PEOPLE'S REPUBLIC OF BANGLADESH

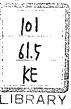
STUDY REPORT

ON

JAMUNA RIVER BRIDGE CONSTRUCTION PROJECT

BRIDGE WORKS

(FIRST STAGE)


MARCH 1975

JAPAN INTERNATIONAL COOPERATION AGENCY

N I K K E N C O N S U L T A N T S , I N C

JAPAN ENGINEERING CONSULTANTS CO. LTD.

JAPAN BRIDGE & STRUCTURE INSTITUTE, INC.

PEOPLE'S REPUBLIC OF BANGLADESH

STUDY REPORT

ON

JAMUNA RIVER BRIDGE CONSTRUCTION PROJECT

BRIDGE WORKS

(FIRST STAGE)

MARCH 1975

JAPAN INTERNATIONAL COOPERATION AGENCY

NIKKEN CONSULTANTS, INC.

JAPAN ENGINEERING CONSULTANTS CO. LTD.

JAPAN BRIDGE & STRUCTURE INSTITUTE, INC.

ABBRIVIATION AND UNIT

Bangladesh The people's Republic of Bangladesh

MOC Ministry of Communications

BIWTA Bangladesh Inland Water Fransport Authority

MFCWPP Ministry of Flood Control, Water Fesources and Power

BWDB Bangladesh Waver Development Board

SOB Survey of Bangladesh

Jamuna River The Brahmaputra-Jamuna River

R & H Roads and Highways Directorate

WAFDA Water and Power Development Authority

JICA Japan International Cooperation Agency

GTCA Former name of JICA

Prefeasibility Report

Prefeasibility Report on the Jamuna River Bridge Construction Project prepared by the Preliminary Study Team of GTCA, MAF., 1973 (Written in Japanese)

Inception Memort

Inception Report on Feasibility Study for Jamuna River Bridge Construction

Project submited by the OTCA

DHWL Design High Water Level

GL Ground Level

WL Water Level

GWL Ground Water Level

NWL High Water Level

LWL Low Water, Level

LLWL Lowest Low Water Level

Mean Lowest Low Water Level Public Works Department Proposed Height Width Height, Water depth Slope River Bed Height of River Bed HRE GH Ground Height Length Discharge Velocity or Volume : N-value, given by Standard Penetration Test Japanese Industrial Standard JIS Deutsche Industrie Norm (German Industrial Standard) DIN American Society of Testing Materials British Standard Diameter of foundation pile Cohesion of soil Internal friction angle of soil Modulus of Elasticity Coefficient of soil reaction meter second s, sec centimeter millimeter

kilometer kilogram pound t, ton ton (metric) foot f, ft,(') cubic meter per second cubic foot per second cfs gal gallon in, (") inch yd, yard mi. mile acre hour mon month yr year square cubic maximum minimum knot 1 TK = 36 YEN 1 YEN = 0.0278 TK

1 TK/cft.= 1271.3 YEN/m³ 1 YEN/m³=0.0007866 TK/cft. 1 TK/sft.= 387.5 YEN/m² 1 YEN/m²=0.002581 TK/sft. 1 TK/ft. = 118.1 YEN/m 1 YEN/m =0.008467 TK/ft.

		1. Lengt		
(a)	Cm	V ^d	£t	in
1	100	1.09361	3.28081	39.370
0.01		0.010936	0.032803	0.39370
0.91140	91.4400		3	36
0:30480	30.480	0.33333		12
0.02510	2.54000	0.02778	0.08333	1.

<u> </u>		
km	ya	mile
	1093.61	0.62137
0.000914		
2,60934	1760	
3.98727		

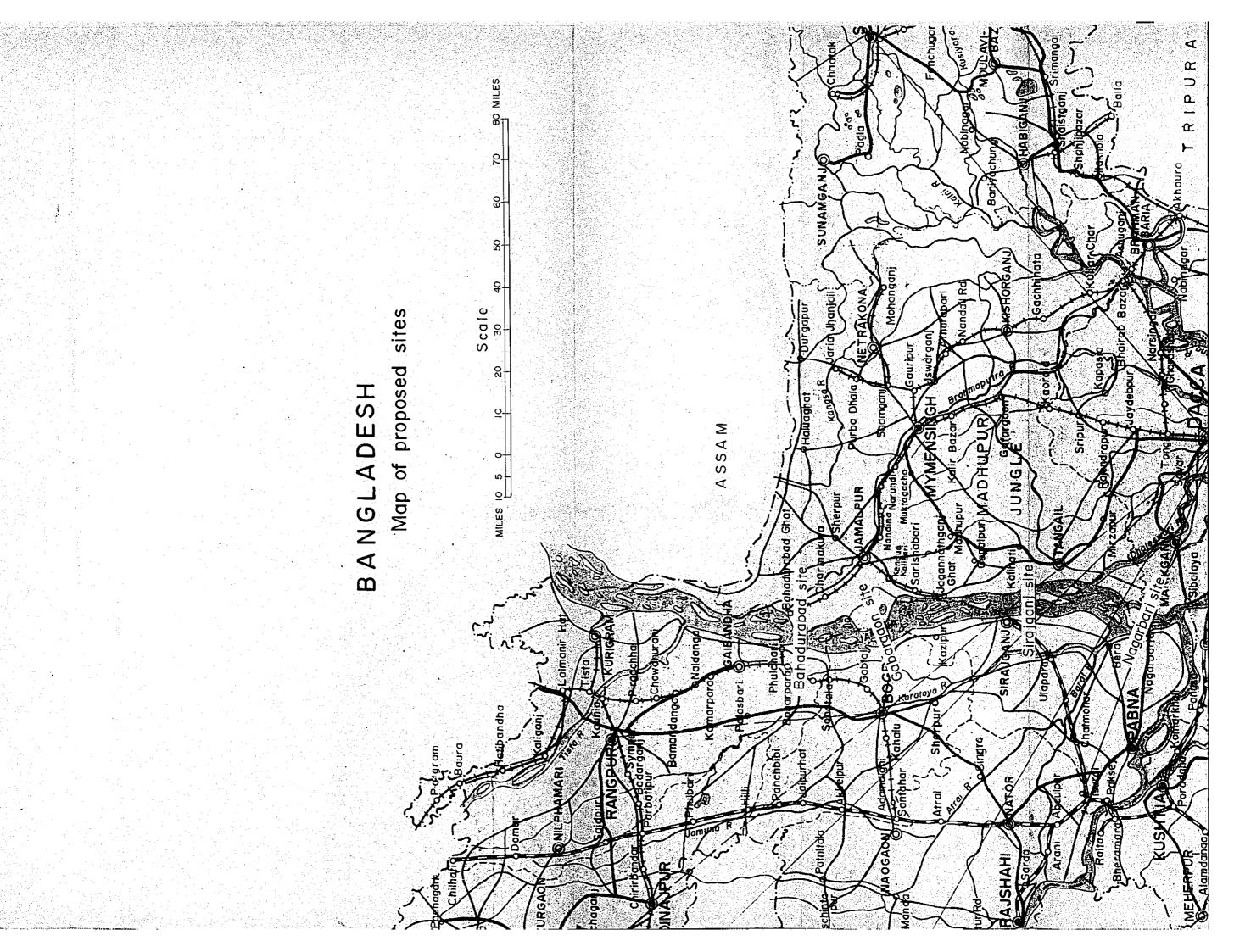
2.6		76 c	
3.9	(67		
		. Area	
	(a)	17. 14.	
	9.09299	10.704	
	0.09183	6:68gr	
	lft=14.in	lin ² =0:006945ft ²	
(6)			
religion de la compansión de la compansi	km	acre (to) m	ra l

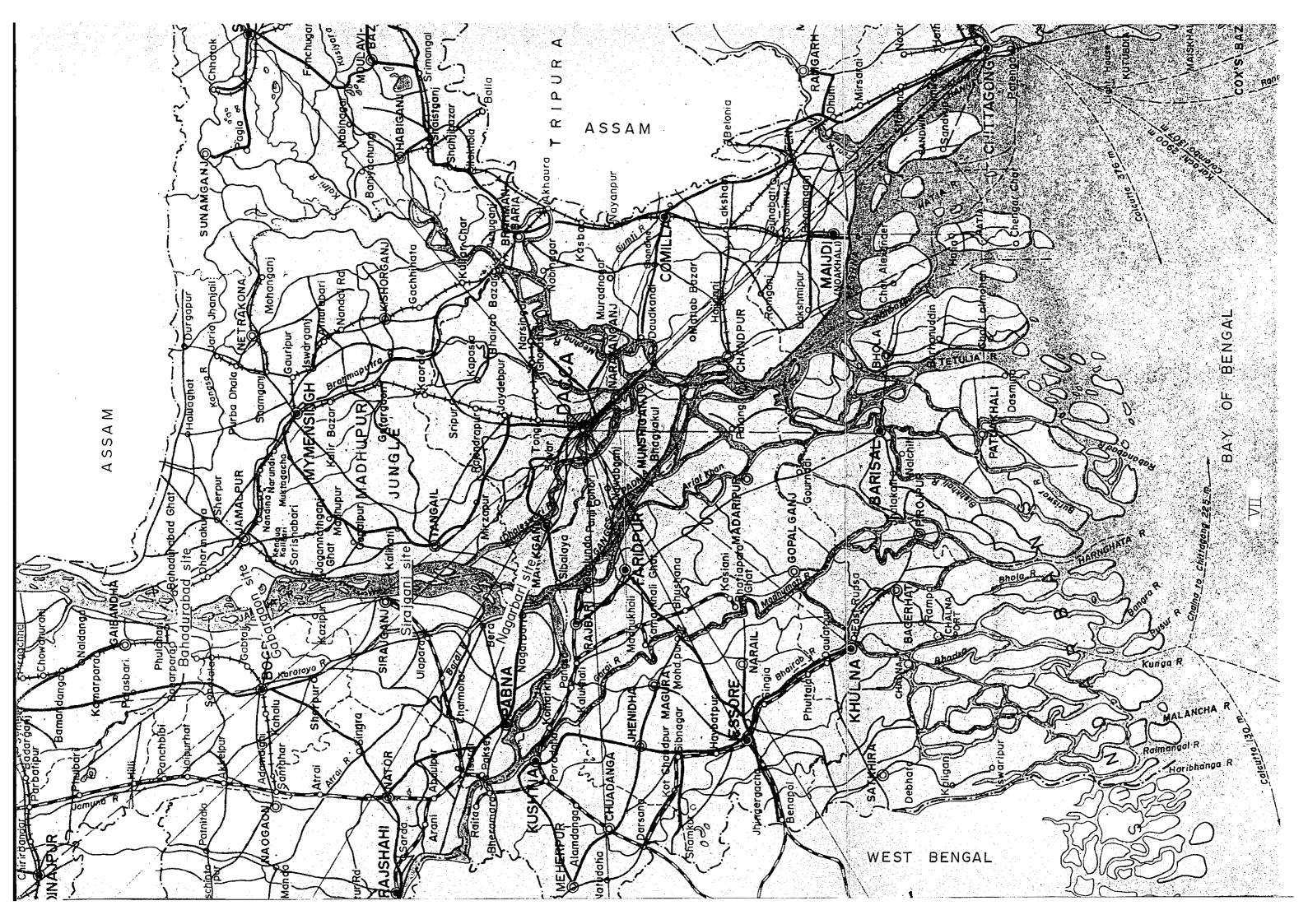
'na	k.m.	acre (t-%-	mile
1	0.0100	2,471	0.00386
100		247.10	0.3661
0.4047	0.004047		0.001563
259	2.590	640	1

?. Volume and caracity

	m ³	3	;d3	gel
7 1 × 1	0.001	0.03531	9.001308	o.26112
28.317	0.02633	35.31	1.30° 0.03704	264.17 7.481
7616	0.7646	27.0c		201.97
3.7854	0.003765	0.1337	0.00105	

		u. Weight		
ķg		oz avdp		t (tar)
l	.0,001	35.27	2.2046	0.00110
1000		3.527x10 ⁴	220#.e	1.1023
0.02835	2.635x10 ⁻⁵	1	0.05250	3.125×10 ⁻⁵
0.4536	4.536x10 ⁻³	16		0.0003
907.2	0.9072	32.000	2.000	1


	/sec	km/li	ft/sec	mila/E	knot
		3,600	3.2808	2.237	1,9438
0.7	2778	1	0.9113	0.6237	6.5400
0.	30 ⁴ 5	1.0973	1	0.6618	0,5925
0.1	4470	1.6093	1.4667		0.8690
9:	5144	1.8520	1.6878	1.1508	


1	1.0	4.7			100			17 as 11 1		
1.	f77						1	(O75 ::	from	1.
		I-MILL	14-1	121		. 60	100 62	F 107	1 PECARITY	1. 1

			great the latest			o ^o F fro				
o c	Ó	-10	- 00	-30	-40	-50	-60	-70	-80	<u>-90</u>
-300	-328	-346	-364	-382	-1.00	-418	<u>-</u> 436	-1154		The second of th
-100	-148	-166	-184	~505~		-238	-256	-274	-292	-310
0	32	į li	- 7	-72	-10	-58	-7.5	<u>-</u> 64	,-112	-130
0.1	0	10	20	30	140	50	60	70	-80	90
0	3₽	50	68	රිප්	70,1	122	140	158	176	194
100	212	290	24.8	26.	-84	304	320	338	356	374
200	392	410	354	1446 °	464	482	500	518	530	554
300	5720	590	608	6.6	044	662	696	698	716	734
100	753	770	755	503	324	84,	650	878	896	914
500	932	950	968	98€	2.0C4	1022	2010	1055	1076	1094
600	1112	1130	14,6	1166	, <u>la</u> en	1202	1,50	1238	1256	1274
700	1292	1310	1328	1346	1364	1:82	1400	J 418	1436	1454
800	1472	1490	Jeng	1526	3844	1562	2550	1598	1616	1634
900	1.652	1670	1.45	1706	1724	1740	1750	1778	1796	1811

Int	er-	n a				·	7	ò	9	
pol	ation	.13	1.8	3.6 5.5	 , g	10.	5 12	.6 14	. 4 . 16	.2

5(t°F-50)=9(t°3-10)

		NIT I
MAP OF PRO	POSED SI	ITES VII
CONTENTS	•••••	VIII
SUMMARY .		XVIII
	***	*
CHAPTER	I	INTRODUCTION 1
	1.	General 1
	2.	Organization of the study team 2
	3.	Major staffs, 2
	4.	Schedule for works and field study 2
CHAPTER	II	GENERAL CONSIDERATION 7
	1.	Reconnaissances at the Bangladesh 7
	2.	Proposed sites of bridge 10
•	3.	Selection of bridge types from the aspect · · · 10 of transportation system.
	4.	Width of bridge 11
	5•	Scopes of works for bridge planning 12
	6.	Preliminary selection of bridge type 12
	6-1	Main bridge over the Jamuna River 12
•	6-1-1	Materials for superstructure 12
	6-1-2	Superstructure 15
	6-1-3	Substructure 16
	6-1-4	Approaches 16
	6-2	Access parts 17
CHAPTER	III	DESIGN CONDITIONS AND STANDARDS 21
	1.	Guide bank 21
	2.	Design high water level, river bed height 21 and ground height.
	3.	Local scouring around piers 21
		_ viii _

	4•	Design discharge and velocity	21
	5.	Soil texture	21
	6.	Design river bed height and soil map	28
	7.	Superstructures	28
	7-1	Railway bridge	28
	7-2	Highway bridge	29
	8.	Substructures	30
	9.	Minimum navigation clearance	30
CHAPTER	IV	PROPERTIES OF MATERIALS	31
	1.	Structural steel	31
	2.	Allowable stresses of structural steel	31
	3.	Allowable stresses of concrete and reinforcement.	31
	3-1	Superstructure	31
	3-2	Substructure	31
	4.	Allowable stresses for prestressed concrete structure.	31
CHAPTER	V	PRELIMINARY DESIGN FOR COMPARISON	35
	1.	Outline	35
	2.	Superstructure	36
	2-1	Structural type	36
	2-2	Outline of structure	3 6
	23	Calculation of design	39
	2-3-1	Design conditions	39
	2-3-2	Result of calculations	46
	3.	Substructure.	56
	3 1	Structural type	56
	3-2	Outline of structure.	56
	3 3	Calculation of design	58

	3-3-1	Well foundation	58
		Outline of design	Control of the Property of
	(2)	Design condition.	58
	(3)	Result of calculations	59
	3-3-2	Multi-pile-foundation	68
	(1)	Outline of design	68
	(2)	Design condition	. 69
	(3)	Calculation of stability	69
	1) Theoretical equation	69
	2) Result of calculations	73
	4.	Approaches	105
	4-1	Embankment	105
	4-2	Elevated part	105
CHAPTER	VI	BRIDGE CONSTRUCTION WORKS	
	1.	Genral aspect of the proposed sites for bridge construction.	112
	1-1	Weather	112
	1-1-1	Temperature	112
	1-1-2	Wind speed.	114
	1-1-3	Rainfall.	114
	1-2	Water level of the river	119
	1-3	Workable days for construction works	119
•	2.	Quantity of works	127
	2-1	Superstructure.	127
	2–2	Substructure	127
	2-2-1	Well foundation	127
	2-2-2	Multi-pile-foundation	146
	3°	Approaches	146
	4.	Term of construction works	159

	5.	Construction method and equipment 159
	5-1	Transportation. 159
	5-2	Substructure 160
	5-3	Superstructure 161
	6.	Controversial poits on construction works. 164
	6-1	Poits on preparation 164
	6-2	Points on temporary works 164
	6-3	Points on main construction works 165
	7.	Pier protection against scour 165
	7-1	Range of pier protection 165
	7-1-1	Gales' proposal 165
	7-1-2	Studies of Ishizaki and Homma 165
	7-1-3	Present aspect of Hardinge bridge 168
	7-2	Protection work 168
CHAPTER V	II	ROUCH ESTIMATE OF CONSTRUCTION COSTS 170
	1.	Estimating bases of construction cost 170
	2.	Rough estimate of construction costs 171
	2–1	Superstructure 171
	2-2	Substructure
	2-3	Approaches
CHAPTER VI	II	SELECTION OF THE MOST SUITABLE TYPE OF STRUCTURE AND ORDER OF EVALUATION AT 186 PROPOSED SITES
	1.	Procedures of selection of the most suitable type and composition of spans.
	2.	Selection of the type of substructure 187
	3.	Decision of the optimum span length and total construction cost. 196
	4.	Order of evaluation at proposed sites 205
CHAPTER	IX	BRIDGES IN THE DOMAIN OF ACCESS PART 212
ANNEX	1 to 4.	

CONTENTS OF FIGURES	
CHAPTER I	
ORGANIZATION CHART OF JAMUNA BRIDGE FEASIBILITY STUDY TEAM, JICA, JAPAN.	3
CHAPTER II	
BROAD GAUGE STANDARD LOADINGS OF 1926.	8
IRC STANDARD VEHCLES.	9
STRUCTURAL WIDTH OF BRIDGE.	13
Descritive figure of the study.	14
CHAPTER III	
Distance between guide banks.	22
Design river bet height and soil map(Bahadurabad).	24
" (Gabargaon).	25
" (Sirajganj),	26
" (Nagarbari).	27
CHAPTER V	
Suitable bridge types by different span length.	37
Truss frame.	38
Typical cross section in Case a.	40
Typical cross section in Case b.	43
Example diagram of multi-pile-foundation,	57
Relations between safty factor and scouring depth of caissons(at Sirajganj site). case a.	62
" (at Nagarbari site). case a.	63
" Case b.	64
	CHAFTER I ORGANIZATION CHART OF JAMUNA BRIDGE FEASIBILITY STUDY TEAM, JICA, JAPAN. CHAPTER II BROAD GAUGE STANDARD LOADINGS OF 1926. IRC STANDARD VEHCLE: STRUCTURAL WIDTH OF BRIDGE. Descritive figure of the study. CHAPTER III Distance between guide banks. Design river bet height and soil map(Bahadurabad). " (Gabargaon). " (Sirajganj). " (Nagarbari). CHAPTER V Suitable bridge types by different span length. Truss frame. Typical cross section in Case a. Typical cross section in Case b. Example diagram of multi-pile-foundation. Reiations between safty factor and scouring depth of caissons(at Sirajganj site). case a. " (at Nagarbari site). case a.

" (case b) "

Diagram of multi-pile-foundation system.

Fig.V-9

Fig.V-10

Fig.V-11

Necessary length of grip required for stability

of well(case a) at Sirajganj site.

Fig.V-13	Diagram of thrust for pile.	71
Fig.V-14	Marks for Table V-11.	73
Fig.V-15	Outline of multi-pile-foundation(\$\sqrt{3.0 m}\).	91
Fig. V-16	Stability of embankment due to circular arc method.	107
Fig. V-17	General view of approaches in case a.	108
Fig. V-18	General view of approaches in case b.	110
x-g.,	CHAPTER VI	
Fig.VI-1	Mean temperature.	113
Fig.VI-2	Maximum wind speed.	115
Fig.VI-3	Frequency of wind speed.	116
Fig.VI-4	Mean monthly rainfall.	117
Fig.VI-5	Daily rainfall.	118
Fig.VI-6	Frequency of rainfall in each month.	120
Fig.VI-7-1	Frequency of rainfall at Bogra Station.	121
Fig.VI-7-2	Frequency of rainfall at Sirajganj Station.	122
	Frequency of rainfall at Faxidpur station.	123
Fig. VI-7-3	Monthly mean water level at each site.	124
Fig.VI-8	Natural condition at Sirajganj site.	125
Fig.VI-9	Range estimated materials.	129
Fig. VI-10	Comparison of steel weight per unit length.	131
Fig.VI-11 Fig.VI-12-1	Total weight of steel pipe used for multi-pile- foundation in case a.	155.
Fig.VI-12-2	Total weight of steel pipe used for multi-pile- foundation in case b.	156
Fig.VI-13	Excavation method used reverse circulation.	162
Fig.VI-14	Cantilever erection method in case of span of 250 m.	163
Fig.VI-15	Profile of foundation including river bed condition.	166
	XIII -	

Fig.VI-16	Diagram of pier-apron.	167
Fig.VI-17	The relation between q'/q and x/r.	167
Fig.VI-18	The relation between d_S/H and z_*	167
	CHAPTER VIII	
Fig.VIII-1	The relation between costs and span of substructure in case a.	188
Fig.VIII-2	The relation between costs and span of substructure in case b.	192
Fig.VIII-3	The relation between construction costs and span of bridge with well foundation in case a.	197
Fig.VIII-4	The relation between construction costs and span of bridge with well foundation in case b.	201
Fig.VIII-5	GENERAL VIEW OF JAMUNA RIVER BRIDGE.	208

CONTENTS OF TABLES

		CONTENTS OF TABLES	
		SUMMARY	
		Total costs of bridge construction	XXI
		CHAPTER I	
Table	I-1	Work schedule (First stage).	4
Table	I-2	Schedule for field study at Bangladesh in 1973.	5
Table	I- 3	Schedule for Dacca Meeting in 1974.	6
		CHAPTER II	
Table	II-1	Data of bridges (longer than 330 ft.) in the domain of railway access.	19
Table	II-2	Data of bridges (longer than 330 ft.) in the domain of highway access.	20
		CHAPTER III	
Table	III-1	DHWL, RB and GH.	23
Table	III-2	Q,Vm and V.	23
		CHAPTER IV	
Table	IV-1	Standard steel materials.	32
Table	IV-2	Allowable stresses of steel materials for structure.	32
Table	IV-3-1	Allowable stress of materials for superstructure of reinforced concrete.	33
Table	IV-3-2	Allowable stress of materials for superstructure of reinforced c ncrete.	33
Table	IV-4	Miscellaneous values for superstructure of prestressed concrete.	34
		CHAPTER V	
Table	∇-1	Span 328',3-span continuous truss in case a.	48
Table	V-2	Span 492',	49
Table	V-3	Span 820', cantilever truss in case a.	50
Table	V-4	Span 1148',	51
Auto Hermitalia	•		

Table V-6 Table V-7	Span 492', Span 820', cantilever truss in case b.	53
Table V-8	Span 1148', "	54
Table V-9	Reactions of superstructure in case a.	55
Table V-10	Reactions of superstructure in case b.	60
Table V-11		61
	Outstanding length at each site.	74
Table V-12	Result of calculations of multi-pile-foundation in case a.	75
Table V-13	Result of calcurations of multi-pile-foundation in case b.	83
	CHAPTER VI	
Table VI-1	Maximum and minimum temperature.	112
Table VI-2	Ratios of seasonal rainfall to annual rainfall	114
Table VI-3	Maximum daily rainfall depth.	114
Table VI-4	Working days.	128
Table VI-5	Statement list of steel weight.	130
Table VI-6	Comparison of steel weight per unit length.	131
Table VI-7	Rough estimate of construction materials of superstructure.	132
Table VI-8	Total weight of steel in superstructure.	136
Table VI-9	Construction materials of well foundations.	137
Table VI-10	Construction materials of multi-pile-foundations. In case of pile size of 2.0 m.	147
Table VI-11	Construction materials of multi-pile-foundations. In case of pile size of 3.0 m.	151
Table VI-12	List of materials used for embankment in approaches.	157
Table VI-13	List of materials used for elevated bridge of approaches in case b.	158
•		

		CHAPTER VII	
Table V	II - 1	Rough estimate of construction costs of superstructure in case a.	172
Table V	II - 2	Rough estimate of construction costs of superstructure in case b.	176
Table V	II - 3	The list of rough estimated construction costs of superstructure.	180
Table V	II - 4-1	Rough estimate of construction costs of well foundation in case a.	181
Table V.	II - 4 - 2	Rough estimate of construction costs of well foundation in case b.	182
Table V	II-5-1	Rough estimate of construction costs of multi-pile-foundation in case a.	183
Table V	II - 5–2	Rough estimate of construction costs of multi-pile-foundation in case b.	184
Table V	II - 6	Rough estimate of construction costs for approaches.	185
		CHAPTER VIII	
Table V	III-1	Rough estimate of bridge construction costs.	206
Table V	III–2	Evaluation of the proposed sites in regard to bridge construction costs.	207
		CHAPTER IX	•
Table I	X1	Miscellaneous data of bridges in the domain of railway access.	213
Table I	X – 2	Miscellaneous data of bridges in the domain of highway access.	214
Table I	X-3	Rough estimated cost of bridge constructions in the domain of railway access.	215
Table I	X-4	Rough estimated cost of bridge constructions in the domain of highway access.	216

SUMMARY

For the purpose of river training, the guide-bank system was introduced and three types of guide banks were considered at each of the four proposed sites. The widths between a pair of guide banks which were considered are as follows.

Unit: km (mile)

Site	A-Type B-Type C-Type
Bahadurabad	2.0(1.2) 4.2(2.6) 5.6(3.5)
Gabargaon	2.0(1.2) 4.2(2.6) 5.2(3.2)
Sirejganj	2.0(1.2) $4.2(2.6)$ $5.6(3.5)$
Nagarbari	2.0(1.2) 4.2(2.6) 5.2(3.2)

1. Width of bridge.

The determination of the effective width of the Jamuna Bridge is one of the most important matters in this project, because it depends largely upon not only future overland transport in the People's Republic of Bangladesh but also total cost of construction.

Considering the results of economic and traffic study of our team and referring to the Report of the Bangladesh Transport Survey, the following two cases were studied.

Case a

Railway part: Single broad gage track

Highway part: Two-lane carriageways of total

width 24 ft.

Case b.

Railway part: Double broad gage tracks

Four-lane carriageways of total

width 48 ft.

2. Selection of materials.

It is clear that the total length of bridge is determined by the width of waterway between left and right guide banks.

Each clear span of the bridge will be determined by the horizontal

clearance of navigation channel which is specified by the BIWTA, that is 250 ft.

Considering the above conditions, steel and concrete (prestressed concrete) are recommended as for the construction materials.

Comparing merits and demerits of both materials, we concluded that steel bridge is more practicable than prestressed concrete bridge in the case of the Jamuna River Bridge.

3. Superstructure of bridge.

In order to minimize the total cost of bridge construction, it is requested that the structural type of bridge should be selected among various types of bridge applicable to long span.

As is generally known, cantilever truss type and/or continuous truss type is suitable for long span. Therefore, the structural type of main girder and its composition of span are selected as follows taking the minimum horizontal clearance of navigation channel and cost of bridge piers into consideration.

Three equal span continuous truss

(each span length is 100 m (328 ft))

Three equal span continuous truss

(each span length is 150 m (492 ft))

Multi-equal span cantilever truss

(each span length is 250 m (820 ft))

Multi-equal span cantilever truss

(each span length is 350 (1148 ft))

Comparing the merits and the demerits of the above-mentioned four types in consideration of cost of construction, we concluded that three span continuous truss (each span length is 492 ft) is more economical than the other cases in the case of the Jamuna Bridge.

4. Substructure of bridge.

The Jamuna River is a braided river, so even if the guide-bank system is applied to the river training in order to fix the river channel, the deepest part of the river channel will fluctuate to and fro in the river course. Therefore, it is required that the foundation of all piers should

have equal depth.

According to the results of our test boring, we found that the reliable layer of thickness 7-10 m (23 - 33 ft) exists at several ten meters below ground level at every proposed site. It seems that such a gravel layer is suitable for the supporting layer of bridge foundation. This means that deep foundation will be needed for every pier of the bridge.

In general, bridge piers should be sunk enough to stand by themselves without any protection around them. In our case, if well foundation is applied, the scour depth at piers is estimated to be as about 1.8 times as the water depth, and if the multi-pile type foundation is applied, the scour depth at piers is assumed at about 10 m. The special consideration was given to the above-mentioned conditions for the design of bridge piers.

Because of the necessity of very deep foundation, well and multi-pile types were studied as types of foundation in consideration of simplicity of execution.

From the results of our studies, it has been calrified that the well foundation is more beneficial than the multi-pile foundation from the structural and economical point of view. Therefore, we concluded that the well is suitable for the substructure of the Jamuna Bridge.

5. Construction costs

The total costs of bridge construction (included approaches) at each of four proposed sites and two cases of the bridge types are shown as the table of next page.

	Total costs of bri	ige construction	
	Proposed site	Distance btw. guide banks	Total costs (10 ⁸ YEN)
	Bahadurabad	4.3 km	805
		5.6 km	1,009
Case a		4.2 km	819
	Gabargaon	S.a. ism	959
Two lames			
Single track	: Sirajganj	4.3 km	802
		5.8 km	1,008
		4.2 Mil	878
	Hagaroari	5.6 %m	1,024
		4.2 km	1,419
	Bahadurabad	5.6 km	1,767
_ Case b	Gabargaon.	4.2 Km / C	1,437
		5.2 km	1,673
Four Lanes		31 - 2 - 3	1,420
Double tracks	Sirajganj	4.2 km 5.6 km	1,765
		7.0 Am	2,100
	Nagarbari	1.2 km	1,508
		5.2 km	1,787
	– XXI		

CHAPTER I

INTRODUCTION

General.

This report was prepared to summarize the results of the first stage investigations which were carried out by the Bridge Study Team for 14 months, from Aug. 1973 to Oct. 1974 conforming to the Inception Report which submitted to the People's Republic of Bangladesh by JICA (former OTCA) in Aug. 1973.

Japanese Preliminary Study Team (The chief, Mr. Ishio Kawasaki) was organized in Dec. 1972 by JICA to be sent to the People's Republic of Bangladesh. As for the Jamuna Bridge Construction Project, the Team proposed the following four sites. Namely, these are, in order of the site from upstream to downstream of the Jamuna River, just downstream site from Bahadurabad, adjacent site to Gabargaon, the site about 10 Km downstream from Sirajganj and the site about 20 Km upstream from Aricha.

The purpose of the bridge study is to obtain the fundamental data for selection of the most suitable structural type of superstructure and substructure for the bridges at four proposed sites and for the decision of their priority from technical and economical stand point of view based on the data collected by the Bridge Study Team in Bangladesh and Japan in 1973 and utilizing the data collected by the Geological Study Team, the River Training Team and the other Study Teams.

To attain the purpose of this study, JICA sent five members Mr. Tezuka, Mr. Sakurai, Mr. Tanaka, Mr. Wakabayashi and Mr. Kamide to Bangladesh for reconnaissance and collection of data from 7th. Jan. to 27th, Jan. 1973. After the collection of these data in Bangladesh and Japan, these members accomplished the basic plan for this bridge construction project in Japan, and preliminary design for the composition of width and span, and for superstructure and substructure were made in every case in accordance with the requirements and the standards for design. At the same time, the bridges in the domain of access parts were examined in the same way and the rough construction costs for each one of four proposed sites were estimated respectively.

Outlines of chapters are as follows.

CHAPTER II GENERAL CONSIDERATION

CHAPTER III DESIGN CONDITIONS AND STANDARDS

CHAPTER IV PROPERTIES OF MATERIALS

CHAPTER V PRELIMINARY DESIGN FOR COMPARISON

CHAPTER VI BRIDGE CONSTRUCTION WORKS

CHAPTER VII ROUGH ESTIMATE OF CONSTRUCTION COSTS

CHAPTER VIII SELECTION OF THE MOST SUITABLE TYPE OF STRUCTURE AND

ORDER OF EVALUATION AT PROPOSED SITES

CHAPTER IX BRIDGES IN THE DOMAIN OF ACCESS PARTS

APPENDICES

Appendices contain the exchange notes and the data collected in Bangladesh.

2. Organization of the study team.

The organization chart for the Jamuna Bridge Study Team is shown in Fig. I-1. The Bridge Study Team consists of following three companies and the study works were carried out in collaboration.

The Members of the Team are as follows.

