参考資料

参考資料-1 現地調査面談者リスト

- 参考資料-2 NWSC 外部サービス(ES)の業務実績
- 参考資料-3 本邦企業アンケート回答詳細
- 参考資料-4 ワークショップ・アイデアソン出席者リスト
- 参考資料-5.1 都市給水ワークショップ・アイデアソンプレゼン資料
- 参考資料-5.2 大気汚染ワークショップ・アイデアソンプレゼン資料
- 参考資料-6 都市給水ビジネスマッチング主要質疑応答
- 参考資料-7.1 都市給水アクションプラン
- 参考資料-7.2 大気汚染アクションプラン
- 参考資料-8 提案プロジェクト概要
- 参考資料-9 提案プロジェクトの必要性検証

参考資料-1 現地調査面談者リスト

参考資料-1 現地調査面談者リスト

Air Pollution Sector

Ministry of Water & Environment (MoWE)

No	Name	Department	Position
1	Mr. Mugabi Stephen David	Environment Sector Support Services	Commissioner
2	Mr. Mafumbo Julius	Environment Sector Support Services	Assistant Commissioner
3	Mr. Mununuzi Nathan	Environment Sector Support Services	Senior Environment Officer
4	Mr. Ndibirema Dadinoh	Environment Sector Support Services	Environment Officer
5	Ms. Queen Cathevine Kavabo	Environment Sector Support Services	Environment Officer
6	Mr. Ituka Gilbert	Environment Sector Support Services	Environment Officer
7	Mr. Mugabe Motram	Environment Sector Support Services	Environment Officer
8	Mr. Richard Matua	Urban Water & Sewerage	Acting Commissioner
9	Eng. Joshua Senengo	Urban Water & Sewerage	Principal Engineer

Kampala Capital City Authority (KCCA)

No	Name	DEPARTMENT	POSITION
1	Mr. Jude Byansi Zziwa	Waste and Sanitation	Manager
2	Ms. Namanda Clare	Environment Management	Supervisor
3	Mr. Richard Mutabazi	Water and Sanitation	Supervisor
4	Mr. Ronald Mubiru	Sports, Recreation and Tourism	Manager
5	Mr.Alex Ndayabakira	Directorate of Public Health	Epidemiologist
6	Ms. Furtunate Bis	Directorate of Traffic	Engineer

National Environmental Management Authority (NEMA)

NO	NAME	DEPARTMENT	POSITION
1	Mr. Waiswa Ayazika	Environmental Monitoring & Compliance	Director
2	Mr. John Okatch	Environmental Monitoring & Compliance	Environment Assessment Officer
3	Ms. Monica Angom	Environmental Monitoring & Compliance	Senior Environment Inspector
4	Ms. Nancy Allimadi	Environmental Monitoring & Compliance	Senior Environment Inspector
5	Ms. Kutesakwe Jennifer	Environmental Monitoring & Compliance	Senior Environment Inspector
6	Ms. Nsereko Patience	Environmental Monitoring & Compliance	Principal Environment Inspector

AirQo Project

NO	NAME	DEPARTMENT	POSITION
1	Mr. Deo Okure	-	Air Quality Scientist and Programme Manager
2	Ms. Priscah Adrine	-	Digital Communications Executive

Ministry of Works and Transport (MoWT)

NO	NAME	DEPARTMENT	POSITION
1	Mr. Charles Mutemo	Environment Liaison Unit	Principal Environment Officer
2	Ms. Atino Juliet	Environment Liaison Unit	Senior Environment Officer

Ministry of Health (MoH)

NO	NAME	DEPARTMENT	POSITION
1	Mr. Bob Omoda Amodan	Department of Environmental Health	Environmental Health Officer

Urban Water Supply Sector

National Water and Sewerage Corporation (NWSC)

No	Name	Department	Position
1	Dr. Rose C. Kaggwa	IREC	Director, Business and Scientific Services
2	Dr. Irene Nansubuga	IREC. Water Quality Department	Manager
3	Dr. Mohammed Babu	IREC Water Quality Department	Manager
4	Dr. Allan Kaford	IREC External Service	Principal Engineer
5	Mr. Ekanya Emmanuel	IREC	Senior Manager Operations
6	Mr. Julius Kato Karuma	IREC	Principal Engineer
7	Eng Amayo Johnson	HO	Deputy Managing Director, Technical Services
0	Eng. Alay Giagara		Director, Engineering Services
0	Elig. Alex Olsagara	IIQ	Director, Engineering Services
9	Eng. Joe Kamanyi	Development	Senior Manager
10	Mr. Somson Komuzisha	Development	Saniar Economist
10	Fine Angele Keritende	ny Samana Samia Danataant	
- 11	Eng. Angelo Kwitonda	Sewerage Service Department	Principal Engineer
12	Eng. Jackson Nimusiima	HQ, Inirastructure Planning Project	Senior Manager
12	Eng. Hallan Income	Management	Managan
15	Eng. Hellen Izama	HQ, Infrastructure Planning and	Manager
14	Mr. Geoffrey Kujju	HQ, Treasury and Accounts	Manager
15	Mr. Denis Agea	HQ, Planning and Capital Development	Project Engineer
16	Mr. Martin Orwiny	HQ, Planning and Capital Development	Engineer
17	Ms. Atukunda Agrace	HQ, Projects & External Services	Principal Accounts Officer
18	Mr. Jonathan Omolo	HQ, Corporate Strategy and Investment	Economist
		Financing	
19	Mr. Joseph Tweheyo	HQ	Project Manager
20	Ms.Freda Bugenyi	HQ	Principal Engineer
21	Ms, Sarah Manuella Amoit	HQ, Corporate Strategy and Investment	Fconomist
21	Wis. Sarah Wandena / Molt	Financing	Leonomist
22	Eng. Mahmood Lutaaya	NWSC Kampala Water	General Manager
23	Eng. Process Ahabwe	NWSC Kampala Water	Principal Engineer
24	Eng. Tom Buyi	NWSC Kampala Water	Monitoring and Evaluation Manager
25	Ms. Evas Tumuheirwe	NWSC Kampala Water, GIS/Block Mapping	Manager
26	Ms. Emily Atusasive	NWSC Kampala Water, GIS/Block Mapping	Senior GIS Officer
27	Dr. Martin Kalibbala	NWSC Kampala Water. Asset Management	Manager
		NWSC Kampala Water, GIS - Asset	
28	Mr. Bernard Mwaka	Management (Kampala region)	Senior Officer
		NWSC Kampala Water Non-Revenue	
29	Mr. Godfrey Arinaitwe	Water Management	Senior Manager
<u> </u>		NWSC Kampala Water, Potential Loss	
30	Mr. Gilbert Muhwezi	Capacity & Infrastructure	Principal Engineer
31	Mr. Samuel Kiwanuka	Hydraulic Model - Asset Management	Engineer
32	Dr. Frank Kizito	NWSC Kampala Water Asset Management	Senior Manager
22	Mr. Enos Molembole	NWSC Kampala Water	Bringing Quality Control Officer
- 33	MIT. EIIOS Maranibara	NWSC Kampala Water Urban Dra Daar	Principal Quanty Control Officer
34	Mr. Ronald Kitakufe	Kisenvi Branch	Branch Manager
		NWSC Kompole Woter Drepaid Maters (in	
35	Mr. Otteran	Kampala Water old Office)	Manager
		NWSC Kompole Water Projects	
36	Mr. Pius Nyanzi	NWSC Kampala water, Projects	Engineer
- 27		Implementation Unit	
37	Eng. Andrew Muhwezi	NWSC Kampala Water, Water Production	Senior Manager
38	Mr. Bryan Wabujje	NWSC Kampala Water, Water Production	IT Officer
		(in Gaba WTP)	
39	Mr. Osigire Emmanuel	NWSC Kampala Water, Gaba I WTP	GI Shift Overseer
40	Mr. Tom Mbaziira	NWSC Hoima	Area Manager
41	Mr. Nsabimana Nelson	NWSC Hoima	Area Engineer
42	Mr. Okello Moses	NWSC Hoima	Shift Overseer
43	Mr. Mukwaya Sadik	NWSC Hoima	Quality Control Officer
44	Mr. Alex Nahabwe	NWSC Mubende	Area Manager
45	Mr. Waiswa Siraj	NWSC Mubende	Technical Supervisor
46	Mr. Olobo David	NWSC Mubende	Shift Overseer
47	Mr. Edward Murinde	NWSC Mubende	Quality Control Officer
48	Eng. Charles Sseku	NWSC Mityana	Area Manager

49	Mr. Nelson Otai	NWSC Soroti	Area Manager
50	Mr. Martin Odeke	NWSC Soroti	Area Engineer
51	Mr. Lokoru Mariano	NWSC Soroti	Human Resource Officer
52	Mr. Fred Busingye	NWSC Tororo	Area Manager
53	Mr. Charles Epeet	NWSC Tororo	Area Engineer
54	Mr. Arima Zubairisa	NWSC Tororo	Branch Manager
55	Ms. Nakanjako Juliet	NWSC Tororo	Senior Quality Control Officer
56	Mr. Mike Gonahasa	NWSC Tororo	Quality Control Officer

African Development Bank (AfDB)

NO	NAME	DEPARTMENT	POSITION
1	Mr. Mbiro Andrew	Uganda Office, Water and Sanitation	Senior Water and Sanitation Officer

World Bank (WB)

NO	NAME	DEPARTMENT	POSITION
1	Ms. Harriet Nattabi	Uganda Office, Water Resources	Water Resources Specialist

Agence Frangaise de Developpement (AFD)

NO	NAME	DEPARTMENT	POSITION
1	Ms. Abaliwano Juliet	Uganda Office, Water and Environment	Programme Officer
2	Mr. Frederick Mugisa	Uganda Office, Urban Development	Urban Development Specialist

UNICEF

NO	NAME	DEPARTMENT	POSITION
1	Mr. Wiberforce Kimezere	Uganda Office, Water Supply, Sanitation, Hygiene Department	Water Supply, Sanitation, Hygiene Specialist

Kreditanstalt für Wiederaufbau (KfW)

NO	NAME	DEPARTMENT	POSITION
1	Mr. Fred Othieno	Uganda Office, Water, Sanitation & Refugees	Project Coordinator

参考資料-2 NWSC 外部サービス (ES) の業務実績

参考資料-2 NWSC 外部サービス(ES)の業務実績

期間	プロジェクト名	客先	国名	資金源	受注金額 (USD)	受注金額 (EURO)
Dec 2019 - Mar 2021	Services for the Development of Customer Relations Management Software and its Integration to GIS and BIQ Systems for the City of Bulawayo (Ongoing)	Bulawayo	Zimbabwe	City of Bulawayo	156,460	-
Oct 2019 - Jun 2021	Implementation of WOP for BSWSC (Ongoing)	BSWSC	Nigeria	World Bank	324,700	-
Jan 2018 - Dec 2021	Utility Support to Capacity Development for Sustainable Water Services within Uganda (CaDeSWaS) - Value Addition Project (Ongoing)	VEI, The Netherlands	Uganda	Royal Netherlands Government	-	3.9 Million
Jan 2015 - Jun 2021	Alternative Approaches and Tools for Improved Water Supply and Sanitation for Towns in Northern Uganda (ATWATSAN) - Value Addition Project (Ongoing)	NWSC	Uganda	FDW, The Netherlands	-	4.5 Million
Aug 2018 - Apr 2020	Institutional Development Support for Sierra Leone Water Company (SALWACO)	SALWACO	Sierra Leone	AfDB	761,883	-
Nov 2017 - Apr 2019	Technical Assistance and Third Party Training support for implementation of Project for Management Capacity Enhancement for South Sudan Urban Water Corporate (Sub contracts with TECI)	TECI	Uganda	ЛСА	117,995	-
Jun 2015 - Mar 2019	Chittagong Water Supply Improvement & Sanitation Project	Chittagong WASA	Bangladesh	Gov. of Bangladesh/World Bank	2.5 Million	-
Feb - Dec 2018	Institutional Strengthening for Bauchi State Water and Sewerage Corporation (BSWSC)	BSWSC	Nigeria	World Bank	181,635	-
Sep - Oct 2018	Training in Water treatment Plant Operations, Non Revenue Water Management, and Financial Management for Water Corporation of Oyo State (Sub contract with 2ML)	2ML	Nigeria	Oyo State Government	145,700	-
Oct 2016 - Jul 2017	Management Commercialization and Institutional Support to Kaduna State Water Board (Sub contract with 2ML)	2ML	Nigeria	Kaduna State Government	191,170	-
Apr 2017 - Aug 2017	Training in Water treatment Plant Operations, Non Revenue Water Management, and Financial Management for Lagos Water Corporation (LWC) - (Sub contract with 2ML)	2ML	Nigeria	Lagos State Government	51,500	-

期間	プロジェクト名	客先	国名	資金源	受注金額 (USD)	受注金額 (EURO)
Sep 2015 - Apr 2016	On job training and Staff attachments for Sierra Leone Water Company (SALWACO)	SALWACO	Sierra Leone	AfDB	601,727	-
Feb 2015 - Oct 2015	Technical Assistance for Identification and Evaluation of Options for a Decentralized Zonal Management Model for Dhaka Water Supply and Sewerage Authority, Bangladesh - Review of the Organization Structure	Castalia	Bangladesh	World Bank	141, 600	-
Oct 2014 - Oct 2015	Performance Contracts for Lusaka Water and Sewerage Company	World Bank	Zambia	World Bank	49,750	-
Jun 2014 - Apr 2015	Water Operator Partnership for Nairobi City, Harari Region Water and Sanitation Authority (Ethiopia) and Ghana Water Company Ltd-Cooperation Agreement with UN HABITAT	UN HABITAT/GWOPA	Ghana, Kenya, Ethiopia	GWOPA	166,768	-
Jan 2014 - Apr 2014	Preparation of outline specifications for Utility Systems, Procedures and Equipment for Karnataka Urban Water Supply Modernization Project	World Bank	India	World Bank	27,676	-
Jan 2014 - Dec 2014	Water Operator Partnership Africa – Plateau State Water Board	WOP Africa	Nigeria	AWF - AfDB	57,941	44,570
Dec 2013 - Dec 2015	Sub Consultancy services with Consulaqua for capacity development of Water Supply and Sanitation Authorities (WSSAs) in Tanzania	GIZ	Tanzania	GIZ	105,274	80,980
May 2012 - Nov 2014	Consultancy Services For Improvement in Operational and Financial Performance, of Tanzania Electric Supply Company Limited - Roll out of PDP to Zones, Generation & Transmission Unit + Assessment of ICT Systems	TANESCO	Tanzania	TANESCO	321,404	-
Mar 2012 - Feb 2017	Capacity Development for Performance Improvement of Water Utilities in Secondary Urban Centers in East Africa (Dar Es Salaam Water & Sewerage Company (Tanzania) & Rift Valley Water Services Board Kenya)	UNESCO IHE, The Netherlands	Kenya Tanzania Uganda	ACP EU Water Facility	282,528	217,329
Jul 2012 - Apr 2016	Water Asset Management for Small Towns in Uganda with emphasis on Post-Conflict Northern Region"	VEI, The Netherlands	Uganda	ACP EU Water Facility	231,790	178,300
Aug 2013 to Feb 2013	Technical Support to South Sudan Urban Water Corporation and Board of Directors - Development of Corporate Plan & Performance Contracts for South Sudan Urban Water Corporation	TetraTech ARD	South Sudan	USAID	77,106	-

期間	プロジェクト名 客先 国名 資金源		受注金額 (USD)	受注金額 (EURO)		
Apr 2012 - Dec 2016	Implementation of the English Speaking Pan African Track of the International Executive Masters Programme of Water for all AgroParistTech	AgroParisTech	France	ADB, DBSA, APT	94,896	72,997
Sept 2013 - Jun 2013	Capacity Building for Wau and Maridi water utilities and water quality monitoring for Maridi water supply system	TetraTech ARD	South Sudan	USAID	148,600	-
Apr 2013 - Mar 2014	Water Operator Partnership Africa – Thika Water and Sewerage Company	WOP Africa	Kenya	AWF - AfDB	36,930	28,408
Apr 2013 - Mar 2014	Water Operator Partnership Africa – Ogun State Water and Sewerage Company	WOP Africa	Nigeria	AWF - ADB	38,388	29,529
Apr 2012 - May 2012 -	Subcontract Agreement for the provision of Block Mapping Services for Wau Distribution Network	Louis Berger Inc. USA	South Sudan	USAID	61,000	-
Feb 2012 - Nov 2013	Provision of Consultancy Services to Prepare a Performance Improvement Plan	WASA, T&T	Trinidad & Tobago	WASA	112,320	-
Nov 2011 - Oct 2012	Development of a Six months Performance Improvement Programme and Monitoring and Evaluation framework for Battery Plus	Battery Plus, Uganda	Uganda	Battery Plus, Uganda	4,536	-
Jun 2011 - Dec 2013	Benchmarking for Improved Water Utility Performance – Development of a Short course	UNESCO IHE, The Netherlands	India Uganda Brazil	Dutch Government	17,063	13,125
May 2011 - Sept 2011	Implementation of Institutional Support of Harari Water and Sanitation Project in association with UNESCO IHE, Delft	Ministry of Water & Energy, Ethiopia	Ethiopia	AfDB	359,694	-
May 2011 - Jul 2011	Consultancy Services for the Information Technology Procedures Management Manual (ITPMM)	EWSA	Rwanda	EWSA	96,663	-
May 2011 - Jul 2011	Training in Community Development for Lusaka Water and Sewerage Company	WSUP, UK	Zambia	WSUP, UK	11,260	-
Mar 2011 - Jun 2011	Subcontract Agreement for the provision of On job training for Wau Urban Water Treatment Plant	Louis Berger Inc. USA	South Sudan	USAID	24,530	-

期間	プロジェクト名	客先	国名	資金源	受注金額 (USD)	受注金額 (EURO)
Mar 2011 - Jun 2011	Situational Analysis for Wau and Malakal Urban Water Corporation	Louis Berger Inc. USA	South Sudan	USAID	33,475	-
Feb 2011 - Aug 2011	Financing Agreement for the RUWASS Project: Assessment of the ability/Capacity of water authorities in selected towns to meet O&M Costs	DWD	Uganda	GIZ	33,376	25,674
Feb 2011 - May 2011	Professionalization of Urban Poor Services	World Bank	India	World Bank	62,802	-
Feb 2011	Proposal preparation for upcoming Water Operator Partnership	WOP Africa	Nigeria	Water Facility AfDB	5,360	-
Jun 2010 - May 2011	Consultancy Services For Improvement in Operational and Financial Performance, of Tanzania Electric Supply Company Limited (TANESCO)	TANESCO	Tanzania	TANESCO	241481	-
Jan 2010 - Nov 2010	Water Operator's Partnership – Design of Annual Performance Improvement Plan and development of Non Revenue Water Reduction Strategy for Kisumu Water and Sewerage Company (KIWASCO) - Under Water Operator Partnerships	WOP Africa	Kenya	WOP-Africa	25548	-
Jun 2008- May 2011	Technical Support for Northern Uganda Water and Supply Services – Sub contract with ARD, Inc. USA - On going	TetraTech ARD, USA	Uganda	USAID	469031	-
Oct 2010 - Jan 2011	Water Tariff Review Study	EWSA	Rwanda	EWSA	114000	-
Oct 2010	Training of Lusaka water Staff and Sewerage Company staff in Monitoring and Evaluation/ Business Planning	World Bank	Zambia	World Bank	17079.78	-
Nov 2010	Development of Course Materials for Commercial and Financial Management under the LVWATSAN II	UNESCO IHE	Kenya Tanzania Uganda	UNHABITAT	7500	-
Jun 2010 - Aug 2010	Capacity Development for Wau Urban Water Corporation - Situational and Gap Analysis	Louis Berger Inc. USA	Sudan	USAID	8563	-

