CHAPTER 7. OPTIMIZATION STUDY

CHAPTER 7. OPTIMIZATION STUDY

			Page					
7.1	Parame	eters for Study	7 - 1					
7.2	Metho	dology	7 – 3					
	7.2.1	General	7 – 3					
	7.2.2	Classification of Supply Capacity	7 – 8					
	7.2.3	Classification of Project Sales	7 – 11					
	7.2.4	Calculation of Supply Capacity and Project Sales	7 – 12					
	7.2.5	Benefit Components	7 – 15					
	7.2.6	Cost	7 – 15					
7.3	Analysis							
	7.3.1	Case 1 (Domestic Power Demand only)	7 – 18					
	7.3.2	Case Il (1st Stage Development)	7 – 25					
	7.3.3	Case III (2nd Stage Development)	7 – 26					
	7.3.4	Optimum Development Scale	7 – 26					

LIST OF TABLES

Table 7-1 (1)	Discounted Cash Flow Method Case I-80
Table 7-1 (2)	Discounted Cash Flow Method Case II-80
Table 7-1 (3)	Discounted Cash Flow Method Case III-160
Table 7-2	Equivalent Peak Duration Time
Table 7-3 (1)	Power/Energy Demand & Sales Case I-80, II-80
Table 7-3 (2)	Power/Energy Demand & Sales Case III-160
Table 7-4 (1)	Construction Cost (Case I)
Table 7-4 (2)	Construction Cost (Case II, III)
Table 7-5 (1)	Disbursement Schedule Case I-80
Table 7-5 (2)	Disbursement Schedule Case II—80
Table 7-5 (3)	Disbursement Schedule Case III-160
Table 7-6 (1)	Study of Development Scale (1-4: Maximum Discharge)
Table 7-6 (2)	Study of Development Scale (2-4: Intake Water Level)
Table 7-6 (3)	Study of Development Scale (3-4: Tailrace Water Level)
Table 7-6 (4)	Study of Development Scale (4-4: Maximum Discharge)

LIST OF FIGURES

Fig. 7–1	Flow Chart of Optimization Study
Fig. 7-2	Estimated Daily Peak Load Duration Curve at January (1994 to 2006)
Fig. 7-3	Typical Chart of Demand and Sales
Fig. 7-4	Calculation Procedure of Supply Capacity and Project Sales
Fig. 7-5	Study for Optimum Development Scale (Maximum Discharge Case I, II)
Fig. 76	Optimum Intake Water Level
Fig. 7-7	Optimum Power House Site
Fig 78	Study for Ontimum Development Scale (Maximum Discharge Case III)

CHAPTER 7. OPTIMIZATION STUDY

7.1 Parameters for Study

Since this project is endowed with such favorable conditions for hydropower development of large scale as abundant water resources and steep river gradient, it is desirable to make the large-scale development plan which meets not only domestic power demand growth in Nepal but also power export. However, as the form of power demand of the importing country side and the method of power export are not cleared yet at present, it is difficult to study in detail the subject of power export. In this study, the development scheme for satisfying domestic power demand only (Case I) is first studied, then, the scheme including some part of future constructions to be required for power export (Case II:1st stage development) is studied and the scheme which also includes all constructions for future power export (Case III:2nd stage development) is finally studied. The summary of each case is described as follows.

Case I: (for domestic power demand only)

Case I is the study on the scheme which meets domestic power demand only. The studies are made for various values of the maximum power discharge, dam height (intake water level) and tailwater level (powerhouse site) which are taken as parameters. The dam height and powerhouse site selected in accordance with the Case I study are again adopted in Cases II and III without repeated examinations, while, the maximum power discharge is still taken as parameter for studies of the succeeding cases.

Case II: (1st stage development for domestic power demand)

As previously stated, it can be expected to further improve the project economy when power export is considered in addition to the primary purpose of constructing the project to cope with domestic power demand. However, the information related to power export on the importing country side is not clear at present. It is anticipated that the time of considerable length will be needed to negotiate for formulation of power export with the importing country and this may

cause delay of initiating the construction of the project. It is required to commence the construction of the optimum scheme (Case I) giving priority to domestic power demand for the time being, with simultaneous construction of the structures such as intake, powerhouse, tailrace outlet, etc. which are considered difficult to construct as the future extension. A parameter applied to the examination of Case II is the maximum power discharge only.

Case III: (2nd stage development for power export)

In connection with power export, there are several assumptions involved in the study and accordingly, the results of Case III study will not be considered to be satisfactory enough. However, the study will indicate a certain optimum size of the future extension plan which is partly involved in Case II and also the project economy that will be improved by the said extension plan. The assumptions stated above are as follows.

(i) Timing of starting the 2nd stage development and commissioning time

In this study, the starting time of the second stage development is set at 1994 giving four years for negotiation of power export, fund arrangement, etc. immediately after commencement of the first stage development. The commissioning time is decided taking into account the reasonable construction period for the second stage development.

(ii) Power demand of importing country

As the general features of power demand of the importing country are not known, it is planned in this study that only surplus power is to be exported, giving priority to domestic power demand.

(iii) Unit rate of exported power

The unit rate of US\$0.048/kWh is applied to the study.

The major work items involved in the second stage development scheme are the additional works of headrace tunnel, surge tank, penstock,

tailrace tunnel, etc. as the civil works and those of turbines, generators, transmission line, etc. as the electric works. Similarly to the study of Case II, only the maximum power discharge is considered as a parameter.

Further, the scope of studies on the civil structures is limited to a certain extent as described in Chapter 6 and the following conditions are also taken into consideration.

- (i) Headrace tunnel of single line is designed for Cases I and II, while two headrace tunnels with identical diameter are designed for Case III to flow the two times power discharge of Case II.
- (ii) The unit capacity of generator is limited to around 70 MW in order to avoid unfavorable effect on the power system.

The objective of the study in this chapter is solely to find out the optimum scheme and the accuracy as required in the preliminary design is not expected. Therefore, there will be some difference between the figures applied to this study and those finally decided.

Fig. 7-1 indicates the flow chart of optimization study.

7.2 Methodology

7.2.1 General

For economic evaluation of respective cases, net present value (B-C) calculated by means of the Discounted Cash Flow Method is adopted. The period applied to calculation includes 7 years from commencement of construction works to first commissioning of the units No.1 and No.2 and 50 years for operation and maintenance, totalling 57 years. The examples of this method are indicated in Table 7-1 (1), (2), (3).

The discount rate used for calculating present value is 12% being the social opportunity cost of capital in Nepal.

Fig. 7-1 Flow Chart of Optimization Study

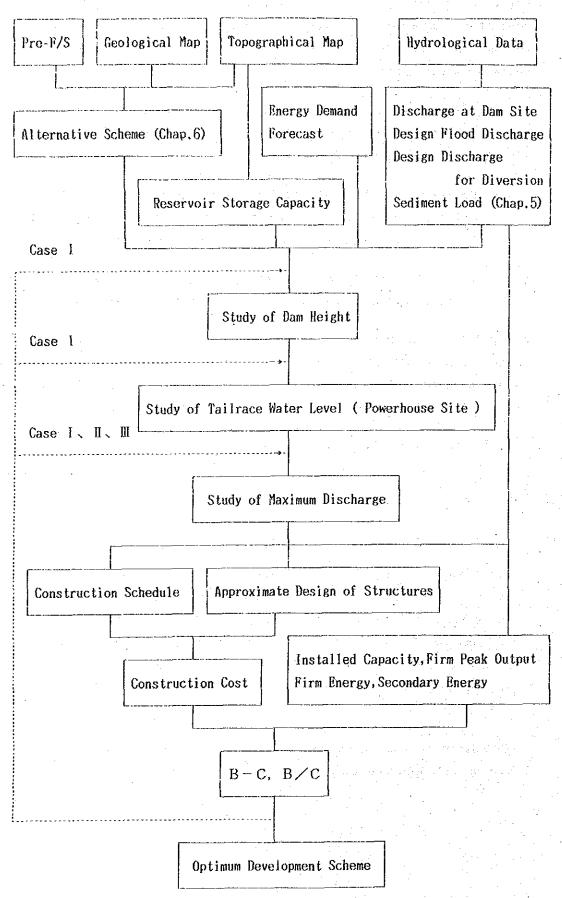


Table 7-1 (1) Discounted Cash Flow Method Case I-80

12(X) 242.02 193.17 1.252 48.85 Discount rate= kW Value B1= kWH Value B2= kWH Value B3= 1 68 US\$/kW 0.063 US\$/kWI 0.005 US\$/kWI B = C1= 0.059009402 C2= 0.047048685 C3= 0.034799634 B/C= B-C= UNIT=Million US\$

	B~C=	48.85		Value 83=			,	1.034799634		11 1 10 02 2
Year	Serial Number	Cost Flow	Discounted	Salable	Project Sale	ės			Benefit Flow	· ·
	noubc.	1104	1.02	Salable Bnergy (GWH/Yr)	Surplus Energy (GWH/Yr)	Useful Capacity (MW)	Salable Energy	Surplus Energy	Useful Capacity	Total
				(4007 657						
1987	1 2	4.81 19.57	4.29 15.60	0.00	0.00 0.00	0.00 0.00				0.00
1988	3	21.57	15.35	1 0.00	0.00	0.00		0.00	0.00	0.00
1990		22.77	14.47 24.73	0.00	0.00	0.00	0.00	በ በበ	ו חוים ו	0.001
1991	5	43.60	24.73	0.00	0.00	0.00	1	ກຄາ	0.00	0.00
1992 1993	6 6 7	64.18	32.51	0.00	0.00	0.00		0.00	0.00 0.00	0.00
1993	8	105.08	47.33	0.00 179.00	0.00 980.70	0.00 52.00	4.55	1 98	1.42	7.961
1995	ÿ	2.56	24.73 32.51 47.53 21.64 0.92 0.82 2.32	256.00	1 -903.70	69.00	5.8t	1 (1)	1.69	0.00 0.00 0.00 7.96 9.13 9.97 10.62
1996	16	2.56	0.82	333.00	826.70	86.10	6.75	1.33	1.88 2.03	9.97
1997	Ш	8.10	2 32	415.00	744.70 659.70	104.20	7.51	1.07	2.03	10.62
1998 1999	12 13	13.70 9.36		1 300.00	1133.60	123.20 143.00	8.08 8.48	1 29	2.15 2.22	11.08 12.01
2000	14	3.84	0.78	680.00	1041.60	163.70	8.76	1.06	2.27	12.10
2001	15	3.84	I . A 7A	1 776 00	945.60	185.40	8.93	0.86	((. 111)	12.09
2002	16	3.84	0.62	876.00 980.00	845.60	201.00	9.00	0.68	2.22	11.92
2003 2004	17 18	3.84 3.84		1089.00	741.60 632.60	201.00	8.99 8.92	0.54 0.41	2.22 1.99 1.77	12.10 12.09 11.92 11.52
2005	19	3.84	0.44	1201.00	520.60	201.00		0.30	1.58	
2006	20	3.84	0.39	1318.00	403.60	00.102	8.60	0.20	1.41	10.23
2007	21	3.84	0.35	1440.00		201.00	8.39	0.13	1.26	9.79
2008	22	3.84 3.84	0.31	1567.00	154.60 22.60	201.00 201.00			1.12 1.00	10.07 10.23 9.79 9.35 8.91 8.04
2010	23	3.84	0.20	1721.60				0.00	0.90	8.04
2011	24 25	3.84	0.22	1721.60	0.00	201.00	6.38	0.00	ไ กรถไ	7.181
2012	26	3.84 3.84	0.20	1721.60	1 0.00	1 201.00	5.69	0.00	0.71	6.41
2013	27	3.84	0.49 0.44 0.39 0.35 0.31 0.28 0.25 0.22 0.20	1721.60	0.00 0.00	201.00 201.00	5.08 4.54	0.00	0.64	5.72 5.11 4.56 4.07
2014	28 29	3.84	0.14	1721.60	1 0.00	201.00	4.05		0.57 0.51	4.56
2016	- 30	3.84 3.84	0.12	1721.60	0.00	201.00	3.62	0.00	ነ በ ልዩነ	4.07
2017	31	3.84	0.11	1721.60				0.00	0.40 0.36 0.32 0.28	3.63
2018	32	3.84	0 10	1721.60 1721.60	0.00 0.00	201.00 201.00 201.00	2.88	0.00	0.36	3.24
2019 2020	33 34	3.84 3.84	0.09	1721.60	0.00	201.00	2.57 2.30	0.00 0.00	0.34	3.24 2.90 2.59
2021	35	3.84	0.09 0.08 0.07	1721.60			2.05	0.00	1 11.75	2.31
2022	36	3.84	0.07 0.06	1721.60	0.00	201.00	1.83	0.00	0.23	2.06
2023	37	3.84	1 0.05	1721.60			1.63	0.00	0.20	1.84 1.64
2024 2025	38 39	3.84 3.84	0.05	1721.60 1721.60	0.00 0.00	201.00 201.00	1.46 1.30	0.00 0.00	0.18 0.16	
2026	40	3.84	า การ	1 1921 60	. ពេល	201.00	1.16	0.00	0.14	
2027	41	3.84	0.03	1721.60	0.00	1 201.00	1 1.04	1 0.00	0.13	1.17
2028	. 42	3.84	0.03	1721.60 1721.60 1721.60	0.00	201.00	0.92 0.82	0.00	0.11	1.04
2029 2030	43	3.84 3.84	0.02 0.02	1721.60	0.00	201.00 201.00	0.82	0.00	0.10	0.93 0.83
2031	44 45	3.84	0.02	1 1721 60		1 201 601	0.66		0.08	074
2032	46	3.84	0.02	1721.60	0.00	201.00 201.00	0.59	0.00	0.07	0.66
2032 2033	47	3.84	0.01	1721.60	0.00	201.00	0.52	1 0.00	1 0.06	0.59
2034	48	3.84	0.01	1721.60	0.00	201.00	0.47	0.00	0.05 0.05	0.53 0.47
2035 2036	49 50	3.84 3.84	0.01	1721.60 1721.60	0.00	201.00 201.00	1 . 0.37	1 0.00	0.04	0.42
2037	51	3.84	0.01	1721.60	1 000	201.00	0.33	0.00	0.04	0.37
2038	- 52	3.84	1 0.01	1 1721.60	0.00 0.00 0.00	201.00	0.29	0.00	0.03	0.33
2039	53	3.84	0.00	1721.60	0.00	201.00	0.26 0.23	0.00	0.03	0.30 0.26
2040 2041	54 55	3.84 3.84	0.00 0.00	1721.60 1721.60	0.00	201.00	U. 23 0. 21	0.00	0.03	0.23
2042	56	3.84	0.00	1 1721.60	0.00	201.00	0.19	0.00	0.02	0.21
2043	57	3.84	0.00	1721.60	0.00	201.00	0.16	0.00	0.02	0.19
						 			1	
Total	() (H	548.41	193.17		.		192.95	12.44	36.63	242.02
			l	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u></u>		L	<u> </u>	<u> </u>

CI: average net cost of useful salable energy and capacity
C2: average net cost of useful salable energy
C3: average net cost of total energy and capacity

Table 7-1 (2) Discounted Cash Flow Method Case II-80

12(%) 242.02 207.05 1.168 34.96 S = kW Value 81= kWH Value 82= kWH Value 83= L 68 US\$/kW 0.063 US\$/kWH 0.005 US\$/kWH C1= 0.063543053 C2= 0.051582336 C3= 0.037301072 UNIT=Million US\$

Year	Serial Number	Cost	Discou	nted		Project Sal	es			Benefit Flow	
	Number	PIOW	Cost	c 10w	Salable Energy (GWN/Yr)	Project Salo Surplus Energy (GWN/Yr)	Useful Capacity (MW)		Energy		Total
1987	1	4.81	l · .:	4.29				0.00	0.00	0.00	0.00
1988 1989	2 3	19.57 21.57	11	5.60 5.35	0.00	0.00 0.00 0.00 0.00 0.00 980.70 903.70 826.70 744.70 659.70	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00
1989	3	23.67	11	5 DA	0.00	0.00	0.00	0.00	1 111	ا ممما	0.00
1991	5	49.08	2.	5.04 7.84 6.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00 0.00
1992	6	72.41	31	6.68	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00
1993 1994	7	113.06 57.72	5	1.14 3.31 0.97 0.87 2.37 3.60 2.22 0.83 0.74 0.59 0.59 0.52 0.37 0.37 0.30 0.26 0.23 0.21 0.17 0.17	0.00	0.00	0.00		0.00	0.00	0.00
1994	8	57.72	2	3.31	179.00	980.70	52.00 69.00 86.10 104.20 123.20 143.00	4.55	1.98	1.42	7.96 9.13 9.97 10.62 11.08 12.01 12.10 11.92 11.52 11.11 10.67 10.23
1995	9	2.71	!	0.97	256.00	903.70	69.00	5.81 6.75 7.51	1.98 1.62 1.33 1.07 0.84	1.69 1.88	9.13
1996	10	2.71 8.25	,	0.87	333.00	826.70	86.10	7.51	1.33	1.88	9,97
1997 1998	11	14.06		2.31 103 E	\$ (2.00 500 00	659 70	123.20	8.08	0.84	2.03 2.15 2.22	11.08
1999	13	9.72		2.22	500.00 588.00 680.00 776.00	1133.60	143.00	8.48	1.29	2.22	12.01
2000	13 14	9.72 4.07	1	0.83	680.00	1133.60 1041.60 945.60 845.60 741.60	163.70 185.40 201.00	8.76			12.10
. 2001	15 16	4 07	1	0.74	776.00	945.60	185.40	8.93	0.86 0.68 0.54	2.30	12.09
2002	16	4.07 4.07 4.07 4.07 4.07 4.07 4.07 4.07)	0.66	876.00	1 845.60	201.00 201.00	9.00	0.68	2.22 1.99	11.92
2003	17	4.07	! !	0.59	980.00 1089.00	741.60	201.00	8.99	0.54	1.77	11.32
2004 2005	18 19	4.07	1 :	0.32]	1201.00	520.60	201.00 201.00	8.92 8.78	0.41 0.30	1.58	10.67
2006	20	4.07		0.42	1318.00	403.60	201.00		0.20	1.58 1.41	10.23
2007	20 21	4.07		0.37	1440.00 1567.00	281.60	201.00 201.00 201.00 201.00 201.00	8 39	0.13	1.261	9.79
2008	1 . 221	4 07		0.33	1567.00	154.60	201.00	8.15	0.06 0.00	1.12 1.00	9.35
2009	23	4.07		0.30	1699.00	22.60	201.00	7.89 7.14	0.00	1.00	8.91
2010	24	4.07	1	0.26	1721.60	0.00	201.00	7.14	0.00	0.90 0.80	8.04
2011	25 26 27 28 29	4.07 4.07 4.07		0.23	1721.60	0.00	201.00	6 38 5 69	0.00 0.00	0.71	6 41
2012 2013	25	4.07		0.41	1721-00	0.00	201.00 201.00			0.64	9.79 9.35 8.91 8.04 7.18 6.41
2014	29	4.07		0.17	1721.60 1721.60 1721.60 1721.60 1721.60	0.00	201.00	1 454	0.00	0.57	5.11
2015	20	4.07		0. 15	1721.60	0.00	201.00 201.00 201.00	4.05	0.00	0.51	4.56
2016	30	1 117		กาวเ	1721 60	0.00	201.00	3.62 3.23	. 0.00	0.45	4.07
2017	31	4.07 4.07 4.07	. (0.12 0.10 0.09 0.08 0.07	1721.60 1721.60 1721.60 1721.60 1721.60	0.00	201.00	3.23	0.00	0.40	3.63
2018	32	4.07	. 1	0.10	1721.60	0.00	201.00	2.88	0.00	0.36	3.24
2019	33	4.07	!	0.09	1721.60	0.00	201.00 201.00	2.88 2.57 2.30 2.05	0.00 0.00	0.32 0.28	2.90
2020	34	4.07 4.07	!	0.08	1721.60	0.00	201.00	2 05	0.00	0.25	2.33
2021 2022	35 36	4.07		0.06	1721.60	0.00	201.00	1.83	0.00	0.23	2.06
2023	37	4.07 4.07	· ;	0.061	1731 (0	. 0.00	201.00 201.00 201.00	1.63	0.00	0.23 0.20	1.84
2024	37 38	4.07		0.05	1721 60	0.00	201.00	1 36	0.00	0.18	1.64
2025	39	4.07		0.05 0.04	1721.60	0.00	201.00	1.30	0.00	0.16	5.11 4.56 4.07 3.63 3.24 2.90 2.59 2.31 1.84 1.64 1.46
2026	40	4 07	(0.04 0.03	1721.60 1721.60 1721.60 1721.60	0.00	201.00	1 16	0.00	0.14	1.31
2027	41	4.07	1	0.03	1721.60	0.00	201.00 201.00 201.00 201.00	1.04	0.00 0.00	0.13 0.11	1.17
2028	42	4.07 4.07	1.11	0.03	1721 60	0.00	201.00	0.92 0.82	0.00	0.11	1.04
2029	43	4.07		לני. ט וכח ה	1721.60	0.00 n nn	201.00	0.82	0.001	l nol	0.81
2030 2031	44 45	4.07	;	v. vz) 0. ppl	1721.60	0.00	201.00	0.66	0.001	o.oál	0.74
2032	45	4 07	l i	0.03 0.03 0.02 0.02 0.02	1721.60 1721.60 1721.60 1721.60 1721.60	632.60 520.60 403.60 281.60 28.1.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00	201.00 201.00 201.00 201.00 201.00 201.00	0.59	0.001	.0.071	0.66
2033	46 47	4.07	(o oil	1721.60	0.00	201.00	0.52 0.47	0.00 0.00	0.06	0.59
2034	48	4.07	1	41 CAB	1721.60	0.00	201.00	0.47	0.00	0.05	1.04 0.93 0.83 0.74 0.66 0.55 0.57 0.42
2035	491	4.07	1	0.011	1721.60	0.00	201.00	0.47	0.00	1 0.051	0.47
2036	50 51	4.07		0.01	1721.60	0.00	201.00 201.00	0.37	0.00	0.04 0.04	U. 42
2037	51	4.07 4.07	!	0.01	1721.60	0.00	201.00	0.33 0.29	0.00	0.04	በ 31
2038 2039	52	4.07	1 1	0.01	1721.60	0.00	201.00 201.00	0.23	0.00	0.03	0.30
2039	53 54	4.07		0.001	. 1721.60	0.00	201.00	กวา	0.00	0.03	0.30 0.20 0.2
2040	55	4.07		o.nol	1721.60	0.00	201.00	0.21	0.00	1 0.021	0.2
2042	56	4.07		0.00	1721.60	0.00	201.00 201.00 201.00 201.00	0.21 0.19	. 0.00	0.02	0.2 0.19
2043	57	4.07	, (0.00 0.00 0.00 0.00	1721.60 1721.60 1721.60 1721.60 1721.60 1721.60 1721.60 1721.60 1721.60 1721.60	0.00 0.00 0.00 0.00 0.00 0.00	201.00	0.16	0.00	0.02	0.19
									10.11	36.63	242.02
Total	i !	578.42	20	7.05				192.95	12.44	20.03	444.0