- i) NIKKEN Consultants, Inc.
- ii) Japan Engineering Consultants Co., Ltd.
- iii) Japan Bridge & Structure Institute, Inc.

3. Major staffs.

The works in 1973 were laid stress on field study, and in 1974 the works were done chiefly by the staffs who carried out the field study. Dr. Inose, the Leader in general, instructed the staffs at all times.

Major staffs who were engaged in the study are as follows.

Mr. Kaoru Tezuka

Leader of Bridge Study Team

Mr. Takeo Sakurai

Mr. Toshio Tanaka

Mr. Yoshihiko Wakabayashi

Mr. Tadao Kamide

4. Schedule for works and field study.

The work schedule of the Bridge Study Team in 1974 are shown in Table I-1.

ORGANIZATION CHART OF JAMUNA BRIDGE FEASIBILITY STUDY TEAM, JICA, JAPAN

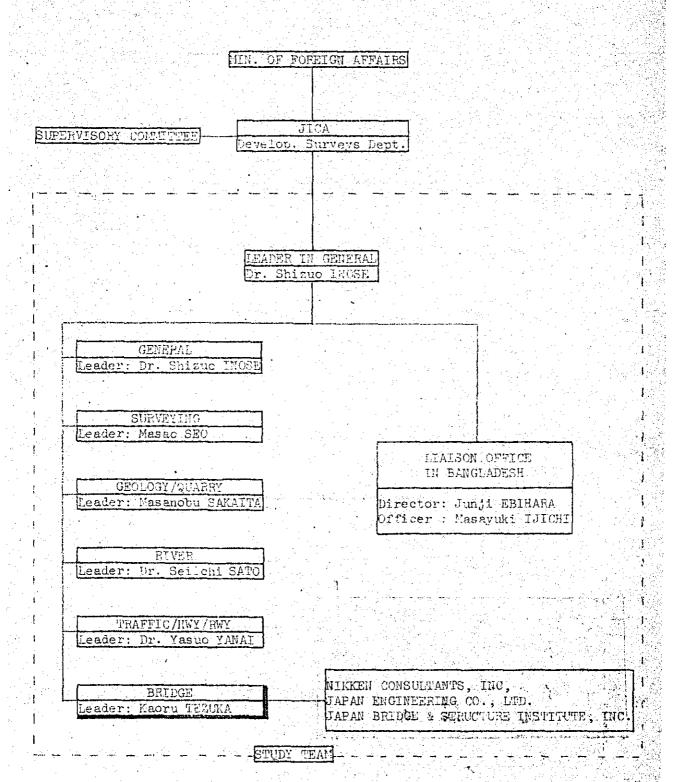


Table 1-1 Work Schedule (First Stage)

Items of study works					197	4					1975	5	Remarks
rems or sumy works	4	5	6	7	8	9	10	11	12	1	2	3	remarks
General study													
Study of types and basic dimensions													in Bangladesh
Study of approaches													in Japan
Preparation of general view										to a street of agreeming a			A : Meeting
Study of execution method	-												in Tokyo B: Meeting
Study of unit price				1									in Dacca
Estimation of amount of materials							!						
Rough estimate of construction costs													
Draft and print of reports]			j				- Arryaniants -			
Meeting						;)2						

In Bangladesh, the Bridge Study Team carried out the field study in 1973 and the Team took part in the Dacca meeting in 1974. Tables I-2 and I-3 show the schedule for them.

				P. 5
		Tab]	le I-2	Schedule for field study at Bangladesh in 1973
7.	Jan.	74	Mon.	Departure from Tokyo. Arrival in Bangkok.
8	Jan.	174	Tue.	Arrival in Dacca from Bangkok. Discussion and adjustment of work schedule.
. 9	Jan.	'74	Wed.	Greeting to MOC and Embassy. Preparation of schedule in English.
10	Jan.	! 74	Thu.	Greeting to MOC and interview to the Minister of MOC. Discussion of Surveying Items with counterparts.
#11	Jan.	174	Fri.	Examination of surveying schedule and items.
12	Jan.	774	Sat.	Inspection of Sitarakya Br. and discussion.
13	Jan.	74	Sun.	Inspection of roads, ferries and bridges contained in district of Meghna Rv.
14	Jan.	1.74	Mon,	Inspection of King George VI Br. at Bhairab Bazar.
15	Jan.	'74	Tue.	Discussion in R & H, collection of data. Departure from Dacca St. by train.
16	Jan.	7,4	Wed.	Arrival in Jagannathganj Chat, inspection of the banks of Jamuna Rv. Arrival in Sirajganj.
17	Jan.	†74	Thu.	Inspection of Sirajganj site of proposed sites and Char.
18 ·	Jan.	174	Fri.	Departure form Sirajganj by speedboat, inspection of surrounding conditions of Jamuna Rv. Arrival in Aricha. Inspection of several bridges between Aricha and Dacca. Arrival in Dacca.
19	Jan.	l-7li	Sat.	Discussion among Highway, Railway and Ferry Team. Arrival in Calcutta from Dacca by airway.
20	Jan.	174	Sun.	Inspection of Vivekanada Br. and Howrah Br. Arrival in Dacca from Calcutta.
. 21	Jan.	.1-7 ¹ 4	Mon.	Discussion of schedule. Collection and arrangement of data.
22	Jan.	74	Tue.	Collection of data.
23	Jan.	174	Wed.	Inspection of Hardinge Br. at Paksey.
5#	Jan.,	174	Thu.	Inspection of Isurdi St. Arrival in Dacca.

. 25	Jan.	174	Fri	Reconnaisance	of	near	Tangail	at Sira	jgan,i	site.

26 Jan. '74 Sat. Final discussion of schedule. Data arrangement.

27 Jan. '74 Sun. Data arrangement.

28 Jan. '74 Mon. Inspection of Port of Chittagon and Khulna.

29 Jan. '74 Tue. Inspection of surroundings at Kaptai.

30 Jan. '74 Wed. Data collection and arrangement.

31 Jan. '74 Thu. Greeting to MOC and Japan Embassy. Arrival in Calcutta from Dacca.

1 Feb. '74 Fri. Arrival in Bangkok from Calcutta.

2 Feb. '74 Sat. Arrival in Tokyo from Bangkok.

Table I-3 Schedule for Dacca meeting in 1974

28	Oct	'74 Mon.	Arrival	in	Bangkok	from	Tokyo.
20	UCU.	1 4 MOII.	HILLAGT	111	DOTTELLOR	1.1 Om	TON YOU

29 Oct. 174 Tue. Arrival in Dacca from Bangkok. Greeting to the Embassy. Discussion and adjustment of schedule.

30 Oct. '74 Wed. Greeting to MOC and its related divisions.

31 Oct. '74 Thu. Conference: explanation of Agenda, costs and materials.

1 Nov. '74 Fri. Discussion for each division after conference.

2 Nov. '74 Sat. Conference.

3 Nov. '74 Sun. Preparation of Agreed minutes.

4 Mov. 174 Mon. Conference, adjustment of Agreed minutes.

5 Nov. '74 Tue. Ceremony for signature of Agreed minutes. Creeting to Embassy.

Arrival in Bangkok from Dacca.

Arrival in Dangaok from Dadea.

6 Nov. '74 Wed. Arrival in Tokyo from Bangkok.

CHAPTER II

GENERAL CONSIDERATION

1. Reconnaissances at the Bangladesh.

The Bridge Planning Team carried out some reconnaissances, collection of data necessary for planning and design of bridge and some confirmation and discussion with the Bangladesh government authorities concerned from 8th Jan. to 1st Feb. in 1974 in Bangladesh. These data were reviewed and studied, and used as the base of this report.

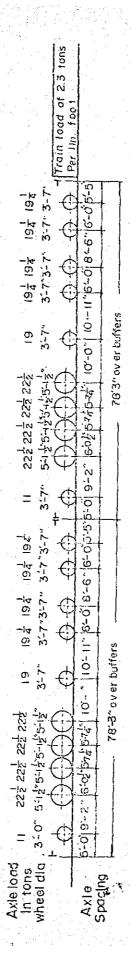
The contents of data collected during the reconnaissance at the bridge site are found in ANNEX-1.

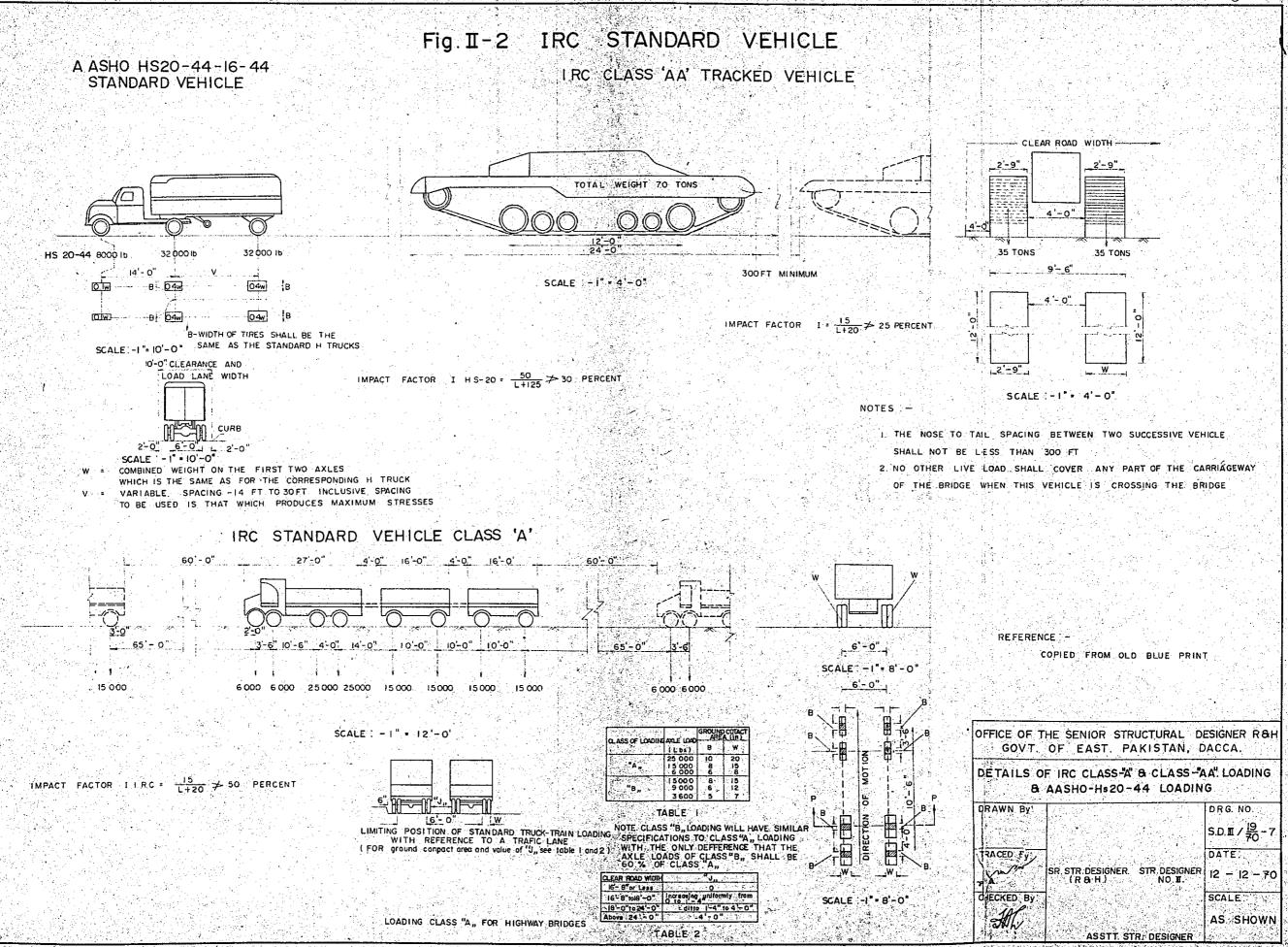
As for the general design specifications of railway and highway bridge, a meeting was held between the Japanese Feasibility Study Team and the delegates of the Government of Bangladesh, and general items were agreed between both the parties as follows. While, details of design specifications will be stated in CHAPTER III. DESIGN CONDITIONS AND STANDARD.

a. Live Load.

Live load to be used for design of railway bridge will be specified by Main Line Loading of Bridge Code for Indian Railways. (Fig. II-1) Live load for highway bridge will be specified by the I.R.C. Standard Vehicle Class A. (Fig. II-2)

b. Track Gage.


The track gage for design shall be 5'6" (Broad gage).


c. Navigation Clearance.

The minimum navigation clearance to be used for design is specified by BIWTA as follows.

FIG. II - I BROAD GAUGE STANDARD LOADINGS OF 1926

AXIAL LOAD OF 22.5 TONS

2. Proposed sites of bridge.

The Preliminary Survey Team has proposed the following four sites for bridge crossing.

Site - 1 Bahadurabad

Site = 2 Gabargaon

Site - 3 Sirajganj

Site = 4 Nagarbari

At the first stage of this study, the study team shall compare the four proposed sites for bridge construction and decide the most suitable site in accordance with the three criteria mentioned in the Inception Report.

3. Selection of bridge types from the aspect of transportation system.

The following types of bridge can be considered.

- a. Highway bridge.
- b. Railway bridge.
- e. Railway-cum-highway bridge.

The transport network in the People's Republic of Bangladesh consists of railway transport, highway transport, inland water transport and airroute transport, among which railway and inland water transport are most important.

Above all, railway transport occupies a greater part of overland transportation in Bangladesh. It can be said that railway transport plays the most important role in the overland transportation socially and economically. Therefore, when bridge across the Jamuna River will be planned, it is clear that railway bridge takes precedence of highway bridge. But according to the recent study for land transportation in Bangladesh, highway transportation is increasing gradually by the strengthening of capacity of road ferry. Such transport tendency can not be disregarded. It is natural that the highway bridge across the Jamuna River is also necessary for the improvement of future highway network in Bangladesh.

There are two ways to be considered in order to meet such transport demand. One is to construct highway bridge and railway bridge separately and the other is to construct railway-cum-highway bridge. The former will

be expected larger benefit than the latter but higher total cost of construction will be needed.

We judged that it is the best way to construct railway-cum-highway bridge considering future transport network and economic development of Bangladesh. Therefore the assumed type of bridge which is selected at the most suitable site shall be the railway-cum-highway bridge.

According to the Feasibility Report performed by Freeman, Fox and Partners (stage 1), it is reported that the estimated benefit-cost ratio of railway-cum-highway bridge will be about double of that of highway bridge.

4. Width of bridge.

The determination of effective width of the Jamuna Bridge is one of the most important matter for this Project, because it depends largely upon not only future overland transport in Bangladesh but also total cost of construction.

There are two ways of thinking in order to determine an effective width of the Jamuna bridge. One way is to determine the effective width of bridge so as to minimize the total cost of construction of the bridge. This will be done by giving the least necessary width to the bridge considering future increase of traffic volume. The other way is to determine the effective width of bridge taking future increase of traffic volume through the bridge and also future economical development of the Bangladesh into consideration. In this case, higher cost of construction will be needed than previous case but is desirable for the future development of Bangladesh.

Taking above-mentioned two ways of thinking into consideration, we carried out the study of following two cases.

Case a.

Railway part: Single broad gage track.

(5ft 6in)

Highway part: Two-lanes carriageway of total

width 24ft.

Case b.

Railway part: Double broad gage track.

Highway part: Four-lanes carriageway of total width 48ft.

In case b, so far as traffic conditions permit, it is possible to introduce a method of stage construction, namely, at first, construct a bridge with least necessary width and afterwards, residual width is added in accordance with an increase of traffic volume through the bridge.

The standard cross section of above-mentioned two cases are shown in Fig. II-3.

5. Scopes of works for bridge planning.

The proposed bridges were classified into the next two scopes.

- a. Main bridge over the Jamuna River
 Main bridge over the Jamuna River and banking, viaduct included in approach road.
- b. Bridges included in link parts Railway bridges included in the rail links and Road bridges included in the road links.

Above-mentioned classifications and definitions shall be shown in Fig. I1-4.

- Preliminary selection of bridge type.
- 6-1 Main bridge over the Jamuna River.

Choice of type for bridge may be considered from the following three aspects.

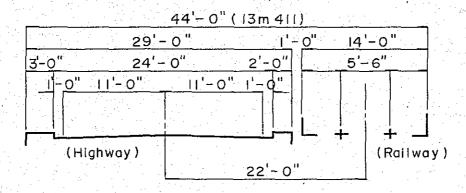
Selection of materials.

Selection of types of superstructure.

Selection of types of substructure.

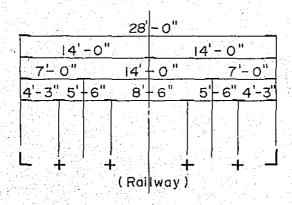
6-1-1 Materials for superstructure.

It is clear that total length of bridge is determined by the width of necessary waterway between left and right guide banks.


The each clear span of the bridge will be determined by the width of navigation clearance which is specified by the BIVTA, that is 250 ft.

Considering above conditions, steel and concrete (prestressed concrete) are recommended as for the construction materials.

The merits of steel bridge as compared with prestressed concrete bridge are as follows.


Fig. II-3 STRUCTURAL WIDTH OF BRIDGE

a) in case of two lanes, single track.

b) In case of foure lanes, double track (for double decks)

Railway Approach Guide Banks Jamuna River Bridge Railway Links Approach

Fig. II-4 Descriptive figure of the study

- a. The weight of steel bridge is lighter than that of prestressed concrete bridge, therefore the inertia force of steel bridge due to earthquake acted to substructure of the bridge is smaller than that of prestressed concrete bridge when the supported length is equal. This means that the cost saving of substructure can be expected.
- b. Steel bridge is more practicable and advantageous to apply to longer span than prestressed concrete bridge.
 - Erection of steel bridge is easier and faster than that of prestressed concrete bridge, so it is possible to cut the period of construction work.
- c. When the multipile foundation system is applied to the substructure, such system will be deflected horizontally by current pressure. Effect of horizontal displacement of bridge shoe due to such deflection can be easily treated in the case of steel bridge.

The demerits of steel bridge are as follows.

- a. Higher cost of maintenance will be needed.(for example, cost of repainting etc.)
- b. Possibility of application of domestic materials will be limited.
 Considering above-mentioned merits and demorits, we concluded that steel bridge is more practicable than prestressed concrete bridge in the case of the Jamuna River Bridge.

6-1-2 Superstructure.

It is clear that very deep foundation is needed for the Jamuna River Bridge and its cost is high. This means that the proportion of cost of substructure to total construction cost of bridge is high. In order to minimize the total construction cost of bridge, it is expected that the structural types of bridge should be selected among various types of bridge applicable to long span.

As is generally known, cantilever truss type and/or continuous truss type is suitable for long span bridge. Therefore, now we are carrying out bridge planning work taking three equal span continuous truss (length of each span is 328 ft and 492 ft) and multiequal span cantilever truss (length of each span is 820 ft and 1148 ft) into consideration.

6-1-3 Substructure.

The Jamuna River is braided river, so even if the guide bank system is applied for the river training in order to fix the river channel, the deepest part of river channel will fluctuate to and fro in the river channel. Therefore, it is requested that foundation of all piers should have equal depth.

According to the result of our test boring, reliable gravel layer exists several ten meters below ground level at every four proposed sites. This means that the deep foundation will be needed for every pier of the bridge.

Accordingly, in order to determine a composition of span, it is necessary not only to consider harmony and simplicity of structure but also to reduce the total cost of construction as much as possible.

Because of the necessity of very deep foundation, well and multipile foundation were assumed as the types of substructure in consideration of simplicity of execution. Well foundations are frequently applied in Bangladesh, but in this type, though there will be no primary difficulties, very large scale work should be necessary because it is requested to sink the well about 230-300 ft. under the high water level.

In the case of multipile foundation systems, it is necessary to drive in large steel piles in the bearing layer and to connect with heads of these steel piles rigidly above the water level.

This type is superior in execution than the former, but may be more flexible due to its structural mechanism, and in the case of pile foundation as mentioned above, local scouring around the pier is comparatively less than in the case of well foundation.

6-1-1 Approaches.

It is the cheapest way to connect a bridge with access railway by embankment provided that the bearing power of ground under such an embankment is to resist enough to the weight of embankment.

If these conditions should not be satisfied, many short span bridges for railway approach should be requested. But these details will be studied in the 2nd stage of this project. This embankment crosses the guide banks at right angle each other and the embankment with a length of about 2.6 mile will be needed provided that the allowable maximum longitudinal slope of vailway is 1/200. This length of embankment is also required from the river training view point and the alignment of embankment is preferable to be a straight line.

The center line of highway approach must be shifted from the center line of railway approach in the case b in order to connect the carriageway of bridge with the carriage way of access road.

As the level of carriageway of bridge is comparatively high and the center line of highway approach consists of curved part, it is easier to construct a steel bridge than to construct a reinforced or prestressed concrete bridge. Therefore we selected a steel bridge at the first stage of this project. Comparison of reinforced or prestressed concrete bridge with steel one will be performed at the second stage of this project in accordance with necessity.

These viaduct shall be supported by pile foundation

6-2 Access parts.

The bridges of span over 300 ft included in the domain of railway access or highway access part are shown in Table II-1 and II-2 with the data of names of rivers, total bridge length and minimum navigation clearance in each proposed route respectively.

Navigation clearances are generally shown in the map of BIWTA. Besides these data, 12 ft in min. vertical clearance and 100 ft in min. horizontal one are necessary as the navigation clearance in the Bangali River, Karatoya River (upstream of Bogra city) and Chatal River.

Navigation clearances about the other rivers were assumed by reference to the scale and capacity of rivers and navigation clearance of the existing bridges.

These clearance of bridges included in the domain of the proposed railway or highway axcess parts, must be ascertained at the second stage of this project.

Bridges in access part have medium spans in design, so reinforced or prestressed concrete bridges are preferable as construction system in this

domain in order to be available for the application of domestic materials and to give a chance to the local constructors. In this case, reinforced concrete or prestressed concrete bridge will be cheeper than steel bridge.

თ

9 02

820

Bansj

62.1

980

Hurasagar

20.4

Baral

9.2

4

70.6

25

60

~

980 9 60 770

Old Dhaleswari

35.9

Tungi

68.5

Dhaleswari

42.9 48.3

ம ம ம

60

330 9 9

Chikunai Rukunai

9.2 9.6

Numbers of Bridges N Ø Vertical Clearance (ft) Data of Bridges (longer than 330 ft.) in the Domain of Railway Access 0 0 0 <u>0</u> 0 0 0 <u>0</u> Total Bridge Horizontal Length (ff) Clearance 180 001 Bank 000 River 3.0 490 330 099 330 9 980 ō Side Left Name of the River Chatal Lohatang Futjani Bansi Turag (mile) 30.2 30.7 31.5 60.0 34.2 42.5 49.1 Min. Wertical Clearance (ft) <u>2</u> <u>2</u> ~ ~ <u>~</u> 2 - [111 Min. Horizontal Clearance (ft) 00 I 000 Side of River - Bank Total Bridge Length (ft) 980 330 330 490 Name of the River Right Hurasagar Karatoya Bangari Bangali (mile) 4 7 8 8 0. c 6. c <u>.</u> 5.2 Site Ņ m

Table.II-2 Data of Bridges in the Domain of Highway Access.

	Numbers of Bridges	1	•		ß				4
	Min. Vertical Clearance (ft.)	12		9	25	9		9	9
Side of River Bank	1 2 =	100		60	180	60		9	9
Side of	lge (ff.)	330		330	1310	330		099	330
Left					Chatal			Old Dhalesw-	5
	Location (km)								
	Min. Vertical Clearance (ft.)	12	12	12	12			25	9
Bank	Min. Horizonta! Clearance (ft.)	100	001	1 00	0.01			. 180	09
of River	Bridge Length(ft.)	086	660	330	980			1.970	086
Right Side o	Name of the River	Bangali	Bangali	Karatoya	Bangali			Hurasagar	
	Location (km)				v -				
	No. of Site				8		м	- ₹	•

CHAPTER III

DESIGN CONDITIONS AND STANDARDS

1. Guide bank.

Distance between guide banks in Chapter IV "Study of River Training Works" is shown in Fig. III-1 at the four proposed sites respectively.

2. Design high water level, river bed height and ground height.

The part where the center line of bridge crosses a guide bank is called the body of guide bank and Design High Water Level (DHWL). Height of River Bed (HRB) and Ground Height (GH) for the cross section of river along the center line of bridge are shown as in Table III-1. In this table, height of river bed means height of the deepest part of river bed.

3. Local scouring around piers.

Depth of local scouring around piers is estimated about 1.8 times of water depth. But in this case, it is assumed that width of foundation which is measured perpendicular to the direction of flow is 33-39 ft., this case implies a well foundation.

In the case of multi-pile system when diameter of each pile is $6 \sim 10$ ft. the estimation of depth of local scouring around piers is estimated 33 ft. and in this case, necessary distance between center to center of pile is 3 times of diameter of pile.

The estimated depth of local scouring around piers in the case of A, B and C type (width of water channel) at the four proposed sites are shown in Figs. $111-2 \sim III-5$ with soil maps "Design river bed and soil map".

4. Design discharge and velocity.

The design discharge Ω (m³/sec), the mean velocity Vm (m/sec) and the mean velocity at the despest part of river channel V (m/sec) at the four proposed sites are shown in Table III-2 considering in the case of A, B and C type.

5. Soil texture.

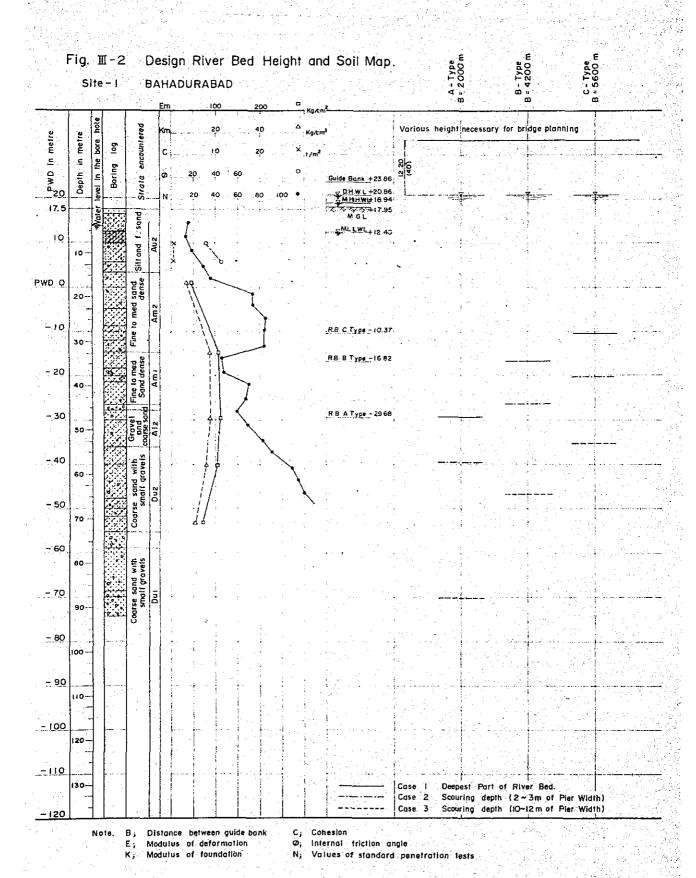
According to the result of boring at the every proposed sites, the

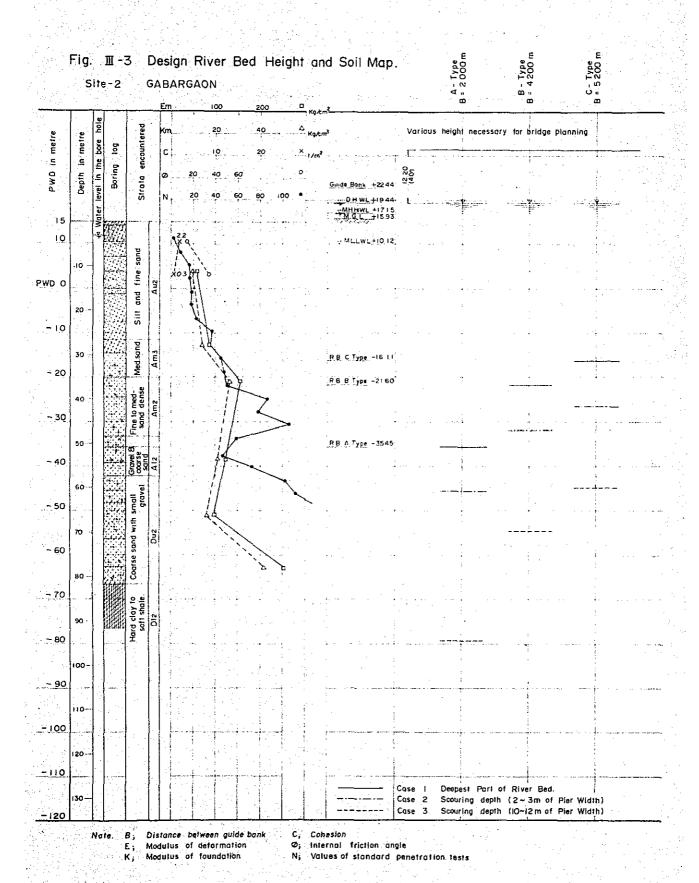
日 Fig

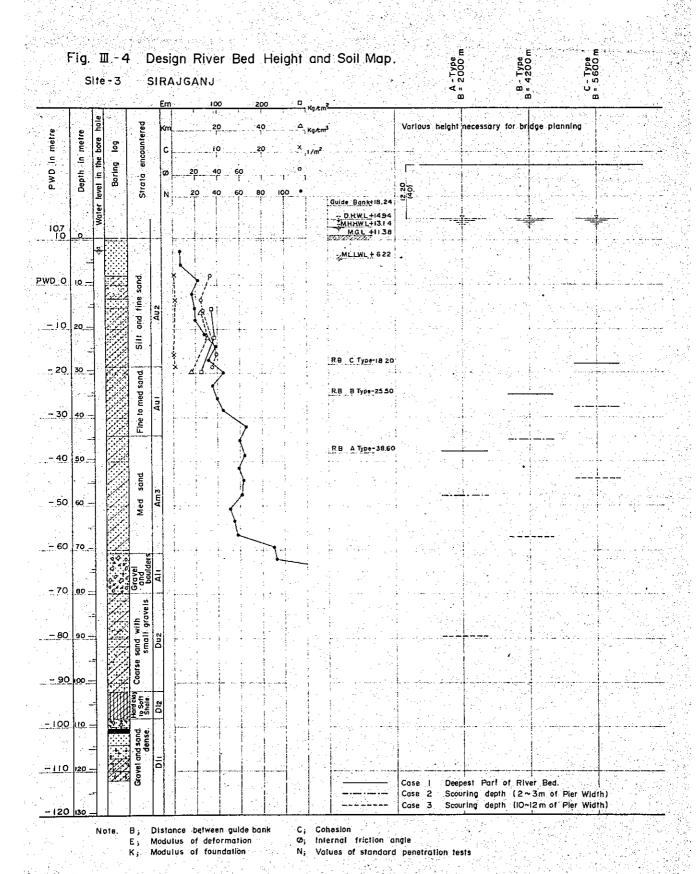
		F			
Banks					La Company
Guide					"33 '
setween		ត ទទួក ខ្លាំង ខ		1 · · · · · · · · · · · · · · · · · · ·	
II-l Distance between Guide Banks		Dissignice betaven guite books	•	TWH NY C	
Fig. 国 - [,	~wos +	
			- mo oi -	10 9350 P	
	٠.	* :			

S	TYPE	A	æ	၁
	BAHADURABAD	2.0 (1.2)	42(26)	5.6 (3.5)
N.	2. GABARGAON	2.0 (1.2)	4.2 (2.6)	5.2 (3.2)
ьų	3 SIRAJGANJ	2.0 (1.2)	4.2 (2.6)	5.6 (3.5)
4	4. NAGRBARI	2.0 (1.2)	4.2 (2.6)	5.2(3.2)

Table Ⅲ-I D.H.W.L., R.B. and G.H


(m) PWD


liem	F		RB		
Site	D.H.W.L.	A	В	С	GH
1. Bahadurabad	20.86	- 29.68	- 16.82	- 10.37	17.95
2. Gabargaon	19.44	- 35.45	- 21.60	- 16.11	(5, 73
3. Sirajganj	15.24	- 38.60	- 25.50	- 18.20	11.38
4. Nagarbari	14.01	- 42.13	- 28.37	- 22.82	9.45


Table. Ⅲ-2 Q, Vm and V

Site	Item Type	Q (^{m³} /s)	V m (^m /s)	∨ (^m /s)
	Α	89 600	2.40	4.66
l. Bohadurabad	В	,	1,93	4. 35
	С	4	1.74	3. 94
	Α	89600	2.2 1	4.29
2. Gabargaon	В	,	1.77	4.00
	С	7	1.6 5	3.73
	А	89600	225	4.36
3. Sirajganj	В	"	1.78	4.03
	С	4	1.63	3.68
	Α	82700	1.99	3.87
4. Nagarhari	В	7	1.58	3.57
	С	. 4	1.47	3,32

Note; 1km = 0.62 | mile | m = 3.28feet | 1m3 = 35.3 cu.feet

	5	ite	-4		NΑ	GAF	≀ВА	RI 100		20	0	<u> </u>	Kg.tm			-			A-Tyl B=200		B- Type B= 4200 m		C-Ty		
	E	hole		ered	k	n,		20		40			Kg/tm				Varie	ous I	height nece	essary 1	or bridge	planni	ing.	: -	
PWD in metre	in metre	in the bore	501	encountered	İ	: .		19		20	·	x	1/m²								•		•	2.1	;
W D	Depth i	ř.	Boring	Strota e	c	,	20	40	60		•	٥					r r	<u>-</u>						<u></u>	
С.	å	evel	ш	Stre	ı	4	20	40	-60	во	10	o •		Guide E			12 20 (40)							٠	
	٠.	Water		٠.										D	H W.L	+ 14 01	ţ.		s , s <mark></mark>		·	-	- 1	gr	
10													-	. gMi ,er,er,	# G.F.	+11 36 + 9 45			.1.		ē.				
73		÷	4.5	· !	1	1		,						ψM	LLWL	4 4 34					•				
VD O			- 4/4/	sand.			, Y	<i>[</i>																	
	10 -		4	•	Auz	Í	,×q.						,									٠,		-	
- 10				Silt and fine	₹		\mathcal{J}_{ξ}			مدر										٠,					
	50 -	1	د سر موجم ا د	Silt	:	x',							.*												
- 20					1		<							RBC	Type	- 2282							٠.		
	30			P				1	•						Гуре									_	
- 30	••			Fine to med sand	Aur			(<i>)</i>						1,700				:			-			
	40			e to m	V.			`	\																
- 40	50		سيدانيد	F	1 ;				$\langle \cdot $					RBA	Туре	-42 13				_		•	:		
•	30				; ; !				1												•				
~ 50	60									}										_					
	80			Sand						•	•		•										•		
- 60	70			Med	A.							-	*									=			
			. 06,	-	1						-														
- 70								-	٠	•	•	_	_												
•	ю			Alz	ABS								<										;		
- 80	00			Gravel B Coarse	Alz				:	:	:								;						
4.	90 -		0.00	82	A11						٠.														
- 90	100 -		0,0	504	A			•		;							•		•				:		
			:			:		:	. :		:			:									:		
100	110-		بد			1	1									٠.	•		12		1		•		-, -
								1		1									•				:		
110										200 H				· -	•		Case		Deepest	Part of	River Be	d.	r -		
	120-	_				1							į į.				Case	2	Scouring	depth	(2~3m (of Pier			
-120	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1_	1 .	<u> </u>	╙	_ـــــــــــــــــــــــــــــــــــــ		<u>i</u>					<u>!</u>				1								
		No	4 50	Ε.	Mod	ulus	of o	defor	gulde matio dation	n ·	κ	∵ Ø,	Inte	esion ernal	frict	ion a	ngle		on tests					ĺ	

upper layer is silty and fine sand (Au_2) and in the lower layers, fine to medium sand (Au_1) , med. sand (Am_3) , dense fine to med. sand $(Am_{2,1})$ are found from top to bottom in turn.

