
Output1 Introduction 

Evaluation techniques and geographical maps of field nutrient fertility 

characteristics are developed 

Output 1 aimed to develop a simple analytical method to evaluate nutrient characteristics 

and distribution of rice and responses to fertilizer inputs. For this, we set three targets: 

1. Establish soil and spectral analytical methods applicable to the rice fields in the target

area.

2. Develop inter-field scale maps for the fertilizer application.

3. Transfer the developed evaluation methods to at least 20% of extension services in the

target regions of Madagascar.

Output 1 produced several key achievements starting from soil characterization in the 

target regions, development of nutrient evaluation techniques enabling effective fertilizer 

management for rice production, and technical dissemination through manuals and 

workshops. Chemical analysis of soils revealed the low availability and high spatial 

variation in soil nutrient status, particularly phosphorus (P), at the field-scale level. We 

developed new techniques to rapidly and accurately assess such heterogeneous soil 

nutrient status and the responses to fertilizer management.  

Firstly, we developed models using the indoor spectral information of soils and partial least 

squares (PLS) regression approach to estimate carbon (C) and nutrient (N and P) contents 

in soils collected from the rice fields. The soil P estimation model was further updated to 

apply to various ecosystems in Madagascar using a deep learning of one-dimensional 

convolutional neural networks (1D-CNN) approach. Additionally, color and magnetic 

susceptibility sensors were applied alone or in combination to estimate soil C and nutrient 

contents in the rice fields. These sensors are portable and inexpensive and thus can 

provide quick and easy multi-location measurements of soil properties in the field. Through 

repeated pot and multi-field trials, we found that P fertilizer application can efficiently 

increase P uptake and yield of rice in soils with lower soil P retention capacity. Moreover, 

we revealed that soil P retention capacity can be simply and accurately estimated from air-

dried soil moisture content without chemical analysis. Three of the above achievements: 

“Quick assessment of bioavailable P in soils: Method and algorithm with FieldSpec”, 

“Estimation of rice response to P fertilizer application using soil P retention capacity”, and 

“Estimating soil organic matter content by visual assessment of soil color”, were compiled 

as a technical manual and made available for everyone on the LRI website. At the end of 

the project, a workshop was conducted to hand over these techniques to the beneficiaries, 
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namely agricultural extension officers, research technicians of agricultural research 

institutions, and farmers. 

The information obtained in Output 1 should contribute to the quantitative assessment of 

nutrient-poor fields for developing efficient fertilizer management based on the soil status in 

the target regions and elsewhere in SSA. The equipment, technology, and knowledge 

introduced in the project have already been used by researchers and students in 

Madagascar. The publications and manuals developed in this output have been compiled. 

A memory of Output1 activities 
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Soil survey of the east coast and the central highlands indicates need to update
Madagascar soil map
Tomohiro Nishigaki a, Kenta Ikazakia, Yasuhiro Tsujimoto a, Andry Andriamananjara b, Tovohery Rakotosonb

and Tantely Razafimbelob

aCrop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan; bLaboratoire des Radio-
Isotopes, Université d’Antananarivo, Antananarivo, Madagascar

ABSTRACT
The soil map of Madagascar has not been substantially updated since the 1960s. The number of reported
soil profiles that meet the criteria of the Reference Pedon Description – the highest level of data reliability
used to ascertain FAO soil unit classification – is also limited for a country-scale soil map. Therefore, we
conducted a soil survey in the east coast and the central highlands, the most populated and major food-
producing areas in Madagascar, to assess need for reconsideration of the current soil map. As compared
to the latest soil map, our results indicate that Ferralsols cover less area on the flat terrains from the east
coast to the central highlands and that Geric Ferralsol is more frequently observed soil type rather than
Haplic Ferralsol on acidic rocks. The soil type of paddy fields in the southwestern plain of Lake Alaotra –
the country’s largest rice-producing region – was Vertisol with a hydragric horizon rather than Histosol.
This is attributed to long-term paddy cultivation in the region or the difference of the definition of peat
soils between the current and old soil classification systems. The volcanic-origin soils that sporadically
exist in the central highlands can be classified as Eutric Andosol rather than Eutric Cambisol. These results
show the need for updating the current soil map based on the quantitative data and also have important
implications regarding the land history and for appropriate land management in agriculturally intensive
areas in the east coast and central highlands of Madagascar.
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1. Introduction

Soil maps based on quality-assessed soil data and interpreted
soil information provide fundamental information for appro-
priate agricultural management. The latest soil map of
Madagascar – the Soil Atlas of Africa (EU 2013) – was devel-
oped based on the Soil Map of the World (FAO-UNESCO 1977)
with little modification (Figure 1). In addition, the Madagascar
part of the Soil Map of the World was created from informa-
tion in an atlas (Roederer and Bourgeat 1969) and
a pedological map (Riquier 1968) of Madagascar. Therefore,
the latest soil map of Madagascar basically relies on an old
French soil classification system used prior to the Commission
de Pédologie et de Cartographie des Sols (CPCS) (1967), and
there has been no significant update since the 1960s. In addi-
tion, Batjes (2008) reported that only 20 of 54 soil profiles in
Madagascar in Version 3.1 of the ISRIC-WISE database meet
the Reference Pedon Description criteria, which is the highest
data reliability level used to ascertain FAO soil unit classifica-
tion. This amount is clearly insufficient to update a country-
scale soil map of Madagascar, particularly with its diverse
environment. Thus, collecting new soil data and classifying
the soils according to the latest soil classification system
based on those data would be an important first step in
updating the soil map in this country.

The east coast and the central highlands of Madagascar are
characterized as the most populated and major food-

producing area of the country. According to the Köppen
climate classification system, the climate greatly varies from
tropical with high temperatures and precipitation (Af) to tem-
perate with a dry winter and hot-warm summer (Cwa, Cwb)
(Figure 2). Regardless of the various climatic conditions, Haplic
Ferralsols (FR-ha) are reported to be predominant on acidic
rocks widely distributed from the east coast to the central
highlands (EU 2013). Haplic Ferralsols are characterized as
soils rich in kaolinite and oxides and are generally considered
unfertile. Because the classification of soils as FR-ha is mainly
based on information in the old atlas (Roederer and Bourgeat
1969) and pedological map (Riquier 1968), there is
a considerable doubt whether these classifications are cur-
rently applicable.

Lake Alaotra and its surrounding wetlands are the most
intensive rice-producing area in Madagascar. The fertile sedi-
mentary soils in the vast southwestern plain of Lake Alaotra
have been utilized as paddy fields with irrigation canals and
a constant water supply from Lake Alaotra. According to the
latest soil map (EU 2013), the lake’s surrounding wetlands are
covered by Dystric Histosols (HS-dy), soils with thick organic
layers and a low pH. Although this soil type may be correct for
the marsh and reed bed, it is doubtful that HS-dy is the correct
soil type for the paddy fields that have been cultivated for
many years considering the inadequate characteristics of HS-
dy for agricultural practices.
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The high mountains that sporadically appear in the central
highlands of Madagascar are mostly of volcanic origin, whereas
the rest of the highlands are essentially formed by schists,
migmatites, and gneiss of the basement complex. The
Quaternary volcanic fields overlie Precambrian basement
rocks in the central highlands of Madagascar (Rufer et al.
2014), and the soils of volcanic origin can have substantially
different properties and higher crop productivity as compared
with the strongly weathered unfertile soils surrounding them
(Nishigaki et al. 2018). Therefore, the areas with productive soils
should be clearly characterized. Currently, however, volcanic
soils in the central highlands are classified as Eutric Cambisols
(CA-eu) (EU 2013), which offers little information for appropri-
ate land management, particularly for volcanic soils with a high
phosphate fixation.

Given the aforementioned obsolete and incomplete nature
of the soil database in Madagascar, we established the follow-
ing objectives in this study: (1) to increase the number of soil
profiles meeting the criteria of Reference Pedon Description in
Madagascar, (2) to validate the distribution of FR-ha from the
east coast to the central highlands, and (3) to obtain represen-
tative soil profile information in areas with intensive agriculture
in the central highlands to assess need for reconsideration of
the current soil types (HS-dy in Lake Alaotra and CA-eu in
volcanic soils) in terms of agricultural management.

2. Materials and methods

2.1. General description of the east coast and central
highlands

The east coast and central highlands of Madagascar consist of
three flat terrains and two slopes (Figure 2). The upper flat terrain
(FT1) is a constituent of the central highlands and has an altitude
between 1200 and 1500m a.s.l. (data fromU.S. Geological Survey
EROS Data Center (1997)), a mean annual temperature of

13–19ºC, and a mean annual rainfall of 1200–1800 mm (data
from Fick and Hijmans (2017)). On the east, FT1 ends in an
escarpment (S1) connecting FT1 and the middle flat terrain
(FT2). The FT2 is also a constituent of the central highlands and
has an altitude between 600 and 900 m a.s.l., a mean annual
temperature of 19–21ºC, and a mean annual rainfall of
1500–2400 mm. Slope 2 (S2) is relatively gentle and connects
FT2 and the lower flat terrain (FT3). The FT3 is a coastal plain and
a constituent of the east coast. It is rarely more than 30 km wide
and has an altitude of less than 100 m a.s.l., a mean annual
temperature of 23–25ºC, and a mean annual rainfall of
2400–3000 mm. According to the current soil map (EU 2013)
and geological map (Schlüter 2008), a predominant soil type on
acidic rocks on FT1–3 is FR-ha (Figure 1), and the dominant soils
on basic rocks (i.e., the greenstone belt) in S2 are Plinthosols,
while Cambisols are also found on S1 and S2 between flat
terrains.

To estimate the slope distribution within a rectangle of the
surveyed area in Figure 1 (top, 17°45’S; bottom, 20°05’S; left, 46°
48ʹE; right, 49°57ʹE; totally 75,610 km2), ALOS World 3D-30 m
images (JAXA 2018) were used. The slope for each pixel having
a resolution of 32 m was calculated by slope function of a GIS
software (ArcGIS version 10.4, ESRI).

2.2. Soil survey and physicochemical analysis

Ten soil pits were made to obtain a detailed description of
the soil profile and to collect soil samples (Figures 2, 3 and
A, excluding ID 4). Each pit was 1 m × 1 m in area and
generally up to about 1.2 m deep. The locations were care-
fully determined from the viewpoint of regional representa-
tiveness using geological maps (Basairie 1968; Riquier 1968;
Schlüter 2008), soil maps (Riquier 1968; EU 2013), and satel-
lite images (e.g., Google Earth) (Table 1). The specific loca-
tion was selected based on field observation such that each
pit was on a summit or ridge to the extent possible to avoid

Figure 1. Changes in the soil map of Madagascar: (a) EU (2013), (b) FAO-UNESCO (1977) digitalized in FAO (1991), and (c) Riquier (1968). Only soils mentioned in the
main text are shown. A rectangle in (a) represents the area shown in Figure 3
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the effect of recent colluvial deposits. Eight pits (Figure 3;
IDs 1–8) were targeted in areas with FR-ha on FT1–3, which
is the predominant soil type in this area based on the latest
soil map (EU 2013). Due to bad road conditions caused by
a landslide, we could not reach the selected location for
one soil pit (ID 4), and therefore no sample was obtained
for ID 4. A soil pit (ID 9) was targeted on the greenstone
belt on S2 where Plinthosols were expected according to EU

(2013). One pit (ID 10) was made in the intensive paddy
fields in the south-western plain of Lake Alaotra on FT2, and
another (ID 11) was made in a cropland in Betafo where
volcanic soils are distributed on FT1. In EU (2013), soil types
in these agricultural areas were HS-dy and CA-eu, respec-
tively. Soil profiles in the pits were described according to
terms in FAO (2006). Soil samples were taken from each
horizon using a trowel, air-dried, passed through a 2-mm

Figure 2.Mean annual rainfall (a), mean annual temperature (b) and topographic cross section along the line AB (c). Maps were created using the WorldClim 2 dataset
(Fick and Hijmans 2017). Topographic data were derived from GTOPO30 (U.S. Geological Survey EROS Data Center 1997).
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sieve, and stored at a room temperature until subsequent
physical and chemical analyses in the laboratory. Cylinder
core samples were also taken for measuring bulk density.

Soil samples were mixed in a soil to solution (H2O and 1 M
KCl) ratio of 1:5, and the pH was measured with a pH electrode
(LAQUA F-72, HORIBA) after being shaken for 2 h. Total carbon
and total nitrogen were determined using the dry combustion
method with an elemental analyzer (SUMIGRAPH NC-220F,
Sumika Chemical Analysis Service). Exchangeable bases,
exchangeable acidity, and cation exchangeable capacity (CEC)
were generally measured according to van Reeuwijk (2002), but
inductively coupled plasma atomic emission spectroscopy (ICP-
AES) with a spectrometer (ICPE-9000, SHIMADZU) was used in
this study. Effective base saturation (EBS), as defined by the
IUSS Working Group WRB (2015), was calculated by dividing
exchangeable (Ca2+ + Mg2+ + K+ + Na+) by exchangeable (Ca2+

+ Mg2+ + K+ + Na+ + Al3+). Available phosphorus was deter-
mined by the Bray-I method (Bray and Kurtz 1945; van Reeuwijk
2002) using a Shimadzu UV-1800 spectrophotometer. Particle
size distribution was measured as described by Gee and Bauder
(1986). After chemical degradation of organic matter by H2O2

and sample dispersion with sodium hexametaphosphate,
coarse- and fine-sand fractions (0.2–2 and 0.02–0.2 mm, respec-
tively) were measured by sieving, and silt (0.002–0.02 mm) and
clay (<0.002 mm) fractions were measured with the pipette
method. Bulk density was determined bymeasuring the masses
of 100-ml core samples after drying at 105°C for 48 h. To test
the diagnostic criteria of Andic properties, phosphorus reten-
tion (Soil Survey Staff 2014a) and oxalate-extractable Al and Fe
(Courchesne and Turmel 2008) were measured for soils from
ID 11.

Based on soil profile descriptions and soil physical and
chemical data, soil profiles were classified to the level of princi-
pal qualifiers using the current World Reference Base (WRB)
system (IUSS Working Group WRB 2015) as well as to the level
of subgroups using Keys to Soil Taxonomy (Soil Survey Staff
2014b).

3. Results and discussion

3.1. Distribution of Ferralsols and Plinthosols

Among IDs 1–8 targeted in areas with FR-ha on FT1–3,
Ferralsols were not found on steep land (> 15% slope)
(Table 1; IDs 3, 7). Rather, soils in steep land on FT1–3 (IDs

3, 7) were classified as Cambisols due to the lack of clay
accumulation and a ferralic horizon (Tables 2 and 3), which is
similar to the distribution of Cambisols on S1 and a part of
S2 (EU 2013). Since the area with steep slope (> 15%) was
estimated to cover 62% of the whole surveyed area (Figure 3;
the average slope was 21%), it was suggested that Ferralsols
cover less area than reported by EU (2013). Even on flat to
sloping land (< 15% slope) on FT1–3 (Table 1), we found
both Ferralsols (IDs 1, 6, 8) and Lixisols (IDs 2, 5), the latter of
which has an argic horizon but not a ferralic horizon.
According to the legacy soil data of Africa Soil Profiles
Database (Leenaars, van Oostrum, and Ruiperez Gonzalez
2014), the 20 soil profiles with reliability level 1 in
Madagascar (same as 20 profiles in Version 3.1 of the ISRIC-
WISE database meeting the Reference Pedon Description
criteria) were located within the area of 1,130 km2 covered
mainly by steep slope (74% of total area) on FT2. Although
those 20 soil profiles were expected to be FR-ha (EU 2013),
only three profiles were classified as Ferralsols, while the
most of others were classified as Cambisols or Fluvisols.
This together with our results indicates that, due to the
extensive steep land, Ferralsols cover less area on FT1–3
than reported in EU (2013); Cambisols could be more com-
mon than Ferralsols.

The area covered by FR-ha in EU (2013) basically corre-
sponds to the range of ‘Sols Ferrallitiques’ in Roederer and
Bourgeat (1969) and Riquier (1968), both of which followed
the old French classification system (Aubert 1965). It is worth
noting that neither Aubert (1965) nor CPCS (1967) used the
concept of a diagnostic horizon, which has been adopted in
many current soil classification systems (e.g., Obara et al. 2011;
Soil Survey Staff 2014b; IUSS Working Group WRB 2015).
Moreover, the criteria for ‘Sols Ferrallitiques’ have no critical
value for thickness and soil texture (Aubert 1965). Latham
(1981) noted the absence of precise diagnostic features as
a problem of the old French classification systems, and that
sometimes too much was left open to personal interpretation.
In contrast, the ferralic horizon is used as a diagnostic horizon
for Ferralsols and has more specific criteria, for example, certain
values must be met for soil texture class, CEC, and exchange-
able cations (Ca2+ + Mg2+ + K+ + Na+ + Al3+) (IUSS Working
Group WRB 2015). Our results indicate that relying on the old
classification system resulted in an overestimation of FR-ha in
the targeted region in EU (2013).

Figure 3. Location of soil pits on (a) soil map (EU 2013) and (b) slope map.
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In addition, Ferralsols (IDs 1, 6, 8) generally have geric prop-
erties, i.e., low effective CEC (sum of exchangeable cations) and/
or high anion exchangeable capacity (pHKCl －pHwater ≧ +0.1)
(Table 3), and thus Geric Ferralsols (FR-gr) should be predomi-
nant in the targeted region rather than FR-ha. It is difficult to
interpret the reason of this mismatch because we have no
means of knowing how ‘Sols Faiblement Ferrallitiques,’ ‘Sols
Typique Rouges,’ and ‘Sols Typique Jaune sur Rouge’ in ‘Sols
Ferrallitiques’ were translated into Orthic Ferralsols in FAO-
UNESCO (1977) and then FR-ha in EU (2013). It could be due
to the lack of enough soil data. Note that Geric properties were
not used in FAO-UNESCO (1977) and were firstly introduced in
Revised Legends (FAO 1988), which could have influenced the
mismatch.

Translation of a soil order in WRB system to a similar
soil order in Soil Taxonomy and vice versa is a simple
method often applied to make a soil map. Ferralsols are
considered to overlap with Oxisols – highly weathered
tropical soils with low natural fertility in Soil Taxonomy
classification system (Soil Survey Staff 2014b). It’s worth
noting that, however, Oxisols were rarely found in the
targeted region. This is attributed to the stricter condition
of the oxic horizon than the ferralic horizon: an oxic
horizon requires < 5% of rock structure and a clay
increase with increasing depth, whereas a ferralic horizon
accepts < 80% coarse fragment and a clay decrease with
increasing depth like IDs 1 and 8. This difference has
caused the mismatch of Ferralsols and Oxisols in the
targeted region.

Table 2. Soil classification and physical properties.

ID Depth
Rock

fragment Hardness
Bulk

density
Coarse
sand

Fine
sand

Coarse
silt

Fine
silt Clay

Soil classification based on WRB and Soil
Taxonomy cm % mm Mg m-3 % fine earth

1 0–12 0.3 29.0 1.32 22.9 16.9 7.2 11.1 41.9
Geric Ferralsol 12–35 3.7 31.7 1.27 26.3 14.6 5.9 12.6 40.6
(Eutric Chromic Sideralic Cambisol over Geric
Ferralsol),

35–73/80 3.6 29.0 1.52 24.6 14.0 7.0 14.8 39.7

Typic Dystrudept (Typic Dystrudept) 73/80–125+ 0.3 28.7 1.50 26.3 15.1 10.6 22.2 25.8
2 0–13 - - - 19.7 13.8 9.6 26.3 30.7
Rhodic Lixisol, 13–33 - - - 18.0 10.5 4.9 16.1 50.6
Typic Rhodudalf 33–47 - - - 17.4 12.4 8.5 17.8 44.1

47–72 - - - 14.0 8.0 4.5 9.7 63.8
72–83+ - - - 13.0 11.5 5.9 11.4 58.2

3 0–20 0.1 20.0 0.96 31.9 10.6 2.5 8.9 46.0
Dystric Chromic Sideralic Cambisol, 20–40 0.1 26.7 1.23 26.6 10.6 3.2 14.8 44.8
Typic Dystrudept 40–78 0.3 27.7 1.43 25.6 16.3 5.3 22.4 30.4

78–104 0.1 24.7 1.41 25.9 24.8 5.5 20.7 23.1
104–125+ 0.1 23.0 1.34 28.6 24.9 6.1 20.5 19.8

5 0–5 9.1 8.0 1.28 57.6 8.0 3.1 7.1 24.1
Ferric Lixisol 5–39 6.6 26.7 1.57 41.2 10.9 4.2 11.0 32.7
(Dystric Sideralic Cambisol over Eutric Regosol), 39–80 5.7 28.3 1.57 21.4 4.6 2.1 12.2 59.7
Typic Hapludalf (Inceptic Hapludalf) 80–125+ 9.1 27.3 1.58 24.1 4.2 1.9 10.5 59.4
6 0–22 3.7 20.7 1.24 33.6 11.3 3.7 13.2 38.2
Geric Xanthic Ferralsol, 22–56 4.8 25.7 1.53 35.4 9.9 3.3 12.3 39.1
Anionic Acrudox 56–85 9.9 26.0 1.54 34.4 8.8 3.6 11.2 42.0

85–130+ 3.8 24.7 - 37.4 8.1 5.5 14.3 34.7
7 0–26 0.6 17.3 1.27 55.1 11.6 2.5 6.8 23.9
Dystric Chromic Cambisol 26–55 7.2 23.0 1.63 51.4 11.5 2.4 6.2 28.4
(Dystric Cambisol over Dystric Chromic Cambisol), 55–100 0.5 26.0 1.40 23.6 8.3 6.9 23.1 38.1
Typic Paleudult (Ruptic-Ultic Dystrudept) 100–130+ 0.9 24.0 1.43 19.1 11.8 8.3 24.3 36.4
8 0–18 0.2 24.7 1.23 42.7 8.9 2.7 7.3 38.3
Geric Xanthic Ferralsol, 18–36 5.0 26.3 1.51 41.8 8.6 3.2 8.8 37.6
Oxic Dystrudept 36–59 0.7 24.7 1.55 39.0 7.8 3.1 10.1 39.9

59–93 1.5 24.7 1.45 26.6 9.0 6.5 20.5 37.4
93–130+ 0.1 23.7 1.49 18.7 11.4 10.0 28.3 31.6

9 0–26 5.8 19.3 1.0 43.1 17.3 3.2 10.5 25.8
Geric Plinthosol, 26–55 1.7 25.0 1.6 36.0 15.1 3.5 8.4 37.0
Plinthic Kandiudalf 55–81 3.5 21.0 1.5 30.8 12.4 2.9 10.1 43.7

81–125+ 3.1 20.7 1.3 21.5 9.4 3.2 13.5 52.5
10 0–18 0.0 34.7 1.4 2.3 4.8 6.9 17.2 68.9
Hydragric Vertisol, 18–34 0.0 29.3 1.4 1.2 4.6 5.5 13.8 74.8
Ustic Epiaquert 34–43 0.0 24.7 1.1 9.7 8.0 10.0 20.1 52.3

43–82 0.0 22.7 1.6 1.5 12.4 12.9 16.7 56.5
82–130+ 1.0 13.3 1.6 41.1 30.1 6.5 3.6 18.7

11 0–10 - - - 19.7 23.2 16.8 28.2 12.0
Eutric Umbric Silandic Andosol, 10–25 - - - 19.4 21.4 15.8 31.6 11.8
Typic Hapludand 25–37 - - - 14.1 16.7 24.9 32.5 11.7

37–60 - - - 18.2 18.1 19.8 34.5 9.5
60–70 - - - - - - - -
70–80+ - - - 13.6 18.2 18.4 35.7 14.2

Soil classification in parenthesis shows the case of soil profile developed from base materials and overlying redeposited materials.
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In the former version of the WRB system (IUSS Working
Group WRB 2006), Lixisols for IDs 2 and 5 were classified as
Acrisols, but the diagnostic criteria to key out Acrisols was
changed in the latest WRB system (IUSS Working Group
WRB 2015). Base saturation defined as exchangeable (Ca2+

+ Mg2+ + K+ + Na+) divided by CEC (by 1 M NH4OAc) was
used in the former system, whereas effective base saturation
defined as exchangeable (Ca2+ + Mg2+ + K+ + Na+) divided
by exchangeable (Ca2+ + Mg2+ + K+ + Na+ + Al3+) is used in
the latest system. Owing to this modification, the soil pro-
files with low exchangeable Al3+ tend to be classified as
Lixisols. This is in contrast to that Ferralsols used to be
considered to occur alongside of Acrisols on acidic rocks
(FAO 2001) because the principal difference between those
two soil types was just the presence or absence of clay
accumulation. Therefore, the introduction of effective base
saturation needs special attention when we describe soil
maps of tropical area.

A soil profile (ID 9) located on basic rocks (amphibole
migmatite) was classified as Geric Plinthosol (PT-gr); the
profile had a plinthic horizon, but not a pisoplinthic horizon.
This is basically in agreement with the soil type previously
reported as ‘Sols induré’ (indurated soils) (Riquier 1968) and
Pisoplinthic Plinthosol (PT-px) in EU (2013), although the
principal qualifier was different (Figure 1). The cover range
of PT-gr is expected to follow that of PT-px in the latest
soil map.

It is worth noting that, because of the large gap in soil
texture, color, or content of rock fragment between a pair of
adjacent layers within a soil profile, some pedons (IDs 1, 5, 7)
can be considered as not being evolved from a base parent
material but developed from different parent materials; that is,
there are base materials and overlying redeposited materials.
This can lead to classifying these pedons as Cambisols due to
the absence of a ferralic horizon in overlying soils (IDs 1, 5, 7;
Tables 2–4). Consequently, Ferralsols were rarely found in the
central highlands, and Cambisols were the predominant soil
type. Roederer and Bourgeat (1969) noted that the pronounced
relief of Madagascar has led to intense soil erosion and strip-
ping of old soil formations. Therefore, there might be various
soils that recently developed from the base parent materials or
from the overlying redeposited materials. More work is
required to reveal the extent to which soils developed from
secondary materials existing in the east coast and central high-
lands of Madagascar.

3.2. Paddy soils around Lake Alaotra and sporadic
volcanic soils in the central highlands

Riquier (1968) classified the soil type of southwestern plain
of Lake Alaotra as ‘Sols Hydromorphes, Sols Organiques/
Minéraux’ (hydromorphic, organic/mineral soils), and this
was translated into Histosols in the latest soil map (EU
2013). Irrigated rice cultivation in this area doubled between
1959 and 1989, and about 820 km2 of irrigated paddy fields
currently cover the Alaotra topographic basin, or about 45%
of the total basin (Mietton et al. 2018). The soil profile
observed in the southwestern plain of Lake Alaotra (ID 10)
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was classified as Hydragric Vertisol (VR-hg), which had high
nutritional status in the top three layers presumably due to
constant sedimentation through irrigation water (Tables 2
and 3). In addition, there were redoximorphic features in
the top two layers and Fe and Mn accumulation in the
underlying horizon, suggesting the effect of irrigated rice

cultivation (Tables 4 and 5). The combined thickness of
anthraquic horizon and hydragric horizon can vary depend-
ing on the distance from canals and farmers’ cultivation
practice. Therefore, other places within the paddy fields in
southwestern plain of Lake Alaotra could be classified as
Anthrosols which can be keyed out prior to Vertisols if the

Table 5. Description of soil profiles.

ID Depth Mottle Concentration Root
Other biological

feature

　 (cm) (color/abundance1/contrast2/size3/
boundary4)

(abundance1/kind5/size3/shape6/hardness7/nature8/
color)

(size3/
abundance1)

(abundance1/type9)

1 0―12 none none VF/M, F/C, M/V C/T
　 12–35 none none VF/M, F/F, M/V F/T
　 35–73/80 none none VF/C, F/V none
　 73/80–125

+
none none VF/F none

2 0–13 none none VF/M, F/V none
　 13–33 none none VF/C none
　 33–47 none none VF/F none
　 47–72 none none VF/V none
　 72–83+ none none none none
3 0–20 none none VF/M, F/C, M/F C/E
　 20–40 none none VF/C, F/F, M/V none
　 40–78 none none VF/F, F/V none
　 78–104 none none VF/V none
　 104–125+ none none VF/V none
5 0–5 none none VF/M, F/C, M/F, C/

V
F/E

　 5–39 none none VF/C, F/F none
　 39–80 none M/C/F/E/H/F/5YR5/8, C/SC/F/E/B/F/7.5YR6/8 VF/F none
　 80–125+ none M/C/F/E/H/F/5YR5/8, C/SC/M/E/B/F/7.5YR6/8 none none
6 0–22 none C/R/M/I/H/F/7.5R4/6 VF/M, F/C, M/C C/E
　 22–56 none C/R/C/I/H/F/7.5R4/6 VF/C, F/F, M/F F/T
　 56–85 none C/R/C/I/H/F/7.5R4/6 VF/C, F/F F/T
　 85–130+ none A/R/C/I/H/F/7.5R4/6 VF/F, F/V none
7 0–26 none none VF/M, F/C, M/C, C/

V
C/E

　 26–55 none M/R/C/I/H/F/7.5R4/6 VF/C, F/F, M/V F/T
　 55–100 none C/R/C/I/H/F/7.5R4/6 VF/F, F/F none
　 100–130+ none C/R/C/I/H/F/7.5R4/6 VF/V, F/V none
8 0–18 none none VF/M, F/C, M/V, C/

V
C/E

　 18–36 none F/C/M/I/B/F/10R4/8, 7.5YR5/8 VF/C, F/F, M/V F/C
　 36–59 none none VF/F, F/V, M/V F/C
　 59–93 none C/R/C/I/B/F/7.5R4/6 VF/F, F/V, M/V none
　 93–130+ none C/R/C/I/B/F/7.5R4/6 VF/V, F/V none
9 0–26 none M/C/C/I/H/FM/10YR2/2, 10YR5/6 VF/M, F/C, M/F F/T, C/E
　 26–55 none C/C/C/I/H/FM/10YR2/2, 10YR5/6 VF/C, F/F none
　 55–81 none C/C/C/I/H/FM/10YR2/2, 10YR5/6 VF/F, F/V none
　 81–125+ none M/C/C/I/H/FM/10YR2/2, 10YR5/6 VF/V, F/V none
10 0–18 2.5YR4/8/M/P/VF/S, 2.5YR4/8/V/P/F/S none VF/M, F/F none
　 18–34 2.5YR4/8/M/P/VF/S, 2.5YR4/8/M/P/F/S none VF/M, F/F none
　 34–43 none A/C/M/E/H/F/10YR7/8 VF/C, F/F none
　 43–82 2.5YR4/8/C/P/VF/S none VF/C, F/F none
　 82–130+ 2.5YR4/8/V/P/VF/S none VF/V none
11 0–10 none none VF/C, F/C none
　 10–25 none none VF/C, F/F none
　 25–37 none none VF/F, F/V none
　 37–60 none none VF/F none
　 60–70 none none none none
　 70–80+ none none none none

1none, V: very few, F: few, C: common, M: many, A: abundant, D: dominant.
2F: faint, D: distinct, P: prominent.
3VF: very fine, F: fine, M: medium, C: coarse, VC: very coarse.
4S: sharp, C: clear, D: diffuse.
5 T: crystal, C: concretion, SC: soft concretion, S: soft segregation, N: nodule, IP: pore infillings, IC: crack infillings, R: residual rock fragment, O: other.
6R: rounded, E: elongated, F: flat, I: irregular, A: angular.
7H: hard, S: soft, B: both hard and soft.
8K: carbonates, KQ: carbonates-silica, C: clay, CS: clay-sesquioxides, GY: gypsum, SA: salt, GB: gibbsite, JA: jarosite, S: sulfur, Q: silica, F: iron, FM: iron-
manganese, M: manganese, NK: not known.

9A: artifacts, B: burrows, BO: open large burrows, BI: infilled large burrows, C: charcoal, E: earthworm channels, P: pedotubeles, T: termite or ant channels
and nests, I: other insect activity.
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combined thickness of anthraquic horizon and an under-
lying hydragric horizon is > 50 cm.

It is indicated that long-term paddy-rice cultivation (>
50 years) associated with a drainage system generated
redoximorphic features within soil profiles (Tables 4 and 5)
and accelerated the oxidation of the organic layer of
Histosols, thereby changing Histosols into Vertisols. The
previous studies also reported the changes in soil order by
the rapid oxidation of the organic layer. Veenstra and Burras
(2012) showed that 32% of the pedons originally classified
as ‘Black soils’ (Phaeozem and Chernozem) (IUSS Working
Group WRB 2006) in Iowa, United States, have changed
enough to result in reclassification at the WRB Reference
Group level, mainly because of degradation of organic mol-
lic horizons after more than 50 years of cultivation. Everett
(1983) suggested that a few decades of oxidation after the
drainage can make the thickness or organic matter content
in the organic layer insufficient for the soil to meet the
requirements for the order of Histosols. Kempen et al.
(2009) reported that accelerated oxidation due to the inten-
sive tillage and lowering of groundwater levels largely chan-
ged peat soils into other soil groups in North-East
Netherlands. We should also mention that the old soil clas-
sification system (Aubert 1965) can classify the soils having
much less than 20% of soil organic carbon, which are not
classified as Histosols in the current WRB system, as “Sols
Hydromorphes.“ The difference of the definition of peat soils
between old and current soil classification systems could
also be attributed to the change of soil type.

One soil profile (ID 11) was classified as Andosol, and it had
a layer with andic properties (Table 6). This result is in contrast
to the latest soil map (EU 2013), which reported CA-eu in this
area, but was similar to Riquier (1968), who classified the soils in
this area as ‘Sols bruns eutrophes peu évolués cendres volcanique’
(little-evolved eutrophic brown soils on volcanic ash).
Therefore, future soil survey should focus on investigating to
what extent the area of the ‘Sols bruns eutrophes peu évolués
cendres volcanique’ in Betafo can be translated as Andosols in
the current classification system. This update at the WRB
Reference Group level would lead us to expect that the soils
in this area have favorable properties for cultivation, such as
a high water-holding capacity and organic matter content, but
also unfavorable properties, such as a high phosphorus fixing
capacity caused by active Al and Fe. These findings on the

paddy soils around Lake Alaotra and sporadic volcanic soils in
the central highlands have important implications about the
land history and for appropriate land management in the agri-
culturally intensive areas in the central highlands of
Madagascar.

4. Conclusions

There was a considerable gap between our results and the
latest country-scale soil map of Madagascar, which was
put together from an atlas and pedological map published
more than 50 years ago. The current soil classification
systems have more distinct diagnostic criteria, and inten-
sive cultivation has changed soil conditions in some areas.
Clearly, there is a need to reconsider the country-scale soil
map of Madagascar. Further soil survey toward updating
soil map in Madagascar should focus on how to link the
topographical information and distribution of Ferralsols
and accumulation of soil profile information of overlooked
soil types in the current soil map to determine their
occurrence.
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Abstract: Visible and near-infrared (Vis-NIR) diffuse reflectance spectroscopy with partial least
squares (PLS) regression is a quick, cost-effective, and promising technology for predicting soil
properties. The advantage of PLS regression is that all available wavebands can be incorporated
in the model, while earlier studies indicate that PLS models include redundant wavelengths, and
selecting specific wavebands can refine PLS analyses. This study evaluated the performance of PLS
regression with waveband selection using Vis-NIR reflectance spectra to estimate the total carbon (TC)
and total nitrogen (TN) in soils collected mainly from the surface of upland and lowland rice fields in
Madagascar (n = 59; after outliers were removed). We used iterative stepwise elimination-based PLS
(ISE-PLS) to estimate soil TC and TN and compared the predictive ability with standard full-spectrum
PLS (FS-PLS). The predictive abilities were assessed using the coefficient of determination (R2), the
root mean squared error of cross-validation (RMSECV), and the residual predictive deviation (RPD).
Overall, ISE-PLS using first derivative reflectance (FDR) showed a better predictive accuracy than
ISE-PLS for both TC (R2 = 0.972, RMSECV = 0.194, RPD = 5.995) and TN (R2 = 0.949, RMSECV = 0.019,
RPD = 4.416) in the soil of Madagascar. The important wavebands for estimating TC (12.59% of
all wavebands) and TN (3.55% of all wavebands) were selected from all 2001 wavebands over the
400–2400 nm range using ISE-PLS. These findings suggest that ISE-PLS based on Vis-NIR diffuse
reflectance spectra can be used to estimate soil TC and TN contents in Madagascar with an improved
predictive accuracy.

Keywords: Acrisols; calibration; Ferralsols; first derivative reflectance; Oxisols; partial least squares
regression; spectral assessments; surface paddy soil

1. Introduction

Carbon (C) and nitrogen (N) contents in soils are two key parameters for sustaining soil and
environmental quality, as well as for improving crop productivity because of their involvement in a
number of natural processes related to soil health and fertility [1]. Moreover, monitoring C levels in soils
is increasingly needed because the depleted C levels, particularly in croplands, present an opportunity
for carbon sequestration through adequate management practices [2]. To efficiently manage C and
N in soils, a large number of soil samples must be evaluated for soil spatial variability [3]. However,
standard procedures for assessing the state of C and N in soils are costly and time consuming [4,5]
and require experienced operators. Thus, possible alternatives such as visible (Vis, 400–700 nm)
and near-infrared (NIR, 700–2500 nm) spectroscopy are gaining attention; both of these alternatives
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have been widely accepted as fast and non-destructive methods for estimating soil properties [6,7].
These techniques measure the radiation absorbed by various bonds of O-H, C-H, N-H, C=O, C-N, N-H,
or C=C, resulting in bending, twisting, stretching, or scissoring [8,9]. Diffusely reflected NIR radiation
is then correlated to measure material properties using various multivariate calibration techniques [10].
Among linear multivariate analyses, partial least squares (PLS) regression is the most commonly
used approach for soil spectral analyses. Using PLS regression analyses, many calibrations have been
conducted in recent decades to predict soil properties from Vis-NIR spectral data [11,12]. The infra-red
PLS method of soil property predictions was shown to be well suited for the characterization of
soils [13].

However, waveband selection can also refine the performance of PLS analysis not only for
the prediction of soil properties [14,15], but also for other chemical and physical properties, such
as forage in paddy fields [16], forest [17], and grassland [18,19], or for water quality in irrigation
ponds [20], food [21], and fuel [22]. The PLS regression method combines the most useful
information from hundreds of wavebands into the first several PLS factors (or latent variables),
whereas the less important factors might include background effects [17,23]. Thus, many approaches
for selecting wavebands or wavelength regions have been developed to eliminate useless (or to
select useful) wavebands/wavelength regions in PLS analyses; these approaches include iterative
stepwise elimination PLS (ISE-PLS) [24], uninformative variable elimination PLS (UVE-PLS) [25],
competitive adaptive reweighted sampling (CARS) [26], interval PLS (iPLS) [27], moving window PLS
(MW-PLS) [28], and genetic algorithm PLS (GA-PLS) [29]. Much of the literature has reported that
more accurate calibration models may be achieved by selecting the most informative spectral variables
instead of using the standard full-spectrum PLS (FS-PLS). In addition, waveband selection attempts to
reduce the complexity and thus improve the robustness of a calibration model [23,30,31]. For example,
Kawamura et al. [23] reported that removal of the redundant wavebands by ISE-PLS greatly improved
the estimation accuracy of herbage mass and forage chemical properties in pasture. The results also
suggested that ISE-PLS has the advantage of tuning the optimum bands for PLS regression with a
better predictive ability in pastures, although this method has not been applied to soil spectra and
soil properties.

In Madagascar, rice is important not only as the country’s staple food, but also as the major rural
income-generating resource. However, rice yield has been stagnant at less than 3 t ha−1 in recent
decades despite relatively favorable water conditions, with 70% of rice-cropping areas categorized
as irrigated in this country [32]. In a survey of several rice fields in Madagascar’s central highland,
Tsujimoto et al. [33] showed a significant and linear response of rice yield against the soil organic carbon
(SOC) content in relation to the N-supplying capacity of soils, which strongly indicates the importance
of soil fertility management for increasing regional rice yields. Extensive research on SOC has been
conducted using standard procedures, but most studies have focused on forest carbon stocks in the
context of carbon dynamics, global warming, and environmental degradation in Madagascar [34–38].
Extensive and field-based soil C and N evaluations concerning the development of appropriate soil
and nutrient management recommendations for the rice-cropping system, the country’s major land
use, are limited.

The aim of this study was to evaluate whether waveband selection by ISE-PLS would improve
the predictive ability of calibrations using laboratory Vis-NIR spectroscopy when predicting soil total
C (TC) and total N (TN) contents in Madagascar. The study compares the performance of ISE-PLS
with FS-PLS using a set of 59 soil samples collected from upland and lowland rice fields in the central
highland of Madagascar.
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2. Materials and Methods

2.1. Study Site and Soil Sampling and Chemical Analyses

The field survey was conducted in the central highland of Madagascar (Figure 1). This region
belongs to a subtropical climate with an altitude of 1000–1500 m above sea level. The mean temperature
is 14–17 ◦C in winter and 20–22 ◦C in summer. The average annual rainfall is 1100 mm (>80% occurs in
November–March) [33]. The area is dominated by inherently nutrient-poor soil types that are mainly
classified into Ferralsols and Acrisols [39] or into Oxisols of semiarid to humid climates [40].
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Figure 1. Locations of studied regions and soil sampling points.

Soil sampling was conducted in 55 rice fields from August to November in 2016, consisting of
eight upland and 47 lowland fields under various cropping systems (Figure 1). The sampling positions
were recorded with a handy GPS (Colorado300, Garmin, Ltd., Kansas, TX, USA). Surface soil samples
were collected from a 0–10 cm depth as composites of three to four cores in each field. Within three
fields, sub-surface samples (10–20 cm depth in a field; 10–20, 20–30, and 30–40 cm depth in two fields)
were also collected. Thus, 62 soil samples were obtained.

2.2. Soil Chemical Analyses

In the laboratory, soil samples were sieved to <2 mm and air dried for seven days. Earlier studies
compared the effect of samples sieved to 2 mm and ground to 200 µm and did not obtain highly
significant differences with respect to accuracy [41]. Thus, we worked with 2 mm crushed and sieved
soil samples (0.6 g) in this study.

The TC and TN contents of soils were determined using an automatic NC analyzer, the
SUMIGRAPH NC-220F (Sumika Chemical Analysis Service, Ltd., Osaka, Japan).

2.3. Vis-NIR Diffuse Reflectance Measurement

Laboratory soil reflectance measurements were conducted in a dark room at the Graduate School
of Agriculture, Kyoto University, Japan, on 12–13 December 2016, using a portable spectro-radiometer
(ASD FieldSpec 4 Hi-Res, ASD Inc., Longmont, CO, USA) and an ASD contact-probe (Figure 2).
The ASD FieldSpec measures spectral reflectance in the 350–2500 nm wavelength region with spectral
sampling of 1.4 nm in the 350–1000 nm range and 2 nm in the 1000–2500 nm range. The spectral
resolution (full-width-half-maximum; FWHM) was 3 nm in the 350–1000 nm range and 6 nm in the
1000–2500 nm range, which were calculated to 1 nm resolution wavelengths for output data using
the cubic spline interpolation function in ASD software (RS3 for Windows; ASD). The contact probe
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light source (halogen lamp) was aligned at 12◦ to the probe body, ensuring illumination at a fixed
angle without the influence of ambient light. The fiber optic cable of the ASD FieldSpec was attached
to the contact probe at a fixed measurement angle of 35◦. The sensed spot area had a diameter of
~1.1 cm with a field of view of 1.33 cm2. A Spectralon (Labsphere, Inc., Sutton, NH, USA) reference
panel (white reference) was used to optimize the ASD instrument prior to taking Vis-NIR reflectance
measurements for each sample.Remote Sens. 2017, 9, 1081  4 of 12 
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probe that touches the surface of the soil sample; and (c) the five measuring spots on a soil sample. 
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Figure 2. (a) The setup used to measure the soil reflectance in a dark room; (b) the use of a contact
probe that touches the surface of the soil sample; and (c) the five measuring spots on a soil sample.

Bulk soil samples were spread in optical-glass Petri dishes 85 mm in diameter and pressed to
form a layer ~19 mm tick. The soil surfaces were scanned 25 times with five replications for the soil
samples (see Figure 2c), and the spectral readings were averaged.

2.4. Preprocessing of Spectral Data

Spectral data in both edge wavelength regions (350–399 nm and 2401–2500 nm) were eliminated
because of low signal-to-noise ratios in the instrument. Thus, a total of 2001 spectral bands between
400 nm and 2400 nm were used for analyses.

First derivative reflectance (FDR) spectra were used to reduce baseline variation and enhance
spectral features [42]. The FDR was calculated using the Savitzky-Golay smoothing filter [43].
A third-order, 15-band moving polynomial was fitted according to the original reflectance signatures.
The parameters of this polynomial were subsequently used to calculate the derivative at the center
waveband of the moving spline window. In addition, a standard normal variate transform (SNV) was
employed to reduce the particle size effect [41].

To detect outliers, a principal component analysis was performed on spectral data for calculating
the Mahalanobis distance H, and samples with H > 3 were eliminated as outliers. As a result, three
samples were considered outliers, leaving 59 samples for further analyses.

2.5. Standard Full-Spectrum Partial Least Sqares (FS-PLS) Regression

PLS regression analyses were performed to estimate soil parameters using reflectance and FDR
datasets (n = 59). The standard FS-PLS regression equation is as follows:

y = β1x1 + β2x2 + . . . + βixi + ε (1)

where the response variable y is a vector of the soil parameters (TN and TC); the predictor variables
x1 to xi are the surface reflectance or FDR values for spectral bands 1 to i (400, 401, . . . , 2400 nm),
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respectively; β1 to βi are the estimated weighted regression coefficients; and ε is the error vector.
The latent variables were introduced to simplify the relationship between the response variables and
predictor variables. To determine the optimal number of latent variables (NLV), leave-one-out (LOO)
cross-validation was performed to avoid over-fitting of the model, which was based on the minimum
value of the root mean squared error of cross-validation (RMSECV) (see in Supplementary Materials:
Figure S1). The RMSECV was calculated as follows:

RMSECV =

√
∑n

i=1
(
yi − yp

)2

n
(2)

where yi and yp represent the measured and predicted soil parameters for sample i, respectively, and n
is the number of samples in the data sets (n = 59).

2.6. Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression

ISE-PLS is a PLS model that incorporates a waveband elimination algorithm. The ISE method
eliminates noisy variables and selects useful predictors. When PLS models include large numbers of
redundant variables or outliers, the models’ predictive abilities may perform poorly, while the ISE
method can overcome such problems. Performance depends on the importance of predictors (zi),
described as follows:

zi =
|βi|si

∑I
i=1|βi|si

(3)

where si is the standard deviation and βi is the regression coefficient; both si and βi correspond to the
predictor variable of the waveband i.

Initially, all available wavebands (2001 bands, 400–2400 nm) are used to develop the PLS
regression model. Then, to create a scope in which useless predictor variables are removed and the
predictive ability is improved, each predictor zi is evaluated, and the minimum values are eliminated
as less informative wavebands. Subsequently, the PLS model is re-calibrated with the remaining
predictors [44]. The model-building procedure is repeated until the final model is calibrated with the
maximum predictive ability.

2.7. Predictive Ability of the PLS Models

The predictive abilities of the FS-PLS and ISE-PLS models were assessed by calculating the
coefficient of determination (R2), RMSECV, and the residual predictive deviation (RPD) using LOO
cross-validation. High R2 and low RMSECV values indicate the best model for predicting the soil
parameters. The RPD has been defined as the ratio of standard deviation (SD) of reference data for
predicting RMSECV [45]. For the performance ability of calibration models, RPD was suggested to
be at least 3 for agriculture applications, while RPD values between 2 and 3 indicate a model with a
good prediction ability, 1.5 < RPD < 2 is an intermediate model needing some improvement, and an
RPD < 1.5 indicates that the model has a poor prediction ability [13].

To determine the significant wavelengths used in FS-PLS calibrations, the variable importance in
the projection (VIP) [46,47] was used and referred to the selected wavelength regions from ISE-PLS
models. The VIP score gives a summary of the importance of an x-variable (waveband) for an observed
y-variable and is calculated using the following equation:

VIPk(a) = m ∑
a

W2
ak

(
SSYa

SSYt

)
(4)

where VIPk(a) is the importance of the kth predictor variable based on a model with a factors, Wak
is the corresponding loading weight of the kth variable in the ath PLS regression factor, SSYa is the
explained sum of squares of y obtained from a PLS regression model with a factors, SSYt is the total
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sum of squares of y, and m is the total number of predictor variables. A high VIP score indicates an
important x-variable (waveband) [46,48].

All the data handling and linear regression analyses were performed using MATLAB software
ver. 9.0 (MathWorks, Sherborn, MA, USA).

3. Results and Discussion

3.1. Soil Properties (TC and TN) and Their Correlations with Each Waveband

Table 1 shows the descriptive analysis for soil TC and TN in the 59 samples. The mean (and SD)
values of TC and TN were 2.18% (±1.16%) and 0.17% (±0.08%), respectively. The soil samples yielded
a wide range of TC (coefficients of variation [CV] = 53.35) and TN values (CV = 48.08). The SD and
range of sample affect the accuracy of soil property predictions using Vis-NIR spectroscopy [11]. In the
present study, the ranges in soil TC and TN were considered sufficiently large to develop the calibration
models using PLS regression analyses.

Table 1. Descriptive statistics of soil sample data.

Soil Parameters n Min Max Mean SD CV

TC (%) 59 0.65 6.02 2.18 1.16 53.35
TN (%) 59 0.06 0.44 0.17 0.08 48.08

n, number of samples; SD, standard deviation; CV, coefficient of variation (=Mean/SD × 100%).

A significant correlation coefficient (r = 0.977, p < 0.001) was found between TC and TN in the soil
samples. The results revealed that the soil TC and TN showed a similar shape of correlation using
Vis-NIR reflectance and FDR spectra (see in Supplementary Materials: Figure S2). In the reflectance
data, reflectance values at 1413 and 2207 nm were highly correlated with the soil TC and TN contents.
A peak of negative correlation at 598 nm was also obtained in the Vis wavelength region. In a
previous study [49], soil reflectance in the NIR wavelength region was characterized by well-defined
absorption features associated with overtones of O-H and H-O-H stretch vibrations in free water (1455
and 1915 nm) and overtones and combinations of O-H stretch and metal-OH bends in a clay lattice
(1415 and 2207 nm).

