Training for Capacity Building on IPP Project Evaluation (JICA)

WG3 Demand Forecast Material 3

Simple-E Installation and Operation

20~24 December 2021 Asiam Research Institute, Inc. CHEW CHONG SIANG

Copyright Asiam 2021

Section 1 Installation of the Software

Preparations

What we need ?
Documents we have send to you.
(1) Software: "SimpleE.xlam"
(2) A excel file: "data 1_cambodia.xlsx"
(3) A PDF file: "material_3_simpleE installation and operation.pdf"

Prepare by yourself(4) A computer with Microsoft Office "Excel".

Conceptual Diagram of SEE

Install the SEE to your Excel File

Step1: Copy the "SimpleE.xlam" file to your computer (you can put it on your desktop). Step2: Open a new "excel " file.

Install the SEE to your Excel File ~....continued

			1	× Add-In	s	?
General Formulas	View and manage Microsoft Office	Add-ins.		Add-Ir	is available: ro Currency Tools	ОК
Proofing	Add-ins				iplee 制求解懷益集	Connect
Save	Name ~ Active Application Add-ins	Location	Туре		所工具箱 析工具箱 - VBA	Browse
Advanced	Simplee	C:\ft\AddIns\SimpleE.xlam	Excel Add-in			1
Advanced	中文转換加载项	C:\ADDINS\TCSCCONV.DLL	COM Add-in			Automation
Customize Ribbon Quick Access Toolbar	Inactive Application Add-ins Euro Currency Tools	C:\ibrary\EUROTOOL.XLAM	Excel Add-in			
Add-ins	Inquire Microsoft Actions Dans 2	C:\e15\DCF\NativeShim.dll	COM Add-in			
Trust Center	Microsoft Office PowerPivot for Excel 2013 Power View 規劃求解增益集 分析工具箱	C:\ivotExcelClientAddIn.dll C:\ReportingExcelClient.dll C:\\SOLVER\SOLVER.XLAM C:\\Analysis\ANALYS32.XLL	COM Add-in COM Add-in Excel Add-in Excel Add-in			
Step 5:	r: ibility: No compatibility informa	tion available				
Llick the "Ad outton	d-Ins" C:\Users\chew\AppData\. ion:	Roaming\Microsoft\AddIns\Sim	pleE.xlam			
Click the "Ad button	d-Ins" : C:\Users\chew\AppData\ ion: Manage: Excel Add-ins	Roaming\Microsoft\AddIns\Sim	pie£.xlam	_		
Click the "Ad button	d-Ins" : C:\Users\chew\AppData\ ion: Manage: Excel Add-ins	Roaming\Microsoft\AddIns\Sim	OK Car	ncel	Step 7:	
Click the "Ad button	d-Ins" : C:\Users\chew\AppData\ ion: Manage: Excel Add-ins	Roaming\Microsoft\AddIns\Sim	OK Car	ncel	Step 7: Click the "Brow	wse"

Install the SEE to your Excel File ~....continued

				0 ====================================	1	
	iputer > 7X2F92	×	U	アメントシノの快楽		
整理 ▼ 新しいフォルダー				822 +		
 □ 蔵書閣 ^ ▲ OneDrive - Persor 	名前 16.0.4266.1001	~			状態	
Computer 3D オブジェクト ダウンロード デスクトップ ドキュメント ビクチャ	iii 義資料 IIII SimpleE.xlam		K	Ste Fin file "Ol (Th	p 8: d the "Simp , select it ar K" Button en click the	leE.xlan nd click "OK"
 ■ ビデオ ♪ ミュージック ■ OS (C:) 	:			dia	log)	
File nar	ne: SimpleE.xlam	То	~ ols ★	Add-Ins (*.xlam;*.xla;*. OK	xll) ~	

7

Install the SEE to your Excel File ~....continued

Step9: Close the Excel file and re-open a new Excel file.

X 8 5-	¢• =		Book1.xlsx	- Excel		
FILE HOMI	INSERT	PAGE LAYOUT FORMULAS	DATA	REVIEW	VIEW	ADD-INS
M S 🐼 === 🕄	«					
Gustom Toolbars						Step 10: Go to your Excel fi
AL *	: × •	C F	F	e	Н	and click "Add-in" the function bar ye
1		Draw graph				toolbars.
All and a second s		(The data for drawing th	е			

Main Menu of the SEE

Button to start the Simple E. Main Menu & Main Menu	
MAIN MENU SEEx [Simple E. Expanded] V2008 SEEx Simple Econometric Simulation System for Excel, Expanded	Button to start the simulation of the whole model.
MAIN Graph Correlation Sensitivity Preferences Utility	
Main Flow Check Solve Simulate Check & Solve Solve & Simulate	Button to create SEE working sheets in a new file .
ALL THROUGH Link Single Flow [=ab]	Button to create SEE working sheets in the current file .
Sheets Names Additional Data Sheets Data Sheet (Source #0) Model Sheet Simulation Data Model Simulation Image: Simulation Create Simple E. Worksheets Add to Active Workbook Add to Active Workbook	 N Data (Model /Simulation /S So調整(P) + し、オートシェイブ(D) + SEE working sheets

Section 2 How to Start Model Building With SEE 9

(1)Formulation the question of interest

Example: Total Primary Energy Supply (TPES) analysis

(2)Specify variables

TPES is a function of GDP (Real GDP)

TPES = f(GDP)

or $TPES = a + b \times GDP + u$

Result TPES: Dependent variable

Cause GDP: Independent variable

(3)Collect Data

Source, Period of time, Unit etc.

How to start model building with SEE

Then with SEE

- Input the data in the "data sheet"
- Build your model in the "model sheet "
- Test the fitness of your estimation by checking the parameters in the "model sheet"
- The prediction results are given in the "simulation sheet"
 After...
- You can do any analysis you like with the output data

11

(1)Formulation the question of interest

Total Primary Energy Supply (TPES) analysis of Cambodia

(2)Specify variables

TPES is a function of GDP (Real GDP of Cambodia)

Cambodia TPES = f (Cambodia GDP)

or TPES = a + b * GDP + u

- Result TPES: Dependent variable
- Cause GDP: Independent variable

(3)Collect Data

Source, Period of time, Unit etc.

Input data

				/												
	Coal	Natural Gas	c	rude Oil	LPG Greatine Jet Fu	el Keroser	ne Diesel Oi	Fuel Oil	Naphtha		\mathbf{L}		-			
Production	882	2 7	4	20		0	0 0		0							
Imports	3853	-	0	12738	633 1043 2	15	36 2330	387	20	-						
Exports	0000			12700		0	0 -136	-716	-533							
International Marine Bunkers	0		0	0	0 0	0	0 -81	-103	000							
Stock Changes	0		0	-116	-5 -2	-1	-4 -43	3 51	-31							
Total Primary Energy Supply	4735	217	4	110	+ + +		4 .	4 0.1							_	_
Statistical Differences	200			17 . 0												1000
Tota Transformation Sector	-3864	-217				111 million	and the second s	STATION CONTRACTOR	17 37 - 1	alte aver diverse		- Control V		10.000	21.2010.000	
Main Activity Producers Electricity Plant	-3630	-217	2		C47 - (3	fx %										
Autoproducer Electricity Plant	0		(- /A		0	1 1/				0		0		0	T
Petroleum Refineries	0		(A	D		A	L	111	28	0	<i>x</i>	Q		3	1
Coa Mines	-234		1	Title a	nd Comments		TREND	1	2	3	4	5	6	7	8	9
Oil and Gas Extraction	0		2	A	B	С	TIME	1990	1991	1992	1993	1994	1995	1996	1997	1998
Petroleum Refineries	0		(3	METI	GDP (Constant 2000 Price)	Billion S	GDP	3 206	3 482	3 749	4 316	4 751	5.005	4 413	4 049	3 824
Own Use in Electricity, CHP and Heat Plant	0		-	ADI	Annual Grath Pata of GDP	86	CIDBB	6	7.7	0.7	0.5	1.5	1.0	7.6	1.6	20
Distribution Losses	0			TRU	Palanda Grour Kate of ODI	10	DOTIN	121	12.3	121.6	-0.5	107.0	1.5	126.0	126.2	106.0
Tota Fina Consumption	1071		()	EDMC	Population	Million	POPU	124	124.1	124.0	124.9	125.5	125.0	125.9	126.2	120.0
Total Industry Sector	932		6	Produc	tion index(2005=100)											
Iron and Stee	9		(7	EDMC	Industry		IPID	100	99.7	93.8	90.4	93.2	95.2	98.4	99.5	92.7
Chemical and Petrochemical	18		8	FDMC	Commercial		IPCM	84	86.6	86.1	87.0	88.6	90.7	93.0	92.6	92.7
Non-Metallic Minerals	905		(T1.	it. C			• •				00.0				
Machinerv	0		(9	Liecuic	ity Consumption	-	and the second second	SUS	000	0201	200					
Mining and Quarrying	0		10	IEA	Total final consumption	TWh	ELTL	769	795	\$00	\$10	862	\$85	906	928	932
Food and Tobacco	0		11	IEA	Industry	TWh	ELID	337	342	335	330	345	351	359	364	350
Paper, Pulp and Printing	0		12	IEA	Transport	TWh	ELTR	17	18	18	18	18	19	19	19	19
Wood and Wood Products	0		13	IFA	Residential	TWh	FIRS	184	192	198	204	221	230	233	236	245
Construction	0			TTA	Commented	T317.	FLOW	210	220	226	221	261	267	266	277	200
Textile and Leather	0		14	IEA	Commercial	Iwn	ELCM	210	220	220	251	251	231	200	211	289
Non-specified industry	0		15	IEA	Agriculture	TWh	ELAG	2	1	2	1	2	2	2	2	2
Tota Transport Sector	0		16	IEA	Others	TWh	ELOT	19	22	21	26	25	26	27	30	29
International Aviation	0		17	Structu	re of consumption			100	100	100	100	100	100	100	100	100
Pond	0		18	ARI	Industry	0/2	STID	43.9	43.0	41.9	40.8	40.0	30.7	39.6	30 3	37.5
Rai	0		10	ADI	Tourset	0/	OTTO	22	2.2	2.2	2.2	2.1	21	2.1	20	20
Domestic Navigation	0		19	AKI	Transport	70	SIIK	2.2	2.2	2.2	2.2	2.1	2.1	2.1	2.0	2.0
Tota Other Sectors	0		20	ARI	Residential	%	STRS	24.0	24.1	24.8	25.2	25.6	26.0	25.7	25.5	26.2
Agriculture	0		21	ARI	Commercial	%	STCM	27.3	27.7	28.2	28.5	29.1	29.1	29.4	29.8	31.0
Commercial and Public Services	0		22	ARI	Agriculture	%	STAG	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Residentia	0		23	ARI	Others	9.6	STOT	25	2.8	2.6	3.2	2.0	3.0	3.0	3.7	3.1
Non-specified Other	0		24	ruu	oulers		5101	4.3	2.0	2.0	5.2	4.3	5.0	5.0	5.4	2.4
Non-Energy Use	139		24	1			the second	0.00		1000						
Electricity Output in GWh	14517	1314	25	METI	Electricity Demand	TWh	ELEC	834.6	862.7	\$69.2	877.2	935.0	958.9	979.6	1,002.4	1,007.9
			26	METI	Nuclear	TWh	NUCL	202.3	213.5	223.3	249.3	269.1	291.3	302.2	319.2	332.3
			27	METI	Natural Gas	TWh	NAGS	167.1	179.5	178.5	178.0	191.7	195.6	207.6	217.1	225.0
			28	METI	Coal and Coal products	TWh	COAL	1167	124.6	131 7	141 3	155.5	168 7	178.1	191 2	192.0
			20	METI	Oil and oil graduate	TWh	DISI	247.0	226.0	241.2	201.4	329.0	206.9	105.0	169.6	140.0
			29	WIE II	On and on products	1 wh	DISL	241.9	230.0	241.5 Compl. C	201.4	238.9	200.8	193.8	105.0	149.8
			14	T P PI	Data / Wodel / Simula	tion / S	upply 2 St		siance /	Supply2	Sneeto	or			-	JP 🚺

"Data" Sheet of SEE Define the Code Name for all the variables and input data.

