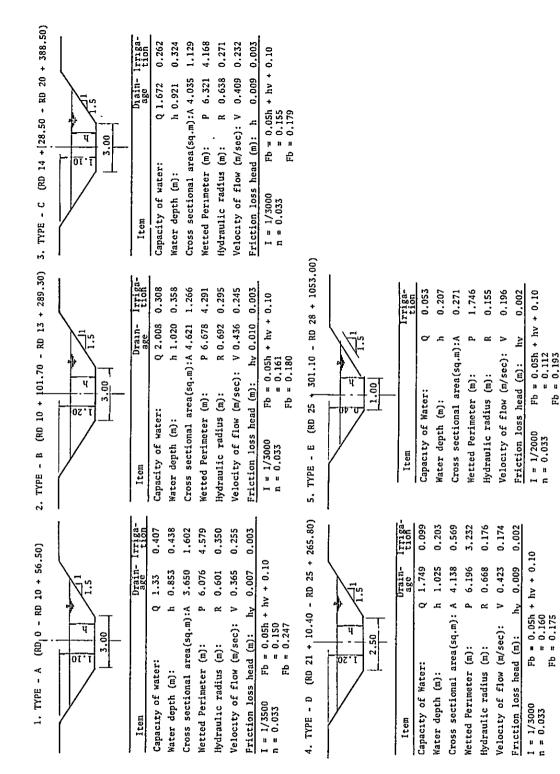
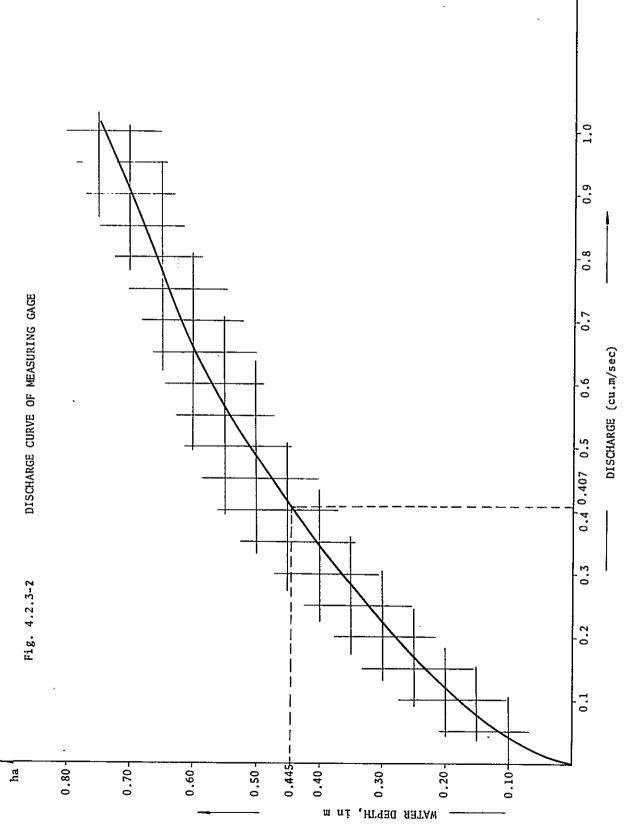




Fig. 4.2.3-1 Standard Cross Section of Main Irrigation Canal

4-14

່ວ

EN lon # 243 144 ц С FS = 24 UNIT WEIGT TOTAL WEIGT IN 100 # 143 1/cm COEFFICIENT OF PERMEABILITY 2 × 107 m/s I 68 1/cm 1 89 1/cm 1.2 1/sm 9,7 22° 30' 178 % 2 67 MATERIAL | AREA UNIT WEGT TOTAL WEGT 23 6 6 6 168 0 89 169 ANGLE OF FRICTION 0.89 SATURATED DENSITY WXVIXVIXVIIVXVIIV SPECIFIC GRAVITY WATER CONTENT DRY DENSITY WET DENSITY AREA 9 2 9 15 6 3.2 5, 1 COHESION SUBMERGED SUBMERCED MATERIAL WET WET Fig. 4 2 4-1 STABILITY ANALYSIS OF MAIN CANAL SLOPE <u>ພ86ະ</u>ຍ m 0 2 * xom H N – FORCE T-FORCE 5 (M) DESIGNED SEEPAGE LINE S * 1 50 М SCALE SV. 4-15 0 ------

4.3. Determination of Design Modulus for Irrigation and Drainage Scheme

4.3.1. Irrigation Scheme

(a) Determination of the Project Area

Out of the total cultivated area in 5 villages situated in Pakhanjore district, that is, Tribal, P.V. 42, P.V. 13, P.V. 14, and P.V. 43, the area of 638 acres (258.2 ha) are selected as the project area depending upon the water resources for the Pakhanjore tank.

The project area of 638 acres (258.2 ha) can be divided largely into two land categories, Low Land and Up Land, owing to the geographical conditions. The former is located in the right bank of the main irrigation canal, and utilized for paddy fields during the rainy season by rainfed irrigation, but some areas are non-cultivated area.

On the other hand, the latter is located in the left bank, and utilized for paddy fields during the rainy season as same as the former. Table 4.3.1-1 indicates the breakdown of project area by the village.

Villages	Low L		Up L		Tota]
villages	Cultivated area	Non-cultivated area	Cultivated area	Non-cultivated area	
Tribal	66	34	58		158
P.V. 42	· 28		4	7	39
P.V. 13	71		41	18	130
P.V. 14	177				177
P.V. 43	134				134
	476		103	25	638

Table 4.3.1-1 Breakdown of the Project Area

(Unit: Acre)

(b) Estimation of Irrigation Water Requirement

Proposed Cropping Pattern

As shown in Tables 4.3.1-5 to 4.3.1-10, 6 cropping patterns are designed for the each village respectively. Periphery district indicated in Table 4.3.2-10 is situated around the Pakhanjore tank, and the lands in this district are utilized for Up Land fields by lifting irrigation from the Pakhanjore tank through year.

Consumptive Use of Water

Estimation of consumptive use of water by crops are made by applying Blanney-Criddle formula, based upon the meteorological data because of no available data concerning to the consumptive use of water for crops, as same as in Mixed Farm. Blanney-Criddle formula used for the estimation of consumptive use is expressed in the following formula;

$$U = K \cdot F = K \cdot \frac{P \cdot t}{100}$$

Where;	U :	Monthly consumptive use, in inch
	К:	Monthly coefficient
	F :	Monthly consumptive use coefficient (t x p)/100
	Р:	Percentage of day-time hours occuring in the month
	t:	Mean temperature, in Fahrenheit

The results of calculation for estimating the consumptive use for Low Land crops (paddy) and Up Land crops are given in Tables 4.3.1-2 to 4.3.1-3 depending upon the proposed cropping pattern described previously and Blanney-Criddle formula.

In this calculation, following assumptions are made.

Percolation: According to the percolation test in the existing paddy fields, the rate of percolation is decided to be 2.0 mm

(Paddy)
Crops
Land
Low
for
Use
Consumptive
Monthly
of
Calculation
Table 4.3.1-2

Item	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.	[†] Total
Representative cropping pattern for the calcula-	Pac	Paddy Rice		30		15	Paddy	Paddy Rice	30		23		
tion of water requirement			-	-								_	-
Temperature, T (°C)	20.2	22.8	24.4	30.7	33.3	31.7	26.9	25.5	26.9	25.8	23.4	18.9	
Temperature, T (°F)	68.3	73.0	75.9	87.3	91.9	89.1	80,5	9.77	80.4	78.4	71.9	67.8	
Consumptive Use Factor, F	5.29	5.29	6.38	7.44	•	8.02	7.45	6.98	6.67	•	۱	١	
Consumptive Use Coefficient, K	0.80	1.30	1.40	1.20	•	0.80	1.30	1.40	1.20	ı	,	ı	
Consumptive Use U ₁ (in/month)	4.23	6,88	8.93	8,93	ł	6.42	9,69	9.77	8.00	ı	ı	1	62.85
Consumptive Use U ₂ (mm/month)	107.4	174.8	226.8	226.8	ı	163.1	246.1	248.2	203.2	•	ı	Ŧ	1,596.4
Percolation P (mm/month)	62.0	56.0	62.0	60.09	ı	60.0	62.0	62.0	60.0	ı	.'	t	484.0
Puddling Water Req. Pa (mm)	ı											150.0	150.0
Irrigation Requirement (U ₂ +P+Pa) (mm)	169.4	230.8	288.8	286.8		223.1	308.1	310.2	263.2		97.0	150.0	2,230.4
Table 4.3.1-3 Calcu	Calculation of Monthly Consumptive Use for Up Land Crops	of Month	.Iy Cons	umptive	Use fr	or Up La	and Croj	ŝ					
Item	Jan.	Feb.	Mar.	Apr.	May	Чш.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Representative cropping pattern for the calcula- tion of water requirement			nth up]	15 3month upland crops15	ps15	 12 12	nth up	15 4month upland crops	ps 31	B 4mor	th uple	4month upland crovs	5
Temperature, T (°C)	20.2	22.8	24.4	30.7	33.3	31.7	26.9	25.5	26.9	25.8	23.4	18.9	
Temperature, T (°F)	68.3	73.0	75.9	87.3	6'16	89,1	80.5	9.77	80.4	78.4	71.9	67.8	
Consumptive Use Factor, F	5.29	5,29	6.38	7.44	8.41	8.02	7.45	6.98	6.61	6.41	5.45	5,19	
Consumptive Use Coefficient. K	0,80	0.45	0.70	0.75	0.65	0.65	0.70	0.75	0.70	0.40	0.65	0.85	

52.92

Consumptive Use, U (in/month) 4.23 2.38 4,46 5.58 5.47 5.21 5.21 5.24 4.63 2.56 3.54 4.41

60.5 113.3 141.7 138.9 132.3 132.3 133.0 117.6 65.0

Consumptive Use, (mm/month) 107.4

60.5 113.3 141.7 138.9 132.3 132.3 133.0 117.6

107.4

Irrigation Requirement (mm/month)

89.9 112.0 1,343.9 89.9 112.0 1,343.9

65.0

•

per day. The soil texture of loamy clay covers almost all project area, the rate of percolation is considered to be relatively small.

Puddling Water Requirement:

Rainy season paddy will be sown together with the coming of monsoon season, hence no puddling water requirement is necessary. However, dry season paddy will be sown together with the coming of monsoon season by transplanting cultivation. The puddling water requirement for nursery bed is decided to be 150 mm as follows;

Thickness of top soil for cultivation	:	150 mm
Porosity of soil	:	40 %
Submergence depth after puddling	:	50 mm
Puddling water requirement (250mm x 0.4) + 50mm =		150 mm

Net Irrigation Requirement

Net irrigation requirement can be estimated by subtracting the effective rainfall from the irrigation requirement obtained by adding the percolation rates and puddling water requirement to the consumptive use.

In determining the design effective rainfall, 9 years rainfall records observed at Mixed Farm are available. From these rainfall records, an approximately 10-year probable rainfall, which corresponds to 1,421.5 mm in 1966, is determined as the design rainfall by using Hazen paper. However, as is seen in the records, a large fluctuation of rainfall during the dry season (October to March) can be found out. Consequently, the averaged rainfall is decided to be the design rainfall concerning the dry season.

From these selected monthly rainfalls, 75 percent of monthly rainfall is determined to be effective rainfall by making the reference to the report of Paralkote dam. Table 4.3.1-4 shows the effective rainfall for the project.

Month	10-year Probable Rainfall	Corrected Rainfall	Effective Rainfall
1	56.0	10.2	7.7
2	-	11.1	8,3
3	5,1	28.3	· 21.2
4	24.3	24.3	18.2
. 5	24.2	24.2	18.2
6	85.5	85.5	64.1
7	420.2	420.2	315.2
8	345.9	345.9	259.4
9	293.4	293.4	220.1
10	61.0	42.9	32.2
11	9.0	5.3	4.0
12	96.9	17.6	13.2
Total	1,421.5	1,308.9	981.8

Table 4.3.1-4 Effective Rainfall, in mm -

Irrigation Water Requirement

Irrigation water requirement can be computed by divided the net irrigation requirement (irrigation requirement-effective rainfall) by irrigation efficiency and conveyance loss, as expressed in following expression;

$$I.W.R = \frac{N.I.R}{E(1-L)}$$

Where; I.W.R : Irrigation water requirement (mm)
N.I.R : Net irrigation requirement (mm)
Irrigation requirement-Effective rainfall
E : Irrigation efficiency, assumed to be 0.65
L : Conveyance loss, assumed to be 0.20

The results of estimation for irrigation water requirement are shown in Tables 4.3.1-5 to 4.3.1-10.

Tabl	Table 4.3.1-5	Proposed	Cropping Pattern and Estimation of Irrigation Water Requirement	Pattern	and Est	imation	of Irri	igation	Water	Require	ment		(Tribal)
Description	Ш	Apr. May	Jun.	Jul.	Aug.	Sep. C	Oct · I	Nov.	Dec.	Jan.	Feb.	Mar.	Remarks
Proposed Crops		⁰	15	95 Acre						16 /	16 Acre		Total Area to be Irrigated: 158 Acre
Paday		286.8	118.1	308.1	310.2	263.2		15	150	169.4 2. 48 Acre	230.8	288.8 10	
Wheat							8 94 A	9.7	112.0	107.4	60.5	36.6	
Mustard		~	5	32 4	Acre		8.2		112:0	86:7			
Ragi			66.2	132,3		117.6	-10.5 5			÷			
Hy. Maize			66.2	132.3	133.0	117.6	10.5						
Alaha			66.2	41	-	117.6	10.5						
Area to be	Paddy	16	95	95	95	95			16	16	16	16	
Irrigated (acre)	Upland	•	63	63	63	63	157	142	142	142	48	48	
	• Paddy	286.8	118.1	308.1	310.2	263.2			150	169.4	230.8	288.8	
Requirement (mm/month)	Upland		66.2	132.3	133.0	117.6	33.1	69.8	112.0	97.5	60.5	36.6	
Effective	Paddy	18.2	34.2	315.2	259,4	220.1			4.7	7.7	8.3	21.2	
Rainfall (mm/month)	Upland		34.2	315.2	259,4	220.1	32.2	4.0	13.2	7.7	8.3	6.8	
Net Irrigation	Paddy	268.6	83.9		50,8	43.1			145.3	161.7	222.5	267.6	
Requirement (mm/month)	Upland		32.0		i		6.0	65.8	98.8	89.8	62.2	29.8	
Irrigation Water Requirement										:			Irrigation Efficiency: 0.65
Farm Head Gate	Paddy	268.6	83.8		50,8	43.1			145.3	161.7	222.5	267.6	Conveyance Loss: 20%
Req. (mm/month)	Upland		49.2				1.4	101.3	152.1	138.2	95.7	45.9	$\Sigma Q = 163.82 \cdot x \cdot 10^3 \text{ m}^3$
Diversion Re-	Paddy	335.8	104.9		63.5	53.9			181,6	202.1	278.1	334.5	$\Sigma Q = 332.49 \times 10^3 m^3$
quirement (mm/month)	Upland		61.5				1.8	126.6	190.1	172.9	119.6	57.4	
Diversion Re-	Paddy	21.74	54.17		24.41	20.72			11.76	13.09	18.01	21.66	
quirement (10 ³ m ³ /month)	Upland		15.68				1.14	72.75	109.24	99.30	23.23	11.15	
Total (10 ³ $m^3/month$)	ith)	21.74	69.85		24,41	20.72	1.14	72.75	121.0	112.39	41.24	32.81	ΣQ = 518.05 × 10 ³ m ³

.

L	Table 4.3.1-6		roposed	Proposed Cropping Pattern and Estimation of Irrigation Water Requirement	ng Patti	ern and	Estima	tion of	Irriga	tion Wa	ter Req	uiremen	ц	(P.V. 42)
Description		Apr.	Мау	Jun.	Jul.	Aug.	Sen.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Remarks
Propôsed Crops		30		1.5	39 Ac	Acre	°°.			21	39 A	Acre	 	4
Paddy		286.8		118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	Irrigated: 39 Acre
Area to be Irrigated (acre)	Paddy Upland	39		39	39	39	39			39	39	39	39	
Irrigation Requirement (mm/month)	Paddy Upland	286.8		118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
Effective Rainfall (mm/month)	Paddy Upland	18.2		34.2	315.2	259.4	220.1			4.7	7.7	8.3	21.2	
Net Irrigation Requirement (mm/month)	Paddy Upland	268.6		83.9		50.8	43.1			145.3	161.7	222.5	267.6	
Irrigation Water Requirement											- 			
Farm Head Gate Req. (mm/month)	Paddy Upland	268.6		83.9		50,8	43.1			145.3	161.7	222.5	267.6	Irrigation Efficiency: 0.65 Conveyance Loss: 20%
Diversion Re- quirement (mm/month)	Paddy Upland	335.8		104.9		63.5	53.9			181.6	202.1	278.1	334.5	
Diversion Re- Paddy quirement (10 ³ m ³ /month) Upland	Paddy Upland	53.00		16,56		10.02	8.51			28.66	31.90	43.89	52.79	$EQ = 245,33 \times 10^3 m^3$
Total (10 ³ m ³ /month)	aonth)	53.00		16.56		10.02	8.51			28.66	31.90	43.89	52.79	$\Sigma Q = 245.33 \times 10^3 \mathrm{m}^3$

Description		Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	(P.V. 13) Remarks
Proposed Crops		c			130 Acre				 	-	23 Acre			Total Area to be
Paddy	•1 -	286.8		118.1	308.1	310.2	263.2		15	150.01	169.4	230.8	288.8	Irrigated: 130 Acre
Wheat	•								49.7	112.01	107.4	60.5	36.6	
Mustard	-							48.2 8	89.9 12	112.0 Acre	86.7	31		
Potato		20						48.2	89.9 15 16		107.4			
Vegetaute		94.5					, . 		49.7	112.0 0	107.4	60.5	113.3	
Area to be	Paddy	23		130	130	130	130			23	23	23	23	
Irrigated (acre)	Upland	16						45	107	107	107	62	62	
Irrigation	Paddy	286.8		118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
Requirement (mm/month)	Upland	94.5						48.2	66.6	112.0	101.0	60.5	75.0	
Effective	Paddy	18.2		34.2	315.2	259.4	220.1			4.7	7.7	8.3	21.2	
Kaintall (mm/month)	Upland	12.1						23.9	4.0	13.2	7.7	8.3	21.2	
Net Irrigation	Paddy	268.6		83.9		50.8	43.1			145.3	161.7	222.5	267.6	
Kequirement (mm/month)	Up1 and	82.4						24.3	62.6	98,8	93.3	52.2	53.8	
Irrigation Water														Irrigation Efficiency: 0.65
kequifement Farm Head Gafe	Deddu	368 K		0 18		с С	1 27			145 2	161 7	775 5	767 6	Conveyance loss: 20%
Req. (mm/month)	Upland	126.8					100	37.4	96.3	152.0	143.6	80.3	82.8	
Diversion Re-	Paddy	335.8		104.9		63.5	53.1			181.6	202.1	278.1	334.5	
quirement (mm/month)	Upland	158.5						43.4	120.4	190.1	179.5	100.4	103.5	
Diversion Re-	Paddy	31.26		44.14		26.73	22.67			16.90	18.81	25,89	31.13	$\Sigma Q = 217.53 \times 10^3 m^3$
quirement (10 ³ m³/month)	Upland	10.26						7.90	52.14	82.32	77.73	25.19	25.97	ΣQ = 281.51 × 10 ³ m ³
Total (10 ³ m ³ /month)	tonth)	41.52		44.14		26.73	22.67	7.90	52.14	99.22	96.54	51.08	57.10	$\Sigma Q = 499.04 \times 10^3 m^3$

Proposed Cropping Pattern and Estimation of Irrigation Water Requirement Table 4.3.1-7

Description		Apr. May	Jun.	<u>Jul. 1</u>	AUE.	Sep.	Oct. 1	Nov. 1	May Jun. Jul. Aug. Sen. Oct. Nev. Nev. Ian Ear	ue]	Lah	10 M	(P.V. 14)
Ductor of Contract		⊢	┝		t		;		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1110	reu.	Mar.	Kemarks
rroposed crops Paddy		30	15	135 Acre	Le Le	ĉ			21 -			·	Total Area to be Irripated: 177 Acre
Wheat		0,002	11.811	508.1	310.2	263.2		 5 [150.0 1(62 Acre	169.4	230.8	288.8	
Mistard							 0	49.7	2 Acre	107.4	60.5	36.6	
							48.2	10.08	112.0	86.3			
rotato				,			48.2	89.9 112.	112.0	86.7			
Til					106	42 Acre 117.6 65	cre 65.0	30.0					
Area to be Trrigat 41 (acro)	Paddy	31	135	135	135	135			31	31	31	31	
	Upland				42	42	126	146	146	146	62	62	
Irrigation Requirement	Paddy	286.8	118.1	308.1	310.2	263.2			150.0	169.4	230.8	288.8	
(mm/month)	Up land				90.1	117.6	53.8	63.3	112.0	95.5	60.5	36.6	
Effective Rainfall	Paddy	18.2	34.2	315.2	259.4	220.1			4.7	7.7	8.3	21.2	
(mm/month)	Upland				175.7	220.1	32.2	4.0	13.2	7.7	8,3	6.8	
Net Irrigation Requirement	Paddy	268.6	83,9		50.8	43.1			145.3	161.7	222.5	267.6	
(mm/month)	Upland						21.6	59.3	98.86	87.8	52.2	29.8	
Irrigation Water Requirement													Irrigation Efficiency:
Farm Head Gate Rec. fmm Acorth)	Paddy	268.6	83.9		50.8	43.1			145.3	161.7	222.5	267.6	Conveyance Loss: 20%
	Upland						33.2	91.3	152.1	135.1	80.3	45.9	
Diversion Re-	Paddy	335.8	104.9		63.5	53.9						334.5	
(mm/month)	Upland						41.5	114.1	190.1	168.9		57.4	-
Diversion Re-	Paddy	42.13	57.31		34.69	29.45			22.78	25.35	34.89	41.96	$x0 = 288.56 \times 10^3 m^3$
(10 ³ m ³ /month)	Upland						21.16	67.42	-	99,80	25.19	14.40	$= 340.27 \times 10^3$
Total (10 ³ m ³ /month)	onth)	42.13	57.31		34.69	29.45	21.16	67.42	67.42 135.08 125.15	125.15	60.08	56.36	$\Sigma 0 = 628.83 \times 10^3 \text{ m}^3$