3.2. Comparison between FS-PLS and ISE-PLS Models

Figure 3 shows changes in the RMSECV and R2 values with iterative stepwise elimination
procedures of redundant wavebands in the prediction of TC and TN using FDR. The RMSECV
decreased as wavebands were removed but increased rapidly after more than 1749 and 1930 wavebands
had been removed for TC and TN, respectively. Similarly, the R2 value tended to increase slowly until
the maximum value was obtained when 1749 and 1930 wavebands had been removed. The remaining
252 (=2001 − 1749) and 71 (=2001 − 1930) wavebands were considered useful wavelengths for
estimating TC and TN, respectively. The selected number of wavebands (NW) and the selected NW as
a percentage of the full spectrum (NW% = NW/whole waveband [N = 2001]) are presented in Table 2,
with the values of NLV, R2, RMSEC/CV, and RPD from the FS-PLS and ISE-PLS models using the
FDR dataset. The optimum NLV ranged between 7 and 15, determined as the lowest RMSECV values
calculated from LOO cross-validation to avoid over-fitting of the model.
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Figure 3. Changes in RMSECV (black line) and R2 values (red line) in models to estimate total carbon
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Table 2. Optimum number of latent variables (NLV), coefficient of determination (R2), root mean
squared errors of calibration (RMSEC) and cross-validation (RMSECV), and residual predictive values
(RPD) from full-spectrum PLS (FS-PLS) and iterative stepwise elimination PLS (ISE-PLS) models with
a selected number of wavebands (NW) and their percentages of the full spectrum (NW%).

Soil
Parameter

Regression
Method

Calibration Cross-validation
NW NW%

NLV R2 RMSEC R2 RMSECV RPD

Total carbon FS-PLS 14 0.996 0.076 0.893 0.379 3.064
252 12.59(TC, %) ISE-PLS 12 0.995 0.084 0.972 0.194 5.995

Total
nitrogen FS-PLS 9 0.960 0.016 0.837 0.033 2.480

71 3.55
(TN, %) ISE-PLS 7 0.974 0.013 0.949 0.019 4.416

FS-PLS, full-spectrum partial least squares; ISE-PLS, iterative stepwise elimination PLS; NLV, number of latent
variables: RMSEC (or RMSECV), root mean squared error of calibration (or cross-validation); NW, number of
wavebands; NW%, number of waveband percentages of all available bands (=NW/2001 bands × 100%).

Considering the difference in model accuracies between the FS-PLS and ISE-PLS (Table 2),
better predictive accuracies were obtained in ISE-PLS than FS-PLS for both soil TC (R2 = 0.972,
RMSECV = 0.194) and TN (R2 = 0.949, RMSECV = 0.019), with RPDs of 5.995 and 4.416, respectively.
Figure 4 shows the relationships between the observed and cross-validated predicted values of soil TC
and TN from ISE-PLS using FDR data. These results indicate that the soil TC and TN can be rapidly
and accurately predicted from Vis-NIR diffuse reflectance spectroscopy using PLS regression. Selecting
a subset of wavebands related to soil chemical properties and removing unrelated wavebands further
improved the PLS regression results. Moreover, based on RPD > 3, the quality and future applicability
of our results could be considered to have an excellent predictive ability. The remaining NW (NW%) of
TC and TN was 252 (12.59%) and 71 (3.55%), respectively, suggesting that over 87% of the waveband
information from the soil reflectance spectrum was redundant and did not contribute to or disturb the
prediction of soil TC and TN.
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Figure 4. Observed and predicted values of soil total carbon (TC) and soil total nitrogen (TN)
contents using ISE-PLS models with first derivative reflectance (FDR) data (n = 59). The coefficient of
determination (R2), root mean squared error of cross-validation (RMSECV), and residual predicted
value (RPD) are cross-validated (leave-one-out cross-validation method) coefficient of determination,
root mean squared error, and residual predictive values, respectively (see Table 2).

These results agree with previous results indicating that the most useful information in the
Vis-NIR region (400–2400 nm) was less than 20% for predicting forage [18,19] and water parameters [20].
These findings also support previous results showing that the performance of PLS models can be
improved through waveband selection. Yang et al. [14] suggested that reducing large spectral datasets
is valuable for more efficient storage, computation, and transmission, as well as for the ease of spectral
analysis [50]. In addition, when fewer wavebands are used, simpler and cheaper spectro-radiometer
processes can be developed.

3.3. Selected Wavebands from ISE-PLS Models

The selected wavebands from ISE-PLS using FDR spectra to estimate soil TC and TN are shown in
Figure 5, with VIP score values from FS-PLS. Based on the VIP score (>1), the wavelengths centered near
418, 470, 760, 1408, 1912, 2255, 2314, and 2339 nm were identified as common important wavelengths
for estimating soil TC and TN. Most of the VIP peak regions were selected in the final ISE-PLS
models. Although they did not perfectly fit with previously known absorption wavelength regions,
some of the wavelengths were revealed within 30 nm of known absorption features. For soil TC
prediction, the final model included Vis wavelength regions (400–480 and 640–700 nm), which are
associated with soil color and had a huge influence on model calibration. Soil becomes darker as soil
organic matter (SOM) increases; thus, several researchers have tried to use soil color information to
estimate SOM [9,51]. However, soil darkness is only a useful discriminator within limited geological
variation. In general, soil reflectance decreases with increasing organic matter content [49] and water
content [52]. Absorptions of approximately 400, 450, 510, 550, 700, 870, and 1000 nm are characterized
by the presence of ferrous and ferric iron oxides and are due to the electronic transitions of the iron
cations [53]. A spectral band of 2100–2500 nm contributes to the model calibration of C and N in
soils [54].
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correlation is high; otherwise, it can be predicted directly. In our result, soil TC data showed a high 
correlation with soil TN data (r = 0.977), and calibrations obtained a better predictive accuracy for TC 
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Figure 5. Soil reflectance and its first derivative reflectance (FDR) spectra for the total carbon (TC; a)
and total nitrogen (TN; b) datasets and selected waveband (red bar) in iterative stepwise elimination of
partial least squares (ISE-PLS) with variable importance in the prediction (VIP) score (blue line) from
full-spectrum PLS (FSPLS) models.

Martin et al. [55] reported that the NIR spectroscopy-based prediction of TN may be indirect due
to a close correlation with TC, and that the calibration accuracy is higher for TC than for TN. Chang and
Laird [56] confirmed that the NIR spectroscopy determination of TN does not always rely on a strong
correlation with TC and can determine TN directly. Brunet et al. [41] hypothesized that, depending
on the studied dataset, TN can be predicted based on its correlation with TC when the correlation
is high; otherwise, it can be predicted directly. In our result, soil TC data showed a high correlation
with soil TN data (r = 0.977), and calibrations obtained a better predictive accuracy for TC (R2 = 0.972,
RMSECV = 0.194) than for TN (R2 = 0.949, RMSECV = 0.019). Within the selected wavebands of soil TN
(Figure 5), 90.1% (=64/71 bands × 100%) overlapped with the selected wavebands of soil TC, whereas
different wavebands in TC calibration were revealed mainly in the NIR region (707, 717–719, 774 nm).
These results indicated that TN prediction using our dataset was affected by strong correlations with
TC data but might be directly estimated.

Lastly, we note that this study was carried out on heterogenous sample data sets, which were
collected at upland and lowland soils under various rice-based cropping systems, including wide
ranges of soil types in Madagascar. However, several researchers consider the reliability of the
prediction questionable when studying heterogeneous sample sets [41]. Particle size and arrangement
might also affect the calibration due to the light transmission path [57]. Moreover, to map the carbon
stock at a larger spatial scale in Madagascar, evaluating an appropriate spatial scale with a larger data
set is required [58]. In future study, thus, more information concerning the effect of a heterogeneous
data set on the accuracy of NIRS predictions at different scales is needed in order to apply the
methodology to soil characterization of the whole island of Madagascar.

4. Conclusions

We investigated the performance of waveband selection in the spectral estimation of soil TC
and TN using Vis-NIR reflectance data. The results indicated that soil TC and TN in Madagascar
can be more accurately estimated by ISE-PLS than by standard FS-PLS using laboratory Vis-NIR
spectroscopy. ISE-based wavelength selection in PLS calibration suggested that the important
wavebands for estimating soil TC and TN were, respectively, 12.59% and 3.55% of all 2001 wavebands
in the 400–2400 nm range. Based on selected FDR wavelengths in the ISE-PLS model, soil TC and
TN were determined to provide excellent predictions (RPD > 3), with 0.194% and 0.019% error,
respectively. The use of PLS with ISE waveband selection in Vis-NIR reflectance spectra is promising
for the spectral assessment of soil TC and TN in Madagascar. Furthermore, the waveband selection
procedure refined the predictive ability expected by optimizing the wavelength subset using ISE-PLS.
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Such timely and accurate soil TC and TN predictions might efficiently provide useful insights into
fertilizer management.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/10/1081/s1,
Figure S1: Changes in RMSE (grey circle/line) and RMSECV (black circle/line) based on the number of latent
variables (NLV) in models to estimate soil total carbon (TC) (a,c) and total nitrogen (TN) (b,d) using FS-PLS and
ISE-PLS regressions. The optimal NLV (red vertical line) was determined the minimum value of RMSECV, Figure
S2: Correlation coefficients (r) between soil chemical parameters (total carbon (C) and total nitrogen (TN)) at each
wavelength: (a) reflectance and (b) first derivative reflectance (FDR).
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Exploring relevant wavelength regions for estimating soil total carbon contents 
of rice fields in Madagascar from Vis-NIR spectra with sequential application of 
backward interval PLS
Kensuke Kawamura a*, Tomohiro Nishigakia*, Yasuhiro Tsujimotoa, Andry Andriamananjarab, 
Michel Rabenaribob, Hidetoshi Asai a, Tovohery Rakotosonb and Tantely Razafimbelob

aJapan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan; bLaboratoire des Radio-Isotopes, Université 
d’Antananarivo, Antananarivo, Madagascar

ABSTRACT
Laboratory visible and near-infrared (Vis-NIR) spectroscopy with partial least squares (PLS) regres
sion can be used to determine the soil carbon (C) content, and the waveband selection procedures 
can refine the predictive ability. However, individually selected wavebands are not always the same 
depending on the location, scale, and approach. To simplify the variable selection issue, some 
methods for selecting wavelength regions instead of individual wavebands have been proposed. 
In this study, we explore relevant wavelength regions for predicting the total carbon (TC) content 
of lowland and upland soils in Madagascar from Vis-NIR spectroscopy using a dynamic version of 
backward interval PLS (biPLS) regression. The predictive ability of dynamic biPLS was compared 
with that of standard full-spectrum PLS (FS-PLS) using the cross-validated coefficient of determina
tion (R2), root mean squared error (RMSE), and ratio of performance to interquartile distance (RPIQ). 
The biPLS models using reflectance (R2 = 0.877, RMSE = 0.690) and first derivative reflectance (FDR) 
(R2 = 0.940, RMSE = 0.494) data sets showed better predictive accuracy than the FS-PLS models 
using reflectance (R2 = 0.826, RMSE = 0.809) and FDR (R2 = 0.933, RMSE = 0.518) data sets, the 
spectral efficiency was improved. By using biPLS to predict soil TC, the model was simplified by 
using only four selected wavelength regions in the reflectance (400–490, 1402–1440, 1846–1980 
and 2151–2283 nm) and FDR (652–687, 1322–1443, 1856–1985, and 2290–2400 nm) data sets, 
which yielded reliable (RPIQ > 2.5) predictions.
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1. Introduction

The soil carbon (C) content is one of the most important 
properties in assessments of general soil fertility. Then, 
timely assessments of soil C can be used for effective and 
sustainable fertilizer management practices, which is 
particularly true in Sub-Saharan Africa (SSA), where 
smallholder farmers still rely on indigenous nutrient 
supplies from soils for crop production. Rice cultivation 
in Madagascar is typical of farming systems in SSA in 
which smallholder farmers are impoverished by stag
nant yields resulting from infertile soil conditions with 
minimal external inputs (Tsujimoto et al., 2019). In 
Madagascar, rice is uniquely important not only as the 
staple food of the country but also as the major income 
resource for rural livelihoods. However, rice yields have 
been stagnant at less than 3 t ha–1 for the last decades 
despite relatively favorable water conditions, with 70% 
of rice cropping areas categorized as irrigated in this 
country (Partnership, 2013). In a survey of several rice 
fields in the central highland of Madagascar, Tsujimoto 
et al. (2009) showed a significant and linear relationship 
between rice yield and the soil organic carbon (SOC) 
content in relation to the N-supplying capacity of soils, 
strongly indicating that soil fertility management is cri
tical to improving rice yields in the region.

Visible and near-infrared (Vis-NIR) spectroscopy, as 
a rapid and non-destructive technology, has been widely 
used to perform quantitative analyses of complex sam
ples in agricultural sciences. The reflectance spectra of 
Vis-NIR (400–2500 nm) obtained by laboratory spectral 
measurements include wavebands that have been 
related to physical and chemical properties of soil. The 
prediction of soil properties requires the development of 
a spectral library relating to spectra with reference data. 
To date, soil spectral libraries have been developed by 
the Vis-NIR enthusiasm around the world at country (Li 
et al., 2015; Romero et al., 2018), continental (Johnson 
et al., 2019; Stevens et al., 2013), and global (Viscarra 
Rossel et al., 2016) scales. These libraries can be used to 
develop calibration models for the prediction of soil 
properties. In Madagascar, however, only a small num
ber of qualified data set was recorded in the soil libraries; 
continent scale (n = 82) (Johnson et al., 2019) and global 
scale (n = 18) (Viscarra Rossel et al., 2016).

Partial least squares (PLS) regression is the most 
widely used multivariate calibration method because it 
can extract information on the target component from 
a spectral matrix with hundreds or even thousands of 
wavebands (Conforti et al., 2013, 2015). However, as 
a linear multivariate calibration, the accuracy of PLS 
analysis tends to decrease due to the non-linear nature 
of the relationship between spectral data and the 

dependent variable (Araújo et al., 2014). As data- 
mining approaches, machine learning techniques, such 
as artificial neural network (ANN) (Kuang et al., 2015), 
support-vector machines (SVM) (Morellos et al., 2016), 
and random forest (Cipullo et al., 2019; Douglas et al., 
2018; De Santana et al., 2018) outperformed the PLS 
analysis for predicting soil properties as it is able to 
account for the non-linearity associated with the soil 
spectral responses. More recently, deep learning is 
a rapidly developing frontier in machine learning that 
has also been tested for calibrating soil spectra (Ng et al., 
2019; Padarian et al., 2019). Although the literatures 
reported the machine learning outperformed PLS 
regression, they did not suggest that it would be suitable 
for everyone, because the machine learning, and espe
cially deep learning, is a very data-hungry approach that 
requires a lot of data to be able to make a good predic
tion (Ng et al., 2019).

In Madagascar, there is no spectral library (data 
set) to perform machine learning for estimating soil 
properties. In the present study, we focused on the 
development of a robust PLS model using waveband 
selection approach based on local data set that we 
collected in the central highland of Madagascar. In 
general, Vis-NIR spectra contains thousands of wave
bands, and such large number of spectra variables 
often contribute to collinearity, and redundancies 
rather than relevant information. Waveband selection 
is an important step not only for developing a robust 
calibration model and also for better understanding 
the relationship between spectral and soil properties. 
Indeed, it is increasingly evident that the inclusion of 
uninformative or redundant spectra in the Vis-NIR 
spectrum degrade the PLS model and lead to inaccu
rate predictions (Andersen & Bro, 2010; H. D. Li et al., 
2012). Thus, additional waveband selection methods 
based on the PLS regression are necessary for NIR 
spectral analysis to refine the predictive ability.

To date, a large number of waveband selection meth
ods for PLS analysis have been proposed, including indi
vidual waveband selection and wavelength region 
selection. For individual waveband selection, many 
methods have been developed, such as iterative step
wise elimination PLS (ISE-PLS) (Boggia et al., 1997), unin
formative variable elimination PLS (UVE-PLS) (Centner 
et al., 1996), and genetic algorithm PLS (GA-PLS) 
(Leardi et al., 1992). Among the waveband selection 
methods, GA-PLS has been used as a suitable method 
in chemometrics (Leardi, 2000). Earlier studies reported 
that, after suitable modifications, GA-PLS shows better 
predictive performance and yields more interpretable 
results because the selected wavelengths are less dis
persed than those with other methods (Kawamura et al., 
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2010; Leardi & González, 1998; Lucasius & Kateman, 
1994). In our previous research (Kawamura et al., 2017), 
we developed a PLS model to estimate the total carbon 
(TC) contents of paddy soils from laboratory Vis-NIR 
measurements of soil samples collected from various 
rice fields in the central highland of Madagascar. The 
results indicated improvements in the predictive ability 
by applying individual waveband selection with ISE-PLS. 
Additionally, our previous study (Kawamura et al., 2019) 
indicated that GA-PLS obtained better solutions than 
ISE-PLS when estimating the oxalate-extractable 
P content of paddy soils in Madagascar. However, the 
computational cost of GA-PLS is very high when the 
number of wavebands is large. Another considerable 
issue with GA-PLS is over-fitting when using a large 
number of wavebands (>200) (Leardi & Nørgaard, 2004).

One solution to simplifying the problem of variable 
selection is to reduce the number of variables involved 
in the optimization (Zhang et al., 2017). Some methods for 
selecting wavelength regions instead of individual wave
bands have been proposed, such as moving window PLS 
(MWPLS) (Jiang et al., 2002; Kasemsumran et al., 2004), 
interval PLS (iPLS) (Nørgaard et al., 2000), and backward 
interval PLS (biPLS) (Leardi & Nørgaard, 2004). MWPLS 
(Jiang et al., 2002; Kasemsumran et al., 2004) searches 
for informative spectral regions using a moving window, 
which moves over the whole spectral region to identify 
useful spectral intervals. However, the sub-region selected 
by the window with a fixed size does not always supply 
the best predictions. Therefore, Du et al. (2004) developed 
changeable size moving window PLS (CSMWPLS) to opti
mize the informative regions and their combinations to 
further improve the predictive ability of the PLS models. 
Both iPLS (Nørgaard et al., 2000) and biPLS (Leardi & 
Nørgaard, 2004) calculate local PLS models using equally 
sized subintervals of the full spectrum region and identify 
the optimal combinations of regions by forward and back
ward selection, respectively. Similar to MWPLS, however, 
they encounter problems when the border between two 
contiguous intervals of equally spaced spectral regions 
falls inside the same spectral feature, such as when the 
main part of a reflectance peak is in one interval and its tail 
in the next interval. The solution can be found by running 
biPLS several times, with a different number of intervals 
with different interval sizes each time. To overcome these 
problems, a dynamic version of biPLS has been developed 
by Leardi and Nørgaard (2004). Dynamic biPLS runs sev
eral times using a different composition of the deletion 
groups (determined by randomizing the order of the 
samples) and with a different number of intervals (e.g. 
from 16 to 25).

Here, we adopted this dynamic biPLS approach to 
explore relevant wavelength regions for prediction of 

the TC content of upland and lowland soils in 
Madagascar. To evaluate the performance of the 
selected wavelength regions for TC calibration, this 
study compares the predictive ability of dynamic biPLS 
with that of standard full-spectrum PLS (FS-PLS).

2. Materials and methods

2.1. Data set

This study used the same data set used in our previous 
study (Kawamura et al., 2019, 2017); the data set was 
generated based on laboratory Vis-NIR spectroscopy 
using soil samples (n = 162) collected from upland and 
lowland rice fields in the central highland of Madagascar 
(Figure 1). This area is dominated by inherently nutrient- 
poor soil types that are mainly classified into Ferralsols 
and Acrisols (IUSS Working Group, WRB, 2014) or into 
Oxisols of semiarid to humid climates (Soil Survey Staff, 
2014). In 2015 and 2016, soil sampling was conducted in 
158 rice fields. Surface soil samples were collected from 
a 0–10 cm depth as composites of three to four cores in 
each field. Within three fields, sub-surface samples 
(10–20 cm depth in a field; 10–20, 20–30, and 30–40 cm 
depth in two fields) were also collected to evaluate the 
effect of the depth of soil layers. Thus, 165 soil samples 
were obtained. The soil samples were sieved to <2 mm 
and air-dried for 7 days in the laboratory. The TC contents 
of soils were determined using the dry combustion 
method with an automatic NC analyser, SUMIGRAPH NC- 
220 F (Sumika Chemical Analysis Service, Ltd., Osaka, 
Japan).

The Vis-NIR spectra for dry soil samples were recorded 
using an ASD FieldSpec 4 Hi-Res spectroradiometer (ASD 
Inc., Longmont, CO, USA) and an ASD contact-probe in 
a dark room. Preprocessing, including noise reduction by 
standard normal variate (SNV) and outlier detection, was 
performed on the reflectance and first derivative reflec
tance (FDR) spectra over a wavelength range from 400 to 
2400 nm (2001 bands). The outliers were detected based 
on the Mahalanobis distance H > 3 from principal compo
nent analysis (Kawamura et al., 2017). As a result, three 
samples were considered outliers, leaving 162 samples for 
further analyses.

2.2. PLS calibrations

PLS calibrations were performed based on reflectance 
and FDR spectra data sets using ‘PLS_Toolbox’ in 
MATLAB software ver. 9.3 (MathWorks Herborn, MA, 
USA). The dynamic biPLS (Leardi & Nørgaard, 2004) was 
computed using the ‘iToolbox’ revision released in 
March 2013 (http://www.models.kvl.dk/iToolbox).
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The dynamic biPLS was performed in 50 runs with the 
number of intervals varying from 16 to 25 and with three 
runs (each with a different composition of the deletion 
groups) for each number of intervals. After 50 runs of 
biPLS, the wavelength regions were selected by 
a backward stepwise selection procedure based on the 
frequency of selections. The final output is a plot show
ing how many times each waveband was retained after 
50 runs with the threshold value (Leardi & Nørgaard, 
2004).

2.3. Predictive ability of the PLS models

To evaluate the predictive ability of the FS-PLS and 
dynamic biPLS, a k-fold cross-validation procedure 
based on independent training and test data sets was 
performed (Emmert-Streib & Dehmer, 2019). Initially, the 
data were divided randomly into training (n = 120) and 
test (n = 42) data sets. Next, the training data were split 
randomly into k-folds. Here, we used k = 5; therefore, 
each k-fold has n = 24 samples. The PLS model was built 
on k – 1 folds of the training data set (n = 96), and then 
the error of the kth fold was recorded as validation data 
(n = 24). This process was repeated until each of the 
k-folds served as the validation data set. The coefficient 

of determination (R2) and root mean squared error 
(RMSE) values were used to assess model accuracy. 
Finally, the model was applied to the test data set, and 
then the predictive ability was evaluated from the R2, the 
RMSE and the ratio of performance to interquartile range 
(RPIQ) (Bellon-Maurel et al., 2010) in the test data set.

The R2 is calculated as: 

R2 ¼
RSS
TSS

(1) 

where RSS is the residual sum of squares and TSS is the 
total sum of squares. The RMSE is defined as: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 yi � yp
� �2

n

s

(2) 

where yi and yp represent the measured and predicted 
soil TC contents for sample i, respectively, and n is the 
number of samples in the test data sets (n = 42). R2 is 
a measure of how well the variation in one variable 
explains the variation in an other variable and is pre
sented as the percentage of the variation explained by 
a best-fit regression line. RMSE indicates the total pre
diction error of the model. In general, high R2 and low 
RMSE values reflect models that can better predict the 
soil TC content (Kusumo et al., 2008).

Figure 1. Location of study area and soil sampling points. Source for background images in (a), (b) and (d): Esri, DigitalGlobe, GeoEye, 
Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.
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The RPIQ is defined as follow: 

RPIQ ¼
IQ

RMSEP
(3) 

where IQ is the inter quantile distance between Q3 and 
Q1 of the observed values. In terms of the performance 
ability of the calibration model, RPIQ values >2.5 are 
considered to reflect excellent models, RPIQ values 
between 2.0 and 2.5 indicate a very good model with 
predictive ability, RPIQ values between 1.7 and 2.0 indi
cate a good model, RPIQ values between 1.4 and 1.7 
indicate a fair model in need of some improvement, and 
RPIQ values <1.4 indicate that a model has a very poor 
predictive ability (Nawar & Mouazen, 2017).

3. Results and discussions

3.1. Soil TC statistics

The descriptive statistics of the soil TC (%) in the 162 
samples (Kawamura et al., 2019, 2017) are shown in 
Table 1, and the data distribution is illustrated in Figure 
2. The mean (and standard deviation (SD)) value was 
3.05% (1.72%), with a range of 0.65–10.15%. The TC 
content was left-skewed, with a higher mean value 
(3.05%) than the median value (2.70%). The coefficients 
of variation (CVs) were relatively high (56.40%), indicat
ing a rather high degree of variation, and the distribu
tion was heterogeneous. The SD and range of the 
sample affect the accuracy of soil property predictions 
using Vis-NIR spectroscopy, and the wide range of varia
bility indicated that this site is a reasonably optimal case 
study site (Kuang & Mouazen, 2011). In the present 
study, the range of soil TC values was considered suffi
ciently large to develop calibration models using PLS 
regression analyses. Soil TC was generally higher in 

surface soils than in sub-surface soils at the respective 
fields where sub-surface samples were collected. 
Meanwhile, the variation in TC content between surface 
and sub-surface layers within each field was much smal
ler than that among surface soils of all the 158 fields.

3.2. Soil reflectance and FDR spectra

Figure 3 shows the soil reflectance and FDR spectra. 
Large variations in the reflectance spectra were 
observed in the heterogeneous soil samples, which 
were collected from upland and lowland fields under 
various rice-based cropping systems. In the reflectance 
spectra, three strong absorption features were found in 
the 1400-, 1900- and 2200-nm wavelength regions 
(Figure 3(a)). The FDR spectra also showed some peaks 
in the same regions and in visible regions (Figure 3(b)). 
The Vis-NIR spectra are general characteristics of absorp
tion wavebands associated with color (400–700 nm), the 
bending (1413 nm) and stretching (1916) of the 
O-H bonds of free water, and lattice minerals (approxi
mately 2210 nm) (Viscarra Rossel et al., 2006; Ben-Dor, 
2002; Knadel et al., 2013; Stenberg et al., 2010).

In general, soil reflectance decreases with increas
ing organic matter (Ben-Dor et al., 1997) and water 
content (Whiting et al., 2004). Wavelengths centered 
at approximately 400, 450, 510, 550, 700, 870 and 
1000 nm are characteristics of the presence of ferrous 
and ferric iron oxides and are due to the electronic 
transitions of the iron cations (Ben-Dor et al., 1999). In 

Table 1. Descriptive statistics of soil TC data.
Soil parameter n Min Max Median Mean SD CV

TC (%) 162 0.65 10.15 2.70 3.05 1.72 56.40

Figure 2. (a) Box-and-whiskers plot with outliers and (b) a histogram of soil TC.
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addition to soil components, physical soil properties, 
such as particle size distribution and aggregate size 
and density, also affect both the reflectance intensity 
and shape of the soil spectra through the phenomena 
of light scattering and reflection (Bellon-Maurel & 
McBratney, 2011; Conforti et al., 2018). Thus, the soil 
spectral behavior can be considered as combination 
of chemical and physical properties of soil (Clark, 
1999). Conforti et al. (2018) reported that soil reflec
tance showed relatively high value for loamy sand 
soils due to the high amount of quartz in the sand 
fraction, while reflectance decreased when clay con
tent dominated from phyllosilicates increased, and 
consequently, when SOC concentration increased.

3.3. Selected wavelength regions from dynamic 
biPLS

The selected wavelength regions and the frequency of 
selections after 50 runs of dynamic biPLS using reflec
tance and FDR spectra to estimate soil TC are shown in 
Figure 4, and Table 2 summarizes the selected wave
length regions with previously known wavebands 
related to soil components to assist in considering the 
importance of the selected wavelengths.

In the reflectance data set, four regions of 400–490, 
1402–1440, 1846–1980 and 2151–2283 nm were 

selected in the model. Judging from the high selection 
frequency, the 1846–1980 nm region was considered the 
most important region in the reflectance data sets for 
soil TC predictions. The regions of 1402–1440 and 
1846–1980 nm include several wavebands known to be 
relevant to soil free water and to vary with the soil 
organic matter content (Knadel et al., 2013). Our current 
data set also showed a significant correlation between 
the air-dried soil water content and TC content (p < 0.1%, 
r = 0.625). Since soil organic matter increases soil water 
retention (Rawls et al., 2003), we assumed that the 
increase in soil water reflected a co-occurrence relation 
with the increase in soil organic matter. The wavelength 
region of 2151–2283 nm mainly consisted of the wave
bands associated with organic matter and Al hydroxides. 
Meanwhile, the wavelength region of 400–490 nm is 
related to Fe oxides, which are mainly associated with 
soil color as well as soil organic carbon. Soils in the 
tropics are rich in Fe and Al (hydr)oxides because of 
intensive weathering and leaching (Ramaroson et al., 
2018), and Fe and Al (hydr)oxides are well known to 
increase the stability of organic matter in soils through 
the formation of organo-metal complexes (Van De 
Vreken et al., 2016). Organic matter is spectrally active 
in large regions of the Vis-NIR spectrum due to over
tones and combinations of NH, CH, and CO groups (Ben- 
Dor et al., 1997).

Figure 3. Raw reflectance spectra (a) and FDR spectra on a log10 scale (b) of the soil samples.
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In the FDR data set, four different wavelength regions 
in terms of wavelength and width (652–687, 1322–1443, 
1856–1985, and 2290–2400 nm) were selected in the 
dynamic biPLS model. However, the two wavelength 
regions (1322–1443 and 1856–1985 nm) overlap with 
those selected in the reflectance data set (1402–1440 
and 1846–1980 nm), suggesting the constant significance 
of soil free water for soil TC predictions. The 
2290–2400 nm region contains many wavebands related 
to soil components, such as organic matter and Fe hydro
xides. The wavelengths associated with organic matter 
composition were selected in the higher wavelength 
regions with precise information on the structural and 

functional groups in this data set rather than the reflec
tance data set because the FDR process enhances the 
narrow absorption features of organic matter. The wave
length region of 652–687 nm includes the wavebands 
related to Fe oxides (goethite and hematite), which are 
important for the stabilization of organic matter in soils 
(Saidy et al., 2012). These selected wavelengths were also 
identified as potentially important wavebands for soil TC 
prediction in our previous study using part of the current 
sample set (Kawamura et al., 2017).

Those selected wavelength regions did not substan
tially vary among the surface and sub-surface samples, 
while the spectral response of reflectance and FDR 

Figure 4. Selected wavelength regions (red bars) from dynamic biPLS for estimating the TC content of paddy soils using reflectance (a) 
and FDR (b) spectra with the frequencies (count number (N); blue line) of the selected wavebands in dynamic biPLS. Specific 
absorption bands for the different bonds in soil are specified in the top x-axis (modified by Katuwal et al. (2018)).
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simply followed soil TC gradient of the samples. This 
suggested that the important wavelengths to estimate 
soil TC content did not change along the soil depth and 
that the developed model could be applicable to a wide 
range of soil samples in the rice fields in the central 
highlands of Madagascar. Nevertheless, in the current 
study, only a limited number of soil samples were col
lected from both surface and sub-surface layers, and the 
difference in soil TC content among surface and sub- 
surface soil samples varied 0.76–2.95%, which is much 
narrower than the variation among the all the 165 sam

ples (Table 1). Further study is needed to confirm the 
effect of soil depth on the associated wavelengths to soil 
TC content.

3.4. Evaluation of the predictive ability

Table 3 summarizes the number of selected wavebands 
(NW), the NW percentages of all available bands (NW 
% = NW/2001 bands × 100%), the optimal number of 
latent variables (NLVs) and the cross-validated mean R2 

and RMSE in the validation data set (n = 24) and the R2, 

Table 2. Selected wavelength regions from dynamic biPLS for estimating the soil TC content using reflectance and FDR data sets and 
possible soil components.

Selected wave
length region 
(nm)

Previously known wave
bands related to soil 

components

Reflectance FDR Waveband (nm) Soil component Reference

400–490 420, 427, 480 Goethite Scheinost et al. (1998), 
Sherman and Waite 
(1985)

Fe3+, ferric oxide Hunt (1977)
652–687 570–700 Organic matter Galvao and Vitorello 

(1998)
660 Goethite Stenberg et al. (2010)
665 Organic matter, chlorophyll pigment Ben-Dor et al. (1997)
682 Hematite Scheinost et al. (1998)

1402–1440 1322–1443 1367, 1358 OH in water Ben-Dor et al. (1997)
1400 Molecular water, first overtone of O–H stretch, Al–OH or Mg–OH Hunt (1977)

1400 (1395, 1415) Kaolinite, overtones of the O–H stretch vibration near 2778 nm, 
smectite (structural O–H stretching), combination vibrations of water 
in interlayer lattice

Bishop et al. (1994)

1415 OH, overtones of O–H stretch vibrations near 2778 nm Oinuma and Hayashi 
(1965)

1449 Carboxylic acid (C=O) Clark et al. (1990), Clark 
(1999)

1846–1980 1856–1985 1870 Carbonates Hunt (1977), White 
(1971)

1875 Water Hunt (1977)
1900 Smectite, combination vibrations of water in interlayer lattice Bishop et al. (1994)

1900, 1906 Molecular H2O Hunt (1977)
2151–2283 2160 Al-OH, kaolin Oinuma and Hayashi 

(1965)
2169 Starch, lignin, wax, tannins Ben-Dor et al. (1997)
2180 Organic matter Daniel et al. (2003)
2193 Amid II, protein Ben-Dor et al. (1997)

2199, 2206 Illite Post and Noble (1993)
2200 Al–OH bend with O–H stretch combinations (kaolinite, montmorillonite, 

illite, smecite)
Clark et al. (1990), Post 

and Noble (1993)
2206 O–H stretch (smecite, illite) Oinuma and Hayashi 

(1965)
2240 protein Fourty et al. (1996)
2279 CH2, CH3 Ben-Dor et al. (1997)
2275 Aliphatics (C–H) Clark (1999)

2290–2400 2290 Fe–OH Clark et al. (1990), Post 
and Noble (1993)

2300 Mg–OH Clark et al. (1990), Post 
and Noble (1993)

2300, 2350 C–H stretch fundamentals Clark et al. (1990)
2307–2469 Methyls Clark (1999)

2347 Aliphatic C–H, cellulose, lignin, glucan Eyal Ben-Dor et al. 
(1997)

2380 Lignin Fourty et al. (1996)
2380 Muscovite Post and Noble (1993)
2381 Carbohydrates (C–O) White (1971)
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RMSE and RPIQ values from the model on the indepen
dent test data set (n = 42). The optimal NLVs, which were 
determined as the lowest RMSE values calculated from 
LOO-CV to avoid over-fitting of the model, were lower 
with FS-PLS (10 in the reflectance data set and 8 in the 
FDR data set) than with biPLS (12 and 10, respectively). 
The NW (NW%) remaining after 50 runs of dynamic biPLS 
was 398 (19.9%) for the reflectance data set and 399 
(19.9%) for the FDR data set, suggesting that more 
than 80% of the waveband information from the soil 
reflectance spectrum was redundant and did not con
tribute to the prediction or disturbed the prediction. 

These results are consistent with previous findings sug
gesting that the spectral efficiency of PLS models can be 
improved through waveband selection and that the 
most useful information in the Vis-NIR region (400–
2400 nm) predicted less than 20% of spectrum data 
(Kawamura et al., 2017, 2010; Wang et al., 2017).

Figure 5 shows the relationship between observed and 
predicted soil TC contents in the test data set (n = 42) from 
the FS-PLS and dynamic biPLS models using the reflec
tance and FDR spectra data sets. Clearly, the FDR data sets 
subjected to FS-PLS (R2 = 0.933, RMSE = 0.518) and biPLS 
(R2 = 0.940, RMSE = 0.494) yielded better predictive 

Table 3. The mean R2 and RMSE from the 5-fold cross-validation using the training data sets based on PLS analyses and the R2, RMSE 
and RPIQ based on the model applied to the test data sets.

Training data 
(n = 120) Test data (n = 42)

Spectral data type Regression method NLVa R2 RMSE R2 RMSE RPIQ NWb NW%c

Reflectance FS-PLS 10 0.863 0.606 0.826 0.809 2.344 2001 100.0
　 biPLS 12 0.872 0.585 0.877 0.690 2.748 398 19.9
FDR FS-PLS 8 0.932 0.425 0.933 0.518 3.658 2001 100.0
　 biPLS 10 0.947 0.377 0.940 0.494 3.841 399 19.9

aNumber of latent variable. 
bNumber of wavebands. 
cNumber of wavebands percentage of all available bands.

Figure 5. Observed and predicted soil TC contents from the FS-PLS (blue) and dynamic biPLS (red) models using original reflectance 
(a) and FDR (b) data.
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accuracies than the reflectance data sets subjected to FS- 
PLS (R2 = 0.826, RMSE = 0.809) and biPLS (R2 = 0.877, 
RMSE = 0.690). Based on the RPIQ values from the FDR 
data set (RPIQ>2.5), the quality and future applicability of 
our results can be considered to reflect excellent predic
tive ability. First derivative processing is a key preproces
sing step in analytical chemistry for reducing the 
background signal (e.g. soil color or particle size) and 
enhancing the narrow absorption features related to soil 
properties (Brunet et al., 2007; Reeves et al., 2002). Thus, 
many researchers have used FDR spectra to estimate soil 
C contents (Chang et al., 2001; Kawamura et al., 2017; 
Reeves et al., 2002; Russell, 2003; Shepherd & Walsh, 
2002).

The dynamic biPLS models showed better predictive 
ability than the FS-PLS models with fewer variables 
(selected wavelength regions), and a simpler and 
cheaper spectrophotometer can be used. These findings 
confirm previous results showing that the performance 
of PLS models can be improved through wavelength 
selection (Cramer et al., 2008; Du et al., 2004; 
Goicoechea & Olivieri, 2003; Jiang et al., 2002; 
Kasemsumran et al., 2004). Moreover, previous research
ers have suggested that reducing large spectral datasets 
is valuable for more efficient storage, computation, and 
transmission (Yang et al., 2012) and for increasing the 
ease of spectral analysis (Viscarra Rossel & Lark, 2009).

In the present study, our results confirmed that soil TC 
could be rapidly predicted using selected wavelength 
regions with better predictive accuracy than FS-PLS, and 
sequential application of dynamic biPLS may be 
a feasible strategy for local assessments of soil TC. 
However, we note that our results were derived from 
heterogeneous and small numbers of soil samples 
(n = 162), which were collected from upland and lowland 
soils under various rice-based cropping systems, includ
ing wide ranges of soil types, in the central highland of 
Madagascar. Several researchers consider the reliability 
of predictions questionable when studying heteroge
neous sample sets (Brunet et al., 2007). Particle size and 
arrangement may also affect the calibration due to the 
light transmission path (Chang et al., 2001). Moreover, if 
the calibration model is to be widely implemented, then 
large-scale data sets with regional or global content 
must be considered because the target function’s nature 
strongly affects the performance of the different predic
tion approaches, and, different studies therefore provide 
different results (Gholizadeh et al., 2018). Compare to 
previous researches using large spectral data set 
(Hermansen et al., 2016; Stevens et al., 2013), our data 
set was relatively small diversity on soil carbon content, 
which is difficult to assess the robustness and applicabil
ity at larger spatial scale. To map and assess the spatial 

distributions of the carbon stock at a larger spatial scale 
in Madagascar, evaluating an appropriate spatial scale 
with a larger data set is required (Ramifehiarivo et al., 
2017; Saiano et al., 2013). Meanwhile, a study by Stevens 
et al. (2013) using a large-scale EU soil survey data set 
(n = 20,000) reported that predictive ability of SOC cali
brations related to the different levels of SOC and varia
tions in other soil properties (sand and clay content). 
They also suggest that large spectral data set can be 
valuable to build local and more accurate models that 
are specific to given geographical entity or soil type. 
Therefore, to apply the methodology to soil character
ization of the whole island of Madagascar, the calibra
tion models should be evaluated for the effect of the 
heterogeneous data set and updated using a larger 
dataset collected from various regions in Madagascar 
in the future.

4. Conclusions

Wavelength region selection rather than individual 
waveband selection is one approach to simplifying 
variable selection complexity. In this study, we explored 
relevant wavelength regions for prediction of the TC 
content in paddy soils in Madagascar using dynamic 
biPLS. Our results confirmed that a large range of soil 
TC (0.65–10.15%) can be rapidly and non-destructively 
predicted by Vis-NIR spectroscopy, and that the predic
tive ability was improved by wavelength region selec
tion with dynamic biPLS. Rapid estimations of soil TC 
can be used to assess soil fertility and supports farmers 
in implementing suitable fertilizer management prac
tices to improve crop production. Sequential applica
tion of biPLS suggested that the important wavelength 
regions for estimating soil TC were 400–490, 
1402–1440, 1846–1980 and 2151–2283 nm in the 
reflectance data sets (398 bands, 19.9%) and 652–687, 
1322–1443, 1856–1985, and 2290–2400 nm in the FDR 
data sets (399 bands, 19.9%). The selected wavelength 
regions were considered to be associated with organic 
matter, Fe and Al oxides, which are common in tropical 
soils and effective for sorbing and stabilizing soil 
organic matter. These findings are consistent with pre
viously known soil TC-related absorption features. Thus, 
the selected wavelength regions should be considered 
informative wavelength regions for estimating soil TC. 
Based on the selected FDR wavelength regions in the 
biPLS model, the soil TC predictions were considered to 
be excellent (RPIQ > 2.5), with an RMSE of 0.494% in the 
independent test data set. These findings indicated 
that sequential application of biPLS was a feasible 
approach for optimizing wavelength region selection 
and the combinations for soil TC prediction with Vis- 
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NIR spectroscopy. To up-scale the soil TC calibrations, 
future analyses will be expanded to examine the effects 
of heterogeneous samples and extended to the whole 
island of Madagascar.

Acknowledgments

We would like to especially thank Dr. Naoki Moritsuka, 
Graduate School of Agriculture, Kyoto University in Japan, for 
his valuable comments on this manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research was supported by the Science and Technology 
Research Partnership for Sustainable Development (SATREPS), 
Japan Science and Technology Agency (JST)/Japan 
International Cooperation Agency (JICA) (Grant No. 
JPMJSA1608).

ORCID

Kensuke Kawamura http://orcid.org/0000-0002-2824-1266
Hidetoshi Asai http://orcid.org/0000-0003-0125-1234

References

Andersen, C. M., & Bro, R. (2010). Variable selection in regres
sion – A tutorial. Journal of Chemometrics, 24(11–12), 
728–737. https://doi.org/10.1002/cem.1360

Araújo, S. R., Wetterlind, J., Demattê, J. A. M., & Stenberg, B. 
(2014). Improving the prediction performance of a large 
tropical vis-NIR spectroscopic soil library from Brazil by clus
tering into smaller subsets or use of data mining calibration 
techniques. European Journal of Soil Science, 65(5), 718–729. 
https://doi.org/10.1111/ejss.12165

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., 
Roger, J.-M., & McBratney, A. (2010). Critical review of che
mometric indicators commonly used for assessing the qual
ity of the prediction of soil attributes by NIR spectroscopy. 
TrAC Trends in Analytical Chemistry, 29(9), 1073–1081. 
https://doi.org/10.1016/j.trac.2010.05.006

Bellon-Maurel, V., & McBratney, A. (2011). Near-infrared (NIR) 
and mid-infrared (MIR) spectroscopic techniques for asses
sing the amount of carbon stock in soils – Critical review and 
research perspectives. Soil Biology and Biochemistry, 43(7), 
1398–1410. https://doi.org/10.1016/j.soilbio.2011.02.019

Ben-Dor, E. (2002). Quantitative remote sensing of soil properties 
(Vol. 75). Academic Press. https://doi.org/10.1016/S0065- 
2113(02)75005-0

Ben-Dor, E., Irons, J. R., & Epema, J. F. (1999). Soil reflectance. In  
A. N. Rencz (ed.),  Manual of remote sensing: Remote sensing 
for the earth sciences (Vol. 3, pp. 111–188). John Wiley & 
Sons.

Ben-Dor, E., Inbar, Y., & Chen, Y. (1997). The reflectance spectra 
of organic matter in the visible near-infrared and short wave 
infrared region (400–2500 nm) during a controlled decom
position process. Remote Sensing of Environment, 61(1), 
1–15. https://doi.org/10.1016/S0034-4257(96)00120-4

Bishop, J. L., Pieters, C. M., & Edwards, J. O. (1994). Infrared 
spectroscopic analyses on the nature of water in 
montmorillonite. Clays and Clay Minerals, 42(6), 702–716. 
https://doi.org/10.1346/CCMN.1994.0420606

Boggia, R., Forina, M., Fossa, P., & Mosti, L. (1997). Chemometric 
study and validation strategies in the structure-activity rela
tionships of new cardiotonic agents. Quantitative Structure- 
Activity Relationships, 16(3), 201–213. https://doi.org/10. 
1002/qsar.19970160303

Brunet, D., Barthès, B. G., Chotte, J.-L., & Feller, C. (2007). 
Determination of carbon and nitrogen contents in Alfisols, 
Oxisols and Ultisols from Africa and Brazil using NIRS analy
sis: Effects of sample grinding and set heterogeneity. 
Geoderma, 139(1), 106–117. https://doi.org/org/http://dx. 
doi.10.1016/j.geoderma.2007.01.007

Centner, V., Massart, D. L., de Noord, O. E., de Jong, S., 
Vandeginste, B. M., & Sterna, C. (1996). Elimination of unin
formative variables for multivariate calibration. Analytical 
Chemistry, 68(21), 3851–3858. https://doi.org/10.1021/ 
ac960321m

Chang, C. W., Laird, D., Mausbach, M. J., & Hurburgh, C. R. J. 
(2001). Nearinfrared reflectance spectroscopy-principal 
components regression analyses of soil properties. Soil 
Science Society of America Journal, 65(2), 480–490. https:// 
doi.org/10.2136/sssaj2001.652480x

Cipullo, S., Nawar, S., Mouazen, A. M., Campo-Moreno, P., & 
Coulon, F. (2019). Predicting bioavailability change of com
plex chemical mixtures in contaminated soils using visible 
and near-infrared spectroscopy and random forest 
regression. Scientific Reports, 9(1), 4492. https://doi.org/10. 
1038/s41598-019-41161-w

Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., & Vergo, N. 
(1990). High spectral resolution reflectance spectroscopy of 
minerals. Journal of Geophysical Research, 95(B8), 12653– 
12680. https://doi.org/10.1029/JB095iB08p12653

Clark, R. N. (1999). Spectroscopy of rocks and minerals, and 
principles of spectroscopy. In  A. N. Rencz (ed.), Manual of 
remote sensing. (pp. 3–58). John Wiley and Sons, Inc. https:// 
speclab.cr.usgs.gov/PAPERS.refl-mrs/refl4.html

Conforti, M., Buttafuoco, G., Leone, A. P., Aucelli, P. P. C., 
Robustelli, G., & Scarciglia, F. (2013). Studying the relation
ship between water-induced soil erosion and soil organic 
matter using Vis-NIR spectroscop and geomorphological 
analysis: A case study in southern Italy. Catena, 110, 44–58. 
https://doi.org/10.1016/j.catena.2013.06.013

Conforti, M., Castrignanò, A., Robustelli, G., Scarciglia, F., 
Stelluti, M., & Buttafuoco, G. (2015). Laboratory-based Vis– 
NIR spectroscopy and partial least square regression with 
spatially correlated errors for predicting spatial variation of 
soil organic matter content. Catena, 124, 60–67. https://doi. 
org/10.1016/j.catena.2014.09.004

Conforti, M., Matteucci, G., & Buttafuoco, G. (2018). Using 
laboratory Vis-NIR spectroscopy for monitoring some forest 
soil properties. Journal of Soils and Sediments, 18(3), 
1009–1019. https://doi.org/10.1007/s11368-017-1766-5

Cramer, J. A., Kramer, K. E., Johnson, K. J., Morris, R. E., & Rose- 
Pehrsson, S. L. (2008). Automated wavelength selection for 

PLANT PRODUCTION SCIENCE 11

45

https://doi.org/10.1002/cem.1360
https://doi.org/10.1111/ejss.12165
https://doi.org/10.1016/j.trac.2010.05.006
https://doi.org/10.1016/j.soilbio.2011.02.019
https://doi.org/10.1016/S0065-2113(02)75005-0
https://doi.org/10.1016/S0065-2113(02)75005-0
https://doi.org/10.1016/S0034-4257(96)00120-4
https://doi.org/10.1346/CCMN.1994.0420606
https://doi.org/10.1002/qsar.19970160303
https://doi.org/10.1002/qsar.19970160303
https://doi.org/org/http://dx.doi.10.1016/j.geoderma.2007.01.007
https://doi.org/org/http://dx.doi.10.1016/j.geoderma.2007.01.007
https://doi.org/10.1021/ac960321m
https://doi.org/10.1021/ac960321m
https://doi.org/10.2136/sssaj2001.652480x
https://doi.org/10.2136/sssaj2001.652480x
https://doi.org/10.1038/s41598-019-41161-w
https://doi.org/10.1038/s41598-019-41161-w
https://doi.org/10.1029/JB095iB08p12653
https://speclab.cr.usgs.gov/PAPERS.refl-mrs/refl4.html
https://speclab.cr.usgs.gov/PAPERS.refl-mrs/refl4.html
https://doi.org/10.1016/j.catena.2013.06.013
https://doi.org/10.1016/j.catena.2014.09.004
https://doi.org/10.1016/j.catena.2014.09.004
https://doi.org/10.1007/s11368-017-1766-5


spectroscopic fuel models by symmetrically contracting 
repeated unmoving window partial least squares. 
Chemometrics and Intelligent Laboratory Systems, 92(1), 13–21. 
https://doi.org/org/DOI10.1016/j.chemolab.2007.11.007

Daniel, K. W., Tripathi, N. K., & Honda, K. (2003). Artificial neural 
network analysis of laboratory and in situ spectra for the 
estimation of macronutrients in soils of Lop Buri (Thailand). 
Australian Journal of Soil Research, 41(1), 47–59. https://doi. 
org/10.1071/SR02027

De Santana, F. B., de Souza, A. M., & Poppi, R. J. (2018). Visible 
and near infrared spectroscopy coupled to random forest to 
quantify some soil quality parameters. Spectrochimica Acta 
Part A: Molecular and Biomolecular Spectroscopy, 191, 
454–462. https://doi.org/10.1016/j.saa.2017.10.052

Douglas, R. K., Nawar, S., Alamar, M. C., Mouazen, A. M., & 
Coulon, F. (2018). Rapid prediction of total petroleum hydro
carbons concentration in contaminated soil using vis-NIR 
spectroscopy and regression techniques. Science of the 
Total Environment, 616–617, 147–155. https://doi.org/10. 
1016/j.scitotenv.2017.10.323

Du, Y. P., Liang, Y. Z., Jiang, J. H., Berry, R. J., & Ozaki, Y. (2004). 
Spectral regions selection to improve prediction ability of 
PLS models by changeable size moving window partial least 
squares and searching combination moving window partial 
least squares. Analytica Chimica Acta, 501(2), 183–191. 
https://doi.org/10.1016/j.aca.2003.09.041

Emmert-Streib, F., & Dehmer, M. (2019). Evaluation of regres
sion models: Model assessment, model selection and gen
eralization error. Machine Learning and Knowledge 
Extraction ,  1(1),  521–551. https://doi.org/10.3390/ 
make1010032

Fourty, T., Baret, F., Jacquemoud, S., Schmuck, G., & 
Verdebout, J. (1996). Leaf optical properties with explicit 
description of its biochemical composition: Direct and 
inverse problems. Remote Sensing of Environment, 56(2), 
104–117. https://doi.org/10.1016/0034-4257(95)00234-0

Galvao, L. S., & Vitorello, I. (1998). Role of organic matter in 
obliterating the effects of iron on spectral reflectance and 
colour of Brazilian tropical soils. International Journal of 
Remote Sensing, 19(10), 1969–1979. https://doi.org/10. 
1080/014311698215090

Gholizadeh, A., Saberioon, M., Carmon, N., Boruvka, L., & Ben- 
Dor, E. (2018). Examining the performance of PARACUDA-II 
data-mining engine versus selected techniques to model 
soil carbon from reflectance spectra. Remote Sensing, 10(8), 
8. https://doi.org/10.3390/rs10081172

Goicoechea, H. C., & Olivieri, A. C. (2003). A new family of 
genetic algorithms for wavelength interval selection in mul
tivariate analytical spectroscopy. Journal of Chemometrics, 
17(6), 338–345. https://doi.org/10.1002/Cem.812

Hermansen, C., Knadel, M., Moldrup, P., Greve, M. H., Gislum, R., 
& de Jonge, L. W. (2016). Visible-near-infrared spectroscopy 
can predict the clay/organic carbon and mineral fines/ 
organic carbon ratios. Soil Science Society of America 
Journal ,  80(6), 1486–1495. https://doi.org/10.2136/ 
sssaj2016.05.0159

Hunt, G. R. (1977). Spectral signatures of particulate minerals in 
the visible and near infrared. Geophysics, 42(3), 501–513. 
https://doi.org/10.1190/1.1440721

IUSS Working Group, WRB. (2014). World reference base for soil 
resources 2014, Update 2015 international soil classification 
system for naming soils and creating legends for soil maps 

(World Soil Resources Reports No. 106). Food and 
Agriculture Organization of the United Nations.