Cl: average net cost of useful salable energy and capacity
C2: average net cost of useful salable energy
C3: average net cost of total energy and capacity

Table 7-1 (3) Discounted Cash Flow Method Case III-160

12 (%) 428.78 245.49 1.746 183.29 1 68 US\$/kW 0.063 US\$/kM! 0.048 US\$/kM! 0.005 US\$/kM! S =
kW Value Bl=
kWl Value B2=
kWl Value B4= Discount rate= B = C = B/C= B-C= Cl= 0.035027288 C2= 0.028022935 C3= 0.029995237 UNIT= Million USS

4.29 15.60 15.35 27.86 36.71 51.10 24.88 4.08 5.95 12.95 12.95 12.95 10.90 0.81 0.72 9.64 0.57 0.51 0.57	Salable Donestic Energy (GML/Yr) 0.00 0.00 0.00 0.00 0.00 179.00 256.00 500.00 588.00 588.00 776.00 876.00 980.00 1089.00	Salable Export Energy (GMI/Yr) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Surplus Energy (CAL/Yr) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 52.00 69.00 86.10 104.29	Salable Dorestic Energy 0.00 0.00 0.00 0.00 0.00 0.00 4.55 5.81 6.75	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	Useful Capaci ty 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total 0.00 0.00 0.00 0.00 0.00
15.60 15.35 15.08 36.71 51.10 24.88 4.08 5.52 19.95 12.05 2.44 1.01 0.81 0.57 0.51 0.64	Domestic Energy (GMI/Yr) 0.00 0.00 0.00 0.00 0.00 179.00 256.00 333.00 500.00 588.00 680.00 776.00 876.00 980.00	Export Energy (GAI/Yr) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Energy (CAL/Yr) 0.00 0.00 0.00 0.00 0.00 0.00 980.70 993.70 826.70 744.70 659.70 0.00 0.00	(NA) (NA) 0.00 0.00 0.00 0.00 0.00 0.00 52.00 69.00 86.10 104.23 123.20	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0
15.60 15.35 15.08 36.71 51.10 24.88 4.08 5.52 19.95 12.05 2.44 1.01 0.81 0.57 0.51 0.64	680.00 680.00 0.00 0.00 0.00 0.00 0.00 179.00 256.00 333.00 415.00 588.00 776.00 876.00 980.00	Energy (GMI/Yr) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(CAL/Yr) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 980.70 983.70 826.70 744.70 659.70 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 52.00 69.00 86.10 104.29	0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.55 5.81 6.76	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0
15.60 15.35 15.08 36.71 51.10 24.88 4.08 5.52 19.95 12.05 2.44 1.01 0.81 0.57 0.51 0.64	0.00 0.00 0.00 0.00 0.00 0.00 179.00 256.00 333.00 415.00 500.00 588.00 776.00 876.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 980.70 983.70 826.70 744.70 659.70 0.00	0.00 0.00 0.00 0.00 0.00 0.00 52.00 69.00 86.10 104.29	0,00 0,00 0,00 0,00 0,00 4,55 5,81 6,75	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0
15.60 15.35 15.08 36.71 51.10 24.88 4.08 5.52 19.95 12.05 2.44 1.01 0.81 0.57 0.51 0.64	0.00 0.00 0.00 0.00 0.00 179.00 256.00 333.00 415.00 588.00 588.00 776.00 876.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 980.70 903.70 826.70 744.70 659.70 0.00	0.00 0.00 0.00 0.00 0.00 52.00 69.00 86.10 104.23	0,00 0,00 0,00 0,00 0,00 4,55 5,81 6,75	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0
15.35 15.85 27.86 36.71 51.10 24.88 4.08 5.95 12.05 2.44 1.01 0.90 0.81 0.57 0.57 0.51 0.41	0.00 0.00 0.00 0.00 179.00 256.00 333.00 415.00 588.00 588.00 776.00 876.00 980.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 980.70 903.70 826.70 744.70 659.70 0.00	0.00 0.00 0.00 0.00 0.00 52.00 69.00 86.10 104.20	0.00 0.00 0.00 0.00 0.00 4.55 5.81 6.75	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 1.98	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0
15.05 27.86 36.71 51.40 24.88 4.08 5.52 19.95 12.01 0.90 0.872 0.64 0.57 0.41	0.00 0.00 179.00 256.00 333.00 415.00 500.00 588.00 680.00 776.00 886.00 980.00	0.00 0.00 0.00 0.00 0.00 0.00 2372.30 2280.30 2184.30	0.00 0.00 0.00 980.70 993.70 826.70 744.70 659.70 0.00	0.00 0.00 0.00 0.00 52.00 69.00 86.10 104.20	0.00 0.00 0.00 4.55 5.8i 6.75	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 1.98	0.00 0.00 0.00	0.0
36.71 51.10 24.88 4.08 5.52 12.05 12.05 2.44 1.13 1.01 0.81 0.72 0.64 0.57	0.00 0.00 179.00 256.00 333.00 415.00 500.00 588.00 680.00 776.00 886.00 980.00	0.00 0.00 0.00 0.00 0.00 0.00 2372.30 2280.30 2184.30	0.00 0.00 980.70 903.70 826.70 744.70 659.70 0.00	0.00 0.00 52.00 69.00 86.10 104.20 123.20	0.00 0.00 4.55 5.81 6.75	00.00 00.00 00.00 00.00	0.00 0.00 1.98	0.00	0.0
51.10 24.88 4.08 5.52 19.95 12.05 2.44 1.13 1.01 0.90 0.81 0.72 0.64 0.57 0.40	0.00 179.00 256.00 333.00 415.00 500.00 588.00 680.00 776.00 876.00 980.00	0.00 0.00 0.00 0.00 0.00 2372.30 2280.30 2184.30 2084.30	0.00 980.70 903.70 826.70 744.70 659.70 0.00	0.00 52.00 69.00 86.10 104.20 123.20	0.00 4.55 5.81 6.75	0.00 0.00 0.00	0.00	0.00	
4.08 5.52 19.95 12.05 2.44 1.13 1.01 0.90 0.81 0.72 0.64 0.51 0.46	256.00 333.00 415.00 500.00 588.00 776.00 876.00 980.00	0.00 0.00 0.00 0.00 2372.30 2290.30 2184.30 2084.30	903.70 826.70 744.70 659.70 0.00	69.00 86.10 104.20 123.20	5.81 6.75	0.00	1.98		0.0
5.52 19.95 12.05 2.44 1.13 1.01 0.81 0.72 0.64 0.51 0.46	333.00 415.00 500.00 588.00 680.00 776.00 876.00 980.00	0.00 0.00 0.00 2372.30 2290.30 2184.30 2084.30	826.70 744.70 659.70 0.00	86.10 104.29 123.20	6.75	0.00			7.9 9.
19.95 12.05 2.44 1.13 1.01 0.90 0.81 0.72 0.64 0.57 0.51 0.46	415.00 500.00 588.00 680.00 776.00 876.00 980.00	0.00 2372.30 2280.30 2184.30 2084.30	659.70 0.00 0.00	104.20 123.20	' <u></u>	0.00	1.33	1.88	9.
2.44 1.13 1.01 0.90 0.81 0.72 0.64 0.57 0.51 0.46	588.00 680.00 776.00 876.00 980.00 1089.00	2372.30 2280.30 2184.30 2084.30	0.00	1 123.20	7.51	0.00			10.4
1.13 1.01 0.90 0.81 0.72 0.64 0.57 0.51 0.46	680.00 776.00 876.00 980.00 1089.00	2280.30 2184.30 2084.30	0.00	143.00	8.08 8.48	0.00 26.09	0.84 0.00	2.15 2.22	11.0 36.1
0.90 0.81 0.72 0.64 0.57 0.51 0.46	876.00 980.00 1089.00	2084.30		163.70	8.76	22.39	0.00	2.27	33.
0.81 0.72 0.64 0.57 0.51 0.46	980.00 1089.00	4384.30 [090 30	0,00 0.00	185.40 208.30	. 8.93 9.00	19.15 16.31	0.00 0.00	2.30 2.31	30.3 27.6
0.64 0.57 0.51 0.46 0.41	1089.00 1201.00 1318.00		n.oo	232.30	8.99	13.84	0.00	2.30	25.1
0.46	1201.00 1318.00	[87[.30 1759.30	0.00	257,50	8.92	11.68	0.00	2,27	22
0.46	1310.10	1759.30 1642.30	0.00 0.00	283.80 311.30	8.78 8.60	9.80 8.17	0.00	2.24 2.19	20.4 18.4
0.46	1440.00	1520,30	0.00	340.10	8.39	6.75	0.00	2.14	17.3
0.41 n 34	1567.00	1393.30	0.00	354.00	8.15	5.52	0.00	1.98	15.6
	1699.00 1837.00	1261.30 1123.30	0.00	354.00 354.00	7.89 7.62	4.46 3.55		1.77	14. 12.
0.32	1863.20	1097.10	0.00	354.00	6.90	3.09	0.00	1.41	11.
0.32 0.29	1863.20	1097.10	0.00	354.00	6.16	2.76	0.00	1.26	10.
0.25	1863.20 1863.20	1097.10 1097.10		354.00 354.00	5.50 4.91	2.46 2.20	0.00	1.12	9.
0.20	1863.20	1097.10	0.00	354.00	4.38 3.91	1.96	0.00	0.89	8. 7.
0.18	1863.20	1097.10	0.00	351.00	3.91	1.75	0.00	0.80	6.
0.16	1863.20 1863.20	1097.10 1097.10	0.00 0.00	354.00 354.00	3.49 3.12			0.7i	5. 5.
0.13	1863.20	1097.10	0.00	354.00	2.78	1.25	0.00	0.57	4.0
0.11	1863.20	1097.10	0.00	354.00	2.48	1.11	0.00	0.51	4.
0.10 0.03	1863.20 1863.20	1097.10 1037.10	0.00	354.00 354.00	2.22 1.98	0.99		0.45 0.40	3.0 3.1
0.08	1863.20	1037.10	0.00	354.00	1.77	0.79	0.00	0.36	2.
0.07	1863.20	1097.10 1097.10	0.00	354.00 354.00	1.58 1.41	0.70 0.63		0.32 0.28	2.1 2.
0.06 0.05	1863.20 1863.20		0.00	354.00	1.26	0.56	0.00	0.25	2.0
0.05	1863.20	1007 In		354.00	1,12	0.50	9.00	0.23	1.3
0.04	1863.20 1863.20	1097.10 1097.10 1097.10	0.00	354.00 354.00	1.00	0.45 0.40	0.00	0.20 0.18	1.4
0.04 0.03	1863.20	1097.10	0.00 0.00	354.00	0.89 0.80	0.35	0.00		i.
0.03	1863.20	1 1017 10	i am	1 35/m	0.71	1 0.32	0.00	0.14	1 I.
0.03 0.02	1863.20	1097.10	0.00	354.00	0.65	0.28	0.00		1.
0.02	1863.20	1097.10	i nm	1 357 00	0.50	0.22		0.10	l n
0.02			0.00	354.00	0.45	0.20) 0.
0.01 10.0			0.00	354.00 354.00	0.36	0.18			0. 0.
0.01	1863.20	1097.10	0.00	354.00		0.14	0.00	0.06	0.
0.01	1863.20	1007.10	0.00						
0.01 0.01									
0.00	1863.20	1097.10	0.00	354.00	0.20	0.09	0.00	0.04	0.
- 0.00	1863.20	1097.10	0.00	354.00	0.18	0.08	0.00	0.03	0.
245.49		71.1.1.			<u>t</u>	175.99	6.85	47.71	428
0. 0. 0. 0. 0. 0. 0. 0.	03 02 02 02 01 01 01 01 01 04 49	03 1863.20 03 1863.20 02 1863.20 02 1863.20 02 1863.20 01 1863.20 01 1863.20 01 1863.20 01 1863.20 01 1863.20 00 1863.20 00 1863.20 00 1863.20	03 1863. 20 1097. 10 02 1863. 20 1097. 10 02 1863. 20 1097. 10 02 1863. 20 1097. 10 02 1863. 20 1097. 10 01 1863. 20 1097. 10 02 1863. 20 1097. 10 03 1863. 20 1097. 10 04 1863. 20 1097. 10	03	03 1863.20 1097.10 0.00 354.00 02 1863.20 1097.10 0.00 354.00 02 1863.20 1097.10 0.00 354.00 02 1863.20 1097.10 0.00 354.00 02 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 01 1863.20 1097.10 0.00 354.00 00 1863.20 1097.10 0.00 354.0	03	03	03	03

7.2.2 Classification of Supply Capacity

For evaluation of quantity and quality of electricity serviceable by the hydroelectric power project, it is required to observe the relation between load demand and supply capacity.

Namely, it is necessary to divide the full supply capacity into two components; salable and surplus ones, corresponding to load demand.

(1) Firm Peak Output (Pp)

As this power plant is capable of daily regulation, the firm output is determined by configuration of daily load curve and daily river discharge, i.e., the firm peak output at the firm discharge is shown by the following equation.

 $P_F = 9.87$ He $Q_{I,L}$ 24hr/Tp

7 : Total generation efficiency

He : Effective head (m)

 Q_{LL} : Firm discharge (m³/s) $\frac{1}{2}$

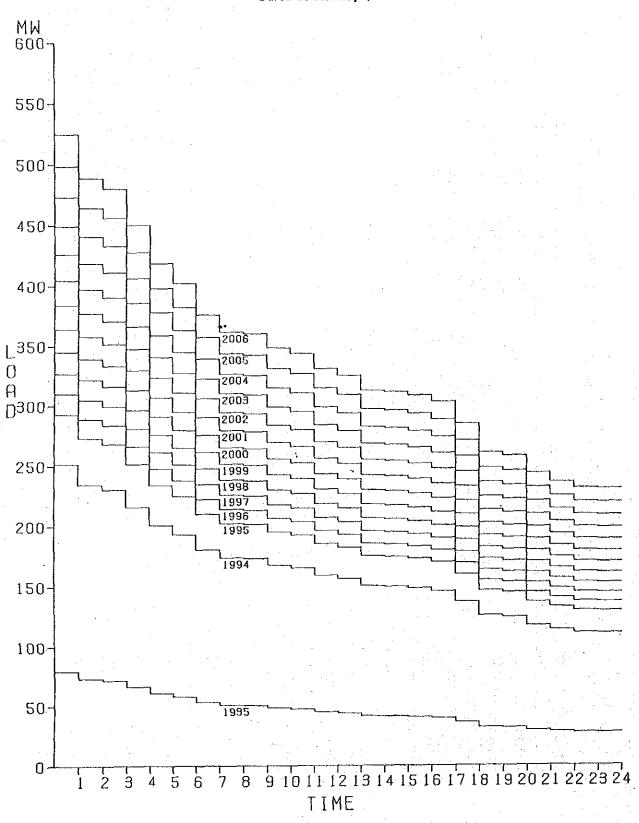
 T_p : Equivalent peak duration time (hr) $\frac{2}{}$

1/ Firm discharge (QLL)

Based on river discharge (Qd) at the proposed dam site estimated in the previous chapter 5 "Hydrology and Meteorology" and duration curves induced therefrom for 11 years from 1975 to 1985, the average value of river discharge available for 95% of time of a year is adopted as the firm discharge.

$$Q_{LL} = 87 \text{ m}^3/\text{s}$$

2/ Equivalent peak duration time (Tp)


Based on the power and energy demand forecast described in Chapter 2 and the actual daily load curve recorded in January 1985, the daily load curve at the maximum daily demand in each month is estimated for the years after 1993/94 at which the first commissioning of the project is requested (refer to Fig. 7-2).