期間	プロジェクト名	客先	国名	資金源	受注金額 (USD)	受注金額 (EURO)
May 2010 - Jul 2010	Development of Strategic Improvement Plan for the South Sudan Urban Water Corporation (SSUWC)	ABRI, DAI Inc. USA	South Sudan	USAID	23152	-
Mar 2010 - Jul 2010	Institutional Support: Assessment and Audit of Block Mapping, GIS and update of Billing Systems for Dar es Salaam Water & Sewerage Company (DAWASCO)	DAWASCO	Tanzania	World Bank	57250	-
Nov 2009 - Jul 2010	Support for sustainable water and sanitation project - Letter of Authorization Sustainable Water and Sanitation Africa	ARD	Africa region	USAID	22,500	-
Mar 2009 - May 2010	Capacity building for Private Water Operators and Local Government Officials in Northern Uganda	DWD	Uganda	GTZ	42,000	-
May 2009 - Jun 2010	Fast Track Capacity Building Programme for Utilities around Lake Victoria and Technical Assistance in developing a Strategic Business Plan & Training for Harar Water & Sewerage Authority, Ethiopia	UN HABITAT	Uganda, Kenya, Tanzania & Ethiopia	UN-HABITAT/ AfDB	411,400	-
Sept 2009 - Dec, 2010	Support for Development of Internally Delegated Performance Contract (IDPCs) for Ogun State Water Corporation	Ogun State Water Corporation	Nigeria	World Bank	135,900	-
Jun 2007 - Nov. 2009	Consultancy Services For Institutional Support to Nakuru Water & Sanitation Services Company Ltd (NAWASCO), Kenya, in association with DHV BV, Netherlands	DHV, SNV	Kenya	AfDB	63,000	-
Jun 2007- Nov. 2010	Consultancy Services For Institutional Support to Nakuru Water & Sanitation Services Company Ltd (NAWASCO), Kenya, in association with DHV BV, Netherlands	DHV, SNV	Kenya	AfDB	63,000	-
Oct. 2008 - Nov. 2008	Development of Billing and Revenue Collection Systems for Empresa Moçambicana de Águas (a water company) for the town of Barirro of Leberdade, Mozambique	WSUP, UK	Mozambique	World Bank	12,500	-
Oct. 2008 - Oct. 2008	Advisory Services in respect to the Implementation of the Incentive and Bonus Scheme for Nairobi City Water and Sewerage Company Ltd., (NCWSC) Kenya	NCWSC	Kenya	NCWSC	9,450	-
Jun 2008 - Jul 2008	Audit and investigation of the billing systems to ensure sound controls, address risks and un earth any fraud/losses for Nairobi City Water and Sewerage Company Ltd.	NCWSC	Kenya	NCWSC	18,725	-
Feb, 2007 - Oct. 2008	Consultancy Services on Customer Management System – Implementation of Quality Assurance for Nairobi City Water and Sewerage Company Ltd., Kenya	NCWSC	Kenya	NCWSC	32,000	-

期間	プロジェクト名	客先	国名	資金源	受注金額 (USD)	受注金額 (EURO)
Jul 2007-Jul 2008	Institutional development/strengthening billing/IT systems and other key support services	DAWASCO	Tanzania	World Bank	99,700	-
Jun 2007 - Aug. 2008	Fast Track Capacity Building Programme for Utilities in association with UN HABITAT, Kenya, Tanzania and Uganda	UN HABITAT	Uganda, Kenya & Tanzania	UN-HABITAT, AfDB	464,001	-
Jan. 2008 - Feb. 2008.	Provision of Consultancy Services to Dar Es Salaam Water and Sewerage Company (DAWASCO) to establish a Social Connection Fund (Development of Policy manual), Tanzania	DAWASCO	Tanzania	World Bank	29,100	-
Feb 2008 - Feb 2009	Provision of specialist water operations assistance to WSUP Project – for Naivasha Water and Sewerage Company, Kenya	WSUP, UK	Kenya	WSUP, UK	6,400	-
2008	Development of a Performance Improvement plan for Nkana Water and Sewerage Company, Zamiba	NKANA Water	Zambia	NKANA water	16,200	-
Jul 2007 - Jul 2008	Performance Improvement Plan & Decentralization for Dar Es Salaam Water and Sewerage Company (DAWASCO)	DAWASCO	Tanzania	World Bank	11,000	-
Feb 2007 - Apr 2008	Review of the Management of Revenue collection of the Kampala City Council (KCC)	KCC	Uganda	KCC	18,800	-
Jan 2007 - Sept.2007	Capacity building for Private Water Operators, Local Government Officials & DWD staff in Utility Infrastructure and Systems Management & Regulation	DWD	Uganda	GTZ	81,200	55,000
Jan 2006 - Jan 2007	Turning point Programme for Dar es Salaam Water and Sewerage Company (DAWASCO), Tanzania	DAWASCO	Tanzania	World Bank	99,450	-
2007	Capacity building training of Nkana Water and Sewerage Company staff and management in customer care and strategic business planning	NKANA Water	Zambia	NKANA water	19,650	-
2007	Feasibility Study for Incentive based performance for Northern and East Uganda	PAG Inc. USA	Uganda	USAID	25,028	-
Jun 2007	Operational Rescue Plan for Dar es Salaam Water and Sewerage Company (DAWASCO), Tanzania	DAWASCO	Tanzania	World Bank	10,000	-
Jul 2006 - Sept. 2006	Consultancy Services on Incentive & Bonus Scheme for Nairobi City Water and Sewerage Company, Kenya	NCWSC	Kenya	NCWSC	24,500	-

期間	プロジェクト名	客先	国名	資金源	受注金額 (USD)	受注金額 (EURO)
Jan 2006 - Apr 2006	100 days Stretch-Out Programme for Nkana Water, Zambia	NKANA Water	Zambia	World Bank	35,000	-
Jan 2006 - Apr 2006	an 2006 - Review of Performance Agreement for Lusaka Water, pr 2006 Zambia		Zambia	World Bank	44,780	_
2005 - 2006	Support to Implementation of the 200 days programme and revision of the Performance Agreements between Nkana Water & Sewerage Company	NKANA Water	Zambia	NKANA water	15,850	_
2006	Training in Customer Care, Biling, Revenue Collection and Accounting of private water operators in Hoima and Masindi	DWD	Uganda	DWD	11,000	_
2006	Developing and implementing organizational behaviour and change management programmes in Steel rolling Mills, Jinja	Alam Group	Uganda	Alam Group	6,453	_
Nov 2005 - Jan 2006	Improvement Programmes for the Nzoia Cluster, Phase 1, Step 1&2 Accompanying Measures Western Kenya	Guaff	Kenya	KfW	139, 546	_
Jul 2005 - Sept 2006	Improvement of Billing and IT systems and Support Processes for Nairobi City Water and Sewerage Company (NCWSC) Limited	NCWSC	Kenya	NCWSC	103,700	_
Jun 2005 - Dec 2005	Development of Operational Rescue Plan for Dar Es Salaam Water and Sewerage Company (DAWASCO)	DAWASCO	Tanzania	World Bank	114,550	-
2005	Review of computerization of the Ministry of Lands Office	Ministry of Lands	Uganda	GIZ	16,700	-

参考資料-3 本邦企業アンケート回答詳細

参考資料-3本邦企業アンケート回答詳細

(1) ワークショップ、セミナーへの関心と協力可否

各社からのアンケート回答やヒアリングで確認したワークショップ、セミナー(アイデア ソン)への関心について下表にまとめた。アンケートに協力した全12社が聴講のみを含め 関心あり、8社がオンライン含めビジネスマッチングワークショップでのプレゼン可、うち 2社が現地への派遣も前向き、アイデアソンには6社が参加可となっている。

No.	企業名	技術分野	関心	プレゼン	アイデア ソン	現地派遣
1	愛知時計電機	水道メータ	あり	न	参加可	なし
2	石垣	汚泥脱水機	あり	不可	関心なし	なし
3	クボタ	ポンプ	あり	न]	参加可	なし
4	前澤工業	バルブ	あり	ا آ	参加可	П
5	メータウォーター	セラミック膜ろ過	あり	न	参加可	なし
6	横河 ソリューショ ンサービス	SCADA 漏水管理システム 計測機器	あり	न	聴講	なし
7	JFE エンジニアリ ング	浄水場 EPC	あり	不可	聴講	なし
8	OKAMURA	塩素滅菌装置	あり	न	不明	न
9	東芝インフラシス テムズ	オゾン発生装置	あり	不可	聴講	なし
10	兼工業	PSV システム (持圧 弁)	あり	न	聴講	なし
11	グッドマン	漏水探知器	あり	П	参加可	なし
12	三菱ケミカル アクア・ソリュー ションズ	遠隔監視システム	あり	न	参加可	なし
合計			12	8	5	2

各ヒアリング先企業のワークショップ・セミナーへの関心(水道分野)

出典:調査団

- (2) 自由回答設問に対する回答
- a) 今後のアフリカ地域での営業活動
 - ・ ケニアを中心に、安全で清潔な水へのニーズがある地域へ展開していく予定。
 - ・ 現時点での予定はない。(本件でのオンラインワークショップのように現地渡航をしないでビジネスチャンスを模索)
 - ・ 独自の営業活動は現在のところ未定
 - ・ ODA 案件を中心に資機材の販売を展開していきたい。
 - ・ 他国の現地法人を活用した公共上下水道、民間排水処理案件への元請/下請(プロセス設計および M&E 部分の設計・調達)参画
 - ・ 民間向け及び ODA の STEP 案件があれば注力したい。
 - ・ 日本の ODA 上下水事業の受注を目指して現在活動中。アフリカ地域の同事業案件に ついても、同様に受注を目指して営業活動中。
 - ・ 上下水道 EPC に関心があり、案件内容によっては取組意欲がある。
 - ・ JICA の援助がつく上下水道、灌漑、農業案件に注力し積極的に活動する方針
 - ・ JICA 案件あるいは現地での入札案件への参加、また日本各地の事業体との協力
- b) アフリカ地域での営業・販売体制(営業拠点、生産拠点、現地代理店等)
 - ・ ケニアに現地代理店あり(1社)
 - ・ 印橋コネクション、エージェントを活用、あるいは既に現地進出しているゼネコン等 からのオファーによる案件ベースの取り組み。現地子会社、ケニア支店
 - アフリカ地域の統括営業・サービス拠点として、バーレーンに子会社を設立。その傘
 下として、アンゴラ、エジプト、ナイジェリア、南アフリカに直轄拠点を設置
 - ・ 営業拠点は JICA 案件中心のため日本、生産拠点:日本、アフターはドバイから対応。
 - 日本の商社、官公庁による分科会・プラットフォームを活用し、営業活動を実施予定。
 (アフリカ現地に拠点は無し)
 - ・ 現地代理店について発掘中。
- c) アフリカでの営業、受注、製造、納入等の活動における問題点、不安要素
 - ・ 現地政府・省庁への PR の機会が少ない。
 - ・ 廉価品を扱う企業(特に中国企業)との競争時は良い技術・品質を提案してもなかな か受注に辿り着けない。提案方式の差別化が必要。
 - ・ 競合他社(特に中国メーカー品)市場流通状況、市場価格帯

- 現地事情(政治、治安、法制、商慣習等々)
- ・ 情報が少ない現地の開発課題、ニーズが把握できていない。また、遠隔地であり自社 単独での情報収集に限界がある。
- ・ 現地で競合する製品の情報が無く自社の販売戦略が立案できていない。
- ・ 現地法規制、税制、拠点設立要否等の情報が不足しており、リスク判断が困難である こと。
- ・ 現地土木・建築パートナー(ゼネコン)の開拓が困難であり、技術・財務両面の与信
 判断についても難航が予測されること。
- ・ 現地工事(土建、機電)パートナー知見不足
- ・ 代理店網の未整備
- ・ 情報の少なさから信頼すべき代理店の構築に難しさを感じる。
- カウンターパートについても一定のリスク(契約、財政面(支払い遅延等)、許認可
 手続き(施工中の協議難航等))が想定されること。
- ・ 支払い関係。納入後のメンテナンスをどうするかが課題になる。
- 既に営業体制を構築し、ビジネスを展開しているので、問題点・不安要素等はない。

d) ウガンダ、またはアフリカ地域での展開に当たっての日本政府(外務省、JICA等)への要望

- 具体的案件情報
- ・ 現地の開発課題、ニーズを共有して欲しい。
- プロジェクト組成による資金供与(財務面のリスク低減)
- ・ 他国の競合製品を排除するためにぜひ無償または STEP 案件として頂きたい。
- 本邦製品の採用:円借款では、本邦製品縛りで日本の受注確度を向上させる策をとってもらえるケースが増えているが、無償案件では、日本タイドの為、本邦機器採用縛りが乏しいケースが散見される為、無償案件こそ、本邦製品の採用を後押し頂きたい。
- 現状、十分に日本製品が採用される案件にも関わらず、安易な判断で他国製が使用されていると感じており、JICA事業においては可能な限り日本製品が採用されることを強く希望。
- パートナー企業とのマッチング機会の創出(パートナーとなり得る現地企業および 現地に進出済みの海外籍企業)
- ・ 今後も、オンラインを含めた海外要人の訪日ミッションを継続開催して頂きたい。
- 浄化サービス契約(初期費用不要の売水契約)の実証をしたいが、客先与信が不透明

なため一企業では投資に踏み切れない。例えば政府予算を活用して、浄化装置を製作 し、エンドユーザーへ5-10年のサービス契約を締結して、浄化水量(使用水量)に 応じて料金回収するスキームを実証したい。(長期契約になるため、政府予算を活用 したプロジェクトでは通りにくいと思われるが)。実証が成功すれば、後続案件の導 入障壁は下がる。価格では勝てない市場では契約スキームで差別化したい考え。

参考資料-4 ワークショップ・アイデアソン 出席者リスト

Data Collection Survey for Urban Environmental Sector (Urban Water Supply and Air Pollution)

Meeting Title: Uganda-Japan Business Matching Workshop (Urban Water Supply Sector)

Venue: Golden Tulip Canaan Hotel Luweero Conference Room

Date: 30th Sep 2021

	1	1	1	1	1
SN	Name	Organization	Department	Title	Remarks
1	Dr. Allan Kaford	NWSC External Services	Business and Scientific Services	Principal Engineer	Coordinator
2	Mr. Julius Kato Karuma	NWSC HQ	Operations Department	Principal Engineer	Group 3 Leader
3	Dr. Martin Kalibbala	NWSC Kampala Water	Asset Management Kampala Water	Manager	Facilatator
4	Ms. Bugenyi Freda	NWSC Kampala Water	-	Principal Engineer	
5	Mr. Godfrey Arinaitwe	NWSC Kampala Water	Non-Revenue Water Management	Senior Manager	Group 1 Leader
6	Mr. Joseph Tweheyo	NWSC Kampala Water	Katosi Water Treatment Plant	Project Manager	Group 2 Leader
7	Mr. Process Ahabwe	NWSC Kampala Water	Project Implementation Unit	Principal Engineer	
8	Mr. Mahmood Lutaaya	NWSC Kampala Water	Kampala Water Management	General Manager	
9	Dr. Frank Kizito	NWSC Kampala Water	Asset Management	Senior Manager	
10	Dr. Rose C. Kaggwa	NWSC IREC	Business and Scientific Services	Director	Online
11	Mr. Edison Muzahura	NWSC IREC	Training & Capacity Development	Manager	NWSC IREC
12	Dr. Irene Nansubuga	NWSC	Water Quality Department	Water Quality Manager	NWSC IREC
13	Dr. Mohammed Babu	NWSC	Water Quality Department	Manager	NWSC IREC
	Mr. Alex Gisagara	NWSC HQ	Engineering Services	Director	Absent
14	Ms. Hellen Izama	NWSC HQ	Infrastructure Planning and Development	Manager	NWSC IREC
15	Mr. Jackson Nimusiima	NWSC HQ	Infrastructure Planning Project Management	Senior Manager	NWSC IREC
16	Mr. Angelo Kwitonda	NWSC HQ	Sewerage Service	Principal Engineer	NWSC IREC
17	Mr. Samson Kamugisha	NWSC HQ	Corporate Planning	Senior Economist	NWSC IREC
18	Mr. Emmanuel Ekanya	NWSC HQ	Operations Eastern Region	Senior Manager	NWSC IREC
19	Ms. Evas Tumuheirwe	NWSC Kampala Water	GIS/Block Mapping	Manager	NWSC IREC
20	Ms. Emily Atusasive	NWSC Kampala Water	GIS/Block Mapping	-	NWSC IREC
21	Mr. Tom Buyi	NWSC Kampala Water	Monitoring and Evaluation	Manager	NWSC IREC
22	Ms. Jacqueline Bagonza	NWSC Kampala Water	(NRW)	Senior Engineer	NWSC IREC
23	Mr. Otteran Tayebwa	NWSC Kampala Water	Prepaid Meters	-	NWSC IREC
24	Mr. Andrew Muhwezi	NWSC Kampala Water	Kampala Water Water Production	Senior Manager	NWSC IREC
25	Mr. Enos Malambala	NWSC Kampala Water	Water Quality Department	Principal Quality Control Officer	NWSC IREC
26	Mr. Ronald Kitakufe	NWSC Kampala Water	Urban Pro Poor Kisenyi Branch	Branch Manager	NWSC IREC
27	Mr.Tom Mbaziira	NWSC Hoima	-	Area Manager	Online
28	Mr. Alex Nahabwe	NWSC Mubende	-	Area Manager	Online

Data Collection Survey for Urban Environmental Sector (Urban Water Supply and Air Pollution)

Meeting Title: Uganda-Japan Business Matching Workshop (Urban Water Supply Sector) Date: 30th Sep 2021

Venue: Golden Tulip Canaan Hotel Luweero Conference Room

SN	Name	Organization	Department	Title	Remarks
29	Eng. Charles Sseku	NWSC Mityana	-	Area Manager	Online
30	Mr. Fred Businge	NWSC Tororo	-	Area Manager	Online
31	Mr. Otai Nelson	NWSC Soroti	-	Area Manager	Online
32	Mr. Richard Matua	MoWE	Urban Water & Sewerage	Acting Commissioner	Online
33	Mr Martin Nijsse	VEI	-	Coordinator	Online
34	Ms. Susan Kasemire	Water Mission (NGO)	-	WASH Engineer	Online
35	Mr. Ichiro Fukuhara	JICA Uganda Office	-	Senior Representative	
36	Ms. Kaweesa Mariam	JICA Uganda Office	-	Assistant Program Officer	
37	Mr. Shohei Yamamoto	JICA Survey Team	-	Team Leader/Urban Water Supply	
38	Mr. Masahide Hanabusa	JICA Survey Team	-	Private Sector Technology/Business Matching	
39	Mr. Cavan Goh Wei Yung	JICA Survey Team	-	Urban Water Supply 2	
40	Ms. Margaret Namagera	JICA Survey Team	-	Local Engineer (Urban Water Supply)	
41	Mr. Kuniaki Taguchi	Yokogawa Solution Service (SCADA, Water Leakage Monitoring)	Global Sales Section Environmental Systems Division	Chief	Online
42	Mr. Kazuo Maruyama	KANE Kogyo Co., Ltd. (Pressure	Production Engineering Department	Manager	Online
43	Mr. Masaru Ochiai	Sustaining Valve)	-	Vice President	Online
44	Mr. Hiroyuki Tokutake	Maezawa Industries, Inc. (Flow	International Department	Deputy General Manager	Online
45	Ms. Aya Yagi	Control Valves)	International Department	Staff	Online
46	Ms. Yoshiko lwase	Goodman (Leakage Detection	International Division	Assistant	Online
47	Mr. Kenichi Watanabe	Equipment)	-	President	Online
48	Mr. Tadashi Sato	Fujitecom (Leakage Detection Equipment)	Overseas Sales Department	-	Online
49	Mr. Takuro Nishimura	Nagaoka International Corp. (Chemiles)	Sales and Development Group, Environmental Business Div.Water Business Headquarters	Acting Group Manager	Online
50	Ms. Naoko Mori		Overseas Business Support Department	-	Online
51	Mr. Suguru Kudo	Mitsubishi Chemical Aqua Solutions (Remote Monitoring System)	Technology Management Department	-	Online
52	Mr. Naoki Yasuda		Overseas Business Support Department	Senior Manager	Online
53	Mr. Kazuki Matsui		International Sales & Marketing Dept., International Business Division	-	Online
54	Mr. Taku Asano	Metawater (Mobile Ceramic Membrane Water Supply)	International Sales & Marketing Dept., International Business Division	Chief	Online
55	Mr. Yasuyuki Shinotsuka		International Sales & Marketing Dept., International Business Division	Manager	Online
56	Mr. Shuntaro Sakai	Tokyo Keiki (Electromagnetic Flow	Measurement System Company Sales	-	Online
57	Mr. Takayuki Shirakawa	Meter)	Measurement System Company Sales	Assistant Manager	Online