The layers beneath Am3 are over 60 of N-value by the standard penetration test and are considered as the reliable bearing layer. Under Am3 layer at Nagarbari and Sirajganj, gravel and boulder layer (Al₁) of about 23-30 ft. in thickness is found out about 300 ft. and 240 ft. below ground level respectively.

At Gabargaon and Bahadurabad, coarse sand with small gravels (Du_2) is found out about 190 ft. and 180 ft. below ground level respectively.

The soil textures at the every four proposed sites are shown in Figs. III-2 \sim III-5 with proposed height of river bed.

6. Design river bed height and soil map.

Soil map, and design bod height, depth of local scouring around piers, design high water level, low water level and mean ground height are shown in Figs. III-2 \sim III-5 at the four proposed sites respectively in accordance with the A, B and C type. All height is shown referring to the bench mark of PWD.

7. Superstructures.

7-1. Railway bridge.

a. Loads. (ANNEX 2)

All loads to be used for design will be specified by Main Line Loading of Bridge Code for Indian Railways. (Fig. II-1)

b. Construction gage. (ANNEX 2)

The construction gage will be specified by the Bridge Code for Indian Railway keeping the provision of electrification in future.

c. Track gage. (ANNEX 3)

The track gage to be used for design shall be 5' 6". (Broad gage)

d. Structures. (ANNEX 3)

All structures will be designed by the Standard Specifications for Railway Bridges adopted by the Japan Society of Civil Engineers (authorized by the Japan National Railway), except the following matters which were determined by the Team considering local conditions of Bangladesh.

i. Wind velocity.

The wind velocity which makes the basis of calculation of wind pressure to be used for design is 35 m/sec. (115ft./sec)

ii. Range of temperature.

The range of atmospheric temperature to be used for design is from 0° to $40^{\circ}\mathrm{C}$.

iii. Horizontal acceleration of earthquake.

The horizontal acceleration of earthquake which makes the basis of calculation of horizontal inertia force to be used for design is 0.1 G.

e. Materials. (ANNEX 3)

All materials to be used for design will be specified by the Japanese Industrial Standard.

7-2. Highway bridge.

a. Loads.

Live load to be used for design will be specified by the I.R.C. Standard Vehicle Class A. (Fig. II-2)

b. Construction gage.

The construction gage will be specified by I.R.C.

c. Structure.

All structures will be designed by the Standard Specifications for Highway Bridges adopted by the Japan Road Association (authorized by the Ministry of Construction of Japan), except the following matters which were determined by the Team considering local conditions of Bangladesh.

- i. Wind velocity.
- ii. Range of temperature.
- iii. Horizontal acceleration of carthquake.

 These are just same as railway bridge.

d. Materials.

Same as above.

8. Substructures.

According the result of meeting between both the parties, the following specifications will be applied for the design of substructures.

Standard Specifications for Reinforced Concrete adopted by the Japan Society of Civil Engineers (authorized by the Ministry of Construction of Japan).

9. Minimum navigation clearance. (ANNEX 4)

The minimum navigation clearance to be used for design is specified by the BIWTA as following.

Minimum Horizontal Clearance.

Between adjacent piers

250 feet.

Minimum Vertical Clearance.

Under soffit of the girders 4

40 fect.

CHAPTER IV

PROPERTIES OF MATERIALS

1. Structural steel.

Structural steel shown in the Table IV-1 were adopted as standard materials for the structure.

2. Allowable stresses of structural steel.

Allowable stresses of steel materials for structure are as shown in the Table IV-2.

3. Allowable stresses of concrete and reinforcement.

3-1. Superstructure.

Allowable stresses of concrete and reinforcement for superstructure are shown in Table IV-3-1.

3-2. Substructure.

Allowable stresses of concrete and reinforcement for sub-structure are shown in Table IV-3-2.

4. Allowable stresses for prestressed concrete structure.

In superstructure of bridges included to railway access and highway access, prestressed concrete bridges are designed and these allowable stresses are shown in Table IV-4.

Standard steel materials Table.W-1

- 1		
Symbol of Steel Materials	\$\$ 4	SM41, SM50Y SM53, SM58
Standard	rolled steel for general structure	rolled steel for welded structure
	1186 3101	31563106

10 - 2 A 110 W 01	ole stresses of	Allowable stresses of steel Materials for Structure (psi	for Structure (
Steel material	SS 4 1, SM41	SM50Y, SM53	S M 58
I tensile stresses	21661	29 868	3.6.980

Table IV-3-1 Allowable Stress of Materials for Superstructure of Reinforced Concrete.

	Desig	n Strength of	Concrete 6ck		3 400
		Bending	Compressive Stress		1 14 0
V)		Compressi	ve Stress by Normal Force		1020
i es			in case of to be resisted	Slab	130
° °	Concrete	Shearing Stress	by concrete only	Beam	100
ble Psi		311633	in case of using web reinforce	ment	280
w o t		Bond S	tress		220
0 =		Bearing	Stress		1050
◀	Reinforcing	Tensile	Stress SD	30	25 60 0
	Bor	Yield S	Stress SD	30	42700

Table. IV-3-2 Allowable Stress of Materials for Substructure of Reinforced Concrete.

		·	
	esign Strength of Concrete 66k		3 000
	Bending Compressive Stress		1000
	Compressive Stress by Nomal Force		900
88	Shearing in case of to be resisted	Slab	120
Concrete	Shearing by concrete only Stress	Beam	9 2
	in case of using web reinfo	rcement	260
;s	Bond Stress		2 1 0
. □ □ .≱ .0	Bearing Stress		900
Reinforcing	Tensile Stress SD 30	ally	25 60 0
Bar		Woter	22 7 0 0
	Yield stress SD30)	42 700

Prestressed Concrete	Values	5 000 PSi	. 1 660	" 06l	4 300	you!	220 KSi	192	Load: 1,32 "	ressing 173 "
Values for Superstructure of	Descriptions	Design Strength Ock	Acting Design Load (Compressive Stress)	n (Tensile Stress.)	Strength at Prestressing	Maximum Size of Coarse Aggregate	Breaking Stress	Yield Stress	Design Load	Allowable lensile stress.
Miscellaneous	Material			Concrete				Prestressing	Wire 7 M TEM	
Table IV-4										

CHAPTER V

PRELIMINARY DESIGN FOR COMPARISON

1. Outline.

The three distances of 2.0^{Km} , 4.2^{Km} and 5.2^{Km} or 5.6^{Km} between a pair of guide banks were investigated at each site of the four proposed sites in order to make preliminary design. The three distances were regarded as the bridge length itself at each site.

The preliminary design was made on the basis of this condition.

The following too kinds of bridge width were investigated for the design.

Case a

Railway part; Single broad gage track (5'-6")

Highway part; Two-lanes of total 24' width

Case b

Railway part; Double broad gage tracks

Highway part; Four-lanes of total 48' width

For the superstructure, steel truss type was applied. Four kinds of span length of $100^{\rm m}$, $150^{\rm m}$, $250^{\rm m}$ and $350^{\rm m}$ were investigated taking the minimum horizontal navigation clearance into consideration. For the substructure, well foundation and multi-pile foundation were considered as the adequate type. In the case of Jamuna River Bridge Project, the combined cases between these foundation types and superstructure types were considered to have the minimum construction cost.

2. Superstructure.

2-1. Structural type.

Planned span length of Jamuna River Bridge is from 100^m to 350^m as above-mentioned. Generally, the suitable bridge types to the range of these span length are as shown in Fig. V-1.

Bridge types to be applied, there are suspension bridge, cantilever truss bridge, continuous truss bridge, tied arch bridge and cable-stayed bridge. Based on data and informations related to these types of bridge various factors were considered from many points of view, such as the rationality in economical and structural, safety and comfortables for driving, and others. As this bridge is designed for a double purpose, rail-cum-highway bridge, such a type which has structural strength durable to the heavy railway loads. Moreover, from the view of width composition, such a type which is capable to have double deck type is desirable. As a result of these studies, it was judged that the truss type is the most desirable for this bridge. As to the transportion of steel materials by sea, truss bridge is cheaper than others according to the light weight of individual member. By this main reason, truss type is applied.

By the reason above mentioned and assuming of the dispersion of horizontal stress in the substructure, three-span continuous truss bridge for the spans $100^{\rm m}$ and $150^{\rm m}$, and multi-span cantilever truss bridge for the spans $250^{\rm m}$ and $350^{\rm m}$ were considered. According to practical execution and trial calculation, the curved-chord truss is more reasonable than the parallel chord truss, in span of $250^{\rm m}$ and $350^{\rm m}$. Therefore, frames of the truss is determined as illustrated in Fig. V-2.

2-2. Outline of structure.

Section of each member in the truss shall be box section, and for stringers and floorbeams, I-type section is applied. These members shall be fabricated by electric arc welding in the factory and splice and connection at the construction site shall be performed by high tention bolts.

As for floor slab type, reinforced concrete slab and orthoropic steel deck plate are considered.

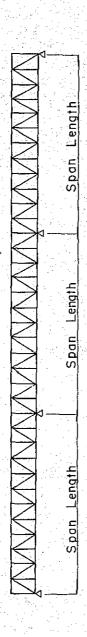

Reinforced concrete slab is adequate for the span length shorter than 150^{m} and orthoropic steel deck plate is adequate for the spans longer than

Fig. ∇-1 Suitable Bridge Types by Different Span Length.

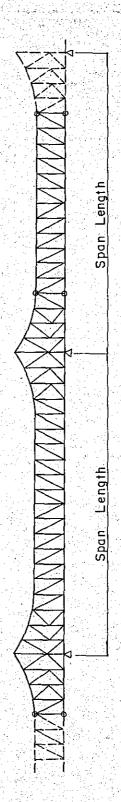
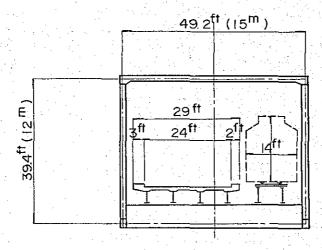

	1, 1		* *	· • • • • • • • • • • • • • • • • • • •	
Span Length Bridge Types	30	00 60	o 90	00 I :	200 (řt.)
Suspension Br.					
Contilever Truss Br.					
Continuous Truss Br.					
Cable stayed Br.					

Fig. V-, 2 Truss frame

3 Span continuous truss frame for span of 328' or 492'

Cantilever truss frame for span of 820 or 1148'

150^m. If reinforced concrete floor slab is used in a long span, dead loads will increase much to influence badly on superstructure and substructure. Railway bridge is designed with open floor type.


In the Case a, single track is arranged to one side. In the Case b, double tracks are planned to be placed close to the main truss respectively. Sections of each span in Case a and b are illustrated in Fig. V-3-1 \sim 3, V-4-1 \sim 3. These drawing also have truss height.

- 2-3. Calculation of design.
- 2-3-1. Design condition.
- (1) Case a
 - i) Span $3 @ 100^{\text{m}} = 300^{\text{m}}$ $-3 @ 150^{\text{m}} = 450^{\text{m}}$
 - Type Three-span continuous steel Warren truss bridge with parallel chords. (single deck type)

 (rail-cum-highway bridge)
 - ii) Span 250^m 350^m
 - Type Cantilever steel truss bridge with curved chords (single deck type) (rail-cum-highway bridge)
 - iii) Load Car: I R C Standard Vehicle Class "A".
 Train: Main Line Loading of Indian Railway Bridge Code.
 - iv). Width Road : 24' (two lane) Railway : single track $5' \sim 6''$ gage
 - v) Design wind velocity 30^m/sec (115 ft/sec)
 - vi) Horizontal acceleration of earthquake $K_{\rm H}$ = 0.1 G Quality of material : SS 41 class, SM50Y class, SM58 and others specified by JIS.
- (2) Case b
 - i) Span 3 $0.100^{\text{m}} = 300^{\text{m}}$ 3 $0.150^{\text{m}} = 450^{\text{m}}$

Fig. ▽-3-l Typical cross sections in Case a

L = 100 m

L = 150 m

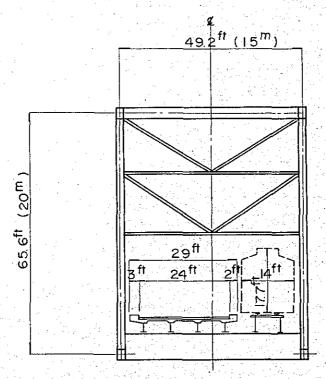


Fig. abla-3-2 Typical cross section in Case a

L = 250 m

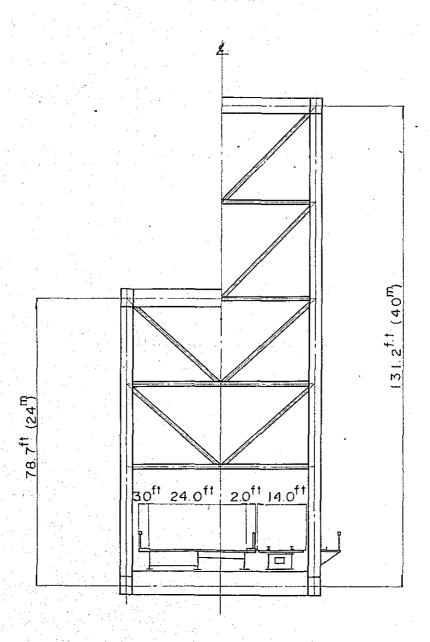


Fig. ∇ -3-3 Typical cross section in Case $\overset{\mathbb{P}}{\mathsf{d}}$

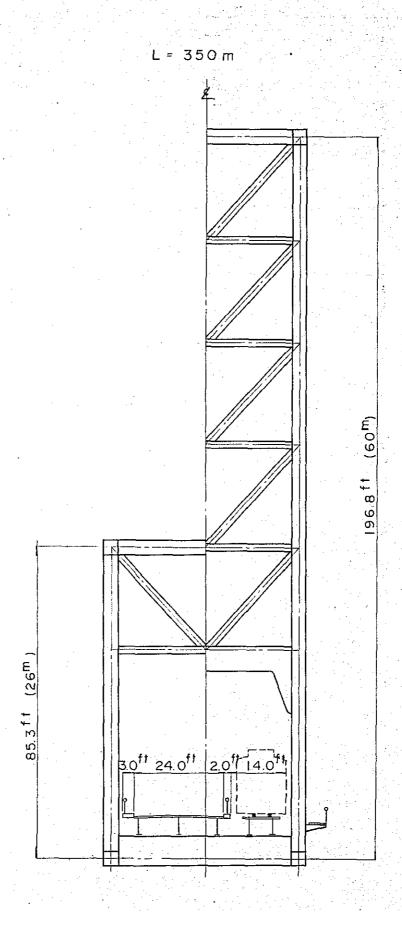
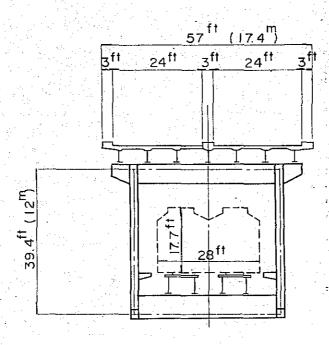
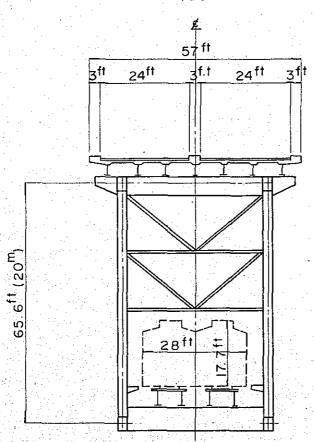




Fig V-4-1 Typical cross sections in Case b

L = 1.00 m

L= 150 m

P.<u>44</u>
Fig. ∇-4-2 Typical cross section in Case b

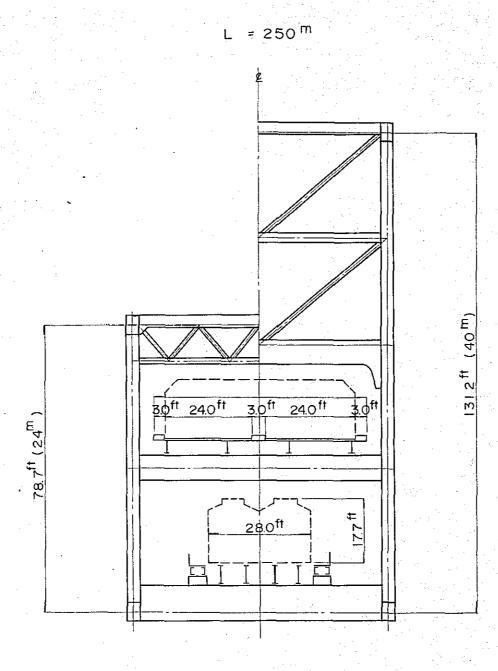
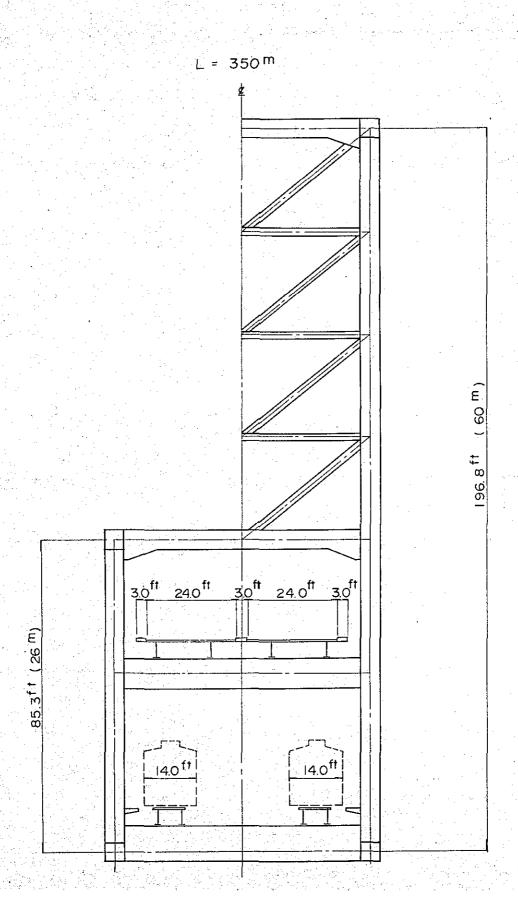



Fig. ∇ -4-3 Typical cross section in Case b

Type Three-span continuous Warren truss bridge with parallel chords (double deck type)

(rail-cum-highway bridge)

ii) Span 250^m 350^m

Type Cantilever steel truss bridge with curved chords.

(double deck type) (rail-cum-highway bridge)

- iii) Load Car : I R C Standard Vehicle Class "A"
 Train : Main line Loading of Indian Railway
 Bridge Code.
- iv) Width Road : 48' (four lane)

 Railway : double track 5'~6" gage
- v) Design Wind Velocity 30 m/sec (115 ft/sec)
- vi) Horizontal acceleration of earthquake $K_H \approx 0.1$ G Quality of Material: SS41 class, SM50Y SM58 and others specified by JIS.

2-3-2. Result of Calculation.

Following factors were considered mainly at the calculation.

a) Span corresponding to impact coefficient.

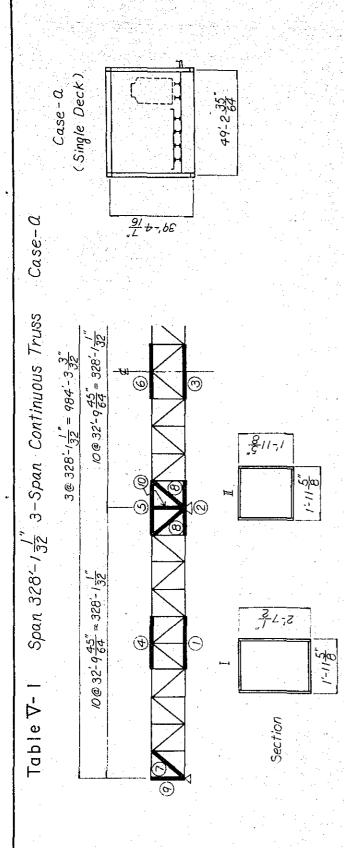
A span corresponding to impact coefficient is specified in the Standard specifications for Highway Bridges, adopted by the Japan Road Association (authorized by the Ministry of Construction of Japan).

ь) Maximum loaded length of train.

The maximum live load length is assummed to be 400^m. At the case of double track, running of same direction should be considered.

c) Secondary stress.

Eccentricity of member, stiffness of panel point, deflection of cross beam, deformation of floor construction by a change in a chord length, deflection of member of their dead load and others, such factors cause to produce secondary stress in truss members. Therefore, stress of 200 Kg/cm² was considered as a value of it.


d) Composition of stringer and cross beam.

Considering of the execution, stringers were determined to be placed on cross beams instead of fixing to webs of cross beams.

e) Transverse stiffness.

For the transverse stiffness to be bearable to wind forces and forces occurred in executing, upper cross beams are fixed to webs of upper chord members and lower cross beams are webs of lower chord members. At the same time, a suitable portal bracing was applied to such compositions

According to Case a and Case b by width composition, results of calculations in each of four spans are shown in Table V-1~1 at Case a and Tables V-5~8 at Case b. This Table conclusively showed axial forces of main members in main truss, sections, qualities of materials, allowable stress, stress intensity of sections and thickness of plate, sections of stringer and cross beam, and deflections by live loads.

Member			(2)	3	<i>(d</i>)	9	9	(2)	8	6)	@	
Member Force	7	1085	-1413	650	-1 085	1413	- 650	-1172	-823	-632	602 1-	
Type of Section		I	I	I	1	Ì	1-4	Ħ	F	Į	: `\ ⊭ ⊑	
Material		SM 53	SM53	SM 53	SM 53	SM53	SM 53	SM53	SM 53	SM 53	SM 58	
Allowable Stress	'Sd	29 889	24 125.	59 839	24 054	29 889	24 /82	19.869	20 552	22 004 25 264	25 264	
Stress	*	26.288	26 3/0	56 363	20 837	27 ;57	18 147	15 414 17 393	17393	17 962	22 460	
Olate Thickness inch	inch	<u>55</u> 64	7/	33	1 64	19	m/4	/ 37	13	<u>55</u>	13/32	
Maximum Deflection (Live-load)	ction (Live-load)							Section			a .

250						
Section	2-PIS 10 15 x 2	1-P1 3-33x 23"	2-PIS 1'-3 3" × 63"	1-P1 4'-74" x 33"	2-PIS 1'-917" x 184	1-PL 7-239" × 78"
	Hiobundo	Stringer String	00:1110	National S	Floor Beam	, voi ocum

יומצוווחווו חבווברווחוו רדוגב-וחממי	Deflection	Railway (Single Truck) 4 37	Railway + Highway 5 35"	

Span 492'-12 3-Span Continuous Truss Case-a Table V-2

3@ 492-12" = 1476'-42

Case-a

12@ 41-1"=492'-1-1"

12@41-1" = 492'-17"

4

\ \ \				
P	9			(C)
			/	
			\nearrow	
		$\overline{}$:

())		
©		<u></u>
	\rightarrow	
	\langle	

Agental Agental	
<u>@</u>	<u></u>

<u>9/</u>€-,2

3/11-Z

Section

1-115"

-2 442

1.573

Member

26 431 29.960 SM58

ps.

Allowable Stress

Stress.

Type of Section

Material

Member Force

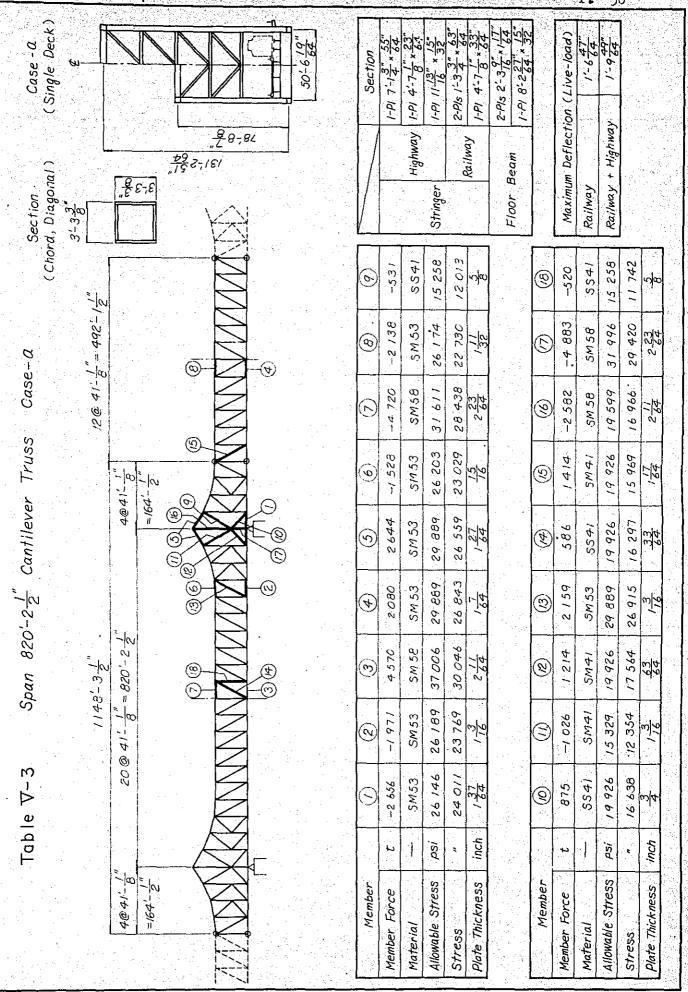
inch

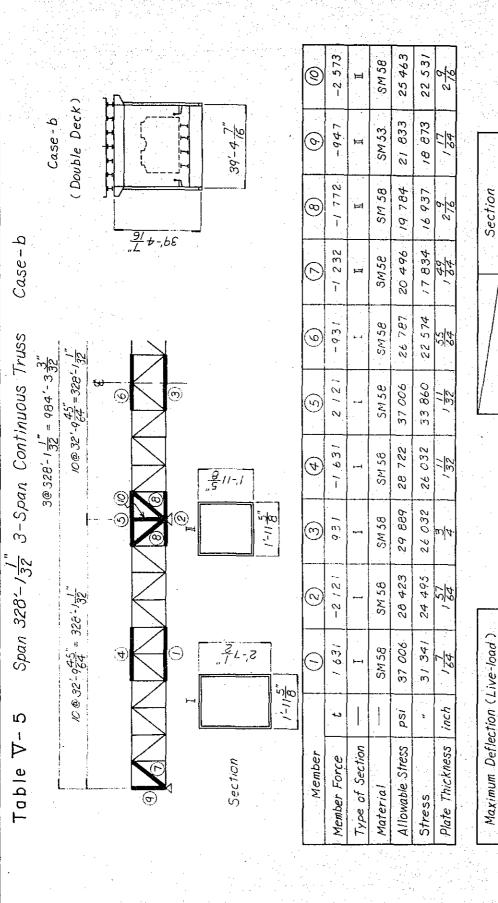
Plate Thickness

SM53

			.,25"	49-2-84
		<u> </u>		_
<u>35,</u> 73,,	-L -,59			

3	4	(2)	9	(2)	(8)	9
743	-/ 573	6591	908-	-/ 257	819 /-	-/ 085
ı. Li	H	Ι	1	11	Ⅲ	1
M53	SM 58	SM 58	SM 53	SMSB	SM58	SM 58
889	30 259	37 006	25.349	12.739	12 582	21 278
146	26 687	33 106	21677	8 056	2266	17 407

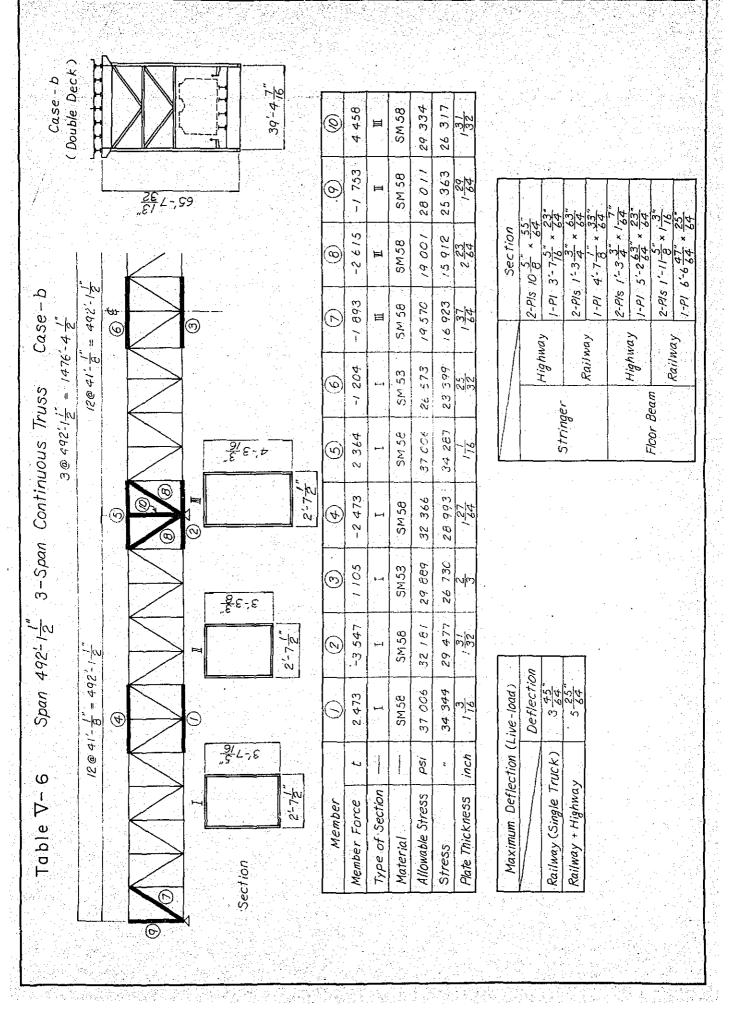

SM 58

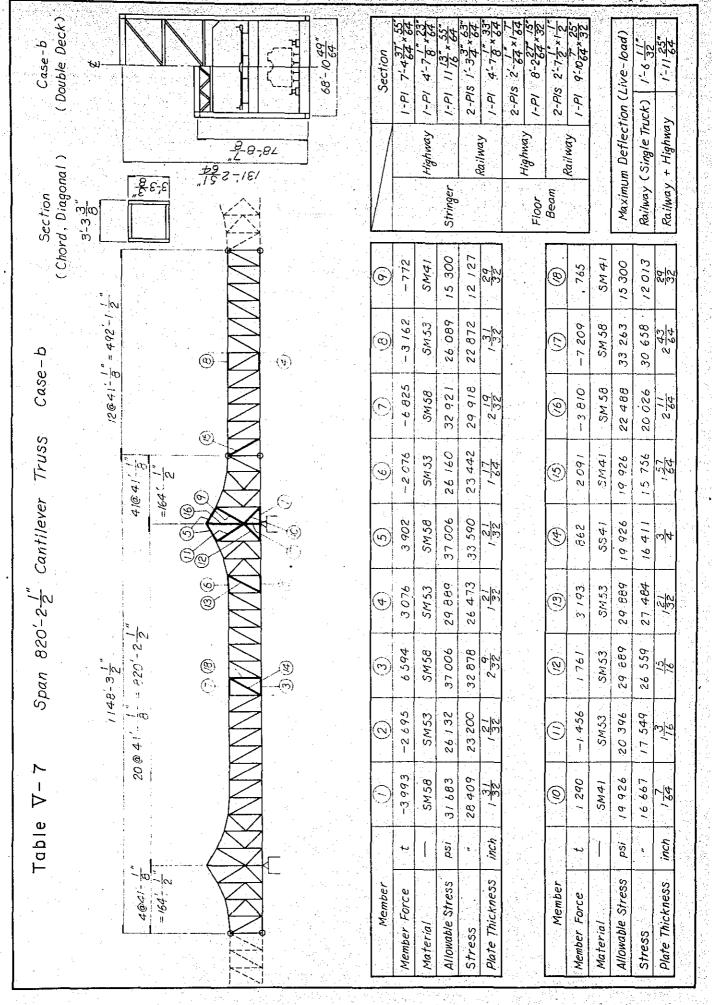

-2775

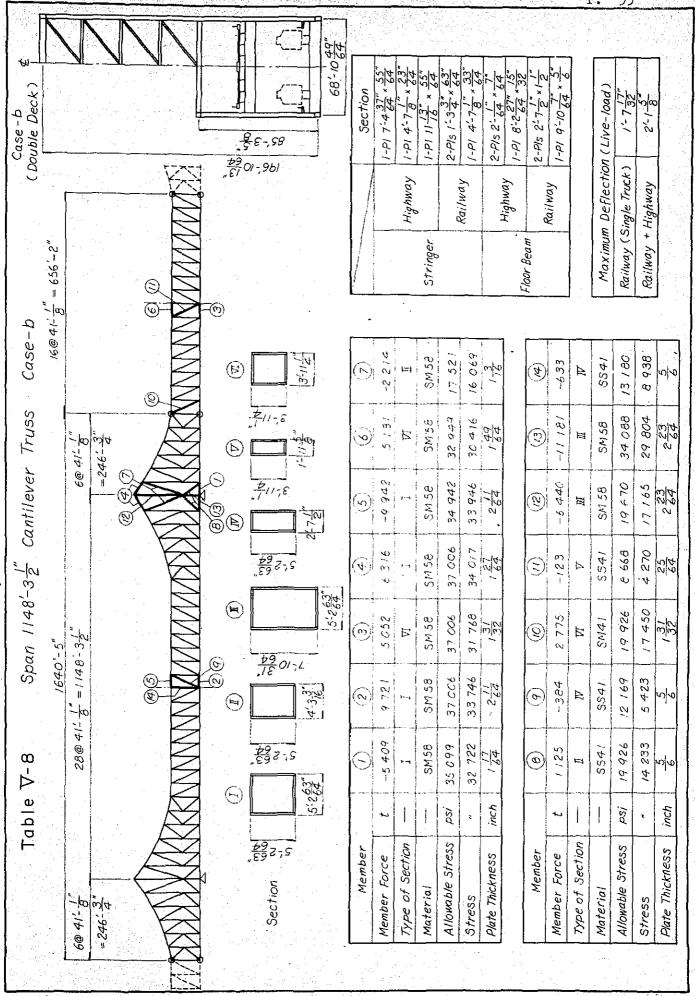
/ -		Section
	Labara	2-PIS 11 13" x 55"
, , , , , , , , , , , , , , , , , , ,	riginal y	1-P1 3'-33" x 23"
12611110	04:114.44	2-Pls 1-33x 63"
	nanway	1-P1 4-74 × 33"
Eloon Boom		2-P/s 1-11 8 x 1 64
2001	(())	1-P/ 7-239. 15.

