Republic of Indonesia Ministry of Transportation (MOT) Badan Pengelola Transportasi Jabodetabek (BPTJ)

Republic of Indonesia Preparatory Survey on Cikarang New Urban Transportation System Project in Indonesia Final Report

January 2022 Japan International Cooperation Agency (JICA)

MITSUI & CO., LTD. PACIFIC CONSULTANTS CO., LTD. Tonichi Engineering Consultants, Inc. Japan Transportation Planning Association

OS	
JR	
22-004	

≪I. Physical Plan≫

1. Route Planning	1
1.1 Selection of Routes and Station Locations	1
1.1.1 Proposed Routes under the Phase 1 Study	1
1.1.2 Proposed Route for the Phase 2 Study	9
1.2 Horizontal and Vertical Alignment	13
1.2.1 Horizontal Alignment Results	13
1.2.2 Vertical Alignment Results	
2. Traffic Planning ······	30
2.1 Direction of Urban Development in Jakarta Metropolitan Area	30
2.2 Potential of the Cikarang Region	31
2.3 Direction of New Urban Development in Cikarang Region	32
3. Demand Forecasting	34
3.1 Examination of Demand Forecasting Method	34
3.2 Implementation of Traffic Survey	34
3.3 Perspective of Future Population	39
3.4 Generated and Concentrated Traffic Volume	39
3.5 Distributed Traffic	40
3.6 Traffic Volume by Availability of Different Forms of Transportation	41
3.7 Estimated Number of AGT Users	42
4. Civil Engineering Facility Plan	44
4.1 Basic Policy	44
4.2 General Structure	44
4.2.1 Upper Structure	44
4.2.2 Substructure Format	48
4.2.3 Soil Structure Type	48
4.3 Special Part Structure	49
4.3.1 Target Location	49
4.3.2 Structural Format	50
4.4 Station Structure Type	52
4.4.1 Basic Structure	52

4.4.2 Construction Cost Reduction Structure	
5. Depot Planning	
5.1 Selection of Depot Location	
5.1.1 Proposed Locations and Features	
5.1.2 Evaluation and Selection of Proposed Depot Locations	
5.2 Depot Internal Layout Considerations	61
5.2.1 Overview and Necessary Functions	61
5.2.2 Track Functions and Roles	61
5.2.3 Track Layout Plan	
6. O & M Plan	64
6.1 Personnel Plan ······	
6.1.1 Operating Organization	
6.1.2 Personnel Plan	
6.1.3 Training Plan	
6.2 Operating Expenses	
6.2.1 Personnel Expenses ······	
6.2.2 General and Administrative Expenses	
6.2.3 O & M Costs (OPEX)	
6.2.4 Cost Reduction Case	71
7. Operation Plan	72
7.1 Prerequisites for the Operation Plan	
7.2 Examination of the Time Required	73
7.3 Operation Plan	74
7.4 Cost Reduction Case	
8. Vehicle / E & M Plan	
8.1 Trainset Plan	
8.1.1 Overview ·····	
8.1.2 Vehicle type and specifications	
8.2 E & M Plan	
8.2.1 Track Course and Guide Rails	
8.2.2 Electrical Power Facilities	
8.2.3 Signal System	
8.2.4 Communications System	
8.2.5 Station Equipment	
8.2.6 Depot Inspection and Repair Equipment	

8.2.7 Other Facilities	
8.3 Cost Reduced Case of Rolling Stocks (Cars) / E & M	91
8.3.1 Overview	91
8.3.2 Cost Reduced Case	91
9. Construction Plan	105
9.1 Basic Policy	105
9.1.1 Construction Method	105
9.1.2 Construction Process	105
9.2 Construction Plan	106
9.2.1 Upper Construction Plan	106
9.2.2 Substructure Construction Plan	
9.3 Construction Process	
9.3.1 Basic Thought	111
9.3.2 Construction Schedule	111
10. Estimation of Project Costs	117
10.1 Base Case	117
10.1.1 Outline of Project Costs	117
10.1.2 Estimated Results of the Project Costs	
10.2 Cost-Reduced Case	120
10.2.1 Consideration of Cost Reduction	120
10.2.2 Estimated Results of the Project Costs	122
11. Project Schedule	124
12. Environmental Impact Assessment	125
12.1 Legal System for Environmental and Social Considerations	125
12.1.1 Basic Policies, Laws and Regulations Related to Environmental and	
Social Considerations	125
12.1.2 Overview of Environmental Impact Assessment	127
12.1.3 Flow of AMDAL Procedure	
12.2 Administrative Organization Related to Environmental Impact	
Assessment	134
13. Land Acquisition Plan	136
13.1 Basic Framework for Land Acquisition	136
13.2 Land Acquisition Plan for This Project	

14. Estimation of Greenhouse Gas Reductions	·138
14.1 Greenhouse Gas (GHG) Reduction Effect	··138
14.1.1 Collection of Data Necessary for Quantitative Assessment of Greenhouse	
Gas (GHG) Reduction Effects	138
14.1.2 Estimation of GHG Reduction	·· 140

≪II. Business Plan≫

15. PPP Scheme and Institutional Analysis	141
15.1 Identification of GCA and Implementation Unit	141
15.2 Relevant Ministries and Institutions	141
15.3 PPP Scheme ·····	143
15.4 Decision Making Process	143
16. Socio-Economic Analysis ······	147
16.1 Analysis Approach ······	147
16.2 Assumptions of Socio-Economic Analysis	147
16.2.1 Assumptions	147
16.2.2 Calculation Method for Economic Benefit	
16.2.3 Calculation Method for Economic Cost	152
16.3 Analysis Result	152
17. VFM Analysis ······	154
17.1 Analysis Approach	154
17.2 Assumption	154
17.2.1 Calculation Method of VFM	
17.2.2 Assumption of VFM Analysis	155
17.2.3 Government Expenditure in 【PPP Case】	155
17.2.4 Government Expenditure of 【PSC Case】	155
17.3 Result of Analysis	156
18. Financial Analysis	157
18.1 Analysis Approach	157
18.2 Assumption	158
18.2.1 Base Case Assumption	158
18.3 Analysis Result	160

18.3.1 Result of Base Case	160
18.4 Sensitivity Analysis	163
18.4.1 Assumptions for Each Case	163
18.4.2 Case Comparison	165
18.5 Result of Financial Analysis	170
19. Risk Allocation	
20. Government Support	173
20.1 IIGF Guarantee	173
20.2 Supports from SMI and IIF	173
20.3 Availability Payment	173
21. Legal Analysis	174
21.1 PPP and Railway ······	174
21.2 Establishment of SPC	174
21.3 Environment Regulation	174
21.4 Land Acquisition	174
21.5 Availability Payment	175
22. Fundraising Analysis	176
22.1 Fund Procurement Portion	176
22.2 Equity	177

«III. Summary»

23. Summary of the Survey	178
23.1 Project Outline	178
23.2 Overview of the Proposed Alternative Analysis	
23.2.1 Review of Preconditions	
23.2.2 Financial Analysis of the Alternative Plan	186
23.3 Roles and Responsibilities of Relevant Organizations	
23.4 Term Sheet ·····	192

