APPENDIX G-3

Draft Report of Physical Hydraulic Model Test (by HRI)

G-3-1.	Field Investigation Report	F- 80
G-3-2.	Progress Report 2	F- 104
G-3-3.	Progress Report 3	F- 162
G-3-4.	Draft Report	F- 219
G-3-5.	Final Report on the 2 Dimensional Model for Bahr Yusef New Regulator	F- 321

Field Investigation at Dairut Group of Regulators for Physical Model Studies

Authors

Eng. Ahmed M.Lotfy

Eng. Eid Hosny Ashour

Dr. Ahmed M. Amin

HRI Director Prof. Khaled Ramadan

Aug .63/2015

Report No.

HRI Hydraulics Research Institute Delta Barrae, Alkanater, Egypt P.O. Box 13621 E-mail info@ hri sgypt org

G-80

Field Measurements at Dairut Group of Regulators for Physical Model Studies

Authors

Eng. Ahmed M.Lotfy

Eng. Eid Hosny Ashour

Dr. Ahmed M. Amin

HRI Director Prof. Khaled Ramadan

Aug. 63/2015

7

National Water Research Centre (NWRC) Hydraulics Researches Institute (HRI) P.O.Box 13621, Delta Barrage, A.R.E. Tel.: +2 0242188268, Fax.: +2 0242189539

C	11	EN	T٠
0		D'I.A	1.

The Reservoirs and Grand Barrages Sector "RGBS"

TITLE:

Field Investigation at Dairut Group of Regulators for Physical Model Studies

ABSTRACT:

Dairut group regulators "DGR" is located on El-Ibrahemiya canal at km 60.600 downstream of El-Ibrahemiya head barrages which is branched from the west Nile River bank at km 544.450 downstream of Old Aswan Dam "OAD" and about 400 m upstream the existing Assiut barrages.

This group of regulators was constructed in 1872 to play a vital role of delivering about 9.6 billion m3/year of irrigation water to all beneficiary area of about 1.43 million feddans through El-Ibrahemia main canal. "DGR" branches at El-Ibrahimia main canal at Dairut into seven main canals, namely El-Ibrahimia canal, Bahr-Yusef canal, Sahelyia canal, El-Diroutia canal, Badraman canal, Abo Gabal canai and Irad Delgaw canal. The Bahr-Yousef canal is the largest canal in capacity among the seven canals. Its length extends as long as 312 km downstream of "DGR" and there are four regulators along the canal, namely El-Lahoun regulator, Mazoura regulator, Sakoula regulator and Dahab regulator. Those regulators have been rehabilitated by Japan's Grant Aid since 1995.

One important point should be raised concerning the existing "DGR" which is that Dairut Group of Regulators was constructed in 1872 and can be considered as the oldest active regulator in Egypt, and the their weirs cannot function well due to their age. For this reason rehabilitation of such hydraulic construction should be urgently implemented. It is expected that the impacts of the rehabilitation of the "DGR" should be significant considering the vast beneficiary area and very long canal networks. Therefore, rehabilitation of "DGR" was quite urgent for seeking effective use of the limited water resources and due to limited facilities as well as high cost operation and maintenance.

Based on such an understanding, the Government of Egypt "GOE" requested informally to the Government of Japan "GOJ" for the Japanese Official Development Assistance by Yen-Loan. Accordingly, Japan International Cooperation Agency "JICA" dispatched the study team for the preparatory survey for the rehabilitation and improvement of Dairut Group of Regulators "DGR".

Therefore, in order to increase agricultural production and to keep sustainability of agricultural industry in the Upper Egypt region the main objectives of the conducted study were defined as the following 4 subjects:

- 1. To formulate the rehabilitation plan for Dairut Group of Regulators "DGR";
- 2. To formulate the improving water distribution plan for the entire operation and maintenance of "DGR" and other regulators that are located along the main canals;
- To evaluate the present situation and the rehabilitation plan of the existing minor structures based on the result of the inventory survey carried out by the Ministry of Water Resources and Irrigation "MWRI"; and
- 4. To carry out technology transfer to the implementation agency through the study period on the above mentioned subjects.

The current investigation is being carried out referring to letter No. 1379/156 dated on the 8th day of May 2014 from the Reservoirs and Grand Barrages Sector "RGBS" of the Ministry of Water Resources and Irrigation "MWRI" which requested "HRI" to prepare for a technical and financial proposal to carry out hydraulic physical model for testing a new alternative for Dairut Group Regulators "DGR". The focal objective of the proposed testing program is to adopt the best alignment and hydraulic design for the new barrages group components which fulfills the new emerged flow morphology regime through El-Ibrahimiya canal after the construction of the new Assuit barrages. Flow capacity and velocity distribution upstream and downstream each of the new group components would be physically tested and investigated.

This report presents the results of the field investigations, which were carried out by HRI during June 2015 (from 25/6/2015 till 1/7/2015).

REFERENCES:

VER	OR	IGINATOR	DATE	RE	MARKS	REV	IEW	APPROVED BY
	Eng.	Ahmed M.Lotfy	8/07/2015			Dr. Ahm	ed Amin	Prof. Khaled Rammadan
	-							
PROJEC	T IDE	NTIFICATION:	63 /201	15				
KEYW(ORDS:		Bathymet	ry, flow ve	locity, discharg	e, water levels	, hydrographic	survey
CONTE	NTS:	TEXT PAGES		TABLES	FIC	JURES	APPEND	DICES
STATU	S:	PRELIMINAR	Y DI	DRAFT	FINAL			

Contents

1

Intr	oduction	2
Fiel	d Measurements	4
2.1	Equipments	4
2.2	Methodology	5

To figure

ii

Aug . 2015

1 Introduction

Dairut group regulators "DGR" is located on El-Ibrahemiya canal at km 60.600 downstream of El-Ibrahemiya head barrages which is branched from the west Nile River bank at km 544.450 downstream of Old Aswan Dam "OAD" and about 400 m upstream the existing Assiut barrages.

This group of regulators was constructed in 1872 to play a vital role of delivering about 9.6 billion m3/year of irrigation water to all beneficiary area of about 1.43 million feddans through El-Ibrahemia main canal. "DGR" branches at El-Ibrahimia main canal at Dairut into seven main canals, namely El-Ibrahimia canal, Bahr-Yusef canal, Sahelyia canal, El-Diroutia canal, Badraman canal, Abo Gabal canal and Irad Delgaw canal. The Bahr-Yousef canal is the largest canal in capacity among the seven canals. Its length extends as long as 312 km downstream of "DGR" and there are four regulators along the canal, namely El-Lahoun regulator, Mazoura regulator, Sakoula regulator and Dahab regulator. Those regulators have been rehabilitated by Japan's Grant Aid since 1995.

One important point should be raised concerning the existing "DGR" which is that Dairut Group of Regulators was constructed in 1872 and can be considered as the oldest active regulator in Egypt, and the their weirs cannot function well due to their age. For this reason rehabilitation of such hydraulic construction should be urgently implemented.

It is expected that the impacts of the rehabilitation of the "DGR" should be significant considering the vast beneficiary area and very long canal networks.

Therefore, rehabilitation of "DGR" was quite urgent for seeking effective use of the limited water resources and due to limited facilities as well as high cost operation and maintenance.

Based on such an understanding, the Government of Egypt "GOE" requested informally to the Government of Japan "GOJ" for the Japanese Official Development Assistance by Yen-Loan. Accordingly, Japan International Cooperation Agency "JICA" dispatched the study team for the preparatory survey for the rehabilitation and improvement of Dairut Group of Regulators "DGR".

Dairut Barrage

Therefore, in order to increase agricultural production and to keep sustainability of agricultural industry in the Upper Egypt region the main objectives of the conducted study were defined as the following 4 subjects:

- 1. To formulate the rehabilitation plan for Dairut Group of Regulators "DGR";
- 2. To formulate the improving water distribution plan for the entire operation and maintenance of "DGR" and other regulators that are located along the main canals;
- To evaluate the present situation and the rehabilitation plan of the existing minor structures based on the result of the inventory survey carried out by the Ministry of Water Resources and Irrigation "MWRI"; and
- To carry out technology transfer to the implementation agency through the study period on the above mentioned subjects.

The current investigation is being carried out referring to letter No. 1379/156 dated on the 8th day of May 2014 from the Reservoirs and Grand Barrages Sector "RGBS" of the Ministry of Water Resources and Irrigation "MWRI" which requested "HRI" to prepare for a technical and financial proposal to carry out hydraulic physical model for testing a new alternative for Dairut Group Regulators "DGR". The focal objective of the proposed testing program is to adopt the best alignment and hydraulic design for the new barrages group components which fulfills the new emerged flow morphology regime through El-Ibrahimiya canal after the construction of the new Assuit barrages. Flow capacity and velocity distribution upstream and downstream each of the new group components would be physically tested and investigated.

This report presents the results of the field investigations, which were carried out by HRI during June 2015 (from 25/6/2015 till 1/7/2015).

Dairut Barrage

Field Measurements 2

The field measurements were carried out by the specialist "HRI" team from 24/6/2015 till 2/7/2015 to document the latest topographic and hydrologic conditions upstream and downstream Dairut group of regulators "DGR" which can be used to construct and conduct the required model studies. The measurements included topographic, bathymetric and hydrometric measurements along the branched seven canals downstream "DGR" and the located part of El-Ibrahmia canal upstream of "DGR". The survey was done at the project site using advanced survey equipments. The following sections present summary of the equipments and the methodology used in the survey. While appendix "A" presents the used equipments in more details.

2.1 Equipments

The equipment and instruments that used during field investigation are as follows:

- Surveying boat, (Rubber Boat), .
- Four Geographical Positioning System (GPS) unites, (Leica and Trimble),
- Digital Levelling instruments (Leica-Sprinter 250M),
- Echo sounder units, (TAMAYA TDM-9000),
- ADCP (Acoustic Doppler Current Profile)
- Bray-Stock Current meters

Some photos for the used instruments are shown in Figure (1), while detailed description of those instruments is provided in appendix (A) at the end of the current report.

(Rubber Boat)

(GPS)

ADCP

4

Leica SPRINTER 250M-Digital Level

(BrayStock Current meter)

Figure (1): Some of the Used Field Instruments

Dairut Barrage

Methodology 2.2

A- Horizontal and Vertical Control

A-1 Horizontal control

In order to determine the horizontal control, the Differential Geographical Positioning System (DGPS) was used to measure the global coordinate of the site. All site coordinates were measured using WGS 84 System.

A-2 Vertical control

Bahr Youssef gauge was used as a reference for all of the measured levels.

B- Topographic and Bathymetric Survey

- The topographic survey covered the located upstream and downstream branches at Dairut group of regulators. The topographic survey covered the eight branched canals of total distance of 6400 m according to the following:
 - 1.28 km of El-Ibrahimia canal upstream of Dairut group of regulators.
 - 1.07 km of Bahr youssef canal downstream of Dairut group of regulators.
 - 0.58 km of Badrman canal downstream Dairut group of regulators.
 - 0.55 km of El-Dairotiah canal downstream of Dairut group of regulators.
 - 1.23 km of El-Ibrahemia canal downstream of Dairut group of regulators. .
 - 0.59 km of El-Sahelia canal downstream of Dairut group of regulators.
 - 0.50 km of Dalgawy canal downstream of Dairut group of regulators.
 - 0.60 km of Abou Gabal canal downstream of Dairut group of regulators.
- Shown in (figure 1). The topographic survey was carried out using a hand held units of the GPS. . The location of the all land facilities, (roads, structures... etc), were surveyed and attached to the
- Bathymetric survey of the canals within the project area (Dairut group of regulators), was carried out by Sounding using Echo sounder that installed on a rubber boat, (for water depth measurements), attached to a GPS unit, (for position measurements).
- The surveyed area was carried out by surveying cross sections perpendicular to the flow direction, The distance between the developed cross sections was ranged between 25-50 m.
- Intensive bathymetric survey around the existing structures within the surveyed area (groins, islands..etc) was implemented.
- The measured data is used to develop a contour map using SURFUR software.
- The facilities within the surveyed area were identified in the contour maps
- The developed contour map was produced with UTM coordinate system and 0.5 m contour step and finalized by the AUTOCAD software
- The developed contour map and the measured cross-sections are shown in the attached Compact

Dairut Barrage

Field Investigation

Figure (1): layout of the surveyed area

Dairut Barrage

C- Hydrometric Survey

ADCP and Pray-stock current meters were used for measuring the velocity distributions for 8 cross sections at 30/6/2015 covering the surveyed area.