Data Collection Survey for Urban Environmental Sector (Urban Water Supply and Air Pollution)

Meeting Title: Uganda-Japan Business Matching Workshop (Urban Water Supply Sector)

Venue: Golden Tulip Cana	an Hotel Luweero Conference Ro	oom	Date: 30th Sep 2021 T	ime: 10:00 - 16:00

SN		Name	Organization	Department	Title	Remarks
Γ			Toshiba Infrastructure Systems &	Social System Div.		
	58	Mr. Kazuki Akashi	Solutions Corporation (EPC, Ozone	Water & Enviromental Oversea Sales	Specialist	Online
			generator)	Group		

Data Collection Survey for Urban Environmental Sector (Urban Water Supply and Air Pollution)

Meeting Title: "Japan×Uganda, Private×Public, Jointly Creating Uganda's Urban Environment"

(Urban Water Supply Sector) Venue: Golden Tulip Canaan Hotel Luweero Conference Room

Date: 1st Oct 2021

SN	Name	Organization	Department	Title	Remarks	
1	Dr. Allan Kaford	NWSC External Services	External Service	Principal Engineer	Coordinator	
2	Mr. Julius Kato Karuma	NWSC HQ	Operations Department	Principal Engineer	Group 3 Leader	
3	Dr. Martin Kalibbala	NWSC Kampala Water	Asset Management Kampala Water	Manager	Facilatator	
4	Ms. Bugenyi Freda	NWSC Kampala Water	-	Principal Engineer		
5	Mr. Godfrey Arinaitwe	NWSC Kampala Water	Non-Revenue Water Management	Senior Manager	Group 1 Presentator	
6	Mr. Gilbert Muhwezi	NWSC Kampala Water	Physical Loss Control & Instrumentation	Principal Engineer	Group 1 Leader	
7	Mr. Joseph Tweheyo	NWSC Kampala Water	Katosi Water Treatment Plant	Project Manager	Group 2 Leader	
8	Mr. Process Ahabwe	NWSC Kampala Water	Project Implementation Unit	Principal Engineer		
9	Mr. Mahmood Lutaaya	NWSC Kampala Water	Kampala Water	General Manager		
10	Dr. Frank Kizito	NWSC Kampala Water	Asset Management	Senior Manager		
11	Dr. Rose C. Kaggwa	NWSC IREC	Business and Scientific Services	Director	Online	
12	Mr. Edison Muzahura	NWSC IREC	Training & Capacity Development	Manager	NWSC IREC	
13	Dr. Irene Nansubuga	NWSC	Water Quality Department	Water Quality Manager	NWSC IREC	
14	Dr. Mohammed Babu	NWSC	Water Quality Department	Manager	NWSC IREC	
	Mr. Alex Gisagara	NWSC HQ	Engineering Services	Director	Absent	
15	Ms. Hellen Izama	NWSC HQ	Infrastructure Planning and Development	Manager	NWSC IREC	
16	Mr. Jackson Nimusiima	NWSC HQ	Infrastructure Planning Project Management	Senior Manager	NWSC IREC	
17	Mr. Angelo Kwitonda	NWSC HQ	Sewerage Service	Principal Engineer	NWSC IREC	
18	Mr. Samson Kamugisha	NWSC HQ	Corporate Planning	Senior Economist	NWSC IREC	
19	Mr. Emmanuel Ekanya	NWSC HQ	Operations Eastern Region	Senior Manager	NWSC IREC	
20	Ms. Evas Tumuheirwe	NWSC Kampala Water	GIS/Block Mapping	Manager	NWSC IREC	
21	Ms. Emily Atusasive	NWSC Kampala Water	GIS/Block Mapping	-	NWSC IREC	
22	Mr. Tom Buyi	NWSC Kampala Water	Monitoring and Evaluation	Manager	NWSC IREC	
23	Ms. Jacqueline Bagonza	NWSC Kampala Water	-	Senior Engineer	NWSC IREC	
24	Mr. Otteran Tayebwa	NWSC Kampala Water	Prepaid Meters -		NWSC IREC	
25	Mr. Andrew Muhwezi	NWSC Kampala Water	Kampala Water Water Production	Senior Manager	NWSC IREC	
26	Mr. Enos Malambala	NWSC Kampala Water	-	Principal Quality Control Officer	NWSC IREC	
27	27 Mr. Ronald Kitakufe NWSC Kampala Water Urban Pro Poor Kisenyi Branch Branch Manager		Branch Manager	NWSC IREC		

Data Collection Survey for Urban Environmental Sector (Urban Water Supply and Air Pollution)

Meeting Title: "Japan×Uganda, Private×Public, Jointly Creating Uganda's Urban Environment"

(Urban Water Supply Sector) Venue: Golden Tulip Canaan Hotel Luweero Conference Room

Date: 1st Oct 2021

SN	Name	Organization	Department	Title	Remarks	
28	Mr.Tom Mbaziira	NWSC Hoima	-	Area Manager	Online	
29	.9 Mr. Alex Nahabwe NWSC Mubende -		-	Area Manager	Online	
30	Eng. Charles Sseku	NWSC Mityana	-	Area Manager	Online	
31	Mr. Fred Businge	NWSC Tororo	-	Area Manager	Online	
32	Mr. Otai Nelson	Otai Nelson NWSC Soroti -		Area Manager	Online	
33	Mr. Richard Matua	Richard Matua MoWE I		Acting Commissioner	Online	
34	Ms. Kaweesa Mariam	JICA Uganda Office	-	Assistant Program Officer		
35	Mr. Shohei Yamamoto	JICA Survey Team	-	Team Leader/Urban Water Supply		
36	Mr. Masahide Hanabusa	JICA Survey Team	-	Private Sector Technology/Business Matching		
37	Mr. Cavan Goh Wei Yung	JICA Survey Team	-	Urban Water Supply 2		
38	Ms. Margaret Namagera	JICA Survey Team	-	Local Engineer (Urban Water Supply)		
39	Mr. Kazuo Maruyama	KANE Kogyo Co., Ltd. (Pressure	Production Engineering Department	Manager	Online (discussion)	
40	Mr. Masaru Ochiai	Sustaining Valve)	-	Vice President	Online (viewer)	
41	Ms. Aya Yagi	Maezawa Industries, Inc. (Flow Control Valves)	International Department	Staff	Online (viewer)	
42	Ms. Yoshiko lwase	Goodman (Leakage Detection	International Division	Assistant	Online (discussion)	
43	Mr. Kenichi Watanabe	Equipment)	-	President	Online (discussion)	
44	Mr. Mbiro Andrew	African Development Bank (AfDB)	-	Senior Water and Sanitation Officer	Online	
45	Ms. Alexander V. Danilenko	World Bank (WB)	-	-	Online	
46	Ms. Susan Kasemire	Water Mission (NGO)	-	WASH Engineer	Online	

Data Collection Survey for Urban Environmental Sector (Urban Water Supply and Air Pollution)

Meeting Title: Uganda-Japan Business Matching Workshop (Air Pollution Sector)

Venue: Golden Tulip Canaan Hotel Asmara Conference Room

Date: 30th Sep 2021

				-	
SN	Name	Organization	Department	Title	Remarks
1	Mr. Mafumbo Julius			Assistant Commissioner	Closing speech
2	Mr. Mununuzi Nathan	MoWE	Environment Sector Support Services	Senior Environment Officer	Presentator
3	Mr. Ndibirema Dadinoh			Environment Officer	
4	Mr. John Okatch			Environment Assessment Officer	
5	Ms. Kutesakwe Jennifer	NEMA	Environmental Monitoring & Compliance	Senior Environment Inspector	Presentator
6	Ms. Nsereko Patience			Principal Environment Inspector	
7	Mr. Moses Kabangi Mwigo			Commissioner	
8	Mr. Fred Mulabya			Principal Environmental Health Officer	Presentator
9	Mr. Dickson Wandera	мон	Department of Environmental Health	Environmental Health Officer	
10	Mr. Bob Omoda Amodan			Environmental Health Officer	
11	Ms. Atino Juliet	MeWT	Environment Liejeen Unit	Senior Environment Officer	
12	Ms. Winifred Anna Adoch Gena		Environment Liaison Onic	Social Environment Officer	
13	Mr. Birimumaso David C.E.A	MoEMD	Energy Efficiency Conservation	Senior Energy Officer	Presentator
14	Mr.Alex Ndayabakira	КССА	Directorate of Public Health	Epidemiologist	Presentator
15	Mr. Deo Okure	AirOs Preiset	-	Air Quality Scientist and Programme Manager	Presentator
16	Ms. Priscah Adrine	AirQo Project	-	Digital Communications Executive	
17	Mr. Kyalimpa Joseph	UMA	-	Representative	
18	Mr. Jakob Hornbach		-	CEO	Presentator
19	Mr. Janos Bisasso	Bodawerk International Ltd.	-	соо	
20	Mr. Ben Lokeris Koriang		-	ссо	
21	Mr. Yuki Inoue	JICA Uganda Office	-	Representative	Opening Speech
22	Mr. Shunichi Okahisa		-	Air Pollution Management	Chairperson
23	Ms. Ruth Mubeezi Neebye		-	Survey Assistant/Coordinator	Chairperson
24	Mr. Mahad Muhammad	Makarara University	School of Dublic Health	Student	Assistant
25	Mr. Senkubuge Shafik			Student	Assistant
26	Mr. Masaaki Yoshikawa	Osaka Gas Co., Ltd.	Energy Technology Laboratories	Manager	Online, Presentator
27	Mr. Kenichi Tanaka		International Sales Dept	Manager	Online
28	Mr. Leo Yasukawa	HORIBA, Ltd.	international Sales Dept.	Staff	Online, Presentator
29	Mr. Susumu Hayashi		R and D Planning Center	Manager	Online

Data Collection Survey for Urban Environmental Sector (Urban Water Supply and Air Pollution)

Meeting Title: Uganda-Japan Business Matching Workshop (Air Pollution Sector)

Venue: Golden Tulip Canaan Hotel Asmara Conference Room Date: 30th Sep 2021 Time: 10:00 - 16:00

SN	Name	Organization	Department	Title	Remarks
30	Mr. Mikael Mcheik	HORIBA FRANCE S.A.S.	-	-	Online
31	Mr. Hidenori Takada	Toyota Tsusho Corporation / Mobility 54	-	Representative	Online
32	Mr. Satoshi Miyaichi	JICA Survey Team	-	Air Pollution Management	Online
33	Ms. Junko Masaki	Nippon Koei Co., Ltd	International Environment Dept.	Manager	Online

Data Collection Survey for Urban Environmental Sector (Urban Water Supply and Air Pollution)

Meeting Title: "Japan×Uganda, Private×Public, Jointly Creating Uganda's Urban Environment" (Air Pollution Sector) Venue: Golden Tulip Canaan Hotel Asmara Conference Room Date: 1st Oct 2021 Time: 10:00 - 16:00

SN	Name	Organization	Department	Title	Remarks
1	Mr. Ndibirema Dadinoh	MoWE	Environment Sector Support Services	Environment Officer	Group 2
2	Mr. John Okatch		Environmental Monitoring &	Environment Assessment Officer	Group 3
3	Ms. Nsereko Patience		Compliance	Principal Environment Inspector	Group 2
4	Mr. Moses Kabangi Mwigo			Commissioner	Group 2
5	Mr. Fred Mulabya		Department of Environmental	Principal Environmental Health Officer	Group 3
6	Mr. Dickson Wandera		Health	Environmental Health Officer	Group 1
7	Mr. Bob Omoda Amodan			Environmental Health Officer	Group 1
8	Ms. Atino Juliet	NANAT		Senior Environment Officer	Group 3
9	Ms. Winifred Anna Adoch Gena		Environment Liaison Unit	Social Environment Officer	Group 1
10	Mr.Alex Ndayabakira	KOOA	Directorate of Public Health	Epidemiologist	Group 2
11	Ms. Fortunate Bis		Directorate of Traffic	Engineer	Group 1
12	Ms. Priscah Adrine	AirQo Project	-	Digital Communications Executive	Group 1
13	Mr. Kyalimpa Joseph	UMA	-	Representative	Group 3
14	Mr. Jakob Hornbach	Padawark International I to	-	CEO	Group 1
15	Mr. Janos Bisasso	bodawerk international Ltd.	-	соо	Group 3
16	Mr. Yuki Inoue	JICA Uganda Office	-	Representative	Opening and Closing Speech
17	Mr. Shunichi Okahisa		-	Air Pollution Management	Chairperson
18	Ms. Ruth Mubeezi Neebye		-	Survey Assistant/Coordinator	Chairperson
19	Mr. Mahad Muhammad	Makarara Llaivarsity		Student	Group 3
20	Mr. Senkubuge Shafik			Student	Group 2
21	Mr. Masaaki Yoshikawa	Osaka Gas Co., Ltd.	Energy Technology Laboratories	Manager	Online, Group 1
22	Mr. Satoshi Miyaichi	JICA Survey Team	International Environment Dept.	Air Pollution Management	Online, Group 3
23	Mr. Birimumaso David C.E.A	MoEMD	Energy Efficiency Conservation	Senior Energy Officer	Online, Group 3
24	Mr. Deo Okure	AirQo Project	-	Air Quality Scientist and Programme Manager	Online, Group 2
25					

参考資料-5.1 都市給水ワークショップ・ アイデアソンプレゼン資料

PRESENTATION OUTLINE

- Introduction
- Strategic Anchorage
- Strategic Initiatives to Enhance Service Coverage
- Challenges
- Expectations of Japan & Advanced Technologies

STRATEGIC ANCHORAGE

- Sustainable Development Goals 2030
- Vision 2040 and NDP III (2020 2030)
- Government Manifesto (NRM) 2021 2026
- Water and Environment Strategic
 Investment Plan (SIP 2018-2030)
- GoU Performance Contract 2021 2024
- NWSC Corporate Plan 2021 2024

STRATEGIC ANCHORAGE TRANSFORMATIVE, ACCOUNTABLE, AND SUSTAINABLE SERVICE THEME (2021-2024) DELIVERY STRATEGIC PRIORITY AREAS (SPAS) STRATEGIC RESULTS (SR) Corporate Plan 2021-2024 Well serviced Industrial Parks and INDUSTRIALIZATION Industries Increased access to Water and Sewerage -INFRASTRUCTURE DEVELOPMENT services SKILLING AND WORKFORCE DEVELOPMENT Skilled and Productive workforce 15 PRIVATE SECTOR INVOLVEMENT Increased Private sector involvement Transformative, Accountable and ORGANIZATION HEALTH AND SUSTAINABILITY A healthy organization with delighted Sustainable Service Delivery customers

5

PERFORMANCE OVERVIEW 2015 - 2021

Region	FY 2015/16	FY 2016/17	FY 2017/18	FY 2018/19	FY 2019/20	FY 2020/21
Geographical Growth (No. of Towns)	170	218	236	253	256	258
Water Production Capacity (million m3)	106	121	126	135	140	144
Volume of Water Supplied(million m3)	103	116	120	128	132	137
Volume of Water Sold (million m3)	74	80	83	91	88	87
Non-Revenue Water (NRW) (%)	28	30.9	31	29.2	33.5	34.6
Water Pipe Network (Km)	9 ,960	12,113	14,466	17,556	18,410	20,495
Sewer Pipe Network (Km)	557	580	604	663	693	715
Water Connections (No.)	472,193	524,657	587,863	659,157	724,006	775,794
Pro-poor Connections (No.)	9,260	10,424	12,305	17,186	21,600	24,867
Sewer Connections (No.)	20,355	21,072	21,616	22,606	23,914	24,026
Billing (UGX.Billion) - (VAT Incl.)	292	345	390	437	424	419
Collections (UGX.Billion) - (VAT Incl.)	284	323	385	437	391	446
Annual Turnover (UGX.Billion)	276	321	388	442	463	464
Operating Profit (UGX.Billion)	34	38	92	96	103	109
Staff Numbers	2,860	3,131	3,443	3,778	4,126	4,045

Strategic Initiatives to Enhance Service Coverage

Key Strategic Interventions: Building Capacities At All Levels

- Staff Capacity Development Programmes Including
 - ✓ Establishment Of The Vocational Training Facility at Gabba
 - ✓ The International Resource Centre (IREC)/Training Facility For NWSC And External Clients
 - ✓ The Western Regions Resource Training Center in Bushenyi (WESREC)
 - ✓ Planned Vocational Skills Training Facility in Katchung, Lira

Strategic Initiatives to Enhance Service Coverage

Key Strategic Interventions: Implementation of Capital Projects (Completed Projects)

- SCAP 100- Aims At 100% Service Coverage In All Areas (Achieved: Annual Average 2500 Km, 58,000 New Connections, 3,000 PSPs And Several Water Supply Stabilisation Plans (WSSP))
- Kampala Water-lake Victoria WATSAN Project (KW LVWATSAN)
- Fort Portal Water Production Improvements
- Water Management And Development Project (WMDP): Arua
- Water Management And Development Project (WMDP): Bushenyi
- Water Management And Development Project (WMDP) Gulu Water Supply project
- Kapchorwa Water Supply Project
- Water Supply Extension to Kasese Industrial Park
- Upgrade of Lira Water Supply System

Key Strategic Interventions

Key Strategic Interventions: Implementation of Capital Projects (Ongoing Projects)

- 1. Scap 100
- 2. Kampala Water-lake Victoria Watsan Píoject (KW LVWATSAN)
- 3. Kampala Sanitation Project (LVPII) Construction of Nakivubo Waste Water Treatment Plant at Bugolobi.
- 4. Upgrading Of Kapeeka Water Supply System
- 5. Sembabule Wateí Supply Improvement Píoject
- 6. Hoima Wateí Supply Impíovement Píoject
- 7. Development Of Water And Sanitation Infrastructure For The Isingiro, Mbarara Masaka Areas (South Western Cluster)
- 8. Bushenyi Water Supply Augmentation Project
- 9. Kiruddu Waste Water Treatment Plant: 10.Parombo Water Supply Project 11.Lyantonde Water Supply Project
- 10. Integrated Water Management And
- 11. Development Project (IWMDP)

Key Challenges

- Inadequate infrastructure that cannot cope with the Population growth/ Urbanisation growth rate
- Limited Financial resources to match Watsan growth with the ever increasing demand for services
- Climate change and valiability affecting reliability of water sources
- High NRW Especially in Kampala Water
- NWSC efforts to accelerate service provision have slowed down due to the negative impacts of covid19 Pandemic

Expectations for Japan & Advanced Technologies

- Financial Support Towards Development And Implementation Of Critical / Priority Watsan Infrastructure Development
- Collaborative Partnership in the Area of technology development such as Prepaid meters
- Technical Support to Vocational Skills Training Facility and Regionalisation
- Support in enhancing NWSC Capacity to manage water supply infrastructure in the Area of NRW
 - Establishment of DMAs in KW
 - Equipping the meter workshop
 - Establish a training yard for Leak detection for dissemination to other NWSC areas
 - Telemetry (SCADA systems) for flows, pressures and reservoir levels
 - Network fixtures for Pressure Management

