Democratic Socialist Republic of Sri Lanka Ministry of Lands Survey Department, Ministry of Lands

CAPACITY DEVELOPMENT PROJECT FOR CREATING DIGITAL ELEVATION MODEL ENABLING DISASTER RESILIENCE

IN

THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

FINAL REPORT

December 2016

Japan International Cooperation Agency (JICA)

Pacific Consultants Co., Ltd. Oriental Consultants Global Co., Ltd. Nakanihon Air Service Co., Ltd. DMS Co., Ltd.

Contents

1	Out	tline of the Project1
((1)	Background1
((2)	Objectives and Scope1
((3)	Project Implementation Structure
((4)	Joint Coordination Committee
2	Gei	neral Work Flow and Status6
З	Pro	pject Implementation Results7
((1)	Collection and Examination of Existing Documents and Information7
((2)	Preparation of Inception Report and Discussion
((3)	Preparation of Technology Transfer Plan and Implementation of the Plan8
((4)	Seminars17
((5)	Discussion on the Specifications
(6)	Preparation of LiDAR Survey Plan
((7)	Installation of GNSS Base Stations and Ground Checkpoints27
((8)	Implementation of LiDAR Survey
(9)	Preparation of Ortho-Photo Data
(10)	Preparation and Inspection of 3D Measurement Data (Raw Point Cloud)41
([11)	Post-Processing of Raw Point Cloud
((12)	Unclassified Point Cloud Preparation and Inspection
((13)	Ground Data Preparation
(14)	DEM Data Preparation and Utilization
((15)	Contour Line Data Preparation
(16)	Preparation of Interim Report and Discussion
((17)	Training in Japan
(18)	Preparation of Draft Final Report and Discussion
((19)	Preparation of the Manuals
(20)	Preparation of the Final Report
(21)	Outputs61
((22)	Operation Schedule
((23)	Equipment Installed in the Survey Department

Tables

Table 1-1	Original Areas for the LiDAR Survey and Data Processing
Table 1-2	Amended Areas for the LiDAR Survey and Data Processing
Table 1-3	LiDAR Survey and DEM Processing Areas
Table 1-4	List of Project Team Members
Table 3-1	List of Data and Information Collected
Table 3-2	The Result of Skill Assessment
Table 3-3	Selected Nine Engineers
Table 3-4	Participants to the Training
Table 3-5	Training Implementation Summary
Table 3-6	Technology Transfer Sessions Attendance Record
Table 3-7	List of Trainees and Achievement
Table 3-8	Program (Kick-off Seminar)
Table 3-9	Program of the Final Seminar
Table 3-10	Main Participants not from SDSL
Table 3-11	Tentative Pricing of Data
Table 3-12	LiDAR Survey Specifications
Table 3-13	Aircraft Parameters
Table 3-14	Sensors
Table 3-15	LiDAR Survey Parameters
Table 3-16	A Flight Plan (summary of flight line numbers)
Table 3-17	Plan and Implementation of GNSS Base Stations
Table 3-18	GNSS Base Stations
Table 3-19	Ground Checkpoint Survey (Plan and Revised)27
Table 3-20	Installed GNSS Base Stations
Table 3-21	Distribution of Checkpoints by District
Table 3-22	Contents of Sub-Contract Project
Table 3-23	Selection of a Subcontractor
Table 3-24	The Members of the Subcontractor
Table 3-25	LiDAR Measurement Equipment and Data Inspection Item
Table 3-26	List of Points
Table 3-27	Dates of Boresight Calibration Implementation
Table 3-28	The Final Result of the Contract Work
Table 3-29	Result of Ortho-Photo Data Preparation
Table 3-30	Result of Raw Point Cloud Preparation
Table 3-31	Differences from the Ellipsoidal Heights of the Final Checkpoints
Table 3-32	Measurement Loss Ratios (values in the Specifications and the Maximum

	Value)
Table 3-33	Verification of Elevations
Table 3-34 1	Results of the Unclassified Point Cloud Preparation47
Table 3-35	Results of Ground Data Preparation
Table 3-36 1	Results of DEM Data Preparation51
Table 3-37	Results of Verification of the DEM Data Precision53
Table 3-38	Updating the Contour Lies for the Town Maps (1:5,000)53
Table 3-39 1	Results of Contour Line Data Preparation54
Table 3-40	Schedule of Training in Japan58
Table 3-41	Participants to the Training in Japan59
Table 3-42	Manuals
Table 3-43	Organization of the Technical Manuals: Proposed vs Completed60
Table 3-44	Outputs61
Table 3-45	Advance Data Submission
Table 3-46	Equipment Procured in Sri Lanka64

Figures

Figure 1-1	The Original Project Areas
Figure 1-2	Amended LiDAR Survey Areas
Figure 1-3	Project Implementation Structure
Figure 2-1	Work Flow7
Figure 3-1	OJT Evaluation Sheet
Figure 3-2	Flight Lines
Figure 3-3	Selected Ground Checkpoints (Planned in March 2015)
Figure 3-4	Distribution of the GNSS Base Stations
Figure 3-5	Installed Ground Checkpoints
Figure 3-6	Point Description
Figure 3-7	Ground Control Point Calibration Sites
Figure 3-8	Inspection of the LiDAR Measurement Data
Figure 3-9	Jamming Area
Figure 3-10	An Example of FORM4 Record of Airborne LiDAR Measurement
Figure 3-11	The Boresight Calibration Area (North-East of the Ratmalana Airport)
Figure 3-12	The Results of the Subcontract Work (LiDAR Measurement Raw Data)
Figure 3-13	Ortho-Photo Data Preparation Areas
Figure 3-14	Areas of Raw Point Cloud Preparation
Figure 3-15	LiDAR Data Management Sheet (based on Sri Lanka Grid 1999)42
Figure 3-16	Verification Points of Checkpoints

Figure 3-17	Verification Points of Differences between the Flight Paths	44
Figure 3-18	Inspection of the Measurement Omission	45
Figure 3-19	Areas for Unclassified Point Cloud Preparation	47
Figure 3-20	An Example of Unclassified Point Clouds (Birds' Eye View)	48
Figure 3-21	Ground Data Preparation Areas	49
Figure 3-22	An Example of Ground Data (Birds' Eye View)	50
Figure 3-23	An Example of Ground Data Inspection Work using a Relief Map	50
Figure 3-24	DEM Data Preparation Areas	51
Figure 3-25	An Example of DEM Data (Birds' Eye View)	52
Figure 3-26	Results of Verification of the DEM Data Precision	52
Figure 3-27	Contour Line Data Preparation Areas	55
Figure 3-28	An Example of Contour Line Data (Birds' Eye View)	55
Figure 3-29	Operation Schedule Chart	63
Figure 3-30	Planned Assignment and Actual Days Spent by the Project Team Members	63
Figure 3-31	Photos of New Equipment for Training	64

Photos

Photo 1-1	JCC
Photo 3-1	Training (OJT and Lecture)
Photo 3-2	The Kick-off Seminar
Photo 3-3	Technical Seminar (March 21, 2016)
Photo 3-4	Presentation by the Trainees
Photo 3-5	LiDAR Data Handover Ceremony
Photo 3-6	Aircraft
Photo 3-7	Laser Scanner
Photo 3-8	Camera
Photo 3-9	Installed Seven GNSS Base Stations
Photo 3-10	Selection of Subcontractor
Photo 3-11	Telecommunication Tower

Acronyms

	-
AASL	Air and Aviation Service in Sri Lanka
C/P	Counterpart
CAD	Computer Aided Design
CRIP	Climate Resilience Improvement Project
DEM	Digital Elevation Model
DMC	Disaster Management Centre
GCP	Ground Checkpoint
GIS	Geographic Information System
GNSS	Global Navigation Satellite System
GOSL	Government of Sri Lanka
GPS	Global Positioning System
GSD	Ground Sampling Distance
IGI	Integrated Geospatial Innovations
IMU	Internal Measurement Unit
IWMI	International Water Management Institute
JCC	Joint Coordination Committee
JICA	Japan International Cooperation Agency
JPEG	Joint Photographic Experts Group
JPT	JICA Project Team
Lidar	Light Detection and Ranging
MC	Municipal Council
NBRO	National Building Research Organization
OJT	On the Job Training
PC	Personal Computer
PDF	Portable Document Format
PS	Pradeshiya Sabha
RMS	Root Mean Square
SD	Survey Department
SLD	Sri Lanka Datum
SLRC	Sri Lanka Rupavahini Corporation
TIN	Triangulated Irregular Network
TRCSL	Telecommunication Regulation Commission of Sri Lanka
UC	Urban Council
UN	United Nations
UNDP	United Nations Development Programme
UPS	Uninterruptible Power Supply
UTM	Universal Transverse Mercator Coordinate System
WGS	World Geodetic System
SLRC TIN TRCSL UC UN UNDP UPS UTM	Sri Lanka Rupavahini Corporation Triangulated Irregular Network Telecommunication Regulation Commission of Sri Lanka Urban Council United Nations United Nations Development Programme Uninterruptible Power Supply Universal Transverse Mercator Coordinate System

Appendix I	The Inception Report and the Minutes of Meeting
Appendix II	The Minutes of Meeting on the Interim Report
Appendix III	The Minutes of Meeting on the Draft Final Report
Appendix IV	Skill Assessment Report
Appendix V	OJT Evaluation
Appendix VI	Meeting Records
Appendix VII	Final Seminar Presentations
Appendix VIII	The Minutes of Meeting on Amendment of the Record of Discussions

1 Outline of the Project

(1) Background

The Democratic Socialist Republic of Sri Lanka (hereinafter referred to as "Sri Lanka") was affected by the climate changes, and many natural disasters such as flood and landslides have affected lives and infrastructure. Floods are the major natural disasters that have caused tens of thousands of victims each year according to the records of the Disaster Management Center. In the central and southwestern areas of Sri Lanka are prone to landslides due to: topographic and geological characteristics; and development and cultivation activities in the mountainous areas. These disasters have affected human lives, destroyed houses and damaged arterial roads; they thus negatively impacted economic activities.

Under these circumstances, the Government of Sri Lanka (hereinafter referred to as "GOSL") announced a policy on disaster management triggered by the earthquake of Sumatra and tsunami in 2004 to minimize damages proactively rather than reactively. GOSL has enacted "Sri Lanka Disaster Management Act" which became a fundamental framework for activities of mitigation, preparedness, response and recovery in May 2005. The Act created Ministry of Disaster Management and Disaster Management Center to strengthen organizational structure on disaster prevention and countermeasures against calamities.

GOSL has a plan to consolidate early warning arrangements by preparing hazard maps of floods and landslides. In the process of these hazard map preparation, accurate elevation data will be required. The Laser Detection and Ranging (hereinafter referred to as "LiDAR") technology is the technology to acquire the data efficiently, but such technology is not available in Sri Lanka; therefore, conventional technologies are used.

The stated situation has led for the Ministry of Lands (former Ministry of Lands and Land Development) to make an official request to the Government of Japan to transfer the LiDAR survey technology to create Digital Elevation Model (hereinafter referred to as "DEM") that will be used for disaster prevention and related activities. Receiving the request, Japan International Cooperation Agency (hereinafter referred to as "JICA") dispatched a study team for detailed plan preparation from July 2014 to August 2014. The Survey Department of the Ministry of Lands (hereinafter referred to as "SDSL") and JICA came to agree on the contents of the Project.

(2) Objectives and Scope

(2)-1 Objectives

The objectives of the project are: 1) Preparation of DEM Data; and 2) Technical Transfer on DEM preparation and thematic map preparation.

(2)-2 Project Areas

1) Original DEM Data Production Areas

The major areas of the districts of Colombo and Gampaha, Nuwara Eliya, Kegalle, parts of Kandy, Badulla and the surrounding areas are covered as the project areas. The original project area map is shown below with classifications of DEM processing and accuracy.

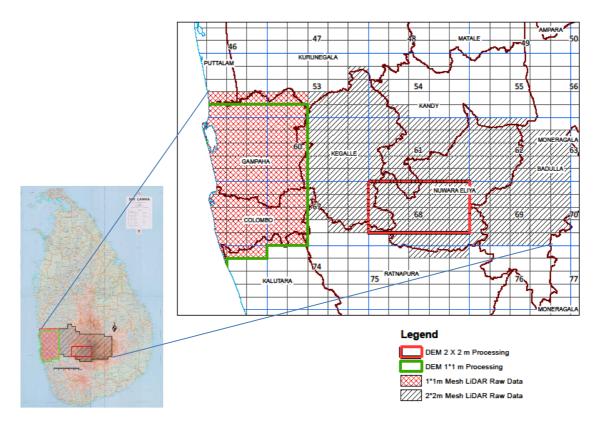


Figure 1-1 The Original Project Areas

2) Amendment to the Project Area

SDSL requested to change a part of the survey area to the Project Team on the 24th and 25th of February 2016, since any solution has not been reached over the problem of GNSS signal reception¹. The request was reported to JICA, and JICA and SDSL has discussed over the matter, and they came to agreements as follows:

1) 2 m x 2 m mesh area

The 900 km² area where the LiDAR measurement could not be conducted because of the jammed GNSS signals would be shifted to the Gin Gango river mouth and surrounding area and Ingiriya area in the north-eastern area in Kalutara District.

2) 2 m x 2 m DEM Data Preparation Area

Since the eastern part of the DEM data preparation area in the 2 m x 2 m, which has 160 km², could not be measured, the area was shifted to westward to cover 160 km² equivalent to four map sheets of 1/10,000 scale map to keep the original DEM preparation area of 800 km².

On May 26, 2016, SDSL requested additional data to the Project Team because of the large-scale flooding caused by heavy rain in the LiDAR survey area in the 1 m x 1 m mesh area. SDSL needed to conduct a disaster survey in the area. To the planned LiDAR survey data area (2,200 km²), additional 200 km² needed to be included in the LiDAR survey area. The Project Team reported the

¹ For details, refer (8)-3 Disturbance on GNSS Signal Reception.

headquarters, and the Project Team and JICA discussed the matter. On June 10, the amendment in the 1×1 mesh area was agreed. The areas before and after including the $2 \mod x \pmod{2}$ m mesh areas are summarized in the following tables.

				Unit: km ²
Work Item	1 m x 1 m me	esh (Original)	2 m x 2 m mesh (no change)	
WOR REIT	SD	JPT	SD	JPT
Raw Point Clouds	200	2,200	4,600	800
Unclassified Point Clouds	200	2,200	4,600	800
Ground Data	200	2,200	4,600	800
Ortho-Photo Data	200	2,200	4,600	800
DEM Data	200	2,200	4,600	800
Contour Line Data	2,300	100	5,300	100

Table 1-1Original Areas for the LiDAR Survey and Data Processing

SD: Survey Department; JPT: JICA Project Team

Table 1-2 Amended Areas for the LiDAR Survey and Data Processing

				Unit: km ²	
Work Item	1 m x 1 m mesh (Changed)		2 m x 2 m mes	2 m x 2 m mesh (no change)	
WORK ITEM	SD	JPT	SD	JPT	
Raw Point Clouds	-	2,400	4,600	800	
Unclassified Point Clouds	-	2,400	4,600	800	
Ground Data	-	2,400	4,600	800	
Ortho-Photo Data	-	2,400	4,600	800	
DEM Data	-	2,400	4,600	800	
Contour Line Data	2,100	300	5,300	100	

SD: Survey Department; JPT: JICA Project Team

The Contract between the Project Team and JICA was amended.

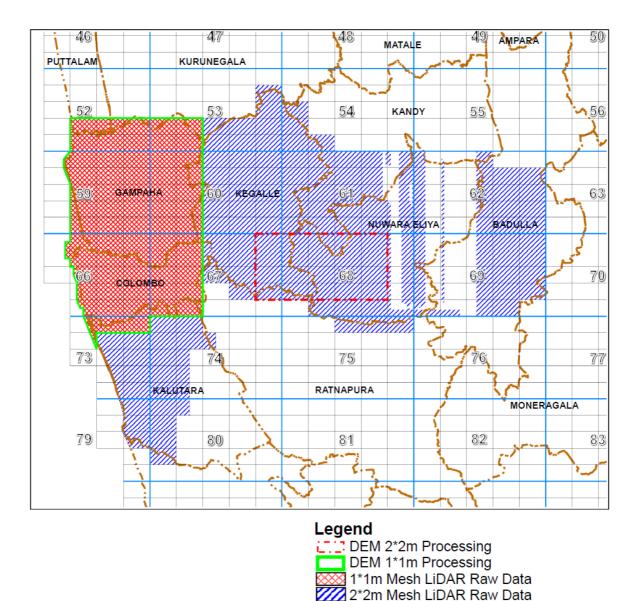


Figure 1-2 Amended LiDAR Survey Areas

After the amendment of the areas, the total LiDAR Survey area is $7,800 \text{ km}^2$, and the total DEM processing areas is $3,200 \text{ km}^2$. The areas and accuracy corresponding to the areas are summarized in the following table.

Table 1-5 LIDAR Survey and DEW Processing Areas					
	LiDAR Survey	DEM	LiDAR Point	Vertical	Ground Pixel
Locality	Area	Processing	Density	Accuracy	Size on
		Area			Ortho-photo
					image
Colombo and Gampaha districts	2,400 km ²	2,400 km ²	1 x 1 meter mesh	\pm 30 cm	30 cm
Other than above	5,400 km ²	800 km ²	2 x 2 meter mesh	\pm 50 cm-100 cm	50 cm

 Table 1-3
 LiDAR Survey and DEM Processing Areas

(3) Project Implementation Structure

Supported by the Secretariat of Joint Venture Enterprises in Japan, the Project Management Group, composed of the Team Leader and the Deputy Team Leader managed the Project Team. The Project Team communicated with the JICA Sri Lanka Office and the counterpart organizations to implement the project as the Project Team consults with the Joint Coordination Committee.

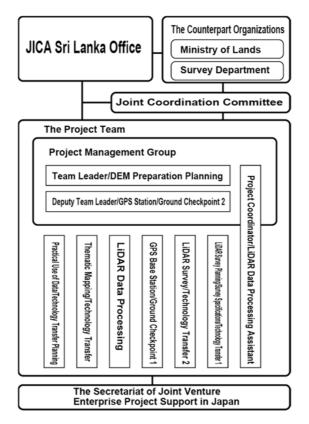


Figure 1-3 **Project Implementation Structure**

There were eleven members assigned for the project. Mr. Nakasha and Mr. Kitai were the supporting members have sent by Nakanihon Air Services Co., Ltd.