Railway (Single Truck) 6 27" Railway + Highway 7 33	 Maximum Deflection (Live-load)	Live-load)
9		Deflection
7-7	 Railway (Single Truck)	27.7
	 Railway + Highway	7-33"

			···
Live-load)	Deflection	6 64	7-33"
Maximum Deflection (Live-load)		Railway (Single Truck)	Railway + Highway




	<u> </u>			200			177	2.77
Section	$2-P/S$ 9 $\frac{27}{32} \times \frac{5}{8}$	1-P1 3'-75" x 23"	2-P/s 1'-3 \frac{3}{4} \times \frac{63}{54}	1-P1 4-76" x 33-	2-P/s 1-3 \frac{3" \times \frac{55"}{64"}	1-P1 5'-263" 23"	2-P/S 1'-7/1" x 63"	$1-P/6'-6\frac{47}{64} \times \frac{25'}{64}$
	1.01mq0,17	(manhii)	7.07711.00	ланмау	7.77	пуптау	Postunavi	nall way
		, , , , , , , , , , , , , , , , , , ,	1380110			Eloon Doom	ו וסמו שבמווו	
				tij s	7.5		,	


Deflection

Railway (Single Truck)

Railway + Highway

3. Substructure.

3-1. Structural type.

At the first stage, well foundation and multi-pile-foundation are applied as a type of the foundation, by considering necessary depth of foundations, importance and favourable executions. In Bangladesh, formerly well foundation was applied in Hardinge Bridge and King George IV Bridge, and recently also it was applied in foundations of road bridges between Dacca and Aricha. Advantages of this construction process are due to a massive body and good stability. Recently pile foundation process using large diameter size steel pipe was developed. Therefore, multi-pile-foundation using large steel pile of 2.0^m~3.^m diameter should be investigated to be applied as a type of bridge foundation. Thus, two of these foundation process are studied.

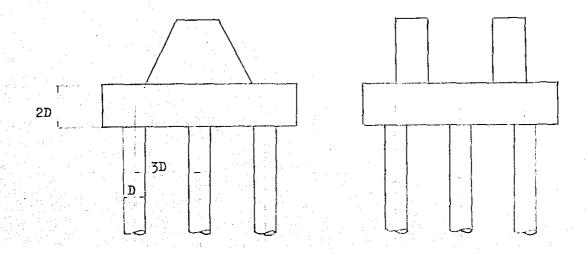
In the case of multi-pile-foundation, the head of piles should be rigidly fixed to the base slab of the pier. This base slab will be constructed above DHWL. The base slab of this type of pier requires high rigidity because of the theoretical reason. As a pile has long portions of outstanding, a structure of this type is forced to be flexible and the center of gravity will be raised. Resulty, this is not desirable structurally and is apt to be bent by horizontal forces due to earthquake or current pressure.

Therefore, the well foundation was selected technically and economically as the foundation of Jamuna River Bridge. Local scouring around the pier is seemed to be more severe in the well foundation than in the multi-pile-foundation. In future, it will be necessary to prevent the pier from scouring in order to secure the required grip of well in accordance with necessary.

3-2. Outline of structure.

The well foundation is most difficulty in settling, as well-known. The top of the well foundation is better to be lower for reducing of weight and pressure of water flow, and for outside views. If it is one meter higher than MLLWL, the settlement should be finished during a dry season from the view point of the execution process. Therefore, some difficulties should be anticipated. In order to carry out this purpose, we considered that the reverse circulation method is one of the most desirable execution method. In this case, some devices reducing resistances of frictions between

curbshoe, body of well and surrounding earth should be considered. As the sinking velocity of well depends on the weight of itself, the thickness of wall of well should be as thick as practicable in order to accelerate the sinking velocity of well. Therefore, the thickness of wall was determined to $2.5^{\text{m}} \sim 3.5^{\text{m}}$.


The definite length of grip of well must be needed to maintain a stability against lateral force. Therefore, some foot protection works around pier and their constant inspection and maintenance will be requested in future to secure the constant length of grip of well.

Sizes of pile to be used in the multi-pile-foundation are studied about two cases, such are the cases of 2.0^m and 3.0^m. As base slabs of piers are constructed above DHWL, piers will be able to be constructed in dry.

The shape of pier consists of reinforced concrete trapezoid and base slab. The reinforced concrete trapezoid is placed just below the main truss of the superstructure to have the wall thickness durable to support upper loads and the bearing shoes of the bridge at the top. In order to increase the stiffness of the base slab, the base of trapezoid is to be placed in parallel to the axis of the bridge, on the base slab to which pile heads are fixed rigidly. (Fig V-5)

In the case of multi-pile-foundation, though local scouring is a little, a method good for scouring should be applied to have a necessary length of grip as same as the case of well type.

Fig. V-5 Example diagram of multi-pile-foundation.

- 3-3. Calculation of Design.
- 3-3-1. Well foundation.

(1) Outline of design.

The most important problem in Jamuna River Bridge Construction Project is the subject of local scouring after construction of substructure. Hereinafter, the river bed scoured by water flows is abbreviated to "the river bed". Moreover, the depth caused by water scouring around the structure is defined as 1.8 times of water depth by investigations of the River Team. But in this case, the width right angled to the water flow direction are determined to approximate 12^m.

Depth of the foundation is adequate to have the depth of $80^{\text{m}} \sim 90^{\text{m}}$ which reaches to the layer of gravel or hard clay by considering the result of the boring test and the sinking ability of well. But sometimes, local scouring exceeds this depth. Such a time the foundation cannot be stabilized without foot protection. Therefore, in this design, such a construction method to compact the river bed by stoning artificially to protect the river bed was applied for the effective length of grip of the foundation. Thus, the calculation in this design is to require the elevation of the compacted river bed for the stabilization of the well, namely the requirement of necessary length of grip for the well foundation

(2) Design condition.

Type of foundation Well foundation

Shape Circular section: $\phi 12^m$, Oval section

 $12^{m} \times 24^{m}$

Flow velocity Maximum 4.0^m/see

Local scouring 1.8 times of a depth

Acceleration of Horizontal kh = 0.1 G

earthquake Vertical kv = 0.0 G

Weight of unit Concrete $\gamma_c = 2.5 \text{ t/m}^3$ volume Earth $\gamma_s = 1.9$

Other items are based on following documents.

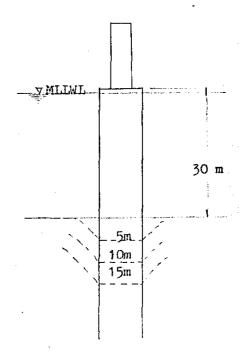
Concrete standard specifications: Japan Society of Civil Engineers

(Authorized by Ministry of Construction of Japan)

Standard specifications for Highway bridges

Japan Society of Civil Engineers
(Authorized by Ministry of
Construction of Japan)

Design indicator for substructure of road bridge:


Japan Road Association (Authorized by Ministry of Construction of Japan)

- (3) Result of calculation.
 - 1) Reaction of superstructre.

Reactions of superstructure are shown in Tables $V-9 \sim 10$.

2) Procedure of calculation.

A model of well foundation which has the dimension of 30^m, from the top of well to the river bed as shown on the drawing at right is considered. In this condition, the well stabilization is calculated by external forces which are assummed to act to local scouring at every 5^m unit from the river bed. When the result is spoted in the graph, necessary effective length of grip of well is required by stated conditions of the river bed in the graph. The result

is shown in Figs. V-6~8. Calculating equation is all based on "Design indicator for substructure of highway bridges" editted by Japan Road Association (authorized by Ministry of Construction of Japan). The effective length of grip of well is calculated at two sites, Nagarbari and Sirajganj. According to the above calculation, other two sites will be assumed approximately without any calculations. This assumption does not object entirely to good ways in which calculations of material and

													を (計) (対)										1				1		
	(con)		rse	Mov.	161	102		263	29	r⊣ -ਧ	Ç	200 200) ()) (ا با	1111	90₹	5,0		165	572	Ω -1	717	1020	1 2 2 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4		1290			
		1 force	Transverse	Fix.	191	102		263	65	; - :1	ć	007	! (\ -) 1		106	59		165	14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2	C U L	1030	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00		1290			
in Case a		Horizontal	tudina	Mov.	81	53		132	53	<u> </u>	((1.50	1 C	<u>.</u>	280	53	66		(VI		66	27.0	77.0	000	N.	645			
		H	Longitu	, .	084	285	 -	725			/	705	1. 2. 1. 2. 1. 2. 2. 2. 3.		1209				7		350		2062	3 6		2570			
Superstructure				!	1614	1018	5.5	6862	385	O -	m c	3017 2016	10	1 50 700 	56.64	1060	586	867 67	1844	5170	12/21	1 C C C C C C C C C C C C C C C C C C C	1017	25.00	10001	13987			
0.1					Load	Railwey	Highway		load	Reilway	HIGHWEY	10 m		Highway	0	2ක්ථ	Reilway	.Highway		हत्	Reilway	Highway	1	Vev	1	motal			
Table 7-9 Reactions					Dead 1	Live R	<u></u> -	ļo	ල -	II Ve	Togo High	Tiesd 10	-	Togd H	- 0	Dead load	Live Re		Total	-	 -	Joad Hi	TOSOL TORY	A STATE	load Hi	mota]			
Table V.	· · · · · · · · · · · · · · · · · · ·				-x-	<u> </u>	Support	-		Bnd	_!-		1	<u> </u>	Support			ļ						1_		' <u> </u>			
					Inter	ਹਿਤਮ	Snb		<u>. </u>	End	idns -		Inter-	medi			End	Support			L=250m				1=350m				
							3	O Dubasi	tel00m							Conf. truss	EL,					7271-11-176V	+ 701.45						

(ton)		verse	Mov.	273	199	1,70	100	2)		178	t_1,	292		763	111	112		285	897	352	City	1044	7 7) - - - -	2088		Tida Kaba Kaba Mari Kaba Walio	
	force	Trans	Fix.	273	199	1,70	200	(2)		178	12.7	연		763	171		(285	 20.3	352	Ç	アキュー	77 67	3	2088			
ည မ ဗ ဗ င	Horizontal	túdinal	Mov.	137	66	7	9 9	, <u>6</u>		39	235	370		281	၁့	5.7		E # T	ÓΠΠ	, C.	LI V	7077	0 K))	1044			
cture in	HOI	Longiti	Fix.	746	555	, , ,	T 25.4	/	/	/	7484	313		. 2296		/		/	170%	704	o C	0.4.70	1 (C)	\\ \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4176	1		
superstructure in Case		Z		2734	1988	0 (1)	75.16	(%) (%)	206	1986	4706	2922	් ස්	8440	1712	1138	305	3154	8°70	3520	1092	15706	02/51	אי מיקיר מיקיר	22334			
V-10 Reactions of				Dead load	├┴	load Highway	CGO CGGG	Live Failway	losd Highway	Total	Dead load	1 .	load Eighway	Total	Dead load		load highway	Totel	Dead load	Live Railway	load Highway	Lotal	g	Live Hallway	Total			
Table				Inter-	mediate	Support		End	Support			Inter-	מייינים שניים	- Oddano	:	Erd	Support			EON OF THE				L=350m				
						3 Span	Cont. truss	L=100m					1 1 2 1	Cont + His	ביוניי הנחמת							Cantiller	russ					

F	ig.	∇-6	Rela	tions	be	twe	en :	safty	fa	ct	o nc	nd	sc	our	ing	d	еp	th	δf	¢	ais	sso	ns		
	> 1[4-5					1	Δ	Ĺ	SI	R	ΔJC	ΑΛ	لاا	S	H										擅匠
									Cc	ıs	e_ (1					P								
.k.;								2-'L	ne	S.,	ŝin	gle	tro	ick_											
					1.					1 2 2 2 1 2 2 3 2 2 3 4											100				
		- -3-0																			选队 沙里				
													2					0-1 11-7							
																		1. 1. 2. 1. 1. 1.			* * * * * * * * * * * * * * * * * * *				
	i										7 (1) 2 (2)								1.						
						1/2	- 1321						1.3.1												
- 1							G.) 3	-									i (i di Natan							
		2.0	>								1.3														
					9		63				l Augir				12 12										
		actor				505	13						u .												
	e ZII																	1700	2						
		Safty								liuN liuw	7/	1													
			7										7							3 1 .				1 1	
														1										121	
					-													22.7							
											- -		 												
			þ		;	5 1			ΙQ				 5	1 3 0 Liv 18 Liv 19			20			*::	25	5 M		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				1 00			of r	iver	bed			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1	Sc	our	ing	: de	pfh						1/2 ·
				Haita Houis																	13.40 13.41			150	
757										17.13				11 15*				100			7. T				
			O			5 gh t	of r	iver								our	2O ing	, de	pth		25	5. M			

1,11,								Ţ			17.5T;					74			<u>T</u>	11		11		77.5				Ì		5
	Fig.	7	7-	7	Rela	ıtıc	ns	be	ا†≘	ween	_sc	ıft	v f	act	or	۵ı	nd.	SC	OUI	rino	1C	len	th	C	f	ca	isso	วทร		
. 141 1441							F		* •i								1	<u>}</u>				, - ,- 	2.0.1			1 : 11				
										(_A.	[VΑ	GAI	₹B	ΔF	21	S	TE	_)_			-		1.		1,				
					la turtus Poli Pau		-					C	a s e	(7		•		•											
													12. å 18							100										
- 1										(2 -	Lc	ines	, S	in	gle	<u>.</u> †	ra.c	k).					<u> </u>		<u> </u>				-
				•					ر ا								12.4		n lita	 			,	ļi)		 				
											3 -																			
		1	-3 (9	V. 188 .	1	<u> </u>	1				1	10.00	1		1			1					7	1	T				
			أند						· 						1.							;			-					
							//					. <u></u> .				-	: <u> </u>		-		 					715				
																								* : * : * :						
					. //			1	\				. 1"						-											
7.									//	<u> </u>							بأدية. "م	- 4	-					1 1						
	1			-					۳	1/5"			113																Í	
; :-:-				: .						0/	\03									:										
· · · · ·		-	2.0	ე <u>.</u>		+	1	<i>*************************************</i>	o	3	1	+			 -	\dashv		;	<u> </u>		-				<u> </u>		-			
		İ		•				7		2			-11												7	}	i			٤
		10			41 1						\															-	1:			ection
	(2) <u>1</u>	factor					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-:-			<u></u>			1	r					;;;	-	,		-						Dias
	1 *	- 1		-									\mathcal{N}																2 	
		a f ty				1 1 1 1 1																								
		S		4		1					las eles.		-		/					: 				<u>.</u>					5	
1			• • •								i. ''. I					1			.	1 :	;-							-	i	
33.			-1-	Ο-						1 1 2 2	1 / 12														<u> </u>					
! .				: ; 		<u> </u>										1				1								_		
										•		٠.,	- 4				j	1									1			
						2		3.			† !		سنجس	.i 4:	i l			 							ļ <u>.</u>					
				-			<u> </u>	7.55												**				771 L			-			
			(1,2) (1,2) (3,4)			1 5											1	.: .		- L				1						
ar M								-	•								-	-		1	-					-				
		15.,																1		1				1 2						
: (F 13/2				. (-			5				10				15				. S	0			<u>.</u>	_ 2	5	n 			
		Ç		1 fg <u>t</u> 23 fg 23 2 4			Ф		ŀ	eight	of		iver	be	d			⋖		₋ S	cot	ırir	g	de	рſ	h				1
				7.5	1.74	1			•		1	į													4.4					
					41-41.			[,							
		2 2 2			(******* 74 44					. 49. 3. 19.175	10,785 12,260									<u> </u>				<u>. </u>		-	1.3			
	情情	-11				114	- :-	1		تمويد المنابة وتورا	Harris	;;;}		·j- · · ·		*		::!:::::	14 54				11.7							

			. 11	17.				i di	T	H	T		Ī	155 de				1					1	:[-];	1		1	1:11	Ta	Į,		IF
	E	g.\	Z=	8		R	el	<u>.</u>	o.r	ìS	Ŀ	etv	ve	en.	sc	ft	y fc	ict	or.	and	5.0	:ol	iri	na	d	a e	h	of	c	ai.	SS	วทร
									7					legg Trans										27.1 23.1				ye.	į		145	13 E
		2		+F (16)							1	i(Ç a	s 6	.	b					-			///- 121			-					1/ 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				-1		1.1				1	4		La	nes	ļ.,	d	ou bl	ei	ra.	cks)										111		YI-I
				ii.		(: 1/1 											23.34° 7.576°								1			133 345	1.7			
4	3.31			Y.														1										1				
		382 S 122 133				13214			19.0		+			de a							-									11:11	#	141
							- -						 -															173. 1811				
			3	O' -					1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						ļ.,		1) he						
				39 22 32	*	1.0	-		<u> </u>	/			ļ.,								-		-				1 :			12.	丰	
				, a.,							\setminus													1.0								
						kal kan					-						la di.	+ -				(2) 2 (2) 2 (3) 3 (4) 4 (4) 4										
		: 									+	-/-	ļ								Γ				†				15			
1				***					<u> </u>		ļ-		/		ļ)		-			<u>.</u>				1	3 - 22 1 - 24 1 - 25						
i				0		-=' -5			i ,	\mathcal{N}			: \ 	1														1)) (1 <u>+</u>) (#		
11		tor		U						Z					\																	
4	-	factor			-		ļ		+-		$\frac{\lambda}{1}$			د. د.ستان	-\	\o	3	-	,		<u>.</u> T		-		-							
		10.21	200 13						-		1	6/	<u>\</u>	5		/	3	1														
	103 112	aftv			N.	10 % 10 % 10 %			1			,			=			-											1717		% . М	11.17. 12.13
		·		:			<u> </u>		+-		1	135		<i>3/</i>				/					-									
							1		-	-	- - - -	1.20	75	 	-	1		1	/										1			
			1			1		:::4 				اجد	/	\		: ::::::::::::::::::::::::::::::::::::																
				O-																	\setminus											
	. ,			<u></u> -						•	Ŧ		 ا		-						1	\sim	1		1							
		- 1					ļ				-			-	ļ									Š	<u></u>					Ľ		
		753	أبود أند 1	14.70	: :,				† : 		-			: 							\downarrow			\				12.				
77			(321.77 (11.57)							-	Ť							İ					*	\$		\						
				31; 95			 				1		-	1							<u> </u>						$\stackrel{\smile}{=}$					122
			3.300										1		-1111					dept	<u>t</u> h							1 250				1
		:-'c	ار افران	. (þ	\$1. \$1.1		۵	o	5, h -					Ò.		e d		5	Δ.			20				2	5				
					10 12 10 12 10 12	1 24	ì	177		n.e	ı g	mt (UT	,;f 1.	ver		yed; ∤∵lo	11			IN	ago	ıβbα	ori.	si.	te :						Helf Har
ပ					14 TA	16.	<u> α</u>	1	he	ig	hį	of	r	ive	-	bec		A	Si	rajgo	ij		ite			134					I	
. 3162			;; () 			1.	1		h-	H.			ĺ					1 :					44		4	141	1:		4		4.	

cost are included to decide the best site as the purpose of this project.

Moreover, the stabilization is calculated by a electronic computor. Plot graph by this result shows in Case a that lines for spans $\ell=100^{\rm m}$ and $\ell=250^{\rm m}$, and lines for spans $\ell=150^{\rm m}$ and $\ell=350^{\rm m}$ are approaching respectively in Figs. V=6, 7. These due to that the shap of well is $\oint 12^{\rm m}$ at $\ell=100^{\rm m}$ and $\ell=150^{\rm m}$, and $12^{\rm m} \times 24^{\rm m}$ at $\ell=250^{\rm m}$ and $\ell=350^{\rm m}$, which cause the approximate similar increase in section and load. Also abovementioned lines show that sections at $\ell=100^{\rm m}$ and $\ell=250^{\rm m}$ are able to be lessened a little. In Case b, despite sections of well are same, $\ell=150^{\rm m}$ and $\ell=250^{\rm m}$ are approaching in Fig. V=8. This due to that $\ell=150^{\rm m}$ is the fixed base of three span continuous truss and $\ell=250^{\rm m}$ is that of a cantilever truss, and loads act to each fixed base are similar.

Effective length of grip assumed from this result showed in Fig. V-9 and Fig. V-10 as a example which covering the site of Sirajganj. These drawings show clearly that the longer in span, the longer grip is necessary.

Fig. ∇ -9 Necessary Length of Grip Required for Stability of Well (Case - a) at Sirajganj Site.

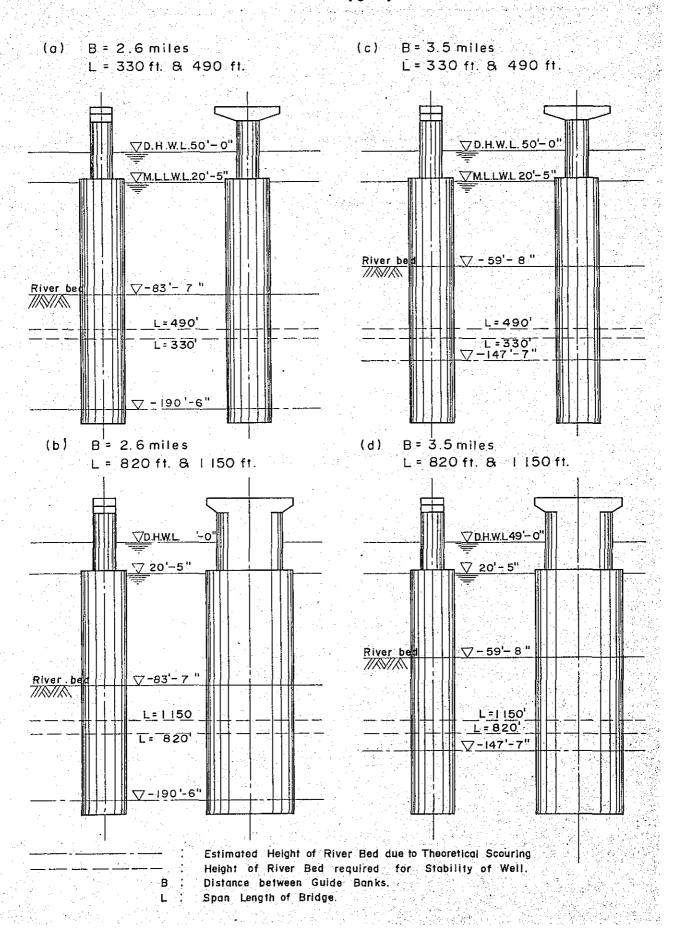
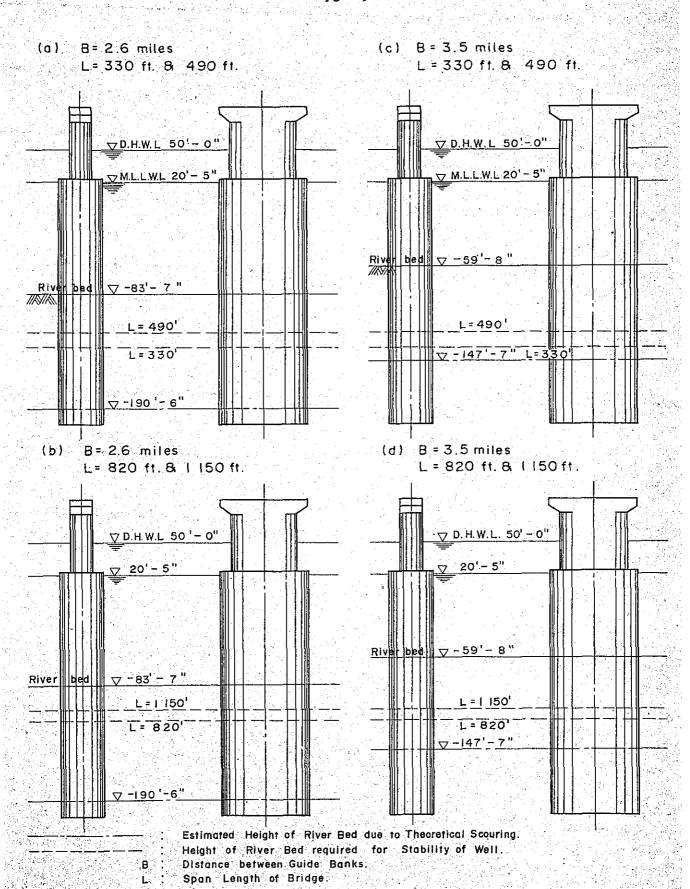
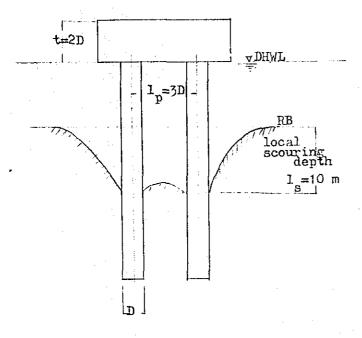



Fig. ∇-10 Necessary Length of Grip Required for Stability of Well (Case - b) at Strajganj Site.


3-3-2. Multi-pile-foundation.

(1) Outline.

In the case of multi-pile-foundation, the river bed is lowered by influence of guide banks, piles are obstacles to water flows which cause the local scouring. Therefore, the multi-pile-foundation becomes the one consist of the piles with long unsupported part (free part).

The local scouring caused by a structure is very difficult to assume, at present.

Fig. V-11 Diagram of multi-pile foundation.

Of course, in this bridge this is one of the difficult problems. Therefore, in this bridge following results are obtained by the investigation of the River Team and experts in the association. Namely, in the case of the multi-pile foundation, when the diameter of pile is 2.0 ~~ 3.0 the depth of the local scouring was defined to take $\ell = 10^{\rm m}$ as one of considerations as shown in Fig. V-11. Though, the distance from center to center in piles is also related closely to the local scouring, it was determined to take three times of the pile diameter, namely $\ell_{\rm D}=3$ D by considerations of problems on execution and hydraulics.

The thickness is important for the base slab which is fixed rigidly

to heads of piles to deliver reactions from the superstructure positively to the bearing layer through piles. At the calculation of the multi-pile-foundation, the stiffness which is able to be assumed as a rigid body should be required. Considering above-mentioned matters, the thickness of the base slab was determined to take twice the diameter of pile, after many calculations, namely

(2) Design Condition.

Diameter of pile ϕ 2.0^m, ϕ 3.0^m

Thickness of plate of pile $t=40^{mm}$, $t=60^{mm}$ Velocity current velocity $v=4.0^{m}/sec$ Depth of local scouring 10^{m} Dist. center to center 3 D (D : Diameter of pile)Thickness of base slab 2 DAcceleration of earthquake $k_{\rm h}=0.16$ $k_{\rm h}=0.16$

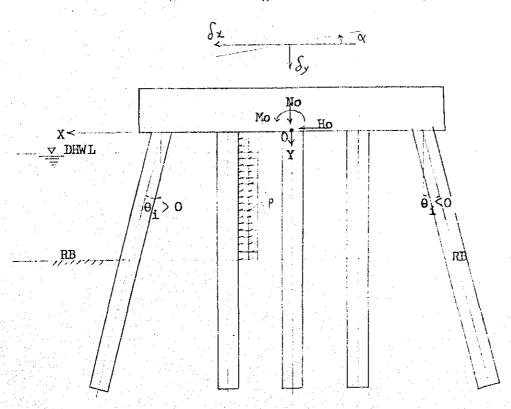
Modulus of lateral foundation

$$K_{\rm H} = 3.6 \text{ Kg/cm}^3 \text{ (for } D = 2.0^{\text{m}}\text{)}$$

 $K_{\rm H} = 2.6$ " (for $D = 3.0^{\text{m}}\text{)}$

Weight per unit volume

Concrete $\chi_c = 2.0 t/m^3$ (Light-weight aggregates is used)


Earth
$$rac{7}{3} \approx 1.9$$
 " $rac{1}{3} \approx 2.0$ "

Thickness of corrosion

(3) Calculation of stability.

1) Theoretical equation.

Fig. V-12 Diagram of theoretical system

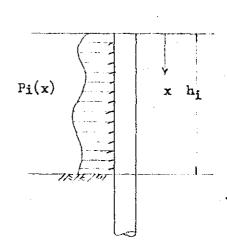
One of arbitrary points on base slab is defined as original point O and the external force acting to point O is as shown in Fig. V-12. \S_X and \S_Y are displacements in axes of co-ordinates, \varnothing is plus angle to X-axis, which are putted on the co-ordinate.