11

Data Collection Survey for Urban Environment (Urban Water Sector)

Uganda-Japan Business Matching Workshop

Explanation of Result of Survey

September 30, 2021

JICA Survey Team

Contents

- 1. Activities for the JICA Survey Team
- 2. NWSC Corporate Plan, 5 Year Target and Investment Plan
- 3. NWSC Basic Information past 5 Years
- 4. Target Area for Survey
- 5. Baseline Information of 10 Target Areas
- 6. Survey Result of Kampala Water
- 7. Survey Result of Hoima, Mubende, Mityana, Tororo and Soroti
- 8. Proposed Aid Policy
- 9. Proposed Project in Urban Water Sector (Draft)
- 10. Donor Information
- 11. Collaboration with Private Sector and Other Donors
- 12. Business Matching Workshop and Ideathon

1

	Urban Water Sect
	-Year NWSC Corporate Plan (2021-2024)
Vision	The Leading Customer Service Oriented Utility In The World
Period	2021 - 2024 (3 Years)
	SPA 1. Industrialization • Increase water and sewerage service coverage for industrial development and growth
	SPA 2. Infrastructure Development Increase service coverage Ensure compliance to water and wastewater quality standards
Strategic	SPA 3. Skilling and Workforce Development Have a highly competent, skilled, ethical and productive workforce Contribute to the capacity development of the water sector
Area (SPA)	SPA 4. Private Sector Involvement · Strengthen the private sector involvement
	 SPA 5. Organizational Health & Sustainability Increase revenue, operating surplus Environmental and ecological sustainability Enhance Corporate Citizenship Improve liquidity, operational efficiency, water supply reliability, customer services, employee motivation and commitment

Urban Water Sector

2

5-Year NWSC Target

	Mission (Medium to Long-Term)	Indicators	Kampala M Ar 2021 =	etropolitan ea ⇒ 2026	Other Regi 2021 =	ons/ Towns ⇒ 2026
	Water	Water Production (million m ³)	124.8	142	56.7	77.7
	Production	NRW (%)	42.2	39.2	23 - 25 (<mark>24</mark>)	19 – 21.5 (<mark>20.5</mark>)
Targets	Customer	Total Connections (no.)	400,349	525,468	446,781	582,423
(5 Years)	Services	Total PSPs/Kiosks (no.)	8,025	12,767	21,173	31,931
	Compliance	Water Quality (%)	98	98	98	98
		Billings (million Ushs)	339	432	184.9	245.9
	Financial	Collection Efficiency (%)	100	101	91 - 110 (<mark>102.5</mark>)	97 – 105 (<mark>101</mark>)
		Average Debt Age (Months)	1.2	0.5	3.8 ~ 5.7 (4.5)	0.9 ~ 5.5 (2.9)

Source: NWSC Corporate Plan 2021-2024

5

Urban Water Sector Source of NWSC Financing (2021/22-2025/26)

Financial Forecast (Project Expenditure): 5,380 Billion (1.5 billion)

NWSC Financial Sources: 57%

GoU Financial Source: 8%

Donor Financial Sources: 35% (AFD, KfW, EIB, EU-ITF, WB, AfDB and others)

Sources of Financing (Inflows)							(Us	hs Million)
Cash Flow Item	2021/22	2022/23	2023/24	2024/25	2025/26	Total	USD	%
Collections (Water and Sewerage)	523,439	564,591	602,494	642,486	684,674	3,017,684	845	56%
Collections from other income	4,915	5,137	5,369	5 <i>,</i> 632	5,907	26,960	8	1%
Sub-Total (Internal Sources)	528,354	569,728	607,863	648,118	690,582	3,044,644	853	57%
External Sources								
GoU Releases	89,213	89,213	89,213	89,213	89,213	446,064	125	8%
Donor Releases	322,822	582,066	450,279	346,568	187,500	1,889,235	529	35%
Sub-Total (External Sources)	412,035	671,279	539,492	435,781	276,713	2,335,299	654	43%
Total Inflows	940,389	1,241,006	1,147,355	1,083,898	967,295	5,379,943	1,506	100%

Source: NWSC Corporate Plan 2021-2024

Urban Water Sector

NWSC Basic Information past 5 Years

G Key Performance Indicator for Water Supply

• Water production is increased to 1.3 while water connection and PSP are increased to 1.5 and 2.0 respectively.

Key Performance Indicator	2015/16 (1)	2016/17	2017/18	2018/19	2019/20 (2)	(2)/(1)
Number of Towns (Nos.)	170	218	236	253	258	1.5
Water Service Coverage (%)	78	78.2	83.7	83.7	84	1.1
Water Production (Million m ³)	106	120.7	126.2	134.9	140	1.3
Water Supply (Million m ³)	102.7	116.2	120.1	127.8	132	1.3
Water Sales (Million m ³)	73.9	80.2	82.9	90.5	87	1.2
Non-Revenue Water (NRW, %)	28	30.9	31	29	34	1.2
Total Water Connections (Nos.)	472,193	529,709	582,863	659,157	724,006	1.5
Total Public Stand Pipes (Nos.)	10,841	10,424	12,305	17,186	21,600	2.0
Total water pipe network (km)	9,960	12,113	14,466	17,556	19,974	2.0

Source: NWSC Integrated Annual Report 2019/20

Urban Water Sector

7

NWSC Basic Information past 5 Years

G Financial Performance

- Turnover is increased by 1.7, About 60 % of turnover comes from Kampala Water.
- Collection Efficiency is excellent even affected by COVID-19 (Including arrears).
- EBITDA is continuously increasing.

Key Performance Indicator	2015/16 (1)	2016/17	2017/18	2018/19	2019/20 (2)	(2)/(1)
Turnover (Billion Ushs) Net VAT	276	321	388	442	463	1.7
Billing (Billion Ushs) VAT Inc.	292	347	390	437	424	1.5
Collections (Billion Ushs) VAT Inc.	284	323	385	437	391	1.4
Collection Efficiency (%)	97	93	99	100	92	0.9
Debt Age (Months)	2.6	3	2.9	2.3	3.6	1.4
EBITDA (Billion Ushs)	34	38	92	96	103	3.0
Staff Number (Nos.)	2,860	3,131	3,443	3,778	4,082	1.4
Staff Productivity (Nos.)	6	6	6	6	6	1.0

Source: NWSC Integrated Annual Report 2019/20

8

							Ub	an Wa	ater Se	ector
D Baseline Information of 10 Target Areas										
Target Area	Kampala	Jinja	Hoima	Mubende	Lira	Kasese	Mityana	Tororo	Soroti	Fort Porta
Region	Kampala	Central	Western & South West	Central	Eastern & Northern	Western & South West	Central	Eastern & Northern	Eastern & Northern	Western & South Wes
Year of Transfer to NWSC	1972	1972	2006	2006	1990	1990	2013	1980	2008	1990
Target Population to be Served (2020)	6,761,636	929,697	253,978	288,146	440,882	366,317	241,174	760,712	383,644	484,37
Supply Population (2020)	6,242,420	737,706	120,568	104,899	394,215	186,781	123,344	520,657	243,546	242,61
Water Service Coverage (%)	92	76	47	36	89	51	51	57	62	5
Capacity Utilization (%)	97	67	64	72	71	96	40	35	103	6
Average Water Supply (hours)	15~20	15~20	<mark>8~12</mark>	18	15~20	24	20 ~ 24	<mark>16</mark>	<mark>16</mark>	20~2
Water Production (m ³ /year)	85,134,735	7,483,183	770,395	598,116	2,300,565	1,303,030	708,741	1,682,653	1,787,353	1,335,75
Water Sold (m ³ /year)	49,160,464	4,831,230	420,169	511,063	1,495,996	1,004,773	413,618	1,388,270	1,162,969	1,057,63
Billing Efficiency (%)	60	79	71	89	72	81	61	83	72	8
NRW (%)	<mark>40</mark>	21	29	11	28	19	<mark>39</mark>	17	28	1
Billing (Ushs '000)	245,247,870	25,552,587	1,967,866	2,170,619	6,361,796	3,980,479	1,562,179	6,242,257	5,144,790	4,981,13
Collection (Ushs '000)	238,705,506	24,089,215	1,849,005	1,941,736	5,668,522	3,502,556	1,455,838	4,813,520	4,482,647	4,320,70
Collection Efficiency (%)	97	94	94	89	89	88	93	77	87	8
Unit Cost of Water Production (Ushs/m ³)	2,132	6,746	3,589	<mark>8,386</mark>	3,205	1,717	<mark>5,078</mark>	4,052	4,720	3,66
Staff Productivity (nos.)	4	4	4	5	5	5	5	4	5	
Total Connection (nos.)	356,272	32,158	6,212	5,923	14,768	10,501	6,241	17,516	10,059	14,13
Total Length of Water Distribution Network (km)	3,186 (2020)	488 (2019)	261 (2021)	117 (2019)	134 (2016)	91 (2017)	231 (2021)	220 (2018)	102 (2019)	258 (2017

Note : Target population to be served and Supply Population (2020) is calculated by NWSC's own formula. Number of connection is including the disconnection number. Source : NWSC and interview survey to NWSC staff.

८	Urban Water Sup									
	Survey Result of Kampala Water									
Outline of Water Supply Facility										
ltem	Specifications									
Water Source	Lake Victoria									
Water Production Capacity	 Ggaba I, II, III WTP: 230,000 m³/day Katosi WTP: 160,000m³/day (expandable to 240,000 m³/day) Total: 390,000 m³/day (expandable to 470,000 m³/day) 									
Treatment Method	Ggaba I, II, and III: Conventional Water Treatment Katosi WTP: Conventional Water Treatment with using technology for Dissolved Air Flotation									
Water Quality Test	 Water quality test has been conducted based on the water quality testing schedule and test items. The treated water meets the water quality standards. 									
Treatment Conditions	 WTPs are operating according to manual and schedule. Inefficiency water WTP operation due to deterioration of raw water. Overloaded operation by 30,000 m³/day (80,000 m³/day to 110,000 m³/day) for Ggaba III WTP due to high water demand. 									
Distribution Facilities	Total Reservoir Volume: 118,490m ³ including Ggaba and Katosi WTP Clear Water Tank, Total Length of Distribution Pipe: 3,186km, HDPE: 47%, PVC: 30%, ST: 21%, GI and DI 2%.									
Source: Compile	d by IST based on interviews with NWSC and collected data									

Water Supply Hours (Not included Katosi Supply Volume)

Center of Kampala 24 hours supply

6

- □ Surrounding areas of Kampala center12 to 18 hours
- **D** Supply hour tends to be shorter in areas far from the center of Kampala

	Sur	vey Re	sult	of K	ampala	Water	
on-Reven	ue Wate	r					
FY	2	2015/16	2016	5/17	2017/18	2018/1	9 2019/20
NRW	/	31.8%	37.	1%	36.2%	34.6%	39.5%
	Authorized Consumpti n 4 515 323	Billed Authoriz Consum 4,295,08 Unbilled Authoriz	red ption 8	Billin prepa 4,294 Water 554 Unbil 4,100	g System (Inclu id water sales) ,534 • Theft (Culprit: led Metered Co	nding s charged)	Revenue Water 4,295,088 59.6%
System nput Volume V,204,513 m ³ /month)	Water Losses	Consump 220,235 3.1% Commer Loss 1.365.35	ption cial	Unbil Const 216,1 Unau 607,4	led Unmetered umption 35 thorised Use 96	×C	NRW 2.909.425
(Unaccount d-For-Wate (UFW)	e Physical 1,323,83	Loss 5	757,8 Leaks 397,8 Reser	59 57 73 voir Leaks and	Overflows	40.4%
	2,689,198	18.4%	18.4%		s 62		

NWSC NRW Water Balance (May 2021)

Urban Water Sector

Survey Result of Kampala Water

Issue on Development of Water Supply Facility

- Updating of the Master Plan for systematic development planning to meet the future water demand.
- Rehabilitation of distribution networks and establishment of DMA in all supply area with pressure control system.
- Establishment of Dedicated Non-Revenue Water Department for comprehensive NRW reduction activity including capacity development especially for the NRW reduction.

Urban Water Sector Survey Result of Hoima, Mubende, Mityana, Tororo and Soroti Water Source and Water Treatment Plan Hoima Mubende Mityana Item Tororo Soroti 2 dams, 5 Swamp, 4 Water Source 8 boreholes River River boreholes boreholes Production 3,000 m³/day 1,920 m³/day 4,800 m³/day 7,800 m³/day 8,500 m³/day Capacity 2,150 m³/day due to Actual 4,500 m³/day due 5,500 m³/day due 1,936 m³/day Production power outage and 1,560 m³/day to power outage to power outage. borehole broken Capacity Water Demand 11,040 m³/day 11,891 m³/day 9,660 m³/day 32,130 m³/day 21,980 m³/day (2030)Rapid sand filtration Treatment Conventional WTP Conventional WTP Conventional WTP w/o sedimentation Method water Meet with water Meet with water Meet with water Treatment Meet with Condition quality standard quality standard quality standard quality standard quality standard Facility Aged facilities · Lack of essential Lack of essential To be confirmed To be confirmed Condition · Lack of essential equipment equipment (mixer, equipment (dosing (dosing pump no spare of dosing pump etc.) etc.) pump etc.) Raw Water High iron, algae High iron High iron High turbidity High turbidity Quality High TCU (Color) High TCU (color) during the rainy during the rainy High humic season season substances Source : NWSC

15

Urban Water Sector Survey Result of Hoima, Mubende, Mityana, Tororo and Soroti

Reservoir and Distribution Pipe

ltem	Hoima	Mubende	Mityana	Tororo	Soroti
Total Volume of Reservoir	3,324 m ³	1,750m ³	1,062m ³	5,140 m ³	8,087 m ³
Pipe Length	261 km (2021)	117 km (2019)	231 km (2021)	220 km (2018)	102 km (2019)
Diameter	Up to 300 mm	Up to 200 mm	Up to 200 mm	Up to 300 mm	Up to 300 mm
Main Pipe Materials	HDPE, PVC	HDPE, PVC	HDPE, PVC	HDPE, PVC, GI, AC	HDPE, PVC, ST
Connection 1) Domestic 2) PSP 3) Commercial and industrial 4) Institutional and Gov.	1) 74% 2) 2.3% 3) 21% 4) 2.7%	1) 74% 2) 4% 3) 19% 4) 3%	1) 78% 2) 5% 3) 13% 4) 4%	1) 81% 2) 8% 3) 8% 4) 3%	1) 64% 2) 4% 3) 25% 4) 6%

Source : NWSC

Urban Water Sector

Survey Result of Hoima, Mubende, Mityana, Tororo and Soroti

□ Non-Revenue Water

- Commercial Loss: Meter inaccuracy, Illegal connection, etc.
- Physical Loss: Leakage and burst from old pipes and/or high pressure, pipe damaged by construction, etc.
- Countermeasure: line patrolling, replacement of aged pipe and faulty water meter, but active measure such as detection of underground water are not being carried out.

FY	2015/16	2016/17	2017/18	2018/19	2019/20
Hoima	31.6%	19.9%	31.3%	19.0%	29.0%
Mubende	9.6%	6.5%	8.1%	7.0%	11.0%
Nityana	22.0%	16.9%	29.9%	31.0%	39.0%
Troro	14.6%	8.6%	10.5%	14.1%	17%
Soroti	13.7%	14.9%	12.1%	11.7%	28%

Source: NWSC

Urban Water Sector Hoima, Mubende, Mityana, Tororo and Soroti

D Requirement of Future Action

- Evaluation of the current water supply situation and preparation of comprehensive development plan based on the water demand forecast and environment.
- Preparation of rehabilitation and augmentation plan, which including
 - ✓ The future expansion area
 - ✓ Development of reliable water source
 - ✓ Rehabilitation or construction of WTP
 - ✓ Rehabilitation and expansion of water distribution system
 - ✓ Introducing the appropriate technology such as pressure management, chemical reducing WTP, etc.
- Establishment of Non-Revenue Water Department (clustering some branches for efficiency activities)

Urban Water Sector

Proposed Aid Policy

□ Analysis of Current Situation and Needs for Cooperation

Due to following reason, NWSC is not at the stage for (2) "Support for improvement of basic services"

- Water supply for Kampala city: 24 hours
- Water meter installation: 100%
- Revenue collection efficiency: 92% despite water tariffs Ushs 3,516/m³ (¥110/m³) being more expensive than surrounding countries such as Tanzania Ushs 984/m³, Ethiopia Ushs 222 /m³, Kenya Ushs 2,308/m³
- Meeting with water quality standard: 98%
- Cost Recovery: Kampala WA income is significantly higher than the operation and maintenance costs

Source: Compiled by JST based on interviews with NWSC and collected data

25

Urban Water Sector

Proposed Aid Policy

Based on the following circumstances, support for improvement of management and increase in revenue through "(3) Support for growth of water utilities "

- Not catching up the expansion of water supply facilities due to population growth in surrounding of urban area (such as Kampala MA)
- Although main projects are currently funded by grant from GoU and donors, it is essential to borrow from financial institutions to finance the huge capital investment in the future, however, there is not enough borrowing capacity at present.
- There is room for improvement in income as NRW for the entire service region, including the Kampala Metropolitan Area, FY 2019/20 is 34%.
- While NWSC as a whole remains profitable, about 50% of NWSC regional branches FY 2018/19 and 80% in FY 2019/20 could not recover the O&M cost by water revenue. So internal subsidy from the benefit of Kampara water is being made to such branches.

Source: Compiled by JST based on interviews with NWSC and collected data

8

Urban Water Sector

Proposed Aid Policy

Analysis of the Challenges, Risk and Strengths of NWSC

1) Effort to Resolve Challenges and Risk for NWSC

The following are the major challenges and risks that need to be overcome in the technical and operational aspects of NWSC:

- Insufficient water production and distribution capacity caused by increased in water demand due to population growth
- Change in treatment method and increase in treatment costs due to deterioration of raw water quality
- High and increasing NRW
- Inefficient O&M of water supply facilities due to insufficient asset management systems
- Insufficiency of NWSC's own capital investment capacity observed from the current financial condition
- Inadequate resources and capacity to cope with water service expansion

The following initiatives are needed to solve these issues and reduce the risks.