Table 1-4	List of Project Team Members
Accianm	ont

	Assignment	Name
1	Team Leader/DEM Preparation Planning	Dr. Yutaka Kokufu
2	Deputy Team Leader/LiDAR Survey	Mr. Koichi Kamimura
2	GPS Station/Ground Checkpoint 2	Mr. Koichi Kamimura
3	LiDAR Data Processing	Mr. Reynaldo R. Adorador
4	LiDAR Survey Planning/Survey Specifications/Technology	Mr. Masanobu Kondo
	Transfer 1	
5	GPS Station/ Ground Checkpoint 1	Mr. Kiyofumi Tamari
6	LiDAR Survey/Technology Transfer 2	Mr. Hideyuki Haijima
7	LiDAR Survey/Technology Transfer 3	Mr. Hajime Nakasha
8	Thematic Mapping/Technology Transfer	Dr. Akihiro Furuta
9	Data Use Promotion/Technology Transfer Planning	Mr. Kazunobu Kamimura
10	Project Coordinator/LiDAR Data Processing Assistant	Ms. Mary Grace Desusa
11	Project Assistant	Mr. Kazushi Kitani

(4) Joint Coordination Committee

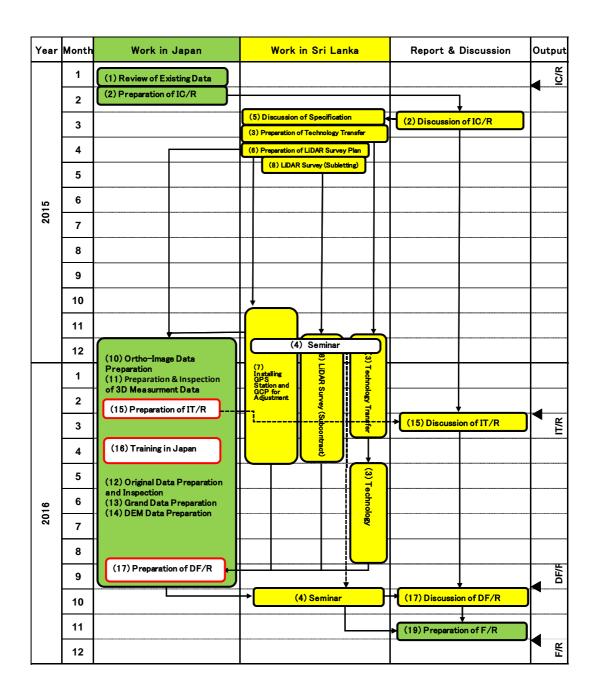

SDSL had received DEM data requests from various agencies related to the flood after the disaster caused by the heavy rain in May, 2016. SDSL held a JCC meeting as inviting the Irrigation Department, DMC, and NBRO. The Project Team explained the progress of work regarding DEM data preparation, and data sharing in the future. It was agreed that SDSL would explain how the data would be shared among government agencies and the prices of sharing the DEM data in the seminar to be held on 11 October, 2016.

Photo 1-1 JCC

2 General Work Flow and Status

Figure 2-1 shows the general work flow of the project. This Final Report covers the contents from the beginning of the Project to the end of November, 2016. The work items are discussed in each section.

3 Project Implementation Results

(1) Collection and Examination of Existing Documents and Information

In Japan and Sri Lanka, following data and information were collected:

Name	Format
Existing Benchmark List	Kmz
Description of Benchmark	Print
Existing GPS Point List	Kmz
Topographic Map (1/50000) paper	Print
media	
Topographic Map (1/50000) digital	JPEG
data	
Road Map for Garmin GPS	img
DEPARTMENTAL SURVEY	PDF
REGULATIONS	

 Table 3-1
 List of Data and Information Collected

(2) **Preparation of Inception Report and Discussion**

On March 10, 2015, the Project Team presented the Inception Report to SDSL, and the contents were discussed. Dr. Kokufu explained three implementation schedules. After discussion, both sides agree to select Alternative C. The Minutes of Meeting is attached in the appendix.

(3) Preparation of Technology Transfer Plan and Implementation of the Plan

(3)-1 Skill Assessment

A skill assessment was conducted on March 23, 2015, 10:00 am to 11:00 am. Twelve persons took the test on the basic operation of MicroStation. Nine candidate participants were selected as the operators for the LiDAR data processing, and two technical leaders have been selected. The results are summarized in the following table:

No	Pass or Fail	Title	First	Last	Total	Note
1	Pass	Mr.	M.N.K.	Bandara 75 Candidate Leader		Candidate Leader
2	Pass	Mr.	P.N.B.	Widanagamage	75	Candidate Leader
3	Pass	Mr.	D.	Ekanayaka	55	
4	Pass	Mrs.	D.C.S.	Jayatunga	45	
5	Pass	Mr.	M .K.J.	Wijethilaka	45	
6	Pass	Mr.	M.A.N.	Karunathilaka	30	
7	Pass	Mrs.	Y.K.	Kannangara	30	
8	Pass	Mrs.	I.S.	Welhena	20	
9	Pass	Mr.	A.G.T.P.	Weerasinghe	20	
10	Fail	Mrs.	M.M.V.U.	Silva	15	Observer
11	Fail	Mr.	W.K.C.	Madushanka	10	Observer
12	Fail	Mr.	P.S.P.	Jayatunga	10	Observer
13	Fail	Mr.	M.C.S.	Cooray	No show	

Table 3-2The Result of Skill Assessment

(3)-2 Technology Transfer Plan

1) Goals

The participants will be able to prepare an airborne LiDAR survey plan.

- The participants will be able to produce DEM data from the LiDAR data.
- The participants will be able to produce thematic maps from the DEM data.
- The participants will be able to produce contour-line data from the DEM data.

2) Target Participants

As discussed with SDSL, the maximum number of OJT was nine; therefore, nine persons from the highest score were selected as the candidate for technology transfer training.

	Table 3-3 Selected Nine E	ngineers
No	Name	Initial Text Evaluation on CAD Operation
1	Mr. M.N.K. Bandara	А
2	Mr. P.N.B. Widanagamage	А
3	Mr. D. Ekanayaka	В
4	Mrs. D.C.S. Jayatunga	В
5	Mr. M .K.J. Wijethilaka	В
6	Mr. M.A.N. Karunathilaka	С
7	Mrs. Y.K. Kannangara	С
8	Mrs. I.S. Welhena	С
9	Mr. A.G.T.P. Weerasinghe	С

 Table 3-3
 Selected Nine Engineers

For those who did not make it to the OJT candidates became observers to the OJT sessions.

Mr. Bandora and Mr. Widanagamage scored the highest among 12 test takers. They were recommended to become the candidate technical leaders in the technology transfer training and future trainers. The administrative leader was assigned to Mr. Wijiwaryanada, Superintendent of Surveys, Air Survey Branch, Survey Department.

For the LiDAR survey planning, five trainees were recommended by SDSL. They were from the Photogrammetry Branch and Photo Lab Branch.

In December 2015, SDSL requested additional 13 trainees for the LiDAR data processing. The capacity of the training facility and availability of experts were considered, and it was decided that the original trainees would train the additional trainees in the training room.

In February 2016, three trainees were added as requested by SDSL. To those three trainees, intensive training was conducted.

For the thematic mapping training, originally three trainees and three observers from the GIS Branch were planned. But SDSL requested additional trainees as the GIS Branch provided additional PCs with software licenses, the observers became the trainees. The Mapping Branch joined the training as well as nine original LiDAR survey data processing trainees. Since both ArcGIS and TerraSeries have functions to produce thematic maps and contour line data, training for both methods were provided.

Because of the flood in May, 2016, there was an additional training request from other agencies: the Irrigation Department; NBRO; and DMC. Representatives from those agencies were requested to

take part in the thematic mapping training.

The names of 15 persons who took part in the training in Japan are included in the following table.

Group NameNameSectionMr. M.N.K. BandaraPhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric BranchMr. M.C.S. CoorayPhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. N.P.W. JayathilakaPhotogrammetric BranchMrs. N.P.W. JayathilakaPhotogrammetric BranchMrs. A.C. PaereraPhotogrammetric BranchMrs. M.Y.U. SilvaPhotogrammetric BranchMrs. M.Y.U. SilvaPhotogrammetric BranchMrs. M.Y.U. SilvaPhotogrammetric BranchMrs. M.Y.U. SilvaPhotogrammetric BranchMrs. M.N.W. BandaraPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. M.N.K. BandaraPhotogrammetric BranchMrs. M.K. KanunatilakaPhotogrammetric BranchMrs. M.K. KanunagaraPhotogrammetric Branch<		Table 3-4 Participants	to the Training
LiDAR Data Processing EngineerMr. D. EkanayakePhotogrammetric BranchLiDAR Data Processing EngineerMrs. Y.K. KannangaraPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. N.K.J. WijayatilakaPhotogrammetric BranchMr. N.K.J. WijayatilakaPhotogrammetric BranchMr. N.K.J. WijayatilakaPhotogrammetric BranchMr. N.C.S. CoorayPhotogrammetric BranchMr. D.S. P. GurugePhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. N.P.W. JayathilakaPhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. P.C. P. JayathungaPhotogrammetric BranchMr. N.K. ManchanayakaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMrs. M.V.U. SilvaPhotogrammetric BranchMrs. M.W.U. SilvaPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. P.K. KannangaraPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. N.K. KannangaraPhotogrammetric BranchMrs. J.S. WelhenaPhotogrammetric BranchMrs. J.S. Welhena <td>Group Name</td> <td>Name</td> <td>Section</td>	Group Name	Name	Section
LiDAR Data Processing EngineerMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. A.W.A.N. KarunatilakaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric BranchMrs. A.K. ChandraniPhotogrammetric BranchMrs. N.K. CoorayPhotogrammetric BranchMrs. D.V.I.U. GunarathnaPhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. P.C. P. JayathungaPhotogrammetric BranchMrs. A.P. ManchanayakaPhotogrammetric BranchMrs. A.P. ManchanayakaPhotogrammetric BranchMrs. M.V.U. SilvaPhotogrammetric BranchMrs. M.V.U. SilvaPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. N.K. BandaraPhotogrammetric BranchMrs. J.C.S. JayatungaPhotogrammetric BranchMrs. J.C.S. JayatungaPhotogrammetric BranchMrs. J.S. WelhenaPhotogrammetric BranchMrs. J.S. WelhenaPhotogrammetric BranchMrs. J.S. WelhenaPhotogrammetric Branch<		Mr. M.N.K. Bandara	Photogrammetric Branch
LiDAR Data Processing EngineerMrs. Y.K. Kannangara Mr. M.W.A.N. Karunatilaka Mr. M.W.A.N. Karunatilaka Mr. A.G.T.P. Weerasinghe Mrs. I.S. Welhena Mr. P.N.B. Widanagamage Mr. M.K.J. WijayatilakePhotogrammetric Branch Photogrammetric BranchMrs. I.S. Welhena Mr. N.K.J. WijayatilakePhotogrammetric BranchMr.Mrs. N.K. C. Cooray Mrs. N.C.S. CoorayPhotogrammetric BranchMrs. P.C. Guruge DepartmentPhotogrammetric BranchMrs. P.C. Guruge Mrs. N.C. MachaniaPhotogrammetric BranchMrs. P.C. Guruge Mrs. P.C. JayathilakaPhotogrammetric BranchMrs. P.C. Perera Mr. M.K.C. MadshankaPhotogrammetric BranchMr. A.P. Manchanayaka Mr. P.S.P. JayathungaPhotogrammetric BranchMr. A.P. Manchanayaka Ms. P.A.C.P. PereraPhotogrammetric BranchMrs. M.W.U. Silva Ms. A.A. PriyanthiPhotogrammetric BranchMrs. D.C.S. Jayatunga Mr. N.K. BandaraPhotogrammetric BranchMrs. D.C.S. Jayatunga Mr. N.K. KannangaraPhotogrammetric BranchMrs. D.C.S. Jayatunga Mr. N.K. KannangaraPhotogrammetric BranchMrs. D.C.S. Jayatunga Mr. N.K. KannangaraPhotogrammetric BranchMrs. Y.K. Kannangara Mr. M.N.K. Karunatilaka Mr. M.W.A.N. Karunatilaka Mr. M.Y. M. KarunatilakaPhotogrammetric BranchMr. M.W.A.N. Karunatilaka Mr. M.Y. M. Karunatilaka Mr. M.K.J. WijayatilakePhotogrammetric Branch		Mr. D. Ekanayake	Photogrammetric Branch
LiDAR Data Processing Mr. M.W.A.N. Karunatilaka Photogrammetric Branch Engineer Mr. A.G.T.P. Weerasinghe Photogrammetric Branch Mrs. I.S. Welhena Photogrammetric Branch Mr. P.N.B. Widanagamage Photogrammetric Branch Mr. M.K.J. Wijayatilake Photogrammetric Branch Mr. M.K.J. Wijayatilake Photogrammetric Branch Mr. M.K.J. Wijayatilake Photogrammetric Branch Mr. M.C.S. Cooray Photogrammetric Branch Mrs. A.K. Chandrani Photogrammetric Branch Mrs. D.W.I.U. Gunarathna Photogrammetric Branch Mrs. P.C. Guruge Photogrammetric Branch Mrs. M.P.W. Jayathilaka Photogrammetric Branch Mrs. M.P.W. Jayathilaka Photogrammetric Branch Mr. W.K.C. Madshanka Photogrammetric Branch Mr. M.Y. D. Sayathunga Photogrammetric Branch Mrs. M.P.U. Jayathilaka Photogrammetric Branch Mrs. M.P.U. Silva Photogrammetric Branch Mrs. M.N.U.U. Silva Photogrammetric Branch Mrs. M.N.V.U. Silva Photogrammetric Branch Mrs. M.K. Bandara Photogrammetric Branch Mrs. D. Ekanayake Photogrammetric Branch <t< td=""><td></td><td>Mrs. D.C.S. Jayatunga</td><td>Photogrammetric Branch</td></t<>		Mrs. D.C.S. Jayatunga	Photogrammetric Branch
EngineerMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric BranchMrs. A.K. ChandraniPhotogrammetric BranchMrs. A.K. ChandraniPhotogrammetric BranchMr. M.C.S. CoorayPhotogrammetric BranchMr. M.C.S. CoorayPhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMr. W.K.C. MadshankaPhotogrammetric BranchMr. W.K.C. MadshankaPhotogrammetric BranchMr. A.P. WanchanayakaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMr. M.Y.U. SilvaPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMr. M.N.K. SandaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. M.N.K. BandaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric Branch<	LiDAR Data Processing	Mrs. Y.K. Kannangara	Photogrammetric Branch
Mr. A.G.T.P. WeerasinghePhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric BranchMrs. A.K. ChandraniPhotogrammetric BranchMrs. A.K. ChandraniPhotogrammetric BranchMrs. D.W.I.U. GunarathnaPhotogrammetric BranchMrs. M.C.S. CoorayPhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMrs. M.A.C. P. PereraPhotogrammetric BranchMrs. M.V.U. SilvaPhotogrammetric BranchMrs. M.W.U. SilvaPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. J.K. KannangaraPhotogrammetric BranchMrs. J.S. WelhenaPhotogrammetric BranchMr. N.B. WidanagamagePhotogrammetri		Mr. M.W.A.N. Karunatilaka	Photogrammetric Branch
Mr. P.N.B. Widanagamage Mr. M.K.J. WijayatilakePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric BranchMrs. A.K. ChandraniPhotogrammetric BranchMrs. A.K. ChandraniPhotogrammetric BranchMr. M.C.S. CoorayPhotogrammetric BranchMs. D.W.I.U. GunarathnaPhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. N.P.W. JayathilakaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMrs. M.N.U. SilvaPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMr. D. C.S. JayatungaPhotogrammetric BranchMr. D.C.S. JayatungaPhotogrammetric BranchMr. D.C.S. JayatungaPhotogrammetric BranchMr. M.Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. J.S. WelhenaPhotogrammetric BranchMr. N.S. WelhenaPhotogrammetric BranchMr. N.S. WelhenaPhotogrammetric BranchMr. N.S. WelhenaPhotogrammetric BranchMr. N.K.J. WijayatilakePhotogrammetric Branch		Mr. A.G.T.P. Weerasinghe	Photogrammetric Branch
Mr. M.K.J. WijayatilakePhotogrammetric BranchMrs. A.K. ChandraniPhotogrammetric BranchMrs. A.K. ChandraniPhotogrammetric BranchMr. M.C.S. CoorayPhotogrammetric BranchMs. D.W.I.U. GunarathnaPhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. P.S.P. JayathilakaPhotogrammetric BranchMr. P.S.P. JayathilakaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMr. D. S. JayatungaPhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. N.S. WelhenaPhotogrammetric BranchMr. N.K.J. WijayatilakePhotogrammetric Branch		Mrs. I.S. Welhena	Photogrammetric Branch
Mrs. A.K. ChandraniPhotogrammetric BranchMr. M.C.S. CoorayPhotogrammetric BranchMs. D.W.I.U. GunarathnaPhotogrammetric BranchMs. D.W.I.U. GunarathnaPhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. W.K.C. MadshankaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMs. A.P. ManchanayakaPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. I.S. U.S. JayatungaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. N.K.B. WidanagamagePhotogrammetric BranchMr. N.K.J. WijayatilakePhotogrammetric Branch		Mr. P.N.B. Widanagamage	Photogrammetric Branch
Mr. M.C.S. CoorayPhotogrammetric BranchMs. D.W.I.U. GunarathnaPhotogrammetric BranchMs. D.W.I.U. GunarathnaPhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. W.K.C. MadshankaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMs. P.A.C.P. PereraPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMr. M.V.A.N. KarunatilakaPhotogrammetric BranchPreparationMr. A.G.T.P. WeerasingheMr. N.W.A.N. KarunatilakaPhotogrammetric BranchMr. I.S. WelhenaPhotogrammetric BranchMr. N.K.J. WijayatilakePhotogrammetric Branch		Mr. M.K.J. Wijayatilake	Photogrammetric Branch
Ms. D.W.I.U. GunarathnaPhotogrammetric BranchMrs. P.C. GurugePhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMrs. S.Y.K. KannangaraPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. S. S. WelhenaPhotogrammetric BranchMr. N.S. S. WelhenaPhotogrammetric BranchMr. N.S. S. WilanagamagePhotogrammetric BranchMr. N.K.J. WijayatilakePhotogrammetric Branch		Mrs. A.K. Chandrani	Photogrammetric Branch
Mrs. P.C. GurugePhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMrs. M.P.W. JayathilakaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. W.K.C. MadshankaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMs. P.A.C.P. PereraPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. J.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Mr. M.C.S. Cooray	Photogrammetric Branch
Training by Survey DepartmentMrs. M.P.W. JayathilakaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. P.S.P. JayathungaPhotogrammetric BranchMr. W.K.C. MadshankaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMs. P.A.C.P. PereraPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. N.B. WidanagamagePhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Ms. D.W.I.U. Gunarathna	Photogrammetric Branch
Training by Survey DepartmentMr. P.S.P. JayathungaPhotogrammetric BranchMr. W.K.C. MadshankaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMs. P.A.C.P. PereraPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMrs. M.W.U. SilvaPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. S. I.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Mrs. P.C. Guruge	Photogrammetric Branch
Training by Survey DepartmentMr. W.K.C. MadshankaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMs. P.A.C.P. PereraPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMrs. M.M.V.U. SilvaPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Mrs. M.P.W. Jayathilaka	Photogrammetric Branch
DepartmentMr. W.K.C. MadshankaPhotogrammetric BranchMr. A.P. ManchanayakaPhotogrammetric BranchMs. P.A.C.P. PereraPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMrs. M.M.V.U. SilvaPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. M.N.K. BandaraPhotogrammetric BranchMrs. D. EkanayakePhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. J.S. WelhenaPhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch	Training by Survey	Mr. P.S.P. Jayathunga	Photogrammetric Branch
Mr. A.P. ManchanayakaPhotogrammetric BranchMs. P.A.C.P. PereraPhotogrammetric BranchMs. A.A. PriyanthiPhotogrammetric BranchMrs. M.M.V.U. SilvaPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. M.N.K. BandaraPhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMr. N.N.B. WidanagamagePhotogrammetric BranchMr. N.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Mr. W.K.C. Madshanka	Photogrammetric Branch
Ms. A.A. PriyanthiPhotogrammetric BranchMrs. M.N.V.U. SilvaPhotogrammetric BranchMrs. M.M.V.U. SilvaPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. M.N.K. BandaraPhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch	Department	Mr. A.P. Manchanayaka	Photogrammetric Branch
Mrs. M.M.V.U. SilvaPhotogrammetric BranchMs. L.P. UpekshaPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. M.N.K. BandaraPhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. J.S. WelhenaPhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Ms. P.A.C.P. Perera	Photogrammetric Branch
Ms. L.P. UpekshaPhotogrammetric BranchMs. A.M. WickramagePhotogrammetric BranchMr. M.N.K. BandaraPhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Ms. A.A. Priyanthi	Photogrammetric Branch
Ms. A.M. WickramagePhotogrammetric BranchMr. M.N.K. BandaraPhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. D. C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Mrs. M.M.V.U. Silva	Photogrammetric Branch
Mr. M.N.K. BandaraPhotogrammetric BranchMr. D. EkanayakePhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Ms. L.P. Upeksha	Photogrammetric Branch
Mr. D. EkanayakePhotogrammetric BranchMrs. D.C.S. JayatungaPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Ms. A.M. Wickramage	Photogrammetric Branch
Contour Line DataMrs. D.C.S. JayatungaPhotogrammetric BranchPreparationMrs. Y.K. KannangaraPhotogrammetric BranchMr. M.W.A.N. KarunatilakaPhotogrammetric BranchMr. A.G.T.P. WeerasinghePhotogrammetric BranchMrs. I.S. WelhenaPhotogrammetric BranchMr. P.N.B. WidanagamagePhotogrammetric BranchMr. M.K.J. WijayatilakePhotogrammetric Branch		Mr. M.N.K. Bandara	Photogrammetric Branch
Contour Line Data PreparationMrs. Y.K. Kannangara Mr. M.W.A.N. Karunatilaka Mr. A.G.T.P. Weerasinghe Mrs. I.S. Welhena Mr. P.N.B. Widanagamage Mr. M.K.J. WijayatilakePhotogrammetric Branch Photogrammetric BranchMr. M.W.A.N. Karunatilaka Mr. A.G.T.P. Weerasinghe Mrs. I.S. Welhena Mr. P.N.B. Widanagamage Mr. M.K.J. WijayatilakePhotogrammetric Branch		Mr. D. Ekanayake	Photogrammetric Branch
Contour Line Data Mr. M.W.A.N. Karunatilaka Photogrammetric Branch Preparation Mr. A.G.T.P. Weerasinghe Photogrammetric Branch Mrs. I.S. Welhena Photogrammetric Branch Mr. P.N.B. Widanagamage Photogrammetric Branch Mr. M.K.J. Wijayatilake Photogrammetric Branch		Mrs. D.C.S. Jayatunga	Photogrammetric Branch
Preparation Mr. M.W.A.N. Karunatilaka Photogrammetric Branch Mr. A.G.T.P. Weerasinghe Photogrammetric Branch Mrs. I.S. Welhena Photogrammetric Branch Mr. P.N.B. Widanagamage Photogrammetric Branch Mr. M.K.J. Wijayatilake Photogrammetric Branch	Contour Line Date	Mrs. Y.K. Kannangara	Photogrammetric Branch
Mr. A.G.T.P. Weerasinghe Photogrammetric Branch Mrs. I.S. Welhena Photogrammetric Branch Mr. P.N.B. Widanagamage Photogrammetric Branch Mr. M.K.J. Wijayatilake Photogrammetric Branch		Mr. M.W.A.N. Karunatilaka	Photogrammetric Branch
Mr. P.N.B. Widanagamage Photogrammetric Branch Mr. M.K.J. Wijayatilake Photogrammetric Branch	Fiepalalion	Mr. A.G.T.P. Weerasinghe	Photogrammetric Branch
Mr. M.K.J. Wijayatilake Photogrammetric Branch		Mrs. I.S. Welhena	Photogrammetric Branch
		Mr. P.N.B. Widanagamage	Photogrammetric Branch
LiDAR Data Processing Mr. P.S.P. Jayathunga Photogrammetric Branch		Mr. M.K.J. Wijayatilake	Photogrammetric Branch
	LiDAR Data Processing	Mr. P.S.P. Jayathunga	Photogrammetric Branch