	Ca	1	• (u ·) =				2012.8.AF	EC (chew).xlsx -	Microsoft Exc	el					- = X	
	9	ホーム	挿入 ペー	リレイアウト 数式	データ	校開 表示 :	アドイン Acr	obat							() - = ×	
	100	×	MS 明朝	- 10 - A A	=		返して全体を表	示する 標準	*			3- 3	Σ	オトSUM - A	7 8	
	貼り作		BIU-	- & - A - Z -		目 課 課 回セル	を結合して中央	前之 - 🗐 - %	· · 0 .00	条件付き テーブ)	として セルの	挿入 削除	た書 た書	フィル 並べ	潜えと 検索と	
	0097:	К-К G	78	c/k 16		記證		75 R	Ni G	番环* 番环番 スタ	RE* 人24ル* イル	也ル		「編集	ルダ* 3度(パ*	
		Q40	o 🔹 🤄	fx							calles.				*	
	1	ECTEFG	Н	I		J	K	L	M	N	0	Р	Q	R	S 🗐	
	1	Title	and Commen	its			TREND	1	2	3	4	5	6	7	8	
	2	.] (]]]] (H	1		J	TIME	< 1971	1972	1973	1974	1975	1976	1977	1978	
	3 4					Unit										
	5															
	6															
	7		Sources	Gross Domesti	c Prod	ict (GDP), co	nstant (2	005) prices	s - US dol	llars						
	8		UN Database	Brunei		Million USD	GDP.BR	4,145	4,566	5,003	5,520				7 071	
	9		UN Database	Uhina		Million USD	GDP.CH	128,107	132,975	143,480	In	put tl	he da	ata for	the	
	11		UN Database	Malavsia		Million HSD	GDP.MA	15.481	16,934	18.5		pace			the	
	12		UN Database	Peru		Million USD	GDP.PE	35,208	36,219	38,161		vari	iable	s here		
	13		UN Database	Philippines		Million USD	GDP.PH	31,176	32,874	35,806	or ,	• • • •			•	
	14					IISD	GDP.TH	22,792	23,720	26,059	27,194	40,011			37,848	
			F	ree area			SOP.VI	7,366	7,511	7,404	7,588	7,814	8,674	9,850	10,024	
	17			ree aree	•											
	18															
	19			Total Primary	Energy	Supply									10	
	20		OECD/IEA	Brunei		ktoe	TPES.BR	177	176	344	594	74∩	97 P	1.055	98F	l
	61		ADAN /IPI	AL -		ktoe	TPES.CH	391,708	411,998	427,30	Innu	t timo	corio	c horo	It onde	with the
Usually v	ve	put	the cor	nments	4	ktoe	TPES.IN	35,058	36,493	38,163	mpu		Series	s nere.	n enus	, with the
C 11 C				_	•	ktoe	TPES.MA	9,888	9 130	9,511	vear	lor m	onth.	dav. et	c) till	l which
of the Co	de	N N C	ime her	e. For		ktoe	TPES.PH	15,578	15.649	17,403	,		<i>c</i>	,,,		
ovampla	+L	oir	mognir			ktoe	TPES.TH	13,690	14,370	15,607	you v	vant t	o fore	ecast.		
example,	u	en	meunin	iys,		ktoe	TPES.VI	17,441	17,664	18,378	******				*****	
units. an	d t	he.	sources	where			-									
							+									
you get t	ne	aa	ta, etc		_				C							
	34				P	ut the <mark>C</mark>	ode N	lame o	f the (depend	dent v	arıabl	e y			
	33				- h	oro Day	atto	ation to	hat	the co	dona	mach	ould			
	34				/	ere. Fuy	utter		Junat	the co	uenu	ine sh	ouiu			
	36				h	e exactl	v the	same o	is who	at vou	have i	nput i	'n		L	
	37				~							paci				
	38		A		t	he "datc	ı" she	et							-	4 5
-		N Da	ita / Model / Simu	lation / Sheet1 / Shee	<u>st22</u>									T 1004		15

130# /

Set Up Code Name

	17 - 6	- 🖾 🖾 🖓 🖻 🍷											
		C47 👻 🌘	fx %										
112	A	В	C	K	L	M	N	0	P	Q	R	S	Т
1	Title ar	d Comments	1	TREND	1	2	3	4	5	6	7	8	9
2	A	B	C	TIME	1990	1991	1992	1993	1994	1995	1996	1997	1998
3	METI	GDP (Constant 2000 Price)	Billion \$	GDP	3,206	3,482	3,749	4,316	4,751	5,005	4,413	4,049	3,824
4	ARI	Annual Groth Rate of GDP	%	GDPR	6	2.3	0.7	-0.5	1.5	1.9	2.6	1.6	-2.0
5	EDMC	Population	Million	POPU	124	124.1	124.6	124.9	125.3	125.6	125.9	126.2	126.5
6	Produc	tion index(2005=100)											
7	EDMC	Industry		IPID	100	99.7	93.8	90.4	93.2	95.2	98.4	99.5	92.7
8	EDMC	Commercial		IPCM	84	\$6.6	\$6.1	\$7.0	\$\$.6	90.7	93.0	92.6	92.7
9	Electric	ity Consumption	1000										
10	IEA	Total final consumption	TWh	ELTL	769	795	\$00	\$10	862	\$85	906	928	932
11	IEA	Industry	TWh	ELID	337	342	335	330	345	351	359	364	350
12	IEA	Transport	TWh	ELTR	17	18	18	18	18	19	19	19	19
13	IEA	Residential	TWh	ELRS	184	192	198	204	221	230	233	236	245
14	IEA	Commercial	TWh	ELCM	210	220	226	231	251	257	266	277	289
15	IEA	Agriculture	TWh	ELAG	2	1	2	1	2	2	2	2	2
16	IEA.	Others	TWh	ELOT	19	22	21	26	25	26	27	30	29
17	Structu	re of consumption			100	100	100	100	100	100	100	100	100
18	ARI	Industry	96	STID	43.9	43.0	41.9	40.8	40.0	39.7	39.6	39.3	37.5
19	ARI	Transport	9,	STTR	2.2	2.2	2.2	2.2	2.1	2.1	2.1	2.0	2.0
20	ARI	Residential	%	STRS	24.0	24.1	24.8	25.2	25.6	26.0	25.7	25.5	26.2
21	ARI	Commercial	%	STCM	27.3	27.7	28.2	28.5	29.1	29.1	29.4	29.8	31.0
22	ARI	Agriculture	%	STAG	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
23	ARI	Others	96	STOT	2.5	2.8	2.6	3.2	2.9	3.0	3.0	3.2	3.1
24													
25	METI	Electricity Demand	TWh	ELEC	\$34.6	\$62.7	\$69.2	877.2	935.0	958.9	979.6	1,002.4	1,007.9
26	METI	Nuclear	TWh	NUCL	202.3	213.5	223.3	249.3	269.1	291.3	302.2	319.2	332.3
27	METI	Natural Gas	TWh	NAGS	167.1	179.5	178.5	178.0	191.7	195.6	207.6	217.1	225.0
28	METI	Coal and Coal products	TWh	COAL	116.7	124.6	131.7	141.3	155.5	168.7	178.1	191.2	192.0
29	METI	Oil and oil products	TWh	DISL	247.9	236.0	241.3	201.4	238.9	206.8	195.8	168.6	149.8
H	I F FI	Data / Model / Simula	ition / S	lupply / Su	ipply1 / E	Blance 🦯	Supply2	Sheet6	SHI 4	0.2.30.87	-167 Works	a new cl	JP 👩
70	25											1	and the second second

"Code Name"

2	7 • (*				_	e	nergy b	alance co	de nam	e.xis [互換モ	-17] - 14	Acrosoft Exc	el	land.									•	×
ファイル	ホーム	挿入 ページレイアウト 数式	デー	ター校開	表示	R 71	12	活用しよ) I I DUI	<i>.</i>												۵ 🕜	0	P 83
ß	8 A	rial - 11 - A*	A" =	==	»··	當扔	返して全	体在表示	73 数(1	÷			L		-	Þ		Σ	t-t sum -	27	a		
貼り付け	J 1	B I U - ⊞ - 🏘 - 🛕 - 🚆	• #		律律	国でい	を結合し	て中央揃	t- 🛒	- % ,	0.00	条件付きテ・ 書式・ 書	-ブルとし 式設定	て セル	D -	挿入	削除	書式	2	ካንም •	並べ替えと フィルター・	検索と		
クリップホー	-16 (k)	フォント	- Ge			18150			1.54	款值	16		スタイル				セル)	4.55			
	G17	• (* fx																						*
A	B	C	D	3	F	G	н	1	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	Х	-
2		Code Name	-		-	-				Canda Oil -	_				-	-	-			-				
3		Energy Source		Coal + Coal products	Bitumi nous	Lignite	Coke	Coke Oven Gas	Blast Fumace Gas	Petroleum Products Total	Crude Oil	Petroleum Products Total	Gasol ine	Diesel	Fuel Oil	LPG	Kero sene	Jet	Non Energy	Refinery Gas	Natural Gas + LNG	Natural Gas	LNG	S
4			Code	CL	BI	U	CO	CG	BG	OIL	CR	PT	GS	DO	DO	LPG	KRO	JT	NE	RG	TNG	NG	LNG	
5	3rd Step	PRIMARY ENERGY SUPPLY	10																					
0		Indigerous Production	IP																					
8		Exports	EX																					
a		International Marine Bunkers	MB																					
10		International Civil Aviation	CA																					
11		Stockpile Change	ST																					
12		Total Primary Energy Supply	PR																					
13																								
14	2nd Step	ENERGY CONVERSION & OWN USE																						
15		Power Generation	EL																					-
16		Auto Power Generation	IPP																					
17		Industrial Steam Generation	IS																					
18		District Heat Supply	HS				Ī																	
19		Town Gas Production	TG																					
28		Coal Products	CP																					
21		Oil Products	OP	-							-				_	_	_	_					_	_
22		Total Conversion	TC										_			_	_	-					-	_
23																								
24		Own Use & Loss	LS																					
25		Stastical Discrepancy	DC			-	-	-		_					-	_	-	-			_		-	- 1
26		FRIAL LIFE	-																					
27	1st Step	FINALUSE	Int																					
28		Transport	TP																					
30		Anriculture	AG																					
31		Commercial	CM																					-
32		Residential	RE																					
33		Non-Energy Use	NE																					-
	H Code	Name 🖉	C. 100000									04				10.0)	1
コマンド	1											-									80% (-			(+)
Contraction of the	1	· · · · ·																		Contraction of the local	- Constanting	× ×		

"Model" Sheet of SEE (left half)

Build your model on the left half of the "model" sheet.

