JDC Twister Technology Promotional Video

Please refer to the attached pictures and link for your reference 2 http://twister-grp.com/

Please enjoy the Twister promotional video ~~

Collaboration Program with JICA-MOC for Disseminating

Construction Soil Improving Method (Twister Method)

Demonstration Session/Workshop [6 Jun – 7 Jun 2019]

S/N	NAME	POSITION	DEPARTMENT	REMARKS
1	U Hla Tun Oo	Deputy Director General, DDG	Head Office	
2	U Khin Zaw	Chief Engineer, CE	Head Office	
3	U Yan Naing Zaw	Chief Engineer, CE	Ayeyarwady Division	
4	Daw Htar Zin Thin Zaw	Htar Zin Thin Zaw Chief Engineer, CE RRL		Higher Position of Ministry
5	Daw Zin Zin Htike	Deputy Director, DD	Road/ Port Design Department	of Construction
6	U Htoon Htoon Naing	Deputy Director, DD	Special Road Construction Unit 14	
7	U Win Kyaw Aung	Deputy Director, DD	Special Road Construction Unit 20	
8	U Than Myine Htoo	Deputy Director, DD	Special Road Construction Unit 21	

S/N	ATTENDEE	POS.	DEPARTMENT	S/N	ATTENDEE	POS.	DEPARTMENT
1	U Thein Zaw OO	AE	Special Road Construction Unit 14	13	U Ye Min Taung	SAE	Maubin District
2	U Win Naing	AE	Pyapon District	14	U Tay Zar Lin	SAE	Pathein District
3	U Myo Thet Zaw	AE	Hinthada District	15	U Zarni Htet	SAE	Labutta District
4	U Kyaw Kyaw Min Kyi	AE	Mechanical Department	16	U Kaung Myat Lin	SAE	Hintada District
5	U Nyut Oo	AE	Quality Control	17	U Zaw Min Tun	SAE	Mechanical Department
6	U Soe Thiha	AE	RRL	18	U Tin Htut Naing	SAE	Mechanical Department
7	Daw Aye Myint Zu	SSAE	Special Road Construction Unit 21	19	U Zaw Tun Naing	SAE	Quality Control
8	U Zaw Zaw Hlaing	SSAE	Mechanical Department	20	U Thein Than Aung	JE	Special Road Construction Unit 14
9	U Win Naing	SAE	Special Road Construction Unit 14	21	U Su Thiha Aung	JE	Quality Control
10	U HIa Min Than	SAE	Special Road Construction Unit 20	22	U Kyaw Moe	Operator	Special Road Construction Unit 14
11	U Thein Zaw Tun	SAE	Bogalay Division	23	U Thet Zaw	Mechanic	Special Road Construction Unit 14
12	U Hlaing Min Zaw	SAE	Pyapon District				

Construction Soil Improving Method (Twister Method)

DEMONSTRATION SESSION / WORKSHOP					
Day-1 (06 th Jun 2019)	Day- 2 (07 th Jun 2019)				
1 Briefing on Project Outline	1 Twister Plant Operation and Control Explanation				
 i. Project objective & purpose ii. Twister plant introduction & operation briefing iii. Mix design specifications 	 Explanation on control mechanism and relevant switches Briefing on operation sequences 				
2 Plant Operation Demonstration	(2) Demonstration on Plant Operation				
 i. Briefing and description on operation ii. Explanation of all equipment parts iii. Guidance on plant operation mechanism 	 Briefing on different equipment parts Explanation on workflow and workers' duty 				
③ Presentation of Project History	③ Twister Maintenance Briefing				
 i. Presentation on project milestone & history ii. Implementation plan iii. Quality control and specifications 	 Briefing the importance of maintenance work before/during/ after operation Details of maintenance work on different parts of the plant 				
(4) Presentation of Promotional Video	(4) Road Construction Site Visit				
i. Display Twister promotional video ii. Explanation of relevant successful projects	 Quality inspection to the constructed road Discussion of road specifications Briefing on road monitoring work 				
5 Q&A Session & Appreciation Session	(5) Q&A Session				
 i. Difference and comparison between Twister plant with other conventional stabilizer. ii. Quality control on design specifications and improved soil. iii. Production cost and operation rate. 	 Propose to review the road specifications for the next trial project Suggestion for different mix design options to achieve more economical mix design for future road construction 				

Collaboration Program with JICA-MOC for Disseminating Construction Soil Improving Method (Twister Method)

Photos of the Day: 6th June 2019

Collaboration Program with JICA-MOC for Disseminating

Construction Soil Improving Method (Twister Method)

Photos of the Day: 6th June 2019

Collaboration Program with JICA-MOC for Disseminating Construction Soil Improving Method (Twister Method)

Photos of the Day: 7th June 2019

Environmental & Social Management

JDC CORPORATION

YANGON BRANCH

1. During rainy season, the site office is open to students in the village affected by the Project

2. Maintenance of common access to the village

3. Situation of borrow-pit to get local soil

Environmental & Social Management

4. Situation of sand stock yard

5. Maintenance of common place in the village

Collaboration Program among JICA/ MOC/ JDC for Disseminating

Construction Soil Improving Method (Twister Method)

Official Handing Over Ceremony [14 November 2019]

Event Attendees List:

S/N	NAME	POSITION	DEPARTMENT	REMARKS
1	U Ohn Lwin	Director General, DG	Head Office	
2	U Aung Myint Oo	Deputy Director General, DDG	Head Office (Planning)	
3	U Kyi Zaw Myint	Deputy Director General, DDG	Head Office (Planning-2)	
4	U Shwe Zin	Chief Engineer, CE (Civil)	DOH	Higher Position of Ministry
5	U Kyaw Kyaw	w Kyaw Chief Engineer, CE (Civil) DOH ht Han Chief Engineer, CE (Civil) DOH		of Construction
6	U Myint Han			
7	U Than Myint	Chief Engineer, CE (Civil)	DOH	
8	U Thaung Tun	Chief Engineer, CE (Mechanical) DOH		
9	Dr. Hlaing Moe	Director (Mechanical)	DOH	
10	U Kyaw Moe Htut	Director (Civil)	DOH	
11	Daw Yin Yin Aye	Director	DOH	
12	U Tin Maung Kyi	Assistant Director, AD (Mechanical)	DOH	
13	U Nay Moe Naing	Assistant Director, AD (Mechanical)	ООН	
14	Daw Tin Tin Naing	Assistant Director, AD (Mechanical)	рон	