By assuming the base slab as a rigid body, displacement of the original point is shown in the following equation.

with

$$\begin{array}{lll} A_{11} & = & \sum\limits_{i} \left(K_{1i} \, \text{Cos}^2 \theta_i \, + \, K_{vi} \text{Sin}^2 \theta_i \right) \\ A_{12} & = & \sum\limits_{i} \left\{ \left(K_{vi} \, - \, K_{1i} \right) \text{Sin} \theta_i \text{Cos} \theta_i \right\} \\ A_{13} & = & A_{31} \, = & \sum\limits_{i} \left\{ \left(K_{vi} \, - \, K_{1i} \right) x_i \text{Sin} \theta_i \text{Cos} \theta_i \\ & & - \left(K_{1i} \text{Cos}^2 \theta_i \, + \, K_{vi} \text{Sin}^2 \theta_i \right) y_i \, - \, K_2 \text{Cos} \theta_i \right\} \\ A_{22} & = & \sum\limits_{i} \left(K_{vi} \text{Cos}^2 \theta_i \, + \, K_{1i} \text{Sin}^2 \theta_i \right) \\ A_{23} & = & A_{32} \, = & \sum\limits_{i} \left\{ \left(K_{vi} \text{Cos}^2 \theta_i \, + \, K_{1i} \text{Sin}^2 \theta_i \right) x_i^2 \right. \\ & & - 2 \left(K_{vi} \, - \, K_{1i} \right) x_i y_i \text{Sin} \theta_i \text{Cos} \theta_i \\ & + \left(K_{1i} \text{Cos}^2 \theta_i \, + \, K_{vi} \text{Sin}^2 \theta_i \right) y_i^2 \\ & + \left(K_{2} \, + \, K_{3} \right) \left(x_i \text{Sin} \theta_i \, + \, y_i \text{Cos} \theta_i \right) \, + \, K_{4i} \right\} \\ & \left\{ \begin{array}{l} G_H & = \sum\limits_{i} F_i \text{Cos} \theta_i \\ G_N & = & -\sum\limits_{i} F_i \text{Sin} \theta_i \\ G_M & = \sum\limits_{i} \left(G_i \, - \, F_i x_i \text{Sin} \theta_i \right) \right. \\ \end{array} \right. \\ & \left\{ \begin{array}{l} F_i & = & K_{1i} \, \overline{\delta} x_i \, - \, K_{2i} \, \overline{\delta}_i \\ G_i & = & -K_{3i} \, \overline{\delta} x_i \, + \, K_{4i} \, \overline{\delta}_i \end{array} \right. \end{array}$$

$$\begin{cases} \overline{S}_{ti} = \frac{1 + \beta_{i}(h_{i} + \overline{h}_{oi}) + 2\beta_{i}^{2}h_{i}\overline{h}_{oi}}{2E_{i}I_{i}\beta_{i}^{3}} \quad Q_{oi} + \frac{S_{oi}h_{i} - T_{oi}}{E_{i}I_{i}} \end{cases}$$


$$\overline{Q}_{i} = \frac{1 + 2\beta_{i}\overline{h}_{oi}}{2E_{i}I_{i}\beta_{i}^{2}} Q_{oi}$$

$$\overline{h}_{oi} = \frac{R_{oi}}{Q_{oi}}$$

$$\beta_{i} = \sqrt[4]{\frac{K_{Hi}D_{i}}{4E_{i}I_{i}}}$$

Fig. V-13 Diagram of thrust for pile

$$\begin{cases} Q_{0i} = \int_{-1}^{h_{i}} P_{i}(x) dx \\ R_{0i} = \int_{-1}^{h_{i}} P_{i}(x) (h_{i} - x) dx \\ \\ S_{0i} = \frac{1}{2} \int_{-1}^{h_{i}} P_{i}(x) (h_{i} - x)^{2} dx \\ \\ T_{0i} = \frac{1}{6} \int_{-1}^{h_{i}} P_{i}(x) (h_{i} - x)^{3} dx \end{cases}$$

But the pile should be based on the assumption of Y.L. Chang. And $P_i(x)$ is dispersed loads which act to a unit length at right angles with pile axis (t/m).

[Legend]

 H_{o} : External force of horizontal, acts to original point O (t).

 N_o : External force of Vertical, acts to original point O (t).

 $M_{\rm O}$: Moment due to external force acts to original point O (tm).

 $oldsymbol{\delta}_{\mathbf{x}}$: Horizontal displacement of original point O (m).

Sy : Vertical

X: Rigidly rotating angle of base slab (rad).

Kvi: Axial spring constant (t/m).

 K_{1i} : Force at right angles with pile axis, which produce a unit displacement at right angles with axis on pile head, when there is no rotation on pile head (t/m)

 K_{2i} : Force at right angle with axis, which produce a unit rotation angles on pile head, when there is no displacement at right angles with axis on pile head (t/rad).

 K_{3i} : Moment at pile head, which produce a unit displacement at right angles with axis on pile head, when there is no rotation on pile head (tm/m).

 $K_{2i} = K_{3i}$ by reciprocal thorem.

K_{4i}: Moment at pile head; which produce a unit rotation angles on pile head, when there is no displacement at right angles with axis on pile head. (tm/rad)

 x_i : Co-ordinate of Number i on x-axis (m).

 y_i : " on y-axis (m).

 Θ_i : Angles between Number i pile axis and y-axis (deg).

 δ_x , δ_y and α can be acquired to solve three factors simultaneous equations above-mentioned. By which axial force P_{Ni} , a force at right angles with the axis P_{Hi} and restrained moment M_{ti} are calculated by following equations.

$$\begin{cases} P_{Ni} = \kappa_{vi} \, S_{yi}' \\ P_{Hi} = \kappa_{1i} \, S_{xi}' - \kappa_{2i} \alpha - F_{i} \\ M_{ti} = -\kappa_{3i} \, S_{xi}' + \kappa_{4i} \alpha - G_{i} \end{cases}$$
 with
$$\begin{aligned} S_{xi}' &= S_{x} \text{Cos} \theta_{i} - (S_{y} + \alpha_{xi}) \text{Sin} \theta_{i} \\ S_{yi}' &= S_{x} \text{Sin} \theta_{i} + (S_{y} + \alpha_{xi}) \text{Cos} \theta_{i} \end{aligned}$$

Bending moment at outstanding of pile to which horizontal forces are acting directly, can be obtained from the theory of ordinary beam by acquiring $P_{\rm H\,i}$ and $M_{\rm t\,i}$, $P_{\rm H\,i}$ is force at right angles with the axis on pile head, and $M_{\rm t\,i}$ is moment. At parts in the earth covering can be calculated by following equations.

Displacements on the ground surface

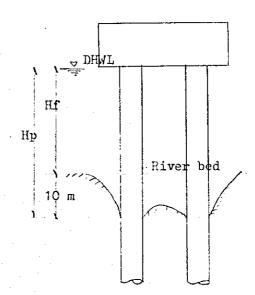
$$f = \frac{1 + \delta + \beta (h + h_0 + \delta \overline{h}_0)}{2EI\beta^3} P_{II}$$

Bending moment at the point Im in the earth.

$$M_{m} = -\frac{P_{H}}{2\beta} \frac{\{1 + \gamma + 2\beta(h + h_{o} + \gamma \overline{h}_{o})\}^{2} + 1 \exp(-\beta l_{m})}{1 + \gamma + 2\beta(h + h_{o} + \gamma \overline{h}_{o})}$$

with

$$\Upsilon = \frac{Q_o}{P_H}$$
 , $h_o = \frac{M_t}{P_H}$, $\overline{h}_o = \frac{R_o}{Q_o}$


Calculations of the stabilization will be made by the electronic computer based on the theory above-mentioned. Reactions of the superstructure are shown in Tables V-9, 10.

2) Result of calculation.

The unsupported length of the multi-pile-foundation (Hp) shall be the depth at D.H.W.L plus local scouring (10^m). The bottom end of footing shall be fitted to D.H.W.L.

The unsupported length each distance between guide banks on each site is shown in following table. (Table V-11)

Fig.V-14 Marks for Table V-11

		Typ	e of guide	banks
Proposed sites	Mark	Type A	Туре В	Type C
	$_{ m H_{ m f}}$	50.5 ^m	37.7 ^m	31.2 ^m
Bahadurabad	$^{ m H}_{ m p}$	60.5	47.7	41.2
_	$_{ m H_f}$	54.9	41.0	35.6
Gabargaon	$^{ m H_p}$	64.9	51.0	45.6
	Hf	52.5	39.9	32.6
Sirajganj	Нp	62.5	49.9	42.6
	нг	56.1	42.4	36.8
Nagarbari	Нр	66.1	52.4	46.8

Table V-11 Outstanding length at each site

As the unsupported length $H_p = 60.5^m \sim 66.1^m$, at type A is very long, it is durable only to weights of it own and the body by the result of trial calculations. Which caused the design impracticable. Therefore, calculations of the stabilization in type A was not performed. And at cases of $H_p = 41^m$, 48^m and 52^m in type B, C will be calculated, as a typical example. Objects to be calculated is as follows.

Diameter of pile: $\phi = 2.0^{\text{m}}$ t = 40^{min} $\phi = 3.0^{\text{m}}$ t = 60^{min}

Outstanding length: $H_p = 41^m$

-- 48m

-- 52^m

Span : $L = 100^{m}$

150^m

250^m

350m

Terms of support : Fixed

Movable

Width of

superstructure: Case a (2 lanes, single track)

Case b (4 lanes, double track)

Results of calculations are shown in Tables V-12, 13.

Outlines of shapes in Case a, $\oint 3.0^m$ as a typical example are shown in Fig. V-15.

							\$		Ρ.	· <u>75</u>
								•		
					Table V-	12-1 Case	a.			
					: ·				_	
Span	leng	gth		m _			L	= 100		
Diam	aeter	of pile	•	m	4		φ	= 2.0		
Thic	knes	s of pil	.e	mm			t	= 40		
Outs	tand	ing leng	th	m		41		48		52
	Numbe	longi	tudinal	line		3	1			
	of		sverse	row		5	impos	sible	impo	ssible
4 4	piles	larr 1	oiles	each		15				T
		ition of	load	- ·			Usually	Earthquake	Usually	Earthquake
	nal	Reaction of pile	q _{v max}	t/p	382	1048				
	Longitudinal	ectic pil	qv min		382	-330				
ier	lgit		QH	. 11	.0	. 87				<u></u>
ed pi	Lor	Deflect pile l	tion of nead	mm	0	312				
Fixed	a l	ion 1e	q _{v max}	t/p	474	. 715				
	sverse	Reactic	q _{v min}	. 11	292	3				<u> </u>
	ysu,		dH	11	6	57	ļ			
	Tran	Deflect pile b	tion of read	nun	101	285				
1	Bend	ing mom	ent	tm/p		1961				
<u> </u>	Max.			Kg/cm ²	1 12	2195		<u> </u>		<u> </u>
:	Max. stress of pil	itudinal	line		3			ļ		
42	or pile	_	verse	row		5	impos	sible	impo	ssible
		HII.	piles	each		14	77		1113	F - 41 1
		ition o		-			Usually	Earthquake	Usually	Eartnquak
	ìna	Reaction of pile	qv max	t/p	409 409	704 14	<u> </u>		 	
pier	tud	Reac of p	Qv min	U	0	47			 	
	Longitudinal	Def1e	q _H	mm	0	183				
Movable		pile	q _{v max}	t/p	508	715				
Ž	rse	action pile	qv min	11	313	3				
	s∢e	Reaction of pile	q _H	ıı .	6	57	 			
	Transverse		ction of	mm	108	285				
	Bend	ing mom		tm/p	3	1765				1 2 2 4
			of pile		7.72	1878				

Spa	n]	lengt	h.		m			L	= 150		
			f pile		m			φ	= 2.0		
			of pil		min			t	= 40	. X +	. 11 11 11 11 11 11 11 11 11 11 11 11 11
0u	tsti	andin	g leng	th	m		41		48		52
	N.	umber	longi	tudinal	line		4		5		6
	"	of	1 1 1 1 1	verse	row		7		8		9
	p.	iles	all r	oiles	each		26		40		54
1	С	ondit	ion of	load	-	Usually	Earthquake	Usually	Earthquake	Usually	Earthquake
		la.I	l on	q _{v max}	t/p	422	967	287	672	262	580
		idi.	Reaction of pile	qv min	11	422	-164	287	-124	262	-78
Ş.		Longitudinal	Rez of	ЧP	ii.	0	96	0	67	0	61
d pier		ron	Deflec pile h	tion of lead	mm	0	329	0	364	0	421
Fixed			ion le	q _{v max}	t/p	482	673	358	514	344	508
#		ers(acti pil	qv min	11	361	129	216	34	180	- 5
		nsv.	Rei	q _H	11	5	65	- 4	47	4	46
z r	٠. ا		nding moment c. stress of pil		mm.	97	307	161	409	218	527
	В	Bendin	longituding	ent	tm/p		2207		2117		2086
_	M	lax. s	tress	of pile	Kg/cm ²		2379	100	2105		2404
	N	Number	umber		line		4	4	5		6
		umber longitudinal		sverse	row		5		8		9
	F	oiles	all	piles	each		20		40		54
{	C			f load	-	Usually	Earthquake		 		
}		[na]	tion ile	qv max	t/p	440	706	287	646	262	554
١,	.	tud i	д. Гр.	qv min	11 	440	121	287	20	262	33
100	1	ngitudinal	Re	q _H	11	0	49	0	47	0	43
Morrallo	- 1	Lor	pile	ction of head	mm	0	181	0	272	0	320
		ايو	ion le	q _{v max}	t/p	532	806	358	514	344	508
		ers	Reaction of pile	qv min	"	348	20	216	34	180	-5
		Transverse		q _H	11	6	64	4	47	4	46
		Tra	Defle pile	ction of head	тт	102	307	161	409	218	527
			ng mom		tm/p		1921	:	2117		2086
1	M	Max.	stress	of pile	Kg/cm ²		2056		2105		2404

	٠								P.	77
				,	Table V-	12-3 Case	a			
Spar	ı leng	th		m			L	= 250	*	
		of pil	e .	m				= 2.0		The second of th
Thi	kness	of pi	le .	mm			t	= 40		
Out:	standi	ng len	gth	m		41		48		52
	Numbe	long	itudinal	line		5		5		6
	of	tran	sverse	row		6		.9		10
	piles	all.	piles	each		30		45		60
	 	_	f load			 	 		Usually	+
٠.	Longitudinal	Reaction of pile	qv max	t/p	452	899	373	804	334	720
	iggi	act pi	qv min	- 11	452	-39	373	-91	334	-81
pier	lgit		dH	lt .	0	87	0	75	0	97
	Lor	Defle pile	ction of head	mm	0	294	0	400	0	660
Fixed	ا ا	ion Je	q _{v max}	t/p	528	776	444	631	416	607
-	ers	action pilo	qv min	!!	376	84	301.	- 81	251	32
	ransverse	Read	d ^H	11	5	65	4	56	4	53
	Tra	Defle pile	ction of head	mro	99	309	161	446	218	566
	Bendi	ng mơm		tm/p		2008	<u> </u>	2277	<u> </u>	2511
	Max.			Kg/cm ²		2173		2298		2532
	Numbe	r long	itudinal	line		5		5		6
	of piles		everse	row	ļ	5		9	<u> </u>	10
/1 : : :		14111	piles	each		25		45		60
		tion o	 	-			 	Earthquake		
7	ina	Reaction of pile	qv mux	t/p	516 516	752	373 373	188	334 334	686 -47
pier	tud	reac T b	qv min	1	216	227 51	2(2	52	0	67
le pi	Longitudinal	Defle	q _H ction of		0	186	0	277	0	458
Movable		pile	T	t/p	608	933	444	631	416	607
Mo	'Se	Reaction of pile	q _{v max}	17 P	423	46	301	81	251	32
	sve)	Read of]	qv min	ŋ	6	73	4	56	4	53
	Transverse		ction of	aun	102	334	161	446	218	566
	Bendi	 	ent .	tm/p		2111		1961		2511
			of pile			2279	 	2049		2532
					<u> </u>				<u> </u>	<u> </u>

					Table V	-12-4	Case	a			
Spar	leng	th		m		Art ji E		L	= 350		
Dian	neter	of pile	•	m				φ	= 2.0		
Thi	kness	of pil	Le	mm				t	= 40		
Outs	tandi	ng leng	gth	m		41			48	ļ	52
	Numbe	r	itudinal	line		6	<u> 14 - 144</u>		7		7
	of piles	<u> </u>	verse	row		10			12		14
			piles	each	11	60		11	84 Earthquake	Herre 11	98 Eanthquak
	 -	tion o		- t/p	Usually 401	+		326	616	299	541
	lina	actio pile	q _{v max}	1)	401 401		755 10	326	9	299	34
tu.	itud	Reac of p	dH AA win	11	0	 	81	0	69	0	66
d pier	Longitudinal		tion of	min	0		275	0	364	О	478
Fixed			q _{v max}	t/p	444		582	372	489	345	447
<u> </u>	rse	action pile	Qv min	11	357	†	183	278	137	253	128
	Transverse	Res	q _H))	3		58	3	50	2	47
	Tra	Defle pile	ction of head	møs	92		283	155	420	207	530
		ng mom		tm/p		+	904		2170		2423
	Max.		of pile	Kg/cm ²			019 .		2142		2349
r' -	Numbe of	r	itudinal	line		5 9		<u> </u>	7		7 14
	piles	<u>-</u>	sverse piles	row each	 	43		 	84		98
	Condi	tion o		-	Usually		houake	Usually	Earthquake	Usually	
	- F	e o	q _{v max}	t/p	511		755	326	544	299	494
	ldin	Reaction of pile	qv min	11	511		216	326	152	299	81
pier	Longitudinal	Re; of	q _H	11	0		57	0 ,	46	0	46
Movable	Lon	pile	ction of head	mm	0		202	0	261	0	333
Move	0	ion le	q _{v max}	t/p	558		733	372	489	345	447
	ers	act	9v min	lt .	464		238	278	137	253	128
	Mova Transverse Reaction of pile		q _H	11	4	-	69	3	50	2	47
		pile		Hun.	93		316	155	420	207	530
l	<u> </u>	ng mom		tm/p			040		2170	<u> </u>	2120
<u> </u>	Max.	stress	of pile	Kg/cm²	<u> </u>	2	130		2142		2079

					Table V	/-12-5 Case	e &			
					<u> </u>	·. ·				<u> </u>
	n len			т		·		= 100	 :	
		of pile		m	 	· · · ·		= 3.0	 	
		s of pil		mm	e e e	41	T .	= 60 48	1	52
out	S URING	- i - i	itudinal	m line		2		2		3 : -:
	Numb of	61.	verse	row	<u> </u>	3	<u> </u>	3		3
	pile	_	piles	each		6		6		9
	Cond	ition of		- each	Hanally	 	Henelly	Earthquake	Usually	Earthqua
	———			t/p	1018	2556	1018	2763	823	1956
	ling	Reaction of pile	q _{v max}	11	1010 1	-585	1010	-846	19	-390
	tud	Reac of I	dH av min	Ħ	0	220	0	230	0	182
l pier	Longitudinal		tion of	mm	0	192	0	299	0	266
Fixed		e o	q _{v max}	t/p	1290	2040	1253	2029	1094	1865
Pt.	ransverse	Reaction of pile	q _{v min}	11	800	~69	783	-112	551	-299
	sve	Rea of	q _H	n	22	162	- 22	162	23	164
	Tran	Deflect pile l	tion of	mm	50	171	68	236	92	292
	Bend	ing mome	ent	tm/p		4781		5852		5555
	Max.	stress	of pile	Kg/cm ²		1717		2041		1788
	Numb	erlong	itudinal	line		2		3		3
	of	trans	sverse	row		2		3		3
	pile	s all]	piles	each		4		5		9
	Cond	ition o	f load		Usually	Earthquake	Usually	Earthquake	Usually	Earthqua
	nal	Reaction of pile	q _{v max}	t/p	1365	2215	1223	2106	1018	1987
H	ud i	act pi	Qv min	11	11	336	н	197	11	-69
pier	Longitudi		q _H	11	0	141	0	149	0	132
Movable	Lon	pile 1	ction of head	mm	0	127	0	184	0	226
Mo	e e	ion 1e	q _{v max}	t/p	1666	2774	1550	2633	1283	2117
~	ransverse	Reaction of pile	qv min	11	1064	-223	896	-330	754	-199
	ASU	P. P. P.	dH	tt .	32	206	33	207	22	162
	Tra	Defle pile	ction of head	mm	54	208	82	295	90	302
		ing mom		tm/p		5040	4	6228		5755
	Max.	stress	of pile	Kg/cm ²		1825	1	2106	100	1887

Table V-12-6 Case a

		of pil	·	m mm				= 3.0		
		ng len		m		41		48	<u> </u>	52
·		1,	itudinal	line		3		3		3
	Numbe of	, r ——	sverse	row	-	3	-	3		3
	piles		piles	each		.8		9		9
	Condi	tion o		_	Usually		Usually		Usually	Earthquak
	la l	u o	q _{v max}	t/p	1483	2857	1098	2537	1098	2631
	din	ictic pile	q _{v min}	· 11 .	1483	-23	1098	-126	1098	-552
H	it.	Rea of	ЧH	11	0	297	0.	180	0	242
d pier	Longitudinal	pile :	ction of head	mm	0	216	0	273	O	333
Fixed		esction pile	q _{v max}	t/p	1670	2514	1340	2205	1371	2301
	Transverse	ac t.	Qv min	11	1296	320	857	-125	826	-222
	nsv	Re of	$q_{ m H}$	11	26	227	23	180	. 23	180
,	Tra	Defle pile	ction of head	mm	44	194	70	255	89	315
	Bendi	ng mom	ent	tm/p		6700		6380		6949
- '	Max.	stress	of pile	Kg/cm ²		2271		2129		2215
	Numbe	long	itudinal	line		2		2		3
	of piles		sverse	row		3		3		3
	<u> </u>	ытт	piles	each		6		6		8
	ļ	tion o	T	_	 	Earthquake		 		
1.	Longitudinal	ıction pile	q _{v max}	t/p	1432	2362	1432	2493	1236	1976
pier	tud	Œ	4v min	11	1432	325	1432	194	1236	363
	ngi	of of	q _H	· "	0	155	0	155	0	149
Movable	l 3	pile	ction of head	mm	0	138	0	207	0	220
Mov	e l	Reaction of pile	q _{v max}	t/p	1623	2508	1667	2666	1491	2405
	ver	e a c T	qv min	11	1240	179	1197	21	981	-66
	ransverse		q _H	11	22	201	22	201	26	202
	E	pile		mm	42	178	68	276	95	351
		ng mom		tm/p		6380	Programme Action	6949	1. 1971 1. 1. 1. 1. 1. 1.	6855
	Max.	stress	of pile	Kg/cm ²	100	2095		2267		2226
				1						

					Table	V-12-7 Cas	se a				
Span length			m			L = 250					
Diameter of pile Thickness of pile Outstanding length			•	m			$\phi = 3.0$				
			mm	41		t = 60 48		52			
			m								
	Numbe	* I'			3		3		3		
	of piles	,	transverse		4		4		4		
	all pires			each	10		Usually Earthquake		12		
	Condition of load			-	Usually	Earthquake				Earthquak 2803	
	ina	ction pile	qv max	t/p	1450	2689	1209	2607 299	1209 1209	-394	
	tud	Reaction of pilo	qv min	11	1450 0	81 285	1209	238	0	259	
Fixed pier	Longi tudina]	Defle	qH tion of				0	268	0	364	
pex	73	pile l		mm	0	206			1406	2291	
Fi	es e	Reaction of pile	q _{v max}	t/p	1582	2249	1383	2129 179	1013	118	
	sverse		qv min	"	1319	520	17	183	17	204	
	rans		q _H ction of	mm:	21				83	343	
	Ţ	pile 1	pile head		40	182	62	249	(0)		
	Bending moment			tm/p		6463	-	6278		7381	
	Max.		of pile	1		2178		2114		2476	
	Numb	er	itudinal	line	3		3		4		
	of transverse			row	3		9		12		
	Condition of load			- each	Usually	 	Usually	, 	Usually	Earthquak	
	Tel Tel	e o	q _{v max}	t/p	1467	2176	1467	2275	1209	2143	
			qv min	11	1467	613	1467	515	1209	166	
pier	ritu	Reacti of pil	ЧH	11	0	151	0	151	0	165	
	Longitudir	Deflection of pile head		mm	0	117	0	178	0	243	
Movable			q _{v max}	t/p	1665	2632	1709	2797	1406	2291	
×	rse	action pile	dv min	11	1270	158	1226	-7	1013	118	
	ransverse	Rea	q _H	11	23	215	23	215	17	204	
	Tran	Deflection of pile head		mm	43	189	70	291	83	343	
	Bend	ing mom		tm/p		5543		6535		7381	
	Max. stress of pile			Kg/cm ²	1000	1929		2217		2476	

		eran eran eran eran eran eran eran eran							P.	82	
		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Table V-	-12-8 Case	a				
Span length m				m	L = 350						
				m							
lhic	kness	of pil	e	mm			t	= 60			
Outstanding length				m		41	48		52		
	Numbe	longi	tudinal	line	4		4		4		
	of	transverse		row	4		4 •			4	
	piles	all piles		each		16		16		16	
	Condition of load				Usually	Earthquake	Usually	Earthquake		Earthquake	
Fixed pier	nal	Reaction of pile	q _{v max}	t/p	1596	2818	1596	2957	1596	3044	
	udi		q _{v min}	11	1596	238	1596	99	1596	12	
	Longitudinal		чн	11	. 0	290	0	290	0	290	
	Lon	Deflec pile h	tion of lead	mm	0	203	0	307	σ,	386	
	ansverse	Reaction of pile	q _{v max}	t/p	1738	2556	1772	2695	1795	2783	
			4v min	11	1454	500	1420	361	1397	273	
			₫ <mark>Ħ</mark>	11	18	227	18	227	18	227	
	Tra	Deflection of pile head		mm	38	188	63	291	83	371	
	Bend	Bending moment				6630		7674		8324	
	Max.	stress	of pile	Kg/cm ²		2245		2542		2727	
Movable pier	Numb	er longi	tudinal	line		3	***	4		4	
	of	1 .	verse	wor		4		4		4	
	pile	all piles		each		12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14		14	
		ition of	load	-		 		Earthquake			
	nal	tion ile	qv max	t/p	1742	2476	1620	2216	1620	2263	
	tudi	eact f pi	Qv min	#1 	1742	825	1620	869	. 1620	821	
	Longitudi	Re	dH	111	0	161	0	163	0	163	
		pile 1	ction of nead	mm	0	124	0	182	0	230	
	Transverse	Reaction of pile	q _{v max}	t/p	1882	2644	1787	2563	1808	2640	
			qv min	11	1601	657	1453	521	1432	444	
			qH	11	17	211	20	220	20	220	
		Defle pile	ction of nead	mm	38	179	65	283	86	361	
	Bend	Bending moment				7098		6782	and the second	7429	
	Max.	stress	of pile	Kg/cm ²		2303		2237		2419	

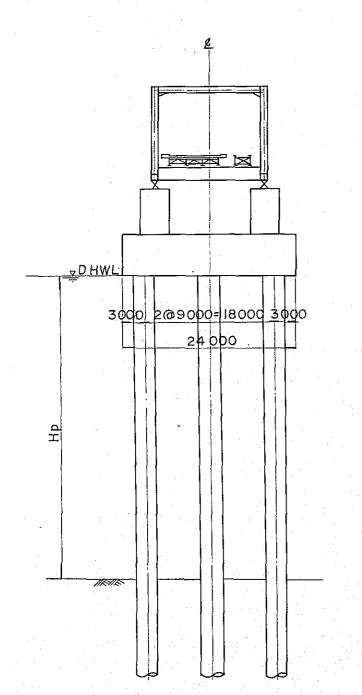
]	P• 83
					mable 1	V-13-1 Cas				
					THULE	v-13-1 ons	е в		\$ 4	
<u></u>	nen length							100		
	pan length		m		<u> </u>		= 100 = 2.0			
	hickness of pile			an ram				= 40		
		ng len		m		41	<u> </u>	48	Ī .	52
	Numbe	long	itudinal	line		4				
	of	transverse		row		7	impo	ssible	impo	ssible
	piles	all	piles	each		26		,		
		tion o	La sa	<u>-:</u>	Usually	Earthquake	Usually	Earthquake	Usually	Earthquak
	inal	eaction [pile	q _{v max}	t/p	-	<u> </u>				
:	tud	Reac of p	q _{v min}				-			
pier	Longitudinal	Defle	ction of	mm			!			
Fixed		pile 1	T	t/p						
E	rse	actio pile	qv max	1 7 P			-			
	ransverse	Rea(q _H	n		 	<u> </u>	<u> </u>		
	Tran		ction of	mm						
	Bendi	nding moment		tm/p						
	Max.	stress	of pile	Kg/cm ²						
	Numbe	long	itudinal	line		3		and the second		
	of piles	ب در مح دد	sverse	row		6	impo	ssible	impo	ssible
		all	piles	each		18	,, ,,			<u></u>
			f load	t/p	467	Earthquake 823	Usually	Earthquake	Usually	Earthquak
	lina	Reaction of pile	q _{v max}	11 ti	467	50				
ler	tuc	teac of 1	q _{v min}	11	0	52	 			
Mővable pier	Longitudinal		ction of	<u> </u>	0	200				
Svab			q _{v max}	t/p	542	778				
Ť	rse	cti pil	qv max	11	392	95				
	ISVE	Reaction of pile	q _H	- 0	5	63				100
	Transverse		ction of		98	303				
	Bendi	ng mom		tm/p		2165				
			of pile			2280				

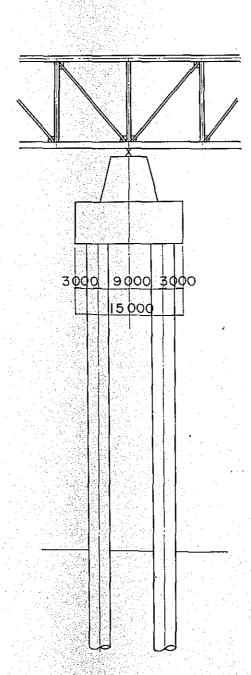
										84
٠	in the				Table V-	-13-2 Case	b •			
<u> </u>	1 1									
Spar	ı leng	gth		m			L	= 250		
Diag	neter	of pile	•	m			φ	= 2.0		
Thi	knes	s of pil	Le	mm			t	= 40		
Out	utstanding length			m		41		48		52
	Numbe	long	itudinal	line		6		6		7
2.	of	trans	sverse	row		8	1 1111	10		12
	pile	all j	piles	each		48		60		84
	Condition of load				Usually	Earthquake	Usually	Earthquake	Usually	Earthqu
	nal	ion le	q _{v max}	t/p	447	834	385	771	321	64.
	udi	Reactic of pile	qv min	**************************************	447	14	385	-39	321	-18
er	Longitudinal		ЧН	lt .	0	88	0	79	0	73
ed pi	Гоп	pile l	ction of nead	mm	0	296	0	413	0	479
Fixed	a	ion le	q _{v max}	t/p	502	688	441	594	375	49
	Transverse	action pile	qv min	11	391	159	328	138	267	12
1	nsu	Re	qH	11	4	63	3	56	3	50
	Tra	Defle	ction of head	mm	94	300	157	447	209	541
		ing mom		tm/p		2050		2283		249.
	Max.		of pile	Kg/cm ²		2182		2287		243
	Numb	er	itudinal	line		5		6		7
	of pile		sverse	row		8		9 54		84
	0 4		piles	each	Usually	40 Earthquake			II	
	cond	ition o		t/p	508	751	412	628	321	52
	lina	otic	q _v max	6/ P	508	212	412	156	321	98
ier	ituc	Reactic of pile	qv min	11	0	53	0	48	0	49
Movable pier	Longitudin		ction of	mm	0	193	0	273	0	350
DVB			q _{v max}	t/p	564	766	475	654	375	49
*	ransverse	Reaction of pile	qv min	n	453	196	349	130	267	125
-	ISVE	Reg	q _H	. (1	4	68	4	59	3	50
	Trai		ction of	thum	94	315	159	462	209	548
	Bend	ing mom	ent	tm/p		2024	4111444	2204		249
1	Max.	stress	of pile	Kg/cm ²		2130		2243		243

					Table V	-13-3 Case	b			
Spar	n len	yth		m			L	= 150		
	ameter of pile m						····	= 2.0	11.5	
Phi	cknes	s of pil	е	mm		- : 	 	= 40		
Out	tstanding length			m		41		48		52
	Numb	longi	tudinal	line		6	1	6		6
	of	trans	verse	row	V -	7		9		9
.*	pile	s all p	iles	each		42		50		54
. :	Cond	ition of	load	-	Usually	Earthquake	Usually	Earthquake	Usually	Earthquake
	la1	action pile	q _{v max}	t/p	437	863	416	834	385	833
	l di	Reactic	q _{v min}	It ·	437	-28	416	-35	385	-93
er	Longitudinal		HP	tt	0	97	0	93	0	86
d pier	Lon	Deflect pile h	tion of	mm	0.	322	0	476	O	565
Fixed		i on le	q _{v max}	t/p	501	705	476	643	457	639
)	erse	Reactic	qv min	. 11	373	130	356	157	313	101
	%	Re of	$q_{\mathbf{H}}$	11	5	. 64	4	62	4	57
	Trans	Deflec pile l	tion of	mm	96	302	160	472	215	589
şò	Bend	ing mome	ent	tm/p		1908		2391		2639
	Max.	stress	of pile	Kg/cm ²		2001		2405		2624
	Numb	er longi	tudinal	line		5		6		6
	of	trans	verse	row		7		9	·	9
	pile	s all p	oiles	each		33	3.1	50		54
		ition of		-	Usually	Earthquake	Usually	Earthquake		
	nal	ion le	qv max	.t/p	434	645	416	637	385	627
h	udi	Reactic of pile	Qv min	11	434	174	416	163	385	114
pier	Longitudin		dН	U .	0	50	0	55	0	51
Movable	Lon	pile	ction of nead	nm	0	183	0	301	0	362
Mov	8	ion le	q _{v max}	t/p	496	690	476	643	457	639
-	ers	Reaction of pile	Qv min	11 1	372	129	356	157	313	101
	ransverse	Re of	дН	н	- 5	63	4	62	4	57
	Tra	Deflect pile	ction of nead	mm	97	301	160	472	215	589
	Bend	ing mome	ent	tm/p		1949		2391		2639
			of pile			2012		2404		2624