Jiang, J. H., James, R., Siesler, B. H. W., & Ozaki, Y. (2002). 
Wavelength interval selection in multicomponent spectral 
analysis by moving window partial least-squares regression 
with applications to mid-infrared and near-infrared spectro
scopic data. Analytical Chemistry, 74(14), 3555–3565. https:// 
doi.org/10.1021/ac011177u

Johnson, J.-M., Vandamme, E., Senthilkumar, K., Sila, A., 
Shepherd, K. D., & Saito, K. (2019). Near-infrared, 
mid-infrared or combined diffuse reflectance spectroscopy 
for assessing soil fertility in rice fields in sub-Saharan Africa. 
Geoderma, 354, 113840. https://doi.org/10.1016/j.geoderma. 
2019.06.043

Kasemsumran, S., Du, Y. P., Murayama, K., Huehne, M., & 
Ozaki, Y. (2004). Near-infrared spectroscopic determination 
of human serum albumin, [gamma]-globulin, and glucose in 
a control serum solution with searching combination mov
ing window partial least squares. Analytica Chimica Acta, 512 
(2), 223–230. http://www.sciencedirect.com/science/article/ 
B6TF4-4C605NF-3/2/f9907924f85a5243807fc7afc37aca67

Katuwal, S., Knadel, M., Moldrup, P., Norgaard, T., Greve, M. H., & 
de Jonge, L. W. (2018). Visible–near-infrared spectroscopy 
can predict mass transport of dissolved chemicals through 
intact soil. Scientific Reports, 8(1), 11188. https://doi.org/10. 
1038/s41598-018-29306-9

Kawamura, K., Tsujimoto, Y., Nishigaki, T., Andriamananjara, A., 
Rabenarivo, M., Asai, H., Rakotoson, T., & Razafimbelo, T. 
(2019). Laboratory visible and near-infrared spectroscopy 
with genetic algorithm-based partial least squares regres
sion for assessing the soil phosphorus content of upland 
and lowland rice fields in Madagascar. Remote Sensing, 11(5), 
506. https://doi.org/10.3390/RS11050506

Kawamura, K., Tsujimoto, Y., Rabenarivo, M., Asai, H., 
Andriamananjara, A., & Rakotoson, T. (2017). Vis-NIR spectro
scopy and PLS regression with waveband selection for esti
mating the total C and N of paddy soils in Madagascar. 
Remote Sensing, 9(10), 10. https://doi.org/10.3390/rs9101081

Kawamura, K., Watanabe, N., Sakanoue, S., Lee, H. J., Inoue, Y., & 
Odagawa, S. (2010). Testing genetic algorithm as a tool to select 
relevant wavebands from field hyperspectral data for estimating 
pasture mass and quality in a mixed sown pasture using partial 
least squares regression. Grassland Science, 56(4), 205–216. 
https://doi.org/10.1111/j.1744-697X.2010.00196.x

Knadel, M., Viscarra Rossel, R. A., Deng, F., Thomsen, A., & 
Greve, M. H. (2013). Visible–near infrared spectra as a proxy 
for topsoil texture and glacial boundaries. Soil Science 
Society of America Journal, 77(2), 568. https://doi.org/10. 
2136/sssaj2012.0093

Kuang, B., & Mouazen, A. M. (2011). Calibration of visible and near 
infrared spectroscopy for soil analysis at the field scale on three 
European farms. European Journal of Soil Science, 62(4), 629–636. 
https://doi.org/10.1111/j.1365-2389.2011.01358.x

Kuang, B., Tekin, Y., & Mouazen, A. M. (2015). Comparison 
between artificial neural network and partial least squares 
for on-line visible and near infrared spectroscopy measure
ment of soil organic carbon, pH and clay content. Soil & 
Tillage Research, 146(Part B), 243–252. https://doi.org/10. 
1016/j.still.2014.11.002

Kusumo, B. H., Hedley, C. B., Hedley, M. J., Hueni, A., 
Tuohy, M. P., & Arnold, G. C. (2008). The use of diffuse 
reflectance spectroscopy for in situ carbon and nitrogen 

12 K. KAWAMURA ET AL.

46

https://doi.org/org/DOI10.1016/j.chemolab.2007.11.007
https://doi.org/10.1071/SR02027
https://doi.org/10.1071/SR02027
https://doi.org/10.1016/j.saa.2017.10.052
https://doi.org/10.1016/j.scitotenv.2017.10.323
https://doi.org/10.1016/j.scitotenv.2017.10.323
https://doi.org/10.1016/j.aca.2003.09.041
https://doi.org/10.3390/make1010032
https://doi.org/10.3390/make1010032
https://doi.org/10.1016/0034-4257(95)00234-0
https://doi.org/10.1080/014311698215090
https://doi.org/10.1080/014311698215090
https://doi.org/10.3390/rs10081172
https://doi.org/10.1002/Cem.812
https://doi.org/10.2136/sssaj2016.05.0159
https://doi.org/10.2136/sssaj2016.05.0159
https://doi.org/10.1190/1.1440721
https://doi.org/10.1021/ac011177u
https://doi.org/10.1021/ac011177u
https://doi.org/10.1016/j.geoderma.2019.06.043
https://doi.org/10.1016/j.geoderma.2019.06.043
http://www.sciencedirect.com/science/article/B6TF4-4C605NF-3/2/f9907924f85a5243807fc7afc37aca67
http://www.sciencedirect.com/science/article/B6TF4-4C605NF-3/2/f9907924f85a5243807fc7afc37aca67
https://doi.org/10.1038/s41598-018-29306-9
https://doi.org/10.1038/s41598-018-29306-9
https://doi.org/10.3390/RS11050506
https://doi.org/10.3390/rs9101081
https://doi.org/10.1111/j.1744-697X.2010.00196.x
https://doi.org/10.2136/sssaj2012.0093
https://doi.org/10.2136/sssaj2012.0093
https://doi.org/10.1111/j.1365-2389.2011.01358.x
https://doi.org/10.1016/j.still.2014.11.002
https://doi.org/10.1016/j.still.2014.11.002


analysis of pastoral soils. Australian Journal of Soil Research, 
46(6–7), 623–635. https://doi.org/10.1071/SR08118

Leardi, R. (2000). Application of genetic algorithm-PLS for fea
ture selection in spectral data sets. Journal of Chemometrics, 
14(5–6), 643–655. https://doi.org/10.1002/1099-128X 
(200009/12)14:5/6%3C643::AID-CEM621%3E3.0.CO;2-E

Leardi, R., Boggia, R., & Terrile, M. (1992). Genetic algorithms as 
a strategy for feature selection. Journal of Chemometrics, 6 
(5), 267–281. https://doi.org/10.1002/cem.1180060506

Leardi, R., & González, A. L. (1998). Genetic algorithms applied to 
feature selection in PLS regression: How and when to use 
them. Chemometrics and Intelligent Laboratory Systems, 41(2), 
195–207. https://doi.org/10.1016/S0169-7439(98)00051-3

Leardi, R., & Nørgaard, L. Sequential application of backward 
interval partial least squares and genetic algorithms for the 
selection of relevant spectral regions. (2004). Journal of 
Chemometrics, 18(11), 486–497. https://doi.org/10.1002/ 
cem.893

Li, H. D., Liang, Y. Z., Cao, D. S., & Xu, Q. S. (2012). Model- 
population analysis and its applications in chemical and 
biological modeling. TrAC – Trends in Analytical Chemistry, 
38, 154–162. https://doi.org/10.1016/j.trac.2011.11.007

Li, S., Ji, W., Chen, S., Peng, J., Zhou, Y., & Shi, Z. (2015). Potential 
of VIS-NIR-SWIR spectroscopy from the Chinese soil spectral 
library for assessment of nitrogen fertilization rates in the 
paddy-rice region, China. Remote Sensing, 7(6), 7029–7043. 
https://doi.org/10.3390/rs70607029

Lucasius, C. B., & Kateman, G. (1994). Gates towards evolution
ary large-scale optimization: A software-oriented approach 
to genetic algorithms–I. General perspective. Computers & 
Chemistry, 18 (2), 127–136. https://doi.org/10.1016/0097- 
8485(94)85007-0

Morellos, A., Pantazi, X. E., Moshou, D., Alexandridis, T., 
Whetton, R., Tziotzios, G., Wiebensohn, J., Bill, R., & 
Mouazen, A. M. (2016). Machine learning based prediction of 
soil total nitrogen, organic carbon and moisture content by 
using VIS-NIR spectroscopy. Biosystems Engineering, 152, 
104–116. https://doi.org/10.1016/j.biosystemseng.2016.04.018

Nawar, S., & Mouazen, A. M. (2017). Predictive performance of 
mobile vis-near infrared spectroscopy for key soil properties 
at different geographical scales by using spiking and data 
mining techniques. Catena, 151, 118–129. https://doi.org/10. 
1016/j.catena.2016.12.014

Ng, W., Minasny, B., Montazerolghaem, M., Padarian, J., 
Ferguson, R., Bailey, S., & McBratney, A. B. (2019). 
Convolutional neural network for simultaneous prediction 
of several soil properties using visible/near-infrared, 
mid-infrared, and their combined spectra. Geoderma, 352, 
251–267. https://doi.org/10.1016/j.geoderma.2019.06.016

Nørgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., & 
Engelsen, S. B. (2000). Interval partial least-squares regres
sion (iPLS): A comparative chemometric study with an exam
ple from near-infrared spectroscopy. Applied Spectroscopy, 
54(3), 413–419. https://doi.org/10.1366/0003702001949500

Oinuma, K., & Hayashi, H. (1965). Infrared study of mixed-layer 
clay minerals. American Mineralogist, 50(1958), 1213–1227. 
https://doi.org/10.1177/1356336X09345226

Padarian, J., Minasny, B., & McBratney, A. B. (2019). Using deep 
learning to predict soil properties from regional spectral 
data. Geoderma Regional, 16, e00198. https://doi.org/10. 
1016/j.geodrs.2018.e00198

Partnership, G. R. S. (2013). Rice almanac (4th ed.). International 
Rice Research Institute.

Post, J. L., & Noble, P. N. (1993). The near-infrared combination 
band frequencies of dioctahedral smectites, micas, and 
illites. Clays and Clay Minerals, 41(6), 639–644. https://doi. 
org/10.1346/CCMN.1993.0410601

Ramaroson, V. H., Becquer, T., Sá, S. O., Razafimahatratra, H., 
Delarivière, J. L., Blavet, D., Vendrame, P. R. S., 
Rabeharisoa, L., & Rakotondrazafy, A. F. M. (2018). 
Mineralogical analysis of ferralitic soils in Madagascar using 
NIR spectroscopy. Catena, 168, 102–109. https://doi.org/10. 
1016/j.catena.2017.07.016

Ramifehiarivo, N., Brossard, M., Grinand, C., 
Andriamananjara, A., Razafimbelo, T., Rasolohery, A., 
Razafimahatratra, H., Seyler, F., Ranaivoson, N., 
Rabenarivo, M., Albrecht, A., Razafindrabe, F., & 
Razakamanarivo, H. (2017). Mapping soil organic carbon on 
a national scale: Towards an improved and updated map of 
Madagascar. Geoderma Regional, 9, 29–38. https://doi.org/ 
org/http://dx.doi.10.1016/j.geodrs.2016.12.002

Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M., & 
Bloodworth, H. (2003). Effect of soil organic carbon on soil 
water retention. Geoderma, 116(1–2), 61–76. https://doi.org/ 
10.1016/S0016-7061(03)00094-6

Reeves, J., McCarty, G., & Mimmo, T. (2002). The potential of 
diffuse reflectance spectroscopy for the determination of 
carbon inventories in soils. Environmental Pollution, 116 
(Supplement 1), S277–S284. https://doi.org/10.1016/S0269- 
7491(01)00259-7

Romero, D. J., Ben-Dor, E., Demattê, J. A. M., Souza, A. B. E., 
Vicente, L. E., Tavares, T. R., . . . Eitelwein, M. T. (2018). Internal 
soil standard method for the Brazilian soil spectral library: 
Performance and proximate analysis. Geoderma 312, 
95–103. https://doi.10.1016/j.geoderma.2017.09.014

Russell, C. A. (2003). Sample preparation and prediction of soil 
organic matter properties by near infra-red reflectance 
spectroscopy. Communications in Soil Science and Plant 
Analysis, 34(11–12), 1557–1572. https://doi.org/10.1081/ 
CSS-120021297

Saiano, F., Oddo, G., Scalenghe, R., La Mantia, T., & Ajmone- 
Marsan, F. (2013). DRIFTS sensor: Soil carbon validation at 
large scale (Pantelleria, Italy). Sensors, 13(5), 5603. http:// 
www.mdpi.com/1424-8220/13/5/5603.

Saidy, A. R., Smernik, R. J., Baldock, J. A., Kaiser, K., 
Sanderman, J., & Macdonald, L. M. (2012). Effects of clay 
mineralogy and hydrous iron oxides on labile organic car
bon stabilization. Geoderma, 173–174, 104–110. https://doi. 
org/10.1016/j.geoderma.2011.12.030

Scheinost, A. C., Chavernas, A., Barrón, V., & Torrent, J. (1998). 
Use and limitations of second-derivative diffuse reflectance 
spectroscopy in the visible to near-infrared range to identify 
and quantify Fe oxide minerals in soils. Clays and Clay 
Minerals, 46(5), 528–536. https://doi.org/10.1346/CCMN. 
1998.0460506

Shepherd, D. K., & Walsh, G. M. (2002). Development of reflec
tance spectral libraries for characterization of soil properties. 
Soil Science Society of American Journal, 66(3), 988–998. 
https://doi.org/10.2136/sssaj2002.9880

Sherman, D. M., & Waite, D. T. (1985). Electronic spectra of Fe3+ 
oxides and oxide hydroxides in the near IR to near UV. 
American Mineralogist, 70, 1262–1269.

PLANT PRODUCTION SCIENCE 13

47

https://doi.org/10.1071/SR08118
https://doi.org/10.1002/1099-128X(200009/12)14:5/6%3C643::AID-CEM621%3E3.0.CO;2-E
https://doi.org/10.1002/1099-128X(200009/12)14:5/6%3C643::AID-CEM621%3E3.0.CO;2-E
https://doi.org/10.1002/cem.1180060506
https://doi.org/10.1016/S0169-7439(98)00051-3
https://doi.org/10.1002/cem.893
https://doi.org/10.1002/cem.893
https://doi.org/10.1016/j.trac.2011.11.007
https://doi.org/10.3390/rs70607029
https://doi.org/10.1016/0097-8485(94)85007-0
https://doi.org/10.1016/0097-8485(94)85007-0
https://doi.org/10.1016/j.biosystemseng.2016.04.018
https://doi.org/10.1016/j.catena.2016.12.014
https://doi.org/10.1016/j.catena.2016.12.014
https://doi.org/10.1016/j.geoderma.2019.06.016
https://doi.org/10.1366/0003702001949500
https://doi.org/10.1177/1356336X09345226
https://doi.org/10.1016/j.geodrs.2018.e00198
https://doi.org/10.1016/j.geodrs.2018.e00198
https://doi.org/10.1346/CCMN.1993.0410601
https://doi.org/10.1346/CCMN.1993.0410601
https://doi.org/10.1016/j.catena.2017.07.016
https://doi.org/10.1016/j.catena.2017.07.016
https://doi.org/org/http://dx.doi.10.1016/j.geodrs.2016.12.002
https://doi.org/org/http://dx.doi.10.1016/j.geodrs.2016.12.002
https://doi.org/10.1016/S0016-7061(03)00094-6
https://doi.org/10.1016/S0016-7061(03)00094-6
https://doi.org/10.1016/S0269-7491(01)00259-7
https://doi.org/10.1016/S0269-7491(01)00259-7
https://doi.10.1016/j.geoderma.2017.09.014
https://doi.org/10.1081/CSS-120021297
https://doi.org/10.1081/CSS-120021297
http://www.mdpi.com/1424-8220/13/5/5603
http://www.mdpi.com/1424-8220/13/5/5603
https://doi.org/10.1016/j.geoderma.2011.12.030
https://doi.org/10.1016/j.geoderma.2011.12.030
https://doi.org/10.1346/CCMN.1998.0460506
https://doi.org/10.1346/CCMN.1998.0460506
https://doi.org/10.2136/sssaj2002.9880


Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). USDA- 
Natural Resources Conservation Service.

Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & 
Wetterlind, J. (2010). Visible and near infrared spectroscopy 
in soil science. Advances in Agronomy, 107(C), 163–215. 
https://doi.org/10.1016/S0065-2113(10)07005-7

Stevens, A., Nocita, M., Tóth, G., Montanarella, L., & van 
Wesemael, B. (2013). Prediction of soil organic carbon at 
the European scale by visible and near infrared reflectance 
spectroscopy. PlosOne, 8(6), e66409. https://doi.org/10. 
1371/journal.pone.0066409

Tsujimoto, Y., Horie, T., Randriamihary, H., Shiraiwa, T., & 
Homma, K. (2009). Soil management: The key factors for 
higher productivity in the fields utilizing the system of rice 
intensification (SRI) in the central highland of Madagascar. 
Agricultural Systems, 100(1–3), 61–71. https://doi.org/10. 
1016/j.agsy.2009.01.001

Tsujimoto, Y., Rakotoson, T., Tanaka, A., & Saito, K. (2019). 
Challenges and opportunities for improving N use efficiency 
for rice production in sub-Saharan Africa. Plant Production 
Science, 22(4), 1–15. https://doi.org/10.1080/1343943x.2019. 
1617638

Van De Vreken, P., Gobin, A., Baken, S., Van Holm, L., 
Verhasselt, A., Smolders, E., & Merckx, R. (2016). Crop residue 
management and oxalate-extractable iron and aluminium 
explain long-term soil organic carbon sequestration and 
dynamics. European Journal of Soil Science, 67(3), 332–340. 
https://doi.org/10.1111/ejss.12343

Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J., 
Demattê, J. A. M., Shepherd, K. D., Shi, Z., Stenberg, B., 
Stevens, A., Adamchuk, V., Aïchi, H., Barthès, B. G., 
Bartholomeus, H. M., Bayer, A. D., Bernoux, M., Böttcher, K., 
Brodský, L., Du, C. W., Chappell, A., Genot, V., . . . Ji, W. (2016). 
A global spectral library to characterize the world’s soil. 

Earth-Science Review, 155, 198–230. http://dx.doi.10.1016/j. 
earscirev.2016.01.012

Viscarra Rossel, R. A., & Lark, R. M. (2009). Improved analysis and 
modelling of soil diffuse reflectance spectra using wavelets. 
European Journal of Soil Science, 60(3), 453–464. https://doi. 
org/10.1111/j.1365-2389.2009.01121.x

Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., 
& Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or 
combined diffuse reflectance spectroscopy for simultaneous 
assessment of various soil properties. Geoderma, 131(1–2), 
59–75. https://doi.org/10.1016/j.geoderma.2005.03.007

Wang, Z., Kawamura, K., Sakuno, Y., Fan, X., Gong, Z., & Lim, J. 
(2017). Retrieval of chlorophyll-a and total suspended solids 
using iterative stepwise elimination partial least squares 
(ISE-PLS) regression based on field hyperspectral measure
ments in irrigation ponds in Higashihiroshima, Japan. 
Remote Sensing, 9(3), 264. https://doi.org/10.3390/rs9030264

White, W. B. (1971). Infrared characterization of water and 
hydroxyl ion in the basic magnesium carbonate minerals. 
American Mineralogist, 56(October), 46–53. https://doi.org/ 
10.1128/IAI.00496-08

Whiting, M. L., Li, L., & Ustin, S. L. (2004). Predicting water 
content using Gaussian model on soil spectra. Remote 
Sensing of Environment, 89(4), 535–552. https://doi.org/10. 
1016/j.rse.2003.11.009

Yang, H., Kuang, B., & Mouazen, A. M. (2012). Quantitative 
analysis of soil nitrogen and carbon at a farm scale using 
visible and near infrared spectroscopy coupled with wave
length reduction. European Journal of Soil Science, 63(3), 
410–420. https://doi.org/10.1111/j.1365-2389.2012.01443.x

Zhang, J., Cui, X., Cai, W., & Shao, X. (2017). Combination of 
heuristic optimal partner bands for variable selection in 
near-infrared spectral analysis. Journal of Chemometrics, 32 
(11), e2971. https://doi.org/10.1002/cem.2971

14 K. KAWAMURA ET AL.

48

https://doi.org/10.1016/S0065-2113(10)07005-7
https://doi.org/10.1371/journal.pone.0066409
https://doi.org/10.1371/journal.pone.0066409
https://doi.org/10.1016/j.agsy.2009.01.001
https://doi.org/10.1016/j.agsy.2009.01.001
https://doi.org/10.1080/1343943x.2019.1617638
https://doi.org/10.1080/1343943x.2019.1617638
https://doi.org/10.1111/ejss.12343
http://dx.doi.10.1016/j.earscirev.2016.01.012
http://dx.doi.10.1016/j.earscirev.2016.01.012
https://doi.org/10.1111/j.1365-2389.2009.01121.x
https://doi.org/10.1111/j.1365-2389.2009.01121.x
https://doi.org/10.1016/j.geoderma.2005.03.007
https://doi.org/10.3390/rs9030264
https://doi.org/10.1128/IAI.00496-08
https://doi.org/10.1128/IAI.00496-08
https://doi.org/10.1016/j.rse.2003.11.009
https://doi.org/10.1016/j.rse.2003.11.009
https://doi.org/10.1111/j.1365-2389.2012.01443.x
https://doi.org/10.1002/cem.2971


agronomy

Article

Farm-Scale Estimation of Total Nitrogen Content in
Surface Paddy Soils by Extraction with Commercially
Available Hydrogen Peroxide

Naoki Moritsuka 1,* , Hiroki Saito 2, Ryosuke Tajima 3, Yukitsugu Takahashi 4 and
Hideaki Hirai 5

1 Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
2 Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences,

Okinawa 907-0002, Japan; hirokisaito@affrc.go.jp
3 Field Science Center, Tohoku University, Miyagi 989-6711, Japan; tazy@m.tohoku.ac.jp
4 University Farm, Utsunomiya University, Tochigi 321-4415, Japan; takahashi@cc.utsunomiya-u.ac.jp
5 School of Agriculture, Utsunomiya University, Tochigi 321-8505, Japan; hirai@cc.utsunomiya-u.ac.jp
* Correspondence: morituka@kais.kyoto-u.ac.jp

Received: 17 November 2019; Accepted: 21 December 2019; Published: 26 December 2019 ����������
�������

Abstract: We recently proposed a simple method for estimating total nitrogen content in paddy soil.
In this method, soil is extracted with a commercial 3% hydrogen peroxide (H2O2) solution at 25 ◦C for
40 h, and electrical conductivity (EC (H2O2)) of the extract is measured. This study aimed to further
evaluate the method’s applicability to soil samples collected at the farm scale by using the original
and six additional H2O2 solutions that are locally and commercially available. The results obtained
with the original solution indicated that the determination coefficients between EC (H2O2) and total
N were statistically significant at all farms examined: Moka, 0.78 (n = 13); Kyoto, 0.50 (n = 16); Kizu,
0.43 (n = 89); and Kawatabi, 0.25 (n = 18). The EC of the tested H2O2 solutions varied from less
than 0.05 to 1.4 mS cm−1 because of the addition of different stabilizers. EC (H2O2) values obtained
with the less stabilized H2O2 solutions (one from Japan, one from USA, and the analytical grade 6%
solution) agreed well with those obtained with the original solution. Thus, the proposed method can
be useful for estimating the farm-scale variation in soil total N, provided a H2O2 solution with a low
EC (<0.2 mS cm−1) is used for the extraction.

Keywords: electrical conductivity; farm-scale variation; hydrogen peroxide; nitrogen; paddy soil;
simple method

1. Introduction

In irrigated paddy fields, mineralization of organic nitrogen (N) in soil during a cropping period
often limits rice growth and yield. Nutrient omission trials conducted in more than a thousand
paddy fields throughout Japan have demonstrated that lowland rice responds to the application of
N to a greater extent than to the application of phosphorus or potassium [1]. To optimize the rate
of application of N fertilizer, many researchers have proposed laboratory methods to evaluate soil
N availability suitable for routine use, and some of them have been validated by comparing the
results with the content of potentially mineralizable organic N estimated by the long-term laboratory
incubation [2]. Several biological and chemical methods such as short-term anaerobic incubation and
extraction with hot KCl have proved useful for rapid estimation of soil N availability [2,3].
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In addition to analysis of the labile fraction of N in soil, analysis of total N is also a widely
accepted method for estimating soil N availability [2,4]. For example, in 31 surface paddy soils in Japan
classified as non-volcanic ash soils, the content of potentially mineralizable organic N evaluated by
long-term aerobic incubation was significantly correlated (r = 0.53, p < 0.05) with the total N content [5].
By reviewing previous papers, Sahrawat [6] also reported that the total N content in paddy soil usually
showed a significant positive correlation with the amount of ammonium ion (NH4

+) produced under
anaerobic incubation.

The total N content in soil has been measured by two methods: the Kjeldahl method which is a
wet oxidation procedure, and the Dumas method which is fundamentally a dry oxidation (combustion)
procedure [7]. These methods were originally developed during the 19th century and the revised
versions are still in use. Total N and total carbon (C) contents can be measured simultaneously by the
dry combustion method. However, both methods require laboratory facilities, so total N analysis are
typically carried out by specialists in well-equipped laboratories.

To reduce the time and cost for measurement, Sharifi et al. [4] proposed the sodium hydroxide
direct distillation method. In this method, the digestion step was fully eliminated, and the amount of
N liberated by steam distillation of soil with a strong alkaline reagent for about 10 min was determined.
The amount of N obtained from this method had a significant positive correlation with the content of
soil total N measured by the dry combustion method. Christianson and Holt [8] also proposed a rapid
digestion procedure with H2SO4 and H2O2 (the peroxy reagent) without addition of metal catalysts
such as Se, Hg, and Cu. The total time for digestion was only 38 min, and the rate of N recovery from
six soils ranged from 89% to 98% compared to Kjeldahl digestion. However, these methods are still
limited to the laboratory use, as they require hazardous reagents.

To develop a simple method for estimating soil total N usable by non-specialists, we recently
proposed a method in which a dilute hydrogen peroxide (H2O2) solution is used as the soil extractant [9].
In this method, surface paddy soil is extracted with a commercially available 3% H2O2 solution at
25 ◦C for 40 h. Then, the electrical conductivity (EC (H2O2)) of the soil extract is measured with
an EC electrode. Because 3% H2O2 commercially available in Japan is called “oxydol” (a Japanese
pharmacopoeia term), this method was called the oxydol method in the previous paper [9].

The concept of this method is based on previous findings on the decomposition of soil organic
matter with H2O2 and the detection of NH4

+ by EC. Robinson [10] first introduced H2O2 digestion as a
pretreatment of soil texture analysis. Considering the volatile nature of both H2O2 and CO2 produced
by the reaction of soil organic matter with H2O2, another Robinson [11] proposed a gravimetric method
for determining the content of soil organic matter by the loss in weight caused by H2O2 digestion.
Robinson [11] also reported that practically all of the soil nitrogen was transformed to NH4

+ during
H2O2 digestion. This finding was confirmed by Harada and Inoko [12], who reported that, for the
eight soil samples tested, 59–100% of the total N in the original soil was present in the digested solution
and that most of the water-soluble N was present as NH4

+. Guan et al. [13] also reported that, for the
eight samples including six volcanic ash soils, more than 90% of organic C and less than 11% of N
in the original soil were lost by H2O2 treatment. The concentration of NH4

+ in a solution can be
measured quantitatively by non-selective EC detection after its separation from other cations by ion
chromatography [14]. If NH4

+ is the dominant cation in a sample solution, the NH4
+ concentration

can be roughly estimated from the solution EC without a separation pretreatment.
To validate the oxydol method, we applied it to 83 surface soils collected from paddy fields

throughout Japan [9]. Then, there was a significant positive correlation between EC (H2O2) and total
N content (r2 = 0.70, p < 0.01) when 11 volcanic ash soils were excluded from the analysis. When we
applied the method to two sets of paddy soil samples collected at farm scale, the correlation between
EC (H2O2) and total N became different between the two farms (r2 = 0.23 and 0.68). The low accuracy
of the estimation for volcanic ash soils and some farm-scale samples was mainly due to the low rate of
mineralization of soil organic N by the H2O2 treatment. This means that the estimation accuracy was
decreased by the uneven decomposability of soil N within a sample set. The variations in both soil
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total N content and its decomposability at farm scale were smaller than those observed at national
scale [9]. At any scale of investigation, the estimation accuracy is expected to increase with an increase
of the variation in total N content and also with a decrease of the variation in its decomposability.
However, the number of sample sets collected at farm scale was too small to evaluate whether or not
the oxydol method can be useful for estimating the farm-scale variation in soil total N.

Moreover, only one type of H2O2 sold in Japan was used in previous experiments [9]. It is uncertain
whether other types of H2O2 solutions can produce results comparable to those obtained previously.
This is because commercial H2O2 solutions contain various stabilizers to minimize decomposition of
H2O2 into water and oxygen under normal storage conditions. For example, the H2O2 used in the
original method [9] contained phenacetin as a stabilizer. Other stabilizers typically used in commercial
H2O2 are colloidal stannate, sodium pyrophosphate, organo-phosphates, and colloidal silica [15].
These stabilizers are expected to increase the EC of the commercial H2O2 solution and consequently the
EC (H2O2) value; the estimation accuracy of soil total N from EC (H2O2) might be significantly affected.

The objective of this study was to further evaluate the oxydol method in terms of (1) the
applicability to farm-scale samples and (2) the possibility of using different types of commercially
available H2O2 solutions.

2. Materials and Methods

2.1. Soil Samples

We used 136 surface paddy soils collected from four university farms in Japan; 89 samples from
Kizu (Kyoto University), 16 samples from Kyoto (Kyoto University), 18 samples from Kawatabi
(Tohoku University), and 13 samples from Moka (Utsunomiya University). Kizu and Kyoto were
located on non-volcanic ash soils, and Kawatabi and Moka were located on volcanic ash soils (Andosols)
(Figure 1). According to the World Reference Base for Soil Resources, the soils were classified as
Fluvisols at Kizu and Kyoto, Aluandic Andosol at Kawatabi, and Silandic Andosol at Moka.
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Figure 1. Map of the Japan mainland showing the distribution of Andosols (red) and the locations of the
sampled farms. The distribution of Andosols is based on map data in the Digital Soil Map of Japan [16],
available at the website of the National Agriculture and Food Research Organization (NARO).
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The areas of the fields from which the samples were collected was approximately 2.9, 0.75, 7.5,
and 7.9 ha at Kizu, Kyoto, Kawatabi, and Moka, respectively. All fields had a rectangular shape, and
many of them were contiguous. At all farms except Kizu, soil samples were collected from individual
fields. One representative soil sample was obtained from each field by mixing surface (<15 cm) soil
samples collected from five points: the center and each of the four corners of the field. At Kizu, a
more systematic grid sampling was carried out by dividing the five contiguous fields, each with an
area of about 50 × 100 m, into 89 plots, each with an area of 16.7 × 16.7 m. Then, a representative
soil sample was obtained from each plot by mixing surface (<10 cm) soil samples collected from five
points; the center and four additional points, each located about 5 m from the center. Soil sampling
was carried out in April and May, 2017, before puddling and transplanting of rice (Oryza sativa L.)
seedlings. The samples were air-dried and passed through a 2-mm sieve before analyses. Selected
properties of the soil samples used in this study are listed in Table 1.

Table 1. Selected properties of the samples used in this study.

Site (No. of
Samples)

EC (1:5 w/v)
(mS cm−1) Total C (g kg−1) C/N Ratio Mineralized N

(mg kg−1) Sand (g kg−1)

Ave. CV Ave. CV Ave. CV Ave. CV Ave. CV

Kizu (89) 0.17 30.3 16.1 18.1 14.7 10.6 68.7 13.2 674 1.9
Kyoto (16) 0.05 30.0 23.6 15.5 11.8 4.0 74.7 27.5 682 3.7

Kawatabi (18) 0.06 20.9 43.2 18.1 14.1 8.8 147.2 17.7 618 11.0
Moka (13) 0.08 31.6 89.2 5.7 14.3 4.3 111.2 32.6 441 2.4

EC, electrical conductivity; Ave., average; CV, coefficient of variation (%). EC was measured with an EC sensor
(ES-51, Horiba, Ltd., Kyoto, Japan) after extracting samples with water at 1:5 (w/v). Total C was measured by the
dry combustion method (Sumigraph NC-95A, Sumika Chem. Anal. Service, Osaka, Japan). Mineralized N was
determined by measuring the content of NH4

+ after an anaerobic incubation at 40 ◦C for 7 days [17]. Sand content
was measured by the nylon mesh sieving method [18].

2.2. Measurement of EC (H2O2) by the Oxydol Method

Figure 2 shows the procedures of the original oxydol method [9]. Prior to the experiment, 180-mL
glass bottles with an inner diameter of 51 mm and a depth of 101 mm were washed with tap water.
Then, 5.00 g of air-dried, 2-mm sieved soil was placed in each bottle, 100 mL of oxydol (Showa) was
added to the sample, and the bottle was left standing at 25 ◦C for 40 h. After extraction, the supernatant
was gently swirled by hand, and the EC of the soil extract (EC (H2O2)) was measured with a stick-type
EC sensor (HI98331 Soil Test, Hanna Instruments, Woonsocket, RI, USA). An incubator was used to
keep the temperature at 25 ◦C during the extraction. The extraction period of 40 h was set rather
arbitrarily by measuring the increase of EC of six different paddy soils every 30 min after adding
oxydol and then evaluating the time at which the EC reached a plateau [9].

In this study, we modified the original method slightly by using the Showa oxydol and six
additional types of H2O2 solution (Figure 3). Except for one analytical grade reagent (Wako), the other
H2O2 solutions are locally and commercially available (Table 2). The analytical grade solution contained
H2O2 at about 30%, and was diluted with distilled water to 3% or 6% before use. The other solutions
were used without dilution because the H2O2 concentration of each was about 3%. In addition,
EC (H2O2) was measured with a stick-type EC sensor (HI98331 Gro Line Soil Test, Hanna Instruments,
Woonsocket, RI, USA), which was an updated model of the EC sensor that we had used in the
original method.
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Table 2. Hydrogen peroxide solutions used in this study.

Type of H2O2 Country Type of Stabilizers

Wako (analytical grade, 30%) Japan none
Showa Japan phenacetin
Kenei Japan phenacetin, phosphoric acid

Kozakai Japan ethanol, phenacetin
Swan USA unknown

Essential Oxygen USA unknown
AGA Portugal sodium benzoate

2.3. Other Analyses

The EC of the H2O2 solutions used as extractants was measured with an EC sensor attached with
a graphite electrode (Handy SC meter TCX-999i attached with CX90CS, Toko Chemical Laboratories,
Co., Ltd., Tokyo, Japan). The concentration of sodium (Na) was also measured by atomic absorption
spectrometry (AA-7000, Shimadzu Corporation, Kyoto, Japan) because Na+ was the only cation detected
in any of the solutions by ion chromatography (PIA-1000, Shimadzu Corporation, Kyoto, Japan).

For the soil samples, the total N content was measured by the dry combustion method (Sumigraph
NC-95A, Sumika Chem. Anal. Service, Osaka, Japan) using the finely ground samples [7].

The amount of soil organic N that was mineralized by H2O2 extraction was evaluated by measuring
the NH4

+ concentration in the soil extracts with the Showa solution. The NH4
+ concentration was

determined by filtering the extracts, converting NH4
+ to NH3 by steam distillation of the extracts

with 10 mol L−1 NaOH, collecting the liberated NH3 with 2% H3BO3, and measuring the NH4
+

concentration colorimetrically by the indophenol method [19]. Because the NH4
+ in the H2O2 extracts

was recovered by steam distillation with strong alkali, the recovered NH4
+ would include inorganic

NH4
+ present before the H2O2 treatment as well as soluble organic N hydrolyzed with alkali during

the steam distillation.
The oxydol method was compared with two other simple methods that may allow estimation

of soil total N; measurement of sample lightness (L* value) based on the CIE 1976 (L*, a*, b*) color
system and of the 0.02 mol L−1 potassium permanganate-oxidizable organic C (POXC) content. The L*
value of the finely ground samples was measured with a Soil Color Reader (SPAD-503, Konica Minolta,
Tokyo, Japan) according to the method described by Moritsuka et al. [20]. Sample lightness was
measured because soil lightness, evaluated visually by using a Munsell soil color chart, has been used
for estimating the organic matter content [21,22]. The POXC concentration was measured according
to the method described by Weil et al. [23] and Culman et al. [24]. The POXC method proposed by
Weil et al. [23] is based on the oxidation reaction of soil organic C with potassium permanganate. As the
reaction proceeds with time, the intensity of the purple permanganate color decreases in proportion to
the amount of organic C oxidized. To determine the content of biologically active C in soil, the period of
sample reaction was set at 12 min (shaking for 2 min and settling for 10 min) [24]. Then, after diluting
the supernatant, the change in permanganate color was measured by the absorbance at 550 nm, and the
amount of POXC was calculated as described by Weil et al. [23].

2.4. Statistical Analysis

The accuracy of estimation of soil total N was evaluated by the magnitude of determination
coefficient obtained by linear regression analysis. The regression line obtained from each farm was
compared with that obtained from the nationwide analysis [9] by the analysis of covariance (ANCOVA).
Comparability of EC (H2O2) with the original method using the Showa oxydol was evaluated by the
Student’s t-test and the correlation analysis using the data of all samples (n = 136). These statistical
analyses were performed using Microsoft Office Excel 2010 and Ekuseru–Toukei 2012 (Social Survey
Research Information Co., Ltd., Tokyo, Japan).
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3. Results

3.1. Farm-Scale Variations in Total N in Surface Paddy Soils

Table 3 shows the descriptive statistics of the total N content in surface paddy soils. Compared to
the national averages in Japan (about 2.3 g kg−1 [9,25]), the average total N content was lower at farms
on non-volcanic ash soils (Kizu and Kyoto) and higher at farms on volcanic ash soils (Kawatabi and
Moka). The content at Kizu was lowest, probably because the paddy fields in Kizu were constructed in
2016 and had not been used for rice production before we collected samples in April 2017. On the
other hand, the high total N contents in Kawatabi and Moka would be due to the predominance of
dark-colored organic matter stabilized by active Al and Fe. This is one of the most striking features
of volcanic ash soils, by which the content of organic matter in volcanic ash soils has been estimated
visually from the Munsell value (lightness) and chroma (vividness) [20]. The coefficients of variation
(CV) observed at farm scale were smaller than the national-scale CV values reported previously (45–50%
in Table 3). Nevertheless, farm-scale variations in soil total N were detectable at all sites, suggesting
that farm-scale evaluation of soil total N may be useful for site-specific fertilizer management [26].

Table 3. Descriptive statistics of the soil total N content (g kg−1) at each farm.

Site (No. of Samples) Average Maximum Minimum CV (%)

Kizu (89) 1.09 1.41 0.76 11.8
Kyoto (16) 2.00 2.72 1.58 15.5

Kawatabi (18) 3.10 4.61 2.21 21.3
Moka (13) 6.24 7.08 5.45 8.0

Nationwide (83) a 2.24 6.32 0.75 49.0
Nationwide (2750) b 2.39 no data no data 47.3

a, Surface paddy soils collected throughout Japan [9]. b, Surface paddy soils collected throughout Japan [25].

3.2. Accuracy of Estimation of Total N Content

Figure 4 shows the relationship between EC (H2O2) and total N content at farm scale.
The determination coefficient was statistically significant when all farm-scale samples were included
(r2 = 0.70). However, the Kizu samples were plotted below the regression line fitted to the nationwide
data, whereas the samples from the other three farms, especially Moka, were plotted above the regression
line. The Moka samples were plotted outside of the prediction interval at 95% for non-volcanic ash
soils at national scale. Thus, the y-intercept of the regression line fitted to the data from each farm,
especially Moka, differed significantly from that obtained for the non-volcanic ash soils at national
scale (Table 4). The slope of the regression line also varied considerably from 2.28 (Kizu) to 4.51 (Moka)
(Table 4). Within each farm, however, the relationship was significantly positive at all sites, including
Kawatabi and Moka that were classified as volcanic ash soils (Figure 4). This result was contrasting to
our previous results, where we found no relationship for 11 volcanic ash soils collected from different
farms (r2 = 0.00; Moritsuka et al. [9]).

These results suggest that the relationship between EC (H2O2) and total N content is influenced
by several factors, including the presence of cations other than NH4

+ in the H2O2 extracts and
the degree of mineralization of soil organic N during H2O2 extraction. We therefore evaluated
the NH4

+ concentration in the H2O2 extracts and calculated the H2O2-mineralizable organic N
content in the samples. Then, EC (H2O2) values were significantly and positively correlated with the
H2O2-mineralizable organic N content at all farms (Figure 5), suggesting that NH4

+ was the dominant
cation in the H2O2 extracts.
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Table 4. Slope and y-intercept of the regression lines obtained for the relationship between EC (H2O2)
and total N content at each farm and at national scale (Figure 4).

Site Slope y-Intercept

Kizu 2.28 0.00 **
Kyoto 4.29 0.13 **

Kawatabi 4.43 −0.01 **
Moka 4.51 2.80 **

Japan (nationwide) 2.90 0.09

The slopes at farm scale were not significantly different from the slope of the nationwide samples excluding volcanic
ash soils (Japan (nationwide)). ** indicates the significant difference from Japan (nationwide) at p < 0.01 (ANCOVA).
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On the other hand, the proportion of H2O2-mineralizable organic N in total N varied considerably
among the farms (Figure 6). The average percentage was 78.8% at Kizu but was less than 50% at
the other farms (Kawatabi, 48.1%; Kyoto, 37.9%; and Moka, 22.0%). Compared to the percentages
obtained from the nationwide samples, the average percentage of Kizu was similar to the average of
the non-volcanic ash soils, whereas the average percentages of the other farms were similar to the
average of the volcanic ash soils. Although the percentages differed across farms, within each farm,
CV values were less than 20% and lower than the CV for nationwide samples. Thus, the proportion of
soil organic N mineralized was relatively constant within each farm. This within-farm consistency
must have contributed to the significant positive relationships between EC (H2O2) and total N content
as well as to the different slopes of the regression line at farm scale (Figure 4, Table 4).
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national-scale samples are cited from [9]. The horizontal line in each box represents the median.
The lower and upper limits of each box are the 25th and 75th percentiles, and the lower and upper
whiskers represent the 10th and 90th percentiles. The values below the box plot indicate the CV values
for each group.

3.3. Comparability of Commercially Available H2O2 Solutions

The data reported in the above sections were obtained with the original method using the Showa
oxydol containing phenacetin as a stabilizer (Table 2). The EC values of the tested H2O2 solutions
varied widely (Table 5). EC of the analytical grade H2O2 (Wako, 30%) was very low (0.007 mS cm−1),
close to that of distilled water, whereas the EC values of the six commercial H2O2 ranged from less
than 0.05 to 1.4 mS cm−1. The Na concentration of the solutions was positively correlated with EC,
suggesting that Na-bearing stabilizers such as sodium benzoate (AGA, Table 2) and sodium phosphate
increased the EC values of some commercial products.

Table 6 summarizes the comparability of EC (H2O2) values obtained with the H2O2 solutions
tested. The average EC (H2O2) values of soil extracts obtained with Kozakai, Swan, and Wako (6%)
did not differ significantly from the Showa value. On the other hand, the average EC (H2O2) values
obtained with Essential Oxygen and AGA were much higher than the Showa value, reflecting the high
EC of the original solutions (Table 5). The average EC (H2O2) obtained with Essential Oxygen was
lower than the EC of the solution before soil extraction (Tables 5 and 6). The correlation coefficients
with Showa were significantly positive for all the H2O2 solutions except Essential Oxygen.

Taken together, the results obtained with Kozakai, Swan, and Wako (6%) were considered most
comparable to the Showa results. The results obtained with Kenei and Wako (3%) were also close to
the Showa results, although their average EC (H2O2) values were slightly lower than that of Showa.
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Table 5. EC values and Na concentrations of the different H2O2 solutions used.

Type of H2O2 EC (mS cm−1) Na (mg L−1)

Wako (30%) 0.010 0.10
Showa 0.029 0.51
Kenei 0.050 0.29

Kozakai 0.026 0.54
Swan 0.19 33.2

Essential Oxygen 1.40 321.6
AGA 0.55 165.5

Table 6. Comparability of EC (H2O2) values obtained by using different H2O2 solutions.

Type of H2O2 Average EC (H2O2) (mS cm−1) R with Showa Comparability with Showa

Showa 0.53 - -
Kenei 0.50 * 0.99 high

Kozakai 0.55 0.92 very high
Swan 0.53 0.95 very high

Essential Oxygen 1.20 ** −0.73 low
AGA 0.98 ** 0.95 medium

Wako (3%) 0.49 * 0.94 high
Wako (6%) 0.51 0.90 very high

* and ** indicate significant differences from the value obtained with Showa at p < 0.05 and p < 0.01, respectively
(t-test). The correlation coefficient significantly positive at 1% level was 0.23 (n = 136).

3.4. Comparing the Estimation Accuracy between the Oxydol Method and Other Methods

Figure 7 shows the relationship between the L* value (lightness) of finely-ground samples and
total N content at farm scale. Almost all samples (132 out of 136) were within the prediction interval of
non-volcanic ash soils at national scale, and the determination coefficient obtained from all samples
was high (r2 = 0.82). At farm scale, however, the relationship was statistically significant only at Kizu.
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Figure 7. Relationship between the L* value of finely-ground samples and total N content at farm
scale. The solid line in the figure shows the regression line obtained from the nationwide samples
(n = 147) [20], and the broken lines indicate the prediction interval at 95% confidence. ** indicates
statistical significance of the determination coefficient at p < 0.01.

Similar results were obtained in the relationship between POXC content and total N content.
The determination coefficient was very high when all samples were included (r2 = 0.90), whereas it
ranged from 0.25 to 0.62 at farm scale (Figure 8). The percentage of POXC in total C ranged from 1.2%
to 5.1%, suggesting that the amount of soil organic matter decomposed by the POXC method was
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much smaller than the amount decomposed by the oxydol method (Figure 6). These results imply that
measurements of soil lightness (L* value) and POXC can be useful for estimating the total N content at
national scale but not so much at farm scale.
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Figure 8. Relationship between POXC (potassium permanganate-oxidizable organic C) content and
total N content at farm scale. ** and * indicate statistical significance of the determination coefficients at
p < 0.01 and p < 0.05, respectively.

4. Discussion

4.1. Merits and Limitations of the Oxydol Method

The overall merit of the oxydol method lies in its simplicity because it was designed for
non-specialists having no access to laboratory facilities. For example, it is easy to purchase a 3% H2O2

solution used for disinfecting minor cuts and abrasions. Filtration of the soil extracts prior to their
measurement is not necessary. A stick-type EC sensor (HI98331 Gro Line Soil Test, Hanna Instruments)
costs less than 200 USD. Except the commercial H2O2 solution, reagents and distilled water are not
necessary for any part of the procedure. It takes only 1–2 min per sample to measure EC (H2O2) [9],
and many samples (e.g., 136 samples in this study) can be handled in a single batch by one person.
The soil extracts can be safely disposed of without special treatment. These features are advantages
over the conventional methods such as the POXC method. Thus, the oxydol method can be used
by farmers as one of the effective decision-support tools for site-specific application of N fertilizer
to paddy fields. Moreover, the method is potentially useful for scientific investigation, especially
for an initial screening of samples to identify appropriate samples prior to detailed analysis by a
conventional method.