Official Handing Over Ceremony

Agenda of the Ceremony:

Time	Agenda					
10:00 – 10:05	Announcement of Opening Ceremony					
10:05 – 10:20	Presentation of the Collaboration Program Milestone					
10.20 10.20	i. Handing Over of the Twister Handbook to Department of Highways					
10.20 - 10.30	ii. Awarding of the Letter of Appreciation for Donations to JDC Corporation					
10:30 – 10:45	Words of Thanks by U Ohn Lwin, Director General (DG) of Department of Highways, Ministry of Construction					
10:45 - 11:00	Announcement of Closing Ceremony					
11:00 – 11:15	MOC-JDC Photography Session					
11:15 – 11:40	Refreshment & Conversation Session					

Official Handing Over Ceremony

Photos of the Day: 14th November 2019

JDC CORPORATION YANGON BRANCH

Official Handing Over Ceremony

Photos of the Day: 14th November 2019

Official Handing Over Ceremony

Photos of the Day: 14th November 2019

MINISTRY OF CONSTRUCTION DEPARTMENT OF HIGHWAYS

LETTER OF APPRECIATION FOR DONATIONS To JDC Corporation

(November 14, 2019)

On Behalf of the Department of Highways, Ministry of Construction, I would like to thank the JDC Corporation for their generous donation of KOKUDO KAIHATSU TM-1500 Rotary Crushing & Mixing Machine (Twister Method). We are very pleased for the advantages of Japanese Technologies on Construction Soil Improving Method (Twister Method) in Myanmar as per results of Pilot Project under the Collaboration Program. Your significant support of these efforts is greatly appreciated.

JDC CORPORATION YANGON BRANCH

N

ACTIVE. CREATIVE. EVOLUTION. BUILDING TOMORROW.

Workshop Summary

PURPOSE	 Summarized on:- 1. Workshop 2 event 2. Distribution and review of project report, especially cost effectiveness 3. Video presentation 4. Discussion on Q&A session 5. Photos of the day
DATE / TIME	20 th February 2020, Thursday (1000 - 1210)
LOCATION	Mechanical Section Department, 8 Mile Yangon
ATTENDEES	Refer to the following list

No.	NAME	POSITION	DEPARTMENT				
	Ministry of Construction						
1	U Taung Myint Tun	Chief Engineer, CE	Civil Department				
2	U Yan Naing Zaw	Director	Ayeyarwady Division				
3	U Kyaw Naing	Director	Civil Department				
4	Dr. Hlaing Moe	Director	Mechanical Department				
5	Daw Htar Zin Thin Zaw	Director	RRL				
6	U Htoon Htoon Naing	Deputy Director, DD	Special Road Unit 14				
7	U Than Myaing Htoo	Deputy Director, DD	Special Road Unit 21				
8	U Kyaw Zaw	Assistant Director, AD	Pyapon District				
9	U Kyaw Than Htay	Assistant Director, AD	Yangon North District - Civil				
10	U Nyi Nyi Aung	Assistant Director, AD	Pathein District - Civil				
11	U Myat Khine Soe	Assistant Director, AD	Maubin District – Civil				
12	U Tin Maung Kyi	Assistant Director, AD	Mechanical Department				
13	U Aung Kyaw	Assistant Director, AD	Mechanical Department				
14	U Zaw Zaw Hlaing	SSAE	Mechanical Department				
15	Daw Mi Mi Yee Mon	Staff Officer	Twantay District – Civil				
16	U Kyaw Kyaw Min Kyi	Staff Officer	Mechanical Department				
17	U Moe Si Thu Win	Staff Officer	Mechanical Department				
	JDC Corporation						
1	Ryoji Yamashita	Chief Representative	-				
2	Thant Zaw Ngwe	Office Manager	-				
3	Ng Kin Mun	Engineer	-				
4	Linn Htet Aung	Engineer	-				

Project Outline Introduction

- ✓ project location and purpose
- ✓ design mix applied
- ✓ Twister plant layout explanation

Project Schedule Briefing

- ✓ project plan illustration
- ✓ completion of Twister plant workflow
- ✓ phase 1 phase 6

Post Monitoring Work - QC

- \checkmark orientation and method for post monitoring work
- \checkmark comparison of Before and After
- \checkmark latest road condition

Review / Analysis of Cost Effectiveness

- \checkmark review of cost with design mix
- ✓ proposal for future road extension
- ✓ findings

Video Presentation

- ✓ project procedure/ milestone
- \checkmark latest road condition

As discussed in Q&A Session:-

[1] - CE urged to use simple design mix in order to reduce the project cost

- > JDC strongly recommended to CE to consider more simple design mix which can reduce the overall types of material involved in the design and construction stage.
- CE agreed with JDC's point and urged the RRL's Director Daw Htar Zin to consider simpler design mix for future project.
- RRL explained that a high design mix specification was decided due to MOC's lack of understanding on the newly introduced Twister technology. Besides, RRL also commented that cement is not necessary to be applied in Base course design.
- RRL stated that more time is needed to study the past project result in sequence to work out more economical and simple design mix for future project.

[2] - Material procurement and loss of material

- JDC highlighted the delay of material procurement which eventually delayed the production progress of Twister plant's due to insufficient material on site. Furthermore, there was loss of material delivered to site. CE questioned DD on the stated issue.
- DD explained that the soft crushed rocks had to be procured and delivered from the supplier at Myaungmya area, where far from the Twister site and thus it caused the delay in material procurement. Meanwhile, the delay in material delivery also caused by the low bridges' capacity and aged-condition which is critical for heavy truck to pass through.
- RRL said that most suppliers were not able to supply the crushed rock according to the size distribution chart. This is because they don't have the facility to prepare the required mixture.