	G	н	I	J	K	L	M	N	0	P	Q
	G	н	I	J	Internal Y	Option Type	X1	X 2	хз	X4	Х5
	Free area			Type Blank Squart \$DL 6 \$SL 8 \$NC: 1 \$CA: 6 \$TC: L \$TC: C And	Options or \$LS or \$O s = ": Equal Jouble-Log emi-Log No-constant Constant Adj. inear Trend arowth Trend More	ILS: Least					
Usua of the exam <mark>units,</mark> you g	lly we pu c Code No ple, their and the et the da	t the com ame here. meaning sources v ita, etc	ments « For Is, vhere				→ Input varia code what	the Code bles here. name sho you have	Names of Pay atte ould be ex input in	of the indention to t ntion to t kactly the the "data	epende hat the same o ″ sheet
Put th <mark>variab</mark> code r what y	It the Code Name of the dependent riable y here. Pay attention to that the de name should be exactly the same as hat you have input in the "data" sheet						"Option relations linear (O and <i>Q</i> ho (Linear ti	Type" inc. ship betwo LS), Doub ow you w rend, Gro	ludes ①t een Y and le-log, Se ant Y to d wth trend	he form o d X1, X2, emi-log, e change wi d, etc)	f (equa tc), ith time

Typical Function Forms

Linearization Forms

Non-linear	Transformation	Linear	Constraints
1) y = ax ^b	Y = log y, X = log x	Y = a' + bX	x > 0, y > 0, a > 0
2) $y = e^{a+bx}$	Y = log y	Y = a + bx	y > 0
3) $y = e^{a+bx}/(1 + e^{a+bx})$	$Y = \log (y / (1 - y))$	Y = a + bx	0 < y < 1

21

Typical Function Forms in Simple-e

	Internal	Option				
	Y	Туре	X1	X2	X3	X4
Typical Functional Form						
Y = a + b X	DEMAND		GNP.R			
Y = a + b X + c Y(-1)	DEMAND		GNP.R	lag1.DEMAND		
LN(Y) = a + b*LN(X)	DEMAND	\$DL	GNP.R			
LN(Y) = a + b X	DEMAND	\$SL	GNP.R			
Y = a + b * LN(X)	DEMAND		LN(GNP.R)			
LN(Y) = a + b*LN(X) + c*LN(Y(-1))	DEMAND	\$DL	GNP.R	lag1.DEMAND		
LN(Y) = a + b*LN(X1) + c*LN(Y(-1)) + d*X2	DEMAND	\$DL	GNP.R	lag1.DEMAND	exp(TREND)	
Y = a + b * X1 + c * X2	DEMAND		GNP.R	PRICE		
Y = a + b*X1 + c*X2 + d*Y(-1)	DEMAND		GNP.R	PRICE	lag1.DEMAND	
LN(Y) = a + b*LN(X1) + c*LN(X2)	DEMAND	\$DL	GNP.R	PRICE	-	
LN(Y) = a + b * X1 + c * X2	DEMAND	\$SL	GNP.R	PRICE		
Y = a + b*LN(X1) + c*LN(X2)	DEMAND		LN(GNP.R)	LN(PRICE)		
Y = a + b*LN(X1) + c*X2	DEMAND		LN(GNP.R)	PRICE		
LN(Y) = a + b*LN(X1) + c*LN(X2) + d*LN(Y(-1))	DEMAND	\$DL	GNP.R	PRICE	lag1.DEMAND	
LN(Y) = a + b*LN(X1) + c*LN(X2) + d*LN(Y(-1)) + e*X3	DEMAND	\$DL	GNP.R	PRICE	lag1.DEMAND	exp(TREND)

Inspection the model

Model equation

Notice: After building the model, go to the "main menu" and click the "All through" button. The equation of the model and the parameters for testing the fitness of the model will be displayed on the right half of the "model".

23

Parameters for testing the fitness of your model (estimation)

(1) R	R-Square, $0 \le Explained$ variance / Total variance ≤ 1 , (The larger the better)
(2) AR	Adjusted R-Square, AR \leq 1, (The larger the better)
(3) SD	$SD = (\sum e^2 / (n-k))^1 / 2$,
	e = Residual, n = Sample size, k = No. of independent variables
(4) t-value	$ t \ge 2$: Significant
	$2 > t \ge 1$: Admissible to use
	t <1 : Insignificant
(5) DW	Durbin Watson Statistics, 1 < DW < 3
	DW = 2 : No serial correlation
	$DW \rightarrow 0$: Positive correlation
	$DW \rightarrow 4$: Negative correlation
(6) Dh	Duebinh Statistics with lag, Dh < 2
(7) Rho	Coefficient of serial correlation, Rho < 1
(8) DF	Degree of Freedom, DF > 1 (The lager the better)
(9) F	F-Statistics, $F > 0$ (The larger the better)
(10) RSS	Residual Sum of Square, RSS > 0 (The smaller the better)
(11) YX	Correlation Coefficient between Y and X's, $ YX < 1$
(12) XX	Correlation Coefficient between X's, $ XX < 0.95$ 24

"Simulation" Sheet of SEE

In "Data" sheet, Input the target year for simulation

8	data.xlsx - Excel											
ファイ	ルホー	ム挿入	ページ	レイアウト	数式	データ 校	盟 表示	アドイン	♀実行	うしたい 作業を	えカしてくたき	
M	S 🔀 =ab	0										
7-tf	- 四定のツー	11. 15-										
7-9.	- aggleury-	10 / (-										
BE3	2	< 1 ×	× .	fx								
al	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD /	BE	BF
1	36	37	38	39	40	41	12	43	44	45	46	47
2	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
3												
4												
5												
6	432.44	427.2	431.88	426	419.08							
7	4389.48	4412.39	4508.06	4522.63	4552.22							
8												
9												

Once click the "All through" button in the Main Menu and if there are no bugs in your model, the simulation results (the model outputs) will be displayed in the "simulation" sheet automatically.

								uata.AlaA	- LACEI				1.000		
4	ル ホー	ム 挿入	ページ	レイアウト	数式	データ れ	潮 表	r 7F1	> 🛛 🗐 実	行したい作業	を入力してく	ださい	c	HEW CH	
1	S 📈 =ab	0													
ال	一設定のツー	ルバー													
6		• E >	- ×	<i>f</i> × TPE	S										
	AV	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ	
	38	39	40	41	42	43	44	45	46	47	48	49	50	5	
	2017	2018	2019	2020	2021	LULL	2020	2024	2025	<spark1< td=""><td>Sunnar</td><td>y> [Variat</td><td>les lot:</td><td>11 2; 1</td></spark1<>	Sunnar	y> [Variat	les lot:	11 2; 1	
		/													
	431 88	428	419 08	508 5059	512 0902	515 8745	519 2588	522 8431	528 4274		1 TPES:	6%(5/3 87); [=208	799+0 0	
t	10.100	100			01010000	01010110	01012000	01010101	0.0011011				,, [1001		
	4500 00	4500.00	4550 00	4000 051	4001 000	4710 419	4001 144	1005 075	1000 000		e cop:	CHV (1 000 11 1	7) · Ft ine	an Tuen	
ŝ	4000 00	4322.03	4002.25	4000.001	4001.002	4/10.413	4//1.144	4023.073	4000.000		Z. QDF,	0.0(1.0//1.1	/), [LINE	ar iren	

25

47

Nominal gross domestic product is defined as the market value of all final goods and services produced in a geographical region, usually a country. That market value depends on two things: *the actual quantities of goods and services produced and their respective prices*.

When it is adjusted for price changes (inflation or deflation), the nominal GDP will be transformed into Real GDP. *Real GDP is a nation's total output of goods and services, adjusted for price changes (that is in constant prices)*.

$NGDP = \sum (p_i \times q_i)$	RGDP =	$=\sum(p_b \times q_t)$
NGDP Nominal GDP	RGDP	Real GDP
<i>p</i> _t Prices of current year	p_{b}	Prices of base year
q_t Quantities of current year	q_t	Quantities of current year

If a set of real GDPs from various years are calculated, each using the quantities from its own year, but *all using the prices from the same base year*, the differences in those real GDPs will reflect only differences in volume.

Mathematic Formula (1)

1. Regression Analysis by use of time-series data
E = f (I, PE)
E: Energy Demand
I: Income (Production), + factor
PE: Energy Price, - factor
2. Energy Intensities
ELi = ai*Yi
FUi = bi*Yi
ai = ELi/Yi. (ai: electricity intensity to activity level (Yi))
bi = FUi /Yi (bi: fuel intensity to activity level (Yi))
3. Share function
FUij (fuel j) = FUi*Sij
Sij: Share of each energy source
Sij = f (Pij / Pi)
P: Energy price

R-Squared: Goodness of fit

Total sum of squares Sample variation in y_i

Explained sum of squares $SSE = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$ Sample variation in \hat{y}_i

Residual sum of squares $SSR = \sum_{i=1}^{n} \hat{u}_{i}^{2}$ Sample variation in \hat{u}_{i}

 $SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$

R-squared is defined as:

 $R^2 = SSE / SST = 1 - SSR / SST$

The ratio of the explained variation compared to the total variation

◆ *R*-squared=1 indicates that the data points all lie on the same line (OLS provides a perfect fit to the data). *R*-squared nearly equals to zero indicates a poor fit of the OLS line.

52

 $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + u$

Once $x_1, x_2, ..., x_{j-1}, x_{j+1}, ..., x_k$ have been accounted for, whether x_j has a partial effect on the value of y (In fact, it is the testing of the null hypothesis: $H_0: \beta_j = 0$)

 $|t| \ge 2$ (t≤-2 or t≥2) : Significant The factor x_i has significant influence on the value of y

 $2 > |t| \ge 1$ (-2<t \le -1 or 1 \le t<2) : Admissible to use The factor x_i has an influence on the value of y

|t| < 1 (-1<t<1) : Insignificant The factor x_i has no influence on the value of y

Durbin-Watson test:

What happens if there are auto-correlations among error terms

To test the whether there is autocorrelation or not.

