Project Completion Report

Project for Evaluation and Mitigation of Seismic Risk for Composite Masonry Buildings in Bhutan

June 2023

Japan International Cooperation Agency (JICA)

Nagoya City University

IM	
JR	
23-080	

Table of contents

I. Basic Information of the Project	;
1. Country	•
2. Title of the Project	}
3. Duration of the Project (Planned and Actual)	3
4. Background (from Record of Discussions(R/D))	}
5. Overall Goal and Project Purpose (from Record of Discussions(R/D)) 4	ŀ
6. Implementing Agency 4	ŀ
II. Results of the Project	
1. Results of the Project 4	
1-1 Input by the Japanese side (Planned and Actual) 4	ŀ
1-2 Input by the Bhutanese side (Planned and Actual) 14	ł
1-3 Activities (Planned and Actual) 16	5
2. Achievements of the Project	;
2-1 Outputs and indicators	5
(Target values and actual values achieved at completion)	
2-2 Project Purpose and indicators	ĺ
(Target values and actual values achieved at completion)	
3. History of PDM Modification 34	ŀ
4. Others	ŀ
4-1 Results of Environmental and Social Considerations (if applicable)	ŀ
4-2 Results of Considerations on Gender/Peace Building/Poverty Reduction	,
Disability, Disease infection, Social System, Human Wellbeing, Human Right	,
and Gender Equality (if applicable)	5
III. Results of Joint Review	
1. Results of Review based on DAC Evaluation Criteria	5
2. Key Factors Affecting Implementation and Outcomes	,
3. Evaluation on the results of the Project Risk Management	
4. Lessons Learnt	
5. Performance	
6. Additionality	3

IV. For the Achievement of Overall Goals after the Project Completion

1. Prospects to achieve Overall Goal 38	}
2. Plan of Operation and Implementation Structure of the Bhutanese side to)
achieve Overall Goal)

- 4. Monitoring Plan from the end of the Project to Ex-post Evaluation 40

ANNEX 1: Results of the Project

(List of Dispatched Experts, List of Counterparts, List of Trainings, etc.) ANNEX 2: List of Products (Report, Manuals, Handbooks, etc.) Produced by the Project

ANNEX 3: PDM (All versions of PDM)

I. Basic Information of the Project

1. Country

Bhutan

2. Title of the Project:

Project for Evaluation and Mitigation of Seismic Risk for Composite Masonry Buildings in Bhutan

3. Duration of the Project:

2017/4/27-2022/4/26 (Planned) 2017/4/27-2023/4/26 (Actual)

4. Background (from Record of Discussions(R/D))

Except in urban area including the capital, most of buildings in Bhutan are constructed of indigenous materials and techniques such as rammed earth and random stone masonry and wood. As per the recent statistics, 66% of households in the country, especially 83% of households in the rural areas, live in traditional houses. This community-based practice using indigenous materials and techniques to build home has been as of now vitally sustained in the every corner of the country.

However, remarkable number of buildings constructed of indigenous materials and techniques were destroyed due to earthquakes in 2009 and 2011. It became the critical task for RGoB to guide the citizens to improve the seismic resilience of traditional houses.

In order to tackle the problems, DDM (MoHCA), DoC (MoHCA), Department of Geology and Mines (DGM, MoEA), Department of Engineering Services (DES, MoWHS) and Nagoya City University, NED, Kyoto University, Nihon University, Kagawa University, Tohoku University formulated a proposal of a collaborative research project that aims at the establishment of evaluation and mitigation of seismic risk for traditional houses in Bhutan.

Accordingly, based on the proposal, the Government of Bhutan has requested Science and Technology Research Partnership for Sustainable Development (hereinafter referred to as "SATREPS") a scientific and technological cooperation program under the framework of technical cooperation of the Government of Japan titled "Evaluation and Mitigation of Seismic Risk for Composite Masonry Buildings in Bhutan".

5. Overall Goal and Project Purpose (from Record of Discussions(R/D))

Seismic technology for disaster mitigation of the composite masonry buildings is disseminated across the country. The capacity of responsible governmental organizations (DDM, DoC, DGM and DES) for seismic disaster mitigation of the composite masonry buildings in Bhutan is enhanced.

6. Implementing Agency

Department of Disaster Management (DDM), Ministry of Home and Cultural Affairs (MoHCA), Department of Culture (DoC), MoHCA, Department of Geology and Mines (DGM), Ministry of Economic Affairs (MoEA), Department of Engineering Services (DES), Ministry of Works and Human Settlement (MoWHS), Japan International Cooperation Agency (JICA), and Nagoya City University, NED, Kyoto University, Nihon University, Kagawa University, and Tohoku University.

II. Results of the Project

1. Results of the Project

The details are shown in Annex 1.

1-1 Input by the Japanese side (Planned and Actual)

(1) Amount of input by the Japanese side

As planned, the Japanese side provided JPY 54 million as overseas activity costs for the project excluding Japanese experts' overhead costs. As some amount of travel expenditure remained unused due to the movement restriction from March 2020 to July 2022 in the COVID-19 pandemic, approximately JPY 2 million was reappropriated to spend for the website contents creation and equipment procurement for facilitating the Project research by counterparts.

(2) Expert dispatch

The Japanese team dispatched one Chief Advisor, thirteen Experts, four Project Coordinators, and two long-term experts, including JICA Project Coordinator. Since April 2017, a total of 18 short-term experts have been dispatched on 108 occasions for 1068 days, as shown in Table 1-1.

Expert	Name, Title, Organization	Duration	
1 Chief Advisor/	Mr. Takayoshi Aoki,	13 th May to 21 st May 2017	
Masonry Structures	Professor of Nagoya City	14 th Sep to 23 rd Sep 2017	
	University (NCU)	22 nd Dec to 28 th Dec 2017	
		03 rd Mar to 10 th Mar 2018	
		07 th May to 15 th May 2018	
		04 th Aug to 10 th Aug 2018	
		28th Sep to 05th Oct 2018	
		16 th Dec to 30 th Dec 2018	
		26 th Feb to 11 th Mar 2019	
		20 th Mar to 24 th Mar 2019	
		10 th May to 13 th May 2019	
		09th Oct to 23rd Oct 2019	
		27 th Oct to 31 st Oct 2019	
		08 th Dec to 23 rd Dec 2019	
		06 th Aug to 22 nd Aug 2022	
		17 th Sep to 1 st Oct 2022	
		18 th Nov to 28 th Nov 2022	
		16 th Dec to 31 st Dec 2022	
		27 th Feb to 9 th Mar 2023	
		13th Mar to 20th Mar 2023	
2 Earthquake	Mr. Hiroshi Inoue,	13 th May to 20 th May 2017	
Engineering	Principal Research Fellow	02 nd Oct to 15 th oct 2017	
	of the National Research	10 th Dec to 16 th Dec 2017	
	Institute for Earth Science	04 th Mar to 11 th mar 2018	
	and Disaster Resilience	17 th Mar to 25 th Mar 2018	
	(NIED)	05 th May to 13 th May 2018	
		29 th Sep to 07 th Oct 2018	
		03 rd Mar to 08 th Mar 2019	
		15 th Mar to 23 rd Mar 2019	
		10 th May to 12 th May 2019	
		28 th Sep to 04 th Oct 2019	
		11 th Dec to 23 rd Dec 2019	
		25 th Jan to 29 th Jan 2020	
		11 th Dec to 31 st Dec 2022	

Table 1-1. List of Dispatched Experts

		02 nd Mar to 22 nd Mar 2023
3 Seismology	Mr. Shiro Ohmi,	14 th May to 21 st May 2017
	Associate Professor of	02 nd Oct to 18 th Oct 2017
	Kyoto University (KU)	03 rd Mar to 11 th Mar 2018
		17 th Mar to 30 Mar 2018
		08 th May to 20 th May 2018
		10 th Sep to 20 th Sep 2018
		18 th Nov to 02 nd Dec 2018
		24 th Feb to 07 th Mar 2019
		07 th May to 20 th May 2019
		26 th Aug to 08 th Sep 2019
		13 th Dec to 22 nd Dec 2019
		08 th Aug to 28 th Aug 2022
		(18 th Mar to 25 th Mar 2023)
4 Seismic Engineering	Mr. Noriyuki Takahashi,	13 th May to20th May 2017
	Associate Professor of	19 th Sep to 24 th Sep 2017
	Tohoku University (THU)	19 th Dec to 24 th Dec 2017
		16 th Dec to 21 st Dec 2018
		09 th May to 13 th May 2019
		14 th Oct to 18 th Oct 2019
		08 th Dec to 12 th Dec 2019
		17 th Sep to 23 rd Sep 2022
5 Seismic Engineering	Mr. Mitsuhiro Miyamoto,	13 th May to 21 st May 2017
	Associate Professor of	17 th Sep to 24 th Sep 2017
	Kagawa University (KGU)	19 th Dec to 25 th Dec 2017
		01 st Mar to 10 th Mar 2018
		04 th Aug to 10 th Aug 2018
		28 th Sep to 05 th Oct 2018
		16 th Dec to 30 th Dec 2018
		26 th Feb to 11 th Mar 2019
		20 th Mar to 24 th Mar 2019
		16 th Dec to 30 th Dec 2018
		02 nd Mar to 11 th Mar 2019
		10 th May to 13 th May 2019
		14 th Jul to 18 th Jul 2019
		09 th Oct to 18 th Oct 2019

		O6th Aug to 22nd Aug 2022
		06 th Aug to 22 nd Aug 2022
		19 th Sep to 27 th Sep 2022
		18 th Dec to 31 st Dec 2022
		11 th Mar to 20 th Mar 2023
6 Building Materials	Mr. Noboru Yuasa,	14 th May to 22 nd May 2017
	Professor of Nihon	22 nd Dec to 27 th Dec 2017
	University (NU)	20 th Dec to 30 th Dec 2018
		03 rd Mar to 11 th Mar 2019
		14 th Nov to 27 th Nov 2022
7 Building Materials	Mr. Tomoyuki Koyama,	14 th Nov to 21 st Nov 2022
	Associate Professor of	
	Kyushu University	
8 Building Materials	Mr. Takumi Aramaki,	14 th May to 22 nd May 2017
	Assistant Professor of	13 th Sep to 30 th Sep 2017
	Institute of Technicians	15 th Dec to 28 th Dec 2017
		19 th Nov to 1 st Dec 2022
9 Building Materials	Mr. Sangchul Shin, Post-	10 th Dec to 30 th Dec 2018
	doctoral researcher of NU	
10 Masonry Structures	Ms. Junko Mukai, Research	01 st Aug to 31 st Aug 2022
	Assistant Professor of NCU	19 th Sep to 17 th Oct 2022
		22 Nov 2022 to 15 Jan 2023
		28th Feb to 23rd Mar 2023
11 Masonry Structures	Mr. Shrestha Kshitij	14 th May to 21 st May 2017
	Charana, Associate	13 th Sep to 30 th Sep 2017
	Professor of Tribhuvan	14 th Dec to 27 th Dec 2017
	University	21 st Feb to 14 th Mar 2018
		07 th May to 15 th May 2018
		02 nd Aug to 10 th Aug 2018
		26 th Sep to 26 th Oct 2018
		14 Nov 2018 to 24 Jan 2019
		18 th Feb to 25 th Mar 2019
		10 th May to 24 th May 2019
		10 th Jul t 30 th Jul 2019
		09^{th} Oct to 31^{st} Oct 2019
		06 th Dec to 23 rd Dec 2019
		05 th Jan to 07 th Jan 2020

12 Structural	Mr. Jingyao Zhang,	14 th May to 20 th May 2017
Engineering	Associate Professor of KU	17 th Sep to 23 Sep 2017
		16 th Dec to 21 st Dec 2019
		19 th Dec to 23 rd Dec 2019
		18th Nov to 28th Nov 2022
13 Graphic Design	Ms. Junko Mori, Professor	14 th May to 21 st May 2017
	of NCU	14 th Sep to 19 th Sep 2017
		03 rd Mar to 10 th Mar 2018
		22 nd Dec to 29 th Dec 2018
		03rd Mar to 07th Mar 2019
		27 th Oct to 31 st Oct 2019
		13 th Mar to 19 th Mar 2023
14 Visual Design	Mr. Ryu Nakagawa,	17 th Sep to 25 th Sep 2017
	Associate Professor of NCU	29 th Sep to 05 th Oct 2018
		28 th Oct to 02 nd Nov 2019
		16 th Dec to 23 rd Dec 2019
		04 th Nov to 29 th Nov 2022
		28th Feb to 10th Mar 2023
		13th Mar to 20th Mar 2023
		7 th Apr. to 19 th Apr. 2023
15 Seismology	Mr. Takashi Nakata,	05 th Mar to 12 th Mar 2018
	Professor Emeritus of HU	15 th Sep to 03 rd Oct 2019
		15 th Sep to 11 th Oct 2022
16 Seismology	Mr. Yasuhiro Kumahara,	18 th Sep to 1 st Oct 2019
	Associate Professor of HU	15 th Sep to 11 th Oct 2022
17 Seismology	Mr. Takumi Hayashida,	24 th Nov to 02 nd Dec 2018
	Building Research Institute	13 th Mar to 19 th Mar 2023
18 Earthquake	Mr. Ken Xian Sheng Hao	21 st Sep to 06 th Oct 2019
Engineering	Principal Research Fellow	13 th May to 21 st May 2017
	of NIED	
JICA Project Coordinator	Mr. Koichiro Miyara	15 Mar 2021 to 25 Apr 2023
JICA Project Coordinator	Mr. Gaijiro Ando, Director of	Apr. 2017 to Mar. 2020
	Ando Consultants Inc.	

(3) Official visit to Japan

The project funded an official visitto Japan for three Bhutanese members (one from the DoC, one from the DDM, and one from the DES), as shown in Table 1-2.

Table 1-2. Participants in the official visit to Japan

No.	Subject	Term	Travelers	Country
1	To follow up final evaluation	2023 Jan.	Mr. Sonam	Japan
		1 week	Tshewang	
			Mr. Yadav Bal	
			Bhattarai,	
			Mr. Pema	

(4) Short-term trainings in Japan and third-country

The project funded a total of seven short-term trainings in Japan and third-country for twelve Bhutanese members (five from the DGM, three from the DoC, one from the DDM, and one from the DES), as shown in Table 1-3.