- Rehabilitation/expansion of large-scale water supply facilities
- Further improvement of water service level
- Strengthening of operational and financial management

Source: Compiled by JST based on interviews with NWSC and collected data

Source: JST

Urban Water Sector

9 Proposed Pro

Prop	osed	Future	Proi	ect
Γιυρι	USEU	Future	FIU	ECL

Proposed Project in Urban Water Sector (Draft)

No.	Name of Proposed Project	Form of Aid
Short-Te	rm Plan	
1.	Dispatch of JICA Expert (data collection, relationship building) to MoWE	Dispatch of individual experts
2.	NWSC Management Infrastructure Strengthening Project	Technical Cooperation
3.	Regional Cities Water Supply Development Project	Grant aid
Medium	to Long-Term Plan	
4.	Kampala Metropolitan Area Transmission Mains Replacement Project	Loan Aid
5.	Regional Cities Water Supply Expansion Project	Loan Aid
6.	Strengthening of African Water and Sanitation Academy and Regional Collaboration Project ((Establishment will be supported by individual experts and subsequent continuous strengthening will be supported by third country training program and Knowledge Co-Creation Program)	Third Country TrainingProgramandKnowledgeCo-Creation Program
Source: JST	-	

33

10

Urban Water Supply Sector

Donor Information

□ Interviews to Various Donors and the Results

Name	Area	Scope	Donor	Status
Kampala Water Lake Victoria Water and Sanitation (WATSAN) Project (Phase I – III)	Kampala Region	 Estimated project cost: €372 million Rehabilitation and upgrading of Ggaba I & II water treatment plant (230,000 m³/day) Construction of the Katosi Water Treatment Plant (Phase 1: 160,000, Phase 2: 240,000 m³/day), construction of the Katosi transmission main and distribution system (54 km) Institutional Support/Capacity Building and Program Management 	• EIB (Loan) • AFD (Loan) • EU-ITF (Grant) • KfW (Grant)	Completion: 2023
Adjumani - Integrated Water Management and Development Project	Eastern & Northern Region	 Improvement of water supply system 	IDA-WB (Loan)	 Procurement of consultant Completion: December 2024
Mbale - Integrated Water Management and Development Project	Eastern & Northern Region	 Construction of new water system Rehabilitation of existing systems 	IDA-WB (Loan)	 Procurement of consultant Completion: December 2024

Source: Compiled by JST based on interviews with various donors and collected data

Urban Water Supply Sector

Donor Information

□ Interviews to Various Donors and the Results

Name	Area	Scope	Donor	Status
Development of WATSAN Infrastructure for the Mbarara, Masaka and Isingiro Areas, South Western Cluster	Western & South Western Region	 Estimated project cost: €126 million Construction of new water intake and water treatment plant (Mbarara, Isingiro) Rehabilitation of existing water systems 	AFD(Loan)	 Ongoing Completion: June 2024
Integrated Program to Improve Living Conditions in Gulu (Phase II Nile Option)	Eastern & Northern Region	 Construction of water treatment plant and bulk transfer, distribution system 	• KfW (Grant) • WB (Loan)	Completion: June 2025
Wakiso West WatSan Project (WWWSP)	Central Region	Development of the water supply system	IDA-DANIDA (Loan)	Completion: April 2023

Source: Compiled by JST based on interviews with various donors and collected data

35

Urban Water Supply Sector

Donor Information

□ Interviews to Various Donors and the Results

ltem	World Bank (WB)	AfDB	AFD	KfW
1. Importance of Uganda among all the target countries in Africa	WB has been in Uganda for 50 years and there is no talk of exit. SSCD is under review.	An important country among all the target countries in Africa.	AFD had an office established in Uganda in 2009 and Uganda remains a priority in the East African region	Uganda remains a very important partner for the German government.
2. High priority sectors	WB is interested in projects under the water supply sector in both the urban and rural areas. Refugee areas assistance as well.	Roads, agriculture, and water supply & sanitation both in urban and rural areas of Uganda.	50% of the investment from AFD in the last 5 years is in the water and energy sector	Water supply, road & bridge, agriculture, air, renewable energy
3. Future collaboration with JICA on urban water supply sector	WB is open for collaboration with JICA if there is a possibility in water supply sector.	It is welcome if there is any good project.	For any collaborations with other donors, it is discussed during the development sector meeting groups.	Flexible for cooperation with other donors.

Source: Compiled by JST based on interviews with various donors and collected data

Urban Water Supply Sector

Donor Information

□ Interviews to Various Donors and the Results

Item	World Bank (WB)	AfDB	AFD	KfW
	① IWMDP(Gulu,	① The Lake Victoria	① KW WATSAN	① KW WATSAN Project
	Adjumani, and Mbale)	Protection II Project (LVP	Project (Loan)	(Grant)
4. water	(Loan)	II) (Loan)	² Development of	② IWMDP (Gulu)
	² IPILC in Gulu (Phase	² Strategic Towns Water	WATSAN Infrastructure	(Grant)
[Finance]	I Nile Option) (Loan)	Supply and Sanitation	Project	3 IPILC in Gulu (Phase I
		Project (STWSSP)(Loan)	(Loan)	Nile Option) (Grant)
	Restudy and change of	-	The WATSAN Project	Under confirmation
	water source due to low		applies a special	
5. Technical	quality of F/S etc.		treatment method due	
issues in	Change of water source.		to the deterioration of	
projects			water quality in Lake	
			Victoria. Land	
			acquisition problem.	
	NRW reduction : Low	NRW reduction :	NRW reduction:	Under confirmation
	interest	Rehabilitation and	WATSAN Project plans	
6. NRW,	PPWM : No interest	expansion of distribution	to implement NRW	
Prepaid water	Capacity building :	network in UWA	measures,	
meter	organization	PPWM : No interest at	management of water	
(PPWM),	improvement and	present	transmission and	
Capacity	capacity building in	Capacity building: Under	distribution pipes,	
Building	UWA	implementation of	DMA, etc.	
_		capacity development		
		program in water sector		

Urban Water Supply Sector Collaboration with Private Sector and Other Donors

□ Private Technologies and Companies which can be expected for **Collaboration (Water Supply Sector)**

No.	Technology	Company	Local Issue	
1	Leakage Management System with SCADA System	Yokogawa Solution Service	Water leakage and pressure management	
2	Pressure Reduction Valve	Foreign Companies	Pressure control (reduction)	
3	Pressure Sustaining Valve (PSV)	Kane Kogyo	Pressure control (sustaining)	
4	Leak Detection Devices	Goodman Fujitecom	Leak detection	
5	Water Supply Ledger System, GeoSpatial Analysis	Foreign companies (VEI etc.)	GIS Mapping, Investment plan	
6	Ultra High-Speed Chemical-Free Water Treatment System "Chemiles"	Nagaoka	High iron concentration in groundwater (Mityana etc.)	
7	Remote Monitoring System	Mitsubishi Chemical Aqua Solutions	Monitoring of water quality, flow, level, rainy/dry seasons	

Source: JST

Urban Water Supply Sector Collaboration with Private Sector and Other Donors

Potential Collaboration with Other Donors * Only possibility at present

(1) Water Supply Project in Local Urban Cities (Financial Cooperation)

Option 2: Water Supply Project with Chemical Free Groundwater Treatment Technology in Mityana

Scope (Tentative):

①New construction / expansion of a water treatment plant that uses groundwater with a high iron content as a water source (reduction of O&M cost)

O Introduced SCADA system and upfront investment for non-revenue water

Recommended Japanese technology:

Ultra-high-speed chemical-free water injection treatment device "Chemiles", water intake technology, SCADA system, water leakage management software

Possibility of collaboration with other donor: World Bank, AfDB, KfW

 \Rightarrow Good conditions for applying Japanese technology, but low growth among candidate cities is an issue.

11

Urban Water Supply Sector Collaboration with Private Sector and Other Donors

Potential Collaboration with Other Donors * Only possibility at present

(2) Non-revenue Water Reduction Project in Kampala (Technical Cooperation)

Scope (Tentative):

①Provision of necessary equipment (new/additional) such as leak detection equipment and portable pressure gauge, and necessary training of technical staff

②Support for strengthening of facility inventory data and preparation of facility renewal plans, etc. for improvement of asset management

Recommended Japanese technology:

Leakage detector, metal pipe detector, non-metal pipe detector, knowhows of efficient facility inventory management / facility renewal planning

Possibility of collaboration with other donor: AFD, VEI

1) Coordination with NRW reduction activities to be implemented in the WATSAN project

2) Strengthening of aging pipe inventory information and cooperation to future pipe replacement works by NWSC and other donors (**AFD** etc.)

3) Collaboration on supports for asset management with VEI that has already supported the GIS mapping system

41

Urban Water Supply Sector Collaboration with Private Sector and Other Donors

D Potential of External Funding from PPP

*Discussion in Ideathon for future possibility

[PPP Contract Patterns (Example)]

Full Privatization, Concession Method, Lease-Afermage Method,

Management Contract, Co-owned company, etc.

[Advantages of implementing private sector cooperation]

- Efficient services that utilize the technological and financial capabilities of the private sector can be expected.
- The private sector attempts to provide efficient and effective services in pursuit of profits.

[Issues in implementing private sector cooperation]

- A mechanism is needed to appropriately regulate and supervise the level of services and tariffs provided by the private sector.
- Water tariffs may increase as the private sector pursues profits. In addition, there is a possibility that unfairness may occur between regions.
- > A risk that services to low-income groups who cannot pay water tariffs will be reduced.
- If the private sector lacks the track record and knowledge of operating a water supply business, the service may temporarily decline.

Urban Water Supply Sector

Business Matching Workshop and Ideathon

U Workshop Overview

Title: Uganda-Japan Business Matching Workshop (Webinar Style) Date and Time: September 30 2021 10:00 - 16:00 (JPT 16:00-22:00) Host: JICA (Tokyo, Uganda Office), Co-Host: NWSC

Location: Golden Tulip Kanaan Kampala, Luweero Conference Room

Program:

10:00 - 13:00 (Morning Session) * program after this presentation

- Presentations by 6 Japanese companies regarding water supply business 14:00 16:00 (Afternoon Session)
- Presentations by 2 Japanese companies regarding water supply business
- Business matching between public (including NWSC) and Japanese companies at each booth through live streaming
- Closing speech by NWSC

Participants

MoWE, NWSC, NGO, JICA Uganda Office, JICA Survey Team Online: NWSC IREC, Japanese companies, JICA H/Q

43

12

Urban Water Supply Sector Business Matching Workshop and Ideathon

G Seminar (Ideathon) Overview

Title: "Japan × Uganda, Private × Public, Jointly Creating Uganda's Urban Environment" (Webinar Style)

Date and Time: October 1 2021 10:00 - 16:00 (JPT 16:00-22:00)

Host: JICA (Tokyo, Uganda Office), Co-Host: NWSC

Location: Golden Tulip Kanaan Kampala, Luweero Conference Room

Program:

10:00 - 13:00 (Morning Session)

- Introductions by NWSC (Kampala Water, NRW, Reginal Areas)
- Group discussions (Group 1 NRW, Group 2 Kampala, Group 3 Regional)
- 14:00 16:00 (Afternoon Session)
- Preparation of Action Plans by each Group
- Presentation of Action Plans by each Group
- Closing speech by NWSC

Participants

MoWE, NWSC, NGO, JICA Uganda Office, JICA Survey Team Online: NWSC IREC, World Bank, AfDB, Japanese companies, JICA H/Q

Yokogawa Solution Service Corporation Global Promotion Section Environmental Systems Division

30th Sep. 2021

Co-innovating tomorrow

| August 2018 | Integrated Communications Center © Yokogawa Electric Corporation

Agenda

- 1. About Our Company
- About Our Water Loss Management System (WLMS)
- 3. One of the biggest reference

Co-innovating tomorrow

| August 2018 | Integrated Communications Center C Yokogawa Electric Corporation

Co-innovating tomorrow

C Yokogawa Electric Corporation

Yokogawa 🤸

-						
No.	Country	Year	Project Type	Kind of ODA	Type of Contract	Status
1	Montenegro	2010	Water distribution	G/A	Subcontract	Complete
2	Jordan	2011	Water distribution	G/A	Subcontract	Complete
3	Egypt	2012	Water distribution	ТС	Subcontract	Complete
4	Palestine	2013	Wastewater Treatment Plant	G/A	Subcontract	Complete
5	Philippines	2015	Water distribution	G/A	JV	Complete
6	Iraq	2015	Desalination Plant	L/A	Subcontract	Ongoing
7	Nigeria	2016	Water distribution	ТС	Subcontract	Complete
8	Bangladesh	2017	Water distribution	L/A	Prime Contract	Ongoing
9	Myanmar	2017	Water distribution	G/A	Subcontract	Complete
10	Malaysia	2017	Water distribution	ТС	VL	Ongoing
11	Myanmar	2018	Water Treatment Plant	L/A	Subcontract	Ongoing
12	Bangladesh	2019	Water Treatment Plant	L/A	Subcontract	Ongoing
13	Morocco	2019	Desalination Plant	Private Finance	Subcontract	Ongoing

L/A: Loan Agreement G/A: Grant Agreement

Co-innovating tomorrow

| August 2018 | Integrated Communications Center © Yokogawa Electric Corporation 8

Co-innovating tomorrow ~

| August 2018 | Integrated Communications Center © Yokogawa Electric Corporation

RTU (Remote Terminal Unit) | Document Number | June 1, 2017 | © Yokogawa Electric Corporation 10

3. One of the biggest reference The project for the Improvement of Water Supply System in Metropolitan Cebu Water District

Project overview

Project	The project for the Improvement of Water Supply System in Metropolitan Cebu Water District
Country and area	Philippines / Metro Cebu
Construction period	From March 2015 to September 2016 (18 month)
Customer	Metropolitan Cebu Water District's (MCWD)
Purpose of Project	Monitoring 143 spots by SCADA system

Co-innovating tomorrow **

| Document Number | June 1, 2017 | © Yokogawa Electric Corporation 15

SCADAシステムを活用した漏水管理システム

Co-innovating tomorrow **

| Document Number | June 1, 2017 | © Yokogawa Electric Corporation 19

Well Pump Station

Co-innovating tomorrow "

| Document Number | June 1, 2017 | © Yokogawa Electric Corporation 20

Well Pump Station Panel Inside

24V P/S UPS PLC 3G Router Arrester

Co-innovating tomorrow "

| Document Number | June 1, 2017 | © Yokogawa Electric Corporation 21

DMA Panel and Inside

Co-innovating tomorrow "

| Document Number | June 1, 2017 | © Yokogawa Electric Corporation 22

YOKOGAWA 🔶

Co-innovating tomorrow **

| Document Number | June 1, 2017 | © Yokogawa Electric Corporation 23

Co-innovating tomorrow *

| Document Number | June 1, 2017 | © Yokogawa Electric Corporation 24

SCADAシステムを活用した漏水管理システム

Training

- Difficult to understand with one lecture
- Repetitive training is necessary to master SCADA

Co-innovating tomorrow™

Let's build a sustainable water together for our Future Generation!

Thank you for your attention.

13 BANK

The outline of this presentation

- About our Company and products.
- Introduction photos of JICA feasibility survey of PSV in Sri Lanka.
- PSV system evaluation test result at NWSB T.T.C.
- What is & where to use the PSV System?
- What is the merit of the PSV system?
- What is the size variation of the PSV?
- About learning program.
- The GPS integrated datalogger with programable timer controller.

<section-header><complex-block> Fair Water Distribution PSV system Image: PSV System Che day of PSV Workshop: Member from 10 Regional Service Center Image: PSV System Image: PSV Sy

JICA SDGs Business Verification Survey Team

IKVVE

Fair Water Distribution PSV system

4

適正な配水の実現と無収水削減に資するPSVシステム

Fair Water Distribution

PSV system

JAPAN

JICA SDGs Business Verification Survey Team

7

It is recommended to install PSV after the branch-out point at low elevation area, it enables to distribute water with enough pressure during peak time even at higher elevated area.

JICA SDGs Business Verification Survey Team

JICA SDGs Business Verification Survey Team

Fair Water Distribution **PSV system**

The water tower construction and the enhancement of the pump station are not necessary. The Manpower for manual valve control and large-scale pipe-laying work are no longer required to solve the small area or district insufficient water distribution during peak time. Even during the black-out, this cooperative individual distributed control system is working. There is no need for long-term rehabilitation at a high cost.

JAPAN

JICA SDGs Business Verification Survey Team

Fair Water Distribution

PSV system

JAPAN

|<|

REVIEW

PSV system is ...

Energy-saving with low-cost and more than 10 years of free maintenance record.

It enables water distribution sufficiently to the bulk user areas, areas with elevation gaps, and terminal end areas.

As an improving way of the water distribution, there are significant advantages compared against the improving by the additional infrastructural development or rehabilitation.

The biggest advantage is that both suppliers and consumers can be relieved from concerns about water supply & demand.

JICA SDGs Business Verification Survey Team

CONFIGURATION OF CONTROLLER & EACH DEVICE

PSV SYSTEM CONTROLLER what is the function of this?

Data Logger: Hand-carry data logger with a dual data backup system.

GPS: Location identification and time synchronizing with other controllers by GPS clock.

1

*

Bluetooth: Updated program data, Sensor signal record, Communication history with smartphone or PC.

Sensors: A Pressure sensor is mounted as a standard item.

Program timer: In the case of set emergency mode, on/ off control is priority operated with the sensor/ wireless signal than the written timer program by the installed solenoid valve.

MAIN COMMUNICATION BETWEEN 1 **CONTROLLER AND TERMINAL DEVICES** Timer program Upload **Prior Command by** Controller < IP68 > Sensor signal <<Prototype>> Datalogger/ Time sharing with Sensor setting 10 **GPS** clock Up & Download **PSV timer control PSV Manual ON/OFF** Terminal device **Operation record Download** Sensor/Note record DL 0 10 **GPS Location/ Clock data DL**

GPS integrated datalogger & programable timer controller

PSV SYSTEM CONTROLLER purpose of each function

Hand-carry data logger: Collect records of the on-time/real distribution conditions to improve the distribution volume balance.

GPS: Enables the time-sharing control of the actual condition at a certain area covered by the controllers with synchronized timing.

4

48

Bluetooth: Upload/download programs, data records, on-site note record.

(7)

Sensors: Normally, pressure sensor is more than enough, but there might be the other factor is important, such as humidity, temperature or seismic intensity sensor.

Program timer: If the distributed water amount for the total amount against several targeted areas is uncontrollably a shortage, this controller shall be installed to control on/off and switching the distribution area/direction by timing control (distribution time sharing). (No more manual gate valve control by workers is necessary.)

HOW TO SETUP/ USE?

Fair Water Distribution PSV system 🐗 🐗 📢 IAPAN

THE CONTRIBUTION OF OUR ULTRASONIC FLOWMETER

- Contribution for SDGs no.6
- The collected data will be utilized for water leak detection
- For example, measuring before and after a network then compare the data.

SPECIFICATIONS-ULTRASONIC FLOWMETER

Portable Ultrasonic Flowmeter UFP-20

Stationary Ultrasonic Flowmeter UFL-30

Diameter range : DN13 to DN5000mm Accuracy : $\pm 1.0\%$ MAX IP Class : IP65 Battery Dual path, Dual channel Thickness meter function (Option) Diameter range : DN25 to DN6000mm Accuracy : $\pm 1.0\%$ MAX IP Class : IP67, 68 Four path function

CALIBRATION FACILITY

Uncertainty : 0.07 % Applicable pipe diameter : DN50 ~DN600 Maximum Flowrate : 2000m3/h max Over head height : 25m Applicable Certificate : JCSS / ISO 17025

OPEN CHANNEL ULTRASONIC FLOWMETER

Water channel width : $0.3 \sim 20m$ Application : Agricultural water, River water

Level gauge is included

UVH-2000

Water channel width : $0.25 \sim 5m$ Application : Sewage, Waster water, Industrial effluents, Other fluids with suspended matters or small bubbles which reflect ultrasonic

Level gauge is included

SPECIFICATIONS-RADAR LEVEL GAUGE

• Non-contact Radar Level Gauge KRG-10

Measurement range : 30m MAX Accuracy : ±2mmMAX Output : 4-20mADC and HART Rapid tracking : track up to 2m / sec Antenna : cone, process seal, clamp selectable variety Microwave Level Gauge MD-10

Measurement range : 20m MAX Accuracy : \pm 10mmMAX Output : RS-485 Antenna : 8 inch cone Rapid activation

PERSON IN CHARGE

- TOKYO KEIKI INC.

- Measurement System Company Overseas Sales Sect. Sales Dept.
- Shuntaro Sakai (Mr.)
- Tel: +81-3-3737-8664
- Fax: +81-3-3737-8665
- Mobile: +81-80-9537-3938
- Email: s-sakai@Tokyo-keiki.co.jp

The easiest way to find leakage for everyone with success.

•

What is Tracer Gas Method?

It is a method of detecting leaks by filling the pipe with exploration gas and detecting holes and cracks that cause leaks.

OTracer gas method

1.Injecting tracer gas

2.Tracing above buried 3.Detecting tracing gas 4. Leakage is found pipe line with detector.

Advantage of tracing gas method

- 1. Resin pipes such as vinyl chloride pipes and polyethylene pipes, or even very small amounts of water leakage can also be found with high accuracy.
- 2. Easy to use, detecting with accuracy without complicated settings or experience
- 3. Unlike acoustic detectors, it is effective even in noisy environment anytime anywhere!