Table 4.3.1-8 Proposed Cropping Pattern and Estimation of Irrigation Water Requirement

Description	~	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	(P.V. 43) Remarks
Proposed Crops		ç		2	134 Acr.					16	44 Acre			Total Area to be Irrigated: 134 Acre
Paddy	- 8-,, -,	286.8		118.1	308.1 3	310.2	263.2		ų	150.01	169.4	230.8	288.8	
Wheat									49.7	112.0	7.4	60.5	36.6	
Hy. Maize				<u> </u>				48.2	89.9		4	10.8	<u> </u>	
Potato							~ 	48.2	6.93	7 ACT6 112.0	107.4			
Vegetable		20 94.5							15	<u>16 Acre</u> 112.0	e 107.4	60.5	113.3	
Are to be	Paddy	44		134	134	134	134			44	44	44	44	
Irrigated (acre)	Upland	16						40	06	06	06	83	60	
Irrigation	Paddy	286.8		118.1	308.1	310.2	263.2	17.2		150.0	169.4	230.8	288.8	
Requirement (mm/month)	Upland	94.5						48.2	63.1	112.0	107.4	46.7	75.0	
Effective	Paddy	18.2		34.2	315.2	259.4	220.1			4.7	7.7	8.3	21.2	
Rainfall (mm/month)	Upland	12.1						23.9	4.0	13.2	7.7	8,3	21.2	
Net Irrigation	Paddy	268.6		83.9		50.8	43.1			145.3	161.7	222.5	267.6	
Requirement (mm/month)	Upland	82.4						24.3	59,1	98.8	66.7	38.4	53.8	
Irrigation Water Requirement					- - -									Irrigation Efficiency: 0.65
Farm Head Gate	Paddy	268.6		83.9		50.8	43.1			145.3	161.7	222.5	267.6	Conveyance Loss: 20%
Keq. (mm/montn)	Upland	126.8						37.4	91.0	152.1	153.4	59.1	82.8	
Diversion Re- auirement	Paddy	335.8		104.9		63.5	53.1			181.6	202.1	278.1	334.5	
(mm.month)	Upland	158.5						46.8	113.8	190.1	191.8	73.9	103.5	
Diversion Re-	Paddy	59.79		56.89		34.44	28.80			32.34	35,99	49.52	59.56	$\Sigma Q = 357.33 \times 10^3 m^3$
quirement (10 ³ m ³ /month)	Upland	10.26						7.58	41.45	69.24	69.86	24.82	25.13	$\Sigma Q = 248.34 \times 10^3 m^3$
Total (10 ³ m ³ /month)		70.05		56.89		34.44	28.80	7.58	41.45	41.45 101.58 105.85	105.85	74.34	84.69	$gq = 605.67 \times 10^3 m^3$

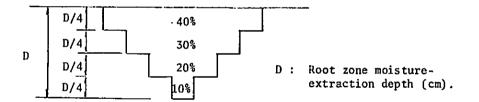
Proposed Cropping Pattern and Estimation of Irrigation Water Requirement Table 4.3.1-9

Description		Apr.	Mav		1.11	4611	Sen 1	+=0	Not				-	(Periphery)
wonced from					+-	-í.	•		-+-	_	Jan.	reo.	Mar.	Remarks
Plantain						-	89 Acre							Total Area to be Irrigated: 120 Acre
Betel Vine Orchard		141.7	138.9	132.3	132.3	133.0 	117.6	114.0	89.9	112.0	107.4	60.5	113.3	
Vegetab1e		20 94.5	<u> </u>				- <u></u>		15		S Acre			
Potato								8 48.2		Acre	107.4			
Area to be Irrigatéd (acre)	Paddy Upland	114	68	89	- 68	- 68	68	95	120	120	120	114	- 114	
Irrigation Requirement (mm/month)	Paddy Upland	131.3	138.9	132.3	132.3	133.0	117.6	109.8	81.5	112.0	107.4	60.5	113.3	
Bffective Rainfall (um/month)	Paddy Upland	18.2	18.2	64.1	315.2	259.4 220.1	220.1	24.9	4.0	13.2	7.7	8.3	21:2	
Net Irrigation Requirement (mm/month)	Päddy Upland	113.1	120.7	68.2				84.9	77.5	98.5	69.7	52.2	92.1	
Irrigation Water Requirement														Irrigation Efficiency:
Farm Head Gate Req. (mm.month)	Paddy Upland	173.9	185.6	104.9				130.6	119.2	151.5	153.3	80.3	141,6	0.65 Conveyance Loss: 15%
Diversion Re- quirement (mm/month)	Paddy Upland	204.5	218.3	123.4				153.6	140.2	178.2 180.3	180.3		166.5	
Diversion Re- quirement (10 ³ m³/month)	Paddy Up1and	94.35	78.63	44.45				59,05	68.09	86.54	87,56	43.55	76.82	ΣQ= 639.04 × 10 ³ m ³
Total (10 ³ m ³ /month)	th)	94.35	78.63	44.45				59.05	68.09	86.54	87.56	43.55	76.82	

Proposed Cropping Pattern and Estimation of Irrigation Water Requirement Table 4.3.1-10

(c) Frequency of Irrigation

Available Moisture


The results of analysis on an available moisture of the soil sampled from the existing paddy fields in both areas, Low Land and Up Land, has been already shown in Chapter 2, "Soil".

From the results of analysis, an available moisture of soil is determined to be 22 percent for Low Land, and 17 percent for Up Land respectively, as the representative value of soil moisture for whole project area.

Average Moisture-Extraction Pattern and Effective Root Zone Depth

Moisture-extraction pattern is different from crops, but following average pattern indicated in Fig. 4.3.1-2 is decided to be the design moisture-extraction pattern.

Fig. 4.3.1-2 Average Moisture-Extraction Pattern

Design effective root zone is classified into two types of moisture-. extraction depth such as 1.20 m and 0.6 m according to the experimental report, Method for Scheduling and Determining Depth of Irrigation Employing Consumptive Use by Dr. S.E. $Roy \frac{1}{}$.

^{1/} Derived from the Report of "Fifth Near East-South Asia Irrigation Practice Seminar".

Table 4.3.1-11 indicates the effective root zone depth for representative crops.

Table 4.3.1-11 Effective Root Zone Depth of Representative Crops

Crops	Depth of Rooting
Maize	120 cm
Wheat	120
Groundnut	120
Up Land paddy	120
Low Land paddy	60

Total Readily Available Moisture (T.R.A.M) and Net Amount of Water to be Replaced at Each Irrigation

The calculations of total readily available moisture (T.R.A.M) and net amount of water to be replaced at each irrigation are made on the two cases of the effective root zone of 1.20 m and 0.60 m by Low Land and Up Land fields. Table 4.3.1-12 gives the results of calculation and Tables 4.3.1-13 to 14 give the procedures of calculation.

Table 4.3.1-12 Net Amount of Water to be Replaced, in mm

Crops		Water to be Replaced
	Low Land	Up Land
Low Land crops	120	90
Up Land crops	60	45

Frequency of Irrigation

Maximum safe interval of application for irrigation is ascertained by dividing the total readily available moisture computed previously by the peak consumptive use per day, provided that there is no rainfall. Namely, estimation of maximum interval of irrigation is expressed in the following formula;

> = <u>Net amount of water to be replaced</u> Peak rate of consumptive use per day

Maximum interval of irrigation for Low Land;

Up Land crops : $\frac{125}{141.7/30} \div 25$ days Low Land crops : $\frac{60.0}{310.2/31} \div 6$ days

Maximum interval of irrigation for Up Land;

Up Land crops	:	<u>90.0</u> 141.7/30	÷	19 days
Low Land crops	:	$\frac{45.0}{310.2/31}$	ŧ	5 days

From the result of calculation (Tables 4.3.1-13 to 14), though the maximum irrigation intervals for irrigation fluctuate widely by locations and crops, these calculated figures indicate an ideal irrigation intervals. According to the verbal information and experimental data at Mixed Farm, about 10 days irrigation intervals have been adopted for Up Land crops.

Based on these experimental data and the calculated figures, the irrigation intervals in the project are determined to be 10 days for Up Land crops and 7 days for Low Land crops respectively.

(E)	(2)	(3)	(4)	(5)	9	(2)	
Depth (cm)	A.M (mm)	Ratio of mois- (2)/(3) ture-extraction (mm)	(2)/(3) (mm)	Restricting layer of moisture	T.R.A.M. (mm)	Restricting layer T.R.A.M. Net amount of water of moisture (mm) to be replaced (mm)	Remarks
0 - 30	66.0	0.4	165.0	*	165.0	115.5	30 cmx22%=66mm
30 - 60	66.0	0.3	220.0			÷ 120.0	
60 - 90	66.0	0.2	330.0				
90 - 120	66.0	0.1	660.0				
Total	264.0						

Land
Low
for
Replaced
be
to
Water
of
Amoun t
Net
Table 4.3.1-13

I.20 m
Depth:
Moisture-Extraction
Design
Class-1.

Class-2. Design Moisture-Extraction Depth: 0.60 m

(1)	(2)	(3)	(4)	(2)	(9)	(4)	
Depth (cm)	А.М (тт)	mois- raction	(2)/(3) (m)	Restricting layer of moisture	T.R.A.M. 1 (mm)	<pre>(2)/(3) Restricting layer T.R.A.M. Net amount of water Remarks (mm) of moisture (mm) to be replaced (mm)</pre>	Remarks
0 - 15	33.0	. 0.4	82.5	*	82.5	57.8 1	15 ^{cm} x15%=33 ^{mm}
15 - 30	33.0	0.3	110.0			÷ 60,0	
30 - 45	33.0	0.2	165.0				
45 - 60	33.0	0.1	330.0				
Total	132.0						

Note: Net amount of water to be replaced = T.R.A.M. x 0.7

	to be replaced (mm) 5 89,9 30 ^{cm} ×17%=51,0 ^{mm}	÷ 90.0			
(6) T.R.A.M.	(mm) 128.5				
(5) Restricting layer of moisture	OI MOISTUTE *				
(4) (2)/(3) (mm)	128.5	170.0	255.0	510.0	
(3) Ratio of mois- ture-extraction	ture-extraction 0.4	0.3	0.2	0.1	
(2) A.M.	51.0	51.0	51.0	51.0	
(1) Depth (cm)	0 - 30	30 - 60	60 - 90	90 - 120	Total

Note: Net amount of water to be replaced = T.R.A.M. x 0.7

Total

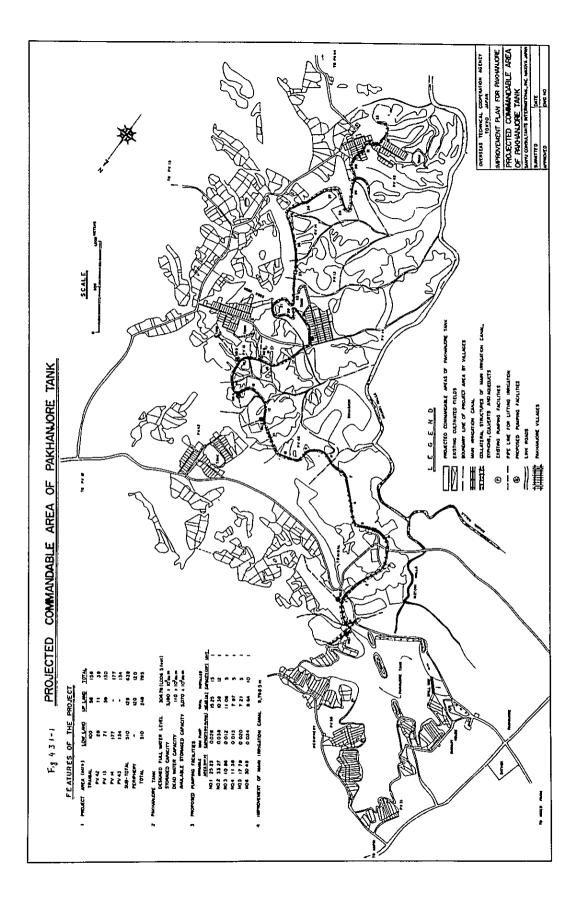
4.3.2. Drainage Scheme

(a) Design Basic Rainfall

Daily rainfall records of 9 years from 1961 to 1966, observed at Mixed Farm, are available for study on the drainage scheme. Out of these available rainfall records, maximum daily rainfall is selected and design basic rainfall for the drainage scheme is determined to be 191 mm, which corresponds to the return period of 10-years probable daily rainfall, by using Hazen paper.

(b) Calculation of Unit Drainage Discharge

Paddy Fields


Unit surface drainage discharge for paddy fields is computed depending upon the assumption that the flood produced by the design rainfall, 191 mm corresponding to 10-years probable daily rainfall, is to be drained in 24 hours. Therefore, unit surface drainage discharge for paddy fields is calculated as follows;

$$Q = \frac{C.A.R.}{86,400}$$

Where; Q : Unit discharge for paddy fields per ha, in cu.m C : Run-off coefficient A : Unit area, in ha R : Design daily rainfall, in mm $= \frac{1.0 \times 1.0 ha \times 10^4 \times 191^{mm} \times 10^{-3}}{86,400}$ = 0.0231 cu.m/sec/ha

Up Land Fields

Procedure of determining the unit surface drainage discharge for Up Land fields is the same to that of paddy fields except the following assumptions.

Run-off coefficient (c) is assumed to be 70 percent; and the flood is to be drained in 12 hours owing to the difference of topographic conditions in comparison with that of paddy fields. Subsequently, unit surface drainage discharge for Up Land fields is calculated to be 0.0306 cu.m/sec/ha.

4.4. Irrigation and Drainage Scheme

4.4.1. Irrigation Scheme

Irrigation System

Irrigation water will be distributed from the main irrigation canal connecting with Pakhanjore tank, which is the only water resources for the project area. Namely, Low Land areas, located in the right bank of the main irrigation canal, will be irrigated directly from the main irrigation canal by management of gates to be installed, and Up Land areas, located in the left bank of the main irrigation canal, will be irrigated by lift irrigation of pumps installed near the site of main irrigation canal.

Fig. 4.4.1-1 indicates the diagram of water supply systems for the project area.

Irrigation Method

Irrigation methods will be varied with the crops introduced by the project, Table 4.4.1-1 gives the irrigation method for the representative crops.

Crops	Irrigation Method
Paddy	Intermitted Irrigation
Hy. Maize	Flood Irrigation (after sowing, 45 periods of day)
	Furrow Irrigation (after flood irrigation, 60 periods of day)
Wheat	- ditto -
	- ditto -

Table 4.4.1-1 Irrigation Methods for Representative Crops

Irrigation Water Requirement

Based upon the proposed cropping pattern established for each village, the monthly irrigation water requirement taking into account of no effective rainfall is computed to be 360 L/sec/ha.

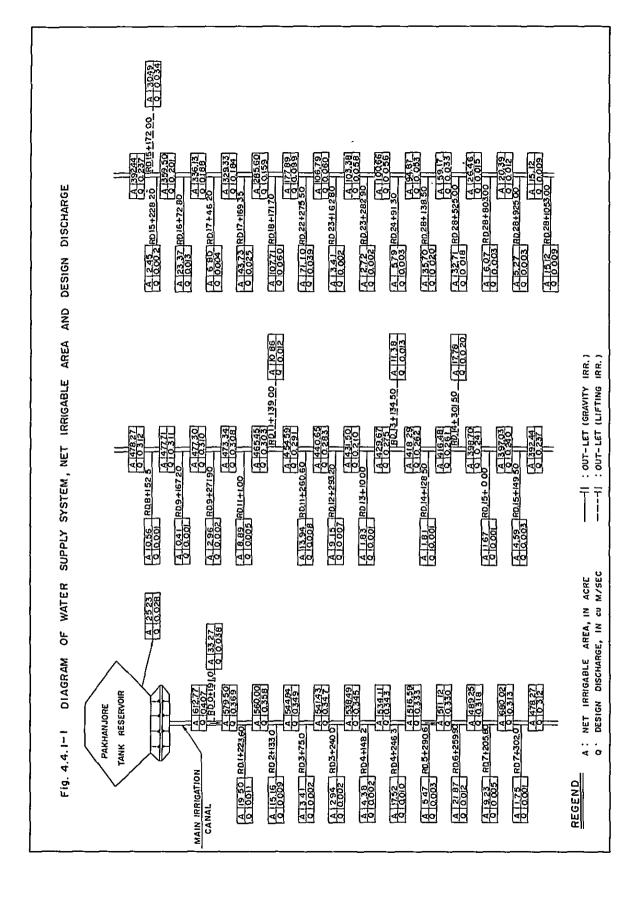
From the results of calculation, maximum irrigation water requirement for whole project areas of 638 acres is amounted to be 0.407 cu.m/sec as shown in Fig. 4.2.1-1, by assuming that the irrigation periods of time per day is 24 hours for paddy fields and 12 hours for Up Land fields respectively.

Each maximum irrigation water requirement at distribution point for each block is illustrated in Fig. 4.4.1-1.

Proposed Facilities

Irrigation Canals:

Irrigation canals in the fields are classified into two types, submain and lateral canals, according to the required capacities of water and location. These sub-main and lateral irrigation canals are to be constructed by using the concrete U-type flume, which will be fabrication in the site by the metal frame transported from Japan, in order to reduce the cross sectional area of canal and to lower the conveyance loss of water.


Pumping Facilities:

As described in previously, Up Land areas selected as the one portion of the project area has to be irrigated by pumps because of no available of gravity irrigation from the main canal due to high elevation on the topography.

Table 4.4.1-2 shows the required pumping station and its project areas, and also Table 4.4.1-3 indicates the dimentions of pumps required.

Pipe time Loss Head Loss Head Loss Head (%).) (m) (12) (13)=(7)x(12)		3.0 2.10	3.3 0.89	3.8 0.65	2.3 0.89	2.1 0.78	Note: <u>1</u> / Total Head = Actual Head + Loss Head + Pump Loss(1.00m) <u>2</u> / Water Horse Power = 0.222 × <u>0.H</u> (HP) where Q : Capacity (cu.m/min) H : Total Head (m) mp: Efficiency (%)	$\underline{3}$ / Shaft Horse power = Water Horse power x 1.3 (HP)
Delivery Bore (mm) (11)	250	250	150	150	200	250	tual Head + er = 0.222 (cu.m/min) ad (m) cy (%)	er = Water
Suction Bore (mm) (10)	150 - 125	150 - 125	100 - 80	100 - 80	125 - 100	150 - 125	<pre>1/ Total Head = Actual Head + Loss 2/ Water Horse Power = 0.222 x Q.H here Q : Capacity (cu.m/min) H : Total Head (m) np: Efficiency (%)</pre>	$\overline{3}$ / Shaft Horse power = Water Horse power x 1.3 (HP)
Pump Capacity cu.m/sec cu.m/min (8) (9)	1.68	2.28	0.72	0.78	1.20	2.04	lote: <u>1</u> / Tc <u>2</u> / Wi where	<u>3</u> / S
Pump (cu.m/sec (8)	0.028	0.038	0.012	0.013	0.020	0.034	4	
Length of Pipe Line (m) (7)	394.0	700.0	269.0	171.0	388.0	373.0	Unit (19) 1 1 1 1 1	1
_	13.66	7.23	9.17	6.22	5.32	6.86	Installed Capacity 4/ (HP) (18) 13 12 5 5 5	თ .
Delivery Actual Level (m) Head <u>1</u> / (m) (6)	313,89	307.15	307,85	304.70	303.60	305,05	3/	3.67
Suction Level (m) (4)	300.228- 306.324	299.92	298,68	298.48	298.28	298.19	0 2	
Accumulative Distance (m) (3)	M	0.191	3,436.0	4,042.0	4,511.1	4,698.6	Po d	2.82
	i							68 73
Distance (m) (2)	RD.0	RD.0+191.0	RD.11+139.0	RD.13+134.5	RD.14+301.5	RD.15+172.0	I Head 13)+1.0 ^π 25 33 06	7.21
No.of Pumps (1)	-	2	ы	4	ŝ	9	Total Total (m) (m) (m) (m) (14) (5) + (1) 15. 10. 11.	7.0

Table 4.4.1-3 Dimensions of Required Pumps for Up Land

Pumping Station	Location	Area	Pump Capacity ^{1/}
		acre	l/sec
No. 1	Tribai:	25.23	28.0
No. 2	P.V. 42	33,27	38.0
No. 3	P.V. 42	10,86	12.0
No. 4	P.V. 13	11.38	13.0
No. 5	P.V. 13	17,78	20.0
No. 6	P.V. 13	30,49	34.0

Required Pumping Station

Note: 1/ 2 x 360 L/sec/ha x Area

4.4.2. Drainage Scheme

Table 4.4.1-2

Prior to design of the drainage facilities, drainage systems in fields shall be established, depending upon the land consolidation plan. After establishment of drainage systems, the design flood drainage discharge can be calculated by multiplying the commandable area of drainage by the unit drainage discharge. As for the unit drainage discharge, since the project area is mainly utilized for paddy fields, unit drainage discharge.for paddy fields of 0.0231 cu.m/sec can be adaptable for the computation of the flood discharge.