- Velocity measurements were carried out at ten distributed cross-sections along the surveyed eight branched canals.
- The locations of the cross-sections are shown in Figure 2. These cross sections were selected based on the requirements of the model calibration.
- Number of verticals in each cross section ranged between 5 to 7 vertical, depending on the shape and the width of the each cross section.
- The flow velocity was measured at the middle point for each vertical due to small depth of each cross section.
- Table (1), shows the computed discharges at the selected cross-sections based on the velocity measurements.
- Figures from (3) to (10) show the velocity distribution at the selected cross-sections.
 - $Q = flow discharge in m^3/s$
 - WL = Water Level with respect to the mean sea level, (+MSL).

Dairut Barrage

(IR)

Aug. 2015

Ref. 63 /2015

TABLE (1): COMPUTED DISCHARGE AT THE SELECTED CROSS-SECTIONS

Logation	Canad	0	WL	(m)	Left E	lank (m)	Right Bank (m)		
Location	Canal	(m ³ /s)	U.S	D.S	E	N	Е	N	
Vel.1	U.S. Dairut	355.76			283754	3049185.9	283863.2	3049174.2	
Vel.2	Abo Gabal	6.21		45.7	283715.6	3050160.7	283717.3	3050171	
Vel.3	Bahr Youssef	169.8		45.80	283538.8	3050692.7	283607	3050715.1	
Vel.4	Badrman	5.97		45.79	283842.5	3050484.7	283854.4	3050486.6	
Vel.5	El-Dairotiah	9.01	46.02	45.68	283863.5	3050495.5	283879.7	3050498.1	
Vel.6	El-Ibrahemia	155.575		45.88	284100.2	3050940.1	284169.4	3050918	
Vel.7	Dalgawy	2.67		44.80	283680.5	3050067.3	283674	3050079.8	
Vel.8	El-Saheliah	3.9		45.75	284306.9	3050123	284304.6	3050112.6	

Discharge Measurement Summary

Print

	SCH	arger	viea	sui	en	ien	L SL	ımı	nar	У			Date M	leasured	I: Tue	sday, June	30, 2015
Si	te Info	ormation									Mea	isure	ment I	nforma	tion		
Site Sta Loc	Name tion Nu ation	mber				up	stream	n dairo	ot		Party Boat/ Meas	Moto . Num	r Iber				
Sy	stem 1	Informatio	on	it is a		System	n Set	up			in 16 Amil Secondaria	philes.			Un	lits	
Sys Ser Firm Sof	tem Ty al Num hware V tware V	pe ber /ersion /ersion	R5 4 3	5-M9 821 8.80 3.8	Ti Sa M	ransdu alinity (agneti	cer De (ppt) c Deci	epth (i	m) n (deg))	Ŧ		0.20 0.0 0.0		Dist Vek Are Disc Ter	ance ocity a harge nperature	m m/s m2 m3/s degC
Di	scharg	e Calculat	ion S	etting	S	o livini				1. Pu	1. a. M			Disc	arge	Results	Station of
Trai Dep Coo	ck Refe oth Refe ordinate	erence erence System	E	Botton Vertica ENU	n-Trac I Bear	k n	Left I Right Top I Botto	Metho Meth Fit Typ	d od De Type		Slope Slope Powe	ed Bar ed Bar er Fit er Fit	nk nk	Width Area (Mean : Total (Maxim Depth Maxim Speed	(m) m2) Speed Q (m3) um Me um Me	(m/s) /s) asured asured	110.211 456.792 0.779 355.766 4.711 1.519
M	easure	ment Resi	ults	die 57			20 - 20 C				a and a state	High					No.
+											11/25						
:.	6:12:08 A.*	0:01:58	26.7	104.53	104.21	110 211	456.792	0.896	0.779	0.73	0.36	33.16	277.48	44.04	355 766	-	78.0
+		Mean Stid Day	26.7	104.53	104.21	110.211	456.792	0.895	0.779	0.73	0.36	33.16	277.48	44.04	355.766	0.000	78.0
1		CCV	0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.00	000	0.00	0.000	0.000	0.0
Expos Trisi	ure Time: 2015063008	0:01:58 0507_SELECTED;	w:										0.0001		0.000	0.000	0.000
Co	mmen	ts	1.4.5		S. Con				(方)"生			2 1 N 15					
Tr1	=20150	063008050	7_SEL	ECTE).riv -	;	1										
Co	mpass	: Calibratic	DEI .			新作業時				計回法		1.1991		SAL ST			
						-							and the second			and the second diversion of the	

Figure (3): Results summery of cross-section (1)

Dairut Barrage

G-93

Ref. 63 /2015

Site Informatio	Me	asu	ren	nen	t S	um	mar	ν			Data I	Annurad		eday Jun	
	n		Soles I				Creating		Mo	acure	Date	Informa	tion	soay, Jun	e
Site Name					bahr	YOUSS	ef	a distant	Party	1	mente	unonna	uon		-
Station Number Location									Boat,	Moto)r nhor				
System Informa	tion	12 4.12		Syste	m Set	up		Land Co	Meas	. Nur	ibei		1.00	nite	
System Type	R	S-M9	Т	ransdu	icer D	epth ((m)	-			0.23		Dist	ance	
Serial Number	4	1821	Sa	alinity	(ppt)						0.0		Vel	ocity	
Software Version		3.80	M	agneti	c Dec	linatio	n (deg))			0.0		Are	a .	
		0.0											Ter	narge moerature	
Discharge Calcu	ation S	etting	IS					134				Disch	arge	Results	
Track Reference		Botton	n-Trac	k	Left	Metho	d		Slope	ed Ba	nk	Width	(m)	and the second second second	
Coordinate System		ENU	ii Bean	n	Right	Fit Ty	od De		Slope	ed Ba	nk	Area (1	m2)	(-1-)	
					Bott	om Fit	Туре		Pow	er Fit		Total C	opeed) (m3)	(m/s) /s)	
												Maximu	im Me	asured	
												Depth	ım Me	asured	
												Speed			_
Measurement R	esults	100 100	in determine		and a state										
						-							-		-
1 L 8:20:14 0:01:2	5 27.5	60.26	59.23	64.226	239.880	0.709	0.708	1.90	0.06	18.18	128.94	20.75	169,828		1
Mean	27.5	60.25	39.23	64.226	239.890	0.709	0.708	1.90	0.05	18.18	128.94	20.75	169.828	0.000	
Std Den C0*	0.0	0.00	0.00	0.000	0.000	0.000	0.000	00.0	0.00	0.00	0.00	0.00	0.000	0.000	
Exposure Time: 0:01:25	ED circ								0.000		0.000	loool	0.000	0.000	
Comments	Contr,	The form		and an an	tin allor	CHARLES .		-		Atlanta .	the sector	vor-state to	and the second second		
Tr1=20150630101	311_SE	LECTER	D.riv -	;	Attempte		and to be a	li generali		Sign.	عقا الجروم	15,150,2			ĺ.
Compass Calibra	tion			211		10.12				100			12.193	0.44.00	
Error from calibratio	n: 0.00	deg							a da traba	28 10.14	tir i Long M	All And All All All All All All All All All Al			
Pitch: 0/0	.00														
Roll: 0/0						-									
System Test														REM BIL	
	-				_										

Ref. 63 /2015

Field Investigation

Site In	formation	D	HACK STATE	相關的	No. Con				41 Y			Date	Measur	ed: Tu	esday, June	30, 20
Site Nam Station N Location	e lumber						badr	aman	ahida i	Par Boa	ty t/Mo	tor	t Inforn	nation		
System	Informa	tion		in the	Syste	em Se	atun	1.00	hall mar	146	65. NU	mper		-		_
System T Serial Nun Firmware Software	ype nber Version Version		RS-M9 4821 3.80 3.8		Transd Salinity Magne	ucer ((ppt) tic De	Depth) clinati	(m) on (de	g)			0.18 0.0 0.0	3	Dis Ve Ari Dis	Inits stance elocity ea scharge	m m/s m2 m3/
Discharg	je Calcula	tion s	Settin	ns	6.613	keile in	Sec.	65/50 D.J	S M Sec. 5	-		4		Te	mperature	deg
)epth Ref ;oordinate	erence e System		Vertici ENU	al Bea	m 	Righ Top Bott	Met Fit Ty om Fi	od hod ype t Type		Slop Slop Pow Pow	ed Ba ed Ba er Fit er Fit	ank ank	Width Area (Mean Total Maxim Depth Maxim	(m) (m2) Speed Q (m3) um Me	(m/s) /s) Pasured	10.39 18.67 0.32 5.97 2.71
Measurer	ment Res	ults		(PARSO) FEADING				10 MARK	weides	Relation	14538		Speed			0.58
Measurer	ment Res	ults											Speed	i i i i i i i i i i i i i i i i i i i		0.58
Measurer	0 00 36 Mean	ults	766	7.40	10.397	18.675	0 213	0.320	0.03	0.28	0.96	3.56	Speed	5.975		0.58
Measurer	0:00:36 Mean Std Dev	27 1 27 1 27 1	7.66	7.40	10.397 10.397 0.000	18.675 18.675	0.213	0.320	0.03	0.28 0.28	0.95	356	Speed 0.84 0.84	5.979		0.58
Measurer R 9:30:12 A ¹⁰	Ment Res	Ults 271 271 60 00	7.66 7.66 0.00 0.000	7.40 7.40 0.00 0.000	10.397 10.397 0.000 0.000	18.675 18.675 0.000 0.000	0.213 0.213 0.000 0.000	0.320	0.03	0.28	0.86 0.86 0.00	3.56 3.56 0.00	0.84 0.84 0.00	5.979 5.979 0.000		0.58 664 664
Measurer 1 R 9:08:12 A ^M 2007 Time: 0: 201506301103	0.00-36 Mean Std Dev COV 00:36 110_SELECTED/F	27:1 27:1 0.0 0.0	7 66 7 66 0.00 0.000	7.40 7.40 0.00 0.000	10.397 10.397 0.000 0.000	18.675 18.675 0.000 0.000	0.213 0.213 0.000 0.000	0.320 0.320 0.000 0.000	0.03 0.03 0.00 0.000	0.28 0.28 0.00 0.000	0.86 0.86 0.00 0.000	3.56 3.56 0.00 0.000	0.84 0.84 0.00 0.000	5.979 5.979 0.000 0.000		0.58
Aleasurer a 9.00:12 av ave Time 0: 201506301100 000000000 000000000 000000000 000000	inent Res i co: 36 Mean Std Dev COV COV COV S S S S S S S S S S S S S	Ults 27:1 27:1 0:00 0:00 0.00 d	7.66 7.66 0.000 0.000 ECTED	7.40 7.40 0.00 0.000	10.397 10.397 0.000 0.000	18.675 18.675 0.000 0.000	0.213 0.213 0.000 0.000	0.320 0.320 0.000	0.03 0.00 0.000	0.28	0.86	3.58 3.58 0.00 0.000	0.84 0.84 0.00 0.000	5.979 5.979 0.000 0.000	0.000	0.58 664 664 0.0
Measurer a 9:00:12 A ^V a ^V	0:00:36 Mean Std Dev COV 00:36 150 SELECTED 530110110 Calibration: Stder 0.00	Ults 271 271 271 0.00 00 00 00 00 00 00 00 00 00 00 00 0	766 766 0.000 0.000 ECTED eg	7.40 7.40 0.00 0.000	10.397 10.397 0.000 0.000	18.675 18.675 0.000 0.000	0.213 0.213 0.000 0.000	0.320 0.000 0.000	0.03 0.00 0.000	0.28 0.28 0.00 0.000	0.85 0.86 0.00 0.000	3.50 3.50 0.00	0.84 0.84 0.00 0.000	5.979 5.979 0.000 0.000		0.58 66/ 0.000