Advantage of HYDRO-TRACER

- 1. Producing gas continuously for long time if purified water and electricity are available
- 2. No need to prepare multiple heavy cylinders!
- 3. The weight is only 23kg! Easy to deliver compared to gas cylinders.
- 4. The maximum gas generating rate is 700 liters/min by type.

Max.200*l*/min

HT-200 Max700l/min

•

Advantage of Valiotec460 Tracer gas detector

- 1. Accurate detection with two sensors and built-in pumps
- 2. Plenty of attachments make it available to detect in environment from road surface to perforation inspection.
- 3. The gas density is displayed numerically on a large-screen LCD with backlighting

Advantage of Snooper4 Tracing gas detector

- 1. The palm-sized body uses large numerical displays and sound and light to clearly convey gas detection.
- 2. A small pump for gas suction is installed on the main body, so you can use outdoors or on the road.
- 3. Both hand and bell probes are included as standard

Case Studies

HT55

Valiotec460

Snooper 4

CASE STUDY 1

Date: August 2018

Place: Mountain forest area in Northern Kanto in Japan

Pipes: VP pipe Φ25 mm

Survey distance: 400m

There was a leakage underground about 0.6t litter/h in the water supply pipe which was buried on the slope of bank, and it was very difficult to find the leakage with acoustic leak detector under such circumstance.

Therefore, in order to investigate by tracing gas methods, we cut off water supply for 11 households, then injected hydrogen mixed gas into the pipe with Hydro-Tracer and located leaks with Valiotec460 for about half a day, and finally pinpointed the suspected leakage site.

We excavated the area and found the water leakage successfully.

CASE STUDY2

The max. value detected in valve box of fire hydrant

After digging the area, water leakage was identified.

Date: December 2019 Place: Hyogo prefecture in Japan Pipes: VP pipe Φ100 mm Survey distance: 250m We found leakage with Valiotec460 gas detector in about 1 hour after gas injection by HT55 Hydro-tracer.

CASE STUDY 3

Date: March 2019 Place: BEKASI Training Center, Palembang, Indonesia Pipes: PVC 50mm Φ Survey Distance : 100m

After our training seminar to PDAM TRTAMUSI members, they surveyed water pipeline in Palembang city and found 11 points where water leakage is suspected.

Coming Soon! COCODA Hydro Sensor

- 1. Ultra sensitive built-in sensor with suction pump
- 2. Rechargeable battery with charger
- 3. LED indicators and controllable detecting sound
- 4. Silicon rubber protector with belt suspender
- 5. Useful both inside house and ground
- 6. Long lasting durable sensor, no need to calibrate
- 7. low price and easy to use for everyone

漏水探知器ハイドロ・トレーサー(グッドマン)

GOODMAN D305

PVC pipe-leakage Detector D305

The only detector that can pinpoint water leaks and locate non-metallic pipes!

Features:

- · Pinpoint water leak and pipe location
- · Easy operation and quick result
- Water resistant and robust carrying case
- Built-in rechargeable batteries

MADE IN JAPAN

PAT.P. GOODMAN INC.

Specifications are subject to change without notice.

Feature

- 1. Most inexpensive tape stopping leakage
- 2. Can be applied on wet pipe
- 3. Slipless adhesive feature
- 4. No need to cut and replace pipe
- 5. Upto 200mm diameter on any pipe material
- 6. Durable material prevent leak long time

•

After taking backpaper, apply tensior to Tomezo, cover the leak spot.
Wrap at least 3 layers or more to ensure stop leaks depending upon internal water pressure.

3 Apply tie band to prevent back rush.

Thank you!

GOODMAN INC.

2-3-3 MUTSUURA HIGASHI, KANAZAWA, YOKOHAMA, KANAGAWA, 236-0037 JAPAN TEL +81-45701-5680 E-mail: yiwase@goodman-inc.co.jp

Groundwater Intake & Treatment

Internationally Recognized NAGAOKA Technologies by International Water Association(IWA)

2010 : Global Honor – East Asia Winner

The Development and Application of Innovative High Speed Biological Groundwater Treatment Technology "CHEMILES"

2012: Global Honor – East Asia Winner Optimum Solution for Water Shortage by use of effective Screens Water Intake, Lingyuan, China

2014: East Asia Winner, Global Winner and Superior Achievement

"ENERLES" Innovative Water Treatment System without energy nor chemicals by Nagaoka International Corp. in China

NAGAOKA Screen Water Intake Method

1. COLLECTOR WELL

be taken.

247 PROJECTS

12,000m³/day

2. RADIAL WELL

surrounded aquifer effectively. With the accuracy of installation and intake efficiency. In **Collector and Radial Screens** addition, Screens are reinforced which Nagaoka can only superiority, large amount of water can provide. Depending on the site condition, the combination of Collector and Radial Screens can be achieved.

235 PROJECTS

19,000m³/day

installed under the riverbed or seabed so that it can collect large amount of water.

3. INFILTRATION GALLERY

263 PROJECTS 200,000m³/day

Maximum Capacity (1 well)

Supply Records

Feature

NAGAOK

3

NAGAOKA Groundwater Treatment System

NAGAOK

CHEMILES – Extremely High Speed Chemical less Groundwater Treatment System

Highly effective, multiple scales, self-managing, no-filter media replacement, chemical free treatment-Minimize LCC

Iron, Manganese, Ammonia, Arsenic ... Removable in one filter !

Medium scale municipal water supply (16,000 m³/day)

system, medium scale (4,500 m3/day)

Large scale municipal water supply (40,000 m³/day)

Compact design for municipal water supply Stand-alone industrial water system (food processing, linen, paper mill) systems - various scales

Supply Record: <a>>50 projects in Japan & >10 project in Asia (50m³~50,000m³/day)

CHEMILES : Chemical-Less water treatment technology

		Raw Water	reated Water		
Minimized Stration area LV=500 m/stay (8.52 gen/H ²)	Stabilize treatment performance by	Special Aeration Nozzule	1	Dissolved oxygen activate Raw Water	Special Oxidation Nozzle increase DO of Raw Water to almost saturated level.
Region Specific Bological treatment at higher speed than common and fination. It is achieved by the unitian development contact collation and biological treatment process.	The unque contraction of Minde (M) Backwash and Portion (P) Backwash can chade water comunitions backwash as backwash can chade water comunitions backwash as backwash can chade water comunitions backwash as a state backwash and the backwash as a state backwash at the backwash as a state backwash at the products making trimmary backwash	Filter Media	ating Surface shing Nozzle	Contact Oxidation (Fe Removal)	 Soluble ferrous ion (Fe²⁺) in raw water is oxidized by this dissolved oxygen and form ferric oxy-hydroxide catalyst film on the surface of media. 2Fe²⁺ + 1/2O₂ + 40H⁺ H₂O → 2FeOOH • H₂O ↓ 2Fe²⁺ + 1/2O₂ + 40H⁺ + H₂O +FeOOH • H2O → 3FeOOH • H₂O↓ The film act as catalysts to facilitate the oxidation of soluble ferrous ions and the forming of insoluble ferric hydroxide, and also to enhance ferrous ion removal removal efficiency. 2Fe²⁺ + 1/O₂ + 4OH⁺ + H₂O → 2Fe(OH)₃↓ Formed ferric hydroxide will attach on the surface of media.
CHEMLES does not requ br availably, so it animal provide the second second second second with charges in sec where to popsis and devicement.	ne chemicala llas Chione en problema d'hamita by- negre ave ange to sobiet unity. OHEMILES is frendy			Bio-treatment/ Contact Oxidation (Mn Removal)	 The removal of manganese occurs continuously due to the repetition of self- catalytic contact oxidation reaction. In addition, if iron bacteria exist in water, manganese deposition process may be occurred by these bacteria. 2Mn²⁺ + MnO₂•1I₂O + H₂O → MnO₂•MnO·H₂O+2H[*] (contact reaction) MnO₂ • MnO • H₂O + 1/2O₂ + H₂O → 2MnO₂•H₂O (oxidation reaction)
Renews Mail New concentration House Allo mg/L	Remove high levels of Manufactures and Automotia nitrogen	Support Grave	e)	Bio-treatment/ (whole layer) (NH ₄ ⁺ -N Removal)	 Nitrifying bacteria perform nitrification reaction on ammonia nitrogen through nitrate nitrogen. NH₄⁺ + 3/2O₂ → NO₂⁻ + H₂O + 2H⁺ NO₂⁻ + 1/2O₂ → NO₃⁻
the contact instation and information of catalysis funct on-physical file, matther, CHRURES to remove sim even at very high concentration up to 40 ng/L	Dacteria, enables CHEMIELS to remove highly concentrated Ammonia introgen (forgit), and Maganese (Frg1), which level have been difficulty teeled by other technologies.	Collection a Distribution	water Water Pipe		Only typical silica sand (No Special Filter Media) ⇒ SEMI-PERMANENTLY usable

Business Records in Malaysia: Intake and Water Treatment

Product	Radial Well (10,000m ³ /D×2 wells) + CHEMILES Groundwater treatment
Capacity	20,000m ³ /D (4 filters made of reinforced concrete basin)
End User	Kelantan Water Authority
Water Resource	Groundwater
Water Quality (mg/L)	Raw Water Fe:4.0, Mn:0.2, NH ₃ :0.3⇒ Treated Water Fe: ≤ 0.3 , Mn: ≤ 0.05 , NH ₃ : ≤ 0.1
Completion Year	2020

Radial Well Construction

CHEMILES Treatment System

Business Records in Vietnam: JICA Project for public waterworks

Product	CHEMILES Groundwater treatment
Capacity	2,500m ³ /D
Local Counterpart	Hanoi Water Limited Company 【JICA Project: Verification for Disseminating CHEMILES for groundwater treatment】
Water Resource	Groundwater (High Ammonia 4.25mg/L)
Water Quality (mg/L)	Raw Water Fe:5.8, Mn:0.24, NH ₃ :4.25⇒ Treated Water Fe:≦0.3, Mn:≦0.1, NH ₃ :≦0.1
Completion Year	2016

NAGAOK

Business Records in Vietnam: Water Utility

Product	CHEMILES Groundwater treatment
Capacity	10,000m ³ /D (8 filters made of reinforced concrete basin)
End User	Son Ha International Corporation
Water Resource	Groundwater (High Ammonia 4.5mg/L)
Water Quality (mg/L)	Raw Water Fe: <mark>9.46</mark> , Mn:0.42, NH ₃ :4.5⇒ Treated Water Fe:≦0.3, Mn:≦0.1, NH ₃ :≦0.3
Completion Year	2020

Case Study of Mityana city, Uganda

NAGAOK

As a case study, we propose ①Nagaoka Screen Deep Well & ②CHEMILES for water treatment plant expansion project at Mityana city as below condition.

A case study of 4,300m³/day is an additional water treatment plant with the current water treatment plant.

A case study of 9,100m³/day is a renewal water treatment plant instead of the current water treatment plant.

1 Tank : 4,300-5,000m/Day Capacity : 4,300m²/Day 1 Tank Capacity : 9,100m²/Day 2 Tank (No-Backup) Capacity : 9,100m//Day 3 Tank (1 Tank Backup)

7600

7750

IIII I

IH.

Creating a better tomorrow through technological innovation and development – uncovering a future for the finite resources of water and energy.

www.nagaokajapan.co.jp

Introduction of Mitsubishi Chemical Aqua Solutions - Water Treatment & Remote Monitoring

For Urban Water Supply in Uganda -

KAITEKI Value for Tomorrow Mitsubishi Chemical Holdings Group

Confidential

Ver. 1/ September 2021 MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

- 1. Introduction
- 2. "On-site" Water Treatment System
- 3. WeLLDAS[™] Remote Monitoring System -
- 4. Reference (Company Profile)

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

1. Introduction

- 2. "On-site" Water Treatment System
- 3. WeLLDAS[™] Remote Monitoring System -
- 4. Reference (Company Profile)

3

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

Introduction

Mitsubishi Chemical Aqua Solutions Co., Ltd. (MCAS)

≻ What We Do:

- Engineering, Procurement & Construction (EPC) of water treatment system using membrane filtration
- Business in Africa:
 - Has been working in Kenya since 2012 (JICA projects, etc.)
 - Has local partners in Kenya and Zambia

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

MITSUBISHI

Concept of Our Business

MITSUBISHI CHEMICAL

Today's Contents

1. Introduction

- 2. "On-site" Water Treatment System
- 3. WeLLDAS[™] Remote Monitoring System -
- 4. Reference (Company Profile)

"On-site" Water Treatment System

A system that supplies water that meets client's requirements

Any water source is acceptable : City water, groundwater & surface water

Custom-designed system : To produce drinking water at stable quality

Safe and stable water supply : By using remote monitoring system etc.

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

Achievements in Japan

MITSUBISHI

Membrane Filtration Technology

> Today's theme: <u>Ultrafiltration</u> (UF) membrane

Several types depending on purposes

Source: Website of Mitsubishi Chemical Aqua Solutions (https://www.m-chemical.co.jp/sterapore/en/hollow_fiber_product.html) 9

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

How Does It Work?

Enlarged cross section of hollow fiber membrane

Source: Website of Mitsubishi Chemical Aqua Solutions (https://www.mcas.co.jp/en/business/water/)

MITSUBISHI

CHEMICAL

Membrane VS Conventional at a glance

	Membrane	Conventional (In Kenya's case)			
Structure	or				
Turbidity limit	Approximately 50 ~ 3,000 NTU ✓ Turbidity tolerant	Approximately 10 NTU			
Pre- treatment	Injection of chlorine and coagulant (+sand filtration) Less chemical 	Injection of chlorine and coagulant, flocculation and sedimentation			
Water loss	Approximately 2 ~ 3% during backwash ✓ Minimal loss	Approximately 8 ~ 10% during backwash			
Space requirements	Approx. 30% of conventional type (see next slide) ✓ Less space & Low installation cost	Large space is required for installation			
Remarks	Stable and effective for treating turbid water Easy to up-scale	Suitable for treating low turbidity water Unstable treatment for high turbidity			

Some 70% of the installation space can be saved

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

MITSUBISHI CHEMICAL

MITSUBISHI

CHEMICAL

Ref. 1) Kenya/ High turbidity

Client : JICA*

Raw Water

Purpose

- Site Location : A satellite town of Nairobi
- Target Pop. : Approx. 1,000 people (400HH)

: Surface water

: Drinking water

- Topics
 - 1) Highly turbid river water (Esp. in rainy season)
 - 2) Safe water supply by membrane $(100 \text{ m}^3/\text{D})$
 - 3) Remote monitoring & assistance from Japan
- Process Flow : Oxidation \rightarrow SFx2 \rightarrow AC \rightarrow UF
- Start Supplying : From June 2015

Pilot Survey for Disseminating SME's Technologies for Community-based Water Treatment & Supply System Using Solar Energy (Oct. 2013 ~ Sep. 2016) About JICA

https://www.jica.go.jp/english/index.html

River Water to Municipal Water

13

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

Water Quality (Abstract)

Raw Water (June 2015 to May 2016)

S/N	Parameter	Unit	KS459/1996	17-Jun	31-Jul	31-Aug	30-Sep	9-Nov	8-Dec	2-Feb	15-Mar	28-Apr	30-May
1	E.Coli	pcs/100mL	Nil.	Detected	Detected	Detected	Detected	Nil.	Detected	Nil.	Detected	Detected	Detected
2	Color	TCU	< 15	200	31	20	22	79	102	50	70	420	74
3	Turbidity	NTU	< 5	48.2	7.3	3.1	3.0	42.7	41.7	24.7	28.8	281.0	32.4
4	Iron	mg/L	< 0.3	0.6	1.2	0.5	0.5	3.1	2.2	1.6	1.5	7.9	1.6
5	Manganese	mg/L	< 0.1 (0.5)	0.100	0.180	0.110	0.150	0.360	0.440	0.230	0.390	1.500	0.260
6	Aluminum	mg/L	< 0.1	0.012	1.400	0.170	0.180	4.300	1.600	1.400	0.990	5.600	0.970

Beyond standard value

Treated Water (June 2015 to May 2016)

				,	,								
S/N	Parameter	Unit	KS459/1996	17-Jun	31-Jul	31-Aug	30-Sep	9-Nov	8-Dec	2-Feb	15-Mar	28-Apr	30-May
1	E.Coli	pcs/100mL	Nil.	Nil.	Nil.	Nil.	Nil.	Nil.	Nil.	Nil.	Nil.	Nil.	Nil.
2	Color	TCU	< 15	< 5	1	1	1	2	3	4	6	2	2
3	Turbidity	NTU	< 5	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.2	0.1	< 0.1
4	Iron	mg/L	< 0.3	< 0.01	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
5	Manganese	mg/L	< 0.1 (0.5)	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
6	Aluminum	mg/L	< 0.1	0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02

Below the Standard for all parameters after membrane treatment!

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

- 1. Introduction
- 2. "On-site" Water Treatment System
- 3. WeLLDAS[™] Remote Monitoring System -
- 4. Reference (Company Profile)

15

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

Remote Monitoring "WeLLDAS[™]"

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

Overview of "WeLLDAS™"

Main Features

- > Easily installed in conventional water treatment plants
- \geq Easy access from PC and smartphone etc.
- > No need to develop hardware system by client
- <u>Real-time monitoring</u> of data and video image
- Cheaper operation cost with local SIMs
- > Standardized specs. for global operation in different countries
- ➤ Maintenance activities can be optimized by WeLLDASTM

17

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

18

Operation Image

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

MITSUBISHI CHEMICAL

Ref. 1) Monitoring Turbidity (raw water)

19

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

Ref. 2) Existing water treatment plant

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

MITSUBISHI CHEMICAL

Ref. 3) Groundwater Monitoring

- > Monitoring a well in Myanmar, where salinity intrusion is occurring.
- Installed WeLLDAS and sensors to check water level \triangleright and electrical conductivity of the well.

Real-time Monitoring of "Salinity Intrusion" and "Water Scarcity" of a Well

21

Image-1 : Groundwater Level and Groundwater Temp

Image-2 : Groundwater Level and Elec. Conductivity

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

WeLLDAS[™] Operation World-wide

2. "On-site" Water Treatment System

4. Reference (Company Profile)

23

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

Company Profile

Today's Contents

1. Introduction

Name	Mitsubishi Chemical Aqua Solutions Co., Ltd. ("MCAS")
Headquarters	1-2-2, Nihonbashihongoku-cho, Chuo-ku, Tokyo, Japan
Establishment	November 1985
Capital	JPY 373.5 million ≒ USD 3.4 million
Workforce	472
Scope of Business	 ✓ EPC and O&M of Water treatment, wastewater treatment, separation & specialty process On-site water treatment ✓ Material supply related to water treatment business ✓ Hydroponics system for leafy vegetables/ High-performance seedling production system ✓ Water quality analysis and R&D

As of August 1, 2021

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

Naoko Mori (Ms.) Overseas Business Division Mitsubishi Chemical Aqua Solutions Co., Ltd. mori.naoko.ma@m-chemical.co.jp

MITSUBISHI CHEMICAL AQUA SOLUTIONS CO., LTD.

Introduction of METAWATER

September 30th, 2021

Copyright @METAWATER. CO., LTD. All Rights Reserved.

METAWATER

1.Company Profile of METAWATER

Company Profile of METAWATER

METAWATER

METAWATER is the leading engineering company, based in Japan, with unique products and wide range of experiences from product supply, EPC up to O&M service incl. PFI projects.