Table 1-3. The participants for short-term Training

No.	Subject	Term	Travelers	Country
1	To learn Static jack system	2018 Jan	Mr. Pema	Japan
		1 week	Mr. Lhendup	
2	To learn Micro tremor	2018 Feb.	Mr. Phutsho Pelgay	Japan
	measurement	1 week	Ms. Nityam Nepal	
3	To observe earthquake awareness	2018 Nov.	Mr. Yeshey Lotey	Japan
	activates in Japan and learn about	1 week	Mr. Sonam	
	seismic technologies to mitigate		Yangdhen	
	building damage, NCU&NHU		Mr. Kunzang Tenzin	
4	To learn active fault mapping at	2019 Feb.	Mr. Karma Namgay	Japan
	Hiroshima University	2 weeks		
5	International seminar in	2019 Dec.	DGM	Nepal
	Kathmandu on Natural disaster in	1 week		
	south Asia: interventions, best			
	practices and challenge			
6	International academic symposium	2020 Jan.	Dr. Dowchu Drukpa	Japan
	on active faulting	1 week		

7	To exchange seismic observation	2020 Feb.	Mr. Phutsho Pelgay	Philippine
	network operation	1 week		

(5) JICA Knowledge Co-Creation Program in Japan

In total, seven members (two from DES, four from DGM, and one from DDM) took participated in JICA Knowledge Co-Creation Programs as shown in Table 1-4. One counterpart from DES is participating in the training course since October 2022, which is a one-year JICA Program "Seismology, Earthquake Engineering, and Tsunami Disaster Mitigation" to obtain a master's degree in disaster management. Four more members (one from DES, one from DGM, and two from DoC) took participated in this program as shown in Table 1-5.

No.	Subject	Term	Travelers	Country
1	Improvement and disaster	2017 Sep.	Mr. Jigme	Japan
	prevention of housing and living	3 months	Wangdi	
	environment			
2	Raising awareness of disaster	2018 Jan.	DDM	Japan
	risk reduction	2 months		
3	Global seismological observation	2018 Jan.	Mr. Phutsho	Japan
		3 months	Pelgay	
4	Disaster risk reduction of	2018 Jun.	Mr Yeshi	Japan
	buildings	1 month	Samdrup	
5	Disaster risk reduction of	2019 Jun.	DES	Japan
	buildings	1 month		
6	Global seismological observation	2020 Jan.	Ms. Nityam	Japan
		3 months	Nepal	
7	Global seismological observation	2021 Jan.	Mr. Karma	Japan
		3 months	Namgay	(Remote)

Table 1-4. The participants for JICA Knowledge Co-Creation Program in Japan

No.	Subject	Term	Travelers	Country
1	Seismology, Earthquake	2019 Sep.	Mr. Pema	Japan
	Engineering and Tsunami	1 year		
	disaster mitigation, Master's			
	degree course			

2	Seismology, Earthquake	2020 Sep.	Mr. Yadav Lal	Japan
	Engineering and Tsunami	1 year	Bhattarai	
	disaster mitigation, Master's			
	degree course			
3	Seismology, Earthquake	2020 Sep.	Ms. Nityam	Japan
	Engineering and Tsunami	1 year	Nepal	
	disaster mitigation, Master's			
	degree course			
4	Seismology, Earthquake	2021 Sep.	Mr. Kunzang	Japan
	Engineering and Tsunami	1 year	Tenzin	
	disaster mitigation, Master's			
	degree course			
5	Seismology, Earthquake	2022 Sep.	Mr. Tshering	Japan
	Engineering and Tsunami	1 year	Dhendup	
	disaster mitigation, Master's			
	degree course			

(6) Long-term Training (PhD course) in Japan

One member from the DoC has taken a PhD course at the Graduate School of Design and Architecture at Nagoya City University since September 2017 (Table 1-6). She obtained a doctoral degree in March 2021. Her study theme was the development of seismic technology for composite masonry buildings in Bhutan. She is a scholarship student of the Ministry of Education, Culture, Sports, Science and Technology in Japan (MEXT), selected from the SATREPS slots.

Table 1-6. The participants for Long-term Training (PhD course) in Japan

No.	Subject	Term	Participants
1	Research student / PhD course	3 and half years	Phuntsho Wangmo

A list of training participants' number since April 2017 is shown in Table 1-7.

Short-term	JICA Knowledge	Long-term	Total
training/official visit in	Co-Creation	Training in	
Japan or third	Program	Japan	
countries			

Table 1-7. Number of training participants

DDM	2	1		3
DoC	3	2	1	6
DES	2	4		6
DGM	5	4		9
Total	12	11	1	24

(7) Trainings in Bhutan

In addition to daily on-site training, there were 60 participants trained for advanced techniques in Bhutan as shown in Table 1-8.

Table 1-8. The on-site training course in Bhutan

No.	Name of training course	Period	Participants number
1	Active Fault and Earthquake Disaster	2018 Mar 9	Disaster management
	Mitigation in Bhutan	2010 Mar 9	organizations 20
2	Drones for Disaster Management	2019 May 7	DGM members, Civil
	Ũ	2018 May 7	engineers 32
3	ICT for operating earthquake monitoring	2019 Son 12 12	DGM members
	system and its network	2018 Sep 12-13	DGIM members
4	Trial Virtual Reality materials	2018 Oct 10	DDM members
5	Microtremor survey	2018 Nov 26 - 30	DGM members 3

(8) Overseas activities cost

As planned, the Japanese side provided about JPY 52 million yen as overseas activities costs.

(9) Procurement of Equipment

The Japanese side purchased equipment of about JPY 186 million yen in total, which include a test facility and test specimens. The details of the equipment are listed on ANNEX 1: List of Products: Equipment (Japan) (Table 1-9).

Table 1-9 List of equipment procured by the project

Item	То	Arrival Dates
1 Materials testing equipment	DoC	Sep. 15, 2017
2 3D laser scanner	DoC	Sep. 19, 2017
3 Vibration table (anchor frame and table)	DoC	Mar. 7, 2018

		Mar. 13, 2019
4 Static jack system	DoC	Mar. 23, 2018
5 Offline earthquake observation equipment	DGM	Oct. 3, 2017
		Feb. 27, 2018
6 Telemetry earthquake observation equipment	DGM	Mar. 15, 2018
		Jun. 2, 2018
7 Portable array microtremor observation	DGM	Nov. 9, 2018
equipment		
8 Laser displacement measurement system	DoC	Dec. 11, 2018
9 Acceleration measurement system	DoC	Feb. 26, 2019
10 UAV (drone) for microtopography survey	DGM	Aug. 14, 2019
	DDM	
11 Intensity meters (1st)	DGM	Dec. 11, 2019
12 Intensity meters (2nd)	DGM	Jan. 26, 2020
13 Intensity meters (3rd)	DGM	June 4, 2020
14 Intensity meters (4th)	DGM	Feb. 9, 2021
15 UAV (drone) for microtopography survey	DGM	Mar. 22, 2021
	DDM	
16 Seismometer (1 st)	DGM	Mar. 19, 2021
17 Seismometer (2 nd)	DGM	Apr. 1, 2021
18 Data logger for offline station	DGM	Mar. 25 th 2022
19 Software for seismic data analysis	DGM	Mar. 25 th 2022
20 Web camera system for remote seminars and	DoC	Mar. 25 th 2022
experiments		
21 Lap top PC for training program	DES	Apr. 13 th 2022
22 VR equipment for dissemination activities	DOC	May 25 th 2022
23 VR equipment for dissemination activities	DDM	Apr. 10 th 2023

1-2 Input by the Bhutanese side (Planned and Actual)

(1) Counterpart assignment

The following officials have been assigned:

- The Project Director: Director of DDM, MoHCA
- The Project Manager for Output 1: Director of DGM, MoEA
- The Project Manager for Output 2: Director of DoC, MoHCA
- The Project Manager for Output 2: Director of DES, MoWHS
- The Project Manager for Output 3: Director of DDM, MoHCA

Additionally, the following officials worked for the project (approximately 20 persons in total).

- Disaster engineer, DDM
- Architect, DoC
- Engineer, DoC
- Engineer, DES
- Geophysicist, DGM
- Geologist, DGM
- Technician, DGM

Name	Organization			
Ms. Nagtsho Dorji	Director of the DoC,			
	Ministry of Home Affairs			
	(MOHA)			
Mr. Thinlay Wangchuk	Director General of the			
Mr. Jigme Thinlye	DDM, Ministry of Home and			
Namgyal	Cultural Affairs (MOHCA)			
Mr. Karma Tshering				
Mr. Chhador Wangdi				
Mr. Yang Dorji	Chief Program Officer,			
	Officiating Director General,			
	DDM			
Mr. Pema Singye	Chief Program Officer, DDM			
Mr. Tshewang Norbu	Senior Program Officer,			
	DDM			
Mr. Sonam Tshewang	Executive Engineer, DDM			
Mr. Yeshey Lotey	Moved to Construction			
	NameMs. Nagtsho DorjiMr. Thinlay WangchukMr. Jigme ThinlyeNamgyalMr. Karma TsheringMr. Chhador WangdiMr. Yang DorjiMr. Pema SingyeMr. Tshewang NorbuMr. Sonam Tshewang			

Table 1-10 List of the Bhutanese project members (as of March 2023)

		Development Board
4 Project Manager	Ms. Pema	Chief Architect, DCHS,
		Department of Culture,
		MoHCA
Apr. 2017 to Aug. 2020	Ms. Nagtsho Dorji	Director of the Department
· .p		of Culture (DoC), MOHCA
5 Working Member	Mr. Pema	Executive Engineer, DoC
6 Working Member	Dr. Phuntsho Wangmo	Deputy Executive Engineer,
(maternity leave)		DoC
7 Working Member	Mr. Yeshi Samdrup	Executive Architect, DoC
8 Working Member	Mr. Kunzang Tenzin	Engineer, DoC
Apr. 2017 to Feb. 2023	Mr. Ugyen Dorji	Engineer, DoC
9 Support Member	Mr. Dhendup Tshewang	Deputy Executive Engineer,
		DoC
Apr. 2017 to June. 2022	Mr. Lhendup	Technician, DoC
10 Project Manager	Vacant	Chief Engineer, DES,
		Ministry of Works and
		Human Settlement
		(MOWHS)
Sep. 2018 to Feb. 2023	Mr. Sonam Yangdhen	Leave
Apr. 2017 to Sep. 2018	Mr. Karma Namgyel	Moved to Thimphu
		Thromde
11 Working Member	Mr. Yadav Lal Bhattarai	Executive Engineer, DES
12 Working Member	Mr. Jigme Wangdi	Deputy Executive Engineer,
		DES
13 Working Member	Mr. Tshering Dhendup	Deputy Executive Engineer,
(Study leave from Oct.		DES
'22)		
14 Support Member	Mr. Bishnu Pradhan	Executive Engineer, DES
15 Project Manager	Dr. Dowchu Drukpa	Specialist (Seismologist),
		DGM, Ministry of Economic

		Affairs (MOEA)
16 Working Member	Vacant	Officiating Chief, Geologist,
		DGM
Apr. 2019 to Aug. 2022	Mr. Phuntsho Pelgay	Officiating Chief, Geologist,
		DGM
Apr. 2017 to Mar. 2019	Mr. Jamyang Chophel	Moved to Punatsangchhu-1
		Hydro Power project on
		secondment
17 Working Member	Ms. Nityam Nepal	Senior Geologist, DGM
18 Working Member	Mr. Karma Namgay	Geologist, DGM
19 Support Member	Mr. Lungten Chedup	Technician, DGM
20 Support Member	Mr. Sonam Tshering	Technician, DGM

(2) Provision of offices, etc.

As planned, the Bhutanese side provided the following:

- Office space
- Test facility land

(3) Other items borne by the counterpart government N/A

1-3 Activities (Planned and Actual)

For the original plan of operation and actual result of the Project activities, see PO, and major changes in the schedule are summarized as follows.

- Delay in determining the construction site of the test facility as authorized by the Ministry of Home and Cultural Affairs. The construction of the Test facility was started at the end of December 2017 and it was completed in May 2018.

2. Achievements of the Project

2-1 Outputs and indicators

(Target values and actual values achieved at completion) All the indicators were achieved as described below.

2-1-1 Output 1

Seismic risks of composite masonry buildings are evaluated.

(1) In Output 1-1, Seismic hazard map is used in disaster management plans and contingency plans.

The earthquake source (hypocenter and magnitude) monitoring network and seismic intensity (ground shaking) monitoring network of Bhutan have been installed to enable real-time and long-term hazard assessment. The earthquake source monitoring network consists of 6 online and 3 offline stations which form a total of 17 stations including 8 by RIMES. Two hundred one (201) seismic intensity meters at town offices, in addition to the existing 20 at districts, have been installed and a total of 222 seismic intensity meters are in operation. The first nationwide active fault map of Bhutan was created and published on DGM and DDM web pages. The seismicity map, Seismic Intensity map, and Active fault map are publicized through DGM and DDM web pages. The information provides the public with real-time seismic hazards and will contribute to updating long-term seismic hazard maps in the future.

A seismic hazard map of the M7.8 scenario earthquake along the Main Himalayan Thrust fault in the Bhutan-India border has been created using existing data. A probabilistic macro seismic hazard map of Bhutan with 30 years 50% exceeding probabilities have been created in cooperation with the author of the latest existing hazard map by Stevens (2020). Microtremor surveys of Thimphu, Essuna and Ura have been conducted to find ground motion amplification in local scales. The results from the scenario and probabilistic macro hazard maps and microtremor surveys were combined into micro seismic hazard maps of the three areas, and published through DGM and DDM websites.

The continued microtremor assessments will provide scenarios of the local site conditions which will be incorporated to update hazard maps. These micro seismic hazard and macro seismic hazard maps in the future would provide a more accurate and detailed basis to improve the earthquake contingency and management plans that are in place. Furthermore, the urban development plans are also being reviewed for some of the urban settlements in Bhutan to build resilience and reduce vulnerability among the denser populations. (2) In Output 1-2, The satisfaction ratings of the users applying the seismic hazard map is 100%.