Figure (6): Results summery of cross-section (4)

12

Ref. 63 /2015

D	isch	narge	Me	asu	irer	ner	nt S	Sum	ma	ry			Date	Measure	d. Ti	locday Tune	Prir
S	ite Inf	formation							Hore and		M	easur	ement	Inform	aline	resuay, June	30, 201
Sta	e Nami ation N cation	e umber		-				da	irotia		Part Boa Mea	y t/Moti s. Nur	or	annoann	12 (30)		
S	ystem	Informat	ion			Syste	em Se	tup		1210	Tants.	E PIOS		- Notes		Inite	
Sys Ser Firm Sof	tem T ial Nun hware tware	ype nber Version Version	F	85-M9 4821 3.80 3.8	- N	Fransd Salinity Nagnet	ucer D (ppt) tic Dec)epth clinatio	(m) n (deç	a)			0.22 0.0 0.0	-	Di Ve Ar	stance elocity ea	m m/s m2
Di				Sec. differentia			1	. A.							Te	mperature	m3/s deoC
Tra	ck Refe	le Calcula	tion S	etting	js T						HE .			Disc	harge	Results	utye
Dep Coo	th Ref	erence System	1 <u>66</u> 199	Vertica	il Bear	ск ті	Left Right Top Bott	Metho t Meth Fit Ty om Fit	od nod pe Type	*	Slop Slop Pow Pow	ed Bai ed Bai er Fit er Fit	nk nk	Width Area (Mean Total Maxim Depth	(m) (m2) Speed Q (m3 um M	d (m/s) 3/s) easured	14.708 27.687 0.326 9.012 2.756
Me	asure	ment Res	ults											Speed		easured	0.658
18	9 27 21	0:01:02									-						
1	2.0	Mean	27.0	11.04	10.71	14.708	27.687	0.178	0.326	0.09	0.37	1.41	5.91	1.24	9.012	-	65.6
П		Std Dev	0.0	0.00	0.00	0.000	0.000	0.178	0.326	0.09	0.37	1.41	5.91	1.24	9.012	0.000	65.6
pau	re Time: 0	COV 01:02	0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.00	0.000	0.000	0.0 0.000
COU	150630112	018_SELECTED,	TV;	in the second					-						_		
'r1=	20150	63011201	8_SEL	ECTED	.riv - ;												
ean tch:	from c Magni 0/0 0/0	Calibration: alibration: tude: 0.00	on 0.00 d	eg			len.										-
Svet	em Te	st	10.000	St Cillare and	al la second	Annual Street	-	-									
A FL	Contraction of the local diversion of the local diversion of the local diversion of the local diversion of the											0 10 20	Contraction of the	Coldo Serie	10- Sec.	The Ottopperson of	

Figure (7): Results summery of cross-section (5)

Dairut Barrage

ſ

Ref. 63 /2015

Field Investigation

e Name ation Number cation	and successfully of			Sec. 18	o lite se p		COLUMN OF	Dir.	CR IT PRIC	Ducc I	- reasure	u. 10	coudy, Jun	e 30, 2
				i	braher	mla		Party Boat Meas	/ /Moto	ntento n nber	Inform	ation		
ystem Informatio	on		System	1 Set	up	10					THE STOR	1 0	nite	Ghar C
item Type ral Number nware Version ftware Version	RS-M9 4821 3.80 3.8) T Si M	ransduc alinity (p agnetic	er De opt) Decli	epth (i	m) (deg)		-	0.22 0.0 0.0		Dis Ve Are Dis Te	tance locity ea charge mperature	n mj m3 dei
scharge Calculat	ion Settin	ngs									Disc	harge	Results	
oth Reference Indinate System	Vertia ENU	cal Beam	1 I	Right Top F Botto	Metho Metho It Typ m Fit	d od re Type		Slope Slope Powe Powe	ed Bar ed Bar er Fit er Fit	ik ik	Width Area (Mean Total Maxim Depth Maxim Speed	(m) m2) Speed Q (m3 um Me um Me	i (m/s) i/s) easured easured	62.3 210.8 0.7 155.5 4.4 1.1
asurement Resu	lts								d gang					
10:40:27 0:01:10	26.9 55.	70 54 38	62 391 2	10 239										
Mean	26.9 55	70 54.38	62.381 2	10.328	0.796	0.738	2.07	0.00	16.10	116.66	20.74	155.575	-	7
Std Dev	0.0 0.0	00.0 000	0.000	0.000	0.000	0.000	0.00	0.00	0.00	0.00	20.74	0.000	0.000	7
ure Time: 0:01:10	0.01 0.00	000.0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.
AM 0:01:10 AM Std Dev Std Dev COV ure Time: 0:01:10 0:001/2325, SELECTED riv	269 55.7 269 55.7 0.0 0.0 0.0 0.00	70 54.38 70 54.38 00 0.00 00 0.000	62.381 2 62.381 2 0.000 0.000	10.528 10.528 0.000 0.000	0.796 0.796 0.000 0.000	0.738 0.738 0.000 0.000	2.07 2.07 0.00 0.000	000 000 0000	16.10 16.10 0.00	115.66 115.66 0.00 0.000	20.74 20.74 0.00 0.000	155.575 155.575 0.000 0.000		

Figure (8): Results summery of cross-section (6)

Dist (m)	Douth (m)	Point Douth (m)	R/5	0 sec		Point Vel.	Discharge	
DBL (III)	Debin (m)	Foint Depth (m)	R1	R2	Ravg/Sec	(m/s)	(m3/s)	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.67	
2	2.20	1.10	115	112	2.27	0.61	2.41	
4	1.60	0.80	121	122	2.43	0.66	1.81	
6	1.20	0.60	117	119	2.36	0.64	1.21	
8	1.20	0.60	66	69	1.35	0.37	0.11	
9.0	0.00	0.00	0.00	0.00	0.00	0.00	0	

TABLE (2): VELOCITY DISTRIBUTION AT VEL.2

TABLE (3): VELOCITY DISTRIBUTION AT VEL.7

Dist. (m)	Depth (m)	Point Depth (m)	R/50 sec			Point Vel.	Discharge
			R1	R2	Ravg/sec	(m/s)	(m3/s)
0	0.00	0.00	0.00	0.00	0.00	0.00	0.18
2	2.10	1.05	30	31	0.61	0.17	0.74
4	2.20	1.10	30	31	0.61	0.17	0.76
6	2.20	1.10	30	32	0.62	0.17	0.69
8	2.10	1.05	24	28	0.52	0.15	0.31
12.0	0.00	0.00	0.00	0.00	0.00	0.00	0

TABLE (4): VELOCITY DISTRIBUTION AT VEL.8

Dist. (m)	Depth (m)	Point Depth (m)	R/50 sec			Point Vel.	Discharge
			R1	R2	Ravg/sec	(m/s)	(m3/s)
0	0.00	0.00	0.00	0.00	0.00	0.00	0.22
2	2.10	1.05	51	52	1.03	0.28	0.91
3	2.20	1.10	51	52	1.03	0.28	0.96
5	2.20	1.10	52	57	1.09	0.30	0.93
6	2.10	1.05	53	49	1.02	0.28	0.81
8	2.00	1.00	47	42	0.89	0.25	0.06
8.0	0.00	0.00	0.00	0.00	0.00	0.00	0

Aug. 2015

Appendix A

Dairut Barrage

Ref. 63 /2015

Aug. 2015

I

I

Surveying equipments BATHYMETRIC SURVEY INSTRUMENTS

<u>GEOGRAPHICAL POSITIONING SYSTEM (GPS)</u>

Manufacturer: LEICA, SwizModel: GPS 1200 and VivaNumber of units:4 unitsAccuracyRapid static (phase)Static mode after initializationHorizontal:5 mm + 0.5 ppm (rms)Vertical:10 mm + 0.5 ppm (rms)Kinematic (phase)Moving mode after initializationHorizontal:10 mm + 1 ppm (rms)Vertical:20 mm + 1 ppm (rms)

ACOUSTIC DOPPLER CURRENT PROFILE (ADCP)

Profiling Range - Distance	0.06 to 3	5m (0.06 to 4	10m	
Profiling Range1 - Velocit	$\pm 20 \text{ m/s}$	±20 m/s			
Velocity1 - Accuracy	±0.25%	of measur	ed veloc	ity	
± 0.2 cm/s $\pm 0.25\%$ of me	asured velo	city			
±0.2cm/s					
Velocity - Resolution	0.001 m	/s	0.001 m	/s	
Number of Cells Up to	128	Up to 12	8		
Cell Size 0.02 to 0.5m	0.02 to 4	4m			
Transducer Configuration	Five (5)	Transduc	ers	Nine (9)	Transducers
4-beam 3.0 MHz					
Janus 25° Slant Angle Dual	4-beam 3.0	MHz/1.0	MHz		
Janus 25° Slant Angle					
1.0 MHz Vertical Beam Ecl	hosounder	0.5 MHz	Vertica	Beam Ec	hosounder
Depth — Range 0.20	to 15 m	0.20 to 8	0m		
Depth — Accuracy 1%	1%				
Depth - Resolution 0.001	m 0.001 m	r i			
Discharge Measurement Ra	nge - Bott	om-Track	0.3 to 51	n	0.3 to 40m
Discharge Measurement Ra	nge — RTK	GPS	0.3 to 1:	5 m	0.3 to 80 m
Discharge Measurement —	Computatio	ons	Internal	Internal	

ADCP

Dairut Barrage

Field Investigation

LEVELING INSTRUMENT

Manufacturer : LEICA, Swiz Model : Sprinter 250M-Digital Level Number of units: 1 unit Specifications

Technical Data Sprinter 250m

- Height accuracies
 - Electronic measurement with Sprinter barcode staff: 1.0/0.7 mm
 - Optical measurement: 2.5mm
- Distance Accuracy: 10 mm for D ≤ 10 m and for D > 10 m
- Full Range: 2 -100 m
- Single and Tracking measuring modes
- · Compensator: Magnet damped pendulum
- Telescope: Magnification 24x
- Environmental Standards: IP55
- Power Type: AA Batteries
- Full Weight:
- Data Storage of up to 1000 points.

Dairut Barrage

Aug. 2015

Ref. 63 /2015

Field Investigation

TAMAYA TDM-9000 ECHO SOUNDER . Manufacturer

Model	
Number of units	
Measurement Range	

: TAMAYA TECHNICS INC., JAPAN. : TDM-9000 : 1 unit : 0.65m-50m (1/100), 0.65m-100m (1/200)

: ±2cm±water depth x 1/1000 Transducer Frequency : 200KHz±3KHz

Direction Angle of Transducer: Half value half angle, about 3 °

BOATS USED FOR BATHYMETRIC SURVEYS:

1) Fiber Rubber boats

Different boats will be used in the bathymetric survey with capacity up to 7 persons, and 55 HP outboard motors. The dimensions of the big boats are:

Length :4.7 m Width :1.9 m Draft :0.25 m Capacity: 0.7 ton Motor : 55HP The dimensions of the small boat are: Length : 3.96 m Width :1.68 m Draft :0.20 m Capacity: 0.5 ton Motor :40HP

Physical Model Study of Dairut Group of Regulators

Progress Report No. 2

Model Design and Construction

Author Dr. Ahmed Fahmy Ahmed

Director Prof. Khaled Ramadan

Sep. 2015

HRI- 79/2015

HRI

Hydraulics Research Institute Delta Barrae, Alkanater, Egypt P.O. Box 13621 E-mail info@ hri-egypt.org

Physical Model Study of Dairut Group of Regulators

Progress Report No. 2

Model Design and Construction

Author Dr. Ahmed Fahmy Ahmed

Director Prof. Khaled Ramadan

Sep. 2015

HRI- 79/2015

Hydraulics Research Institute (HRI) National Water Research Center (NWRC) Ministry of Water Resources and Irrigation (MWRI) P.O.Box 13621, Delta Barrage, Egypt.