[3] - Usage of hard rock in Twister machine and Japan operation experience

Assistant Director questioned on the usage of hard rock in Twister machine and its past operation experience in Japan. JDC mentioned the Twister machine is capable to crush and mix a wide range of material, from cohesive soil to soft rock in order to produce a mass volume of improved soil. Besides, crushing and mixing of hard rock is workable for Twister machine but it will involves frequent maintenance especially replacement of impact chain, which will increase the operation cost.

JDC highlighted on Twister's higher productivity and better product quality but further studies are required to compare with the other conventional method in term of cost and quality in details.

[4] - Budget for future road extension project

- CE mentioned that the current budget is not available for road extension project as informed by head office since the Yangon-Pathein Road upgrading work is MOC's first priority project at the present time.
- CE also mentioned that they are trying to secure the budget for the road extension project for next year.

[5] - Twister promotional video

- Mechanical section Assistant Director and SSAE was requested a copy of Twister promotional video.
- > JDC has sent the Twister promotional video link to SSAE afterwards.

[6] - Pictures on the Day

Japan International Cooperation Agency

WORKSHOP 2

Project Report / Proposal for Future Road Extension

	Table	e of Contents	Page No.	
Topic 0	Proje	ect Outline	1	
Topic 1	Project Procedure/ Milestone			
	•	Project Flow Chart		
Topic 2	Post	Monitoring Work	12 - 15	
	2-1	Configuration of Post Monitoring		
	2-2	Comparison of Before & After		
	2-3	Latest Road Condition (Dec' 2019)		
Topic 3	Analy	ysis of Cost Effectiveness	16 - 20	
	3-1	Review of Cost with Design Mix		
	3-2	Evaluation of Technical Requirements / Findings		
	3-3	Proposal for future road extension		

Workshop 2

Collaboration Program with JICA-MOC for Disseminating Construction Soil Improving Method (Twister Method)

1. OVERVIEW

- Owner
- Contract Period
- Program Purpose
 : Demonstration to Myanmar government and local /
 foreign companies on the most effective soil improvement
- Demonstration Details
- 1 Demonstration Content

t : Utilization of "Twister Method" effectively to produce the improved local soil as the material for subgrade, sub-base and base course in road construction.

: JICA (Consignment Contract)

technology "Twister Method".

: 30th November 2018 - 31st August 2020

- ② Construction Location
- : 400m length around 24km point of Road S₁₆-49 (Bogalay KyeinChaung – KaDonKaNi), approximately 200km away to Southwest from Yangon.

③ Material Quantity: ① Subgrade= 400m (length) × 5.46m (width) × 350mm (thk.)= 765m³

- **2** Sub-Base= 400m (length) × 4.86m (width) × 175mm (thk.)= 340m³
- **3** Base = 400m (length) × 4.26m (width) × 175mm (thk.)= 298m³

Total Improved Soil Quantity = $765m^3 + 340m^3 + 298m^3 = 1,403m^3$

④ Material Mixture Proportion

Material Course	Cohesive Soil	River Sand	River Shingle	Lime		
Capping Layer	60 %	40 %	-	6.9 %		
Sub-Base	15 %	15 %	70 %	6.9 %		
Material Course	C/R (1"x2") (25mm x 50mm)	C/R (3/4") (19mm)	C/R (1/2") (13mm)	C/R (3/8") (9.5mm)	Dust	Cement
Base	25 %	20 %	15 %	10 %	30 %	4.6 %

⑤ Plant Layout

Topic 1Project Procedure

i. Project Flow Chart

Project Milestone/ Procedure

JDC CORPORATION

The Project's milestone involved with respective start and finish date to be tabularized below:

No.	Phase	Start Date	End Date
1	Construction of plant yard	28 December 2018	5 March 2019
2	Transportation & Delivery	6 March 2019	8 March 2019
3	Installation/ Assembly	9 March 2019	23 March 2019
4	Commissioning	25 March 2019	28 March 2019
5	Trial Test for design mix	29 March 2019	6 April 2019
6	Actual Road Construction	23 April 2019	18 May 2019

Project Procedure – Phase 1 Construction of Twister Plant Yard

(1) Site before occupation

```
(19<sup>th</sup> Dec. 2018)
```


(2) Earthwork for plant yard begin

(2nd Jan. 2019)

 $(\certain \certain \certain$

(8th Jan. 2019)

Project Procedure – Phase 1 Construction of Twister Plant Yard

(4) Earthwork for embankment

(15th Jan. 2019)

(5) Completion of embankment

(14th Feb. 2019)

(6) Commencement of foundation works for plant equipment

(20th Feb. 2019)

Project Procedure – Phase 1 Construction of Twister Plant Yard

(7) Completion of foundation works

(27th Feb. 2019)

(8) Site ready for equipment delivery

(5th Mar. 2019)

Project Procedure – Phase 2 Transportation & Delivery of Twister Equipment

(1) Delivery of equipment

(6th – 8th Mar. 2019)

Project Procedure – Phase 3 Installation & Assembly of Twister Plant

(1) Twister installation work

^{(9&}lt;sup>th</sup> – 23th Mar. 2019)

Project Procedure – Phase 4 Commissioning

1 Calibration of Machine

(25th – 28th Mar. 2019)

Project Procedure – Phase 5 Trial Test for Design Mix

① Capping Layer

(29th Mar. 2019)

2 Sub-Base Course

(1st Apr. 2019)

③ Base Course

(5th – 6th Apr. 2019)

Project Procedure – Phase 6 Actual Road Construction

(1) Capping Layer – Soil (60%) : Sand (40%) : Lime (6.9%)

(23rd - 29th Apr. 2019)

(2) Sub-Base Course – Soil (15%) : Sand (15%) : River Shingle (70%) : Lime (6.9%)

(30th Apr. – 6th May 2019)

③ Base Course – C/R 1"x2" (25%) : C/R 3/4" (20%) : C/R 1/2" (15%) : C/R 3/8" (10%) : Dust (30%) : Cement(4.6%)

(7th - 12th May 2019)

Project Procedure – Phase 6 Actual Road Construction

(4) DBST Double Bituminous Surface Treatment Work

(15th - 18th May 2019)

(5) DBST Road Construction Completion

Topic 2 Post Monitoring Work

- i. Configuration of Post Monitoring
- ii. Comparison of Before & After
- iii. Latest Road Condition (Dec' 2019)

JDC CORPORATION

Post Monitoring

The construction of 2-furlongs road under Twister Technology was completed on 18 May 2019 and has been monitored throughout collaboration program. The road was divided into portions with 50m apart from each gridline, and 3 control points were setup on each gridline as shown. The differential settlement and tilting of the constructed road were measured and recorded for further research purpose.