						Table V	7-13-4 Cas	e b			
par	pan length			TI)			L	= 350			
ian	neter	of	pile		m			φ	= 2.0		
hic	kness	s of	pil	е	mm			t	= 40	A s	
uts	tand	ing	leng	th	m		41		48		52
	Numbe	r 1	ongi	tudinal	line		7		8		8
	of	1	transverse		row		12		12		15
	piles	٤		iles	each	<u> </u>	84		96		20
	Ь		n of	load		Usually	Earthquake	Usually	Earthquake	Usually	Earthquake
	nal	î on	e F	qv max	t/p	425	762	389	696	287	539
1.1	l di	ದ	pil	q _{v min}	. II .	425	53	389	53	287	23
Fixed pier Transverse Longifudinal			дн	11	0	88	0	80	0	64	
	pile l		tion of lead	mm	0	293	0	415	0	435	
	ion	pile	$q_{ m v}$ max	t/p	461	583	436	570	330	423	
	Reaction		qv min	11	389	232	343	179	245	133	
٠,	nsv		σţ	d ^H	1)	3	60	. 3	57	2	46
	L De		Deflection of pile head		חנות	90	289	155	450	206	527
	Bend	ing	mome	nt	tm/p		2047	· ·	2197		2411
	Max.	sti	ess	of pile	Kg/cm ²		2149		2254		2328
	Numb	er []	ongi	tudinal	line		7		8		8
	of		rens	verse	row		10		12		15
	pile.	S	11 I	oiles	each		70		96	 	.20
:	Cond			load	_	Usually	Earthquake	Usually	Earthquake	Usually	Earthquake
	nal	ion.	of pile	q _{v max}	t/p	363	544	307	468	287	466
Ħ,	nd i	act	r p	qv min	it .	363	152	307	130	287	95
prer	Longitudinal			ЧP	. #	0	46	0	47	0	48
Movable	Lor	p:	ile i	tion of nead	TIUM	0	261	. 0	265	0	345
_ <u>ដ</u>	noi	.1e	q _{v max}	t/p	420	570	354	466	330	423	
	act	of pile	Qv min	11	307	125	261	132	245	138	
	nsve			q _H	H .	.3	55	3	49	2	46
:	Tra		eflec Le h	tion of nead	mm	158	442	155	417	206	527
	Bend				tm/p		2097		2154		2411
	Max.	st	ress	of pile	Kg/cm ²		2111		2118		2328

					Table	V-13-5 Cas	e b			
	pan length						L	= 100		
iar	iameter of pile			m			φ	= 3.0		
hi	nickness of pile			mm		en in 1 de la composition della t	= 60			
ut	standi	ng leng	gth	m		41		48		52
	Numbe	'I'	tudinal	line		3		3		3
	of piles			row		2		3		3
		HIII]		each		6		8		9
		tion o		-	Usually	Earthquake	Usually	Earthquake	Usually	
	l na l	tion ile	q _{v max}	t/p	1042	2186	1067	2324	948	2301
Fixed pier	indi	Reactic of pile	qv min	"	1042	-221	1067	-327	948	-526
	lgi		dH	, tt	0	228	0	243	0	216
	Loi	pile l	ction of nead	mm	0	170	0	271	О	310
	0	lon le	q _{v max}	t/p	1172	1618	1256	1921	1178	1911
	ransverse	pil	q _y min	11	912	347	878	75	719	-137
	nsv	R of	dH	n	23	174	17	157	15	139
Trai		Deflec pile l	tion of read	mm	42	155	64	229	82	274
	Bendi	ng mome	ent	tm/p		5206		6430		6242
	Max.	stress	of pile	Kg/cm ²		1758		2101		2048
•	Numbe	long	itudinal	line		3		3		
, i e	of	trans	sverse	row		3	3			
	piles	all	oiles	each		5		5		
	<u> </u>	tion of	load		 	Earthquake		Earthquake	Usually	Earthquake
1	nal	si on	qv max	t/p	1596	2486	1251	1881	1279	2138
H		Reacti of pil	Qv min	11	1596	564	1251	478	1279	236
pier	Longitudi		dH	11	0	260	0	155	0	118
Movable	Lor	pile l	ction of nead	mun	0	186	; O;	179	0	207
Mov	0	ion le	q _{v. max}	t/p	1773	2674	1467	2237	1504	2380
E	ers	Reaction of pile	qv min	II.	1419	375	1035	121	1053	-6
	ransverse	Re	q _H	111111111111111111111111111111111111111	28	278	28	209	14	163
	Tra	Deflect pile	tion of nead	mm	45	226	74	279	81	304
Bending moment			ent	tm/p		6948		6427		5773


					Table V	-13-6 Case	b			
									etiana Augusta	
Spar	n len	gth		m			L	= 150	·	
		of pile		m			φ	= 3.0	<u> </u>	
		s of pil		mm			t	= 60		
Out.	stand	ing leng		m		41	75 a. n. 147	48	 	52
	Numb	6 T.	itudinal	line		4		4	 	4
5.	of nile		everse	row				3		4
:	piles all piles			each		12		12	ļ	14
	Condition of load					Earthquake				Earthquake
	ina	Reaction of pile	q _{v max}	t/p	1203	2514	1203	2655	898	1832
	Longi tudinal	eac f pi	Qv min	"	1203	-201	1203	-342	898	-88
Fixed pier	ngi		tion of		0	294	0	294	0	218
	Lor	pile l		mm	0	206	0	311	0	293
	يو ا	ion le	q _{v max}	t/p	1403	2281	1-148	2438	1100	1811
	ransverse	acti	Qv min	"	1002	33	957	-1	700	-67
	nsv	Re	q_{H}	. 11	24	199	24	199	18	167
	Tra	Deflect pile	tion of	лып	43	178	71	275	84	298
	Bend	ing mome	ent	tm/p		6718		2776		1439
	Max.	Max. stress of pile				2211		2511		2012
	Numb	erlongi	tudinal	line		2		2		3
	of	L	verse	row		4		4		4
:.	pire	all j	piles	each	}	8		8	<u> </u>	10
		ition of	load			Earthquake		Earthquake	Usually	Earthquake
	Longitudinal	Reaction of pile	q _{v max}	t/p	1581	2633	1581	2775	1443	2259
ĭ	tud j	sac1	Qv min	11	1581	391	1581	250	1443	518
pier	ngi	8 75 6 75	dH	. 11	0	171	0	171	0	173
Movable	2	Dile l	ction of read	mm	0	150	0	226	0	249
Mov	.	ion le	q _{v max}	t/p	1718	2521	1751	2652	1625	2446
	ers	Reaction of pile	qv min	19	1444	503	1411	372	1261	330
	Transverse		ЧH	11	16	211	16	211	21	220
	Tra	Defle pile l	ction of nead	ntm	37	178	61	276	86	360
		ing mome		tm/p		6886		6718		7425
	Max.	stress	of pile	Kg/cm ²		2277		2260		2382


										P. 89
٠. :	1.									
					Table V	7-13-7 Case	: Ъ			
		<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							- 34.5
Spar	len	gth		m		· .	L	= 250	· · ·	
Diar	meter	of pile	3	m			φ :	= 3.0	<u> </u>	
Thic	knes	s of pi	le	mm			t	= 60		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Out	utstanding length			m		41		48		52
	Number longitudinal			line		4	4.3	4		4
	of	I	sverse	row		4		4		4
	pile	condition of load		each		14		16		16
			fload			 		Earthquake	 	
•	nai	ion le	q _{v max}	t/p	1551	2693	1357	2610	1357.	2690
	udi	acti pil	qv min	"	1551	253	1357	-32	1357	-112
er	Longitudinal	Rea	dH		0	301	0	263	0	263
Fixed pier	Lon	Defle pile	ction of nead	mm	0	209	0	281	0	354
	6)	ion le	q _{v max}	t/p	1687	2426	1533	2361	1556	2443
	ers(Reaction of pile	dv min	- 51	1416	520	1181	217	1159	135
	DSV	Re of	q _H	н	20	232	18	203	18	203
	Transverse	Defle pile	ction of head	iņn	40	191	63	268	83	342
	Bend	ing mom	ent	tm/p		6886		7014		7612
	Max.	stress	of pile	Kg/cm ²	2288			2306		2476
	Numb	er long	itudinal	line		3		3		<u></u>
	1	of transverse		row	ļ	4		4		4
٠.,	pile	s all	piles	cach		12		12	<u> </u>	14
		ition o	f load			Earthquake				
-	nal	10 E	Qv max	t/p	1611	2427	1661	2533	1357	2021
ř	,ud j	Reaction of pile	qv min	11	1611	713	1661	607	1357	557
pier	Longitudinal		dН	H	0	165	0	165	0	146
ble	1 2	Defle pile	ction of head	min	0	127	0	193	0	211
Movable			da wax	t/p	1802	2634	1835	2772	1556	2433
Z	135	Reaction of pile	Qv min	11	1521	506	1487	369	1159	135
	ISTE	Reg	дН	ii .	17	225	17	225	18	203
	Transverse		ction of	nun	38	187	62	289	83	342
	Bend	ing mom		tm/p		6886		7612		6944
			of pile			2238		2446		2256
<u> </u>				' 	<u> </u>	 			•	

. • •					Table	V-13-8 Cas	se b		P.	<u>90 </u>	
	* .								, x = 3		
Sner	n leng	7th		m	L = 350						
		of pile	,	m				= 3.0			
		s of pil		mm ·				= 60			
		ing leng		m		41		48		52	
		1.0000	tudinal	line	1 7 V.	4		4		4	
0:	of	iner		row		6	4.	6		6	
	pile	s all r	piles	each		22		22		24	
	Cond:	ition of	load		Usually	Earthquake	Usually	Earthquake	Usually	Earthquake	
	181	uo e	4v max	t/p	1746	2442	1746	2544	1541	2324	
Fixed pier	dir	action pile	q _{v min}	11	1746	670	1746	568	1541	411	
	zi tı	Reg	дн	11	0	222	0	222	0	182	
	Juor	Deflect pile l	tion of read	mm	0	158	O	239	0	255	
		i on Le	q _{v max}	t/p	1830	2238	1851	2327	1667	2163	
	erse	actio pile	q _{v min}	11	1660	875	1641	785	1415	570	
	usv.	Reg	q _H	n	13	219	- 13	219	12	187	
	Tra	Deflec pile l	tion of read	mm	34	178	57	275	75	315	
٠.	Bend	ing momo	ent	tm/p		5790		6809		6592	
	Max.	stress	of pile	Kg/cm ²		1919		2200		2113	
	Numbe	er longi	tudinal	line		4		4		4	
	of pile:	1.	verse	row		6		6		6	
		lail I	all piles			22		22		24	
		ition of	load	· <u>-</u>		Earthquake		 		 	
	inal	tion	q _{v max}	t/p	1746	2220	1746	2362	1600	2218	
er.	tud	Reac of p	Qv min	"	1746	892	1746	750	1600	635	
pier	Longitud	. <u></u>	qH	11	0	174	0	174	0	160	
Movable	Lo	pile l	ction of head	min	0	127	0	180	0	227	
Move	a a	ion 1e	qv max	t/p	1830	2238	1851	2327	1726	2260	
	ers	Reaction of pile	qv min	11	1662	875	1641	785	1475	593	
	ransverse		q _H	11 .	13	219	13	219	12	201	
	Tran	Defle pile	ction of head	mm	34	178	57	275	75	331	
	Bend	ing mom	ent	tm/p		5790		6809	9.43 (8)	6956	
	Max.	stress	of pile	Kg/cm ²		1919		2200		2225	

Fig. ∇ - 15 - 1 Outline of structure of multi-pile foundation \emptyset 3.0 $^{\text{th}}$

Case of bridge	Case a
Span Length	100 m
Condition of support	Fix (Mov)
Outstanding length	m m m 35.5,42.0 (46.0)
Outsiding length	35.5,42.0 (46.0

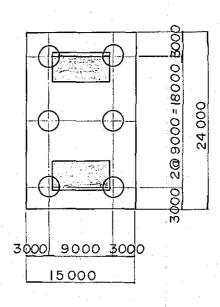
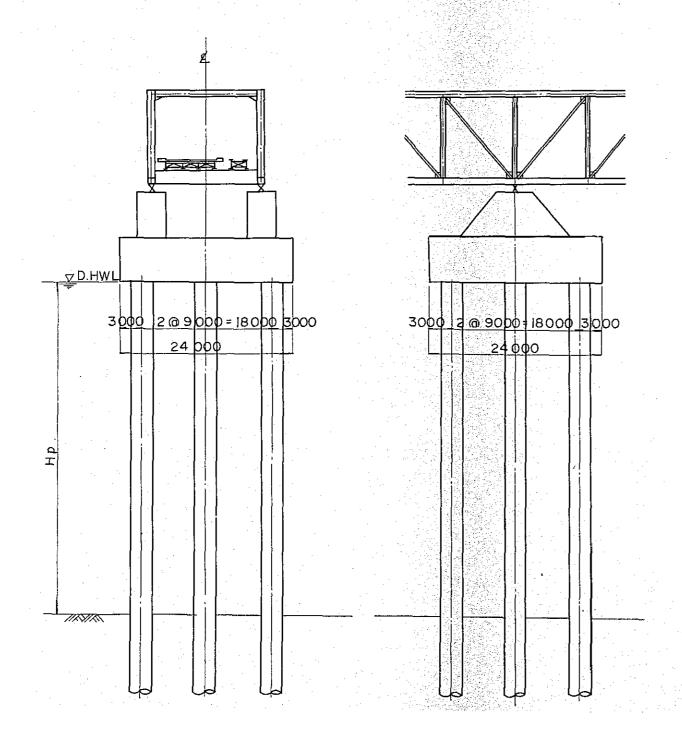



Fig. ∇-15-2 Outline of structure of multi-pile foundation ø3.0 m

Case of bridge	Case a
Span length	100m
Conditon of support	Fix
Outstanding length	46.0

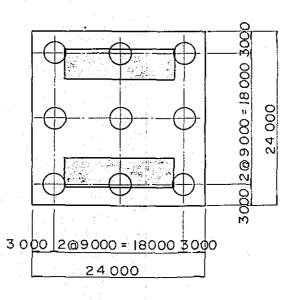
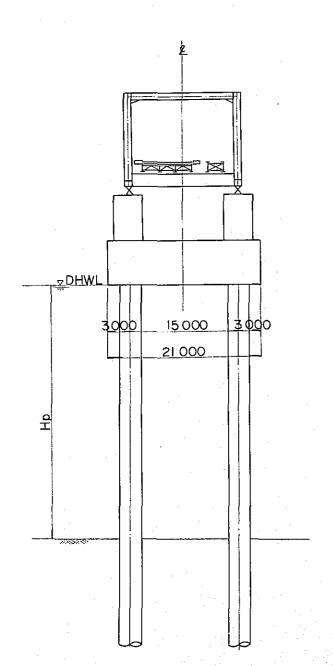
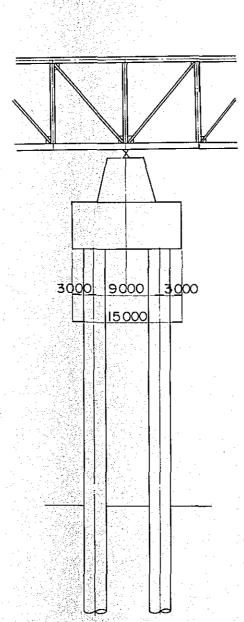




Fig. ∇ - 15 - 3 Outline of structure of multi-pile foundation ø 3.0 $^{\dot{m}}$

Case of length	Case a
Span length	100 m
Condintion of support	Mov
Outstanding length	m 35. 5

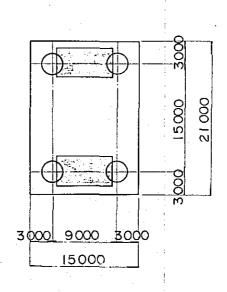
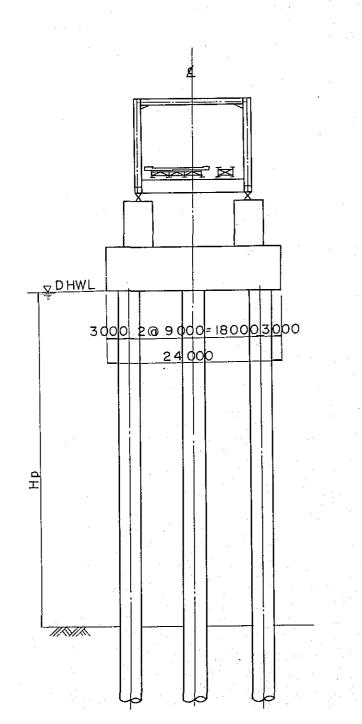
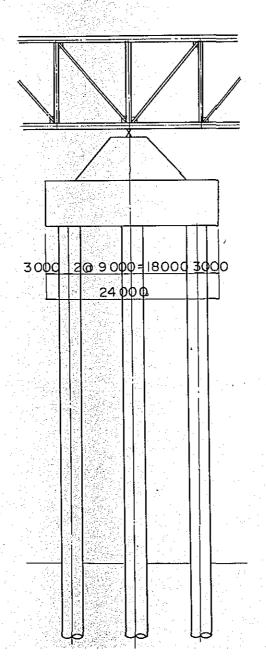




Fig. ∇-15-4 Outline of structure of multi-pile foundation Ø 3.0^m

Case of bridge	Case a
Span length	100 m
Condition of support	Mov
Outstanding length	m 42. 0
1 5 5	

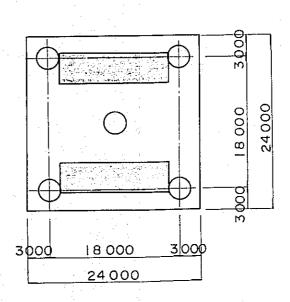
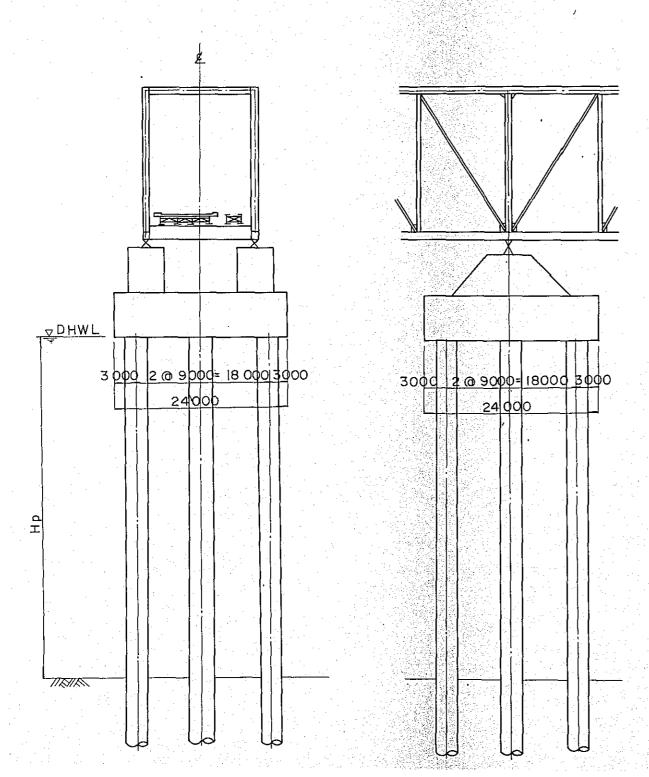



Fig. ∇-15-5 Outline of structure of multi-pile foundation ø 3.0 m

Case of bridge	Case a
Span length	150 ^m
Conditon of spport	Fix
Outstandin length	42.0 ^m , 460 ^m

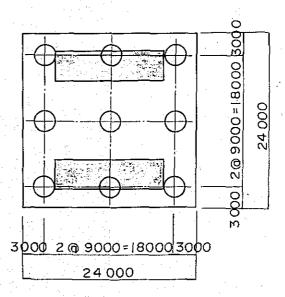
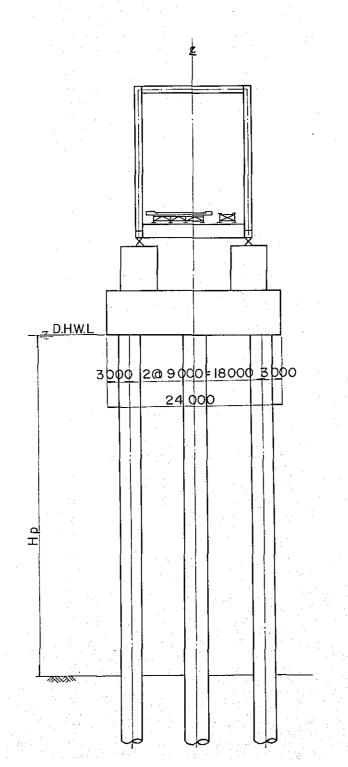
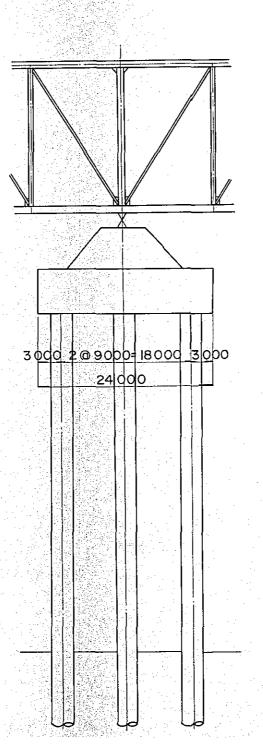




Fig. ∇-15-6 Outline of structure of multi-pile foundation ø 3.0 ^m

Case of bridge	Case a
Span length	150 m
Condition of support	Fix
Outstanding length	35.5 ^m

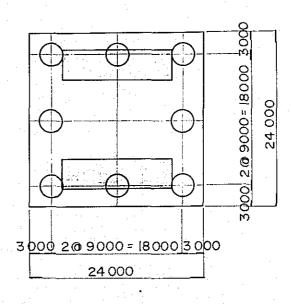
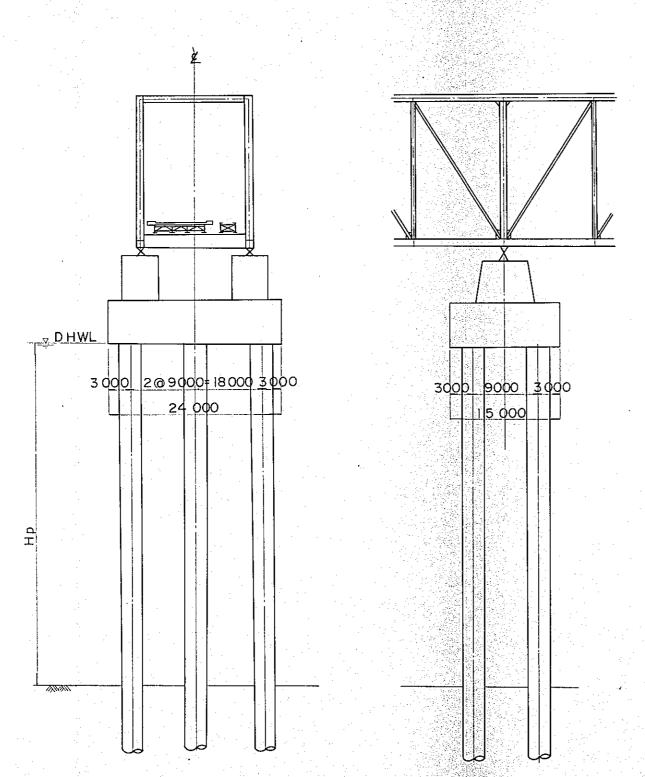



Fig. ∇ -15-7 Outline of structure of multi-pile foundation $_{\emptyset}$ 3.0 $^{\text{m}}$

Case of bridge	Case a
Span length	150 ^m
Condition of support	Mov
Outstanding length	m m 35.5, 42.0

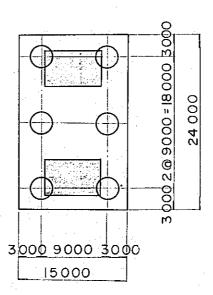
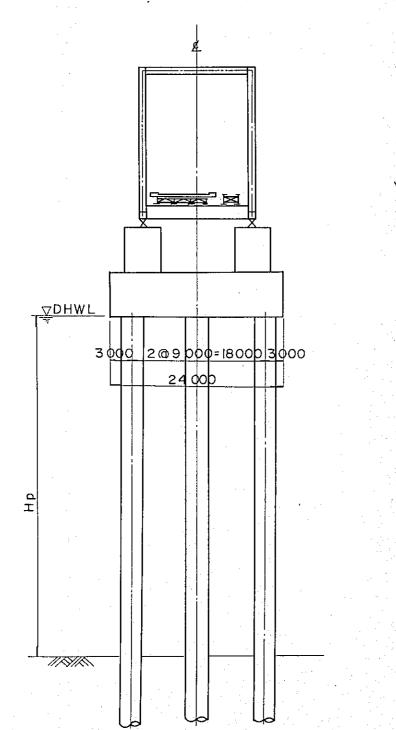
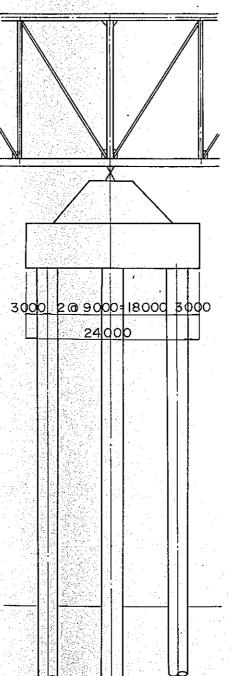




Fig.∇-15-8 Outline of structure of multi-pile foundation ø 3.0^m

	· · · · · · · · · · · · · · · · · · ·		
Case of bridge	Case a		
Span length	150 ^m		
Condition of support	Mov		
Outstanding length	46.0 ^m		

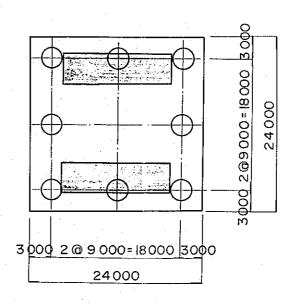
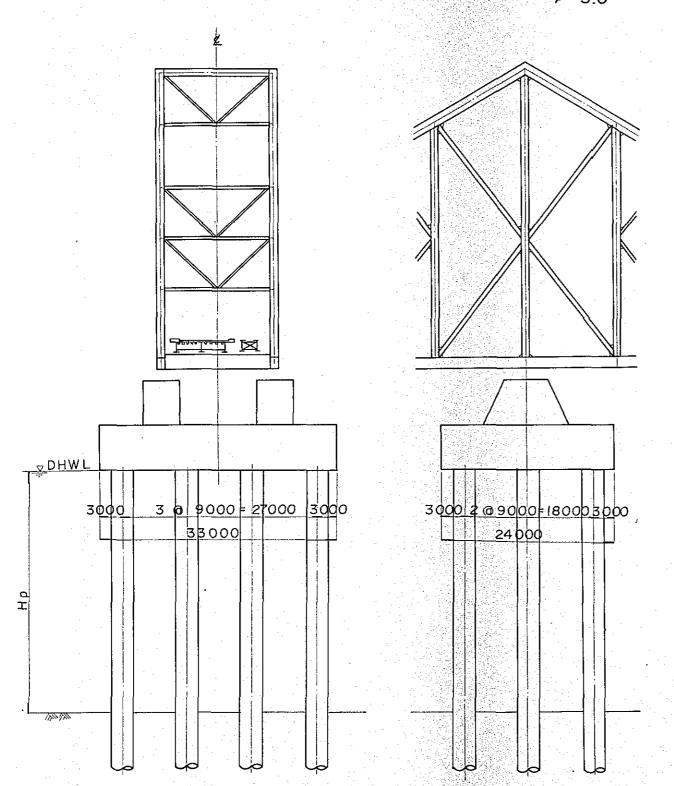



Fig. ∇ -15-9 Outline of structure of multi-pile foundation \emptyset 3.0 $^{\rm m}$

Case of bridge	Case a			
Span length	250 ^m			
Conditon of support	Fix (Mov)			
Outstanding length	35.5 (46.0)			

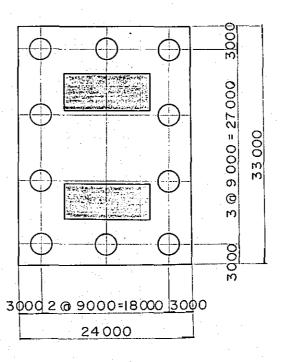
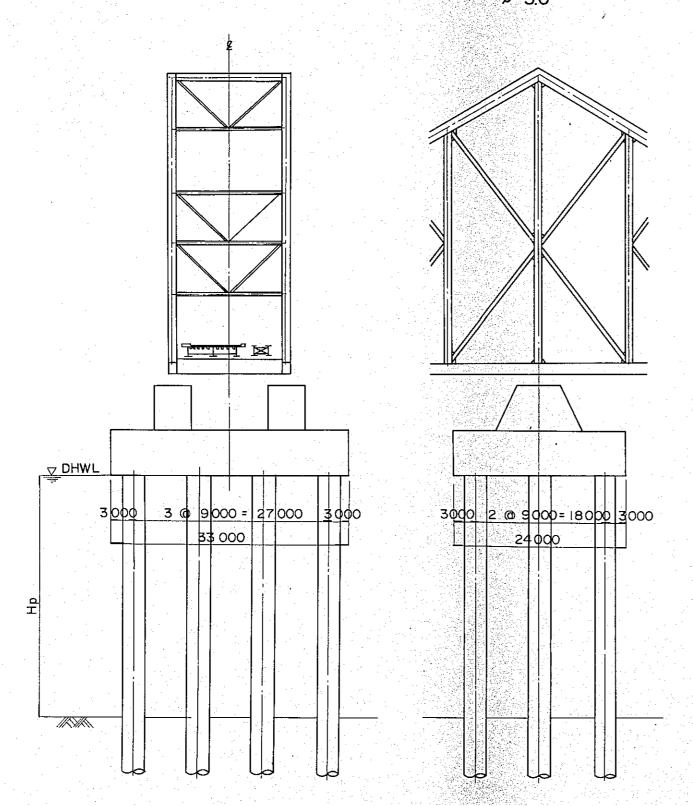
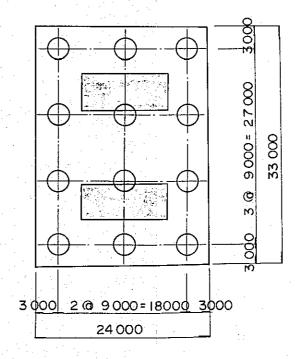
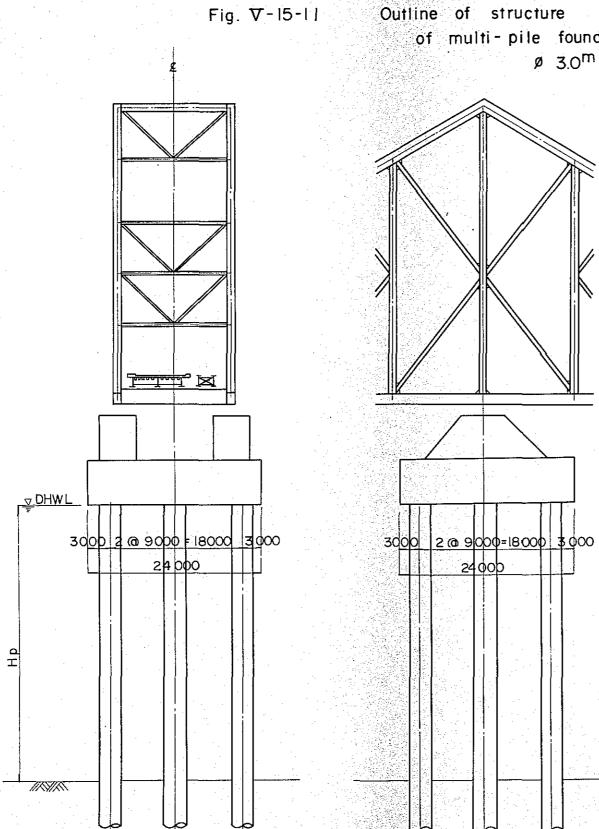





Fig. ∇-15-10 Outline of structure of multi-pile foundation ø 3.0 ^m

	<u> </u>		
Case of length	Case a		
Span length	250 ^m		
Condition of support	Fix		
Outstanding length	m m 42.0 46.0		

of multi-pile foundation ø 3.0^m

Case of bridge	Case a
Span length	250 ^m
Condition of support	Mov
Outstanding length	m m 35.5, 42.0

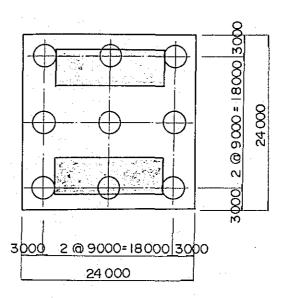
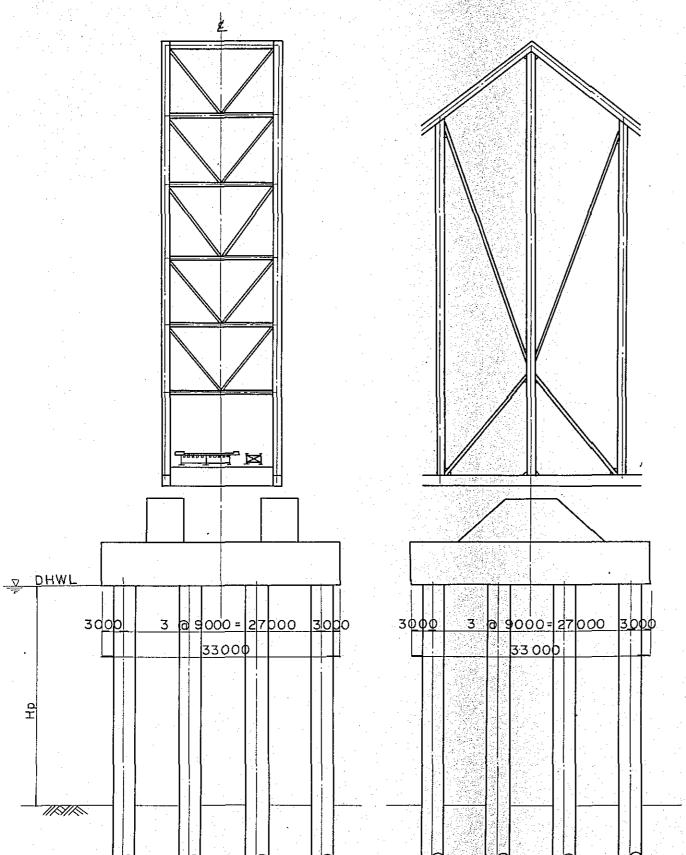



Fig ∇ -|5-|2 Outline of structure of multi-pile-foundation ø 3.0 m

Case of bridge	Case a
Span length	350 ^m
Condition of support	Fix
Outstanding length	355,420,46.0

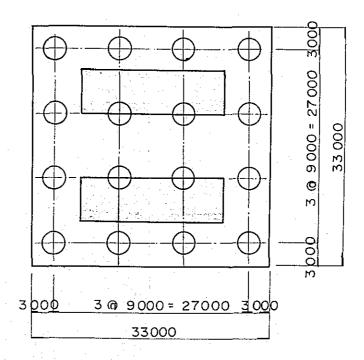


Fig.V-l5-l3 Outline of structure of multipile foundation ø 3.0 m

Case of bridge	Case a
Span length	350 ^m
Condition of support	Mov
Outstanding length	35. ^m 5

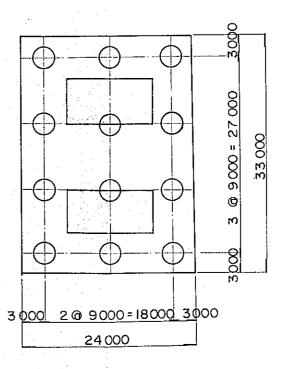
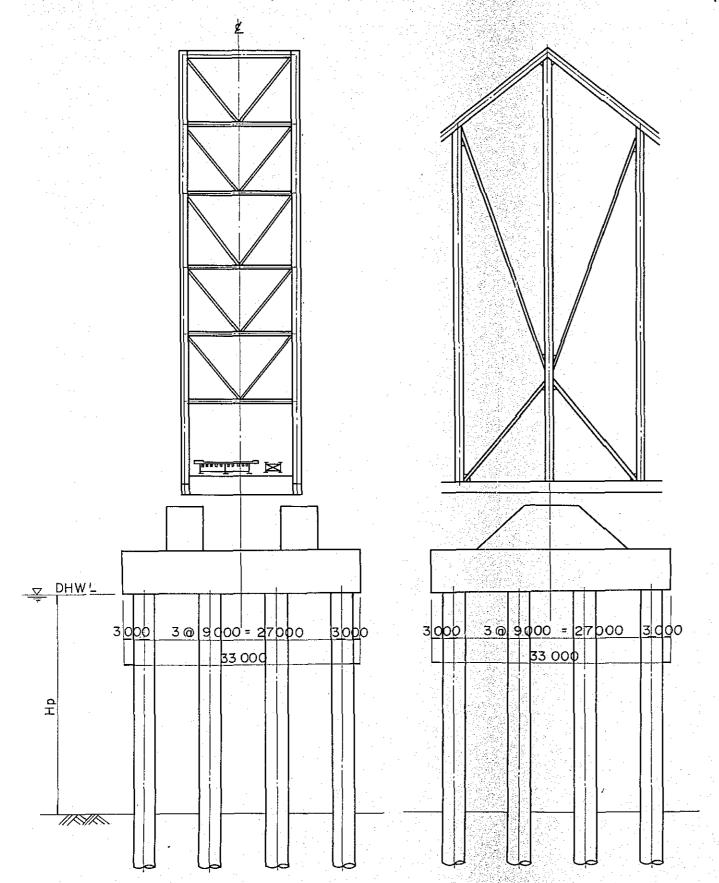
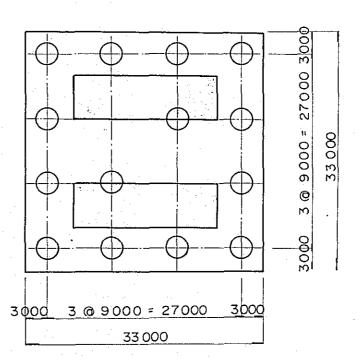




Fig. ∇ -15-14 Outline of structure of multi-pile foundation

Case of bridge	Case a	
Span length	350 m	
Condition of support	Mov	
Outstanding length	m m 42.0, 46.0	

4. Approaches.

4-1. Embankment.