If DW=2 (1<DW<3), we say there is no autocorrelation;

If DW is near 0 or 4, we say there is autocorrelation.

Sometimes, autocorrelations occur because the model is not "correctly" specified.

For example, some important variables that should be included in the model are not include;

Or the model has the wrong functional form – a linear model is fitted whereas a loglinear model should have been fitted. Thank you!

Training for Capacity Building on IPP Project Evaluation (JICA)

WG3 Demand Forecast Material 4

∼Electric Power Demand Forecasting Models for Cambodia∼part 1

20~24 December 2021 Asiam Research Institute, Inc. CHEW CHONG SIANG

Copyright Asiam 2021

Contents

Part 1

- 1. Method
- 2. Structure of model
- 3. Data preparation
- 4. Macroeconomic sub-model
- 5. Price Scenario

1.2 Model scope Setting

Preparation for model development;

- 1. Purpose of model building
- 2. Data availability
- 3. How far we need the explanation from the model?
- 4. It is necessary to clarify what should handled in the model and what should given outside the model. (External or internal)
- 5. Analysis tool (Software)
- 6. Methodology (Econometric? Simulation?)

1.3 Size of Model

(1)Extending the model will increases the amount of information, but does not increase predictability.

(2)An appropriate model size is desirable. A compact one is good.

1.4 Approach – Econometric model analysis (simulation)

Ordinary Least Squares (OLS) – Linear least squares method for estimating the unknown parameters (a, b) in a linear regression model by minimizing the sum of the squares of c.

3. Data Preparation

(1) GDP

Available source

- Statistics Department in Cambodia (Central Bank)
- Ministry of Finance

- International Organization: ADB, WB, IMF, UNSTAT

(2) Population

- National Institute of Statistics
- United Nations Population Division
- (3) Energy Data
 - National Power Company (EDC)
 - Electricity Authority Cambodia (EAC)
 - Ministry of Mines and Energy (MME)

4. Macro-economic Sub-Model

	Macro economic Block						
	Urban population		POPU		lag1.POPl	J	
Calculation	Rural population		POPR	=	100-POPL	l	
Process for CDP							
	GDP at constant 2010 prices in National cu	urrency					
by sector	Gross Domestic Product (GDP)		GDPR				
	Household consumption expenditure		CP	\$TG	GDPR/PO	dum.2009	lag1.CP
	General government final consumption ex	penditure	CG	\$CA	lag1.CG		
> Population	Gross fixed capital formation		IF	\$CA	(lag1.CP+	FDI	
	Changes in inventories		J	=	lag1.J		
	Exports of goods and services		E	\$CA,\$DL	lag1.E		
	Imports of goods and services		М	\$CA	IF	E	EXC
	Share of GDP Component						
	Agriculture		GDP.AGS	\$CA	In(TREND)		
	Industry		GDP.INS	\$CA	In(TREND)		
External Variable	Services, etc.		GDP.SES	\$CA	In(TREND)		
External variable	Others		GDP.OTS	\$CA	In(TREND)		
	Total		GDP.TLS	=	100		
	Real GDP						
	Agriculture		AGR	=	GDPR*(GI	DP.AGS/GI	JP.TLS)
	Industry		INR	=	GDPR*(GI	DP.INS/GD	P.TLS)
	Services, etc.		SER	=	GDPR*(GI	DP.SES/GI	JP.TLS)
	Others		OTR	=	GDPR*(GI	DP.OTS/GE	JP.TLS)

5. Price Scenario

- 1) We used inflation and the consumer price index (CPI) as a price variable because the time when we creating this model, we are failed to collect the time series of electricity prices.
- 2) We assume the inflation rate will increase annually 3% until 2030.

Price Scenario						
Inflation	INFL	=	3			
Inflation, consumer prices (annual growth)	CPI	CPI = lag1.CPI*(1+IN				
Inflation, GDP deflator (annual growth)						
Electricity Prices						
Industry						
Residential						
Commercial						
Others						

Training for Capacity Building on IPP Project Evaluation (JICA)

WG3 Demand Forecast Material 5

~Electric Power Demand Forecasting Models for Cambodia~part 2

20~24 December 2021 Asiam Research Institute, Inc. CHEW CHONG SIANG

Copyright Asiam 2021

Contents

Part 2

- 1. Electric power demand sub-model
- 2. Examining model formulas
- 3. Simulation and confirmation of final results

6. Electric Power Demand Block

Below shows the system equation in each demand sector. Basically, system equations by sectors were created as the following functional relations.

- 1. Industrial (Manufacturing) Sector Electricity demand = f(GDP of Industry, Price for industry)
- 2. Commercial, Public service and other Sector Electricity demand = f(GDP of Commercial, Price for commercial)
- 3. Residential Sector

Number of customer = f(electrification ratio)

Electricity demand = f(electricity consumption/customer, price of households, number of customer)

Losses: Transmission and distribution losses

> Own use in electricity, CHP and Heat plants

Ele	<u>ctric power Block</u>							
Fina	al comsumption by sector		FCEL	=	INEL+REEL+CMEL			
Industry total (manufacturing, construction and non-f		fINEL	\$CA,\$DL	INR	lag1.INEL			
	Residential		REEL	\$CA,\$DL	POP	Lag1.REE	CPI	
	Commercial, public services and others		CMEL	\$DL	SER	CPI	lag1.CMEL	_
Own use in electricity, CHP and heat plants		OWN	=	FCEL*0.025				
Losses		LOSS	=	lag1.LOSS*(1+14/100)				
Exp	port		EXEL	=	0			
Total Electricity Demand		TLEL	=	INEL+REEL+CMEL+OWN+LOSS+EX			S+EXEL	
			NOCUS		lag1.NOCl	JS		

6. Examining model

Formula Checking, Simulation, Verification and confirmation of final results.

(1) Industrial Sector

Regression formula: LN (INEL) = 1.49(2)+0.24(2.34) * LN(INR) + 0.73(6.99) * LN(LAG1.INEL) + 0.07(2.79)*DUM.2010

Where, R square = 0.956 Durbin Watson Ration = 1.82

INR = Industry GDP INEL = Electricity demand in industry sector Dum.2010 = Dummy year 2010 LAG 1.INEL = Previous year INEL

> \$DL=Double logarithmic function

(3) Domestic Sector

Regression formula:

REEL=-6525(-0.38) + 14399(3.36) * GDPR/POP - 12603500(-2.32) * REELP/CPI + 0.83(11.9) * LAG 1.REEL - 13332(-2.07) * DUM.2016

> Where, R square = 0.977 Durbin Watson Ration = 1.89

POP = Population REEL = Electricity demand in domestic sector LAG 1.REEL = Previous year REEL REELP = Domestic Tariff CPI = Consumer Price Index

8. Electric Power Demand by Provinces

(1) GDP

- Available source
- Statistics Department in Cambodia (Central Bank)
- Ministry of Finance
- International Organization: ADB, WB, IMF, UNSTAT

(2) Population

- National Institute of Statistics
- United Nations Population Division
- (3) Energy Data
 - National Power Company (EDC)
 - Electricity Authority Cambodia (EAC)
 - Ministry of Mines and Energy (MME)

4. Macro-economic Sub-Model

	Macro economic Block					
	Urban population	POPU		lag1.POPl	J	
	Rural population	POPR	=	100-POPU	l	
Process for GDP						
	GDP at constant 2010 prices in National currency					
by sector	Gross Domestic Product (GDP)	GDPR				
	Household consumption expenditure	CP	\$TG	GDPR/PO	dum.2009	lag1.CP
	General government final consumption expenditure	CG	\$CA	lag1.CG		
> Population	Gross fixed capital formation	IF	\$CA	(lag1.CP+	FDI	
	Changes in inventories	J	=	lag1.J		
	Exports of goods and services	E	\$CA,\$DL	lag1.E		
	Imports of goods and services	М	\$CA	IF	E	EXC
	Share of GDP Component					
	Agriculture	GDP.AGS	\$CA	In(TREND)		
	Industry	GDP.INS	\$CA	In(TREND)		
External Variable	Services, etc.	GDP.SES	\$CA	In(TREND)		
External variable	Others	GDP.OTS	\$CA	In(TREND)		
	Total	GDP.TLS	=	100		
	Real GDP					
	Agriculture	AGR	=	GDPR*(GD	DP.AGS/GI	OP.TLS)
	Industry	INR	= GDPR*(GDP.INS/GI		DP.INS/GD	P.TLS)
	Services, etc.	SER	= GDPR*(GDP.SES/GDF		OP.TLS)	
	Others	OTR	=	GDPR*(G	DP.OTS/GE	P.TLS)

5. Price Scenario

- 1) We used inflation and the consumer price index (CPI) as a price variable because the time when we creating this model, we are failed to collect the time series of electricity prices.
- 2) We assume the inflation rate will increase annually 3% until 2030.

Price Scenario						
Inflation	INFL	=	3			
Inflation, consumer prices (annual growth)	CPI	1+INFL/100)			
Inflation, GDP deflator (annual growth)						
Electricity Prices						
Industry						
Residential						
Commercial						
Others						

Training for Capacity Building on IPP Project Evaluation (JICA)

WG3 Demand Forecast

∼Method and structure of model∼ OJT-Material 1

16 February 2022 Asiam Research Institute, Inc. CHEW CHONG SIANG

Copyright Asiam 2022

OJT-Contents

Material 1 - Method and structure of model Material 2 - Electricity demand analysis Material 3 - Model evaluation Material 4 - Projection

Material 1 Method and structure of model

- 1. The Type of Energy Model
- 2. Method
- 3. Structure of Model
- 4. Data Preparations
- 5. Exercises

1.The Type of Energy Model

			Purpose of Use						
	Types	Evaluati	on of Measures	Sconario					
		Technology	System and Economy	Scenario					
a. Optimization		MARKAL Heafele/IES	ETA-MACRO Global 2100	CETA	ge				
b. Econometric			Jorgenson-Wilcoxen OECD/GREEN	NEMS (US/DOE) FUGI	hallen				
c. Sir	nulation				ur C				
	(1) Bottom-Up			MEDEE (IEEJ) ECMP (IEEJ)	õ				
	(2) Market Equilibrium		Edmonds-Reflly IEA Model						
	(3) System Dynamic			Roman Club/World III					

4

1.1 Example-1;

Regional Power Demand Model (Japan)

1.2 Example-2.1; US EIA US National Energy Modeling System (NEMS)

NEMS

- 1. Represents the behavior of energy markets and their interactions with the U.S. economy.
- 2. Reflects market economics, industry structure, and existing energy policies and regulations that influence market behavior.
- 3. Consists of 13 modules: integrating module provides the mechanism to achieve a general market equilibrium among all the other modules.

