REPUBLIC OF THE UNION OF MYANMAR MINISTRY OF CONSTRUCTION DEPARTMENT OF BRIDGE

DETAILED DESIGN STUDY ON THE BAGO RIVER BRIDGE CONSTRUCTION PROJECT

FINAL REPORT ATTACHMENTS

VOLUME II DESIGN REPORT Part VI Toll Collection Facility

DECEMBER 2017

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

NIPPON KOEI CO., LTD. ORIENTAL CONSULTANTS GLOBAL CO., LTD. METROPOLITAN EXPRESSWAY COMPANY LIMITED. CHODAI CO., LTD. NIPPON ENGINEERING CONSULTANTS CO., LTD.

REPUBLIC OF THE UNION OF MYANMAR MINISTRY OF CONSTRUCTION DEPARTMENT OF BRIDGE

DETAILED DESIGN STUDY ON THE BAGO RIVER BRIDGE CONSTRUCTION PROJECT

FINAL REPORT ATTACHMENTS

VOLUME II DESIGN REPORT Part VI Toll Collection Facility

DECEMBER 2017

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

NIPPON KOEI CO., LTD. ORIENTAL CONSULTANTS GLOBAL CO., LTD. METROPOLITAN EXPRESSWAY COMPANY LIMITED. CHODAI CO., LTD. NIPPON ENGINEERING CONSULTANTS CO., LTD.

TOLL COLLECTION FACILITY

LARGE ROOF

1. Outline of the Building

- Structure: Steel Structure
- > Structure Type: Rigid-frame Structure
- > Number of Floors: One floor on grand level (without basement level)
- > Maximum Height: Level of Road Surface + 6.52m
- > Maximum Eaves Height: Level of Road Surface + 6.240m
- Roof Dimensions:644.4m^{*} (12m×53.7m)
- > Finish: Folded-Plate Roof/ Outer Wall of Folded Punching Panel

- 2. Design Conditions
- Compliance standards
 - Building Standards Act of Japan
 - Guideline of Building Structure Design on the Metropolitan Expressway (July, 2014) Metropolitan Expressway Company Limited
 - Design Standard of Building Structure (2013) Ministry of Land, Infrastructure and Transport of Japan
- Used Program for the Structure Calculation
 Super Build / SS3-S
 Structure Suite R2.0.2
- Design Route
 X-direction, Y-direction: Route 1-2
- ◆ Standard Shear Coefficient C0=1.0
- ◆Importance Factor I=1.5
- Design Policies
- (1) Superstructure
- Simulate 3 cases (a/ b/ c) each in 3 models (1/ 2/ 3).
- The ground should be the 2^{nd} type of the soil classification.
- The wind load should be in accordance with "Guideline of Building Structure Design" of Metropolitan Expressway Company Limited.
- •
- (2) Foundation Structure
- Column bases should be fixed on RC slabs with anchor bolts.
- The concrete strength of individual footing should be Fc24.
- Analysis model should fix fulcrums and assess rotating stiffness of column bases properly, considering their base plates and anchor bolts.

3. Allowable Stress of Material

♦ Allowable Stress and Allowable Bond Stress of Concrete	(Unit: N/mm^2)
	(0)

		Long Ter	m		Short Term			
			Bond				Bond	
Fc	Fc Compression	sion Shearing	Beam	Others	Compression	Shearing	Beam	
			Upper		Others	ners	Shearing	Upper
	E	End				End		
Fc24	8.0	0.73	0.80	1.00	16.0	1.095	1.20	1.500

◆ Allowable Stress of Steel Rod (Unit: N/mm²)

		Long Term		Short Term		
Туре	Туре		sile	Comprossion	Tensile	
	Compression	Others	Shearing	Compression	Others	Shearing
SD295A	195	195	195	295	295	295

◆ Allowable Stress of Structural Steel Used (Unit: N/mm²)