The length of embankment in approaches is affected by the longitudinal slope of the railway. Because of the design height of formation level of railway for the Jamuna River Bridge is about 90 ft above the DHWL, embankment of about 2.2 miles of length will be required, provided that the longitudinal slope of railway is 1/200. In the Kadir part of embankment, closing dyke was constructed to dam up the river water as shown in the Report of River Training Works. In the land part of embankment, it was constructed from existing ground level to the DHWL by the same method as closing dyke.

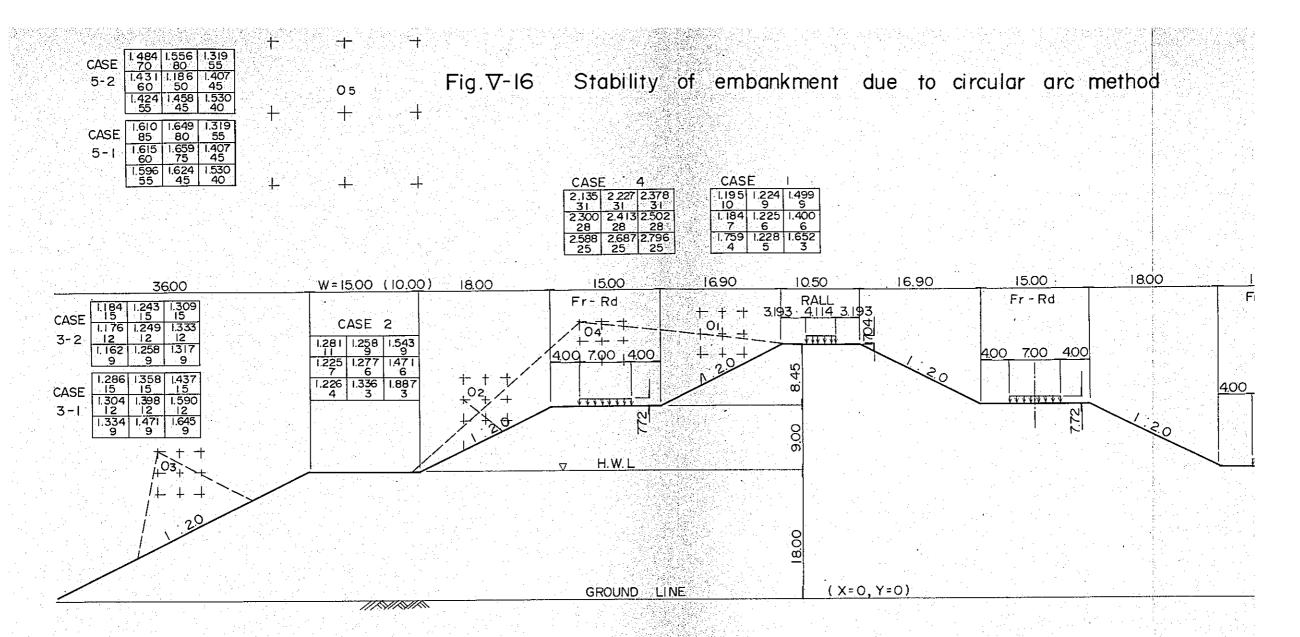
The formation level of closing dyke is the same height of the DHWL and the banking embankment of approaches is constructed on the closing dyke. Good earth with satisfactory physical properties will be required for this embankment. Main values of them are as follows.

- a. Unit weight (Υ_e): 1.9 t/m³ (119 lbs/eft)
- b. Angle of internal

friction (ϕ) : 30°

c. Cohesion (c) : 0

With the consideration of the surcharge on embankment due to railway and highway, stability calculation by circular arc method was performed under the condition of slope gradient 1:2. The result of calculation showed the satisfactory stabilization for the slope. The result of calculations is shown in Fig. V-16. But at the present state, the slope gradient was designed to take 1:2.5, for the consideration of more safety.


Though partly elevated bridge is considered instead of high embankment, embankment was applied to the approaches by the reason of more economical. By results of above-mentioned, the general earth work drawings were prepared to show Case a in Fig. V-17 and Case b in Fig. V-18.

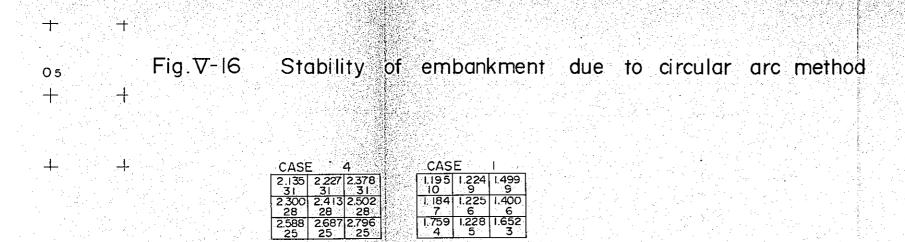
4-2. Elevated part.

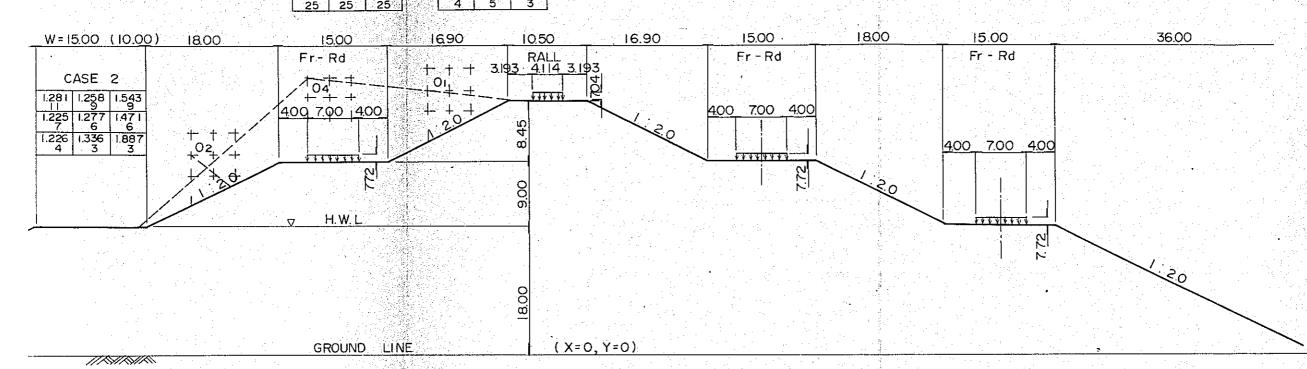
In Case b which is double tracks in railway part and four lanes carriageway in highway part, the Jamuna River Bridge has a double deck type and railway run through the lower part and vehicles run the upper part of the bridge. In highway running the upper part a elevated bridge is needed for

leveling down to a level of embankment at approaches.

In this case, steel continuous box girder will be applied as a type of elevated bridge. As for a composition of standard spans at the elevated bridge, 30 60^m was assumed for the minimum construction cost and considerations of the deviation from center line of the railway. But at the highway part, steel piers of portal rigid frame type were applied where the highway part overlaps with railway part.

The same meterial were used for each larger of embankment, and their physical properties are as follows:


Unit weight $\gamma = 1.9 \text{ }^{\text{t}}/\text{m}^3$ Cohesion c = 0Internal friction angle $\emptyset = 3.0^{\circ}$ Unit weight in water $\gamma' = 0.9 \text{ }^{\text{t}}/\text{m}^3$


The unit weight in water (γ) was used for soil under H.W.L.

Surcharge
RAIL 2.04 I [†]/m² - 1.074 m

ROAD 1.46 7 [†]/m² - 0.772 m

	Cyl	indical	surface	
CASE	Co-Ordinate of centre of circle	Distance btw.	Height of bottom	ΔR
	(X, Y) -14,37	3 M	+ 22	l m
2	-46,28	3	+ 13	
3 - 1	-88,18	3	- 2	2
4	-30,36	3	+ 8	2
5 - I 5 - 2	-65,68	10 m	- 12	5

The same meterial were used for each larger of embankment, and their physical properties are as follows.

$$y = 1.9 \text{ t/m}^3$$

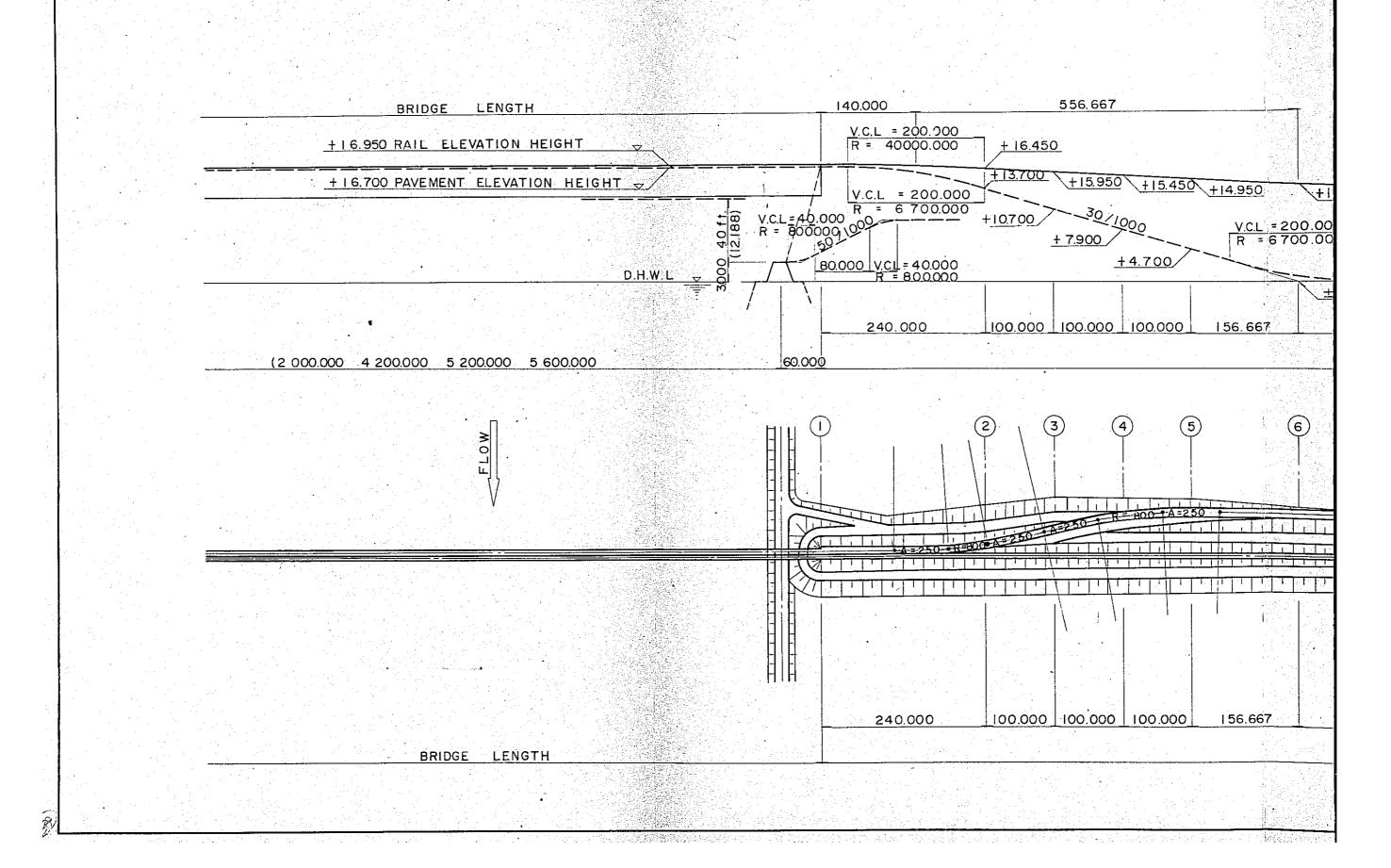
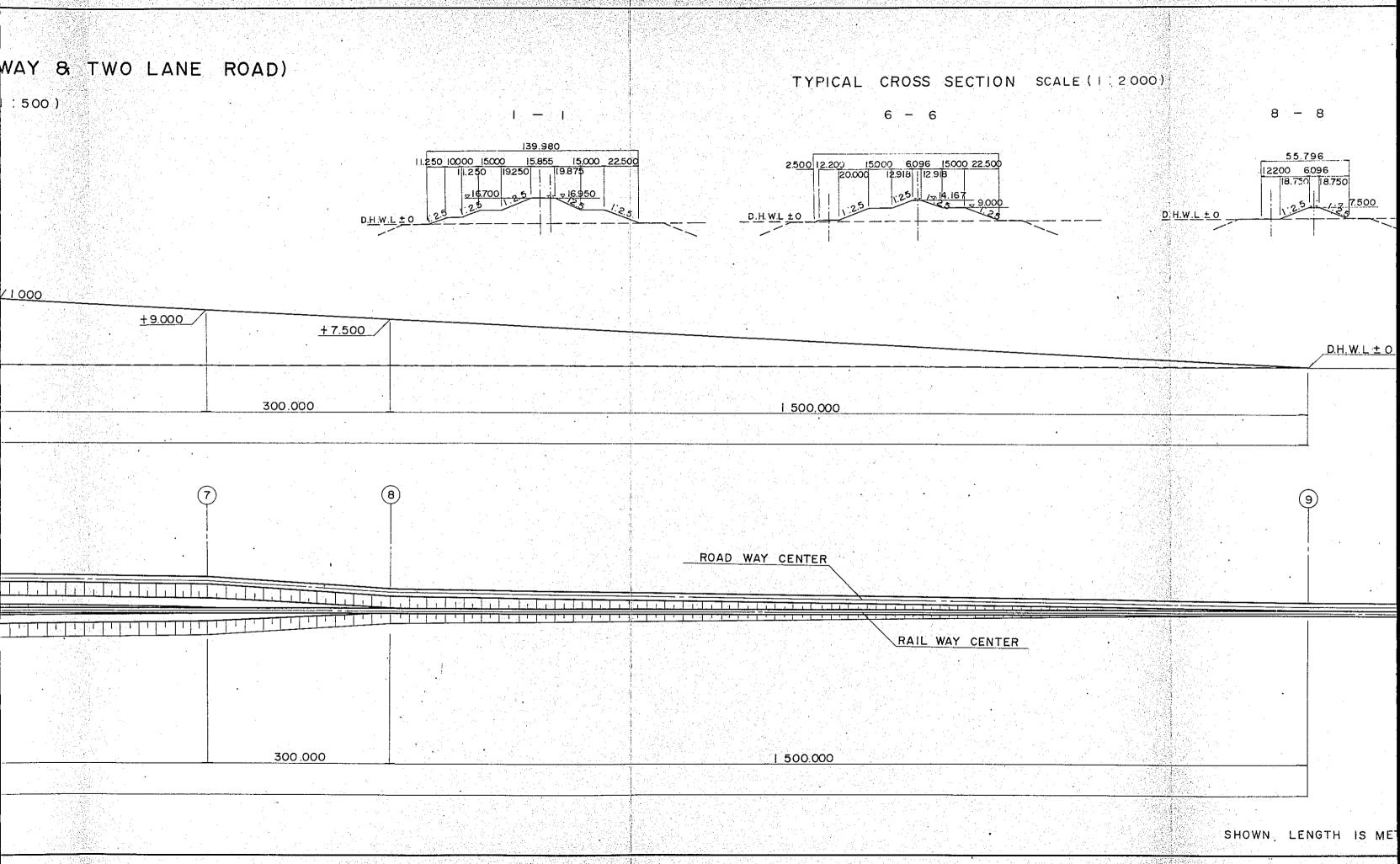
$$c = 0$$
on angle $\emptyset = 3.0^\circ$

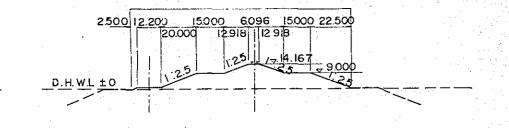
 $\gamma' = 0.9 \text{ }^{1}/\text{m}^{3}$

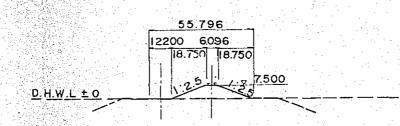
unit weight in water (γ) was used for soil under H.W.L.

	СуІ	indical	surface		
I OU OF	Co-Ordinate of centre of circle	Distance btw.	Height of bottom	ΔR	Remarks
1	(X, Y) -14,37	3 m	+ 22	l m	
2	-46,28	3	+ 13		
3 - 1					W = 15
3 - 2	-88,18	3	- [2	2	W.≠IO
4	-30,36	3	+ 8	2	No traffic load on high way
5 - 1		m			W = 15 Traffic load on rail and highway
5 - 2	-65,68	IO ^m	1 2	5	w = 10

Fig.V-17-1 JAMUNA RIVER BRIDGE
PROFILE


Fig. V-17-1 JAMUNA RIVER BRIDGE APPROACH (SINGLE TRACK RAILWAY & TWO LANE ROAD) PROFILE SCALE (HORIZONTAL 1: 5000 VERTICAL 1: 500.) 11.250 10000 15000 11.250 556,667 140.000 V.C.L = 200.000R = 40000.000 + 16.450 +13.700 +15.950 +15.450 +14.950 5.000 R = 6 700.000 +14.167 5/1000 V.C.L = 200.000 R = 6700.000 +9.000 + 7.900 + 7.500 +4.700 80.000 V.C.I. = 40.000 R = 80.000 _ ± 0 240,000 100.000 | 100.000 100.000 156.667 1 033.333 300.000 3.530.000 PLAN SCALE (1:5000)(6) (8) 240.000 100.000 | 100.000 | 100.000 156.667 1 033 333 300.000 3 530.000



TYPICAL CROSS SECTION SCALE (1, 2000)

6 - 6

8 - 8

(9)

D.H.W.L ± 0

ROAD WAY CENTER

RAIL WAY CENTER

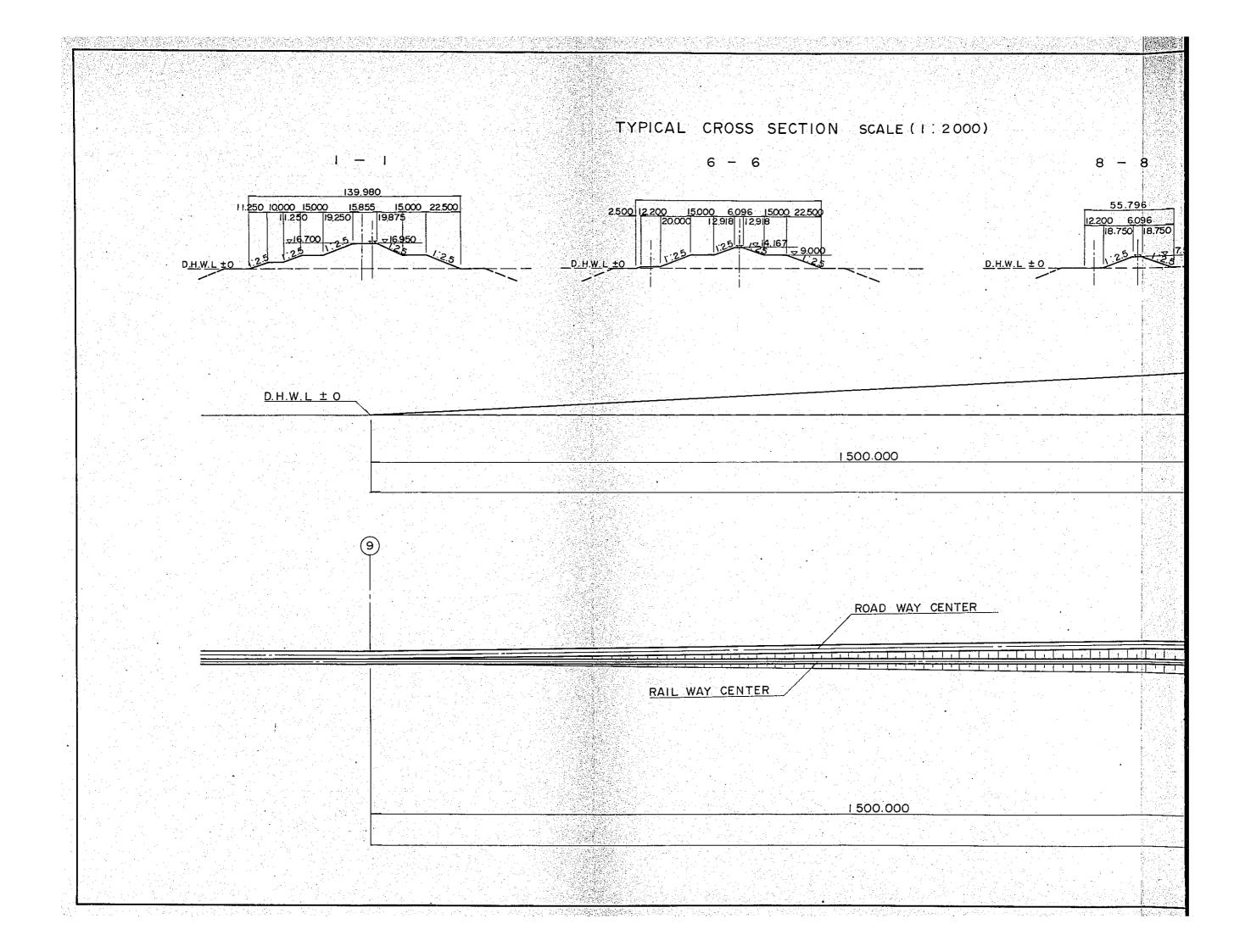
SHOWN LENGTH IS METER

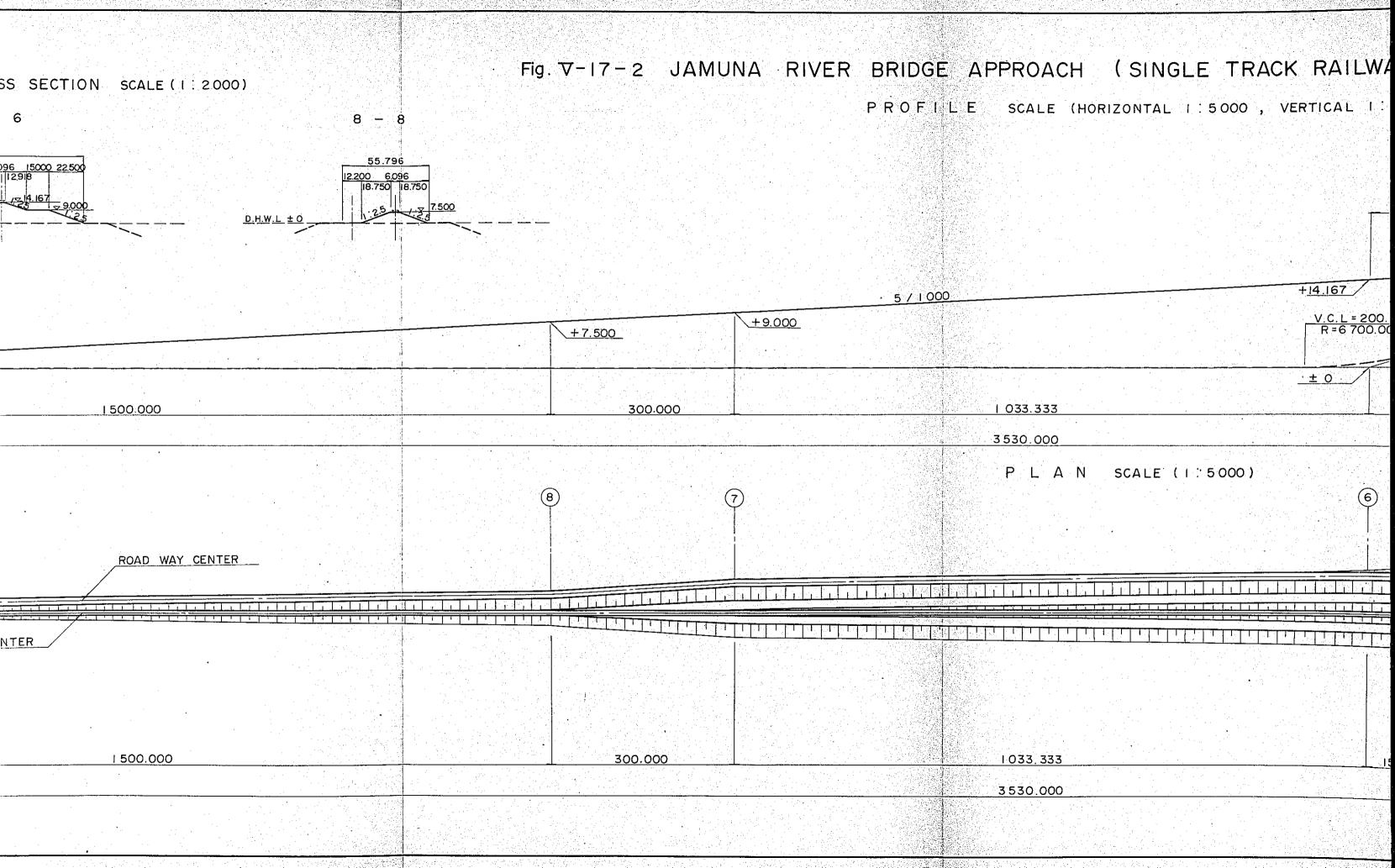
JAPAN INTERNATIONAL COOPERATION AGENCY

PEOPLE'S REPUBLIC OF BANGLADESH

JAMUNA RIVER BRIDGE PROJECT

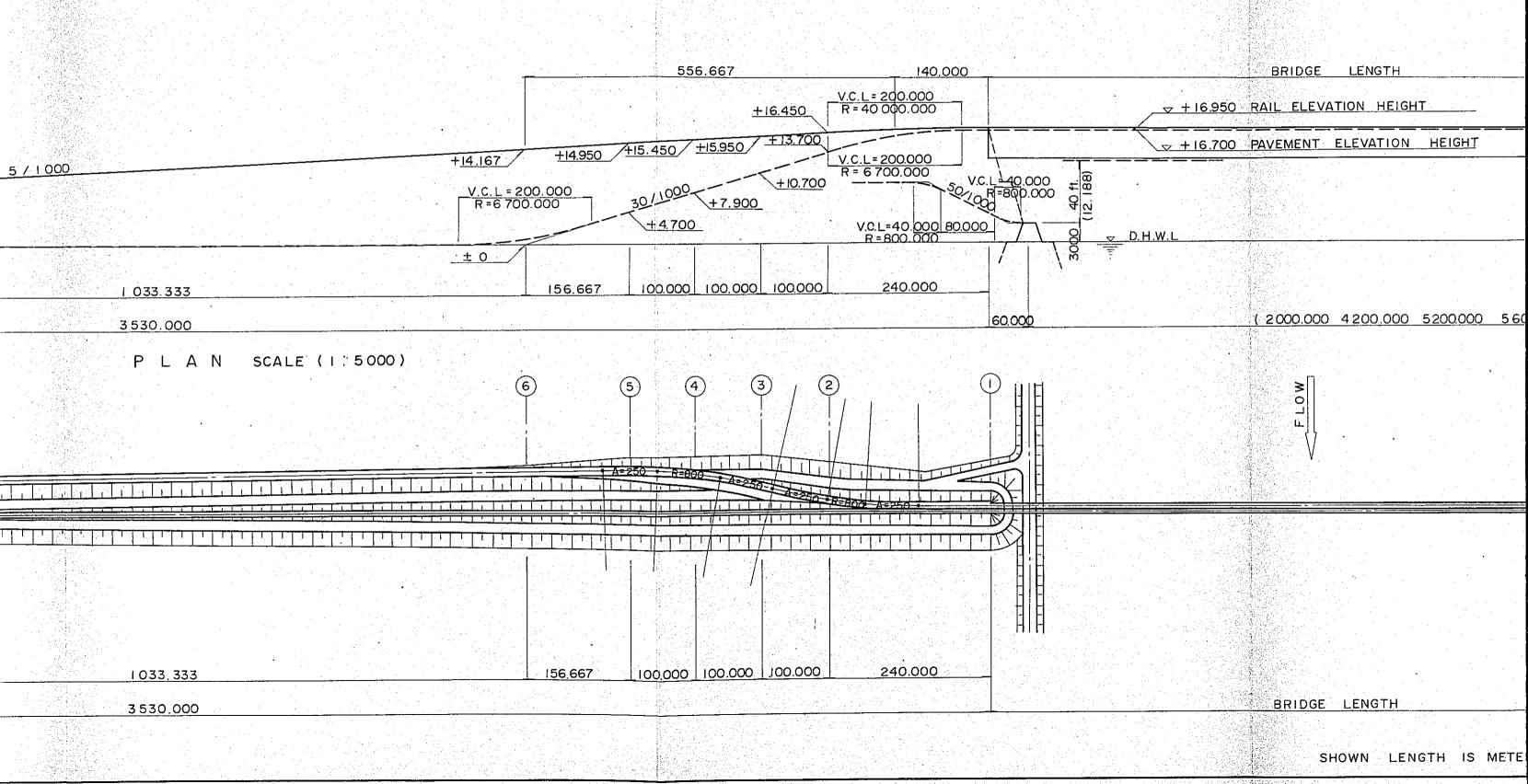
APPROACH ROAD OF LEFT BANK (SINGLE TRACK & TWO LANES)