JDC CORPORATION YANGON BRANCH

begin	Criteria	After Tw	
18 th Sep. 2018	Photo Taken On	18 th Sep. 2019	
Bad	Water Permeability	Good	
Numerous / Muddy	Water Stagnant	Nil	
Numerous	Potholes / Crack	Nil / Crack Free	
Hard / Dangerous	Ease of Accessibility	Easy / Safe	

(1)

2

3)

SITE ROAD CONDITION ~ 18-19 Sep. 2019 (During Rainy Season)

The Bogalay lies on 7m above sea level. This township has a tropical climate and significant 100.0 inch of precipitation falls annually.

JDC CORPORATION YANGON BRANCH

Latest Road Condition – 12 December 2019

Current Road Condition after Twister 400m road section:

Topic 3Analysis of Cost Effectiveness

- i. Review of Cost with Design Mix
- ii. Evaluation of Technical Requirements / Findings
- iii. Proposal for future road extension

•							
	n	n	n	σ	1 21	vor	
La	Ы	U 1		5	La	VCI	

		/o cupucit	<u>y 300m /</u>	uuyj	cuse	04002 - 111010	зрасну									
wister Method	Capping Lay	er (THK 350mm)	(56,353 Cost/ı	n ³)	80% capacity	Capping La	iyer (THK 350m	m)(45,334 Cost/	m³)	Actual Vs Case 1	80% capacity	Capping L	ayer (THK 350r	nm)(45,334 Cost/	m ³)	Case1 Vs Case
60%,S-40%,Lime- 6.9%	853.8 m ³	Quantity m ³	Rate	Price (MMK)	C-60%,S-40%,Lime- 6.9%	853.8 m ³	Quantity m ³	Rate	Price (MMK)	/ lotual vo case 1	Soil 50%, Sand 50%	853.8 m ³	Quantity m ³	Rate	Price (MMK)	
Days	Soil m ³	874	1,500	1,311,000	(4 days)	Soil m ³	874	1,500	1,311,000		Material	Soil m ³	728	1,500	1,092,000	I
Naterial	Sand m ³	458	6,000	2,748,000	Material	Sand m ³	458	6,000	2,748,000		Design Volume 764.4 Cum	Sand m ³	573	6,000	3,438,000	1
Design Volume 764.4 Cum	Lime (Bags)	7,637	2,280	17,412,360	Design Volume 764.4 Cum	Lime (Bags)	7,637	2,280	17,412,360		(4 days)	Lime (Bags)	0	2,280	-	1
	768.42/764.4=1		Total	21,471,360		768.42/764.4=1		Total	21,471,360			768.42/764.4=1		Total	4,530,000	1
	Actual 768.42 Cum	Material U	nit Rate/m ³	27,942		Actual 768.42 Cum	Material U	Init Rate/m ³	27,942			Actual 768.42 Cum	Material	Unit Rate/m ³	5,895	70 Dersont
	Design 764.4 Cum	Material U	nit Rate/m ³	28,089		Design 764.4 Cum	Material U	Init Rate/m ³	28,089			Design 764.4 Cum	Material	Unit Rate/m ³	5,926	79 Percent
Machainary Cost	Excavator (day)	12	250,000	3,000,000	Machainary Cost (Base 300m ³ /day)	Excavator (day)	8	250,000	2,000,000		Machainary Cost	Excavator (day)	8	250,000	2,000,000	
	Wheel loader (day)	5	300,000	1,500,000		Wheel loader (day)	4	300,000	1,200,000		(Base 300m ³ /day	Wheel loader (day)	4	300,000	1,200,000	1
	Motor Grader (day)	6	300,000	1,800,000		Motor Grader (day)	4	300,000	1,200,000			Motor Grader (day)	4	300,000	1,200,000	1
	Smooth Roller (day)	6	300,000	1,800,000		Smooth Roller (day)	4	300,000	1,200,000			Smooth Roller (day)	4	300,000	1,200,000	1
	Sheepfoot Roller (day)	6	300,000	1,800,000		Sheepfoot Roller (day)	4	300,000	1,200,000			Sheepfoot Roller (day)	4	, 300,000	1,200,000	1
	Tire Roller (day)	6	300,000	1,800,000		Tire Roller (day)	4	300,000	1,200,000			Tire Roller (day)	4	, 300,000	1,200,000	1
	Dump Truck (day)	23	150,000	3,450,000		Dump Truck (day)	16	150,000	2,400,000			Dump Truck (day)	16	150,000	2,400,000	1
				15,150,000					10,400,000						10,400,000	1
Fuel Cost	Diesel (Lit)	2,023	1,130	2,285,990	Fuel cost	Diesel (Lit)	1,348	1,130	1,523,240		Fuel cost	Diesel (Lit)	1,348	1,130	1,523,240	1
		7,326	1,057	7,743,582			4,883	1,057	5,161,331				4,883	1,057	5,161,331	1
				10,029,572			-		6,684,571				•		6,684,571	1
Labour Cost	Worker (day)	39	6,000	234,000	Labour	Worker (day)	26	6,000	156,000		Labour	Worker (day)	26	6,000	156,000	1
	Operator (day)	6	7,000	42,000		Operator (day)	4	7,000	28,000			Operator (day)	4	7,000	28,000	1
	Excavator (day)	12	7,000	84,000		Excavator (day)	8	7,000	56,000			Excavator (day)	8	7,000	56,000	1
	Motor Grader (day)	6	7,000	42,000		Motor Grader (day)	4	7,000	28,000			Motor Grader (day)	4	7,000	28,000	1
	Smooth Roller (day)	6	7,000	42,000		Smooth Roller (day)	4	7,000	28,000			Smooth Roller (day)	4	7,000	28,000	1
	Sheepfoot Roller (day)	6	7,000	42,000		Sheepfoot Roller (day)	4	7,000	28,000			Sheepfoot Roller (day)	4	7,000	28,000	1
	Tire Roller (day)	6	7,000	42,000		Tire Roller (day)	4	7,000	28,000			Tire Roller (day)	4	7,000	28,000	1
	Dump Truck (day)	23	7,000	161,000		Dump Truck (day)	15	7,000	105,000			Dump Truck (day)	15	7,000	105,000	1
	Wheel loader (day)	5	7,000	35,000		Wheel loader (day)	3	7,000	21,000			Wheel loader (day)	3	7,000	21,000	4
				724,000					478,000						478,000	1
		То	tal	25,903,572			Т	otal	17,562,571					Fotal	17,562,571	1
	Actual 768.42 Cum	Production u	unit Rate/m ³	33,710		Actual 768.42 Cum	Production	unit Rate/m ³	22,855	32 percent		Actual 768.42 Cum	Production	n unit Rate/m ³	22,855	1
	Design 764.4 Cum	Production u	unit Rate/m ³	33,887		Design 764.4 Cum	Production	unit Rate/m ³	22,976	per cent		Design 764.4 Cum	Production	n unit Rate/m ³	22,976	4
		То	tal	47,374,932			Т	otal	39,033,931				-	Гotal	22,092,571	I
		Actual 76	8.42Cum	61,652			Actual 7	68.42Cum	50,798	18 nercent			Actual	768.42Cum	28,751	43 Percent
	Total	Design 7	64.4 Cum	61,977		Total	Design	764.4 Cum	51,065	10 percent		Total	Design	764.4 Cum	28,902	491 Creen
Thechnical & Quality Control	Part				Thechnical & Quality Control Part						Thechnical & Quality Contro	l Part				
Mix Design	Requirement	Test	1	000	Mix Design	Requirement	Test	ח			Mix Design	Requirement	Test	1	000	1
	nequirement		· · · · · ·			nequirement		D	* *							1