A scientific seminar on "Seismic hazard/risk assessment of Bhutan" for engineers from various agencies across the country was held on December 19, 2022, at DGM. Basics of seismic hazard assessment, seismicity and earthquake disaster, active fault mapping, ground motion amplification, M7.8 scenario earthquake and strong ground motion, probabilistic seismic hazard, and seismic risk assessment of traditional structures, were presented. The survey questionnaire was shared after the seminar and a 100% satisfaction rating has been achieved.

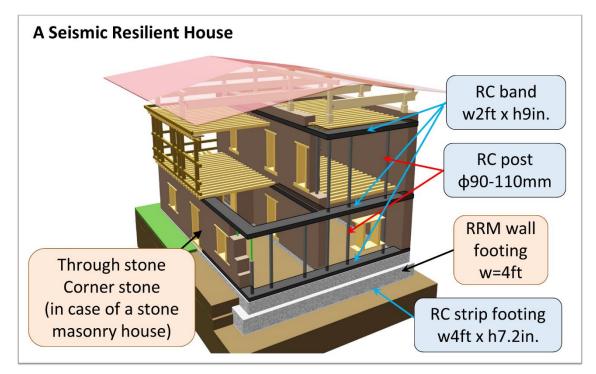
(3) In Output 1-3, Risk maps in pilot sites have been proposed. Fragility curves and exposure coefficients for each structural type in the pilot site were newly determined based on the literature and the results of this SATREPS project. Microsoft Excel file sheet (with an add-on function to display 3-DMap) for seismic risk calculation and a risk map display program using MATLAB was developed, and both methods were trained and transferred to the technical person in Bhutan with instructional materials and instructional videos.

2-1-2 Output 2

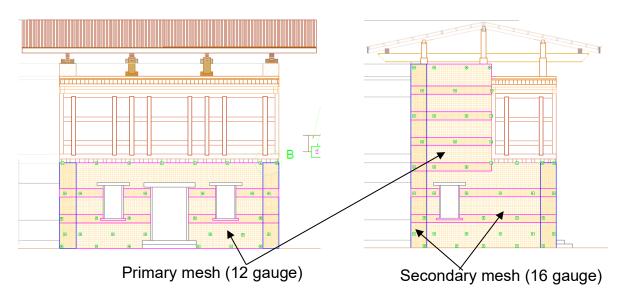
Seismic technology for constructing and strengthening composite masonry buildings is developed. The seismic technology developed by the Project meets the Bhutan seismic standard.

(1) In Output 2-1, to understand the structural characteristics of composite masonry houses in Bhutan, the project has carried out 24-hour microtremor measurement on a rammed earth house and a stone masonry house. By analyzing the data obtained in theproject period, the response of the houses to small-scale earthquakes has been understood. Also, it was found that collected data showed seasonal variations in building responses. Unfortunately, monitoring at the stone masonry house was discontinued in April 2022.

(2) In Output 2-2, to understand the materials used for making rammed earth and stone masonry houses, material tests and core sample tests for compression have been conducted in Bhutan and Japan. Based on these results, the project team developed the methodology how to estimate degree of corrosion of reinforced materials used for strengthening buildings.


(3) In Output 2-3 and 2-6, since April 2017, the project has undertaken a series of tests on composite masonry structures or buildings made from rammed earth and stones in order to collect evidence for evaluation of the seismic retrofitting techniques. Since December 2018, eight full-scale mock houses and six and eleven small-scale specimens have been tested at the experimental facility, so that the project can design a strengthening technique, such as one with wire meshes, wedges and dowels for exiting houses, and a reinforced concrete horizontal band and post for new construction. In addition, since October 2019, twenty-four dynamic tests by shaking table have been conducted at the experimental facility to grasp the vibration characteristics and the effect of the strengthening technique in both long and short-span directions. In this term, a series of dynamic tests were conducted by the shaking table. The series had rammed earth specimens with/without retrofitting, rammed earth specimens with/without RC posts and bands, stone masonry specimens with/without retrofitting, and stone masonry specimens with/without RC posts and bands. In addition, the direction of the building was changed in the experiment.

(4) In Output 2-4, the structural characteristics and behaviors of composite masonry buildings are analyzed. Finite element modeling to predict the out-of-plane behavior of a typical rammed earth structure is proposed. Both the macro-and micro-modeling strategies adopted finite element (FE) models to simulate the out-of-plane behavior of the rammed earth wall effectively.


(5) In Output 2-5, a simple method for the seismic evaluation of composite masonry buildings is established. Allowable unit stress calculation has been prepared for the seismic evaluation of structures. If the structure may be assessed to be "Safe - the structure possesses the seismic capacity required against the expected earthquake motions". Otherwise, the structure should be assessed to be "Unsafe - the structure may collapse against the expected earthquake motions", in seismic safety. In this case, the seismic reinforcement is required based on the guideline.

(6) In Activity 2-7, the seismic guideline for composite masonry buildings is formulated. Based on the experimental data and analysis results obtained in activities 2-1 to 2-5, the "Manual for Seismic Resilient Construction and

Retrofitting of Rammed earth and Stone masonry Houses" has been developed. The Manual provides the basic knowledge on the seismic resilient structure and also the plans of three model houses whose strength has been evaluated through the structural calculation developed in activity 2-5. The construction process to install the proposed reinforcement measures are described with plenty of illustrations for easier understanding by the users. The retrofitting measures to an existing house are also explained with illustrations. In the case of building a house whose plan is different from the three-model plan, the calculation method is given to analyze the safety of the house.

a. Reinforcement measures for new construction – provide a RC band on every floor level which is one to other connected by RC posts

 b. Retrofitting measures to an existing house – wrapping with wire-mesh and cement plaster over the walls from both inside and outside
 Fig.2-1. Illustrations for explaining the measures in the Manual

The experimental data and analysis results collected in activities 2-1 to 2-6 are compiled as annexures of the Manual.

(7) In Activity 2-8, the building structural standards of composite masonry buildings to MoWHS for the building permit are proposed. The Department of Culture and Dzongkha Development (the former Department of Culture) and the Department of Infrastructure (the former Department of Engineering Services) prepared draft amendments of the "Earthquake Resistant Construction Training Manual (stone masonry) 2014" by reflecting the contents of the Manual developed in activity 2-7. In the present legal framework in the construction sector, the Bhutan Building Regulation 2018 (BBR2018) and the Bhutan Building Code 2018 (Code2018) regulate the construction in the country, which articles include the procedure of applying and issuing a building permit. As article 4 of the Code 2018 stipulates that the construction of a building of stone masonry must comply with the Training Manual 2014, the amendment of this document is the most simple and appropriate way to reflect the results of the project. Tentatively, the amended version of the document is titled the "National Guidelines for the rammed earth and stone masonry structure". The draft national guidelines will be reviewed by the Ministry of Infrastructure and Transport (the former Ministry of

Works and Human Settlement) and it is expected to be approved in June 2023. At the same time, it has also been proposed to change article 4 of the Code2018 to specify the new title of the national guidelines.

Fig.2-2. Present legal framework in the construction sector

2-1-3 Output 3

The dissemination mechanism for seismic technology is enhanced.

(1) Output 3-1, The budgets for the public awareness program for the general public and the training for local government staff, technical workers, and craftsperson are secured to disseminate the seismic technology across the country. The Department of Infrastructure Development, Ministry of Infrastructure and Transport (the former Department of Engineering Services, Ministry of Works and Human Settlement) has secured BTN. 2.5 million for technical training for the fiscal year 2023 to 2024. This national budget will be used to conduct the ToT and Hands-on training to encourage the engineers and craftsperson to use the reinforcement and retrofitting measures proposed by the project. The Department plans to organize the trainings in the two clusters (the newly introduced cluster system consists of two or three dzongkhag or districts. Nine clusters are formed by 20 districts in the country), one in the western region for the rammed earth

construction and the other in the east region for the stone masonry construction in cooperation with the Department of Culture and Dzongkha Development, Ministry of Home Affairs (the former Department of Culture, Ministry of Home and Cultural Affairs). The Department of Infrastructure Development has a plan to secure the national budget for the continuous years to implement the dissemination plan.

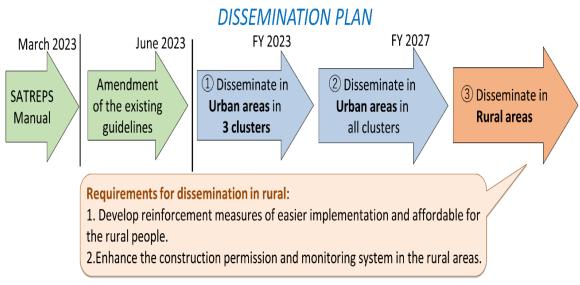


Fig. 3-1. Dissemination plan

In accordance with the dissemination plan which has been developed by the Department of Culture and Dzongkha Development and the Department of Infrastructure Development, the measures are to be disseminated in the urban area of three clusters in the first year after the end of the SATREPS project. Paro cluster in the west, Trongsa in the central, and Trashigang in the east are identified for the initial dissemination. By 2027, the dissemination in all the urban areas shall be completed. The reason why the dissemination targets the urban areas is that those areas have populations who will be able to bear the additional cost of installing the reinforcement measures, and also the mechanism of monitoring the private construction by the municipal offices.

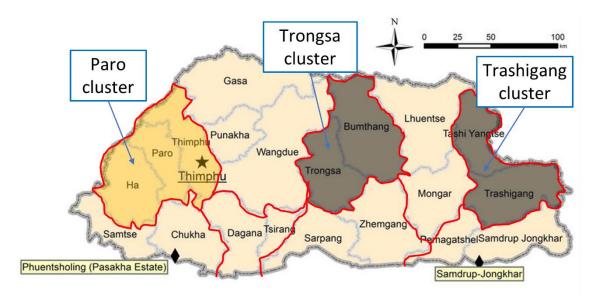


Fig.3-2. Demarcation of the nine clusters (red line), and the three clusters identified for dissemination in the coming fiscal year

On the other hand, in rural areas, it was found that the majority of the rural population is not able to afford to implement the measures, and there is no mechanism to monitor private construction. The project has developed reinforcement measures whose installation costs do not exceed 20% of the total construction cost at the standard rate. However, such additional cost to install the reinforcements is relatively very high in rural areas, since the cost of building an average-sized house in rural areas is often less than 1/10th of the amount in urban areas. In rural areas, the timber rate is significantly subsidized, and stone and mud are available from the locality. The people often provide labour work to each other. Conversely, the acquisition of the necessary industrial materials such as cement and steel rods costs more in rural areas due to the transportation charge for long distances from commercial areas. Therefore, it is crucial that optional measures that are affordable for the rural population are developed through further research using the test facilities provided by the project. The Department of Culture and Dzongkha Development has already built six specimens to obtain additional data using the remaining amount of the national budget of BTN 9 million secured to carry out the experiments in the SATREPS project period. The Department has also applied to the Ministry of Finance for a budget for the coming fiscal year so that the experiments can continue. Furthermore, the Department of Culture and Dzongkha Development is working on the establishment of a Research Institute for Traditional Structure (RITS). The

idea to institute RITS has been conceived before the SATREPS project and discussion with the Royal University of Bhutan (RUB) has been already started. At this time, having the experiment facilities provided and the technical capacity developed in the project, the proposal is seen as more realistic and feasible by the stakeholders.

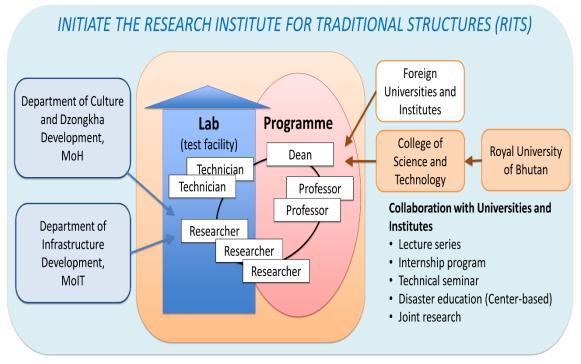


Fig.3-3. Organization chart of RITS proposed by the Department of Culture

The other key issue is about the mechanism for construction monitoring in rural areas. Currently, the gewog office (local government) appraises and approves construction applications submitted by rural residents, which are intended to prevent illegal construction such as encroachments on state-owned land or road. Any technical aspects such as the size, plan, or structure of the building are not subject to review. As the installation of the reinforcement measures into rural construction quality which significantly impacts structural strength and durability, a better mechanism of construction approval and monitoring in rural construction is expected. The dissemination plan includes the development and enhancement of the mechanism, taking advantage of the major restructuring of the state and local government administration currently underway.

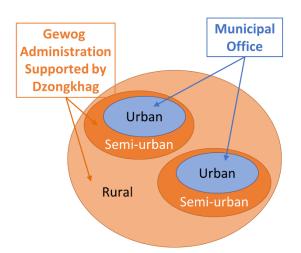


Fig.3-4. regulatory authorities for urban and rural areas

(2) Output 3-2, The satisfaction ratings of the selected national government staff with reference to the contents of the ToT program exceed 90 % on average. In the project, a series of technical training programs were conducted. The participants of the national and district engineers are requested to fill out the feedback form (See annexure). Additionally, during the hands-on training held in Chhumay, feedback from the craftsperson has also collected by interviewing them. The satisfaction ratings of the trainings were found to be between 96% and 100%. The overview of each training program and its satisfaction rating is shown below:

- 1. ToT held on 12-14 Oct 2021
 - (1) Key contents: the structural calculation for seismic reinforcement
 - (2) Participants: 10 engineers from 5 districts
 - (3) Venue: the conference hall of the Department of Culture

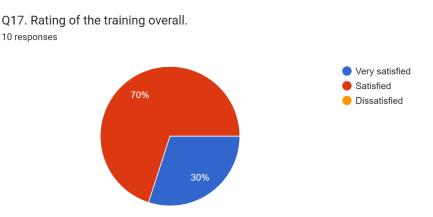


Fig.3-5. satisfaction rate given by the 10 participants

- 2. ToT held on 8-9 Dec 2022
 - (1) Key contents: Outline of the SATREPS project, detailed explanation of the Manual for Seismic Resilient House of Stone Masonry and Rammed Earth, and the hazard and risk map
 - (2) Participants: 90 engineers from 10 districts
 - (3) Venue: Online

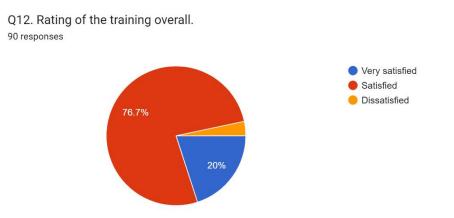


Fig.3-6. satisfaction rate given by the 90 participants

- 3. Hands-on Training held on 3-4 Nov 2021
 - (1) Key contents: Implementation of the retrofit measure on the existing rammed earth house in Dangchu
 - (2) Participants: 20 crafts persons and engineers from the western districts
 - (3) Venue: Dangchu in Wangduephodrang district

In this training, filling out the feedback form wasn't requested considering the literacy of the craftsperson.