<u>Team Work</u>

Prof. Ahmed Fahmy Ahmed Dr. Mohamed Mohamed Abdel-Lateef Eng. Eman Mahmoud El-Sherbiny Emeritus Professor (Team Leader) Associate Research Professor Research Assistance

Table of Contents

ABSTRACT	
1. INTRODUCTION	
2. DAIRUT GROUP OF REGULATO	RS "DGR"4
2.1. The Existing "DGR" 2.2. The Proposed New "DGR"	
3. HYDROLOGICAL CONDITIONS.	
4. PROTOTYPE CONDITION	
4.1. Bathymetric Measurements4.2. Velocity Measurements4.3. Bed Materials Analysis	
5. SIMILARITY RULES	
5.1. Geometrical Similarity5.2. Kinematic Similarity5.3. Dynamic Similarity	
6. MODEL CONSTRUCTION	
6.1. Model Entrance6.2. Modelled reach6.3. Model Outlets	31 31 33
7. DISCHARGE MEASUREMENTS	
7.1. The Inflow Measuring 7.2. The Outflow Measuring	
8. TESTING PLAN	
8.1. Calibration Phase8.2. Existing Prototype Conditions8.3. Testing the New "DGR"	38 39 40
9. MODEL INSTRUMENTATION	
9.1. Ultra-sonic Flow-meter 9.2. Electro-Magnetic Current meter	

List of Figures

Figure (1): Location of Dairut Group of Regulators "DGR"	4
Figure (2): Main Branch Canals Downstream of "DGR"	5
Figure (3): Operation of the Three Leaf Gates	7
Figure (4): Proposed Flow Diversion of the New "DGR"	8
Figure (5): Selected Over-flow Type Gate for New "DGR"	10
Figure (6): Historical Hydrological Records U.S. "DGR"	13
Figure (7): Applied Sounding Technique during Field Measurements	16
Figure (8): General Layout of the Surveyed Canals	17
Figure (9): Locations of the measured velocity Distribution	18
Figure (10): Velocity Distribution at El-Ibrahimia Main Canal	18
Figure (11): Velocity Distribution at Irad Delgaw Canal	19
Figure (12): Velocity Distribution at Abou Gabal Canal	19
Figure (13): Velocity Distribution Upstream of Bahr Ussef Canal	19
Figure (14): Velocity Distribution Downstream of Bahr Ussef Canal	20
Figure (15): Velocity Distribution at Badraman Canal	20
Figure (16): Velocity Distribution at El-Dairutia Canal	20
Figure (17): Velocity Distribution Upstream of El-Ibrahimia Canal	21
Figure (18): Velocity Distribution Downstream of El-Ibrahimia Canal	21
Figure (19): Velocity Distribution at El-Sahelia Canal	22
Figure (20): Grain Size Distribution Curve for El- Ibrahimia Main Canal	23
Figure (21): Grain Size Distribution Curve for Ibrahimia Canal D.S. "DGR"	24
Figure (22): Grain Size Distribution Curve for Bahr Youssef Canal	25
Figure (23): Velocity Distribution in Abou Gabal Canal	28
Figure (24): General Layout of the Modelled Reach	30
Figure (25): Model Entrance	31
Figure (26): Simulated Cross Sections in the Model	32
Figure (27): Model Levelling Arrangement	33
Figure (28): Model Outlets E1, E2, E4, E5 and E7	34
Figure (29): Calibration Chart for Sharp Plated Weir	38

List of Photos

Photo (1): Layout Of The Existing Dairut Group Of Regulators	6
Photo (2): The Three Alternative Designs For The New "DGR"	8
Photo (3): Model Outlet Type For E3 And E6	
Photo (4): Fixed Ultrasonic Flow Meter Around Feeding Pipe	
Photo No. (5)	
Photo No. (6)	
Photo No. (7)	43
Photo No. (8)	43
Photo No. (9)	44
Photo No. (10)	44
Photo No. (11)	45
Photo No. (12)	45
Photo No. (13)	46
Photo No. (14)	46
Photo No. (15)	47
Photo No. (16)	47
Photo No. (17)	48
Photo No. (18)	
Photo No. (19)	49

List of Tables

Table (1): Current Formation of Dairut Group of Regulators	6
Table (2): Current Status of the Gates of the "DGR"	7
Table (3): Hydrological Conditions of the New "DGR"	9
Table (4): Basic Design of the New "DGR"	9
Table (5): Proposed Main Dimensions for the New "DGR"	9
Table (6): Proposed Main Elevations of the new "DGR"	
Table (7): Monthly Discharge Records al Ibrahimia Dairut	
Table (8): Annual Discharge Records at "DGR"	
Table (9): Existing hydrological Records at "DGR"	
Table (10): Design Discharge Based on the Quota at "DGR"	
Table (11): Hydrological Data of El-Ibrahimia Canal Upstream "DGR"	13
Table (12): Maximum and Minimum Annual Records Upstream "DGR"	13
Table (13): Hydrological Records at Maximum Discharge (9/6/2007)	14
Table (14): Hydrological Records at Minimum Discharge (9/1/2013)	14
Table (15): Conducted Survey and Field Measurements	15
Table (16): Soil Analysis Results for El- Ibrahimia Main Canal	22
Table (17): Soil Analysis Results for Ibrahimia canal D.S. "DGR"	24
Table (18): Soil Analysis Results for Bahr Youssef Canal	25
Table (19): Re Calculations in Abou Gabal Canal	
Table (20): Applied Scale Rations in the Model	
Table (21): Simulated Canal Lengths in the Model	
Table (22): Simulated Cross Sections in the Model	
Table (23): Passing Discharge for Various Flow Heads	
Table (24): Hydrological Condition during Calibration	
Table (25): Model Discharges during Calibration	
Table (26): Existing Hydrological Records at Maximum Discharge	40
Table (27): Existing Hydrological Records at Minimum Discharge	

ABBREVIATIONS

No.	Symbol	Abbreviations
1	DGR	Dairut Group of Regulators
2	ADCP	Acoustic Doppler Current Profile
3	D.S.	Downstream
4	GOE	The Government of Egypt
5	HAD	High Aswan Dam
6	HRI	Hydraulics Research Institute
7	JICA	Japan International Cooperation Agency
8	Max.	Maximum
9	Min.	Minimum
10	MWRI	Ministry of Water Resources and Irrigation
11	OAD	Old Aswan Dam
12	RGBS	Reservoirs and Grand Barrages Sector
13	Re	Reynolds Number
14	U.S.	Upstream
15	WDS	Water Distribution Sector
16	WSL	Water surface level

Symbol	Definition	Unit
Α	Cross section area	$ m^2 $
В	River bed width	[m]
Fr	Froud number	[-]
g	Acceleration due to gravity	m / s2
h	Flow depth	[m]
Fr	Froud Number	[-]
nL	Length scale ratio	[-]
Р	Canal top width	[m]
Q	Flow discharge	$[\mathbf{m}^3 / \mathbf{s}]$
R _e	Reynolds number	[-]
V	Flow velocity	m / s]
μ	Fluid viscosity	
p	Fluid density	kg/m ³
ρs	Particle density	kg/m ³
Δρ	Density difference	$ kg/m^3 $
Δ	Relative density	[-]
υ	Kinematics viscosity	$[\mathbf{m}^2/\mathbf{s}]$

79/2015

ABSTRACT

Dairut group regulators "DGR" is located on El-Ibrahimiya canal at km 60.600 downstream of El-Ibrahemiya head barrages which is branched from the west Nile River bank at km 544.450 downstream of Old Aswan Dam "OAD" and about 400 m upstream the existing Assiut barrages. This group of regulators was constructed in 1872 to play a vital role of delivering about 9.6 billion m³/year of irrigation water to all beneficiary area of about 1.43 millions feddans through El- Ibrahimia main canal. "DGR" branches at El-Ibrahimia main canal at Dairut into seven main canals, namely El-Ibrahimia canal, Bahr-Yusef canal, Sahelyia canal, El-Diroutia canal, Badraman canal, Abo Gabal canal and Irad Delgaw canal. The Bahr-Yousef canal is the largest canal in capacity among the seven canals. Its length extends as long as 312 km downstream of "DGR" and there are four regulators along the canal, namely El-Lahoun regulator, Mazoura regulator, Sakoula regulator and Dahab regulator. Those regulators have been rehabilitated by Japan's Grant Aid since 1995.

One important point should be raised concerning the existing "DGR" which is that Dairut Group of Regulators was constructed in 1872 and can be considered as the oldest active regulator in Egypt, and the their weirs cannot function well due to their age. For this reason rehabilitation of such hydraulic construction should be urgently implemented. It is expected that the impacts of the rehabilitation of the "DGR" should be significant considering the vast beneficiary area and very long canal networks. Therefore, rehabilitation of "DGR" was quite urgent for seeking effective use of the limited water resources and due to limited facilities as well as high cost operation and maintenance.

Based on such an understanding, the Government of Egypt "GOE" requested informally to the Government of Japan "GOJ" for the Japanese Official Development Assistance by Yen-Loan. Accordingly, Japan International Cooperation Agency "JICA" dispatched the study team for the preparatory survey for the rehabilitation and improvement of Dairut Group of Regulators "DGR". Therefore, in order to increase agricultural production and to keep sustainability of agricultural industry in the Upper Egypt region the main objectives of the conducted study were defined as the following:

- 1. To formulate the rehabilitation plan for Dairut Group of Regulators "DGR";
- 2. To formulate the improving water distribution plan for the entire operation and maintenance of "DGR" and other regulators that are located along the main canals;
- 3. To evaluate the present situation and the rehabilitation plan of the existing minor structures based on the result of the inventory survey carried out by the Ministry of Water Resources and Irrigation "MWRI"; and
- 4. To carry out technology transfer to the implementation agency through the study period on the above mentioned subjects.

G-113

To fulfill the above mentioned objectives, a three dimensional physical model study would be carried out in the Hydraulics Research Institute "HRI" which is the main concern of the present reports.
1. INTRODUCTION

The current investigation is being carried out referring to letter No. 1379/156 dated on the 8th day of May 2014 from the Reservoirs and Grand Barrages Sector "RGBS" of the Ministry of Water Resources and Irrigation "MWRI" which requested "HRI" to prepare for a technical and financial proposal to carry out hydraulic physical model for testing a new alternative for Dairut Group Regulators "DGR". The focal objective of the proposed testing program is to adopt the best alignment and hydraulic design for the new barrages group components which fulfills the new emerged flow morphology regime through El-Ibrahimiya canal after the construction of the new Assuit barrages. Flow capacity and velocity distribution upstream and downstream each of the new group components would be physically tested and investigated.

To achieve the above mentioned study objectives, several field and laboratory activities would be carried out which can be summarized as follows:

- 1. Topographic, bathymetric survey and field measurements would be conducted to cover about 6.5 km which comprises the branched canals downstream Dairut Group of Regulators "DGR" and main El-Ibrahimia canal upstream "DGR". Field measurements should involve every needed details to construct and calibrate the physical model.
- 2. Data collection for different hydrological information for passing flow discharges and the corresponding water surface levels for each of the seven branched canals. These would be summarized and analyzed for the case of existing conditions for the maximum and minimum flow discharges. Also the detailed dimensions of the existing barrages and head regulators at "DGR" would be collected to be simulated in the model.
- 3. Using the collected field data and the hydrological information for the maximum and minimum passing flow discharges through each of the modeled "DGR" branches to design and construct the model to simulate the existing condition in the prototype.
- 4. The model would be then calibrated according to the recent field measurements at the existing flow conditions in the prototype during the field survey period. Then the flow condition through each of the branched canals would be investigated at the two cases of the minimum and maximum flow discharges.
- 5. The proposed design for the new "DGR" would be then assembled in the workshop and affixed at 140 m downstream the existing situation then flow pattern through each of the 4 branched canals would be investigated. The entering flow currents for the 3 upstream branches would be also investigated in the model and some engineering works for there entrance could be recommended.