List of Tables

3. Demand Forecasting	
Table 3-1: Summary of Railway User Interviews	35
Table 3-2: Overview of Person-Trip Survey	. 37
4. Civil Engineering Facility Plan	
Table 4-1: Upper Structure - Worker Performance Costs	. 45
Table 4-2: List of Girder Structure Types According to Adaptive Spacing	. 50
5. Depot Planning	
Table 5-1: Evaluation and Selection of Proposed Depot Locations	. 60
6. O & M Plan	
Table 6-1: Number of Personnel in the Transportation Department	
(Permanent Personnel)	. 65
Table 6-2: Number of Personnel in the Transportation Department	
(Organizational Personnel)	. 66
Table 6-3: Number of Personnel in General Administration Dept. and Engineering	
Dept. (Organizational Personnel) (2028)	. 67
Table 6-4: Personnel Expenses (2028)	. 68
Table 6-5: Setting of Power Cost Intensity	. 68
Table 6-6: Expenses (2028)	. 69
Table 6-7: O & M Costs (OPEX)	. 70
Table 6-8: O & M Cost (OPEX) (Cost Reduction Case)	71
7. Operation Plan	
Table 7-1: Station List	. 72
Table 7-2: Curve Passing Speed	. 72
Table 7-3: Time Required (One Way)	. 73
Table 7-4: Number of Trains Operated by Day of the Week and Time (2028)	. 75
Table 7-5: Peak-Hour Cross-Sectional Transportation Population, Number of Trains	
in Operation and Number of Trains Required	. 76
Table 7-6: Peak-Hour Cross-Sectional Transportation Population, Number of Trains	
in Operation and Number of Trains Required (Cost Cut Case)	77
8. Vehicle / E & M Plan	
Table 8-1: Key Parameters and Specifications	. 79

Table 8-2: Advantages and Disadvantages of Adding / Subtracting Trains	81
Table 8-3: Types of Boarding Tickets/Payment Methods	90
Table 8-4: Main Inspection and Repair Equipment	90
Table 8-5: Automation Grade Definition (IEC 62267-1: 2009)	92
Table 8-6: Automation Level of Cost Reduced Case	93
Table 8-7: Cost Reduction by Changing the Automation Level	93
Table 8-8: Comparison by the Terminal Station Turnaround Method	100
Table 8-9: E & M Equipment Cost Reduction Items for the Island Type	103
Table 8-10: Cost Reduction by Platform Door Type	103

9. Construction Plan

Table 9-1: Construction Method	105
Table 9-2: Calculated Number of Construction Days	106
Table 9-3: Entire Construction Work Schedule	112
Table 9-4: Entire Construction Work Schedule	113
Table 9-5: Entire Construction Work Schedule	114
Table 9-6: Entire Construction Work Schedule	115
Table 9-7: Overall Construction Schedule	116

10. Estimation of Project Costs

Table 10-1: Outline of the Estimated Project Costs of the Base Case [IDR Notation] 1	19
Table 10-2: Outline of the Estimated Project Costs of the Base Case in JPY1	19
Table 10-3: Outline of the Estimated Project Costs in the Cost-Reduced Case	
[IDR Notation]1	22
Table 10-4: Outline of the Estimated Project Costs in the Cost-Reduced Case in JPY .1	23

11. Project Schedule

Table 11-1: Project Implementation	ו Schedule	.124
------------------------------------	------------	------

12. Environmental Impact Assessment

Table 12-1: Major Laws and Regulations Relating to Environmental Considerations	
in Indonesia	126
Table 12-2: AMDAL Requirements for the Transport Sector	130
Table 12-3: Major Information to be Included in EIA Report	131

14. Estimation of Greenhouse Gas Reductions	
Table 14-1: Data Used for Baseline Emissions	140
Table 14-2: Data Used for Project Emissions	140
Table 14-3: Estimated Greenhouse Gas Reductions	140

15. PPP Scheme and Institutional Analysis	
Table 15-1: List of Public Stakeholders	142
Table 15-2: Decision Making Process	144

16. Socio-Economic Analysis

Table 16-1: Time Cost Saving Effect	149
Table 16-2: Assumption of Vehicle Running Costs	150
Table 16-3: Assumption of Reduction in Greenhouse Gas Emission	151
Table 16-4: Assumption of Real Estate Development Effect	151
Table 16-5: Assumption of Economic Cost	152
Table 16-6: Result of Socio-Economic Analysis	152
Table 16-7: Benefit and Cost Result	153
Table 16-8: Result of EIRR and B/C	153

17. VFM Analysis

Table 17-1: Case Comparison in VFM Analysis	154
Table 17-2: Government Expenditure of PPP Project	155
Table 17-3: Government Expenditure of Public Project	155
Table 17-4: Case Comparison and Analysis Result	156
Table 17-5: Government Expenditure	156

18. Financial Analysis

Table 18-1: Base Case CAPEX Assumption	159
Table 18-2: Base Case OPEX Assumption	159
Table 18-3: Base Case Financial Result	160
Table 18-4: Base Case Fundraising Amount	160
Table 18-5: Base Case Financial Performance	160
Table 18-6: Breakdown of Availability Payment	161
Table 18-7: Base Case Availability Payment	162
Table 18-8: CAPEX Assumption for Vertical Separation Case	163
Table 18-9: OPEX Assumption for Vertical Separation Case	163
Table 18-10: CAPEX Assumption for Rolling Stock Case	164
Table 18-11: OPEX Assumption for Rolling Stock Case	164
Table 18-12: Financial Comparison	165
Table 18-13: Fundraising Comparison	166
Table 18-14: Financial Results	166
Table 18-15: Availability Payment Breakdown	167
Table 18-16: Tariff Revenue and Public Expenditure	169

19. Risk Allocation	
Table 19-1: Risk Allocation Matrix	171
23. Summary of the Survey	
Table 23-1: Estimated Number of Passengers per Day at the Time of Opening (2028)
for Each Fare Case	180
Table 23-2: The Result of the Project Costs Estimate	181
Table 23-3: Other LRT Projects' Business Expenses	181
Table 23-4: The Result of the Financial Analysis	182
Table 23-5: Comparison of the Costs Before and After the Reconsideration	185
Table 23-6: Financial Analysis Result (Alternative Scheme A)	188
Table 23-7: Financial Analysis Result (Alternative Scheme B)	189
Table 23-8: Real AP Charge Amount After Taking into Account the Fare Reven	ue
(Alternative Scheme B)	190

1. Route Planning
Figure 1-1: Map of Proposed Routes Under the Phase 1 Study
Figure 1-2: Conditions of Route D Area in October 2019 (Part 1)
Figure 1-3: Conditions of Route D Area in October 2019 (Part 2)4
Figure 1-4: Conditions of Route D Area in October 2019 (Part 3)
Figure 1-5: Conditions of Existing Roads in the Route D Area in October 2019 (Part 1).6
Figure 1-6: Conditions of Existing Roads in Route D Area in October 2019 (Part 2)7
Figure 1-7: Road Width and Structures of the Central Areas of Existing Roads in
Route D Area (Summary)8
Figure 1-8: Transportation Network Plan for Cikarang and Karawang
Figure 1-9: Public Transportation Network Plan for Jababeka Area
Figure 1-10: TOD Plan for Jababeka Area10
Figure 1-11: Land Use Plan for Lippo Area11
Figure 1-12: Map of Alternative Route 1 12
Figure 1-13: Positioning of Alternative Route 2 (Adopted as the Phase 2 Study Route)13
Figure 1-14: Horizontal Alignment Results for the Adopted Route (Part 1)
Figure 1-15: Horizontal Alignment Results for the Adopted Route (Part 2)
Figure 1-16: Horizontal Alignment Results for the Adopted Route (Part 3)
Figure 1-17: Horizontal Alignment Results for the Adopted Route (Part 4)17
Figure 1-18: Horizontal Alignment Results for the Adopted Route (Part 5)
Figure 1-19: Horizontal Alignment Results for the Adopted Route (Part 6)
Figure 1-20: Horizontal Alignment Results for the Adopted Route (Part 7)20
Figure 1-21: Horizontal Alignment Results for the Adopted Route (Part 8)
Figure 1-22: Horizontal Alignment Results for the Adopted Route (Part 9)22
Figure 1-23: Horizontal Alignment Results for the Adopted Route (Part 10)23
Figure 1-24: Horizontal Alignment Results for the Adopted Route (Part 11)24
Figure 1-25: Horizontal Alignment Results for the Adopted Route (Part 12)25
Figure 1-26: Results of the Vertical Alignment for the Adopted Route (Part 1)27
Figure 1-27: Results of the Vertical Alignment for the Adopted Route (Part 2)