- 4. Hands-on Training held on 26-27 Sep 2022
 - (1) Key contents: Construction of a rammed earth mock wall with the reinforcement measure
 - (2) Participants: 8 crafts persons from Essuna pilot site and 4 engineers from the western districts
 - (3) Venue: In DoC compound

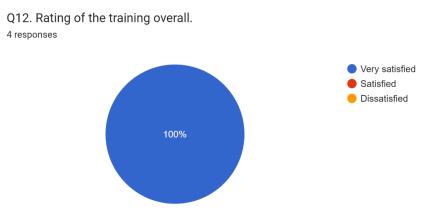


Fig.3-7. satisfaction rate given by the 4 participants (collected feedback from the engineers only due to the literacy of the craftsperson)

- 5. Hands-on Training held on 29 Nov to 2 Dec 2022
 - (1) Key contents: Construction of a stone masonry mock wall with the reinforcement measure and implementation of the retrofit measure on the mock wall built
 - (2) Participants: 8 crafts persons from Chhumay and 23 engineers from Bumthang and Monggar districts
 - (3) Venue: Chhumay in Bumthang district

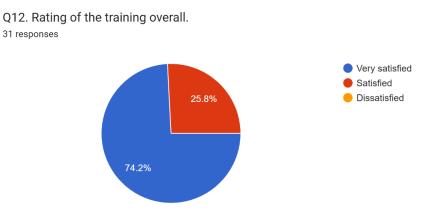


Fig.3-8. satisfaction rate given by the 31 participants (collected feedback also from the craftsperson through the interview using the feedback form)

Fig.3-9. Online ToT (left) and Hands-on Training for retrofitting of Dangchu house (middle) and construction of a rammed earth mock wall (right)

During the above-mentioned programs, several materials which have been prepared for the project were used for easier understanding of the proposed measures. Based on the Manual for Seismic Resilient House of Stone Masonry and Rammed Earth that has been developed as output 2, the following materials are created and unloaded to the websites of the Department of Culture and Dzongkha Development as well as the Department of Infrastructure Development:

- (1) Pictogram manuals for rammed earth construction and stone masonry construction both in English and Dzongkha (the national language)
- (2) PowerPoint slides on reinforcement measures for new construction as well as retrofitting measures for an existing house
- (3) 3D graphics that show the step-by-step process of constructing a typical traditional house with the reinforcement measures
- (4) A movie that shows the important construction phases to install reinforcement measures to both rammed earth and stone masonry houses
- (5) A movie series developed to introduce the SATREPS projects

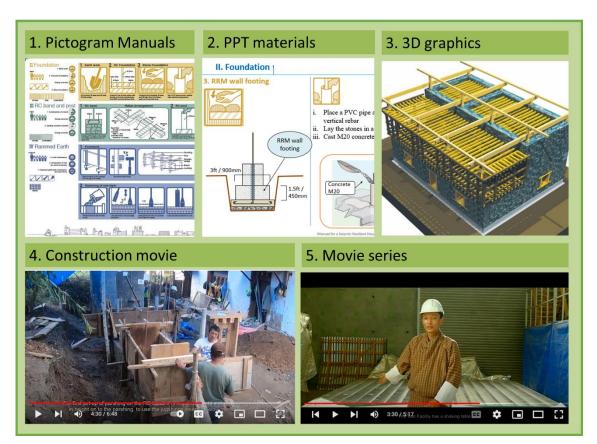


Fig.3-10. Five materials developed for dissemination of the manual

Apart from the above-mentioned technical training, awareness-raising programs for the public were also conducted as below:

- 6. Public awareness program held on 28 Sep 2022
 - (1) Key contents: Basic knowledge of earthquake and disaster mitigation, the outline of seismic resilient house construction, preparation of an evacuation plan
 - (2) Participants: 30 residents who represent each household of Essuna village and local government officials
 - (3) Venue: Essuna village in Paro district
- 7. Public awareness program held on 11 Nov 2022
 - (1) Key contents: Basic knowledge of earthquake and disaster mitigation, the outline of seismic resilient house construction, SVR experience
 - (2) Participants: 50 residents who represent each household of Essuna village and local government officials
 - (3) Venue: Ura village in Bumthang district

Fig.3-11. Awareness program in Essuna (left) and Ura (middle and right)

In order to sensitize the importance of disaster preparedness, stimulated virtual reality programs were also created in the project. Depending on the purpose and targets, the following four types of SVR are ready to operate by the Department of Disaster Management and Local Government, Ministry of Home Affairs (the former Department of Disaster Management, Ministry of Home and Cultural Affairs).

- (1) SVR-1: a stand-alone system provides an indoor experience of an earthquake
- (2) SVR-2: designed to generate earthquakes as one walks around the DoC's test facility and houses built as specimens. Anyone from anywhere can participate in this metaverse.
- (3) SVR-3: provides a virtual experience of an earthquake in a rural settlement, the images of which can be linked to the tremor of the shaking table in the test facility.
- (4) SVR-4: simulated hands-on experience of the good construction process.

2-2 Project Purpose and indicators

(Target values and actual values achieved at completion)

The project purpose is that "*The capacity of responsible governmental organizations (DDM, DoC, DGM and DES) for seismic disaster mitigation of the composite masonry buildings in Bhutan is enhanced.*" There are two objectively verifiable indicators defined in the PDM. As described below, in consideration of the achievements of Indicators, the Project Purpose was certainly achieved within the Project period based on Project Design Matrix (PDM) version 3.

(1) Indicator 1 is "The responsible governmental organizations provide local government staff as well as technical workers and craftsmen in communities with the proper instructions based on the seismic knowledge". In terms of the first indicator, since 2017, a total of 20 Bhutanese members from all responsible governmental organizations have attended 16 training programs and a conference held in Japan, related to disaster risk mitigation. The project organized seven local seminars, held in Bhutan, and gathered a total of 80 participants from disaster management sectors. In this term (October 2022-March 2023), Hands-on Training on stone masonry construction (new and retrofitting) was conducted at Chhumey. ToT was held by remote style for engineers of all 20 dzongkhags with the video teaching materials created by the project.

(2) Indicator 2 is "Research results on the seismic technology are accepted and/or published by international and/or local journal(s)". To achieve the second indicator, the project has published fourteen papers for an international journal, conference and a book.

Publication list:

- Phuntsho Wangmo, Kshitij C. Shrestha, Mitsuhiro Miyamoto, Takayoshi Aoki, "Assessment of out-of-plane behavior of rammed earth walls by pull-down tests", *International Journal of Architectural Heritage*, 13(2), 273-287, 2018.
- ② Kshitij C. Shrestha, Takayoshi Aoki, Takaaki Konishi, Mitsuhiro Miyamoto, Jingyo Zhang, Noriyuki Takahashi, Phuntsho Wangmo, Takumi Aramaki, Noboru Yuasa, "Full-Scale Pull-Down Tests on a Two-Storied Rammed Earth Building with Possible Strengthening Interventions", in: R. Aguilar et al. (Eds.): *Structural Analysis of Historical Constructions*, RILEM Book series, Springer, Cham, 1557-1565, 2019.
- ③ Pema, Kunzang Tenzin, Kshitij C. Shrestha, Takayoshi Aoki, "Construction Management of Test Facility in Bhutan", Construction Seminar proceedings "Emerging Trends in the Construction Industry", Thimphu, Bhutan, 29-30 Aug. 2019.
- Kshitij C. Shrestha, Takayoshi Aoki, Mitsuhiro Miyamoto, Phuntsho Wangmo, Pema, "In-Plane Shear Resistance between the Rammed Earth Blocks with Simple Interventions: Experimentation and Finite Element Study", *Buildings*, 10(3), 1-13, 2020.

- (5) Kshitij C. Shrestha, Takayoshi Aoki, Mitsuhiro Miyamoto, Phuntsho Wangmo, Pema, Jingyao Zhang, Noriyuki Takahashi, "Strengthening of Rammed Earth Structures with Simple Interventions", *Journal of Building Engineering*, 29, 1-10, 2020.
- (6) Pennacchio Roberto, Francesca De Filippi, Maria Bosetti, Takayoshi Aoki, Phuntsho Wangmo, "Influence of Traditional Building Practices in Seismic Vulnerability of Bhutanese Vernacular Rammed Earth Architecture", International Journal of Architectural Heritage, 16(3), 374-393, 2020.
- ⑦ Phuntsho Wangmo, Kshitij C. Shrestha, Takayoshi Aoki, "Exploratory study of rammed earth walls under static element test", *Construction and Building Materials*, 266(Part A), 1-23, 2021.
- ⑧ Phuntsho Wangmo, Kshitij C. Shrestha, Takayoshi Aoki, Mitsuhiro Miyamoto, Pema, "Strengthening strategies for rammed earth wall subjected to out-ofplane loading", *Civil Engineering*, 1(3), 229-242, 2020.
- (9) Phuntsho Wangmo, Kshitij C. Shrestha, Takayoshi Aoki, Mitsuhiro Miyamoto, Noriyuki Takahashi, Jingyao Zhang, Noboru Yuasa, Sangchul Shin, Pema, Francesca De Filippi, Roberto Pennacchio, "Mesh–Wrap Retrofitting for Rammed Earth Buildings – Test Results of Full–Scale Static Tests", 17th World Conference on Earthquake Engineering, 17WCEE, Sendai, Japan, 13-18 Sept. 2020. (received 17WCEE Early Career & Student Award)
- Pema, Kshitij C. Shrestha, Takayoshi Aoki, Kunzang Tenzin, Noriyuki Takahashi, Mitsuhiro Miyamoto, Jingyao Zhang, "Test Facility to study Traditional Composite Masonry Structures in Bhutan – An outcome of SATREPS", 17th World Conference on Earthquake Engineering, 17WCEE, Sendai, Japan, 13-18 Sept. 2020.
- Kshitij C. Shrestha, Takayoshi Aoki, Mitsuhiro Miyamoto, Noriyuki Takahashi, Jingyao Zhang, Phuntsho Wangmo, Noboru Yuasa, Sangchul Shin, Pema, Kunzang Tenzin, "Static Test on Full Scale Rammed Earth Building with Mesh–wrap Retrofitting Strategy", *Structural Analysis of Historical Constructions*, 1-12, 2021.
- ② Sayuri Ohashi, Akari Kamiya, Soji Mochizuki, Ken Sonobe, Kaito Kakiuchi, Ryu Nakagawa, Takayoshi Aoki, "SVR-1 (Beta Version): An Educational VR Experience for Earthquake Disaster Mitigation in Bhutan", International Conference for Asia Digital Art and Design (ADADA+CUMULUS), Malaysia, 26-28 Nov., 2019.

- (3) Phuntsho Wangmo, Kshitij C. Shrestha, Takayoshi Aoki, Pema, Kunzang Tenzin, Ugyen Dorji, "Strengthening techniques for rammed earth buildings: Test results of full-scale static test", International Conference on Science, Engineering and Technology, ICSciEnTec-2022, Thimphu, Bhutan, 2 May, 2022.
- (I) Roberto Pennacchio, Francesca De Filippi, Takayoshi Aoki, Phuntsho Wangmo, "Appropriate Strengthening Technologies for the Mitigation of Seismic Vulnerability of Bhutanese Vernacular Stone Masonry Architecture", International Journal of Architectural Heritage, 1-26, 2023.

3. History of PDM Modification

Objectively verifiable indicators on the PDM were set by the fourth JCC meeting on 20 December 2019. There was a long period that JP researchers were not able to visit Bhutan due to the COVID-19 impact, the project had an extension, one year. The travel by the JP team resumed in August 2022. Two important assumptions are integral to achieving the project purpose as written in the PDM. The first assumption is that "*The direction of the national policy on seismic disaster management is continuously retained.*" The second is that "*The maintenance costs and staff of the equipment provided are secured by the government of Bhutan.*"

Supplemental indicators and their means of verification were added to the Overall Goals of PDM at the sixth JCC, since the survey conducted by the Output 3 team found the limitation of the gewog offices in terms of the capacity to monitor private constructions using technologies developed by the Project. The national policy, which is written into the 12th Five-Year Plan 2018–2023 by the Gross National Happiness Commission, includes the National Key Result Area (NKRA) "Carbon Neutral, Climate and Disaster Resilient Development". This policy is the same and seems to be continuously retained.

4. Others

4-1 Results of Environmental and Social Considerations (if applicable)

Due to the COVID-19 pandemic's impact, there were restrictions in both countries. JP researchers resume their travel from August 2022.

Due to the COVID pandemic project had an extension, of one year. The land secured by DoC for the project experimental facility is the property of DoC, so no resettlement is involved.

4-2 Results of Considerations on Gender/Peace Building/Poverty Reduction, Disability, Disease infection, Social System, Human Wellbeing, Human Right, and Gender Equality (if applicable)

After the global wise COVID-19 pandemic impact, RGoB introduces the Sustainable Development Fee (SDF) for travelers to Bhutan, including official travelers. Budget preparation may not be ready for counterpart institutes since this fee comes up suddenly without detailed notice in advance. In this fiscal year Bhutan counterparts did not have the budget for SDF. However, DoC covered this cost through negotiations with GoB and handling of its own budget and managed to issue visas for JP researchers.