Type of Steel	Board	Long	Term	Short Term		
Wire	Thickness	Compression/ Tensile/ Flexure	Shearing	Compression/ Tensile/ Flexure	Shearing	
SN400(SS400)						
SM400,SMA400	+ < 10	156	90	225	125	
STK400,STKR400	ί ⊒40	150	50	233	133	
BCP235						
BCR295	t ≦40	196	113	295	170	
SM490,SMA490						
SN490(B,C)	+ < 10	216	125	225	107	
STK490,STKR490	ί ⊒40	210	125	525	107	
BCP325						

◆Allowable Stress of Weld-throat Section (Unit: N/mm²)

①Butting Surface

Type of Steel	Board	Long Te	rm	Short Term		
Wire	Thickness	ickness Compression/ Tensile/ Flexure		Compression/ Tensile/ Flexure	Shearing	
SN400(SS400)						
SM400,SMA400	t ≦40	156	90	235	135	
STK400,STKR400						

BCP235					
BCR295	t ≦40	196	113	295	170
SM490,SMA490					
SN490(B,C)	L < 10	210	105	225	107
STK490,STKR490	ί ≧40	216	125	325	187
BCP325					

②Other Parts

Type of Steel	Board Long Term		Short Term	
Wiro	Thickness	Compression/ Tensile/ Flexure/	Compression/ Tensile/ Flexure/	
wire	THICKIC33	Shearing	Shearing	
SN400(SS400)				
SM400,SMA400	+ < 40	90	135	
STK400,STKR400	ι ⊒40	90	155	
BCP235				
BCR295	t ≦40	113	170	
SM490,SMA490				
SN490(B,C)	+ < 40	125	197	
STK490,STKR490	ι ≟40	125	107	
BCP325				

◆Allowable Stress of High-strength Bolt (Unit : N/mm²)

High-st	rength bolt		Long Term			Short Ter	m	
			Allowable	Shearing		Allowable	Shearing	
		Nominal	Str	ess	Allowable	Str	ess	Allowable
Type	то	Diameter	Friction	Friction	Tonsilo	Friction	Friction	Tensile
туре	10	of Bolt	on	on	Forme	on	on	Forme
			Single	Double-	Force	Single	Double-	Force
			Surface	Surface		Surface	Surface	
Zincing	400	M16	24.1	48.2	50.2	36.1	72.3	75.3
F8T	400	M20	37.6	75.3	78.5	56.5	113.0	117.8

◆Allowable Stress of Anchor Bolt (Unit : N/mm²)

	Long	Term	Short Term		
Anchor Bolt	Allowable Shearing	Allowable Tensile	Allowable Shearing	Allowable Tensile	
	Stress	Force	Stress	Force	
SNR490	100	217	100	225	
(ABR490)	125	217	198	325	

4. Assumed Load

4-1. Floor Load (Unit: N/m²)

◆Floor Load

Specification	Load
Folded plate (H=173,t=1.0)	150
Horizontal Brace L65x65x6	60
Support of Tight Frame	40
Lighting Equipment	80
Others	160
Total	490

◆Live Load

Purpose	Floor/ Beam	Frame	Earthquake
Roof	980	600	400

♦ Building Design Load

Load	Floor/ Beam	Frame	Earthquake
D•L	490	490	490
L·L	980	600	400
T·L	1470	1090	890

4-2. Seismic Load

- Seismic zoning coefficient is assumed as 1.0.
- Soil classification is assumed as the 2^{nd} type.
- External force distribution of seismic load is assumed as Ai distribution.
- Building height is assumed as the average height between design GL and eaves.

4-3. Wind Load

- Wind pressure should be calculated in accordance with Building Standards Act of Japan. Considering safety, the installation base is set at 10m from ground.
- Wind load, being smaller than seismic load in comparison between them, will

be omitted in the load examination.