Table 3-4	Participants to the Training
	i al dolpanto to the maining

Group Name	Name	Section		
Engineer (Observer)	Mr. W.K.C. Madshanka	Photogrammetric Branch		
	Mrs. M.M.V.U. Silva	Photogrammetric Branch		
	Mr. A.A.J Abaysundara	Photo Lab		
	Mrs. P.C. Guruge	Photogrammetric Branch		
LiDAR Survey Planner	Mr. K.S. Gurusinghe	Photo Lab		
	Mr. S.P. Meheramba	Photo Lab		
	Ms. P.A.C.P. Perera	Photogrammetric Branch		
	Ms. A.W. Gunawardana	Special Mapping Branch 1		
	Mr. L.A.S.A. Iraj	Special Mapping Branch 2		
Thematic Mapping for	Ms. B.H.U. Rathnahansi	Topographical Mapping Drawing		
Mapping Branch	Mrs. R.W.G.H. Sumanasiri	Special Mapping Unit 1		
	Ms. W.A. Weerasinghe	Topographical Mapping Preparation		
	Ms. N.M. Withana	Special Mapping Branch 2		
	Mrs. P.C. Guruge	Photogrammetric Branch		
	Ms. P.A.C.P. Perera	Photogrammetric Branch		
Thomatic Monsing	Mr. S.M.J.S Samarasinghe	GIS Branch		
Thematic Mapping	Ms. K.M. Sandaruwani	Remote Sensing Branch		
	Mrs. U.K. Weerakoon	GIS Branch		
	Mr. I. Welikanna	GIS Branch		
	Ms. Hasali Hemasinghe	NBRO		
Thomatic Monning for	Ms. M.H.B.C.W. Herath	Irrigation Department		
Thematic Mapping for	Mr. S. Jayaprakash	NBRO		
Other Agencies	Mr. Sampath Kukulavithana	DMC		
	Mrs. K.K.G.I.L. Siriwardana	Irrigation Department		
	Mr. M.N.K. Bandara	Photogrammetric Branch		
	Mr. D. Ekanayake	Photogrammetric Branch		
	Mrs. D.C.S. Jayatunga	Photogrammetric Branch		
	Mrs. Y.K. Kannangara	Photogrammetric Branch		
	Mr. M.W.A.N. Karunatilaka	Photogrammetric Branch		
Thematic Mapping	Mr. A.G.T.P. Weerasinghe	Photogrammetric Branch		
(Observer)	Mrs. I.S. Welhena	Photogrammetric Branch		
	Mr. P.N.B. Widanagamage	Photogrammetric Branch		
	Mr. M.K.J. Wijayatilake	Photogrammetric Branch		

Group Name	Name	Section	
	Mr. M.N.K. Bandara	Photogrammetric Branch	
	Mr. B.C.P. Bogahawatta	Geodetic Branch	
	Mr. D. Ekanayake	Photogrammetric Branch	
	Mrs. D.C.S. Jayatunga	Photogrammetric Branch	
	Mrs. Y.K. Kannangara	Photogrammetric Branch	
	Mr. M.W.A.N. Karunatilaka	Photogrammetric Branch	
	Miss Serenee Osman	Photogrammetric Branch	
Trainee for Training in	Mr. G.A. Udayakumara	Geodetic Branch	
Japan	Mr. W.M.S. Weerasinghe	Geoinformatic Section	
	Mr. A.G.T.P. Weerasinghe	Photogrammetric Branch	
	Mrs. I.S. Welhena	Photogrammetric Branch	
	Mr. P.N.B. Widanagamage	Photogrammetric Branch	
	Mr. M.K.J. Wijayatilake	Photogrammetric Branch	
	Mr. N.M.A. Wijerethne	Institute of Surveying and Mapping,	
	Mr. N.M.A. Wijerathna	Diyathalawae	
	Mr K.S.K. Wijeyawardhana	Air Survey Branch	

Photo 3-1 Training (OJT and Lecture)

3) Technology Transfer Results

The technology transfer sessions started on November 11, 2015 and completed on August 31, 2016. All the planned training manuals were completed, and all the 221 sessions were completed including self-learning sessions under supervision of the Project Team members.

Code	Category	Training Type	Training From	Training To	The number of
					Sessions
01	LiDAR Fundamentals	Lecture	30/11/2015		1
02	Software Knowledge	Lecture	07/12/2015		1
025	Introduction to LiDAR Data Processing	Lecture	08/12/2015	15/12/2015	2
025_ Intensive	Introduction to LiDAR Data Processing (Intensive)	Lecture	16/02/2016		2
03	LiDAR Survey Planning	Workshop	24/02/2016	03/03/2016	4
04	LiDAR Measurement	Lecture	06/01/2016	02/03/2016	2
05	Raw Point Cloud	Lecture	08/03/2016		2
06	Unclassified Point Cloud	OJT	22/12/2015	24/02/2016	22
06_ Intensive	Unclassified Point Cloud (Intensive)	OJT	17/02/2016	18/03/2016	17
06_SD	Unclassified Point Cloud by Survey Department	OJT	29/12/2015	27/01/2016	6
07	Ground Data Preparation	OJT	14/03/2016	31/05/2016	35
08	DEM Data Preparation	OJT	12/05/2016	13/05/2016	4
09	Ortho-Photo Image Preparation	OJT	16/05/2016	17/05/2016	4
10	Thematic Map Preparation from DEM using TerraSeries, MicroStation	OJT	01/08/2016	30/08/2016	42
11	Thematic Map Preparation from DEM using ArcGIS	OJT	20/07/2016	28/07/2016	13
All	Review All Processes	OJT	01/06/2016	13/06/2016	17
Self	Self-Study	Self-Study	13/06/2016	15/07/2016	47
	То	tal			221

Table 3-5Training Implementation Summary

One session was about two hours. "Unclassified Point Cloud by Survey Department" means that the original nine trainees taught additional 13 trainees from SDSL.

The number of participants attended in one session times the number of sessions was 1994. The unclassified point cloud and ground data preparation were the two categories of the training which took time for the trainees to learn. Especially, the interactive filtering required for the ground data preparation was the hardest skill of all the processes of the LiDAR data processing.

	Table 3-0 Technology Hanster Sessions Alle	
Code	Category	The total number of
		persons attended.
01	LiDAR Fundamentals	18
02	Software Knowledge	22
025	Introduction to LiDAR Data Processing	19
025_Intensive	Introduction to LiDAR Data Processing (Intensive)	6
03	LiDAR Survey Planning	22
04	LiDAR Measurement	21
05	Raw Point Cloud	26
06	Unclassified Point Cloud	189
06_Intensive	Unclassified Point Cloud (Intensive)	50
06_SD	Unclassified Point Cloud by Survey Department	102
07	Ground Data Preparation	298
08	DEM Data Preparation	36
09	Ortho-Photo Image Preparation	36
10	Thematic Map Preparation from DEM using	349
10	TerraSeries, MicroStation	549
11	Thematic Map Preparation from DEM using ArcGIS	144
All	Review All Processes	139
Self	Self-Study	517
The Total		1994

Table 3-6	Technology Transfer Sessions Attendance Decord	
Table 3-0	Technology Transfer Sessions Attendance Record	

4) Method of Training Record and Evaluation

For the all the OJT sessions, the following management sheet was used to monitor progress of learning. For the lecture sessions, quizzes were conducted to ensure comprehension of the trainees.

Nam	ie:		Mr. M.W.A.N.	Karuna	tilake			
VOL	UME	6:	Unclassified F	Point Cle	oud Prep	aration		
		Sul	oject	Manual Page No.	Movie File No.	OJT Date	Э	Note
	2.1. DGN File Preparation	1)	Coordinate Conversion on Position and Orientation Data	3	2-1-1			
	2.1. DGN File	2)	Preparation of Working DGN Files	8	2-1-2			
2. Unclassified Point Cloud before Adjustment Preparation	eet	1)	Preparation of Project Files	13	2-2-1			
	ion by Map Sh	2)	Organizing the Data by Map Sheet	17	2-2-2			
	2.2. Data Organization by Map Sheet	3)	Confirmation of the Data Files by Map Sheet	18	2-2-3			
2. Unclassified	2.2.	4)	Deleting Unnecessary Flight lines and Adding Flight line Numbers	25	2-2-4			
	2.3.	Adjus	stment to Geoid	28	2-3-1			
	2.4.	Noise	e Removal	33	2-4-1			

Figure 3-1 OJT Evaluation Sheet

5) Achievement

Attendance, speed and accuracy of processing, and leadership during the training sessions were assessed and the trainers have evaluated the performance of training. Overall achievement was good, since most of the trainees was able to do their operation as they referred to the manuals.

Group Name	Name	Section	Achievement
	Mr. M.N.K. Bandara	Photogrammetric Branch	A
	Mr. D. Ekanayake	Photogrammetric Branch	A
	Mrs. D.C.S. Jayatunga	Photogrammetric Branch	S
LiDAR Data Processing	Mrs. Y.K. Kannangara	Photogrammetric Branch	A
Engineer	Mr. M.W.A.N. Karunatilaka	Photogrammetric Branch	A
	Mr. A.G.T.P. Weerasinghe	Photogrammetric Branch	A
	Mrs. I.S. Welhena	Photogrammetric Branch	S
	Mr. P.N.B. Widanagamage	Photogrammetric Branch	S

Group Name	Name	Name Section	
	Mr. M.K.J. Wijayatilake	Photogrammetric Branch	A
	Mr. M.N.K. Bandara	Photogrammetric Branch	A
	Mr. D. Ekanayake	Photogrammetric Branch	A
	Mrs. D.C.S. Jayatunga	Photogrammetric Branch	A
	Mrs. Y.K. Kannangara	Photogrammetric Branch	A
Contour Line Data Preparation	Mr. M.W.A.N. Karunatilaka	Photogrammetric Branch	A
	Mr. A.G.T.P. Weerasinghe	Photogrammetric Branch	A
	Mrs. I.S. Welhena	Photogrammetric Branch	A
	Mr. P.N.B. Widanagamage	Photogrammetric Branch	A
	Mr. M.K.J. Wijayatilake	Photogrammetric Branch	A
	Mr. A.A.J Abaysundara	Photo Lab	В
	Mrs. P.C. Guruge	Photogrammetric Branch	Incomplete
LiDAR Survey Planning	Mr. K.S. Gurusinghe	Photo Lab	В
	Mr. S.P. Meheramba	Mr. S.P. Meheramba Photo Lab	
	Ms. P.A.C.P. Perera	Photogrammetric Branch	Incomplete
Thematic Mapping for	Ms. A.W. Gunawardana	Special Mapping Branch 1	В
	Mr. L.A.S.A. Iraj	Special Mapping Branch 2	В
	Ms. B.H.U. Rathnahansi	Topographical Mapping Drawing	В
Mapping Branch	Mrs. R.W.G.H. Sumanasiri	Special Mapping Unit 1	В
	Ms. W.A. Weerasinghe	Topographical Mapping Preparation	В
	Ms. N.M. Withana	Special Mapping Branch 2	В
	Mrs. P.C. Guruge	Photogrammetric Branch	В
	Ms. P.A.C.P. Perera	Photogrammetric Branch	В
	Mr. S.M.J.S Samarasinghe	GIS Branch	S
Thematic Mapping	Ms. KM Sandaruwani	Remote Sensing Branch	В
	Mrs. UK Weerakoon	GIS Branch	А
	Mr. I. Welikanna	GIS Branch	A

S: has an ability to organize training to lead training sessions.

A: has an ability to become a trainer.

B: can conduct operations using the manuals.

6) Issues and Countermeasures on Technology Transfer

It is true that all the trainees achieve the skill levels we targeted for DEM data production, but it is also true that production management skills need to be capacitated. A leader, manager, needs to know operation management to make the production smooth and efficient; also, data management skills need to be capacitated.

The Project area was 7,800 km², and the DEM was produced for the 3,200 km² area. SDSL needs to finish remaining 4,600 km². Current production level per person is about 3 km². As the operators get more experienced, the per-person production is expected to be raised to 16 km². With

the rate, it would take about 34 months to complete the 4,600 km^2 by nine LiDAR processing engineers.

Among the processes, the ground data preparation was one of the longest processes of technology transfer. To make this process efficient is the key to make overall processes of the LiDAR data processing. Thematic Map Preparation from DEM using TerraSeris took long time. This was because the contour line production for 2,100 km² was included; It did not represent the length of technology transfer. Technology transfer for thematic mapping and contour-line-data preparation had been completed in one day or two.

The LiDAR survey area for this project was selected to the areas prone to landslide and flood that were prioritized in all the country area. The validity of selection of the survey area was unfortunately proven right in May 2016 when a strong tropical storm hit the area. It is highly probable that similar disaster may take place in other areas of the country. In other river basins, other donors have been conducting LiDAR surveys, and more support is call for as the efforts will be coordinated. For this purpose also, the production capacity needs to be raised.