5

Source; US EIA NEMS Overview 2018, https://www.eia.gov/outlooks/aeo/nems/documentation/ 6

1.2 Example-2-2; US EIA

NEMS-Macroeconomic Activity Module

1.3 Example-3; IEEJ Model for the Philippine Energy Plan (PEP)

IEEJ Model for PEP

- 1. Model comprises demand module developed on Simple-E and supply module applying GAMS.
- 2. Energy demand is forecast first by the demand module.
- 3. Against the projected demand outlook, energy supply is optimized by the supply module.

Source; IEEJ/TEPCO "JICA Study on Philippine Energy Plan Formulation", 2008

1.4 Example-4; IEEJ Model

Data Flow

1.4 Example-4; IEEJ Model Structure of Supply Optimization Module

2.2 Model scope Setting

Preparation for model development;

- 1. Purpose of model building
- 2. Data availability
- 3. How far we need the explanation from the model?
- 4. It is necessary to clarify what should handled in the model and what should given outside the model. (External or internal)
- 5. Analysis tool (Software)
- 6. Methodology (Econometric? Simulation?)

(1)Extending the model will increases the amount of information, but does not increase predictability.

(2)An appropriate model size is desirable. A compact one is good.

2.4 Approach – Econometric model analysis (simulation)

Ordinary Least Squares (OLS) – Linear least squares method for estimating the unknown parameters (a, b) in a linear regression model by minimizing the sum of the squares of c.

4. Data Preparations

(1) **GDP**

Available source

- Statistics Department in Cambodia (Central Bank)
- Ministry of Finance

- International Organization: ADB, WB, IMF, UNSTAT

(2) Population

- National Institute of Statistics
- United Nations Population Division

(3) Energy Data

- National Power Company (EDC)
- Electricity Authority Cambodia (EAC)
- Ministry of Mines and Energy (MME)

5. Exercises Macro-economics: Real GDP Growth Rate

Definition of GDP growth rate

□How to calculate the RGDP of the next year given the RGDP of this year and the expected GDP (real) growth rate:

 $RGDP_{t+1} = RGDP_t \times (1 + RGDPgrowthrate_t)$

Macro-economics: Nominal GDP and Real GDP

Nominal gross domestic product is defined as the market value of all final goods and services produced in a geographical region, usually a country. That market value depends on two things: *the actual quantities of goods and services produced and their respective prices*.

When it is adjusted for price changes (inflation or deflation), the nominal GDP will be transformed into Real GDP. *Real GDP is a nation's total output of goods and services, adjusted for price changes (that is in constant prices).*

NGDP =	$=\sum(p_t \times q_t)$	$RGDP = \sum (p_b \times q_t)$				
NGDP	Nominal GDP	RGDP	Real GDP			
p_t	Prices of current year	p_b	Prices of base year			
q_t	Quantities of current year	q_t	Quantities of current year			

If a set of real GDPs from various years are calculated, each using the quantities from its own year, but *all using the prices from the same base year*, the differences in those real GDPs will reflect only differences in volume.

Training for Capacity Building on IPP Project Evaluation (JICA)

WG3 Demand Forecast

~Electricity demand analysis~ O.T-Material 2

28 February 2022 Asiam Research Institute, Inc. CHEW CHONG SIANG

Copyright Asiam 2022

Material 2 Electricity demand analysis

1. Structure of electricity demand

- 2. Current condition
- 3. Provinces

1. Structure of electricity demand

1.1 Electricity demand by sector

1.2 Electricity demand by sector - Growth Rate

	Industry	Residential	Commercial	Loss	Own	Total
2001	21.6	10.0	18.1	12.0	13.3	13.9
2002	35.0	16.1	17.8	51.8	14.7	22.2
2003	25.9	13.9	15.1	34.1	12.8	18.2
2004	38.5	11.3	17.7	-8.8	9.1	13.0
2005	35.7	12.5	28.6	2.9	16.7	19.6
2006	50.2	6.3	29.7	32.7	25.0	24.2
2007	56.8	17.9	22.1	52.1	57.1	31.3
2008	15.1	25.6	26.6	-24.1	-45.5	14.7
2009	-0.3	18.5	11.9	8.5	-13.3	10.7
2010	26.1	27.4	14.3	60.7	11.5	24.9
2011	28.6	-1.7	21.6	3.5	6.9	12.9
2012	42.9	26.4	18.1	-11.5	35.5	23.1
2013	-8.9	9.9	20.2	90.5	23.8	15.0
2014	28.6	11.5	14.3	43.7	73.1	20.7
2015	7.8	15.4	43.8	13.0	43.3	24.1
2016	33.1	24.3	4.9	15.6	44.2	17.2
2017	2.3	14.7	14.9	14.7	12.8	12.1
2018	18.0	22.7	22.0	17.5	15.3	20.7
Average	25.8	<mark>16.4</mark>	21.1	20.9	<mark>17.8</mark>	<mark>19.9</mark>

Electricity demand (2000-2018)

- Average Growth: 19.9%
- \succ Growth very fast
- > All Sector

Points;

- > When the peak coming?
- Analyses each of the sector find the key driver
- \succ How to take care the Loss

2. Current Condition

2.1 Electricity consumption/population (kWh per capita)

3. Provinces

Phnom Penh: 57% Siem Reap: 7% Preah Sihanouk: 7% Total three: 71%

Next Step:

Focus on above three provinces to construct a demand modeling for provinces. Training for Capacity Building on IPP Project Evaluation (JICA)

WG3 Demand Forecast - OJT

Material 3 - Model evaluation Material 4 - Projection

28 February 2022 Asiam Research Institute, Inc. CHEW CHONG SIANG

Copyright Asiam 2022

Contents

<u>Material 3 - Model Evaluation</u> 3.1 Function Forms 3.2 Fitness of Equation by Regression Analysis 3.3 Modeling by Sector

<u>Material 4 - Projection</u> 4.1 Scenario Setting for Model Analysis

Material 3 – Model Evaluation 3.1 Function Forms

Typical functional forms written in the model sheet

				Internal	Option					
G	H	I	J	Y	Type	X1	X2	Х3	X4	X5
Typica	al Function	al Form								
Y = a	+ b*X			FNEL		GDP				
Y = a	+ b*X + c	*Y(-1)		FNEL		GDP	lag1.FNEL			
LN(Y)	= a + b*L	N(X)		FNEL	\$DL	GDP				
LN(Y) :	= a + b*X			FNEL	\$SL	GDP				
Y = a +	- b*LN(X)			FNEL		LN(GDP)				
LN(Y) :	= a + b*LNC	X) + c*LN(Y	(-1))	FNEL	\$DL	GDP	lag1.FNEL			
LN(Y) :	=a i b⊮LNC	X1) + 6*LN(Y(1)) + d#X2	FNEL	\$DL	GDP	lag1.FNEL	exp(TRENE))	
				Ln(FNEL)		LN(GDP)	LN(PRICE)			
				FNEL	=	EXP(Ln_F)	VED			
Y = a	+ b*X1 +	c*X2		FNEL		GDP	PRICE			
Y=a	+ b*X1 +	c*X2 + d*1	((-1)	FNEL		GDP	PRICE	lag1.FNEL		
LN(Y)	= a + b*L	N(X1) + c*	LN(X2)	FNEL	\$DL	GDP	PRICE			
LN(Y) :	= a + b*X1 -	+ c*X2		FNEL	\$SL	GDP	PRICE			
Y = a +	• b*LN(X1.) -	+ c*LN(X2)		FNEL		LN(GDP)	LN(PRICE)			
Y = a +	• b*LN(X1.) -	+ c*X2		FNEL		LN(GDP)	PRICE			
LN(Y)	= a + b*L	N(X1) + c*	LN(X2) + d*LN(Y(-1))	FNEL	\$DL	GDP	PRICE	lag1.FNEL		
LN(Y) :	= a + b*LNC	x1) + c*LNC	X2) + d*LN(Y(-1)) + e*X3	FNEL	\$DL	GDP	PRICE	lag1.FNEL	exp(TREND)

3.2 Fitness of Equation by Regression Analysis

1) R	R-Square, $0 \le$ Explained variance / Total variance ≤ 1 , (The larger the better)						
2) AN 3) SD	Standard Deviation	Aujusteu R-Squate, AR ≤ 1 , (The larger the better) Standard Daviation: SD = $(\sum_{i=1}^{2} l(n_i k))1/2$					
5) 50		Sample size					
	k = Number of inde	annuc size, anondent variables					
	R - Number of mut	tables					
4) DW	Durbin Walson Si	Lausucs, 1 < Dw < 3					
	DW = 2 : No ser	ial correlation					
	$DW \rightarrow 0$: Positive correlation					
	$DW \rightarrow 4$: Negative correlation					
5) Dh	Durbin h Statistics	with lag, Dh < 2					
6) t-value	t ≥ 2	: Significant					
	$2 > t \ge 1$: Admissible to use					
	t <1	: Insignificant					
7) Rho	Coefficient of serial	correlation, Rho < 1					
8) DF	Degree of Freedom	, DF > 1 (The lager the better)					
9) F	F-value, F-Statistic: $F > 0$ (The larger the better)						
10) RSS	Residual Sum of Square, RSS > 0 , (The smaller the better)						
11) YX	Correlation Coefficie	ent between Y and Xs, YX < 1					
12) XX	Correlation Coefficie	ent between Xs, XX < 0.95					

3.3 Modeling by Sector(1) Industrial

Electricity demand of industry sector (INEL) =Industry GDP (GDPIN) + (Electricity tariff (INELP)/Index Price(CPI))

Example;

Ln (INEL)=-16.67 (-4.48) +1.49 (7.22)*Ln (GDPIN) -0.76 (-2.75)*Ln (INELP/CPI) Where, R square = 0.93 Durbin Watson ratio = 1.17

(2) Residential

Calculation for Number of customer CUST (Number of customer) = (Population/Number of Family)* Electrification ratio Electricity demand of Residential (REEL) = GD P/Number of customer (CUST) + (Electricity tariff (REELP)/Index Price(CPI) + Number of customer(CUST) Example; Ln (REEL)=-6.36 (-6.92) +0.47 (6.79)*Ln (GD P/CUST) -0.28 (-7.23)*Ln (REELP/CPI) +0.49 (6.95)*Ln (CUST) +0.69 (12.8)*Ln (lag1.REEL) Where, R square = 0.99 Durbin Watson ratio = 2.39

5

(3) Commercial

Electricity demand of Commercial (CMEL) = Commercial GDP (GDPCM) + (Electricity tariff (CMELP)/Index price (CPI))

Ln (CMEL)=-25.72 (-8.08) +1.91 (11.2)*Ln (GDPCM) -0.699 (-5.35)*Ln (CMELP/CPI) Where, R square = 0.98

Durbin Watson ratio = 1.36

(4) Public

```
Electricity demand of Public (PUEL)
= Public GDP (GDPPU) + (Electricity tariff (PUELP)/Index Price (CPI))
```

Example; Ln (PUEL)=-2.78 (-2.81) +0.28 (3.67)*Ln (GDPPU) -0.80 (-3.24)*Ln (PUELP/CPI) Where, R square = 0.99 Durbin Watson ratio = 2.24

7

Material 4 – Projection 4.1 Scenario Setting for Model Analysis

- 1. Scenarios may be set corresponding to the future socio-economic outlook, social targets and policy options, which are considered difficult or inappropriate for forecasting by the model.
- 2. In general energy/environment analysis, scenarios are set on future development of socio-economic elements; such as population growth rate, economic growth rate, crude oil prices, currency exchange rate, monetary/fiscal policies, industrial structure change, energy structure target (energy conversion, energy import/export), energy tariff options, energy efficiency target, GHG emissions target, new/renewable energy introduction policy, environmental policies, etc.
- 3. A scenario for model analysis comprises a set of assumptions and projections numerically expressed on these elements.