Then, the equivalent duration peak time in respective months are calculated in terms of the incremental energy demand in kWh divided by the incremental peak demand in kW. As shown in Table 7-2, the equivalent duration peak time in January corresponding to the annual maximum peak demand is calculated to be 15.78

Table 7-2 Equivalent Peak Duration Time

DATLY PEA	PEAK LOAD (MW)					٠.							
	JUL	AUG.	SEP,	007.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY.	JUN	
1985	6.49	68.9	67-0	6 69	71.5	74.2	79-7	79.5	77-6	73.7	73.3	71.9	
1994	205	218.	212.	.122	226.	234.	252.	251.	572	233.	232.	C/I	
1995	239.	253.	246.	257.	263.	273.	310.	309.	302.	287.	270.	264.	
1998	267.	283.	275	303.	310	305.	345	344.	318.	302	301.	311.	
1999	313.	332.	323.	317.	344.	357.	364	383.	355.	337	335.	346	: :::::::::::::::::::::::::::::::::::::
2001	348	350.	358	355.	363.	397.	405.	425.	394,	374.	373.	365.	
1 .	1												
DATLY FAE	DAILY "ENERGY" CONSUMPTION RURT	TTONTHUBY											
	300.	AUG.	SEP	סכד.	NOV	OEC.	JAN.	FE3-	MAR.	APR.	MAY.	JUN	
1965	830.	871.	\$Iò.	832.	.206	1056.	Mec.	1110.	1068.	-236	862.	. 288	
1904	3078	31.64	3048	3083	3268-	3684.	3938	3845	4339.	3936.	3685.	3747.	
9.661	3797.	3929.	3762.	3805.	4032	4542.	4855	4734.	4593.	4915	3965	3967	
1997	4000	4146.	3969.	4412	4555		2163	2000	,,,,,,	- / 45.		1077	
1998	4233.	4378.	4196.	-0424	4741.	5339.	5707	5570.	5366.	6687	4588-	4665	7
2000	7072	1282	7107	27 TB	5267	5636.	6017	5875	5665	5166-	5097.	5182	
2002	5223:	52025	5115	5234-	\$546.	8129	6678.	5518.	6318.	5732.	5367.	2458	
EQUIVALENT	T PEAK DURATION		TIME (HOURS)										
	ייחר.	AUG.	SEP.	007	NON	DEC.	. NAU	FEB.	MAR.	APR.	MAY.	יאטר	AVERAGE
1946				i									
566I	15.02	15.06	14.82	14.16	14.59	15.56	18°51	15-46	15.25	14-61	13.96	14.38	14-85
1,000	15.00	08.71	29.51	14.12	16.73	15.62	15.81	15-44	15.37	14.71	13.79	14.36	14.87
1999	15:20	14.80	79.71	14.19	14.58	15.76	15.79	15.42	15-22	14.63	13.84	14.31	14.85
2002	15.01	14-77	14.58	14.06	14.59	15.72	15.75	15.53	15.26	14.62	13.70	. 14.20	14-81
AVERAGE	15.06	14.84	14-63	14-12	14-62	15:70	.15.78	15.41	15.28	14.66	13.79	14.27	14.85

Fig. 7-2 Estimated Daily Peak Load Duration Curve at January (1994 to 2006)

hours, while that in the month corresponding to the monthly maximum peak demand is 14.85 hours. Thus, the average value of 15 hours is adopted as the equivalent peak duration time.

(2) Available Energy Production (E_T)

Available energy production is the annual average value of total energy production at the powerhouse calculated based on daily discharges at the dam site for 11 years from 1975 to 1985.

(3) Firm Energy (E_L)

The firm energy is defined to be the energy meeting the domestic demand in Nepal throughout the year. In this case, the power discharge is limited upto the firm discharge stated in (1) above.

(4) Secondary Energy (Eg)

The secondary energy is expressed in terms of the total energy production minus the firm energy.

7.2.3 Classification of Project Sales

(1) Useful Capacity (Puy)

Useful capacity is a part of power to be applied to calculation of kW value for project evaluation. Useful capacity is selected out of incremental power demand of the respective years and firm peak output (P_F) in the same years, whichever is smaller. Namely, useful capacity is, out of the firm peak output, the power being considered consumable as referred to load demand forecast.

(2) Salable Energy

(i) Salable domestic energy (EADy)

For incremental domestic energy demand, firm energy is to be preferentially supplied. The remining energy after deduction of domestic demand from firm energy is considered as surplus energy in the case of "without export".

(ii) Salable export energy (E_{AEy})

Basically, salable export energy defined in this study is the residual of energy production after preferential supply for domestic use. It is not known how the imported energy be consumed by the importing country and accordingly, it is difficult to exactly evaluate the benefit as previously stated.

(3) Surplus Energy (Esy)

(i) Without export (Case I and II)

The residual energy after deduction of domestic energy consumption from annual energy production in the case of "without export".

(ii) With export (Case III)

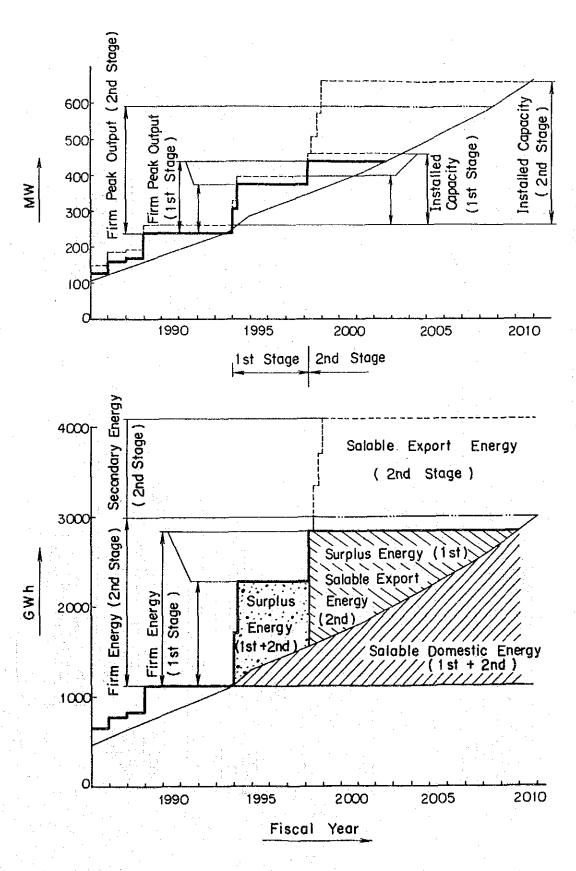

The residual energy after deductions of domestic energy consumption from annual energy production for the period before generating operation of the equipment to be installed as the second stage development.

Fig. 7-3 indicates the typical chart of capacity and energy defined above.

7.2.4 Calculation of Supply Capacity and Project Sales

Power and energy defined in 7.2.2 and 7.2.3 above are estimated in accordance with the procedure shown in Fig. 7-4 based on the following basic data. Demand and supply balance is examined for the

Fig. 7-3 Typical Chart of Demand and Sales

Ear - E., 2nd Stage of Case E (Computation of Project Sales) Out Put (Marie Capacity in each year (Marie Capacity in Capacity Capacity Capacity Capacity is each year (Marie Capacity in each year (Marie Capacity Capaci Fig. 7-4 Calculation Procedure of Supply Capacity and Project Sales Case i. Il. 1st Stage of Case IF . 1983 Flaining Data Input
1) Owner, Straigh Discharge
2) Owner, Universell Discharge
3) So. Effective Head
3) St. Effective Head
4) S. Sumbor of Operation Unit (Computation of Supply Capacity) B. 1 ... 9.8 . 7 . 164 . 0.1. 2405 Out Put Fire Pook Output (M)

Fr (Es 11) : Amount Fire Foots (M)

Et (Es 11) : Amount Fire Foots (M)

Et (Es 11) : Amount Fire Foots (M)

Et (Es 11) : Amount Secondary Energy (M) 110 ... 11 11 ... 0 **(** START Dut - Adi 9 na. . 8 7 5 Que . 24hr/30 ar. - 9.8 - p - 80 . But - 24hr Data laput Hydrological Date Od : Inflow at the Ose sile (Jan. 1875 ~ Dec. 1985 daily data) Computation of Pirm Discharge Dig. : Pirm Discharge 110 411 4 0 - 124

period from 1993 to 2010 and all figures at 2010 are also applied to the economical evaluation for further years since they are constant after 2010.

Hydrological data:

Daily discharge record at damsite for 11 years from Jan. 1, 1975 to Dec. 31, 1985 (refer to Chapter 5: Hydrology and Meteorology)

Power demand forecast: Power and energy demand from 1993 to 2010 described in Chapter 2.

The examples of the demand and supply balance sheets are shown in Table 7-3 (1), (2).

7.2.5 Benefit Components

In this study, the values of generating components for economic evaluation of the Arun 3 project are quoted from the "Long Run Marginal Costs of Electricity Generation in Nepal" (Report No. 3/2/301284/1/2 Seq. 211 prepared by WERDP in Dec. 1984) wherein the discount rate of 12% is adopted, provided that escalation of 6% per annum is applied to the above in order to coordinate the time with that of estimating construction cost. However, the unit rate expected for power export is used as benefit value.

Value of Generation Components

Generation Capacity 68 US\$/kW/yr

Firm Energy 0.063 US\$/kWh/yr

Export Energy 0.048 US\$/kWh/yr

Surplus Energy 0.005 US\$/kWh/yr

7.2.6 Cost

The cost applied to the project evaluation of each alternative plan consists of construction cost and operation and maintenance cost.

Table 7-3 (1) Power/Energy Demand & Sales Case I-80, II-80

	Useful Capacity (MW)	52.0 69.0 86.1 104.2 1123.2 1143.0 1163.7 185.4 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0
Project Sales	Surplus Energy (GWH/Yr)	988 903.7 7.26.7 113.3.6 10.01 6.35.7 7.45.6 7.45.6 7.45.6 154.6 0.00 0.00
A.	Salable Energy (GWH/Yr)	179.0 255.0 255.0 255.0 680.0 776.0 876.0 1201.0 1318.0 1721.6 1721.6
	Firm Peak Output (MW)	134.0 134.0 134.0 134.0 134.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0
Capacity	Total Energy (GWH/Yr)	1159.7 1159.7 1159.7 1159.7 1159.7 1159.7 1721.6 1721.6 1721.6 1721.6 1721.6 1721.6 1721.6 1721.6
Supply	Secondary Energy (GWH/Yr)	
	Firm Energy (GWH/Yr)	1159.7 1159.7 1159.7 1159.7 1159.7 1159.7 1159.7 1721.6 1721.6 1721.6 1721.6 1721.6 1721.6 1721.6 1721.6 1721.6
	Incremental Peak Demand (MW)	0.05 0.05
Demand	Total Peak Demand (MW)	141.1 1777777777777777777777777777777777
System	Incremental Energy Demand (GWH)	179.0 256.0 256.0 333.0 415.0 500.0 588.0 776.0 876.0 1201.0 1201.0 1881.0 1887.0 1837.0 1881.0 2285.0
	Total Energy Demand (GWH)	635.0 710.0 787.0 946.0 1038.0 1128.0 1128.0 1307.0 1344.0 1543.0 1543.0 1543.0 1543.0 1543.0 1543.0 1204.0 22175.0 22
	Year	1987 1988 1989 1990 1991 1992 1995 1995 1996 2001 2007 2007 2007 2007 2008 2009 2007 2009 2007 2009 2010 2011 2011 2011 2011 2011

Table 7-3 (2) Power/Energy Demand & Sales Case III-160

ſ	γ		000000000000000000000000000000000000000	5
		Useful Capacity (MW)	20.00000000000000000000000000000000000	704.
	Sales	Useful Capaci (Mw		7
N= 6	Project Sa	Surplus Energy (GWH/Yr)	980 903 744 744 7826 2372 2280 1987 11871 11871 11871 11871 1187 1197 11097	107
OMO	Pro	Su Bn)	000000000000000000000000000000000000000	<u>,</u>
Pmax.= 402.0MW		Salable Energy (GWH/Yr)	0.000000000000000000000000000000000000	2001
G			######################################	0.4.0
Case III—100		Firm Peak Output (MW)		
] 2		(
	Capacity	Total Energy (GWH/Yr)	00000000000000000000000000000000000000	067
ğ	Supply		1097.1 1097.1 1097.1 1097.1 1097.1 1097.1 1097.1 1097.1 1097.1 1097.1	7 . 7
	Su	Secondary Energy (GWH/Yr)	000000000000000000000000000000000000000	01
λĥ.] G
rower/Energy Demand & Sales		Firm Energy (GWH/Yr)		27
	:	ıta I	86.00 11.00	7
(2) 6-1		Incrementa Peak Demand (MW)	HHHHUUUUUWAAANDI	
apie			1141 1771 1771 1771 1771 1771 1771 1771	20.7
-	Demand	Total Peak Demand (MW)	00000wwww.44444mmm@@@ccc	20
	System	ntal	22130.0 22130.0 22130.0 22130.0 22130.0 22130.0 22130.0 22130.0 22130.0 22130.0 22130.0	46.0
	Sy	Incrementa Energy Demand (GWH)	100 100 100 100 100 100 100 100 100 100	24
			224240.0 225466.0 225466.0 225466.0 225466.0 22566.0 22566.0 22566.0 22566.0 22566.0 22566.0 22566.0 22666.0 2	74.0
	in de	Total Energy Demand (GWH)	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	35
		Year T	19887 1987 19	2014
	L	<u>~</u>		

(1) Construction Cost

The construction cost is estimated at price level on June 1986 and includes those for access road, supporting facilities, civil structures, hydraulic equipment, electrical equipment and transmission line and substation facilities. And the total project cost is estimated adding administration cost including engineering cost and contingency including compensation. Interest during construction and import duties are, however, excluded.

(2) Operation and Maintenance Cost

Operation and maintenance cost is calculated at the following percentage to each work component. However, the required cost for replacing equipment is neglected in this study.

Civil works	1%
Hydromechanical equipment	2%
Electrical equipment	2%
Transmission line and substation facilities	1.5%

(3) Cost

The required cost for each alternative plan and the examples of its annual disbursement are shown in Tables 7-4 (1) and (2), and Tables 7-5 (1), (2) and (3), respectively.

7.3 Analysis

7.3.1 Case I (Domestic Power Demand only)

(1) Maximum Power Discharge

Studies are made for 5 cases corresponding to various maximum power discharges in the range of $60 \text{ m}^3/\text{s}$ to $100 \text{ m}^3/\text{s}$ as shown in Table 7-6 (1) and the costs and benefits for various power discharges are shown in Fig. 7-5. The powerhouse site, intake water level and number of headrace tunnels applied to this study are the Pikhuwa site, EL. 840 m and single line, respec-

Table 7-4 (1) Construction Cost (Case I)

										20								
1-80-1	211.8	39000	9700	10752	26400	12632	40725	4469	17744	3345	164767	13122	38990	87500	304379	22828	40959	368166
I -80-S	149.1	39000	9700	10752	26400	12632	24773	2350	12532	3345	141484	7277	33080	87500	269341	20201	36028	325570
528-08-1	223.6	39000	0026	10752	78728	17675	38646	3002	18356	3345	219204	10624	44700	87500	362028	27152	49878	439058
1 -80-855	211.2	39000	9700	10752	66666	15532	38424	2810	16242	3345	175804	0896	39300	87500	312284	23421	42361	378066
1 -80-830	8:661	39000	9700	10752	19800	12632	38424	2728	15769	3345	152150	8485	38100	87500	286235	21468	38378	346081
1 -100	250.4	39000	0026	10752	26400	16000	46000	3270	20520	4000	175642	10400	46200	101400	333642	25023	44649	403314
06- 1	224.8	39000	9700	10752	26400	14450	43050	3060	18430	3750	168592	9490	44700	87500	310282	23271	41785	375338
1 -80	201	39000	9700	10752	26400	12632	38424	2728	15769	3345	158750	8674	38400	87500	293324	21999	39470	354793
1 -70	174.9	39000	0026	10752	26400	11600	36000	2560	14150	3140	153302	7900	36100	87500	284802	21360	38281	34443
09 1	149.4	39000	9700	10752	26400	10200	32500	2310	12510	2830	146202	7130	34200	87500	275032	20627	36876	332535
	Installed Capacity (MW)	1. Civil Works I-1 Access Road	1-2 Preparatory Works	1-3 Diversion & Coffer Dam	1-4 Dam & Spillway	1-5 Intake & Desilting Basin	1-6 Headrace & Surge Tank	1-7 Penstock	1-8 Powerhouse & Switchyard	1-9 Tailrace Tunnel	Sub Total	2. Hydraulic Equipment	3. Electromechanical Facilities	4. Transmission Line & Substation	5. Total Cost (1+2+3+4)	6. Engineering & Administration 5×7.5%	7. Physical Contingency 1 x 15% + (2+3+4+6) x 10%	Grand Total (5+6+7)

Table 7-4 (2) Construction Cost (Case II, III)

			•						•	:	
		11 -60	02- II	п-80	06- I	II -100	n -120	ш-140	ш-160	1180 1180	ш-200
Ü	Installed Capacity (MW)	149.4	174.9	201	224.8	250.4	298.8	349.8	402	449.6	500.8
H	Civil Works I-1 Access Road	39000€	39000	39000	39000	39000	39000	39000	39000	39000	39000
	1-2 Preparatory Works	0026	9700	9700	9700	0026	0026	9700	9700	9700	9700
	1-3 Diversion & Coffer Dam	10752	10752	10752	10752	10752	10752	10752	10752	10752	10752
	1-4 Dam & Spillway	26400	26400	26400	26400	26400	26400	26400	26400	26400	26400
·	1-5 Intake & Desilting Basin	20400	23200	25263	28900	32000	20400	23200	25263	28900	32000
<u>.</u> _	1-6 Headrace & Surge Tank	32500	36000	38424	43050	46000	65000	72000	76847	86100	92000
	1-7 Penstock	3822	4078	4373	5015	5260	6457	0069	7405	8486	8900
	1-8 Powerhouse & Switchyard	18210	19541	21467	23702	25254	22765	24372	25920	29398	31272
	1-9 Tailrace Tunnel	3747	4092	4365	4928	5282	5036	5500	5860	6624	7100
	Sub Total	164531	172763	179744	191447	199648	205510	217824	227147	245360	257124
2	Hydraulic Equipment	7720	8399	9554	10771	12062	12226	13300	15128	17056	19100
m.	. Electromechanical Facilities	34200	36100	38400	44700	46200	61200	64800	69400	82900	86500
4.	. Transmission Line & Substation	87500	87500	87500	87500	101400	107000	107000	107000	107000	107000
ů.	. Total Cost (1+2+3+4)	293951	304762	315198	334418	359310	385936	402924	418675	452316	469724
છ	. Engineering & Administration 5×7.5%	22046	22857	23640	25081	26948	28945	30219	31401	33924	35229
2	Physical Contingency 1 × 15% + (2+3+4+6) × 10%	39826	41400	42871	45522	48608	51764	54206	56365	60892	63352
	Grand Total (5+6+7)	355823	610698	381709	405021	434866	466645	487349	506441	547132	568305

Table 7—5 (1) Disbursement Schedule Case I—80

Construction Period 7= 13 years
Maximim Diffout P= 201 My

(S	2007	183	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	341	% 124
1,000 US\$	2006	8	-111	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,	3841	3841
Unit: 1,	2005	182		0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 6	0	3841	3841
15	18 2004 2	201	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	-0	0	0	3841	3841
		201	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	0	0		3841 38
s I	17 2 2003			0	0	0	0	0	0	0	0	0	0	0	0	-			-0	3841	
years	16 2002	īœ		0	0	0	. 0	0	0	0	0	0	0	0	0	0			0	1 3841	3841
13 13 13	15 2801	201																		3841	3841
# d.	14 2000	188	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3841	3841
	13 1999	102	. 0	0	0	0	0	0	0	315	0	315	0	921	3412	4649	349	516	5514	3841	9355
truction Period Maximum Output	1998	¥	0	. 0.	0	0	0	0	0	473	0	473	0	3763	5162	9399	705	1034	11138	2561	13699
Construction Maximum	11 1997	ŭ	0	0	0	0	0	0	O	0	0	0	0	4684	0	4685	351	쫎	5540	2561	8101
ই	10.86	Ę	0	0	0	С	0	0	0	0	0	0	0	0	0	0	0	0	0	7261	2561
	965	52	0		0	0	0	0,	0	0	0	0	0	0	0	0	- 6	0	6	7261	2561
	8 1994	134	-	523	0	2640	2526	3847	272	288	0	10593	2092	5798	23712	42707	3203	5121	51031	7861	53592
# 2 1 1 1 3 4	933	0	C .	0.21	0	5280	3789	11527	545	4730	1003	28147 1	3469	8716	47337 2	87671 4	6575	10832	105078	0	
	6 1992	0	0	1270	0	0202	3789	11527	818	4730	1672	31729 24	173	11596	7875 4	52936 8	2066	ון עבע	64183 10	0	64183 105078
	1991	0	3300	766 1	4300	7 0267	2526 3	7684 11	818	3153 4	1 699	31739 31	867	2918 11	0 7	35525 52	2664 3	5406 7	43595 64	o	43595 64
- 25 A		0		10.1	100		0 23		372 8	1576 31	0	·	0	0	0		1385 28	2303		0	
	9 1990	0	3300	0561 7	0 4300	0 2640	Đ.	0 3842	2	51	0	7 18472	0	0	0	8 18473			79.727 9%	0	257267
	3 1989	0	13650	2691 1	0 2150	0	0	0		0	0	1 17497	0	0	0	1 17498	1 1312	27.28	3 21566	0	3 21566
	2 1988		13650	2331			1. 2. 1. 18			. <u></u>		15881				15381	1191		19573	0	19573
	1987	0	3300	0	0	0	0	0	0	0	0	3800	0	0	0	3900	293	614	4807		7084
	Const.Cost 1,000USS	8	39000	97700	10752	26400	12632	38424	2728	15769	33.52	158750	8674	38400	87500	293324	21999	39470	354793	3841	358634
	Cons 1,0			:	1						_				g						L
					P. T.		Basin	ank		hyard				ities	Transmission Line & Substation		ration	×10%			Total (Grand Potal & OSM Cost)
		3		Works	Coffer	ਨ੍ਹੀ	silting	Xurge 1	다 4년	Switch	one!		gent	Faci	% % S. S.	(1+2+3+4)	dainist K	gency +344+6)	12+9		4
		Installed Capacity (MW)	Civil Works 1-1 Access Road	1-2 Preparatory Works	1-3 Diversion & Coffer Dam	1-4 Dam & Spillury	1-5 Intake & Desilting Basin	1-6 Headrace & Surge Tank	첧	I-8 Powerhouse & Switchyard	1-9 Tailrace Tunnel	Sub Total	Hydraulic Equipment	Electromechanical Facilities	ion Lir		Engineering & Administration 5×7.5%	Physical Contingency 1 ×15% + (2+3+4+6) ×10%	Grand Total (5+6+7)	بہ	100
		Se Cape	ii Worl	Prepa	Di ver	Dam &	Intak	Headt	1-7 Penstock	Power	Tailr	ά	raulic	ctrome	nsaiss	Total Cost	ineeri	 	nd Tot	O & M Cost	3
		nstal l	I.c.] []	I T	Ţ	Ţ.	<u> </u>	12	8	Ţ	ļ , `	2. Hyd	3. Ele	F.	5. Tot	6. Eng	. P.	(F	30	1