2. Traffic Planning

Figure 2-1: Urban Development in Jakarta Metropolitan Area	30
Figure 2-2: Infrastructure Development Project in Eastern Jakarta	31
Figure 2-3: Urban Structure in Cikarang Region	32
Figure 2-4: Traffic Planning Direction	33

3. Demand Forecasting

Figure 3-1: Demand Forecast Implementation Flow	34
Figure 3-2: Traffic Sites and Areas	35
Figure 3-3: Trip Purpose	
Figure 3-4: Access/Egress Mode Share	
Figure 3-5: Vehicle Ownership	
Figure 3-6: Trip Purpose	
Figure 3-7: Mode Share	
Figure 3-8: OD Distribution	
Figure 3-9: Population Projection for the Target District	
Figure 3-10: Transportation Sharing Ratio by Fare	41
Figure 3-11: Number of AGT Users by Fare and Trip Purpose	42
Figure 3-12: Annual Number of AGT Users by Fare (Million)	42
Figure 3-13: PPHPD	43

4. Civil Engineering Facility Plan

Figure 4-1: Approximate Construction Costs	46
Figure 4-2: Approximate Construction Cost Calculation Model	46
Figure 4-3: Standard Part General Diagram	47
Figure 4-4: Soil Structure Plan	48
Figure 4-5: Photographs of Highways	49
Figure 4-6: Highway Cross-Linking Part General Diagram	51
Figure 4-7: Cross-Section of Planned Station Area	52
Figure 4-8: Construction Cost Reduction Plan Station Area Plan	53
Figure 4-9: Above-Ground Station Composition Plan	54

5. Depot Planning

Figure 5-1: Map of Proposed Depot Locations	55
Figure 5-2: Development Plans near Locations A and B	56
Figure 5-3: Wide-Area Map for Locations C, D and E	57
Figure 5-4: Enlarged Map of Location C (Orange County) and Envisioned Depot	
Layout Image	57
Figure 5-5: Aerial View of Location E and Surrounding District and Simplified	
Image of Depot with Overhead Building Development	58
Figure 5-6: Enlarged View of the Area around Locations F and G	59
Figure 5-7: Depot Track Layout Plan	63

6. O & M Plan

Figure 6-1: Operating Organization	(Draft)64	4
---	-----------	---

7. Operation Plan	
Figure 7-1: Operation Schedule (2028)	74
8. Vehicle / E & M Plan	
Figure 8-1: AGT Vehicle (Sample)	78
Figure 8-2: 4 Cars/ Unit	79
Figure 8-3: 2 Cars/ Unit	80
Figure 8-4: Double 2 Cars/ Unit	80
Figure 8-5: Security Camera with Integrated Lighting (With Wireless Comm	unication
Function)	82
Figure 8-6: Appearance of the Track Course (Running Surface, Guide Rails, S	Switches)83
Figure 8-7: Turnout Mechanism	84
Figure 8-8: Buffer Stops	84
Figure 8-9: Power Rails	86
Figure 8-10: Operation Control Center	87
Figure 8-11: TASC (ground equipment)	94
Figure 8-12: Elevating Platform Doors (Left: Down position, Right: Up position	on)95
Figure 8-13: Train Automatic Stop-Position System	95
Figure 8-14: Turnaround Method (Left: Loop Method, Middle: Shuttle Metho	od
[crossing line 2], Right: Shuttle Method [crossing line 1])	96
Figure 8-15: Separation of Boarding/Alighting Platforms in the Terminal Sta	tion in
Loop Method	97
Figure 8-16: The Direction of the Vehicle Switches with One End Using the Loop M	ethod97
Figure 8-17: Switchback Alignment for Depot Entry	98
Figure 8-18: Reverse Triangle Alignment for Depot Entry	98
Figure 8-19: Depot Entry/Exit Alignment in a Loop Type	98
Figure 8-20: Change Direction at the Terminal Station	99
Figure 8-21: Change Direction at the Terminal Station	
(Top: Example of One Crossover, Bottom: Example of Two Crossovers) 100
Figure 8-22: Changing Route at an Island-Type Terminal Station (Left: Pre-C	rossover
Type, Middle: Post-Crossover Type [2 Crossovers], Right: Post-	Crossover
Type [1 Crossover])	101
Figure 8-23: Pre-Crossover and Post-Crossover Type at Opposite Platforms	
(Left: Pre-Type, Right: Post-Type)	102
Figure 8-24: Differences in Equipment Depending on the Platform Type	
(Left: Island Platform, Right: Opposite Platforms)	102
Figure 8-25: Platform Door Type (Upper Left: PSD, Upper Right: Movable Pl	atform
Door and Below: Fixed-Platform Fence)	104

9.	Construct	tion Pla	an

Figure 9-1: Truss Building Method	107
Figure 9-2: Span By Span Building Method	
Figure 9-3: Cantilever Building Method	
Figure 9-4: Lower Construction Diagram	110
Figure 9-5: Construction Classification Plan	111

10. Estimation of Project Costs

	Figure 10-1: Image of Structure Change from Viaduct to Embankment	
	(Cross Section)	120
	Figure 10-2: Image of Structure Change from Viaduct to Embankment	
	(Longitudinal View)	120
	Figure 10-3: Location of the Sections where the Structure Was Changed	
	from Viaduct to Embankment	.121
	Figure 10-4: Image of the Reduction of a Concourse Floor and the Simplification of	
	Station Equipment at an Elevated Station	.121
12.	Environmental Impact Assessment	
	Figure 12-1: Flow of Environmental Impact Assessment Procedures	129
	Figure 12-2: Flow of AMDAL Procedures	133
15.	PPP Scheme and Institutional Analysis	
	Figure 15-1: PPP Scheme	143
18.	Financial Analysis	
	Figure 18-1: Ratio of Availability Payment Breakdown	.161
	Figure 18-2: Tariff Revenue and Availability Payment Comparison	162
	Figure 18-3: Availability Payment Breakdown Comparison	168
	Figure 18-4: Tariff Revenue and Availability Payment Comparison	169
21.	Legal Analysis	
	Figure 21-1: AP Application Process	175
23.	Summary of the Survey	
	Figure 23-1: System to be Introduced	178
	Figure 23-2: Functions of the New Hub City Cikarang's Transport System (AGT)	178
	Figure 23-3: The Introduced and Proposed Route and its Station Locations	179

Figure 23-4: Number of Passengers per Year for Each Fare Case	180
Figure 23-5: Development Scheme for the Project	182
Figure 23-6: The Results of the Cost-Benefit Analysis	183
Figure 23-7: Value for Money Results	183
Figure 23-8: The Stations that Remain Undeveloped at the Time of	
Opening (in pink)	184
Figure 23-9: Alternative Scheme A	186
Figure 23-10: Alternative Scheme B	187
Figure 23-11: Fluctuation of the Amount of AP and PPP Project	
Applicable Boundaries	187
Figure 23-12: Alternative Scheme A and SPC Fund Procurement	189
Figure 23-13: Alternative Scheme B and SPC Fund Procurement	190
Figure 23-14: Changes in the Fare Revenue and Actual AP Charge Amount	191

Abbreviations

	-
AC	Alternating Current
AFC	Automated Fare Collection
AGT	Automated Guideway Transit
AI	Artificial Intelligence
AMDAL	Analisa Mengenai Dampak Lingkungan
ANDAL	Analisa Dampak Lingkungan
AP	Availability Payment
ΑΤΟ	Automatic Train Operation
АТР	Automatic Train Protection
ATR	Ministry of Agrarian Affairs and Spatial Planning (Kementerian Agraria dan Tata
	Ruang)
ATS	Automatic Train Supervision
BAPEDALDA	Badan Pengendalian Dampak Lingkungan Daerah
B/C	Benefit/Cost
ВКРМ	Indonesian Investment Coordinating Board
BPN	National Land Agency (Badan Pertanahan Nasional)
BPTJ	Greater Jakarta Transportation Authority (Badan Pengelola Transportasi
	Jabodetabek)
CAPEX	Capital Expenditure
СВТС	Communications-Based Train Control
CCTV	Closed Circuit Television
DC	Direct Current
DGR	Directorate General of Railways
DSCR	Debt Service Coverage Ratio
DX	Digital Transformation
E & M	Electrical and Mechanical
Economic IRR	Economic Internal Rate of Return
EFS	Environmental Feasibility Study
EIA	Environmental Impact Assessment
EIU	Economist Intelligence Unit
EP	Environmental Permit
EPC	Engineering, Procurement and Construction
Equity IRR	Equity Internal Rate of Return
ESC	Escalator
EV	Electric Vehicle