On the way to recovering the economy after the pandemic, views on the consideration of gender and poverty may come up more seriously. It is expected that the project, in its dissemination activities, will consider gender balance along with the gender behavior of recipients. From a poverty reduction perspective, it is expected that the project will contribute to poverty reduction by developing accessible and reasonable seismic technology for composite masonry buildings in which most vulnerable people live.

Due to the slow economic recovery after the pandemic, the number of Bhutanese who prefer to earn in Australia, where wages are high, has increased. Some of the counterparts resigned the civil servant and went to Australia.

III. Results of Joint Review

1. Results of Review based on DAC Evaluation Criteria

1.1 Relevance

The relevance of the Project is evaluated as High.

Before commencing the Project, limited information had been available regarding earthquake monitoring, active faults, and structural characteristics of composite masonry buildings in Bhutan. In particular, after the earthquake in the eastern part of Bhutan in 2009 and the India-Nepal Border earthquake in 2011, many traditional composite masonry buildings were affected by these earthquakes. Nepal was affected by an earthquake in 2015. There was a need for the development of seismic vulnerability assessment and seismic retrofitting methods of composite masonry structures.

Under these situations, the Project could be evaluated as "highly relevant" due to

the contribution to the "Disaster Emergency Mobile Communications Network Development Plan" and "Human Resource Development" included in Japan's Country Assistance Policy to Bhutan.

1.2 Effectiveness

The effectiveness of the Project is evaluated as High.

The outputs and the Project purpose were almost 100% achieved as described in the section of "2. Achievements of the Project".

Through collaborative research with DDM, DoC, DES and DGM, a total of 14 research papers were published regarding structural characteristics and seismic retrofitting of composite masonry buildings in Bhutan.

The human resource development of counterparts has actively and strongly pushed forward, and the higher level of counterparts' research activities was achieved in terms of both technology and knowledge. Several young collaborators have already started to plan and conduct their own research projects. The idea to institute RITS (Research Institute for Traditional Structure) was conceived before the SATREPS project and discussion with the Royal University of Bhutan (RUB) has already started. It would be fully expected that the techniques transferred to the counterparts in this Project will spread throughout Bhutan in the near future and the research activities of the RITS will be further strengthened.

1.3 Efficiency

The efficiency of the Project is evaluated as Moderate to High.

Although the Outputs and the Project Purpose were achieved within the Project period, Output 1-1 Enhance the earthquake monitoring network across the country was not achieved due to network problems in Bhutan.

The outage often occurs and results in occasional malfunctions in the laboratory systems and equipment. In particular, lightning strikes occur in the South of Bhutan and result in occasional malfunctions in seismic intensity meters. In the case that repair parts were not available in Bhutan, it took a long time to get things back to normal condition. Since the Project has prepared a stock of possible spare parts throughout the Project period, it is expected to be able to respond flexibly to such problems in the future.

1.4 Impact

The impact of the Project is evaluated as High. The reinforcement and retrofitting technologies developed in the project will contribute to resilient settlement in Bhutan as well as neighboring regions. The level of technical knowledge and experience of the engineers in Bhutan have been highly strengthened.

1.5 Sustainability

The sustainability of the Project is evaluated as Moderate to High. Further research and dissemination programs have been planned to carry out by the counterpart agencies. RITS to be set up will be a center of research projects which facilitates collaborations with technical institutes in and outside of Bhutan.

2. Key Factors Affecting Implementation and Outcomes

Delay in determining the construction site of the test facility as authorized by the Ministry of Home and Cultural Affairs, which delayed the construction of the Test facility.

Due to the COVID-19 pandemic, travel to Bhutan was restricted from March 2020 until August 2022. For almost two and half years, JP researchers could not travel to Bhutan. Consequently, the activities could not be implemented as per the plan. Further, several imposition of lockdown in Bhutan worsen the matter, whereby affecting the construction of test specimens.

3. Evaluation on the results of the Project Risk Management

The covid-19 pandemic affected adversely on the project activities mainly because major activities of the project involved construction of many test specimens. To complete all the planned activities, the project duration was extended by a year, making project duration to 6 years from the initial 5 years. With extension of project duration, all planned activities were completed successfully.

There were several impositions of lockdown and travel restrictions within the country, which consequently affected conducting training of trainers in person. However, it was conducted virtually online, where 95 engineers across the country joined, covering large number of participants which may not have been possible if it was conducted in person.

4. Lessons Learnt

i. Active involvement of local counterparts played a critical role when JP researchers could not travel to Bhutan. For instance, local counterparts carried out full-scale test by themselves with JP researchers guiding virtually.

ii. Online trainings has capable to cover large number of participants with least expenses.

iii. Online videos are effective in dissemination program and it has potential to reach to larger audience.

5. Performance

The overall performance of the project is rated high.

6. Additionality

IV. For the Achievement of Overall Goals after the Project Completion

1. Prospects to achieve Overall Goal

In this Project, the Overall Goals (Seismic technology for disaster mitigation of the composite masonry buildings is disseminated across the country.) are the same as the Project Purpose (The capacity of responsible governmental organizations (DDM, DOC, DGM, and DES) for seismic disaster mitigation of the composite masonry buildings in Bhutan is enhanced) and 4 indicators were set as described above and PO.

The seismic guideline is integrated into the structuring part of the composite masonry buildings in the Bhutan Building Rules (BBR) in June 2023. Research on seismic technology for composite masonry buildings is continued by the responsible government agency. Training and public awareness programs on composite masonry buildings with seismic technology are conducted in 20 dzongkhag. The approval process for new housing construction with the adaptation of seismic technology to composite masonry buildings is improved. Seismic hazard and seismic risk, seismic retrofitting methods, educational

materials and public awareness programs developed in this project are expected to become one of the solutions to mitigate the seismic risk of composite masonry structures not only in Bhutan but also in neighbouring countries.

2. Plan of Operation and Implementation Structure of the Bhutanese side to achieve Overall Goal

Because the counterparts acquired enough knowledge of how to conduct seismic hazard and seismic risk, experimental tests and dissemination methods through the Project, continuous research would be implemented by the counterparts of the Project after the Project completion to develop more suitable methods in Bhutan.

In fact, two main collaborators who have been enrolling in the PhD programs and the Master programs through the Project support have continued their own research in terms of seismic retrofitting in Bhutan.

3. Recommendations for the Bhutanese side

The idea to institute RITS (Research Institute for Traditional Structure) was conceived before the SATREPS project and discussion with the Royal University of Bhutan (RUB) has already started. It is highly expected that the counterparts of the Bhutanese government and the RITS appropriately maintain the test facilities as static jacks, vibration table and other equipment which procured by this project. Also, any required technical skills for maintenance were trained by the project.

In expectation of further introduction of the seismic retrofitting methods to the whole of Bhutan, it will be important to continuously train researchers and engineers. For this purpose, continuous human resource development is essential from the viewpoint of the Ministries and research institution RITS.

Countermeasures against seismic vulnerability developed from the results of this Project will be effective to a certain extent in Bhutan, and similar countermeasures will also be effective in neighbouring countries that are threatened by seismic risk similar to Bhutan. These countermeasures will have a broader social impact beyond national borders. It is expected that Bhutan will become a country which actively pushes forward seismic retrofitting on the neighbouring countries.

4. Monitoring Plan from the end of the Project to Ex-post Evaluation

(If the Project will be continuously monitored by JICA after the completion of the Project, mention the plan of post-monitoring here.)

There is no concrete monitoring plan after the end of the project. However, stable and reliable relationships with Bhutanese government staff are established by the project so that continuous scientific discussions are expected.

Also, JICA will continue its commitment to its counterparts in Bhutan by accepting some researchers to Japanese universities to acquire degrees.

ANNEX 1: Results of the Project

(List of Dispatched Experts, List of Counterparts, List of Trainings, etc.) ANNEX 2: List of Products (Report, Manuals, Handbooks, etc.) Produced by the Project

ANNEX 3: PDM (All versions of PDM)

ANNEX 4: R/D, M/M, Minutes of JCC (copy) (*)

ANNEX 5: Monitoring Sheet (copy) (*)

(Remarks: ANNEX 4 and 5 are internal reference only.)

Separate Volume: Copy of Products Produced by the Project

Expert	Name, Title, Organization	Duration
1 Chief Advisor/	Mr. Takayoshi Aoki,	13 th May to 21 st May 2017
Masonry Structures	Professor of Nagoya City	14 th Sep to 23 rd Sep 2017
	University (NCU)	22 nd Dec to 28 th Dec 2017
		03 rd Mar to 10 th Mar 2018
		07 th May to 15 th May 2018
		04 th Aug to 10 th Aug 2018
		28 th Sep to 05 th Oct 2018
		16 th Dec to 30 th Dec 2018
		26 th Feb to 11 th Mar 2019
		20 th Mar to 24 th Mar 2019
		10 th May to 13 th May 2019
		09 th Oct to 23 rd Oct 2019
		27 th Oct to 31 st Oct 2019
		08 th Dec to 23 rd Dec 2019
		06 th Aug to 22 nd Aug 2022
		17 th Sep to 1 st Oct 2022
		18 th Nov to 28 th Nov 2022
		16 th Dec to 31 st Dec 2022
		27 th Feb to 9 th Mar 2023
		13 th Mar to 20 th Mar 2023
2 Earthquake	Mr. Hiroshi Inoue,	13 th May to 20 th May 2017
Engineering	Principal Research Fellow of the	02 nd Oct to 15 th oct 2017
	National Research Institute for Earth	10 th Dec to 16 th Dec 2017
	Science and Disaster Resilience	04 th Mar to 11 th mar 2018
	(NIED)	17 th Mar to 25 th Mar 2018
		05 th May to 13 th May 2018
		29 th Sep to 07 th Oct 2018
		03 rd Mar to 08 th Mar 2019
		15 th Mar to 23 rd Mar 2019
		10 th May to 12 th May 2019
		28 th Sep to 04 th Oct 2019
		11 th Dec to 23 rd Dec 2019
		25 th Jan to 29 th Jan 2020
		11 th Dec to 31 st Dec 2022
		02 nd Mar to 22 nd Mar 2023
3 Seismology	Mr. Shiro Ohmi,	14 th May to 21 st May 2017
		02 nd Oct to 18 th Oct 2017

	Associate Professor of	03 rd Mar to 11 th Mar 2018
	Kyoto University (KU)	17 th Mar to 30 Mar 2018
		08 th May to 20 th May 2018
		10 th Sep to 20 th Sep 2018
		18 th Nov to 02 nd Dec 2018
		24 th Feb to 07 th Mar 2019
		07 th May to 20 th May 2019
		26 th Aug to 08 th Sep 2019
		13 th Dec to 22 nd Dec 2019
		08 th Aug to 28 th Aug 2022
		(18 th Mar to 25 th Mar 2023)
4 Seismic Engineering	Mr. Noriyuki Takahashi,	13 th May to20th May 2017
	Associate Professor of	19 th Sep to 24 th Sep 2017
	Tohoku University (THU)	19 th Dec to 24 th Dec 2017
		16 th Dec to 21 st Dec 2018
		09 th May to 13 th May 2019
		14 th Oct to 18 th Oct 2019
		08 th Dec to 12 th Dec 2019
		17 th Sep to 23 rd Sep 2022
5 Seismic Engineering	Mr. Mitsuhiro Miyamoto,	13 th May to 21 st May 2017
	Associate Professor of	17 th Sep to 24 th Sep 2017
	Kagawa University (KGU)	19 th Dec to 25 th Dec 2017
		01 st Mar to 10 th Mar 2018
		04 th Aug to 10 th Aug 2018
		28 th Sep to 05 th Oct 2018
		16 th Dec to 30 th Dec 2018
		26 th Feb to 11 th Mar 2019
		20 th Mar to 24 th Mar 2019
		16 th Dec to 30 th Dec 2018
		02 nd Mar to 11 th Mar 2019
		10 th May to 13 th May 2019
		14 th Jul to 18 th Jul 2019
		09 th Oct to 18 th Oct 2019
		06 th Aug to 22 nd Aug 2022
		19 th Sep to 27 th Sep 2022
		18 th Dec to 31 st Dec 2022
		11 th Mar to 20 th Mar 2023

6 Building Materials	Mr. Noboru Yuasa,	14 th May to 22 nd May 2017
	Professor of Nihon	22 nd Dec to 27 th Dec 2017
	University (NU)	20 th Dec to 30 th Dec 2018
		03 rd Mar to 11 th Mar 2019
		14 th Nov to 27 th Nov 2022
7 Building Materials	Mr. Tomoyuki Koyama,	14 th Nov to 21 st Nov 2022
	Associate Professor of Kyushu	
	University	
8 Building Materials	Mr. Takumi Aramaki, Assistant	14 th May to 22 nd May 2017
	Professor of Institute of	13 th Sep to 30 th Sep 2017
	Technicians	15 th Dec to 28 th Dec 2017
		19 th Nov to 1 st Dec 2022
9 Building Materials	Mr. Sangchul Shin, Post-	10 th Dec to 30 th Dec 2018
	doctoral researcher of NU	
10 Masonry Structures	Ms. Junko Mukai, Research	01 st Aug to 31 st Aug 2022
	Assistant Professor of NCU	19 th Sep to 17 th Oct 2022
		22 Nov 2022 to 15 Jan 2023
		28 th Feb to 23 rd Mar 2023
11 Masonry Structures	Mr. Shrestha Kshitij Charana,	14 th May to 21 st May 2017
	Associate Professor of	13 th Sep to 30 th Sep 2017
	Tribhuvan University	14 th Dec to 27 th Dec 2017
		21 st Feb to 14 th Mar 2018
		07 th May to 15 th May 2018
		02 nd Aug to 10 th Aug 2018
		26 th Sep to 26 th Oct 2018
		14 Nov 2018 to 24 Jan 2019
		18 th Feb to 25 th Mar 2019
		10 th May to 24 th May 2019
		10 th Jul t 30 th Jul 2019
		09 th Oct to 31 st Oct 2019
		06 th Dec to 23 rd Dec 2019
		05 th Jan to 07 th Jan 2020
12 Structural	Mr. Jingyao Zhang, Associate	14 th May to 20 th May 2017
Engineering	Professor of KU	17 th Sep to 23 Sep 2017
		16 th Dec to 21 st Dec 2019
		19 th Dec to 23 rd Dec 2019
		18th Nov to 28 th Nov 2022

13 Graphic Design	Ms. Junko Mori, Professor of	14 th May to 21 st May 2017
	NCU	14 th Sep to 19 th Sep 2017
		03 rd Mar to 10 th Mar 2018
		22 nd Dec to 29 th Dec 2018
		03 rd Mar to 07 th Mar 2019
		27 th Oct to 31 st Oct 2019
		13 th Mar to 19 th Mar 2023
14 Visual Design	Mr. Ryu Nakagawa, Associate	17 th Sep to 25 th Sep 2017
	Professor of NCU	29 th Sep to 05 th Oct 2018
		28 th Oct to 02 nd Nov 2019
		16 th Dec to 23 rd Dec 2019
		04 th Nov to 29 th Nov 2022
		28th Feb to 10 th Mar 2023
		13 th Mar to 20 th Mar 2023
		7 th Apr. to 19 th Apr. 2023
15 Seismology	Mr. Takashi Nakata, Professor	05 th Mar to 12 th Mar 2018
	Emeritus of HU	15 th Sep to 03 rd Oct 2019
		15 th Sep to 11 th Oct 2022
16 Seismology	Mr. Yasuhiro Kumahara,	18 th Sep to 1 st Oct 2019
	Associate Professor of HU	15 th Sep to 11 th Oct 2022
17 Seismology	Mr. Takumi Hayashida,	24 th Nov to 02 nd Dec 2018
	Building Research Institute	13 th Mar to 19 th Mar 2023
18 Earthquake	Mr. Ken Xian Sheng Hao	21 st Sep to 06 th Oct 2019
Engineering	Principal Research Fellow of NIED	13 th May to 21 st May 2017
JICA Project	Mr. Koichiro Miyara	15 Mar 2021 to 25 Apr 2023
Coordinator		
JICA Project	Mr. Gaijiro Ando, Director	Apr. 2017 to Mar. 2020
Coordinator	of Ando Consultants Inc.	