To raise the production capacity, the production lines need to be strengthened. The training shall be continued so that more LiDAR data processing engineers will become available. With the availability of the engineers, the nine PCs will be fully utilized as two-shifts in a day operation will be implemented.

The DEM data with very high accuracy have been produced in this Project. It was mainly because the Specifications and production procedures based on the Japanese standards were used. The trade-off is the time required for the precision work. The ground data preparation required intensive interactive filtering which took most of the data processing work. In other words, it would be possible to ease the standards for quick production if the purpose and precision standards are satisfied in Sri Lanka. The Specifications and operation procedures may have to be updated in the near future.

This Project was one of the first-large-scale LiDAR project in Sri Lanka; the amount of GCP installation work was not expected for SDSL without the geoid model. Currently, in Sri Lanka, permanent GNSS stations have been installed. With this effort, various survey works will become more efficient. The establishment of the geoid model for the entire country will facilitate to the effort of installation of permanent GNSS stations as well as the LiDAR survey projects, and as a result, the model will raise capacity and efficiency of all the survey works in Sri Lanka.

(4) Seminars

The Kick-off Seminar

SDSL of Sri Lanka, Ministry of Lands, with administrative assistance from Project Team held a kick-off seminar on Capacity Development Project for Creating Digital Elevation Model Enabling Disaster Resilience in the Democratic Socialist Republic of Sri Lanka at the Galadari Hotel in Colombo, Sri Lanka on the 4th of December, 2015.

A total of 73 persons participated to the kick-off seminar. From the Japan side, Embassy of Japan, JICA Headquarters, JICA Sri Lanka, and Project Team, along with the JICA experts in the fields of disaster management and meteorology attended. From the Sri Lanka side, concerning government organizations have taken part in. They are: Central Engineering Consultancy Bureau, Central Environmental Authority, Department of Meteorology, Disaster Management Centre, Land Use

Policy Planning Department, Ministry of Disaster Management, Ministry of Lands, National Building Research Organization, National Physical Planning Department, National Water Supply & Drainage Board, Urban Development Authority and SDSL. From academics, University of Colombo, University of Moratuwa and University of Peradeniya attended. International Water Management Institute (IWMI) and UNDP are the international organizations present.

The kick-off seminar was organized to share knowledge of the project and the LiDAR technology among potential data users, and to introduce activities of SDSL in Sri Lanka which is the counterpart agency for the project.

Mr. D.N.D. Hettiarachchi, Deputy Surveyor General, thanked the government of Japan, JICA Headquarters and JICA Sri Lanka, and the Project Team for supporting and implementing the project. He emphasized significance of the data not only for disaster risk reduction, but also in other sectors such as infrastructure development. He welcomed all the participants to the seminar. Mr. P.M.P. Udayakantha, Surveyor General, explained how survey and mapping functions in Sri Lanka, and stated how detailed geographical information is necessary especially in the disaster prone areas. He expected possible applications of the data in areas such as forestry and coastal zone management. Ms. Piumi Attygalle, Assistant Secretary, has delivered a message from Secretary of Ministry of Lands thanking Japan's presence in the field of disaster management in Sri Lanka.

From Embassy of Japan, Mr. Kiichirio Iwase, First Secretary, acknowledged the hardship people in Sri Lanka felt during the recent natural disaster, and sent a message that the government of Japan has been supporting disaster mitigation activities in Sri Lanka. He quoted comments of Mr. Abe, Prime Minister of Japan, when Prime Minister Wickremeshinghe has visited Japan, saying that Japan would support in the area of disaster risk reduction and meteorology. Mr. Iwase expressed gratitude to the support from Sri Lank during and after the Great East Japan Earthquake, and he hoped that the knowledge and experiences of disaster management accumulated in Japan would be shared and utilized in Sri Lanka.

Dr. Yutaka Kokufu, JICA Project Leader, explained the Project: objectives; survey area; method; and schedule after he introduced other project team members. The two objectives he mentioned were: to produce the digital elevation model and to transfer technology.

Mr. Reynald Adorador, LiDAR Survey Expert, introduced the LiDAR technology. He said that the LiDAR survey is affected by weather like the conventional aerial photography. He mentioned that there is no data reflected from water surfaces, and that it was possible that the laser beam could penetrate between leaves of trees to measure the ground height.

After the question and answer session, Mr. Kiyoshi Amano, Chief Representative of JICA Sri Lanka, concluded the meeting as introducing the Third UN World Conference on Disaster Rick Reduction held in March 2015 in Sendai, Japan to show some of Japan's international involvement in disaster management.

The program of the seminar is shown in the following table:

Lecturer/Presenter	Agenda	From	To
-	Registration	8:30	9:00
-	National Anthem	9:00	9:10
D.N.D.Hettiarachchi	Welcome Address	9:10	9:20
Dr. I.H.K. Mahanama	Message	9:20	9:35
Mr. Kiichiro IWASE	Message	9:35	9:40
P.M.P. Udayakantha	Need of LIDAR Survey for Sri Lanka	9:40	10:00
Dr. Yutaka KOKUFU	Overview of the Project	10:00	10:30
Mr.Reynaldo R. Adorador	Presentation of Airborne LiDAR	10:30	11:30
	Technology		
-	Discussion and Questions	11:30	12:00
Mr. Kiyoshi AMADA	Closing Remarks	12:00	12:15
-	Lunch	12:15	13:00

Table 3-8	Program (K	ick-off Seminar)
-----------	------------	------------------

Photo 3-2 The Kick-off Seminar

A Technical Seminar

A technical seminar was held on March 21, 2016, as SDSL invited a Japanese landslide expert, Mr. Handa, who was assigned in NBRO, Ministry of Disaster Management as presenter on DEM data utilization. Dr. Kokufu, the Team Leader, explained the contents of draft DEM data during the seminar.

Photo 3-3 Technical Seminar (March 21, 2016)

Technical staff from Photogrammetry Branch, Geo-informatics Branch and Mapping Branch took part in the technical seminar.

The Final Seminar

The final seminar was held in the morning on October 6, 2016 at Galadari Hotel, Colombo, Sri Lanka.

Time	Agenda	Presenter
8:00 - 8:30	Registration	
8:30 - 8:45	National Anthem	
8:45 - 9:00	Welcome Address	Mr. W.M. Saman Weerasinghe, Deputy Surveyor General (Geoinformatics)
9:00 - 9:15	Message	Ms. Piumi Attygalle, Asst. Secretary, Ministry of Lands
9:15 –9:35	Need of LIDAR Survey for Sri Lanka	Mr. P.M.P. Udayakantha, Surveyor General
9:35 - 9:50	Overview of the Project	Dr. Yutaka Kokufu, JICA Project Team Leader
9:50 - 10:10	Presentation of Airborne LiDAR Technology	Mr. Reynaldo R. Adorador, Airborne Lidar Surveying, JICA Project Team
10:10 - 10:25	Presentation of Thematic Mapping using DEM	Dr. Akihiro Furuta, GIS Expert, JICA Project Team
10:25 - 10:35	Tea Break	
10:35 - 10:50	Technology Transfer	Mr. Kazunobu Kamimura, Technology Transfer Planning, JICA Project Team
10:50 - 11:20	Demonstration of LiDAR Data Processing	Mr. M.N.K. Bandara, Photogrammetric Technological officer, Survey Department
11:20 - 11:50	Demonstration of Thematic Mapping	Mr. S.M.J.S. Samarasinghe, Superintendent of Survey(GIS), Survey Department
11:50 - 12:05	LiDAR Data Sharing and Publishing	Mr. W.M. Saman Weerasinghe, Deputy Surveyor General(Geoinformatics)
12:05 - 12:15	Message	Mr. P.M.P. Udayakantha, Surveyor General
12:15 - 12:20	Discussion	
12:20 - 12:35	Awards Ceremony	
12:35 - 12:45	LiDAR Data Hand Over Ceremony	
12:45 - 13:00	Closing Remarks	Mr. Kiyoshi Amada, Chief Representative, JICA Sri Lanka
13:00 -	Lunch	

Table 3-9Program of the Final Seminar

A total of 70 persons, excluding the members of the Project Team and media, participated to the final seminar. Other than 47 participants from SDSL, members from the Ministry of Lands, Irrigation Department, DMC, NBRO, the World Bank and UNDP participated.

Institution	Name	Position
Disaster Management Centre	Ms Anoja Seneviratne	Director (Mitigation Research & Development)
International Water Management Institute (IWMI)	Mr. Salman Sadiquie	Senior Manager GIS/RS/Data Management Unit
Irrigation Department	Ms M.H.B.C.W. Herath	Project Director - CRIP
Land Use Policy Planning Department	Mr. H.D. Sisira Hapuarachchi	Asst. Director (Agri Economics)
Ministry of Lands	Mr. L.B.S.B. Dayaratne	Addl. Secretary (Land)
	Ms Piumi Attygalle	Asst. Secretary
National Building Research	Ms Hasali Hemasinghe	Scientist
Organization	Ms P.H.E Dulanjalee	Scientist
Sri Lanka Land Reclamation & Development Corp	Mr. T.N. Booso	Engineer
The World Bank	Mr. Suranga Kahandawa	Disaster Risk Management Specialist
UNDP	Ms Sachi Perera	DRR Specialist
	Mr. Hiroki Hashimoto	Representative
JICA Sri Lanka	Mr. Kiyoshi Amada	Chief Representative
	Ms Kishani Tennakoon	Project Specialist

Table 2 10	Main Dartiainanta nat from CDCI
Table 3-10	Main Participants not from SDSL

As for data sharing, the following seven points were explained by Mr. W.M. Saman Weerasinghe

- 1. Decided at the Joint Coordinating Committee of the Project
- 2. Main purpose is utilization for Disaster Management
- 3. Consent of JICA needed during project period
- 4. All the transaction and sharing govern by the MOU
- 5. Value added products to be shared
- 6. Special terms of in house sharing
- 7. Copy right with Survey Department

The pricing of the data presented are generally classified into $1 \ge 1$ mesh area and $2 \ge 2$ mesh areas. The $2 \ge 2$ mesh areas are classified into two: interactively processed and automatically processed areas. Based on the categories, prices of the unclassified point clouds, DEM data, contour line data, and quasi-ortho-photo images are tentatively prices.

Category	Data Type	Unit (Rs/km ²)
1 x 1 mesh data	Unclassified Point Cloud	200
 Interactively Processed 	DEM Data	100
110000000	Contour Line Data	200
	Quasi Ortho-photo data	400
2 x 2 mesh data -Interactively Processed	Point Cloud	100
	DEM Data	50
110000000	Contour Line Data	100
	Quasi Ortho-photo images	400
2 x 2 mesh data - Automatic Processed	DEM Data	20
	Contour Line Data	40
110000000	Quasi Ortho-photo images	400

Mr. Bandra from the Photogrammetric Branch demonstrated the methods of LiDAR data processing, thematic mapping and topographic data preparation using the LiDAR data processing system.

Mr. Samasrasinghe, from the GIS Branch presented methods of thematic mapping and topographic data preparation using ArcGIS. His presentation included lecture materials explaining the theories behind thematic mapping.

Demonstration of Thematic Mapping and Topographic Data Preparation using ArcGIS

Demonstration of LiDAR Data Processing including Thematic Mapping and Topographic Data Preparation using LiDAR Data Processing System

Photo 3-4 Presentation by the Trainees

Dr. Kokufu, the Team Leader, submitted the LiDAR data to Mr. Amada, Chief Representative of JICA Sri Lanka Office, and Mr. Amada gave the data to Mr. Udayakantha, Surveyor General.

Photo 3-5 LiDAR Data Handover Ceremony

(5) **Discussion on the Specifications**

The draft of the specifications was prepared based on the Survey Operation Standards, and Amendment (partially amended (2013, Geographical Survey Institute, Ministry of Lands, Infrastructure and Transport and Tourism) and Department Survey Regulations, Fifth Edition, 2015 March (Sri Lanka Survey Department). The draft was submitted on the 16th of March, 2015. The Version 1.0 of the Specifications was presented and explained. On the 20th of March 2015, the second discussion on the Specifications was held. The Version 1.1 of the Specifications was presented and explained. The minutes of meetings including lists of attendance is attached in the appendix.

(6) Preparation of LiDAR Survey Plan

The survey plan has been designed by Survey Department and Project Team to execute the LiDAR Survey of Capacity Development Project for Creating Digital Elevation Model Enabling Disaster Resilience in Sri Lanka.

(6)-1 Specifications for the LiDAR survey

As planned at the beginning of the project, the same plan was presented and accepted. The general specifications of the LiDAR survey are summarized in the following table:

1) LiDAR survey specification

Table 3-12 LiDAR Survey Specifications
--

Grid size	Area	Height accuracy	Ortho Photo Image GSD	
1m x 1m	2,400 km ²	S.D.30 cm	30cm	
2 m x 2 m	5,400 km ²	S.D.50 to 100 cm	50 cm	

G.S.D.: Ground Sample Distance

2) **LiDAR Equipment**

The aircraft and equipment were planned by the Project Team the required parameters of the aircraft and the equipment were accepted by the C/P.

i) Aircraft

Table 3-13 P	Ircraft Parameters	
Item Parameter U		Unit
Туре	Piper PA23 Aztec	-
Registration	PH-KED	-
Wingspan	11	m
Length	9.51	m
Power	2 motors 250	HP
Speed	90 to 150	kts
Ceiling	4,200	m
Range	850	nm

Table 2.12 Aircraft Darameters

ii) Sensors

Table 3-14 Sensors

Item	Manufacturer	Туре
Laser scanner	IGI	LiteMapper 6800i
Camera	IGI	DigiCam H60

Photo 3-6 Aircraft

Photo 3-7 Laser Scanner

Photo 3-8 Camera

	LIDAR Survey Para	ameters	
Itom	Paramete	Unit	
Item	1 m x 1 m area	2 m x 2 m area	Unit
Ground elevation	1,040	1,400	m
Ground speed	120	120	kt
Lateral overlap between swaths	40	40	%
Scan angle	60	60	degree
Pulse rate	200	70	kHz
Point density	1.9	0.5	pt/m ²
GSD of photogrammetry	17	23	cm

Table 3-15 LiDAR Survey Parameters

(6)-2 **A Flight Plan**

A flight plan was prepared in the 1 meter and 2 meter mesh areas. For the 1 m x 1 m mesh area, a total of 58 lines were planned, and in the 2 m x 2 m mesh area, a total of 183 lines were planned.

The GPS signal reception disturbance prevented implementation of measurement at around the center of the eastern area of 2 m x 2 m survey area since the middle of January, 2015. Because of the disturbance, parts of the project area needed to be changed. Based on the change of the survey area in the southern part of the 2 m x 2 m area (Kalutara District and others), the LiDAR measurement plan was prepared. Table 3-16 and Figure 3-2 show the final measurement flight paths of the LiDAR measurement.

Area	Flight line number	Number of flight lines	Note	Sub total number of flight lines
1 m x 1 m area	001 to 055	55	Main lines	64
(West area)	101 to 103	3	Across lines	
	201 to 206	6	Add lines	
2 m x 2 m area	301 to 355	55	Main lines	240
(East area)	401 to 442	42		
	501 to 524	24		
	601 to 612	12	Across lines	
	701 to 807	107	Complement lines	
2 m x 2 m area	901 to 938	38	Main lines	40
(South area)	951 to 952	2	Across lines	
Total number of fligh	it lines			344

 Table 3-16
 A Flight Plan (summary of flight line numbers)

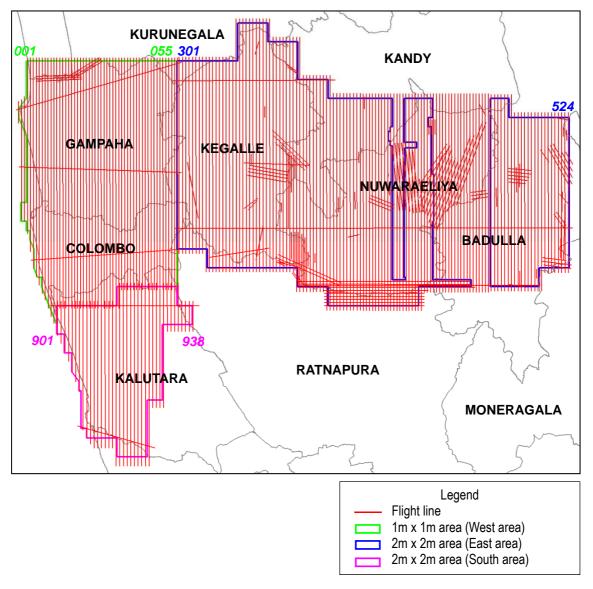


Figure 3-2 Flight Lines

(6)-3 GNSS Base Station Installation Plan

<A Plan in March 2015>

The GNSS base stations need to cover the entire survey area in addition to the 10 km areas for turning around for the aircraft. The maximum distance of one base station can cover is 50 km; preferably, the survey area needs to be with 30 km distance from the base stations. The installation plan was prepared based on the principle. Three points were planned and distributed evenly in the survey area. Additional three points for each point were planned to avoid possible reception errors. A total of six points were proposed and accepted in March, 2015.

<Revised Plan after Field Reconnaissance>

The Project Team and the C/P surveyors conducted field reconnaissance and revised the installation plan. The following matters were agreed with the C/P.

r			
	Plan in March 2015	Revised Plan in December	Note (reasons for the changes)
The number of GNSS Base Stations	Three Locations + Three supplemental locations = 6 Locations	Seven Locations + Seven Supplemental Locations = 14 Locations	Securing electric power and assuring security
Observation Method	 Method : GPS Kinematic Reception Frequency: One second Observation Period: 6:00~ 18:00 (12 hours continuously) 	No Change	
Equipment Used	Trimble R6 (Six sets)	Trimble R6 (Fourteen Sets)	The number of GNSS bases stations was increased.
Specifications of the GNSS Base Stations	 Method : GPS Static Classification: Secondary (B) Accuracy : 1/100,000 	No Change	Adopted the Department Survey Regulations, Fifth Edition, March 2015

 Table 3-17
 Plan and Implementation of GNSS Base Stations

Table 3-18 GNSS Base Stations

Base station number	Location name	Note
Base 01	Gampha	
Base 02	Rewanwella	
Base 03	Nuwaraeliya	
Base 04	Budulla	
Base 05	Colombo	Survey Department of Sri Lanka
Base 06	Kegalle	
Base 07	Diyatalawa	
Base 08	Kalutara	

(6)-4 Ground Checkpoints

A total of 316 points were selected using satellite images. To inspect and adjust the raw point cloud and to prepare a geoid model, the ground checkpoints were installed.