The first report was released by "IIRI" in August 2015 which was mainly focused on the field measurements for conducting the model study. While the present report (the second one) would be directed to cover the prototype conditions, laboratory set up, model design and construction.

Historical hydrological features of each branched canals at the cases of maximum and minimum flow discharges during the existing conditions and that expected after the construction of the new Assuit barrages would be provided. This, in other words, means that the current report would concentrate on the detailed preparation for model design and testing under the following sections:

- Dairut group of regulators "DGR"
- Ilydrological condition
- Prototype conditions
- Similarity rules
- Model construction
- Discharge measurements
- Testing plane

2. DAIRUT GROUP OF REGULATORS "DGR"

Dairut group of regulators "DGR" was constructed in 1872 on El-Ibrahimiya canal at km 60.600 downstream of El-Ibrahemiya head barrages which is branched from the west Nile River bank at km 544.450 downstream of Old Aswan Dam "OAD" and about 400 m upstream the existing Assiut barrages as illustrated in Figure (1).

Figure (1): Location of Dairut Group of Regulators "DGR"

Each of the existing group of regulators and the new proposed group would be described in the following two sub-sections:

Hydraulics Research Institute

4

2.1. The Existing "DGR"

The existing "DGR" is mainly located on El-Ibrahimia main canal which branched downstream of "DGR" – as shown in Figure (2) and Photo (1) - into seven canals, namely El-Ibrahimia canal, Bahr-Yusef canal, Sahelyia canal, El-Dairutia canal, Badraman canal, Abo Gabal canal and Irad Delgaw canal. While Table (1) illustrates the current formation of "DGR" which is mainly consist of five main head regulators. This because each of the two branches of Irad Delgaw and Abou Gabal canals and two branches of Badraman and Dairutia canals are branched downstream only one head regulator as shown in Figure (2) and Photo (1).

79 /2015

Figure (2): Main Branch Canals Downstream of "DGR"

Photo (1): layout of the Existing Dairut Group of Regulators

Name of	Regulator	Dimension	s of the regulator unit
canal at DGR	unit	Structural	Gates
Bahr Yusef	No. of gates	5 vents	3m width x 5 vents
	Pier	4 units & width 1.80~2.25m	Total height 7.5 m
	Mid. apron	L=43.25m, thickness 3m	3 leaves of gate
	Foundation	Limestone partially concrete	Bottom elevation (39.50) m
	Lock	width 8.5m	Operational high water level (46.00) m
Badraman	No. of gates	2 vents (1 vent closed)	3m wide x 2 vents total height 7.5m
& Dirotiah	Pier	2 units & width 1.80~2.25m	3 leaves of gate
	Mid. apron	L=38.65m,	Bottom clevation (39.30) m
	Foundation	limestone, t=unknown	Operational high water level (46.00)m
Ibrahimia	No. of gates	7 vents	3m width x 7 vents
	Pier	6 units & width 1.80~2.25m	Total height 7.5 m
	Mid. apron	L=39.70m, thickness 3m	3 leaves of gate
	Foundation	limestone partially concrete	Bottom clevation (39.81) m
	Lock	width 8.5m	Operational high water level (46.00) m
Sahelyia	No. of gates	2 vents	3m wide x 2 vents total height 5.5 m
(right bank)	Pier	1 unit & width 1.80~2.25m	1 leaves of gate
	Mid. apron	L=18.90m,	Bottom clevation (41.80) m
	Foundation	limestone, t=unknown	Operational high water level (46.00) m
Abo Gabal	No. of gates	3 vents	3m wide x 3 vents total height 5.5 m
& Irad	Pier	2 units & width 1.80~2.25m	1 leaves of gate
Delgaw	Mid. apron	L=28.60m,	Bottom elevation (42.00) m
(left bank)	Foundation	limestone, t=unknown	Operational high water level (46.00) m

Table (1): Current Formation of Dairut Group of Regulators

The above general description is taken from the conducted Japan International Cooperation Agency "JICA" study for the preparatory survey for the rehabilitation and improvement of Dairut Group of Regulators "DGR". However, as some more details of the existing "DGR" are still needed to be simulated in the model, engineering drawings of the existing "DGR" at the Reservoirs and Grand Barrages Sector "RGBS" were utilized. Flow discharge and the corresponding water surface level upstream of each regulator is controlled using the three leaf gates that fixed at downstream side of every vent as illustrated in Figure (3). This reveals the following:

- Case (1) which used to be applied at the ordinary and regular flow discharges. The discharge in this case is controlled by using upper and middle gates while the upstream gate is lowered on the floor as shown in Figure (3-a).
- Case (2) which used to be applied at the passing low flow discharges. The discharge in this case is controlled by using upper gate while the two upstream gates (the lower and middle gates) are lowered to raise the upstream water surface level as shown in Figure (3-b).
- Case (3) which used to be applied at the case of maintenance work to flush deposited sedimentation. The discharge in this case is passing without any control by lifting the three leaf gates above the existing water surface level as shown in Figure (3-c).

Figure (3): Operation of the Three Leaf Gates

The current operation gates of the existing "DGR" are listed in Table (2).

Regulator Name	No. from left bank	Upper Gate	Mid. Gate	Lower Gate	Remarks
	No. 1	0	0	0	
Ibrahimia Reg.	No. 2~6	0	0	×	without chain
	No.7	0	0	0	
Bhar Yusef Reg.	No.1~5	0	0	0	
Badraman Reg.	No.1~2	0	0	0	
Abo Gabal Reg.	No.1~3				
Sahelyia Reg.	No.1~2	0			

Table (2): Current Status of the Gates of the "DGR"

2.2. THE PROPOSED NEW "DGR"

According to the preparatory study that carried out by "JICA" for the rehabilitation and improvement of Dairut Group of Regulators "DGR", three alternatives were presented which are shown in Photo (2). The first one is rehabilitating the existing "DGR" which would be very costly and the repaired regulators would not be used for more than 40 years. The other two alternatives are constructing new "DGR" just upstream or at about 140 m downstream of the existing one. Comparative study for the three alternatives revealed that construction of new "DGR" at about 140 m downstream the existing one would be the best. The detailed designs of the proposed new "DGR" are shown in Figure (4) and listed in Tables (3, 4, 5, and 6). In this case, the over-flow type gate was recommended for the new "DGR" as shown in Figure (5).

Photo (2): The Three Alternative Designs for the New "DGR"

Figure (4): Proposed Flow Diversion of the New "DGR"

]	Regulator	Max. U/S W.L.	Min. D/S W.L.	Passing Discharge (m3/s)		
		(m)	(m)	Max.	Min.	
Bahr Yusef		(46.30)	(43.00)	226.5	33.1	
lbrahimia		(46.30)	(43.00)	43.00) 161.6		
Badraman	Badraman canal	(46.30)	Single-leaf Gate	8.3	1.2	
	Diroutiah canal	(46.30)	Single-leaf Gate	11.7	1.7	
Abo Gabal	Abo Gabal canal	(46.30)	Single-leaf Gate	6.2	0.9	
	Irad Delgaw canal	(46.30)	Single-leaf Gate	8.6	1.3	
Sahelvia		(46.30)	Single-leaf Gate	4.2	0.6	

Table (3): Hydrological Conditions of the New "DGR"

Table (4): Basic Design of the New "DGR"

F	Regulator	Gate type	Number of vets and width	
B	ahr Yusef	Double-leaf Gate	8m x 4vents	
1	brahimia	Double-leaf Gate	8m x 3vents	
Badraman	Badraman canal	4m x 1vent	4m x 1vent	
	Diroutiah canal	4m x 1vent	4m x 1vent	
Abo Gabal	Abo Gabal canal	4m x 1vent	4m x 1vent	
	Irad Delgaw canal	4m x 1vent	4m x 1vent	
	Sahelyia	4m x 1vent	4m x 1vent	

Table (5): Proposed Main Dimensions for the New "DGR"

Regulators	Pile length	Length of cutoff	Thickness of	Length of apron	Length of bed
Bahr-Yusef	Prefabricate con. Pile (500mm) L=7m/pcs.	L=14.5m/pcs.(U.S) L=13.0m/pcs.(M. D) L=	Max. 2.5m Min 0.6m	L= 6.0m(U.S) L=17.5m(M.D) L=24.0m(D.S)	L=50.0m
Ibrahimia	Prefabricate con. pile (500mm) L=7m/pes.	L=14.5m/pcs.(U.S) L=13.0m/pcs.(M. D) L= 2.0m/ncs.(D.S)	Max 2.5m Min 0.6m	L= 6.0m(U.S) L=17.5m(M.D) L=24.0m(D.S)	L=50.0m
Badraman	Prefabricate con. pile (500mm) L=11m/pcs.	L=10.5m/pcs.(U.S) L= 9.0m/pcs.(M.D)	Max 2.5m Min 0.6m	L= 4.5m(U.S) L=15.2m(M.D) L=16.0m(D.S)	L=20.0m
AboGabal	Prefabricate con. pile (500mm) L=11m/pcs.	L= 2.0m/pcs.(M.D)	Max 2.7m Min 0.7m	L= 9.0m L=15.0m	Riprap stone works
Sahelyia	Prefabricate con. pile (500mm) L=11m/pcs.	L= 2.0m/pcs.(M.D)	Max 2.7m Min 0.7m	L=9.0m L=7.0m	Riprap stone works

Regulators	Top of pier	Bed level of gate	Maintenance bridge
	EL47.5	EL40.0	EL50.0
Bahr Yuset	(same as existing)	(0.5m higher than the existing	(same as existing)
Ihaahimia	EL47.5	EL40.0	EL50.0
Ibrahimia	(same as existing)	(0.5m higher than the existing	(same as existing)
Badraman	EL47.5	EL43.5	EL50.0
Dauraman	(same as existing)	((0.5m bigher than the existing	(same as existing)
Abo Cabal	EL47.5 (same as existing) ((0.5m highe EL47.5	EL44.0	EL50.0
Abo Gabai	(same as existing)	(0.5m higher than the existing	(same as existing)
Badraman Abo Gabal Sahelyia	EL47.5	EL44.0	EL50.0
	(same as existing)	(0.5m higher than the existing	(same as existing)

Figure (5): Selected Over-flow Type Gate for New "DGR"

3. HYDROLOGICAL CONDITIONS

The hydrological study for the modeled reach would be very essential for running the model at different flow discharges and the corresponding water surface levels. According to the carried out investigation by "JICA", some common hydrological information were recorded. The monthly discharge volume for the past 10 years individually downstream El-Ibrahimia head regulators at Dairut were recorded as listed in Table (7). Also the annual average discharge volume for the past 10 years individually downstream Bahar Yusef and El-Ibrahimia head regulators at Dairut were worked out as 4820 million m³ and 4069 million m³ respectively as listed in Table (8). This makes the ratio between the entering flow discharge through Bahar Yusef and that of El-Ibrahimia 47.23 % and 39.92% out of seven main canals at Dairut Group of Regulators "DGR". This means that 87.15 % of the annual average discharges (equivalent to 8889 million m³) are flowing through the two main branched canals at Dairut and only 12.85 % (equivalent to 1310 million m³) are flowing through the five rests branched canals.