Role of the project	Name	Organization
1 Project Director since	Ms. Nagtsho Dorji	Director of the DOC,
Aug. 2022		Ministry of Home Affairs
		(MOHA)
Dec. 2021 to Mar. 2022	Mr. Thinlay Wangchuk	Director General of the DDM,
Jan.2019 to Nov. 2021	Mr. Jigme Thinlye Namgyal	Ministry of Home and Cultural
Sep. 2017 to Sep. 2018	Mr. Karma Tshering	Affairs (MOHCA)
Apr. 2017 to Jun. 2017	Mr. Chhador Wangdi	
2 Project Manager	Mr. Yang Dorji	Chief Program Officer,
		Officiating Director General,
		DDM
Jul. 2019 to Aug.2022	Mr. Pema Singye	Chief Program Officer, DDM
Apr. 2017 to Jul. 2019	Mr. Tshewang Norbu	Senior Program Officer, DDM
3 Project Manager	Mr. Sonam Tshewang	Executive Engineer, DDM
Apr. 2017 to Dec. 2018	Mr. Yeshey Lotey	Moved to Construction
		Development Board
4 Project Manager	Ms. Pema	Chief Architect, DCHS,
		Department of Culture,
		MoHCA
Apr. 2017 to Aug. 2020	Ms. Nagtsho Dorji	Director of the Department of
		Culture (DOC), MOHCA
5 Working Member	Mr. Pema	Executive Engineer, DOC
6 Working Member	Dr. Phuntsho Wangmo	Deputy Executive Engineer,
(maternity leave)		DOC
7 Working Member	Mr. Yeshi Samdrup	Executive Architect, DOC
8 Working Member	Mr. Kunzang Tenzin	Engineer, DOC
Apr. 2017 to Feb. 2023	Mr. Ugyen Dorji	Engineer, DOC
9 Support Member	Mr. Dhendup Tshewang	Deputy Executive Engineer,
		DOC
Apr. 2017 to June. 2022	Mr. Lhendup	Technician, DOC
10 Project Manager	Vacant	Chief Engineer, DES,
		Ministry of Works and
		Human Settlement
		(MOWHS)
Sep. 2018 to Feb. 2023	Mr. Sonam Yangdhen	Leave

Apr. 2017 to Sep. 2018	Mr. Karma Namgyel	Moved to Thimphu Thromde
11 Working Member	Mr. Yadav Lal Bhattarai	Executive Engineer, DES
12 Working Member	Mr. Jigme Wangdi	Deputy Executive Engineer, DES
13 Working Member (Study leave from Oct. '22)	Mr. Tshering Dhendup	Deputy Executive Engineer, DES
14 Support Member	Mr. Bishnu Pradhan	Executive Engineer, DES
15 Project Manager	Dr. Dowchu Drukpa	Specialist (Seismologist), DGM, Ministry of Economic Affairs (MOEA)
16 Working Member	Vacant	Officiating Chief, Geologist, DGM
Apr. 2019 to Aug. 2022	Mr. Phuntsho Pelgay	Officiating Chief, Geologist, DGM
Apr. 2017 to Mar. 2019	Mr. Jamyang Chophel	Moved to Punatsangchhu-1 Hydro Power project on secondment
17 Working Member	Ms. Nityam Nepal	Senior Geologist, DGM
18 Working Member	Mr. Karma Namgay	Geologist, DGM
19 Support Member	Mr. Lungten Chedup	Technician, DGM
20 Support Member	Mr. Sonam Tshering	Technician, DGM

Item	То	Arrival Dates
1 Materials testing equipment	DoC	Sep. 15, 2017
2 3D laser scanner	DoC	Sep. 19, 2017
3 Vibration table (anchor frame and table)	DoC	Mar. 7, 2018
		Mar. 13, 2019
4 Static jack system	DoC	Mar. 23, 2018
5 Offline earthquake observation equipment	DGM	Oct. 3, 2017
		Feb. 27, 2018
6 Telemetry earthquake observation equipment	DGM	Mar. 15, 2018
		Jun. 2, 2018
7 Portable array microtremor observation	DGM	Nov. 9, 2018
equipment		
8 Laser displacement measurement system	DoC	Dec. 11, 2018
9 Acceleration measurement system	DoC	Feb. 26, 2019
10 UAV (drone) for microtopography survey	DGM	Aug. 14, 2019
	DDM	
11 Intensity meters (1st)	DGM	Dec. 11, 2019
12 Intensity meters (2nd)	DGM	Jan. 26, 2020
13 Intensity meters (3rd)	DGM	June 4, 2020
14 Intensity meters (4th)	DGM	Feb. 9, 2021
15 UAV (drone) for microtopography survey	DGM	Mar. 22, 2021
	DDM	
16 Seismometer (1 st)	DGM	Mar. 19, 2021
17 Seismometer (2 nd)	DGM	Apr. 1, 2021
18 Data logger for offline station	DGM	Mar. 25 th 2022
19 Software for seismic data analysis	DGM	Mar. 25 th 2022
20 Web camera system for remote seminars and	DoC	Mar. 25 th 2022
experiments		
21 Lap top PC for training program	DES	Apr. 13 th 2022
22 VR equipment for dissemination activities	DOC	May 25 th 2022
23 VR equipment for dissemination activities	DDM	Apr. 10 th 2023

#	Name	Туре	Contents
1	Microtremor Survey Basics / Data	Manual	Operation manual of microtremor
	Processing		survey and data processing
2	Introduction to TCP/IP Network	Manual	Manual of Network
	- Configure and Manage Network,		
	and Application -		
3	UNIX 101	Manual	Manual of UNIX
4	Microtremor Survey Basics	Manual	Operation manual of microtremor
			survey
5	Manual of Static Jack	Manual	Simplified Operation Manual for
			Loading Experiment with Force
			Application and Operation Manual
			of Manual Pump
6	Operation manual	Manual	Operation Manual of Shaking Table
7	Shaking table manual	Manual/	Operation Manual of Shaking Table
		Program	and data making
8	The Manual for Construction of	Manual	Construction Manual of Rammed
	Rammed Earth		Earth
9	The Manual for Construction of	Manual	Construction Manual of Stone
	Stone Masonry		Masonry
10	Risk map	Program	Program for making Risk map
11	SVR-1	Education	Standalone disaster mitigation
		Material	education material for residents in
			schools and rural areas
12	SVR-2	Education	Standalone disaster mitigation
		Material	education material using Metaverse
13	SVR-3	Education	Disaster mitigation education
		Material	material in cooperation with shaking
			table
14	SVR-4	Education	Instructional materials for hands-on
		Material	construction procedures
15	3D graphic video of construction	Education	Instructional 3D graphic video for
	procedures	Material	hands-on construction procedures
16	Construction procedure video	Education	Construction videos of Rammed
		Material	Earth, Stone Masonry and Retrofit
17	YouTube	Education	YouTube materials of the Project
		Material	

18	Manual for Seismic Resilient	Manual	Manual for Seismic Resilient
	Construction and Retrofitting of		Construction and Retrofitting of
	Rammed earth and Stone		Rammed earth and Stone masonry
	masonry Houses		Houses
19	Manual for Seismic Resilient	Manual	Experimental results and data from
	Construction and Retrofitting of		SATREPS
	Rammed earth and Stone		
	masonry Houses		
	Experimental results and data		

Ļ
S
Ĕ
Ę.
ä
÷
7
_

Project Design Matrix

Narrative Summary	UDJectively Verifiable Indicators	Means of Vernication	Important Assumptions	Achievements Kemarks	arks
Seismic technology for disaster mitigation of the composite masonry	1. Seismic guideline is integrated into the structuring part of the 1. composite masonry buildings in the Bhutan Building Rules (BBR).	1. The BBR.			
buildings is disseminated across the country.	2. Training and public awareness program on composite masonry 2. buildings with seismic technology are conducted in 20 dzongkhag.	2. Training records.			
	 Government incentives for composite masonry buildings with 3. seismic technology are established by 2025. 	3. Government incentives.			
	4. The percentage of composite masonry buildings with seismic 4. technology to newly constrcuted ones exceed XX % by 2027.	 Checklist of the seismic technology attached to the seismic guideline. 			
Project Purpose The capacity of responsible governmental organizations (DDM, DOC, DGM, and DES) for seismic disaster mitigation of the composite	 The responsible governmental organizations provide local 1. government staff as well as technical workers and craftmen in communities with the proper instructions based on the seismic knowledge. 	1. Instruction checklist	 The direction of the national policy on seismic disaster management is continuosly retained. 		
enhanced.	 Research results on the seismic technology are accepted and/or 2. published by international and/or local jounal(s). 	International and/or local jounal(s)	 The maintencance costs and staff of the equipment provided are secured by the government of Bhutan. 	One article accpeted by an international journal.	
Outputs 1. Seismic risks of composite masonry 1-1 buildings are evaluated.	1-1 Seismic hazard map is used in disaster management plans and 1-1 contingency plans.	1-1 Disaster management plans			
	1-2 The satisfaction ratings of the users applying the seismic hazard $\left 1\text{-}2 \right $ map exceed XX % on avarage.	1-2 Questionnaire survey to the users of seismic hazard map			
	1-3 Risk maps in pilot sites are proposed.	1-3 Risk maps in pilot sites			
 Seismic technology for constructing and strengthening composite masonry buildings is developed. 	2-1 The seismic technology developed by the Project meets the 2-1 Bhutan seismic standard.	2-1 Key requirements of composite masonry buildings.			
 The dissemination mechanism for the seismic technology is enhanced. 	3-1 The budgets for the public awareness program for general public 3-1 and the training for local government staff, technical workers, and craftmen are secured to disseminate the seismic technology across the country.	3-1 Budgetary sheets of DDM, DOC, DGM and DES			
	3-2 The satisfaction ratings of the selected national government staff with reference to the contents of the TOT program exceed XX <u>%</u> on average.	3-2 Questionnaire survey to the national government staff			

IIC Alidits, 5 2 deulogy allu פור ס 1) 3 **DUM**: Department of Disaster Management, Ministry of Home and Cultural Affairs (MoHCA); **DOC**: Department of **DES**: Department of Engineering Services, Ministry of Works and Human Settlement

,		
•	Attachment	

Artivitias		3	Tmontant Accumutione
1-1 Enhance the earthquake monitoring network across the country.	Japanese side	Bhutanese side	1. The engineers/technicians
1-2 Enhance the seismic intensity monitoring network across the country.	1. Experts	1. Personnel	capacitated by the Project continue
1-3 Map ground motion amplifications through micro-tremor obervation and topography survey in pilot sites.	Chief Advisor / Masonry Structures	Project Director	working for uneir respective positions.
1-4 Prepare a seismic hazard map.	• Earthquake Engineering	 Project Manager 	2. Natural disasters, such as
1-5 Examine the vulnerability of the composite masonry buildings through material tests, structural analysis,	• Earthquake Seismology	• Counterpart personnel	earthquakes, floods, etc., do not have a profound effect on the
ett. 1-6 Conduct the risk assessment of seismic disacters in nilot sites	• Buidling Material and Construction	 Provision of the project office 	project activities.
2-1 Collect the basic data of existing composite masonry buildings through the micro-tremor measurements.	- Seismic Engineering	and facilities necessary for the project implementation	Pre-condition
2-2 Conduct the material tests of composite masonry buildings.	Structural Engineering		Understanding and cooperation on
2-3 Execute static and dynamic tests for sepcimens of mock buildings with compoiste masonry based on typical Bhutanese houses.	• Grapphi and Visual Desing	3. Expenses necessary for the project implementation	the seismic disaster mitigation of composite masonry buildings are
2-4 Analyze the structural characteristics and behaviors of composite masonry buildings.	Coordinator	~	lers, such as the D
2-5 Establish a simple method for the seismic evaluation of composite masonry buildings.	 Others as necessary 		S, etc.
 Design the building components for compoiste masonry buildings as standard seismic strengthening kits. Formulate the seismic guideline for composite masonry buildings. 	2. Training of counterpart personel in Japan and/or the Third Country(s)	ror the counterpart personnel in Bhutan	
2-8 Propose the building structural standards of composite masonry buildings to MoWHS for the building permit.	3. Provision of the machinery and equipment	• Installation, maintenance and operational costs for the	
	Static Jack System	machinery and equipment	
3-1 Establish the implementation structure to disseminate the seismic technology for composite masonry	• Vibration Table	provided	
buildings. 2. 2. Dovelon visual administration of the development of the development of the development of the development	Material Test Equipment	• Others	
3-2. Develop visual educational materials and public awareness programs based on the developed seismic	• 3D Laser Scanner		
guideline and hazard map.	Laser Displacement Measurement System	4. Administrative and operational expenses necessary for the	
3-3 Conduct the training of trainers (TOT) on the seismic guideline for selected national government staff.	Acceleration Measurement System	project implementation, such	
3-4 Conduct the training of local government staff, technical workers and craftmen to exercise the seismic	• Telemetry Earthquake Ovservation	as electricity, water, communication, etc.	<issues and="" countermeasurs=""></issues>
guideline in pilot sites.	Equipment Off-line Earthquake Obervation Equipment		
3-5 Conduct public awareness programs on the seismic guideline for the people of pilot sites.	 Earthquake Intensitymeter Network Equipment 		
	Portable Array Microtremor Observation Equipment		
	 UAV for microtopography survey 		
	4. Local expenses for the project		
	activities as increasaly		