Mix Design	Requirement	Test	DOC	
Soil 60%, Sand 40%	OMC (w) =14.4%			
lime 6.9%	$MDD = 1.92 \text{ g/cm}^{3}$	Density test		
	DOC ≥ 95%		Achieved DOC	
Capping Layer	socked CBR ≥ 15%			
	≥ 10 Roller passes			

Mix Design	Requirement	Test	DOC	Mix Design	Requirement	Test	DOC
Soil 60%, Sand 40%	OMC (w) =14.4%			Soil 50%, Sand 50%			
lime 6.9%	$MDD = 1.92 \text{ g/cm}^{3}$	Density test			CBR ≥ 15%		
	DOC ≥ 95%		Achieved DOC	PP2 Project	Dry Dendity 1.69 g/cm ³	Density test	unspecified
Capping Layer	socked CBR \geq 15%				Moiture content 6%		
	≥ 10 Roller passes				Doc 93%		

			200
Mix Design	Requirement	Test	DOC
0%, Sand 50%			
roject	CBR ≥ 15% Dry Dendity 1.69 g/cm ³ Moiture content 6%	Density test	unspecified
	Doc 93%		

Ac	tual Work (90m	³ /day) (30%	Capacity)		Ca	<u>se 1 (240m³/day</u>) (80% Capa	acity)			Case2 Twister N	lethod Applied P	P2 Mix Des	ign 80% C	Capacity	
wister Metohd	Su	ıb Base (THK 175mm	ı)(91,793 Cost/m	³)	80% Capacity	Sub Bas	se (THK 175mm)(6	4,537 Cost/m	³)	Actual Vs Case 1	80% Capacity	Sub Ba	se (THK 175mm)(64,537 Cost/m ⁸	ⁱ)	
-15%,Rs-70%,Lime-6.9%	504.6 m ³	Quantity m ³	Rate	Price (MMK)	C-15%,Rs-70%,Lime-6.9%	506.4 m ³	Quantity m ³	Rate	Price (MMK)	Actual VS Case 1	soil 50%,sand 50%,ce 6.4-6.9%	506.4 m ³	Quantity m ³	Rate	Price (MMK)	Caser vs case
and 15%	Soil m ³	138	1,500	207,000	Sand 15%	Soil m ³	138	1,500	207,000		Material	Soil m ³	460	1,500	690,000	
Days	Sand m ³	108	6,000	648,000	2 Days	Sand m ³	108	6,000	648,000		2 Days	Sand m ³	360	6,000	2,160,000	
laterial	Lime (Bags)	4803	2,280	10,950,840	Material	Lime (Bags)	4803	2,280	10,950,840			Cement	4524	2,280	10,314,720	
esign Volume 340 Cum	Rs m ³	435	41.000	17.835.000	Design Volume 340 Cum	Rs m ³	435	41.000	17.835.000		Design Volume 340 Cum	Rs m ³		41.000	-	
	454.14/340=1.34	T	otal	29,640,840		454.14/340=1.34	Tot	al	29,640,840			454.14/340=1.34	Т	otal	13,164,720	
	Actual 454.14 Cum	Material U	Init Rate/m ³	65,268		Actual 454.14 Cum	Material Un	it Rate/m ³	65,268			Actual 454.14 Cum	Material U	nit Rate/m ³	28,988	
	Design 340 Cum	Material U	Init Rate/m ³	87,179		Design 340 Cum	Material Un	it Rate/m ³	87,179			Design 340 Cum	Material U	nit Rate/m ³	38,720	56 Percent
achainary Cost	Excavator (day)	10	250,000	2,500,000	Machainary Cost	Excavator (day)	4	250,000	1,000,000		Machainary Cost	Excavator (day)	4	250,000	1,000,000	
···· , ···	Wheel loader (day)	5	300,000	1,500,000	,	Wheel loader (day)	2	300,000	600,000		,	Wheel loader (day)	2	300,000	600,000	
	Motor Grader (day)	5	300,000	1,500,000		Motor Grader (day)	2	300,000	600,000			Motor Grader (day)	2	300,000	600,000	
	Smooth Roller (day)	5	300,000	1,500,000		Smooth Roller (day)	2	300,000	600,000			Smooth Roller (day)	2	300,000	600,000	
	Sheepfoot Roller (day)	5	300,000	1,500,000		Sheepfoot Roller (day)	2	300,000	600,000			Sheepfoot Roller (day)	2	300,000	600,000	
	Tire Roller (day)	5	300,000	1,500,000		Tire Roller (day)	2	300,000	600,000			Tire Roller (day)	2	300,000	600,000	