Table 7--5 (2) Disbursement Schedule Case II--80

		-		٠						İ		Š	tructic Maxim	Construction Period Maximum Output	# # # #	~ ~	13 years 201 Mu	ζ 1	•	Unit:	t: 1,000	\$31
		Const. Cost 1,000USS	1 1987	2 1988	3	4 1990	5 1991	6 1992	7 1993	8 1994	9 1	13%	117997	12 1998 1	13 14 1999 20	14 15 2000 2001	16 2002	17 2003		18 2002 2005	5 2006	2007
Installed Capacity (MW)		201	0	0	0	0	0	a	0	<u>¥</u>	짚	15.	52	8	201 2	201	Z) [07	zol z	201 2	201	102	201
1. Civil Works 1-1 Access Road		39000	3900	13650	13650	3900	3900	0		0	0	c	0.	0	0	0	0	0		0	0	0
1-2 Preparatory Works		0026	0	2231	1691	1940	766	1270	1270	523	0.	0	0	- C	0	0	0	0	0	0	0 0	0
I-3 Diversion & Coffer Dam	Dam	10752	0	0	2150	4300	4300	0	0	0	0	0	0	0	0	Q	0	0	0	0	0 0	0
I-4 Dam & Spillway		26400	0	0	0	84	2920	7320	5280	2640	0	O	0	0	0	0	0	0	0	0	0 0	C
I-5 Intake & Desilting Basin	. Basin	25263	0	0	0	0	5052	7578	7578	5052	0	0	0	0	0	0	0	0	0	0	0 0	0
1-6 Headrace & Surge Tank	X	38424	0	0	0	3842	7684	11527 1	11527	3842	0	0	0	0,1	0	0	0	0	O	0	0	0
1-7 Penstock		93	0	0	0	437	1311	1311	874	437	0	0	0	O.	0	0	0	0	0	0	0 0	0
1-8 Powerhouse & Switchyard	hyard	21467	0	0	0	2146	4293	6440	6440	1073	0	0	0	4	423	0	0	0.	0	0	0	0
1-9 Tailrace Tunnel		4365	O	0	0	0	573	2182	1309	0	0	0	0	0	0	0	0	0	0	0	0	0
Sub Total		179744	3900	15881	17497	19207	36102	38231	34281	13569	0	0	0	644	429	0	0	0	0	Ó	0 0	0
2. Hydraulic Equipment	, i i i	9554	O	0	0	0	955	0161	3821	2866	0	0	0	0	0	0	0	0.	0	0	0 0	0
3. Electromechanical Facilities	lities	38400	0	0	0	0	2918	36511	91.18	8625	0	0	4684	3763	921	0	0	0	0	0	0 0	0
4. Transmission Line & Substation	ubstation	87500	0	0	0	0	0 ,	7875	47337	23712	0	0	0	5162	3412	0	0	0	0	0	0 0	0
5. Total Cost (1+2+3+4)	(1	315198	3900	15881	17498	19207	39977	59614	94157	45947	0	0	4685	0256	4763	Q.	0	0	0	. 0	0 0	0
6. Engineering & Administration 5×7.5%	ration	23640	293	1191	1312	1441	8662	4471	2902	3446	O	0	351	718	357	0	a	0	0	a	0	0
7. Physical Contingency 1 ×15% + (2+3+4+6) ×10%	×10%	12824	614	2501	<i>57</i> .26	3025	6103	8320	11836	5618	0	.0	χ <u>ζ</u>	1981	534	0	0	0	0	O	0	0
Grand Total (5+6+7)		381709	4807	19573	21566	23673	49078	72405 1:	113055	55011	0	0	5540	11349	5654	0	0	0	0	0	0	0
O & M Cost		4069	0	0	0	0	0	0	0	2713	2713	2713	27.13	2713	4069	4069 40	4069	4069	4069	4069 4069	6904	4069
Total (Grand Total + O&M Cost)	J&M Cost)	385778	7087	57261	21566	23673	49078	72405 113055		57724	2713	27.13	8253	14062	97723 44	4069 40	4069	4069	4069	4069 4069	6904	4069
					,																	

Table 7-5 (3) Disbursement Schedule Case III-160

		1 41					- ·	·				Cons	Construction Period Maximum Output	Period Output	£ 6.	13	3 years	_		Unit:	1,000	SS
		Const. Cost 1,000US\$	1 1987	.2 1988	3 1989	1990	5 1991	6 1992	7 1993	8 1994 1	9 1 1995 1	10 19%	11 12 1997 1998	13	9 2300	0 2001	16 2002	17 2003	18 2004	19 2005	2006	2007
	Installed Capacity (MW)	402	0	0	0	:c)	0	0	0		<u>\$</u>	<u>¥</u>	134	134 402	2 402	2 402	2 402	402	705	402	402	402
	1. Civil Works I-1 Access Road	39000	3900	13650	13650	3300	3900	0	0	5	0	0	- 0	0	0	0	0	0	0	0	. 0	0
	1-2 Preparatory Works	0006	0	2231	1697	1940	766	1270	1270	233	0	0	0	0	0	0	0	0	0	0	O.	0
	1-3 Diversion & Coffer Dam	10752	0	0	2150	86	4300	0	0	0	0	0	0	0	. 0	0	0.	0	0	0	0	0
	I-4 Dam & Spillway	26400	0	0	0	2640	7920	7920	5280	2640	0	0	0	0	0	O	0 0	0	0	0	0	0
	1-5 Intake & Desilting Basin	25263	0	0	0	6	5052	7578	7578	5052	0	0	0	0	0	0	0 0	0	0	0	0	ຽ
	1-6 Headrace & Surge Tank	75847	0	0	0	3842	7684 1	11527 1	11527	7684	7684 11	11527 11	11527 3842		0	0	0 0	0	0	0	0	0
7	1-7 Penstock	7405	0	0	0	4	1332	1332	888	4	0	888	1184 8	888	0		0 0	0	0	0	0	0
' — 2	1-8 Powerhouse & Switchyard	25920	0	0	0	2151	4302	6454	6454	1114	0	0	2851 2332	32 259	6.	-0	0	0	0	0	0	0
3	I-9 Tailrace Tunnel	2860	0	0	0	0	2987	2168	1300	0	0	0	761 7	192	0	0	0 0	0	0	0	0	0
	Sub Total	227147	88	15881	17497	19218	36127 3	38251 3	34300 1	. 65721	7684 12	12415 16	16324 7825	25 259	6.	0	0 0	0	0	0	0	0
	2. Hydraulic Equipment	15128	0	0	0	0	923	1906	3812	2859	0	0	3025 2571	12	0	0	0 0	0	0	0	0	0
	3. Electromechanical Facilities	69400	0	0	0	ö	2914 1	11589	8675	5829	0	0 30	20195 16170	5205 9/	73	0	0	0	0	0	0	0
- 	4. Transmission Line & Substation	107000	0	0	0	0	0	7918 4	47294 2	23647	0	0 16	16906 11235	35	0	0	0	0	0	0	0	0
	5. Total Cost (1+2+3+4)	418675	3900	15881	17498	19219	39995 5	6 99969	94082 4	. 96264	7685	12A16 56	56452 37803	33 4284	4	0	0	0	0	0	0	0
	6. Engineering & Administration 5×7.5%	31401	293	1611	1312	141	300	475	9202	3735	576	931	4234 28	2835 321	- 1	- 0	0	0	0	0	0	0
	7. Physical Contingency 1 ×15% + (2+3+4+6)×10%	56365	614	2501	27.2	3027	9019	8327 1	52811	9239	1210	9 5561	6885 44	4455 47	474	-	0	0	0		0	0
	Grand Total (5+6+7)	506441	4807	19573	21566	23687	49101 7	72468 11	112967 5	59757	9471 15	15302 67	67571 45093	93 5079	<u> </u>	0	0	0	0		0	0
-	0 & M Cost	2925	0	0	0	0	0	0	-	1856	1856	1856 I	1856 18	1856 5567	7 5567	7 5567	7 5567	5567	5567	5567	5567	5567
	Total (Grand Total + C&M Cost)	512008	4807	19573	21566	23687	49101	72468 112967		61613	11327 17	17158 69	69427 46949	49 10646	5567	2955 2	7 5567	5567	5567	5567	2267	5567
				•																		

tively. Eventually, it is found that the optimum scale will have the maximum power discharge of $80 \text{ m}^3/\text{s}$ which gives the maximum output of around 200 MW.

As observed in Fig. 7-5, benefit curve is divided roughly into 2 portions, namely, the first portion indicating sharp rise corresponding to increase of power discharge from 0 to 80 $\rm m^3/s$, and the second portion indicating gentle slope. The sharp rise in the first portion originates from the high kW and kWh values of the firm energy for domestic use.

In general, the benefit curve has a character that the incremental benefit per unit discharge becomes smaller for the larger maximum power discharge. In connection with cost curve, since the major variables are the costs for headrace tunnel and electric equipment and further, the capacity of generating equipment and tunnel diameter vary linearly in proportion to the maximum power discharge, the gradient of cost curve is almost constant with exception that the curve for power discharge of more than 90 m³/s has different character due to increase of number of units from 3 to 4.

(2) Intake Water Level

Table 7-6 (2) and Fig. 7-6 show the results of analytical study on 4 cases having different dam height, for the power station at the Pikhuwa site as a representative and power discharge of $80~\text{m}^3/\text{s}$. The benefit values are dotted on almost straight lines, while, the cost curve above EL. 840 m becomes steeper than that below EL. 840 m due to additional costs required for dealing with the landslide existing on right bank above EL. 850 m and strengthening of the part crossing the Khoktak Khola of the desanding basin. Referring to the abovementioned benefit and cost curves, the optimum intake water level is set at EL. 840 m.

(3) Powerhouse Site

As shown in Table 7-6 (3) and Fig. 7-7, the comparative study of 3 powerhouse sites: Solakhani, Pikhuwa and Kaguwa sites, is carried out based on the intake water level at EL. 840 m and power discharge of 80 m³/s. It is observed that the economical situation of the Solakhani site is apparently worse than those of other two downstream sites. As to the comparison of the Pikhuwa site with the Kaguwa site, it is found that the incremental benefit due to additional head at the Kaguwa site is just absorbed by the cost increase attributable to the electrical equipment of larger scale as well as geological disadvantages and further, the net present value (B-C) at the Pikhuwa site is slightly larger than the other one.

Accordingly, the powerhouse site is selected at the Pikhuwa site taking also the geological advantages into consideration.

7.3.2 Case II (1st Stage Development)

On the assumption that the extension works (2nd stage development) required for power export will be executed in the future following those included in Case I, Case II includes a part of the works of the second stage development to be executed in advance. The works to be executed in advance are intake, desanding basin, powerhouse and tailrace outlet which will jeopardize safety of the structures already completed, if these works are executed separately as the second stage development. The parameter applied to this study is the maximum power discharge only, while, the powerhouse site and intake water level are fixed at the Pikhuwa site and EL. 840 m being selected for the optimum development scheme in Case I study.

The results of this study are shown in Table 7-6 (1) and Fig. 7-5 in which the benefit curve is common with Case I and the cost line runs in parallel with that of Case I. Owing to the above, the highest point of net present value (B-C) falls on the line corresponding to the maximum power discharge of $80~\text{m}^3/\text{s}$ similarly to Case I. The difference of B-C curves between Cases I and II just corresponds to the advanced execution of the structures for power

export. The results of Case II study indicate that this project will be still economically feasible even if the extension plan is suspended after completion of the first stage development due to the problems concerning power export.

7.3.3 Case III (2nd Stage Development)

Since Case III study is made on the basis of various assumptions as stated in 7.1, the benefit and cost induced therefrom involve much of uncertainty. In particular, the amount of power to be exported and its price are the basic elements for estimating the benefit and can be reasonably fixed upon conclusion of negotiation with the importing country. In this study, it is assumed that all surplus power can be exported from the viewpoint of enhancing project economy as much as possible. Comparing Fig. 7-5 with Fig. 7-8, it can be observed that the economical situation of the project in the case of power export is much better than the other. There exists discontinuity of benefit curve between power discharges of 160 m³/s and 180 m³/s in Fig. 7-8, and this owes to the fact that the number of unit increases from 6 to 8 due to limited unit capacity resulting in delay of commissioning date of one year.

In other words, this will indicate that the higher project economy can be obtained by the earlier commissioning of unit when power export is considered. Because of discontinuity of benefit curve shown in the said figure, the highest point of net present value (B-C) falls on the line corresponding to the maximum power discharge of $160~\text{m}^3/\text{s}$ which is just double amount of the power discharge of $80~\text{m}^3/\text{s}$ optimized in the studies of Cases I and II. This is quite advantageous to make the coordinated plans of the first and second stage development schemes.

7.3.4 Optimum Development Scale

Based on the above studies, the stagewise development schemes shown below are selected as the optimum ones which will be applied to the succeeding detailed studies.

	Max. Power Discharge	Max. Output	Powerhouse Site	Intake Level
$\{x_{i},x_{i}\}_{i=1}^{n}, x_{i}\in \{x_{i},x_{i}\}_{i=1}^{n}, x_{i}\in \{x_{i}\}_{i=1}^{n}, x_{i}\in \{x_{i}\}_{i=1}^{n$	(m ³ /s)	(MW)		(m)
lst stage	80	201	Pikhuwa	840
2nd stage	160	402	Pikhuwa	840

Table 7-6 (1) Study of Development Scale (1-4: Maximum Discharge)

CASE	Unit	09 - I	02 - 1	1 - 80	06 - I	I - 100	09 - п	п- 70	08 - п	п- 90	п- 100
Power House Site Intake Water Level Max.discharge	E E	Pikhuwa 840.0 60.0	Рікнима 840.0 70.0	Рікнима 840.0 80.0	Рікнича 840.0 90.0	Рікнима 840.0 100.0	Рікћима 840.0 60.0	Рікћима 840.0 70.0	Pikhuwa 840.0 80.0	Рікћима 840.0 90.0	Pikhuwa 840.0 100.0
Power Facilities Dam Neight	E	છ	65	65	<u>99</u>	65	65	65	65	95	65
Tunnel D X L X n	E KIN E	6.3x11.3x1	6.6x11.3x1	7.0x11.3x1	7.4x11.3x1	7.7x11.3x1	6.3x11.3x1	6.6x11.3x1	7.0x11.3x1	7.4x11.3x1	7.7×11.3×1
Penstock Number	ដ	1~3	1~3	1~3	1~4	1~4	1~3	1~3	1~3	1~4	1~4
Turbine Unit No.	æ	က	3	လ	4	7	က	က	ć	47	4
Power Generating Plan Intake Level	E	840.0	840.0	840.0	840.0	840.0	840.0	840.0	840.0	840.0	840.0
Tailrace Level	8	538.0	538.0	538.0	538.0	538.0	538.0	538.0	538.0	538.0	538.0
Effective Head	B	288.0	288.0	288.0	288.0	288.0	288.0	288.0	288.0	288.0	288.0
Max. Discharge	13/S	60.0	70.0	0.08	90.0	100.0	90.09	70.0	80.0	90.0	100.0
Installed Capacity (p X n)	至 是	149.4 (49.8 X 3)	174.9 (58.3 X 3)	201.0 (67.0 x 3)	224.8 (56.2 X 4)	250.4 (62.6 X 4)	149.4 (49.8 X 3)	174.9 (58.3 X 3)	201.0 (67.0 x 3)	224.8 (56.2 x 4)	250.4 (62.6 x 4)
Annual Energy	CE-13	1,303.5	1,514.4	1,721.8	1,922.1	2,106.2	1,303.5	1,514.4	1,721.6	1,922.1	2,106.2
Firm Energy Secondary Energ.	££	1,303.5	1.514.4	1,721.6	1,863.2	1,863.2	1,303.5	1,514.4	1,721.6	1,863.2	1,863.2
Construction Cost	10°05\$	332.54	344.44	354.79	375.34	403.31	355.82	369.02	381.71	405.02	434.87
Economic Evaluation											
Fresent value of B Present value of C Present value of C B C	10°US\$ 10°US\$ 10°US\$	212.08 183.74 28.34	28.58.5 36.58.	193.17 483.17	250.57 202.27 48.30	254.41 210.45 43.96	212 195.84 16.24 28.84	228.20 201.57 26.62	224.02 207.05 34.95	250.57 217.46 33.10	254.41 226.53 27.87
Cost per kwh 1 Cost per kwh 2	受害		3.78	 388	3.95 488	33.65	4.43	:0.4. :RS	 	.36. 1285	3.67.75 17.00 17
With Exports Present value of B Present value of C 8 - C	10°US\$ 10°US\$ 10°US\$		· · · · · · · · · · · · · · · · · · ·								
Cost per kwh 1 Cost per kwh 2	c/8h	· ·		-							

Cost per kwh 1: average net cost of useful salable energy and capacity Cost per kwh 2: average net cost of total energy and capacity

Table 7-6 (3) Study of Development Scale (3-4: Tailrace Water Level) Table 7-6 (2) Study of Development Scale (2-4: Intake Water Level)

										- 1 - 1 2		-				
I - 80-875	Pikhuwa 875.0 80.0	100.0	7.0X11.3X1	1~4	4	875.0	538.0	323.0	80.0	223.6 (55.9 X 4)	1,930.8	1,930.8	439.06	255. 255.63 1.6.63 1.07 2.07		
1 - 80-855	Pikhuwa 855.0 80.0	80.0	7.0X11.3X1	1~3	က	855.0	538.0	303.0	80.0	(70.4 x 3)	1,811.3	1,811.3	378.07	247.61 205.53 42.08 1.20 1.20 3.52		
1 - 80-840	Pikhuwa 840.0 80.0	65.0	7.0X11.3X1		3	840.0	538.0	288.0	80.0	201.0 (67.0 x 3)	1,721.6	1,721.6	354.79	242.02 193.17 483.85 1.25 3.48		
I - 80-830	Pikhuwa 830.0 80.0	55.0	7.0X11.3X1	1~3	3	830.0	538.0	278.0	80.0	193.8 (64.6 × 3)	1,661.8	1,661.8	346.08	238.07 189.49 48.58 1.26 5.88 3.54		
Unit	113.00	E	n km	F	E	E	Æ	E	m³/s	至是	GFF	똟뚢	10,08	10*US\$ 10*US\$ 10*US\$ c / KWh	10°US\$ 10°US\$ 10°US\$	c /KWh c /KWh
CASE	Power House Site Intake Water Level Max, discharge	Power Facilities Dam Height	Tunnel D X L X n	Penstock Number	Turbine Unit No.	Power Generating Plan Intake Level	Tailrace Level	Effective Head	Max.Discharge	Installed Capacity (p X n)	Annual Energy	Firm Energy Secondary Energ.	Construction Cost	Economic Evaluation Without Exports Present value of B Present value of C B B-C Cost per kwh 1 Cost per kwh 2	With Exports Present value of B Present value of C B - C	b/C Cost per kwh 1 Cost per kwh 2