÷
4
5
ž
E
÷.
9
9
4
4
-

Project Design Matrix

in Bhuta - Buildin oito Mo Č of Solemic Dick for Mitionation · Droinct for Evaluation Droiort Titlo

Project Title: Project for Evaluation and	or Composite Masonry Buildings in Bhutan			Version No. 1	
Target Groups: Engineers/technicians of DDM, DOC, DGM and DES.		Project Period: April 2017 - March 2022 (Five (5) Years)	(Five (5) Years)	Date: 20 December 2019	019
Narrative Summary	Objectively Verifiable Indicators	Means of Verification	Important Assumptions	Achievements F	Remarks
Overall Goal Seismic technology for disaster mitigation of the composite masonry	 Seismic guideline is integrated into the structuring part of the 1. composite masonry buildings in the Bhutan Building Rules (BBR). 	1. The BBR.			
buildings is disseminated across the country.	 Training and public awareness program on composite masonry 2 buildings with seismic technology are conducted in 20 dzongkhag. 	2. Training records.			
	 Government incentives for composite masonry buildings with 3. seismic technology are established by 2025. 	3. Government incentives.			
	4. The percentage of composite masonry buildings with seismic 4. technology to newly constrcuted ones is <u>100%</u> by 2027.	 Checklist of the seismic technology attached to the seismic guideline. 			
Project Purpose The capacity of responsible governmental organizations (DDM, DOC, DGM, and DES) for seismic disaster mitigation of the composite	 The responsible governmental organizations provide local 1. government staff as well as technical workers and craftmen in communities with the proper instructions based on the seismic knowledge. 	Instruction checklist	 The direction of the national policy on seismic disaster management is continuosly retained. 		
masonry buildings in Bhutan is enhanced.	 Research results on the seismic technology are accepted and/or 2. published by international and/or local jounal(s). 	2. International and/or local jounal(s) 2.	 The maintencance costs and staff of the equipment provided are secured by the government of Bhutan. 	One article accpeted by an international journal.	
Outputs 1. Seismic risks of composite masonry buildings are evaluated.	1-1 Seismic hazard map is used in disaster management plans and 1-1 contingency plans.	1-1 Disaster management plans			
	1-2 The satisfaction ratings of the users applying the seismic hazard 1-2 map is <u>100%</u> .	1-2 Questionnaire survey to the users of seismic hazard map			
	1-3 Risk maps in pilot sites are proposed.	1-3 Risk maps in pilot sites			
 Seismic technology for constructing and strengthening composite masonry buildings is developed. 	2-1 The seismic technology developed by the Project meets the 2-1 Bhutan seismic standard.	2-1 Key requirements of composite masonry buildings.			
3. The dissemination mechanism for the seismic technology is enhanced.	3-1 The budgets for the public awareness program for general public 3-1 and the training for local government staff, technical workers, and craftmen are secured to disseminate the seismic technology across the country.	3-1 Budgetary sheets of DDM, DOC, DGM and DES			
	3-2 The satisfaction ratings of the selected national government staff 3 with reference to the contents of the TOT program exceed <u>90 %</u> on average.	3-2 Questionnaire survey to the national government staff			
DDM: Department of Disaster Managem	DDM: Department of Disaster Management, Ministry of Home and Cultural Affairs (MoHCA); DOC: Department of Culture, MoHCA; DGM: Department of Geology and Mines, Ministry of Economic Affairs;	^c Culture, MoHCA; DGM :Department of Ge	cology and Mines, Ministry of Econd	omic Affairs;	

Alldils ŝ = σ huur ĥ 5 υ 5 5 **DUM**: Department of Disaster Management, Ministry of Home and Cultural Affairs (MoHCA); **DOC**: Department **DES**: Department of Engineering Services, Ministry of Works and Human Settlement

,	-	
•	Attachment	

1-1 Ennance the earthquake monitoring network across the country.	Japanese side	Bhutanese side	1. The engineers/technicians
1-2 Enhance the seismic intensity monitoring network across the country.	1. Experts	1. Personnel	capacitated by the Project continue
1-3 Map ground motion amplifications through micro-tremor obervation and topography survey in pilot sites.	Chief Advisor / Masonry Structures	Project Director	working for their respective positions.
1-4 Prepare a seismic hazard map.	• Earthquake Engineering	Project Manager	2. Natural disasters, such as
1-5 Examine the vulnerability of the composite masonry buildings through material tests, structural analysis,	• Earthquake Seismology	• Counterpart personnel	earthquakes, floods, etc., do not have a profound effect on the
1-6 Conduct the risk assessment of seismic disasters in pilot sites.	Buidling Material and Construction	2. Provision of the project office	project activities
2-1 Collect the basic data of existing composite masonry buildings through the micro-tremor measurements.	- Seismic Engineering	and facilities necessary for the project implementation	Pre-condition
2-2 Conduct the material tests of composite masonry buildings.	Structural Engineering		Understanding and cooperation on
2-3 Execute static and dynamic tests for sepcimens of mock buildings with compoiste masonry based on typical Bhutanese houses.	 Grapphi and Visual Desing 	3. Expenses necessary for the project implementation	the seismic disaster mitigation of composite masonry buildings are
2-4 Analyze the structural characteristics and behaviors of composite masonry buildings.	Coordinator	>	ders, such as the D
2-5 Establish a simple method for the seismic evaluation of composite masonry buildings.	 Others as necessary 		S, etc.
2-6 Design the building components for compoiste masonry buildings as standard seismic strengthening kits. 2-7 Formulate the seismic guideline for composite masonry buildings.	Training of counterpart personel in Japan and/or the Third Country(s)	for the counterpart personnel in Bhutan	
2-8 Propose the building structural standards of composite masonry buildings to MoWHS for the building permit.	Provision of the machinery and equipment	Installation, maintenance and operational costs for the	
	Static Jack System	machinery and equipment	
3-1 Establish the implementation structure to disseminate the seismic technology for composite masonry	Vibration Table	provided	
buildings.	Material Test Equipment	• Others	
3-2 Develop visual educational materials and public awareness programs based on the developed seismic	• 3D Laser Scanner		
guideline and hazard map.	Laser Displacement Measurement System	 Administrative and operational expenses necessary for the 	
3-3 Conduct the training of trainers (TOT) on the seismic guideline for selected national government staff.	Acceleration Measurement System	project implementation, such	
3-4 Conduct the training of local government staff, technical workers and craftmen to exercise the seismic guideline in pilot sites.	Telemetry Earthquake Ovservation Equipment	as electricity, water, communication, etc.	<issues and="" countermeasurs=""></issues>
$^{3-5}$ Conduct public awareness programs on the seismic guideline for the people of pilot sites.	 Ont-Time Landquake Obervation Earthquake Intensitymeter Network Equipment Portable Array Microtremor Observation Equipment 		
	 UAV for microtopography survey 4. Local expenses for the project 		
	activities as necessary		

Version No.2 Date: 19 May 2022

Project Period: April 2017 - April 2023 (Six (6) Years)

Project Design Matrix

Project Title: Project for Evaluation and Mitigation of Seismic Risk for Composite Masonry Buildings in Bhutan Target Groups: Engineers/technicians of DDM, DOC, DGM and DES.

- anger around - Engineers (comments of peris) pool and a peris			· · · · · · · · · · · · · · · · · · ·		
Narrative Summary	Objectively Verifiable Indicators	Means of Verification	Important Assumptions	Achievements Ren	Remarks
r disaster mit ne country.	ig part of the ling Rules (BBR). oosite masonry in 20 uildings with with seismic 2028.	hnology deline.			
Project Purpose The capacity of responsible governmental organizations (DDM, DOC, DGM, and DES) for seismic disaster mitigation of the composite masonry buildings in Bhutan is enhanced.	 The responsible governmental organizations provide local government staff as well as technical workers and craftmen in communities with the proper instructions based on the seismic knowledge. Research results on the seismic technology are accepted and/or published by international and/or local jounal(s). 	 Instruction checklist International and/or local jounal(s) 	 The direction of the national policy on seismic disaster management is continuosly retained. The maintencance costs and staff of the equipment provided are secured by the government of Bhutan. 		
0.utputs 1-1 Seismic hazard map is contingency plans. 1. Seismic risks of composite masonry buildings are evaluated. 1-1 Seismic ratingency plans. 1.2 The satisfaction ratinge masonry buildings is <u>100%</u> . 1-3 Risk maps in plut sites 2. Seismic technology for constructing and strengthening composite masonry buildings is <u>2-1</u> . The seismic technology developed. 2-1 The seismic technology for constructing and strengthening composite masonry buildings is <u>2-1</u> . The seismic standare developed. 3. The dissemination mechanism for the seismic technology is enhanced. 3-1 The budgets for the pu and the training for loc and craftmen are secunded and the dissemination mechanism for the seismic technology is enhanced. 3. The dissemination mechanism for the seismic technology is enhanced. 3-1 The budgets for the pu and the training for loc and craftmen are secunded. 3. The dissemination mechanism for the seismic technology is enhanced. 3-2 The satisfaction ratinge with reference to the control. 3. The dissemination mechanism for the seismic technology is enhanced. 3-2 The satisfaction ratinge with reference to the control.	used in disaster management plans and of the users applying the seismic hazard are proposed. developed by the Project meets the d. blic awareness program for general public al government staff, technical workers, ed to disseminate the seismic technology of the selected national government staff ontents of the TOT program exceed <u>90 %</u>	 1-1 Disaster management plans 1-2 Questionnaire survey to the users of seismic hazard map 1-3 Risk maps in pilot sites 2-1 Key requirements of composite masonry buildings. 3-1 Budgetary sheets of DDM, DOC, DGM and DES 3-2 Questionnaire survey to the national government staff 			
DDM: Domatment of Director Management Ministry of Home and Cultural Affairs (MoHCA); DOC: Doma	the set of Culture Monto's DCM (Description of Cool card	and Minac Ministry of Economic Affaires			

DDM: Department of Disaster Management, Ministry of Home and Cultural Affairs (MoHCA); DOC: Department of Culture, MoHCA; DGM: Department of Geology and Mines, Ministry of Economic Affairs; DES: Department of Engineering Services, Ministry of Works and Human Settlement

Activities	Tuputs	uts	Important Assumptions
1-1 Enhance the earthquake monitoring network across the country.	Japanese side	Bhutanese side	1. The engineers/technicians
1-2 Enhance the seismic intensity monitoring network across the country.	1. Experts	1. Personnel	capacitated by the Project continue
1-3 Map ground motion amplifications through micro-tremor obervation and topography survey in pilot sites.	Chief Advisor / Masonry Structures	Project Director	working for their respective positions.
1-4 Prepare a seismic hazard map.	 Earthquake Engineering 	 Project Manager 	2. Natural disasters, such as
1-5 Examine the vulnerability of the composite masonry buildings through material tests, structural analysis, etc.	 Earthquake Seismology 	Counterpart personnel	earthquakes, floods, etc., do not have
			a profound effect on the project
1-6 Conduct the risk assessment of seismic disasters in pilot sites.	Buidling Material and Construction	2. Provision of the project office	activities.
2-1 Collect the basic data of existing composite masonry buildings through the micro-tremor measurements.	Seismic Engineering	and facilities necessary for the project implementation	Pre-condition
2-2 Conduct the material tests of composite masonry buildings.	Structural Engineering		Understanding and cooperation on
2-3 Execute static and dynamic tests for sepcimens of mock buildings with compoiste masonry based on typical Bhutanese houses.	Grapphi and Visual Desing	3. Expenses necessary for the	the seismic disaster mitigation of
		project implementation	composite masonry buildings are
2-4 Analyze the structural characteristics and behaviors of composite masonry buildings.	Coordinator	 Local traveling costs and daily 	obtained from the key
2-5 Establish a simple method for the seismic evaluation of composite masonry buildings.	 Others as necessary 	subsistence allowance (DSA)	stakeholders, such as the DDM,
2-6 Design the building components for compoiste masonry buildings as standard seismic strengthening kits.	2. Training of counterpart personel in	for the counterpart personnel	DOC, DGM, DES, etc
2-7 Formulate the seismic guideline for composite masonry buildings.	Japan and/or the Third Country(s)	in Bhutan	
2-8 Propose the building structural standards of composite masonry buildings to MoWHS for the building permit.	3. Provision of the machinery and	 Installation, maintenance and 	
	equipment	operational costs for the	
	Static Jack System	machinery and equipment	
3-1 Establish the implementation structure to disseminate the seismic technology for composite masonry buildings.	Vibration Table	provided	
3-2 Develop visual educational materials and public awareness programs based on the developed seismic guideline and hazard map.	Material Test Equipment 3D Laser Scanner	· Others	
	Laser Displacement Measurement	4. Administrative and operational	
	System	expenses necessary for the	
3-3 Conduct the training of trainers (TOT) on the seismic guideline for selected national government staff.	Acceleration Measurement System	project implementation, such	
3-4 Conduct the training of local government staff, technical workers and craftmen to exercise the seismic guideline in pilot sites.	Telemetry Earthquake Ovservation	as electricity, water,	<issues and="" countermeasurs=""></issues>
	Equipment • Off-line Earthquake Obervation	communication, etc.	
3-5 Conduct nublic awareness programs on the seismic quideline for the people of plot sites	Eaulpment • Earthquake Intensitymeter		
	Network Fauinment • Portable Array Microtremor		
	Observation Equipment • UAV for microtopography survey		
	4. Local expenses for the project		
	activities as necessary		