Capital	JPY 11.9 Bil. (ca. US\$ 100 Mil.)
Stock Market	First Section of Tokyo Stock Exchange, Code:9551
Net Sales	JPY 129 Bil. (ca. US\$ 1.25 Bil.)
Employees	3,082 (consolidated)
Location (JPN)	Tokyo (Head Office), Hino Office, Nagoya Office
(Intl.)	Vietnam, Cambodia, Singapore, Netherlands, USA

Ceramic Membrane More than 40% of share in MF/UF DWTP in Japan

Ozone Generator Top supplier

more than 170 installations

Sludge Incineration

More than 25% of share in Japan more than 45% in large scale

PTF System

2

METAWATER

2. Ceramic Membrane

Ceramic Membrane Filtration System

METAWATER

Dimension	Φ180mm×1,500mmL
Pore size	0.1µm
Filtration area	25m ²
No. of channels	2,000
Channel dia.	Φ2.5mm

- ✓ High mechanical strength
- ✓ Long lifespan
- ✓ High water quality
- ✓ High water recovery
- ✓ Simply and reliably operation
- ✓ Low running cost

5

Installation map (Overseas)

7

8

METAWATER

METAWATER

3. Mobile Ceramic Membrane Filtration Equipment

METAWATER

Mobile Ceramic Membrane Filtration Equipment

General descriptions of Mobile Unit

METAWATER

- Concept of Mobile Ceramic Membrane Filtration Equipment MCM is suitable for
- ✓ Rural areas with difficulty in the pipe distribution of drinking water or O&M of conventional water treatment plants
- ✓ Emergency drinking water production at disasters

Copyright © METAWATER. CO., LTD. All Rights Reserved.

9

Characteristics of MCM

METAWATER

Ceramic membrane

φ180mm

1000mr

- \checkmark Easy operation even for high turbidity water
- ✓ Easy access to various water sources
- ✓ Clean and safe drinking water quality can be secured
- \checkmark High recovery rate
- \checkmark Ceramic membrane can be stored in the dry condition
 - -> long-term storage & quick start-up are possible

11

Process Flow Diagram

METAWATER

An Example of Application

METAWATER

Supply Record

METAWATER

Country	Malawi	Kenia	Cambodia	Togo	Lesotho	Cote dlvoire	Myanmar	Madagascar		
Purpose of Usage	For water supply to rural area	For disaster countermeasur e	For water supply to rural area			For water supply to rural area For disaster countermeasur				neasure
Quantity	3 trucks	2 trucks	1 truck	3 trucks	4 trucks	1 truck	10 trucks	1 truck		
Capacity (per truck)	75m3/day	50m3/day	75m3/da y	50m3/day	200m3/da y	40m3/da y	75m3/day	75m3/day		
NTU of raw water	520	520	500	520	500	500	Unknown	Unknown		
Starting Operation	Jan. 2013	May 2013	Apr. 2014	Apr. 2014	Jun. 2014	Jan. 2015	Nov. 2017	Sep.2021		

Activity in Africa

METAWATER

Intaking Site (in Keyna)

Training session (in Malawi)

Raw water with 300NTU (in Keyna)

Supplying treated water (in Malawi) Copyright © METAWATER. CO., LTD. All Rights Reserved.

15

Activity in Myanmar

Sales starting ceremony (in Yangon)

 $_{\rm 16}$ Water supplying demonstration (near Mandalay)

Water supplying demonstration (near Yangon)

Treated water for the people (near Yangon)

METAWATER

Project in Malawi

METAWATER

Thank you for your attention

Please feel free to contact us at: matsui-kazuki@metawater.co.jp

17

Water Leak Detection Devices FUJI TECOM INC.

FUJI TECOM INC.

Domestic Offices and Service Network

 Headquarter & Overseas Sales Group: Chiyoda-ku, Tokyo
 Technical Development & Training Center: Niiza, Saitama
 8 Regional Sales Offices

Worldwide Sales and Service Network

More than 40 distributors all over the world

Training Program

Training site

Buried Pipe Materials: CIP/GP/LP/PVC/PE

- 1. Pipeline Operation / Maintenance and Leak detection
- 2. Introduction of survey equipment
- 3. Technical instruction of survey instruments
- 4. Comparison of various leak types & site conditions

Outline of leak investigation procedure

Overview of water leak investigation

<area &="" dma="" if="" necessary="" selection=""/>	14	
The partition of the area and the plan of	-77-	
operation process.	\sim	
(Proliminary Investigation)		
	$\gamma \gamma \gamma$	
The preliminary investigation of the utilities		Area
for the location and condition.	218	
<flow measuring="" pressure=""></flow>		
Measurement of the minimum flow volume at	*	
midnight	<u> </u>	
intenigne.	1	↓
		•
<leakage localization=""></leakage>	1	
The acoustic inspection by checking sound	-()-	Line
from the pipe fittings.	\sim	2
<leakage pinpointing=""></leakage>		
The equation locks and detection along the	* > *	¥
The acoustic leakage detection along the	ᄽᄶ	
buried pipelines.		
		Point
<confirmation></confirmation>		
Confirmation of the exact leakage point from		
the ground surface before excavation	¥	
<rreparation &="" kepair="" leakage=""></rreparation>	\checkmark	
Preparation of the report indicating the	$-\langle \rangle$	¥
leakage locations, and repair.	1	
-		Repair
<evaluation></evaluation>		
Measurement of the minimum flow volume at	*	
midnight again	<u> </u>	
munigin agam.		
• • • • • • • • • • • • • • • • • • • •		
After leakage repaired, the LCZ or DMA should be monitored	continuously.	

'Area' phase

- · Pipeline locating
- · Flow / Pressure measuring

'Line' phase

· Specifying leakage pipeline

'Point' phase

- · Pinpointing leaking point
- · Investigation before excavation

Devices for 'Pipeline locating'

The transmitter sends signal sound from a fire hydrant etc. Signal sound waves are detected on the surface by receiving unit to locate buried non-metal

Devices for 'Flow / Pressure measuring'

A flow meter to measure the flow rate inside a pipe using ultrasonic waves. (Product of Tokyo Keiki)

Devices for 'Specifying leakage pipeline'

Devices for 'Pinpointing leaking point'

Digital Noise Reduction Water Leak Detector DNR-18

Equipped with a noise reduction digital filter, leak detection can be performed regardless of the noise that interferes. Leakage sound level values at 250 points can be recorded and graphed with attached software.

A leak detector with significantly improved sensitivity. The small and light design reduce the work load for a long time. By adopting universal design, pick-up sensor can be connected to either left or right. Data display and report output are possible with an attached application.

Devices for 'Investigation before excavation'

Thank you for your attention!

Contact Mail: overseas_sales@fujitecom.co.jp Web: https://www.fujitecom.com/

Themes of Ideathon

1st October, 2021 JICA Survey Team

Group Discussion Program AM (1) Self introduction of attendants in each group

(2) Decision of final presenters and secretaries for record and action plan (hopefully more than 2, not only JICA Survey Team)

(3) Check and revise the discussion theme if any group theme is too many (for 2 hours discussion: less than 30 minutes for current issue, remaining time for future)

(4) Question and Discussion (use white board as required)

PM

(5) Preparation of Action Plan

(6) Presentation by each group and discussion
Group 1: NRW reduction and improvement of O&M and implementation regime

- 1. Understanding and Organization of Current Situation
 - 1) What is current accurate NRW rate, which is bigger between physical loss and commercial loss?
 - 2) How is old pipe situation and deterioration in area wise
 - 3) What is current situation of water leakage due to high pressure, valve control

2. Best practice by technical countermeasures to reach to such as 15% of NRW rate as target and General

- 1) Any good practice in European countries or neighboring countries in Africa
- 2) Good practices in Japan and by JICA technical cooperation
- 3) Any activity started in Uganda
- 4) What is realistic target of NRW rate (in how many years) and goals?
- 3. Actions on Infrastructural development to cope with physical loss
 - 1) Water leakage detection (device, regime)
 - 2) Pipe replacement and upgrading,
 - 3) Repair of pipe
 - 4) Water pressure management
 - 5) GIS mapping system
 - 6) Deteriorated pipe analysis
 - 7) Training of contractor for pipe repair etc.
 - 8) Any requirement of training yard for leak detection etc., improvement of on the job training
- 4. Actions for Commercial loss

1) How to reduce the metering inaccuracy (selection of meter, calibration of meter, replacement)

- 2) How to monitor the supplied flow
- 3) How to reduce the stealing water
- 4) How to cooperate/coordinate between technical dept. and commercial dept.
- 5. Economic/Financial, organizational aspect
 - 1) Asset management system,
 - customer ledger system
 - 2) Investment plan for pipe replacement etc.
 - 3) Strengthening of NRW department
 - 4) Capacity development for staff

Group 2: Improvement of Kampala Water Supply (WTP, PPP)

- 1. Historical and Current Situation and Issue of Kampala Water region
 - Treatment
 - 1) lake Victoria water quality
 - 2) treatment quality (Gaba, Katosi)
 - Distribution (Area wise)
 - 1) Central Kampala
 - 2) Surrounding Area
 - 3) Most suburb area
 - Distribution (Issue wise)
 - 1) Consumption per capita, supply hour
 - 2) water pressure
 - 3) water quality
 - Skill and training
 - 1) any insufficient skill of staff
 - 2) any insufficient skill or problem of contractors
- 2. Improvement of Management, Operation and Maintenance of Facilities
 - 1) Improve operation and maintenance for facilities (WTPs. Pipes)
 - 2) Zoning and management, regional office
 - 3) Possibility of PPP (management contract etc., history of PPP incl. regional area)
- 3. Investment requirement for new expansion, upgrade, replacement
 - 1) How big expansion is required for future
 - 2) requirement of upgrading facilities
 - 3) replacement of old equipment (flow meter, valve etc.)
 - 4) how to secure budget
- 4. Capacity Development
 - 1) How to increase the staff
 - 2) How to train the staff
 - 3) Vocational training center
- 5. Commercial Revenue
 - 1) Prepaid meters for Kampala (institutional, commercial)
 - 2) Public stand pipe for pro-poor community

Group 3: Urban Water Supply in Local Areas outside Kampala

- 1. General Situation
 - Technical
 - 1) water treatment capacity
 - 2) water quality
 - 3) water supply, pressure, NRW (stealing, water pressure by high pressure, etc.)
 - 4) GIS mapping, asset management, customer service (ledger)

Financial

- 5) Financial situation in each region
- 6) understanding on future investment (grant fund) trend by central government

2. Best Practice for regional area development

- 1) Any specific activity by donor, NGO (infrastructure, PPP, village etc.)
- 2) low cost treatment or network development
- 3) Financial flow (internal subsidy) from capital city, government

3. Infrastructure Development

- 1) Finding reliable water source
- 2) optimization of distribution (e.g. pumping to high land area)
- 3) How to construct the low cost facility
- 4) How to serve for remote area
- 5) Public standpipe (ordinal, prepaid)
- 6) Any possibility of introducing PPP

4. How to reduce NRW in small towns

- 1) countermeasure for stealing water
- 2) reduction of alias (water tariff setting appropriate?)
- 5. Investment requirement
 - 1) new water source
 - 2) Expansion of facilities (WTP, network)
 - 3) New technologies
- 6. Capacity Building
 - 1) how to increase new staff for rapidly expanding area
 - 2) how to train the new staff (vocational training center etc.)

Kampala Water and Sewerage Services: highlights, Challenges and Opportunities

Mahmood Lutaaya General Manager – NWSC Kampala

Presented to Uganda – Japan Business Matching Workshop on 1st October 2021

About Kampala Water

- Kampala Water covers in Area of Kampala City, Mukono, and Wakiso
- Piped water supply system established in 1930, during period of British colonial rule.
- Population at that time was between 30,000 and 50,000.
- The city has since experienced rapid geographical expansion, most notably over the last 20 years.
- Estimated population: <5 million.
- A corresponding drastic increase in demand for piped water supply.
- Main source of water Gaba with 240m³/day and Katosi with 160m³/day vs demand of 300m³/day
- Total customer base 380,000

Production: Gaba I (1929), II (1992), & III (2007)

- Gaba I 70K m³/d, Gaba II -80K m³/d, Gaba -100K m³/d
- Conventional treatment process (coagulation, sedimentation, filtration & disinfection)
- 14 boreholes
- Transmission and storage
 - Reservoirs (70,000m³): primary 4No, secondary – 8No, balancing tanks – 9No.
- Distribution network
 - pipe network 3,000km ≥ DN50mm, includes the attendant fixtures 3,600No., and booster stations 43No.

Kampala Water Sewage Services Coverage

Ongoing and Planned Interventions

- 1. Kampala Water-Lake Victoria WATSAN Project (KW LVWATSAN)
 - Network Restructuring & Rehabilitation.
 - Water Supply and Sanitation Services in Informal Settlements.
 - Construction of Primary Network Pipelines in Greater Kampala Metropolitan Area (GKMA)
- 2. Bulk water evacuation projects from Naguru, Sonde and Mukono reservoirs. 40km of pipework.
- **3. Gaba 1 works:** Construction of a clarifier and sludge handling facility to minimize impact on the environment by clarifier sludge
- 4. Wakiso West Water Supply Project 62,500 m³/day

What are the challenges or **Opportunities**

Demographic Change

- High rate or urbanization Increasing population target population is a moving target
 - Increasing Demands Focus on infrastructure development for the unserved areas Uneven Development - More customers in
 - vulnerable circumstances (pro-poor service provision challenge)
- Climate Change Environment/source Protection Too much water/Not enough water
 - .
 - Increased pollution
- Environmental degradation
- Technological Change

•

•

- Digital transformation Speed of new technologies Explosion of data
- Protection and security concerned cyber security
- Smart Utility Vision and holistic customer digit experience
- Change in customer expectations Increased awareness
 - Less tolerance of service outages. .
 - Desire for a more personalized service
 - Expect experiences and interactions with greater choice, personalization, simplicity and ease

What are the challenges or **Opportunities**

- Relatively High NRW NRW Strategy
- $\dot{\cdot}$ **Intermittent Water Supply**
- $\dot{\cdot}$ Infrastructure & Financing Gap
 - Aged infrastructure
 - Huge infrastructure gap to meet the unserved population
 - Financing Gap Inadequate funds to finance investments/ Non-full cost recovery tariff
 - Operational and Caps
 - High Energy and chemical Costs -Green Energy Options and process optimization
 - Highly manual Data collection and • non mechanized operations
 - Inadequate documentation of . infrastructure assets - pipes, fixtures etc.
 - Inadequate remote monitoring
- Staff Capacity Gaps

8

Adopting a holistic customer Digital Experience

- One stop customer interaction center
- Interactive website
- Mobile app
- E-payment options
- Social media platforms

Modern Meter Laboratory and Meter Assembly Plant

UGANDA – JAPAN BUSINESS MATCHING WORKSHOP

PRESENTATION ON THE NRW AND ASSET MANAGEMENT SITUATION IN NWSC-KW

Godfrey Sentume Arinaitwe SM- NRWM

1st October 2021

BRIEF BACKROUND

Non-Revenue Water (NRW) has remained one of the biggest challenges in National Water and Sewerage Corporation (NWSC) and Kampala Water (KW) has the biggest contribution. Despite the numerous interventions carried in the previous years to reduce NRW, Kampala Water's NRW has remained relatively high ranging between 32% - 44%.

2015/16 2016/17 2017/18 2018/19 2019/20 2020/21 FY System Input Volume 66.3 75.8 76.5 79.8 81.3 85.5 (million m³) Water Sales (million m³) 45.2 47.7 48.8 52.2 49.2 50.8 NRW (%) 31.8 36.2 40.6 37.1 34.6 39.5 100.00 90.00 85.50 81.30 79.80 76.50 80.00 75.80 70.00 66.30 60.00 52.20 50.80 48.80 49.20 47.70 50.00 45.20 40.00 30.00 20.00 10.00 0.00 FY 2016/17 FY 2015/16 FY 2017/18 FY 2018/19 FY 2019/20 FY 2020/21 System Volume input improvement – 29%, Water Sales improvement 12% over the last 5 years 3

WATER SUPPLY AND SALES TRENDS

NRW TRENDS

F	Y 2015/16	2016/17	2017/18	2018/19	2019/20	2020/21
System Input Volume (million m ³)	66.3	75.8	76.5	79.8	81.3	85.5
Water Sales (million m ³)	45.2	47.7	48.8	52.2	49.2	50.8
NRW (%)	31.8	37.1	36.2	34.6	39.5	40.6

CHALLENGES AND GAPS

Physical Losses

- Bursts and Leakages are on the rise....
- Aged pipe network sections that keep failing and require renewal/replacement.
- Limited number of leak detection equipment of which some are aged and require replacement.
- A large number of critical network fixtures that are not mapped.

5

CHALLENGES AND GAPS

Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21 Jun-21 Jul-21 Aug-21

CHALLENGES AND GAPS Metering Issues

- There are quite a number of customer meters that are aged beyond the recommended age/meter dial. This compromises the metering efficiency and the corporation ends up losing.
- There are vandalized and some defective meters in the fieldSome are actually repairable but we lack spare parts.
- Lack of Robust Meter Management System
- The large consumer meters are currently monitored manually with at least one reading picked per week, which does not assist in proper consumption analysis.

7

CHALLENGES AND GAPS

• Illegal use is on the rise.....

- Theft of fixtures such as Valves and Straight Connectors causing loss of Water

CHALLENGES AND GAPS

Institutional Challenges

- Kampala water is currently operated as one system with no hydraulically controlled zones.
- There are limited bulk meters that can assist in measurement of flows to various parts of the primary water supply network.
- Currently, KW Network Operates as one pressure-managed area much as we experience excessive pressures in some parts of the raised Customers network. Areas on experience low pressures during peak hours

9

ONGOING INTERVENTIONS NRW STRATEGY

- Development of a NRW Management Module that is web based to help in data capture and management of field anomalies.
- Mapping and tracking all unregistered Properties and Premises •
- Strengthening Local Communities leadership in Combatting NRW •
- Enhanced Meter Management (Replacement of Aged Meters, Repair of • Defective Meters, Servicing of Meters, procurement and upgrade of Meter Laboratory. *** Meter Management System ****
- Strengthening Water Loss Prevention Unit (WALOPU) to deal with Water ٠ Theft / Illegal use. Including partnering with The Army, Police and Judiciary.
- SWALOP Programme to deepen surface Pipes •
- Targeted Network Control Improvement focusing on Restoring Network fixtures to full functionality and accessibility
- Operation House to House (H2H) Audit for field anomalies (Identification ٠ and Remedy)

ONGOING INTERVENTIONS NRW STRATEGY

ONGOING INTERVENTIONS ASSET MANAGEMENT

Introduction of MapKit, which has facilitated the following:

- Enhanced survey, mapping, condition assessment and maintenance scheduling for critical network fixtures.
- Improved capture and analysis of location information for all reported and handled incidents and anomalies (leaks, bursts, defective meters etc.)

Revamped Hydraulic Modelling Unit, resulting in:

- Improved network planning and rationalization of network operations.
- Support for implementation of Kampala Water Masterplan, in collaboration with the design consultants of KW LVWatsan Package 2b.

Ongoing pilot project (with support from Altereo France), targeting the following:

- Predictive mains failure analysis and modelling.
- Identification and prioritization of critical mains for targeted pipe renewal and replacement campaigns.

FOCUSED ON INTERVENTIONS

- Creation of District Metered Areas that can assist in monitoring the impact of activities related to reduction of NRW.
- Prioritized replacement of aged and Vandalized/defective customer meters to accurately measure the billed consumption.
- Procurement of leak detection equipment to improve on our active leakage control activities.
- Creation and monitoring of pressure-managed areas in places that are faced with excessive pressures, as a means of reducing occurrence of network failures. Installation of PCVs
- Introduction of telemetric systems for flow and pressure controls within the distribution network.
- Reinstatement of Automated Meter Reading (AMR) system for better monitoring of large consumer accounts.
- Prioritized network renewal and replacement campaign for aged pipe sections that have experienced frequent failures.
- Renewal and reinstatement of critical network fixtures.

13

WATER SUPPLY SITUATION OF NWSC LOCAL AREAS (TORORO AND SOROTI)

PRESENTATION BY: Julius Kato Kavuma NWSC

- Tororo Area was handed over to NWSC on 1st February 1988.
- The Area has seven (7) branches of Tororo, Busia, Malaba, Nagongera, Magodesi, & Nabuyoga.