Year	Monthly discharge (million m ³)								Average				
	Jan.	Feb.	March	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	
1999	274	303	408	411	431	540	522	526	409	***	352	327	***
2000	104	327	346	356	381	455	472	451	365	341	311	273	4.182
2001	128	301	332	331	350	441	460	449	369	359	300	264	4.084
2002	142	274	315	334	350	436	451	442	353	312	293	263	3.965
2003	81	290	302	302	331	430	445	438	335	314	292	261	3.821
2004	124	270	289	409	332	418	433	432	342	305	291	262	3.907
2005	8 7	275	303	307	329	423	448	444	354	305	286	243	3.804
2006	74	253	324	318	345	442	460	420	378	327	299	263	3.903
2007	151	281	340	382	403	448	475	485	412	397	379	301	4.454
2008	117	318	373	403	422	465	491	479	405	392	334	301	4.500
Average	128	289	333	355	367	450	466	457	372	339	314	276	4.069

fable (7): Monthly	y Discharge	Records at	Ibrahimia Dairut
--------------------	-------------	------------	------------------

No.	Year	Annual passing discharge (million m ³)							
		Ibrahimia	Bahar	Yousef	Ibrahimi	a at Dairut			
		Intake	Discharge	Percent	Discharge	Percent			
				(%)		(%)			
1	1999	10,381	4,759	45.84 %	***	***			
2	2000	10,132	4,690	46.29 %	4,182	41.28 %			
3	2001	10,206	4,752	46.56 %	4,084	40.02 %			
4	2002	9,8 77	4,640	46.98 %	3,965	40.14 %			
5	2003	9,695	4,608	47.53 %	3,821	39.41 %			
6	2004	9,892	4,722	47.74 %	3,907	39.50 %			
7	2005	9,907	4,735	47.79 %	3,804	38.40 %			
8	2006	10,127	4,967	49.05 %	3,903	38.54 %			
9	2007	10,784	5,050	46.83 %	4,454	41.30 %			
10	2008	11,065	5,281	47.73 %	4,500	40.67 %			
Ave	erage	10,207	4,820	47.23 %	4,069	39.92 %			

This information as well as the other existing hydrological data for "DGR" operation were utilized to work out Table (9) for different branched canals at "DGR".

No.	Flow case	Maximum flow discharge				Minimum flow discharge			
	Branched canal	Passing flow		Water level (m)		Passing 1	llow	Water level (m)	
		(mm³/day)	(m ³ /s)	U/S	D/S	(mm³/day)	(m^{3}/s)	U/S	D/S
1	Bahr-Yusef canal	19.57	226.50	46.30	NL	2.86	33.11	NL	NL
2	Badraman canal	0.717	8.30	46.30	NL	0.104	1.20	NL	NL
3	Diroutiah canal	1.019	11.70	46.30	NL	0.147	1.70	NL	NL
4	Ibrahimia canal	13.964	161.62	46.30	NL	2.042	23.63	NL	NL
5	Sahelyia canal	0.363	4.20	46.30	NL	0.052	0.60	NL	NL
6	Irad Delgaw canal	0.743	8.60	46.30	NL	0.112	1.30	NL	NL
7	Abo Gabal canal	0.536	6.20	46.30	NL	0.078	0.90	NL	NL

Table (9): Existing hydrological Records at "DGR"

NL in the above table means Not Available. On the other hand, base on the existing commend of the served area and the quota, the daily flow discharge distribution downstream of "DGR" was worked out as listed in Table (10). This data were reported in "JICA" study according to the agreement of Water Distribution Sector "WDS" in (2002) for the flow discharge distribution downstream of El-Ibrabimia canal.

Table (10): Design Discharge Based on the Quota at "DGR"	

No.	Canal	Served	Design dis	charge	Ratio	
		Arca	Min.	Max.	(%)	
		(Fcd)	(m ³ /s)	$(\mathbf{m}^{3}/\mathbf{s})$		
1	Ibrahimia canal	576,700	23.63	161.62	36.84%	
2	Bahr-Yusef canal	808,000	33.11	226.50	51.63%	
3	Sahelyia canal	15,100	0.60	4.20	0.96%	
4	Diroutiah canal	41,800	1.70	11.70	2.67%	
5	Badraman canal	29,700	1.20	8.30	1.90%	
6	Abo Gabal canal	22,000	0.90	6.20	1.41%	
7	Irad Delgaw canal	30,800	1.30	8.60	1.97%	
8	Direct intake(Upstream of DGR)	41,000	1.70	11.50	2.62%	
	Total	1,565,100	64.14	438.62	100%	

However, such study should be related to the actual maximum and minimum capacities of El-Ibrahimia canal upstream the "DGR" which used to be distributed through the branched canals in the downstream. This in other words means that the overall some of the maximum and minimum capacities of the downstream branched canals would be more and less than the actual prototype values in El-Ibrahimia canal upstream of "DGR" respectively. Therefore in order to deal with such case in realistic way as well as to imitate the real hydrological prototype conditions, the maximum and minimum flow discharge through El-Ibrahimia canal upstream Dairut group of regulators "DGR" and the corresponding water surface level, an assured hydrological study was worked out

The maximum and minimum flow discharge and water surface level through El-Ibrahimia canal upstream Dairut group of regulators "DGR" during the last ten years from 2005 to 2014 were determined as listed in Table (11) and Figure (6). Those data were utilized to deduce the

overall maximum and minimum annual flow discharge during the last ten years as listed in Table (12). As the flow discharge in Table (12) corresponding to the entering flow to El-Ibrahimia canal from the Nile River upstream the new Assuit barrages, the recorded data in Table (12) was corrected as follows.

No.	Year	Water L Dairu	evel U.S. 1t (m)	Discharge at Assuit (m m ³ /day)			
		Max.	Min.	Max.	Min.		
1	2005	46.00	42.40	39.500	2.000		
2	2006	46.20	43.60	41.000	1.500		
3	2007	<mark>46.50</mark>	42.80	41.800	2.000		
4	2008	46.20	42.30	41.000	1.000		
5	2009	46.16	43.60	37.500	2.000		
6	2010	45.92	43.40	36.700	1.800		
7	2011	45.98	43.50	37.800	1.000		
8	2012	45.98	43.30	37.900	1.800		
9	2013	46.10	43.15	38.300	0.850		
10	2014	45.98	42.60	38.800	2.000		

Table (11): Hydrological Data of El-Ibrahimia Canal Upstream "DGR"

Figure (6): Historical Hydrological Records U.S. "DGR"

ſable (12)։ Maximun	1 and Minimum	Annual Records	Upstream	"DGR"
----------------------------	---------------	----------------	----------	-------

Case No.	Flow case	Discharge at Assuit (mm ³ /day)	Date	Upstream level U.S. Dairut (m)	Date
1	Minimum flow upstream "DGR"	0.850	7/1/2013	42.30	22/1/2008
2	Maximum flow upstream "DGR"	41.80	8/6/2007	46.50	6/10/2007

G-125

- The maximum flow discharge downstream El-Ibrahimia head regulator during the last ten years is 41.80 m m³/day which was recorded in 8/6/2007
- The minimum flow discharge downstream El-Ibrahimia head regulator during the last ten years is 0.850 m m³/day which was recorded in 7/1/2013
- Bearing in mind a lag time of one day to reach upstream "DGR" at 60.600 km downstream El-Ibrahmia head regulator at Assuit during maximum discharges and two days during minimum discharges, therefore the maximum and minimum flow discharges upstream Dairut occurred on 9/6/2007 and 9/1/2013 respectively.
- According to the attainable daily records of the flow discharges and the corresponding water surface level at the above two dates, the existing flow distribution and the corresponding upstream and downstream water surface levels for each branched canals could be worked out.
- However, as the attainable records for the two selected dates were limited to the existing water surface levels downstream each branched canal and only the flow discharge through Bahr Yussef and El-Ibrahimia canals, the reported flow ratio distribution by "JICA" study in Table (10) was used to produce the required flow discharge as listed in Tables (13 and 14).
- In this case the actual flow discharge though El-Ibrahimia and Bahr Ussef canals on 9/6/2007 (at the case of maximum discharge) which are equivalent to 15.447 and 17.662 mm³/day were considered to represent 36.84% and 51.63% of total upstream discharge at Dairut respectively. While on 9/1/2013 (at the case of minimum discharge) which are equivalent to 0.180 and 1.600 mm³/day were considered to represent 36.84% and 51.63% of total upstream discharge at Dairut respectively.

No.	Canal name	Discha	rge	WSL (m)		
		(mm³/day)	(m ³ /s)	U/S	D/S	
1	Bahr-Yusef canal	17.662	204.42	46.00	45.60	
2	Badraman canal	0.711	8.23		45.85	
3	Diroutiah canal	1.000	11.574		45.85	
4	El-Ibrahimia D/S "DGR"	15.447	178.78		45.15	
5	Sahelyia canal	0.359	4.16		45.85	
6	lrad Delgaw canal	0.737	8.53		45.00	
7	Abo Gabal canal	0.528	6.11		45.85	
8	El-Ibrahimia U/S "DGR"	36.444	421.81		-	

 Table (13): Hydrological Records at Maximum Discharge (9/6/2007)

No.	Canal name	Dischar	.ge	WSL (m)		
		(mm³/day)	(m^{3}/s)	U/S	D/S	
1	Bahr-Yusef canal	1.600	18.52	43.35	42.55	
2	Badraman canal	0.038	0.44		***	
3	Diroutiah canal	0.054	0.63		***	
4	El-Ibrahimia D/S "DGR"	0.180	2.08		41.55	
5	Sahelyia canal	0.019	0.22		***	
6	Irad Delgaw canal	0.040	0.46		***	
7	Abo Gabal canal	0.028	0.32		***	
8	El-Ibrahimia U/S "DGR"	1.959	22.67		_	

4. PROTOTYPE CONDITION

The model would be constructed according to the conducted field measurements that were recently carried out by "HRI" survey staff on June 2015. The measurements included topographic, bathymetric and hydrometric measurements along the seven branched canals downstream "DGR" and the located reach of El-Ibrahmia canal upstream of "DGR". Also, the field survey included velocity measurements and collecting some bed samples. The survey was done at the project site using advanced survey equipments. Summary of the conducted topographic and bathymetric field measurements are listed in Table (15).

No.	Branch name	Symbol	Survey	Veloc	ity profiles	Bed	samples
			Length	No.	Location	No.	Location
			(m)		(m)		(m)
1	El-Ibrahimia U.S. "DGR"	AA	1280	1	AA1080	3	AA1080
2	Irad Delgaw canal	BB	500	1	BB215		
3	Abo Gabal canal	CC	600	1	CC130		
4	Bahr-Yusef canal	DD	1075	2	DD250	3	DD540
					DD500		
5	Badraman canal	EE	580	1	EE230		
6	Diroutiah canal	FF	550	1	FF230		
7	Ibrahimia canal	GG	1230	2	GG250	2	GG690
					GG500		
8	Sahelyia canal	HH	590	1	HH325		
	Total Survey activities		6405	10		8	

Table (15): Conducted Survey and Field Measurements

The attainable results from the field measurements can be presented as follows:

4.1. Bathymetric Measurements

Figure (7) illustrates the applied sounding technique during field measurements of all branched canals which was carried out in such a way as to cover major parts of the surveyed branches. The recorded data for the sounded depths were converted into levels which were utilized with there locations to create a contour map for each branch. This contour map comprises the lines which have the same levels for every 0.5 m along each surveyed canals as shown in Figure (8).

Figure (7): Applied Sounding Technique during Field Measurements

Figure (8): General Layout of the Surveyed Canals

4.2. Velocity Measurements

Applying each of the Acoustic Doppler Current Profile "ADCP" and Pray-Stock current meters, the velocity distribution was measured along 10 cross sections through the seven branched canals and El-Ibrahemia main canal upstream "DGR". Location and number of the measured velocity profiles for each branched canal are shown in Figure (9) and listed in Table (15) while Figures (from 10 to 19) illustrate the measured mid-depth velocity distribution and bed profiles for each branched canal.

Figure (9): Locations of the measured velocity Distribution

Figure (10): Velocity Distribution at El-Ibrahimia Main Canal

Figure (12): Velocity Distribution at Abou Gabal Canal

Figure (14): Velocity Distribution Downstream of Bahr Ussef Canal

Figure (15): Velocity Distribution at Badraman Canal

Figure (16): Velocity Distribution at El-Dairutia Canal

Figure (17): Velocity Distribution Upstream of El-Ibrahimia Canal

Figure (18): Velocity Distribution Downstream of El-Ibrahimia Canal

Figure (19): Velocity Distribution at El-Sahelia Canal

4.3. Bed Materials Analysis

As listed in Table (15) for the field measurements, eight bed material samples were collected by using Van Veen Grab sampler. Three bed samples were collected from each of Bahr Yusseff and El-Ibrahemia main canals while only two samples were collected from El-Ibrahimia canal downstream of "DGR". Those samples were utilized to form a representative sample for each of the three mentioned canals which were analyzed in the "HRI" soil laboratory. The analysis results for each of El-Ibrahimia main canal, El-Ibrahimia canal downstream of "DGR" and Bahr Yssef canal are listed in Tables (16, 17 and 18) respectively. While Figures (20, 21 and 22) illustrate the resulted grain size distribution curve for each of the three mentioned canals respectively. Moreover, characteristics of the representative gradation curve for every bed materials are provided.