<A Plan in March 2015>

A ground checkpoint is planned to be installed one in every square area of 25 km^2 with a 5 km side in the whole survey area with a total area of 7,800 km². The total number of planned ground checkpoints is 316.

<Revised Plan after Field Reconnaissance>

The Project Team and C/P conducted field reconnaissance and selection of locations. The following number of ground checkpoints, installation method and specifications of the equipment were discussed and agreed with the C/P.

	Plan in March 2015	Revised Plan	Note
Ground Checkpoints	316	321	
Used Equipment	Trimble R6 (Tree sets)	No change	
Specifications of the GNSS Base Stations	 Method: GPS Static Classification: Tertiary (C) Accuracy: 1/50,000 	No change	Adopted the Department Survey Regulations, Fifth Edition, Adapted in March 2015.

Table 3-19 Ground Checkpoint Survey (Plan and Revised)

Figure 3-3 Selected Ground Checkpoints (Planned in March 2015)

(7) Installation of GNSS Base Stations and Ground Checkpoints

Based on the LiDAR Survey Plan, the Project Team and C/P surveyors commence the work installation and observation of GNSS base stations and ground checkpoints on October 28, 2015.

(7)-1 Installation of GNSS Base Station

By November 30, 2015, all the GNSS base stations were set up, and data reception was commenced on the first of December 2016 by the C/P when the Subcontractor started the LiDAR survey. In the beginning of the Project, only three base stations were planned. But thinking of the local situations after the study, the Project Team members decided to install seven GNSS base stations. The installation was completed in the late November, 2015. Due to the change of the survey area, one additional base station was installed in on February 20, 2016. A total of eight (8) base stations were installed.

From December 1, 2015, the base stations have observed the signal from 6:00 to 18:00 every day for 12 hours continuously. One base station was added to the area in Kalutara due to the change of the

measurement area.

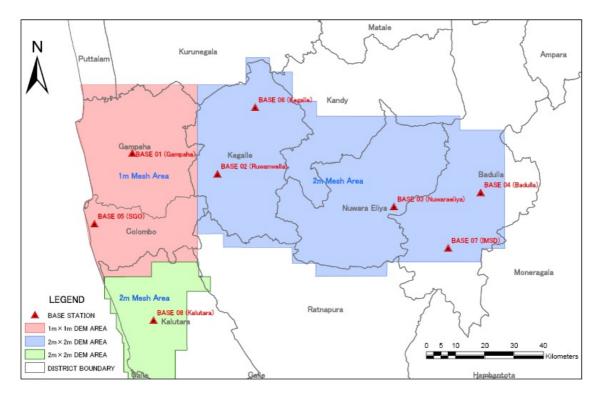


Figure 3-4 Distribution of the GNSS Base Stations

		Dubb Bubb Bubb	
Station Name	WGS84 Latitude	WGS84 Longitude	WGS84 Ellipsoid Height (m)
BASE 01_Gampaha	N7°06'32.54633"	E79°59'24.48720"	-31.196
BASE 02_Ruwanwella	N7°02'42.09622"	E80°15'08.12071"	-75.761
BASE 03_Nuwara Eliya	N6°56'42.09006"	E 80°47'40.16113"	1771.677
BASE 04_Badulla	N6°59'16.99323"	E 81°03'41.64778"	558.295
BASE 05_Colombo	N6°53'30.92845"	E 79°52'26.21901"	-76.138
BASE 06_Kegalle	N7°15'02.25948"	E 80°22'05.01476"	9.389
BASE 07_Diyatalawa	N6°49'02.68716"	E 80°57'40.88000"	1164.366
BASE 08 Kalutara	N6°35'44.90676"	E80°03'20.27984"	-93.941

Table 3-20	Installed GNSS Base Stations

BASE 01_Gampaha

BASE 02_Ruwanwella

BASE 03_Nuwara Eliya

BASE 04_Badulla

BASE 05_Colombo

BASE 06_Kegalle

BASE 07_Diyatalawa

BASE 08_Kalutara

Photo 3-9 Installed Seven GNSS Base Stations

(7)-2 Installation of Ground Checkpoints

On March 16, 2015, the C/P and the Project Team held a coordination meeting. On June 7, 2015, the Project Team submitted an installation plan of the checkpoints. SDSL commenced the work on October 28, 2015. In the middle of January 2016, the survey area was changed because of the weak GPS signal reception in the mountainous area. On February 20, 2016 one base station was installed in the Kalutara district area, and 41 ground checkpoints were also added. By May 2016, installation of all the ground checkpoints was completed.

District Name	Number of Installed GCP	Direct Levelling
Kandy	23	17
Nuwaraeliya	68	51
Kurunegala	5	5
Gampaha	64	62
Colombo	33	33
Kalutara	48	45
Kegalla	61	49
Rathnapura	10	5
Badulla	48	42
Total	360	309

 Table 3-21
 Distribution of Checkpoints by District

Eight sets of Trimble R6 Receivers were used for GNSS observations and one set of Trimble Business Center software was used for GNSS data processing. The survey for the checkpoint installation was conducted based on the Specifications of SDSL: The classification is Tertiary (C); the precision is 1:50,000; the method of observation is GPS Static.

The locations of selected ground checkpionts are shown in the following diagram:

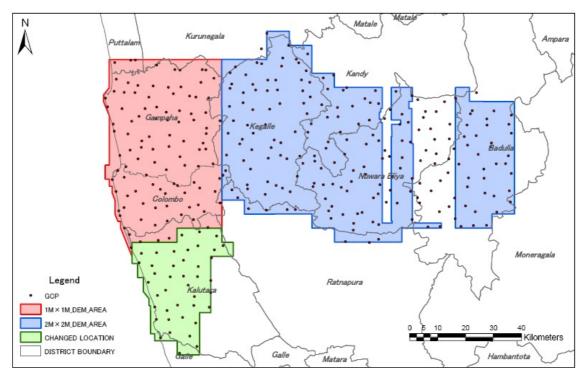


Figure 3-5 Installed Ground Checkpoints

(8) Implementation of LiDAR Survey

(8)-1 Subcontracting Work

The LiDAR survey was subcontracted and implemented since December 1, 2015 based on the agreements of: the Inception Report between the Project Team and C/P on March 10, 2015; the Specifications, GNSS base stations and ground checkpoints agreed on March 20, 2015. The contents, implementation method and procedure of the contract, supervision of subcontracting work and the outputs and inspection methods are summarized in the following table:

Table 3-22 Contents of Sub-Contract Project		
1) LiDAR Survey Area (including the area for digital aerial	 1 m x 1 m mesh:2,400 km² (Colombo District, Gampaha District and the surrounding areas) 	
photography)	 2 x 2 m mesh: 5,400 km² (Central mountainous area including Kandy District) 	
2) Survey Period	From December; 2015 to April 2016	
3) Outputs	 LiDAR Survey Data (GNSS, IMU, Laser Survey Observation Data) 1 set 3D Survey Data (Kinematic Analysis, GNSS/IMU Analysis, BL/XY Conversion, Geoid Adjustment, Noise Removal, Data on which the rate of omission has been confirmed): 1 set Digital Aerial Photographs: 1 set 	
4) Specifications	Public Survey—Operation Rules with Partial Amendment, 2013 (Geospatial Information Authority of Japan, Ministry of Lands, Infrastructure, Transport and Tourism)	

Table 3-22 Contents of Sub-Contract Project

(8)-2 Implementation Method and Contract Procedure

The subcontracting work for the LiDAR survey has started in December, 2015 and planned to be completed in April of 2016 to cover the entire project area both in 1 m x 1 x mesh area and 2 m x 2 m mesh area in accordance with the agreement on the Inception Report.

1) Procedure of the Subcontracting Work

In accordance with the "Guideline of Subcontracting Procedure in Consulting Contract" the Subcontractor has been selected.

On the 30th of March, 2015, the Project Team has explained the contents of the subcontracting work to the C/P, and discussed the details of the contents. (c.f. Coordination Meeting for Shortlisting.) Based on the past experiences of the members of the Project Team on LiDAR survey and aerial photography, five companies, that would be able to complete the work with their own LiDAR survey equipment, were shortlisted. The invitation letter was sent to those five companies. The opening of the bid started 10:00 am on the 15 of April, 2015 with an attendance of Mr. Shimano from JICA Sri Lanka Office. Out of three bidders, SKM GISAIR Oy was the lowest bidder within the planned contract amount with sufficient experience and equipment to execute the required work. The Project Team presented the technical specifications and draft contract and started contract negotiation with from 11:00 am on the same day. On May 11, 2015, the Project Team and SKM GISAIR Oy reach an agreement on the cost and the day of commencement. On the same day, the Project Team signed the contract with SKM GIAIR Oy as the Subcontractor for the work.

The process the selection is summarized it the following table.

Date	Time	Procedure
March 20, 2015		Discusion on the Subcontract Work, Short-listing
April 1, 2015		Sending the Invitation Letter
April 6, 2015	17:00	Deadline for questions
April 8, 2015	17:00	Answering the questions
April 15, 2015	10:00	Reception of Bid Documents, Opening the Bid, Bid Evaluation (with representatives from JICA Sri Lanka Office)
April 15, 2015	11:00	Contract Negotiation
May 11, 2015		Singning the Contract

Table 3-23Selection of a Subcontractor

Photo 3-10 Selection of Subcontractor

2) Equipment and Implementation Structure of the Subcontracting Work

<Operation Structure of the Subcontractor>

The following persons are assigned for the work from December 1, 2015 to April, 2016.

D I	N
Role	Name
Project Manager	Mr. Inberg Jyrki Karl Olavi
Technical Manager	Mr. Kelly Neil Francis
LiDAR Survey Planning	Ms. Thebault Perrine Simone Deniise
Flight Management/LiDAR Operator	Mr. Gaillard Jean-Baptiste
Pilot/LiDAR Operator · Manager	Mr. Martinat Olivier Jean Raoul
Pilot/LiDAR Operator/Data Processing	Mr. Pain Tony Pierre
Pilot/LiDAR Operator/Data Processing	Mr. Broussouloux Eric
Pilot/LiDAR Operator/Data Processing	Mr. Ndrantomalaia Rabetrano Andrea
Pilot/LiDAR Operator/Data Processing	Mr. Beau Christophe
LiDAR Data Processing	Mr. Durand Marc Marie Noel
Airforce Security Officer/Pilot	Mr. Prasanna Kuruwita

Table 3-24	The Members of the Subcentrator
10018 3-24	The Members of the Subcontractor

1) The base airport of the aircraft is RATMALANA Airport.

2) LiDAR Survey Plan:

Technical Specifications included in the Contract; contract period; quantity; member; equipment used for the survey.

3) Safety Management Structure:

The contactor keeps daily report of work progress that includes weather; the report is submitted to the Project Team by email. On every Monday, progress of the work is discussed and the Project Team assures safety and makes necessary orders for safety assurance.

4) Emergency Contact and Safety Management Personnel in Colombo:

Office Address in Colombo	Global Tower Hotel Room No.204, Marine Drive, Colombo 6,
(temporary):	Sri Lanka
TEL:	+94-112591000
Safety Manager:	Mr. Inberg Jyrki Karl Olavi/Project Manager
Mobile Phone Number:	Number: +94-752634510
Email:	jyrki@inberg.co.th
Deputy Safety Manager:	Mr. Kelly Neil Francis/Technical Manager
Mobile Phone Number:	+94-768826517
Email:	nfk2@optusenet.com.au

5) Contact at the Air Force Security Office of at the RATMALANA Airport:

Security Officer:	Mr. Prasanna Kuruwita/CO8 Squadron
TEL:	+94-112495495
Mobile Phone Number:	+94-772229138

6) Contact in Finland

Address:	SKM GIS AIR Oy, Tehniikantie 12, 02150 Espoo, Finland
Contract:	Administration, Operation/Technology/Quality Management: Mr.
	Jukka Kangasmaa/Director
Mobile Phone Number:	+358-405049355
Email:	jukka.kangasmaa@skmgisair.fi
Safety Management:	Mr. Jussi Yrjola/ Managing Director
Telephone Number:	+358-44-3048175
Email:	jussi.yrjola@skmgisair.fi

3) Management of Subcontracting Work and Method of Inspecting the Outputs

The Administration Management Group, Team Leader and Deputy Team Leader of the Project Team, has managed the subcontracting work. LiDAR Measurement Planning/Measurement Specification/Technology Transfer1 and LiDAR Measurement/Technology Transfer 2 are the Project members in charge of managing the subcontracted work of the LiDAR measurement and inspection of the LiDAR measurement data. Those two members also inspects the flight line plan, measurement record, measurement daily report and monitor the progress of the subcontracted work.

Calibration
Pre-flight confirmation
Initialization of GPS/IMU
Data recording equipment
the data of the Kinematic Analysis and GPS/IMU analysis
the geodetic reference system and geoid conversion data
Flight paths
Possible omission of survey
Noise removal
 Survey density (survey omission rate, survey omission rate due to waterbody polygons)

Table 3-25	LiDAR Measurement Equipment and Data Inspection Item

Table 3-26 List of Points

ID	Latitude (WGS84)	Longitude (WGS84)	Height (WGS84)
1	N6°50'42.28764"	E79°55' 8.79510"	-89.486
2	N 6°50'55.28234"	E 79°55' 5.60680"	-83.312
3	N 6°51' 7.71242"	E 79°55' 7.36198"	-87.412
4	N 6°51' 7.22488"	E 79°55'18.92492"	-82.859
5	N 6°50'43.80896"	E 79°55'17.06336"	-88.299
6	N 6°51' 7.62358"	E 79°55'29.39264"	-90.995
7	N 6°50'56.53039"	E 79°55'27.79507"	-77.602
8	N 6°50'39.93842"	E 79°55'33.28082"	-75.408
9	N 6°50'54.87925"	E 79°55'14.24118"	-83.931

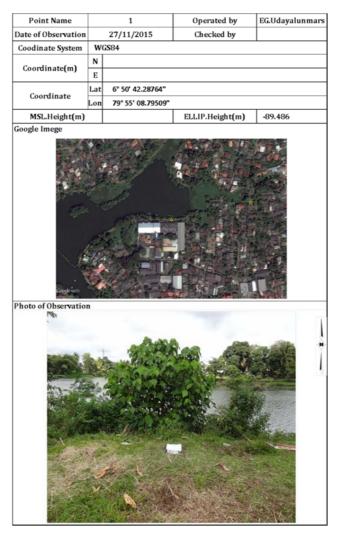


Figure 3-6 Point Description

Figure 3-7 Ground Control Point Calibration Sites

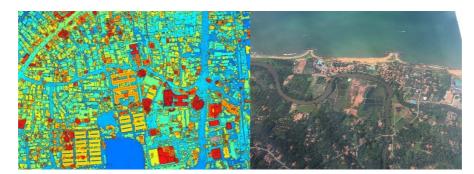


Figure 3-8 Inspection of the LiDAR Measurement Data

4) Contents of the Subcontracting Work

i) Airborne-laser measurement

The measurement flight was carried out based on the LiDAR measurement plan as local weather conditions were accessed daily. Various piecies of weather information (a weather forecast, Airport METER, etc.) were used for judging implementation of the flight mission. The contents of measurement flight were reported daily to the persons concerned by evening on the same day.

ii) GNSS/IMU Processing

When the measurement data had been acquired, a GNSS baseline analysis for every flight was conducted using the receiving data of the GNSS base station uploaded and shared by the survey offices and the GNSS receiving data received from the aircraft.

The GNSS baseline analysis outputs the three-dimensional position of the aircraft in every second. Further, by conducting the integrated process of the IMU data, the flight path data, which are the basis of the laser measurement data, are acquired.

iii) The measured raw data (point-cloud data) preparation

The measured raw data were prepared using the precise time information as the distance-and-angle data were referred to make the point clouds. The measured raw data are usually prepared by flight path. The Subcontractor submitted the processed measurement raw data every week in principle to the Project Team. The Project Team members conducted inspection upon reception of the data.

(8)-3 Disturbance on GNSS Signal Reception

On January 22, 2016, the Subcontractor reported a problem of GNSS signal reception to the Project Team.

The report said that on January 15, 2016, when the LiDAR survey was conducted in the mountainous area in the middle of the survey area, the GPS receiver on board of aircraft was unable to receive the GNSS signals from the satellites in the area in the red shade. After the incident, the Subcontractor reported that they could not receive the GNSS signals as shown in the flight line chart.

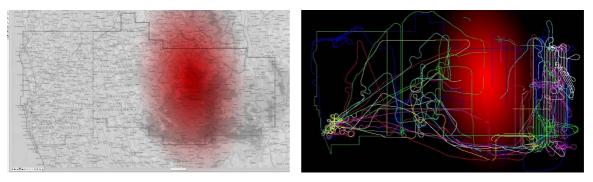


Figure 3-9 Jamming Area

The Project Team requested SDSL to investigate the cause of the wave hindrance. SDSL began investigation. The Sri Lanka Air and Aviation Service (AASL) has interrupted the service temporarily to seek the cause of the hindrance. The Subcontractor has flown the area over again, but the situation did not change. The cause has not been identified.

Photo 3-11 Telecommunication Tower

SDSL requested the Telecommunication Regulatory Commission of Sri Lanka (TRCSL) to investigate the cause of the radio wave hindrance.

The Sri Lanka Rupayahini Corporation (SLRC) has reported that they have not changed any service in January, 2016.

SDSL has been investing the cause since February 12, 2016 as requesting related agencies, but SDSL reported to the Project Team that the cause had not been identified.

(8)-4 Result of Sub-Contracting Work

The survey work by the Subcontractor started on December 1, 2015 was completed on March 11, 2016 including the addition of the LiDAR measurement plan accompanying the change of the survey area due to GPS electric wave obstacle, and a survey flight.

Form 5 Flight Operation Report of Airborne LiDAR Measurement is a list record of survey flight work. The detailed measurement flight results of each day are organized separately in Form 4 Record of Airborne LiDAR Measurement.