To drain the flood drainage discharge earth drainage canals, having the side slopes of 1:1 and design hydraulic gradient of 1/500 will be constructed. Therefore, drop works will be provided according to land fluctuation, if required.

4.5. Examination of Water Resources

4.5.1. Examination of Water Balance for Pakhanjore Tank

Supplemental Water for Irrigation

From the results of analysis for irrigation water requirement on the design year, it was obviously found out that the supplemental irrigation will be required during the rainy season, because of occurrence of consecutive droughty day more than 10-days in spite of the duration of the rainy season.

Annual required supplemental irrigation water for the areas (Tribal;, P.V. 42, P.V. 13, P.V. 14, P.V. 43 and Periphery), which rely upon the water resources of irrigation for the Pakhanjore tank, is of approximately $3,135 \times 10^3$ cu.m, and its monthly fluctuation can be illustrated, as shown in Fig. 4.5.1-1.

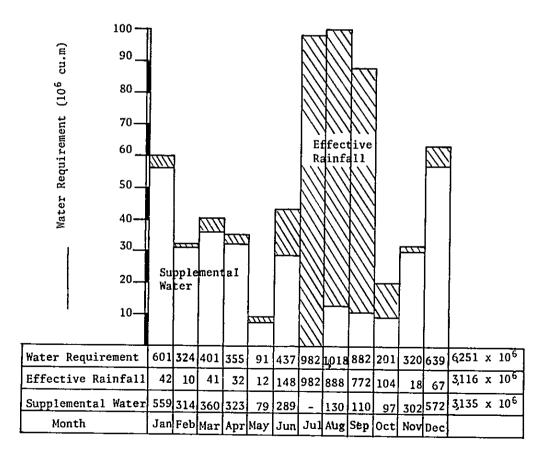


Fig. 4.5.1-1 Monthly Supplemental Water

Evaporation from Pakhanjore Tank

References to the report of Pakhanjore Tank are made, so as to determine the evaporation rate from water surface, and monthly evaporation rates are dicided as following table.

Month	Evaporation Rate	(mm/month)
Jan.	90.4	
Feb.	108.2	
Mar.	198.1	
Apr.	280.4	
May	393.0	
Jun.	191.0	
Jul.	84.6	
Aug.	77.7	
Sep.	72.6	
Oct.	86.6	
Nov.	79.8	
Dec.	74.4 .	
Total	1,736.8	<u> </u>

Table 4.5.1-2 Evaporation Rate from Water Surface

(b) Inflow to Pakhanjore Tank

٠

The inflow to the Pakhanjore tank is of the run-off discharge produced by storm and base flow. Average run-off discharge is computed on the basis of 10-years probable rainfall by applying Alexander Binny's Percentage, which is adopted in Madhaya Pradesh (M.P) to estimate the run-off discharge for the lack of other relevant data available for the monsoon season, that is, from June to October. On the other hand, though rainfalls can be seen even in the dry season, these rainfalls are not taken into account for the studies of water resources. For an estimation of the base flow from the catchment areas of Pakhanjore tank of 15.02 sq.km, the observation data of 0.804 l/sec/sq.km, which was carried out at the Anjari Nalla in Mixed Farm by using the Vnotch weir, are applied to the catchment areas of Pakhanjore tank.

Table 4.5.1-3 shows the calculated inflow water to the Pakhanjore tank according to the above descriptions.

Month	Rainfall <u>1</u> /	Accumu- lated Rainfall	Total Runoff by Rainfall	Runoff during	Base Flow _{3/}	Total	Runoff 4/
	(mm)	(mm)	(mm)	the month (mm) <u>2</u> /	(mm)	(mm)	$(10^3 m^3)$
1	10.2			r	2.1	2.1	31,542
2	11.1				1.9	1.9	28,538
3	28.3				2.1	2.1	31,542
4	24.3				2.1	2.1	31,542
5	24.2				2.1	2.1	31,542
6	85.5	85,5	0.4	0.4	2.1	2.5	37,550
7	420.2	505.7	82.0	81.6	2.1	83.7	1,257,173
8	345.9	851.6	261.0	179.0 _	2.1	181.1	2,720,122
9	293.4	1,145.0	473.0	212.0	2.1	214.1	3,215,782
10	42.9	1,187.9	504.0	31.0	2.1	33.1	497,162
11	5.3				2.1	2.1	31,542
12	17.6			,	Ž.1	2.1	31,542
Total	1,308.9			504.0	25.0	533.0	7,945,039

Table 4.5.1-3 Rumoff Statement for the Design Year (1966)

Note: 1/ See Table 4.3.1-4

2/ Estimated by applying Alexander Binny's Percentage curve (Fig. 4.5.2-1)

 $3/q = 0.804 \ l/sec/sq.km$

- $= 0.804 \ \text{l/sec} \times 10^{-3} \times 86,400 \times 30/10^{6}$
- = 2.1 mm/month
- 4/ (Runoff discharge + Base flow) x catchment area of 15.02 sq.km

(c) Calculation of Water Balance for Pakhanjore Tank

As stated previously, dimensions of Pakhanjore tank are summarised as following descriptions;

Full water surface	:	306.32 m (1,005 feet)
Storage capacity	:	$2,670 \times 10^3$ cu.m
Dead water capacity	:	$110 \times 10^3 \text{ cu.m}$
Available storage capacity	:	2,560 x 10 ³ cu.m

The calculations of water balance for Pakhanjore tank having the above mentioned features are made as shown in Table 4.5.1-4 by considering the outflow from and inflow to Pakhanjore tank. As is seen in Table 4.5.1-4, shortage water of 816 x 10^3 cu.m, equivalent to 32 percent of existing available storage capacity of 2,560 x 10^3 cu.m, can be seen in the design year, and it lasts for four months from April to June prior to monsoon season.

So as to solve the shortage water of Pakhanjore tank, following two methods can be considered. One method is such that the shortage water has to be supplied by the discharge from Paralkote dam under construction supervised by Indian Government, and the other way is of raising the full water level by improving the spillway of Pakhanjore tank, hence some portions of shortage water will be solved.

In the former case, it is impossible to expect the discharge from Paralkote dam in the early stage since some periods of year will be required to complete the construction of Paralkote dam. Therefore, though the shortage water will be supplied by the discharge from Paralkote dam after the implementation of dam in the future, as a first stage, the shortage water will be covered partially by raising the full water level owing to improvement of spillway of Pakhanjore tank.

According to the investigation of the vicinity of Pakhanjore tank,

Month	servoir Level,	water surface Area, in sq.m	Inflow, in cu.m/month	cu.m/month	Evaporation mm/month cu.m	ation cu.m/month	or Addition,		Uver Flow, in cu.m/	in cu.m/
Ξ	л н (2)	(3)	(4)	(2)	(9)		лп сц.т/топтл (8)	cu.m/month (9)	month (10)	month (11)
0								2,670,000		
	306.32	2,380,000	31,542	301,850	79.8	189,924	- 460,232	2,209,768		
5	305,80	2,000,000	31,542	572,080	74.4	154.800	- 695,338	1,514,430		
4	304.87	1,410,000	31,542	559,390	90.4	127,464	- 655,312	859,118		
2	303.65	910,000	28,538	314,180	108.2	98,462	- 384,104	475,014		
3	302.40	580,000	31,542	360,570	198.1	114,898	- 443,926	110,000		(-) 78,912
4	306.50	170,000	31,542	322,790	280.4	47,668	- 338,916	110,000		(-) 338,916
ŝ	300,50	170,000	31,542	78,630	393.0	66,810	- 113,898	110,000		(-) 113,898
9	300.50	170,000	37,550	289,200	0.191	32,470	- 284,120	110,000		(-) 284,120
7	300.50	170,000	1,257,173	ı	84.6	14,382	+ 1,242,791	1,242,791		
8	304.45	1,200,000	2,720,122	130,290	7.77	93,240	+ 2,496,592	2,670,000	1,069,383	
6	306,32	2,380,000	3,215,782	110,150	72.6	172,788	+ 2,932,844	2,670,000	2,932,844	
10	306.32	2,380,000	497,162	96,830	86.6	206,108	+ 194,224	2,670,000	194,224	
Tota1			7,945,039	3,135,196	1 736 8	1,319,014			4,196,451	815,846

(Catchment Area : 15.02 sq.km)

Working Table for the Pakhanjore Tank (Existing)

Table 4.5.1-4

(9) ; As shown in Fig. 4.5.1-2, the existing full water level of Pakhanjore Tank is 306.32 m (1,005 feet), and its storage capacity is 2,670 x'10³ cu.m. Dead water level is 300.5 m (1,001 feet) and its dead water capacity is 110x10³ cu.m.

	Over Flow, Shortages, in cu.m/ in cu.m/ month month (10) (11)							(-) 174,369	(-) 113,898	(-) 284,120		061	00t	120	110 572,387
15.02 sq.km)	in	3,180,000	2,684,656	1,967,046	1,276,478	857,750	347,451	110,000	110,000	110,000	1,352,791	3,180,000 662,390	3,180,000 2,900,900	3,180,000 156,120	3,719,410
(Catchment Area : 15.02 sq.km)		3,18(-	
(Catch	Net Deduction or Addition, in cu.m/month (8)		- 495,344	- 717,610	- 690,568	- 418,728	- 510,299	- 411,820	- 113,898	- 284,120	+ 1,242,791	+ 2,489,599	+ 2,900,900	+ 156,120	
	Evaporation Amonth cu.m/month (6) (7)		225,036	177,072	162,720	133,086	180,271	120,572	66,810	32,470	14,382	100,233	204,732	244,212	1,661,596
(Plan)	目目		79.8	74.4	90.4	108.2	198.1	280.4	393.0	191.0	84.6	7.77	72.6	86.6	1,736.8
for the Pakhanjore Tank (Plan)	Draw-off, in cu.m/month (5)		301,850	572,080	559,390	314,180	360,570	322,790	78,630	289,200	ı	130,290	110,150	96,830	3,135,196
	e Inflow, 1n m cu.m/month (4)		31,542	31,542	31,542	28,538	31,542	31,542	31,542	37,550	1,257,173	2,720,122	3,215,782	497,162	7,945,039
Working Table	Water Surface Area, in sq.m (3)		2,820,000	2,380,000	1,800,000	1,230,000	910,000	430,000	170,000	170,000	170,000	1,290,000	2,820,000	2,820,000	
Table 4.5.1-5	Initial Re- servoir Level, in m (2)		306.80	306.31	305.50	304.52	303.65	301.80	300.50	300.50	300.50	304.65	306.80	306,80	
	Month (1)	10	11	12	1	7	ю	4	w	Q	7	ø	6	10	Total

÷

(6) ; Reference to Pakhanjore Dam Report prepared by Indian Government was made. Note:

(9) ; Design full water level is decided to be 306.78 m (1,006.5 feet), including the raise of water level of 45 cm (1.5 feet), and the storage capacity of Pakhanjore Tank of 3,180 x 10^3 cu.m can be expected.

raising the water level of about 45 cm (1.5 feet), from full water level of 306.32 m (1,005 feet) to 306.78 m (1,006.5 feet), will not bring the damage to not only cultivated land located in the vicinity of the tank, but also main and collateral structures.

After the implementation of improvement of spillway, approximately 510×10^3 cu.m of increased storage capacity can be expected, and full water level of 306.78 m.

Even in this case, raising the water level of about 45 cm, approximately 572 x 10^3 cu.m equivalent to 19 percent of the available storage capacity of 3,070 x 10^3 cu.m shall be shortage, while present shortage of 815 x 10^3 cu.m corresponding to 32 percent of the available storage capacity, as shown in Table 4.5.1-5.

4.5.2. Design of Spillway of Pakhanjore Tank

Existing Pakhanjore spillway is located at 1,200 meter west of the main irrigation canal, and its overflow length is approximately 100 m. No facilities is provided except the boulder stones of 70-80 cm in diameter placed on the apron imediate downstream of crest, in order to reduce the velocity of flood discharge.

In improving this spillway to expect the much more an available storage capacity, following data are referred;

- (a) The report of Agricultural Investigation in Dandakaranya Project $\frac{1}{2}$
- (b) Report of Pakhanjore Hydrology $\frac{2}{}$

2/ Derived from Indian Government.

^{1/} Prepared by Japanese teams dispatched from Overseas Technical Cooperation Agency.

Determination of Flood Discharge

According to the above data, the design flood discharge for Pakhanjore tank has been computed to be 133.1 cu.m/sec based upon the rainfall intensity of 215.9 mm/24 hours (8.5"/24 hours) corresponding to the duration of 24 hours in the 40 years return period. On the other hand, depending upon the overflow discharge of Pakhanjore spillway indicated in the report of Pakhanjore Hydrology, the probable overflow discharge is estimated as follows, by applying Gumbel-Chow formula;

Overflow Discharge, in cu.m/sec
128.5
112.1
104.2
91.4
75.7

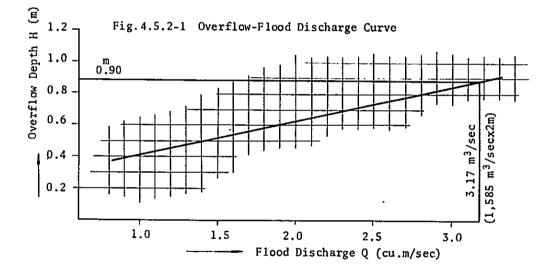
From this calculation, the overflow discharge in the 40 years return period is 104.1 cu.m/sec. Difference between the flood discharge of 133.1 cu.m/sec and overflow discharge of 104.1 cu.m/sec will come from the loss such as absorption and initial storage loss of tank. The design overflow discharge of the spillway is decided to be 133.1 cu.m/sec.

Design of Overflow Spillway

Scale of overflow spillway is designed as follows;

Distance of pier	:	2.00 m	i
Width of pier	:	0.40 m	l
Number of overflow section	:	42	
Total overflow length	:	84.0 m	L

Consequently, the overflow discharge per one section can be calculated at 3.169 cu.m/sec, and required overflow depth can be obtained by solving


the following equation;

 $Q = C \cdot L \cdot He^{3/2}$

Where; Q : Overflow discharge, in cu.m/sec/section

- C : Overflow coefficient 2.0
- L : Actural overflow length, in m L = L' - $2Ka \cdot He$
- L': Distance of pier 2.0m
- Ka : Coefficient of contraction 0.035
- He : Overflow depth, in m

Fig. 4.5.2-1 indicates the relation between the overflow discharge (Q) and the overflow depth (H), above mentioned.

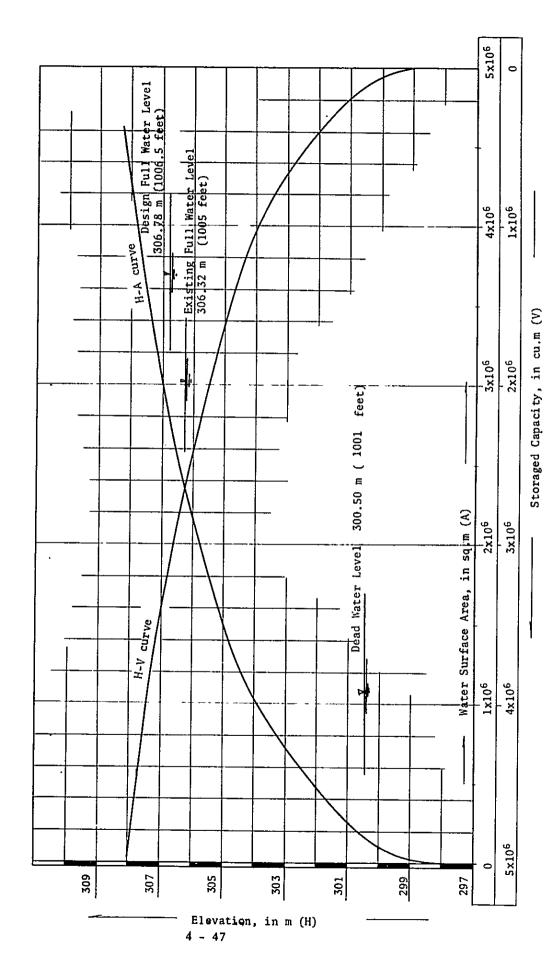
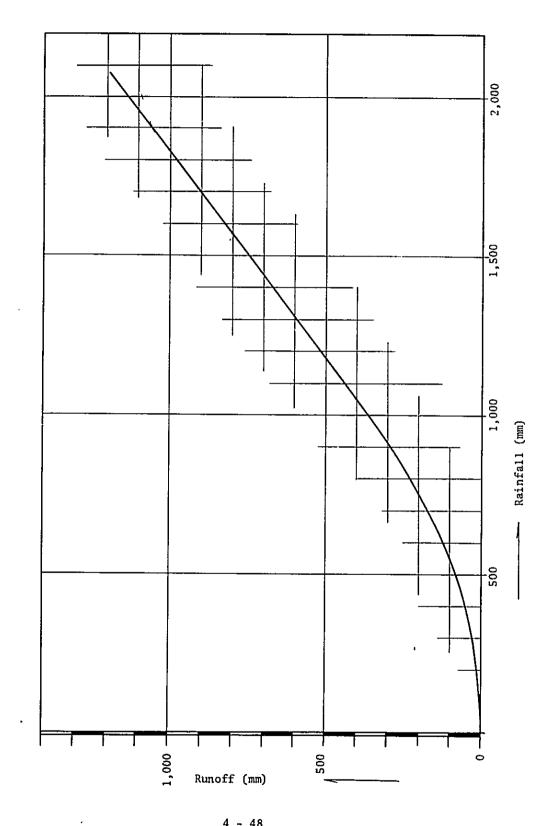



Fig. 4.5.1-2 AREA AND CAPACITY CURVE FOR PAKHANJORE TANK

From this graph, the required overflow depth can be obtained to be 0.90 m. The height of pier is designed at 1.10 m taking into account the freeboard of 0.20 m, as shown in Fig. 4.5.2-2.

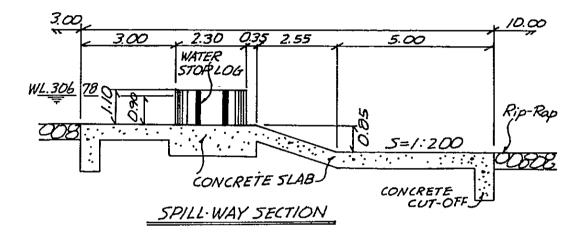
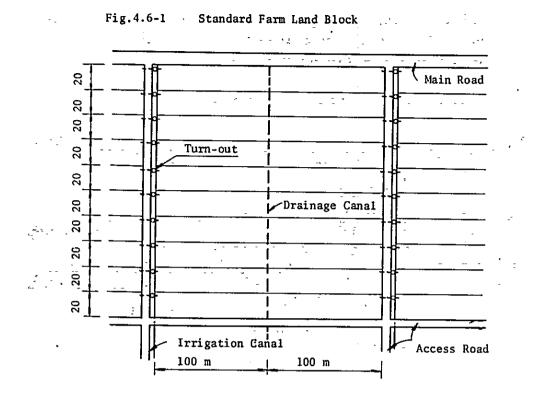



Fig. 4.5.2-2. Section of Design Spillway

4.6. Land Improvement Plan

Land improvement works, including the land readjustment, arrangement of roads, irrigation and drainage systems, and leveling works, will be carried out all over the project area, in order to introduce the mechanized agriculture, to raise the operation efficiency of agricultural equipments, and to promote the agricultural productions and the productivity of labour.

Considering the topographic restriction, economic earth moving, convenient of water management, haulage of farming materials, harvest and so forth, the size of one standard farm land block is designed to be 100 m x 20 m with the long side along the contour lateral as shown in Fig. 4.6-1.

As is seen from Fig. 4.6-1, irrigation and drainage systems in this area are established to construct irrigation and drainage canals along the short side of plot.

The leveling works against the fluctuation of land will be carried out within one farm land plot to reduce the earth moving volume. For estimating the earth moving volume (V) and haul distance (D), the convenient method developed by Agricultural Land Development Machinery Public Corpo-

4 - 50 -

ration will be used. The explanation of this method is described hereinafter.