Cost per kwh 1: average net cost of useful salable energy and capacity Cost per kwh 2: average net cost of total energy and capacity

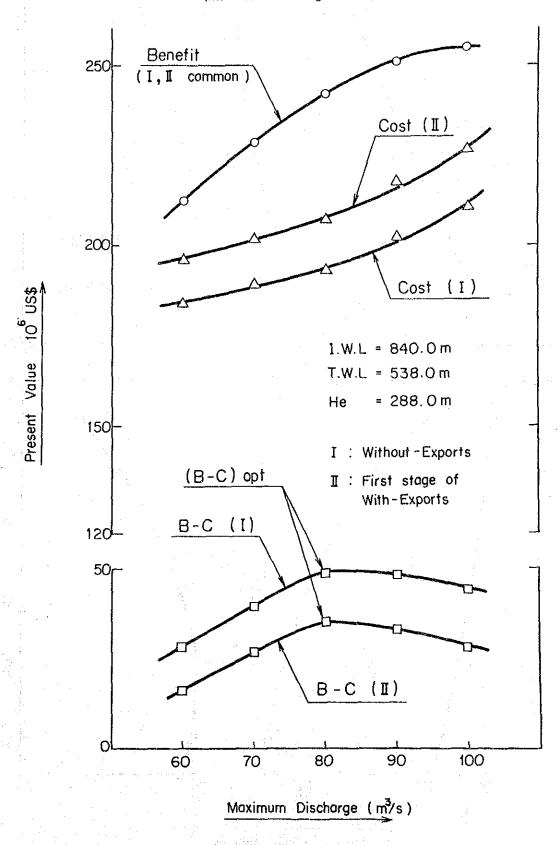

	CASE	Ľni t	I - 80 - S	I - 80 - P	И - 80 - К
Power P Intake Max.dis	r House Site ke Water Level discharge	m 3/s	Solakhani 840.0 80.0	Рікрима 840.0 80.0	Кавима 840.0 80.0
Power	er Facilities Dam Height	E	65.0	65.0	65.0
	Tunnel D X L X n	m Km n	7.0X7.0X1	7.0X11.3X1	7.0X11.6X1
	Penstock Number	c	1~3		1~3
	Turbine Unit No.	c	က	3	3
Power	or Generating Plan Intake Level	Е	840.0	840.0	840.0
	Tailrace Level	E	615.0	538.0	525.0
	Effective Head	Æ	215.0	288.0	303.0
	Max.Discharge	m ³ /s	80.0	80.0	80.0
	Installed Capacity (p X n)	₩ <u>₩</u>	149.1 (49.7 x 3)	201.0 (67.0 X 3)	211.8 (70.6 x 3)
	Annual Energy	뚬	1,285.2	1,721.6	1,811.3
	Firm Energy Secondary El	GWn GWn	1,285.2	1,721.6	1,811.3
Cons	struction Cost	10°US\$	325.57	354.79	368.17
FC0	Economic Evaluation Mithout Exports Present value of B Present value of C B - C	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	209.11 180.00 11.11 12.11	242.02 193.17 48.85	247.67 200.12 47.55
	Cost per kwh 1 Cost per kwh 2	c /Kwh c /Kwh		.3.5.5 8.90 8.90 8.90	3.55 43
3	ith Exports Present value of B Present value of C B . C	10°05 10°05 10°05 10°05			
	S/C Cost per kwh 1 Cost per kwh 2	c /KWh c /KWh			

Table 7-6 (4) Study of Development Scale (4-4: Maximum Discharge)

E- 120 120.0 120.0 5.3x11.3x2 6 6 840.0 538.0 120.0 120.0 120.0 120.0 120.0 120.0	Fikhuwa 840.0 140.0 140.0 2~6 6 6 840.0 538.0 588.0 140.0 140.0 140.0 140.0 140.0	## - 160 Pikhuwa 840.0 160.0 2~6 6 6 6 840.0 538.0 288.0	m − 180 Pikhuwa 840.0 180.0 180.0 2~8 8 8 840.0 538.0	E- 200 Pikhuwa 840.0 200.0 200.0 2~8 8 840.0 538.0
	940.0 140.0 5.6x11.3x2 2~6 6 6 840.0 538.0 140.0 140.0	Pikhtwa 840.0 160.0 160.0 2~6 6 6 840.0 538.0 160.0 160.0	Pikhuwa 840.0 180.0 65 7.4x11.3x2 2~8 8 8 840.0 538.0	Pikhuwa 840.0 200.0 65 7.7x11.3x2 2~8 8 840.0 538.0
	65 3.6x11.3x2 2~6 6 6 840.0 538.0 140.0 140.0	65 2~6 6 6 840.0 538.0 160.0	65 7.4x11.3x2 2~8 8 840.0 538.0	65 7.7x11.3x2 2~8 8 840.0 538.0
	3.6x11.3x2 2~6 6 840.0 538.0 288.0 140.0 140.0	7.0x11.3x2 2~6 6 6 840.0 538.0 288.0 160.0	7.4x11.3x2 2~8 8 840.0 538.0	7.7x11.3x2 2~8 8 840.0 538.0
······································	2~6 6 840.0 538.0 288.0 140.0	2~6 6 840.0 538.0 288.0 160.0	2~8 8 840.0 538.0	2~8 8 840.0 538.0
	840.0 538.0 288.0 140.0	6 840.0 538.0 288.0 160.0	8 840.0 538.0 288.0	8 840.0 538.0 288.0
	840.0 538.0 288.0 140.0 349.8	840.0 538.0 288.0 160.0	840.0 538.0 288.0	840.0 538.0 288.0
	538.0 288.0 140.0 349.8	538.0 288.0 160.0	288.0	538.0
	288.0 140.0 349.8	160.0	288.0	288.0
	349.8	160.0		
	349.8	U 60F	180.0	200.0
) < >	(67 0 X 6)	449.6 (56.2 X 8)	500.8 (62.6 X 8)
2,431.3	2,710.6	2,960.3	3,186.9	3,396.4
1,863.2 568.1	1,863.2	1,863.2	1,863.2	1,863.2
466-65	487.35	506.44	547.13	568.31
				-
222.42 222.12 141.30 3.93 3.93	237.75 154.82 1.68 2.58 1.68 1.68	2428 2455.73 2.1.729 3.1.755	260.41 260.41 163.74 3.77	443. 269.03 174.63. 3.655. 865. 865. 865. 865. 865. 865. 865.
22 1 22 1	5.8.11-1.0.6. 5.8.11-1.0.6. 5.		252. 252. 252. 25. 25. 25. 25. 25. 25. 2	487.35 506.44 1.097.1

Cost per kwh 1 : average net cost of useful salable energy and capacity.
Cost per kwh 2 : average net cost of total energy and capacity

Fig. 7-5 Study for Optimum Development Scale (Maximum Discharge Case I, II)

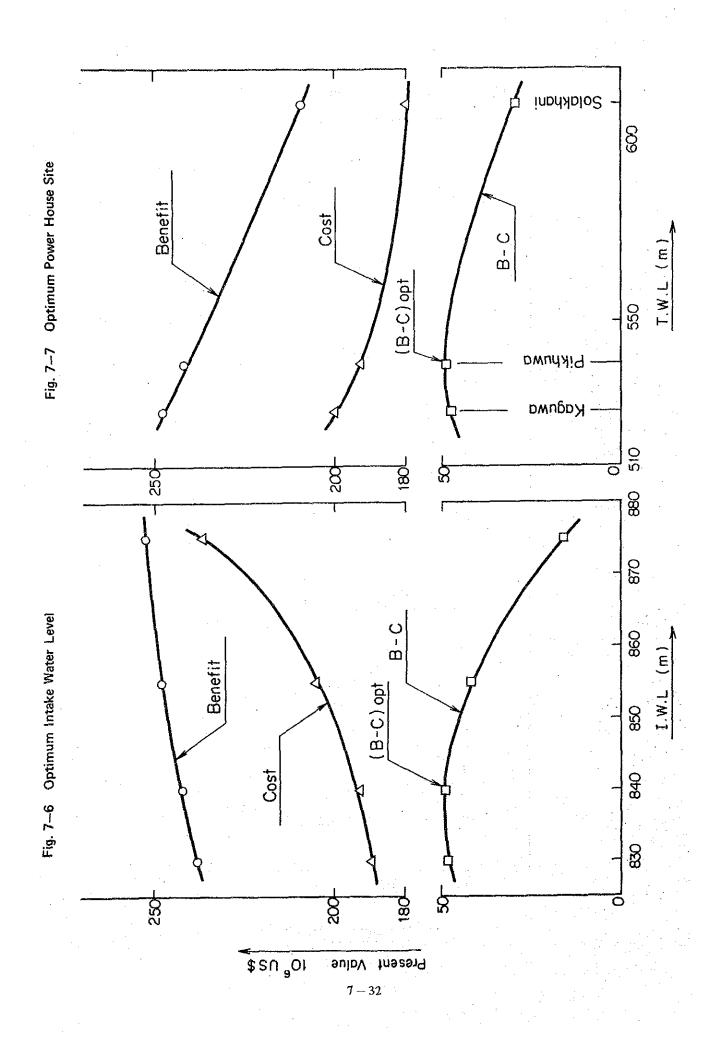


Fig. 7-8 Study for Optimum Development Scale (Maximum Discharge Case III)

CHAPTER 8. POWER TRANSMISSION AND SUBSTATION SYSTEM PLAN

CHAPTER 8. POWER TRANSMISSION AND SUBSTATION SYSTEM PLAN

			Page
8.1	Select	ion of Transmission Pattern	8 – 1
	8.1.1	Utilization of Existing Transmission Lines	8 – 1
	8.1.2	Applicable Transmission Patterns	8 - 2
	8.1.3	Optimum Pattern	8 – 5
8.2	Select	ion of Transmission Line Voltage	8 – 9
	8.2.1	Voltage Selection Method	8 - 9
	8.2.2	Optimum Voltage	8 – 9
	8.2.3	220 kV Transmission and Future Power Development	8 – 11
8.3	Const	ruction and Expansion of Substation/Switchyard	8 – 11
	8.3.1	Expansion of Dubi Substation	8 – 11
	8.3.2	Construction of New Kathmandu Substation	8 12
	8.3.3	Expansion of Dhalkebar Switchyard	8 – 13
8.4	Develo	opment Sequence of Transmission Line and Substation	8 – 13
8.5	Conce	ptual Study on Power Export	8 – 17
8.6	Power	System Analysis	8 – 19
	8.6.1	Calculation Condition	8 – 19
	8.6.2	Power Flow/Voltage and System Stability	8 – 23
	8.6.3	Short Circuit Current	8 – 26
	8.6.4	Transmission Line Charging	8 – 26
8.7	Furthe	er Study and Investigation	8 – 27
	8.7.1	Power Facilities around Kathmandu	8 – 28
	8.7.2	Expansion of 132 kV Transmission Line	
	•	in Western Power System	
	8.7.3	Expansion of Hetauda Substation	8 – 30
	8.7.4	Power Export	8 - 30

en de la Marie de la Companya de la La companya de la Co

en de la companya de la co

LIST OF TABLES

Table 8-1 (1)	Economic Comparison of Each Transmission Pattern (For F.Y. 2001/2002)
Table 8-1 (2)	Economic Comparison of Each Transmission Pattern (For F.Y. 2007/2008)
Table 8-2	Economic Comparison between 220 kV and 400 kV Substation, Switchyard and Transmission Line Facilities
Table 8-3	Development Sequence of Transmission Line and Substation
Table 8-4	Generator and Transformer Data

LIST OF FIGURES

Fig. 8-1 (1)	Conceivable Transmission Pattern (1st Stage)	
Fig. 8-1 (2)	Conceivable Transmission Pattern (2nd Stage)	
Fig. 8–2 (1)	Stability in 1st Stage Development without Construction of 220 kV Line (132 kV Operation from Arun 3 to Dubi)	
Fig. 8–2 (2)	Stability in 1st Stage Development without Construction of 220 kV Line (220 kV Operation from Arun 3 to Dubi)	
Fig. 8-3 (1-1)	Power Flow Analysis of Pattern 1 in F.Y. 2001/2002 (Peak)	
Fig. 8-3 (2-1)	Power Flow Analysis of Pattern 2 in F.Y. 2001/2002 (Peak)	
Fig. 8-3 (3-1)	Power Flow Analysis of Pattern 3 in F.Y. 2001/2002 (Peak)	
Fig. 8-3 (4-1)	Power Flow Analysis of Pattern 4 in F.Y. 2001/2002 (Peak)	
Fig. 8-3 (1-2)	Power Flow Analysis of Pattern 1 in F.Y. 2007/2008 (Peak)	
Fig. 8-3 (2-2)	Power Flow Analysis of Pattern 2 in F.Y. 2007/2008 (Peak)	
Fig. 8-3 (3-2)	Power Flow Analysis of Pattern 3 in F.Y. 2007/2008 (Peak)	
Fig. 8-3 (4-2)	Power Flow Analysis of Pattern 4 in F.Y. 2007/2008 (Peak)	
Fig. 8–3 (5)	Power Flow Analysis of 400 kV Transmission for Pattern 4 in F.Y. 2007/2008	
Fig. 8-4 (1-1-1)	Stability of Pattern 1 in F.Y. 2001/2002 in Case of Fault at Bus 1	
Fig. 8-4 (1-1-2)	Stability of Pattern 1 in F.Y. 2001/2002 in Case of Fault at Bus 2	
Fig. 8-4 (2-1-1)	Stability of Pattern 2 in F.Y. 2001/2002 in Case of Fault at Bus 1	
Fig. 8-4 (2-1-2)	Stability of Pattern 2 in F.Y. 2001/2002 in Case of Fault at Bus 2	
Fig. 8-4 (3-1-1)	Stability of Pattern 3 in F.Y. 2001/2002 in Case of Fault at Bus 1	
Fig. 8–4 (3–1–2)	Stability of Pattern 3 in F.Y. 2001/2002 in Case of Fault at Bus 2	
Fig. 8-4 (4-1-1)	Stability of Pattern 4 in F.Y. 2001/2002 in Case of Fault at Bus 1	
Fig. 8-4 (4-1-2)	Stability of Pattern 4 in F.Y. 2001/2002 in Case of Fault at Bus 2	
Fig. 8-4 (4-1-3)	Stability of Pattern 4 in F.Y. 2001/2002 in Case of Fault at Bus 6	
Fig. 8-4 (1-2)	Stability of Pattern 1 in F.Y. 2007/2008	
Fig. 8–4 (2–2)	Stability of Pattern 2 in F.Y. 2007/2008	
Fig. 8-4 (3-2)	Stability of Pattern 3 in F.Y. 2007/2008	
Fig. 8–4 (4–2–1)	Stability of Pattern 4 in F.Y. 2007/2008 in Case of Fault at Bus 1	
Fig. 8–4 (4–2–2)	Stability of Pattern 4 in F.Y. 2007/2008 in Case of Fault at Bus 2	
Fig. 8-4 (4-2-3)	Stability of Pattern 4 in F.Y. 2007/2008 in Case of Fault at Bus 6	

Fig. 8-5 (1)	Power Flow Analysis of Pattern 4 in F.Y. 1993/1994 (Peak)
Fig. 8-5 (2)	Power Flow Analysis of Pattern 4 in F.Y. 1993/1994 (Off Peak)
Fig. 85 (3)	Power Flow Analysis of Pattern 4 in F.Y. 1998/1999 (Peak)
Fig. 8-5 (4)	Power Flow Analysis of Pattern 4 in F.Y. 1998/1999 (Off Peak)
Fig. 8–5 (5)	Power Flow Analysis of Pattern 4 in F.Y. 1998/1999 with Power Export (Off Peak)
Fig. 8-6 (1)	Stability of Pattern 4 in F.Y. 1993/1994 in Case of Fault at Bus 1
Fig. 8-6 (2)	Stability of Pattern 4 in F.Y. 1993/1994 in Case of Fault at Bus 2
Fig. 8-6 (3)	Stability of Pattern 4 in F.Y. 1993/1994 in Case of Fault at Bus 6
Fig. 8–7 (1)	Stability of 200 MW Export in F.Y. 1998/1999 in Case of 220 kV, 1 CCT T/L, Fault at Bus 1
Fig. 8–7 (2)	Stability of 200 MW Export in F.Y. 1998/1999 in Case of 220 kV, 1 CCT T/L, Fault at Bus 2
Fig. 8–7 (3)	Stability of 200 MW Export in F.Y. 1998/1999 in Case of 220 kV, 2 CCT T/L, Fault at Bus 2
Fig. 8-8 (1)	Power Flow Analysis of 200 MW Export in F.Y. 1998/1999 (Peak)
Fig. 8–8 (2)	Power Flow Analysis of 200 MW Export in F.Y. 2001/2002 (Peak)
Fig. 8-9 (1)	Stability of 200 MW Export in F.Y. 1998/1999 in Case of 220 kV, 2 CCT T/L, Fault at Bus 1
Fig. 8–9 (2)	Stability of 200 MW Export in F.Y. 2001/2002 in Case of 220 kV, 2 CCT T/L, Fault at Bus 1
Fig. 8-10	Impedance Map of Power System at Final Stage of Development for Arun 3 Project
Fig. 8–11	3-Phase Short Circuit Analysis in F.Y. 2007/2008
,	Line Charging and Reactive Power Flow

CHAPTER 8. POWER TRANSMISSION AND SUBSTATION SYSTEM PLAN

8.1 Selection of Transmission Pattern

The electric power system of Nepal is made up of a primary system of 132 kV and a secondary system of 66 kV as described in preceding paragraph 2.3.1. The 132 kV transmission network stretches approximately 800 km east-west centerred at Kathmandu with a ring system of 66 kV transmission lines making up the power system around Kathmandu.

The electric power generated at the Arun 3 power station will be consumed mainly at Kathmandu, and via the Dubi substation, at Biratnagar. The load forecasts according to substation are as shown in Table 2-9, Chapter 2.

The power generated at the Arun 3 will be transmitted to Kathmandu by existing 132 kV transmission line between the Hetauda substation and the Dubi substation (presently operated as single circuit, but another circuit is necessary to be added by the time of commissioning of the Arun 3 power station) and 220 kV transmission line to be newly constructed.

With regard to the transmission route from the Arun 3 power station to load areas, the optimum transmission pattern is to be selected out of these applicable from technical and economical point of view.

8.1.1 Utilization of Existing Transmission Lines

In view of project economy, it is preferable to utilize to the utmost extent the existing transmission lines between the Hetauda and the Dubi substations (132 kV, 2 cct including expansion plan of 1 cct) for transmitting power generated at the Arun 3 power station. For power generation of 201 MW (3 units, 67 MW each) after completion of the first stage development of the Arun 3 project, stability analyses for the following two cases are examined to clarify the possibility of transmitting the above power to Kathmandu through the Hetauda substation with the existing 132 kV transmission line (2 cct) without new construction of 220 kV transmission line.

Case 1: Power transmission (132 kV, 2 cct) from the Arun 3 power station to the Dubi substation

Case 2: Power transmission (220 kV, 2 cct) from the Arun 3

power station to the Dubi substation and step-down to

132 kV with transformers at the Dubi substation

The results of stability analyses for the above two cases are shown in Figs. 8-2(1) and 8-2(2). The calculation condition is that three units of the Arun 3 power station operate at full output condition (201 MW) and local power distributed from the Dubi substation is 90% of the estimated load, and accordingly in its degree power flow towards Kathmandu is increased more than estimated one. The fault point is 132 kV bus at the Dubi substation and fault clearing-off time is estimated at 150 ms in the both cases. As obviously observed in these drawings, power transmission of 201 MW with the existing 132 kV transmission line (2 cct) only is not applicable due to difficulty in maintaining the system stability. It is, therefore, required to construct 220 kV transmission line (1 cct) for development of the first stage scheme.