On the other hand, the biggest weakness of the oxydol method lies in its limited applicability to
some soils. Mikutta et al. [27] reviewed previous publications and reported that H2O2 is less effective
than sodium hypochlorite and disodium peroxodisulfate for decomposition of soil organic matter.
For example, according to Leifeld and Kögel-Knabner [28], the H2O2 treatment used for soil texture
analysis could not remove 15–30% of the N from the solid phase of 20-µm sieved agricultural soils due
to the presence of organic C resistant to the H2O2 treatment (6–17%) as well as NH4

+ fixed strongly in
2:1 type clay minerals. In our case, the percentage of H2O2-mineralizable organic N in total N was
relatively low for volcanic ash soils (Figure 6), and this is probably because of the stabilization of
soil organic matter with active Al derived from non-crystalline clay minerals, such as allophane and
imogolite, in volcanic ash soil. Furthermore, for soils containing manganese oxides and alkaline soils
containing carbonates, less than 30% of the organic matter might be decomposed because the H2O2

itself would be rapidly decomposed to water and oxygen [27]. Thus, the applicability of the oxydol
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method is limited to neutral to acidic soils that are not rich in manganese oxides and highly stabilized
organic matter.

The EC (H2O2) value can also be influenced by the presence of cations other than NH4
+. In a

previous study, we measured the concentration of cations in the H2O2 extracts of 83 samples collected
at national scale. Then, the determination coefficient between EC (H2O2) and NH4

+ (r2 = 0.83) was
much higher than that between EC (H2O2) and other cations (Ca2+, Mg2+, K+, or Na+) (r2 < 0.4) [9].
For the samples analyzed in this study, the EC (1:5 w/v) values of the Kizu samples were relatively high
(Table 1), but the EC (1:20 w/v) measured at the beginning of the H2O2 extraction (0.04 mS cm−1 on
average) was much lower than the EC (H2O2) value (0.48 mS cm−1 on average). These results suggest
that, as far as surface paddy soils in Japan are concerned, the NH4

+ produced by the H2O2 extraction
is a primary factor affecting EC (H2O2) (Figure 5).

From a technical aspect, the oxydol method requires an incubator or an air conditioner to keep
the temperature at 25 ◦C during soil extraction, and the extraction period (40 h) is much longer than
the POXC method [24]. In addition, it is important to select a suitable EC electrode. The EC sensors
used in this study (HI98331 Soil Test EC tester; Handy SC meter TCX-999i with CX90CS) did not cause
the H2O2 to decompose. In contrast, a platinum-black electrode attached to a conventional EC sensor
causes rapid decomposition of H2O2 into water and oxygen, and the oxygen bubbles on the electrode
surface may decrease the measured EC (H2O2) values. In this study, when the EC of the H2O2 solutions
was measured with a conventional EC sensor (ES-51, Horiba, Ltd., Kyoto, Japan), the EC values were
decreased by the presence of oxygen bubbles to 52–86% of those listed in Table 5.

4.2. Applicability of the Method to Farm-Scale Samples

By examining the similarities and differences between scientists’ and farmers’ evaluation of soil
fertility, Yageta et al. [29] pointed out that scientists and farmers observe soil at different spatial scales,
reflecting different direction of interests. Scientists tend to evaluate soil fertility at regional, national
and global scales based on quantitative soil data, whereas farmers tend to evaluate soil fertility at farm,
field and plot scales based on their local soil experience [29]. As the oxydol method was designed for
non-specialists including farmers, we evaluated the method’s applicability to soil samples collected at
the farm scale.

At all farms examined, soil total N content varied considerably (Table 3), and the EC (H2O2)
was positively correlated with the total N content (Figure 4). These results suggested that the oxydol
method is useful for estimating farm-scale variations in soil total N. The slopes and intercepts of the
regression lines fitted to the farm-scale data were different from those fitted to nationwide data (Table 4).
Thus, site-specific calibration is desirable to improve the estimation accuracy at a particular farm,
especially at farms having volcanic ash soil such as Moka. The POXC method was equally effective at
farm scale (Figure 8), whereas soil lightness (L* value) was significantly correlated with the total N
content only at Kizu (Figure 7). At Kizu, the maximum difference of the L* value among the samples
was only 3.7, which is less than half of the L* value difference between the neighboring color chips in
a Munsell color chart (about 10). Thus, the soil color variations at Kizu were too small to evaluate
visually by using a Munsell color chart.

At farm scale, the determination coefficients between EC (H2O2) and mineralized N were 0.23,
0.40, 0.18, and 0.53 at Kizu, Kyoto, Kawatabi, and Moka, respectively. Although these values were
statistically significant at p < 0.01 except Kawatabi, they were consistently lower than the corresponding
values between EC (H2O2) and total N (Figure 4). This result suggests that the oxydol method is
most suitable for estimating the total N content in soil. Similar results were observed for the samples
collected at national scale. Some of the soil samples analyzed by Moritsuka et al. [9] were also
analyzed by Sano et al. [5]. For such samples collected throughout Japan (n = 31), the determination
coefficient between the EC (H2O2) and soil N properties decreased from 0.64 (for total N) to 0.57 (for
0.33 mol L−1 potassium permanganate-oxidizable organic N) and 0.20 (for 0.067 mol L−1 phosphate
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buffer-extractable organic N). Among the various forms of soil N, total N showed the highest correlation
with EC (H2O2).

4.3. Possibility of Using Different Types of H2O2 Solutions

The sensitivity of the oxydol method depends on how much soil EC increases during the extraction
with 3% H2O2. The minimum scale of the EC sensor used in this study was 0.01 mS cm−1, and the soil
to extractant ratio for oxydol method was set at 1:20 (w/v). Because the EC of ammonium sulfate or
ammonium chloride containing NH4

+ at 100 mgN L−1 is slightly greater than 1 mS cm−1, the minimum
scale for detecting the total N content is estimated to be larger than 0.02 g kg−1, under the assumption
that soil N is fully mineralized to NH4

+ by the H2O2 treatment. In the case of surface paddy soils in
Japan, only 5 of the 83 samples had EC (H2O2) values higher than 1 mS cm−1 [9]. EC (H2O2) values
of the samples analyzed in this study were always lower than 1 mS cm−1. In contrast, the EC of the
3% H2O2 tested was higher than 0.2 mS cm−1 for Essential Oxygen and AGA (Table 5). Accordingly,
EC (H2O2) may not reflect the concentration of NH4

+ in the extracts, if the background EC is increased
by the H2O2 stabilizer (Table 6).

The accuracy of estimation of soil total N is another important issue to consider. The color of soil
extracts differed among the type of H2O2 solution used (Figure S1). In particular, the soil extracts
obtained with Essential Oxygen were much darker than the others, which implies that more soil
organic matter remained undecomposed in the extracts with Essential Oxygen. Except for Essential
Oxygen, EC (H2O2), values obtained with other different solutions were relatively comparable with
each other (Table 6).

Overall, these results suggest that an H2O2 solution with a relatively low EC (<0.2 mS cm−1) can
be effectively used for the oxydol method.

5. Conclusions

The oxydol method was designed to be as simple as possible, so it can be used by non-specialists
having no access to laboratory facilities. In this study, we demonstrated that the EC of commercially
available 3% H2O2 solutions varied widely with the amount and type of stabilizers added, and that
the oxydol method can be useful for estimating the farm-scale variation in soil total N, provided a
less stabilized H2O2 is used for soil extraction. We have so far evaluated the method’s applicability to
paddy soils sampled from Japan, and it would be worth evaluating its applicability to paddy soils in
other countries and to soils under different land use.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/1/40/s1,
Figure S1: Color differences among extracts of the same soil sample treated with different H2O2 solutions. From
left to right, Wako, Showa, Kozakai, Kenei, Swan, Essential Oxygen, and AGA.
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Abstract
Aims Phosphorus (P) deficiency is a major constraint
for rice production in the tropics. Field-specific P
management is key for resource-limited farmers to
increase yields with minimal inputs. We used soil
P fractionation analysis to identify the relevant
factors controlling P uptake and the responses to
P fertilization of rice in flooded and highly weath-
ered soils.
Methods Phytometric pot-based experiments and a
modified Hedley fractionation analysis were repeated
for soils from extensive regions and from geographical-
ly adjacent fields in Madagascar.
Results Large field-to-field variations in indigenous P
supply from soils (total P uptake of rice when P is

omitted) and fertilizer-P recovery efficiencies (increased
P uptake when P is applied) were observed not only for
soils with various geological backgrounds but also for
soils from adjacent fields. Regression models indicated
that the indigenous P supply in soils was largely con-
trolled by readily available inorganic and organic P
pools (r2 = 0.72), whereas fertilizer-P recovery efficien-
cies were controlled by the abundance of oxalate-
extractable aluminum and iron in soils (r2 = 0.81).
Conclusions Spatial heterogeneity even within adjacent
fields leads to benefits from field-specific fertilizer man-
agement based on indigenous P supply from soils and
fertilizer-P recovery efficiencies evaluated by different soil
properties.
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Abbreviations
Alo oxalate-extractable Al
ANOVA Analysis Of Variance
ΔBiomass the difference in biomass of rice plant

between the +NP and +N treatments
Feo oxalate-extractable Fe
ICP Inductively Coupled Plasma
Pi inorganic P in each fraction
Po organic P in each fraction
Pi + o total P in each fraction
ΔP uptake the difference in P uptake of rice plant

between the +NP and +N treatments
SSA Sub-Saharan Africa
TEB Total Exchangeable Bases

Introduction

Reduced availability of phosphorus (P) in soils results in
reduced biomass and grain yield of rice grown in highly
weathered soils (Dogbe et al. 2015; Fageria and Baligar
1997; Koné et al. 2011, 2013). Therefore, improvement of
P availability in tropical weathered soils and enhancement
of P uptake in rice plants is crucial to meet the rising
demand for rice in Sub-Saharan Africa (SSA) (Nziguheba
et al. 2016; Saito et al. 2015b; van Oort et al. 2015).
Tropical weathered soils are typically acidic and rich in
iron (Fe) and aluminum (Al) (hydr)oxides, which result in
a substantial capacity to sorb phosphate (Balemi and
Negisho 2012). These features may partly explain why
the increase of P availability due to the reduced condition
is less expected in highly weathered soils, while P avail-
ability generally tends to be less-limiting for paddy rice
than for upland crops in equivalent soils (Fageria et al.
2011). There is also concern regarding the non-renewable
use of global rock-phosphate reserves (Van Vuuren et al.
2010), and fertilization is usually neither economical nor
readily available to subsistence farmers in SSA
(Nziguheba et al. 2016). Hence, under such circum-
stances, it is necessary for farmers to adopt strategies to
improve the P uptake of rice plants, through 1) selecting a
field with a high indigenous P supply capacity, and/or 2)
increasing fertilizer-P recovery efficiency.

In rice fields, in which soil fertility varies spatially,
site-specific soil management is expected to benefit rice

production (Saito et al. 2015a; Schmitter et al. 2010;
Yanai et al. 2012). This may be particularly true for the
fields of smallholder farmers in SSA, where the re-
sponse to applied nutrients varies over small distances
and is governed mostly by the influence of past man-
agement practices (Kihara et al. 2016; Schut et al. 2018;
Zingore et al. 2011). In addition, our previous studies
indicated that the forms of soil P were important for
determining P availability in the tropics and that soil P
forms can be affected by land management practices as
well as soil properties (Nishigaki et al. 2018; Sugihara
et al. 2012). Therefore, it is necessary to evaluate the
spatial variation of soil P forms in rice fields on a
regional or community scale and to elucidate the re-
sponse of P uptake in rice to the P forms in soils.

The P fractionation method of Hedley et al.
(1982) has been widely used to characterize soil
P forms based on their availability, with the fun-
damental assumption being that extractants of
varying strength estimate P fractions of differing
availability. Nevertheless, P fractions separated by
the same sequential method are not of equal avail-
ability to plants in all soils (Guo et al. 2000), and
rice plants draw P from a continuum of chemically
extracted fractions that are assumed to have differ-
ent plant P availability (Zhang et al. 2006). In
low-input systems, in which fertilizer-P additions
are very low or absent, pools of P that are less
available seem to act as a buffering pool for labile
inorganic P, particularly in highly weathered soils
(Beck and Sanchez 1994; Guo et al. 2000). In
addition, previous studies argued that organic P
may play an important role in supplying available
P in unfertilized soils (George et al. 2018; Guo
et al. 2000; Tiessen et al. 1992). However, little is
known about the significance of these different P
pools in the supply of P to rice plants grown on
weathered soils.

The focus for low-P soils in the tropics is on increas-
ing fertilizer-P recovery efficiency and preventing the
accumulation of recalcitrant soil P (Menezes-Blackburn
et al. 2017). In the normal pH range of agricultural soils
of the tropics, P is mainly bound to Fe- and
Al-(hydr)oxides, with the sorption reactions including
the precipitation of metal phosphates (Haynes and
Mokolobate 2001). Alternatively, it is widely reported
that soluble organic constituents derived from the appli-
cation of organic amendments can enhance P solubility
andmobility, as well as compete with P for sorption sites
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(Chassé and Ohno 2016; Guppy et al. 2005; Yan et al.
2013). It is, therefore, necessary to take into account not
only the soil P forms, but also other soil physicochem-
ical properties that inhibit or enhance P absorption by
rice plants. Thus far, few studies have shown how rice P
uptake is regulated by soil P forms and soil physico-
chemical properties in highly weathered soils.

Relative biomass or nutrient uptake (ratio with the
omission of a target nutrient relative to its full application)
has been used in previous omission trials as an index to
evaluate nutrient deficiency (Kihara et al. 2016; Shehu
et al. 2018). Still, there are debates about this index and
whether it can clearly identify the influential factors with
respect to high P-fixing capacity, the originally high P-
supplying capacity, and deficiencies of other nutrients. In
this study, we aimed to distinguish the indigenous soil P-
supplying capacity and the fertilizer-P recovery efficiency
using different parameters, i.e., total P uptake of rice plants
in the P-omitted treatment and increased P uptake with P
application, respectively. Our objective was, therefore, to
evaluate P uptake of rice plants with special reference to
soil P forms and soil physicochemical properties in trop-
ical weathered soils. Of particular interest was to examine
the variations in P forms in a range of rice-field soils and
to determine the factors that have a substantial effect on P
uptake in rice plants.

Materials and methods

Soil sampling and pot-based experiments

Two sets of pot-based experiments were conducted with
lowland and upland field soils collected from a wide
region of the central highland of Madagascar (n = 35,
Exp. 1) and those collected within a relatively small area
of one village (n = 16, Exp. 2) (Fig. 1). These two sets of
experiments were to confirm the applicability of the re-
sults at the landscape level in soils that have been rather
affected by geological changes and at the field-scale level
in soils rather affected by individual farmers’management
practices. Experimental soils were taken from 0 to 15 cm
depth as composites of four to five cores in each field and
divided into two parts for the pot-based experiments and
soil analysis, respectively. Each of Exp. 1 and Exp. 2 was
conducted in a greenhouse at the Laboratoire des Radio-
Isotopes, University of Antananarivo, in Madagascar
(18°53′56.0^S, 47°33′01.2″E, 1222 m alt.) during Sep-
tember to October 2016 (Exp. 1) and December 2016 to

January 2017 (Exp. 2). The daily mean temperatures
throughout the growing periods ranged from 18.2 to
25.6 °C and from 21.6 to 25.9 °C in Exp. 1 and Exp. 2,
respectively (Watchdog 2475, Spectrum Technologies
Ltd.).

Each of the collected soils was put into a 1-l plastic
pot (13 cm diameter, 15 cm height). Each pot contained
1 kg of air-dried and sieved (4 mm) soil. In each exper-
iment, three sets of different fertilizer treatments were
established with two replicates: 1, Cont (no fertilizer
application); 2, +N (0.2 g pot−1 and 0.3 g pot−1 of N
as NH4NO3 in Exp. 1 and Exp. 2, respectively); 3, +NP
(0.2 g pot−1 and 0.3 g pot−1 of both N as NH4NO3 and
P2O5 as KH2PO4 in Exp. 1 and Exp. 2, respectively).
Potassiumwas applied to all the pots, including theCont
treatment at the rate of 0.2 g pot−1 and 0.3 g pot−1 of
K2O as KCl in Exp. 1 and Exp. 2, respectively. Each
nutrient was uniformly incorporated into soils one day
after being flooded and one day prior to transplanting.
Then, two 20-day-old seedlings of a local rice cultivar,
X265, grown in free-nutrient sand were transplanted to
each pot. The pots were continuously flooded at the
depth of 2–5 cm with distilled water throughout the
growing periods. The weeds were removed manually,
and no specific pest management was required.

Plant analysis

The plants were harvested at the soil surface, 34 days
after transplanting for both Exp. 1 and Exp. 2. Above-
ground biomass was determined after oven drying at
70 °C to a constant weight. Each plant sample was
ground into a fine powder using a high-speed vibrating
samplemill (Model T1–100, Heiko Co. Ltd., Fukushima,
Japan). Then, the plant P concentration was determined
with the molybdate blue method (Murphy and Riley
1962) after dry-ashing at 550 °C for 2 h and digestion
with 0.5 M HCl. The plant P uptake (mg P pot−1) was
calculated as the product of aboveground biomass and P
concentration of plants (total P content).

Soil analysis

The collected soils were air-dried and sieved to 2mm for
subsequent soil analysis. Soil particle size distribution
was determined with the wet-sieving and pipet method
(Gee and Bauder 1986). Soil pH was determined in
deionized water at a soil-to-solution ratio of 1:2.5. Ex-
changeable cations (K+, Na+, Ca2+, and Mg2+) were
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measured following ISRIC protocol (2002), and total
exchangeable base was calculated as the sum of those
four cations. Total carbon (C) and N were quantified
using the dry combustion method with an NC analyzer
(SumigraphNC-220F, SCAS, Japan). Soil samples were
digested in 60% HClO4 following Kuo (1996), and total
P was determined with the molybdovanadate method
(Kitson and Mellon 1944). Extractable Al, Fe, and P
contents were determined with the acid ammonium
oxalate method (Alo, Feo, and Oxalate P, respectively)
as described by Courchesne and Turmel (2008). The
concentrations of Al, Fe, and P in the oxalate extraction
were measured with an inductively coupled plasma
mass spectrometer (ICPE-9000, Shimadzu, Japan).

Soil P was sequentially fractionated using a mod-
ification of the Hedley method (Tiessen and Moir
2007; Sugihara et al. 2012) (Fig. 2). Briefly, 0.5 g of
soil was placed in a 50 mL centrifuge tube and
sequentially extracted with 30 mL of each of the
extractant solutions, which were added in the follow-
ing order: deionized water (deionized water with two
anion-exchange resins in the bicarbonate form; Res-
in-P), 0.5 M NaHCO3 (pH 8.5) (NaHCO3-P), 0.1 M
NaOH (NaOH-P), and 1 M HCl (HCl-P). Each
extraction was performed for 16 h using a horizontal
shaker followed by centrifugation at 2500×g for

20 min at room temperature, and the supernatant
was filtered (5C, ADVANTEC) and the filtrate col-
lected to measure the concentration of inorganic P
(Pi) using the molybdate-ascorbic acid method
(Murphy and Riley 1962) after pH adjustment using
p-nitrophenol. Each total P (Pi + o) in NaHCO3 and
NaOH extracts was determined after digestion with
ammonium persulfate in an autoclave at 103.5 kPa
and 120 °C for 60 min, and the concentration was
determined with the method of Murphy and Riley
(1962). The organic P (Po) was calculated as the
difference between Pi + o and Pi. The difference be-
tween total P in soils and the sum of Pi and Po in
all the extracted fractions was defined as Residual P.

Statistics

Statistical analyses were performed using JMP11 soft-
ware (JMP11.0 Windows, SAS Institute Inc.). First,
two-way analysis of variance (ANOVA) was conducted
to determine the individual and interaction effects of
soils (S) and fertilizer treatments (T) on the above-
ground biomass and total P uptake of rice plants. Sec-
ond, the obtained aboveground biomass and total P
uptake data for both Exp. 1 and Exp. 2 were standard-
ized into the mean value at 0 with the sample variation at

Fig. 1 Map of soil sampling sites. Soils for Exp. 2were collected from the sites in sub-mapA,whereas soils for Exp. 1were from the other sites
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1 to simultaneously handle the results of two experi-
ments grown under different environmental conditions.
Then, a stepwise regression analysis was repeated by
applying the K-fold (K = 5) cross validation to develop
robust models over two experiments that explained the
variations in: 1) total P uptake in the +N treatment as an
index of indigenous soil P-supplying capacity, and 2)
differences in P uptake between the +N and + NP
treatments as an index of fertilizer-P recovery efficiency,
respectively. The candidate explanatory factors included
clay content, total C, N, and P contents, soil pH, Alo,
Feo, Alo + 0.5 Feo, Resin-P, NaHCO3-Pi, NaHCO3-Po,
NaOH-Pi, NaOH-Po, and HCl-P. In the stepwise pro-
cess, the ‘selection’ and ‘removal’ of factors was con-
trolled with an F-value of P < 0.10 at each step. The step
ended when no remaining candidate factors produced an
eligible F-value. Then, a multiple linear regression mod-
el was developed using the selected variables. At the
end, standardized partial regression coefficients were
calculated to assess the effect size of each selected
variable. In addition, a t-test for the simple regression
coefficient was conducted to identify the interrelation-
ship of these soil properties.

Results

Plant biomass and P uptake

Compared with Exp. 1, Exp. 2 yielded higher values for
both aboveground biomass and total P uptake; this was
attributable to the higher temperature and rate of nutrient
application as well as greater amount of solar radiation
during the growing period (Table 1). ANOVA demonstrat-
ed highly significant effects of experimental soil, fertilizer
treatment, and most importantly of their interactions on
aboveground biomass and P uptake for both Exps. 1 and 2.
Consequently, there were large variations in biomass and P
uptake within each experiment. In a comparison of F-
values, the magnitude of variations as affected by different
soils and treatments was almost equivalent between the
two experiments even though the soils for Exp. 2 were
collected from adjacent fields in a small area of one village.

The aboveground biomass in the+N treatment ranged
from 0.20 to 2.01 g pot−1 and 1.38 to 6.40 g pot−1 in Exp.
1 and Exp. 2, respectively (Fig. 3a). The effect of P
application, as measured by the difference in biomass
between the +NP and +N treatments (ΔBiomass), was

Fig. 2 Simple flow chart of the
sequential P extraction according
to a modified Hedley method
(Tiessen andMoir 2007; Sugihara
et al. 2012)
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positive for all soils whereas the increased rate varied
greatly among soils, ranging from 0.08 to 2.33 g pot−1

(Exp. 1) and from 0.40 to 4.72 g pot−1 (Exp. 2). The same
soil-to-soil or field-to-field variations were observed for
the P uptake data in the +N treatment, and P uptake
increased when P was applied (Fig. 3b). The P uptake
without P application (+N treatment) ranged from 0.10 to
2.77 mg P pot−1 (Exp. 1) and 0.95 to 12.97 mg P pot−1

(Exp. 2). The increased P uptake when P was applied
(ΔP uptake; difference between the +NP and +N treat-
ments) ranged from 0.47 to 5.02 mg P pot−1 (Exp. 1) and
from 2.67 to 10.14 mg P pot−1 (Exp. 2). Interestingly,
there were large differences in the response to P applica-
tion, i.e., ΔBiomass and ΔP uptake, even among the

soils that consistently had low biomass production or P
uptake under +N treatment (P omitted).

Soil characteristics, total P and fractionated P

The original soils in Exp. 2 had poor nutrient status in
terms of total C, N, and P compared with the soils in
Exp. 1 (Table 2). Because the soils for Exp. 2 were
collected from a small area within a single community,
the standard deviation values for most soil properties
were smaller in Exp. 2 than Exp. 1. The Alo and Alo +
0.5 Feo values were significantly greater for the soils of
Exp. 1 than those of Exp. 2, whereas Feo was compa-
rable between the experiments.

Table 1 Aboveground biomass and P uptake of rice plants as affected by different soils and fertilizer treatments

Aboveground biomass (g pot−1) Plant P uptake (mg P pot−1)

mean s.d. mean s.d.

Exp. 1 Cont 0.48 c 0.33 0.63 b 0.69

+N 0.75 b 0.48 0.81 b 0.80

+NP 1.89 a 0.57 3.29 a 1.34

Exp. 2 Cont 1.36 c 0.53 1.89 c 1.78

+N 3.37 b 1.25 3.20 b 2.84

+NP 5.60 a 0.64 10.36 a 3.59

ANOVA summary Aboveground biomass Plant P uptake

df SS F-value df SS F-value

Exp. 1 Soil (S) 35 26.1 12.5*** 16 134.2 14.6***

Treatment (T) 2 66.7 556.7*** 2 283.4 538.6***

S × T 70 14.1 3.4*** 32 69.8 3.8***

Exp. 2 Soil (S) 16 31.9 8.7*** 16 428.1 43.5***

Treatment (T) 2 296.3 645.9*** 2 1275.3 1036.2***

S × T 32 23 3.1*** 32 108.3 5.5***

Mean values with different letters indicate significant differences based on Tukey HSD at P < 0.05

s.d., standard deviation (n = 35 and n = 16 for Exp. 1 and Exp. 2, respectively); df, degrees of freedom; SS, sum of squares

***P < 0.001

Fig. 3 Biomass (a) and P uptake
(b) in the +N treatment and their
responses to P application.
ΔBiomass, the difference in
biomass of rice plant between the
+NP and +N treatments; ΔP
uptake, the difference in P uptake
of rice plant between the +NP
and +N treatments
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Total P concentration in all soils ranged from 200 to
3200 mg P kg−1, with a mean value of 960 mg P kg−1

(Fig. 4). The amount of P varied substantially among the
fractions, with the NaOH-Pi value being greatest
(260 mg P kg−1 on average) followed by NaOH-Po
(81 mg P kg−1 on average). The HCl-P was generally
low in most soils (median 8.0 mg P kg−1), but some soils
had quite high HCl-P values that increased with soil pH.
The Resin-P, NaHCO3-Pi, and NaHCO3-Po values were
lower than for the other fractions, namely 12, 19, and
18mg P kg soil−1 on average, respectively. TheOxalate P
in all soils ranged from 49 to 1200 mg P kg soil−1 (mean,
330 mg P kg soil−1). The ratio of the sum of labile P
(Resin-P, NaHCO3-Pi, and NaHCO3-Po) to total P was
smaller in Exp. 2 (4.9%) than Exp. 1 (6.1%). Except for

the NaHCO3-Po fraction, all fractions had a significant
positive correlation with total P (Table 3).

The Alo values correlated significantly with Resin-P,
NaHCO3-Pi, and NaOH-Pi, whereas the Feo values cor-
related only relatively weakly in this respect (Table 3).
The Alo + 0.5 Feo values also correlated significantly
with Resin-P, NaHCO3-Pi, and NaOH-Pi (Table 3). The
amount of Oxalate P clearly corresponded to the total
amount of extractable Pi in all the fractions (TPi) (Fig. 5).

Relationship between responses to fertilizer application
and soil properties

Table 4 presents the results of step-wise regression
analysis for P uptake in the +N treatment and for the

Table 2 Physicochemical properties of soils for pot-based experiments

Exp. 1 Exp. 2 Total

(n = 35) (n = 16) (n = 51)

Total C (g C kg−1) 26 a (11.0) 14 b (5.2) 22 (11.1)

Total N (g N kg−1) 2.0 a (0.8) 1.2 b (0.4) 1.7 (0.8)

Total P (mg P kg−1) 1200 a (720) 540 b (190) 960 (670)

TEB (cmolc kg
−1) 3.4 (3.2) 2.8 (2.4) 3.2 (3.0)

pH (H2O) 5.6 (0.4) 5.6 (0.3) 5.6 (0.4)

Clay (%) 32 (8.2) 31 (10.5) 32 (9.0)

Alo (g Al kg−1) 4.3 a (2.6) 1.4 b (0.5) 3.4 (2.6)

Feo (g Fe kg−1) 8.6 (5.0) 5.8 (4.2) 7.7 (5.0)

Alo + 0.5 Feo (g kg−1) 8.6 a (4.5) 4.3 b (1.8) 7.2 (4.3)

The values given in parentheses are standard deviation. Different letters indicate a significant difference between the experiments (Tukey
test, P < 0.05)

TEB, total exchangeable bases (sum of exchangeable Ca2+ , Mg2+ , Na+ , and K+ ); Alo, oxalate-extractable Al; Feo, oxalate-extractable Fe

Fig. 4 Variation of total
phosphorus and fractionated
phosphorus among soil samples
(n = 51). The cross in each box
represents the mean, the central
vertical bar shows the median, the
box represents the interquartile
range, the whiskers show the
location of the most extreme data
points that are still within a factor
of 1.5 of the upper or lower
quartiles, and the points are values
that fall outside the whiskers
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difference in P uptake (ΔP uptake) between the +N
and +NP treatments using various soil properties. The
Resin-P and NaHCO3-Po were selected as the positive
explanatory variables for P uptake in the +N treatment,
whereas Alo and total P were selected as negative ex-
planatory variables. Using these selected parameters, the
regression model explained 72% of the variation in P
uptake of the +N treatment across Exp. 1 and Exp. 2.
The standardized partial regression coefficients indicat-
ed that the effect size of selected variables decreased in
the order of Resin-P, Alo, NaHCO3-Po, and total P.
Using the same procedure, Alo + 0.5 Feo was selected
as a strong and negative explanatory variable for ΔP
uptake. In addition, total C was selected as a weak and
negative explanatory variable (P = 0.051). The multiple
linear regression analysis of these two variables

explained 81% of the variation in ΔP uptake across
Exp. 1 and Exp. 2.

Discussion

Large field-to-field variations in soil P status
and response of rice to nutrient inputs

Two sets of pot-based experiments confirmed that the
production of irrigated rice—at least in the early growth
stage—is limited by P deficiency in most of the soils in
the central highland of Madagascar. In addition, there
were large field-to-field variations in responses of rice
production or P uptake when P was omitted (+N treat-
ment) and when P was applied (+NP treatment)x

Table 3 Correlation matrix among soil physicochemical properties and fractionated phosphorus

Total P Oxalate
P

Resin-P NaHCO3-
Pi

NaOH-
Pi

HCl-P TPi NaHCO3-
Po

NaOH-
Po

TPo Residual
P

Alo 0.703
**

0.764 ** 0.619
**

0.719 ** 0.857 ** 0.438 0.783
**

0.494 0.714 ** 0.724
**

0.476

Feo 0.552 * 0.700 ** 0.463 0.599 ** 0.502 0.496 0.572 * −0.059 0.425 0.305 0.473

Alo + 0.5Feo 0.733
**

0.854 ** 0.632
**

0.769 ** 0.796 ** 0.544 * 0.792
**

0.259 0.655 ** 0.604
**

0.553 *

pH (H2O) 0.374 0.456 0.342 0.357 0.201 0.618
**

0.418 −0.447 −0.093 −0.090 0.368

Clay −0.145 −0.256 −0.246 −0.188 −0.071 −0.413 −0.237 0.284 0.121 0.139 −0.106
Total C 0.367 0.351 0.227 0.385 0.603 ** −0.049 0.387 0.536 * 0.765 ** 0.766 0.172

Total P 1.000
**

0.874 ** 0.782
**

0.894 ** 0.864 ** 0.742
**

0.930
**

0.189 0.604 ** 0.575 * 0.939 **

Oxalate P 1.000 ** 0.890
**

0.915 ** 0.823 ** 0.837
**

0.950
**

0.194 0.478 0.439 0.724 **

Resin-P 1.000
**

0.888 ** 0.780 ** 0.772
**

0.898
**

0.251 0.331 0.309 0.628 **

NaHCO3-Pi 1.000 ** 0.907 ** 0.710
**

0.953
**

0.276 0.567 * 0.503 0.743 **

NaOH-Pi 1.000 ** 0.510 0.919
**

0.498 0.727 ** 0.704
**

0.666 **

HCl-P 1.000
**

0.807
**

−0.130 0.097 0.060 0.689 **

TPi 1.000
**

0.282 0.542 ** 0.505 0.770 **

NaHCO3-Po 1.000 ** 0.371 0.468 0.003

NaOH-Po 1.000 ** 0.994
**

0.425

TPo 1.000
**

0.403

Residual P 1.000 **

Alo, oxalate-extractable Al; Feo, oxalate-extractable Fe; Oxalate P, oxalate-extractable P; TPi, sum of extracted inorganic P; TPo, sum of
extracted organic P; Residual P, difference between total P in soils and the sum of inorganic and organic P in all the extracted fractions

*P < 0.01, **P < 0.001
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(Table 1, Fig. 3); these large variations in the indigenous
soil P-supplying capacity and fertilizer-P recovery effi-
ciencies were confirmed not only for those soils differ-
ing in geological backgrounds within a particular region
(Exp. 1) but also for soils in adjacent fields in a small
area (Exp. 2) (Table 1). The results corroborate recent
assertion that better information is needed concerning

differences in the response to applied nutrients within
and between fields to effectively increase yields and
returns of inputs for smallholder farmers in SSA (e.g.
Schut et al. 2018).

Phosphorus is generally considered to have less mo-
bility compared with other plant nutrients because of its
strong fixation to the high levels of Fe and Al oxides in
tropical soils. Therefore, soil P status is relatively consis-
tent within a geological background at the landscape
level (Nishigaki et al. 2018). However, our results for
soil P index revealed a substantial variation in total P and
fractionated P despite the inclusion of samples collected
over small distances. Total P was generally high in the
lowland soils compared with the soils collected from
adjacent upland fields supposedly due to the replenish-
ment of sediments in runoff water in the lowland fields.
Yet, large variations in total P were observed even within
lowland soils in a small area (see Supplementary data
sheet). Schmitter et al. (2010) also reported a large spatial
variation in soil physicochemical properties in rice paddy
terraces in Northwest Vietnam. These results support the
importance of site-specific fertilizer management prac-
tices based on differences in soil P status and responses of
rice to P fertilizer. The large variation in soil P status that
we observed in Madagascar could be attributable to land
management practices and pervasive soil erosion on the
sloping topography.

P uptake of rice plants in relation to soil P supply
capacity

The result of the regression analysis revealed that P uptake
of rice without P application was increased by Resin-P
and NaHCO3-Po, indicating that these fractions constitute
a readily available P pool in soils for rice grown under
flooded conditions (Table 4). In other words, the indige-
nous P supply for lowland rice largely relies on Resin-P,
which accounts for merely 1% of total P in soils (Fig. 4).
In addition, our results revealed a quantitative effect of
labile organic P (NaHCO3-Po) on the P uptake values of
rice plants in highly weathered soils. Indeed, previous
studies have emphasized the potential role of organic P
pool as a source of available P in tropical weathered soils
(George et al. 2018; Turner 2006).

The total organic P pool (NaHCO3-Po and NaOH-
Po) in this study was 97 mg P kg−1, representing 10% of
total P. This is comparable with results of a previous
report on soil organic P in rice fields in Madagascar, i.e.,
the Po pool ranged from 6.7% to 29% (Turner 2006).

Table 4 Multiple regression analysis for plant P uptake in the +N
treatment and difference in P uptake between the +NP and +N
treatments

Selected
variable

Partial
regression
coefficient

Standardized partial
regression
coefficient

P uptake in
+N
treatment

Intercept −1.170ns −0.471ns

Resin-P 0.034*** 0.419***

NaHCO3-Po 0.021*** 0.222***

Alo −0.100*** −0.286***

Total P −0.0003* 0.197*

Adjusted R square = 0.72

ΔP uptakea Intercept 1.010ns 0.252ns

Alo + 0.5
Feo

−0.056** −0.244**

Total C −0.158† −0.177†

Adjusted R square = 0.81

a Difference in phosphorus uptake between +NP and + N
treatments

*P < 0.05; **P < 0.01; ***P < 0.001; †P = 0.051; ns, not
significant

Alo, oxalate-extractable Al; Feo, oxalate-extractable Fe

Fig. 5 Relationship between oxalate-extractable P and sum of
extracted inorganic P. footer: Solid line shows best fit from re-
gression analysis, and the broken line shows 1:1 ratio
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Randriamanantsoa et al. (2015) reported that gross or-
ganic P mineralization rates were 0.8 ± 0.5 mg P
kg−1 day−1 and 1.7 ± 0.2 mg P kg−1 day−1 in non-
amended and residue-amended Ferralsols, respectively.
Our results and those of these previous studies also
support the potential role for soil organic P in rice
nutrition at the initial growth stage in tropical soils that
typically have low available inorganic P. On the other
hand, Alo in soils had a negative effect on P uptake of
rice. This is likely attributable to the high sorption
capacity of active Al in soils (Agbenin 2003; Nwoke
et al. 2003). We therefore conclude that the P-supplying
capacity of strongly weathered rice-fields is mainly
controlled by the size of the labile inorganic and organic
P pools and the sorption capacity of the soil matrix.
However, the potential contribution of less-labile P frac-
tions through the root-induced chemical reactions in
rhizosphere soils (Hinsinger 2001) should not be
completely excluded when we consider relatively low
P mobility in highly weathered soils and the mass bal-
ance between P uptakes of rice plants and labile P pools
in rhizosphere soils.

Effect of oxalate-extractable Al, Fe, and P on fertilizer-P
recovery efficiency and P cycling

The result of the regression analysis revealed that the
difference in P uptake between the +NP and +N treat-
ments was strongly controlled by the Alo + 0.5 Feo
(Table 4). This underscores the importance of Al and
Fe (hydr)oxides in regulating fertilizer-P recovery effi-
ciency for lowland rice production in highly weathered
soils. This suggests that the applied P was mainly sorbed
to the active Al and Fe, and hence P availability for plants
decreased. Sugihara et al. (2012) reported that P in fertil-
izer was predominantly fixed by Al and Fe oxides in a
clay-rich maize cropland in Tanzania. Nwoke et al.
(2003) also suggested that oxalate-extractable Al and Fe
can regulate the standard P requirement and P availability
in soils of the West African savanna.

We found that the Alo + 0.5 Feo correlated positively
with each inorganic P fraction, and most highly with
NaHCO3-Pi and NaOH-Pi, suggesting that P in these
labile and less-labile fractions is mainly associated with
the active Al and Fe. Despite the large proportion of
NaOH-Pi in total P (Fig. 4), NaOH-Pi did not contribute
to the P uptake of rice in +N treatment owing to the low
availability of P strongly fixed by the active Al and Fe.
Considering the higher regression coefficients for Alo

than Feo with NaHCO3-Pi and NaOH-Pi, Alo is likely
to be the main controlling factor for those fractions.
Nwoke et al. (2003) suggested that Al plays a greater
role than Fe in removing P from soil solution of the
surface layer because the pH values of soils are in the
range in which P is more likely to react with Al than
with Fe.

It has been reported that the application of organic
matter, such as animal manure, can decrease P sorption
and increase P availability in highly weathered soils
(Azeez and Averbeke 2011; Guppy et al. 2005), owing
to competition between organic matter molecules and P
for the available sorbing sites on soil particles (Chassé and
Ohno 2016). Hence, farmyard manure application, which
is widely used for agricultural lands in the central high-
lands of Madagascar, is indeed and effective management
option for improving the phytoavailability of applied
phosphate in weathered soils. Andriamananjara et al.
(2018) reported that farmyard manure application to
weathered upland soils of Madagascar increases P fertil-
izer recovery efficiency for upland rice.

Our results reveal that the amount of Oxalate P
clearly corresponded to sum of extracted inorganic P
(Fig. 5). This fact leads us to surmise that Oxalate P
represents all the labile and less-labile inorganic P
pools in soils. Most of the P sorbed by active Fe and
Al compounds is slowly released back to the soil
solution, providing service flows for 5 to 10 years
(Sanchez et al. 1997). Agbenin and Goladi (1998)
indicated that Resin-P is attributable to the less-labile
P sources, namely NaOH-Pi and HCl-P, which act as
sinks for fertilizer-P. These results suggest that Oxalate
P can be an index for the evaluation of both labile and
less-labile P pools, namely the moderately active P
pool, which may be involved in the subsequent slow
P cycling in rice croplands (Lookman et al. 1995).
This could account for why many previous studies,
which were mostly conducted using soils with an
abundant labile P pool, have shown that Oxalate P is
poorly effective at predicting P uptake by crops
(Eichler-Löbermann et al. 2007; Nawara et al. 2017).
Interestingly, however, we found a significant correla-
tion between P uptake and Oxalate P in both Exp. 1
(r = 0.75, P < 0.001 in the Cont treatment) and Exp. 2
(r = 0.72, P < 0.01 in the Cont treatment). This is likely
attributable to the fact that less-labile P in tropical
weathered soils is more abundant than in temperate
soils and, therefore, the overall effect of less-labile P is
greater in tropical weathered soils.
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Conclusion

Our experiments successfully extracted the most rele-
vant soil components to determine the indigenous soil P-
supplying capacity and fertilizer-P recovery efficiencies
for rice production. Phosphorus uptake of rice in the
early growth stage is tightly controlled by labile inor-
ganic and organic P pools and active Al and Fe in P-
deficient weathered soils. In addition, a high degree of
variability in rice P uptake in response to fertilizer
treatment and soil characteristics is observed even with-
in a small area. These results provide fundamental in-
formation for developing more effective nutrient man-
agement practices and improving financial returns for
individual fields. Further studies are required to deter-
mine whether the results from our pot-based experi-
ments are applicable to the responses of rice in the field.
To achieve practical field-specific fertilizer manage-
ment, further studies are also needed to reveal how to
increase available P—in both inorganic and organic
forms—and to reduce the activity of Al and Fe oxides
in highly weathered soils.
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Abstract: As a laboratory proximal sensing technique, the capability of visible and near-infrared
(Vis-NIR) diffused reflectance spectroscopy with partial least squares (PLS) regression to determine
soil properties has previously been demonstrated. However, the evaluation of the soil phosphorus
(P) content—a major nutrient constraint for crop production in the tropics—is still a challenging task.
PLS regression with waveband selection can improve the predictive ability of a calibration model,
and a genetic algorithm (GA) has been widely applied as a suitable method for selecting wavebands
in laboratory calibrations. To develop a laboratory-based proximal sensing method, this study
investigated the potential to use GA-PLS regression analyses to estimate oxalate-extractable P in
upland and lowland soils from laboratory Vis-NIR reflectance data. In terms of predictive ability,
GA-PLS regression was compared with iterative stepwise elimination PLS (ISE-PLS) regression and
standard full-spectrum PLS (FS-PLS) regression using soil samples collected in 2015 and 2016 from
the surface of upland and lowland rice fields in Madagascar (n = 103). Overall, the GA-PLS model
using first derivative reflectance (FDR) had the best predictive accuracy (R2 = 0.796) with a good
prediction ability (residual predictive deviation (RPD) = 2.211). Selected wavebands in the GA-PLS
model did not perfectly match wavelengths of previously known absorption features of soil nutrients,
but in most cases, the selected wavebands were within 20 nm of previously known wavelength
regions. Bootstrap procedures (N = 10,000 times) using selected wavebands also confirmed the
improvements in accuracy and robustness of the GA-PLS model compared to those of the ISE-PLS
and FS-PLS models. These results suggest that soil oxalate-extractable P can be predicted from
Vis-NIR spectroscopy and that GA-PLS regression has the advantage of tuning optimum bands for
PLS regression, contributing to a better predictive ability.

Keywords: Madagascar; oxalate-extractable soil P; partial least squares regression; soil fertility;
spectral assessments; waveband selection
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1. Introduction

Phosphorus (P) deficiency is a major constraint for rice production in the tropics [1] because
strongly weathered soils, which cover vast regions of the tropics, contain low concentrations of readily
exchangeable inorganic phosphate [2,3]. In tropical soils, available P can generally be even less due to
strong sorption to aluminium (Al) and iron (Fe) oxides and often limits crop production in low input
agricultural systems [4,5].

In our previous study [6], we examined highly weathered and typical P-deficient soils in the
central highland of Madagascar and found that the P uptake of rice under flooded conditions is related
not only to easily soluble P content but also to the amounts of active Fe and Al, which are bound to
incalcitrant P fractions. Acid ammonium oxalate extraction is a powerful extraction method and covers
both soluble and incalcitrant Fe- and Al-bound P fractions, unlike certain conventional extraction
methods (e.g., the Olsen method) that normally consider only easily soluble P [6,7]. In addition,
recently, Helfenstein et al. [8] revealed that the incalcitrant P fraction (NaOH-extractable inorganic P
pool) turns over in weeks to months, suggesting that the incalcitrant P fraction would potentially play
a significant role as a P source within a cropping season. Rabeharisoa et al. [9] also found the amount
of oxalate-extractable P in soils had a significant correlation with the P concentrations of rice leaves in
farmers’ fields in Madagascar. Therefore, we assumed that oxalate-extractable P reflects bioavailable P
for rice production in the region and applied this assumption in the current study.

Soil P occurs in a variety of chemical forms that differ markedly in their behavior and
bioavailability in the soil environment [6,10]. Our previous study also revealed that these soil P
contents and forms largely varied among neighboring fields. These observations indicate that P
nutrient management for rice production can be further improved by understanding field-to-field
variations in bioavailable P (i.e., oxalate-extractable P) in the tropics. Thus, the development of a rapid
and accurate methodology for evaluating bioavailable P in soils is needed. However, a quantitative
assessment of soil P using standard procedures (e.g., wet chemistry) can often be difficult, especially in
spatially heterogeneous assessments that require numerous soil samples, a process that is costly and
time consuming.

To overcome the issues with the standard procedure, laboratory visible and near-infrared (Vis-NIR)
spectroscopy has been widely adopted for soil studies as a non-destructive, rapid and reproducible
analytical method and has been used for the simultaneous prediction of a variety of primary and
secondary soil attributes [11]. Vis-NIR spectroscopy is an analytical technique that characterizes
materials according to their reflectance at light absorption in the visible (400–700 nm) and NIR
(700–2,500 nm) regions. These techniques measure the radiation absorbed by various bonds of O-H,
C-H, N-H, C=O, C-N, N-H, or C=C, resulting in bending, twisting, stretching, or scissoring [11,12].
Spectroscopy has been used in conjunction with chemometric (multivariate regression) analyses to
relate soil spectra to soil attributes, such as carbon content, clay and iron oxide [13–15].

Although partial least squares (PLS) regression is the most commonly used approach for soil
spectral analyses, waveband selection can refine the performance of a PLS analysis [16–18]. The PLS
regression method combines the most useful information from hundreds of wavebands into the
first several PLS factors (or latent variables), whereas the less important factors might include
background effects [19,20]. Thus, many techniques for selecting wavebands or wavelength regions have
been developed, such as iterative stepwise elimination-PLS (ISE-PLS) regression [21], uninformative
variable elimination-PLS (UVE-PLS) regression [22], competitive adaptive reweighted sampling (CARS)
regression [23], interval PLS (iPLS) regression [24], moving window-PLS (MW-PLS) regression [25],
and genetic algorithm-PLS (GA-PLS) regression [26]. In our previous study [18], removal of the
redundant wavebands by ISE-PLS regression greatly improved the estimation of total carbon (TC) and
total nitrogen (TN) in paddy soils. Among the waveband selection methods, GA-PLS regression has
been used as a suitable method in chemometrics [27]. Leardi and González [28] demonstrated that the
GA-PLS method, after suitable modifications, produces more interpretable results because the selected
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wavelengths are less dispersed in this method than in other methods. Several studies have reported
that the GA-PLS method obtained a better solution than did the ISE-PLS method [29–31].

To date, there have been several attempts to predict soil P using Vis-NIR spectroscopy at field
and laboratory scales with the standard full-spectrum PLS (FS-PLS) method [32–34]. However,
the predictive accuracy was relatively low compared with that for other macro-nutrients (e.g., nitrogen,
carbon), and waveband selection coupled with PLS regression analysis has not been evaluated.
The objective of this study was to develop a laboratory-based proximal sensing method based on
an empirical relationship between soil P and Vis-NIR spectral characteristics using PLS analyses.
To improve the predictive ability, we investigated the potential to use GA-PLS regression analyses to
estimate the soil P status of upland and lowland soils from laboratory Vis-NIR reflectance data. Here,
we targeted amounts of oxalate-extractable P based on the above-noted field observations regarding
its relative importance for rice production and on P uptake as noted by Rabeharisoa et al. [9] and
Nishigaki et al. [6]. The predictive ability of the GA-PLS method was compared with the predictive
abilities of ISE-PLS and FS-PLS methods using first derivative reflectance (FDR) spectra data. Rapid
measurements of soil P status at low cost and with less soil sample preparation could be an application
of the present study instead of the routine chemical methods.

2. Materials and Methods

2.1. Study Site and Soil Sampling and Chemical Analyses

The field survey was conducted in the central highland of Madagascar (Figure 1). This region
has a subtropical climate with an altitude of 1000–1500 m above sea level. The mean temperature is
14–17◦C in winter and 20–22◦C in summer. The average annual rainfall is 1100 mm (>80% occurs in
November–March) [35]. The area is dominated by inherently nutrient-poor soil types that are mainly
classified into Ferralsols and Acrisols [36] or into Oxisols of semiarid to humid climates [37].
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Figure 1. Location of studied regions and soil sampling points. Source in (a), (b) and (d): Esri,
DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and
the GIS User Community. Source in (c) and (e): The ASTER GDEM version 2 data were downloaded
via EarthExplore (https://earthexplorer.usgs.gov/).

In 2015 and 2016, soil sampling was conducted in 103 rice fields—the major production system in
the region — with 63 upland and 40 lowland fields under various management practices. The sampling
positions were recorded with a handheld GPS (Colorado 300, Garmin, Ltd., Kansas, TX, USA). Surface
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soil samples were collected at a 0–10 cm depth as composites of three to four cores in each field.
The spatial distributions of soil sampling points were plotted on the maps using satellite images
(Figure 1a,b,d) and ASTER global digital elevation model (GDEM) version 2 data (Figure 1c,e), which
is a product of METI and NASA.

In the laboratory, soil samples were air dried for 14 days and sieved to <2 mm. Soil P was extracted
using the acid ammonium oxalate method as described by Schwertmann [38], and the concentration of
P in the oxalate extraction was analyzed using the malachite green colorimetric method [39].