If the coefficient of swell factor (f) used for calculating the capacity of construction equipment is assumed to be 1.0, boundary line of excavation and embankment will pass the center of figure in the plot, running parallel with contour line. Depending upon the variation of the intersection angle of θ which is made by crossing the boundary line of excavation and embankment and the line which will pass the center of figure in parallel with long side of the plot, the required earth moving volume and mean haul distance can be estimated by applying the equations indicated in Table 4.6-1.

Contour line Portion of excavation ... Boundary of excavation and embankment Portion of embankment

	V. D	h. 2. b ² 6	IKb ⁴ √ K ⁴ sin ² 0+cos ² 0 12	IK ² b ⁴ 12	$\frac{1 \text{Kb}^4 \sqrt{\text{K}^4 \text{sin}^2 \theta + \cos^2 \theta}}{12}$	h. g ² . b 6	h = Maximum depth of excavation
Equation for Estimating the Required Earth Moving Volume (V), Mean Haul Distance (D) and Output of Machine (V) $x(D)$	Equations D (m)	3 p	$\frac{2b\cos\theta\sqrt{K^4\sin^2\theta+\cos^2\theta}}{K^2\sin^2\theta+3\cos^2\theta}$	$\frac{1}{2}\sqrt{a^2+b^2}$	<u>2Kbsinθ√ K⁴sin²θ+cos²θ</u> 3K ² sın ² θ + cos ² θ	8 . <mark>8</mark> .	, t = Land slope, h = M
for Estimating the Requis I Distance (D) and Output	Ec. W. (cu.m/sq.m)	h.2.b 4	<u>IKb³(K²sin²θ+3cos²θ)</u> 24 cosθ	h.2.b 6	Ib ³ (3K ² sin ² 0+cos ² 0) 24 sin0	h.2.b 4	I = tané = $\frac{2h}{b \cos \theta + \ell \sin \theta}$
Equation Mean Hau	tion Range of θ	0 = 0	$\tan\theta < \frac{1}{K}$ $(0 \le \theta < \tan^{-1} \frac{1}{K})$	$tan\theta = \frac{1}{K}$ ($\theta = tan^{-1}\frac{1}{K}$)	$tan\theta > \frac{1}{K}$ $(90^{\circ} \ge \theta > tan^{-1} \frac{1}{K})$	θ = 90°	$K = \frac{k}{b}$, I =
Table 4.6-1	Class Description Figure Rang		II The second	111	IV 79		Remarks;

4.7. Road Plan

In this project area, main roads which is linking the principal cities and access roads which is linking the each village are maintained by Construction Department. The width of road is designed to be 6.00 m for main roads and 3.00 m for access roads. These roads are paved by moorum and its thickness is 15 cm for main roads and 7 cm for access road respectively.

The farm roads in the field are not sufficient under present condition. In the land improvement plan, farm roads will be provided along the short side of field. As for the standard section, drawing shall be referred.

4.8. Quantities for Major Construction Works in Command Area by Pakhanjore Tank

The quantities for major construction works in the Pakhanjore area are summarized as indicated in Table 4.8-1.

Table 4.8-1	Quantities	for Major	Construction	Works	in	the
	Pakhanjore					

	Major Works	Unit	Quantities
Α.	Improvement for spillway of Pakhanjore tank	Place	1
Β.	Improvement for main canals	Place	9,798.5
C.	Improvement for collateral structures of main canals		-
	Siphon	Place	6
	Aqueduct	11	1
	Culvert	11	6
	Bridge	н	2
	Measuring gauge	11	1
	Check gate	11	7
	Spillway Spillway		4
	Diversion works	н	34
	Inlet works	н	36
D .	Irrigation pump	tt	6
Ε.	Land improvement plan	Acre	638
Ρ.	Farm roads	m	9,128

Note: As for the detail of quantities, Chapter 13 shall be referred.

Chapter 5. Living Conditions Improvement Plan

Chapter 5 Living Conditions Improvement Plan

5.1 Basic Conception

As other aspects of rural life, there is much room for improvement in the aspect of living conditions. An attempt to change the old and traditional customs inevitably faces some resistance. But if there is a strong will to do so, it would not be very difficult to find some means of making life much more convenient and comfortable. In order to do this, it is essential to awaken the enthusiasm of people for taking steps forward to break away from the existing state of things.

On the other hand, however, it is also necessary that the fundamental conditions for everyday life are provided sufficiently. There are several such 'fundamental conditions but here it would be appropriate to narrow our attention down to what is considered most urgently needed at the present moment and realistic enough not to be much deviated from the realities. So, it is probably most advisable to take up the question of drainage arrangements in the village. The efficient disposal of sewage not only in the rainy season but also in the dry season is undoubtedly a problem that cannot be neglected from the standpoint of public sanitation such as the prevention of various diseases. Consumption of water will increase in proportion to the rise in the living standard and the farmland irrigation system for the dry season will eventually be provided and then it will become a serious problem how to dispose of the sewage that is produced in the village. This is not a problem that can be solved by the individual farm households. Even if they tried to tackle the problem separately on their own, not much can be expected from such endeavors. So, it is necessary to plan and build a public drainage system for the whole villages.

Since the water supply required for the everyday life of people has already be secured, the time will come soon when the development of an adequate system of municipal water supply will be taken up for consideration as the next task for the people to tackle. The introduction of electricity is also one of the important fundamental living facilities and is earnestly desired by the settlers. Therefore it should be made a pro-

blem to be solved in the future in consideration of the financial standard of the farmers at the present time. But the power transmission lines must be set up first. The improvement of kitchen facilities in the farm households, more efficient execution of domestic work, more varied and wellbalanced dietary intake, and the improvement of the way of nursing children are also important questions. It is considered that there is much room for improvement in these fields of domestic life if appropriate advices are given and the housewives themselves use their ingenuity and inventiveness.

The second conceivable plan for the improvement of living conditions is the development of the communication system of information such as wireless communication service. This will be great help to encourage the settlers in this isolated area from other districts to stir up their enthusiasm for improving their lives by keeping close contact with the wide outer world thereby receiving a wide variety of social, economic and cultural information. It can be said that the various improvements proposed in the aspect of farm management are ultimately for the uplift of the i settlers living standard and this will become a mere desk plan unless underlined by their own will and enthusiasm for improving their lives. The contact with the outer world will be a great motivation for the settlers to have a desire to move forward from the present state of things.

5.2 Execution Plans

5.2.1 Plan for the development of drainage facilities

In order to provide good drainage in the residential area for the settlers, there will be provided the main drains and branch drains to remove rain-water from the ground of the individual houses, elementary school and other establishments to the main drains. Waste water produced in the everyday lives of the people also will be removed through these drains.

5.2.2 Plan for the development of information transmission facilities

A key station will be constructed in Pakhanjore, where the kind of information which are considered useful to the settlers and which they love to hear will be selected and broadcast by radio. Some programs of Radio India will be relayed by the station to reach the settlers. It also will be possible to use this **broadcasting** system to communicate the information which public agencies and other organizations desire to deliver to the settlers. In this way the communication system will make it possible to disseminate information simultaneously and quickly over a wide range to serve the convenience of the settlers and help improve the administrative efficiency. The broadcasting will take place during the fixed periods of time every day so that the listeners may pay their attention to their speakers when the time has come. If the urgent necessity arises for sending a communication to someone who is otherwise difficult to contact immediately, anyone can ask the key station to broadcast the massage. Such emergency broadcast will be preceded by a fixed call sign so that the listeners may know an emergency broadcast is forthcoming.

The receivers will be made available at the rate of one for several households so that the settlers may receive the information service at the regular times of broadcasting in the morning, noon recess and evening. In addition to the broadcasting of information, such entertaining broadcasts as music and dramas will be transmitted from time to time. The settlers will be able to enjoy the broadcasting service only by occassionally replacing the dry batteries for their receivers. It will be possible to control the sound volume and to turn off the receiver if there is no need to listen.

This communication system helps keep the settlers informed about things which are happening in the outer world, and thus shortening the distance between them and the outer world.

A total sum of rupees of 1.2 lakh will be appropriated for this plan including the construction of the key station and for the receivers to be provided in the settlers' homes.

Chapter 6. Agriculture Cooperative Society Plan

Chapter 6 Agricultural Cooperative Society Plan

6.1 Basic Conception

a) Establishment of cooperative organization in the phase of production

In view of the actual agricultural and other conditions in this area at the present time, the highest priority should be given to the problems on how to enhance agricultural productivity and what means and methods should be used to achieve this object. It is needless to say that co-operation in the marketing of farm products and in the purchasing of goods the farmers will be necessary. But what should be done first is to establish co-operative relations among the farmers to increase their production. Not much can be expected from the endeavors of the individual farmers if they work separately where the available means of production are so poor that they have to work almost bare-handed under the very severe natural conditions. Such being the case, it is imperative for the settlers to form a co-operative organization in the phase of production if their agricultural economy is to be expanded speedily. This organization will be very closely related to the lives of the settlers and it will function mainly in the phase of agricultural production and its function will be extended further to cooperative activities in their everyday, life. It will be still too primitive to deserve the name of "co-operative society" but certainly it will become a substructure on which an agricultual co-operative society will be formed in the near future.

b) The scale of the basic productive organization

In view of the nature of the cooperative organization in the phase of production, the smallest unit of organization will consist of about five households. The constituent members will be increased in case it is needed. Such fundamental organization will be constituted by blood-ties such as brothers and relatives or friends and in some cases by the people living in the same neighborhood. It is desirable that the organization is based on the cooperative relations arising spontaneously among the settlers. c) Development of functional groups and the scope of activity and scale of the agricultural co-operative society

To nurture functional groups that have specific and definite purposes and have adequate functions to achieve their respective purposes to serve as an infrastructure of the agricultural co-operative society will be one of the effective methods for the establishment and expansion of the agricultural co-operative society. It will be a group of the operators of farming machinery or in some case a group for studying specific farming techniques. Such groups also will help promote the co-operative activity in the phase of production in the direction toward the definite purpose. These group activities will help stabilize the farm produce in variety and quality and secure an advantage for the settlers in the marketing of their products. The agricultural co-operative society, based on the activities of these functional groups, will tackle its many-sided task, such as the leasing of cultural chemicals, the advancement of both production and livelihood funds, and the marketing of farm products, and the supply of daily necessities.

Taking into consideration the scope of trading and social activities of the settlers, the most realistic and properssize of an agricultural co-operative society is the area with five to ten communities at most. This size is considered the most recommendable because if it is extended to cover too large an area it will not necessarily help increase the interest of the settlers in the co-operative society and strengthen their solidarity as the members of the society. It is very difficult for people to form really co-operative relations with total strangers. The scale of the agricultural co-operative society can be expanded as the scope of the economic activities and the sphere of action of the settlers are enlarged with the passage of time. The disadvantage arising in trading due to the smallness of scale of the society can be made up for by forcing the central co-operative association.

6.2 Execution Plan

6.2.1 Formation of mutual assistance squads

About five neighboring families will form a mutual assistance squad. The mutual assistance squads will be the basic units of organizations helping each other both in everyday life and agricultural productive activities.

Any problem to be solved by the co-operative efforts of the settlers will be discussed first within the squad. Such ceremonies as weddings and funerals will be performed co-operatively by the squad. Any work beyond the labor force of a household or the kind of work that can be done more effectively by the co-operative endeavors of several persons will be undertaken collectively by the squad. Apart from some types of work which require special talents or skills, there are probably many kinds of work which can be done more pleasantly and efficiently when many people work together. It also will be an effective method for increasing farming productivity to divide a series of tasks among many people, each specializing in a particular work. In transplanting of rice plants, for example, the farmers are divided into two groups and one group collect the seedlings from the nursery and the other plant them so that the work of transplanting may be finished quickly and the field is irrigated immediately after completion of the work so that the young rice plants can easily take root and grow well.

Apart from the above-mentioned neighborhood squad organization, there can be a voluntarily organized group of brothers and relatives to substitute or supplement the co-operative work.

6.2.2. Organization of mechanical work squads

When it is necessary to fallow hard soil or to do many works at the one time, the farm machines designed for such particular types of work ought to be employed. The operation of such a machine requires special knowledge and skill. If there is only one person specially trained in the operation of the machine, the machine will be left idle when the operator cannot work due to illness or other reasons. Therefore, it is necessary that several persons skilled in the operation of farm machinery form a squad so that they co-operate with each other to carry out the work. This squad will be formed with several young farmers quick to absorb mechanical knowledge and physically fitted for such machine operation. Such persons will be selected from among the young people of all communities and given training on a mixed farm. Any type of work such as weeding which require many assisting workers will be carried out efficiently through the co-operative operation by the mutual assistance squad and the machine operators squad.

There can be several squads specializing in the operation of specific machines or the same squad can handle several different kinds of machinery. What is important is to make it clear who is responsible for the operation of the machines and who is responsible for the maintenance and storage of them and how to share the repair cost when the machines are damaged. Normally, the farmer will pay a sum in proportion to the amount of work that has been done for him. The machines that have been supplied by the Government can be owned collectively by the squad but it is considered more advisable that such machines are owned by the agricultural co-operative society and the machine operators squad pay the rent to use the machine. The farm machinery to be supplied for this plan most likely comprise 35 power tillers, 50 power weeders, 10 power threshers and 5 corn shellers. In introducing the farm machinery it will be necessary to give due consideration to the use of the cattle for farming that have been kept. Such draught animals are so useful and economical that they ought to be used for some types of work such as puddling or stamping. It is not a wise policy to replace the animals with machinery all at once.

6.2.3. The establishment of a small-scaled multi-purpose agricultural co-operative society

a) Functions

At the present stage of development, as previously mentioned, it is essential that the basic unit of the agricultural co-operative society is on a scale corresponding as close as possible to the size of the economic sphere surrounding the settlers and the radius of their everyday activities. The P.M.A. is already in existence, making reasonable activities expected from it. However, in order to promote further the community development, a plan is made for the formation of a small-scaled agricultural co-operative society whose sphere of activity covers mainly the four communities receiving water supply from the Pakhanjore Tank. The proposed society is now tentatively called the Pakhanjore Agricultural Multi-purpose Society (PAMS).

The PAMS will make extensive activities to meet the needs of the settlers in both farm management and everyday life. The society will be provided with various kinds of farm machinery to lease them out to the above-mentioned machine operators squads. It also will have a rice mill available for use by the settlers and so the farmers' wives are free from such drudgery as rice hulling and polishing. Its many-sided activities will include the supply of daily necessities, various farming materials, seeds and so forth to the settlers. As the farm production increase, the marketing of farm products will be one of its important tasks and it will become necessary for the society to act as a bank for the settlers so that the income from the sales of their products are kept in their saving accounts.

b) Scope of activity

If the PAMS is a fully perform its functions as mentioned above, it will become necessary for it to have some full-time staff members and its office and other facilities. In order that these things are made possible for the PAMS, a scope of its activity must be defined.

According to the farm management plan in the Pakhanjore Community Development Project, the gross agricultural output of the four communities combined is estimated to expand to approximately 19.7 lakhs of rupees in

five years or about three times as much as the present 6.6 lakhs of rupees. Even if the consumption of the farm crops by the settlers themselves is assumed to increase by 20 percent over the present level, the rest of them to be placed on the market will amount to somewhere around 14.9 lakhs of rupees in market value or about 4.4 times as much as the present 3.4 lakhs of rupees. (Refer to "Income and Expenditure of the Average Farm Household") The weekly bazaar which is a place of trading and also a place of society and recreation to the settlers is indispensable in their life. Such being the case, the existing bazaar will be continued in its present size and the marketing of the farm products which will increase beyond the capacity of the bazaar will be handled by the PAMS. Then the PAMS will be handling goods amounting to about 11.5 lakhs of rupees in value. If it undertakes other works such as the supply of agricultural productive materials and necessities of life, the management of farm machinery for collective use and also the banking business (a portion of sales of farm products not immediately needed will be deposited in the settlers' saving accounts and if possible the cooperative society will manage the government loans to the settlers on behalf of the Government), the total volume of business handled by the society will amount to about 28.3 lakhs of rupees as shown on Table 6.2.2. (some extra sum will be added to this figure if the use of collective facilities and the output of agricultural industry are taken into account). Assuming the marketing and purchasing commissions to be 3 percent and the banking business commissions to be 1 percent, the cooperative society will earn 68,000 rupees or more from these operations. If this magnitude of business can be ensured for the PAMS, it will be able to employ full-time staff members of five or so to manage the business affairs so that it can continue its activities as an agricultural cooperative society.

Table 6.2.3-1 The Regional Economy and the Agricultural Co-operative Activities

**************************************	Pr	esent		Future
Classification	Total	For the agri- cultural co- operative society	Total	For the agri- cultural co- operative society
Sales of farm products	340.4	13.8	1,492.8	1,152.8
Purchases of productive materials	38,5	11.8	682.5	519.5
Purchases of necessities of life	300.6	-	745.0	320.0
(Breakdown of purchases of productive materials)	E			
Fertilizers	18.4	11.8	271.0	271.0
Agricultural chemicals	5.5	-	135.5	135.5
Farm applicances and machinery	6.8	-	113.0	113.0
Fuels	-	-	50.0	50.0
Others	8.7	-	113.0	50.0
(Breakdown of purchases of necessities of life)	Ē			
Seasonings and the like	200.2	-	350.0	100.0
Clothing	42.8	-	150.0	50.0
Articles of daily use	38.0	-	120.0	70.0
Others	19.7	-	125.0	100.0

(Unit: rupee)

		Business scale	Commission rate	Operational scale	Remarks
		rupees	6	rupees	10
	Marketing	1,153,000	3,0	34,590	
	Purchasing	840,000	3.0	25,200	
	 Agricultural produc- tive materials 	520,000	3.0	15,600	
	2) Necessities of life	320,000	3.0	9,600	
Output	Facilities for collective use	8		ರ	Income from leasing power tillers, weeding machines,etc.
	Agricultural village industry	ರ		8	Income from processing opera- tions such as rice mill, oil mill, rope-making, etc.
	Banking business	836,000	1.0	8,360	
	1) Government funds	536,000	1.0	5,360	Commissions for the custody of
	2) Funds from affiliates	300,000	1.0	3,000	government funds
Total of	Total of output and input	2,829,000 + α	1	68,150 + α	
	Wage payment to employees	5 persons	500 rupees	30,000	
ındur	Others	ı	-	38,150	

The Magnitude of Business of P.A.M.S. Table 6.2.3-2

c) Management and operation

What was discussed previously in a) and b) is a mere example to illustrate what the proposed agricultural multi-purpose cooperative society is. Now it has become pretty sure that even a group of four communities with about 230 households in total can organize and maintain its agricultural cooperative society. The next question is how to manage and operate such organization by the settlers themselves.

First, the agricultural cooperative society should be established close to the settlers so that they may be encouraged to have an enthusiasm to make full use of the society for the betterment of their farm management and everyday life. It will take a long time if you wait for such a situation to arise spontaneously. So, it will be necessary to educate the settlers on the merits of the agricultural cooperative society. For this purpose a favorable opportunity will be provided by the training of the farmers constituting the backbone of the settlers on Mixed Farm.

Next, the directors of the agricultural cooperative society must be elected by the settlers from among themselves. The elected directors of the society will make plans for the management and operation and carry them out with the approval obtained at the general meeting of the members of the society. All fundamentally important matters concerning the management and operation of the society must be decided after deliberation and voting at the general meeting. The next important matters will be decided at the meeting of directors. Not much important matters will be left to the discretion of the responsible staff members of the society.

The operational expenses of the society in its first years will be financed by the initial contribution of the members but from the second year; it must depend on the commissions received by the society from the users of its services. The financial burden on the members should be restricted to the contributions they make at the time of admission into the society. It is needless to say that when the need has arisen for expanding the scope of business of the society the members will be required to make additional contributions to raise the required fund. If any surplus is left after deducting all necessary expenses from the business income, it will be divided among the members in proportion to their use of the services of the society or be set aside as a fund for future expansion of the business of the society or for the education of the members.

In the beginning some difficulties will be experienced when the agricultural cooperative society is managed and operated by the settlers on their own. This being so, pertinent advices, guidances and assistance of the related organization will be very important for the successful operation of the society.

6.3. The farmers' Cooperative Society Consciousness at the Present Time

Speaking briefly, the farmers' cooperative society consciousness has not yet developed to a high degree. There are several reasons for this. First, the farm production is still on such a small scale and the farm household economy is on such a low level that there is presently little actual necessity for doing something by organizing an agricultural cooperative society. Another reason is that the merchandise economy has not yet advanced to such a degree that the evils such as the intermediate exploitation by wicked traders are felt keenly. However, the settlers seems to be growing increasingly aware of the necessity of their cooperative society. Their growing awareness of the necessity of an agricultural cooperative society is reflected in what they said. For instance, some settlers expressed their desire to have a cooperative society to given them a loan of money to cover their living expenses when they have no cash. Presently they have to buy on credit their daily necessities from the permanent shops at the bazaar and make payments (about 20 percent more than the prices at the time of purchase) in the autumnal season of harvet. Some people said they wanted to increase output of their farms

by collectively using farm machines with their brothers and friends. These opinions were the most typical of what we had heard from the settlers. We also heard an opinion that the farm products would be sold at much higher prices if they can be delivered to the large market (Raipur). We asked the settlers a question as to what they expected most from the agricultural cooperative organization and most of them answered unanimously they wanted to sell their products at proper market prices and purchase goods at reasonably low prices. Most of the settlers undoubtedly have a certain degree of awareness of the usefulness of an agricultural cooperative society. But they still do not seems to have reached the stage where they feel keenly the necessity of such organization. "The idea of the agricultural cooperative society is very good all right but we have so far managed to get along somehow without it and we are still doing so. But it would be better to have it in the future". This seemed to be the average opinion of the settlers. As their farm production actually increases considerably in the future, such a negative way of thinking will change to a very positive one and the time for such a change is likely to come soon.