WATER SUPPLY SOURCES

 Comprise mainly; River Malaba & motorized boreholes. (No. 11)

STATISTICAL DATA

- Current total average monthly water production 129,782m³ and water sales of 105,143m³ per month. (NRW 19%)
- Current demand is 203,102m³ per month
- Future demand is 410,000m³ per month
- Total population currently served of about 366,543 out of 601,481 people.
- Water Mains Distribution Network is about 440km and 10km of sewerage mains.
- Mater Sunnly System having about 1/17/1 water

- Water treatment plant at Malaba
- Nine (9) boreholes at Busia Average 8.5m³/hr
- Two (2) boreholes at Nagongera average 11m³/hr
 Two (2) boreholes at Nabuyoga average 5m³/hr
- Four (4) Reservoirs
- 2 Booster Stations. (Not functional)

PROBLEM STATEMENT

- SCAP100 currently serves only 50,000 people vs 601,481
- Only half (366,543) of the 601,481 is served
- 702 Public Stand Pipes (PSPs) across 228 km length not adequate to serve the Tororo population
- Tororo Reservoir remains a crucial issue to go beyond 52.85km including neighboring areas to meet the future demand 410,000m³
- Undefined sum of Villages to be served creates a gap to bridge

- Inadequate Water Treatment Plant hence need to upgrade plant from current design capacity of 5,100m³/day to 10,000m³/day
- Old Transmission System hence the need to upgrade the entire system from DN 300 DI pipes to DN 450 uPVC pipes.
- Frequent breakdown of pumps due to old age hence the need install new 2No.raw water submersible pumps, and construction of debris sieve along the river.

CHALLENGES AND WAYFORWARD

- Inadequate Supply to meet the required demand for water hence need to upgrade and extend the water distribution network system.
- Poor quality of the raw water from river Malaba due to silt accumulation during rain season and construction of debris sieve along the river.
- Low yields from motorized boreholes.

- Soroti Area was handed over to NWSC in 2002
- The Area has seven (4) branches of Soroti, Serere, Kaberemaido, & Amuria.

WATER SUPPLY SOURCES

 Comprise mainly; River Awoja & motorized boreholes. (No. 04)

STATISTICAL DATA

- Current total monthly water production 135,845m³ and water sales of 104,600m³ per month. (NRW 23%)
- Current demand is 210,000m³ per month
- Future demand is 420,000m³ per month
- Total population currently served of about 201,150 out of 700,300 people.
- Water Mains Distribution Network is about 634km and 22km of sewerage mains.
- Water Supply System having about 10,358 water connections and 528 sewerage connections

- One (1) borehole at Amuria 8m³/hr
- One (1) borehole at Kaberemaido 8m³/hr
- Two (2) boreholes at Serere 8m³/hr @ with more two to be commissioned.
- Eleven (11) Reservoirs
- One (1) Booster Station.

PROBLEM STATEMENT

- SCAP100 planned to serve only 49 Villages as of FY 2019/20 (290 villages out of 339) are left out
- Pending water extension of 30km to cover over more new connections and 162 PSPs.
- The need to meet the future water demand of 420,000m³, key investment options are required
- Places like Amuria, Kaberemaido, and Serere each has 1 borehole (8m³/hr) creating the need for more
- There is only one booster station serving 11 water reservoirs insufficient to serve the 700,300 population

- Inadequate plant capacity hence the need to upgrade from 8,000m³/day to 16,000m³/day
- 31km of Old Transmission System hence the need to upgrade the entire system.
- Low capacity Amuria reservoir hence need to upgraded from 160m³ to 300m³
- DN 150 AC pipes in the distribution network of about 35km hence the need to replace with DN 300 uPVC pipes.

CHALLENGES AND WAYFORWARD

- Low sewerage coverage hence the need to expand it more out of town.
- Few booster stations hence the need to install more booster stations to pump water to the hilly areas like Tubur, Acuna and Orung.

THANK YOU FOR LISTENING

参考資料-5.2 大気汚染ワークショップ・ アイデアソンプレゼン資料

Data Collection Survey for Urban Environmental Sector (Urban Water Supply and Air Pollution)

Business Matching Workshop (Air Pollution)

JICA Survey Team 30th September, 2021

Japan International Cooperation Agency **NIPPON KOEI** INTERNATIONAL CONSULTING ENGINEERS

Table of Contents

- **1. Outline of the Survey**
- 2. Survey Method in Uganda
- 3. Main Issues to be Solved
- 4. Identifying of Priority Issues
- 5. Public-Private Partnership

1

1. Outline of the Survey (1)

(1) Survey Period:

From December 2020 to November 2021

(2) Survey Schedule and Team Members:

			2020						2021						Man_N	Aonth
Position		Name	12	1	2	3	4	5	6	7	8	9	10	11	ToUganda	tal Japan
da	1) Team Leader / Urban Water Supply	Shohei Yamamoto													2.17	
n Ugan	2) Air Pollution Management	Satoshi Miyaichi/ Shunichi Okahisa													1.33	
Work ii	3) Private Sector Technology /Business Matching	Masahide Hanabusa													1.33	
	4) Urban Water Supply (2)	Cavan Goh Wei Yung													0.73	
			Sub-total 5.56													
Legend : Work in Uganda																
+																
Lo N	Local EngineerResponsible for collecting and organizing information of air pollutionMs. Ruth Mubeezisector and coordinating meetings with related organization in Uganda					n da										

1. Outline of the Survey (2)

(3) Purpose:

To collect necessary information and data to consider the possibility of technical assistance for improving air pollution in Uganda (or Kampala) in the future.

(4) Contacted Ministries and Organizations:

- MoWE: Ministry of Water and Environment
- NEMA: National Environmental Management Authority
- MoH: Ministry of Health
- MoWT: Ministry of Works and Transport
- KCCA: Kampala Capital City Authority
- AirQo Project
- Private Companies in Kampala
- Other Donors

(5) Main Activities:

- Information collection through the Internet
- Interviews with ministries and organizations related to air pollution
- Summarizing the issues and their needs
- Holding and preparing the workshop and Ideathon
- Preparation of reports

1. Outline of the Survey (3)

2. Survey Method in Uganda

Preparation of Questionnaire and Interview Survey

Interview

3. Main Issues to be Solved (1)

(1) Organizational Structure (Human Resources and Budget) (2) Environmental Policy (Laws, Regulations, Standards)

(3) Monitoring (Ambient Air and Emission Gas) (4) Air Pollution Control (Vehicle and Fixed Source)

3. Main Issues to be Solved (2)

(1) Organizational Structure

Insufficient securing and training of human resources for considering and implementing air pollution measures

Air pollution duties between organizations are not clearly defined.

(2) Environmental Policy

Environmental / emission standards for air pollution have not been finalized.

Official measurement method for air pollutants measurement has been established.

Regulations or specific policies regarding fixed sources have not been established.

The vehicle inspection system is almost non-functional.

7

3. Main Issues to be Solved (3)

(3) Monitoring						
Ambient Air	Due to budgetary constraints, the future expansion of the air quality monitoring system may be limited.					
	It is difficult to maintain and evaluate the accuracy of air quality sensors properly .					
	Measurement of gaseous substances (SO ₂ , O ₃ , CO) have not been carried out. NO ₂ measurement is also limited.					
	No air quality monitoring station (AQMS) is installed. There is a possibility of introducing AQMS of Japanese companies, but cost for transportation, installation, and maintenance needs to be considered.					
	High-precision PM component analysis equipment has not been installed, and there are no analysis methods and laboratories.					
Emission Gas	Emission source monitoring has not been carried out and emission inventory has not been updated.					
	Since the existing emission inventory is old (ICF International, 2009) and the source contribution ratio is unknown, it is difficult to extract measure items that should be prioritized.					
	9					

3. Main Issues to be Solved (4)

(4) Air pollution Control

Vehicle Source	Some ministries have prioritized measures against vehicle sources, but traffic jam in Kampala has not been sufficiently improved.
	Even if private companies sell electric motorcycles, it is not profitable enough. Also currently, not many Ugandans can afford electric motorcycles.
Fixed Source	Implementation of fixed source measures for major factories has not been confirmed. It is important to introduce desulfurization, denitration, dust collection technologies, etc. and GHG emission reduction measures.
	Since gas pipelines are not laid in Kampala and gas cylinders are expensive, it is not easy to switch from biomass fuel.

4. Identifying of Priority Issues

Efforts to Identify Priority Issues by Ugandan side

5. Public-Private Partnership

In order to solve the priority issues...

It is necessary for Ugandan ministries and organization to consider the possibility of cooperation with private companies.

This workshop will be a good opportunity;

- (1) To connect and discuss with Ugandan and Japanese private companies.
- (2) To know the products, technologies and services that contribute to air pollution control provided by companies.

We believe that this workshop will promote collaboration between Uganda and Japan in air pollution sector in the future!

Thank you for your attention.

Ministry of Water and Environment

Status of air pollution in Kampala and expectations to Japanese companies

Presented by Mununuzi Nathan Senior Environment Officer

Introduction

- The Ministry of Water and Environment is mandated with initiating legislation, policy formulation, setting standards, inspections, monitoring, coordination and back up technical support in relation to water and environment sectors.
- This mandate therefore extends to issues relating to air pollution.
Status of air pollution in Kampala

- The Ministry does not collect data on the status of air pollution
- Instead the ministry undertakes inspections and compliance monitoring of especially industries on general pollution.
- Through the Climate Change Department, the ministry compiles data on Green House Gas emissions.
- Reports indicate that Kampala is one of the most polluted cities in Africa

Major sources

- Vehicle emissions due to heavy traffic and old fleet
- Industrial establishments some of which are obsolete
- Biomass fuel (more than 90% of households rely on charcoal and firewood as source of energy)
- Refuse/waste burning due to open burning
- Road dust due to unpaved roads

Expectations for Japanese companies

- Support the establishment of air quality monitoring system
- Promote the supply of less polluting technologies
- Participate in air quality monitoring
- Support the improvement of transport systems
- Support proper waste disposal and management systems
- Support the formulation and implementation of policies, laws, guidelines and standards
- Promote green energy transformation

Thank you

30th September 2021

(1) NEMA's mandate in relation to air pollution control

- (2) Current status of the development process for Air quality standards and regulations
- (3) Future activities and initiatives related to air pollution control
- (4) Technical assistance needed for air pollution control

Mandate

- The National Environment Management Authority (NEMA), is the principal government agency in Uganda responsible for the **monitoring, coordinating, supervising** and **regulating** all activities relating to the environment.
- NEMA advises the government of Uganda and spearheads the development of environmental policies, regulations, laws, guidelines and standards.

Mandate

- In line with Section 103 of the National Environment Act No.5 of 2019, NEMA is mandated to;
 - Establish the criteria and procedure for the measurement of air quality;
 - Prescribe ambient air quality standards and other air quality standards;
 - Prescribe emission standards for various sources; and,
 - Establish the criteria and issue guidelines for air pollution control for mobile, stationary and other sources.
- The Authority is also required to take measures to control air pollution in liaison with other Lead Agencies.

Air Quality Regulations and Standards

- Currently, NEMA is in the final stages of developing the Air Quality Standards in liaison with the relevant Lead Agencies, other stakeholders and development partners such as;
- KCCA,
- Makerere University- (Departments of Chemistry and Computer Sciences),
- NGOs Clean Air Initiatives,
- Ministry of Works and Transport

Air Quality Regulations and Standards

- Uganda National Bureau of Standards (UNBS),
- Ministry of Gender and Social Development,
- Ministry of Water and Environment,
- Petroleum Authority of Uganda,
- the American Embassy, among others. These partners have been very instrumental in providing input into the development of the air quality standards.

Air Quality Regulations and Standards

• The Draft Regulations

Key provisions in the Regulations include;

- Regulation of emission sources
- Indoor air quality
- Occupational air quality
- Air quality monitoring and management plans

among others

Air Quality Regulations and Standards

• The Regulations provide the following categories of standards/limits;

- Ambient Air Quality
- Source Emissions
- Vehicle Emissions
- Occupational Health and Safety

Example of minits provided in the standards					
		Amplent Air Quality Standards			
No.	Pollutant	Time-weighted Average	Standard For Ambient Air	WHO Standards 22/9/2021	
1	Carbon monoxide (CO)	8 hours	9 mg/m ³		
		1 hour	35 mg/m ³		
2	Hydrogen Sulphide (H ₂ S)	1 hour	42 µg/m ³		
3	Ozone (O ₃)	1 hour	235 µg/m³		
		8 hour (instant Peak)	120 µg/m ³	60µg/m3	
4	PM _{2.5}	Annual average	25 µg/m ³	5µg/m3	
		24 hours	35 µg/m³	15 μg/m3	
5	PM ₁₀	Annual average	40 µg/m ³	15µg/m3	
		24 hours	60 µg/m³	45µg/m3	
6	Sulphur dioxide (SO ₂)	1 hour	75 μg/m³		
		24 hours	20 µg/m ³		
7	Nitrogen dioxide (NO ₂)	Annual average	40 µg/m ³	10µg/m3	
		1 hour	200 µg/m ³		
8	Total Volatile Organic Compou (VOCs)	unds 24 hours	600 µg/m ³		

Future activities for air quality control and management in Uganda

The Authority and Lead Agencies will be required to;

- Establish Air quality monitoring stations
- Identify air pollution hotspots by modelling air quality data

NEMA will be required to;

- Report on the State of the environment report once every two years.
- Corroborate with key players and development partners to enable NEMA realize her mandate

Technical Support required for implementation of Air Quality Management Road Map

• Air Quality monitoring equipment – real time and mobile monitoring stations

- Technical capacity building in;
 - Use of the equipment and
 - Air quality modelling, source apportionment and other related issues in detail
 - Understanding standards for the oil and gas sector

THANK YOU FOR LISTENING

For God and my country

MINISTRY OF HEALTH

Health effects from air pollution in Uganda

> By: Fred Mulabya, For Commissioner-EHD

AIR POLLUTION OVERVIEW

- Air pollution is the presence of solid particles or gases in the atmosphere that are harmful to:
 - humans and other living beings,
 - \checkmark cause damage to the climate or to materials.

EFFECTS OF AIR POLLUTION

Varies depending on:

- ✓ Type of pollutant
- ✓Length and level of exposure
- Individual health risk

WHAT CAN SMOG AND SOOT DO?

- Smog and soot are generated generally from combustion of fuels
 - Smog can irritate the eyes and throat and also damage the lungs, especially those of children, senior citizens(elderly persons), and people who work or exercise outdoors.
 - Can intensify symptoms and trigger asthma attacks, loss of sight

SOOT CAN CAUSE HEART ATTACKS

- The tiniest airborne particles in soot, whether gaseous or solid, penetrate the lungs and bloodstream and worsen bronchitis,
- Leading to heart attacks, and even hasten death.

WHAT CAN BENZENE DO?

- Benzene is emitted during combustion of gasoline.
- Classified as carcinogen by EPA-USA, and can cause:
 - >Eye, skin, and lung irritation in the short term,
 - >And blood disorders- Like leukaemia in the long term

WHAT CAN DIOXINS DO?

- More typically found in food but also present in small amounts in the air.
- Can affect the liver in the short term
- Harm the immune, nervous, and endocrine systems as well as reproductive functions

WHAT CAN POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) DO?

- Polycyclic aromatic hydrocarbons (PAHs) are by-products of traffic exhaust and wildfire smoke
- In large amounts they have been linked to eye and lung irritation, blood and liver issues, and even cancer

WHAT CAN CARBONMONOXIDE DO?

As a result of incomplete combustion

 In large amounts they can cause eye and lung irritation, and death by suffocation

SEVEN MILLION DIE, ANNUALLY

- Air pollution is now the world's fourth-largest risk factor for early death;
 - >4.5 million deaths were linked to outdoor air pollution exposures
 - And another 2.2 million deaths were caused by indoor air pollution

PUBLIC HEALTH ACTIONS - GUIDELINES

- Develop an indoor air quality policy and guideline;
 - >Initiate and strengthen the service being part of the minimum

health care package

PUBLIC HEALTH ACTIONS- AIR-QUALITY RELATED DISEASE SURVEILLANCE

- Improve our detection, documentation and reporting of air pollution related conditions needs
- Health workers need to be trained to raise the suspicion index
- >Improve data capture tools

PUBLIC HEALTH ACTIONS-AWARENESS CREATION

- Increase community awareness on air quality
- Scaleup monitoring

Thank you

ACTIVITIES AND EFFORTS FOR AIR POLLUTION

ENG. BIRIMUMASO DAVID Senior Energy Officer Ministry of Energy & Mineral Development maasodavid@gmail.com

INTRODUCTION

- Sources of air pollution in an airshed can be natural and anthropogenic (human produced).
- Today, burning of fossil fuels contributes significantly to air pollution
- Collectively, ICEs and conventional fuels are the dominant contributor to transportrelated air pollution.
 - Road traffic a key source of air pollution in urban areas.
- The main air pollution indicators that need to be monitored include:
 - Sulphur dioxide (SO₂)
 - Nitrogen oxides (NO_x)
 - Particulate matter (PM₁₀, PM_{2.5})
 - Ozone (O₃)
 - Carbon monoxide (CO)
 - Volatile organic compounds (VOCs)
 - Several toxic metals, such as lead, arsenic, cadmium, nickel or mercury ("quicksilver").

INTRODUCTION CONT'D

- In Uganda, road transport accounts for:
 - 95% of passenger traffic and
 - 96.5% of the freight cargo.
- Major transportation modes include
 - cars and private taxis,
 - mini-bus taxis,
 - Buses,
 - Trucks, and
 - Motorcycles.
- Public transport is dominated by 14-seater mini-buses (matatus) and motorcycle taxis (boda-bodas),
 - Typically imported second- or third- hand,
- Total number of registered vehicles range between 1.4 and 2 million (including motorcycles).

INTRODUCTION CONT'D

- Combined with population growth and rapid urbanization, rise in motorization in Uganda is leading to many negative challenges
 - Road Traffic Congestion;
 - High Transport-Based Carbon Emission;
 - Low Fuel Efficiency;
 - Climate Change effects;
 - Inadequate Transport Infrastructure; and Unsafe Transport Modes.

INTRODUCTION CONT'D

- Some figures
 - Uganda emits 4.9 million tons (or 0.2 tons per capita) of carbon dioxide per year.
 - Transport and agriculture sectors represent 62% of national emissions in 2000 • projected to represent 70% by 2030 under a 'business as usual' scenario.
 - 70% of the population depends on agriculture a climate-sensitive sector.
 - Electricity generation potential 1,276 MW (740 MW peak demand), 90.9% RE

replace burning of fossil fuels in ICEs

• This provides potential for EV promotion as a PuE avenue. We need to find alternative energy to

- Enforcement of the use of un-leaded fuel (MEMD)
- A differential Environment tax based on age is in place (URA)
- Ban on the importation of motor vehicles which are over 15 years old from the date of manufacture (URA)
- Use of Non-Motorized Transport (NMT) (KCCA)
- Inspection of all vehicles and motorcycles for road worthiness (MoWT)
- Infrastructure development (Widen roads, Install traffic lights, ring-roads, and flyovers)

SOME PROPOSALS (AS PER THE REVISED DRAFT ENERGY POLICY 2021)

- Pre-inspection (before importation) and post-inspection (those on the roads) of vehicles (to include testing for fuel economy ratios and carbon emission);
- Introduction of carbon- tax in line with the "polluter pay principle" to deter heavy polluters;
- Switch to cleaner fuels (blended fuels) in line with the Biofuels Act;
- Introduction of Fuel Economy Labelling;
- Introduction of Mass Transport System in cities;
- Introduction of Electric Mobility.

ON-GOING ACTIVITIES

- Development of policy framework for Clean mobility;
- Automotive fuel economy baseline survey;
- Awareness creation (fuel campaign, clean mobility);
- Promotion of Electric Mobility;
- Fuel Marking and Quality Monitoring Program.