EV	Elevator
FBC	Final Business Case
GCA	Government Contracting Agency
GHG	Green House Gas
GOA	Grade of Automation
GR	Government Regulation
HSR	High-Speed Rail
IC	Integrated Circuit
IEC	International Electrotechnical Commission
IEDC	Indonesia Economic Development Corridor
IEE	Initial Environmental Examination
IFS	International Financial Statistics
lif	Institute of International Finance
ligf	Indonesia Infrastructure Guarantee Fund
IMF	International Monetary Fund
ISO	International Organization for Standardization
JICA	Japan International Cooperation Agency
JICA Climate-FIT	JICA Climate Change Finance Impact Tool
JOIN	Japan Overseas Infrastructure
KA-ANDAL	Kerangka Acuan Analisis Dampak Lingkungan
LAN	Local Area Network
LKPM	Investment Activity Report
LKPP	National Procurement Agency
LRT	Light Rail Transit
LVC	Land Value Capture
MOEF	Ministry of Economy and Finance
MOF	Ministry of Finance
МОНА	Ministry of Home Affairs
МОТ	Ministry of Transportation
MRT	Mass Rapid Transit
NEXI	Nippon Export and Investment Insurance
NFC	Near Field Communication
NGO	Non-Governmental Organization
O & M	Operation & Maintenance
OBC	Outline Business Case
OCC	Operations Control Center
OD	Origin and Destination

OPEX	Operating Expense
OSS	Online Single Submission
PBX	Private Branch Exchange
PC	Prestressed Concrete
РСТ	Prestressed Concrete T type
PPHPD	Passengers per hour per Direction
РРР	Public Private Partnership
Project IRR	Project Internal Rate of Return
PSC	Public Sector Construction
PSD	Platform Screen Doors
PT PLN	Perusahaan Listrik Negara
QR	Quick Response
RC	Reinforced Concrete
RFP	Request for Proposal
RKL-RPL	Rencana Pengelolaan Lingkungan Hidup dan RencanaPemantauan Lingkungan
	Hidup
SCF	Social Economic Conversion Factor
SEA	Strategic Environmental Assessment
SKKLH	Decree on Environmental Feasibility (Surat Keputusan Kelayakan Lingkungan
	Hidup)
SMI	PT Sarana Multi Infrastruktur
SPC	Special Purpose Company
SPPL	Surat Pernyataan Pengelolaan Lingkungan
SP Survey	Stated Preference Survey
TASC	Train Automatic Stop-position Controller
TOD	Transit Oriented Development
TOR	Terms of Reference
UKL-UPL	Upaya Pengelolaan Lingkungan dan Upaya Pemantauan Lingkungan
UPS	Uninterruptible Power Supply
VAT	Value Added Tax
VFM	Value for Money

 $1 \text{ IDR} = \text{JPY} 137.51 \ (\text{IFS, as of May, 2020})$

Outline of the Project

1. Project Background

The population of the Jakarta metropolitan area is about 28 million (2010), and has grown by about 1.3 times in the 10 years till 2010 (at the rate of annual average of approximately 2.8%), with the population growth of the Jakarta suburbs (Bogor, Depok, Tangerang, and Bekasi) being particularly remarkable. The Jakarta metropolitan area relies on road transport for 98% of its passenger and freight traffic, and the number of registered vehicles has increased rapidly to approximately 9.63 million (2010), a 3.6-fold increase in the 10 years to 2010, in line with robust economic growth. As a result, serious traffic congestion and air pollution caused by exhaust gases have become major problems.

The Cikarang area of Kabupaten Bekasi, located about 30 km east of Jakarta, has been developed as a complex city with seven large industrial parks, as many Japanese companies have advanced into the area as it is highly convenient in terms of logistics, and an increasing number of expatriates live in the area as a commuting zone to Jakarta. Consequently, the traffic from outside the region is expected to reach about 820,000 people per day in 2008 and about 2.08 million in 2028, according to the Bekasi Provincial traffic survey and future estimates. Thus, it has become essential to develop a new urban transportation system to alleviate traffic congestion.

In the Masterplan for Acceleration and Expansion of Indonesian Economic Development (MP3EI), which is the country's development plan until 2025, the development of the Jakarta metropolitan area is considered to be one of the major economic activities. The National Medium-Term Development Plan (RPJMN: 2015-2019) calls for improving the urban transportation system.

The Cikarang Multimodal New Transit System Introduction Project (hereinafter referred to as "the project") is to contribute to the alleviation of traffic congestions and the reduction of traffic pollution in the Cikarang multimodal Area by constructing a track-based transportation system.

2. Purpose of the Project

This project is designed to alleviate traffic congestion in the Cikarang multimodal urban area, which has become increasingly congested due to the concentration of large-scale industrial parks to enhance the transportation capability for passenger by introducing the track type transportation system. Also, the project aims to contribute to the improvement of the investment environment in the Jakarta metropolitan area by increasing the passenger transportation capacity and improving the convenience of public transportation in the region through the introduction of a rail transit system.

I. Physical Plan

1. Route Planning

1.1 Selection of Routes and Station Locations

1.1.1 Proposed Routes under the Phase 1 Study

(1) Overview of Proposed Routes

The four route proposals shown in Figure 1-1 below were considered for the Phase 1 Study based on route requests from relevant local entities and the results of a site survey. The starting point was either Cikarang Station or Lemah Abang Station on the Java North Line, with an end point of Orange County, under the premise that the space above the route will be effectively used.

Of these four proposals, Route D route was considered the most promising under the premise of a plan to extend the commuter line to the east of the Cikarang Station and taking into account the possibility of securing the needed space and the project costs.

Source: Final Report of the Phase 1 Study, [Japan International Cooperation Agency (JICA), May 2018] Figure 1-1: Map of Proposed Routes Under the Phase 1 Study

(2) Current Conditions along Route D

Figures 1-2, 1-3 and 1-4 below show the current situation along Route D. Figures 1-5, 1-6 and 1-7 show the current state of Route D roads, which would form the main part of the route.

In terms of the current situation along Route D, the points to be considered when securing the space for the Automated Guideway Transit (AGT) new transportation system are as summarized as follows.

- < Main Considerations (circled numbers correspond to items in Figures 1-2 through 1-4) >
 - ①: Since there are plans to elevate the level crossing that cuts through the center of Lemah Abang Station, the space above the national road adjacent to the north side of the station cannot be utilized.
 - \rightarrow It is necessary to secure space above the station, on the south side of the station, etc. .
 - 2: The narrow width of Jl. Raya Lemah Abang (a provincial road) makes it difficult to secure space for the AGT.
 - \rightarrow Consider alternative routes.
 - ⑦: The high voltage power lines that cross over the envisioned AGT route are not high, so it is necessary to check whether or not clearance can be assured in the case of an elevated track.
 - \rightarrow Consider replacing the high voltage power lines or finding another route.
 - ① ①: It is not possible to use the space above the existing roads on the river bridge and the bridge straddling the expressway.
 - \rightarrow Consider using the space on the east side of the existing roads.
 - Other than the above, there are no particular restrictions (road width is sufficient)

① Lemah Abang St.

③ Intersection < Consideration Points >

② Jl. Raya Lemah Abang

④ Jl. Ki Hajar Dewantara

- ①: It is impossible to utilize the space above the national road because of a plan to elevate a level crossing on the middle of station.
 → To consider to utilize the space above Lemah Abang St.
- (2): It is difficult to ensure the space for AGT due to narrow width. \rightarrow To consider alternative routes.