8.1.2 Applicable Transmission Patterns

The following four patterns shown in Figs. 8-1(1) and 8-1(2) are taken into account for power transmission from the Arun 3 power station to Kathmandu, with the premise of new construction of 220 kV transmission line. For selecting the optimum transmission pattern, these conceivable patterns are analyzed from technical and economical standpoints for the fiscal years: 2001/02 and 2007/08 at which the transmission and substation facilities constructed as the first stage development (201 MW without power export) and the second stage development (402 MW in total, with power export) respectively will be full loaded to meet the domestic requirements only as referred to Fig. 2-7.

(1) 1st Stage Development

(i) Pattern 1

This pattern is the power transmission from the Arun 3 power station to the Hetauda substation via the Dubi substation, the Dhalkebar switchyard and the Pathalaiya substation.

New transmission line:

Arun 3 P/S - Dubi S/S (220 kV, 2 cct)

Dubi S/S - Dhalkebar S/Y - Pathalaiya S/S (220 kV, 1 cct)

Pathalaiya S/S - Hetauda S/S (132 kV, 1 cct)

New substation:

Pathalaiya S/S

Expanded substation and switchyard:
Dubi S/S, Dhalkebar S/Y, Hetauda S/S

(ii) Pattern 2

This pattern is power transmission from the Arun 3 power station to the Hetauda and the Siuchatar substations via the Dubi substation, the Dhalkebar switchyard and the Pathalaiya substation.

New transmission line:

Arun 3 P/S - Dubi S/S (220 kV, 2 cct)

Dubi S/S - Dhalkebar S/Y - Pathalaiya S/S - Siuchatar S/S (220 kV, 1 cct)

New substation:

Pathalaiya S/S

Expanded substation and switchyard:
Dubi S/S, Dhalkebar S/Y, Siuchatar S/S

(iii) Pattern 3

This pattern consists of a route with 220 kV voltage from the Arun 3 power station to the New Kathmandu substation via the Dubi substation and the Dhalkebar switchyard, connecting the New Kathmandu substation with the Siuchatar and the Balaju substations by 132 kV line, and another route from the Dhalkebar switchyard to the Hetauda substation via the Pathalaiya substation with 220 kV voltage.

New transmission line:

Arun 3 P/S - Dubi S/S (220 kV, 2 cct)

Dubi S/S - Dhalkebar S/Y - New Kathmandu S/S (220 kV, 1 cct)

Dhalkebar S/Y - Pathalaiya S/S (220 kV, 1 cct)

- * New Kathmandu S/S Balaju S/S (132 kV, 1 cct)
- * New Kathmandu S/S Siuchatar S/S (132 kV, 1 cct)
- * The costs of the transmission lines in these sections are not included in the feasibility study.

New substation:

Pathalaiya S/S, New Kathmandu S/S

Expanded substation and switchyard: Dubi S/S, Dhalkebar S/Y

(iv) Pattern 4

This pattern is power transmission with 220 kV voltage from the Arun 3 power station to the Siuchatar substation and the Balaju substation via the Dubi substation, the Dhalkebar switchyard, and the New Kathmandu substation.

New transmission line:

Arun 3 P/S - Dubi S/S (220 kV, 2 cct)
Dubi S/S - Dhalkebar S/Y - New Kathmandu S/S (220 kV, 1 cct)

- * New Kathmandu S/S Siuchatar S/S (132 kV, 1 cct)
- * New Kathmandu S/S Balaju S/S (132 kV, 1 cct)

* The costs of the transmission line in these sections are not included in the feasibility study.

New substation:

New Kathmandu S/S

Expanded substation and switchyard: Dubi S/S, Dhalkebar S/Y

(2) 2nd Stage Development

The transmission line routes for respective patterns are same as those described in the first stage development above and the following additional transmission lines are to be provided.

(i) Pattern l

Dubi S/S - Dhalkebar S/Y - Pathalaiya S/S (220 kV, 1 cct) Pathalaiya S/S - Hetauda S/S (132 kV, 1 cct)

(ii) Pattern 2

Dubi S/S - Dhalkebar S/Y - Pathalaiya S/S - Siuchatar S/S (220 kV, 1 cct)

(iii) Pattern 3

Dubi S/S - Dhalkebar S/Y - New Kathmandu S/S (220 kV, 1 cct)

Dhalkebar S/Y - Pathalaiya S/S (220 kV, 1 cct)

(iv) Pattern 4

Dubi S/S - Dhalkebar S/Y - New Kathmandu S/S (220 kV, 1 cct)

8.1.3 Optimum Pattern

The optimum power transmission pattern is to be selected carrying out technical and economic comparison studies on the beforementioned four patterns.

In selection of the power transmission pattern, the study is first made with the voltage of the new transmission line as 220 kV, while transmission voltage is selected for the optimum transmission pattern so chosen, as described later in paragraph 8.2.

With the details of power system analysis given in the succeeding paragraph 8.6. power flow and power system stability analyses are made for various power transmission patterns as of F.Y. 2001/02 and F.Y. 2007/08 for the first and second stage development, respec-Power flows for respective patterns are shown in Figs. tively. 8-3(1-1), 8-3(2-1), 8-3(3-1) and 8-3(4-1) for the fiscal year 2001/02 and Figs. 8-3(1-2), 8-3(2-2), 8-3(3-2) and 8-3(4-2) for 2007/08. While, transient generator swing curves are shown in Figs. 8-4(2-1-2), 8-4(2-1-1), 8-4(3-1-1), 8-4(1-1-2), 8-4(1-1-1)8-4(3-1-2), 8-4(4-1-1), 8-4(4-1-2) and 8-4(4-1-3) for the fiscal year 2001/02 and Figs. 8-4(1-2), 8-4(2-2), 8-4(3-2), 8-4(4-2-1), 8-4(4-2-2) and 8-4(4-2-3) for 2007/08. According to these calculations, it is found that the stable power transmission of 201 MW and 402 MW generated at the Arun 3 power station as of F.Y. 2001/02 and 2007/08 can be secured for any of the above patterns.

Meanwhile, comparative study on economy of these transmission patterns for F.Y. 2001/2002 and F.Y. 2007/2008 is made as shown in Tables 8-1(1) and 8-1(2) respectively, based on the annual costs as parameters derived from power transmission loss (kW loss), energy transmission loss (kWh loss) and construction costs of transmission lines and substations (switchyard). It should be noted, concerning Table 8-1(1) and Fig. 8-1(1), that cost of transformers to be installed in September, 1998 is included in this study because new transmission line is to be operated at 220 kV in this stage. As for substation (switchyard) equipment, the costs are calculated for these of conventional type. Among these four patterns, the power transmission method categorized as Pattern 4 is found to be the most economical one and Pattern 3 to be the costliest at both points of Therefore, Pattern 4 is selected as the optimum one. time. features of respective patterns as of F.Y. 2007/08 are as described below, since these at both times are almost the same.

(1) Pattern 1 (Refer to fig. 8-3(1-2))

The specific feature of Pattern 1 is that the electric power from the Arun 3 power station is concentrically received at the Hetauda substation. As shown in Fig. 8-3(1-2), the power received at the Hetauda substation will be approximately 279 MW and power flow amounting to 50 percent of the total demand of 552 MW in whole Nepal (F.Y. 2007/08, excluding transmission line loss) will be concentrated at the existing 132 kV buses of the Hetauda substation. Taking the possible troubles at the Hetauda substation into consideration, it will be necessary to have the power system capable of dispersing excess power flow from the standpoint of securing stable power supply. Therefore, this pattern is not very desirable in view of system reliability.

The construction cost of this pattern is low next to Pattern 4, but the power transmission loss for the entire system will be 39.6 MW which is the biggest of the four patterns. The existing 132 kV and 66 kV transmission lines can be utilized from the Hetauda substation to Kathmandu, but the power flow will be heavy in this section and it will be necessary for the system to be expanded at an early stage. Furthermore, this pattern will require 132 kV, 4 cct between the Hetauda substation and the Pathalaiya substation and it will be difficult to secure space for additional installation of equipment at the Hetauda substation.

(2) Pattern 2 (Refer to Fig. 8-3(2-2))

The specific feature of Pattern 2 is that a ring system will be made up linking the Hetauda, the Pathalaiya and the Siuchatar substations with the existing system. Compared with Pattern 1, it will be more reliable for stable power supply, but the power flow from the 220 kV bus to the 132 kV bus of the Pathalaiya substation will be small at approximately 88 MW, and there is little necessity for new construction of this substation from viewpoint of power system operation. Furthermore, the construction cost will be high next to Pattern 3 and therefore, this pattern is economically disadvantageous.

(3) Pattern 3 (Refer to Fig. 8-3(3-2))

The specific feature of Pattern 3 is that the ring system will be made up linking the Hetauda and the Pathalaiya substations, the Dhalkebar switchyard and the New Kathmandu substation with the existing system, similarly to Pattern 2.

The construction cost of this pattern is the highest of the four patterns. Power flow from the 220 kV bus to the 132 kV bus of the Pathalaiya substation will be small at about 89 MW, and there will be little merit of new construction of the transmission line between the Dhalkebar switchyard and the Pathalaiya substation.

However, there is the merit that the power transmission loss of the entire system is the smallest of the four patterns.

(4) Pattern 4 (Refer to Fig. 8-3(4-2))

The specific feature of Pattern 4 is that a ring system will be made up linking the Hetauda substation, the Dhalkebar switch—yard, the Dubi substation and the New Kathmandu substation with the existing system. Stable power supply is secured with this pattern similarly to Pattern 3. Since the power received at the Hetauda substation will be small at about 71 MW, the influence on the existing system between the Hetauda substation and Kathmandu will be small.

The construction cost will be the lowest of the four patterns, while the power transmission loss of the entire system will be small next to Pattern 3, and this is considered to be the optimum pattern from technical and economical viewpoints.

8.2 Selection of Transmission Line Voltage

8.2.1 Voltage Selection Method

In case of transmitting the electric power of 201 MW (1st stage) and 402 MW (2nd stage) generated at the Arun 3 power station with distance of approximately 400 km, the existing voltage of 132 kV will be too low to maintain the system voltage and power system stability, and it will be necessary to apply a higher level voltage. In selection of a higher level voltage, it will be necessary to take into account the magnitude of demand, distribution of load, transmission distance, harmonization with existing facilities from viewpoints of operation and maintenance, and electric power export as well as examination of the electric power development plan in the future.

Technical and economical comparisons are examined for two voltage levels of 220 kV and 400 kV based on the power system of Pattern 4 selected as the optimum one in the preceding paragraph 8.1. Accordingly, the section of transmission line to be the object of study is 386 km from the Arun 3 power station to the New Kathmandu substation via the Dubi substation and the Dhalkebar switchyard.

8.2.2 Optimum Voltage

The results of power flow analyses (F.Y. 2007/08) for transmission lines of 220 kV and 400 kV are shown in Figs. 8-3(4-2) and 8-3(5). With regard to power system stability analyses, since the voltage level of 220 kV is proven to be stable and there would be stability naturally for 400 kV, power system stability analyses for 400 kV are omitted. The economic comparison of the two voltages is given in Table 8-2. The costs of substation (switchyard) equipment are calculated for conventional type except those for the Arun 3 switchyard.

The results of comparison of the two voltages are described in detail below and since 220 kV is found to be more advantageous judging from the viewpoints of operation and the economics even if another power development plan on the Arun river in the future is

taken into account as described later in paragraph 8.2.3, 220 kV is selected as the optimum one.

(1) Comparison of Economic Aspect

A minimum of two circuits is necessary for either voltage level to be selected in order to maintain system stability and supply reliability. Since it would not be practical to adopt single-circuit facilities even for the voltage level of 400 kV, the construction cost for 400 kV will be higher than that for 220 kV by approximately US\$56 x 106 or US\$6.7 x 106 in terms of annual cost. Furthermore, with 400 kV, as is described in (2) below, shunt reactor of large capacity will be required to suppress voltage rise, and when the cost therefor is added, the cost will be very high so that a 400 kV transmission line will be considered to be an excessively large facility, and therefore it is reasonable to adopt 220 kV. Although transmission loss for 400 kV is less compared with 220 kV, the latter is more economical from an overall viewpoint including construction cost.

(2) Comparison of Operational Aspect

The line charging capacity of a 400 kV transmission line is a total of 430 MVA for two circuits, and as shown in Fig. 8-3(5) shunt reactor of approximately 250 MVA will be required at the Dhalkebar switchyard even at peak load time. Because of this, switching operation of shunt reactor will be required at all times in accordance with the power flow to maintain system voltage at a suitable level so that complicated system operation will be caused. Further, at off peak load time during night or when performing trial charging of the line, shunt reactor of larger capacity will be needed to suppress voltage rise in the transmission line.

Consequently, adoption of 220 kV is desirable from the operational aspect, and further, from the viewpoints of operation and maintenance in line with the existing facilities having the maximum voltage of 132 kV, 220 kV will be more advantageous.

8.2.3 220 kV Transmission and Future Power Development

The result of power system stability analysis at F.Y. 2007/08 for transmitting the power of 402 MW generated at the Arun 3 power station by 220 kV transmission line is given in Figs. 8-4(4-2-1), 8-4(4-2-2) and 8-4(4-2-3). Judging from the generator swing curve of the Arun 3 power station at fault, it is considered that power flow of at least 100 MW can be added on the 220 kV transmission line from the Arun 3 power station.

Furthermore, even the future power development plans in the vicinity of the Arun 3 power station are considered, 220 kV transmission system will still be competent for carrying the future increase of power, as the power transmission capacity estimated on the basis of power system stability will increase up to 800 MW to 900 MW in total by new construction of 220 kV transmission line (1 cct) between the new power station and the Arun 3 power station and additional construction of the same between the Arun 3 power station and the Dubi substation.

8.3 Construction and Expansion of Substation/Switchyard

The substation and switchyard to be newly constructed or expanded based on the optimum transmission pattern (Pattern 4) selected previously in paragraph 8.1 are as described below.

8.3.1 Expansion of Dubi Substation

The Dubi substation is carrying the largest load in the eastern part of Nepal and is presently supplied with electric power from the Hetauda substation by 132 kV, 1 cct transmission line.

The transmission line from the Arun 3 power station to Kathmandu will first be connected to this Dubi substation for power supply to the area centerred at Biratnagar, while it will be necessary for the Dubi substation to install 220/132 kV transformers for transmission of a part of the power via the Hetauda substation to Kathmandu by the existing 132 kV, 1 cct transmission line and the other 132 kV, 1 cct transmission line being planned by NEA.

Furthermore, it is necessary to install 220 kV switchgear at the Dubi substation for outgoing line to the Dhalkebar switchyard in order to transmit the power to Kathmandu via the Dhalkebar switchyard.

8.3.2 Construction of New Kathmandu Substation

A part of the electric power generated at the Arun 3 power station will be consumed at the Dubi substation, with almost all of the remainder transmitted to Kathmandu. The power flow to the New Kathmandu substation at the time when all of the units of the Arun 3 power station have been commissioned will be approximately 211 MW (Fig. 8-3(4-2)). Since this electric power will be too much for the existing substation in the vicinity of Kathmandu, it will be advantageous from the viewpoint of stable power supply to newly construct a 220/132 kV substation near Kathmandu wherefrom the power is to be transmitted to the existing substations.

In the feasibility study, it is planned to construct a new 220/132 kV substation (tentatively called as New Kathmandu) for power transmission to the Siuchatar and the Balaju substations with a 132 kV, 1 cct transmission line each.

It is necessary to further study on selection of the secondary voltage at the New Kathmandu substation. It seems preferable to adopt the secondary voltage of 66 kV from the viewpoints that (1) the ring system with 66 kV transmission lines is being operated in the Kathmandu area, (2) power supply at 66 kV will be able to be maintained also in the future, (3) large amount of cost for providing 132/66 kV and 132/33 kV transformers is required in the case of adopting the secondary voltage of 132 kV and (4) reactive power loss will increase.

However, the secondary voltage of 132 kV at the New Kathmandu substation is applied in this study in consideration of the future expansion program of transmission and substation network in the Kathmandu area being proceeded by NEA.

8.3.3 Expansion of Dhalkebar Switchyard

Since the length of transmission line from the Arun 3 power station to Kathmandu is approximately 400 km, it will be advantageous to provide intermediate switchyard for maintenance of the transmission line and for securing power system stability. The entire length of approximately 400 km will be divided into lengths of 100 to 150 km for shortening the section of outage during maintenance work or fault.

The site of the switchyard will be located adjacent to the Dhalkebar substation and with this switchyard, the 266 km between the Dubi and the New Kathmandu substations will be divided into sections of 146 km on the Dubi side and 120 km on the New Kathmandu side.

Besides 220 kV switchyard equipment, the switchyard will be provided with shunt reactors to be operated at off peak load time or when the transmission line is to be charged from the Arun 3 power station. The capacity required for shunt reactor will be 25 MVA per circuit of the 220 kV transmission line, a total of 50 MVA for two circuits, and it will be economical to install the shunt reactors in stages.

During the off peak load time, voltage rise of transmission line is to be suppressed by these shunt reactors as well as condenser operation of the Arun 3 power station.

8.4 Development Sequence of Transmission Line and Substation

The construction program for the transmission line, substation and switchyard according to Pattern 4 previously selected as the optimum power transmission pattern in paragraph 8.1 is planned in coordination with the development sequence of the Arun 3 power station. The development sequence is divided into three schedules: Schedule 1 and Schedule 2 corresponding to the first stage development of the project and schedule 3 corresponding to the second stage development, as shown in Table 8-3.

(1) Schedule 1 (F.Y. 1993/1994)

Two units of the Arun 3 power station will have been commissioned at this time (June, 1994, and September, 1994) and the construction program for transmission, substation and switchyard equipment is as shown in Table 8-3.

The output of the Arun 3 power station will be 134 MW (67 MW x 2 units). Since the power transmission will be of small quantity at this stage and system voltage and power system stability can be maintained for the provisional transmission line operation at 132 kV, the transmission line is to be operated at this voltage. The power flows at peak load and off peak load are shown in Figs. 8-5(1) and 8-5(2) respectively, and the transient generator swing curve according to power system stability analysis in Figs. 8-6(1), 8-6(2) and 8-6(3).

For 132 kV operation, 220/132 kV transformers will not be required at this time at the Dubi and the New Kathmandu substations.

As to the number of circuits for the transmission line of 220 kV, two circuits between the Arun 3 power station and the Dubi substation, and one circuit from the Dubi substation to the Dhalkebar switchyard and further to the New Kathmandu substation are to be provided and operated at 132 KV provisionally.

Furthermore, to prevent the system voltage from rising during off peak load time, condenser operation will be done at the Arun 3 power station, and it will be necessary to install shunt reactor of 10 MVA at the Dhalkebar switchyard to be used together with the 7.5 MVA shunt reactor being planned by NEA at the existing Dhalkebar substation.

(2) Schedule 2 (F.Y. 1998/1999)

The unit No. 3 of the Arun 3 power station will have been commissioned at this time (September, 1998) and the output will be a total of 201 MW. The results of power flow analyses during peak load and off peak load times are shown in Figs. 8-5(3) and

8-5(4), respectively. It is required to step up the line voltage to 220 kV for power transmission at this stage. It is also required to provide 220/132 kV transformers with accessories at the Dubi and the New Kathmandu substations by Septmber 1998, though no additional provisions of transmission line and switchgears at the Dhalkebar switchyard are required.

On the other hand, it is scheduled to install the units No.4 to No.6 of the Arun 3 power station in F.Y. 1998/99 for the purpose of power export, making the total installed capacity to be 402 MW. Considering the case that the construction for power export (second stage development) be suspended, power flow and system stability analyses are also examined as shown in Figs. 8-3(4-1), 8-4(4-1-1), 8-4(4-1-2) and 8-4(4-1-3) and it is proved that the above facilities can be used for stable power supply up to F.Y. 2001/02.