(1) Scenario Setting by Data Sheet; Projection of Variables

- 1. Scenarios should be prepared in numerical values and given to the model as a set of projected external variables in the "Data" sheet.
- 2. For case studies, different scenarios may be examined changing the projection for variables and running the model for each such set.

14	15	16	17	18	19	20	21	22	23	24	25	26
1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
167	180	188	196	208	218.4	229.32	240.786	252.8253	265.4666	278.7399	292.6769	307.3107
239.7	258	281.7	288.2	313.6								
51014291	57998089	65341135	66035016	73560041								
380	380	380	420	420								
1.59	1.47	1.35	1.46	1.34								
				I								
		Actual valu	les		:	Scenario						

(2) Scenario Setting by Model Sheet; Defining Equations

Scenarios are also set by defining the relationship of variables shown by equations and values of parameters.

GDP Share						
	Industry	%		SHIN	\$CA	LN(TREND)
	Commercial	%		SHCM	\$CA	LN(TREND)
	Public	%		SHPU	\$CA	LN(TREND)
	Others	%		SHOT	\$CA	LN(TREND)
	for ajustment to total 100	%		SHTL	=	SHIN+SHCM+SHPU+SHOT
GDP	GDP Growth rate	%	(External)	GR	=	4.5
	Total (Scenario)		(External)	GDP	=	lag1.GDP*(1+GR/100)
	Industry		(External)	GDPIN	=	GDP*(SHIN/SHTL)
	Commercial		(External)	GDPCM	=	GDP*(SHCM/SHTL)
	Public		(External)	GDPPU	=	GDP*(SHPU/SHTL)
	Others		(External)	GDPOT	-	GDP*(SHOT/SHTL)
CPI		1995=	100	CPI	=	1ag1.CPI*(1+INFL/100)
Inflation		%	(External)	INFL	=	GR*1.2
Price Scenar	io (Real Value Constant)					
	Industry	/kWh		PINEL	-	1ag1.PINEL*(1+INFL/100)
	Residential	/kWh		PREEL	=	1ag1.PREEL*(1+INFL/100)
	Commercial (Business)	/kWh		PCMEL	=	lag1.PCMEL*(1+INFL/100)
	Public	/kWh		PPUEL	=	1ag1.PPUEL*(1+INFL/100)

11

Model Manual

for

Electric Power Demand Forecasting Models for Cambodia

By CHEW, Chong Siang JICA Team May 2022

Table of Contents

I.	Explanation of Models	.1
1	. General	.1
	1.1 Concept of electric power demand forecasting model for Cambodia	.1
	1.2 Code Name	.2
2	. Calculation Process of Electricity Demand Forecasting Model	.2
	2.1 Macro-economic Block	.2
	2.2 Electric Power Demand Block	.4
	2.3 Province Electric Power Demand Block	.5
II.	Fundamentals for Model Building	.7
1	. General	.7
	1.1 Role of Energy Models	.7
	1.2 General Approaches for Model Building	.7
2	. Determination of Demand Function	.9
	2.1 General Functional Forms	.9
	2.2 Linearization	1
	2.3 Summary of functional forms	1
3	. Regression Analysis	11
	3.1 Fitness of Equation by Regression Analysis	1
	3.2 Dummy Valuables1	12
4	. Elasticity and Intensity	3
	4.1 Energy Demand Elasticity	3
	4.2 General Description of Functional Forms and Elasticity	3
	4.3 Energy Demand Intensity 1	6

<u>Notes</u>

- This manual is based on data that can be collected at the current condition. As more data becomes available, the model can be flexibly expanded and improved in accuracy.
- The model has been simplified in its structure to make it easier for the novice to understand. This structure can be easily modified and rewritten to fit Cambodia's reality.

I. Explanation of Models

1. General

1.1 Concept of electric power demand forecasting model for Cambodia

(1) Type of model and approach

This is an econometric model base on regression analysis method and applying various assumption. The macro indicator assumption like economic growth, population growth, price index and inflation are used as preconditions to reflect the macroeconomic policy of the Cambodian government.

(2) Schematic Diagram

The Electric power demand forecasting model consists of a macro-economic block, electric power demand block, and province electric power demand block as shown in Figure I-1. The model computes electric power demand by sector of the electric power demand block, using economic indices obtained from the macro-economic model block. The total electric power demand will divide by provinces by the historical ratio change in the province electric power demand block.

Figure I-1 Schematic Diagram of Electric Power Demand Forecasting Model

1.2 Code Name

Naming of code (abbreviations) is left to modeler's discretion. Generally, the first two characters will be using to create a code name. As a reference, an example is shown in Figure I-2. In this case, sector classification is the first two characters and energy classification are the second two characters, however, such kind of rule is basically free. The code must be easily recognizable and simple.

Items	Code Name					
Population	POP					
Gross domestic product	GDP					
Agriculture, forestry, and fishing	AG					
Industry	IN					
Services	SE					
Consumer prices Index	CPI					
Electricity	EL					
Price	Р					
Electricity consumption by sector						
Industry	INEL					
Commercial	COEL					
Residential	REEL					

Figure I-2 An Example of Code Name

2. Calculation Process of Electricity Demand Forecasting Model

2.1 Macro-economic Block

In this case, macro indicators consist of three items, that is, (1) population, (2) GDP by sector and (3) consumer price index. In the electricity demand forecasting, former items described above are treated as external valuables in order to simulate the impact of price and GDP growth.

Notes:

<u>Future extensions to the model will include sectoral additional data on electricity tariffs,</u> <u>number of customers, and electrification rates to improve the accuracy of the model. The</u> <u>current model will construct by framework with a limited data at the current condition.</u>

(1) Macro Indicators (Assumptions)

Figure I-3 shows the system equations for macro-indicators (POP, GDPR, CPI and Inflation). Share of classified sectors (GDP.TLS) and each share of GDPR (GDP.AGS, GDP.INS, GDP.SES, and GDP.OTS) is not regression analysis. These equations are taken into consideration an economic structure change based on the historical trend. In case that we don't consider the structure change, we can fix the share or we can calculate the moving average. If we want to introduce structure change scenario, we can put our scenario into "Data" sheet directly.

In this case, the population and GDPR data are set in the "Data" sheet from 2000 until 2020. After 2020 until 2030, population growth rate is given as 1.4% and GDPR is given as 6.0% in the "Model" sheet.

Macro Block				
Total population		POP	=	lag1.POP*(1+1.4/100)
GDP by share (Constant 2000)				
Agriculture, forestry, and fis	h%	GDP.AGS	\$CA	LN(TREND)
Industry	%	GDP.INS	\$CA	LN(TREND)
Services, etc.	%	GDP.SES	\$CA	LN(TREND)
Others	%	GDP.OTS	\$CA	LN(TREND)
Total	%	GDP.TLS	=	GDP.AGS+GDP.INS+GDP.SES+GDP.OTS
GDP (Constant 2000)				
GDP growth rate	%			
Agriculture, forestry, and fis	KR Billion	AGR	=	GDPR*(GDP.AGS/GDP.TLS)
Industry	KR Billion	INR	=	GDPR*(GDP.INS/GDP.TLS)
Services, etc.	KR Billion	SER	=	GDPR*(GDP.SES/GDP.TLS)
Others	KR Billion	OTR	=	GDPR*(GDP.OTS/GDP.TLS)
Real GDP	KR Billion	GDPR	=	lag1.GDPR*(1+6/100)

Figure I-3 Macro-indicators ("Model" Sheet)

<u>Notes:</u> <u>lag1: Previous year data</u> LN: Logarithm

(2) Price Scenario (Assumptions)

Figure I-4 shows the price scenario in the "Model" sheet. Prices are up with inflation (real value constant) if the cells in "Data" sheet" are blank. In this case, inflation is given as 3% in the "Model" sheet. CPI will alternative the electricity tariff as a price scenario in this model. For future revision, please input the electricity tariff in the "Data" sheet and setting the price scenario by the sectoral electricity tariff (turn the red color to black).

Notes:

In "Model" sheet, if we turn the character to red color, simple-e will stop to make the calculation in that part.

Pri	ce Block					
	Inflation		INFL	=	3	
	Consumer Price Index		CPI	=	lag1.CPI*(1+INFL/100)	
Ele	ctricity Distribution - Weight	ed Average				
Do	mestic Tariff (residential)	Ush/kWh	ELP.RE	=	lag1.ELP.RE*(1+INFL/1	00)
Co	nmercial Tariffs	Ush/kWh	ELP.COM	=	lag1.ELP.COM*(1+INFL/100)	
Laı	ge Industrial Tariff	Ush/kWh	ELP.IN	=	lag1.ELP.IN*(1+INFL/100)	

Figure I-4 Price Scenario ("Model" Sheet)

2.2 Electric Power Demand Block

Electric power demand block comprising of each sector creates the system equations by sector and calculates sectoral demand and the total. The demand function is estimated by regression analysis in each sectoral demand for industry (INEL), residential (REEL), commercial (CMEL, included the government/public sectors). The total demand (TLEL) is obtained by adding the sectoral demand after included the own use (OWN, consumption in power plat) and losses (LOSS, transmission and distribution).

(1) System Equations in Power Sector Block ("Model" sheet)

Figure I-5 shows the system equations in each demand sector. Basically, system equations by sector were created as the following functional relations.

Industry sector
 Electricity demand = f (GDP of industry, Price for industry)

 Residential sector

Number of customers = f (Electrification ratio)

Electricity demand = f (Electricity consumption/Customer, Price for households,

Number of customers, Previous year's demand)

3) Commercial sector

Electricity demand = f (GDP of commercial, Price for commercial sector)

In this training, we will simplify the functions as figure I-5 because of the data on electricity rates, number of customers, and electrification rates were not collected. Please try to revise the model by above equations when your success to collect those data.

Own use and losses are set as assumption. Own use is given as 2.5% of final consumption by sector and losses is given as 6.0% annual growth. Total electricity demand will include the INEL, REEL, CMEL, OWN, and LOSS.