	Dump Truck (day)	11	150,000	1,650,000		Dump Truck (day)	5	150,000	750,000			Dump Truck (day)	5	150,000	750,000	
				11,650,000					4,750,000						4,750,000	
uel Cost	Diesel (Lit)	1,685	1,130	1,904,050	Fuel Cost	Diesel (Lit)	674	1,130	761,620		Fuel Cost	Diesel (Lit)	674	1,130	761,620	
		6,104	1,057	6,451,928			2,442	1,057	2,581,194				2,442	1,057	2,581,194	
			1	8,355,978				İ	3,342,814					1	3,342,814	1
abour Cost	Worker (day)	35	6,000	210,000	Labour cost	Worker (day)	14	6,000	84,000		Labour cost	Worker (day)	14	6,000	84,000	1
	Operator (day)	5	7,000	35,000		Operator (day)	2	7,000	14,000			Operator (day)	2	7,000	14,000	
	Excavator (day)	10	7,000	70,000		Excavator (day)	4	7,000	28,000			Excavator (day)	4	7,000	28,000	
	Wheel loader (day)	5	7,000	35,000		Wheel loader (day)	2	7,000	14,000			Wheel loader (day)	2	7,000	14,000	
	Motor Grader (day)	5	7,000	35,000		Motor Grader (day)	2	7,000	14,000			Motor Grader (day)	2	7,000	14,000	
	Smooth Roller (day)	5	7,000	35,000		Smooth Roller (day)	2	7,000	14,000			Smooth Roller (day)	2	7,000	14,000	
	Sheepfoot Roller (day)	5	7,000	35,000		Sheepfoot Roller (day)	2	7,000	14,000			Sheepfoot Roller (day)	2	7,000	14,000	
	Tire Roller (day)	5	7,000	35,000		Tire Roller (day)	2	7,000	14,000			Tire Roller (day)	2	7,000	14,000	
	Dump Truck (day)	11	7,000	77,000		Dump Truck (day)	5	7,000	35,000			Dump Truck (day)	5	7,000	35,000	
				567,000					231,000						231,000]
		T	otal	20,572,978			Tot	al	8,323,814				Т	otal	8,323,814	
	Actual 454.14 Cum	Production	unit Rate/m ³	45,301		Actual 454.14 Cum	Production u	nit Rate/m ³	18,329	CO morrowst		Actual 454.14 Cum	Production	unit Rate/m ³	18,329	
	Design 340 Cum	Production	unit Rate/m ³	60,509		Design 340 Cum	Production u	nit Rate/m ³	24,482	ou percent		Design 340 Cum	Production	unit Rate/m ³	24,482	
		T	otal	50,213,818			Tot	al	37,964,654				T	otal	21,488,534	
		Actual 4	54.14Cum	110.569			Actual 45	4.14Cum	83.597	24	1		Actual 4	54.14Cum	47.317	43.5
	Total	Design	340 Cum	147,688		Total	Design 3	40 Cum	111,661	24 percent		Total	Design	340 Cum	63,202	43 Percent
hechnical & Quality Contro	ol Part				Thechnical & Quality Contr	ol Part					Thechnical & Quality Control Par	<u>t</u>				
			1					T		1				T		1
Mix Design	Requirement	Test		UCS	Mix Design	Requirement	Test		UCS		Mix Design	Requirement	Test		UCS	-
DII 15%, Sand 15%,	UNC = 6.7%		_	05 Mar	soil 15%, Sand 15%,	UIVIC = 6.7%		_	05 Mar		soil 50%,sand 50%,ce 6.4-6.9%				125 Mar	
s 70%, Lime 6.9%	$MDD = 2.15 \text{ g/cm}^3$	UCS	0	.85 іvіра	Rs 70%, Lime 6.9%	$MDD = 2.15 \text{ g/cm}^3$	UCS	0	.85 Mpa			DD 1.63 kg/cm ³	UCS	≥ 1.	125 Mpa	
	CBR ≥ 30%	Density test	12	Test Points		CBR ≥ 30%	Density test	12 1	Test Points			moisture content 11%	Density test	1		
ub Base Course	UCS ≥ 0.75-1.5 Mpa		Ach	ieved DOC	Sub Base Course	UCS ≥ 0.75-1.5 Mpa		Ach	ieved DOC			DOC 95%		1		
	Doc ≥ 98%					Doc ≥ 98%								1		
	≥ 10 Roller passes					≥ 10 Roller passes		1								