6.4. Conceivable farm Village Industry

At present there is virtually no farm work during about two-third of the year and there is no opportunity to engage themselves in any side job except the work on the dam site. Women do not go out to work on the farm and stay at home to manage domestic affairs but there is not so much work as to keep them busy all day long. Even when irrigation water become available to make possible the cultivation of crops during the dry season in the near future, the settlers will have considerable time left after doing their farm work. If such surplus labor is used productively, the living conditions of the settlers will be improved more rapidly.

Presently, the farm crops produced in this area are delivered unprocessed to distant markets. If these farm products are processed to some degree by the settlers themselves and then delivered to the markets, it will increase the market value of their products and make productive use of their surplus labor. This would really be killing two birds with . one stone.

Farm village industry is well worth considering as good solution to the above two problems.

The following kinds of farm village industry are considered recommendable for this area.

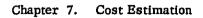
- Rice mill
- 2) Oil mill
- 3) Rope-making
- 4) Manufacture of jute bags
- 5) Manufacture of starch
- 6) Manufacture of canned fruits, green peas, etc.
- 7) Others

There is already erected a rice mill at Kapusi and a similar installation will be needed at Pakhanjore, too, as the production of rice increases in this area. The oil mill is a facility for extracting oils from the seeds of sesame and rape that are cultivated in this area. The production of sesame and rape seeds in this area will increase further owing to the introduction of new varieties of these plants. The oil mill will greatly help increase the market value of these products and moreover increase the supply of edible oils for the settlers to improve their diets. 3) and 4) are the manufacturing of products with increased commercial value out of Kenaf which is presently shipped out roughly bundled after being barked and dried. For the rope-making, it will be desirable to introduce a machine capable of making rope from rice straws. 4) is the manufacturing of jute bags that are generally used for packing grains. This will be greatly beneficial for the settlers who have to purchase jute bags for delivering; their products to the market. 5) is the manufacturing of starch from the maize and potatoes which have been shipped out unprocessed. Starch can be sold at high and stabilized prices. 6) is the

canning of fruits and green peas peculiar to this district so that they may last long. 7) as for the others, there must be some work in which the nimble hands of women can be used effectively.

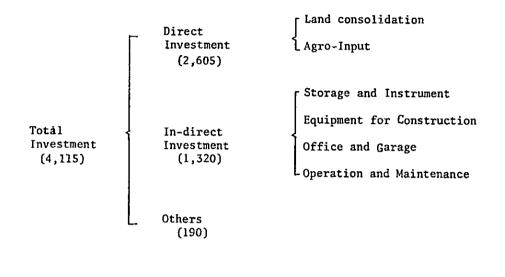
Whatever industry is adopted, it is necessary to make sufficient preparations in advance such as careful market research, technical studies and completion of efficient management arrangements because there is not much instances of such farm village industry in other districts. Since special skills are required, it will also be an important problem how to recruit and train such workers. For the introduction of the facilities except the rice mill, it is considered necessary to start full-scale operation after passing an experimental stage. We think that the types of industry described in 1), 2) and 3) can be introduced at the present moment. It is an important problem where these industrial facilities will be located and who will be in charge of the management and operation of them. For it is considered difficult to manage such industrial operations profitably without some management sense and marketing knowledge and ability. Such being the case, it is necessary that such industrial facilities are installed in Mixed Farm in the first several years in order to acquire necessary technical and management knowledge and skill.

They will be transferred to the agricultural cooperative society only after sufficient experiences have been gained and it has been ascertained that they will be profitably operated by the settlers. The farm village industry, closely related with the marketing activities of the agricultural cooperative society, is expected to grow steadily.


Planned Installation of Rice-polishing Machines, Oil Presses and Rope-Making machines

Taking into consideration the actual state of things in the farm villages and the progress of the development program, we have chosen the type of rice-polishing machine which is mainly aimed at saving the labor for polishing the rice for the settlers' own consumption and has a surplus

capacity for polishing rice for the villages in the vicinity.


The oil press will be the type which combines the functions of seed crasher, oil press and oil filter and is capable of meeting the needs of the settlers' own and also of the neighboring villages.

As for the rope-making machine, the type that is capable of making ropes ranging from 1/16 in. to 1/4 in. in diameter from rice straws and jute.

Cost-estimation of this project has been done in each category of investment as follows.

.

* Unit = 1,000 Rs.

The result of estimation is summarized as follows:

			<u>(Unit=1,000 Rs.)</u>
Kind of Investment	Local-Currency Component	Fore t gn-Exchange Component	Total
Direct Investment	1,230	1,375	2,605
Indirect Investment	310	1,010	1,320
Other Investment	30	160	190
Total Investment	1,570	2,545	4,115

Remarks: Cost estimation is based on "SCHEDULE OF RATES DANDAKARANYA PROJECT IN FORCE FROM 15-11-1963 and Japanese specification is adoped for construction equipment.

<u> </u>				1,000 Rs)	
Item	Description	Cost	Foreign	Component Domestic	Remarks
Irrigation Works	Renovation of shape & gradient canal structures, Measuring facility, Reservoir (spillway) Irrigation facility for paddy and upland	930	310	620	See Table 7-
Land Con- solidation	Land Shaping,, Field arrangement, Road, Bridge, Drainage, etc.	855	245	610	See Table 7-2
	Sub-Total	1,785	555	1,230	
Agro. Initial- Input	Agricultural Machinery & instrument:	430	430	-	
	Fertilizer:	270	270	-	
	Chemicals & Seeds	120	120	-	
	Sub-Total	820	820	-	
Better Living	Farm stead drainage: Wireless information	10	_	10	
	service	120	120	-	
Farmer Coo- perative	Prefab storage, Oil mill,Rice mill, Rope making machine, Building:	210	160	50	
	Vehicles:	80	80	-	
Construction					
Equipment		650	650	-	
Operation	Runing expence, Main- tenance	250	-	250	
	Sub-Total	1,320	1,010	310	
Miscellaneous	Inland Transportation and Others	50	20	30	<u>.</u>
	Ship fransportation	140	140	-	
	Sub-Total	190	160	30	
	Total	4,115	2,545	1,570	

Table 7-1 Cost Estimation

,

i	Item	Cost (Rs)	Currency Forei on	Currency Component (Rs) Foreign Domestic	Remarks		
1	Renovation of Reservoir	122,690	1,880	120,810	(1,883) 120,807	×	100%
2.	Irrigation Main Canals	269,230	44,500	224,730	(44,501) 224,727	×	100%
_	Irrigation Branch Canals	295,410	41,540	253,870	(16,146) 98,684	×	257.26% ¹ /
	4. Pumps & Pipe Lines	244,490	221,790	22,700	(221,790) 22,696	×	100%
5.	Drainage Canals	19,600	960	18,640	(372) 7,244	×	257.26\$
6.	Farm Roads	147,450	35,190	112,260	(13,678) 43,638	×	257.26\$
	Field Arrangement	687,050	206,630	480,420	(80,320) 186,744	×	257.26\$
	Total (Item 1 - 7)	1,785,920	552,490	1,233,430			

Note 1/ 257.26% = 100 x Benefited area by whole Pakhanjore Project ; 638 acre Low Land area in P.V. 13 & P.V. 14 ; 284 acre

Table 7-2 Estimates of Direct Investment Cost

Chapter 8. Economic Justification of the Project

Chapter 8. Economic Justification of the Project

8.1. Introduction

This project is a Pakhanjore community development programme which is including land consolidation for all over Pakhanjore area. The evaluation criteria of this project is based on Mixed Farm Improvement Plan.

8.2. Benefits from Direct Investment (Benefits accruing to the immediate project-area)

The balance between the net-profit being raised from agricultural production on 638 acres of cultivated land which is dotted along the Paralkote district main road in Pakhanjore, so called P.V.13, P.V.14, P.V.42, PV43 and Traibal area, and the net-profit available therefrom upon completion of the project will stand as benefit attributable to the direct investment under this project Setion 2 see Chapter 3.

8.3. Economicality of the Project

Economicality of the direct-investment part of the project will be examined here on the basis of socio-economic survey conducted in the year proceeding to commencement of the project (that is 1973)

8.3.1. Annual Incremental Net Benefit

Improvement-effects of the project on the productivity-increase are supposed to work through annual incremental process until it reaches at specific turn-over at the end of the fifth year. Assuming the economic useful life as 30 years and annual interest-rute at 6%, an annual incremental net benefit will be calculated at Rs 598,290.

Year	Net Incremen	ntal Profit	Its Present Worth
1	Rupee	0	0
2	Rupees	181,000	161,090
3	H.	313,000	262,795
4		542,000	429,318
5 30	11	716,834	7,382,028
	Tot	tal	8,235,231

Annual incremental profit = Rs $8,235,231 \ge 0.07265 = Rs 598,290$ (0.07265 = Capital-recovery factor)

8.3.2. Annual Cost and Expenditure

The above-calculated profit is due to direct-investments meant for land consolidation and initial input for betterment of farm-management in the project-area. The investment for betterment of farm-management is being estimated in the annual production-cost when calculated annual incremental net-profit, hence the land consolidation investment alone stands as annual cost involved in our estimation.

At the assumed annual interest-rate of 6% the total of the annual costs for land consolidation works will come to Rs 129,993.

Year	Land Consolidation Works Cost (including the interest during construction period)	Its Present Worth
1	1,003,732	946,921
2	946,495	842,381
Total	1,950,227	1,789,302

Annual cost, Rs 1,789,302 x 0.07265 = 129,993 (0.07265 = capital-recovery factor) 8.3.3. Annual Operation Cost

For maintenance and operation cost of the structures newly built under the project, an incremental cost of Rs 52,888 will be required, in addition to Rs 2,833 as for depreciation or replacement-cost of pumps (supposing their economic useful life lasts for 15 years)

 Replacement-cost of pumps = Rs 99,130

 Present-worth of pumps = Rs 39,018 (Rs 99,130 x 0.3936)

 Annual-cost of pumps = Rs 2,833 (Rs 39,018 x 0.07265)

8.3.4. Benefit-cost Ratio

(1)	Annual	incremental	benefit	Rs 598,290	
(2)	Annual	Cost,	Construction cost	Rs 129,993	
			ዐ & M cost	<u>Rs 55,726</u>	
			Total	Rs 185,719	

(3) Benefit-cost ratio

$$\frac{598,290}{185,719} = 3.22$$

VOLUME II. FINAL DESIGN FOR PAKHANJORE COMMUNITY

Chapter 9. Outline of the Project

Chapter 9. General Description of Final Design

9-1. Objective of the Project

The villagers in Pakhanjore region, after entering into the under reclaimed jungle, have conquered many difficulties with big efforts, which they were confronted with in their reclaiming works as settlers, and at last succeeded in attaining their first object to stabilize their livings as independent farmers.

However, it is further required to reform the fluctuation of their land and improve thier farming technique, if they expect more stabilized farm management passing out of the existing farming system, in which only single cropping is performed in the rainy season. Therefore, the village developing scheme including the land consolidation works will be performed at P.V. 13 and P.V. 14, through which the main irrigation canals run from Pakhanjore Tank.

In another words, the target of the project is to bring the villagers more stabilized farm management and higher level of living by training them to increase their agricultural products.

As to Up Land, lift irrigation will be introduced to the farmers, including the Traibal to improve their farming.

It is expected that the project will be successfully accomplished, and it will work as one of the demonstrations for new farming against many people who live in the vicinity of this project area.

9-2. Basic Conception of the Project

1) This village developing scheme will be carried out in the two villages,

PV.13 and PV. 14, which locate in the catchment area of the right ba k of the main irrigation canal from Pakhanjore Tank, and whose blocks of cultivable lands are relatively large.

- 2) Farm management planning taking into account the double cropping, including paddy rice, will be performed.
- 3) The existing main canal from Pakhanjore Tank and the others will be adjusted if required.
- To increase the available storage capacities of Pakhanjore Tank, the spillway will be improved.
- 5) Land consolidation works, such as land readjustment, land leveling and improvement on construction of irrigation & drainage canals and farm roads will be carried out.
- 6) Training for leveling up the villagers' living will be conducted in P.V. 13 and P.V. 14.
- 9.3. Scales of the Project

Followings are determined as the scale of this project.

- 1) Village P.V. 13 P.V. 14
- 2) Area 248 acres in the right bank area of the main irrigation canal from Pakhanjore Tank, and 124 acres; 6 blocks in the left bank of the canal.
- 3) Construction Period The Government of Japan is ready to cooperate for five years about the followings; improvement of farm management, land consolidation works and leveling up of the villagers' living.

4) Project Cost

Total project cost:	$3,020 \times 10^3 \text{ Rs}$
Domestic Currency:	1,045 x 10 ³ Rs
Foreign Currency:	1,975 x 10 ³ Rs

5) Major Land Consolidation Works

Farm Land Consolidation P.V. 13, 14:	248 acres
Improvement of Main Irrigation Canal:	9,798.5 m
Pumping Facilities:	6 places
Improvement of Pakhanjore Spillway:	l place

-

•

Chapter 10. Farm Management Practical Plan

Chapter 10 Farm Management Practical Plan

`

Crops Cropping Paddy 52.7 % Maize 8.8 Kenaf 17.5 Sesame (Til) 21.0 Total 100.0						
52.7 8.8 17.5 (ril) 21.0 100.0	Cropping Area	Yield per Acrè	Unit Price	Benefit per Acre	Total	Total Renefit
le (Til) 1	143 acres	50 maund	24 rupees	1,200 rupees	7,150 maund	7,150 maund 171,600 rupees
ie (Til)	23	40	20	800	920	18.400
le (Til)	47	14	30	420	658	19,740
144 B	57	6	75	450	342	25,650
Dati	270					235,390
Crops Cropping Ratio	Cropping Area	Yield per Acre	Unit Price	Benefit per Acre	Total Yiełd	Total Benefit
Paddy 18 %	23 acres	60 maund	24 rupees	1,440 rupees	1,380 maund	33,120 rupees
Wheat 35	:46	40	40	1,660	1,840	73,600
Mustard 26	33	20	50	1,000	660	33,000
Potato g	12	150	25	3,750	1,800	45,000
12	16	10	30	300	160	4,800
Total 100	130					189,520

Cropping Plans and Estimated Benefits in P.V. 13

•

Table 10-1

10-2

•

5	Cropping		Fertilizer		:	Agricultural chemicals	ica 1s		-	Weedlclde			
Ac	Acreage	Contents of Fertilizer		Quantity per acre	Quantity per acreage	Artícle	tity acre	Quantity per acreage	Article	Quantity per acce	Quantity per acreage	Seed	
R	acre			ΥĘ	kg								
1	143	N=45	Potassium Sulfate.583	100	14,300	Ruberon. Tablet form 20 tablet 2,860 tablet	20 tablet	2,860 tablet					950 kg
		P=30	P.C P Urea Compound	80	11,440	Buraesu Dust form	12 kg	1,716 kg				J-10 95	950 kg
		X=15	Urea	40	5,720	Benapon' Dust form	15 kg	2,145 kg				IR-8 95	950 kg
						E.P.N Dust form	12 kg	1,716 kg	•	•	•		
	23	N=45	Ammonium Sulfate	100	2,300	E P.V Dust form	12 kg	256 kg	Linuron	600 g	13,800 g	13,800 g Hy. Gangalol 138 kg	ol 138 kg
		P=30	Supperphosphato	180	4,140								
		K=15	Urea	50	1,150								
			Potassium Chioride	25	575								
	47	N=10	Ammonium Sulfate	20	2,350							A4J-1	
		P=15	Supperphosphate	001	4,700								94 kg
		K=10	Potassium Chloride	20	940								
	57	N=10	Ammonium Sulfate	20	2,850	Ekachin: Liquid form 150 cc	150 cc	8,550 cc	•	b	1	T-128	114 kg
		p=10	Supperphosphate	70	3,990								I

ę	
Weedici	
I Chemicals,	
[Fertilizer, Agricultural	
Production Materials (Fertilizer,	for Kharlf
Materials	1 D.V. 17
Production	and Seed)
Table 10-2	

.

	Cronthe		Fertilizer			Agricul	Agricultural chemicals	815	Weedlcide	cide			
Crops	Acreage	Contents of Fertilizer	of Article er	Quantity per acre	Quantity per acreage	Article	Quantity Quanity Der acre Der acre	Quanity Der acreage	Article	Quantity Der acre	Quantity ner acreage	Seed	
-	BCFC			540 X	kg.								
Paddy	23	N=45	Potassium Sulfate 585	5 100	2,300	Ruberon; Table form	20 tablet	460 tablet				Padma 230 kg	l kg
		P=30	P.C.P. Urea Compund	80	1,840	Buraesu. Dust form	12 kg	276 kg				J-10 23(230 kg
		K=15	Urea	40	920	Denapon: Dust form	15 kg	315 kg					
						E.P.N : Dust form	12 kg	276 kg					
Wheat	46	N=50	Potassium Sulfate 585	5 200	9,200	Е.М.Р.	20 tablet	920 tablet				S-308 276 kg	kg
		P=30	Urea	50	2,300	(Ruberon)						S-227 276 kg	kg
		K=15	:										
Hustard	33	N=10	Ammonium Sulfate	20	1,650	Ekachin' Liquid form	20 CC	19,800 cc				8-85 25	25 kg
		P=16	Supperphosphate	100	3,300							T-12 25	25 kg
		K-10	Potassium Chioride	20	660						-		
Potato	12	N=45	I. B. Compund 604	200	2,400	Daljiston Dust form	8 kg	96 kg				Kufrisanda	Kufrisandrí-4.nóð kg
		P=30	Urea	30	360	Erusun: Liquid form	600 cc	7,230 cc					
		K=15	Supperphosphate	20	840							Milatry	4,000 kg
Pulses	16	N=10	Ammonium Sulfate	50	800							Hung	160 kg
		P=20	Supper phosphate	125	2,000		•					•	•

Seed)	
bna	
Weedicide	
Chemicals,	
Agricultural	
(Fertilizer,	
Materials	TITININ JOY
Production	
Table 10-3	

•

•

Crops	Cropping Ratio	Cropping Area	Yield per Acre	Unit Price	Benefit per Acre	Total Yield	Total Benefit
Paddy	53 %	135 acres	50 maund	24 rupees	1,200 rupees	6,750 maund	162,000 rupees
Sesame (Til)	18	47	6	75	450	282	21,150
Mustard	18	47	14	30	420	658	19,740
Maize	8	21	40	20	800	840	16,800
Pulses	ю	8,	10	30	300	80	2,400
Total		258					222,090
Crops	Cropping Ratio	Cropping Area	Yield per Acre	Unit Price	Benefit per Acre	Total Yield	Total Benefit
Paddy	18 %	31 acres	60 maund	24 rupees	1,440 rupees	1,860 maund	44,640 rupees
Weat	35	62	40	40	1,600	2,480	002 166 0
Mustard	35	62	20	50	1,000	1,240	62,000
Potato	12	22	150	25	3,750	3,300	82,500
Total		1 77					012 000

Table 10-4 Cropping Plans and Estimated Benefits in P.V. 14

	Crontne		Fertilizer			Agriculti	Agricultural chemicals	als		headtotde		
Urops	Acreage	Contents of Fertilizer	f Article	Quantity Der acre	Quantity Der acreage	Article	Quantity Quantity	Quantity	Article	Quantity	Quantity	Sced
	acre			KG K	at X			101 00100 Fod		ber arte	het artonde	
Paddy	135	N=45	Potassium Sulfate 585	100	13,500	Ruberon: Tablet form 20tablet	20tablet	Z.700tablet				Padma 000 to
		P=30	P.C.F. Urea Compound	80	10,800	Buraesu. Dust form	12 kg	1,620 kg				
		K=15	Urea	40	5,400	Denapon: Dust form E.P.N.: Dust form	15 kg 12 kg	2,000 kg 1,620 kg				
Ĩ	47	N=10 P=10	Armonium Sulfate Superphosphate	20 20	2,350 3,290	Ekachin: Liquid form 150 cc	150 cc	7,000 cc				T-128 92 kg
Mustard	47	N=10 P=15 K=10	Ammonium Sulfate Superphosphate Potassium Chloride	50 100 20	2,350 4,700 940							AYU-1 94 kg
Natze	21	N=45 P=30 K=15	Azmonium Sulfate Superphosphate Urea Potassium Chloride	100 180 25	2,100 3,780 1,050 425	E,P N: Dust form	12 kg	252 kg	Linuron	600 g	12,600 g	lly Gangalol 126 kg
Pulse	æ	N=10 P=20	Armonium Sulfate Superphosphate	50 125	400 1,000							Mung 80 kg

Table 10-5 Production Naterials (Fertilizer, Agricultural Chemicals, Meedicide and Seed) in PV 14 for Kharif

,

	Croneine		Fertilizer			Agricultural chemicals	hemicals			Weedtcide			
Crops	Acreage	Contents of Fertilizer	Article	Quantity per acre	Quantity per acreage	Article	Quantity Quantity per acre per acre	Quantity Quantity per acre per acreage	Article	Quantity per acre	Quantity per acreage	Sced	Pa
	acre			κg	kg								
Paddy	31	N=45	Potassium Sulfate 585	100	3,100	Ruberun: Tablet form 20 tablet	20 tablet	620 tablet				Padma 310 kg	510 kg
		P=30	P C.P. Urea Compound	80	2,480	Buraesu Dust form	12 J g	372 kg				J-10 3	310 kg
		K-15	Urea	40	1,240	Denapon' Dust form	15 kg	465 kg					
						E P N. Dust form	12 kg	372 kg					
Wheat	62	N=50	Potassium Sulfate	200	12,400	Е.Р.И.: Ротв	20tablet	20tablet 1,240tablet				S-308 372 kg	372 kg
		P=30	Urea	50	3,100	(Ruberon)						S-227 372 kg	172 ke
		K=15											•
Mustard	62	01=N	Ammonium Sulfate	50	3,100	Ekachin Liquid form 400 cc	400 cc	24,800 cc				B-85	46 kg
		P-10	Superphosphate	100	6,200							T-12	46 kg
		K=10	Potassium Chloride	20	1,240								
Potato	22	N=50	I.B. Compound 604	200	4,400	Daijiston. Dust form 8 kg	8 15	176 kg				Kufrisan	Kufrisanduri 7,900 kg
		p=30	Urea	30	660	Erusan, Liquid form 600 cc	600 cc	13,200 cc				Milatry	7,900 kg
		K=15	Superphosphate	70	1,540								

Table 10-6 Production Materials (Fertilizer, Agricultural Chemicals, Weedicide and Seed) in PV 14 for Kharif

•

•

•

Chapter 11. Final Design of Land Consolidation

`

Chapter 11. Final Design of Land Consolidation

Land Consolidation

Land consolidation works, such as land readjustment, land leveling, improvement or construction of farm roads, irrigation and drainage canals will be carried out in the cultivable land of 248 acreas in P.V. 13 and P.V. 14.