Ele	<u>ctric power Block</u>							
Fin	al comsumption by sector		FCEL	=	INEL+REEL+CMEL			
	Industry		INEL	\$CA ,\$DL	INR	lag1.INEL		
	Residential		REEL	\$CA ,\$DL	POP	Lag1.REEL	CPI	
	Commercial		CMEL	\$DL	SER	CPI	lag1.CMEL	
Ow	n use in electricity, CHP and heat plants		OWN	=	FCEL*0.025	5		
Los	ses		LOSS	=	lag 1.LOSS*	(1+6/100)		
Export			EXEL	=	0			
Total Electricity Demand		TLEL	=	INEL+REEI	L+CMEL+O	WN+LOSS+	EXEL	

Figure I-5 System Equation in Electric Power Demand Block ("Model" Sheet)

As an example, equations obtained by the regression analysis are as follows.

1) Industry sector

LN (INEL)= -3.5977 (-2.66) + 0.6038 (2.96) * LN (INR) + 0.7153 (8.06) * LN (LAG1.INEL) Where, R square = 0.994 Durbin Watson ratio = 2.16

2) Residential sector

LN (REEL)= -47.068 (-2.16) + 5.3191 (2.16) * LN(POP) + 0.4344 (1.61) *LN(LAG1.REEL) -.007085(-0.394) *LN(CPI) Where, R square = 0.995

Durbin Watson ratio = 2.09

3) Commercial sector

LN (CMEL)= -10.548 (-4.88) + 1.5977 (4.98) * LN(SER) - 0.0479 (-3.15) * LN(CPI) +0.3657 (2.89) * LN(LAG1.CMEL) Where, R square = 0.998

Durbin Watson ratio = 2.73

<u>Notes:</u> <u>LAG1: Previous Year's Values</u> <u>Values in (): t-value</u>

(2) Peak Load (MW)

Peak load can be calculated by the following equation. The load factor is set as an assumption or scenario.

Peak Load = Total Electricity Demand / ((Load Factor/100) * 365 Day * 24 Hour)

2.3 Province Electric Power Demand Block

In this section, the electricity demand in province is distributed into 24 areas. Phnom Penh and Kandal province will combine together as one area because of the grid system.

(1) Share of Electric Power Demand by Regional

Finally, the electric power demand is distributed to each area by province using its historical trend (logarithmic trend). Figure I-6 shows the share estimation of each province and area. These equations are not due to regression analysis. We can change these definitions if we have a scenario and policy.

Figure I-6 Share of Electric Power Demand by Provinces ("Model" Sheet)

Regional by Share (%)				
Banteay Meanchey	B	TCS \$	CA	ln(TREND)
Battambang	B	TBS \$	CA	ln(TREND)
Kampong Cham	K	GCS \$	CA	ln(TREND)
Kampong Chhnang	K	GHS \$	CA	ln(TREND)
Kampong Speu	K	PSS \$	CA	ln(TREND)
Kampong Thom	K	TMS \$	CA	ln(TREND)
Kampot	K	PTS \$	CA	ln(TREND)
Kohkong	K	KGS \$	CA	ln(TREND)
Kratie	K	RTS \$	CA	ln(TREND)
Mondulkiri	N	IDKS \$	CA	ln(TREND)
Phnom Penh / Kandal	P	HNS \$	CA	ln(TREND)
Preah Vihear	P	RIS \$	CA	ln(TREND)
Prey Veng	P	RVS \$	CA	ln(TREND)
Pursat	P	STS \$	CA	ln(TREND)
Ratanakkiri	R	TKS \$	CA	ln(TREND)
Siem Reap	S	RPS \$	CA	ln(TREND)
Preah Sihanouk	S	HVS \$	CA	ln(TREND)
Stung Treng	S	TRS \$	CA	ln(TREND)
Svay Rieng (Bavet)	S	VRS \$	CA	ln(TREND)
Takeo	T	KOS \$	CA	ln(TREND)
Oddar Meanchey	0	DMS \$	CA	ln(TREND)
Кер	K	EPS \$	CA	ln(TREND)
Pailin	P.	ALS \$	CA	ln(TREND)
Tbong Khmum	Т	GKS =	-	TLS-(BTCS+BTBS+KGCS+KGHS+KPSS+KTMS-
Total	% T	LS =	-	100

(2) Electric Power Demand by Regional

Electric power demand by province and area are calculated by share.

Electricty Demand by Provinces				
Banteay Meanchey	BT	C =	TLEL*BTCS/100	
Battambang	BT	B =	TLEL*BTBS/100	
Kampong Cham	KG	C =	TLEL*KGCS/100	
Kampong Chhnang	KG	H =	TLEL*KGHS/100	
Kampong Speu	KP	s =	TLEL*KPSS/100	
Kampong Thom	KT	M =	TLEL*KTMS/100	
Kampot	KP	T =	TLEL*KPTS/100	
Kohkong	KK	G =	TLEL*KKGS/100	
Kratie	KR	T =	TLEL*KRTS/100	
Mondulkiri	MD	K =	TLEL*MDKS/100	
Phnom Penh / Kandal	PH	N =	TLEL*PHNS/100	
Preah Vihear	PRI	[=	TLEL*PRIS/100	
Prey Veng	PR	V =	TLEL*PRVS/100	
Pursat	PS7	Г =	TLEL*PSTS/100	
Ratanakkiri	RTI	K =	TLEL*RTKS/100	
Siem Reap	SRI	<mark>? =</mark>	TLEL*SRPS/100	
Preah Sihanouk	SH	V =	TLEL*SHVS/100	
Stung Treng	STE	<mark>ک =</mark>	TLEL*STRS/100	
Svay Rieng (Bavet)	SVI	<mark>r =</mark>	TLEL*SVRS/100	
Takeo	TK	0 =	TLEL*TKOS/100	
Oddar Meanchey	OD	M =	TLEL*ODMS/100	
Кер	KE	P =	TLEL*KEPS/100	
Pailin	PA	L =	TLEL*PALS/100	
Tbong Khmum	TG	K =	TLEL*TGKS/100	
Total	TL	=	BTC+BTB+KGC+KGH+H	KPS+KTM+KPT+KKG+I

Figure I-7 Electric Power Demand by Provinces ("Model" Sheet)

II. Fundamentals for Model Building

1. General

1.1 Role of Energy Models

Energy models have various objectives such as energy development plan, energy conservation plan, and environmental protection. The results of models can establish scientific basis for comprehensive energy planning and enhance the technical capabilities of national energy use. Models linked to "Energy Balance Table" are also to help preparing available reporting system for policy making in energy sector.

A comprehensive energy database (time series Energy Balance Table) can contribute to foster the common understanding between various energy planning and implementing agencies, and plays an important role for the decision of energy policy. Forecasting energy demand is requisite for stable energy supply and for determining energy supply structure in order to achieve the best mix of energy. Figure II-1 shows the examples of energy model (sub-model) and the objectives.

Model	Objective	Contribute to
Energy price model	Demand fluctuation	Price (or tax) policy
Electricity demand forecast	Long-term demand	Power development plan
Macro-economic model	Economic growth rate	Economic scenario
Energy conservation	Energy saving potential	Energy saving policy
Oil products price	Demand fluctuation	Price (or tax) policy
Energy export model	National benefit maximum	Export structure

Figure II-1 Examples of Energy Model (sub-model)

1.2 General Approaches for Model Building

The model is required to be easy in operation and to be transparent and flexible in understanding the methodology and the logic employed. The model also should be built on a flexible system so that the user can revise the data and the model based on annual or quarterly additional data and changes of specific requirements from Government energy policy.

Speaking of energy demand forecasting methods in general, there are two different approaches. One is a process-engineering method (a kind of bottom-up system), while the other is an econometric method. Naturally each has its own advantages and disadvantages.

Regarding data collection as an example, the former involves a wide variety of data, but few time-series data. In contrast, the latter requires few data of this kind but time-series data in the long run (ten years or longer).

The results of the engineering approach are easily understood, since it will provide huge data and explanation. In case of an econometric method, however, the background of forecast results can hardly be explained in detail because macro-economic/social indicators are incorporated as exogenous variables. With recognition of these merits and demerits, we are usually applying the econometric approach and combination of both concepts using energy intensities and efficiencies excluding intentional judgment for setting the parameters.

The characteristics of both approaches are completely different from viewpoints of several categories, such as, data collection, handling, scientific points, and results. Typical functional formula of both approaches can express as described below.

(1) Process Engineering Approach by Stock Type Demand Function

 $\begin{aligned} \text{Demand} &= \text{SUM} \ (\text{Ei}) = \text{Si} \cdot \text{Qi} \cdot \text{Ri}, \ i = 1, n \\ \text{Ei} &= \text{energy consumption of } i - \text{equipment} \\ \text{Si} &= \text{energy consuming equipment stock} \\ \text{Qi} &= \text{equipment efficiency} \\ \text{Ri} &= \text{equipment operating rate} \end{aligned}$

Taking electricity consumption in residential sector as an example, S represents the number of equipment such as refrigerator, air conditioner, lighting fixture, television, electric cooker, vacuum cleaner, electric carpet and so on. Q represents the efficiency of equipment and R represents using time of equipment. S (equipment stock), Q (efficiency) and R (availability) each has its own function that is determined from the following functional formula, for instant;

$$\begin{split} S_{t} &= S_{t-1} + I_{t} - S_{t-1} \cdot \gamma \\ I_{t} &= f(P_{it}, P_{et}, Y_{t}, S_{t-1}) \\ Q_{t} &= f(P_{et}, Q_{t-1}, T_{t}) \\ R_{t} &= f(P_{et}, R_{t-1}) \end{split}$$

Where, S_{t-1} is the number of stocks in previous year or previous period. It is the newly purchased number and $S_{t-1} \cdot \gamma$ is the disposed number. P_{it} ; price of equipment, P_{et} ; price of energy, Y_t ; income, T_t ; time trend

(2) Economic Approach by Regression Analysis

Figure II-2 below shows the typical functional forms written in "Simple-E model sheet" as an example. In the Figure, Y (demand) is defined as internal (dependent) valuable, and X or Xi is external (independent) valuable (GNP and price etc.). Figure II-3 also shows typical demand function as an example.