X-direction

Y-direction

- 5. Summary
- ◆Safety Verification of Structural Members
 - 1 Girder
 - Determined stress is derived from long-term stress and seismic force (including some long-term force).
 - Critical ratio for certified strength of girder resulted in 0.66 at most (at case A of Model 1 and 2 for RF), and long-term deformation in δ /L = 1/4222 (at case A of Model 1 and 2 for RF).
 - Pillar
 - While the maximum slenderness under the criteria is assumed below 200, the effective slenderness of pillars resulted in 88.7 at most (at case A of Model 1 in Y-direction).
 - Determined stress is derived from long term stress and seismic force.
 - Critical ratio for certified strength of pillar resulted in 0.46 (At B case of Model1 in X-direction when earthquake), and story drift angle when earthquake in R = 1/235 at most (Y-direction).
 - ③ Column base
 - Examination with the extra stress by seismic force: γ =2.00 verified that the ultimate strength of pillar is larger than its ultimate stress.
 - ④ Horizontal brace
 - It was verified that there is no problem in load transfer of roof top, because the allowable tensile stress of horizontal brace in short term is larger than the maximum tensile force generated at earthquake.
 - 5 Beam
 - Beams, in comparison with the critical ratio for certified yield strength:
 0.42 at most and the critical ratio for certified strength of bolts at ends:
 0.15 at most, were verified that it has sufficient strength, also as
 transverse stiffeners. Additionally, there is no problem with cantilevers CB1
 and CG1 in comparison with the critical ratio for certified strength: 0.77.

- 6 Finishing materials
 - Examination of members of roofing and exterior walls against wind load verified that each wind pressure of each span of cladding materials is smaller than the allowable value.

Conditions verified in the Steel Structure-Route 2

- Satisfied the required level of story drift angle: within 1/200, since its maximum angle resulted in 1/235 (Y-direction)
- Satisfied the required level of rigidity: greater than 0.60, since its maximum rate resulted in 1.00
- Satisfied the required level of eccentricity: within 0.15, since its maximum rate resulted in 0.066 (Y-direction)
- Verified that yield strength of column-beam connection is larger than the required level
- · Verified that yield strength of beam joints is larger than the required level
- All the beam-columns are FA type and satisfy the required width-thickness ratio.
- Verified that dynamic bearing capacity of transverse stiffeners in girder has rigidity and yield strength required at the junction of joist B1 and for the function as the transverse stiffener of main girder
- Verified that the ultimate yield strength of column-beams is larger than their ultimate stress with the extra stress by seismic force: $\gamma=2.00$

TOLL COLLECTION FACILITY

ADMINISTRATIVE OFFICE

1. Outline of the Building

- Structure: Steel Structure
- > Structure Type: Frame Structure
- > Number of Floors: One floor on grand level (without basement level)
- Maximum Height: +3.575m
- > Maximum Eaves Height: +3.135m
- > Depth of Bottom of Foundation: GL-1.750m
- Roof Dimensions: 200.0m² (10.0m x 20.0m)
- > Finish: Galvalume Folded-Plate Roof, Outer Wall of ALC

- 2. Design Conditions
- Compliance standards
 - Building Standards Act of Japan
 - Guideline of Building Structure Design on the Metropolitan Expressway (July, 2014) Metropolitan Expressway Company Limited
 - Design Standards of Building Structure (2013) Ministry of Land, Infrastructure and Transport of Japan
 - Building Foundation Structure Design Guidelines (2001) Architectural Inst. of Japan
- Used Program for the Structure Calculation
 Super Build / SS3-S
- Design Route
 X-direction, Y-direction: Route 1-1
- ◆ Standard Shear Coefficient C0=0.3
- ◆Importance Factor I=1.25
- ♦ Design Policies
- (1) Superstructure
 - Check the story drift angle (below 1/200) and shape factors (eccentricity and modulus of rigidity).
 - > The ground should be the 2^{nd} type of the soil classification.
 - For calculation, the pillar span should be measured between centerlines of pillars, and the ceiling height measured between centerlines of girders/ footing beams of each floor.
 - Member models: pillars and beams are considered as wire rods for the calculation.
 - Exterior walls should be composed of 125mm-thick ALC and have story drift angle under 1/100.
 - > Suspended ceilings should be aseismic type.