The standard scale of one plot is 0.2 ha (100 m \times 20 m) whose long sides go along the contours, and short sides along the irrigation and drainage canals.

The irrigation canals are to be constructed with the U type flume made of concrete. The total length of them is 7,688 m as shown in Table 11-1.

Table 11-1	Length of Irrigatio	n Canal
Туре	Width of Flume	Length (m)
Α	350	1,943.5
В	250	5,744.5
Total	· · · · · · · · · · · · · · · · · · ·	7,688.0

The drainage canals have the side slope of 1 : 1, and drop works will be provided to them if required. Total length of the drainage canals is 1,691 m.

Two types of farm roads, namely, the main roads of 6.0 m width and the access roads of 3.0 m width will be constructed. Total length of those roads are shown in Table 11-2.

Table 11-2 L	ength of	Farm	Road
--------------	----------	------	------

Farm Road	Length (m)
Main Road	3,177
Access Road	5,951

Improvement of Main Irrigation Canal

Improvement of the main irrigation canals will carried out as following Table 11-3 depending upon the basic objective described in Chapter 4.2.

Major Works	Unit	Quantities
Improvement of cross section	 m	9,798.5
Siphon transition	Place	12
Culvert		
Constructed	ditto	1
Improved	ditto	5
Aqueduct	ditto	2
Measuring gauge	ditto	1
Check gate	ditto	7
Inlet works	ditto	12
Spillway	ditto	4
Diversion works	ditto	34
Bridges	ditto	2
Canal lining	m	1,245.6
Service road	m	9,792.0

Pumping Facilities

Irrigation water will be pumped up from the main irrigation canals to the six blocks which consist of Up Land. Table 11-4 shows the required feature of the pumps.

+ 64	ne ne kequ	fired reature or pum	ps
Stations	Area (acrea)	Pump Capacity (cu.m/sec)	Total Head
No.1	25.23	0.028	15.25
No.2	33.27	0.038	9 . 95
No.3	10.86	0.012	11.34
No.4	11.38	0.013	8,25
No.5	17.78	0.020 _	7.49
No.6	30.49	0.034	8.80

Table 11-4 The Required Feature of Pumps

Improvement of Pakhanjore Spillway

The existing Pakhanjore Tank has available storage capacity of $2,560 \times 10^3$ cu.m at the designed maximum full water level of 306.32 m (1,005 feet) (Storage capacity of 2,670 $\times 10^3$ at the designed full water level of 306.32 m - Dead water capacity of 110 $\times 10^3$ cu.m at the dead water level of 300.5 m). But the shortage water of 816 $\times 10^3$ cu.m equivalent to 32% of the existing available water is estimated in the calculation of water balance when introduction of the double cropping is taken into account. So the method of raising the full water level of this tank to the elevation of 306.78 m (1,006.5 feet) by improving the spillway will be carried out for solving the some portion of these water shortages.

In this case, the available storage capacity of $3,070 \times 10^3$ cu.m can be expected, but futher more shortage at 572×10^3 cu.m through the designed year equivalent to 19% of the available storage capacity is estimated.

This shortage water, in future, has to rely on the discharge from the Paralkote dam under construction.

Dimensions of improved spillway is given as follows;

306.78 m (1,006.5 feet)
300.50 m (1,001.0 feet)
3,180 x 10 ³ cu.m
110 x 10 ³ cu.m
3,070 x 10 ³ cu.m
2.00 m
0.40 m
1.10 m
42.0
84.0 m

Chapter 12. Practical Plan for Improvement of Living Conditions and Consolidation of Cooperative Association.

Chapter 12. Practical Plan for Improvement of Living Conditions and Consolidation of Cooperative Association

12.1 Practical Plan for Improvement of Living Conditions

It is planned to dig a main waterway for draining the residential quarter and branch waterways reaching the settlers' houses for the draining thereof, both of which are especially necessary during the rainy season. For ensuring speeder communications and transfer to information is a telegraphic transmitting station built in the center of the area and each house is equipped with a receiver.

Table 12.1-1 Item Required for Improvement of Living Conditions

	Item	Unit Price (in thousand yer		Amount (in thousand yen)	Remarks
I.	Waterways [,] of residential quater			500	
11.	Wireless Information Service				
	Receiver	5	100	500	
	Central Trans- mitting Station Equipment	5,200	one set	5,200	
	Total			6,200	

.

12.2 Practical Plan for Consolidation of Cooperative Association

Three prefabricated warehouses are to be built in order to keep the farm products until they sell at the highest price. Each building, which has a capacity of 323 cubic meters, is capable of storing 210 cubic meters of products assuming its effective storage capacity at 65% of the whole storage capacity. If a half of the rice plants grown each year are threshed soon after being cut and a half of the rice thus produced is stored for sale in the rainy season of the year after five years, an effective storage capacity of 1,250 cubic meters is required. The total effective capacity of the three existing warehouses is only 630 cubic meters or about half of the capacity required. It is necessary that the farmers themselves make up the deficiency.

A building having an approximate area of 50 square meters is to be built adjacent to the Association's office. This building will serve as a workshop and also as a shed housing the farming implements and vehicles for the common use of the farmers. The office building covers an area of about 40 square meters, and is equipped with printing and calculating machines as necessary for the execution of clerical work.

The Association also requires two small trucks for delivering the farm products to nearby markets and also for providing the members of the Association with various kinds of service, a large truck for transporting the products to the markets in distant places, a mobile shop car at which people can buy daily necessities on those days when the bazaar is closed, and a jeep to be used for various kinds of communications.

The facilities and equipment as mentioned above will gradually be introduced in accordance with the establishment and development of management system of the Association and the increase in quantity of the farm products as below-mentioned in the table of the yearly plans.

Table 12.2-1Facilities and Equipment required for Further Development of Farms

<u>Item</u> Prefabricated Warehouse	Specification 7.2 m x 18 m lightweight steel framework roofed with type "M" tiles and colored steel plates, and walled with co- rrugated, colored steel plates	Unit Price (in thous- and yen) 2,600	Number <u>Required</u> 3	Amount (in thou- sand yen 7,800	<u>Remarks</u>) 7.2x18x2.5 =323 m ³
Combined Work- shop and Hous- ing Shed	3,k x 5 k reinforced building roofed with #31 colored steel plates and walled with 2.7 mm thick plywood boards	1,050	1	1,050	
Office build- ing	3 k x 4 k reinforced building roofed with #31 colored steel plates and walled with 2.7 mm thick plywood boards	1,000	1	1,000	
Printing Maghine with Materials	one set	50	1	50	
Calculating Machin	ne	100	1	100	
Small Truck	2 t	700	2	1,400	
Large Truck	5 t	700	1	700	
Mobile shop car		800	1	800	
Jeep		700	1	700	
Total				13,600	

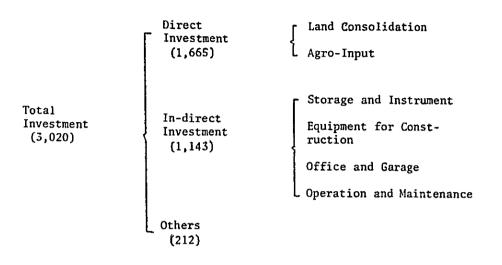

	•					e c copine	'(in thousand yen)					
		Year Amount		Year Amount	3rd No.	Year Amount	4th No.	Year Amount	5th No.	Year Amount	Total Amount	
Prefabricated Mobile Warehouse					1	2,600	2	5,200			7,800	
Combined Work- shop and Hous- ing Shed			1	1,050						:	1,050	
Office Build- ing			1	11000						:	1,000	
Printing Machine with materials			1	50							50	
Calculating Machine			1	100							100	
Small Truck			2	1,400						1	,400	
Large Truck					1	700					700	
Mobile shop •car					1	800					800	
Jeep			1	700							700	
Total				4,300		4,100		5,200		13	,600	

Table 12.2-2 Yearly Plans for Further Development of Farms

.

Chapter 13. Cost-Estimation

Cost-estimation of this project has been done in each category of investment as follows.

* Unit = 1,000 Rs.

Direct-Investment is meant only for our immedicate project area (248 acres).

Estimation of cost is based on the following terms and conditions:

- (1) This project will run for full five years, starting from September 1672 and ending in September 1977.
- (2) Principal machinery, equipment and material such as construction machinery pumps, steel materials, wires etc. will be supplied from Japan (foreign exchange component) and local labour, fuel, cement, wooden materials, bricks etc., will be supplied by the Government of India (local currency component).
- (3) Works meant for improvement of irrigation drainage facilities will be completed within the first two years.

The result of estimation is summarized as follows:

Kind of Investment	Local-Currency Component	Foregin-Exchange Component	Total
Direct Investment	706	95 <u>9</u>	1,665
Indirect Investment	298	845	1,143
Other Investment	4 T	171	212
Total Investment	1,045	1,975	3,020

Remarks: Cost estimation is based on "SCHEDULE OF RATES DANDAKARANYA PROJECT IN FORCE FROM 15-11-1963" and Japanese specification is adoped for construction equipment.

,

Table	13-1	Cost	Estimation

Item	Description	Total	Currency	Component	t
	Description	Cost	Foreign	Domestic	
Irrigation Works	Renovation of shape & gradient canal structures, Measuring facility, Reservoir (spillway) Irrigation facility for paddy and upland	752	284	468	see Table 13-
Land Con- solidation	Land shaping;,Field arrangement, Road, Bridge, Drainage, etc.	332	94	238	see Table 13-
	Sub-Total	1,084	378	706	
Agro. Initial- Input	Agricultural Machinery & Instrument:	429	429	-	
	Fertilizer: Chemicals & Seeds	105 47	105 47		
	Sub-Total	581	581	-	
Better Living	Farm stead drainage: Wireless Information	10	-	10	
	service	120	120	-	
Farmer Coo- perative	Prefab storage, Oil mill,Rice mill, Rope making machine, Building:	208	160	48	
	Vehicles:	75	75	-	
Construction Equipment		490	490	-	see Table 13-3
Operation	Runing expence, Main- tenance	240	-	240	
	Sub-Total	1,143	845	298	
discellaneous	Inland Transportation and Others	72	31	41	
	Ship Transportation	140	140	-	
	Sub-Total	212	171	41	
	Total	3,020	1,975	1,045	

Cost
Investment
of Direct
Estimates
Table 13-2

•

	Item	Cost (Rs)	Currency Foreign	Currency Component (Rs) Foreign Domestic	Remarks	s	
1.	Renovation of Reservoir	64,870	1,000	63,870	(1,883) 120,807	×	x 52.87 \$ 1/
2.	Irrigation Main Canals	152,140	25,150	126,990	(44,501) 224,727	×	56.51 <u>2</u> /
ч.	Irrigation Branch Canals	114,830	16,150	98,680	(16,146) 98 ,6 84	×	100%
4.	Pumps & Pipe Lines	99,860	90,180	9,680	(90,184) 9,676	×	100\$
ч. г	Drainage Canals	7,610	370	7,240	(372) 7,244	×	100%
.9	Farm Roads	57,320	13,680	43,640	(13,678) 43,638	×	100\$
7.	Field Arrangement	267,060	80,320	186,740	(80,320) 186,744	×	100%
	Total (Item 1 - 7) In case that Item 1 § 2 take 100% and Item 4 takes 6 pumps § pipe lines	763,690 938,600 1,083,230	226,850 247,080 378,690	536,840 691,520 704,540			
	Note ; $1/52.87\% = 100 \times \frac{6ross}{6ross}$	s duty of water s duty of water	c on P.V. 13 8 c on whole Pat	Gross duty of water on P.V. 13 § P.V. 14 ; 0.230 m^3/sec Gross duty of water on whole Pahkanjore ; 0.435 m^3/sec) m ³ /sec m ³ /sec		
	$\frac{2}{6 \cdot 56 \cdot 51^{\circ}} = 100 \times \frac{6 \cdot 50 \cdot 56}{6 \cdot 50 \cdot 50}$	s duty of water s dury of water	c on P.V. 13 8 c on Pakhanjoi	Gross duty of water on P.V. 13 & P.V. 14 ; 0.230 m ³ /sec Gross dury of water on Pakhanjore Main canal ; 0.407 m ³ /sec) m ³ /sec .407 m ³ /se	Ιø	

	Item .	Cost (Rs)	Currency Foreign	<u>Currency Component (Rs)</u> Foreign Domestic	Remarks
1.	Reservoir (Spillway)	122,690	1,883	120,807	Objected area 638 acre
2-1	Irrigation Main Canals	122, 323	16,169	106.154	=
2-2		7,064	• •	7,064	Ŧ
2-3		11,188	14	11,174	=
2-4		5,046	I,057	3,989	Ξ
2-5		13,050	1	13,050	Ŧ
2-6		66,429	27,261	39,168	=
2-7		41,233	ı	41,233	:
2-8	Inspection Roads	2,895	I	2,895	
	Sub-total (2-1 - 8)	269,228	44,501	224,727	
3.	Irrigation Branch Canals	114,830	16,146	98,684	Objected area 248 acre
4-1	Pumps & Pipe Line	51,709	47,607	4,102	Trihal.
4-2		72,110	65,746	6,364	
4-3	11	20,807	18,253	2,554	P.V. 42
4-4		16,851	14,787	2 064	
4-5		33,193	29,859	3,634	P.V. 13
4-6		49,516	45,538	3,978	
	Sub-total (4-1 - 4-6)	244,486	221,790	22.696	
	Sub-total (4-4 - 4-6)	99,860	90,184	9,676	
ъ.	Drainage Canal	7,616	372	7,244	Objected area 248 acre
	Farm Roads	57,316	13,678	43,638	£
7.	Field Arrangement	267,064	80,320	186,744	Ŧ

Table 13-2-1 Total Direct Investment Cost

.

 Reservoir (Spillway) Excavation Centering 6 Shuttering Cement Conc 1:5:10 Cement Conc 1:5:10 			1110	Foreign	ceign Domestic	IOTAI LOST (Re)	Earst an Demotif	Domo a 1 1	Remarks
Excave Centes Shutte Cement Cement 1: Cement	()			0			118 12101	nones LLC	
Centes Shutte Cement 1: Cement 1:	ation	2,480	m3	0.53	1.24	4,389	1,314	3.075	111-3 604-7
Cement 1: Cement 1:	Centering & Shuttering	1,138.3	m ²		6.46	7,353	•	7 352	
Cement 1:	Cement Concrete 1:5:10	634.55	m ³	0.60	52.34	33,593	381		
	Cement Concrete 1:2:4	258.72	а 13 13	0.60	98.19	25,559	155		V-/11
Reinfc Concre	Reinforced Cement Concrete 1:2:4	40.33	е З	0.60	102.08	4,141	24		V-1
M.S. R	M.S. Reincorcement	22,902	k g		1.30	29.773		77 77	V_7
Steel Works	Works	1,915	k g		1.86	3.562			۲۲ - ۲
Steel Works (M.S. Bars	eel Works (M.S. Bars)	648	kg		1.10	713			XI - 3
Wooden	Wooden Stop Logs	11.33	m ³		386.69	4,381		4.381	VTTT-A-Ch)
Earth	Earth Filling	25	т ³	0.36	1.12	37	6		III-1, BD-2
Ripraps	ß	643.5	m ³		14.28	9,189		9,189	+III-9-(b) XVII-7
To	Total					122,690	1,883	120,807	

Bill of Quantities for Construction Works

Table 13-3

Item	Description	Quantity	Unit	Foreign Dom	Domestic	(Rs)	Foreign	<u>Foreign</u> Domestic	Remarks
2. Irrigation Main Canals	ı Main Canals								
2-1 Open Canals	ils Excavation (Rock)	252	ш3	2.37	5.50	1,983	597	1,386	III-5-(a) AMR125 TV62
	Excavation (Earth)	12,520	е Н	0.46	1.08	19,281	5,759		III-3, BD2
	Earth Filling	27,257	щ З	0.36	1.12	40,341	9,813	30,528	111-1, BD2 +111-9-(h)
	Sodding (Water side)	35,500	ш ²		0.21	7, 455		7,455	III-29, +III-30x10
	Sodding (Air side)	20,800	m2		0.21	4,368		4,368	III-29 +III-30×10
	Canal lining (Grouted stone patching)	1,170.3	а Ц		41.78	48,895		48,895	XVII-4+ (I-B-9)x150%
	Total					122,323	16,169	106,154	
2-2 Syphons & Aqueduct	Aqueduct								
a. Syphons	No.1 Syphon (Masonry)) 23.43	а3		41.79	679		626	VII-3
	No.2 "	26.29	а Ш		41.79	1,099		1,099	:
	No.3 "	26.00	е В		41.79	1,087		1,087	=
	No.4	24.30	ш3		41.79	1,015		1,015	:
	No.5 "	24.12	а3		41.79	1,008		1,008	=
	No.6	18.62	а3		41.79	778		778	2
	Sub-total					5,966		5,966	

Item	Description	Quanti ty	Uni t	Unit Cost Foreign Domestic	Total Cost (Rs)	Currency Foreign	Currency Component Foreign Domestic	Remarks
b. Aqueduct	Aqueduct (Masonry)	26.28	ш3	41.79	1,098		1,098	VII-3
	Sub-total				1,098		1,098	
	Total				7,064		7,064	
2-3 Culverts & Bridges	Bridges							
a. Culverts	No.1 Culvert (Masonry)) 26.68	в 13	41.79	1,115		1,115	VII-3
	No.2	26.58	е Е	41.79	1,111		1,111	=
	No.3 "	26.20	в а	41.79	1,095		1,095	Ξ
	No.4 "	25.10	а Ш	41.79	1,049		1,049	z
	No.5 "	27.18	е Ц	41.79	1,136		1,136	=
	No.6 "	29.79	е Е	41.79	1,245		1,245	z
	Concrete pipe \$750m/m	5.40	e	38,00	205		205	
Ē	Dismantling Masonry	11.6	е В	3.62	42		42	XIV-3
	Sub-total				6,998		, 6,998	
b. No.1 Bridge	Reinforced Cement Concrete 1:2:4	12.24	ш 3	0.60 102.08	1,256	7	1,249	V-1
	Centering and Shuttering	48.3	m²	6.46	312			V-4
	M.S.Reinforcement	450	кg	1.30	585		585	V-3
	Sub-total				2,153	7	2.146	

Item	Description	Quantity Unit	Unit	Unit Cost Foreign Dom	Cost Domestic	Total Cost (Rs)	Currency Foreign	Currency Component Foreign Domestic	Remarks
b. No.2 Bridge	Reinforced Cement Concrete 1:2:4	11.52	п3	0.60		1,183	~ ~	1,176	V-1
	Centering and Shurttering	45.6	п2		6.46	295		295	V-4
	M.S. Reinforcement	430 .	kg		1.30	559		559	V-3
	Sub-total					2,037	7	2,030	
	Total					11,288	14	11,174	
2-4 Measuring Facility	acility								
	Laying Stone	13.93	е ш		41.78	582		582	XVII-4+ (I_B-0)~15/4
	Cement Concrete 1:3:6	0.75	а 3	0.60	72.73	55	0	55	IV-3
	Centering and Shuttering	9,101	m2		6.46	658		658	V-4
	Reinforced Cement Concrete 1:2:4	11.92	m 3	0,60	102.08	1,224	7	1,217	V-1
	M.S. Reinforcement	1,055	kg		1.30	1,372		1,372	V-3
	Measuring Facility	Ч	set	1,060	105	1, 155	1,050	105	Japan Made
	Total					5,046	1,057	3,989	