2.2. Vis-NIR Diffuse Reflectance Measurement

Laboratory soil reflectance measurements were conducted in a dark room at the Japan
International Research Center for Agricultural Sciences (JIRCAS), Japan, on July 31–August 1, 2017.
Soil samples were scanned by a portable spectroradiometer (FieldSpec 4 Hi-Res, Analytical Spectral
Devices (ASD) Inc., Longmont, CO, USA) and an ASD contact probe. The ASD FieldSpec measures
spectral reflectance in the 350–2500 nm wavelength region, which has one silicon array (350–1000 nm)
and two indium gallium arsenide (InGaAs) detectors (1000–1800 and 1800–2500 nm). The spectral
sampling interval was 1.4 nm in the 350–1000 nm range and 1.1 nm in the 1001–2500 nm range.
The spectral resolution (full-width-half-maximum; FWHM) was 3 nm in the 350–1000 nm range and
6 nm in the 1000–2500 nm range, which were calculated to 1 nm resolution wavelengths for output data
using the cubic spline interpolation function in ASD software (RS3 for Windows; ASD Inc., Longmont,
CO, USA).

The contact probe light source (halogen lamp) was aligned at 12◦ to the probe body, ensuring
illumination at a fixed angle without the influence of ambient light. The fiber optic cable of the ASD
FieldSpec was attached to the contact probe at a fixed measurement angle of 35◦. The sensed spot
area had a diameter of ~1.1 cm with a field of view of 1.33 cm2. A Spectralon (Labsphere Inc., Sutton,
NH, USA) reference panel (white reference) was used to optimize the ASD instrument prior to taking
Vis-NIR reflectance measurements for each sample.

Bulk soil samples were spread in optical-glass Petri dishes that were 85 mm in diameter and
pressed to form a layer ~19 mm thick. The soil surfaces were scanned 25 times with five replications
for the soil samples, and the spectral readings were averaged.

2.3. Overview of Data Processing

In this section, an overview of the data processing process is described using a flowchart in
Figure 2 that shows a general overview of the methodology. In this study, two types of validations
were performed for the models: (i) a leave-one-out cross-validation (LOO-CV) procedure based on
whole data sets (n = 103) and (ii) a modified bootstrap procedure based on an independent test data
set, which was similar to our previous study [30]. Here, the LOO-CV procedure included waveband
selection in ISE-PLS and GA-PLS regression analyses, while the bootstrap procedure was performed
using the selected wavebands; the best GA-PLS model and final wavebands from five GA runs were
justified by the residual predictive values (RPD). More details on the predictive abilities are described
in Section 2.9.
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All data handling and linear regression analyses were performed using PLS_Toolbox version 8.6
(Eigenvector Research Inc., Manson, WA, USA) in MATLAB software ver. 9.3 (MathWorks Sherborn,
MA, USA).

2.4. Preprocessing of Spectral Data

Spectral data in both edge wavelength regions (350–399 nm and 2401–2500 nm) were eliminated
because of low signal-to-noise ratios in the instrument. Thus, a total of 2001 spectral bands between
400 nm and 2400 nm were used for the analyses.

FDR spectra were used to reduce baseline variation and enhance spectral features [40]. The FDR was
calculated using the Savitzky-Golay smoothing filter [41]. A third-order, 15-band moving polynomial
was fitted according to the original reflectance signatures. The parameters of this polynomial were
subsequently used to calculate the derivative at the center waveband of the moving spline window.
In addition, a standard normal variate transform (SNV) was employed to reduce the particle size
effect [42].

To detect outliers, a principal component analysis was performed on spectral data for calculating
the Mahalanobis distance H, and samples with H > 3 were eliminated as outliers. As a result, three
samples were considered outliers, leaving 103 samples for further analyses.

2.5. Standard Full-Spectrum Partial Least Squares (FS-PLS) Regression

PLS regression analyses were performed to estimate soil parameters using reflectance and FDR
data sets (n = 103). The standard FS-PLS regression equation was calculated as follows:

y = β1x1 + β2x2 + . . . + βixi + ε (1)

where the response variable y is a vector of the soil oxalate-extractable P; the predictor variables x1 to
xi are surface reflectance or FDR values for spectral bands 1 to i (400, 401, . . . , 2400 nm), respectively;
β1 to βi are the estimated weighted regression coefficients; and ε is the error vector. The latent variables
were introduced to simplify the relationship between response variables and predictor variables.
To determine the optimal number of latent variables (NLV), a LOO-CV was performed to avoid
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over-fitting of the model and was based on the minimum value of the root mean squared error of
cross-validation (RMSECV). The RMSECV was calculated as follows:

RMSECV =

√
∑n

i=1
(
yi − yp

)2

n
(2)

where yi and yp represent the respective measured and predicted soil parameters for sample i, and n is
the number of samples in the data sets (n = 103).

2.6. Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression

ISE-PLS is a PLS model that incorporates a waveband elimination algorithm. The ISE method
eliminates noisy variables and selects useful predictors. When PLS models include large numbers of
redundant variables or outliers, the models’ predictive abilities may perform poorly, while the ISE
method can overcome such problems. Performance depends on the importance of predictors (zi),
described as follows:

zi =
|βi|si

∑I
i=1|βi|si

(3)

where si is the standard deviation, and βi is the regression coefficient; both si and βi correspond to the
predictor variable of the waveband i.

Initially, all available wavebands (2001 bands, 400–2400 nm) are used to develop the PLS regression
model. Then, to create a scope in which useless predictor variables are removed and predictive ability
is improved, each predictor zi is evaluated, and the less informative wavebands are eliminated.
Subsequently, the PLS model is re-calibrated with the remaining predictors [43]. The model-building
procedure is repeated until the final model is calibrated with the maximum predictive ability.

2.7. Genetic Algorithm Partial Least Squares (GA-PLS) Regression

The GA is an efficient numerical optimization method based on genetic principles and natural
selection [44]. In a GA, a population of individuals (or chromosomes) is created automatically and
typically stored as binary strings in a computer memory, which means that a binary integer “zero”
or “one” represent one gene. Then, each chromosome consists of sequences of a “gene” or “bits.”
During this evolutionary computation, one or more bits are swapped within or between individuals
by computer operations using mechanisms of natural variation, selection and inheritance. Briefly,
selection, crossover and mutation form the core of GA, and these three operations are applied to the
initial populations to generate a new population. This process is repeated until a pre-defined number
of generations is propagated.

Although GA is well suited for solving variable subset selection problems [45], the major
risk associated with using GA-PLS regression is over-fitting due to the large number of variables
(wavebands) used in the Vis-NIR spectroscopy data set. To minimize the risk of over-fitting, Leardi [27]
developed the GA program used in the present study. The GA program was designed to contain
the following features: (i) The parameters are set with the highest possible elitism, a very limited
population size and a relatively high mutation rate to ensure a rapid response increase and to find
a good solution very early in the process. Here, elitism means to encourage the propagation of the best
band repressors between generations without being disrupted by crossover or mutation so that the
search speed of the program can be improved. (ii) The final model is determined via 100 independent
and short GA runs. (iii) A weighted average of the selection frequency of the variables from the starting
run to the previous runs is used to describe the current frequency of selection of the variables. Thus,
each run is able to ‘learn’ information from the previous runs. (iv) A moving average (window size 3)
is applied to the selection of the variables to take into account high spectral correlations and to ensure
that highly correlated spectral bands are selected together.
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Before the GA run, the suitability of our data set for applying GA band selection was assessed
by a fitness function [27,46]. In the present study, five GA runs were performed on the FDR data set
because each GA-PLS gave a slightly different model. The parameters and their conditions (Table 1)
were taken from previous studies [27,30,31,46].

Table 1. Parameter conditions of the genetic algorithms-partial least squares (GA-PLS) regression.

Parameter Condition

Population size 30 chromosomes
Regression method PLS

Response
Cross-validated percent explained variance (five deletion

group; the number of components is determined by
cross-validation)

Maximum number of variables selected
for the same chromosome 30

Probability of mutation 1%
Maximum number of latent variables 15

Number of runs 100
Window size for smoothing 3

2.8. Predictive Ability of the PLS Models

To evaluate the predictive ability of the FS-PLS, ISE-PLS and GA-PLS models, two types of
validation were used for the models (see Figure 2): (i) a waveband selection with a LOO-CV procedure
based on whole data sets (n = 103), including waveband selection in ISE-PLS and GA-PLS models,
and (ii) a modified bootstrap procedure based on an independent test data set using the selected
wavebands from (i).

In waveband selections with the LOO-CV procedure, each sample is estimated using the remaining
samples. This process means that for each variant, we developed 103 individual models, which were
constructed with data from 102 observations. The calibration model was then used to predict the
observation that was left out. As the predicted samples were not the same as the samples used to
establish the models, the RMSECV was used as the accuracy indicator of the model in predicting
unknown samples. The predictive abilities of the PLS models were assessed by calculating the
coefficient of determination (R2), RMSECV and the residual predictive deviation (RPD) using a LOO-CV.
High R2 and low RMSECV values indicate the best model for predicting the soil parameters. The RPD
has been defined as the ratio of standard deviation (SD) of reference data for predicting RMSECV.
For the performance ability of calibration models, an RPD of 3 has been suggested for agriculture
applications, while RPD values between 2 and 3 indicate a model with good prediction ability;
1.5 < RPD < 2 is an intermediate model needing some improvement; and an RPD < 1.5 indicates that
the model has poor prediction ability.

In the bootstrap procedure, the data were divided randomly into training (n = 69) and test (n = 34)
data sets with replacement for N = 10,000 times. In each process, a PLS regression model was developed
using the training data set. Here, ISE-PLS and GA-PLS were developed using selected wavebands in
the LOO-CV procedure. The PLS model was then used to predict soil oxalate-extractable P in the test
data set. The robustness of the calibration models was evaluated by the mean (±SD) values of R2 and
the root mean squares error of prediction (RMSEP) from 10,000 runs in the test data set. The RMSEP
was calculated as follows:

RMSEP =

√√√√∑n
i=1

(
yv

i − yv
p

)2

n
(4)

where yv
i and yv

p are the measured and predicted soil parameters, respectively, for sample i in the test
data set.

82



Remote Sens. 2019, 11, 506 8 of 18

2.9. Assessing Significant Wavelengths

To assess the importance of the wavelengths in the FS-PLS calibration, the variable importance in
the projection (VIP) [47,48] was used and referred to the selected wavelength regions from the ISE-PLS
and GA-PLS models. The VIP score provides a summary of the importance of an x variable (waveband)
for an observed y variable and is calculated using the following equation:

VIPk(a) = m ∑
a

W2
ak

(
SSYa

SSYt

)
(5)

where VIPk(a) is the importance of the kth predictor variable based on a model with a factors, Wak is the
corresponding loading weight of the kth variable in the ath PLS regression factor, SSYa is the explained
sum of squares of y obtained from a PLS regression model with a factors, SSYt is the total sum of
squares of y, and m is the total number of predictor variables. A high VIP score (>1) indicates an
important x variable (waveband) [47,49].

3. Results and Discussion

3.1. A Wide Range of Soil Oxalate-Extractable P Contents in Upland and Lowland Rice Fields

The descriptive statistics of soil oxalate-extractable P in the whole (n = 103) upland (n = 63) and
lowland (n = 40) data sets are shown in Figure 3, and Table 2 summarizes the minimum, maximum,
median, mean, SD and coefficients of variation (CV) values. The soil oxalate-extractable P values in
the upland and lowland data sets ranged between 30.73–1225.16 mg kg−1 and 30.73–826.64 mg kg−1,
respectively. The mean value of the upland data set (588.74 mg kg−1) showed significantly higher
values than that of the lowland data set (319.41 mg P kg−1) (p < 0.001, two sample t-test). The
lower values in soil oxalate-extractable P is probably because of little fertilizer input in lowland
fields compared to upland fields in the central highlands of Madagascar. Similarly, the soil TC
was significantly higher (p < 0.05) in lowland soils due to the anaerobic condition, while there
was no significant difference in soil clay contents (Figure S1). It is, therefore, suggested that soil
physicochemical properties were inherently not different between upland and lowland soils as they
were collected nearby fields, and have been changed by the agricultural practices, i.e., fertilization
and flooding.
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Table 2. Descriptive statistics of soil oxalate-extractable P data. n, number of samples; SD, standard
deviation; CV, coefficient of variation (SD/mean × 100%).

Data Set n Min Max Median Mean SD CV

Whole 103 30.73 1225.16 496.84 484.15 319.10 65.91

Upland 63 30.78 1225.16 609.23 588.74 324.93 55.70

Lowland 40 30.73 826.64 245.79 319.41 223.26 69.89

Our whole data set (upland + lowland) covered a wide range of variations in oxalate-extractable P
content. The mean (and SD) values of soil oxalate-extractable P were 484.15 mg kg−1 (±319.10 mg kg−1),
with a range of 30.73–1225.16 mg kg−1, and CV = 65.91%. The SD and range of the sample affect the
accuracy of soil property predictions using Vis-NIR spectroscopy [34]. In the present study, the range
of soil oxalate-extractable P values was considered sufficiently large to develop the calibration models
using PLS regression analyses. Our data set also demonstrated that the oxalate-extractable P content had
a good correlation with the total P content in soils [6].

3.2. Soil Spectral Response and Its Correlation to Oxalate-Extractable P in Soil

Figure 4 shows the original reflectance spectra, FDR and Pearson’s correlation coefficient (r)
values between soil oxalate-extractable P content and reflectance and FDR spectra at each waveband.
Large variations in the reflectance spectra were obtained from heterogeneous soil samples, which
were collected from upland and lowland soils under various rice-based cropping systems. In general,
soils from different fields show variations in the absorbance at wavelengths associated with iron oxides
(400–500 nm), clay minerals (OH bond: 1400 and 1900 nm, Al-OH bond: 2200 nm) and organic matter
(CH bond: 2300–2400 nm) in soil [50].
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Soil reflectance in visible regions (400–700 nm) is primarily associated with absorption in minerals
containing Fe [51–53] and organic matter [54,55]. NIR regions (700–2500 nm) are dominated by
absorption related to water (1400 and 1900 nm), minerals (1300–1400, 1800–1900, and 2200–2500 nm)
and organic matter (1100, 1600, 1700–1800, 2000, and 2200–2400 nm) [56]. Carbonates also have weak
absorption peaks in the NIR region [57]. These absorptions in the NIR region are due to overtone
and combination bands primarily of C-H, N-H and O-H groups with fundamental bands related
to molecular stretching that occurs in the mid-infrared (MIR) spectral region. However, there is
no specific absorption by P in the Vis-NIR region, and thus, differences in the shape of reflectance
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due to P are still in the process of being determined [33]. In the reflectance spectra of this study,
oxalate-extractable P had a positive correlation with the wavelength between the red and shorter range
NIR regions (600–1300 nm), while oxalate-extractable P had negative correlations in the blue–green
region (400–580 nm) and NIR regions (1420–2100 nm). In the FDR spectra, positive correlations were
found in the green–red region (508–676 nm) with some peaks in the NIR region (1000, 1410 and
2133 nm), while negative correlations were observed in the 800–1850 nm region with some peaks in
the 2200–2400 nm region.

3.3. Selected Wavebands from ISE-PLS and GA-PLS Models

Selected wavebands from ISE-PLS analysis and five GA-PLS runs using FDR spectra to estimate
soil oxalate-extractable P contents are shown in Figure 5, with the regression coefficient and VIP
score in the FS-PLS model as information to assist in considering the importance of the selected
wavelengths. In comparison to the ISE-PLS model, the GA-PLS model selected a wider range of
spectral wavelength regions from within the visible (400–699 nm) and NIR (700–2400 nm) spectra,
with slightly different regions for the five runs. The commonly selected regions from the five GA-PLS
runs (red bar in Figure 5) were 454–457, 506–508, 517, 518, 660, 1732, 1847–1849, 1957–1961, 2105,
2107, 2109, and 2312 nm. These wavelengths did not match those identified for soil characteristics
in previous studies (Table 3); in most cases, the wavelengths were found within 20 nm of previously
known wavebands. As P is not spectrally active in the Vis-NIR region, the wavelengths detected in
this study are potentially important spectral bands in the FDR spectra to indirectly estimate the soil
oxalate-extractable P content via a link to other soil components with spectral properties.
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When comparing the GA-PLS model-selected wavebands with the ISE-PLS models, the selected
wavebands were different but the GA-PLS model selected wavebands in the visible region (22-bands
in 454–457, 506–508, 517, 518, 660 nm) were all selected with the ISE-PLS model. In contrast,
no overlapping wavebands in the NIR region were found between the GA-PLS and ISE-PLS models.
ISE-PLS regression analysis is a model-wise elimination technique, while GA-PLS regression analysis
is a numerical optimization method based on genetic principles and natural selection, which are
slightly different models. Thus, we performed five GA-PLS runs and used the commonly selected
wavebands. However, the GA-PLS models also contained the wavebands selected by ISE-PLS model
plus additional bands, especially in the NIR region. In some cases, these extra regions could be readily
interpreted, but in other cases, they could not [27]. Nevertheless, previous studies have reported that
the wavebands selected by GA-PLS models clearly contain relevant information since the waveband
subset decreases the RMSECV, and the wavebands were consistently selected in independent GA
runs [27,30,31].

The commonly selected wavebands in the visible region (454–457, 506–508, 517, 518 and 660 nm)
seem to be closely relevant to Fe oxide minerals (Table 3). In addition, the waveband at approximately
2270 nm, which is relevant to gibbsite (Al oxide mineral) [59], had a high regression coefficient
and VIP score, although it was not always selected. These results are supported by our previous
findings [6], in which oxalate-extractable P was significantly and positively correlated with active Al
and Fe, respectively. The other selected wavebands likely overlapped or corresponded to previously
known wavebands, which are most likely related to soil organic matter. Based on the study by
Knadel et al. [56], the selected wavebands were considered to be associated with organic matter (C-H
bond: 1720, 2111 and 2300 nm) [55,60,61], methyls (C-H bond: 1730–1852 nm) [61,62] and phenolics
(C-OH bond: 1961 nm) [61,62]. Our previous study also found that active Al and Fe had a positive
correlation with soil TC and organic phosphorus content, respectively [6]. This finding suggested that
active Al and Fe play a significant role as sorbents for both oxalate-extractable P mainly in inorganic
forms and organic matter in the studied soils. Turner [63] investigated the chemical nature of P in
a range of rice field soils in Madagascar and reported that a considerable proportion of the TP extracted
by NaOH-EDTA occurred in organic forms (19–44%), mostly as phosphate monoesters. Since the
acid ammonium oxalate method can partly extract organically bound P, our results also indirectly
indicated the importance of organic compounds, probably containing organic P, in oxalate-extractable
P. Thus, the selected wavelengths in our data set should also be relevant to chemical associations of
oxalate-extractable P in soils.

Table 3. Commonly selected wavebands from five GA-PLS runs to estimate soil oxalate-extractable P
using the FDR data set (n = 103) and possible soil components.

Selected
Waveband (nm)

Previously Known Waveband and Related Soil Component

Waveband (nm) Soil Component Reference

454–457 400–700 organic matter (color) [11,64]
470 Fe3+, ferric oxide [65]

506–508, 517, 518 488–499 ferrihydrite [52]
495, 510 hematite [66]

660 660 goethite [67]
655 schwertmannite [52]

1732 1720 organic matter [55]
1726 aliphatic C-H stretch, cellulose, lignin, starch, pectin, wax, humic acid [60]

1730 protein, cellulose, aliphatic C-H stretch, lignin, starch, pectin, wax,
humic acid [68]

1847–1849 1730–1852 methyl (C-H) [61,62]
1957–1961 1950 sugar, starch, cellulose, lignin, protein [68]

1961 phenolics (C-OH) [61,62]
1970 smectite, shoulder due to absorbed water [69]

2105, 2107, 2109 2111 organic matter, cellulose, glucan, pectin [60]
2312 2300 C-H stretch fundamentals [61]

2307–2469 methyl [62]
2309 aliphatic C-H, aromatic stretch, humic acid wax, starch [60]
2310 oil [54]
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3.4. Waveband Selection with Cross-Validated Calibration Results

Figure 6 shows the relationships among the cross-validated calibration results between the FDR
spectra and soil oxalate-extractable P using FS-PLS, ISE-PLS and GA-PLS regression analyses, with the
selected number of wavebands (NW) and the selected NW as a percentage of the full-spectrum
(NW% = NW/whole waveband [n = 2001] × 100) (Table 4). The optimum NLVs were 7, 7 and 6 using
FS-PLS, ISE-PLS and GA-PLS methods, respectively, and they were determined as the lowest RMSECV
values calculated from LOO-CV to avoid over-fitting of the model. Overall, the best R2 and lowest
RMSECV values were obtained with the GA-PLS model for estimating the soil oxalate-extractable P
content (R2 = 0.796 and RMSECV = 143.625). Based on RPD > 2 in the GA-PLS and ISE-PLS models,
the quality and future applicability of our results could be considered to have a good predictive ability.
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Table 4. Optimum number of latent variables (NLV), coefficient of determination (R2), root mean
squared errors of cross-validation (RMSECV), and residual predictive values (RPD) from FS-PLS,
ISE-PLS and GA-PLS models with selected number of wavebands (NW) and their percentages of the
full spectrum (NW%). NW% = NW / 2001 bands × 100%.

Regression
Method

Cross-Validation for Whole Data Set (n = 103)

NLV R2CV RMSECV RPD NW NW%

FS-PLS 7 0.686 179.146 1.773
ISE-PLS 7 0.770 152.984 2.076 158 7.9
GA-PLS 6 0.796 143.625 2.211 94 4.7

The NW (NW%) remaining after waveband selection was 158 (7.9%) in ISE-PLS and 94 (4.7%)
in GA-PLS, which were considered useful wavelengths for estimating the soil oxalate-extractable
P content. These results also suggested that over 92% of the waveband information from the soil
reflectance spectrum was redundant and did not contribute to or disturb the prediction. These findings
support previous findings that the performance of PLS models can be improved through waveband
selection, and the most useful information in the Vis-NIR region (400-2400 nm) predicted less than 20%
of the forage [30,70], water [71] and soil parameters [18]. Moreover, the spectral data efficiency is also
expected to improve by the optimization of the waveband subset using the GA-PLS model [30].

3.5. Evaluation of Predictive Ability Using Modified Bootstrapping

To evaluate the predictive ability of the PLS models, a modified bootstrap procedure (N = 10,000
times) was conducted using selected wavebands in the FDR data set. Table 5 summarizes the mean
values of NLV, R2 and RMSECV in the training data set (n = 69) and R2, RMSEP and the percent
difference of RMSEP (∆RMSEP) between FS-PLS and ISE-PLS or GA-PLS models in the test data set
(n = 34). In addition, Figure 7 demonstrates the distribution of R2 values in the test data set. The mean
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optimum NLV ranged from 5.364 in the GA-PLS model to 7.285 in the FS-PLS model. In the training
data set, GA-PLS obtained the best mean R2 (0.782) and the lowest mean RMSECV (148.930 mg P kg−1)
values, and ISE-PLS performed better than FS-PLS. Similarly, in the test data set, the GA-PLS model
obtained the best mean R2 (0.787) and the lowest mean RMSEP (149.013 mg P kg−1) values for estimating
soil oxalate-extractable P. In comparison with the FS-PLS model and GA-PLS, the ∆RMSEP showed
greater predictive accuracies in ISE-PLS (−16.21%) and GA-PLS (−24.69%) models, respectively.

Table 5. Mean values of NLV, R2 and RMSECV/RMSEP from N = 10,000 evaluations using independent
training and test data sets with FS-PLS, ISE-PLS and GA-PLS.

Regression
Method

Training Data Set (n = 69) Test Data Set (n = 34)

Mean NLV Mean R2 Mean RMSECV Mean R2 Mean RMSEP ∆RMSEP 1

FS-PLS 7.285 0.659 188.560 0.638 197.860
ISE-PLS 6.419 0.751 160.180 0.742 165.786 –16.21
GA-PLS 5.364 0.782 148.930 0.787 149.013 –24.69

1 ∆RMSEP, percent difference in the RMSEP to FS-PLS.
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(SD) values.

These findings confirm previous results that showed that the performance of PLS models can be
improved through wavelength selection [20,70,72] and the predictive ability of GA-PLS can overcome
the ISE-PLS [29–31]. Yang et al. [16] suggested that reducing large spectral data sets is valuable for
more efficient storage, computation, and transmission as well as for the ease of spectral analysis.

Although spectral data efficiency could be improved by the optimization of a wavelength subset
in the PLS model, the over-fitting problems still remained in the GA-PLS method. Leardi and
Nørgaard [73] addressed a limitation of GA-PLS, which was that a greater number of variables (> 200)
would result in over-fitting and reduce the capability of obtaining a solution with good predictive
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ability. To solve this problem, they proposed a sequential application of backward-interval PLS (biPLS)
and GA for the selection of relevant spectral regions. The biPLS removes the non-informative regions
prior to GA runs, thereby reducing the number of variables. Future work needs to examine using such
sequential application of biPLS and GA-PLS with a larger number of data sets collected in different
fields with a range of various soil properties.

4. Conclusions

A timely and accurate assessment of the soil P content is crucial for resource-limited farmers
in Madagascar to improve rice production by site-specific fertilizer management. In this study,
we investigated the performance of GA-PLS regression analysis in laboratory Vis-NIR reflectance
spectroscopy for estimating soil oxalate-extractable P contents as a diagnostic indicator of soil P
status in rice fields of Madagascar. Our results showed that a large range of soil oxalate-extractable P
(30.73 to 1225.16 mg P kg−1) can be rapidly and non-destructively predicted by Vis-NIR spectroscopy
for rice fields irrespective of different cropping systems and geographical locations and that the
predictive ability was improved by GA-based waveband selection coupled with PLS regression analysis.
GA-based waveband selection in the PLS calibration suggested that the important wavebands for
estimating soil oxalate-extractable P were 4.7% of all 2001 wavebands in the 400–2400 nm range.
The selected wavebands were different from previously published absorption peaks of specific
materials. However, most of the peaks were within the 20 nm vicinity of such a peak and apparently
relevant to chemical associations of oxalate-extractable P in soils bound to Al and Fe oxides and
organic compounds. Thus, the selected wavelength in our study should be considered informative
for estimating soil oxalate-extractable P contents. Based on the selected FDR wavebands in the
GA-PLS model, soil oxalate-extractable P was determined to provide a good prediction (RPD = 2.211),
with 20.4% and 21.3% of errors when cross-validating and testing, respectively, the independent
data set. Such timely P sensing in soils might allow Madagascar’s farmers to implement better
fertilizer management.
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Figure S1: Box plot and histogram of soil total carbon (TC) and clay contents in the lowland and 2 upland data sets.
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Abstract: Phosphorus is among the main limiting nutrients for plant growth and productivity in
both agricultural and natural ecosystems in the tropics, which are characterized by weathered soil.
Soil bioavailable P measurement is necessary to predict the potential growth of plant biomass in these
ecosystems. Visible and near-infrared reflectance spectroscopy (Vis-NIRS) is widely used to predict
soil chemical and biological parameters as an alternative to time-consuming conventional laboratory
analyses. However, quantitative spectroscopic prediction of soil P remains a challenge owing to the
difficulty of direct detection of orthophosphate. This study tested the performance of Vis-NIRS with
partial least square regression to predict oxalate-extractable P (Pox) content, representing available
P for plants in natural (forest and non-forest including fallows and degraded land) and cultivated
(upland and flooded rice fields) soils in Madagascar. Model predictive accuracy was assessed based
on the coefficient of determination (R2), the root mean squared error of cross-validation (RMSECV),
and the residual predictive deviation (RPD). The results demonstrated successful Pox prediction
accuracy in natural (n = 74, R2 = 0.90, RMSECV = 2.39, and RPD = 3.22), and cultivated systems
(n = 142, R2 = 0.90, RMSECV = 48.57, and RPD = 3.15) and moderate usefulness at the regional scale
incorporating both system types (R2 = 0.70, RMSECV = 71.87 and RPD = 1.81). These results were
also confirmed with modified bootstrap procedures (N = 10,000 times) using selected wavebands on
iterative stepwise elimination–partial least square (ISE–PLS) models. The wavebands relevant to soil
organic matter content and Fe content were identified as important components for the prediction
of soil Pox. This predictive accuracy for the cultivated system was related to the variability of
some samples with high Pox values. However, the use of “pseudo-independent” validation can
overestimate the prediction accuracy when applied at site scale suggesting the use of larger and
dispersed geographical cover sample sets to build a robust model. Our study offers new opportunities
for P quantification in a wide range of ecosystems in the tropics.

Keywords: Madagascar; partial least square (PLS) regression; precision farming; soil oxalate
phosphorus; spectroscopy

1. Introduction

Phosphorus is an essential plant nutrient. The low P availability of strongly weathered soil can
seriously affect plant growth and limit crop yields [1] while soil P limitation can cause a decline in
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climax ecosystems by decreasing biomass productivity [2]. The limitation of net primary production in
terrestrial ecosystems with low soil P, such as tropical forests, leads to a carbon balance that tends to
increase CO2 release [3]. Ferralsols are characterized by very low available soil P, mainly due to sorption
on and in Fe and Al oxyhydroxides [4,5]. The availability of P for plants has been evaluated from soil P
tests and calibrated with field and pot experiments [6,7]. Oxalate-extractable P (Pox) is reported to
accurately predict the availability of P in highly weathered soil [8] because of oxalate’s potential to
extract the active reductant-soluble P fraction [9]. The quantification of Pox is based on P extraction with
ammonium oxalate and oxalic acid [10]. Acidified ammonium oxalate extractant dissolves amorphous,
poorly crystalline oxides, and hydroxides of Fe and Al, and consequently released P [4,9,11]. Oxalate P
is highly correlated with rice plant P uptake in lowland and upland fields [4,12]. It also extracts more P
than other chemical methods [13,14]. Pox is thus the best indicator of P availability for both fertilizer
management in agricultural systems and natural ecosystem management.

There is a need for more reliable, rapid, and accurate soil P assessment as an alternative
to time-consuming conventional laboratory analyses. The more rapid, cost-effective alternative
approaches of spectrometry analysis and chemometric techniques have been widely used to estimate
soil and plant compositions [15–17]. Spectrometry in visible and near infra-red (Vis-NIR) is based on
the absorption of radiation at a specific wavelength by certain molecular bonds in the near-infrared
(NIR) region [18]. Spectral data are calibrated using the specific soil properties of samples, determined
by conventional methods. The Vis-NIR region (400–2500 nm) is dominated by weaker and broader
signals from vibration overtones and combination bands [19]. The absorption coefficients are much
lower, which allows for better penetration of light into the material [20]. The Vis-NIRS approach has
been successfully applied to predict soil chemical and biological parameters [21–23].

Challenges, however, still remain. P is not spectrally active in the Vis-NIR region, and thus, it can
only be detected indirectly, in an organically bound form [24]. However, previous studies have shown
the potential of this approach to predict soil P, such as that of Kawamura et al. [25], who reported
that Vis-NIRS coupled with partial least square (PLS) regression can predict soil Pox in Malagasy
lowland and upland rice fields with moderate accuracy (R2 = 0.78). These authors also suggested
that the performance of PLS models could be improved through wavelength selection. However,
the PLS models were developed only for rice fields, with a dataset (106 samples) obtained in central
Madagascar, and their applicability to non-farm soils is still unknown. Thus, further analysis using
a larger number of datasets including other land uses is needed. In Madagascar, almost 45% of the
cultivated area is occupied by rice fields, as rice is the staple food crop for Malagasy people and is
cultivated by 85% of farmers [26,27]. Moreover, the so-called “natural system”, as found in eastern
Madagascar, was characterized by traditional farming practices in which forest and fallow land are
subject to slash and burn agriculture. Land-use change affects soil properties [28] and assessment of
these is in turn required to inform land management practices. Therefore, the present study evaluated
the potential of the PLS model to predict Pox across different Malagasy land-use systems, including
those where the natural system has been converted into a cultivated system.

This study aimed to investigate the usefulness of the Vis-NIRS approach with PLS modeling in
predicting soil Pox in cultivated and natural systems and its applicability as a rapid method to assess
soil properties at the ecosystem scale. To improve its predictive accuracy, we applied wavelength
selection in the PLS procedures and compared its performance against standard full-spectrum PLS
(FS-PLS) in cultivated and natural systems.

2. Materials and Methods

2.1. Study Area and Soil Sample Dataset

The soil samples used for this study were collected from areas of central and eastern Madagascar
(Figure 1). The central sites, located in the Vakinankaratra region, were characterized by a humid
climate with an annual mean precipitation of 1381 mm and a mean annual temperature of 16.9 ◦C.
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They are dominated by ferritic soils (FAO soil classification) which are generally acid with low available
phosphorus [29,30]. The Vakinankaratra region is also among the rice-growing areas of Madagascar.
The eastern sites are characterized by perhumid and humid climates with a mean annual rainfall of
2500 mm and a mean annual temperature of 18–24 ◦C [31,32]. This region is characterized by red and
yellow ferralsols [33].
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Figure 1. Spatial distribution of site for sampling. Cultivated system samples were from the
Vakinankaratra region and natural system samples were from eastern Madagascar.

In the Vakinankaratra area, soil sampling at 15 cm depth was conducted in 142 farmer field
plots under irrigated and upland rice systems during 2018 and 2019 (Table 1). In eastern Madagascar,
soil samples were collected similarly during 2014 and 2015 from 74 forest and non-forest plots, the latter
including fallow and degraded land systems [34]. The descriptive statistics of soil parameters for each
studied site are reported in Table 2.

Table 1. Spatial characterization of the soil sample used for the study.

Regions System Land Uses Altitude
(m)

MAT
(◦C)

MAP
(mm)

Sampling
Year

Number of
Samples

Central
(Vakinankaratra)

Cultivated
systems

Upland rice 1247–1481
16.9 1381

2017–2018 8
Lowland rice 1237–1481 2017–2018 134

Eastern
Natural
systems

Forest 134–1200
18–24 2500

2014–2015 16
Non-Forest 94–1101 2014–2015 58

MAT, Mean annual temperature (◦C), MAP, Mean annual precipitation (mm).

Table 2. Soil parameters description of the study sites. The values in parentheses show the range.

Soil Parameters Cultivated System Area Natural System Area

Sand (%) 34.6 [10.4–72.5] 53.6 [30.8–80.6 ]
Silt (%) 32.8 [7.92–63.7] 14.4 [4.72–23.6]

Clay (%) 32.6 [4.30–52.0] 32.0 [9.45–53.6]
SOC (mg kg−1) 25.5 [9.47–94.9] 37.9 [7.29–75.4]
Feox (g kg−1) 7.44 [1.03–19.1] 2.38 [0.32–9.45]
Pox (mg kg−1) 115.1 [22.3–856.8] 35.1 [21.9–57.9]

SOC—Soil organic carbon, Feox—oxalate-extractable Fe, Pox—oxalate-extractable P.
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2.2. Laboratory Analyses

Soils were air-dried, ground, and sieved through 2 mm and 0.2 mm mesh prior to chemical
analysis. All soil samples were analyzed for texture and for phosphorus and organic carbon contents.
Oxalate-extractable P and Fe were determined following Schwertmann [10]. Soil organic carbon was
determined by wet combustion using dichromate oxidation [35]. The separation of soil fractions for
the soil texture analysis was carried out with the pipetting method in which soil samples pretreated
with heat and H2O2 (35%) to remove organic matter are dispersed into clay, silt and sand fractions
using NaOH.

2.3. Spectral Data Acquisition Using Vis-NIRS

Spectral data were recorded in a dark room at the Laboratoire des Radioisotopes, Antananarivo
University using a Vis-NIR portable spectro-radiometer with 350–2500 nm range (ASD FieldSpec
4 Hi-Res, ASD Inc., Longmont, CO, USA). The recorded spectral resolution was 3 nm between 350 nm
and 1000 nm and 6 nm between 1000 nm and 2500 nm. The output data were generated at 1 nm
resolution using the cubic spline interpolation function in the ASD software (RS3 for Windows; ASD).
Before each measurement, the spectrometer was calibrated using a white reference spectrum [17].
Soil samples were previously spread and leveled in optical-glass Petri dishes 85 mm in diameter.
Five measurements were carried out at different positions for each soil sample. For each measurement,
the instrument made 25 internal scans to optimize the signal-to-noise ratio. The generated spectra were
averaged into one spectrum for each sample. Further details can be found in Kawamura et al. [36].

2.4. Spectral Analyses and Modeling Approaches

Prior to the modeling of Pox using PLS regression, data pre-processing was applied. Spectral data
were reduced to 400–2400 nm by removing the spectral regions of 350–399 nm and 2401–2500 nm,
in order to eliminate the influence of noise [36–38]. The reflectance spectra (R) were transformed
into apparent absorbance (A = log (1/R)). To reduce noise and enhance the signals, first derivative
reflectance (FDR) using a Savitzky–Golay smoothing filter [39] was used with an order 3 polynomial.
The generated Vis-NIR spectra were mean-centered. Scatter correction using a standard normal variate
transform (SNV) was applied to all spectra to reduce the particle size effect.

The modeling approach consisted of testing whether these reflectance spectra could be used
to predict chemical data and identifying which spectral regions contribute to the prediction [40].
The PLS model incorporated the algorithms that extract a small number of latent factors as the
independent variables relating to reflectance spectra, then used these factors in regression analysis with
the chemical data as the dependent variables. The PLS regression model describing the relationship
between soil spectra and measured soil Pox was built from the spectroscopic modeling. Leave–one-out
cross-validation was used to select the best latent variable number and to avoid over-fitting of the PLS
regression model [36,38,41]. The optimum number of latent variables was chosen by minimizing both
the root mean squared error (RMSE) and the number of factors or latent vectors.

Two PLS regression approaches were performed to estimate soil parameters: FS-PLS and iterative
stepwise elimination regression (ISE–PLS) [36]. The FS-PLS is a standard PLS model using FDR
datasets. ISE–PLS is a PLS model using a waveband elimination algorithm to remove noisy variables
and to select those able to improve predictive performance.

The prediction accuracies were evaluated using the coefficient of determination (R2), the root mean
squared error of cross-validation (RMSECV), and the residual predictive deviation (RPD). The RPD
is the ratio of standard deviation (SD) of the measured data to the standard error of prediction [42].
The model with the larger R2 and RPD, and the smaller RMSE was considered the best model to predict
soil Pox. It is generally accepted that an RPD value greater than 3 indicates an excellent predictive
model for agricultural applications, and values between 2 and 3 indicate good predictive ability;
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values between 1.5 and 2 indicate an acceptable model requiring some improvement, and those below
1.5 indicate a poor predictive model [36,40].

To assess the predictive ability and reliability of the PLS models, a modified bootstrap procedure
was performed [25]; the data was divided randomly into training (70%) and test (30%) data sets with a
replacement for N = 10,000 times. In each process, a PLS model was developed using the training data
set. Here, FS-PLS and ISE–PLS were developed using selected wavebands, and then the models were
used to predict Pox in the test data set. The robustness of the prediction models was evaluated by the
mean (±SD) values of R2 and the root mean squared error of prediction (RMSEP) from 10,000 runs in
the test data sets.

All data handling and statistical analysis were performed using MATLAB software (Version 9.3;
The MathWorks, Sherborn, MA, USA) and R software version 3.1.3 [43] (R Core Team 2015).

3. Results and Discussion

3.1. Soil Characteristics by Chemical Analysis

The descriptive statistics for soil Pox as measured by chemical analysis for all data and by the
system are summarized in Table 3. The coefficient of variation (CV) for Pox when all data were
combined data indicated large Pox variability (148.57%) with a heterogeneous distribution. The Pox
content averaged 87.66 mg·kg−1 across all data, ranging from 21.89 to 856.84 mg·kg−1. As illustrated
in Figure 2, the Pox level varied markedly within the cultivated rice systems, much more so than in
the natural systems. Indeed, the highest Pox value recorded from natural systems was 57.93 mg·kg−1

with a CV of 22.23%, in contrast to that of the cultivated system, which was 856.84 mg·kg−1 with a
CV of 133.56%. The third quartile cutoff, containing 75% of the data was 38.73 mg·kg−1 for all the
natural systems and 106.62 mg·kg−1 for all the cultivated systems. The variation in P level seen in
the substantial dispersion of the cultivated system data probably results from the different levels of
fertilizer application to farmers’ plots. Based on the study by Dardenne et al. [44], such wide variation
(CV > 50%) is recommended to achieve good NIRS calibration accuracy, indicating that our soil data
were suitable for developing the spectroscopy model.

Table 3. Summary statistics for soil oxalate-extractable P content (mg P kg−1 soil) obtained by chemical
analysis by system.

System n Min Max Mean SD CV (%)

All systems 216 21.89 856.84 87.66 130.23 148.57
Cultivated system 142 22.25 856.84 115.07 153.69 133.56

Natural system 74 21.89 57.93 35.05 7.79 22.23

n, number of samples; SD, standard deviation; CV, coefficient of variation (SD/mean × 100%).

The difference in soil characteristics, including soil texture and the level of Pox in each system,
can explain the high accuracy of prediction for each specific model. The correlation matrix between
the Pox, SOC, and their related soil parameters are shown in Table 4. In the ensemble of the data,
no significant correlation was observed for Pox and SOC. Among the significant relationships observed,
soil parameters which could affect the Pox were SOC, sand, clay, and Fe contents. In the natural system,
the Pox was positively correlated with SOC, clay, and Feox while negative relations were observed
between Pox and Feox with sand content suggesting a direct effect of soil organic matter and texture on
Pox contents. In the cultivated system, Pox is more affected by Feox than the SOC. Principal component
(Figure 3) and texture triangle (Figure 4) analyses showed the contrasting properties of cultivated and
natural soils. Natural system soils with a coarse texture were marked by low Pox and Feox content
compared to the cultivated soils. Cultivated soils with a clayey loam texture had high Pox and lower
SOC compared to natural soils, probably due to the soil management techniques applied.
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Table 4. Pearson correlation coefficients between soil properties for each system.

Pox SOC Sand Silt Clay Feox

All Systems

Pox 1.00 0.10 −0.20 0.23 −0.00 0.55
SOC 1.00 0.15 −0.32 0.24 −0.06
Sand 1.00 −0.82 −0.49 −0.41
Silt 1.00 −0.09 0.35

Clay 1.00 0.18
Feox 1.00

Natural

Pox 1.00 0.61 −0.29 −0.06 0.37 0.45
SOC 1.00 −0.44 −0.00 0.53 0.32
Sand 1.00 −0.67 −0.96 −0.48
Silt 1.00 0.45 0.22

Clay 1.00 0.50
Feox 1.00

Cultivated

Pox 1.00 0.30 −0.03 0.05 −0.03 0.51
SOC 1.00 −0.05 −0.05 0.15 0.33
Sand 1.00 −0.79 −0.32 0.06
Silt 1.00 −0.33 −0.15

Clay 1.00 0.14
Feox 1.00

Values in bold are significant at P < 0.05.
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The mineral properties of soil are strongly related to their NIR-spectra absorption patterns [45].
Mouazen et al. [46] confirmed that soil texture affected the reflectance of the soil surface during NIR
spectral measurement. Light scattering increased with increasing sand content due to a large amount
of quartz in the sand fraction, which increases the intensity of spectral reflectance [47]. The spectral
absorption related to some soil components (O-H and metal O-H, O-H in water) increased with
increasing clay content [48].

Soil preparation, specifically tillage, could break up soil particles and aggregates and thereby
accelerate the mineralization of soil organic matter, resulting in lower SOC compared to that of
natural systems [49,50]. The level of Pox in the cultivated systems is due to fertilizer input and high
mineralization rates, which released the soil nutrients (including phosphorus).

3.2. Model Prediction Accuracy for Oxalate-Extractable P under Different Land-Use Systems

Predictions of Pox content were made using standard FS-PLS and ISE–PLS regressions for all
combined systems and for each system individually. The PLS regression model predictions of Pox levels
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are shown in Table 5 and Figure 5. ISE–PLS regression always improved Pox prediction compared to
FS-PLS regardless of the land-use system.

Table 5. Comparison of different soil oxalate-extractable P prediction models for all land-use systems.

Processing Systems n NLV R2 RMSECV RPD

FS-PLS
All systems 216 13 0.48 96.58 1.34
Cultivated 142 15 0.70 83.72 1.82

Natural 74 2 0.18 7.10 1.08

ISE–PLS
All systems 216 13 0.70 71.87 1.81
Cultivated 142 15 0.90 48.57 3.15

Natural 74 14 0.90 2.39 3.22

n, number of samples, NLV, number of latent variables; FS-PLS, full-spectrum partial least square regression;
ISE–PLS, iterative stepwise elimination–partial least square regression.
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Figure 5. Relationships between observed and predicted values of soil oxalate-extractable P contents
using ISE–PLS (iterative stepwise elimination–partial least square) regression with first derivative
reflectance data for (a) natural systems (n = 74), (b) cultivated systems (n = 142), and (c) all systems
combined (n = 216). RMSE, root mean square error; RPD, residual predictive deviation.

ISE–PLS regression performed well; we attributed this to the importance of waveband selection for
Pox prediction. The percentage of wavebands (NW%) used in the model was the ratio of the number of
selected wavebands (NW) to the total wavebands for a full-spectrum (NW% = NW / 2001 bands × 100).
The NW% results were 20.6% and 7.5% for cultivated and natural systems, respectively. In other words,
fewer than 21% of available wavelengths contributed to the prediction of Pox for the cultivated system,
with over 79% neither contributing to nor disturbing the predictions [51]. Selecting wavebands related
to soil Pox and eliminating unusable wavebands improved the predictive ability of ISE–PLS for Pox
compared to FS-PLS. This finding was in agreement with previous studies, in which fewer than 20%
of wavelengths contained information relevant to the prediction of soil properties [25,36]. ISE–PLS
produced excellent predictions of Pox in natural and cultivated systems, with RPD values greater
than three and an R2 of 0.90 (Table 5). Although the performance of model prediction is better for the
cultivated system than the natural system, this prediction model accuracy seems to be associated with
the large distribution of Pox values, which were characterized here by some samples with high Pox
value. A high variation of the data set could affect the accuracy of NIRS calibration and predictive
performance [52]. The performance of ISE–PLS models was better for individual land-use systems
than for the combined data (R2 = 0.70, RMSE = 71.9, RPD = 1.81). Stevens et al. [48] highlighted the
importance of building local, more accurate models that are specific to a given geographical entity or
soil type, suggesting that this feature is a strength, rather than a weakness, of this model.

The results of a modified bootstrap procedure were reported in Table 6 and Figure 6. Table 6
gives the mean values of R2 and RMSEP between FS-PLS and ISE–PLS models for each system in
the test data set (30%). Figure 6 illustrated the distribution of R2 values in the test data set for each
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system. The accuracy of the model prediction with validation data showed that the ISE–PLS models
predicted soil oxalate-extractable P more accurately than FS-PLS in terms of R2 and RMSEP for all
systems. The ISE–PLS resolved 70% to 88% of the variation in Pox whereas total variance explained
with FS-PLS was from 14% to 50%. The best mean R2 and the lowest RMSEP values were obtained
from the natural system. The predictive ability and reliability of the ISE–PLS models were confirmed
by this modified bootstrap procedure.

Table 6. Mean and standard deviation (SD) values of R2 and RMSEP from N = 10,000 evaluations with
FS-PLS and ISE–PLS in test data sets (30%).

Processing Systems n R2 RMSEP

FS-PLS
All systems 64 0.502 ± 0.124 89.01 ± 9.21
Cultivated 42 0.678 ± 0.079 79.13 ± 8.30

Natural 22 0.141 ± 0.096 7.15 ± 1.62

ISE–PLS
All systems 64 0.703 ± 0.115 60.48 ± 5.94
Cultivated 42 0.883 ± 0.038 57.42 ± 5.57

Natural 22 0.822 ± 0.051 3.26 ± 0.59Agriculture 2020, 10, 177 10 of 17 
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similar spectral absorption features, characteristic of mineral and organic spectra as reported by 
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recorded in the visible light range (around 500 nm) and in the NIR range (at 1400 nm and from 2000 
nm). The spectral absorption peaks in the Vis-NIRS region are related to iron oxides, clay minerals, 
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in the visible region common to both natural and cultivated systems (409, 430, 431, 443, 444, 591, and 
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matter [54,55]. Residual minerals like hematite and goethite have an effect on the organic matter 
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Figure 6. Comparisons of the frequency distributions of R2 values in the test data for each system:
(a) all systems; (b) cultivated; (c) natural using FS-PLS and ISE–PLS models, with mean (red and blue
line) ± standard deviation (SD) values.

3.3. Properties of the Prediction-Relevant Wavebands

Figure 7 shows the selected wavebands used for the PLS regression modeling and prediction of
Pox resulting from the preprocessing of the spectra using first derivative data. All samples showed
similar spectral absorption features, characteristic of mineral and organic spectra as reported by several
authors [15,53]. The most influential wavelengths in terms of the Pox prediction model were recorded
in the visible light range (around 500 nm) and in the NIR range (at 1400 nm and from 2000 nm).
The spectral absorption peaks in the Vis-NIRS region are related to iron oxides, clay minerals, and some
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functional groups of soil organic matter (SOM) [37]. In our study, the selected wavebands in the visible
region common to both natural and cultivated systems (409, 430, 431, 443, 444, 591, and 592 nm) were
associated with Fe-containing minerals (hematite, goethite) and dark-colored organic matter [54,55].
Residual minerals like hematite and goethite have an effect on the organic matter sorption of soil
nutrients such as phosphorus [56].Agriculture 2020, 10, 177 11 of 17 
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Figure 7. Wavebands used in the ISE–PLS analysis for all combined data (blue bars, All), cultivated
systems (red bars, Cult), and natural systems (green bars, Nat) using the first derivative reflectance
(FDR) dataset to estimate oxalate-extractable phosphorus. Specific absorption wavebands for the
different bonds present in soil are specified on the top x-axis (modified from Kawamura et al. [25]).

The bands in the NIR range usually attributed to O-H chemical bonds at 1400 nm, to C-H stretch at
1700 nm, to water (H-O-H) at 1900 nm, and metal-OH bending and O-H stretching modes near 2000 nm,
2300 nm, and 2400 nm are often associated with clay mineral types (Table 7) [15,53,57]. The spectral
bands at 1906–1907 nm, 2200–2235 nm, and 306–2400 nm, related to minerals and water [15,58], and that
at 2270 nm, corresponding to gibbsite (an Al oxide mineral) [56,59], contribute to Pox prediction.
The detection of the mineral and organic compounds in soils allow soil spectroscopy to predict Pox
because of the potential relation between phosphorus and carbon content [22].