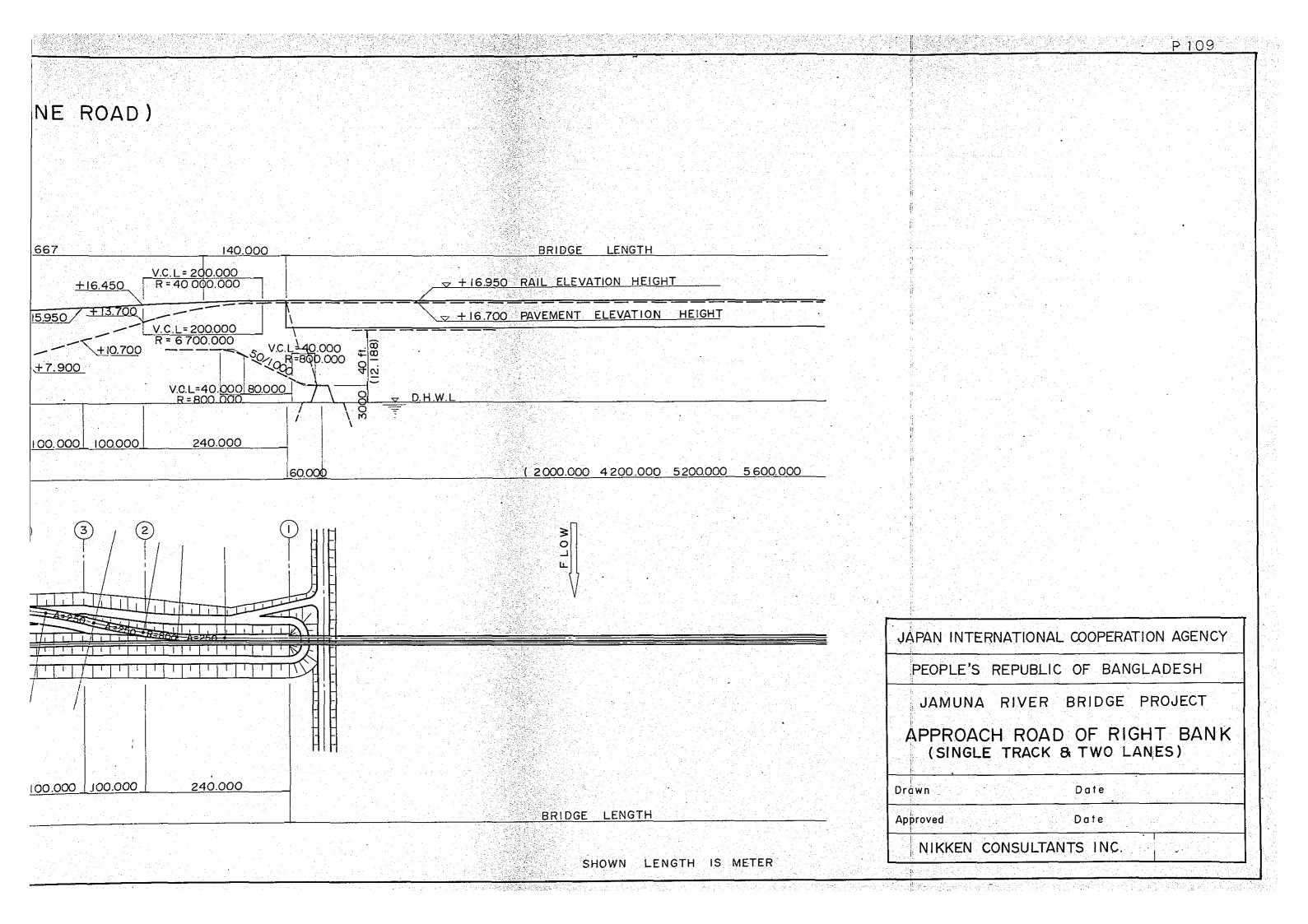

Drawn

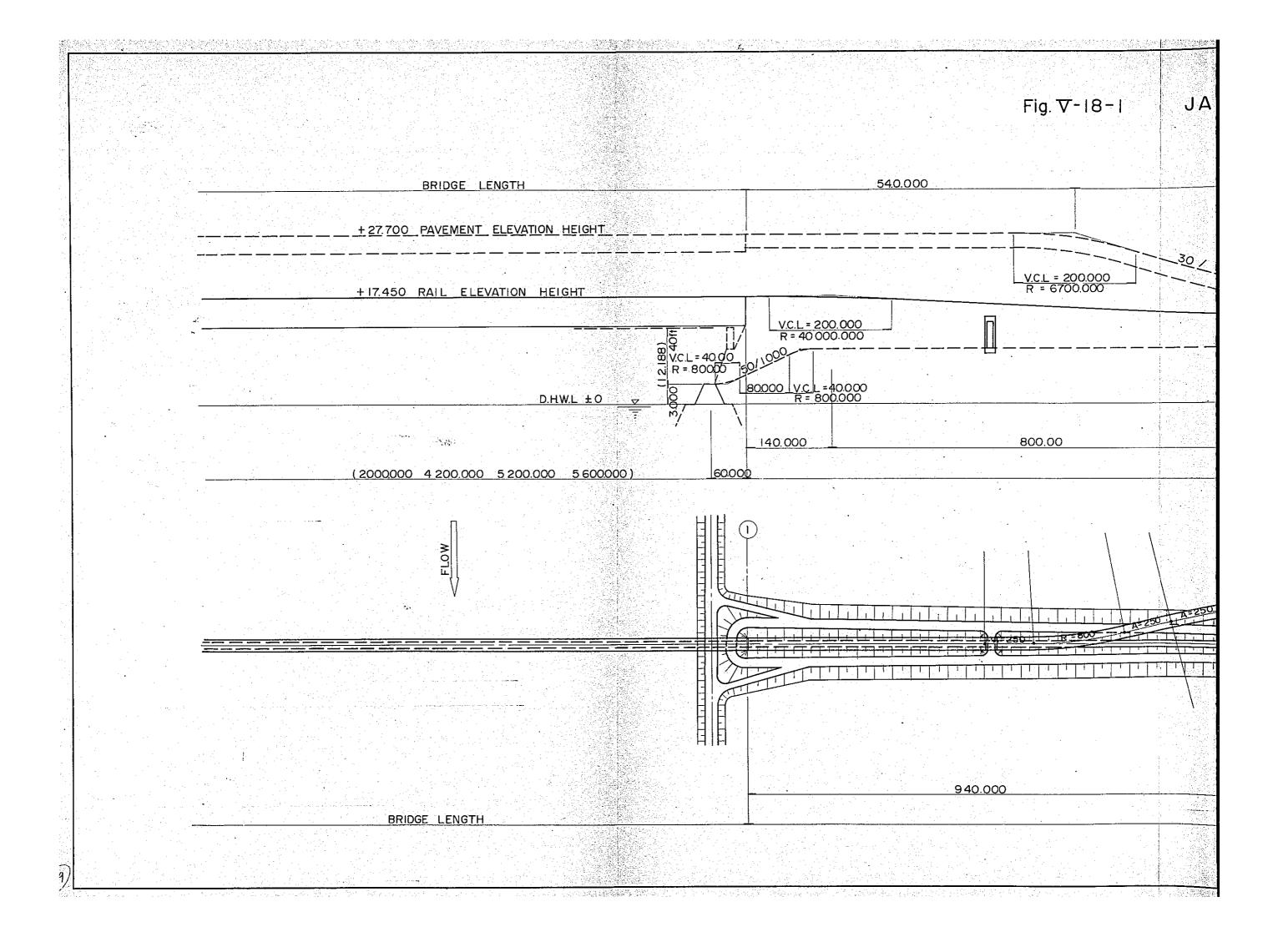

Date

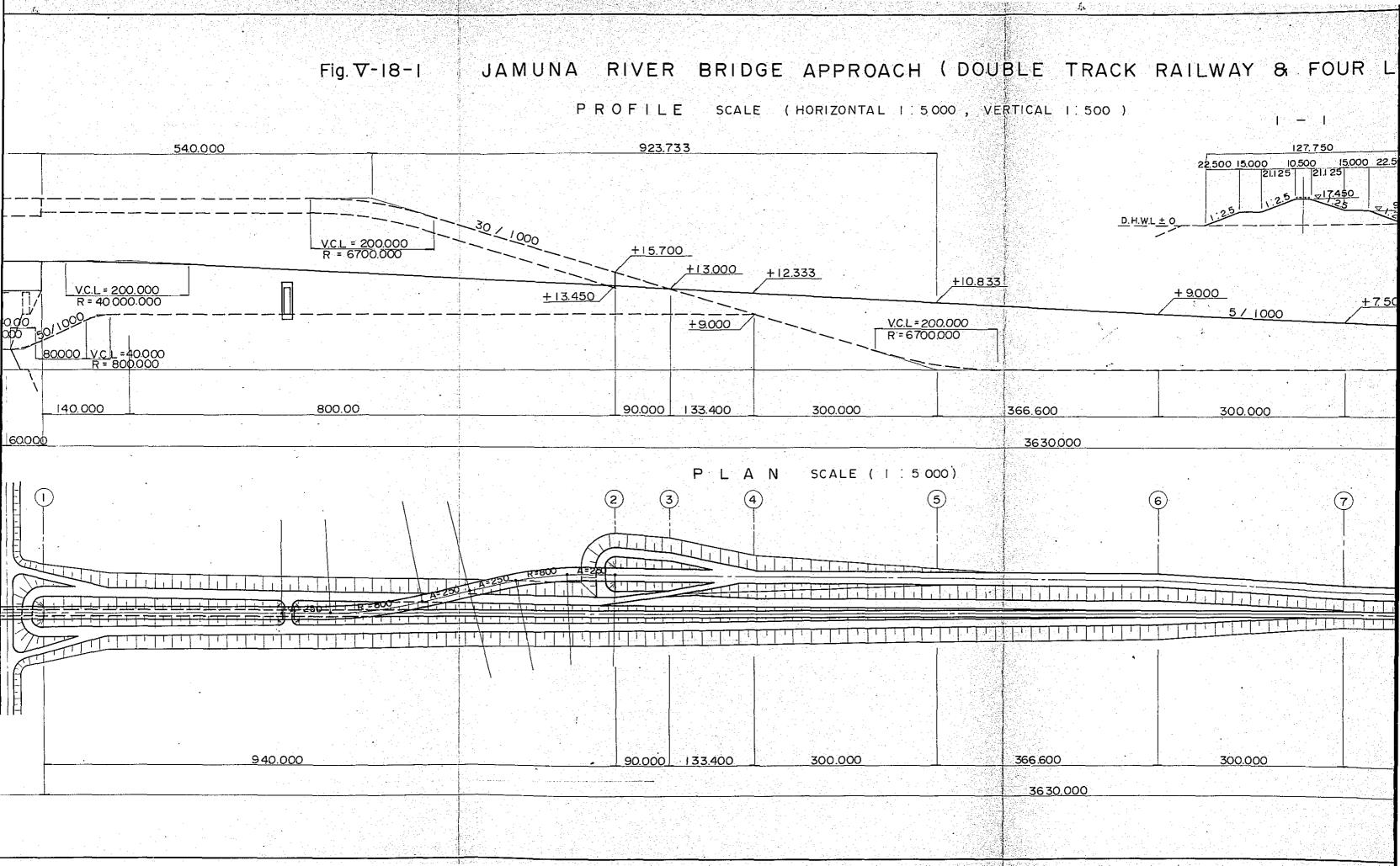
Approved

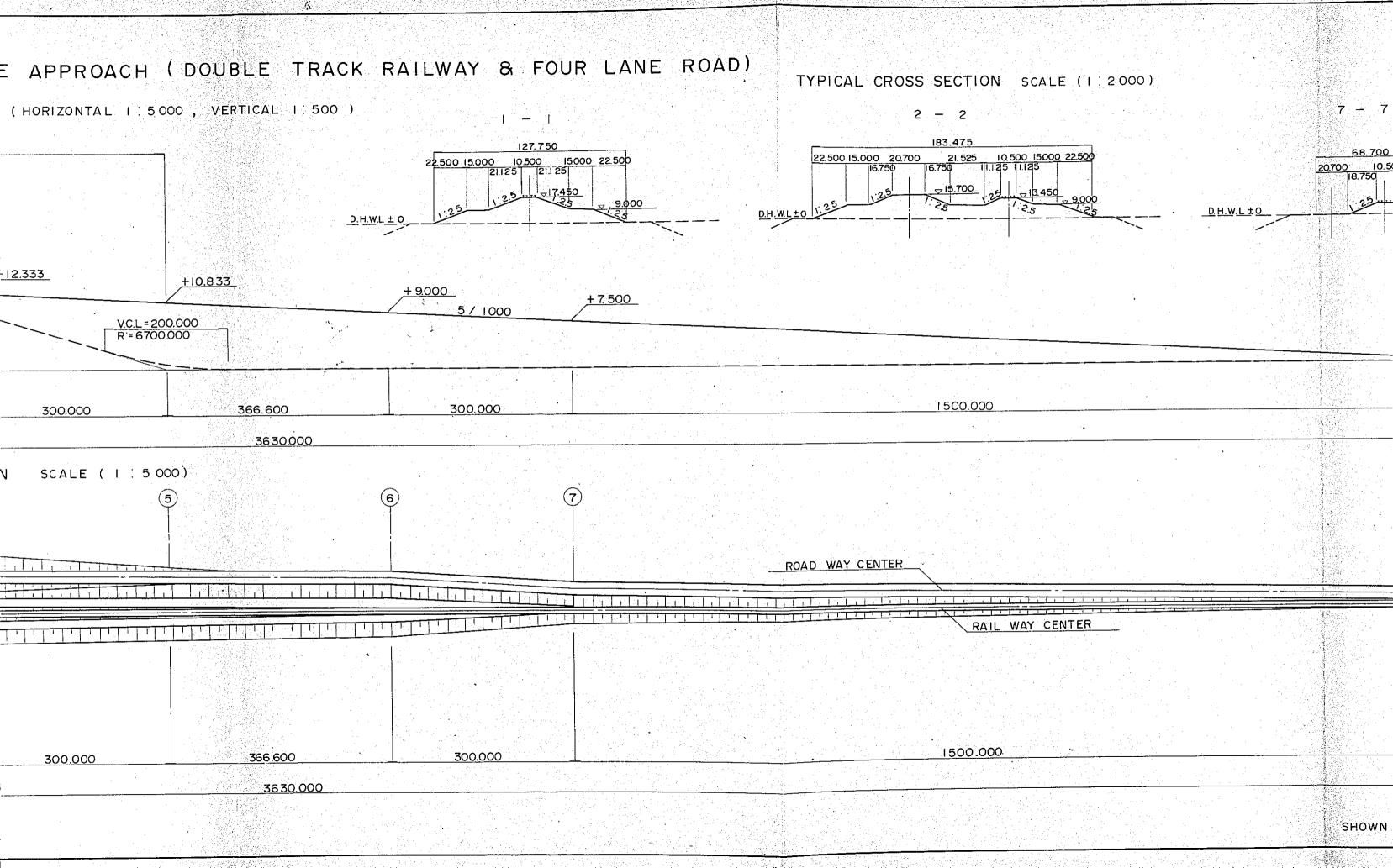
Date

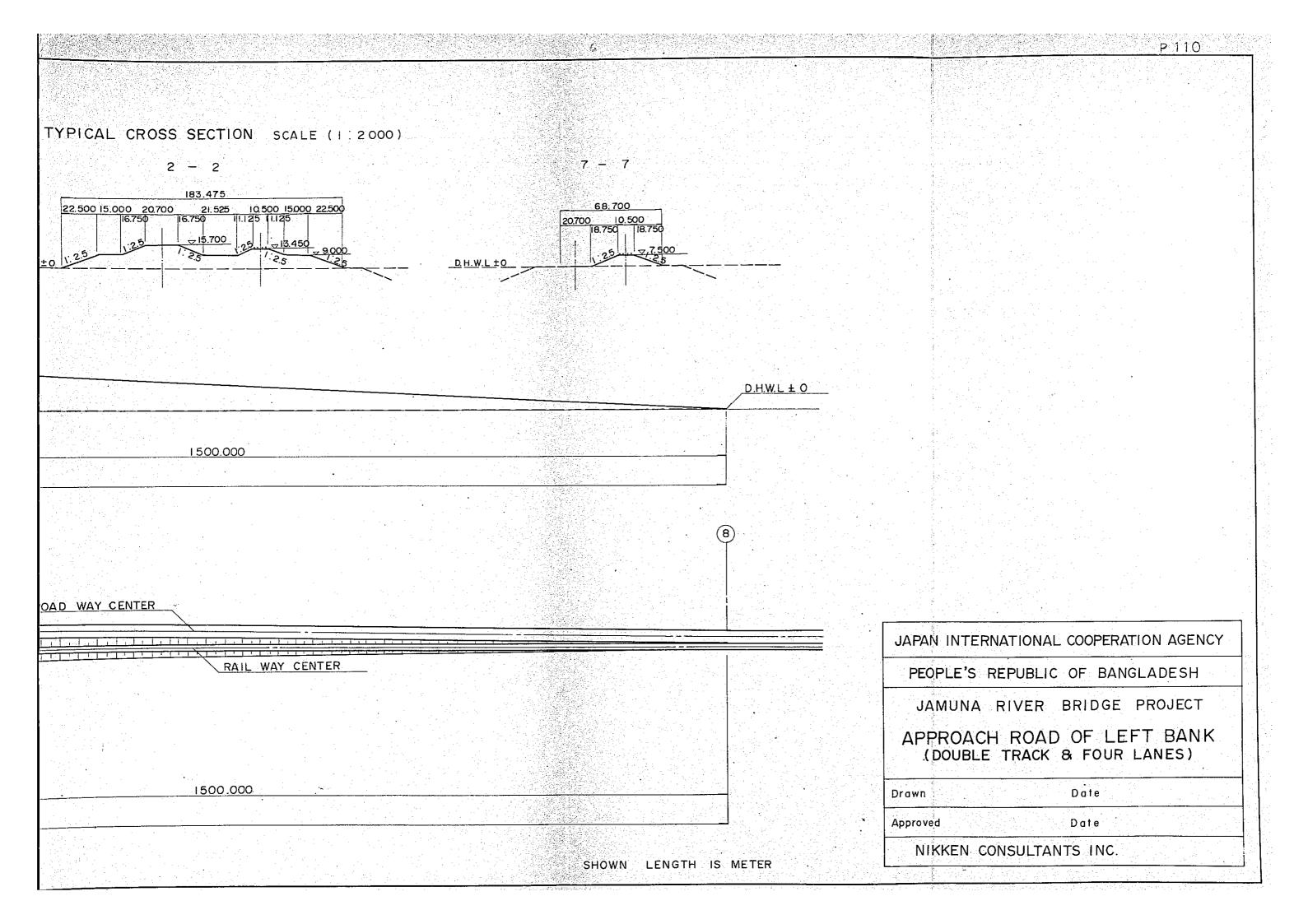

NIKKEN CONSULTANTS INC.

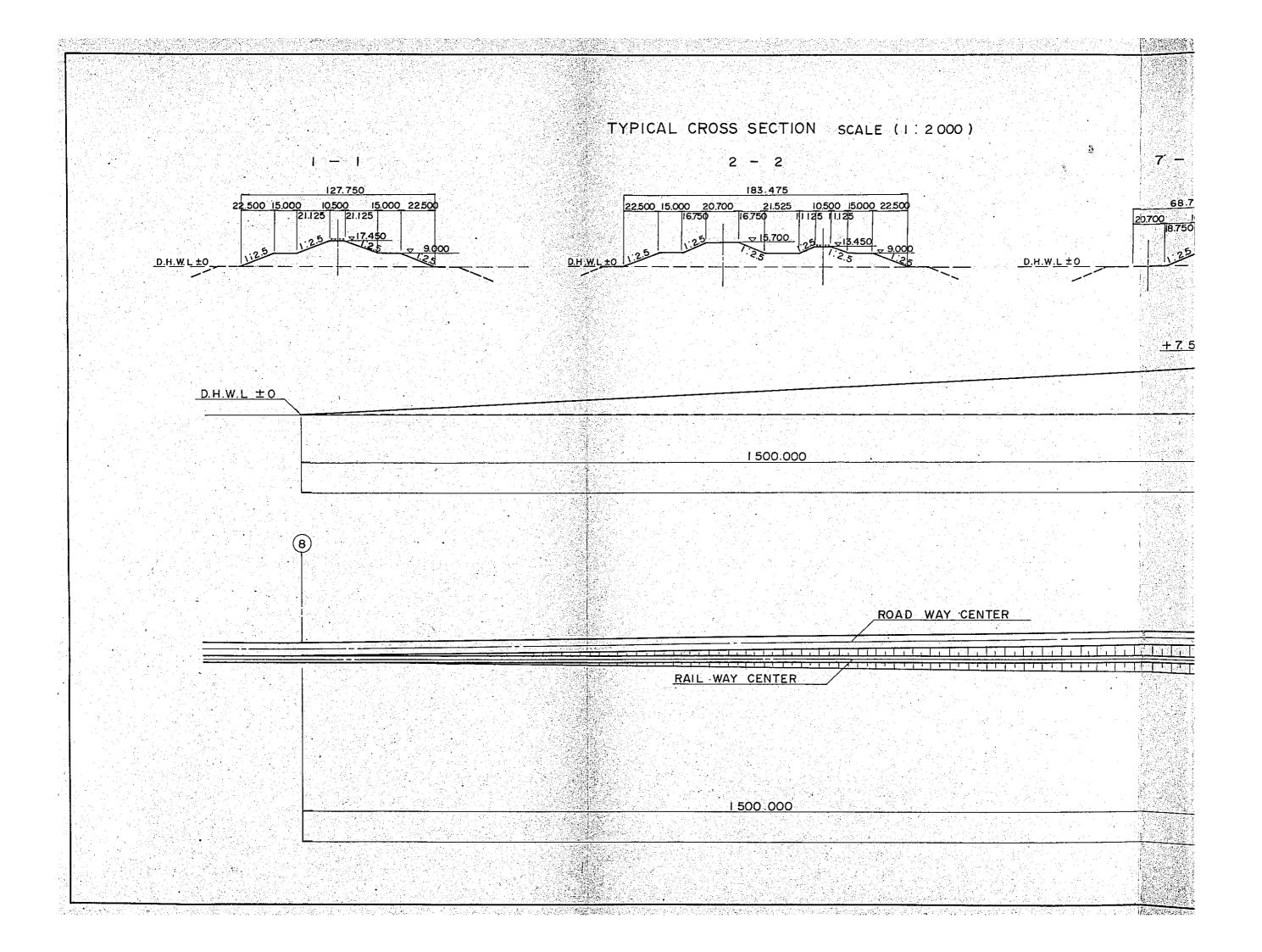


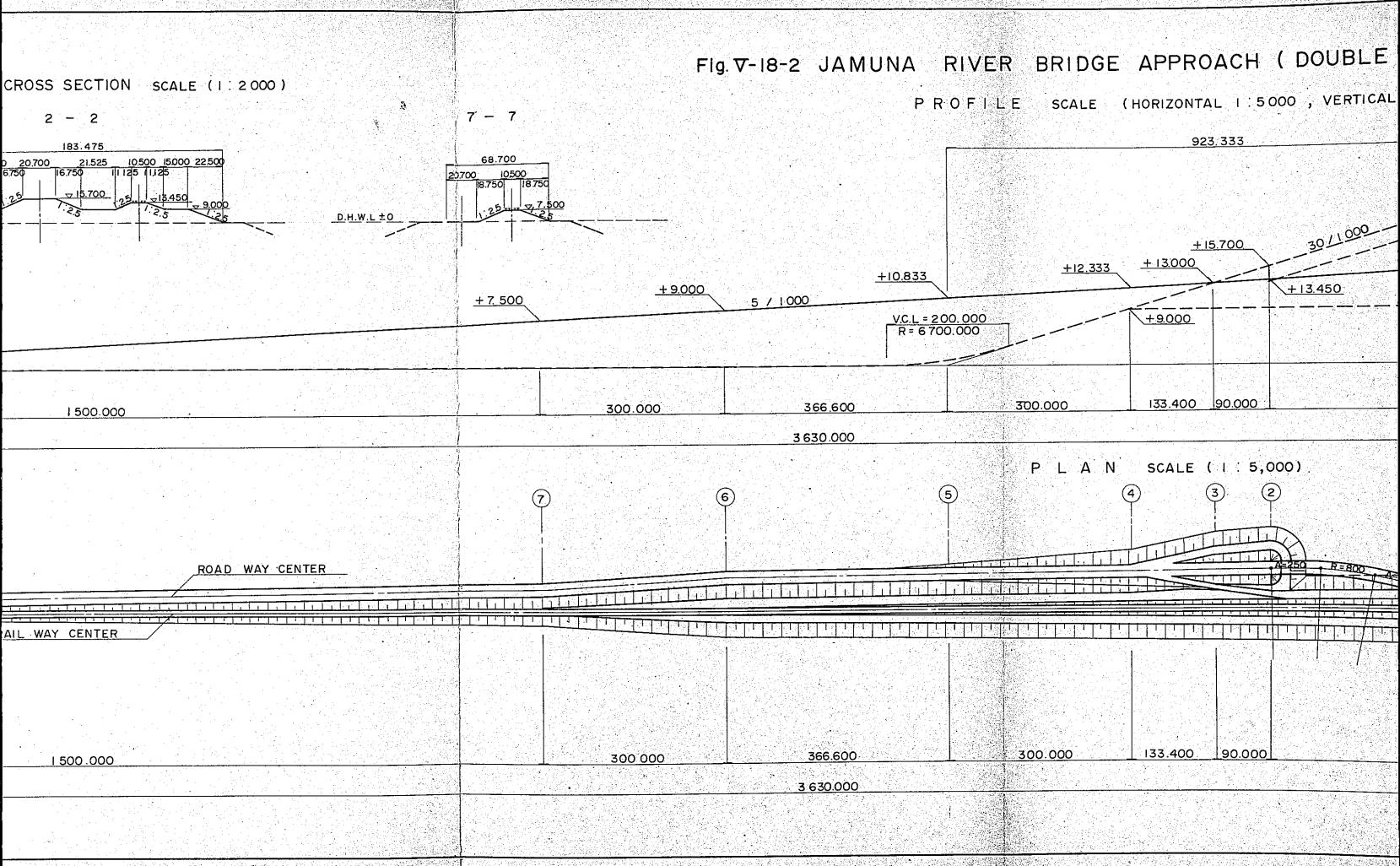


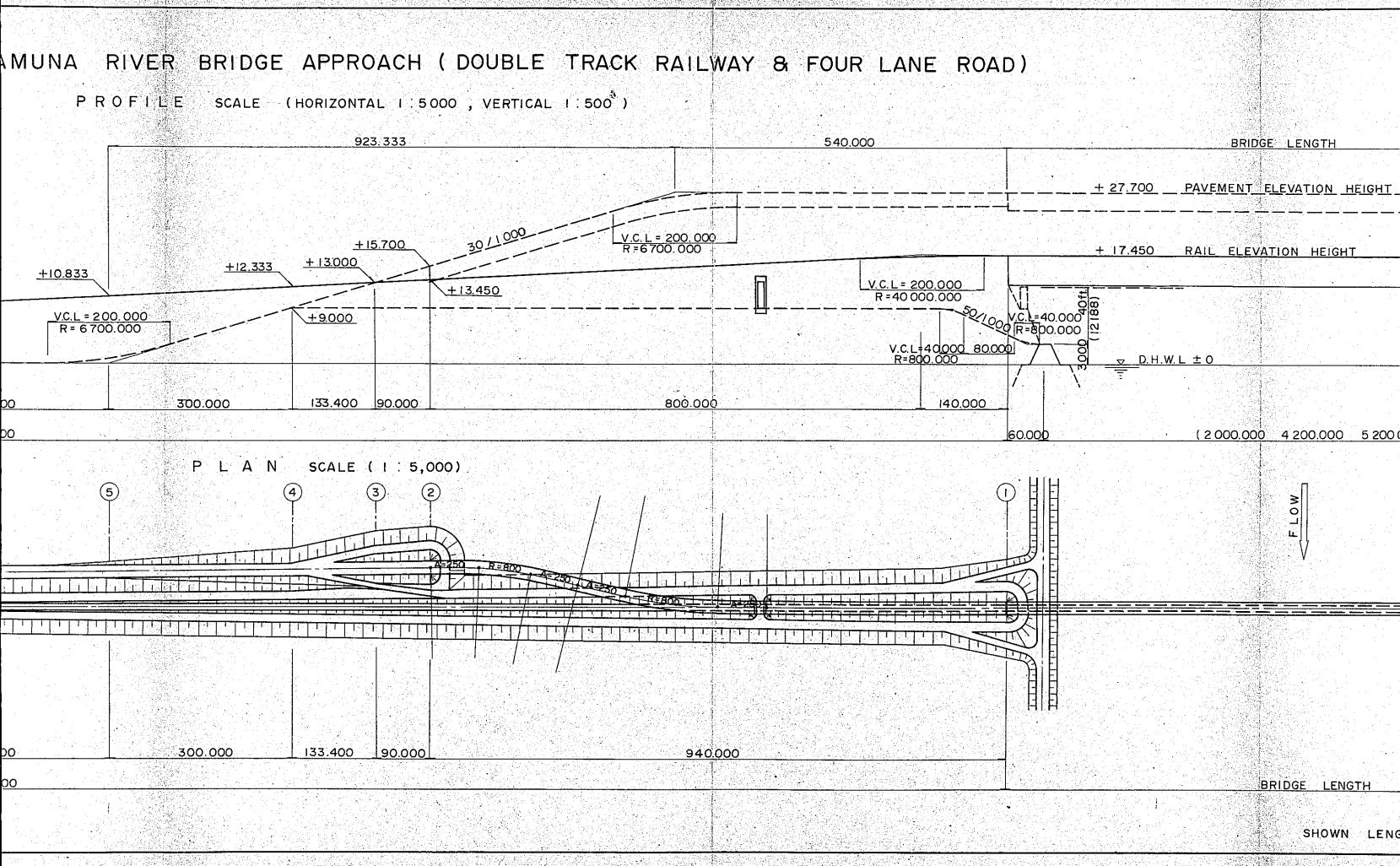

RIDGE APPROACH (SINGLE TRACK RAILWAY & TWO LANE ROAD)

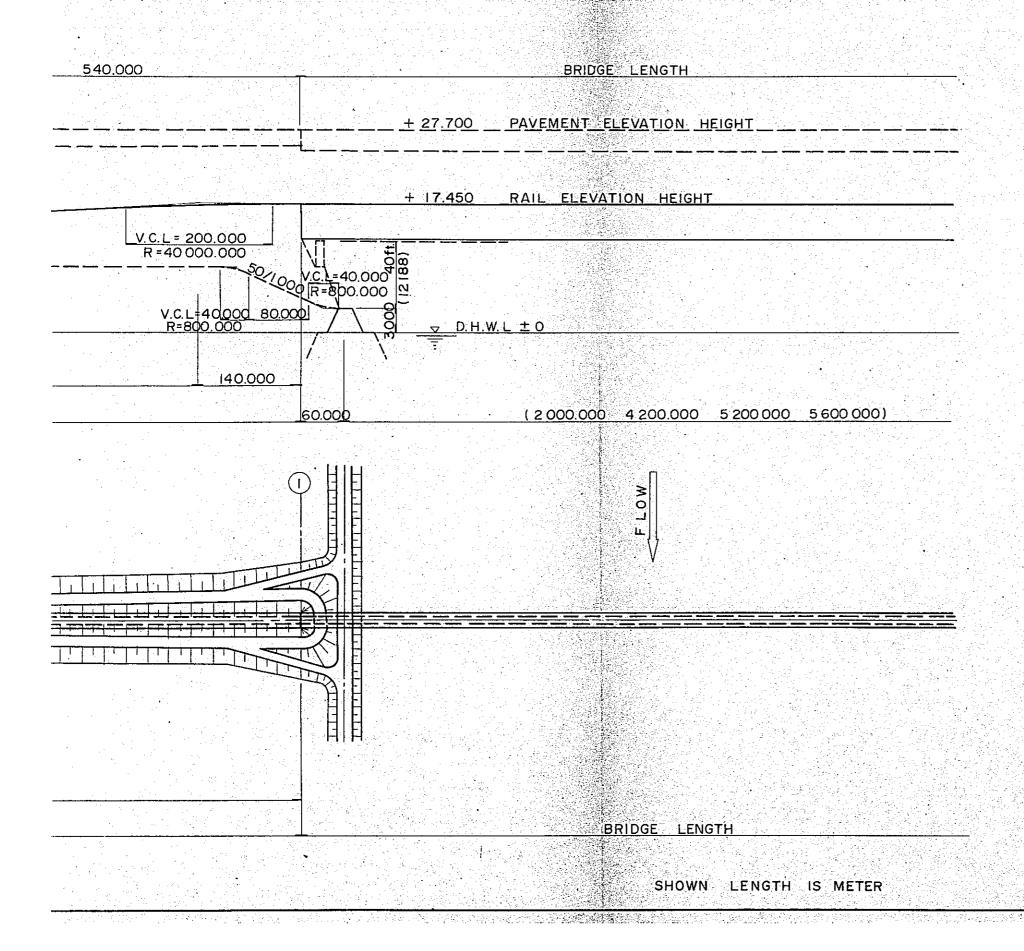

ROFILE SCALE (HORIZONTAL 1:5000, VERTICAL 1:500)











FOUR LANE ROAD)

JAPAN INTERNATIONAL COOPERATION AGENCY

PEOPLE'S REPUBLIC OF BANGLADESH

JAMUNA RIVER BRIDGE PROJECT

APPROACH ROAD OF RIGHT BANK (DOUBLE TRACK & FOUR LANES)

Drawn

Date

Approved

Date

NIKKEN CONSULTANTS INC.