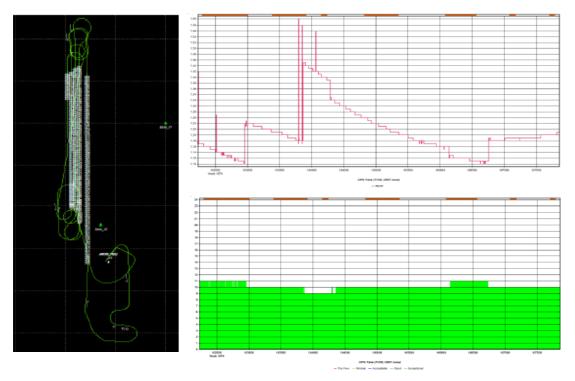
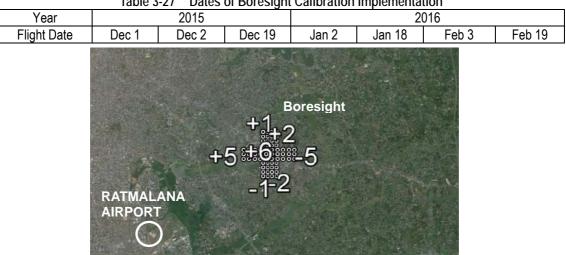



Figure 3-10 An Example of FORM4 Record of Airborne LiDAR Measurement

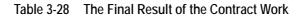

The Subcontractor conducted the calibration flight every two weeks to adjust the equipment to the precision levels required. The required boresight areas were independently setup; within the boresight, night control points were setup and marked. The aircraft flew over the area the same way for calibration. The following table shows the dates when the boresight calibration was conducted:

Table 3-27 Dates of Boresight Calibration Implementation

Figure 3-11 The Boresight Calibration Area (North-East of the Ratmalana Airport)

The Subcontractor inspected the measurement raw data and submitted to the Project Team every week. The Project Team members inspected the contents and area coverages every week. After receiving all the data, the Project Team inspected all the data, and the Contract work was completed in the middle of March 2016.

Area	Target Areas of LiDAR Measurement	Measurement Raw Data Completion Area
1 m x 1 m area (West area)	2,400 km ²	2,400 km ²
2 m x 2 m area (East area)	4,500 km ²	4,500 km ²
2 m x 2 m area (South area)	900 km ²	900 km ²
Total area	7,800 km ²	7,800 km ²

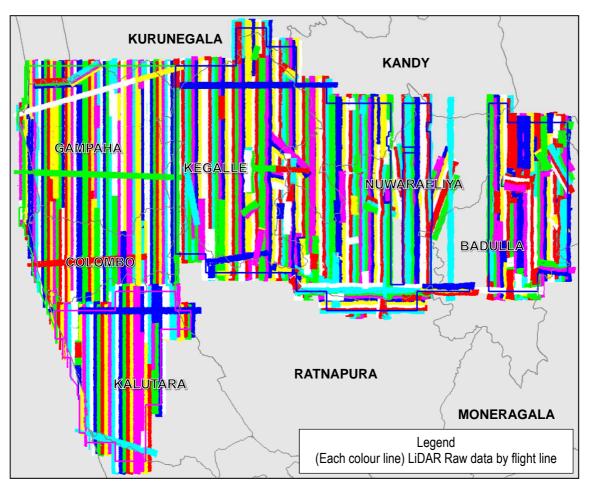


Figure 3-12 The Results of the Subcontract Work (LiDAR Measurement Raw Data)

(9) Preparation of Ortho-Photo Data

The ortho-photo data were created as satisfying the requirement shown in Table 3-29 using: (1) The digital aerial images captured, simultaneously with the LiDAR measurement, using the camera on-board of the aircraft; (2) the position-and-orientation information; and (3) the raw point clouds

For the areas other than the planned areas within the Project period, all the data acquired during the measurement have been ready for SDSL to produce ortho-photo data as reviewing the manual provided during the training. The Project Team has confirmed that all the data required for ortho-photo production have covered the entire LiDAR survey areas.

Area	Lidar	Ortho-Photo Data	GSD of Ortho-Photo
	Measurement	Preparation Areas	Data
	Target Areas		
1 m x 1 m area (West area)	2,400 km ²	2,400 km ²	25 cm
2 m x 2 m area (East area)	4,500 km ²	800 km ²	50 cm
2 m x 2 m area (South area)	900 km ²	0 km ²	-
Total area	7,800 km ²	3,200 km ²	25 cm/50 cm

Table 3-29 Result of Ortho-Photo Data Preparation

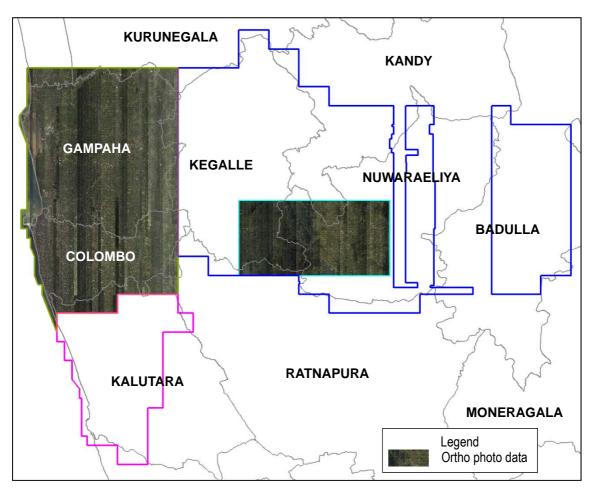


Figure 3-13 Ortho-Photo Data Preparation Areas

(10) Preparation and Inspection of 3D Measurement Data (Raw Point Cloud)

The raw point clouds have been prepared from the raw LiDAR measurement data received from the Subcontractor. Various inspection works have been conducted.

The raw point clouds have been prepared in the entire survey area, since the data processing has been conducted by measurement lines and inspection works needed to be conducted.

	r i oliti olouu i roputt		
Area	Lidar	Areas for Raw	Note (Actual Areas of
	Measurement	Point Cloud	Raw Point Cloud Data
	Target Areas	Preparation	Preparation)
1 m x 1 m area (West area)	2,400 km ²	2,400 km ²	
2 m x 2 m area (East area)	4,500 km ²	800 km ²	4,500 km ²
2 m x 2 m area (South area)	900 km ²	0 km ²	900 km ²
Total area	7,800 km ²	3,200 km ²	7,800 km ²

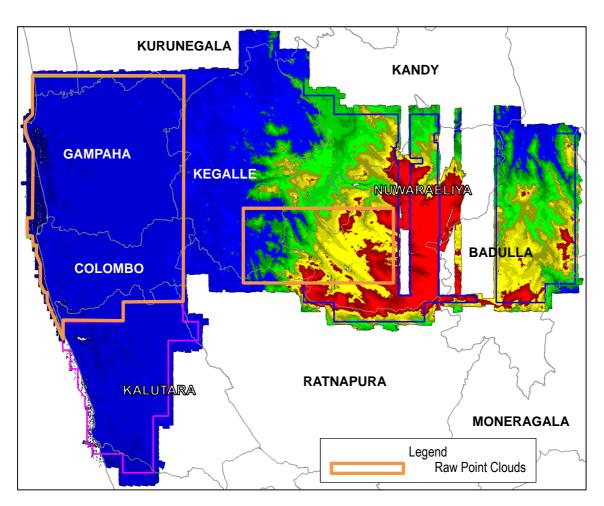
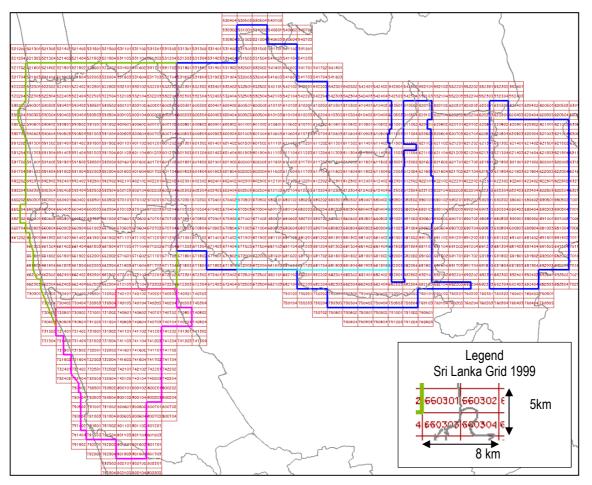
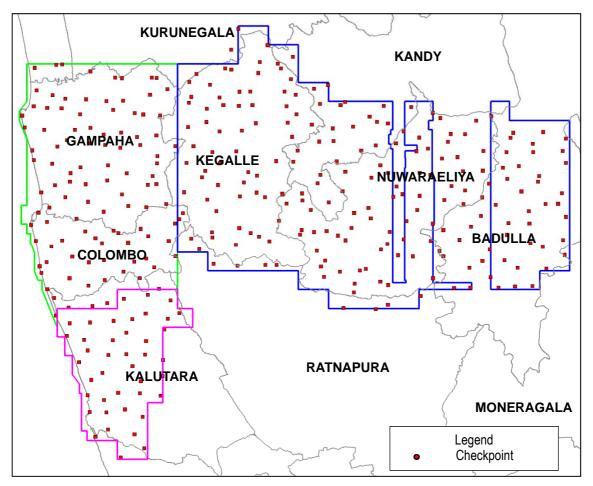


Figure 3-14 Areas of Raw Point Cloud Preparation

Tentatively, the raw point clouds with the UTM Zone 44N coordinates and the WGS84 ellipsoid were produced from the raw measurement data. The coordinates of the point clouds are converted from UTM44N to SLD99. The heights are both the heights from the ellipsoid.

Since the data of the point clouds became too large to be handled using a personal computer, the data were divided to the size of a 1/5,000 map sheet which is a fourth of the 1/10,000 map sheet which is the basic scale of SLD99.




Figure 3-15 LiDAR Data Management Sheet (based on Sri Lanka Grid 1999)

(11) **Post-Processing of Raw Point Cloud**

(11)-1 Verification of Elevation (Ellipsoid Height)

Since in the beginning of the Project, the geoid model was not available; therefore, the geoid adjustment could not be conducted to the raw point clouds.

Because of the difficulty, a comparative adjustment was conducted using the ellipsoid heights of the checkpoints and the ellipsoid heights of the raw point clouds. The results of the adjustment are shown in Table 3-31.

Verification Points of Checkpoints Figure 3-16

Table 3-31 Differences from the Ellipsoidal Heights of the Final Checkpoint			
dZ	West area	East area	South area
Mean	0.105 m	0.006 m	0.025 m
Standard deviation	0.077 m	0.136 m	0.118 m
Min	-0.174 m	-0.286 m	-0.278 m
Max	0.378 m	0.309 m	0.290 m
Shift applied	-0.120 m	-0.250 m	0.000 m

(11)-2 Verification of Elevation between Flight Paths

Inspection of differences to the height direction was conducted to the raw point clouds where the data were overlapped parts.

Excluding the mountainous areas where appropriate points could not be found, one point was selected at an interval of approximately 10 km of a flight path on a flat area.

The locations of the verification points are shown in Figure 3-17. The exact values of the differences are recorded using Form 11.

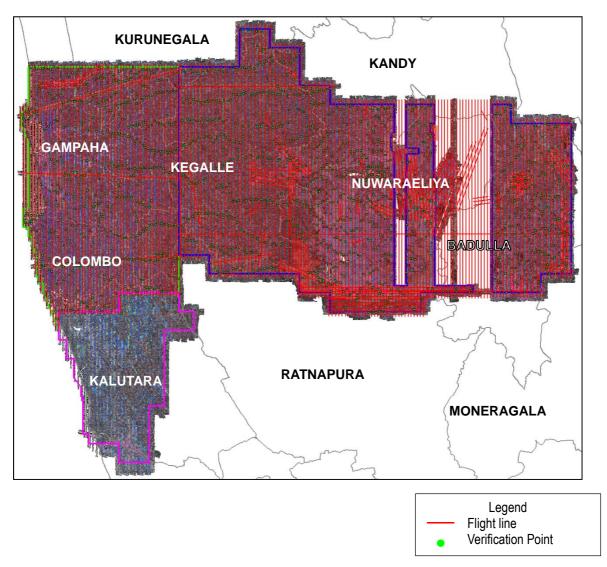
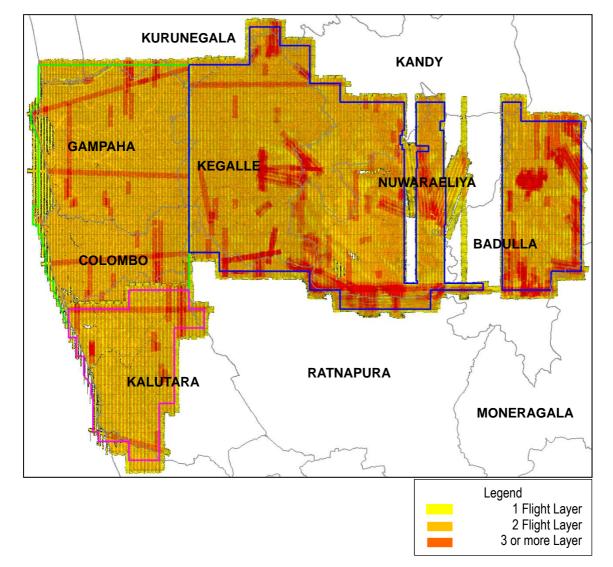



Figure 3-17 Verification Points of Differences between the Flight Paths

(11)-3 Verification of Possible Omission of Measurement

All the raw point cloud data in the survey areas were extracted and inspected visually on missing data or omission of measurement. The basic work areas excluded the areas where the GPS signal disturbance. Water bodies and shade areas where the laser reflection could not be received are not included as

inspection areas.

Figure 3-18 Inspection of the Measurement Omission

(11)-4 Calculation of the Measurement Loss Ratio

The Project Team has calculated the laser measurement point densities in the survey areas to verify if the densities satisfied the Specifications. The measurement-loss ratios were calculated by a map sheet unit. The point density of the LiDAR measurement was inspected within the measurement areas. The inspection was conducted in a way to confirm the range of the measurement loss ratios which needed to be within the tolerance levels in accordance with the Specifications. The measurement loss ratios were calculated by a map sheet within the DEM preparation areas; in this process, water areas were excluded from the calculation.

The maximum values and the values in the Specifications by areas based on the grid intervals are listed in Table 3-32.

Area Grid Interval (DEM)	Measurement Loss Ratio calculated area	Measurement Loss Ratio (Specification)	Measurement Loss Ŕatio (Max result)
1 m x 1 m area (West area)	2,400 km ²	15% or less	8.7%
2 m x 2 m area (East area)	800 km ²	10% or less	0.7%
2 m x 2 m area (South area)	0 km ²	10% or less	-

 Table 3-32
 Measurement Loss Ratios (values in the Specifications and the Maximum Value)

(11)-5 Preparation of the Geoid Model

A new geoid model was prepared in the Project using the differences between the SLD99 ellipsoid heights and values from leveling of each checkpoint values. Outliers in the results of checkpoint values were excluded in developing the model as the points were interpolated.

(11)-6 Geoid Adjustments

The geoid-adjustment model was prepared from the geoid model prepared above. Using the model, the geoid adjustment was performed to the three-dimensional survey data of SLD99 ellipsoid height. The final results of the raw point clouds with the SLD99 values have prepared.

(11)-7 Verification of Elevation

All the leveling results of the final checkpoint data and the raw point data after the geoid adjustments were compared and verified. The results of the comparative verification for each checkpoint were recorded to Form 9, and the all the results of checkpoints were organized in Form 10. If the differences between the GCP heights above from the sea level and the laser leveling heights exceed one meter, the values are judged as errors, and they were excluded. The errors are colored in Form 10.

Area Grid Interval (DEM)	Verification of	Vertical Accuracy RMS	Vertical Accuracy RMS
	Elevation area	(Specification)	(Max result)
1 m x 1 m area (West area) DEM Processing Area	2,400 km ²	0.3m or less	0.12m
2 m x 2 m area (East area) DEM Processing Area	800 km ²	1.0m or less	0.34m
2 m x 2 m area (East area)	(4,600 km ²)	1.0m or less	(0.19m)
2 m x 2 m area (South area)	(900 km ²)	1.0m or less	(0.19m)

(12) Unclassified Point Cloud Preparation and Inspection

The raw point cloud data are divided, organized and saved by a map sheet unit. After noise removal, the unclassified point clouds were prepared.

The unclassified point clouds are randomly distributed point data of all the planimetric features on the ground. Using the data, the ground data are prepared that are require for DEM data production.

Area	Lidar	Areas for
	Measurement	Unclassified Point
	Target Areas	Cloud Preparation
1 m x 1 m area (West area)	2,400 km ²	2,400 km ²
2 m x 2 m area (East area)	4,500 km ²	800 km ²
2 m x 2 m area (South area)	900 km ²	0 km ²
Total area	7,800 km ²	3,200 km ²

Table 3-34 Results of the Unclassified Point Cloud Preparation

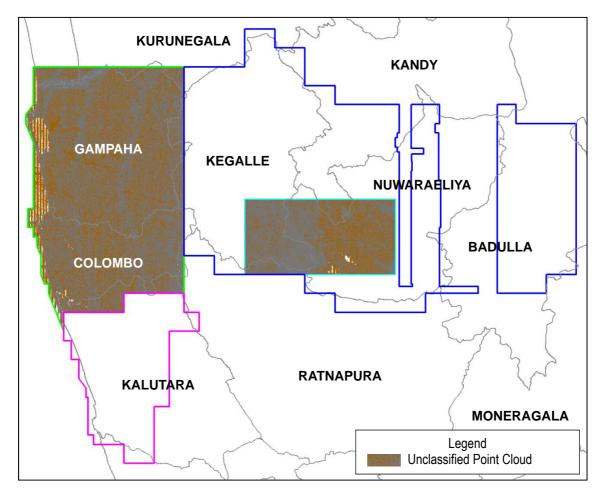


Figure 3-19 Areas for Unclassified Point Cloud Preparation

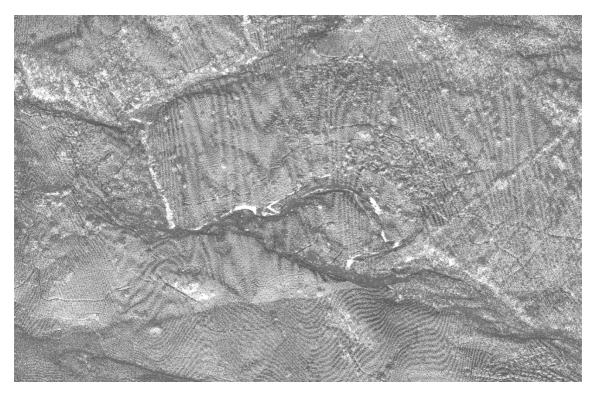


Figure 3-20 An Example of Unclassified Point Clouds (Birds' Eye View)

(13) Ground Data Preparation

Automatic filtering processing and interactive-filtering processing were performed to the prepared unclassified point cloud, and the ground data was prepared. The results were visually verified by a data processing engineer. When an error is found, the engineer interactively edits the data to finalize the ground data preparation.