The number of selected wavelengths for Pox prediction is higher for cultivated systems than natural
systems (Figure 7). The specific selected visible wavelengths for cultivated areas were 527–590 nm,
associated with hematite and organic matter; and 763–870 nm, related to amine N-H, aromatic C-H,
Fe3+, and ferric oxide [58–60]. The regions related to amine N-H at 1000 nm; aromatic C-H at 1100 nm;
alkyl C-H at 1170 nm; O-H in water, CH2, lignin, and cellulose at 1464–1483 nm [61]; and Al- OH and
kaolin at 2160–2164 nm [62] contributed to Pox prediction in the NIR regions. In contrast, the specific
selected wavelengths for natural systems were 738–740 nm and 753 nm (amine N-H); and 1291 nm,
related to lignin, starch, and protein [59–61]. These specific bands for each system demonstrated the
variation in SOM and absorbents contributing to Pox prediction, which may explain the low accuracy
of prediction when all data were combined.
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3.4. Factors Influencing the Prediction Model Accuracy for Oxalate-Extractable P

According to our results, the main soil components which contributed to the prediction of Pox
were organic matter and iron oxides, in both natural and cultivated systems. This is consistent with
the study of Sørensen and Dalsgaard, which suggested that indirect relationships between soil P and
organic components would be useful in soil P prediction using spectrographic methods [63], and that
of Ludwig et al., in which a useful calibration of soil P, measured using the Olsen method, was found to
positively correlate with SOC [22]. The present study showed that Pox is significantly correlated with
SOC in natural and cultivated systems with coefficients of correlation (r) of 0.61 (P < 0.001) and 0.30
(P < 0.001), respectively, but not when all data are combined (r = 0.10, P = 0.15). Abdi et al. confirmed
that successful prediction of soil total P is related to its significant correlation with soil carbon [42].
Soil P is obtainable by NIRS through covariation with other soil properties but this relation may vary
between datasets [16], possibly explaining the lack of correlation between soil carbon and Pox for all
combined data. The high correlation between Pox and SOC in natural systems may have resulted from
the accumulation of P in the surface layer through litter input, while in the cultivated system P is lost
with the harvested crops.

Phosphorus in soil was mainly fixed and in solid phase with Fe, Al in acidic soil, and Ca in alkaline
soil. These elements are the main adsorbing agents for phosphate [64]. Khalid et al. [65] found that
higher P availability under flooded soil was related to ammonium oxalate Fe. In our study, Pox and
oxalate Fe (Feox) were significantly and positively correlated for cultivated, natural and all combined
systems with correlation coefficients of 0.51 (P < 0.001), 0.45 (P < 0.001), and 0.55 (P < 0.001), respectively.
In addition to the selected wavebands for Pox prediction in the Vis-NIRS regions associated with
iron oxides, this result is in agreement with previous studies confirming the primary role of Fe in P
sorption [7,25]. This highlights the importance of Fe to Pox prediction model development.

The high correlation between Pox, SOC, and Feox observed mainly under the natural system can
be associated with the related properties of this system such as fallow without fertilization, justifying
here the high accuracy of the model. As the high performance of model prediction in the cultivated
system could be related to some samples with high Pox content (n = 15), a low prediction accuracy was
obtained with selected samples excluding these high Pox samples (data not shown) suggesting that in
the cultivated system under varying fertilization and other management practices may interfere and
disturb the correlation of Pox with organic matter and iron oxides. The correlations of Pox with SOC
and Feox are very weak for the selected samples (without the high Pox samples), r = 0.22, P < 0.05
and r = 0.03, P = 0.69, respectively. Application of ISE–PLS model in a large sample with a large
geographical cover can help to understand the main drivers of Pox in the cultivated and the natural
system in order to build more robust models.

In this study, the “pseudo-independent” approach of using a randomly selected sample (30%) for
a validation in the modified bootstrap procedure or LOOCV, which provide more accurate PLS models
in Pox prediction, presents a limitation. A previous study on SOC prediction using the first derivative
Vis-NIRS PLS approach reports a stable model accuracy from a “pseudo-independent” validation
(random selection of non-independent test samples), but the prediction models failed when applied
for each site through site-hold validation (using samples from one site for validation and the samples
from the remaining sites for model calibration) [66]. We attempted to perform the FS-PLS based on the
site-hold cross-validation by considering the seven studied sites and found very poor results (data
not shown). This may be due to the mixture of sites and land-use systems using a small number of
samples. This suggests building models using a large geographical cover and relatively dispersed
sample sets for a regional application.

4. Conclusions

Soil P is an important limiting nutrient for plant growth. An accurate assessment of available
P is essential for effective fertilizer management in agriculture and sustainable management of
ecosystems. Vis-NIRS is a simple and nondestructive method that can be used to predict several soil
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properties. This study demonstrates that Vis-NIRS models, in combination with ISE–PLS regression,
can successfully predict soil oxalate-extractable phosphorus (Pox) in soil samples from natural and
cultivated systems in Madagascar. Together, these methods were able to estimate soil Pox in both
systems with high accuracy (R2 = 0.90, RPD > 3) using fewer than 21% of wavelengths in the Vis-NIRS
region. ISE–PLS regression outperformed FS-PLS regression. However, model accuracy for cultivated
systems was affected by some samples with high Pox value. The effective wavebands for the two
land-use systems were associated with Fe and Al oxides, and organic components. The accuracy of Pox
prediction was related to its significant correlation with soil organic carbon and iron content. The use
of “pseudo-independent” validation in the current study can also overestimate the prediction accuracy
when applied at site scale suggesting the use of larger and dispersed geographical cover sample sets
to build a robust model in the future. The Vis-NIRS approach has potential as a tool for rapid soil P
evaluation and may be useful for soil management. Further investigations using large numbers of soil
samples for external validation of the Vis-NIRS approach are required to enable application at regional
and national scales.
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Abstract: As a proximal soil sensing technique, laboratory visible and near-infrared (Vis-NIR)
spectroscopy is a promising tool for the quantitative estimation of soil properties. However, there
remain challenges for predicting soil phosphorus (P) content and availability, which requires a
reliable model applicable for different land-use systems to upscale. Recently, a one-dimensional
convolutional neural network (1D-CNN) corresponding to the spectral information of soil was
developed to considerably improve the accuracy of soil property predictions. The present study
investigated the predictive ability of a 1D-CNN model to estimate soil available P (oxalate-extractable
P; Pox) content in soils by comparing it with partial least squares (PLS) and random forest (RF)
regressions using soil samples (n = 318) collected from natural (forest and non-forest) and cultivated
(upland and flooded rice fields) systems in Madagascar. Overall, the 1D-CNN model showed the
best predictive accuracy (R2 = 0.878) with a highly accurate prediction ability (ratio of performance to
the interquartile range = 2.492). Compared to the PLS model, the RF and 1D-CNN models indicated
4.37% and 23.77% relative improvement in root mean squared error values, respectively. Based on
a sensitivity analysis, the important wavebands for predicting soil Pox were associated with iron
(Fe) oxide, organic matter (OM), and water absorption, which were previously known wavelength
regions for estimating P in soil. These results suggest that 1D-CNN corresponding spectral signatures
can be expected to significantly improve the predictive ability for estimating soil available P (Pox)
from Vis-NIR spectral data. Rapid and accurate estimation of available P content in soils using
our results can be expected to contribute to effective fertilizer management in agriculture and the
sustainable management of ecosystems. However, the 1D-CNN model will require a large dataset to
extend its applicability to other regions of Madagascar. Thus, further updates should be tested in
future studies using larger datasets from a wide range of ecosystems in the tropics.

Keywords: deep learning; Madagascar; oxalate-extractable soil P; visible and near-infrared spectroscopy

1. Introduction

Phosphorus (P) deficiency is a major constraint for crop production in low-input
agricultural systems in the tropics [1], and stems from the predominance of strongly
weathered soils in which the availability of P is lowered by strong sorption to aluminum
(Al) and iron (Fe) (hydr)oxides [2,3]. Even in natural ecosystems, limited soil available
P can lead to a decline in the climax ecosystem by reducing biomass productivity [4].
Hence, rapid and quantitative information on soil fertility status is essential for improving
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biomass production in agricultural and natural ecosystems and developing sustainable
land management. Among many extraction methods for evaluating available P, the method
using acid ammonium oxalate solution is known to be suited to tropical weathered soils
because it can solubilize the active reductant-soluble P, which is the dominant P pool for P
cycling in tropical ecosystems [5,6].

Among the proximal soil-sensing techniques, laboratory visible and near-infrared
(Vis-NIR) spectroscopy has long been adopted as a rapid, cost-effective, and quantitative
analytical method for predicting soil properties [7]. Efforts have been made to characterize
the chemical, physical, and mineralogical composition of soil using Vis-NIR spectra (400–
2500 nm) [8]. However, making reliable predictions at larger scales requires a large spectral
and reference dataset collected from various soil conditions, and this requires the develop-
ment of a spectral library [9,10]. With the increasing number of data sources, a standard
approach based on a spectral library is required [11]. Currently, soil spectral libraries are
available at the country [11,12], continental [13,14], and global [15] scales. These spectral
libraries allow the development of calibration models for predicting soil properties.

For the calibration method, the partial least squares (PLS) regression [16] has long been
used as a standard approach in Vis-NIR spectroscopy because it can extract information
on target soil properties from a spectral matrix with hundreds or even thousands of
wavebands [17,18]. The predictive accuracy is improved by waveband selection in PLS
analysis by removing redundant wavebands [19,20]. Our previous papers showed that the
application of waveband selection improves the performance of PLS analysis for estimating
the total carbon (TC) content of paddy soils in Madagascar [21–23]. However, as a linear
multivariate calibration, the accuracy of PLS analysis tends to decrease because of the
nonlinear nature of the relationship between spectral data and the dependent variable [24].
To overcome this issue, machine learning techniques have been increasingly adopted
because they can account for the nonlinearity associated with soil spectral responses. The
major machine learning approaches are artificial neural networks (ANNs) [25], support-
vector machines (SVM) [26], and random forest (RF) [27–29].

More recently, deep learning approaches have rapidly evolved in machine learning
techniques with promising results for data analysis in nature [30] and have also been tested
for soil spectral calibration [31,32]. Among deep learning approaches, convolutional neural
networks (CNNs) [33] are one of the most popular learning architectures. In the remote
sensing of agriculture, CNN-based approaches have been applied to various images with
different research objectives, such as land cover classification [34], weed mapping [35],
and crop yield prediction [36]. CNN-based deep learning was originally suitable for 2D
image data, but its applicability has been extended to one-dimensional (1D) spectral data
in recent years. For example, Padarian et al. [32] demonstrated that the CNN model, by
converting the 1D soil spectra into a 2D spectrogram as input, can predict the soil TC,
cation exchange capacity (CEC), clay, sand, and pH with better accuracy than conventional
methods (PLS and Cubist). Ng et al. [31] developed a 1D-CNN model and compared it
with a 2D-CNN model to estimate the major soil properties (TC, organic carbon (OC), CEC,
clay, sand, and pH)) based on the Kellogg Soil Survey Laboratory (KSSL) database. The
results indicated that the 1D-CNN model was more effective than the 2D-CNN model. For
areas not included in the soil spectral libraries, a local model can be developed or improved
by transfer learning from the global model [37]. However, the prediction accuracy for P is
lower than that for other soil components, and thus, improvements in predictive accuracy
are required. Tsakiridis et al. [38] reported that the R2 for soluble P in sodium hydrogen
carbonate was 0.42, while the R2 for clay content, soil organic carbon, and total nitrogen was
0.86, 0.86, and 0.83, respectively, using the visible, near-infrared and shortwave-infrared
(VNIR-SWIR) spectra of the Land Use and Coverage Area Frame Survey (LUCAS) soil
spectral library in combination with a localized multi-channel 1-D CNN model.
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As mentioned above, state-of-the-art deep learning approaches with soil spectral
libraries are currently available to construct models for predicting soil properties at local,
regional, and global scales. However, soil P predictions remain challenging despite their
importance to the sustainable management of agricultural systems aimed at addressing
both soil degradation in the tropics and the environmental impacts of its excess use [39].
This is because soil P has no specific absorption in the Vis-NIR wavelength region [40]. Our
previous studies in a range of rice cultivation soils in Madagascar identified the important
wavelength for estimation and developed a reliable prediction model for oxalate-extractable
P in soils, which is a suitable indicator of P availability for rice in the region [41], using PLS
analysis with waveband selection [23,42]. Furthermore, different P cycling between natural
and cultivated systems resulted in different soil P forms, which consequently decreased
the accuracy of a common model in both land-use systems (cultivated vs. natural) [42].
The estimation accuracy should be improved by applying a comprehensive model to soil
diagnosis in farm fields and other ecosystems for data compatibility and usability.

Therefore, the purpose of the present study was to develop a model based on the
1D-CNN architecture for estimating the soil available P content (Pox) in Madagascar. We
used the dataset from our previous reports [23,42] because in Madagascar, only a small
number of qualified datasets have been recorded in the soil spectral libraries: continent
scale (n = 82) [13] and global scale (n = 18) [15]. Furthermore, because most soil spectral
libraries use total P (TP) as reference data, the transfer learning approach cannot be applied
to localize the model to Madagascar. Therefore, we compared the predictive ability of
the 1D-CNN model to the previously used regression approaches, PLS and RF. We also
performed a sensitivity analysis to identify the important wavebands used by the CNN
model to predict soil Pox, and then evaluated the importance of the wavebands showing
high sensitivity compared to PLS and RF.

2. Materials and Methods
2.1. Study Site and Dataset

The combined dataset included soil Pox content and spectral measurement data from
318 sampling points from the central highlands and eastern forest regions in Madagascar
(Figure 1). Soil sampling was carried out in cultivated (n = 244) and natural (n = 74)
systems. The climate in the area is sub-humid to humid tropics with an annual rainfall of
1381–2500 mm and a mean annual temperature of 16.9–24.0◦C, depending on the elevation
(110–1667 m above sea level). The area is dominated by Geric Ferralsols, which are generally
acidic with low available P [43,44].

In the central highlands, soil sampling was performed in farmers’ fields under irri-
gated (n = 173) and upland (n = 71) rice systems in 2015–2016 and 2018–2019. Surface
soil samples were collected at a depth of 0–15 cm as composites of three to four cores in
each field. In the eastern forest region, 74 soil samples were collected in 2014 and 2015
from forest (n = 16) and non-forest (n = 58) sites. The non-forest sites included fallow and
degraded land. The soil samples were air-dried for 14 days and sieved to <2 mm. Soil P
was extracted using the acid ammonium oxalate method [45], and the concentration of P in
the oxalate extraction was analyzed using the malachite green colorimetric method [46].
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2.2. Spectral Measurements and Preprocessing

Spectral measurements of soil samples were taken in dark rooms at the Japan In-
ternational Research Center for Agricultural Science (JIRCAS) and the Laboratoire des
Radioisotopes, Antananarivo University, Madagascar, using ASD FieldSpec 4 Hi-Res (ASD
Inc., Longmont, CO, USA) and an ASD contact probe. Compared to multispectral sensors,
the hyperspectral soil reflectance data in laboratory Vis-NIR spectroscopy has some advan-
tages such as waveband richness, sharpness of wavebands, and spectral continuity [47].
The ASD FieldSpec measures the spectral reflectance in the 350–2500 nm wavelength region.
The spectral resolution (full width at half maximum; FWHM) was 3 nm in the 350–2500 nm
range and 6 nm in the 1000–2500 nm range, which were resampled to 1 nm resolution
wavelengths for output data using the cubic spline interpolation function in ASD software
(RS3 for Windows; ASD Inc.). A Spectralon (Labsphere Inc., Sutton, NH, USA) reference
panel (white reference) was used to optimize the ASD instrument prior to taking Vis-NIR
reflectance measurements for each sample.

Bulk soil samples (<2 mm) were filled into an optical-glass Petri dish with a diameter
of 85 mm and pressed to form a layer about 19 mm tick. The soil surface reflectance
measurements were done on the surface for 25 times with five replications for each soil
sample, and the spectral readings were averaged.

During preprocessing, spectral data were initially converted from reflectance (R)
to absorbance (A = log(1/R)). Then, the absorbance spectra were converted to the first
derivative absorbance (FDA) spectra using a Savitzky-Golay smoothing filter [48] with
a third-order, 15-band moving polynomial. In addition, FDA spectra were standardized
using a standard normal variate transform (SNV) to reduce the particle size effect [49].
Finally, the FDA data of both edge wavelength regions (350–419 nm and 2401–2500 nm)
were removed because of the low signal-to-noise ratios in the instruments. Thus, the
remaining 1981 spectral bands between 420 and 2400 nm were used in the analyses.

2.3. Model Development
2.3.1. Partial Least Squares (PLS) Regression

PLS is one of the most widely used linear regression approaches to analyze high-
dimensional datasets, such as hyperspectral and Vis-NIR data, because it combines all
available waveband information without multicollinearity issues, unlike standard multiple
linear regression analysis. The PLS regression treats each waveband as an independent
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explanatory variable for estimating the response variable of the target component (soil
Pox in the present study). The regression coefficient of PLS is computed by weighting
the optimal number of PLS factors; it is also called a weighted coefficient (βw). Here, a
leave-one-out cross-validation (CV) method was used to select the optimal number of
PLS factors to be included in the regression model. The important wavebands can be
determined by the high absolute value of βw.

2.3.2. Random Forest (RF) Regression

RF is a machine-learning approach that uses a non-linear statistical ensemble method
that builds a large number of decision trees (ntree) for classification or regression and
then averages them [50]. This approach evaluates the relationship between explanatory
and response variables using a set of decision rules constructed by recursively dividing
the input space into smaller regions. In the procedure, the model is developed with a
set of trees by selecting a subset based on a bagging approach. Each tree grows until it
reaches a certain minimum number of nodes (node size). Then, the remaining subset (called
the out-of-bag (OOB) sample) is used for internal cross-validation to assess the average
accuracy and error rate over all predictions [51]. In addition, the OOB is used to estimate
the variable (feature) importance. Finally, the output class is calculated using the maximum
votes from the ntree in the forest. In this study, we set ntree = 5000 and node size = 5 to
construct the RF model. The importance of spectral wavebands in the model was evaluated
by the Gini impurity, which was calculated by summing all decreases in Gini impurity at
each tree node split, normalized by the number of trees.

2.3.3. One-Dimensional Convolutional Neural Network (1D-CNN)

CNNs are the most widely used architectures in deep learning approaches. CNN
architectures are generally composed of an input layer, several hidden layers (convolution
layers, pooling, and fully connected), and an output layer. Among the CNNs, 1D-CNN has
an input layer and 1D filters on the convolution layers suitable for one-dimensional spectral
data [52]. In the present study, we used the 1D-CNN architecture proposed by Ng et al. [31]
(Figure 2) because the structure is simple and well described, and there are existing reports
on other soil properties. This is good to compare the accuracy of our newly performed soil
oxalate-P estimation with the results of other soil properties. The architecture included
10 hidden layers (Table 1): four convolutional layers, four max-pooling layers, and two
fully connected layers. The activation function used a rectified linear unit (ReLU) for all
hidden layers [53]. Two dropout rates of 0.4 and 0.2 were used to avoid overfitting [31].

Table 1. Architecture of one-dimensional convolutional neural network (CNN).

Type Filter Size No. of Filters Activation

Convolutional 20 32 ReLU
Max-pooling 2 - -

Convolutional 20 64 ReLU
Max-pooling 5 - -

Convolutional 20 128 ReLU
Max-pooling 5 - -

Convolutional 20 256 ReLU
Max-pooling 5 - -
Dropout (0.4) - - -

Flatten - - -
Fully-connected - 100 ReLU

Dropout (0.2) - - -
Fully-connected - 1 Linear

ReLU, rectified linear unit.
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2.4. Data Handling and Implementation

Our whole dataset (n = 318) was split into training (n = 238) and test (n = 80) subsets.
The training data were used to develop the PLS, RF, and 1D-CNN models. Then, the
models were applied to the test dataset to assess the predictive abilities of the models for
soil Pox prediction. Table 2 summarizes the minimum, maximum, median, mean, and
standard deviation (SD) values of Pox (mg P kg–1) for the training (n = 238) and test (n = 80)
datasets, including data collected from different land-use systems (natural and cultivated).
Soils in cultivated systems showed higher Pox values and wider ranges compared with
soils in natural systems, probably due to the effect of fertilization on cultivated land [42].

Table 2. Summary statistics of soil oxalate-extractable P data.

Dataset System n Min Max Median Mean SD

Training All 238 21.9 1172.0 67.7 214.7 278.0
Cultivated 183 23.7 1172.0 106.0 268.7 296.5

Natural 55 21.9 53.9 34.8 35.1 7.2
Test All 80 22.3 1225.2 68.5 220.9 290.0

Cultivated 62 22.3 1225.2 106.2 274.8 309.6
Natural 18 22.9 57.9 33.8 35.5 9.5

n, number of samples; SD, standard deviation

The data distributions of soil Pox for all systems in the training and test datasets
are shown in Figure 3. The data range of soil Pox content was similar for the training
(21.9–1172.0 mg P kg–1) and test (22.3–1225.2 mg P kg–1) datasets. Moreover, the SD (278.0
and 290.0 mg P kg–1) showed similar values. This is important for correct validation by
applying the model created with the training data to the test data. The data distribution was
left-skewed because of the predominance of strongly weathered soils in the region [43,44],
with higher mean (214.7 and 220.9 mg P kg–1 for training and test datasets, respectively)
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than median (67.7 and 68.5 mg P kg–1) values. Theoretically, the SD, data range, and
distribution pattern affect the accuracy of the regression analysis. Compared to previous
studies (121–991 mg P kg–1) [54], our data set included a larger variance of Pox values,
which can be expected to improve the predictive ability of a model.
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In the present study, PLS and RF models were implemented using R ver. 3.6.3 [55]
with the packages ‘pls’ ver. 2.7-2 [56] and ‘randomForest’ ver. 4.6-14 [57]. The CNN
was implemented using Python ver. 3.6.9 [58] with the Keras library ver. 2.2.4 [59], and
TensorFlow ver. 1.14.0 [60] backend. All computations were performed on a desktop PC
with Intel® CoreTM i9-9900X 3.5 GHz processor, 64 GB RAM, and the NVIDIA GeForce
RTX 2080 Ti.

2.5. Predictive Accuracy Evaluation

To assess the predictive accuracy of the PLS, RF, and 1D-CNN models, a 5-fold cross-
validation was performed in the training dataset (n = 238). In the procedure, the training
data were split randomly into 5-folds. Each model was built on 4 (=5 − 1) folds, and then
the error of the remaining 1-fold was recorded as validation data. The process was repeated
until each of the 5-folds served as a validation data set. The mean values of the coefficient
of determination (R2), root mean squared error (RMSE), and bias were used to assess model
accuracy. The RMSE and bias were defined as

RMSE =

√
∑n

i=1
(
Yi − Ŷi

)2

n
, (1)

bias =
∑n

i=1
(
Ŷi − Yi

)
n

, (2)

where Y and Ŷ are the observed and predicted soil Pox values, respectively, and n is the
total number of observations i.
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Moreover, the models were applied to the test dataset (n = 80), and then the predic-
tive ability was evaluated from the R2, RMSE, bias, and the ratio of performance to the
interquartile range (RPIQ) [61]. The RPIQ is an auxiliary indicator of the model, and the
performance of predictive ability and future reliability can be judged as follows: (i) >2.5:
excellent model, (ii) 2.0–2.5: very good model with predictive ability, (iii) 1.7–2.0: good
model, (iv) 1.4–1.7: fair model in need of some improvement, and (v) <1.4: model with
very poor predictive ability [62].

2.6. Sensitivity Analysis of 1D-CNN Model for Evaluating Important Wavebands

In the PLS and RF models, the importance of wavebands for estimating soil Pox can be
assessed using PLS regression coefficients and RF importance (Gini purity index). However,
it is difficult to directly evaluate the important wavebands in the 1D-CNN model. To assess
the importance of wavebands in the 1D-CNN model, a sensitivity analysis was performed
using the method proposed by Ng et al. [31], in which the sensitivity is calculated as a
function of the variance of the model for each window of spectra [63]:

Si =
V
(

f (X1, . . . , X2, . . . , Xn)− f
(
X
))

V(Y)
, (3)

where V is the variation calculation, f (X1, . . . X2, . . . , Xn) is the prediction of spectra due
to variation in waveband i with the other wavebands held constant on average, f

(
X
)

is
the prediction value using the mean values of the spectra, and Y is the observed value
of the soil Pox. In essence, this approach compares the sensitivity of the wavebands and
calculates how the model changes [31].

3. Results
3.1. Comparison of Predictive Abilities in PLS, RF, and 1D-CNN Models

To compare the predictive accuracy in the PLS, RF, and 1D-CNN models using FDA
spectral datasets, the mean values of R2, RMSE, bias, and the relative improvement
(%RMSE) from 5-fold cross-validation were compared in the training dataset (n = 238)
(Table 3). Computational times for developing the PLS, RF, and 1D-CNN models were
3.9, 264.1, and 5908.45 s (CPU time), respectively. Clearly, the 1D-CNN required a lot
of learning time to develop the model, but it showed much better predictive accuracy
(R2 = 0.989, RMSE = 35.636) than the RF (R2 = 0.842, RMSE = 108.820) and PLS (R2 = 0.827,
RMSE = 114.854) models. Compared with the RMSE values of the PLS model, the RF
model showed a slight improvement in accuracy (%RMSE = 5.254%), while the 1D-CNN
model showed a significant improvement (68.973%).

Table 3. Mean values of R2, RMSE, bias, and relative improvement (%RMSE) from 5-fold cross
validation in the training dataset for developing the partial least squares (PLS), random forest (RF),
and one dimensional convolutional neural network (1D-CNN) models.

Model R2 RMSE Bias %RMSE 1

PLS 0.827 114.854 16.577 -
RF 0.842 108.820 13.517 5.254

1D-CNN 0.989 35.636 -2.202 68.973
1 Relative improvement (%RMSE) of the RF and CNN models in comparison to PLS model. RMSE, root mean
squared error.

In addition, to confirm the reliability of the models, predictive ability was assessed
from the relationship between the observed and predicted soil Pox content from the PLS,
RF, and 1D-CNN models in the individual test dataset (n = 80) (Figure 4). The R2, RMSE,
bias, RPIQ, and the relative improvement in RMSE (%RMSE) are summarized in Table 4.
Similarly to the cross-validation results in the training dataset, the 1D-CNN showed higher
predictive accuracy (R2 = 0.878, RMSE = 101.154) than the RF (R2 = 0.808, RMSE = 126.894)
and PLS (R2 = 0.792, RMSE = 132.694) models. Compared with the PLS model, the RF
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and 1D-CNN models indicated a 4.37% and 23.77% relative improvement in %RMSE,
respectively. Based on the RPIQ values, the PLS and RF models (RPIQ < 2.0) could be
judged as good models, but they required further work to improve quality and increase
future applicability, while the 1D-CNN model (RPIQ = 2.492) was considered to be a very
good model with high predictive ability.
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Table 4. Comparison of predictive abilities in the partial least squares (PLS), random forest (RF), and
one dimensional convolutional neural network (1D-CNN) models.

Model R2 RMSE Bias RPIQ %RMSE 1

PLS 0.792 132.694 15.606 1.900 -
RF 0.808 126.894 11.884 1.986 4.371

1D-CNN 0.878 101.154 −4.035 2.492 23.769
1 Relative improvement (%RMSE) of the RF and CNN models in comparison to PLS model. RMSE, root mean
squared error; RPIQ, ratio of performance to the interquartile range.

3.2. Important Wavelengths

The importance of each waveband in the models for soil Pox prediction was assessed.
Figure 5 shows the FDA spectra in logarithmic form to easily refer to the wavelength char-
acteristics depending on the soil P values, and the absolute values of PLS coefficients, RF
importance (Gini purity index), and 1D-CNN sensitivity (s) as indicators of the importance
of each waveband in the soil Pox estimation models.

The important wavebands for the PLS model were revealed in the visible (433, 446,
509, 550, and 590 nm) and NIR (1001, 1412, 1904, and 2219 nm) wavelength regions. The RF
model showed constant values over the entire wavelength range, but the 446, 1336, 1366,
2365, and 2397 nm were particularly important. In the 1D-CNN model, high sensitivity was
observed in the narrow and limited wavelength regions, with peaks at 432, 590, 1433, and
2274 nm. The three peaks (432, 590, and 1433 nm) did not exactly match but also showed a
high value in PLS coefficients, and thus were considered to be important for estimating
soil Pox.

118



Remote Sens. 2021, 13, 1519 10 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 15 
 

 

3.2. Important Wavelengths 
The importance of each waveband in the models for soil Pox prediction was assessed. 

Figure 5 shows the FDA spectra in logarithmic form to easily refer to the wavelength char-
acteristics depending on the soil P values, and the absolute values of PLS coefficients, RF 
importance (Gini purity index), and 1D-CNN sensitivity (s) as indicators of the im-
portance of each waveband in the soil Pox estimation models.  

The important wavebands for the PLS model were revealed in the visible (433, 446, 
509, 550, and 590 nm) and NIR (1001, 1412, 1904, and 2219 nm) wavelength regions. The 
RF model showed constant values over the entire wavelength range, but the 446, 1336, 
1366, 2365, and 2397 nm were particularly important. In the 1D-CNN model, high sensi-
tivity was observed in the narrow and limited wavelength regions, with peaks at 432, 590, 
1433, and 2274 nm. The three peaks (432, 590, and 1433 nm) did not exactly match but also 
showed a high value in PLS coefficients, and thus were considered to be important for 
estimating soil Pox. 

 
Figure 5. (a) First derivative absorbance (FDA) spectra on log10 scale of soil oxalate-extractable P 
(Pox) content and importance of wavelength to (b) partial least squares (PLS), (c) random forest 
(RF), and (d) one dimensional convolutional neural network (1D-CNN) models in soil Pox estima-
tion. 

4. Discussion 
As a deep learning approach suitable for 1D spectral data, 1D-CNN with Vis-NIR 

spectral data was applied to predict soil Pox content in Madagascar, and its predictive 
ability was compared with that of PLS and RF models. The 5-fold cross-validation in the 

Figure 5. (a) First derivative absorbance (FDA) spectra on log10 scale of soil oxalate-extractable P
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and (d) one dimensional convolutional neural network (1D-CNN) models in soil Pox estimation.

4. Discussion

As a deep learning approach suitable for 1D spectral data, 1D-CNN with Vis-NIR
spectral data was applied to predict soil Pox content in Madagascar, and its predictive
ability was compared with that of PLS and RF models. The 5-fold cross-validation in the
training dataset demonstrated that the 1D-CNN model can estimate soil Pox from Vis-NIR
spectral data with improved accuracy compared to the other common methods of PLS
and RF. Even though our soil samples were collected from different land- use systems,
the best predictive ability in the 1D-CNN model was also confirmed in the individual test
dataset. These results indicated that a comprehensive model to predict Pox in soils with
high accuracy could be developed irrespective of land use systems using a deep learning
approach with a 1D-CNN model rather than PLS (conventional method) and RF (another
machine learning approach). Similarly, the lowest bias was observed in the 1D-CNN model.
Based on the RPIQ value, our 1D-CNN model could be considered to have a very good
predictive ability, and therefore could provide high-quality results in future applications.
These results confirm that the CNN-based model can outperform PLS and other machine
learning approaches for estimating soil properties, as suggested by previous studies [31,32].
Another update from our previous report using PLS regression analysis [42] was that the
1D-CNN model enabled the prediction of soil P as a single model, even based on the
dataset collected from different land-use systems in Madagascar. These improvements
are considered to be advances in the holistic understanding of soil P dynamics and their
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rational management in agriculture and natural ecosystems in Madagascar. Furthermore,
the timely and accurate prediction of available P content in soils using our 1D-CNN model
can be expected to contribute to effective fertilizer management in agriculture and the
sustainable management of ecosystems.

We also assessed the important wavebands of the 1D-CNN model using a sensitivity
analysis method developed by Ng et al. [63]. Assessing the important specific spectral
features and their regions may help clarify the relationship between spectral signatures
and underlying molecular activity within the spectral wavelength regions used in the
calibration [64]. In the Vis-NIR wavelength region, theoretically, there is no specific ab-
sorption by Pox; thus, differences in spectral shape due to P content cannot be clearly
determined [65–67]. However, indirect correlations between P forms and spectrally active
soil properties can be studied. For example, Pätzold et al. [68] reported that the most
relevant variables for the estimation of soil P by PLS were selected based on the variable
importance in projection (VIP) method, and that PLS regression coefficients were located
around 500 nm and 2200–2400 nm. Our previous study in Madagascar identified important
Pox regions at 454–660 nm and 1732–2312 nm based on five runs of the variable selection
method genetic algorithm followed by PLS regression [23].

In the present study, our 1D-CNN model showed high sensitivity in the narrow
and limited wavelength regions with peaks at 432, 590, 1433, and 2274 nm. Since these
wavebands correspond to the regions reported previously [23,68], it can be suggested that
soil Pox tends to be primarily associated with the visible (400–660 nm) and longer NIR
(1700–2400 nm) wavelength regions. The visible part of the spectral region was dominated
by absorption due to organic matter (OM) and electronic transitions of Fe, and the selected
wavebands at 432 and 590 nm were attributed to absorption by ferric oxide and OM,
respectively [40,69–71]. Our previous study also reported that oxalate-extractable Al and
Fe were positively correlated with soil TC and organic P content, respectively [5]. The
longer NIR wavelength region (1700–2400 nm) was dominated by a combination of bands
from intense fundamental vibrations of O-H, C-H bonds, and Al metal-OH groups [7,72].
The waveband at 1433 nm was attributed to sorptive water, and that at 2274 nm was
associated with gibbsite (Al-oxide mineral) [73]. The significance of the sorptive water in
air-dried soils for predicting Pox was corroborated by our previous finding that active Al
was clearly correlated with air-dried soil moisture content (Nishigaki et al., under review).

Overall, our findings were in agreement with those of earlier studies that reported
that machine learning outperformed PLS regression. However, such approaches may not
be suitable for all situations because the deep learning approach requires large, qualified
datasets to develop good prediction models [31]. Therefore, many CNN-based deep
learning approaches have been performed using a large topsoil spectral dataset, such as the
KSSL database (n = 14,594) [31] or LUCAS soil spectral libraries (n = 19,036) [32,37,38,74].
Our dataset collected from the central and eastern regions of Madagascar was relatively
small (n = 318). This is a limitation of our study for developing a robust model on a larger
spatial scale. However, the Pox targeted in our study was more highly correlated with
other soil properties (e.g., oxalate-extractable Al and Fe, and soil pH) than total P or easily
soluble P [5]. This possibly resulted in a higher prediction accuracy using spectral data for
Pox than that achieved in previous reports. Further evaluation by updating the model with
a larger dataset will be required in future studies to map and assess the spatial distribution
of soil Pox status on a larger spatial scale in Madagascar.

5. Conclusions

The present study investigated the performance of a 1D-CNN model through com-
parison with two conventional methods, PLS and RF, for estimating soil Pox content with
Vis-NIR spectral data in soil samples collected from cultivated (upland and flooded rice
fields) and natural (forest and non-forest) systems in Madagascar. The main conclusions
are as follows:
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• With the potential to provide high predictive ability and performance in deep learning
approaches, Vis-NIR spectroscopy with 1D-CNN is a promising method for predicting
soil Pox content.

• Our 1D-CNN model provided the best predictive ability to estimate soil Pox content
compared with the PLS and RF models.

• The RPIQ value from the 1D-CNN is suggested to be a very good model with high
predictive ability for future applicability.

• The important wavebands from the sensitivity analysis of the 1D-CNN model were
revealed in the visible region (432 and 590 nm) associated with Fe-oxides and diverse
functional groups in soil OM; at 1433 nm, associated with water absorption; and at
around 2270 nm with gibbsite (Al oxide mineral). These wavelength regions are known
to be of high importance in the PLS model, and are in line with previous studies.

• The 1D-CNN model we developed allowed soil P prediction based on a single model,
even using data from different land-use systems.

Our findings illustrate the potential of deep learning approaches for predicting soil P
availability using a proximal sensing technique. The main contribution from our study is
the demonstration of a 1D-CNN model that can be applied to soil Pox prediction in different
ecosystems from the central to eastern regions of Madagascar. Moreover, rapid and accurate
prediction of soil Pox using our results can be expected to contribute to effective fertilizer
management in agriculture and the sustainable management of ecosystems. Nevertheless,
the 1D-CNN approach employed in this study should be updated with a larger dataset
and further evaluated on a larger spatial scale in Madagascar.
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Soil phosphorus retention can predict responses of phosphorus uptake and 
yield of rice plants to P fertilizer application in flooded weathered soils in 
the central highlands of Madagascar 
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A B S T R A C T   

Efficient phosphorus (P) fertilizer management is highly required for resource-limited farmers to achieve higher 
yields in typical P-deficient farmlands in sub-Saharan Africa. Although soil P retention has been conventionally 
used to estimate the possible responses to P fertilizer applied to soils, its applicability has not been clearly 
confirmed at the field level. In this study, the applicability of P retention to predict the response of rice plants to P 
application was investigated using pot experiments with soils collected from various locations (N = 62) and on- 
farm experiments at two nutrient-poor sites (N = 38) in the central highlands of Madagascar. Further, we 
explored a simple prediction method of P retention for multiple location assessment in local farmers’ fields using 
an alternative property of soils collected from rice fields in the same region (N = 213). P retention was negatively 
correlated with the increase in rice P uptake (ΔPuptake, r = − 0.550) in the pot experiment and with the increase 
in yield (ΔYield, r = − 0.697) in the on-farm field experiment as a response to P application. Path analysis 
revealed that oxalate-extractable aluminum (Alox) content was the most important factor of P retention across all 
the soils, indicating that rice plants grown on soils with higher Alox and P retention are less sensitive to P 
application. Given its high correlation with P retention (r = 0.642) and its simplicity in measurement, we 
proposed the use of moisture content of air-dried soils (ωair) as a parameter to predict soil P retention. It was 
further confirmed that ωair had a significant negative correlation with ΔPuptake based on the pot experiment 
across a wide range of soil statuses (r = − 0.518). However, ωair could not clearly explain ΔYield within a small 
range of soil properties in the field experiment. Overall, soil P retention can predict the responses of rice plants to 
P application in the typical P-deficient and low-yielding lowlands in the central highlands of Madagascar, and 
this simple evaluation technique using air-dried soil moisture content will be helpful for the assessment of 
multiple rice fields on a broad scale.   

1. Introduction 

Phosphorus (P) deficiency is widely found in tropical agroecosystems 
in sub-Saharan Africa (SSA) (Kihara et al., 2016; Nziguheba et al., 2016; 
Saito et al., 2019; Shehu et al., 2018). This is due to the inherent 
properties of tropical weathered soils, which are characterized by low 
available P content, low pH, and large amounts of P-fixing aluminum 
(Al) and iron (Fe) oxides (Kirk et al., 1998; Nishigaki et al., 2019; 

Nziguheba et al., 2016). The crop response to P application is low in high 
P-fixing soils in the tropics; thus, large amounts of P have been applied to 
achieve high grain yields. Flooding condition in paddy soils can partly 
increase P availability for rice due to increase in P transport and 
reductive dissolution of ferric oxides (Zhang et al., 2003). However, the 
effect of flooding is limited due to the high P fixation potential but low P 
content of soils rich in crystalline oxides, e.g., gibbsite and goethite, 
which are typically observed in tropical agroecosystems (Batjes, 2011). 
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Furthermore, considering the finite nature of P fertilizer resources and 
limited access to chemical fertilizer by local farmers in SSA, improved P 
fertilizer management is highly required for sustainable crop production 
(Alewell et al., 2020; Nziguheba et al., 2016). 

One practical approach to improve P fertilizer use efficiency is site- 
specific P fertilizer management based on a spatial assessment of soil 
P deficiency (Tsujimoto et al., 2019). This approach should be particu
larly beneficial in low-input and nutrient-poor soils in the tropics where 
field-to-field variations in P deficiency status are large (Nishigaki et al., 
2019). Relative biomass or nutrient uptake (ratio with the omission of a 
target nutrient relative to its full application) has been used in previous 
omission trials as an index to evaluate the spatial variation of indigenous 
nutrient deficiency and the responses of crops to fertilizer inputs (Hae
fele and Wopereis, 2005; Kihara et al., 2016; Saito et al., 2019; Shehu 
et al., 2018). Conversely, soil testing by chemical extraction is the most 
common method for assessing the amount of readily extractable P in 
soils and determining the need for P additions to meet crop needs in field 
trials (Jordan-Meille et al., 2012; Nawara et al., 2017; Rosen et al., 
2014). However, readily extractable P contents determined in soil tests 
alone are often poor predictors of yield response or plant P uptake 
response to P application in both uplands and lowlands (Dobermann 
et al., 2003; Nawara et al., 2017). This discrepancy between the results 
of the soil P test and the crop responses to P application could be partly 
explained by the fact that the response of crops to P application is 
associated not only with readily extractable P contents in soils but also 
with soil P-sorption capacity (Andriamananjara et al., 2016; Nziguheba 
et al., 2016). Nevertheless, few attempts have been made to reveal the 
effect of soil P retention and crop response to fertilizer input. 

It was reported that intensity-based P tests (e.g., CaCl2 extraction or 
diffusive gradient in thin-films test) were superior to quantity-based P 
tests (Olsen or Oxalate) for predicting the relative yield of crops in 
typical tropical soils with low P availability and large P sorption 
(Nawara et al., 2017). This was supported by the strong negative cor
relation between intensity-based P and the P sorption index of tropical 
soils (Six et al., 2013) and by the negative relationship between Alox +
0.5 Feox, but not the available P content, and fertilizer-P recovery effi
ciency of rice plants grown in the P-deficient soils of Madagascar rice 
fields (Nishigaki et al., 2019; Oo et al., 2020). These results suggest that 
P retention or its relevant P sorbents could be a more important factor 
than conventional soil P tests to determine rice responses to P applica
tion in tropical P-deficient soils. Therefore, we hypothesized that the P 
retention capacity of soils is a reliable parameter to predict crop re
sponses to P fertilizer application for tropical lowland rice production. P 
retention is a simple measurable parameter that has been conventionally 
used to estimate the possible responses to P application of soils at a 
broad scale (Johnston et al., 2014). However, in contrast to soil P tests, 
the applicability of P retention for predicting the crop response to P 
application has not been well studied, particularly at the field level. 

The target area of this study was the central highlands of 
Madagascar, which is mostly covered by soils categorized with very high 
to high P retention due to their low pH and weathered soils represented 
by Ferralsols (Andriamananjara et al., 2016; Batjes, 2011; Nishigaki 
et al., 2020). The optimal application rate of P fertilizer based on the 
evaluation of soil P retention may be more economical in the tropics 
than in temperate regions due to the predominance of such weathering 
soils. This study aimed to assess the applicability of soil P retention to 
predict the response of rice to P fertilizer application in flooded 
weathered soils. In addition, we explored a simple prediction method of 
soil P retention using correlation analysis with various soil properties. 

2. Materials and methods 

2.1. Soil sampling and analysis 

Soil samples were collected from 213 widely distributed lowland rice 
fields in the central highlands of Madagascar. The fields containing the 

sampling points were located at an altitude of 900–1600 m a.s.l. The 
area is mostly covered by Ferralsols according to the national soil map 
(EU, 2013), while the soils in the rice fields are most likely to be clas
sified as Fluvisols or Cambisols based on previous field observations 
(Nishigaki et al., 2020). 

In each field, a surface layer of 0–15 cm depth was collected as four 
to five composites using a core sampler and a shovel for soil analysis and 
the pot experiments, respectively. The collected soil samples were air- 
dried, sieved to pass through a 2-mm mesh screen, and kept in plastic 
bags until the analysis of P retention and relevant soil properties. 

Soil P retention was measured using the method described by Soil 
Survey Staff (2014). Briefly, 5.0 g of soil was shaken in a 25-mL aliquot 
of a 1000 mg L–1P solution, which was a mixture of KH2PO4, 
CH3COONa, and CH3COOH with pH 4.6, for 24 h. The aliquot was 
centrifuged and filtered, and the P concentration in the aliquot was 
quantified by a colorimetric method with nitric vanadomolybdate acid 
reagent at an absorbance of 466 nm. This concentration correlated with 
the concentration of the non-adsorbed P remaining in the sample solu
tion. The P retention was then determined as the initial P concentration 
minus the P remaining in the sample solution and was shown as percent 
P retained. Soil particle size distribution was determined using the wet- 
sieving and pipet method (Gee and Bauder, 1986). Soil pH was deter
mined in deionized water at a soil-to-solution ratio of 1:2.5. Exchange
able cations (K+, Na+, Ca2+, and Mg2+) were measured following Soil 
Survey Staff (2014), and the total exchangeable cation (TEC) was 
calculated as the sum of these four cations. Cation exchange capacity 
(CEC) was determined by the ammonium acetate method at pH 7.0 (Soil 
Survey Staff, 2014). Base saturation was calculated as the percentage of 
TEC to CEC (TEC/CEC). Total carbon (TC) and nitrogen (TN) were 
quantified using the dry combustion method with an NC analyzer 
(Sumigraph NC-220F; Sumika Chemical Analysis Service, Ltd., Osaka, 
Japan). Extractable Al, Fe, and P contents were determined using the 
acid ammonium oxalate method (Alox, Feox, and Pox, respectively) as 
described by Courchesne and Turmel (2008). The concentrations of Al, 
Fe, and P in the oxalate extraction were measured using an inductively 
coupled plasma mass spectrometer (ICPE-9000; Shimadzu Corp., Kyoto, 
Japan). 

The air-dried soil moisture content (ωair) was measured as follows: 
2.0 g of soil was fully wet by ~ 2 mL of deionized water and kept for 12 h 
at room temperature. Then, the wet soil was dried at 60 ◦C for 72 h in an 
oven to a constant weight, and the weight of the air-dried soil was 
measured (A). The soil was subsequently dried at 105 ◦C for 24 h in an 
oven, and then the weight of the oven-dried soil was measured (B). 
Finally, ωair (%) was calculated as follows: 

ωair =
A − B

B
× 100  

2.2. Pot experiment 

Out of the 213 soil samples for soil analysis mentioned above, 62 soil 
samples were selected to evenly represent a wide range of soil status in 
the central highlands of Madagascar, to minimize the potential biasing 
of the samples from being skewed toward low fertility. The soil samples 
were used for three sets of pot experiments (Exps. 1–3) to analyze the 
effect of P application on rice P uptake under flooded conditions. The 
soil samples for the pot experiments were air-dried and sieved (<4 mm), 
and 1 kg of each soil was put into a 1-L plastic pot (13 cm diameter, 15 
cm height). The pot experiments were all conducted in a greenhouse at 
the Laboratoire des Radio-Isotopes, University of Antananarivo, 
Madagascar (18◦ 53′ 57′′ S, 47◦ 33′ 01′′ E, 1,222 m alt.) from September 
to October 2016 (Exp. 1, N = 24), October to November 2018 (Exp. 2, N 
= 26), and September to October 2019 (Exp. 3, N = 12). The daily mean 
temperatures throughout the growing periods ranged 18–26 ◦C, 
20–29 ◦C, and 15–26 ◦C in Exps. 1–3, respectively (Watchdog 2475, 
Spectrum Technologies Ltd.). The data from Exp. 1 was presented in our 
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previous study (Nishigaki et al., 2019). In each experiment, three fer
tilizer treatments were established with two replicates: 1, Cont. (no 
fertilizer application); 2, +N (0.2 g pot− 1 of N as NH4NO3); and 3, +NP 
(0.2 g pot− 1 of both N as NH4NO3 and P2O5 as KH2PO4). The application 
rate of N was adequate in the flooded condition despite the form of 
NH4NO3 since clear positive response in plant biomass was observed for 
some pots under the + N treatment compared with the Cont. treatment 
(Supplemental table). Potassium was applied to all the pots, including 
the Cont. treatment, at a rate of 0.2 g pot− 1 of K2O as KCl. Each nutrient 
was uniformly incorporated into the soils one day prior to transplanting. 
Then, two 20-day-old seedlings of a local rice cultivar, X265, grown in 
free-nutrient sand were transplanted into each pot. The pots were 
continuously flooded with distilled water throughout the growing 
period. Weeds were manually removed. No specific pest management 
was required. 

The plant samples were harvested at the soil surface 33–41 days after 
transplanting for Exps. 1–3. Aboveground biomass was determined after 
oven-drying at 70 ◦C to a constant weight. Each plant sample was 
ground into a fine powder using a high-speed vibrating sample mill 
(Model T1-100; Heiko Co. Ltd., Fukushima, Japan). Then, the plant P 
concentration was determined using the molybdate blue method (Mur
phy and Riley, 1962) after dry-ashing at 550 ◦C for 2 h and digestion 
with 0.5 M HCl. The plant P uptake (mg P pot− 1) was calculated as the 
product of the aboveground biomass and P concentration of plants (total 
P content). 

2.3. Field experiment 

We conducted field trials to assess whether P retention can success
fully estimate the response of rice plants to P application under on-farm 
flooded conditions. The on-farm trials were conducted in a total of 38 
lowlands, which were selected from the soils for the pot experiment, in 
the communes of Antohobe (19◦ 46′ S, 46◦ 41′E, 1270 m asl.) and 
Behenjy (19◦ 13′ S, 47◦ 28′ E, 1380 m asl.) during the wet seasons of 
2017–2018 and 2018–2019. Due to the higher elevation in Behenjy, the 
air temperature is generally lower in Behenjy (20.8 ◦C on average during 
the cropping season from November 2018 to April 2019) than that in 
Antohobe (22.2 ◦C during the same period). In the same manner as in the 
pot experiments, three fertilizer treatments were allocated with two to 
three replicates in each field: 1, Cont. (no fertilizer application); 2, +N 
(80 kg ha− 1 of N as urea with 50 kg N ha− 1 broadcasted at the period of 
transplanting and 30 kg N ha− 1 top-dressed at the pre-heading period); 
and 3, +NP (50 kg ha− 1 of P as triple super phosphate at the period of 
transplanting along with the + N treatment). No fertilizers were applied 
other than N and P, which are the most limiting nutrients for rice in SSA 
(Saito et al., 2019). The plot size ranged from 5.1 m2 to 8.0 m2. 