Project Design Matrix

Goal (mode) for diaster migration of the composite masony buildings is d access the country. 1. Seime guidente is integrated into the structuring part of the composite masony buildings with seime technology are composite masony buildings with seime technology are composite masony buildings with seime technology are excellenge and part accomposite masony buildings with seisence technology are excellenge and part accomposite masony buildings with seisence technology are excellenge and part accomposite masony buildings with seisence technology are excellenge and part accomposite masony buildings with seisence technology are excellenge and part accomposite masony buildings with seisence technology are excellenge and part accomposite masony buildings with seisence technology are excellenge and part accomposite masony buildings with seisence technology are excellenge accomposite masony buildings with seisence technology are excellenge activities and accompliant. 1. The precentage of composite masony buildings with seisence technology are excellenge activities and accompliant. 1. The precentage of composite masony buildings with accompliant. 1. The precentage of composite masony buildings are accelerated or the composite masony buildings in Blutan services and activition acceleration of accompliant. 1. The responsible governmental organizations provided local accompliant. 1. The acceleration activities are proportion activities are accelerated or the composite masony buildings in Blutane activities are propores. 1. The acting of the larger activities ar		Objectively Verifiable Indicators	Means of Verification Importa	Important Assumptions	Achievements Ren	Remarks
Submettion Submeti	litigation of the composite masonry buildings is	Seismic guideline is integrated into the structuring part of the composite masonry buildings in the Bhutan Building Rules (BBR).				
2. Training reach: 2. Training reach: 2. Training reach: 3. Complexing with sestimic composite masony: 3. Comment in reached and a sestimation of the composite masony buildings with sestimic composite masons. 3. Comment in reached. 3. Complexing with sestimic complexing of composite masons. 4. Checklas of the sestimic comblexing of composite masons. 4. Checklas of the sestimic comblexing of composite masons. 4. Checklas of the sestimic comblexing of composite masons. 4. Checklas of the sestimic comblexing of the composite masons. 4. Checklas of the sestimic comblexing of the composite masons. 4. Checklas of the sestimic comblexing of the composite masons. 4. Checklas of the sestimic comblexing of the composite masons. 4. Checklas of the sestimic comblexing of the composite masons. 4. Checklas of the sestimic comblexing of the composite masons. 4. Checklas of the composite masons. 4. Checklas of the sestimic comblexing of the composite masons. 4. Checklas of the sestimic comblexing of the composite masons. 4. Checklas of the sestimic comblexing of the composite masons. 4. Checklas of the sestimic comblexing of the composite masons. 4. Checklas of the composite masonset allows.		Supplemental: (A):Research on seismic technology for composite masonry buildings is continued by the responsible government agency	Supplmental: (A):Experiments carried out using the test facility			
3. Guodidys Complexite 3. Guodidys to neely comment incriments for compare masory buildings with serience 3. Government increatives. serience technology to responsible power established by 2023. 3. Government increatives. 3. Government increatives. Physic Purpoer 2028. 3. Government increatives. 3. Government increatives. Protect Purpoer 3. Government organizations (DN) OCC, DGV, and DES) for increatives. 3. Government organizations (DN) OCC, DGV, and DES) for increatives. 3. Government organizations (DN) OCC, DGV, and DES) for increatives. 3. Government organizations (DN) OCC, DGV, and DES) for increatives. 1. Instruction of the composite masory buildings in Blutan is enhanced. 1. The responsible powernmental organizations (DN) OCC, DGV, and DES) for increatives. 2. Instruction is 95%. Information of the composite masory buildings in Blutan is enhanced. 1. The responsible powernmental organizations (DN) OCC, DGV, and DES) for increatives. 2. Instruction is 95%. Information of the composite masory buildings in Blutan is enhanced. 1. The responsible powernmental organizations (DN) OCC, DGV, and DES) for increatives. 2. Instruction in the assert carbon of the selection of the composite masory buildings in Blutan is enhanced. 2. Instruction instructin instructin on the selectin complexe instruct		Training and public awareness program on composite masonry buildings with seismic technology are conducted in 20				
4. The precentage of composite meaning buildings with seaming underline. 4. Chicklas of the selimic production. 2028. Representation of the composite meaning buildings in Bhutan is enhanced. 8. Chicklas of the selimic production. Project Purpose Representation of the composite meanony buildings in Bhutan is enhanced. 1. The responsible governmental organizations proved local 1. The responsible governmental organizations of the composite meanony buildings in Bhutan is enhanced. 1. The responsible governmental organizations (DDN, DC, DGN, and DES) (no 1. The responsible governmental organizations (DDN, DC, DGN, and DES) (no 1. The responsible governmental organizations (DDN, DC, DGN, and DES) (no 1. The responsible governmental organizations (DDN, DC, DGN, and DES) (no 1. The responsible governmental organizations (DDN, DC, DGN, and DES) (no 1. The responsible governmental organizations (DDN, DC, DGN, and DES) (no 1. The responsible governmental organizations (DDN, DC, DGN, and DES) (no 1. The responsible governmental organizations (DDN, DC, DGN, and DES) (no 1. The responsible governmental organizations (DDN, DC, DCH) (D		dzongkhag. Government incentives for composite masonry buildings with seismic technology are established by 2025.				
Bugements: Bugement: Bugement: Bugement:		The percentage of composite masonry buildings with seismic technology to newly constructed ones is 95 <u>% in city areas</u> by 2028.				
Project Purpose Instruction checklist Project Purpose Instruction checklist Instruction checklist Instruction checklist isinic classier milgation of the composite masorry buildings in Bhutan is enhanced. Instruction based on the seismic channel organizations (DDW, DOC, DGW, and DES) for consister management and or the seismic masorry buildings in Bhutan is enhanced. Instruction based on the seismic channel organizations (DDM or all organizations the proper instructions based on the seismic masorry buildings are evaluated. Instruction based on the seismic hand or beard part of the composite masorry buildings are evaluated. Instruction based on the seismic hand or beard part of the users and provide local pournal(s). Instruction based on the seismic hand or beard part of the users and provide local pournal(s). Instruction based on the seismic hand or beard part of the users and provide local pournal(s). Instruction based on the seismic hand or beard part or beard of the users and provide local pournal(s). Instruction based on the seismic hand or beard or beard of the users and provide local pournal(s). Instruction based on the seismic hand or beard or bear		Supplemental: (B).Approval process for new housing construction with the adaptation of seismic technology to composite masonry buildings are improved .	Supplemental: (B): Legal and /or institutional framework to monitor rural construction			
invokedge. 2. Research results on the seismic technology are accepted and/or 2. International and/or local 2. Outputs 2. Research results on the seismic technology are accepted and/or 2. International and/or local 2. Outputs 2. Research results on the seismic technology are accepted and/or 2. International and/or local 2. Outputs 1-1 Seismic risks of composite masonry buildings are evaluated. 1-1 Seismic risks of the users applying the seismic hazard 2. Questionaire survey to the users of accomposite masonry buildings is 200%. 1-2 2 Restanding 1-3 Risk maps in plot sites are proposed. 1-4 Risk maps in plot sites are proposed. 1-3 Risk maps in plot sites are proposed. 1-3 Risk maps in plot sites are proposed. 1-3 Risk maps in plot sites are proposed. 1-4 Risk maps in plot sites are proposed. 1-4 Risk maps in plot sites are proposed. 1-4 Risk maps in plot sites are		The responsible governmental organizations provide local government staff as well as technical workers and craftsmen in communities with the proper instructions based on the seismic	Instruction checklist	 The direction of the national policy on seismic disaster management is continuously retained. 		
Outputs 1-1 Seismic hazard map is used in disaster management plans and contingency plans. 1-1 Disaster management plans and contingency plans. 1-2 Resist composite masonry buildings are evaluated. 1-1 Disaster management plans and contingency plans. 1-2 Questionnaire survey to the users of seismic hazard map 1-3 Risk maps in plot sites are proposed. 1-3 Risk maps in plot sites 2-1 The seismic technology for constructing and strengthening composite masonry buildings is developed. 2-1 The seismic standard. 1-3 Risk maps in plot sites The dissemination mechanism for the seismic technology is enhanced. 3-1 The budgets for the public awareness program for general public and caffsmen are secured to disseminate the seismic technology across the country. 3-1 The budgets for the call government saff, technical workers, and caffsmen are secured to disseminate the seismic technology across the country. 3-1 The budgets for the call government saff, technical workers, and caffsmen are secured to disseminate the seismic technology across the country. 3-1 The satisfaction ratings of the selected national government saff, technical workers, across the country. 3-2 The satisfaction ratings of the selected national government safe, to the		knowledge. Research results on the seismic technology are accepted and/or published by international and/or local journal(s).	International and/or local journal(s)	 The maintenance costs and staff of the equipment provided are secured by the government of Bhutan. 		
1-3 Kisk maps in plot sites are proposed. 1-3 Seismic technology for constructing and strengthening composite masonry buildings is technology developed by the Project meets the buddets. 2-1 Bhutan seismic standard. 3-1 The dissemination mechanism for the seismic technology is enhanced. 3-1 The dissemination mechanism for the seismic technology is enhanced. 3-1 The dissemination mechanism for the seismic technology is enhanced. 3-1 The dissemination mechanism for the seismic technology is enhanced. 3-1 3-1 The budgets for the public awareness program for general public averages. and the training for local government staff, technical workers, and craftsmen are secured to disseminate the seismic technology across the country. 3-2 3-2 The satisfaction ratings of the selected national government staff		Seismic hazard map is used in disaster management plans and contingency plans. The satisfaction ratings of the users applying the seismic hazard map is <u>100%</u> .				
The dissemination mechanism for the seismic technology is enhanced. 3-1 The budgets for the public awareness program for general public and the training for local government staff, technical workers, and craftsmen are secured to disseminate the seismic technology across the country. 3-1	Seismic technology for constructing and strengthening composite masonry buildings is developed.	kisk maps in pliot sites are proposed. The seismic technology developed by the Project meets the Bhutan seismic standard.				
across the country. The satisfaction ratings of the selected national government staff 3-2	The dissemination mechanism for the seismic technology is enhanced.	3-1 The budgets for the public awareness program for general public 3- and the training for local government staff, technical workers, and craftsmen are secured to disseminate the seismic technology				
contents of the TOT program exceed <u>90 %</u>		across the country. The satisfaction ratings of the selected national government staff with reference to the contents of the TOT program exceed <u>90 %</u> on average.				

DDM: Department of Disaster Management, Ministry of Home and Cultural Affairs (NoHCA); DOC: Department of Culture, MoHCA; DGM: Department of Geology and Mines, Ministry of Economic Affairs; DES: Department of Engineering Services, Ministry of Works and Human Settlement

A 117-117			
Activities	Tubucs	1 LC	tmportant Assumptions
1-1 Enhance the earthquake monitoring network across the country.	Japanese side	Bhutanese side	1. The engineers/technicians
1-2 Enhance the seismic intensity monitoring network across the country.	1. Experts	1. Personnel	capacitated by the Project continue
1-3 Map ground motion amplifications through micro-tremor observation and topography survey in pilot sites.	Chief Advisor / Masonry Structures	Project Director	working for their respective positions.
1-4 Prepare a seismic hazard map.	 Earthquake Engineering 	 Project Manager 	2. Natural disasters, such as
1-5 Examine the vulnerability of the composite masonry buildings through material tests, structural analysis, etc.	 Earthquake Seismology 	Counterpart personnel	earthquakes, floods, etc., do not have
			a profound effect on the project
1-6 Conduct the risk assessment of seismic disasters in pilot sites.	Building Material and Construction	2. Provision of the project office	activities.
2-1 Collect the basic data of existing composite masonry buildings through the micro-tremor measurements		and facilities necessary for the nroiect implementation	Pre-condition
2-2 Conduct the material tests of composite masonry buildings.	Structural Engineering		Understanding and cooperation on
2-3 Execute static and dynamic tests for specimens of mock buildings with composite masonry based on typical Bhutanese houses.	Graphic and Visual Design	3. Expenses necessary for the	the seismic disaster mitigation of
		project implementation	composite masonry buildings are
2-4 Analyse the structural characteristics and behaviours of composite masonry buildings.	Coordinator	 Local traveling costs and daily 	obtained from the key
2-5 Establish a simple method for the seismic evaluation of composite masonry buildings.	 Others as necessary 	subsistence allowance (DSA)	stakeholders, such as the DDM,
2-6 Design the building components for composite masonry buildings as standard seismic strengthening kits.	2. Training of counterpart personnel	for the counterpart personnel	DOC, DGM, DES, etc.
2-7 Formulate the seismic guideline for composite masonry buildings.	in Japan and/or the Third	in Bhutan	
2-8 Propose the building structural standards of composite masonry buildings to MoWHS for the building permit.	3. Provision of the machinery and	 Installation, maintenance and 	
	equipment	operational costs for the	
	Static Jack System	machinery and equipment	
3-1 Establish the implementation structure to disseminate the seismic technology for composite masonry buildings.	Vibration Table	provided	
3-2 Develop visual educational materials and public awareness programs based on the developed seismic guideline and hazard map.	Material Test Equipment 3D Laser Scanner	· Others	
	Laser Displacement Measurement	4. Administrative and operational	
	System	expenses necessary for the	
3-3 Conduct the training of trainers (TOT) on the seismic guideline for selected national government staff.	Acceleration Measurement System	project implementation, such	
3-4 Conduct the training of local government staff, technical workers and craftsmen to exercise the seismic guideline in pilot sites.	Telemetry Earthquake Observation	as electricity, water,	<issues and="" countermeasures=""></issues>
	Equipment • Off-line Earthquake Observation	communication, etc.	
3-5 Conduct while awareness programs on the seismic quideline for the people of plat sites	Eauipment Earthquake Intensity meter		
	Network Fruinment • Portable Array Microtremor		
	Observation Equipment • UAV for microtopography survey		
	4. Local expenses for the project		
	activities as necessary		