Source: JICA Study Team

Figure 1-2: Conditions of Route D Area in October 2019 (Part 1)

⑦: The high voltage overhead power lines are crossing AGT route and the height of the lines isn't high. So it is necessary to check the possibility to ensure the clearance b/w AGT and the lines.
→ To consider to remove to the space above the high voltage overhead power lines if it isn't able to ensure the clearance.

Source: JICA Study Team

Figure 1-3: Conditions of Route D Area in October 2019 (Part 2)

4

(9) Around Wibawa Mukti Stadium

(1) Road Bridge over a River

10 Jl. Science Boulevard

12 Road Bridge crossing Expressway and Viaduct of New Expressway

- < Consideration Points >
- ① & ②: It is impossible to utilize the space above the river bridges over a river and a expressway for AGT.
 - \rightarrow To consider the space on the east side of road bridges for AGT.

Source: JICA Study Team

Figure 1-4: Conditions of Route D Area in October 2019 (Part 3)

Source: JICA Study Team

Figure 1-5: Conditions of Existing Roads in the Route D Area in October 2019 (Part 1)

Source: JICA Study Team

Figure 1-6: Conditions of Existing Roads in Route D Area in October 2019 (Part 2)

Figure 1-7: Road Width and Structures of the Central Areas of Existing Roads in Route D Area (Summary)

1.1.2 Proposed Route for the Phase 2 Study

(1) Existing Transportation Network Plans and TOD Plans in Cikarang Region

Local developers (Jababeka Group and Lippo Group) have gathered information on existing transportation network Public transport-oriented development and Transit-Oriented Development (TOD) plans in the Cikarang area, which has been summarized below.

- The development of Mass Rapid Transit (MRT) and Light Rail Transit (LRT) lines shown in Figure 1-8 are expected to improve public transport accessibility and connectivity to Jakarta.
 - \rightarrow It is therefore preferable to locate the AGT junctions to link with other public

transportation lines at points marked with red circles.

- The AGT route plan for the Jababeka area is shown in the public transportation master plan on the next page. Jababeka has plans to develop a TOD area around the junction between the APM (AGT) line and the MRT line (Figure 1-9).
- The locations and types of TOD projects in Jababeka along the AGT route are shown in Figure
 1-10 on the next page. The TOD development plan is located along the currently envisioned D
 Route, but some development areas (marked in deep orange) are located at a distance from the
 AGT.
 - → Considering the Jababeka development plans and projects, an alternative route running northeast from the roundabout near the Jababeka TOD area is desirable.
- Figure 1-11 on page 11 shows the land use plan for developing a commercial and residential zone in the Lippo area, including Orange County and Meikarta Lippo.
 - \rightarrow It is desirable to extend the AGT route to Meikarta Lippo and build a station that can serve as the center of this area.

Source: Jababeka Group materials

Figure 1-8: Transportation Network Plan for Cikarang and Karawang

Source: Jababeka Group materials

Figure 1-9: Public Transportation Network Plan for Jababeka Area

Source: Jababeka Group materials

Figure 1-10: TOD Plan for Jababeka Area

Source: Lippo Group materials

Figure 1-11: Land Use Plan for Lippo Area

(2) Alternative Route 1 Considering Current Conditions and Existing Plans

Considering the present conditions around Route D outlined in this survey and the existing plans for the development of the transportation network and TOD in the Cikarang area, Alternative Route 1 has been projected based on the following routing improvements. A map of this alternative route is shown in the Figure 1-12 on the next page.

< Routing Improvements for Alternative Route 1 >

- Alternative route between Lemah Abang Station and MRT Station:
 - Consider utilizing the space above Lemah Abang Station (Java North Line) to construct the AGT station; and
 - Consider a route toward south along the river and Jl. Dr. Satrio from Lemah Abang Station to MRT Station.
- Extension to Meikarta Lippo:
 - Extend the AGT route to Meikarta Lippo to achieve greater passenger demand.
- > Others routing alignment matters:

- Alternative Route 1 presumes the high-voltage power lines near Jababeka Station will be raised higher; and

- The route alignment will use space to the east of the expressway and river bridge (located north of the expressway).

- Station Locations:
 - Basically the same as indicated in the Phase 1 Study; and
 - Add stations to Alternative Route 1 and the extension to Meikarta Lippo.

Figure 1-12: Map of Alternative Route 1

(3) Alternative Route 2 Considering Requests from Relevant Local Entities

Discussions with Jakarta Metropolitan Transportation Authority, [Badan Pengelola Transportasi Jabodetabek (BPTJ)], West Java Province, the Bekasi Regency government and local developers (Jababeka and Lippo Groups) led to a change to the alternative route plan in line with following routing alignment improvements. A map with these changes, Alternative Route 2, is shown in Figure 1-13 on the next page. Alternative Route 2 was adopted as the proposed route for this survey.

- < Routing Improvements for Alternative Route 2>
- Change the station name from MRT to TOD Jababeka and move the location of the station.
- In the vicinity of TOD Jababeka Station, change the route to follow along the river and the road. In addition, eliminate one station in the area.
- Change the location of Jababeka City Station and add Taman Golf Barat Station and Marketing Gallery Jababeka Station (one additional station).
- Move the location of Wibawa Mukti Stadium Station and change the name to Ginza Station.

- ➢ Add Industrial Park Phase 5 Station.
- ≻ Change the name of LRT Station to KM34 Station.
- Extend the route at the end of the line at Orange County Station in consideration of the depot station for rolling stock (described in Chapter 5.1 Selection of Depot Location) and add two stations (District 2 Station and Lippo Cikarang Station).

Source: JICA Study Team

Figure 1-13: Positioning of Alternative Route 2 (Adopted as the Phase 2 Study Route)

1.2 Horizontal and Vertical Alignment

1.2.1 Horizontal Alignment Results

The results of the horizontal alignment for the adopted route in Figure 1-13 above are shown in Figures 1-14 to 1-25 on the following pages.

Source: JICA Study Team

Figure 1-14: Horizontal Alignment Results for the Adopted Route (Part 1)

Source: JICA Study Team

Source: JICA Study Team

Figure 1-16: Horizontal Alignment Results for the Adopted Route (Part 3)

Source: JICA Study Team

Figure 1-17: Horizontal Alignment Results for the Adopted Route (Part 4)

Source: JICA Study Team

Source: JICA Study Team

Figure 1-19: Horizontal Alignment Results for the Adopted Route (Part 6)

Source: JICA Study Team

Figure 1-20: Horizontal Alignment Results for the Adopted Route (Part 7)

Source: JICA Study Team

Figure 1-21: Horizontal Alignment Results for the Adopted Route (Part 8)

Source: JICA Study Team

Figure 1-22: Horizontal Alignment Results for the Adopted Route (Part 9)

Source: JICA Study Team

Figure 1-23: Horizontal Alignment Results for the Adopted Route (Part 10)

Source: JICA Study Team

Figure 1-24: Horizontal Alignment Results for the Adopted Route (Part 11)

Source: JICA Study Team

Figure 1-25: Horizontal Alignment Results for the Adopted Route (Part 12)

1.2.2 Vertical Alignment Results

Vertical alignment results for the adopted route are shown in Figures 1-26 and 1-27 on the following pages.

Figure 1-26: Results of the Vertical Alignment for the Adopted Route (Part 1)

Figure 1-27: Results of the Vertical Alignment for the Adopted Route (Part 2)

This page is intentionally left blank.