Item	Description	Quantity l	Unit	Unit Foreign	Unit Cost ign Domestic	Total Cost (Rs)	Currency Forei on	Currency Component Foreion Domestic	Remarks
2-5 Checks & Spillways	illways								
a. Check gates, (No.1-No.7) Masonry	Masonry	38.74	m ³		41.79	1,619		1.619	VII-3
	Laying Stone	21.45	ш3		41.78	896		896	XVII-4+
	Wooden Stop Logs	6.73	щ3		386.69	2,602		2,602	(I-B-9)x150 VIII-4-(b)
	Sub-total					5,117		5,117	
b. Spillways (No.l-No.4)	Masonry	48.00	е Б		41.79	2,006		2,006	VII-3
	Laying Stone	141.86	m ³		41.78	5,927			XVII-4+
	Sub-total					7,933		7,933	05LX(8-8-1)
	Total					13,050		13,050	
2-6 Diversion Works	orks								
Diversion Works No.1 - No.34	No.1 - No.34								
	Centering and Shuteering	865.6	щ 2		6.46	5,592		5,592	V-4
	Reinforced Cement Concrete 1:2:4	62.42	щ 3 3	0.60	102.08	6,409	37		V_1

Item	Description	Quantity Unit	Unit	Unit Cost Forei m. Dom	Unit Cost Foreign: Domestic	Total Cost	Currency	Currency Component	Remarks
	M.S. Reinforcement	3,290	kg Kg		1,30	4.277	INTATO	4.277	5
	.Cement Concrete 1:3:6	39.27	93 13	0 60	77 CL	000 C	č		
	Cement Mortar 1:3	1.76			110.89	195	3	105,12	1-C-3
	Laying Stone	243.32	m 3		41.78	10,166		10,166	1-C-2 XVII-4+
	¢250 Manual								(I-B-9)×150%
	Sluice Gate	34	Nos	800	40	28,560	27,200	1,360	Japan Made
	¢250 Concrete pipe	193.70	E		6.60	1,278		1,278	•
	Steel Works (Screen)	3,802	kg		1.86	7,072		7,072	XI - 2
	Total					66,429	27,261	39,168	
2-7 Flood Inlet									
Flood Inlet No.1 - No.36	1 - No.36								
	Laying Stone	986,9	m ³		41.78	41,233		41,233	XVII-4+ (I_R_0)~150\$
	Total					41,233		41,233	*****
2-8 Inspection Road	Road								
	Moorum	2,924	ш3		0.99	2,895		2,895	XVI-1.6

s ype 350) 1,943.5 m 2.36 6.34 ype 350) 5,744.5 m 1.73 5.27 1 1.73 5.27 1 No 0.08 31.06 6 Nos 0.09 32.04 5 Nos 0.08 35.16 7 " 0.08 35.16 138 " 0.08 35.12 138 " 0.08 35.12 138 " 0.08 35.12 138 " 0.08 35.12 138 " 0.08 85.00 138 1 0.08 88.00	Item	Description	Quanti ty	Unit	Unit Cost Foreign Dome	Cost Domestic	Total Cost	Currency Fornet and	Currency Component	Remarks
Type A (Type 350) 1,943.5 m 2.36 6.34 " B (Type 250) 5,744.5 m 1.73 5.27 Sub-total 1.73 5.27 Sub-total 5,744.5 m 1.73 5.27 Sub-total 31.06 Type A 1 No 0.08 31.06 Type A 6 Nos 0.09 32.04 Sub-total 1 0.08 35.16 Type A 5 Nos 0.09 35.16 1 0.09 100 100 100 100 100 100 100 100 100 1	Irrigation B1	anch Canals			4			11972101	nomes ci c	
" B (Type 250) 5,744.5 m 1.73 5.27 Sub-total 1.73 5.27 Sub-total 31.06 Type A· 1 No 0.08 31.06 Type B 6 Nos 0.09 32.04 Sub-total 6 Nos 0.08 35.16 Sub-total 7 " 0.08 35.16 " B 7 " 0.08 35.12 " C 138 " 0.09 34.29 " 7 " 0.08 61.22 " E 71 " 0.08 88.00 Sub-total 5 No 0.08 88.00	Open Channels		1,943.5	E	2.36	6.34	16,909	4,587	12.322	
Sub-total tand) Type A· 1 No 0.08 31.06 Type B 6 Nos 0.09 32.04 Sub-total 6 Nos 0.08 35.16 Sub-total 7 " 0.08 35.16 " B 7 " 0.08 35.12 " C 138 " 0.08 35.12 " 0.08 61.22 " F 19 " 0.08 88.00 Sub-total 19 " 0.08 88.00			5,744.5	E	1.73	5.27	40,212	9,938	30,274	
tand) Type A- 1 No 0.08 31.06 Type B 6 Nos 0.09 32.04 1 Sub-total 5 Nos 0.08 35.16 1 " B 7 " 0.08 35.12 2 " C 138 " 0.09 34.29 4,7 " B 7 " 0.08 61.22 3,4 " F 19 " 0.08 88.00 1,6 Sub-total 15 No 0.08 88.00 1,6		Sub-total					57,121	14,525	42,596	
Type A- 1 No 0.08 31.06 1 Type B 6 Nos 0.09 32.04 1 Sub-total 6 Nos 0.09 32.04 1 Sub-total 6 Nos 0.09 32.04 1 Sub-total 1 6 Nos 0.09 35.16 1 Type A 5 Nos 0.08 35.16 1 2 " B 7 " 0.09 35.12 2 " C 138 " 0.09 34.29 4,7 " D 57 " 0.08 61.22 3,4 " E 71 " 0.08 88.00 1,6 " F 19 " 0.08 88.00 1,6	Bending Works (Concrete Box	Stand)								
Type B 6 Nos 0.09 32.04 Sub-total Sub-total 1 1 1 Type A 5 Nos 0.08 35.16 " B 7 " 0.08 35.12 4,1 " C 138 " 0.09 34.29 4,1 " D 57 " 0.08 61.22 3,6 " F 19 " 0.08 88.00 1,6		Type A.	1	No	0.08	31.06	31	0	31	
Sub-total Type A 5 Nos 0.08 35.16 " B 7 " 0.08 35.12 " C 138 " 0.09 34.29 4, " C 138 " 0.09 34.29 4, " D 57 " 0.08 61.22 3, " F 19 " 0.08 88.00 1, Sub-total " 0.08 88.00 1,		Type B	9	Nos	60.0	32.04	193	ħ	192	
Type A 5 Nos 0.08 35.16 "B 7 "0.08 35.12 "C 138 "0.09 34.29 "C 138 "0.09 34.29 "D 57 "0.08 61.22 "E 71 "0.08 61.22 "F 19 "0.08 88.00		Sub-total					224	1	223	
A 5 Nos 0.08 35.16 B 7 " 0.08 35.12 C 1138 " 0.09 34.29 D 57 " 0.08 61.22 E 71 " 0.08 81.00 F 19 " 0.08 88.00	Diversion Work:									
7 " 0.08 35.12 138 " 0.09 34.29 57 " 0.08 61.22 71 " 0.08 79.08 19 " 0.08 88.00			ю	Nos	0.08	35,16	176	0	176	
138 " 0.09 34.29 57 " 0.08 61.22 71 " 0.08 79.08 19 " 0.08 88.00			7	=	0.08	35,12	247	Ч	246	
57 " 0.08 61.22 71 " 0.08 79.08 19 " 0.08 88.00		ບ =	138	=	0.09	34.29	4,744	12	4,732	
71 " 0.08 79.08 19 " 0.08 88.00			57	=	0.08	61.22	3,495	ы	3,490	
19 ¹¹ 0.08 88.00			71	=	0.08	79.08	5,621	6	5,615	
		н н	19	=	0.08	88,00	1,674	3	1,672	
		Sub-total					15,957	26	15,931	

.

* רכוו	nescription	Quantity	UNIT	Foreign	ien Domestic	(Be)		Currency Lomponent	Remarks
d. Conduit (Culvert Box)	lvert Box)			- d	1		INTETOL	nomestic	
	Туре А (250 m/m)	132	Nos	8.34	256.7	34,987	101 [706 LL	
	" В (250 m/m)	ß	z	13.90	427.56	2.208	101(-	000 (00	
	" C (350 m/m)	· 31	=	11.24	369.28	11.796	348	877 LL	
	" D (350 m/m)	4	=	18.74	615.47	2,537	75	2,462	
	Sub-total					41,528	1,594	39,934	
	Total (a+b+c+d)	•				114,830	16,146	98,684	
4-1 Bump No.1									
a. Equipment	pump 150 - 125	H	No	17,000		17,000	17,000		abem nenel.
	Diesel Engine 15p.s	1	No	3,850		3,850	3.850		n nau
	Attachment	1	set	3,250		3,250	3.250		z
	Cement Concrete								
	1:3:6	1.50	ш3	0.60	72.73	110	1	601	TV-3
	Roofing (G.I.Sheet)	4.0	ш ²		11.24	45	I	45	
	Sub-total					24,255	24,101	154	
b. Suction Pit Excavation	Excavation	15	m ³	0.56	1.31	28	8	20	111-7. UH03
	Earth filling	7	а3		0.49	м		51	TTT_10_(a)

Item	Description	Quantity	Unit	Unit Cost Foreign Dom	Cost Domestic	Total Cost (Rs)	Currency Foreign	Currency Component Foreign Domestic	Remarks
	Masonry	4,6	а ³	•	59.47	274		274	7-11V
	Sub-total					305	ø	297	
c. Pipe Line & Delivery	De li very								
	Excavation	343	в3	0.56	1;31	641	192	449	III-7, UH03
	Centering and Shuttering	16.7	ш2		6.46	108		108	V-4
	Reinforced Cement Concrete 1:2:4	2.40	ш ³	0.60	102.08	246	r-4	245	V-1
	M.S. Reinforcement	270	kg		1.30	351		351	V-3
	Cast iron-pipe ¢250	395	E	59.00	5,90	25,636	23,305	2,331	Japan made
	Earth filling	340	в З		0.49	167		167	III-10-(a)
	Sub-total					27 , 149	23,498	3,651	
	Total (a+b+c)					51,709	47,607	4,102	
4-2 Pump No.2									
a. Equipment	pump 150 - 125	1	No	17,000		17,000	17,000		
	Diesel Engine 13 p.s	ŗ	No	3,850		3,850	3,850		
	Attachment	-	+00	3 7EN		3 750	010 1		

Cement Concrete 1:3:61.50 \mathfrak{m}^3 0.60Roofing (G.I.Sheet)4.0 \mathfrak{m}^2 11.24Sub-total 4.0 \mathfrak{m}^2 11.24b. Subton pitExcavation 15 \mathfrak{m}^3 0.56 Earth filling7 \mathfrak{m}^3 0.56 b. Suction pitExcavation 16 \mathfrak{m}^3 0.56 b. Subton pitExcavation 16 \mathfrak{m}^3 0.56 ControlEarth filling7 \mathfrak{m}^3 0.56 b. Sub-total 16.7 \mathfrak{m}^3 0.56 ControlExcavation 600 \mathfrak{m}^3 0.56 ControlExcavation 600 \mathfrak{m}^3 0.56 ControlExcavation 600 \mathfrak{m}^3 0.56 ControlExcavation 600 \mathfrak{m}^3 0.56 M.S. Reinforced Coment 2.40 \mathfrak{m}^3 0.60 M.S. Reinforcement 270 kg \mathfrak{m}^3 Cast iron pipe $\phi 250$ 700 \mathfrak{m}^3 \mathfrak{m}^3 Sub-totalSub-total \mathfrak{m}^3 \mathfrak{m}^3 Sub-totalTotal (a+b+c) \mathfrak{m}^3 \mathfrak{m}^3	De	Description	Quantity	Unit	Unit Foreign	Unit.Cost ign Domestic	Total Cost (Rs)	Currency Foreign	<u>Currency Component</u> Foreion Domestic	Remarks
.I.Sheet) 4.0 m ² 1 al 15 m ³ 5 ing 7 m ³ 5 ing 16.7 m ² 1 al 16.7 m ² 1 al 16.7 m ² 1 ing 16.7 m ² 1 cement 2.40 m ³ 5 ipe φ250 700 m ³ 5 if 597 m ³ 5 if 5 m ³ 5	Селе	nt Concrete 1:3:6	1,50	F	0.60	1	110	1	109	
al ing 15 m ³ ing 7 m ³ 4.6 m ³ 5 and 16.7 m ² Cement 2.40 m ³ .:2:4 2.40 m ³ rrement 270 kg ipe \$250 700 m 5 ing 597 m ³ c)	Roof		4.0	ш 2	11.24	# -	45 _,		45	
ing 15 m ³ ing 7 m ³ 4.6 m ³ 4.6 m ³ and 16.7 m ² Cement 2.40 m ³ ing \$597 m ³ ing 597 m ³ c)	ũ	ub-total				,	24,255	24,101	154	
Earth filling 7 m ³ Masonry 4.6 m ³ Sub-total 600 m ³ Excavation 600 m ³ Centering and 16.7 m ² Shuttering and 16.7 m ² Reinforced Cement 2.40 m ³ M.S. Reinforcement 270 kg Concrete 1:2:4 2.40 m ³ M.S. Reinforcement 270 kg Cast iron pipe \$250 700 m 5 Earth filling 597 m ³ Sub-total (a+b+c)	oit Exca	vation	15	а В	0.56	1.31	28	80	20	
Masonry 4.6 m ³ 5 Sub-total 600 m ³ Excavation 600 m ³ Centering and 16.7 m ² Reinforced Cement 2.40 m ³ Reinforcement 2.70 kg M.S. Reinforcement 270 kg Cast iron pipe \$250 700 m 5 Earth filling 597 m ³ Sub-total (a+b+c)	Eart	h filling	7	е В		0.49	ы		Ś	
Sub-total Excavation 600 m ³ Centering and 16.7 m ² Shuttering 16.7 m ² Reinforced Cement 2.40 m ³ M.S. Reinforcement 270 kg Cast iron pipe \$250 700 m 5 Earth filling 597 m ³ Sub-total (a+b+c)	Maso	nry	4.6	ш ³	59.47		274		274	
Excavation 600 m ³ Centering and 16.7 m ² Shuttering 16.7 m ² Reinforced Cement 2.40 m ³ Concrete 1:2:4 2.40 m ³ M.S. Reinforcement 270 kg Cast iron pipe \$250 700 m 5 Earth filling 597 m ³ Sub-total (a+b+c)	Ŵ	ub-total					305	80	297	
16.7 m ² ment 2.40 m ³ :4 2.40 m ³ ement 270 kg e ¢250 700 m 5 597 m ³	Exca	vation	600	Ë	0.56	1,31	1,122	336	786	
ment 2.40 m ³ :4 2.40 m ³ ement 270 kg e ¢250 700 m 5 597 m ³	Cente Shut1	ering and tering	16.7	ш ²		6.46	108		108	
ement 270 kg e ¢250 700 m 597 m ³	Rein Conci	forced Cement rete 1:2:4	2.40	ш3	0.60	102.08	246	Ч	245	
еф250 700 ш 597 m ³	М.S.	Reinforcement	270	kg		1.30	351		351	
597	Cast	ø	700	E	59.00	5.90	45,430	41,300	4,130	
Sub-total Total (a+b+c)	Eart	n filling	597	п3		0.49	293		293	
Total (a+b+c)	เร	ıb-total					47,550	41,637	5,913	
	Total	l (a+b+c)					72,110	65,746	, 6,364	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Item	Description	Quantity	Unit	Unit Cost Foreion Dom	Cost Domestir	Total Cost	Currency	Component	Remarks
80 1 No ine 5 p.s 1 No crete 1.50 m ³ .I.Sheet) 4.0 m ² al 1.50 m ³ .I.Sheet) 4.0 m ³ al 2.38 m ³ nd 16.7 m ² .:2:4 2.40 m ³	3 Pump No.3						(21)	INTETOL	notics LTC	
<pre>ine 5 p.s 1 No in set crete 1.50 m³ .1.Sheet) 4.0 m² al .1.Sheet) 4.0 m² al .1.5 m³ ing 7 m³ ing 7 m³ ul .1 15 m³ ul .1 2.38 m³ ud .16.7 m² .234 m³ .23</pre>	Equipment	Pump 100 - 80	1	No	4,700		4,700	4,700		
I set crete 1.50 m ³ .I.Sheet) 4.0 m ² al 1.5 m ³ ing 7 m ³ 4.6 m ³ 1 16.7 m ² Cement 2.40 m ³		ŝ	1	No	1,770		1,770	1,770		
crete 1.50 m ³ .I.Sheet) 4.0 m ² al 1.5 m ³ ing 7 m ³ 15 m ³ 11 2.38 m ³ ud 16.7 m ² Cement 2.40 m ³		Attachment	Ч	set	1,920		1,920	1,920		
.I.Sheet) 4.0 m ² al 15 m ³ ing 7 m ³ 4.6 m ³ 11 238 m ³ nd 16.7 m ² Cement 2.40 m ³		Cement Concrete 1:3:6	1.50	ш ³	0.60	72.73	110		109	
al ing 15 m ³ ing 7 m ³ 4.6 m ³ 11 238 m ³ und 16.7 m ² Cement 2.40 m ³		Roofing (G.I.Sheet)	4.0	щ2		11.24	45		45	
ing 15 m ³ 7 m ³ 4.6 m ³ 11 238 m ³ nd 16.7 m ² Cement 2.40 m ³ .:2:4 2.40 m ³		Sub-total					8,545	8,391	154	
Earth filling 7 m ³ Masonry 4.6 m ³ Sub-total 2.38 m ³ Excavation 2.38 m ³ Centering and 16.7 m ² Reinforced Cement 2.40 m ³	Suction Pit	Excavation	15	ш3	0.56	1.31	28	80	20	
Masonry 4.6 m ³ Sub-total 4.6 m ³ Excavation 238 m ³ Centering and 16.7 m ² Reinforced Cement 2.40 m ³		Earth filling	7	ш ³		0.49	2		ħ	
Sub-total Excavation 238 m ³ Centering and 16.7 m ² Reinforced Cement 2.40 m ³ Concrete 1:2:4 2.40 m ³	-	Masonry	4.6	E E		59.47	274		274	
Excavation 238 m ³ Centering and 16.7 m ² Shuttering 15.7 m ² Reinforced Cement 2.40 m ³		Sub-tota1					305	¢	297	
16.7 m ² nent 2.40 m ³		Excavation	238	ш3	0.56	1.31	445	133	312	
2.40 m ³		Centering and Shuttering	16.7	ш2		6.46	108		108	
	~	Reinforced Cement Concrete 1:2:4	2.40	ш ³	0.60	102.08	246	Ч	245	
270	1	M.S. Reinforcement	270	kg		1.30	351		351	

)	nescription	Quantity Unit		Foreign Dom	.ost Domestic	Total Cost (Rs)		Currency Component Foreign Domestic	Remarks
	Cast iron pipe ¢150	270	E	36.00	3.60	10,692	9,720	972	
-	Earth filling	235	щ3 13		0.49	115		115	
	Sub-total					11,957	9,854	2,103	
	Total (a+b+c)					20,807	18,253	2,554	
4-4 Pump No.4									
a. Equipment P	Pump 100 - 80	1	No	4,700		4,700	4,700		
. L	. Diesel Engine 5 p.s	-1	No	1,770		1,770	1,770		
A	Attachment		set	1,920		1,920	1,920		
0	Cement Concrete 1:3:6	1.50	ш ₃	0.60	72.73	.110	I	109	
ц.	Roofing (G.I.Sheet)	4.0	ш ²		11.24	45		45	
	Sub-total					8,545	8,391	154	
b. Suction Pit E	Excavation	15	⊒ 3	0.56	1.31	28	œ	20	
ш	Earth filling	7	а 13 13		0.49	ы		ы М	
W	Masonry	4.6	ш ²		59.47	274		274	
	Sub-tota1					305	œ	297	