Area	Lidar	Ground Data
	Measurement	Preparation Areas
	Target Areas	
1 m x 1 m area (West area)	2,400 km ²	2,400 km ²
2 m x 2 m area (East area)	4,500 km ²	800 km ²
2 m x 2 m area (South area)	900 km ²	0 km ²
Total area	7,800 km ²	3,200 km ²

Table 3-35 Results of Ground Data Preparation

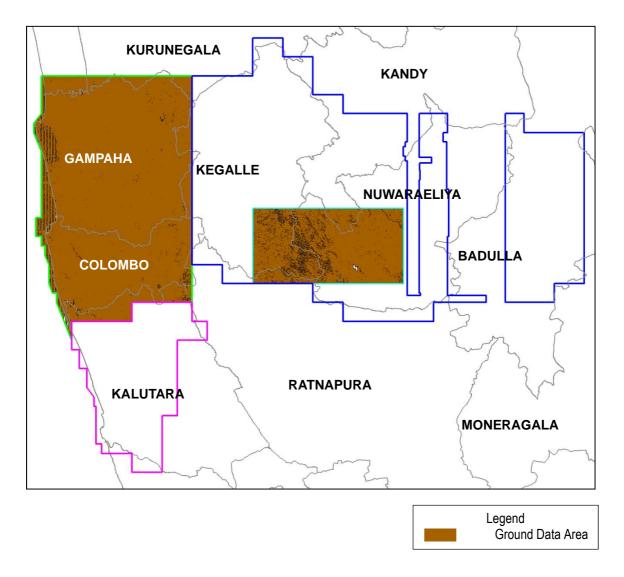


Figure 3-21 Ground Data Preparation Areas

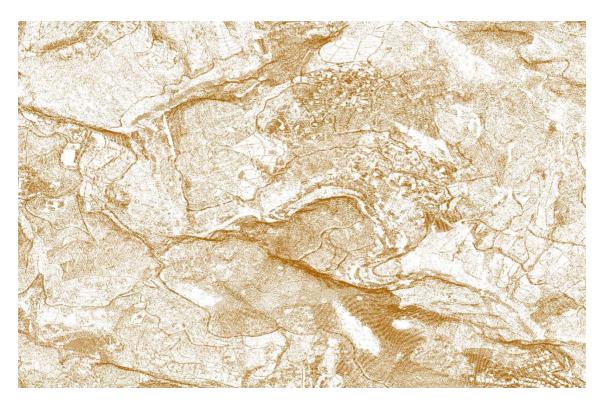
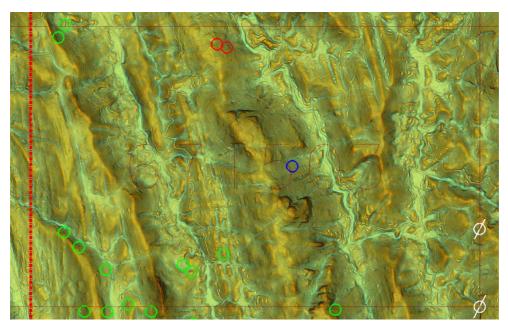
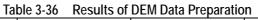


Figure 3-22 An Example of Ground Data (Birds' Eye View)

The ground data after interactive filtering were visually inspected. Further, relief maps for verification have been prepared to inspect a large area in three dimensional viewing. The results of correction have been organized using Form 14. Figure 3-23 shows an example of ground data inspection using a relief map:




Figure 3-23 An Example of Ground Data Inspection Work using a Relief Map

(14) DEM Data Preparation and Utilization

(14)-1 DEM Data Preparation

Using the ground data, the DEM data, the elevation data of a mesh, were prepared as utilizing the TIN interpolation method.

Table 3-30 Results of Delvi Data Preparation				
Area	Lidar	DEM Data	Note	
	Measurement	Preparation Areas	(mesh size)	
	Target Areas			
1 m x 1 m area (West area)	2,400 km ²	2,400 km ²	1 m mesh	
2 m x 2 m area (East area)	4,500 km ²	800 km ²	2 m mesh	
2 m x 2 m area (South area)	900 km ²	0 km ²		
Total area	7,800 km ²	3,200 km ²		

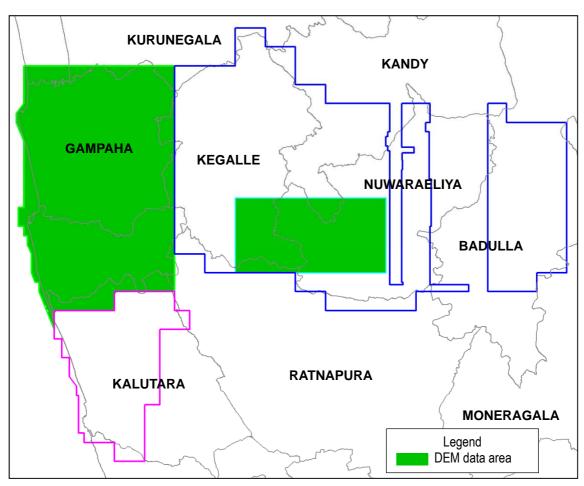


Figure 3-24 DEM Data Preparation Areas

Figure 3-25 An Example of DEM Data (Birds' Eye View)

(14)-2 Verification of the DEM Data Precision by SDSL

In accordance with the agreement during the discussion of the Interim Report, the Project Team has submitted the draft DEM data of four areas in the 1 m x 1 m mesh area on 21 March, 2015. SDSL examined the data as it compared with the leveling data at corresponding locations. SDSL reported that the DEM data satisfied the precision stated in the Specifications as submitting a verification report.

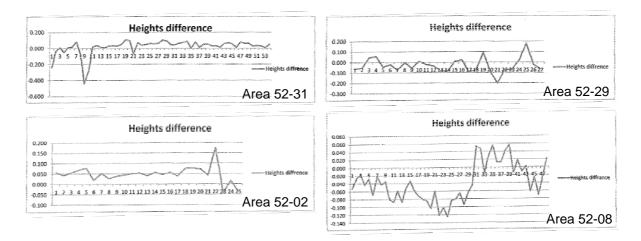


Figure 3-26 Results of Verification of the DEM Data Precision

Draft DEM Data	Validation Point	Heights RMS Error	Specifications	
Area 52-31	54 points	0.09 m		
Area 52-29	27 points	0.08 m	0.30 m	
Area 52-02	25 points	0.06 m	or less	
Area 52-08	48 points	0.06 m		

Table 3-37 Results of Verification of the DEM Data Precision

(14)-3 DEM Data Utilization

1) Department of Survey

SDSL updated 1:5,000 town maps in 17 urban municipalities as requested by DMC. In 2016, in 22 urban municipalities, town maps at a scale of 1:5,000 will be prepared and updated. Within 22 urban municipalities, in seven municipalities, the DEM data prepared in the Project are planned to be used. Low land areas are prioritized, since the request was from DMC.

	a		
No	Council Name	District	DEM
1	Moratuwa MC	Colombo	2015 (New) 2016 (Update)
2	Kolonnawa MC	Colombo	2016 (New)
3	Kaduwela MC	Colombo	2016 (New)
4	Negambo MC	Gampaha	2016 (New)
5	Gampaha MC	Gampaha	2016 (New)
6	Homagama PS	Colombo	2016 (New)
7	Kaluthara UC	Kaluthara	2015 (New) 2016 (Update)

Table 3-38Updating the Contour Lies for the Town Maps (1:5,000)

MC: Municipal Council

UC: Urban Council

PS: Pradeshiya Sabha (a local government unit)

2) DMC (Disaster Management Center)

A Risk Profiling Project will be implemented budgeted domestically. The purpose is risk assessment that unifies information on risks on development activities. More specifically, it is to carry out the national risk assessment strategy, identification of hazards and risk assessment using scientific methods at the national and local levels of governments. The projects to be implemented from 2016 are flood risk profiling in six river basins, and multi-hazard risk profiling in 22 urbanized areas. The base maps to be used in these projects are the topographic maps at the scale of 1/10,000. In urbanized areas, 1/5,000 scale topographic maps are planned to be used. The DEM data will be utilized for updating the contour lines for 1/5,000 topographic maps.

3) Irrigation Department

With the financial assistance from the World Bank, Irrigation Department has started the Comprehensive Climate Resilience Improvement Project (CRIP). The work in Component 1 will prepare investment plans in ten river basins; in the Component 2, a public education regarding

climate risk. The LiDAR data, produced in the Project, are planned to be used for two river basins among ten river basins (Catchment areas: Kelani Ganga and Attanagalu Oya; and Maha Oya and Mahaweli Ganga). The DEM produced in the Project will be used in hydrology and hydraulic models. In other eight river basins, the DEM data from a LiDAR project implemented by the World Bank are planned to be used.

4) NBRO (National Building Research Organization)

NBRO is planning to use the DEM to identify hazard areas as it is planning to use the DEM data to be prepared in all the LiDAR measurement areas, but specific areas have not been prioritized. A specific data use from the Project was for the analysis of the landslide areas cause by heavy rain in the early May, 2016.

(15) Contour Line Data Preparation

Using the DEM data, contour line data are generated using a function of software. The areas and contour intervals for each area are summarized in the following table.

Area	Lidar	Contour Line	Note	
	Measurement	Data Preparation	(Contour Line Interval)	
	Target Areas	Areas		
1 m x 1 m area (West area)	2,400 km ²	300 km ²	Intermediate 1m;	
		(2100 km ²)*	Index 5m	
2 m x 2 m area (East area)	4,500 km ²	100 km ²	Intermediate 2m;	
2 m x 2 m area (South area)	900 km ²	0 km ²	Index 10m	
Total area	7,800 km ²	400 km ²		

	Table 3-39	Results of Contour Line Data Preparation
--	------------	---

SDSL produced the contour line data in 2,100 km² within the 1 m x 1 m mesh area, after the technology transfer was completed.

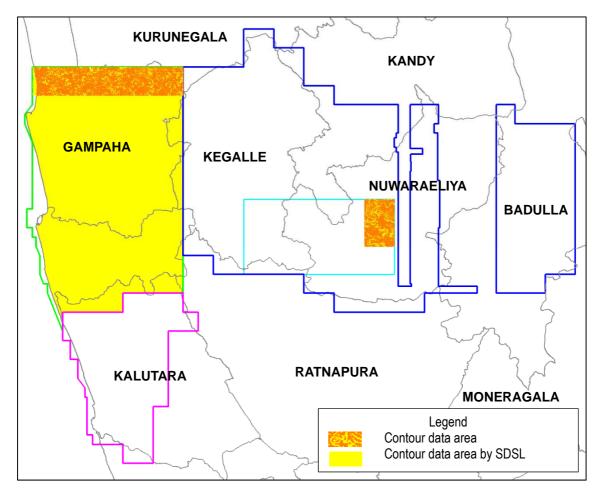


Figure 3-27 Contour Line Data Preparation Areas



Figure 3-28 An Example of Contour Line Data (Birds' Eye View)

(16) **Preparation of Interim Report and Discussion**

The Interim Report was prepared and the contents were discussed with the C/P. The report was submitted to JICA and the C/P. The results of the discussion were recorded in the minutes of meeting.

(17) Training in Japan

The training in Japan was conducted in April, 2016 with three objectives:

- 1. To learn activities, roles, and technologies of the Geographical Survey Institute, private corporation and other entities in disaster mitigation and management;
- 2. To learn the latest LiDAR survey method and DEM data processing to harness LiDAR survey data in Sri Lanka in the future;
- 3. To learn practical uses of DEM data in Japan to promote uses of the data in Sri Lanka.

With the objectives, the training program was designed and implemented.

The period of the training in Japan was from April 4, 2016 to April 23, 2016. The beginning of the training was allocated to: 1) practical training for LiDAR survey; 2) Airborne LiDAR measurement data processing; 3) Airborne LiDAR Equipment Operation (Field Trip); and 4) Airborne LiDAR Data Processing.

The following training was performed in Nakanihon Air Service Co., Ltd.:

- 1) Plan preparation of an actual airborne LiDAR survey;
- 2) Field identification for an airborne LiDAR survey;
- 3) Downloading and processing of airborne LiDAR measurement data.

Technology transfer on downloading and processing of airborne LiDAR measurement data could not be done because the data were dependent to the equipment on board of the aircraft.

In the Asian Disaster Prevention Centre, mainly following matters have been explained in detail:

- (1) Activities of the Asian Disaster Prevention Centre for disaster prevention;
- (2) Training records and cases of the trainees from Sri Lanka; and
- (3) Methods of analyses and practical uses of the LiDAR data.

They have visited the Great Hanshin-Awaji Earthquake Memorial Museum. They have experienced the movie at the 1.17 Theater that showed the earthquake disaster of Hanshin-Awasji in 2D, and saw a documentary file of the East Japan Earthquake. The volunteers in the Museum explained disaster prevention situation in Japan, and the participants from Sri Lanka exchanged their opinions.

At the Disaster Prevention Research Institute, Kyoto University, iRIC, the stream flow and river bed fluctuation software, was distributed with DEM to all the participants. They have experienced the software using the DEM data. In the demonstration, the instructor instructed the use of software to the participants. The software has been used in institutions of higher learning and government institutions in the following countries: Japan, United States, Canada, China, South Korea, Chili, Nepal, Myanmar, Thailand, India, Pell, Indonesia, Bhutan, Vietnam, Egypt, Russia, and Taiwan.

During the visit to the Geographical Survey Institute (Headquarters), and the Japanese Association of Surveyors, the participants have learned: sales and management of sheet maps, GIS data management; equipment testing, current situation of NSDI and roles of institutions in NSDI in Japan. The participants were interested in the permanent GNSS stations, and asked questions regarding the technologies used to install and manage the permanent GNSS stations.

In the Japan Aerospace Exploration Agency, JAXA, uses of the satellite images were the topic covered; at the exhibition area, where the rockets and satellites were displayed, the participants observed the exhibitions carefully.

At Pacific Consultants Co., Ltd. lectures on LiDAR data usage were given, and at the Technical Research Center of Pacific Consultants Co., Ltd. in Tsukuba, a method of hazard map preparation was lectured. Also, applied research on river, water and sewer and environment conducted by private company was introduced, and the participants actually visited the sites for technology development.

At Remote Sensing Technology Center of Japan, a technology transfer session was conducted on the remote-sensing technology, and a method of producing DEM using satellite images. At NTT DATA, the NSDI project of the Yen Loan was presented in details.

The program of the training in Japan is summarized in the following table.

Date	Day	Program	Venue
April 10	Sun.	Colombo to Nagoya	
April 11	Mon.	Briefing, Courtesy Call	JICA Chubu
Арштт	WOT.	General Orientation	JICA Chubu
April 12	Tue.	Introduction, Airborne LiDAR Survey	Nakanihon Air Service Co., Ltd.
April 13	Wed.	Airborne LiDAR Survey Data Processing - Hands-on Session (site visit)	Nakanihon Air Service Co., Ltd.
April 14	Thur.	Airborne LiDAR Survey Data Processing - Hands-on Session	Nakanihon Air Service Co., Ltd.
April 15	Fri.	Airborne LiDAR Survey Data Processing - Hands-on Session (site visit)	Nakanihon Air Service Co., Ltd.
April 16	Sat.	Airborne LiDAR Survey Data Processing - Hands-on Session	Nakanihon Air Service Co., Ltd.
		Move from Nagoya to Kyoto	
April 17	Sun.	History of Disaster and Disaster Management	Asian Disaster Reduction Centre
April 18	Mon.	Disaster Research	Disaster Prevention Research Institute, Kyoto University
		Move from Kyoto to Tokyo	
April 19	Tue.	Introduction, Lecture on LiDAR Data Usage	Pacific Consultants Co., Ltd
Арії 13	Tue.	Hazard Mapping Methodology	Japan Association of Surveyors
		NSDI and National Control Point System in Japan, Discussion, Facility Visit in Geo Spatial Information Authority of Japan	Geospatial Information Authority of Japan
April 20	Wed.	Use of Satellite Images	Japan Aerospace Exploration Agency
		Disaster Management: River flood, Sabo and Tsunami in Japan	Pacific Consultants Co., Ltd.
April 21	Thur.	DEM from Satellite Images	Remote Sensing Technology Centre of Japan
γφτιί Ζ.Τ		Cases of Geographic Information System Development	NTT Data
April 22	Fri.	Meeting with the Project Team and Preparation of Report and Presentation Materials	Pacific Consultants Co., Ltd.
7 (prii 22	1 11.	Reporting the Results of the Training (Presentation of an Action Plan*)	JICA Tokyo
April 23	Sat.	Narita →Colombo	

 Table 3-40
 Schedule of Training in Japan

A total of 15 participants was selected and taken part in the training in Japan.

No	Name	Title	Branch
1	Mr. M.N.K. Bandara	Photogrammetric Technological Officer	Photogrammetric Branch, Survey Department
2	Mr. P.N.B. Widanagamage	Photogrammetric Technological Officer	Photogrammetric Branch, Survey Department
3	Mr. D. Ekanayake	Photogrammetric Technological Officer	Photogrammetric Branch, Survey Department
4	Mrs. D.C.S. Jayatunga	Photogrammetric Technological Officer	Photogrammetric Branch, Survey Department
6	Mr. M.W.A.N. Karunatilaka	Photogrammetric Technological Officer	Photogrammetric Branch, Survey Department
7	Mrs. Y.K. Kannangara	Photogrammetric Technological Officer	Photogrammetric Branch, Survey Department
8	Mrs. I.S. Welhena	Photogrammetric Technological Officer	Photogrammetric Branch, Survey Department
9	Mr. A.G.T.P. Weerasinghe	Photogrammetric Technological Officer	Photogrammetric Branch, Survey Department
10	Miss Serenee Osman	Photogrammetric Technological Officer	Photogrammetric Branch, Survey Department
11	Mr. W.M.S. Weerasinghe	Deputy Surveyor General	Geoinformatic Section, Survey Department
12	Mr. B.C.P. Bogahawatta	Government Surveyor	Geodetic Branch, Survey Department
13	Mr. K.S.K. Wijayawardhana	Senior Superintendent of Surveys	Air Surveys Branch, Survey Department
14	Mr. G.A. Udayakumara	Government Surveyor	Geodetic Branch, Survey Department
15	Mr. N.M.A. Wijerathna	Lecturer, Senior Superintendent of Surveys	Institute of Surveying & Mapping, Diyatalawa

 Table 3-41
 Participants to the Training in Japan

Survey Department: Survey Department of Sri Lanka

(18) Preparation of Draft Final Report and Discussion

The Draft Final Report was prepared in September 2016. The contents were discussed with the C/P.