Condenser operation will be done at the Arun 3 power station during off peak load time and the total shunt reactor capacity required will be 20 MVA at the Dhalkebar switchyard. Accordingly, additional installation of 10 MVA will be necessary.

(3) Schedule 3 (F.Y. 1998/1999)

At this stage, units No.4 to No.6 of the Arun 3 power station will have been commissioned for power export (No.4 in December 1998, No.5 in March 1999 and No.6 in June 1999) and the total installed capacity will become 402 MW.

The result of studies on possibility of transmitting power of 200 MW for power export in addition to that for domestic demand without additional construction of 220 kV, 1 cct transmission line, is shown in Figs. 8-7(1), 8-7(2) and 8-7(3). Figs. 8-7(1) and 8-7(2) are the cases that the Dubi S/S, the Dhalkebar S/Y and the New Kathmandu S/S are connected with 220 kV, 1 circuit. In case of Fig. 8-7(1), fault is occurred at 220 kV bus of the Arun 3 switchyard and accordingly 220 kV transmission line between the Arun 3 switchyard and the Dubi substation is tripped. In case of Fig. 8-7(2), fault is occurred at 220 kV bus of the Dubi substa-

tion and 220 kV transmission line between the Dubi substation and the Dhalkebar switchyard is tripped.

In the meantime, Fig. 8-7(3) is the case that the Dubi S/S, the Dhalkebar S/Y and the New Kathmandu S/S are connected with 220 kV, 2 circuits, in which the fault is occurred at 220 kV bus of the Dubi substation and accordingly the 220 kV transmission line between the Dubi substation and the Dhalkebar switchyard is tripped.

As obviously observed in Fig. 8-7(2), power system stability will not be able to be maintained when the fault is occurred at the Dubi substation in case of the 220 kV, 1 circuit transmission line from the Dubi substation to the New Kathmandu substation via the Dhalkebar switchyard, while it will be possible to maintain the system stability even in the same fault as above in case of the 220 kV, 2 circuits.

It is, threfore, necessary to additionally construct at this stage 220 kV, 1 cct transmission line from the Dubi substation to the New Kathmandu substation through the Dhalkebar switchyard and also to provide the related equipment at these substations and switchyard by December 1998. As described in the succeeding paragraph 8.5, it is conceivable to export the power of 200 MW in view of the results of rough study on system stability analysis, though the matters related to power export shall be further studied in detail.

At the stage of F.Y. 1998/99, the time at which the stability of power supply system of Nepal has to be checked is not the peak load time but the off peak load time after completion of the above transmission and substation facilities. The result of power flow analysis during off peak load time (for domestic demand in Nepal only) is as shown in Fig. 8-5(5) and shunt reactor of 50 MVA at the Dhalkebar switchyard is required.

Further, power system analyses during peak load time in F.Y. 2007/08 with the above transmission and substation facilities are also made and no problems are found. The result of power flow

analysis is shown in Fig. 8-3(4-2) and that of power system stability analysis in Figs. 8-4 (4-2-1), 8-4(4-2-2) and 8-4(4-2-3).

With additional construction and 220 kV operation of the transmission line, the capacity of shunt reactors to suppress the system voltage rise has to be also increased, namely, it will be necessary to install the shunt reactor with capacity of 30 MVA additionally (total 25 MVA x 2 cct = 50 MVA) at the Dhalkebar switchyard in order to suppress the voltage rise induced to 220 kV transmission line in the case of line charging by the Arun 3 power station as described later in paragraph 8.6.4. In the meantime, shunt reactors having a total capacity of 50 MVA will be needed during off peak load in combination with condenser operation of the Arun 3 power station.

8.5 Conceptual Study on Power Export

In connection with power export, the following two cases are examined regarding the method of transmitting power to the electric power system of the importing country in accordance with the development sequence of the Arun 3 power station, transmission and substation facilities. Since it is presumed that only the power in excess of domestic demand will be exported, the amount of power export decreases with the growth of domestic load demand and the maximum power of 200 MW can be exported during the period from F.Y. 1998/99 to F.Y. 2001/02 only. Hence, the power system analyses are made at F.Y. 1998/99 and F.Y. 2001/02. The premise for power system analysis is as described later in paragraph 8.6.1.

Case 1: Export of 200 MW by 200 kV, 2 cct transmission lines (F.Y. 1998/99)

Case 2: Export of 200 MW by 220 kV, 2 cct transmission lines (F.Y. 2001/02)

(1) Case 1

The power flow and the transient generator swing curve according to power system stability analysis are shown in Figs. 8-8(1) and

8-7(3)/8-9(1), respectively. If the system voltage of 220 kV can be maintained at the importing country, the stability of the power system of Nepal can be maintained even for a 3-phase line-to-ground fault applied to one of the two circuits of the interconnecting lines.

(2) Case 2

The power flow and the transient generator swing curve according to power system stability analysis are shown in Figs. 8-8(2) and 8-9(2), respectively. In this case also, if the system voltage of 220 kV can be maintained at the importing country, the stability of the power system of Nepal can be maintained even for a 3-phase line-to-ground fault applied to one of the two circuits of the interconnecting lines.

(3) Basic Considerations

In the case of power export of 200 MW by 220 kV transmission line, no instability in generators on the Nepal power supply system will be induced as referred to the results of system stability analysis. However, if the power supply system of importing country is not equipped with complete voltage stabilization capability, there will be possibility of instability in both power supply systems induced from generators on the system of importing country. The amount of power export will naturally be limited to less than 200 MW in such case.

It will be said that, from the standpoint of power system characteristics, the amount of power that can be exported varies depending upon the capability of voltage stabilization of importing country. Consequently, the magnitude of possible power export will not be finalized until the actual situation of power supply system of importing country has been investigated and detailed power system analysis has been made.

8.6 Power System Analysis

The results of power system analysis are of extreme importance for making technical and economical judgements on selection of the transmission pattern, selection of the new voltage to be adopted, etc., for planning the optimum power transmission and substation facilities.

8.6.1 Calculation Condition

(1) Power System Calculation Items

The technical study is carried out based on the following power system calculation results:

- Power flow and voltage calculations
- Power system stability
- Short circuit current
- Transmission line charging capacity

(2) Objective Years of Calculations

The necessary power system calculations are made in accordance with the commissioning dates of the main equipment of the Arun 3 power station indicated below.

No. of Unit	Commissiong	Unit Capa- city (MW)	Cumulative Output (MW)
No. 1	Jun. 1994	67	67
No. 2	Sep. 1994	67	134
No. 3	Sep. 1998	67	201
No. 4	Dec. 1998	67	268
No. 5	Mar. 1999	67	335
No. 6	Jun. 1999	67	402

(3) Conditions for Power Flow and Voltage Calculations

Power flow and voltage calculations are made based on the operational conditions of electric power facilities as shown below.

System Voltage to be maintained 95 - 105% of rated voltage

Operating voltage of generator 95 - 105% of rated voltage

Operating power factor of generator Not less than 0.85

Tap ratio of transformer

1.00 ± 0.05 P.U (fixed tap)

1.00 + 0.10 P.U. (LRT)

Power factor of load
0.9

Load time

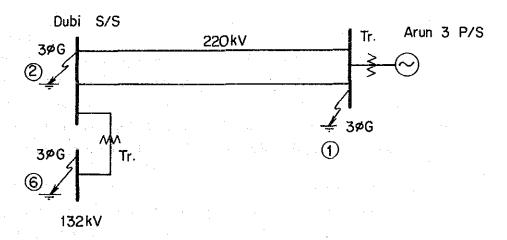
At peak load and off peak load (off peak load 35% of peak load)

Load at each substation
According to Table 2-9, Chapter 2

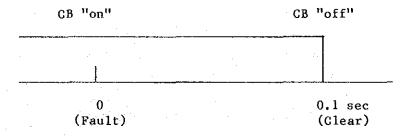
Base generator for voltage phase angle Kulekhani-l

In order to maintain the abovementioned system voltage, it is considered to adequately provide static condensers or shunt reactors at substations or switchyard.

(4) Condition for Power System Stability Calculation


Power system stability calculations are made with the generators of the Arun 3 power station. As to the disturbance on the power system, a 3-phase line-to-ground fault (3 ϕ G fault) is applied to the transmission line from the Arun 3 power station, and the transient characteristic of generator after clearing off the fault is examined.

The following conditions are added so that the disturbance will inflict a severe impact on the power system.


- Fault resistance zero
- Generator AVR (Automatic Voltage Regulator) and turbine governor functions eliminated
- No automatic reclosing of transmission line at fault

The location of disturbance applied and the fault sequence are as shown below, with the fault clearing-off time of 0.1 sec assuming that protective relays will function normally. In order to find out the location of fault which causes the severest effect on the power supply system, stability analyses are made for different locations of fault as shown below.

Location of disturbance application

Fault sequence

(5) Condition for Calculation in Case of Power Export

For exporting the surplus electric power of the Arun 3 power station, power system calculations are carried out assuming the following conditions for electric power system of the importing country.

(i) The length of transmission line from the Dubi substation

in Nepal to the substation of the importing country is estimated at 175 km.

- (ii) The electric power system of the importing country is simulated as a simple system of a single-generator.
- (iii) The capacity of the single-generator system is estimated at 2,500 to 3,000 MVA, corresponding to magnitude of demand forecast of objective area in importing country.
- (iv) The short circuit capacity of electric power system of objective area in importing country is estimated at 10 kA.

(6) Condition of Existing System

As it is necessary to expand the electric power facilities of the existing 132 kV and 66 kV systems along with development of the Arun 3 power station, the study is made on the premise expendiently that the facilities below will have been expanded, including expansions being currently planned by NEA.

Transmission Line:

Dhalkebar S/S - Dubi S/S 132 kV, 1 cct \longrightarrow 2 cct Siuchatar S/S - Patan S/S, 66 kV, 1 cct \longrightarrow 2 cct Balaju S/S - New Chabel S/S, 66 kV, 1 cct \longrightarrow 2 cct

Substation:

Hetauda S/S, 10 MVA \longrightarrow 40 MVA Siuchatar S/S, 80 MVA \longrightarrow 160 MVA Balaju S/S, 80 MVA \longrightarrow 160 MVA

(7) Constants of Electric Power Facilities

The power system impedances used for power system analysis are shown in Fig. 8-10, and generator and transformer constants in Table 8-4. The constants adopted, other than those furnished by NEA, are of standard levels.

As for impedance voltages of transformers, the following standard values on self-capacity basis are adopted, except for the existing transformers:

			132/66 220/132,	66		7.5 8.5		
`			220/132,			10.0		
			132/11, 6	. 6	* •	8.0		
			, , .					
8.6.2	Power F	low/Volta	ge and Sy	stem Stabi	lity			
	The res	ults of	the analy	rical cal	ulatio	ns have be	en desc	rihed in
	the pre	ceding pa	ragrapus,	but are r	ecapito	lated below	· •	
	Case 1	Power ev	etom etah	ility calc	ulation	for lst st		ralanmant
	Case 1					ut construc		
				S to New K				
		()						
			kV opera	tion from o Dubi S/S	•		Ric	8-2(1)
		ALU	п Э Е/Ю С	פופ דממת מ			, rig.	0-2(1)
		(b) 220	kV opera	tion from				
	**************************************	Aru	n 3 P/S t	o Dubi S/S			Fig.	8-2(2)
					•			
	Case 2	Power fl	ow. volta	ge calcula	tion in	F.Y. 2001/	/2002 fo	or selec-
				ransmissio				
		. ,					•	0 0(1 1)
		(a) Tra	nsmission	Pattern 1		• • • • • • • • • • • • • • • • • • • •	Fig.	8-3(1-1)
	100	(b) Tra	nsmission	Pattern 2			Fig.	8-3(2-1)
	-			•			J	•
		(c) Tra	nsmission	Pattern 3			Fig.	8-3(3-1)
		(d) Tra	nemiecian	Pattern 4			Rio	8-3(4-1)
	. :	(0) 114	HUMI DO TON	1 uccent 4			1.5	0 5(1 1)
	Case 3					F.Y. 2007/	/2008 f	or selec-
		Elon or	oprimum r	ransmissio	n patte	TH	-	
		(a) Tra	nsmission	Pattern 1			Fig.	8-3(1-2)
						•		
		(b) Tra	nsmission	Pattern 2		• • • • • • • • • • •	Fig.	8-3(2-2)
	i.	(c) Tra	ກຣຫເຣຣເດກ	Pattern 3			Fio.	8-3(3-2)
The second		11.0	HOMESO LON	1 access			61	V V(3 2)
		(d) Tra	nsmission	Pattern 4			Fig.	8-3(4-2)
		(a) In	anna af h	00 kV tran	omiceio	on	Fig	8_3(5)
		(€) TH	Case OL 4	OU AV LEGII	omrool(********	· FIE	
	Case 4	-		•		in F.Y. 20	001/200	2 for
		selectio	n of opti	num transm	ission	pattern		
		(a) Tra	nsmission	Pattern 1	•			
			lt at Bus		•••••		Fig. 8	-4(1-1-1)

Voltage (kV) Impedance voltage (%)

					-		
	(b)	Transmission Fault at Bus		1,	•	Fig.	8-4(1-1-2)
	(c)	Transmission Fault at Bus		Ż,		Fig.	8-4(2-1-1)
	(d)	Transmission Fault at Bus		2,		Fig.	8-4(2-1-2)
	(e)	Transmission Fault at Bus				Fig.	8-4(3-1-1)
	(f)	Transmission Fault at Bus		3,		Fig.	8-4(3-1-2)
	(g)	Transmission Fault at Bus		4,		Fig.	8-4(4-1-1)
	(h)	Transmission Fault at Bus	Pattern 2	4,	•••••	Fig.	8-4(4-1-2)
	(i)	Transmission Fault at Bus		4,	******	Fig.	8-4(4-1-3)
ase 5		r system stabi			lation in F.Y. : ssion pattern	2007/2	008 for
ase 5			num trans	smis	ssion pattern		
ase 5	sele	ction of optin	num trans Pattern	smis 1	ssion pattern	Fig.	8-4(1-2)
ase 5	sele	ction of optin Transmission Transmission	num trans Pattern Pattern	mis 1 2	ssion pattern	Fig.	8-4(1-2) 8-4(2-2)
ase 5	sele (a) (b)	ction of optin Transmission Transmission	num trans Pattern Pattern Pattern Pattern	1 2 3	ssion pattern	Fig. Fig.	8-4(1-2) 8-4(2-2) 8-4(3-2)
ase 5	sele (a) (b) (c)	ction of optin Transmission Transmission Transmission Transmission	Pattern Pattern Pattern Pattern Pattern 1 Pattern	1 2 3 4,	ssion pattern	Fig. Fig. Fig.	8-4(1-2) 8-4(2-2) 8-4(3-2) 8-4(4-2-1)
ase 5	(a) (b) (c) (d)	ction of optin Transmission Transmission Transmission Transmission Fault at Bus Transmission	Pattern Pattern Pattern Pattern l Pattern 2 Pattern	1 2 3 4,	ssion pattern	Fig. Fig. Fig.	8-4(1-2) 8-4(2-2) 8-4(3-2) 8-4(4-2-1) 8-4(4-2-2)
ase 5	(a) (b) (c) (d) (e) (f) Power (Sch	ction of optine Transmission Transmission Transmission Fault at Bus	Pattern Pattern Pattern Pattern 1 Pattern 2 Pattern 6	1 2 3 4, 4, 4,	ion in F.Y. 1993	Fig. Fig. Fig. Fig. Fig.	8-4(1-2) 8-4(2-2) 8-4(3-2) 8-4(4-2-1) 8-4(4-2-2) 8-4(4-2-3)
	(a) (b) (c) (d) (e) (f) Power (Sch	Transmission Transmission Transmission Transmission Transmission Fault at Bus Transmission Fault at Bus Transmission Fault at Bus	Pattern Pattern Pattern Pattern 1 Pattern 2 Pattern 6	1 2 3 4, 4, 4,	ion in F.Y. 1993 a 3 power stati	Fig. Fig. Fig. Fig. Fig. Fig.	8-4(1-2) 8-4(2-2) 8-4(3-2) 8-4(4-2-1) 8-4(4-2-2) 8-4(4-2-3)

Case 7	Power flow, voltage calculation in F.Y. 1998/1999 (Schedule 2, 3 units of Arun 3 power station commissioned) in case of transmission pattern 4
	(a) At peak load time Fig. 8-5(3)
	(b) At off peak load time Fig. 8-5(4)
Case 8	Power flow, voltage calculations in F.Y. 1998/1999 (Schedule 3, 6 units of Arun 3 power station commissioned for power export) in case of transmission pattern 4
	(a) At off peak load time Fig. 8-5(5)
Case 9	Power system stability calculation for transmission pattern 4 in F.Y. 1993/1994
•	(a) Fault at Bus 1 Fig. 8-6(1)
	(b) Fault at Bus 2 Fig. 8-6(2)
grand de la servicio	(c) Fault at Bus 6 Fig. 8-6(3)
	the participation of the control of
Case 10	Power system stability calculation for 200 MW power export in F.Y. 1998/1999
	(a) 220 kV, 1 cct transmission, Fault at Bus 1 Fig. 8-7(1)
	(b) 220 kV, 1 cct transmission, Fault at Bus 2 Fig. 8-7(2)
	(c) 220 kV, 2 cct transmission, Fault at Bus 2 Fig. 8-7(3)
Case 11	Power flow, voltage calculation for 200 MW power export
	(a) In F.Y, 1998/1999 Fig. 8-8(1)
	(b) In F.Y. 2001/2002 Fig. 8-8(2)
	Power system stability calculation for 200 MW power export in case of 220 kV, 2 cct transmission, fault at Bus l
	(a) In F.Y. 1998/1999 Fig. 8-9(1)
e de la companya de La companya de la co	(b) In F.Y. 2001/2002 Fig. 8-9(2)

8.6.3 Short Circuit Current

It is considered that, as referred to Fig. 2-7, the full power generation with six units of the Arun 3 power station will be all consumed by domestic demand of Nepal in F.Y. 2007/08. Hence the 3-phase short circuit current is calculated on the basis of power system in F.Y. 2007/08 as shown in Fig. 8-11. The total capacity of generators in Nepal at this time will be approximately 732 MVA. Transient reactance X_d is used as generator reactance.

The maximum short circuit currents of substation (switchyard) busses for each voltage level are as follows:

Arun 3 switchyard 220 kV bus : 4.0 kA

Dubi substation 132 kV bus : 3.5 kA

Siuchatar substation 132 kV bus : 4.0 kA

The short circuit current supplied from the Arun 3 power station will be 3.4 kA on a 220 kV basis, but since the Arun 3 power station will be at a great distance from the existing electric power facilities of Nepal, the effects of the short circuit current from the Arun 3 power station on the neighboring substations (switchyard) will be extremely small.

8.6.4 Transmission Line Charging

A study is made for the case of charging the transmission line up to Kathmandu from the Arun 3 power station. The extent of transmission line charging from the Arun 3 power station is considered for the three cases below.

The conditions for the study are that upper limit of substation bus voltage and lower limit of the Arun 3 generator operating voltage will be 102 and 85 percent, respectively and shunt reactor capacities are calculated based on these conditions. For the 132 kV transmission line, it is assumed that the 7.5 MVA shunt reactor being planned by NEA for the existing Dhalkebar substation is also available.

- Case 1: 220 kV transmission line from the Arun 3 power station to the New Kathmandu substation via the Dubi substation and the Dhalkebar switchyard
 - (1) During 132 kV operation (1994 1998)
 - (2) During 220 kV operation (after 1998)
- Case 2: 132 kV transmission line from the Arun 3 power station to the Hetauda substation via the existing Dubi and Dhalkebar substations
- Case 3: 220 kV transmission line from the Arum 3 power station to the Dubi substation

The results of calculations for bus voltages and reactive power flows in the above cases are shown in Fig. 8-12, according to which the capacities of shunt reactors are as given below. The Dhalkebar switchyard is selected as an appropriate place for provision of shunt reactors since the effects of the shunt reactors will be the greatest at that site. A further condition is that only I unit of the Arun 3 power station will be in operation.