 Table (16): Soil Analysis Results for El- Ibrahimia Main Canal

Sieve diameter(mm)	1.4	1.0	0.85	0.5	0.355	0.212	0.15	0.075	0.063	0.0
Retain weight(grm)	14.74	1.82	1.95	29.55	166.15	391.31	1.66	0.43	0.15	0.32
Finer weight (grm)	593.34	591.52	589.5 7	560.02	393.8 7	2.56	0.9	0.47	0.32	0.0
Finer percent (%)	97.58	97.28	96.96	92.1	64.77	0.42	0.15	0.08	0.05	0.0

Figure (20): Grain Size Distribution Curve for El-Ibrahimia Main Canal

Characteristics of the Grading Curve

٠	Total s	ample weight =	608.08	(grn	ı)		
٠	$D_{95} =$	0.687 mm	$D_{90} =$	0.48	87 mm	D ₈₄ =	0.452 mm
٠	$D_{75} =$	0.404 mm	D ₆₅ =	0.35	56 mm	$D_{60} =$	0.342 mm
•	$D_{50} =$	0.315 mm	$D_{40} =$	0.29	91 mm	D ₃₅ =	0.280 mm
٠	$D_{30} =$	0.269 mm	$D_{25} =$	0.25	58 mm	D ₁₆ =	0.240 mm
٠	$D_{10} =$	0.229 mm	$D_5 =$	0.22	20 mm		
٠	D_{84}/D_{50}	$_{0} = 1.432$					
٠	D_{50}/D_{10}	$_{6} = 1.313$					
٠	Geome	tric Mean Diam	eter	=	0.315 mm		
•	Geome	tric Standard De	eviation	=	1.371		
•	Unifor	mity Coefficient		=	1.493		
•	Sorting	Coefficient		=	0.800		
٠	Curvat	ure Coefficient		=	0.923		
٠	Mean I	Diameter		=	0.339 mm		

Sieve diameter(mm)	1.4	1.0	0.85	0.5	0.355	0.212	0.15	0.075	0.063	0.0
Retain weight(grm)	80.82	0.18	0.1	0.5	1.72	46.62	4.83	2.22	0.12	0.19
Finer weight (grm)	56.48	56.3	56.2	55.7	53.98	7.36	2.53	0.31	0.19	0.0
Finer percent (%)	41.14	41.01	40.93	40.5 7	39.32	5.36	1.84	0.23	0.14	0.0
50 40 40 Loccett Unes by Weight										
±•]										
0 † – † 0,01		1.0	Pi	1 urticle Size	(1010)	 10		10	0	

Table (17): Soil Analysis Results for Ibrahimia canal D.S. "DGR"

Figure (21): Grain Size Distribution Curve for Ibrahimia Canal D.S. "DGR"

Characteristics of the Grading Curve

- Total sample weight = 137.3 (grm) • $D_{95} = 0.188 \text{ mm}$ $D_{90} = -0.227 \text{ mm}$ ٠ $D_{84} = 0.283 \text{ mm}$ $D_{75} = 0.396 \text{ mm}$ $D_{65} = 0.575 \text{ mm}$ $D_{60} = -0.693 \text{ mm}$ • $D_{50} = 1.006 \text{ mm}$ $D_{40} = 0.428 \text{ mm}$ $D_{35} = -0.332 \text{ mm}$ •
- $D_{30} = -0.308 \text{ mm}$ $D_{25} = 0.286 \text{ mm}$ $D_{16} = 0.249 \text{ mm}$ •
- $D_{10} = 0.227 \text{ mm}$ $D_5 = 0.205 \text{ mm}$ •
- $D_{84}/D_{50} = -0.282$ •
- $D_{50}/D_{16} = 4.038$ ٠
- Geometric Mean Diameter = 1.006 mm•
- Geometric Standard Deviation = 1.066.
- Uniformity Coefficient = 3.047 •
- Sorting Coefficient = 0.849•
- Curvature Coefficient = 0.602
- Mean Diameter = 0.115 mm

Sieve diameter(mm)	1.4	1.0	0.85	0.5	0.355	0.212	0.15	0.075	0.063	0.0
Retain weight(grm)	4.6	0.96	1.06	16.42	41.74	153.63	3.1	0.53	0.03	0.2
Finer weight (grm)	217.6 7	216.71	215.65	199.23	157.49	3.86	0.76	0.23	0.2	0.0
Finer percent (%)	97.93	97.5	97.02	89.63	70.86	1.74	0.34	0.1	0.09	0.0

Table (18): Soil Analysis Results for Bahr Youssef Canal

Figure (22): Grain Size Distribution Curve for Bahr Youssef Canal

Characteristics of the Grading Curve

•	Total samp	le weight =	222.27	(grms)
---	------------	-------------	--------	--------

- $D_{95} = 0.735 \text{ mm}$ $D_{90} = 0.513 \text{ mm}$ $D_{84} = 0.451 \text{ mm}$
- $D_{75} = 0.383 \text{ mm}$ $D_{65} = 0.340 \text{ mm}$ $D_{60} = 0.327 \text{ mm}$
- $D_{50} = 0.304 \text{ mm}$ $D_{40} = 0.282 \text{ mm}$ $D_{35} = 0.272 \text{ mm}$
- $D_{30} = 0.262 \text{ mm}$ $D_{25} = 0.252 \text{ mm}$ $D_{16} = 0.236 \text{ mm}$
- $D_{10} = 0.225 \text{ mm}$ $D_5 = 0.217 \text{ mm}$
- $D_{84}/D_{50} = 1.485$
- $D_{50}/D_{16} = 1.289$
- Geometric Mean Diameter = 0.304 mm
- Geometric Standard Deviation = 1.383
- Uniformity Coefficient = 1.452
- Sorting Coefficient = 0.812
- Curvature Coefficient = 0.928
- Mean Diameter = 0.339 mm

25

The above results showed that the geometric mean diameter for the representative bed materials for each of El-Ibrahimia main canal upstream "DGR" and Bahr Usseff canal are almost similar of sandy soil of 0.3 mm. While the geometric mean diameter of El-Ibrahimia canal downstream of "DGR" is much larger and equals to 1.006 mm. This can be lead to conclude that El-Ibrahimia canal downstream of "DGR" is subjected to a degree of general degradation much more than that in the other two canals.

5. SIMILARITY RULES

For accurate and correct reproduction of any important hydraulic phenomena in a hydraulic model, a number of requirements must be fulfilled when determining the model scales which can be worked out as follows:

5.1. Geometrical Similarity

Geometrical similarity in the model is achieved when all geometric dimensions of length, width, and depth in the prototype, exhibit a constant ratio to the corresponding dimensions in the model. Considering that n_m is the ratio between any geometrical dimension in the prototype and that in the model. This can be written as the scale ratio for such geometrical dimension is $n_m = m_p / m_m$. Therefore, the following three scale ratio conditions can be deduced:

Length scale ratio = n_L Area scale ratio = $(n_L)^2$ Volume scale ratio = $(n_L)^3$

In this case, models which have one scale ratio for all geometrical dimensions are called undistorted models, while models which have unequal horizontal and vertical scale ratios are called distorted models. Therefore considering that n_L is the length scale ratio and n_h is the depth scale ratio, undistorted model when $(n_L = n_h)$ and distorted model when $n_L \neq n_h$

5.2. Kinematic Similarity

Kinematic similarity can be fulfilled when time-dependent events that proceeded in the model occurred in a way such that corresponding time intervals in nature and the model would show a constant ratio. Considering that n_t is the time scale ratio and n_v is the velocity scale ratio, the velocity scale ratio can be deduced as:

 $n_l = n_L / n_v$

26

5.3. Dynamic Similarity

Dynamic similarity implies that corresponding forces in nature and in model must show a constant ratio. These ratios can be derived from the relations between the acting forces in the flow field. The relevant forces in case of free surface flow with density difference are inertia, gravitation, buoyancy, and viscous forces. These force ratios are the Froude Number (F_r) which is the ratio of inertia to gravitation forces and can be specified as:

79/2015

$$Fr = \frac{V}{\sqrt{gh}}$$

And the Reynolds Number (R_e) which is the ration of inertia to viscous forces and can be written as .

Re = VR/v

Where V is the velocity (m/s), g is the gravitational acceleration (m/s²), h is the characteristic dcpth (m), ρ is the density (kg/m³), $\Delta\rho$ is the density difference (kg/m³), R is the hydraulic radius (m) and N is the kinematic viscosity (m²/s). From the condition that the scale of the Froude Number in both nature and model should be equal, the velocity scale ratio can be determined from which the other scale ratios can be derived as follows:

Velocity scale ratio = $n_v = (n_h)^{0.5}$

Discharge scale ratio = $n_q = n_L n_h n_v = n_L (n_h)^{1.5}$

Time scale ratio $= n_t = n_L / n_v = n_L / (n_h)^{0.5}$

Since the kinematic viscosity in the model and prototype is generally at the same order, the condition that Reynolds Number is equal for both prototype and model in combination with the velocity scale determined as above can not be fulfilled. However in practice the nature of the turbulent transport dose not depend upon the Reynolds Number as long as it exceeds a certain critical value for open channels in the model which is as follows:

$$\operatorname{Re}_{c} \geq 2000$$

While the critical Reynolds Number for jets discharging into ambient water has been experimentally determined to be

$$\text{Re}_{c} \geq 750$$

In order to check Reynolds Number in the small branched canals in the prototype and in the model, the measured hydrological functions for Abou Gabal canal – which are shown in Figure (23) – were utilized to determine the Reynolds Number along that canal and the corresponding value in the model as listed in Table (19).

Figure (23): Velocity Distribution in Abou Gabal Canal

No.	Hydraulic term	Prototype	Model
1	Top width [P] (m)	9.0	0.36
2	Average Depth [H] (m)	1.25	0.05
3	Cross section area A (m ²)	11.25	0.018
4	Passing discharge Q (m ³ /s)	6.21	1.987 l/s
5	Average Velocity [V] (m/s)	0.552	0.110
6	Kinematic viscosity v (m ² /s)	10-6	10-6
7	Reynolds Number [Re] (-)	690000	5520

Table (19):	Re	Calculations	in Abou	Gabal	Canal
		••••••••		J	~

The above results revealed that the Reynolds Number in the small branched canals downstream of the existing "DGR" either in the prototype and model can be considered turbulent flow. As undistorted geometric scale of 1:25 was selected for model construction which revealed the listed scale ratios in Table (20) for the other hydraulic components:

No.	Quantity	Scale	Ratio
1	Depth scale ratio	$n_h = h_p/h_m$	25
2	Length scale ratio	$n_l = l_p / l_m$	25
3	Area scale ratio	$n_a = n_1^2$	625
4	Velocity scale ratio	$n_v = n_h^{1/2}$	5.0
5	Discharge scale ratio	$n_Q = n_l^{2.5}$	3125
6	Time scale ratio	$n_t = n_1^{1/2}$	5.0