2. Traffic Planning

2.1 Direction of Urban Development in Jakarta Metropolitan Area

Currently, the capital relocation plan is underway in Indonesia, but the relocation will be launched mainly for government functions. Still, Jakarta is expected to continue to develop as the center of Indonesia's economy even after the relocation. Nonetheless, in order to avoid traffic congestion, land subsidence, and other disaster risks, afterward, the main development areas will spread into suburban areas, not just the central part, which means the transition of the city whose structures will hopefully be transformed from "excess concentration in the center of Jakarta Metropolitan Area" to "decentralized associations including satellite cities. "At the same time, it is hoped that each location will shift to high-density development centered on stations and promote TOD-type urban development.

Figure 2-1: Urban Development in Jakarta Metropolitan Area

2.2 Potential of the Cikarang Region

Cikarang is located to the east of Jakarta and this Cikarang area has very high potential as will be explained below. For this reason, it is positioned as a "new center of Jakarta" that will be the most highly-anticipated development city among some of the locations in the Jakarta Metropolitan Area in the future.

In developing the area, it is necessary to make it the most advanced area in Indonesia using the latest city planning methods such as a TOD or a Smart City technology.

- Located between Jakarta and Bandung, it is located on the Indonesia Economic Development Corridor (IEDC).
- Many types of transport infrastructure, such as expressways, high-speed railways, and MRT/LRT, have been constructed or planned.
- More than 90% of Indonesia's automotive industry is concentrated in the Jabodetabek region, and particularly many Japanese automakers are concentrated in the eastern Jakarta region that has resulted in that being the center of Indonesia's industry.
- The region has the potential to become the center of new industries and technologies such as electric vehicles (EV)s, Artificial Intelligence (AI), and Digital Transformation (DX) because the government has announced an act to further EVs, and in response to that, a Japanese automaker plans to produce batteries for EVs.

Source: JICA Study Team

Figure 2-2: Infrastructure Development Project in Eastern Jakarta

2.3 Direction of New Urban Development in Cikarang Region

(1) Direction of urban structure

The direction of the urban structure of the Cikarang region is organized as follows.

- Mixed-use type centers will be distributed, and these will be connected by an urban axis (core public transportation). This will enhance synergy effects as well as a novel urban potential while fostering a sense of unity as a region.
- In addition, the Urban Area aims to create new businesses through the integration of functions suitable for a new city center.
- The clustering of start-up companies in cooperation with the Industrial Area that will play a role in fostering new industries. These new industries are associated with industrial parks and educational institutions in the region and surrounding areas.

Figure 2-3: Urban Structure in Cikarang Region

(2) Direction of Traffic Planning

The direction of traffic planning is organized as follows.

- > The new city will aim to provide eco-friendly, congestion-free, smooth and stress-free transportation measures for everyone, introducing a TOD-type land use.
- For the urban axis, a medium-volume public transportation system that enables flexible transportation will be developed together with development centered on stations. [The first phase is centered on the north-south axis; the second phase onward will be constructed on eastwest axes that are connected to high -speed rail (HSR) stations.]
- In addition, feeder transportation (e.g., automated EV buses) will be established in remote areas from stations whose residents can only travel freely on foot and public transportation.
- Park-and-ride parking lots will be located on the outskirts of stations, which will enable visitors to the area to travel by public transportation within the area.
- > Promote the decarbonization of intra-regional transport throughout the region.

Figure 2-4: Traffic Planning Direction

3. Demand Forecasting

3.1 Examination of Demand Forecasting Method

In Phase 1, a simple traffic demand forecast was implemented using the existing traffic survey. In Phase 2 (this phase), in order to improve the precision of the demand forecast, a new traffic survey was conducted, and a demand forecast model was established based on the results.

For the traffic demand forecast model, a four-stage estimation, which is a general method for predicting traffic demand, was adopted (strictly speaking, it resulted in a three-stage estimation because the estimation of allocated traffic volume was not performed in this forecast). The opening year of AGT is assumed to be 2028.

Source: JICA Study Team

Figure 3-1: Demand Forecast Implementation Flow

3.2 Implementation of Traffic Survey

(1) Contents of Traffic Survey

For the purpose of properly understanding the flow of people in the Cikarang region, two surveys were conducted at Cikarang Station of the Jakarta Metropolitan Commuter Railway and in the surrounding area on consideration of the AGT route in December 2019. The first is an interview survey to Cikarang Station users, and the second is a traffic behavior survey (person-trip survey) of residents in the vicinity of the AGT line under consideration.

Figure 3-2: Traffic Sites and Areas

(2) Railway User Interview Survey

The outline of the railway user interview survey is as follows.

Name of survey	Cikarang Railway Passenger Survey
Survey period	Weekdays: December 6, 2019 (Friday), December 9, 2019 (Monday)
Target area	Cikarang Station
Number of responses	100 people
	Boarding and disembarking, personal attributes, purpose, frequency of use,
Survey items	Origin and Destination (OD), device transportation, and intention to use
	AGT

Table 3-1: Summary of Railway User Interviews

Trip Purpose

🔳 work 🔳 school 🔳 business 💻 leisure 🔳 others

Source: JICA Study Team

Figure 3-3: Trip Purpose

Figure 3-4: Access/Egress Mode Share

(3) Person-Trip Survey

The outline of the person-trip survey is shown below. The survey was conducted through a homevisit survey in which researchers visited the households covered by the survey.

Name of survey	Household Survey
Survey period	December 9, 2019 (Monday) to December 19, 2019 (Thursday)
Target area	Within a 2-km radius of the route being studied
Number of responses	3,154 people from 1,000 households
Survey items	Household information (number of households, age/sex, status of possession
	of driver's licenses/automobiles, status of residence, annual household
	income), transportation behavior of household members (destination,
	purpose, means, time required), intention to use AGT

Source: JICA Study Team

Vehicle Ownership

Source: JICA Study Team

Trip Purpose

Source: JICA Study Team

Figure 3-6: Trip Purpose

Source: JICA Study Team

Figure 3-7: Mode Share

Source: JICA Study Team Note: All purposes, trips/day

3.3 Perspective of Future Population

(1) Perspective Development Plan

A future land plan was received from a local developer, and an estimated resident population and a working population (commercial and industrial) were established.

(2) Implementation of Population Projections

Population projections were based on the cohort method using Cikarang Kecamatan population data (2012 and 2017). According to the population projection results, the population in 2022, which will be approximately 1.17 million, is expected to increase dramatically to approximately 1.75 million, or to about 1.45 times its 2022 level, by 2052, in 30 years. Without any additional traffic measures, chronic traffic congestion like in Jakarta would be predicted to become a problem.

Figure 3-9: Population Projection for the Target District

3.4 Generated and Concentrated Traffic Volume

(1) Generated Traffic

Total generated traffic in the target area was estimated based on the following equation. The consumption rate was set based on the results of the person-trip survey that was conducted.

Total generated traffic in the target area = future population \times consumption rate (1.95 trips/day)

(2) Concentrated Traffic

Calculated by trip purpose (commuting to work, commuting to school, entertainment, and those going to the hospital for regular treatment).

For the purpose of going to school and going to the hospital for regular treatment, the trip concentration was estimated by multiplying the future population by the trip concentration consumption rate.

For commuting and recreational purposes, an estimation was made by establishing a multiple regression model that expresses the relationship between intensive traffic volume and development area.

3.5 Distributed Traffic

The target areas are currently undergoing large-scale development. For this reason, we used an optimum gravity model in which the distributed traffic volume in the future is expected to differ significantly from that of the present.

Similar to the generated/concentrated traffic, a model was established for each trip purpose (commuting to work, commuting to school, entertainment, and going to and from hospitals) and estimated.

$T_{ij} = k \frac{G_i A_j}{D_{ij}}$	T _{ij} :	Distributed traffic	D _{ij} :	Distance between ODs
	G_i :	Generated traffic	k:	Parameter
	A_j :	Concentrated traffic		

3.6 Traffic Volume by Availability of Different Forms of Transportation

The traffic volume by means of different forms of transportation was estimated based on the traffic modal split rate set under the results of interest in utilizing AGT by fare [Stated Preference Survey (SP) survey]obtained from the questionnaire survey.