(19) Preparation of the Manuals

When the technology transfer plan was prepared, draft of the technical manuals on data preparation, maintenance and management was prepared as the Project Team members had discussions with the C/P. During the technology transfer, as the instructor found it was necessary, the manuals were revised. The final version of the manuals were submitted as supplemental documents to the DF/R.

As explained, for the lectures of the training, the PowerPoint presentation materials were used as the training materials. All the manuals and training materials have been completed. :

Cat Cada	Cubia ata	Turaa	Ctatura
Cat_Code	Subjects	Туре	Status
00	First Seminar	PPT	Completed
01	LiDAR Fundamentals	PPT	Completed
02	Software Knowledge	Manual	Completed
03	LiDAR Survey Planning	Manual	Completed
04	LiDAR Measurement	Manual	Completed
05	Raw Point Cloud	Manual	Completed
06	Unclassified Point Cloud	Manual	Completed
0708	Ground Data Preparation/ DEM Data Preparation	Manual	Completed
09	Ortho-Photo Image Preparation	Manual	Completed
10	Thematic Mapping using Tera Series from DEM	Manual	Completed
11	Thematic Mapping using ArcGIS from DEM	Manual	Completed
12	Equipment Management	Manual	Completed

Table 3-42	Manuals
------------	---------

During the Inception Report meeting, the following matters have been discussed and changed.

No	Proposed in the Inception Report	Amended in the Inception	Status
		Report meeting	
1	LiDAR Survey Operation Rules	The Specifications	Completed as in the Specifications
2	DEM Product Specifications	Included in the Specifications	Completed as in the Specifications
3	Manual of Pre-Processing of DEM	Manual of Pre-Processing of	Completed as in the manuals of 05,
	Observation Data in LiDAR Survey	DEM Observation Data in	06, and 0708.
		LiDAR Survey	
4	DEM Data Preparation Manual	DEM Data Preparation	Completed as it the manual of 0708
		Manual	Ground Data Preparation/ DEM Data
			Preparation
5	Quality Control Manual	Included in the Specifications	Completed as in the Specifications
6	Thematic Map Preparation Manual	Thematic Maps from DEM	Completed as in the manual 10 and
		-	11.
7	Equipment Operation Management		Completed
	Manual	-	

 Table 3-43
 Organization of the Technical Manuals: Proposed vs Completed

"2 DEM Product Specifications" is decided to be included in t the Specifications for the LiDAR Survey. The Specifications also includes 1. LiDAR Survey Operation Rules and 5 Quality Control Manual.

(20) Preparation of the Final Report

Reflecting the comments from the C/P on the Draft Final Report, the Final Report was prepared and submitted to the C/P and JICA.

(21) Outputs

Following outputs were submitted to the Sri Lanka side during the course of the project.

	Table 3-44 O	utputs	
	Output	Submission (Deadline)	Quantity
[1]	Reports		
1)	Inception Report (IC/R)	at the commencement of the project	10 copies
2)	Interim Report (IT/R)	Fifteen (15) months after the commencement (August 2015)	10 copies
3)	Draft Final Report (DF/R)	Twenty-two (22) months after the commencement (Sept. 2016)	10 copies
4)	Final Report (F/R)	Within one month after receiving comments from the Sri Lanka side	15 copies
[2]	Outputs of Technical Cooperation		
1)	LiDAR Survey Rules		
2)	DEM Product Specifications		
3)	DEM Observation Data Pre-Processing Manual		
	for LiDAR Survey	at the submission of the	1 set each
4)	DEM Data Preparation Manual	DR/R	
5)	Quality Control Manual		
6)	Thematic Mapping Manual		
7)	Equipment Operation Management Manual		
[3]	Data and Other Reports		4 1
1)	Results of Field Identification		1 set
2)	Digital Data Files		1 set
ii	3D Survey Data Original Data		1 set 1 set
iii	Ground Data		1 set
iv	DEM Data	at the submission of the F/R	1 set
V	Ortho-photo Data		1 set
vi	Contour Data		1 set
vii	Specifications		1 set
viii	Manuals for technology Transfer		1 set
3)	Report on Quality Management		1 set
4)	Others (Equipment Procurement Documents)	at the end of the project	1 set
[4]	Monthly Work Report	15th day of the following month	All the copies
[5]	Collected Information	at the submission of the F/R	1 set
[6]	Promotion Material (Response to the Disaster)	at the submission of the DF/R	190 copies
	Promotion Material (Project Brief)	at the submission of the F/R	150 copies
[7]	Digital Image Data (to JICA)	at the submission of the F/R	One CD-R
[8]	Others		
1)	Minutes of Meeting (to JICA)	as soon as it is prepared	All the copies
2)	Letters to the Government of Sri Lanka (photocopies) (to JICA)	as soon as it is prepared	All the copies

Because of urgency of the use of the data due to the disaster in May, 2016, the Project Team has submitted the following DEM data and contour line data to JICA and SDSL before the end of the Project:

Date	Mesh Area	Data Type	Area	Submitted to
17 June, 2016	1 m x 1 m	DEM Data	2,200 km ²	JICA
17 June, 2016	1 m x 1 m	Contour Line Data	100 km ²	JICA
22 June, 2016	1 m x 1 m	DEM Data	2,200 km ²	SDSL
22 June, 2016	1 m x 1 m	Ortho-Photo Data	2,200 km ²	SDSL
22 June, 2016	1 m x 1 m	Contour Line Data	100 km ²	SDSL
23 September, 2016	1 m x 1 m	DEM Data	200 km ²	JICA
23 September, 2016	1 m x 1 m	Contour Line Data	200 km ²	JICA
28 September, 2016	1 m x 1 m	DEM Data	200 km ²	SDSL
28 September, 2016	1 m x 1 m	Ortho-Photo Data	200 km ²	SDSL
28 September, 2016	1 m x 1 m	Contour Line Data	200 km ²	SDSL

Table 3-45 Advance Data Submission

The rest of the data were submitted on December 16, 2016 when the Final Report was submitted.

(22) Operation Schedule

During the discussion on the Inception Report, the Project Team presented alternative plans. After discussion with consideration of weather condition of Colombo and surrounding areas, one of which the LiDAR survey had been scheduled start in November 2015 was selected.

Work Item	Period	-	FY2014														Y20	-							
HOR Real	Tenou	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
[1] Collection and Examination of Existing Documents and Information	Plan		-																					_	
11 Concedur and Examination of Existing Documents and information	Actual	-	+																					4	_
[2] Preparation of Inception Report and Discussion	Plan	[-																				_	\rightarrow	_
	Actual	1				-	_		_				_								_	_	_	_	_
[3] Preparation of Technology Transfer Plan and Implementation of the Plan	Plan	L_	-		⊢				-	-			-					-					_	\rightarrow	_
	Actual			•																	-		_	_	_
[4] Seminar	Plan	-	-	-	┢	-	-	-	-	-	-		_	-	-			-	-	-	-		-	-	_
	Actual	L	-	-	-	-	_	-	-	-	-		•	-			L	-	-	_	-		•	+	_
[5] Discussion on Specifications	Plan	-	-	0	-	-	-	_	-	-	-	-	-	-	-		-	-	-	-	-		-	_	_
	Actual	-	-				-	_	-	-	-		-								-		_	+	_
[6] Preparation of LiDAR Survey Plan	Plan	-	+		_	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	+	_
	Actual	-	-		┡	-	-	-	-	-	-		_	<u> </u>				<u> </u>	-	-	-		-	+	_
[7] Installation of GNSS Base Stations and Ground Checkpoints	Plan	-	+	+	┢	-	-	-	+	-	-		-	-			F	-		-	-			+	-
	Actual	-	+	+	┢	-	-	-	-	-	-			-				-		-	-		-	+	-
[8] Implementation of LiDAR Survey	Plan Actual	-	+	+		-	-	-	+	-	-	-			-				_	-	-		-	+	-
	Plan	-	+	+		-	-	-	-	-	-							-	1	-	-	-	-	+	_
[10]Preparation of Ortho-photo Data	Actual	-	+	+	┢	-	-	-	+	-	-	-	-						-	-	-	-	-	+	-
	Plan	-	+	+	┢	-	-	-	+	-	-	-	-					_	Ξ.	-	-		-	+	-
[11] Preparation and Inspection of 3D Survey Data (Raw Point Cloud)	Actual	-	+	+	-	-	-	-	-	-	-	-	-							-	-		-	+	_
	Plan	-	+	+	┢	-	-	-	+	-	-	-	-	-	-					_	-		-	+	-
[12] The Original Data Preparation and Inspection	Actual	-	+	+	┢	-	-	-	+	-	-	-	-	-							-		-	+	-
- Anno	Plan	-	+	+	┢	-	-	-	-	-	-	-	-	-	F			-	-		-	-	-	+	-
[13] Ground Data Preparation	Actual	-	+	+	┢	-	-	-	+	-	-	-	-	-									-	+	-
	Plan	-	+	+	┢	-	-	-	-	-	-	-	-	-						-	-	_		+	-
[14] DEM Data Preparation	Actual	-	+	+	┢	-	-	-	-	-	-	-	-	-	-								-	+	-
	Plan	-	+	+	┢	-	-	-	+	-	-	-	-	-		-							-	+	-
[15] Preparation of Interim Report and Discussion	Actual		+	+	┢		-		-	-	-	-	-	-			⊢	-		-	-		-	+	-
	Plan		+	+	┢	-	-	-	+	-	-	-	-	-	-			1		-	-		-	+	-
[16] Training in Japan	Actual		+	+	┢	-	-	-	+	+	-	-	-	-	-				-	-			-	+	-
	Plan		+	+	┢		-	-	-	-	-		-				F			-	-	п		+	-
[17] Preparation of Draft Final Report and Discussion	Actual		-	+	┢				-	-	-		-	-						-				+	-
- 528	Plan		+				-	-	+	-	-		5					1						+	-
[18] Preparation of the Manuals	Actual		t		-																			+	-
	Plan		1	1								F	-		-									0	-
[19] Preparation of the Final Report	Actual		+	+			-		-				-	-											-
Report			t	1			-		-	-			-	-			⊢	-						+	-
кероп			IC/	P												TT/F	,					DF/F			2/
			10/	•	1:	Wo	nk ir	Sri	i Lar	ıka						171	-				-	J171		-	1
			F				rk ir			- Cock															

Figure 3-29 Operation Schedule Chart

There was an additional LiDAR data processing and additional training for contour line preparation; Mr. Hajima's assignment was added for two months from July, 2016 to August, 2016. There is no significant change of the operation schedule.

	Role		No of trips	1	2	3	4	5	6	15	8	9	10	11	12	1	2	3	4	5	2016 6	7	8	9	10	11	Days	Mon
	Dr. Yutaka Kokufu	Plan	7				-							-	_			1000									165	5.5
	Team Leader/DEM Preparation Planning	Actual	2		3/3	(45d)	4/16						10/8	(45d) 11/22		1/18	(15d) 2/16	(15d)	_	(15d) 5/22	6/5	(15d) 7/7	7/21	9/2	(15d) 5 10/9		165	5.5
		Actual				(45d)	—						1	(45d)	_	(30d)			_	(15d)	-	(15d)		(154)	F		105	- 5.5
	Mr. Koichi Kamimura Deputy Team Leader/GPS	Plan	6	_		(45d)									(6	0d)	-	(6	0 d).	(15d)	-	(15d)	F		(15d)		210	7.0
	Station/Ground Checkpoint 2	Actual	2	_	3/3	(454)	4/16						10/8 (31d)	11/7	12/3 (45d)	1/16	2/1 (60d)	3/31	5	8 5/22 (15d)				10/3	10/16 (14d)		210	7.0
		Plan	6			(454)							(310)		(450)		(604)			(134)		-			(140)		90	3.0
	Mr. Reynaldo R. Adorador	Filler			3/3	(204)			-					(15d) 11/22	12/11	(15d)	2/22	(15d) 3/12				(15d)		9/2	(104)	-		3.0
	LiDAR Data Processing	Actual	2			(20d)									04)		(20d)	_							(30d)		90	3.0
	Mr. Masanobu Kondo LiDAR Survey	Pian	5	_	-	(30d)	-	-	-		_				04)	(15d)	_	_		(45d)	-	-	\vdash	⊨	(15d)		165	5.5
	Planning/Survey Specifications/Technolo	Actual	2		3/3		4/1								12/31		1/24				6/2			9/13	(154)		165	5.5
	gy Transfer 1	Accou	-			(30d)			_					(4	7d)	(15d)		-		(33d)		-		-	(40d)		105	.04
	Mr. Kiyofumi Tamari GPS Station/Ground	Plan	2											(6			(45d)										105	3.5
	Checkpoint 1	Actual	1											-	12/24	1/18	_	3/22	3/28								105	3.1
	Mr. Hilamit H.B.													(4	(60		(65d)										976	
	Mr. Hideyuki Haijima LiDAR Survey/Technology	Plan	5		3/3	(30d)	4/1							(6 11/15	0.d)	1.6.	(6 1/28	0d)		(45d) 5/1	6/2	(60d) 7/3	8/3		(15d) 10/20		270	9.
	Transfer 2	Actual	2	-	3/3	(304)	· · ·	-	-	-	-	-		11/15	(61d)	1/14	1/28 (60d)	3/24		5/1 (33d)	6/2	(60d)	8/3	9/23	(263)	-	270	9.
ĺ	Mr. Hajime Nakasha	Pian	2														_										0	0.
	LiDAR Survey/Technology				-				-		-						2/28	3/13	(30d)		-	(30d)		10/9	0 10/16			
	Transfer 3	Actual	0															(15d)							(8d)		0	0.
	Dr. Akihiro Furuta Thematic	Pian	2	_	-	-	-	-	-	-		-			_		-	-	_		-	(15d)	⊨	+	(154)	-	30	а.
	Mapping/Technology Transfer	Actual	0																			7/16	7/30	10/1	10/16		30	1.
				-					-	_	_						1					(15d)		-	(154)			2.58
	Mr. Kazunobu Kamimura Practica Data	Plan	6			(30d)									(30d)			(30d)		(15d)		(30d)	E		(15d)		150	5.
	Use/Technology Transfer Planning	Actual	2	_	3/3	(304)	4/1		-					11/15	12/20		2/15 (28d)	3/13	_			7/3 (28d)	7/30	9/28	(284)		150	5.
	Ms. Mary Grace Desusa	Pian	6			(300)								1.5	04)		(284)					(284)			(280)		75	2.
	Project Coordinator/LiDAR	Pasn	0	_	2/3	(15d) 3/17			-	_			10/11	(15d) 10/25	-	1/24	1./7	(15d)		5/22	5/91	(15d) 7/10	7/19	10/	(15d) 10/11		- "	-
	Data Processing Assistant	Actual	2		3/3	(15d)							10/11	(15d)		1/23	(15d)	-		(10d)	0	(10d)	1/12	40/4	(10d)		75	2.
		Plan	3																								0	0.
	Mr. Kazushi Kitani Project Assistant	-		_		(15d)												(15d)				-		10/19	(15d) 9 10/22			
		Actual	1			(14d)																			(4d)		0	0.
																						ub Tot			Plan		1260	42
																						iri Lani	KA/		Actua	4	1260	42
1																									1			
	Dr. Yutaka Kokufu Team Leader/DEM	P	arı	(3d) 1/28	1/30	-	-	-	-	_					1/1	31/15	(3d)	-	_		-	8/1	(5d) 8/5	(6d)	1	(3d)	20	1.
	Preparation Planning	Ac	tual	(3d)												(3d)							(5d)	(94)			20	1.
	Mr. Masanobu Kondo LIDAR Survey	Pl	lan						-										(10d)								10	0.
	Planning/Survey Specifications/Technolo	Ac	tual					_	-	_								4/1	1 4/22			_					10	0.
	gy Transfer 1 Mr. Hideyuki Haijima	Р	an																(10d)								10	0.
	LiDAR Survey/Technology	-	- 23	-						_								4/1	(10d) 1 4/22		1							-
	Transfer 2	Ac	tual																(10d)								10	0.
																						Subtot	al	Γ	Plan		40	2.
	Legend : A	ctual	-	Plann	ed			Add	litional													(Japan		F	Actua	a	40	2.
																								-				
																						Total			1	Plan		44
																								1	A	ctual		44

Figure 3-30 Planned Assignment and Actual Days Spent by the Project Team Members

(23) Equipment Installed in the Survey Department

PCs and software and other pieces of equipment are installed in the training room of SDSL. The items and date of installation are summarized in the following table.

No.	Item	Software Type	Procured by	Date of Installation	Quantity
(1)	Elevation Discrepancy Adjustment between Flight Courses of Laser Survey	Base	Project Team	Dec. 8, 2015	1
(')	and Sensor 3 Axes Calibration Adjustment Software	Add-on	Project Team	Dec. 10, 2015	
	Automatic Filtering (Automatic	Base	Project Team	Dec. 8, 2015	
(2)	Classification) Processing Software for Laser Survey Data	Add-on	Project Team	Dec. 10, 2015	1
		Base	Project Team	Dec. 8, 2015	4
(0)	Image Processing for Laser Survey Point	Add-on	Project Team	Dec. 10, 2015	1
(3)	Group and Data	Base	JICA	Dec. 15, 2015	2
		Add-on	JICA	Dec. 18, 2015	2
	Three-Dimensional Modelling (TIN	Base	Project Team	Dec. 8, 2015	
(4)	Model, Surface Generation) Software for Laser Measurement Point Groups	Add-on	Project Team	Dec. 10, 2015	1
(5)	Manual Filtering and Data-Quality-Control Software of Laser	Base	Project Team	Dec. 8, 2015	1
(•)	Survey Point Group Data	Add-on	Project Team	Dec. 10, 2015	
(6)	ArcGIS with Extensions	-	JICA	Dec. 16, 2015	3
(7)	Display of Laser Survey Point Group,	Base	JICA	Dec. 15, 2015	1
(1)	3-Dimensional CAD Modelling Software	Add-on	JICA	Dec. 18, 2015	1
(0)	Laser Survey Point-Group-Data	Base	JICA	Dec. 15, 2015	4
(8)	Processing for Civil Design (Earth Quantity Calculation) Software	Add-on	JICA	Dec. 18, 2015	1
(9)	Desk top PC	-	Project Team	Dec. 4, 2015	9
(10)	UPS	-	Project Team	Dec. 4, 2015	9
(11)	External Hard Disk	-	Project Team	Dec. 4, 2015	2

Table 3-46	Equipment Procured in Sri Lanka

Figure 3-31 Photos of New Equipment for Training