The variety X265 was commonly used in all the fields. Either 
farmers’ transplanting patterns or random transplanting with a density 
of 23.6 to 67.0 hills m− 2 was adopted in 28 fields. In the remaining 10 
fields, two seedlings per hill were transplanted at a density of either 25 
hills m− 2 (0.20 m × 0.20 m) or 50 hills m− 2 (0.20 m × 0.10 m). Weeds 
and water were adequately controlled throughout the rice growing pe
riods. No marked damage from pests or disease was observed at any site. 
At maturity, grain yields (t ha− 1) were determined by harvesting plants 
from an area of 2.6 m2 to 8.0 m2 in the center of each plot. Grain yield 
was expressed based on filled grain weight and corrected to 14% 
moisture content using a grain moisture sensor (Riceter F; Kett Electric 
Laboratory, Tokyo, Japan). 

2.4. Statistical analyses 

Statistical analyses were performed using Excel (Microsoft Office 365 
ProPlus; Microsoft Corp., Redmond, WA, USA) and JMP14 software 
(SAS Institute Inc., Cary, NC, USA). Forward stepwise regression anal
ysis was performed for P retention and ωair using all the other soil 
properties as explanatory variables with the selection level at p < 0.005. 

Then, a multiple linear regression model was developed using the 
selected variables. Path analysis was performed to examine the causal 
path of the soil properties, which were selected in the regression anal
ysis, to P retention and ωair, separately. The direct and indirect effects in 
the path analysis were derived from (i) multiple linear regression of soil 
properties on P retention or ωair and (ii) simple correlation coefficients 
between soil properties. The direct effects of the soil properties on P 
retention or ωair were termed path coefficients (P) and were standard
ized partial regression coefficients for each of the soil properties in the 
multiple linear regression against P retention or ωair (Williams et al., 
1990). The indirect effects of soil properties on P retention or ωair were 
determined from the product of the simple correlation coefficient be
tween the soil properties and the path coefficient. The correlation be
tween the P retention/ωair and each soil property was the sum of the 
entire path connecting the two variables. Path analysis results can be 
presented in a concise table that consists of a matrix with the main di
agonal representing direct effects and off-diagonal elements represent
ing indirect effects (Williams et al., 1990). 

The plant P uptake data of each pot experiment (Exps. 1–3) were 
normalized to the sample variation from 0 to 1 to compare the results of 
the three pot experiments grown under different environmental condi
tions. Then, the P uptake response of rice plants to P application was 
expressed as the difference in normalized P uptake between the + NP 
and + N treatments (ΔPuptake) in the pot experiment. Similarly, the 
response of rice yield to P application was expressed as the difference in 
yield, which was not normalized due to the limited sample number of 
each experiment, between the + NP and + N treatments (ΔYield) in the 
field experiment. A Pearson correlation analysis was performed among 
the soil properties and between ΔPuptake and the soil properties at p <
0.01. After a significant correlation was confirmed, a linear regression 
was conducted between P retention and ΔPuptake. Fields with grain 
yields of > 3.0 t ha− 1 in the Cont. plots (n = 7) were excluded from the 
correlation analysis to avoid high-yielding fields causing little response 
of rice to P fertilizer application in the field experiment. A Pearson 
correlation analysis was also performed between ΔYield and P retention. 
After a significant correlation was confirmed, samples were divided by 
sites into the Behenjy site (N = 10) and Antohobe site (N = 22). 

3. Results 

3.1. Soil characteristics 

The soil properties of all soils and sub-groups for the pot and field 
experiments are summarized in Table 1. Since soil samples were 
collected from a range of environments, the sample set of all soils had a 
variety of soil characteristics. P retention had a large variation, ranging 
from 0.02% to 85.3%, in all the soil samples. TEC and Alox also showed 
large variations among the samples. In contrast, soil pH had little vari
ation, and was slightly acidic with a mean value of 5.58 for all the soils. 
The mean values and coefficient of variation (CV) of soil properties were 
generally lower in the soils in the field experiment than those in the pot 
experiment (Table 1); the sites for the field experiment had relatively 
low fertility and little variation. 

The correlation matrix of the soil properties is shown in Table 2. The 
P retention was poorly correlated with the soil pH and silt content. As a 
single variable, P retention had the highest correlation with Alox. 
Stepwise regression analysis indicated that 72.9% of the variability of P 
retention was explained by Alox, clay, Feox, and TEC/CEC (Table 3). 
The path coefficient (P, underlined in Table 3) indicated that Alox (P =
0.646) was the most important direct causal factor in predicting P 
retention. An examination of the indirect effects revealed that the cor
relations of P retention with Feox, and TEC/CEC were mostly partitioned 
to the indirect effect of Alox. 

ωair was highly correlated with P retention for all the soil samples 
(Table 2). However, the correlation became weak in soil samples with 
low P retention (<50%) (r = 0.250, N = 197), while it was strong in soil 
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samples with high P retention (r = 0.831, N = 16). Stepwise regression 
analysis indicated that 71.2% of the variability of ωair was explained by 
Alox, CEC, and Pox (Table 4). The path coefficient indicated that Alox (P 
= 0.404) was the most important direct causal factor in predicting ωair. 
An examination of the indirect effects revealed that the correlations of 
ωair with Pox and CEC were mostly partitioned to the indirect effect of 
Alox. 

3.2. Pot experiment 

The P uptake of rice plants in the + N treatment ranged from 0.05 to 
2.46 mg P pot− 1 (CV = 90.1%), 0.11 to 1.05 mg P pot− 1 (CV = 69.9%), 
and 0.11 to 1.08 mg P pot− 1 (CV = 105.3%) in Exps. 1–3, respectively 
(Supplemental table). The ΔPuptake ranged from 0.10 to 0.91 (CV =
44.2%), 0.37 to 0.98 (CV = 25.4%), and 0.33 to 1.00 (CV = 27.2%) in 
Exps. 1–3, respectively. 

As a single variable, ΔPuptake had the highest correlation with P 
retention (Table 5, Fig. 1) and had significant correlations with the other 
soil properties, except CEC/Clay, TEC/CEC, C/N, pH, and clay. As a 
single variable, P retention explained 30.2% of the variance of ΔPuptake 
(p < 0.001). P retention was weakly correlated with rice P uptake in the 
Cont. plot (r = 0.37, p = 0.003) and the + N plot (r = 0.43, p < 0.001). 

3.3. Field experiment 

The crop yield in the Cont. plot ranged from 0.47 to 4.58 t ha− 1 

(Supplemental table). The ΔYield ranged from − 0.50 to 2.07 t ha− 1. 
High-yielding fields (>3.0 t ha− 1 in the Cont. plots) were excluded from 
the following analysis to avoid high soil fertility causing little response 
of rice to P fertilizer application. The ΔYield was significantly negatively 
correlated with soil P retention at both sites (Fig. 2). The correlation 
coefficient between P retention and ΔYield was − 0.697 for all fields 
except the high-yielding ones. The average temperature at the Behenjy 
site is generally lower than that at the Antohobe site because of the 
higher elevation; the mean temperature during the cropping season 
from November 2018 to April 2019 was 20.8 ◦C at Behenjy and 22.2 ◦C 
at Antohobe. The slope of the regression model was steeper at the 
Antohobe site than that at the Behenjy site, showing the higher ΔYield at 
the Behenjy site than that at the Antohobe site at the same P retention. 
ΔYield reduced by 35.3 kg ha− 1 and 62.2 kg ha− 1 per unit increase in P 
retention at Behenjy and Antohobe, respectively. The value of P reten
tion when ΔYield was 0 (no effect of P fertilizer) was greater at Behenjy 
(54.0%) than that at Antohobe (35.2%). Meanwhile, the ΔYield was not 
correlated with ωair for either of the two sites. 

4. Discussion 

4.1. Response of P uptake and yield of rice plants to P application as 
affected by soil P retention 

It is advantageous for farmers to know the potential response of rice 
growth prior to the application of fertilizer. Although the importance of 
soil P retention for crop responses to P fertilizer was addressed in a 
previous study (Nziguheba et al., 2016), to the best of our knowledge, 
there have been no studies on the quantitative relationship between soil 
P retention capacity and grain yields at a field scale. It is noteworthy that 
increasing soil P retention resulted in a decrease in the yield response of 
rice to the application of P fertilizer in the typical P-deficient and low- 
yielding lowlands in the central highlands of Madagascar (Fig. 2). The 
results of the pot experiment using a wide range of soils corroborated 
those of the field experiments (Fig. 1). Therefore, it is suggested that P 
retention can be a promising index for estimating the variability of the 
responses of rice plants to mineral P fertilizer application in flooded 
weathered soils. 

The variation in the response of rice P uptake to P application has 
been generally explained by the combination of available P content and 
other influential soil parameters involved in the P sorption process, such 
as soil pH, clay content, and active Al (Andriamananjara et al., 2016; 
Batjes, 2011). Thus, it is often difficult to extrapolate the interpretation 
from one site to another. However, the current study showed that P 
retention is a significant parameter for predicting rice responses to P 
fertilizer application in tropical rice fields at both broad (pot experi
ment) and commune scales (field experiment) in the central highlands of 
Madagascar (Figs. 1 and 2). This was supported by previous observa
tions that intensity-based P tests, which are negatively correlated with P 
sorption, were superior at predicting the relative yield of crops in 
tropical soils (Nawara et al., 2017; Six et al., 2013). Nwoke et al. (2003) 
also suggested that Alox and Feox can regulate the standard P require
ment and P availability in soils of the West African savanna. Therefore, P 
retention can be used as a comprehensive index to predict the response 
of rice P uptake and yield to P application in P-deficient tropical soils, as 
it represents the relevant properties involved in soil P supply capacity 
and the P sorption process. 

The site differences in the yield response to P application can be 
ascribed to the higher elevation and lower temperature conditions in 
Behenjy than those in Antohobe. P deficiency is known to delay 
phenological development and thus prolong the days to heading and 
maturity (Dobermann and Fairhurst, 2000). Our recent field experiment 
revealed that the effect of P application on rice grain yield is greater in 

Table 1 
Mean values of the soil properties of all soils and sub-groups for the pot and field experiments.    

All soils Soils for pot experiment Soils for field experiment   
(N = 213) (N = 62) (N = 38) 

TEC (cmolc kg− 1)  2.75 (0.96)  3.45 (1.15)  2.12 (0.58) 
CEC (cmolc kg− 1)  11.8 (0.41)  12.0 (0.50)  11.0 (0.48) 
CEC/Clay (cmolc kg− 1)  36.1 (0.34)  33.6 (0.45)  33.1 (0.47) 
TEC/CEC (%)  22.9 (0.64)  26.2 (0.65)  20.8 (0.59) 
TC (%)  1.77 (0.43)  1.97 (0.46)  1.70 (0.31) 
TN (%)  0.14 (0.37)  0.16 (0.41)  0.14 (0.26) 
C/N   12.3 (0.09)  12.4 (0.08)  12.2 (0.07) 
pH (H2O)   5.58 (0.05)  5.60 (0.06)  5.60 (0.04) 
Alox (g Al kg− 1)  1.56 (0.75)  2.15 (0.86)  1.42 (0.53) 
Feox (g Fe kg− 1)  6.36 (0.47)  6.84 (0.56)  6.26 (0.54) 
Pox (mg P kg− 1)  102.3 (1.50)  187.4 (1.39)  79.8 (0.33) 
ωair (%)  0.40 (0.44)  0.46 (0.63)  0.33 (0.26) 
P retention (%)  25.0 (0.66)  39.3 (0.46)  31.3 (0.40) 
Clay (%)  32.1 (0.22)  33.6 (0.23)  33.9 (0.19) 
Silt (%)  25.8 (0.33)  22.6 (0.36)  20.6 (0.30) 
Sand (%)  41.7 (0.26)  42.5 (0.25)  45.5 (0.18) 

The values given in parentheses are the coefficients of variation. TEC, total exchangeable cations (sum of exchangeable Ca2+, Mg2+, Na+, and K+); CEC, cation 
exchangeable capacity; TC, total carbon; TN, total nitrogen; ωair, air-dried soil moisture content; Alox, oxalate-extractable Al; Feox, oxalate-extractable Fe; Pox, 
oxalate-extractable P. 
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high-elevation and late-transplanted sites because P application allevi
ates not only P deficiency stress but also cold-induced sterility later in 
the growth stage by shortening growth durations (Rakotoarisoa et al., 
2020). On the other hand, if the risk of lowering temperature is not a 
problem, the prolonged growth period under P deficiency favors for 
additional biomass production and eventually nullifies the difference in 
rice growth between the plots with and without P application. In this 
way, rice yield was more responsive to P application in Behenjy than 
Antohobe at a same level of P retention. These results imply that effi
cient site-specific P fertilizer management should be dependent on both 
static soil P status and climatic growth conditions. It should be noted 
that this assessment is most likely not applicable to relatively high- 
yielding fields where rice plants display little response to P application 
irrespective of P retention capacity of soils, which is probably because P 
availability is not a main limiting nutrient for rice growth. However, the 
assessment of P retention should be a useful approach to increase the 
return from minimal fertilizer inputs in low-input and low-yielding 
fields, such as those in many lowlands in Madagascar and likely in 
other areas with similar rice cropping systems (Saito et al., 2019; Tsu
jimoto et al., 2019). 

4.2. Air-dried soil moisture content as a potential index of P retention 

To apply the findings in the present study in an economically feasible 
manner, a simplified prediction of P retention without chemical lab 
analysis is ideal (Dobermann et al., 2003). Given its high correlation 
with P retention and its simplicity for measurement, we selected air- 
dried soil moisture content (ωair) as a parameter for predicting P 
retention. Recently, Kinoshita and Tani (2020) proposed a simple 
evaluation method for P retention using air-dried soil moisture content 
for Japanese cropland soils. 

The applicability of ωair was further tested to predict the response of 
rice plants to fertilizer application in the current study. Our pot exper
iment showed a significant correlation between ωair and ΔPuptake under 
flooded conditions (Fig. 1). However, we found that ωair could not 
explain the variation in yield response to the P application in the field 
experiment. Compared with that in the soils in the pot experiment, the 
sites of the field experiments had low P retention (mostly < 50%) with 
narrow variation, and P retention and ωair were weakly correlated. These Ta
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Table 3 
Direct effects (diagonal, underlined) and indirect effects (off-diagonal) of soil 
properties on P retention.   

Alox Clay Feox TEC/CEC r R2 

Alox  0.646  0.048  0.061  0.036  0.781  0.729 
Clay  0.102  0.305  0.043  − 0.051  0.387  
Feox  0.214  0.071  0.184  0.044  0.517  
TEC/CEC  0.133  − 0.090  0.047  0.173  0.267  

r shows the Pearson correlation coefficient between P retention and each 
parameter. 
Alox, oxalate-extractable Al; Feox, oxalate-extractable Fe; TEC, total 
exchangeable cations (sum of exchangeable Ca2+, Mg2+, Na+, and K+); CEC, 
cation exchangeable capacity. 

Table 4 
Direct effects (diagonal, underlined) and indirect effects (off-diagonal) of soil 
properties on air-dried soil moisture content.   

Alox CEC Pox r R2 

Alox  0.404  0.144  0.300  0.826  0.712 
CEC  0.210  0.277  0.168  0.638  
Pox  0.303  0.116  0.401  0.787  

r shows the Pearson correlation coefficient between the air-dried soil moisture 
content and each parameter. 
Alox, oxalate-extractable Al; CEC, cation exchangeable capacity; Pox, oxalate- 
extractable P. 
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results might affect the poor estimation of the response of rice plants to P 
fertilizer using ωair within a small variation in the communes with low 
soil fertility. Hence, the current estimation model of P retention by ωair 
should be used to test P retention across various soil types at a regional 
scale. 

We explored the controlling factors that allow for the fine-tuning of 
the estimation model of P retention by ωair for localized farmlands. Soil 
type was previously reported to be an influential factor in the relation
ship between P retention and ωair (Kinoshita and Tani, 2020). In the case 
of the relationship between CEC and ωair, Churchman and Burke (1991) 
reported that the determination coefficient was usually increased by 
separating soil groups according to the dominant clay mineral types (R2 

= 0.34–0.88) rather than using the whole sample set in New Zealand (N 
= 1318, R2 = 0.38). However, in our study, dividing the samples by 
either soil type or clay mineralogy (CEC/Clay) could not significantly 
increase the determination coefficient of the estimation model of P 
retention by ωair. Further studies should be conducted on the determi
nant factor of the site-specific model to improve the evaluation method 
of P retention using ωair to apply to field-to-field measurements within a 
commune level. 

4.3. Influential factors of P retention and air-dried soil moisture content 

A mechanistic understanding of how soil P retention is related to rice 
responses to P application is important to further improve and apply the 
estimation model in wider agroecosystems. Our results showed that Alox 
was the most important direct causal factor of P retention in soils 
collected from rice fields in the central highlands of Madagascar 
(Table 3). The preferential P retention of Al minerals over Fe minerals 
was reported by Khare et al. (2005) and Nwoke et al. (2003), which is in 
agreement with our path analysis results. Hashimoto et al. (2012) re
ported that Alox had the most important direct effect on P retention 
capacity in allophanic Andisols using path analysis. In agreement with 
these previous reports and our soil data, the response of rice P uptake to 
fertilizer application (ΔPuptake) also had a higher correlation with Alox 
than Feox in flooding condition (Table 5). Clay was also selected as a 
significant parameter for P retention, which was not partitioned to Alox 
(Table 3). This implies the possible contribution of clay minerals, such as 
kaolinite, to P sorption in weathered ferralitic soils (Gérard, 2016). 
Unexpectedly, base saturation (TEC/CEC) was found to be a direct 
causal factor of P retention (Table 3), indicating that the affinity for 
phosphate by soil was possibly enhanced by increasing base saturation. 
Amery and Smolders (2012) found that increasing soil CEC increased P 
solubility in tropical flooded soils, probably due to the decrease in Ca2+

and Fe2+ concentrations. However, the interaction between P retention 
and soil nutrient status is still unclear compared with that between P 
retention and Alox, and it requires further investigation. Overall, P 
retention is mainly controlled by active Al, clay (kaolinite), and base 
saturation in soils of lowland rice fields in the central highlands of 
Madagascar. To evaluate the applicability of this finding to lowland rice 
fields in different regions in SSA, further test is required with special 
reference to Alox and soil pH which had small variations in our sample 
set. 

The air-dried soil moisture content (ωair) was mainly regulated by 
Alox (Table 4). Water vapor adsorption used to be a measure of specific 
surface area in soils (Newman, 1983). The high correlation between ωair 
and Alox was likely due to increasing volume of micro- and small meso- 
pores (0.7–4 nm) with increasing Al oxides/hydroxides (Watanabe, 
2017). CEC was also selected as a controlling factor of ωair. This is also in 
agreement with previous studies which reported a close relationship 
between CEC and soil hygroscopic moisture (Churchman and Burke, 
1991; Torrent et al., 2015), although CEC was mostly attributed to the 
indirect effect of Alox in our study. Given their high correlation, ωair 
could be used to CEC in nutrient-poor soils in tropical lowland rice 
fields. Ta
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5. Conclusion

Soil P retention was shown to be a promising index for estimating the
variability of responses of flooded rice plants to P application in the 
typical P-deficient and low-yielding lowlands in the central highlands of 
Madagascar. Additionally, the moisture content of air-dried soils was 
found to be a simple evaluation tool to predict soil P retention. Our 
findings will be useful to facilitate the use of evaluations of the P 
requirement of farmers’ fields toward site-specific P fertilizer manage
ment and improvement of fertilizer-P use efficiency. 
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Comparison of visual and instrumental measurements of soil color with different
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ABSTRACT
Soil color has been conventionally measured using a Munsell soil color chart. Recently launched
colorimeters can also measure the color of an object at a reasonable cost. This study was undertaken
to evaluate to what extent such low-cost colorimeters (< 500 USD) can be useful for soil color analysis in
the laboratory as compared with conventional colorimeters (> 3000 USD) and a Munsell soil color chart
(about 200 USD). Sixty two air-dried soil samples collected from rice fields in Madagascar were subjected
to two pretreatments for homogenization (2-mm sieving or additional hand-grinding) and instrumental
analysis using four low-cost colorimeters (CS-10, Cube, Nix Pro, and Color Muse) and four conventional
colorimeters (SPAD-503, CR-20, CR-400, and CR-410). The color of 2-mm sieved samples was also
measured visually using a color chart. The effects of pretreatments and the analytical conditions were
evaluated by the repeatability and stability of the measurement, the comparability of the soil color data
obtained, and the time required for analysis. Overall, instrumental measurement was much more
repeatable than visual observation. Both the repeatability and stability of the low-cost colorimeters
tended to be lower than those of the conventional colorimeters. Among the low-cost colorimeters
examined, soil color parameters (L*, a*, and b*) obtained with Nix Pro were most comparable (r > 0.97
for all parameters of 2-mm sieved samples) with those obtained with SPAD-503, which is an instrument
designed specifically for soil color analysis. Additional hand-grinding pretreatment improved the repeat-
ability of the instrumental analysis and reduced the subsample weight to two grams. However, this
pretreatment also increased the L* value (lightness) of the samples, decreased the comparability with the
data from 2-mm sieved samples, and prolonged the time required to complete the whole analysis.
Among the various methods tested, 2-mm sieving of air-dried samples followed by the color measure-
ment with Nix Pro several times per sample was considered the most cost-effective approach for
measuring soil color in the laboratory.
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1. Introduction

Soil color has been used as one of the key attributes to
differentiate horizons in a soil profile and to classify soil
types in a region. Routine measurement of soil color is
often performed visually by comparing a field moist sample
with the chips in a Munsell soil color chart and selecting
a chip with the nearest color. As visual color measurement
can be performed rapidly without any special treatment, it
may be the most appropriate initial screening test for soil
discrimination (Sugita and Marumo 1996). For example,
Schmidt and Ahn (2019) reviewed papers on the color of
wetland soils published from 1960 to 2018 and found that
78 out of 96 papers (81%) utilized a Munsell color chart for
soil color measurement. The number of color chips in
a chart has been increased (Simonson 1993) to reach
around 400 at present. In many cases, however, the sample
color does not match well with any of the color chips, and
the sensitivity of the visual method is limited by the num-
ber of chips. Furthermore, this method is prone to substan-
tial errors due to several psychophysical and physical factors
(Post et al. 1993; Marques et al. 2019).

Besides the visual method, several researchers have demon-
strated the great potential of digital cameras including smart-
phone cameras for rapid measurement of soil color (Viscarra
Rossel, Fouad, and Walter 2008; Fan et al. 2017; Aitkenhead et al.
2018; Schmidt and Ahn 2019). The number of smartphone users in
the world was 1.86 billion in 2015 and is predicted to be approxi-
mately 2.9 billion by 2020 (Fan et al. 2017). However, the color of
a soil picture taken with a digital camera is influenced by the
ambient light conditions. Thus, additional techniques such as
color correction with a reference gray card are needed to improve
the accuracy of color measurements (Kirchner, Koeckhoven, and
Sivakumar 2018).

More sensitive and objective measurement of soil color is
possible by using a spectrophotometer or colorimeter in the
laboratory, provided that appropriate white standards are used
and the soil samples are carefully prepared (Torrent and Barrón
1993). Different from a Munsell color chart, a spectrophotometer
or colorimeter can provide continuous quantitative data.
A colorimeter designed specifically for soil color analysis (Soil
Color Reader SPAD-503) was also launched by Konica Minolta in
1996. However, the prices of such instruments often exceed 3000
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USD. This is more than 10 times of a soil color chart (about 200
USD), and the use of colorimeters for soil color analysis has been
limited to soil scientists.

In the past decade, several new types of colorimeters have
been developed and launched at prices below 500 USD
(Kirchner, Koeckhoven, and Sivakumar 2019). Many of these
colorimeters comprise a LED light source and a tristimulus
color sensor, and are designed to be controlled wirelessly
with a mobile smartphone or tablet via Bluetooth connection.
Some of them are sold at less than 100 USD (Kirchner,
Koeckhoven, and Sivakumar 2019). Owing to the rapid global
expansion of the smartphone users, these low-cost colori-
meters have enabled a wide range of users other than scientists
to measure the color of an object at a reasonable cost. These
tools allowed non-specialists such as farmers, gardeners, and
students to measure soil color instrumentally, learn the rela-
tionship between soil color and soil components, and use the
data for soil classification (Stiglitz et al. 2016a). Furthermore,
Aitkenhead et al. (2017) developed a low-cost visible range
spectrophotometer that is composed of a tungsten light
source, several mirrors, a diffraction grating, and a digital cam-
era to capture the visible-range spectrum of soil samples.

Nix ProTM color sensor (Nix Sensor, Ontario, Canada), abbre-
viated as Nix Pro hereafter, is one of the low-cost colorimeters
(Figure 1). Soon after its launch in 2015, Stiglitz et al. (2016b)
used Nix Pro for soil color analysis and reported that CMYK
(cyan-magenta-yellow-black) color codes of 31 soil samples
(2-mm sieved, dry and moist conditions) measured with Nix
Pro were significant positively correlated with those obtained
from a conventional colorimeter (CR-400, Konica Minolta,
Tokyo, Japan) and those by a visual method using a Munsell
soil color chart. These results indicate that soil color analysis
with Nix Pro is a promising alternative to the conventional
methods. With a closer look of their data, however, the K%
(blackness) measured by Nix Pro became lower than the corre-
sponding K% measured by CR-400. This means that the soil
color data from Nix Pro could not be compared directly with
the data from CR-400.

Generally, soil color data from different instruments cannot
be compared directly. This is partly because each instrument

has a unique design with respect to light source, illumination
geometry, treatment of specular reflectance, and measurement
area (Nishiyama et al. 2011; Gottenbos and van Biemen 2017).
Furthermore, unlike the visual observation of soil color in the
field, instrumental analysis is usually performed in the labora-
tory after sample pretreatment such as air-drying, crumbling,
sieving, grinding, and remoistening (Sugita and Marumo 1996;
Raeesi et al. 2019). But additional pretreatments would prolong
the time required for the whole analysis. Because of the lack of
thorough comparative experiments, it remains unclear how
much soil color data and the required time are influenced by
the combination of various pretreatments and measurement
conditions.

Themain objective of this study was to reveal the effectiveness
of low-cost colorimeters for soil color analysis. Specific objectives
were to 1) evaluate the repeatability and comparability of data
obtained with several colorimeters or by visual measurement, 2)
examine the effects of additional hand-grinding pretreatment of
soil samples on instrumental color measurement as compared
with the conventional method using 2-mm sieved samples,
and 3) compare the required time among the pretreatments and
measurements tested.

2. Materials and methods

2.1. Experimental design

Sixty two soil samples collected from rice fields in Madagascar
were subjected to two pretreatments (2-mm sieving or addi-
tional hand-grinding) followed by color analysis with eight
different colorimeters (four conventional and four low-cost)
(Table 1). The color of 2-mm sieved samples was also measured
visually using a Munsell soil color chart (Table 1). The effects of
pretreatments and analytical conditions were evaluated by the
repeatability and stability of the measurement, the comparabil-
ity of the soil color data obtained, and the time required for the
analysis. The term repeatability is the same as defined by
Menditto, Patriarca, and Magnusson (2007), and the term com-
parability is defined here as the correlation of soil color data
obtained with different methods.

Figure 1. Three types of low-cost colorimeters controllable with a smartphone or tablet. Cube (left), nix pro (middle), and color muse (right).
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2.2. Color description method

To describe sample color, CIE 1976 (L*, a*, b*) color system
(abbreviated as CIELab system hereafter) and Munsell color
system were used (Table 1). The CIELab system was used for
comparison of color data among the instruments, and the
Munsell system was used for visual observation and compar-
ison between visual and instrumental measurements.

The CIELab system can describe the color of an object as
continuous quantitative values using three parameters (L*, a*,
and b*) (Viscarra Rossel et al. 2006). The L*, a*, and b* axes
represent whiteness-blackness (lightness-darkness), redness-
greenness, and yellowness-blueness, respectively. The L* value
ranges from 0 (black) to 100 (white), whereas positive a* and b*
values indicate the degree of redness and yellowness, respec-
tively. On the other hand, the Munsell system can describe the
color of an object qualitatively according to the visual perception
using three parameters (hue, value, and chroma) (Viscarra Rossel
et al. 2006). Hue is denoted categorically by the letter abbrevia-
tion of the color of the spectrum (e.g., R for red, YR for yellow-red,
and Y for yellow), each followed by numbers from 0 to 10. Within
each letter range, hue becomes more yellow and less red as the
numbers increase. Value represents whiteness-blackness (light-
ness-darkness), and is described on a numerical scale from 0
(black) to 10 (white). It is almost equal to the division of the L*
value by 10. Chroma represents the degree of difference from
neutral grays, and is also described on a numerical scale from 0
(neutral gray) to 20.

2.3. Soil samples tested

Sixty two soil samples with a diverse range of colors were used
(Fig. S1). The sample set was the same as that described by

Kawamura et al. (2017). The samples were collected from 55
rice fields located in the Central Highlands of Madagascar. The
fields contained 47 lowland and 8 upland rice fields, and their
locations were mapped by Kawamura et al. (2017). Fifty-four of
the samples were collected from the surface layer (< 15 cm) in
different fields, and 8 samples were collected from the subsur-
face layer (10–50 cm from the surface) in 3 fields. Table 2 shows
the descriptive statistics of the color parameters (L*, a*, and b*)
and chemical properties of the sample set.

2.4. Soil pretreatments and instrumental color analysis
by the CIELab system

Table 3 shows the specifications of the colorimeters used.
These instruments are tristimulus colorimeters, and they were
arbitrarily classified into two types according to price. The
production of SPAD-503 was stopped in 2016, and it was
replaced by CR-20 which has almost the same specifications.
Figure 1 shows three of the low-cost colorimeters examined, all
of which are controllable with a smartphone. Among them,
only Nix Pro was equipped with a protective cover between
sensor and sample (Table 3).

Two pretreatments were applied to the samples prior to the
soil color analysis with these instruments (Table 1). One pre-
treatment was 2-mm sieving after air-drying and crumbling.
The sieved samples were packed in a plastic Petri dish
(90 mm in diameter and 15 mm in depth) at the rate of about
60 cm3 to ensure the sample depth of about 1 cm (Viscarra
Rossel et al. 2016). After the sample surface had been leveled
with a spatula, the color was measured at five different points
on the soil surface with the colorimeters (Kawamura et al. 2017),
except for when CR-410 was used. For CS-10, Cube, and Color
Muse, a thin plastic film was placed between the soil and the

Table 2. Color parameters and chemical properties of the soil sample set used (n = 62).

Total C Total N Total Fe Feo Fed

L* a* b* (g kg−1)

Average 44.0 11.8 21.4 21.8 1.7 61.0 8.8 41.2
Maximum 59.3 23.6 27.4 60.2 4.4 153.4 32.9 139.3
Minimum 29.5 3.9 10.8 6.5 0.6 11.1 0.3 4.3
CV (%) 17.2 33.8 15.2 53.3 48.1 43.6 67.0 51.7

The color parameters (L*, a*, and b*) were obtained from the measurement of 2-mm sieved samples using SPAD-503.
Total C and N were measured by the dry combustion method using an automatic NC analyzer (Kawamura et al. 2017).
Total Fe was measured colorimetrically after digestion of soil samples with HF, HCl, and HNO3.
Feo and Fed refer to acid oxalate-extractable and dithionite-citrate-extractable Fe, respectively, determined colorimetrically (Moritsuka et al. 2019).

Table 1. Methods of soil color analysis used in this study.

Sample pretreatment

Instruments or color chart 2-mm sieved Hand-ground Light source used Color description

Soil color reader (SPAD-503） Yes Yes D65 CIELab
Color reader （CR-20） Yes Yes D65 CIELab, Munsell
Color reader （CR-400） Yes Yes D65 CIELab
Color reader （CR-410） Yes No D65 CIELab
CS-10 colorimeter Yes Yes D65 CIELab
CubeTM Yes Yes 3 colored LEDs CIELab
Nix Pro Yes Yes D50 CIELab
Color MuseTM Yes Yes D50 CIELab
Munsell color chart Yes No LED light Munsell

To evaluate the differences in the soil color data obtained with the different instruments, the data obtained from SPAD-503 were regarded as
control data.
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sensor to avoid cross-contamination. For CR-410, which has
a wide aperture (53 mm in diameter; Table 3), the samples
were transferred from the Petri dish to a sealable plastic tub
(85 mm in diameter and 45 mm in depth) and the color of the
leveled surface was measured (Fig. S2); the samples in the tub
were mixed thoroughly between measurements to renew the
surface before every measurement, and measurements were
repeated five times per sample.

The other pretreatment was additional hand-grinding of the
2-mm sieved samples (Moritsuka et al. 2014). Briefly, 2 g of
2-mm sieved samples were ground in a tungsten mortar for
3 min, and packed firmly in a disposable plastic cell with a light
path length of 10 mm. The color of the sample as it appeared
through the windows on both sides of the cell was measured
with the colorimeters, except for when CR-410 was used. For
the color measurements, all of the colorimeters, except for Nix
Pro, were placed horizontally on the bench to ensure that the
cell window was located in the center of the aperture of the
instrument. It should be noted that the hand-grinding treat-
ment was effective to decrease soil micro-aggregates and
coarse sand particles without increasing the amount of silt
plus clay particles (Moritsuka et al. 2014). It was a much weaker
process than the ball-milling treatment, which significantly
increases the amount of silt and clay particles (Matsuoka,
Moritsuka, and Funakawa 2017).

To facilitate the comparison of the soil color data obtained
from the different instruments, we selected the standard D65
light source for CR-400 and CR-410 (Table 1), and used the
CIELab system for color description.

During the analysis of soil samples, the stability of the
instruments was checked by measuring the white calibration
plate (CR-A74) supplied with SPAD-503 once every few sam-
ples. The overall difference of the measured values from the
corresponding values at time zero (ΔEab*) was calculated by the
CIELab color difference formula:

ΔEab�¼ððΔL�Þ2þðΔa�Þ2þðΔb�Þ2Þ1=2

where ΔL*, Δa*, and Δb* are the difference of the measured
color parameters from the corresponding ones at time zero
(Kirillova et al. 2018). When seemed necessary, recalibration
was carried out for all instruments, except for Nix Pro which
cannot be recalibrated by the end-user.

2.5. Soil color analysis by the Munsell system

The 2-mm sieved samples packed in the Petri dishes were
also subjected to independent visual measurement by five
soil scientists using a Munsell soil color chart with 389
color chips (Revised Standard Soil Color Charts, Fujihira
Industry, Tokyo, Japan) (Table 1). The experiment was car-
ried out on the same bench in the same laboratory under
LED light conditions (RAD-458N, Endo Lighting Corp.,
Osaka, Japan). The light intensity on the bench was
1403 ± 289 lx (average±S.D., n = 24). The color chip that
best matched the average sample color was selected by
each observer. Munsell hue, value, and chroma of the
selected chip were recorded, and the within-laboratory
reproducibility of the method was evaluated. The sampleTa
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color was also reanalyzed visually by the same observer
after an interval of 18 months to evaluate the method’s
repeatability.

To allow for comparison between the visual and instrumental
measurements, the color of the same samples was measured with
CR-20 and recorded by the Munsell system in the same way as we
did by the CIELab system. Similarly, the color of the hand-ground
samples was measured with CR-20 and recorded by the Munsell
system. Munsell value and chroma were quantitative and used
without adjustment. However, hue was not quantitative. For
2-mm sieved samples, the average values of hue measured by
CR-20 ranged from 3.5YR to 9.8YR, except for one yellowish outlier
with an average hue of 0.24Y. By the visual method, several
samples were classified as 2.5Y. Accordingly, only the samples
that were classified within a YR range by both instrumental and
visual measurements (n = 54) were used for comparison.

2.6. Measurement of required time

The total time required for pretreatment and color measure-
ment was recorded for each procedure by using a stopwatch.
All pretreatments and instrumental analyses were performed
by the same person to make a comparison possible.

2.7. Statistical analysis

The averages obtained from 62 samples were used for
comparison. To evaluate the differences in the soil color
data obtained with the different instruments, the data
obtained from SPAD-503 were regarded as control data.
The significant differences from the control data were iden-
tified by using Student’s t-test. The effect of hand-grinding
treatment was also evaluated by Student’s t-test. It should
be noted that the comparison of the averages can detect
only systematic errors with an assumption that the tested
method brings consistently higher or lower values than the
reference method (Menditto, Patriarca, and Magnusson
2007). The coefficient of variation (CV) of the soil color
data obtained from repeated measurements of each sample
was averaged for all samples. The average CV was used as
an index of measurement repeatability under each analytical
condition. The comparability of the measurements obtained
from different analytical conditions was analyzed by the
correlation analysis and clustering using Ward’s method.
These analyses were performed using Microsoft Office
Excel 2010 and Ekuseru-Toukei 2012 (Social Survey
Research Information Co., Ltd., Tokyo, Japan).

3. Results and discussion

3.1. Average soil color parameters obtained with the
different instruments under different analytical conditions

The average soil color parameters differed significantly among
the instruments, when the data from SPAD-503 were compared
with those from the other instruments (Table 4). For 2-mm
sieved samples, the L* value was significantly higher for CS-
10, Cube, and Nix Pro. The a* value was significantly lower for
all instruments except for Nix Pro, and the b* value was sig-
nificantly higher for CR-400 and significantly lower for CR-410,
CS-10, Cube, and Color Muse. Relatively similar results were
obtained from hand-ground samples. All of the color para-
meters obtained with CS-10 and Cube were significantly differ-
ent from those obtained with SPAD-503. These results
reconfirm that soil color data obtained from low-cost colori-
meters are not always quantitatively comparable with the data
obtained from conventional colorimeters (Stiglitz et al. 2016b;
Holman and Hopkins 2019).

Table 4 also shows the effect of hand-grinding pretreatment
on the color measurements. It should be noted that the differ-
ences between 2-mm sieved and hand-ground samples may
not have originated solely from sample color changes induced
by the grinding treatment, since the sample color was mea-
sured through a plastic cell for the ground samples and
through a thin plastic film for 2-mm sieved samples with CS-
10, Cube, and Color Muse. The L* value was significantly
increased by the grinding treatment, except for when Nix Pro
was used. The magnitude of increases did not differ among
SPAD-503, CR-20, and CS-10 having similar specifications
except for whether the specular component is included or
excluded from the measurement. This suggests that specular
reflection from the plastic cell was negligible. Increases in the L*
value upon grinding have been reported previously (Torrent
and Barrón 1993; Nishiyama et al. 2011; Moritsuka et al. 2014).
These observations can be explained by the grinding-induced
reduction of sample surface roughness and the increase of
reflection. The contrasting results obtained with Nix Pro may
be due to the fact that the instrument’s aperture was larger
than the width of the plastic cell containing the sample. This
likely caused leakage of LED light.

In contrast to the L* values, the a* and b* values did not
change or decreased significantly by the grinding treatment,
except for when the Color Muse was used (Table 4). The
changes were nonsignificant for SPAD-503, CR-20, and CS-10,
which have 8/d illumination geometries, whereas a significant
decrease of both parameters was observed when CR-400 hav-
ing a d/0 geometry was used. This suggests that the effect of

Table 4. Average soil color parameter values obtained with different instruments with or without additional hand-grinding pretreatment (n = 62).

Sample pretreatment Color parameter SPAD-503 CR-20 CR-400 CR-410 CS-10 Cube Nix Pro Color Muse

2-mm sieved L* 44.0 44.3 46.2 44.8 53.0** 54.6** 48.5** 45.7
a* 11.8 10.1* 9.0** 8.2** 4.1** 10.1** 11.8 10.5*
b* 21.4 21.8 23.8** 19.1** 15.4** 15.3** 21.3 17.9**

Hand-ground L* 51.7 50.9 56.6** no data 59.2** 64.2** 47.6** 57.0**
a* 11.8 9.9* 6.6** no data 3.3** 7.4** 10.3 11.7
b* 21.8 21.5 17.4** no data 14.6** 16.0** 18.9** 19.9**

** and * indicate significant difference at p < 0.01 and p < 0.05, respectively, from the corresponding value obtained with SPAD-503.
Bold values in hand-ground samples indicate significant difference at p < 0.05 from the corresponding values in 2-mm sieved samples.
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grinding pretreatment on the a* and b* values was influenced
by the illumination geometry of the instrument. Contrary to our
results, Nishiyama et al. (2011) reported that the b* value of
dark red soils measured with CR-200, which has the same
specifications as CR-400, tended to increase by hand-grinding
0.15-mm sieved samples for 10 min. The reason for these con-
trasting results remains to be explained.

3.2. Stability of instrumental measurements

Instrumental differences were also observed when a white
plate (CR-A74) was measured after the instruments were cali-
brated using a white calibration plate (Table 5). For example,
the a* and b* values obtained with CS-10 were positive and
negative, respectively, and were opposite to the results
obtained with all of the other instruments. Furthermore, the
color parameter values of the white plate fluctuated over time
during the soil analysis (Figure 2). Except for CR-410, the data in
this figure were obtained during the analysis of hand-ground
samples. The fluctuations in the values tended to be larger for
low-cost colorimeters, especially Color Muse. The a* value of
the white plate measured with SPAD-503 also decreased by 0.5
at 60 min after the start of the analysis. However, the overall
fluctuations expressed as the difference from the measurement
at time zero (ΔEab*) were less than 2.0 for all instruments,
suggesting that these drifts were barely recognizable visually
(Kirillova et al. 2018). It should be noted that Color Muse was
much more stable during the analysis of 2-mm sieved samples
with keeping the upright position constantly (ΔEab* < 0.3),
whereas the other low-cost colorimeters showed similar fluc-
tuations (0.5 < ΔEab* < 1.0) after measuring 2-mm sieved sam-
ples for about 50 min.

3.3. Repeatability of instrumental measurements under
different analytical conditions

The repeatability of soil color measurements differed signifi-
cantly among the instruments, when the data from SPAD-
503 were compared with those from the other instruments
(Table 6). For 2-mm sieved samples, the average CV of the L*
value was significantly higher for Nix Pro and was signifi-
cantly lower for CR-410, CS-10, and Cube. The average CVs
of the a* and b* values were significantly higher for all of the
low-cost instruments. Overall, increasing the diameter of
measurement area from 8 mm (CR-400) to 50 mm (CR-410)
(Table 3) did not considerably improve repeatability for the
a* and b* values. The lower repeatability of the a* and b*
values for the low-cost colorimeters may be due to the
smaller diameter of measurement than the conventional
instruments. Among the low-cost colorimeters, however,
data on the measurement diameter were available only for

Color Muse (Table 3). The lowest repeatability of the a* value
for CS-10 was due to the smallest values (Table 4), some of
which became below zero. Similar instrumental differences
were observed for hand-ground samples.

The average CVs of hand-ground samples were comparable
to, or significantly lower than, those of 2-mm sieved samples
(Table 6). Thus, repeatability was improved considerably by
hand-grinding treatment. The size to which a soil sample
should be ground and homogenized to obtain repeatable
results depends on the measurement area of the instrument
to be used (subsample size) and the required level of repeat-
ability. The required level will increase as sample color variation
decreases, as we have delineated the spatial variation of soil
color at the farm scale by using hand-grinding pretreatment
(Moritsuka et al. 2019).

For soil pretreatment before chemical analysis, 2-mm siev-
ing after air-drying and crumbling has become the global
standard. When the subsample used for analysis is less than
2 g, further grinding of the 2-mm sieved sample is often carried
out for sample homogenization (ISO 2006; Matsuoka,
Moritsuka, and Funakawa 2017). Recently, the measurement
of the 2-mm sieved sample was also proposed as the standard
protocol for soil color analysis with colorimeters and spectro-
photometers (Viscarra Rossel et al. 2016). However, our results
clearly indicated that the hand-grinding of a 2-mm sieved
sample was more effective to improve repeatability than
increasing the measurement diameter from 8 to 50 mm
(Table 6). To better interpret our result and improve the current
protocol, more efforts are needed to understand the relation-
ship among the sample heterogeneity, subsample size and
repeatability with respect to soil color measurement.

3.4. Correlations among the instrumental measurements
under different analytical conditions

The results shown in Table 4 reconfirmed that the soil color
data obtained under a given analytical condition cannot be
compared directly with data obtained under different analytical
conditions. If the data are to be used for estimating the content
of related soil properties, such as the amounts of organic
matter and iron oxides in the samples, it is also necessary to
evaluate the relationship between soil color measurements and
the target variable and obtain a calibration equation for the
sample set. Thus, the relative relationship of soil color data
within the sample set becomes important, besides the absolute
values of soil color measurements.

Overall, the correlation coefficients between the soil color
data and the corresponding data obtained with SPAD-503 were
higher than 0.97, 0.94, and 0.86 for the L*, a* and b* values,
respectively (Table 7). This indicates that the relationships
between soil color parameters and their related properties can

Table 5. Color parameter values of a white calibration plate (CR-A74) measured with different instruments.

Color parameter SPAD-503 CR-20 CR-400 CR-410 CS-10 Cube Nix Pro Color Muse

L* 93.5 ± 0.00 94.7 ± 0.00 95.2 ± 0.10 94.7 ± 0.02 94.9 ± 0.11 99.7 ± 0.00 93.4 ± 1.19 97.2 ± 0.02
a* −0.5 ± 0.07 −0.6 ± 0.07 −0.4 ± 0.04 −0.6 ± 0.00 3.0 ± 0.00 −0.8 ± 0.07 −0.4 ± 0.06 −0.4 ± 0.06
b* 3.4 ± 0.00 3.8 ± 0.07 2.8 ± 0.16 3.0 ± 0.00 −0.5 ± 0.04 2.4 ± 0.00 2.1 ± 0.35 3.6 ± 0.04

Data were average±S.D. (n = 2) obtained soon after the instruments except for Nix Pro were calibrated with a white standard plate.
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be evaluated properly regardless of the pretreatments and
instrument used. This is analogous to the fact that a number of
soil extraction methods are equally suitable for estimating the
availability of a particular nutrient to crop plants. The correlation
coefficients obtained in our study were generally higher than
those reported previously (r = 0.45–0.97, n = 31), in which the
CMYK color codes of dry 2-mm sieved soils were compared
between Nix Pro and CR-400 (Stiglitz et al. 2016b).

The cluster analysis showed that the data obtained with
SPAD-503 were correlated most closely with those with CR-20
or Nix Pro, irrespective of sample pretreatment (Figure 3). Among
the low-cost colorimeters, Nix Pro was most comparable to
SPAD-503. For the L* value, the data on 2-mm sieved samples
were classified in a cluster separate from those of hand-ground
samples. The effects of pretreatment were less conspicuous for
the a* and b* values, and the data on 2-mm sieved samples
obtainedwith SPAD-503 were distant from those of 2-mm sieved
samples obtained with CS-10, Cube, and Color Muse. As shown
from the correlation coefficients (Table 7) and the heights in the
dendrogram, the b* value was less comparable among the treat-
ments than the L* and a* values.

3.5. Comparison between visual and instrumental
measurements

Visual observations of 2-mm sieved samples by five soil scien-
tists produced average CVs for Munsell value and chroma of
around 13% and 20%, respectively (Table 8). These CVs were
much larger than those obtained from repeated measurements
of the same samples using CR-20 (< 2%). It should be noted that
these CVs obtained by visual and instrumental analysis denote
within-laboratory reproducibility and repeatability, respec-
tively, and may not be comparable directly (Menditto,
Patriarca, and Magnusson 2007). When the sample color was
reanalyzed visually by the same observer, the same color chip
was selected again for only 26 out of 62 samples (42%). This
repeatability was comparable with data from a similar experi-
ment using 276 samples and four independent observers (22%,
31%, 49%, and 58%) (Marqués-Mateu et al. 2018). These results
suggest that the sample color did not match exactly any color
chip, thus preventing the observers from selecting the best-
matching chip with consistency. By measuring the color of 161
soil samples and all of the color chips in a Munsell color chart
with a portable spectrophotometer, Kirillova et al. (2018)

Figure 2. Temporal changes in the color parameter values of a white calibration plate (CR-A74), measured once every few samples. Values indicate the differences from
the first measurement at time zero.

Table 6. Average CV (%) of repeated analysis of each sample obtained with different instruments with or without additional hand-grinding pretreatment.

Sample pretreatment Color parameter SPAD-503 CR-20 CR-400 CR-410 CS-10 Cube Nix Pro Color Muse

2-mm sieved L* 1.73 1.67 1.73 1.09** 0.91** 1.37** 2.68** 1.59
a* 1.61 1.52 1.98* 1.95* 10.61** 4.14** 2.11** 7.60**
b* 1.41 1.33 1.27 1.45 1.84** 4.18** 2.06** 3.56**

Hand-ground L* 0.32 0.28 0.39 no data 0.62** 0.24 1.79** 1.53**
a* 0.52 0.52 0.79** no data 9.77 3.97* 1.64** 2.35**
b* 0.56 0.62 0.62 no data 1.16** 1.33** 2.00** 1.18**

** and * indicate significant difference at p < 0.01 and p < 0.05, respectively, from the corresponding value obtained with SPAD-503.
Bold values in hand-ground samples indicate significant difference at p < 0.05 from the corresponding values in 2-mm sieved samples.
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revealed that 48% of the soil samples were distinguishable
visually (ΔEab* > 3) from their nearest color chip.

Despite the low reproducibility and repeatability of the visual
method, the average Munsell value for each sample (n = 5) was
significantly correlated (r = 0.95) with the instrumental measure-
ment for both 2-mm sieved and hand-ground samples (Figure 4).
The average value obtained from visual observation of 2-mm
sieved samples was significantly higher than that obtained with
CR-20 (2-mm sieved) and was close to that obtained with CR-20
(hand-ground) (Table 8, Figure 4). This trend was not observed for
chroma. The average chroma (color chart) was more strongly
correlated with that obtained with CR-20 (hand-ground) than

with that obtained with CR-20 (2-mm sieved) (Figure 4). As
shown by the slopes of the regression equations exceeding 1.0,
the variations of value and chroma obtained with the visual
method were larger than those obtained with CR-20. Regression
equations with a slope exceeding 1.0 were also observed for hue
(Fig. S3), although the samples used for comparison were limited
to those with a hue classified as YR (n = 54).