Item	Description	Quantity	*	Foreign	Domestic	(Rs)	Foreign	Foreign Domestic	Remarks
c. Delivery	Excavation	156	ш ³	0.56	1.31	291	87	204	
	Centering and Shuttering	16.7	m ²		6.46	108		108	
	Reinforced Cement Concrete 1:2:4	2.40	ш3	. 09'0	102.08	246	Ч	245	
	M.S. Reinforcement	270	kg		1.30	351		351	
	Cast iron pipe ¢150	175	æ	36,00	3.60	6,930	6,300	630	
	Earth filling.	154	е Е		0.49	75		75	
	Sub-total					8,001	6,388	1,615	
	Total (a+b+c)					16, 851	14,787	2,064	
4-5 Pump No.5	•								
a. Equipment	Pump 125 - 100	г	No	6,670		6,670	6,670		
	Diesel Engine 5 p.s	Ч	No	1,770		1,770	1,770		
	Attachment	Ч	set	2,500		2,500	2,500		
	Cement Concrete 1:3:6	1.50	щ Э	0.60	72.73	110	1	109	
	Roofing (G.I.Sheet)	4.0	щ 2		11.24	45		45	
	Sub-total					11,095	10,941	-154	1

 b. Suction Pit Excavation Earth filling Masonry Masonry b. belivery c. Delivery Excavation Gentering and Shuttering Reinforced Cement Goncrete 1:2:4 M.S. Reinforcement Cast iron pipe \$200 Earth filling Sub-total Total (a+b+c) 				Foreign	reign Domestic	(Rs)	Foreim	Foreign Domestic	Kemarks
	u	15	e E	0.56	1.31	28	α α	20	
	ling	7	е В	•	0.49	3		· M	
		4.6	щ 3		59.47	274		274	
	tal					305	80	297	
Centering Shuttering Reinforced Concrete M.S. Reinf Cast iron Earth fill Sub-tot Total (a+	e	338	с Е	0.56	1.31	632	189	443	
Reinforced Concrete M.S. Reinf Cast iron Earth fill Sub-tot Total (a+	and g	16.7	Щ 2		6.46	108		108	
M.S. Reinf Cast iron Earth fill Sub-tot Total (a+	d Cement 1:2:4	2.40	е В	0.60	102.08	246	Ч	245	
Cast iron Earth fill Sub-tot Total (a+	forcement	270	kg	-	1.30	351		351	
Earth fill Sub-tot Total (a+	pipe ¢200	390	E	48,00	4.80	20,592	18,720	1,872	
Sub-tot Total (a+	ling	335	щ З		0.49	164		164	
Total (a+	tal					22,093	18,910	3,183	
	tb+c)					33,493	29,859	3,634	
4.6. Pump No.6									
a. Equipment Pump 150 -	- 125	7	No	17,000		17,000	17,000		
Diesel Eng	Diesel Engine 10 p.s	н	No	2,960		2,960	2,960		

Attachment 1 set 3,250 5,260 5,260 5,260 5,260 5,260 5,260 5,250 5,250 5,250 5,250 5,250 5,250 5,250 5,260 5,260 5,260 5,260 5,260 5,260 5,260 5,260 5,260 5,260 5,260 5,260 5,260 5,274 <	Item	Description	Quanti ty	Unit	Unit Cost Foreign Dom	Cost Domestic	Total Cost	Currency	Ы	Remarks
Cement Concrete 1:50 m ³ 0:60 7 45 1:10 1 Pit Roofing (G.I.Sheet) 4.0 m^2 11.24 23,365 23,211 Pit Excavation 15 m^3 0.56 1.31 28 8 Pit Excavation 15 m^3 0.56 1.31 28 8 8 Masonry 4.6 m^3 0.56 1.31 28 8 3 8 3 8 3 9 9 3 8 3 9 9 3 3 9 3		Attachment	1	set	3,250		3,250	3, 250	DOMES LT C	
Roofing (G.I.Sheet)4.0 m^2 11.2445Sub-total11.223,36523,211'Sub-total15 m^3 0.561.31288Fit Excavation15 m^3 0.561.312882Rath filling7 m^3 0.561.312882Masonry4.6 m^3 59.4727482Sub-total345 m^3 0.561.316451932Excavation345 m^3 0.561.316451932Excavation345 m^3 0.561.316451932Sub-total16.7 m^2 0.561.316451932Reinforced Cement2.40 m^3 0.60102.0824612Reinforced Cement270kg1.3035127,1252,22,2Cast iron pipe $\phi250$ 375 m 590.005.9024,33822,1252,2Cast iron pipe $\phi250$ 375 m 590.005.9024,3382,233,5Sub-total1.501.305.905.9024,3382,3193,5Sub-total1.49164102.085.9024,3383,5Sub-total270kg0.491503,551Sub-total5.217749158125,319Sub-total11.49,51645,5583,		Cement Concrete 1:3:6	1.50	ш 3	0.60	72.73	110	-	901	
Sub-total23,36523,36523,211Pit Excavation15 m^3 0.561.312888Earth filling7 m^3 0.561.312883Barth filling7 m^3 0.561.3127483Sub-total345 m^3 0.561,316451939Sub-total345 m^3 0.561,316451939Excavation345 m^3 0.561,316451939Subtteringand16.7 m^3 0.561,316451939Centering and Shuttering16.7 m^2 0.561,316451932Reinforced Commut345 m^3 0.561,316451932Carteringand15.7 m^2 0.5010324,53822,1252,23Sub-total322 m^3 59.005.9024,33822,1252,23Cast iron pipe $\phi 250$ 375 m^3 59.005,9024,33822,1252,23Sub-total322 m^3 90.4913811Sub-total322 m^3 90.491,353,553,9Total (a+b+c)32 m^3 90.493,553,9Total (a+b+c)333,93,93,93,9Total (a+b+c)3434,553,93,9		Roofing (G.I.Sheet)	4.0	н 2	11.24		45	•	45	
PitExcavation15 m^3 0.561.31288Earth filling7 m^3 0.4933Masonry4.6 m^3 59.472742Nub-total345 m^3 59.472742Sub-total345 m^3 0.561.316451934Excavation345 m^3 0.561.316451934Excavation345 m^3 0.60102.0824612Reinforced Cement2.40 m^3 0.60102.0824612N.S.Reinforcement270kg1.3035135135Cast iron pipe $\phi 250$ 375 m 59.005.9024,33822,1252,2Earth filling322 m^3 0.491581125,84622,3193,5Sub-total125,84622,3193,53,993,993,99Total (a+b+c)77749,51645,5383,99		Sub-total					23, 365	23,211	154	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Suction Pit	Excavation	15	а 3	0.56	1.31	28	œ	02	
Masonry4.6 π^3 59.47274Sub-total 345 π^3 0.56 1.31 645 193 Excavation 345 π^3 0.56 1.31 645 193 Excavation 345 π^3 0.56 1.31 645 193 Centering and Shuttering 16.7 π^2 6.46 108 108 Reinforced Cement Concrete 1:2:4 2.40 π^3 0.60 102.08 246 1 K.S.Reinforcement 270 kg 1.30 351 246 1 M.S.Reinforcement 270 kg 0.60 102.08 246 1 M.S.Reinforcement 270 kg 0.60 1.30 351 2.125 $2,$ Cast iron pipe $\phi 250$ 375 m^3 0.69 0.49 158 2.125 $2,$ Sub-total 322 m^3 0.69 0.49 158 $2.7,319$ $3,$ Sub-total $1.2+4$ $1.2+4$ $1.2+4$ $1.2+4$ $2.5,846$ $2.7,319$ $3,$ Sub-total $1.2+4$ $1.2+4$ $1.2+4$ $1.2+4$ $1.2+4$ $2.2,319$ $3,$ Sub-total $1.2+4$ $1.2+4$ $1.2+4$ $1.2+4$ $1.2+5$ $1.2+538$ $3,$		Earth filling	7	а3 3		0.49	ы	,	9 P	
Sub-total $305 \ \text{sb}$ $305 \ $		Masonry	4.6	щ3 1		59.47	274		274	
Excavation 345 m^3 0.56 1.31 645 193 Centering and Shuttering Shuttering 16.7 m^2 6.46 108 Reinforced Cement Concrete 1:2:4 2.40 m^3 0.60 102.08 246 1 M.S.Reinforcement 270 kg 1.30 351 1.30 5.90 $24,338$ $22,125$ $2,$ Cast iron pipe $\phi 250$ 375 m $59,00$ 5.90 $24,338$ $22,125$ $2,$ Cast iron pipe $\phi 250$ 375 m^3 0.49 158 $22,125$ $2,$ Cast iron pipe $\phi 250$ 372 m^3 0.49 158 $22,125$ $2,$ Cast iron pipe $\phi 250$ 372 m^3 0.49 158 $22,125$ $2,$ Cast iron pipe $\phi 250$ 372 m^3 0.49 158 $22,125$ $2,$ Cast iron pipe $\phi 250$ 372 m^3 0.49 158 $27,125$ $2,$ Cast iron pipe $\phi 250$ 372 m^3 0.49 158 $27,319$ $3,$ Cub-total $1.49,516$ $45,538$ $3,$ $3,$ $49,516$ $45,538$ $3,$		Sub-total					305	œ	297	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Delivery	Excavation	345	а3	0.56	1.31	645	193	45.7	
ment 2.40 m ³ 0.60 102.08 246 1 ant 270 kg 1.30 351 ant 270 kg 1.30 351 ant 270 kg 0.49 158 322 m ³ 0.49 158 2,319 322 m ³ 0.49 158 3,31		Centering and Shuttering	16.7	ш ²		6.46	108		201 801	
<pre>sent 270 kg 1.30 351 s \$22,125 m 59.00 5.90 24,338 22,125 322 m³ 0.49 158 25,846 22,319 49,516 45,538</pre>		Reinforced Cement Concrete 1:2:4	2.40	ш3 3	0.60	102.08	246	Ч	245	
: ¢250 375 m 59.00 5.90 24,338 22,125 322 m ³ 0.49 158 25,846 22,319 . 49,516 45,538		M.S.Reinforcement	270	kg		1.30	351	ł	351	
322 m ³ 0.49 158 25,846 22,319 49,516 45,538		Cast iron pipe ¢250	375	e	59,00	5,90		22,125	2.213	
25,846 22,319 7 49,516 45,538		Earth filling	322	ш ³		0.49		,	158	
⁷ 49,516 45,538		Sub-total						22,319	3,527	
		Total (a+b+c)						45,538	3,978	

i	L tem	Description	Quantity	Unit	Foreign	ign Domestic	(Rs)	Foreign	Foreign Domestic	Remarks
ы. С	5. Drainage Canal	nal								
		Open Channe-I	1,691	E	0.22	0.70	1,556	372	1,184	
		Culvert Type A	1	No		388.42	388		388	
		" Type B	S	Nos		313.30	1,567		1,567	
		" Type C		No		238.18	238		238	
		Drop	31	Nos		124.75	3,867		3,867	
		Total					7,616	372	7,244	
ę.	6. Farm Roads	Main Roads	3,177	E	2.02	6.73	27,799	6,318	21,381	
		Access Roads	5,951	E	1.22	3.74	29,517	7,260	22,257	
		Total					57,316	13,678	43,638	
	7. Field Arrangement	gement								
		Earth Works	200,800	в З	0.40	0.93	267,064	80,320	186,744 1	III-1, 60A.3
		Total					267,064	80,320	186,744	

(PAKHANJORE)

Table 13-3 Specification of Construction Equipments

Equipment	Туре	Weight	· Price
Angle-Dozer No.1	D60A-3, with winch	15.50 ^t 1	6,150,000
Angle-Dozer No.2	D60A-3, with Ripper	16.20	6,400,000
Back-Hoe	UH03, with Clamshell	11.30	6,030,000
Tractor	BD2, 2t	2.80	2,100,000
Concrete Mixer `No:1	TD8, Diezel Eng. 5 ps.	0.95	230,000
Concrete Mixer No.2	TD8, Diezel Eng. 5 ps.	0.95	230,000
Concrete Vibrator No.1	EFK327, Gas. Eng. 3 ps.	0.06	85,000
Concrete Vibrator No.2	EFK327, Gas. Eng. 3 ps.	0.06	85,000
Belt Conveyer No.1	KE5, 7 m, Gas. Eng. 3 ps.	0.15	40,000
Belt Conveyer No.2	KE5, 7 m, Gas. Eng. 3 ps.	0.15	40,000
Belt Conveyer No.3	KE5, 7 m, Gas. Eng. 3 ps.	0.15	40,000
Belt Conveyer No.4	KE5, 7 m, Gas. Eng. 3 ps.	0.15	40,000
Belt Conveyer No.5	KE5, 7 m, Gas. Eng. 3 ps.	0.15	40,000
Steel Forms Type 350	width 350 mm, 67 kg x 16 sets	1.07	239,000
Steel Forms Type 250	width 250 mm, 50 kg x 48 sets	2.04	538,000
Air Compressor	AMR125, D. Eng. 36 ps.	1.00	950,000
Pick Hammer No.1	CA7A, Air 0.9 m ³ /min	-	15,000
ick Hammer No.2	CA7A, Air 0.9 m ³ /min	-	15,000
Pick Hammer No.3	CA7A, Air 0.9 m ³ /min	-	15,000
ack Hammer No.1	TY62, Air 1.9 m ³ /min	-	44,000
ack Hammer No.2	Ty62, Air 1.9 m ³ /min	-	44,000
liscellaneous		0.96	150,000
Total		54.00 t ¥	23,520,000

≑ Rs.490,000

Chapter 14. Annual Schedules for Implementation of the Project

Chapter 14 Annual Schedules for Implementation of the project

Tentative schedule for implemention of the project extending full two years is given in Fig. 14-1.

÷

٠

Fig. 14.1 Construction Schedule

٠

	1972	1973		100
	JASOND	JFMAMJJA	S O N D	J F M A M J J
Renovation of Reservoir		36		87
Irrigation Main Canals		150	·	120
Irrigation Branch Canals		57	57	
Pumps and Pipe Lines		-		244
Drainage Canals				8
Farm Roads		40	17	
Field Arrangement		187	80	
		-		
Note: Nimher	Note: Number indicate the Cost of the Contract.			F .
	דווחדרמום הוום החשר ח	L LUE CONSULACION	(unit = 1,000 Ks.)	JUU Ks.)
			~	

٠

. -

.

. -

Table 14-1 Budgetary Schedule in Year

(Unit: 1,000 Rs)

Foreign Domestic Foreign Domestic	Item	t	1970 - 71 1971-72	1972-73	2-73	1973-74	-74	1974-75		Component	ent
mmunity for 392 for 115 ation 332 ation 332 ative 283 ative 283 equip- 490 2,568 240 2,568 212		Cost	Foreign Domestic Foreign Domestic	Foreign	Domestic	Foreign	Foreign Domestic	Foreign Domestic	estic	Foreign	Domestic
for 115 for 115 for 245 ation 332 input 581 . 130 ative 283 ative 283 equip- 490 2,568 240 212 2,568 240 212	anjore community										
for 115 for 245 ation 332 input 581 . 130 ative 283 ative 283 equip- 490 2,568 240 2,568 240 2,568 240 2,568 220	canal	392		25	160	21	186	\$	ı	46	346
for 245 ation 332 input 581 . 130 ative 283 ative 283 equip- 490 2,568 240 212 212	facılity for İdy	115		œ	49	œ	50	ı	ı	16	66
ation 332 input 581 . 130 ative 283 equip- 490 2,568 240 2,568 240 2,568 240 2,568 240 2,568 240 2,568	facility for land	245		ı	ı	222	23	ı	ı	222	23
input 581 130 ative 283 equip- 490 2,568 240 212 3.020	consolidation	332		66	162	28	76			94	238
130 ative 283 equip- 490 2,568 240 212 3.020	initial input	581		118	ı	463	1	·	ı	581	ı
ative 283 equip- 490 2,568 240 212 3.020	er living	130		120	10	1	ł	ł	ı	120	10
equip- 490 2,568 240 212 3 020	er cooperative	283		42	48	85	ı	108	ı	235	48
2,568 240 212 3.020	truction equip- It	490		490	ı	ı	·	ı	ı	490	ı
240 212 3 ADA		,568		869	429	827	335	108	ı	1,804	764
212 3 ADA	ition	240			80		80	~	80	,	240
060 2	llaneous	212		60	15	60	15	51 1	11	171	41
		3,020		929	524	887	430	159 5	16	1,975	1,045

Chapter 15. Economic Justification of the Project

Chapter 15. Economic Justification of the Project

15.1. Introduction

The economic evaluation of the project for all over Pakhanjore community development programme is made on Part I (The Report of Improvement For Pakhanjore Community Development Programme) and the economic evaluation of final design for PV13, PV14 is stated on this part.

15.2. Benefits from Direct Investment

(Benefits accruing to the immediate project-area)

The balance between the net-profit being raised from agricultural production on 248 acres of PV13, PV14 area, and the net-profit available therefrom upon completion of the project will stand as benefit attributable to the direct investment under this project, (see Section 2, Chapter 3).

15.3. Economicality of the Project

Economicality of the direct-investment part of the project will be examined here on the basis of socio-economic survey conducted in the year proceeding to commencement of the project (that is 1973).

15.3.1. Annual Incremental Net Benefit

Improvement-effects of the project on the productivity-increase are supposed to work through annual incremental process until it reaches at a specific turn-over at the end of the fifth year. Assuming the economic useful life as 30 years and annual interest-rate at 6%, an annual incremental net benefit will be calculated at Rs 252,897.

Year	Net Increm	ental Profit	Its Present Worth
1	Rupee	0	0
2	Rupees	72,000	64,080
3	11	150,000	125,940
4	**	227,000	179,807
5	11	302,115	
30	-, •	302,115	3,111,210
50	-	302,115 J	-
	Tot	al	3,481,037

Annual incremental profit = Rs $3,481,037 \ge 0.07265$ = Rs 252,897(0.07265 = Capital-recovery factor)

15.3.2. Annual Cost and Expenditure

The above-calculated profit is due to direct-investments meant for land consolidation and initial input for betterment of farm-management in the project-area. The investment for betterment of farm-management is being estimated in the annual production-cost when calculated annual incremental net-profit, hence the land consolidation investment alone stands as annual cost involved in our estimation.

At the assumed annual interest of 6% the total of the annual costs for land consolidation works will come to Rs 55,590.

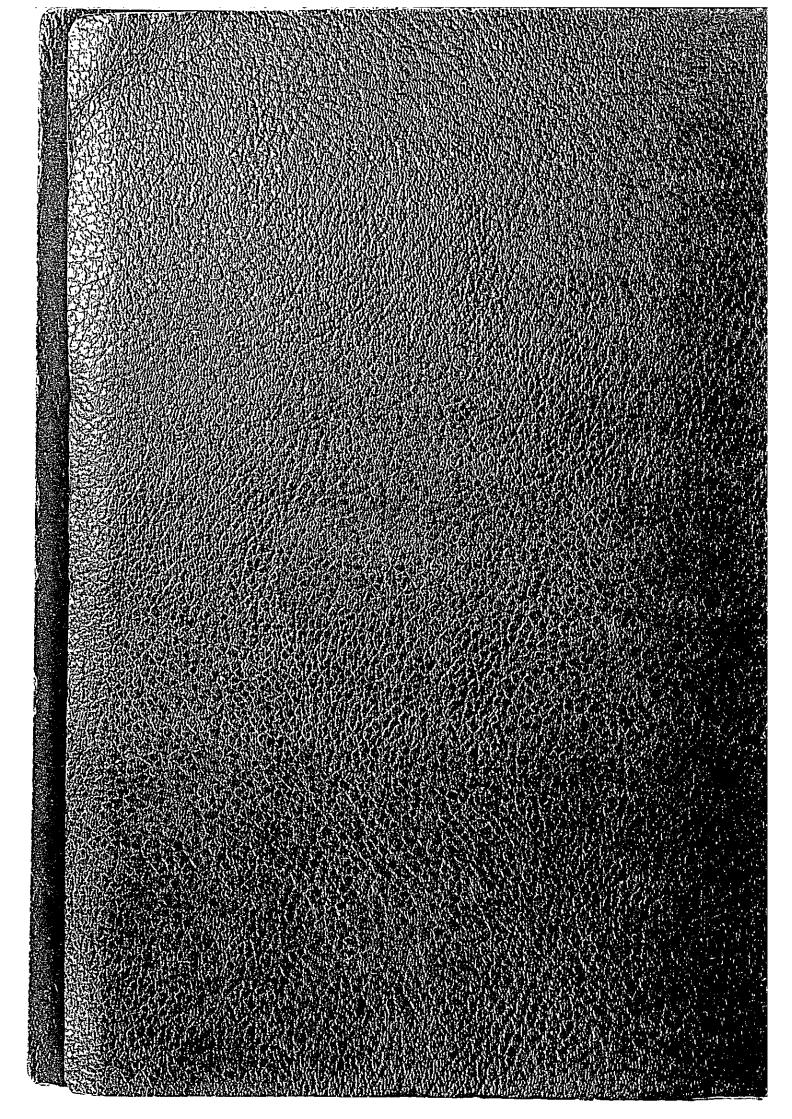
<u>Year</u>	Land Consolidation Works Cost (including the interest during construction period)	Its Present Worth
1	429,660	405,341
2	404,316	359,841
Total	833,976	765,182

Annual cost, Rs 765,182 x 0.07265 = 55,590 (0.07265 = Capital-recovery factor)

.

15.3.3. Annual Operation Cost

For maintenance and operation cost of the structures newly built under the project, an incremental cost of Rs 39,628 will be required, in addition to Rs 1,216 as for depreciation or replacement-cost of pumps (supposing their economic useful life lasts for 15 years)


Replacement-cost of pumps = Rs 42,540 Present-worth of pumps = Rs 16,744 (Rs 42,540 x 0.3936) Annual-cost of pumps = Rs 1,216 (Rs 16,744 x 0.0726)

15.3.4. Benefit-cost Ratio

(1)	Annual	incremental benefit			Rs 252,897		
(2)	Annual	Cost	Constructio	on Cost	Rs	55,590	
			0 & M cost		Rs	40,844	
				Total	Rs	96,434	

(3) Benefit-cost ratio

$$\frac{252,897}{96,434} = 2.62$$