	Internal	Option				
	Y	Туре	X1	X2	X3	X4
Typical Functional Form						
Y = a + b*X	DEMAND		GNP.R			
Y = a + b * X + c * Y(-1)	DEMAND		GNP.R	lag1.DEMAND		
LN(Y) = a + b*LN(X)	DEMAND	\$DL	GNP.R			
LN(Y) = a + b X	DEMAND	\$SL	GNP.R			
Y = a + b LN(X)	DEMAND		LN(GNP.R)			
LN(Y) = a + b*LN(X) + c*LN(Y(-1))	DEMAND	\$DL	GNP.R	lag1.DEMAND		
LN(Y) = a + b*LN(X1) + c*LN(Y(-1)) + d*X2	DEMAND	\$DL	GNP.R	lag1.DEMAND	exp(TREND)	
Y = a + b * X1 + c * X2	DEMAND		GNP.R	PRICE		
$Y = a + b \times X1 + c \times X2 + d \times Y(-1)$	DEMAND		GNP.R	PRICE	lag1.DEMAND	
LN(Y) = a + b*LN(X1) + c*LN(X2)	DEMAND	\$DL	GNP.R	PRICE		
LN(Y) = a + b*X1 + c*X2	DEMAND	\$SL	GNP.R	PRICE		
Y = a + b*LN(X1) + c*LN(X2)	DEMAND		LN(GNP.R)	LN(PRICE)		
Y = a + b*LN(X1) + c*X2	DEMAND		LN(GNP.R)	PRICE		
LN(Y) = a + b*LN(X1) + c*LN(X2) + d*LN(Y(-1))	DEMAND	\$DL	GNP.R	PRICE	lag1.DEMAND	
LN(Y) = a + b*LN(X1) + c*LN(X2) + d*LN(Y(-1)) + e*X3	DEMAND	\$DL	GNP.R	PRICE	lag1.DEMAND exp	(TREND)

E. and the	TT 2	T	~~1 f.		1 fa		·	"C:la	E made	labaat
Figure	11-2	IVDI	сяг п	писнопя	i iorms	written	In		-r/ moae	ei sneer
		- J P -		anenoma	1011115		***		E mout	i sneee

Figure II-3 Example of typical flow type demand function

LOG (D) = a + b·LOG (Y) - c·LO Y = Income Index P = Price Index D (-1) = Demand for previous y	$G(P) + d \cdot LOG(D(-1)) + e \cdot Time$ ear
b = Income elasticity (shor c = Price elasticity (short p 1-d =Time adjustment term e = Technical improvement b/(1-d) = Long term Income elastic c/(1-d) = Long term Price elastic	t period) eriod) t term icity ty

2. Determination of Demand Function

2.1 General Functional Forms

1) Linear function	y = ax + b
2) Quadric function	$y = a(x-p)^2 + q$
3) Fractional function	y = 1/x
4) Irrational function	$\mathbf{y} = \sqrt{\mathbf{x}}$
5) Power function	$y = x^a$
6) Exponential function	$y = a^x$
7) Logarithmic function	$y = \log_a x$ (a=e, natural logarithm)

2.2 Linearization

Non-linear	Transformation	Linear	Constraints
1) $y = ax^b$	$Y = \log y, X = \log x$	Y = a' + bX	x > 0, y > 0, a > 0
$2) y = e^{a+bx}$	$Y = \log y$	Y = a + bx	y > 0
3) $y = e^{a+bx}/(1 + e^{a+bx})$	$Y = \log(y / (1 - y))$	Y = a + bx	0 < y < 1

Graph of Y against lnX

2.3 Summary of functional forms

Model	Form	Slope	Elasticity	Ave.
Linear	Y=a+b*X	b	b*(X/Y)	Y/X
Double-log	LnY=a+b*LnX	b*(Y/X)	b	Y/X
Linear-log	Y=a+b*LnX	b*(1/X)	b*(1/Y)	Y/X
Log-linear	LnY=a+b*X	b*Y	b*X	Y/X
Reciprocal	Y=a+b*(1/X)	$-b^{*}(1/X^{2})$	-b*(1/XY)	Y/X
Logarithmic reciprocal	LnY=a+b*(1/X)	-b*(1/X2)*Y	-b*(1/X)	Y/X
Quadratic	$Y=a+b*X+c*X^2$	b+2*c*X	(b+2*c*X)*(X/Y)	Y/X
Polynomial	$Y = a + b_1 X + b_2 X^2 + b_3 X^3$	$b_1 + 2 b_2 X +$	(b_1+2*b_2*X+)	Y/X
	$+$ + $b_k X^k$	$\dots k^* b_k X^{k-1}$	$k * b_k X^{k-1}) * (X/Y)$	
Interaction	Y=a+b*X+c*XZ	b+c*Z	(b+c*Z)*(X/Y)	Y/X
Logistic	Ln(Y/(1-Y))=a+b*X	b*Y*(1-Y)	b*(1-Y)*X	Y/X

Slope (Marginal Propensity) = dY/dX,

Elasticity = (dY/dX) * (X/Y),

Ave. (Average Propensity) = Y/X

3. Regression Analysis

3.1 Fitness of Equation by Regression Analysis

1) R	R-Square, $0 \le 1$	Explained variance / Total variance ≤ 1 ,
	(The larger the	e better)
2) AR	Adjusted R-So	puare, $AR \le 1$, (The larger the better)
3) SD	$SD = (\sum e^2 / (n \cdot e^2))$	$(k))^{1/2},$
	e = Residual, n = Sa	mple size, $k = No.$ of independent variables
4) DW	Durbin Watson	n Statistics, $1 < DW < 3$
	DW = 2	: No serial correlation
	$DW \rightarrow 0$: Positive correlation
	$DW \rightarrow 4$: Negative correlation
5) Dh	Durbin h Statis	stics with lag, Dh < 2

6) t-value	t ≥ 2	: Significant
	$2 > t \ge 1$: Admissible to use
	t < 1	: Insignificant
7) Rho	Coefficient of s	erial correlation, Rho < 1
8) DF	Degree of Free	dom, $DF > 1$ (The lager the better)
9) F	F-Statistics, F >	0 (The larger the better)
10) RSS	Residual Sum o	of Square, $RSS > 0$ (The smaller the better)
11) YX	Correlation Co	efficient between Y and X's, YX < 1
12) XX	Correlation Coe	fficient between X's, XX < 0.95

3.2 Dummy Valuables

1) To neglect abnormal value of designated years

Y = a + b*X + c*dum.1991 (observation year 1978-1998)

In 1991, dummy = 1, Y = (a + c) + b*X

Others, dummy = 0, Y = a + b*X

2) To consider structure change of demand function

Y = a + b*X + c*dum.1978..1988 + d*dum.1978..1988 *X

(observation year 1978-1998)

1978-1988, dummy = 1, Y = (a + c) + (b + d)*X

1988-1998, dummy = 0, $Y = a + b^*X$

4. Elasticity and Intensity

Various energy indicators are usually used for energy demand forecasting and supply analysis. Typically, two indicators, that is, elasticity and intensity, help us easily understand the relationship between energy and economy.

4.1 Energy Demand Elasticity

Typical energy demand function is determined by income and price as same as other commodities in general. Therefore Demand (D) is function of Income (I) and Price (P).

 $\mathbf{D} = \mathbf{f}(\mathbf{I}, \mathbf{P})$

 $D = a \, \cdot I^b \cdot P^c$

Taking logarithm of both sides,

 $Ln(D) = a + b \cdot Ln(I) + c \cdot Ln(P)$

And by partial differentiation,

 $dD/D = b \cdot (dI/I) + c \cdot (dP/P)$

Where, coefficient b and c mean income elasticity and price elasticity respectively.

b = (dD/D) / (dI/I), c = (dD/D) / (dP/P)

In order to understand easily, taking assumption that price index (P) is nearly constant,

 $D = a \cdot I^b$, $Ln(D) = a + b \cdot Ln(I)$

Taking differentiation,

$$dD/D = b \cdot (dI/I)$$

b = (dD/D) / (dI/I) = ((D(t)-D(t-1)) / D(t-1)) / ((I(t)-I(t-1)) / I(t-1)))

In this case, the above elasticity is called "gross elasticity" because price is not taken into consideration. In reality, energy demand is not determined by income alone, but depends also on price fluctuations and technological innovations. Nevertheless, this value is generally used because of long-term stability and its easiness in calculating, which is defined as coefficient b of above equation. If we use GDP as an income index, energy elasticity with respect to GDP is also defined as the ratio of growth rate (%) of energy consumption to that (%) of GDP.

Definition

e = (dE/E) / (dGDP/GDP) = Growth rate of Energy (%) / Growth rate of GDP (%) where, e = elasticity with respect GDP E = energy demand GDP = Gross Domestic Product

4.2 General Description of Functional Forms and Elasticity

Definition of Elasticity (e) Y = f(X) e = (dY/Y) / (dX/X) = (dY/dX) * (X/Y) 1) $Y = a + b \cdot X$ dY/dX = b $e = (dY/dX) \cdot (X/Y) = b \cdot (X/Y),$ e(elasticity) is an increase function of X/Y (share of X with respect to Y)

3) $LogY = a + b \cdot X$ $dY/Y = b \cdot dX$, $e = (dY/dX) \cdot (X/Y) = b \cdot Y \cdot (X/Y) = b \cdot X$ e is an increase function of X

2)

4) $Y=a+b \cdot \log X$ $dY = b \cdot (dX/X),$ $e = (dY/dX) \cdot (X/Y) = b \cdot (1/X) \cdot (X/Y) = b/Y$ e is a decrease function of Y

- 5) $LogY = a + b \cdot LogX + c \cdot Z \cdot LogX$ $dY/Y = b \cdot (dX/X) + c \cdot Z \cdot (dX/X) = (b + c \cdot Z) \cdot (dX/X),$ $e = (dY/dX) \cdot (X/Y) = b + c \cdot Z$
- 6) Long-term elasticity and Short-term elasticity (Functional Foam with lag)

6.1)
$$Y = a + b*X + c*Y(-1)$$

In long term, Y = Y(-1), assumption in equilibrium condition (1-c)*Y = a + b*XY = a/(1-c) + b/(1-c)*X

6.2) Log Y = a + b*Log X + c*log Y(-1)In long term, Y = Y(-1), assumption in equilibrium condition Log Y = a/(1-c) + b/(1-c)*Log X

Boundary condition c = 0, LogY = a + b*LogXb = Short-term elasticity, b/(1-c) = Long-term elasticity1-c = Time adjustment term, $0 \le c \le 1$

```
6.3) LogY = a + b*LogX1 + c*logX2 + d*logY(-1)
Same above
b and c = Short-term elasticity,
b/(1-d) and c/(1-d) = Long-term elasticity
1-d = Time adjustment term, 0<u><d</u><1</li>
```

Long-term elasticity	b = b / (1-d), c = c / (1-d)	
Short-term elasticity	b and c	

4.3 Energy Demand Intensity

Energy intensity is useful for international comparisons and for observing the status of energy conservation. Although the indicator was originally used for engineering, if the reciprocal is taken, energy consumption/GDP can be interpreted to indicate macro energy productivity. Energy intensity is broadly used, for example, to show per GDP energy intensity (taking GDP as the denominator) and to show per capita energy intensity (taking population as the denominator). By using various indicators as the denominator, we can introduce various energy intensities for model building.

1) Industrial sector

Intensity (i, j) = amount of energy consumption (i, j) / amount of production (i, j) Where: i = type of business. j = energy source (fuels and electricity)

2) Residential and commercial sector

Intensity (j) = amount of energy consumption (j) / household (residential) Intensity (j) = amount of energy consumption (j) / floor space (commercial) Where: j = energy source (fuels and electricity)

3) Transportation sector

Intensity (passenger) = amount of energy consumption (j) / person-km Intensity (freight) = amount of energy consumption (j) / ton-km Where: j = energy source (fuels and electricity)