Source: JICA Study Team

Note: "Demand" is a means of transportation using vehicle dispatching apps (Gojek and Grab) Figure 3-10: Transportation Sharing Ratio by Fare

3.7 Estimated Number of AGT Users

(1) Number of Users per Day

The number of passengers per day is as follows. The more expensive the fare is, the fewer passengers will use it. The number of passengers is estimated to be 212,000 per day at 4,500 IDR, while the number of passengers is 31,000 per day at 14,000 IDR.

Source: JICA Study Team

Notes: Work (commuting), School (going to school), Leisure (entertainment), Health (doctor visits), Ridership (number of passengers per day)

(2) Number of Users per Year

The number of users per year is considered in the five-year period after the operation of AGT commences, during which it is becoming established. Specifically, we assume only 80%, 85%, 90%, and 95% of demand in the first, second, third, and fourth year of the operation, respectively.

Source: JICA Study Team

Figure 3-12: Annual Number of AGT Users by Fare (Million)

(3) PPHPD (Passengers per Hour per Direction)

PPHPD between Lemah Abang (St. 1) and Lippo Cikrang (St. 11) was calculated.

Figure 3-13: PPHPD

4. Civil Engineering Facility Plan

4.1 Basic Policy

The structural plan for the viaduct, which is a civil engineering facility, was based on the following points.

- It is difficult to obtain steelworkers
- Existing viaducts (LRT, etc.) are mainly concrete structures [especially Prestressed Concrete (PC) girders] and many concrete viaducts are built

4.2 General Structure

4.2.1 Upper Structure

(1) Plan Target Span

Since PC girders of around 30 m are often used in the existing superstructure at the site, the target span of this project is basically L = 25, 30, 35 and 40 m.

(2) Upper Structure

The upper structure type is PCT (Prestressed Concrete T) type girder, which is economically superior in terms of the unit cost per square meter of a PC girder type in Japan (see Table 4-1).

Table 4-1: Upper Structure - Worker Performance Costs

Actual superstructure construction cost (Shinkansen)
---	-------------

Digit format	Span length (m)	Hokuriku Shinkansen (Hokuriku Shinkansen Construction Bureau)			Hokuriku Shinkansen (Second Construction Bureau)			Kyushu Shinkansen (Kyushu Shinkansen Construction Bureau)			Average value	
		Construction	Base surface	Unit price	Construction	Base surface	Unit price	Construction	Base surface	Unit price	(IDR ∕m²)	remarks
		cost (IDR)	width (m)	(IDR / m)	cost (IDR)	width (m)	(IDR / m)	cost (IDR)	width (m)	(IDR/m)		
PCT	25	182,884	11.7	626	217,789	13.0	671	180,218	11.3	638	645	
Crane	30	239,374	11.7	682	279,978	13.0	671	218,040	11.3	644	666	
erection	35	292,010	11.7	714	330,739	13.0	671	269,458	11.3	682	689	
	40	387,689	11.7	829	477,913	13.0	671	373,179	11.3	826	776	
Pcbox	30		İ					286,744	11.3	846	282	
Support	35							356,434	11.3	902	301	
construction	38				479,291	13.0	971				324	
erection	50	689,656	11.7	1,179				580,561	11.3	1,028	736	
	55	704,957	11.7	1,096				677,770	11.3	1,091	729	
	60							742,959	11.3	1,096	366	
	67		l l		1,084,008	13.0	1,245					
	104				1,552,357	13.0	1,149					
	148.3		[1,689,397	11.3	1,009	337	
PC down road	30							351,560	11.3	1,038	346	
Support	40							542,927	11.3	1,202	401	
construction	45							585,262	11.3	1,151	384	
erection	50							654,612	11.3	1,159	387	
	60							2,015,026	11.3	2,973	991	Extruded erection

Source: JICA Study Team

Actual superstructure construction cost (Shinkansen)

Digit format	Span length (m)	Hokuriku Shinkansen (Hokuriku Shinkansen Construction Bureau)			Hokuriku Shinkansen (Second Construction Bureau)			Kyushu Shinkansen (Kyushu Shinkansen Construction Bureau)			Average value	
		Construction cost (yen)	Base surface width (m)	Unit price (yen / ㎡)	Construction cost (yen)	Base surface width (m)	Unit price (yen / mُ)	Construction cost (yen)	Base surface width (m)	Unit price (yen / ㎡)	(yen ∕m²)	remarks
PCT	25	22,645,410	11.7	78,000	26,967,474	13.0	83,000	22,315,280	11.3	79,000	80,000	1
Crane	30	29.640.113	11.7	85.000	34.667.893	13.0	89.000	26.998.562	11.3	80.000	85.000	
erection	35	36,157,726	11.7	89,000	40,953,261	13.0	91,000	33,365,221	11.3	85,000	89,000	
	40	48,005,083	11.7	103,000	59,176,994	13.0	114,000	46,208,422	11.3	103,000	107,000	1
												1
Pcbox	30							35,505,715	11.3	105,000	105,000	
Support	35							44,135,017	11.3	112,000	112,000	
construction	38				59,347,609	13.0	121,000				121,000	
erection	50	85,395,699	11.7	146,000				71,887,205	11.3	128,000	137,000	1
	55	87,290,381	11.7	136,000				83,923,995	11.3	136,000	136,000	
	60							91,995,965	11.3	136,000	136,000	
	67				134,225,844	13.0	155,000					
	104				192,218,578	13.0	143,000					
	148.3							209,187,404	11.3	125,000	125,000	
PC down road	30							43,531,487	11.3	129,000	129,000	
Support	40							67,227,202	11.3	149,000	149,000	
construction	45							72,469,317	11.3	143,000	143,000	
erection	50							81,056,413	11.3	144,000	144,000	
	60	I						249.507.920	11.3	369.000	369.000	Extruded erection

(3) Standard Span

As a result of comparing the estimated construction costs including the substructure, L = 30 m, which was the most economically advantageous, was selected as the standard span.

Source: JICA Study Team

(Upper span: L = 20 m ~ 30 m)

(Upper span: L = 35 m ~ 45 m)

Source: JICA Study Team

Figure 4-3: Standard Part General Diagram

4.2.2 Substructure Format

The substructure type was based on the general single-column reinforced concrete (RC) pier + pile foundation (cast-in-place pile) type (see Figure 4-2).

4.2.3 Soil Structure Type

In "Chapter 10: Project Cost Estimate", two plans, a full-line viaduct plan and a partial horizon plan, are estimated, but the soil structure type of the partial horizon plan responds to changes in height. Based on the reinforced soil structure, which is easy to prepare and has excellent economic efficiency.

Source: JICA Study Team Figure 4-4: Soil Structure Plan

4.3 Special Part Structure

4.3.1 Target Location

The special part on this line is the intersection with the highway.

Intersection with public road

Panoramic view of the highway

4.3.2 Structural Format

The structural form of the relevant part was a PC box girder rigid frame structure with these points.

- The adaptive span length is around 50 m
- > It must be a structural type that can be erected on the highway
- The structure should not collapse

Table 4-2: List of Girder Structure Types According to Adaptive Spacing

Source: Guide for planning for bridges that cross rivers, issued by Japan Institute of Country-Technology Research Center, in March, 2007.

Source: JICA Study Team

Figure 4-6: Highway Cross-Linking Part General Diagram
4.4 Station Structure Type

4.4.1 Basic Structure

The station section is based on a rigid frame structure that straddles the existing road, with PCT girders on the track floor and concourse floor, and piers in the RC rigid frame structure.

4.4.2 Construction Cost Reduction Structure

In the construction cost reduction plan (partial-horizon plan), the substructure of the track section of the viaduct station will be a single pillar type. The approach from the sidewalk to the station will be a pedestrian bridge structure.

<u>A – A</u>

Source: JICA Study Team

Figure 4-8: Construction Cost Reduction Plan Station Area Plan

For the ground level station after the leveling construction, the island platform is approached from the sidewalk by elevators.