(2) Substructure

> The foundation should be spread and mat type.

3. Allowable Stress of Material

◆Allowable Stress and Allowable Bond Stress of Concrete (Unit: N/mm²)

	Long Term				Short Term			
Fc	Compression	Shearing	Bond				Bond	
			Beam	eam pper Others	Comprossion	Shoaring	Beam	
			Upper		Compression	Shearing	Upper	Others
			End				End	
Fc24	8.0	0.74	_		16.0	1.11	_	_

◆Allowable Stress of Steel Rod (Unit: N/mm²)

Turno	l	_ong Term		Short Term			
туре	Compression	Tensile	Shearing	Compression	Tensile	Shearing	
SD295A	195	195	195	295	295	295	
SD345A	215	215	215	345	345	345	

◆Allowable Stress of Structural Steel Used (Unit: N/mm²)

Type of Steel	Board	Long	Term	Short Term		
Wire	Thickness	Compression/ Tensile/ Flexure	Shearing	Compression/ Tensile/ Flexure	Shearing	
SS400 STKR400	t ≦40	156	90	235	135	

◆Allowable Stress of Weld-throat Section (Unit: N/mm²)

①Butting Surface

Type of Steel	Board	Long	Term	Short Term		
Wire	Thickness	Compression/ Tensile/ Flexure	Shearing	Compression/ Tensile/ Flexure	Shearing	
SS400	t ≦40	156	00	225	135	
STKR400		150	90	235		

②Other Parts

Type of Steel	Board	Long Term	Short Term	
Wire	Thickness	Compression/ Tensile/ Flexure/	Compression/ Tensile/ Flexure/	
WIIC		Shearing	Shearing	
SS400	+ < 40	00	125	
STKR400	ι ⊇40	90	155	

◆Allowable Stress of High-strength Bolt (Unit : N/mm²)

High-strength bolt				Long Ter	m	Short Term		
		Nominal Diameter of Bolt	al Allowable Shearing Stress		Allowable	Allowable Shearing Stress		Allowable
Туре			Friction on Single Surface	Friction on Double- Surface	Tensile Force	Friction on Single Surface	Friction on Double- Surface	Tensile
		M16	30.2	60.3	48.6	45.3	90.4	72.9
E 10 T		M20	47.1	94.2	75.9	70.6	141.3	113.8
		M22	57	114	93.9	85.5	171	140.8
		M24	67.8	135	109	101.7	202.5	163.5

4. Assumed Load

4-1. Floor Load (Unit: N/m²)

◆Roof

	Load		Floor/ Beam	Frame	Earthquake
L·L	_		980	600	400
D·L	Galvalume Folded-Plate 200				
	Heat Insulator 150		750	750	750
	Ceiling/ Equipment 400				
Т•Т			1730	1350	1150

◆Administrative Office

	Load		Floor/ Beam	Frame	Earthquake	
L·L	—	2900	1800	800		
	Finishing Materials	800		4750		
	Slab	3600	4750		4750	
	Heat Insulator	150				
	Equipment	200				
	т.т		7650	6550	5550	

4-2. Seismic Load

Seismic load is subject to the following conditions:

- Seismic zoning coefficient is assumed as 1.0.
- Soil classification is assumed as the 2^{nd} type.
- External force distribution of seismic load is assumed as Ai distribution.
- Primary natural period for design is assumed as 0.094.

4-3. Wind Load

• Wind pressure should be calculated in accordance with Building Standards Act of Japan.

- 5. Summary
 - This building, for being normal rectangle shaped, has regular properties in stress.
 - Critical ratio for certified strength of structural members should be under 1.00. There is no questionable data: girders have 0.585 in stationary load and 0.511/0.459 in short-time loading, and pillars have 0.300 and 0.553/0.569 respectively.