Act	ual Work (87m³/day	/) (29% Capa	city)			(Case 1 (240m³/da	y) (80% Cap	acity)		
Twister Method	Base Cou	rse (Thk 175mm)(99	9,916 Cost/m ³)		Actual Vs Caso 1	80% Capacity	Base	Course (Thk 175mm	n)(78,241 Cost/m ³)		
C/R(1''x2'')25%,C/R(3/4'')20%	388.6 m ³	Quantity m ³	Rate	Price (MMK)	Actual vs case 1	C/R(1''x2'')25%,C/R(3/4'')20%	388.6 m ³	Quantity m ³	Rate F	rice (MMK)	
C/R(1/2'')15%,C/R(3/8'')10%	C/R (1''x2'')	132	50,000	6,600,000		C/R(1/2'')15%,C/R(3/8'')10%	C/R (1"x2")	132	50,000	6,600,0	
Dust 30%,Cement 4.6%	C/R (3/4'')	104	50,000	5,200,000		Dust 30%,Cement 4.6%	C/R (3/4'')	104	50,000	5,200,0	
4 Days	C/R (1/2'')	78	50,000	3,900,000		2 Days	C/R (1/2'')	78	50,000	3,900,0	
Material	C/R (3/8'')	51	50,000	2,550,000		Material	C/R (3/8'')	51	50,000	2,550,0	
	Dust	152	40,000	6,080,000			Dust	152	40,000	6,080,0	
Design Volume 298 Cum	Cement (Bag)	763	7,500	5,722,500		Design Volume 298 Cum	Cement (Bag)	763	7,500	5,722,5	
	349.74/298=1.17	Tot	al	30,052,500			349.74/298=1.17	Тс	otal	30,052,5	
	Actual 349.74 Cum	Material Un	it Rate/m3	85,928			Actual 349.74 Cum	Material U	nit Rate/m3	85,9	
	Design298 Cum	Material Un	it Rate/m3	100,847			Design298 Cum	Material U	nit Rate/m3	100,8	
Machainary Cost	Excavator (day)	8	250,000	2,000,000		Machainary Cost	Excavator (day)	4	250,000	1,000,0	
	Wheel loader (day)	4	300,000	1,200,000			Wheel loader (day)	2	300,000	600,0	
	Motor Grader (day)	4	300,000	1,200,000			Motor Grader (day)	2	300,000	600,0	
	Smooth Roller (day)	4	300,000	1,200,000			Smooth Roller (day)	2	300,000	600,0	
	Sheepfoot Roller (day)	1	300,000	300,000			Sheepfoot Roller (day)	2	300,000	600,0	
	Tire Roller (day)	4	300,000	1,200,000			Tire Roller (day)	2	300,000	600,0	
	Dump Truck (day)	11	150,000	1,650,000			Dump Truck (day)	6	150,000	900,0	
				8,750,000						4,900,0	
Fuel Cost	Diesel (Lit)	1,358	1,130	1,534,540		Fuel Cost	Diesel (Lit)	674	1,130	761,6	
		4,884	1,057	5,162,388				2,442	1,057	2,581,1	
				6.696.928						3.342.8	
Labour Cost	worker (day)	24	6,000	144,000		Labour Cost	worker (day)	12	6,000	72,0	
	Operator (day)	4	7,000	28,000			Operator (day)	2	7,000	14,0	
	Excavator (day)	8	7,000	56,000			Excavator (day)	4	7,000	28,0	
	Wheel loader (day)	4	7,000	28,000			Wheel loader (day)	2	7,000	14,0	
	Motor Grader (day)	4	7,000	28,000			Motor Grader (day)	2	7,000	14,0	
	Smooth Roller (day)	4	7,000	28,000			Smooth Roller (day)	2	7,000	14,0	
	Sheepfoot Roller (day)	1	7,000	7,000			Sheepfoot Roller (day)	2	7,000	14,0	
	Tire Roller (day)	4	7,000	28,000			Tire Roller (day)	2	7,000	14,0	
	Dump Truck (day)	11	7,000	77,000			Dump Truck (day)	6	7,000	42,0	
				424,000						226,0	
		Tot	al	15,870,928				Тс	otal	8,468,8	
	Actual 349.74 Cum	Material Un	it Rate/m3	45,379	17 Deveent	1	Actual 349.74Cum	Material U	nit Rate/m3	24,2	
	Design298 Cum	um Material Unit Rate/m3			47 Percent		Design298 Cum	Material U	nit Rate/m3	28,4	
		al	45,923,428				Тс	otal	38,521,3		
		Actual349	9.74Cum	131,307	10	1		Actual34	19.74Cum	110,1	
	Total	Design 2	98 Cum	154.105	16 percent		Total	Design	298 Cum	129.2	

Mix Design	Requirement	Test	UCS
C/R(1''x2'')25%,C/R(3/4'')20%	OMC = 4.8%		
C/R(1/2'')15%,C/R(3/8'')10%	MDD = 2.31 g/cm^{3}	UCS	0.78Mpa
Dust 30%,Cement 4.6%	CBR ≥ 30%	Density test	1.7Mpa
	UCS ≥ 3-6 Mpa		1.97Mpa
Base Course	Doc ≥ 98%		
	≥ 10 Roller passes		

Mix Design	Requirement	Test	UCS
C/R(1''x2'')25%,C/R(3/4'')20%	OMC = 4.8%		
C/R(1/2'')15%,C/R(3/8'')10%	MDD = 2.31 g/cm^{3}	UCS	0.78Mpa
Dust 30%,Cement 4.6%	CBR ≥ 30%	Density test	1.7Mpa
	UCS ≥ 3-6 Mpa		1.97Mpa
Base Course	Doc ≥ 98%		
	≥ 10 Roller passes		

Analysis of Cost Effectiveness

Finding

- 1. Low productivity
- > Not in time procurement, especially additives such as lime/cement and aggregates.
- Premixing by excavators due to many types of main materials used for sub base / base course, Twister here is for 2 main materials and 1 additive. To enhance the productivity, simplified design mix is better.
- 2. Hight wastage/loss of material
- > Further study is necessary to find reasons
- 3. High Design requirements for rural roads at this junction
- 4. (1) to (3) result in high cost.

Proposal

In order to establish economical/practical design requirement of especially subgrade/capping layer and sub base for rural roads, a few patterns of design mixes should be tried in next extension project.