Source: JICA Study Team

5. Depot Planning

5.1 Selection of Depot Location

5.1.1 Proposed Locations and Features

The required conditions for the depot location are land of at least 4.0 hectares and being located as close as possible to the AGT route, while also creating as much passenger demand as possible along the route to the depot. The study team also discussed depot locations with local developers (Jababeka and Lippo Groups), which also done for the routing alignment. The proposed depot locations listed in the discussion are shown in Figure 5-1. The current conditions and issues at each proposed location have also been summarized.

Source: JICA Study Team

(1) Location A: Science Park

The JICA Study Team proposed location A at the January 20 meeting. However, Jababeka already has plans to develop a science park in the area, which includes location A (See Figure 5-2).

(2) Location B: Era Baru

Jababeka recommended utilizing location B for the AGT depot (See Figure 5-2).

But LIPPO noted the following issues:

- Gas pipelines run through the area; and
- -There is no existing road access, so it would be necessary to acquire land for the spur line.

Figure 5-2: Development Plans near Locations A and B

(3) Location C: Orange County Mall

Location C, in the Orange County Mall building, was proposed by Lippo (see Figure 5-3). However, planning for the building is already underway, which would necessitate a drastic redesign to accommodate the depot. A particular issue is that it is not possible to position storage tracks because of the column layout of the current building design, as shown in in Figure 5-4 on the following page.

If the building were to be redesigned, impacts such as increased construction costs and a delayed schedule can be expected.

(4) Location D: South of Central Park

Location D was proposed by Lippo and is 2.5–3.0 km from Location D (Orange County) (See Figure 5-3). An AGT line extension would go through a Phase 2 area that is scheduled for development. However, there is a possibility that passenger demand along this extension would not be sufficient to cover the construction costs.

(5) Location E: East of Meikarta

Location E was proposed by the JICA Study Team (See Figure 5-3). Located in the area east of Meikarta Lippo Station, this location has a higher land value and requires joint development with residential or commercial use to match the value of the land. Another issue is that the depot structure and coordination would be complicated.

Furthermore, there is a possibility that about half the space above the depot would be used for building development, as shown in Figure 5-5.

Source: JICA Study Team Figure 5-3: Wide-Area Map for Locations C, D and E

Source: JICA Study Team

Figure 5-4: Enlarged Map of Location C (Orange County) and Envisioned Depot Layout Image

Source: JICA Study Team

Figure 5-5: Aerial View of Location E and Surrounding District and Simplified Image of Depot with Overhead Building Development

(6) Location F: District 2

Location F was proposed by Lippo and is 2.0-2.5 km from Orange County (See Figure 5-6). The length of the AGT line extension would be longer than what is required for Location G. However, the extension would go through a developing residential area, creating passenger demand. Since there is also an existing residential development west of the terminal station (Lippo Cikarang), there is even further potential for increased passenger demand.

(7) Location G: Southwest of Central Park

Location G was proposed by Lippo and is 1.5–2.0 km from Orange County (See Figure 5-6). The length of the AGT line extension is shorter than what is needed for Location F. Although the extension will go through a Phase 2 area scheduled for development, the extension is not expected to create more new passenger demand than Location F.

Source: Lippo Group materials

Figure 5-6: Enlarged View of the Area around Locations F and G

5.1.2 Evaluation and Selection of Proposed Depot Locations

The evaluation of each proposed depot location was based on the current conditions and issues at each site, as shown in Table 5-1.

Based on the evaluation results, Location F will serve as the depot location for this project.

Location	Name	Proposed	Features	Evaluation
А	Industrial Park	JICA Study Team	• Jababeka already has a plan to develop a science park in the area, which includes Location A.	×
В	Era Baru	Jababeka	 Gas pipe lines run through the area, including Location B. No existing road access means that land must be acquired for the spur line. 	×
C	Orange County Mall	Lippo	 Storage tracks cannot be installed at this site due to the current building design, which is already in the planning stages. A drastic redesign of the building would be required. In the case of a redesign, increased construction costs and a schedule delay are to be expected. 	×
D	South of Central Park	Lippo	 Located 2.5–3.0 km from Orange County. Since the AGT line extension would go through a Phase 2 development area, increased passenger demand may not be sufficient to cover the extension construction costs. 	×
Е	East of Meikarta	JICA Study Team	 This location would require joint development with residential or commercial use to match the land value. The site could also be subject to building development over the depot, which would cover about half the depot space. A building over the depot would complicate the structure of the depot. 	×
F	District 2	Lippo	 Located 2.5–3.0 km from Orange County. The AGT line extension will go through a residential area currently in development, creating passenger demand. Additional passenger demand may also be possible from an existing residential area west of the terminal station. 	0
G	Southwest of Central Park	Lippo	 The AGT line extension will be shorter than what is required for Location F. However, the extension will go through a Phase 2 area that will be developed. However, passenger demand is not expected to exceed what could be expected for Location F. 	×

Table 5-1: Evaluation and Selection of Proposed Depot Locations

Source: JICA Study Team

Note: In the above table, red text signifies benefits and blue text signifies shortcomings

60

5.2 Depot Internal Layout Considerations

5.2.1 Overview and Necessary Functions

The AGT depot is used for storage and maintenance of trains, which requires storage tracks, car washing tracks, a test track, various inspection tracks, tracks for maintenance vehicles, etc. For the safe operation and maintenance of trains, general administration buildings, substations and other necessary facilities are normally also built.

The main functions required for the depot are summarized as follows.

< Main Required Functions in the Depot >

- Storage Facility: To store trains outside operating hours.
- Inspection and Maintenance Facility: For the inspection and maintenance of rolling stock
- Washing Facility: For washing and cleaning rolling stock.
- Storage Facility for Maintenance Vehicles: To store vehicles required to inspect and maintain track, structural elements, electrical equipment, etc.
- General Control Building: A general administration office that includes the head office, the operation control center, the maintenance office, etc.
- Substation: Provides the necessary power for train operations on the main line and depot, lighting and various other power needs.
- Other Needed Facilities: Wastewater treatment facilities, stockrooms, oil storage, etc.

5.2.2 Track Functions and Roles

Referencing the results of the Phase 1 Study, the functions and roles of each line in the depot are shown below. The major inspection and repair facilities are listed in Chapter 8.2.6 "Depot Inspection and Repair Equipment".

(1) Spur Line

The spur line branches off from the main line and connects the depot. The steepest gradient on the spur line shall be 6% or less. To reduce construction costs, the spur line is planned as a single track.

(2) Arrival/Departure Inspection Tracks (2 tracks)

These tracks are installed in the flat and straight section along with an inspection platform to check trains arriving at/departing from the depot.

(3) Storage Tracks (8 tracks)

Tracks for 16-car trains will be installed, with some tracks for two-car trains.

(4) Automatic Car Washing Tracks (2 tracks)

Washing devices will be installed on the automatic car washing tracks to wash the trains. Manual cleaning inside the train cars will also be done on these tracks.

(5) Test Track (1 track)

A 300-meter test track will be installed in the outer part of the depot .

(6) Lead and Crossover Tracks

Lead tracks are used to move trains within the depot. Trains are not stored on these tracks.

(7) Maintenance Train Storage Tracks (2 tracks)

There will be two storage tracks for maintenance trains, which are used to maintain tracks and equipment.

(8) Heavy Maintenance Track (1 track)

This track will be used for important component inspections (every 4 years) and comprehensive inspections (every 8 years).

(9) Monthly Inspection Tracks (2 tracks)

These tracks will be used for regular maintenance inspections (every 3 months).

(10) Daily Inspection Tracks (2 tracks)

These tracks will be used for day-to-day maintenance inspections (every 3 days).

5.2.3 Track Layout Plan

The planned layout for the depot tracks is shown in Figure 5-7.

The area is approximately 3.8 hectares. Even if the scale of the administration buildings and the substation are tangibly considered and installed in the depot as the project progresses, they should fit within the initial space assumption (4.0 hectares).

Figure 5-7: Depot Track Layout Plan