- Case 1: Dhalkebar S/Y, 25 MVA/cct x 2 cct (total 50 MVA)
- Case 2: Existing Dhalkebar S/S, 7.5 MVA (planned by NEA)
- Case 3: Unnecessary

According to the above studies, line charging will be possible for any case if a shunt reactor of 25 MVA per one circuit is provided at the Dhalkebar switchyard. And line charging of one circuit from the Arun 3 power station to Kathmandu or Hetauda can be made by means of only one generator operation of the Arun 3 power station.

8.7 Further Study and Investigation

Detailed examinations are made in this feasibility study mainly for the eastern part of the electric power system of Nepal with regard to formulation of a power transmission and substation plan to be developed in accordance with the output of 402 MW from the Arun 3 power station. Since electric power system will be expanded in succession with increase in demand, it will be necessary to make the detailed examinations regarding the expansion plan for the entire electric power system in Nepal at all times. It is also required to study further on power export.

Based on the results of the examinations of the power transmission and substation plan for the Arun 3 project, the subjects which require further investigations and studies are cited below. The topics cited below are on matters which will require much time for study, and therefore, it will be necessary to make such investigations and studies separately from this feasibility study.

8.7.1 Power Facilities around Kathmandu

Kathmandu is the load center of the electric power system in Nepal, and the facilities of the 66 kV substations and 66 kV transmission lines around the city have to be expanded or renewed in step with development of the Arun 3 power station.

As described previously in paragraph 8.1, Pattern 4 is selected in this feasibility study as the optimum power transmission plan. In this case, it will be necessary to construct the New Kathmandu substation and a detailed study on secondary substations to be connected with this New Kathmandu substation will also be needed. It is planned in this study for convenience sake that the New Kathmandu substation will be interconnected with the Balaju and the Siuchatar substations by 132 kV transmission lines, however, studies hereafter of the following points will be required.

- Location for construction of the New Kathmandu substation
- Selection of secondary voltage of the New Kathmandu substation (66 kV or 132 kV)
- Selection of the number of outgoing circuits for secondary transmission lines of the New Kathmandu substation and of interconnecting substations

- Expansion plan for reactive power facilities in surroundings of Kathmandu

8.7.2 Expansion of 132 kV Transmission Line in Western Power System

One of the features of load on the electric power system in Nepal is that the difference between peak load and off peak load is great. According to the present study, the off peak load is about 35 percent of the peak load. Static condensers will be necessary at peak load time to maintain system voltage as seen from the results of power flow analysis, while shunt reactors will be needed at off peak load time. This system characteristic is due not only to the features of the load but also the fact that the length of the transmission line is great.

Particularly, at the section between the Dumkibas substation and the Nepalgunj substation of the western power system, expansion of 132 kV, 2 cct will have effect on maintaining system voltage at peak load time, but voltage will rise at off peak load time. In order to suppress this voltage rise, it will be necessary to increase the capacity of the shunt reactor presently being planned by NEA, or to adopt the measure of shutting down one of the two circuits during off peak load time.

Accordingly, as the demand of the western power system increases, further studies will be required with regard to transmission line expansion plans, shunt reactor capacities, and method of transmission line operation.

It should be noted in the present study, that voltage rise in the case of the power flow calculations at off peak load time is suppressed by reducing the transmission line charging capacity shutting down one of the two circuits between the Dumkibas and the Nepalgunj substations (Figs. 8-5(2), 8-5(4), 8-5(5)).

etwork property for the environment of the contract of the

8.7.3 Expansion of Hetauda Substation

If the power transmission plan is formulated based on Pattern 4 concerning the optimum power transmission pattern as described in paragraph 8.1, the expansion plan of the Hetauda substation by NEA will cause no special problem for the time being.

However, in case a power transmission plan other than Pattern 4 is formulated, especially in case Pattern 1 will be adopted (interconnection with the Hetauda substation by 132 kV, 4 cct via the Pathalaiya substation), the reserve space at the Hetauda substation for 132 kV transmission lines will be insufficient and it will be necessary to review the expansion plan presently contemplated by NEA to match the Arun 3 project development plan.

Expansion will also be required for existing 132 kV and 66 kV transmission line facilities from the Hetauda substation to Kathmandu, furthermore, due attention should be paid to reliability of power system as described in preceding paragraph 8.1.2.

8.7.4 Power Export

With regard to power export, it will be necessary to grasp thoroughly the characteristics of electric power system of the importing country. The principal items of study to facilitate the interconnection with different power systems are the following:

- Control of power flow of the interconnecting lines
- Control of frequency and voltage of the two systems
- Effects of step-out of generator with large capacity
- Operation method of interconnecting lines

In this connection, it is recommended for the study to be made to assure that the two power system is synchronized without problems examining transient and steady-state stability. To do so, governor and exciter characteristics as well as inertia and other constants for principal generating plants in both countries, transmission line and transformer impedances and protective relaying system pertaining to the power systems, etc. are to be investigated. Meanwhile study

on asynchronous power system interconnection (HVDC) would be made as an option though the possibility on adoption of such system is less.

Table 8-1 (1) Economic Comparison of Each Transmission Pattern (For F.Y. 2001/2002)

Transmission Line Length (km) x Number of Circuits x Number of Circuits x Number of Circuits x Number of Circuits construction Cost (10 Jugs) Transmission Line than 2 Pts - Dubbi Sty than 2	Pattern	Pattern 1	Pattern 2	Pattern 3	Pattern 4	
(120 km, 2 cct) 23,200 14,800 14,800 14,800 14,800 11,100	Transmission Line Length (km) x Number of Gircuits	(220kV) 120x2 256x1 (132kV) 30x1	(220kV) 120x2 326x1	(220kV) 120x2 376x1	(220kV) 120×2 266×1	
(120 km, 2 cct) 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,800 14,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,100 11,900	Construction Cost (10345\$)					
// (146 km, 1 ccc)	51 S/S (120 km 2	23 200	23 200	23.200	23 200	
# \$\sigma_{\text{tars}} \(\text{Tiles} \) ## \$\sigma_{tars	(146 km, 1 (146 km, 1	14,800	14,800	14,800	14,800	
Thinandu S/S (1200 km, 1 cct)	(30 KB, 1	1,800	0 C		1 1	
11,900 11,900 11,900 11,900 11,900 11,900 1,500 14,100 1,500 14,100 1,700 1,500 12,500 14,100 1,700 12,500 12,500 12,500 12,500 12,500 12,500 11,700 11,700 11,700 13,752 10 11,700 11,700 13,752 10 11,700 11,700 13,752 10 11,700 11,700 13,752 10 11,700 13,752 10 11,700 1,006 1,419 13.5 1,224 1,510 1,006 1,419 1,51097 16,819 11	S/S (120 km, 1	50,900	56,200	12,100	12,100	
11,900 11,900 11,900 11,900 11,900 11,900 11,900 14,600 15,000 15,000 14,100 15,000 14,100 15,000 14,100 12,500 12,500 12,500 12,500 12,500 12,500 11,700 114,600 87,000 114,600 87,000 114,600 87,000 114,600 87,000 114,600 87,000 114,600 87,000 114,600 87,000 114,600 87,000 114,600 87,000 114,600 87,000 114,600 87,000 114,600 87,000 114,600 87,000 114,800 11,760 13,752 11,000 12,622 14,19 12,007 16,819 11,000 14,554 15,097 16,819 11	Substation & Switchyard					
14,600 15,000 14,100 17,000 14,100 17,700 17	Dubi S/S	11,900	11,900	11,900	11,900	
1,700	Pathalaiya S/S	14,600	15,000	14,100	2000	
(2) 35,700 35,300 46,900 31, (4) 4,200 6,500 6,500 6,500 6,500 6,500 87,000 114,600 87,000 114,600 87,000 113,752 110,896 11,760 13,752 110,896 11,760 13,752 110,896 11,760 13,752 110,896 11,760 13,752 110,896 11,760 13,752 110,896 11,760 13,752 110,896 11,760 13,752 110,896 11,006 2,419 2,224 3,337 3,067 110,896 11,006 114,88 11,006 114,89 11,006 114,80 11,006 114,80 11,006 114,80 11,006 114,80 11,006 114,80 11,006 114,80 11,006 114,80 11,006 114,80 11,006 114,80 11,006 114,80 114,80 11,006 114,80	Hetauda S/S	1,700	, i	•	1	
35,700 35,300 46,900 31 (3) 4,200 6,500 6,500 6,500 6,500 6,500 6,500 6,500 6,500 6,500 6,500 6,500 6,500 6,500 6,500 114,600 81 a Cost (10³US\$) (5) 10,896 11,760 13,752 110 mission Line Losses (10³US\$) 1,006 2,419 2,224 3,537 3,067 15,097 16,819 11	New Kathmandu S/S	1 1))	12.500	12,500	
a cost (103uS\$) (5) 10,896 11,760 13,752 10 14.8 13.5 12.4 42.1 38.4 35.3 1,006 2,652 2,419 2,053 3,337 3,067 1,50 + (8) 14,554 15,097 16,819 11	:	35,700	35,300	46,900	31,900	
a Cost (103uS\$) (5) 10,896 11,760 114,600 87 10,896 11,760 13,752 11 14.8 13.5 35.3 12.4 42.1 38.4 35.3 35.3 1,006 2,652 2,419 2,224 3,337 3,067 3,067 15,097 16,819 11		4,200	6,500	6,500	5,500	
a Cost (10 ³ US\$) (5) 10,896 11,760 13,752 10 14.8 13.5 12.4 42.1 38.4 35.3 (6) 1,006 918 843 (7) 2,652 2,419 3,067 (8) 3,658 3,337 3,067 14,554 15,097 16,819 11	:	90,800	98,000	114,600	87,500	
14.8 13.5 12.4 22.1 38.4 35.3 35.3 mission Line Losses (10 ³ US\$) 1,006 2,419 2,224 3,558 3,337 16,819 1.	Cost (103US\$)	10,896	11,760	13,752	10,500	
1,006 2,652 3,658 3,658 3,337 14,554 15,097 16,819	Transmission Line Losses kW Losses (KW) kWh Losses (GWh)	14.8	13.5 38.4	12.4	.12.7	
14,554 15,097 16,819	Annual Cost due to Transmission Line Losses (10 ³ US\$) kW Losses	1,006	918 2,419 3,337	843 2,224 3,067	864 2,281 3,145	
	Total Annual Cost (10 ³ US\$), (5) + (8)	14,554	15,097	16,819	13,645	~~~~

Note: (1) Annual energy losses (kWn losses) are calculated taking into account the loss factor (Lr)
which is the ratio of average power losses to peak power losses obtained from experimental
equation of Buller-Goodrow.

Lr = 0.3 x (Annual Load Factor) + 0.7 x (Annual Load Factor)², where Annual Load Factor: 0.50
= 0.325
(2) Cost for power losses and energy losses
(a) 68 USS/kW (b) 0.063 USS/kWh

Table 8—1 (2) Economic Comparison of Each Transmission Pattern (For E.Y. 2007/2008)

Pattern	Pattern 1	Pattern 2	Pattern 3	Pattern 4
Transmission Line Length (km) x Number of Circuits	(220kV) 376x2 (132kV) 30x2	(220kV) 446x2	(220kV) 496×2	(220kV) 386x2
Construction Cost (103US\$)				
Transmission Line Arun 3 P/S - Dubi S/S (120 km, 2 cct) Dubi S/S - Dhalkeber S/Y (146 km, 2 cct) Dhalkebar S/Y - Parhalnius S/S (110 km, 2 cct)	23,200	23,200 18,900 14,100	23,200 18,900 14,100	23,200
(30 km, 2 (70 km, 2 (70 km, 2 s/s (120 km, 2	2,600	9,000	15,400	15,400
Substation & Switchyard Dubi S/S Dhalkebar S/Y Parhalaiya S/S Parhalaiya S/S	12,700 10,300 18,300	12,700 10,300 19,100	12,700 12,100 15,000	12,700
derauda 5/5 Sluchatar 5/5 New Kathmandu 5/5 Sub-total (2)	43,500	1,800	13,400	15,400
Telecommunication (3)	4,200	6,500	005'9	5,500
Total (1) + (2) + (3) (4)	106,500	115,600	131,300	101,400
Annual Total Construction Gost (1030S\$) (5) (Annual Cost Rate 12%)	12,780	13,872	15,756	12,168
Transmission Line Losses kW Losses (MW) kWh Losses (GWh)	39.6 112.7	36.0 102.5	31.5 89.7	33.3 94.8
Annual Gost due to Transmission Line Losses (10 ³ US\$) kW Losses	2,693 7,100 9,793	2,448 6,458 8,906	2,142 5,651 7,793	2,264 5,972 8,236
Total Annual Cost (103US\$), (5) + (8)	22,573	22,778	23,549	20,404

Table 8–2 Economic Comparison between 220 kV and 400 kV Substation/Switchyard and Transmission Line Facilities

•	220 kV	400 kV
Transmission Line Length (km)	386 x 2	386 x 2
x Number of Circuits	*	
Construction Cost (10 ³ US\$)		
Transmission Line		
Arun 3 S/Y - Dubi S/S (120 km)	23,200	24,100
Dubi S/S - Dhalkebar S/Y (146 km)	18,900	29,300
Dhalkebar S/Y - New Kathmandu S/S (120 km)	15,400	24,100
Sub-total(1)	57,500	77,500
Substation & Switchyard		9
Arun 3 S/Y	14,900	30,200
Dubi S/S	12,700	19,900
Dhalkebar S/Y	10,300	16,400
New Kathmandu S/S	15,400	22,500
Sub-total (2)	53,300	89,000
Sub-cotal (2)	33,300	02,000
Telecommunication (3)	5,500	5,500
Total (1) + (2) + (3) (4)	116,300	172,000
Annual Total Construction Cost (5)	13,956	20,640
(Annual Cost Rate 12%)		
Transmission Line Losses		
kW Losses (MW)	33.3	15.5
kWh Losses (GWh)	94.8	44.1
Annual Cost due to Transmission Line Losses		
(10 ³ us\$)		
kW Losses(6)	2,264	1,054
kWh Losses(7)	5,972	2,778
Total (6) + (7) (8)	8,236	3,832
1001 (0)	- -	
Cotal Annual Cost (5) + (8)	22,192	24,472
Jean Illinoar Good (3)	,	,
·		

Note: (1) Annual energy losses (kWh losses) are calculated taking into account the loss factor (Lr) which is the ratio of average power losses to peak power losses obtained from experimental equation of Buller-Woodrow.

Lr = 0.3 x (Annual Load Factor) + 0.7 x (Annual Load Factor)²

(2) Cost for power losses and energy losses
(a) 68 US\$/kW/year (b) 0.063 US\$/kWh

Annual Load Factor: 0.5

(3) Cost of shunt reactor required for 400 kV transmission system is excluded.

Table 8-3 Development Sequence of Transmission Line and Substation

Arun 3 Power Station	lst Stage (No.1-No.3)	o.1-No.3)	2nd Stage (No.4-No.6)	
Transmission Line and Substation	Schedule 1 (Jun. 1994)	Schedule 2 (Sep. 1998)	Schedule 3 (Dec. 1998)	Entire Facilities
Transmission Line				
Arun 3 S/Y - Dubi S/S	220 kV, 2 Circuits (Operation 132 kV)	(Operation 220 kV)	(Operation 220 kV)	220 kV, 2 Circuits
Jubi S/S - Dhalkebar S/Y	220 kV, 1 Gircuit (Operation 132 kV)	(Operation 220 kV)	220 kV, l Circuit (Operation 220 kV)	220 kV, 2 Gircuits
Dhalkebar S/Y - New Kathmandu S/S	220 kV, 1 Circuit (Operation 132 kV)	(Operation 226 kV)	220 kV, 1 Circuit (Operation 220 kV)	220 kV, 2 Circuits
* New Kathmandu S/S - Existing S/S	132 kV, 2 Circuits	ı	ı	132 kV, 2 Circuits
Substation & Switchyard				
Dubi. S/S	220 kV, 2 Circuits for	1		220 kV, 2 Circuits for
	Incoming 220 kV, I Circuit for Outgoing	Transformer 220/132 kV 70 MVA, 3 unics	220 kV, 1 Circuit for Outgoing	Incoming 220 kV, 2 Circuits for Outgoing
	(Operation 132 kV)	(Operation 220 kV)	(Operation 220 kV)	Transformer, 70 MVA x 3
Dhalkebar S/Y	220 KV, 1 Circuit for	1	220 kV, 1 Circuit for	220 kV, 2 Circuits for
	220 kV, 1 Circuit for	1	220 kV, 1 Circuit for Outsoins	220 kV, 2 Circuits for Outgoing
	Shunt Reactor 10 MVA (Operation 132 ky)	Shunt Reactor 10 MVA (Operation 220 kV)	Shunt Reactor 30 MVA (Operation 220 kV)	Shunt Reactor, 25 MVA x 2
New Kathmandu S/S	220 kV, 1 Circuit for	ı	220 kV, 1 Circuit for Incomino	220 kV, 2 Circuits for
	9:1100:11	Transformer 220/132 kV, 100 HVA	Transformer 220/132 kV, 100 MVA,	Transformer, 100 MVA x 3
	(Operation 132 kV)	2 units (Operation 220 kV)	I Unit (Operation 220 kV)	*132 kV. 2 Circuits
	Outgoing			for Outgoing
	4			

* Construction costs of 132 kV transmission lines for interconnection between New Kathmandu S/S and existing substations of Siuchatar and Balaju are not included in this Feasibility Study.

Table 8-4 Generator and Transformer Data

•			Generator	À			<u></u>	Transformer	
Power Station	Installed	Total	77	- 7	, ,	H.	Total	27.0.3	4 4
	(MM)	(MVA)	(%) (%)	(%) (%)	(%) (%)	(KW-Sec/ KVA)	Capacity (MVA)	voltage (kV)	(%)
Arun 3	400	474	100	30	9	3.75	780	220/13.8	10.0
Kulekhani-1	09	0.5	100	26	09	1.99	70	66/11	7.25
Kulekhani-2	32	37.65	100	28	9	2.00	37	132/11	4.8
Sunkosi	10.05	11,82	100	30	09		12.6	66/6.3	7.97
Devighat	14.1	17.63	100	28	9	2.40	_	66/11	6.97
Trisuli	21	26.25	100	34.3	09	3.55	22.5	9.9/99	8.4
Marsyangdi	99	73,33	100	28	9	2.53		9.9/99	0
Gandak	15	17.65	100	36	09	1.08	20	132/6.6	8.4
Substation									
									1
New Kathmandu	· -					,	300	220/66	_
Dubi	-	-				•	210	220/132	8.5
Hetauda							07	132/66	7.35
Siuchatar							120	132/66	7.5
Balaju	· .		:			:	120	132/66	7.5
							!		

H : Inertia constant
Xt : Impedance voltage (Note) Xd: Direct-axis synchronous reactance Xd': Direct-axis transient reactance Xq: Quadrature-axis synchronous reactance

Arun 3 (P/S) Arun 3 (P/S) Ohalkebar (S/Y) Dubi (S/S) Dubi (S/S) LEGEND Ohalkebar (S/Y) Boloju (S/S) Siuchatar (S/S) New Kathmandu (S/S) 70km Siuchatar (S/S) (Kathmandu) Pathaloiya (S/S) (Kathmandu) Pattern 4 Pattern Fig. 8-1 (1) Conceivable Transmission Pattern (1st Stage) Balaju (S/S) Kulekhani 2 (P/S) Hetauda (S/S) Kulekhani 2 (P/S) Hetauda (S/S) {(1) Arun 3 (P/S) Arun 3 (P/S) 120km Dubi (S/S) Dubi (S/S) Dhalkebar (S/Y) Dhaikebar (S/Y) Balaju (S/S) Siuchator (S/S) New Kothmondu (S/S) 120 km 110km Pathalaiya (S/S) Pathalaiya (S/S) (Kathmandu) Ę Pattern 1 (Kathmandu) Pattern 3 30km Balaju (S/S) Kulekhoni 2 (P/S) Kulekhani 2 (P/S) Hetauda (S/S) Hetaudo (S/S) {€(1)

220 kV 132 kV