Similar results have been reported previously (Post et al.
1993; Fan et al. 2017; Marqués-Mateu et al. 2018). The observers
of 2-mm sieved soil samples tended to assign a color chip with
a higher value (in more than 75% of cases) and chroma (in 67%
of cases) than the chip selected with a colorimeter (Konica-
Minolta Chroma meter CS-100A) (Marqués-Mateu et al. 2018).
By measuring 2-mm sieved soil samples, Fan et al. (2017) also
found that visual observation of soil color using a Munsell color
chart brought significantly higher L* value than the instrumen-
tal measurement using Konica-Minolta CM-600d with the aver-
age difference of 6.6 between the two methods. This difference
corresponds to about 0.6 unit of Munsell value, and was similar
to the difference observed in this study (0.65, Table 8).

These systematic discrepancies between visual and instru-
mental measurement have been explained by the differences
in color sensing between the human eye and colorimeters (Post
et al. 1993). From our results using hand-ground samples,

Table 7. Correlation coefficients for the color parameters obtained with different pretreatments and instruments.

Color parameter Sample pretreatment SPAD-503 CR-20 CR-400 CR-410 CS-10 Cube Nix Pro Color Muse

L* 2-mm sieved control 1.00 1.00 0.99 0.99 0.99 1.00 0.99
Hand-ground 0.98 0.98 0.97 no data 0.98 0.97 0.98 0.97

a* 2-mm sieved control 1.00 0.99 0.99 0.98 0.94 1.00 0.98
Hand-ground 0.98 0.98 0.98 no data 0.99 0.97 0.99 0.98

b* 2-mm sieved control 1.00 0.96 0.98 0.88 0.89 0.97 0.95
Hand-ground 0.86 0.86 0.94 no data 0.96 0.94 0.89 0.88

Color parameter values were compared with those obtained for 2-mm sieved samples with SPAD-503 (control).

Figure 3. Dendrogram showing clustering for two pretreatments and different instruments. 2 mm: 2-mm sieved sample; HG: hand-ground sample.

Table 8. Averages and repeatability of Munsell value and chroma, as measured
visually with a Munsell color chart or instrumentally with CR-20.

2-mm sieved Hand-ground

Color parameter Color chart CR-20 CR-20

Value Average 4.96 4.31** 4.94
Repeatability 12.53 1.77** 0.32**

Chroma Average 4.12 3.90 3.89
Repeatability 19.93 1.59** 0.56**

Repeatability refers to the average CV (%) of repeated analysis of each sample
(same as Table 6).

** indicates significant difference at p < 0.01 from the corresponding value
obtained using a color chart.
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however, it can be postulated that a kind of optical illusion
caused the following subsampling bias; observers tend to look
for a flat, homogenous spot on the heterogeneous surface of the
sample before comparing the sample color to the homogenous
color chips (Fig. S4). If such a subsampling bias is present,
a mismatch between visual and instrumental measurements
will inevitably occur unless the soil surface is uniform in color.
Further research is needed to identify and measure the subjec-
tive factors in each step of the visual method.

3.6. Time required for soil color analysis

The time required to complete soil color analysis can affect
research design and associated labor cost, so time is as

important as instrument cost and data quality (Dobriyal
et al. 2012; Bünemann et al. 2018). The x-axis of Figure 2
indicates that the time required for analysis of hand-ground
samples (2 measurements per sample, n = 62) ranged from
58 to 95 min. Once the samples were ready for measure-
ment, soil color could be measured within 2 min per sample
with all of the instruments tested.

However, hand-grinding pretreatment required a much
longer time than packing 2-mm sieved samples in a Petri
dish (Table 9). The differences among the instruments,
except for CR-410, were smaller than those between the
pretreatments. As a result, when the total times for pre-
treatment and measurement were compared, the analysis

Figure 4. Relationship between visual and instrumental (CR-20) measurements of Munsell value and chroma for 2-mm sieved and hand-ground soil samples. The
broken line in the figure shows a 1:1 line.

Table 9. Total time required for pretreatment and measurement of 62 soil samples.

Type of pretreatment Type of measurement Measurements per sample
(times)

Pretreatment
(min)

Measurement
(min)

Total
(min)

Petri dish packinga SPAD-503 5 277 364 641
CR-20 5 277 329 606
CR-400 5 277 329 606
CR-410 5 277 788 1065
CS-10 5 277 250 527
Cube 5 277 226 503
Nix Pro 5 277 221 498
Color Muse 5 277 246 523
Color chart 1 277 132±18b 409±18b

Hand-grinding and plastic cell packing SPAD-503 2 841 60 901
CR-20 2 841 58 899
CR-400 2 841 82 923
CS-10 2 841 69 910
Cube 2 841 77 918
Nix Pro 2 841 95 936
Color Muse 2 841 88 936

a Preparation of air-dried, 2-mm sieved samples is not included in this pretreatment.
b Average±S.D. (n = 5). No replicates for other records.
All records except for the visual method using a color chart were obtained by the same person.
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of hand-ground samples took longer than that of 2-mm
sieved samples, irrespective of the instrument used. In
spite of the differences among the methods tested, each
analysis of the complete sample was finished within 2
working days (Table 9). This is a major advantage of soil
color analysis over conventional destructive methods for
soil analysis.

The visual method was faster than all of the instrumen-
tal analyses, thus reconfirming its usefulness for rapid
screening without the need of electricity. However,
a large variation of soil color within a sample set is needed
for this method to be useful for soil quality assessment
(van Leeuwen et al. 2018). In this study, the color variation
was recognizable (Fig. S1), but many observers felt it diffi-
cult to assign the best-matching chip, probably due to the
limited numbers of color chips to choose from. Soil color
observation by more than one person is recommended to
improve the accuracy of visual measurements (Melville and
Atkinson 1985). In this case, the total man-hour will
increase in proportion to the number of observers.

4. Conclusions

In this study, the repeatability and comparability of soil color
data were compared among different methods. The compar-
ison between conventional and low-cost instruments indicated
that there was a trade-off between the instrumental cost and
the repeatability of data to some extent. But the sensitivity of
the low-cost colorimeters was much higher than that of the
visual method. Therefore, the low-cost colorimeters can help to
bridge the cost-effectiveness gap between visual observation
with a Munsell color chart and instrumental measurement with
a conventional colorimeter.

Among the various pretreatment and instrument combina-
tions tested, 2-mm sieving of air-dried samples followed by
color measurement with Nix Pro several times per sample was
considered the most cost-effective approach for measuring soil
color in the laboratory. Further investigations are needed to
evaluate whether the low-cost colorimeters can be effective
across various environments including field conditions.
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A B S T R A C T

Measuring volume magnetic susceptibility (κ) of soil allows rapid soil assessment. In this study, we measured the 
κ value of agricultural surface soils in Japan at national and farm scales in order to evaluate the scale-dependent 
relationship between soil κ and other soil properties and to examine the repeatability of the κ value measured in 
the laboratory and in the field. A handheld field sensor was used to measure two sample sets: (1) 164 samples 
collected throughout Japan (national scale), and (2) 246 samples collected from paddy fields in Takatsuki and 
117 (39 sites × 3 times) samples collected from paddy fields in Mifune (farm scale). Laboratory measurements 
showed that the coefficients of variation of soil κ were 112% for the national scale samples, 13% for the 
Takatsuki samples, and 33–37% for the Mifune samples. The large variation at the national scale was due to 
several positive outliers, which were classified as Vitric or Silandic Andosols by the WRB classification. Repeated 
measurement of samples enabled estimation of the within-sample variation in κ, and the data was considered 
unreliable if the coefficient of variation exceeded 10%. The correlation analysis using the reliable data indicated 
that at the national scale, the κ value was most positively correlated with structural Fe (total Fe minus Fed) 
followed by Alo and the andic properties (Alo + 1/2Feo). In contrast, for the Mifune samples collected at the farm 
scale, the κ value was most positively correlated with sand content followed by K saturation percentage. Field 
measurements of soil κ at the 39 Mifune sites indicated that the coefficients of variation of κ at the same site were 
almost all below 10%. The within-site variations were due probably to the incomplete contact between the soil 
surface and the sensor. Our results suggest that measuring κ of agricultural surface soils in Japan can help to 
distinguish Vitric or Silandic Andosols from other soils, and to estimate the κ-related soil properties at the farm 
and national scales.   

1. Introduction

The ratio of induced magnetization to an applied magnetic field is
called the volume magnetic susceptibility (κ). The κ value of soil 
generally reflects the abundance, nature, and chemical composition of 
soil constituents possessing ferromagnetic, ferrimagnetic, canted anti
ferromagnetic, paramagnetic, or diamagnetic properties (Dearing, 
1999). Ferrimagnetic materials such as magnetite (Fe3O4) and maghe
mite (γ-Fe2O3) have much higher κ than other materials. Canted anti
ferromagnetic materials (e.g., hematite and goethite) have moderate 
positive κ, whereas paramagnetic materials (e.g., biotite and olivine) 
and diamagnetic materials (e.g., water, quartz, and feldspars) have weak 

positive and weak negative κ, respectively (Dearing, 1999). 
As soil κ can be measured rapidly and nondestructively at a relatively 

low cost, the measurement of κ in the field can be a promising approach 
for rapid soil assessment. Although magnetite and maghemite are the 
two most important magnetic minerals in soil, soil κ depends not only on 
the concentration of magnetic minerals but also on their shape and size, 
and the method of measurement. Thus, field measurement of soil κ can 
be used for rapid soil assessment if measurements are reliable and soil κ 
is statistically correlated with the target soil variable. 

To evaluate the reliability of field measurements, Boyko et al. (2004) 
compared field measurements of surface soil κ obtained with a field 
probe (Bartington MS2D, Bartington Instruments Ltd., UK) and 
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laboratory measurements obtained with a laboratory sensor (Bartington 
MS2B, Bartington Instruments Ltd., UK). They tested forest soils that had 
an organic layer of varying depth above the mineral soil. The relation
ship between the two measurements was statistically significant (r2 =

0.73, n = 125) but was not entirely satisfactory. The soil volume 
measured by the MS2D field probe was about 2300 cm3 (Lecoanet et al., 
1999), whereas the soil volume sampled from each site for the labora
tory measurement was about 15 cm3 (Boyko et al., 2004). It is likely that 
some of the scattered plots are due probably to the different scales of 
measurement, as well as to the microscale heterogeneity of the soils 
measured. Boyko et al. (2004) summarized the factors affecting the 
repeatability of field measurement of soil κ as follows; inhomogeneities 
within the place measured, positional precision of navigation, different 
equipment sets used, plant cover or plant litter, and anthropogenic ac
tivity. Maier et al. (2006) evaluated the repeatability of field measure
ments using the MS2D field probe and found that the influence of the 
diamagnetic contribution of water on soil κ was masked by other site- 
specific factors such as the degree of the contact between the measure
ment probe and the soil. Several researchers also reconfirmed the 
beneficial effects of removing plant litter before measuring surface soil κ 
in the field (Cervi et al., 2014; Declercq et al., 2019). Comparisons be
tween field and laboratory measurements have been carried out with 
different instruments. The discrepancies between field and laboratory 
measurements are attributable to multiple factors. Thus, it is uncertain 
which of these is most important in obtaining repeatable data under field 
conditions. 

In contrast with field measurements, laboratory measurements are 
more controllable and repeatable. The κ value is measured nonde
structively, which allows the sample to be reused for additional labo
ratory analyses. Soil κ measured in the laboratory reflects the content of 
magnetic minerals such as magnetite and maghemite if the effects of 
particle size and shape on κ are negligibly small (Mullins, 1977; 
Lecoanet et al., 1999). Magnetic materials in soil originate from the 
parent material, by pedogenesis, and by human activities (Boyko et al., 
2004; Grimley et al., 2004). If the contributions of the parent material 
and pedogenesis are small, measurement of κ can be useful for esti
mating anthropogenic soil pollution with heavy metals, as reviewed by 
Magiera et al. (2019). On the other hand, if the contributions are large, 
measurement of κ can be useful for classifying soils according to their 
parent material and pedogenesis (Dearing et al., 1996; Grimley et al., 
2004; Hannam and Dearing, 2008; Blundell et al., 2009; Mileti et al., 
2013; Cervi et al., 2014; Vingiani et al., 2014; Jordanova et al., 2016; De 
Mello et al., 2020). For example, soil magnetic susceptibility was 
significantly positively correlated with total Fe content in surface soils 
collected throughout England and Wales (Dearing et al., 1996; Blundell 
et al., 2009). Vingiani et al. (2014) reported that it was positively 

correlated with Alo + 1/2Feo (one of the requirements for andic soil 
properties, derived from acid-oxalate extractable Al and Fe) in eight soil 
profiles from southern Italy. However, there is no clear boundary be
tween pedogenesis and human activities, because the pedogenesis is also 
caused by local field management such as irrigation of paddy fields that 
leads to the formation of man-made soils. Soil reduction due to anaer
obic incubation in the laboratory may cause a sharp decrease of mag
netic susceptibility within only a few months after the incubation 
begins, which is attributable to the dissolution of fine-grained pedogenic 
ferrimagnetic minerals under anaerobic conditions with influence from 
iron-reducing bacteria (Lu et al., 2012). Hannam and Dearing (2008) 
summarized the relationships between soil κ and the soil forming factors 
by dividing the spatial scales into national, regional, and local scales. 
They emphasized the need for evaluating soil-forming factors, like 
topography, that may cause soil κ variations at a local scale. This is 
because topographic factors can cause the small-scale variation of soil 
magnetic properties by redistributing soil magnetic particles from 
eroding sites to depositional sites (Quijano et al., 2014). 

In Japan, researchers have measured soil κ to estimate the past and 
present environments such as aerial deposition and soil pollution (Torii 
and Fukuma, 1998; Torii, 2005; Kawasaki et al., 2017). On the aerial 
deposition, measurement of magnetic susceptibility of Lake Biwa sedi
ment was useful to estimate the degree of aerial deposition of volcanic 
ash (Yoshikawa et al., 1993). As for soil pollution, Sunaga and Harada 
(2016) studied the contamination of forage by soil containing radio
cesium from the Fukushima nuclear accident by measuring the content 
of magnetic minerals in forage samples and relating the magnetic con
tent with the degree of contamination of forage with soil. 

It is well known that agricultural soils in Japan developed under 
humid temperate climatic conditions, with variations due to local soil 
forming factors such as parent material, topography, and human activ
ities (Yanai et al., 2012). Many of the soils in Japan have been influenced 
by volcanic activity to various degrees. Approximately 31% of the soils 
in Japan are classified as Andosols according to the World Reference 
Base for Soil Resources (WRB) (FAO, 2015; Kanda et al., 2018). 
Furthermore, about half of the agricultural land is used as irrigated 
paddy fields for staple rice production (Katayama et al., 2015), and 13% 
of the soils in Japan are classified as Fluvisols by the WRB (Kanda et al., 
2018). Although Torii (2005) suggested that many soils in Japan are 
influenced by deposition of volcanic ash, which has high magnetic 
susceptibility, there is little data on the κ value of agricultural soils and 
the factors affecting it. Thus, it is unknown how useful soil κ measure
ments may be for estimating other soil properties, as far as agricultural 
surface soils in Japan are concerned. Especially unknown is the 
scale-dependent relationship between soil κ and other soil properties. 

In this study, we measured the κ value of agricultural soils in Japan 

Table 1 
Numbers of soil samples in relation to soil type and land use for the national scale samples.  

Soil typea Relevant soil typeb Paddy Upland Grassland Fallow Total 

Peat soils Histosols 4 3 0 0 7 
Sand-dune Regosols Arenosols 0 1 0 0 1 
Volcanogenous Regosols Vitric Andosols 0 3 0 0 3 
Wet Andosols Gleyic Andosols 2 3 0 0 5 
Non-allophanic Andosols Aluandic Andosols 4 3 0 0 7 
Andosols Silandic Andosols 5 27 1 1 34 
Lowland Paddy soils Anthrosols 40 0 0 0 40 
Gley Lowland soils Fluvisols 21 3 0 0 24 
Gray Lowland soils Fluvisols 3 3 0 0 6 
Brown Lowland soils Fluvisols 0 16 1 1 18 
Gray Upland soils Planosols 0 4 1 0 5 
Dark Red soils Cambisols 0 2 0 0 2 
Yellow soils Alisols 3 7 0 0 10 
Brown Forest soils Cambisols 0 1 1 0 2 
Total  82 76 4 2 164  

a By the Classification of Cultivated Soils in Japan (Third approximation). 
b By the WRB classification (only the dominant type is indicated). 
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sampled at the national scale and the farm scale. The specific objectives 
were (1) to evaluate the repeatability of soil κ measured in the labora
tory, (2) to examine the scale-dependent relationship between soil κ and 
other soil properties, and (3) to estimate the factors affecting the 
repeatability of soil κ measurements in the field. 

2. Materials and methods

2.1. Soil samples

Surface soil samples were collected at the national scale and the farm 
scale. The national scale samples (n = 180) were collected during 
1998–1999 (Sano et al., 2004; Yanai et al., 2012) from the plow layer 
(<15 cm) of fields throughout Japan. Among the samples analyzed by 
Yanai et al. (2012), samples with remaining weight greater than 100 g 
(n = 164) were selected for this study. The numbers of samples in 
relation to soil type and land use are listed in Table 1. According to the 
Classification of Cultivated Soils in Japan (Cultivated soil classification 
committee, 1995), the dominant soil type was Lowland Paddy soils (n =
40), followed by Andosols (n = 34), Gley Lowland soils (n = 24), and 
Brown Lowland soils (n = 18). Volcanogenous Regosols, Wet Andosols, 
Non-allophanic Andosols, and Andosols by this domestic classification 
correspond to Vitric Andosols, Gleyic Andosols, Aluandic Andosols, and 
Silandic Andosols, respectively, by the WRB (Table 1), and the WRB 
terms for Andosols are also used in this paper. The land uses of the 
selected samples were paddy fields (n = 82), upland fields (n = 76), 
grassland (n = 4) and fallow land (n = 2). Half of the sampling sites were 
in use as paddy fields at the time of sampling. These sites also included 
23 paired paddy and upland fields that were located near each other, e. 
g., at the same agricultural experiment station. Although it is difficult to 
show the degree of representativeness of the national-scale samples, the 
percentage of samples classified as Vitric Andosols, Gleyic Andosols, 
Aluandic Andosols, and Silandic Andosols in our sample set (29.9%, 
Table 1) was close to the percentage of the distribution area of the four 
types of Andosols in the Japanese agricultural fields (28.1%) (Kanda 
et al., 2017). 

Two farm-scale sample sets were used, referred to as the Takatsuki 
and Mifune samples. The Takatsuki samples were collected from five 
contiguous paddy fields at the former Kyoto University Farm, which had 
existed in Takatsuki city, Osaka prefecture, Japan (34◦51ʹN, 135◦37ʹE, 
about 7 m a.s.l.). The Takatsuki soils were classified as a Gley Lowland 
soil (Cultivated soil classification committee, 1995), one of the Fluvisols 
by the WRB. Each rectangular field was divided into 10 × 10 m plots, 
and soil samples were collected from the plow layer (<10 cm), for a total 
of 246 samples. Samples were collected in November 2013 after the rice 
crop had been harvested. Details of the sampling fields and sampling 
methods are described in Moritsuka et al. (2019). Forty samples were 
also collected from a nearby orchard in Kyoto University Farm for 
comparison with the paddy soils. 

The Mifune samples were collected from eight adjacent paddy fields 
in Mifune town, Kamimashiki district, Kumamoto prefecture, Japan 
(32◦43ʹN, 130◦47ʹE, about 14 m a.s.l.). Sampling was carried out three 
times to evaluate the temporal stability of the results. The soil was 
classified as a Lowland Paddy soil (Cultivated soil classification com
mittee, 1995), one of the Anthrosols by the WRB. All fields were located 
within an area of 700 × 700 m and were managed by the same farmer. 
Each field had an area of 0.15–0.3 ha. Many of the fields have been used 
for double cropping of rice and wheat. Five soil samples were collected 
from each field, from the center and the four surrounding corners, 
except for one triangular field (center and three corners), for a total of 39 
soil samples per sampling. At each sampling site, four subsamples were 
collected from the plow layer (<15 cm) within a 5-m circular area and 
were combined into a single sample. Sampling was carried out three 
times, in May of 2014, 2016, and 2018, when the wheat crops were at 
the early ripening stage. 

All soil samples were air-dried, crushed, and sieved through 2-mm 
mesh before measurement and analysis. 

2.2. Laboratory measurement of magnetic susceptibility 

The volume magnetic susceptibility κ was measured with a handheld 
magnetic susceptibility meter (KT-10 v2, Terraplus Inc., Ontario, Can
ada) designed for field measurement. This instrument uses a 10 kHz 
oscillator with a circular inductive coil with a diameter of 65 mm. The 
coil is placed on a flat soil surface and soil κ is measured to a depth of 
about 2 cm below the surface (De Mello et al., 2020). The effect of 
temperature on the frequency of the oscillator is minimized by 
measuring the κ value in the air before and after sample measurement. 
Before sample measurement, the accuracy of the instrument was 
checked by measuring a standard Mn-Zn ferrite sample with a known κ 
value (36 × 10− 3SI). The measured κ values were used as acquired, i.e., 
not converted to mass units (m3 kg− 1) by dividing κ by the bulk density, 
to facilitate comparison between laboratory and field measurements. 
The bulk density of the farm-scale samples ranged from 1.05 to 1.30 g 
cm− 3 for the Takatsuki samples and from 1.04 to 1.25 g cm− 3 for the 
Mifune samples, and the κ values were strongly positively correlated 
with the mass magnetic susceptibility values with the r values of 0.96 
and 1.00 for the Takatsuki and Mifune samples, respectively. 

Two different methods were used for measuring soil κ in the labo
ratory. For the national scale samples, more than 100 g of a sample was 
packed into a 500-mL plastic bottle with an outer diameter of 78 mm 
(Product no. 02085, Sanplatec Co., Ltd., Osaka, Japan). The κ value was 
measured by placing the coil flat against the bottom of the bottle. This 
was done 10 times per sample, with mixing of the sample between 
measurements to renew the sample surface (Method A, Fig. 1). 

For the farm scale samples, 100 g of a sample was packed into a 180- 
mL plastic jar with the outer and inner diameters of 85 and 74 mm, 
respectively (Product no. K142, Nakaya Kagaku Sangyo Co., Ltd, Osaka, 

Fig. 1. Methods used in this study for measuring soil κ with a KT-10 m.  
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Japan). The κ value of the sample was measured by placing the coil of 
the KT-10 on the flat sample surface three or five times per sample, with 
mixing of the sample between measurements to renew the sample sur
face (Method B, Fig. 1). The number of measurements per sample was 
reduced to three for some of the Mifune samples, because the mea
surements were stable. A piece of plastic wrap was placed between the 
sample and the coil to prevent cross contamination. The amount of 
sample placed in the jar (100 g) was based on a preliminary experiment 
in which the κ value of a soil sample was measured repeatedly as the 
sample weight was raised in 10-g increments (Fig. S1). 

To identify the source of magnetic susceptibility in soil, about 5 kg of 
a 2-mm sieved soil sample from one of the Mifune fields was subjected to 
sequential wet sieving using nylon mesh cloth with different openings 
(15, 48, 150, and 600 μm; Fig. S2) as described by Moritsuka et al. 
(2015). Soil organic matter was not removed before the sieving treat
ments. The sample was divided into < 15 μm, 15–48 μm, 48–150 μm, 
150–600 μm, and 600–2000 μm fractions by this method, and each 
fraction was collected by sedimentation and oven-dried at 60 ◦C. Sodium 
chloride was added to the finest fraction (<15 μm) to accelerate sedi
mentation. The κ value of all but 600–2000 μm fractions were measured 
by Method B. 

It should be noted here that the κ values obtained with Methods A 
and B were different. This is mainly because the samples measured by 
Method A were not in contact with the coil as closely as those measured 
by Method B. A preliminary experiment using 12 of the Mifune samples 
indicated that the κ values obtained from these two methods were 
strongly correlated with each other (r2 = 0.99, n = 12) (Fig. S3). The 
values obtained from Method A were 58% of those from Method B on the 
average. 

2.3. Field measurement of magnetic susceptibility 

The same instrument used in the laboratory analyses was also used 
for the field measurements to facilitate comparison between the two sets 
of data. The κ value of the soil surface was measured at the same sites 
where the Mifune samples were collected. At these 39 sites, field mea
surement was carried out three times, in January of 2017, 2018, and 
2020, when the surface soil had been plowed for wheat production. 
Winter was selected because the surface soil was homogeneous and 
weed growth was negligible (Fig. 1). The procedure was similar to 
Method B for laboratory measurement. After trampling the ground to 
make the measuring point flat and compacted, the κ value of the soil 
surface was measured five times per site within a 5-m circular area 

(Fig. 1). Any plant residues present on the surface, especially rice resi
dues, were removed from the measuring point before measurements 
were made. A piece of plastic wrap was placed between the soil surface 
and the coil to prevent cross contamination. Five measurements per site 
were recorded and their average was regarded as the κ value for that site. 

To simulate the factors affecting the spatiotemporal variations of κ, a 
small artificial paddy field was prepared in an open top plastic box 
(W130 × D86 × H46 cm). The box was filled with the same Mifune soil 
as used for the nylon mesh sieving described previously and was placed 
in a greenhouse to protect the soil from rainfall. Rice was grown from 
May to September in the box as in the fields. Soon after the rice was 
harvested, the κ value of the soil surface was measured at 10 fixed points 
(Fig. S4). The soil κ was measured 41 times from October 3 to December 
17, 2019, as the soil gradually dried. At every κ measurement date, the 
soil moisture content was also measured by the gravimetric method, 
using surface soil samples. 

2.4. Analysis of other soil properties 

Several other soil properties that may affect κ were also analyzed, in 
all except the Takatsuki samples. For the Takatsuki samples, we did not 
complete the whole analysis because of excessive within-sample varia
tions in some of their κ values, as discussed in Section 3.2. 

The other analyses focused on soil texture and the various forms of Fe 
and K. The properties measured in both national scale and Mifune 
samples included particle-size distribution (sand, silt, and clay), acid 
oxalate extractable Fe (Feo), citrate-dithionite extractable Fe (Fed), total 
Fe (Fet), exchangeable K (Ex-K), boiling HNO3 extractable K (HNO3-K), 
total K, acid oxalate extractable Al (Alo), and cation exchange capacity 
(CEC). The content of structural Fe (Fet – Fed), which includes silicate- 
bound Fe (Torrent and Cabedo, 1986), was calculated by subtracting 
Fed from Fet. The content of nonexchangeable K (Nonex-K) was calcu
lated by subtracting Ex-K from HNO3-K. The K-saturation percentage 
(Ex-K/CEC) was calculated by dividing Ex-K by CEC, using the same unit 
(cmolc kg− 1) for both properties. The content of Alo + 1/2Feo, which is 
one of the requirements for andic soil properties (FAO, 2015), was also 
calculated. 

For the national scale samples, we used published data for particle 
size distribution (sand, silt, and clay) based on the ISSS classification 
(Sano et al., 2004), Fet and total K (Yanai et al., 2012), Ex-K, HNO3-K, 
Feo, and Alo (Kitagawa et al., 2018). The analytical methods are 
described in the cited papers, and the same methods were used to 
analyze the Mifune samples. For the remaining properties, Fed was 

Fig. 2. Box plot of the κ values of the national scale 
samples. Among the 14 soil types, the box plots of κ 
of the 11 soil types including more than two samples 
are presented in the descending order of the mean κ 
values. The vertical line within each box indicates 
the median value. The left and right limits of each 
box are the 25th and 75th percentiles, respectively, 
and the left and right whiskers represent minimum 
and maximum values, respectively. Plots marked 
with the same letters are not significantly different at 
p < 0.01 (Tukey-Kramer test).   
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extracted from the finely ground samples with a mixture of sodium 
dithionite and sodium citrate (Loeppert and Inskeep, 1996). CEC was 
measured by the ammonium acetate (pH 7) method using the batch 
technique (Sumner and Miller, 1996). For the Mifune samples, after 
decomposition of organic matter with hydrogen peroxide, the contents 
of coarse sand (0.2–2 mm) and fine sand (0.02–0.2 mm) fractions were 
measured by the conventional sieving method. 

2.5. Statistical analysis 

The data were subjected to descriptive statistics, correlation analysis, 
regression analysis, Welch’s t-test, and one-way ANOVA with Tukey- 
Kramer multiple comparison test using Microsoft Excel 365 for Win
dows and Excel Toukei (BellCurve for Excel) (Social Survey Research 
Information, Tokyo, Japan). Within-sample or within-site variation of 
the κ value was estimated from the coefficient of variation (CV) of the 
repeated measurements per sample or site, respectively. A CV below 
10% was used as an allowable limit for assuring the reliability of κ in 
both laboratory and field measurements by referring to the CV applied to 
soil analysis by portable X-ray fluorescence (Ravansari et al., 2020). 

3. Results and discussion 

3.1. Descriptive statistics of the κ value of agricultural soils in Japan 

There was considerable variability among the κ values of the samples 
(Table 1), especially among the national scale samples measured by 
Method A (Fig. 1). In the national scale samples, κ had a median of 1.07 
× 10-3SI and a mean of 1.77 × 10-3SI. The CV for the κ values of all 
national scale samples was 112%. The lower median than the mean 
indicated that the distribution of κ was skewed to the right with the 
skewness of 1.53. Among the soil types, the CV for the κ values also 
exceeded 100% for 6 soil types that showed relatively low κ values. Box 
plots of the κ values of each soil type further indicated that Volcanog
enous Regosols and Andosols, corresponding to Vitric Andosols and 
Silandic Andosols respectively by the WRB, had significantly higher κ 
values than other soil types (Fig. 2). Wet Andosols (Gleyic Andosols by 
the WRB) showed the third highest mean and median. However, the κ 
values were rarely significantly different among the soil types other than 
Volcanogenous Regosols and Andosols, which is due probably to the 
large CVs for κ of each soil type (Table 2). These results suggest that κ 
may be useful for rapidly discriminating Vitric or Silandic Andosols from 
other soils, as far as surface agricultural soils in Japan are concerned. 
Although the effects of land use on κ were mostly masked by the effects 

Table 2 
Descriptive statistics of the κ values of the soil samples measured with reference to the sampling scale and soil type.   

Sample type Nos. of samples Median Mean Maximum Minimum Coefficient of variation    
(10-3SI) (%) 

National scale (Method A) All samples 164 1.07 1.77 9.34 0.01 112 
Peat soilsa 7 0.63 1.47 3.82 0.04 107 
Sand-dune Regosolsa 1 1.54 1.54 n.d. n.d. n.d. 
Volcanogenous Regosolsa 3 6.85 6.24 7.33 4.53 24 
Wet Andosolsa 5 2.37 2.80 5.60 0.98 69 
Non-allophanic Andosolsa 7 0.95 1.21 2.04 0.50 51 
Andosolsa 34 4.45 4.38 9.34 1.04 45 
Lowland Paddy soilsa 40 0.34 0.82 4.07 0.01 119 
Gley Lowland soilsa 24 0.32 0.49 1.62 0.02 102 
Gray Lowland soilsa 6 0.32 0.71 1.87 0.10 112 
Brown Lowland soilsa 18 1.29 1.54 3.30 0.29 54 
Gray Upland soilsa 5 0.33 0.91 3.23 0.03 144 
Dark Red soilsa 2 0.87 0.87 1.33 0.42 74 
Yellow soilsa 10 0.27 0.24 0.71 0.02 83 
Brown Forest soilsa 2 1.13 1.13 2.22 0.05 136  

Farm scale (Method B) Takatsuki samples 246 0.16 0.17 0.26 0.13 13 
Mifune samples in 2014 39 3.25 3.39 6.77 2.07 33 
Mifune samples in 2016 39 3.07 3.38 7.65 2.08 36 
Mifune samples in 2018 39 3.11 3.32 7.77 2.00 37 

n.d.: no data. 
a By the Classification of Cultivated Soils in Japan (Third approximation). 

Table 3 
Correlation matrix of the soil κ measurements compared with several other soil properties of the national scale and Mifune samples.   

Sand Silt Clay Feo Fed Fet Fet - Fed  

National scale samples (n = 125) 0.27 ¡0.26 − 0.21 0.46 0.24 0.64 0.74  
Mifune samples in 2014 (n = 39) 0.88 ¡0.80 ¡0.76 n.d. n.d. 0.29 n.d.  
Mifune samples in 2016 (n = 39) 0.88 ¡0.82 ¡0.72 n.d. n.d. 0.33 n.d.  
Mifune samples in 2018 (n = 39) 0.89 ¡0.87 ¡0.76 0.63 − 0.04 0.22 0.33   

Ex-K HNO3-K Nonex-K Total K CEC Ex-K/CEC Alo Alo + 1/2Feo 

National scale samples (n = 125) 0.23 − 0.19 ¡0.50 ¡0.59 0.34 0.06 0.69 0.68 
Mifune samples in 2014 (n = 39) 0.61 0.66 0.64 0.08 − 0.25 0.70 n.d. n.d. 
Mifune samples in 2016 (n = 39) 0.55 0.62 0.67 0.08 − 0.29 0.66 n.d. n.d. 
Mifune samples in 2018 (n = 39) 0.61 0.63 0.54 0.02 − 0.29 0.68 0.34 0.55 

n.d.: no data. 
Bold values indicate significant correlation at 1% level. 
Values significant at 1% are 0.23 (national scale samples) and 0.41 (Mifune samples). 
Feo: acid oxalate extractable Fe; Fed: dithionite-citrate extractable Fe; Fet: total Fe; Ex-K; exchangeable K; Nonex-K; nonexchangeable K. 
CEC: cation exchange capacity; Alo: acid oxalate extractable Al. 
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of soil type, the κ value of the upland soil was higher than that of the 
neighboring paddy soil in 15 out of 23 sample pairs (Fig. 3). This implies 
that land use affected κ to some extent. 

In the farm scale samples, the Takatsuki samples had much lower κ 
values than the Mifune samples. The relatively high κ of the Mifune 
samples would be due to volcanic ash deposition, as the soils on the hills 
near the sampling locations were classified as Silandic Andosols. The κ 
values of the Mifune samples were relatively stable over several years. 
The CVs of both sets of samples were smaller than that of the national 
scale samples (Table 1). Nevertheless, both sets had variations, sug
gesting that the measurement of soil κ may be helpful for classifying soils 
at the farm scale. 

At the farm scale, multiple samples from each field were collected 
and analyzed separately, enabling calculation of within-field variations. 
The CVs of soil κ in each field were 7.1–16.7% in the Takatsuki fields, 
and 2.0–26.7% in the Mifune fields. Previous reports showed that the 
CVs of soil magnetic susceptibility within a field varied from 0.3 to 3.9% 
(Sunaga and Harada, 2016) to 10.9% (Sunaga and Harada, 2016) to 

34.1% (Quijano et al., 2014). These results suggest that the within-field 
variation of soil magnetic susceptibility is not negligibly small in many 
cases. 

3.2. Within-sample variation of soil κ measured in the laboratory 

The KT-10 v2 user’s guide specifies that the calibration sample 
should be about 5 cm thick if it is a powdered material such as fine 
gravel or sand. This implies that the KT-10 can detect magnetic material 
within 5 cm below the surface of the sample. As shown in Fig. S1, 
however, soil κ did not increase linearly with an increase of soil weight, 
suggesting that the response of KT-10 to a magnetic material decreases 
exponentially with the distance between the coil and the material. In the 
case of KT-5 Kappameter (Geofizika, Brno, Czech Republic), which is an 
earlier version of KT-10 and has similar specifications, 90% of the signal 
detected by the instrument originated within 2.3 cm from the sample 
surface (Lecoanet et al., 1999). The similarly shallow penetration depth 
of the KT-10 enabled the evaluation of within-sample variations of soil κ 
here. 

In this study, the repeatability of the laboratory measurement was 
evaluated by measuring the κ value several times per sample, with 
mixing between measurements to renew the sample surface. Fig. 4 
shows the relationship between the average κ value for each sample and 
the repeatability of the measurement. It is useful to remember that 
regardless of the magnitude of the κ value, a high CV means high within- 
sample variation and therefore low reliability of the measurement. 

In the national scale samples, the CV was usually<10% if the average 
κ value was higher than 0.2 × 10-3SI (Fig. 4). There were 132 samples 
(80%) with average κ higher than 0.2 × 10-3SI. Below this κ value, the 
CV increased with decreasing κ. This relationship agrees with the find
ings of Lee and Morris (2013), who measured the κ value of rock samples 
with KT-10 and found that the CV from repeated measurement of the 
same sample increased when the sample measurements became lower 
than 0.1 × 10-3SI. This suggests that the variability of the results here 
may be more attributable to the limits of the sensitivity of the instrument 
than to actual within-sample heterogeneity. 

In the farm scale samples, the results were different between the two 

Fig. 3. Comparison of the κ values of paired paddy and upland soils collected 
from nearby fields (n = 23) as part of the national scale samples. The plots with 
a filled circle (n = 3) indicate soil pairs that were classified as Silandic Andosols. 
The dotted line in the figure is a 1:1 line. 

Fig. 4. Relationship between the average κ measurement of each sample and the repeatability of the sample measurements. A line in the figure of the Takatsuki 
samples indicates a linear regression line. 
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sample sets (Fig. 4). In the Takatsuki samples, the κ values were between 
0.1 and 0.3 × 10-3SI, and the CV was higher than 10% in 28 of the 246 
samples. Interestingly, the higher κ value had higher CVs (r2 = 0.30, p <
0.01), opposite to the observations in the national scale samples. In 
addition, the κ values from the orchard in Kyoto University Farm were 
significantly higher (p < 0.01, Welch’s t-test) than those of the Takatsuki 
samples collected nearby, and the orchard sample κ values were posi
tively correlated with their CVs (r2 = 0.69, p < 0.01) (Fig. S5). These 
results are attributable to the presence of highly magnetic particles that 
are sparsely distributed within a sample, creating magnetic hotspots. In 
contrast, in the Mifune samples, the CV was always<5%, and there was 
no significant relationship between soil κ values and their CVs (Fig. 4). 

Repeated measurements of κ of the Takatsuki samples suggested that 
this is a useful technique for detecting magnetic hotspots in a sample. 
Further research is needed to reveal how magnetic hotspots are created 
at the within-sample scale. 

3.3. Correlations among soil κ and other properties 

The relationship between soil κ and other soil properties in the na
tional scale and Mifune samples was evaluated. For the national scale 
samples, the correlation analysis was performed by using the data of 
only 125 samples, i.e., those that had average κ higher than 0.2 × 10-3SI 
(n = 132) together with a complete dataset of the other soil properties. 
None of the Takatsuki samples were included, because the high κ values 
measured in some Takatsuki samples were considered unreliable. 

Table 2 shows the correlation coefficients between soil κ and other 
soil properties. The results were different between the two sample sets. 
In the national scale samples, κ was positively correlated with sand, all 
Fe forms, Ex-K, CEC, Alo, and Alo + 1/2Feo, and it was negatively 
correlated with silt, Nonex-K, and total K. In the Mifune samples, κ was 
positively correlated with sand, Ex-K, HNO3-K, Nonex-K, and Ex-K/CEC, 
and it was negatively correlated with silt and clay. The κ value in the 
Mifune samples was also positively correlated with Feo and Alo + 1/2Feo 
in 2018. 

At the national scale, structural Fe (Fet – Fed) was most positively 
correlated with κ (Table 2). Structural Fe includes silicate-bound Fe 

(Torrent and Cabedo, 1986) and possibly coarse-grained lithogenic 
magnetite (Rennert, 2019). The positive correlation between structural 
Fe and κ at the national scale may be due to the relatively high con
centration of magnetite in andesitic and dacitic volcanic ashes 
(1.2–6.5%) that are common in Japan (Shoji et al., 1987). In the Mifune 
samples collected at the farm scale, Feo rather than structural Fe was 
positively correlated with κ (Table 2). As Feo includes various types of 
short-range ordered secondary Fe minerals (Rennert, 2019), it was 
difficult to interpret why Feo was more strongly correlated with κ in the 
case of the Mifune samples collected at the farm scale. The relationship 
between soil κ and Fet content in the national scale samples agreed with 
those from England and Wales (Dearing et al., 1996; Blundell et al., 
2009). According to Cervi et al. (2019), magnetic susceptibility of sur
face soils in Brazil usually increased by the removal of secondary Fe 
oxides using extraction with the dithionate-citrate-bicarbonate solution, 
suggesting that structural Fe rather than Fed was the main source of 
magnetic materials in their case. 

Regarding the relationship between soil κ and Alo + 1/2Feo, signif
icantly positive correlations were observed in both sample sets (Table 2). 
In Italy, where soils with andic properties are distributed widely, soil 
magnetic susceptibility was positively correlated with Alo + 1/2Feo at 
the regional scale (r = 0.79, n = 41) (Vingiani et al., 2014). However, the 
correlation became lower at the national scale (r = 0.31), possibly due to 
distribution of soils developed over basaltic materials having high 
magnetic susceptibility regardless of their andic properties (Mileti et al., 
2013). As the content of Alo + 1/2Feo in soil is positively correlated with 
the phosphorus adsorption capacity, these results further suggest that 
soil κ can predict the phosphorus adsorption capacity of soil in some 
circumstances. For example, Poggere et al. (2020) reported that soil 
magnetic susceptibility was weakly but positively correlated with the 
phosphorus adsorption capacity (r = 0.50, p = 0.01) in the B horizon of 
red soils from basic igneous rocks in Brazil. 

Regarding the relationship between soil κ and the K-related proper
ties, the results from the national scale samples were contrasting to those 
from the Mifune samples (Table 2). The national scale samples had a 
significantly negative correlation with total K. This may be due to the 
relatively low total K content of Vitric or Silandic Andosols (Kitagawa 

Fig. 5. Relationship between κ and the most strongly correlated soil properties. The national scale samples used included Silandic Andosols (n = 32), Vitric Andosols 
(n = 3), and other soils (n = 90). Abbreviations used for the soil properties are spelled out in the footnotes of Table 3. 
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et al., 2018) that had significantly higher κ values (Fig. 2). In the Mifune 
samples, the significantly positive correlations with the K saturation 
percentage may due to a significant positive correlation between sand 
content and the K saturation percentage (r = 0.46–0.55). 

Some of the correlation coefficients listed in Table 2 were higher 
than 0.63 or lower than − 0.63, indicating that the soil κ could predict 
more than 40% of the variation of other related properties. Such prop
erties include structural Fe (Fet – Fed) and Alo + 1/2Feo in the national 
scale samples, and sand and the percentage of K saturation (Ex-K/CEC) 
in the Mifune samples (Fig. 5). The high correlation with structural Fe 
owed to Vitric Andosols and Silandic Andosols that were relatively high 
in both structural Fe and κ. Furthermore, a positive y-intercept sug
gested that soil κ was originated from a part of the structural Fe 
components. 

Among these relationships, the relationship between κ and the sand 
content at the Mifune samples was strongest. This relationship was 
examined by fractionating one of the Mifune samples by particle size and 
measuring the κ value of each fraction. The κ value of the original 2-mm 
sieved sample (4682 g) was 3.99 × 10-3SI. The κ values of the fractions 
were 0.47 × 10-3SI for the < 15 μm fraction (1787 g), 2.51 × 10-3SI for 
the 15–48 μm fraction (665 g), 7.55 × 10-3SI for the 48–150 μm fraction 
(776 g), and 11.93 × 10-3SI for the 150–600 μm fraction (605 g). Un
fortunately, the κ value of the 600–2000 μm fraction (102 g) could not 
be measured due to severe contamination with light-fraction organic 
matter. Although the total weight recovered by the sequential sieving 
treatments was 84% of the original sample weight, the κ value estimated 
from the sum of the fractions (3.96 × 10-3SI) was almost equal to that of 
the original sample (3.99 × 10-3SI). The κ value of the measured frac
tions increased as the particle size increased. This suggests a causal 
relationship between the κ value and the sand content in this Mifune 
soil. To investigate this further, we determined the contents of coarse 
sand and fine sand fractions in all the Mifune samples. The κ values were 
correlated with the coarse sand content (r = 0.76–0.81) much more 
strongly than the fine sand content (r = 0.17–0.32). This suggests that 
the coarse sand fraction was the main source of magnetic materials in 
the Mifune samples. 

It is unclear how far these local relationships between soil κ and 
texture can be extrapolated to other locations. The κ value of soils in 
Japan was weakly but positively correlated with sand content at the 
national scale (Table 2). Blundell et al. (2009) also reported that the log- 
transformed content of coarse sand (500–2000 μm) was significantly 
positively correlated with the log-transformed soil magnetic suscepti
bility in more than 5000 samples of surface soil collected throughout 
England and Wales. These results suggest that soil magnetic suscepti
bility was originated from primary minerals in soil. In contrast, the sand 
content of Brazilian soils collected from a relatively small area (<400 
ha) was significantly negatively correlated with magnetic susceptibility 
(De Mello et al., 2020; Andrade et al., 2020), suggesting that magnetic 

susceptibility was originated from the secondary magnetic materials in 
the smaller particles. 

3.4. Reliability of field measurement of soil κ 

The instrument used in this study (KT-10) is designed for field 
measurement. It was used to measure the Mifune soils both in the field 
and in the laboratory to assess the reliability of field measurements. 
Fig. 6 shows the relationship between the average κ value at each site 
and the repeatability of the measurements. A high CV indicates high 
within-site variation. The CV of the field measurements exceeded 10% at 
3 out of 39 sites every time κ was measured. The average CV was 5.5% in 
2017, 5.6% in 2018, and 5.0% in 2020. Field measurements had lower 
repeatability (higher CV) than the laboratory measurements (Figs. 4 and 
6). Interestingly, the CVs in the 2017 field measurements were weakly 
but positively correlated with those in 2018 (r = 0.34, p < 0.05). This 
implies that within-site variations in κ were influenced by the site- 
specific field environments. However, the coefficients of variation in 
2020 were not significantly correlated with those in 2017 and 2018. 

In our case, the CV below 10% was judged to be a feasible range to 
assure the reliability of field measurements. Schibler et al. (2002) 
evaluated the repeatability of surface soil κ by repeated measurement of 
κ at exactly the same place using a field probe (Bartington MS2D) and 
found that the coefficient of variation started to exceed 10% if the 
average κ value became<0.1 × 10-3SI. Their results suggest that the 
limit of quantification was around 0.1 × 10-3SI for the Bartington MS2D 
probe. Declercq et al. (2019) also evaluated the within-site variation of 
surface soil κ after removal of plant cover by measuring κ at 36 non- 
overlapping points within an area of about 1 m2 using a Bartington 
MS2D probe according to the method of Maier et al. (2006). In their 
case, the coefficient of variation ranged from 11% (arable land and 
forest) to 14% (pasture), even if the measurements were higher than 0.1 
× 10-3SI.

To estimate the factors affecting the within-site variation, the κ value
and the moisture content at the soil surface were monitored in a small 
artificial paddy field containing one of the Mifune soils. The κ value 
increased as the soil moisture content decreased (Fig. 7). The increase in 
κ (average of 10 measurement points) during drying from October to 
December was 0.58 × 10-3SI. This increase may be due partly to drying- 
induced soil compaction. The κ value was also influenced by the location 
of the measurement points. The highest and lowest values were usually 
recorded at the same two points (Fig. 7). The average difference from 
highest to lowest κ among the 10 points on each measurement date was 
0.78 × 10-3SI. The average CV (7.1%) was comparable to that of the field 
measurements (Fig. 6). These two factors (moisture content and mea
surement location), especially the latter one, likely decreased the 
repeatability of the field measurement. As the soil was 2-mm sieved and 

Fig. 6. Relationship between the measured κ values (averages of 5 measure
ments) at the 39 Mifune sites and the repeatability of these measurements. 

Fig. 7. The soil κ value at each 10 monitoring points in the artificial paddy field 
(Fig. S4) as the soil dried. The two red lines connect the time-series data of the 
two locations that usually produced the highest or lowest κ values. 
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homogenized before placing in the box, the within-site variation may 
have been due to incomplete contact between the measurement surface 
and the coil of the instrument, as observed by Maier et al. (2006). 

Despite the factors that may have decreased the reliability of field 
measurements, the determination coefficients between field and labo
ratory measurements were higher than 0.95 (Fig. 8). The correlation 
coefficients among the three sets of field measurements were also high 
(r > 0.98). However, the average κ values decreased in the following 
order; 4.32 × 10-3SI (2020), 3.84 × 10-3SI (2017), and 3.49 × 10-3SI 
(2018), although the κ values measured in the laboratory were stable 
over several years (Table 1). The difference between 2018 and 2020 
(0.83 × 10-3SI) was larger than could be expected from the effects of soil 
moisture on the κ value (Fig. 7). These results suggest the presence of 
other factors causing a systematic error in the κ measurements of one 
year, which remain to be elucidated. 

Nevertheless, the determination coefficients between field and lab
oratory measurements in our study (r2 > 0.95) were much better than 
those reported previously (Boyko et al., 2004; Cervi et al., 2014; Quijano 
et al., 2014). This is due partly to the homogenization of surface soil by 
plowing and the absence of plant cover at the time of the field mea
surements. The correlation coefficients between the field-measured κ 
value at the Mifune sites in January 2018 and the laboratory-based data 
of soil samples collected in May 2018 were 0.89 for sand, − 0.86 for silt, 
− 0.76 for clay, and 0.67 for Ex-K/CEC. These correlation coefficients 
were very similar to those between the laboratory-measured κ values 
and these soil properties (Table 2). Accordingly, field measurement of 
soil κ was useful for rapidly estimating the related properties, at least at 
the Mifune sites. More comparative research is needed to confirm these 
results and to better establish field-based soil assessment. 

4. Conclusions

The κ value of agricultural surface soils in Japan varied widely at the
national scale. The soils classified as Vitric Andosols or Silandic Ando
sols had significantly higher κ values than other soils. Soil κ can be a 
useful proxy for the contents of structural Fe (Fet – Fed) and the andic 
soil properties (Alo + 1/2Feo) at the national scale. Soil κ variations were 
also detectable at the much smaller scales. In some of the Takatsuki 
samples collected at the farm scale, large within-sample variations of 
soil κ suggested the presence of magnetic hotspots. In the Mifune sam
ples collected at the farm scale, there was a causal relationship between 
sand content and soil κ. These results highlight the potential of soil κ 
measurement for rapid soil assessment. To ensure the validity of this 
method, the reliability of field measurements should be verified by 

measuring the within-site variation. Use of the CV below 10% as an 
allowable limit for reliable measurements, as introduced in this study, 
should be tested in other sites and with other sensors to establish the 
field-based soil assessment method. 
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