Revised Implementation Program Schedule

																		Yea	ar																
Item	Work Item / Activity	20	018						20	019											202	0									202	21			
		Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May J	un	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
0	JICA Program Collaboration program for disseminating construction soil improving method (Twister Method)												30 th (Nov. 20	018 - 2	26 th Fe	eb. 20	21										E	pecte	d Exte	ension	till 31	. st Aug	. 202	1
	Current Contract Period: 8 th June 2018 - 26 th February 2021									1																									
	Expected Revised Contract to be extended until 31st August 2021														_						_													_	
1	<u>Twister Plant Preparation</u> - Site Preparation, Equipment Delivery & Assembly	30 th	Nov.	2018	- 28 th I	Mar. 2	2019																												
2	<u>Twister Plant Operation</u> - Trial Test & Road Construction				29 th	Mar.	- 18 th	May	2019																										
3	Workshop 1 - Demonstration session of project milestone in Bogalay - Description of Twister plant operation and maintenance (Completed: 6 th - 7 th June 2019)							6 th - 7	^{7th} Jun =	. 2019	9																								
4	Official Handing Over Ceremony Attendees: MOC/ DOH Location: Ministry of Construction Head Office, Nay Pyi Taw (Completed: 14 th November 2019)												14 th	Nov. 20 •	019																				
5	Workshop 2 Discussion and analysis on project result, review and proposal on alternative & economic pavement design (Completede: 20 th February 2020)															20 th F	Feb. 2 •	020																	
6	COVID-19 prevention measures implied by Government to prevent the spread of virus: ban of mass gathering , social distancing , workplace precautionary measures																			C Trav	OVID vel Re	-19 P strict	ande ion N	mic & 1easu	res										
7	Overhaul of Twister Plant Maintain the functionality of the whole plant by overhauling. Repair and replace certain damaged mechanical parts of the plant (Est. Schedule: within 1 st December 2020 - 31 st January 2021)																							V	vithir	1 st D (as ea	ec. 20 Irliest	20 - 31 as pos	. st Jan sible)	2021					
8	Determination & notification regarding the continuance of the project based on overall situation (By End of January 2021)																								D	eterm E	inatio	n & No Jan. 2	otifica 021	tion:					
9	Workshop <u>3</u> Training session on Twister plant operation & maintenance lesson to deepen the knowledge (Est. Date: Early February 2021) - approximately 1 week																											Worl	shop -	3: Pro	posec	2 nd - 1	10 th Fe	eb. 20	21
10	Workshop 4 Discussion & disclosure of project result and final conclusion (Est. Date: Early April 2021)																											Worl	shop	4: Pro	posed ★	l 9 th A	pr. 20	21	
11	JICA Report Submission_ - Draft Report: 31 st May 2021 - Final Report: 30 th July 2021																													31 st	May.	2021	- 30 th	Jul. 2	021
12	Techincal Assistance by JDC without Finance Compensation																																		
Remark	<u>s:</u>													Indica	itor:	[Compl	leted		C)utsta	ndinį	g Acti	vities			Ongo	ing						

 Technical assistance/ support to be provided by JDC without finance compensation from MOC during collaboration program period. However, relevant party should liable for the costs and damages caused by their negligence or inattention of operation guidelines.

Pre-Workshop Task - Major Overhaul of Twister Plant

Pre-Workshop Task Details :

- Purpose Due to discontinuity of Twister plant's full operation for more than 1 year, it is necessary and essentially to maintain the functionality and capacity of the plant for near future use. Thus, JDC is obliged to ensure the Twister plant's long-run performance and achieve its purposes. In addition, overhauling can prevent critical equipment failure, increase the system performance and yet extend the life span of the plant.
- Activity : ① Inspect the tear and wear condition of the plant components
 - : ② Overhaul the Twister plant as per recommended
- Location : Twister Plant, Road S_{16} -49, Bogalay

Attendees : ① JDC's Yangon technical team (Mr. Yamashita, Mr. Kin Mun, Mr. Linn, Mr. Zaw)

- : ② ANC Fortune Winner Co., Ltd. specialist for control system integrator
- : ③ MOC appointed Operation & Maintenance Team for Twister plant

Revised Date	December 14, 2020	December 15, 2020	December 16, 2020	(%Date to be confirmed at MOC convenience)
Day	Monday	Tuesday	Wednesday	
	1 Inspection & Troubl	eshooting		
	① The plant will be thore	oughly inspected.		
	2 Perform the troublesh	ooting on different part o	f the plant.	
	2 Overhaul			
	① Repair or replace certa	ain damaged part of the p		
Activity Description	② Correct alignment of b	elt conveyors and lubrica		
	③ Final adjustments are operational specifications	performed on mechanica		
	Required Preparation :			
	① Material : manuals for	plant overhaul		
	② Manpower : MOC - ele	ectrician (1 pax) & genera	l workers (≈ 2 pax)	

Workshop Details :

- Purpose : ① *Establisment of MOC's Twister Operation and Maintenance Team* or Technical transfer and staff training in order to deepen the understanding of Twister operation workflow and production of improved material
- Activity : ① Twister plant's system commissioning
 - : (2) Twister operation tutorial and training session for MOC team
- Location : Twister Plant, Road S₁₆-49, Bogalay
- Attendees : ① JICA Advisor (Mr. Masanori Sunada)
 - : ② JDC's Yangon technical team (Mr. Yamashita, Mr. Kin Mun, Mr. Linn, Mr. Zaw)
 - : (3) ANC Fortune Winner Co., Ltd. specialist for control system integrator
 - : (a) MOC high position personnels & engineers from different Special Construction Unit
 - : (5) MOC appointed Operation & Maintenance Team for Twister plant

Revised Date	February 2, 2021	February 3, 2021	February 4, 2021	February 5, 2021	February 8, 2021	February 9, 2021	February 10, 2021				
Day	Tuesday	Wednesday	Thursday	Friday	Monday	Tuesday	Wednesday				
	4		•	•			•				
		Activity 1			Activ	ity 2					
	System Commission	ling		Plant Con	nmissioning & Training	Session 1	Buffer Day				
	① Validate the performant	nce and ensure the function	onality of the system	① Review of production v		① Training session 2					
Activity	② Preparation of hand set, open-end spanner set	tools for replacement we et, hex-key set, safety glo	ork: cordless screwdriver ves etc.	② Plant commissioning w③ Full Twister operation	ration and maintenance	(optional), subject to Training Session 1 outcome					
Description	Integrated Analysis	for Quality Control		Tutorial materials preparation: user manual, operation control sheet,							
	 Pavement sampling conducted by Fukken 	for compressive strengt	n analysis and DCP test	projector, presentation sl	ides etc.						
	Required Preparation :			Required Preparation :			·				
	① Material : documents a	and manuals for system c	ommissioning	① Material : soil, sand ar	id lime for 50m ³ improved	soil production					
	② Manpower : MOC elect	trician (1 pax), general w	orkers (≈ 2 pax)	② Manpower : general workers (\approx 4 pax)							
				③ Machinery : Excavator (2 nos), Dump truck (1 nos)							