6. MODEL CONSTRUCTION

An appropriate open air area in the northern experimental hall of "HRI" of about 46 m length and 24 m width (about 830 m²) was assigned to construct the required model. The model area was deliberately selected not only to guarantee high flow discharges and other experimental requirements, but also to secure adequate lengths for the downstream branched canals when testing the new proposed "DGR". The model was constructed to simulate appropriate reaches of the 7 branched canals downstream "DGR" and the main El-Ibrahima canal upstream of "DGR". The model would be a fixed bed undistorted scale of equal horizontal and vertical construction scale of 1 to 25. Details of measured lengths and cross sections for each of eight modeled canals are listed in Tables (21 and 22) while Figure (24) shows general lay out and arrangement of different parts of the constructed model. In this Figure the outlet of the modeled branches for cach of Irad Delgaw canal, Abo Gabal canal, Badraman canal, El-Dairutia canal and El-Sahelvia canal was called as E1, E2, E4, E5 and E7 respectively. While the outlet of the modeled branches for Bahr Yssef canal and El-Ibrahimia canal downstream of "DGR" was called E3 and E6 respectively. The model consists of three main components; the entrance, the modeled reach, and the outlet. Full description of the abovementioned model components are as follows:

No.	Canal name	Prototype condition (m)				Modeled
		Survey length (m)		Cross sections		length
		Measured	Modeled	Measured	Modeled	(m)
1	Bahr-Yusef canal	1075	620	34	18	24.80
2	Badraman canal	580	225	12	8	9.00
3	Diroutiah canal	550	245	12	8	9.80
4	Ibrahimia canal	1230	600	40	18	24.00
5	Sahelyia canal	590	410	15	83	16.40
6	Irad Delgaw canal	500	410	19	8	16.40
7	Abo Gabal canal	600	175	16	7	7.00
8	Ibrahimia Main canal	1280	650	40	20	26.00
Total Length (m)		6405	3335		90	133.40

Table (21): Simulated Canal Lengths in the Model

Table (22): Simulated Cross Sections in the Model

No.	Canal name	Symbol	Measured	Modeled sections From To	
			Sections		
1	Ibrahimia Main canal	AA	20	AA20	AA41
2	Irad Delgaw canal	BB	8	BB1	BB8
3	Abo Gabal canal	CC	7	CC1	CC7
4	Bahr-Yusef canal	DD	18	DD1	DD18
5	Badraman canal	EE	8	EE1	EE8
6	Diroutiah canal	FF	8	FF1	FF8
7	Ibrahimia canal	GG	18	GG1	GG18
8	Sahelyia canal	HH	3	HH1	HH3
Total	Length (m)	90			

Figure (24): General Layout of the Modelled Reach

6.1. Model Entrance

The model entrance – as illustrated in Figure (25) would be made of 0.15 m thickness bricks wall covered with 0.02 m cement mortar mixed with chemical isolated materials to prevent seepage from the model. The model entrance consists of two compartments. The upstream one is 1.0 m length which is made to receive the delivered pumped water from the underground reservoir. While the downstream compartment is mainly constructed to convey the delivered water from the upstream compartment straightforwardly to the simulated model reach. The downstream compartment also provided with pieces of wood to distribute the entering water flow through the model in such a way as to simulate the prototype condition.

Figure (25): Model Entrance

6.2. Modelled reach

The modeled reach is the main study component which simulates the 7 branched canals downstream of "DHR" and part of the main El-Ibrahimia canal upstream of "DGR". Those branches would be constructed in levels and locations in such a way as to simulate the prototype condition and according to the latest field and bathymetric measurements which were carried out by "HRI" survey team. Those components were constructed of about 0.07 m thick layer of plane concrete which poured in location and levels in the same configurations according to that in the prototype. The measured cross section in the prototype were scaled and allocated according to their orientation, location and levels as shown in Figure (26). Then the reach between each successive two cross sections were filled with plane mortar. The modeled regulators which simulate the existing "DGR" were constructed of woods in the "HRI" workshop of the same undistorted model scale of 1 to 25. Level of the constructed reach was previously determined in the hydraulic laboratory in such a way as to provide the necessary water levels upstream each of the installed sharp crested weirs and the tailgates as shown in Figure (27).

Figure (26): Simulated Cross Sections in the Model

Hydraulics Research Institute

32

Figure (27): Model Levelling Arrangement

6.3. Model Outlets

The principal function of the model exit is to maintain water surface level through each modeled branch canales in such a way as to reproduce all the hydraulical and hydrological conditions in the prototype, then to divert the passing flow discharge to the outlet sharp crested weir. For this reason the model exit consists of the tailgate and the approach channel. The tailgate is used to adjust the water surface level in the model which was made of 5mm rectangular steel plate and hinged from bottom which can be easily rotated around the lower hinge to adjust the upstream water surface level through each modeled branch. This tailgate type was used at the exit end of the two modeled reaches of El-Ibrahimia and Bahr Ussef canals. While in case of the other small branched canals another vertical and simple tail gates were utilized.

The outlet of the modeled branches for each of El-Sahelyia canal, El-Dairutia canal, Badraman canal, Abo Gabal canal and Irad Delgaw canal was provided and equipped with a sharp crested weir of 30 cm height and 20 cm width as shown in Figure (28). While two flap tailgates of about 4.0 m long were affixed at the downstream end of the modeled parts of Bahr Yussef

canal and El-Ibrahimia canal downstream of "DGR" as shown in Photo (3). While two sharp crested weirs of 30 cm height and 50 cm width each was used at the modeled outlet of El-Ibrahimia and Bahr-Yusef canals. The model feeding system consists of an electric centrifugal pump of 10 inch diameter and a suction pipe connected to the sump. Water was pumped from the underground reservoir and delivered to the model entrance through the delivery pipeline.

Figure (28): Model Outlets E1, E2, E4, E5 and E7

Photo (3): Model Outlet Type for E3 and E6

7. DISCHARGE MEASUREMENTS

Two flow discharge measurement techniques were applied during the testing period. The first one was on the feeding system through the delivering pipes from the underground feeding reservoir to the upstream inlet of the model and the second one is the outlet flow rate over 7 sharp crested weirs that were affixed at the downstream end of each branched canal in the model. The evolutions of the inflow discharges were carried out by measuring the inflow rates to the upstream reservoir, while the outlet flow was determined by using the variation in the flow water levels over the sharp crested weir which is consequently diverted to corresponding out flow rates downstream of the model. For this reason, the measuring flow discharges in the model can be classified into inflow and outflow as follows:

7.1. The Inflow Measuring

In order to measure the inflow discharge through pipes to the upstream reservoir, the Ultrasonic Flow Meter (Flexim Flow meter) is used which uses the transit time difference principle. Transient-time ultrasonic meters, also known as 'time-of-travel' meters, measure the difference in travel time between pulses transmitted in the direction of flow and pulses transmitted against the flow. The two transducers are mounted opposite to each other along the pipe. Both transducers serve alternately as transmitter and receiver. The upstream transducer transmits a pulse, which is detected by the downstream transducer, giving a 'transmit-time' in the direction of flow. The downstream transducer will then transmit a pulse, which is detected by the upstream transducer (acting as a receiver), to give a 'transmit-time' against the flow. The difference between the upstream and downstream transit times can be correlated to flow rate through the meter. With this in mind, the following specifications were fulfilled:

- The allowed flow velocity is ranged between 0.01 m/s and 25.0 m/s
- The measuring accuracy is ranged between ± 1.6 % of reading ± 0.01 m/s (standard)
- The pipe diameter range is from 10.0 mm to 12.00 m

The ultrasonic flow meter was utilized to measure the variation in input flow rate discharge to the upstream model inlet which is shown in Photo (4) of 20 inch delivery pipe diameter. Calibration of such instrument was carried out by comparing the attainable measurements with the corresponding electromagnetic flow meter readings which is traceable to international standards.

Photo (4): Fixed Ultrasonic Flow Meter around Feeding Pipe

7.2. The Outflow Measuring

The present section would be elaborated for recording the variation in the passing discharges out of the model over the sharp crested weir to precisely determine the corresponding prototype discharges. Two steps would be involved in the present section which is recording the existing steady the water level over the sharp crested weir then determining the corresponding flow rate due to the measured flow head. This was carried out according to Swiss Specifications which are published for approach channel of 100 cm width (b) and 40 cm weir height (s) as follows::

$$\mu_1 = 0.615 \left(1 + \frac{1}{h+1.6} \right) \left[1 + 0.5 \left(\frac{h}{h+s} \right)^2 \right]$$
(1)

For h and s in mm

$$\mu_2 = \left(.06035 + 0.0813 \frac{h_e}{s}\right) \frac{h_e}{h} \sqrt{\frac{h_e}{h}} \quad \text{(Rehbock)} \tag{2}$$

 $h_e = h+0.0011 \text{ m}; \text{ b, s, h and he in meters}$ (3)

$$\mu_m = \frac{1}{2} (\mu_1 + \mu_2) \tag{5}$$

$$Q = \frac{2}{3} \mu_m b h \sqrt{2 g h} \tag{6}$$

On the other hand, as the passing flow discharge through the modeled small branches upstream of "DGR" would be very diminutive with respect to that through Bahr Yussef and El-Ibrahimia canals at Dairut, approach channels of 0.2 m width were utilized. The outlet of the modeled branches for each of El-Sahelyia canal, El-Diroutia canal, Badraman canal, Abo Gabal canal and Irad Delgaw canal was provided equipped with a sharp crested weir of 30 cm height and 20 cm width. While two sharp crested weirs of 30 cm height and 50 cm width each was used at the modeled outlet of El-Ibrahimia and Bahr-Yusef canals. Apply the above equations, the passing flow discharges in litters per second were calculated for every 5 mm height step as listed in Table (23) and shown in Figure (29) for sharp crested weir of 1 m, 0.50 m and 0.20 m approach channel width respectively.

Head [H]	Discharge (l/s) over weir			Head [H]	Discharge (l/s) over weir		
(mm)	1 m	0.5 m	0.2 m	(mm)	1 m	0.5 m	0.2 m
10	2.033	1.017	0.407	120	78.599	39.299	15.720
15	3.602	1.801	0.720	125	83.685	41.842	16.737
20	5.444	2.722	1.089	130	88.889	44.445	17.778
25	7.528	3.764	1.506	135	94.211	47.106	18.842
30	9.828	4.914	1.966	140	99.649	49.825	19.930
35	12.330	6.165	2.466	145	105.203	52.601	21.041
40	15.020	7.510	3.004	150	110.870	55.435	22.174
45	17.888	8.944	3.578	155	116.649	58.325	23.330
50	20.925	10.463	4.185	160	122.541	61.270	24.508
55	24.125	12.062	4.825	165	128.543	64.272	25.709
60	27.481	13.741	5.496	170	134.656	67.328	26.931
65	30.989	15.495	6.198	175	140.877	70.439	28.175
70	34.644	17.322	6.929	180	147.207	73.603	29.441
75	38.442	19.221	7.688	185	153.644	76.822	30.729
80	42.380	21.190	8.476	190	160.188	80.094	32.038
85	46.455	23.227	9.291	195	166.838	83.419	33.368
90	50.663	25.332	10.133	200	173.593	86.797	34.719
95	55.003	27.501	11.001	205	180.453	90.227	36.091
100	59.472	29.736	11.894	210	187.417	93.709	37.483
105	64.068	32.034	12.814	215	194.484	97.242	38.897
110	68.788	34.394	13.758	220	201.654	100.827	40.331
115	73.633	36.816	14.727				

Table (23): Passing Discharge for Various Flow Heads

Figure (29): Calibration Chart for Sharp Plated Weir

8. TESTING PLAN

As the model would be constructed, the following experimental stages would be carried out:

8.1. Calibration Phase

This stage would be firstly carried out to check the simulation between the model and prototype as well as to assure model performance and validity by using the attainable results from the recently carried out field survey measurements. The measured flow discharge through each branched canal and the corresponding water surface level downstream the existing "DGR" are listed in Table (24). It is clear from Table (24) that the total flow discharge through the seven branched canals equals 353.14 m³/s while the measured flow discharge through the main El-Ibrahimia canal upstream "DGR" is 355.76 m³/s. However, such difference between the two discharges which equals 2.62 m³/s only would be accepted as it equivalent to 0.74% of the entering flow discharge.
No.	Canal name	Disch	arge	Water l	evel (m)
		(mm ³ /day)	(m ³ /s)	U/S	D/S
1	Bahr-Yusef canal	14.6 7	169.80	46.02	45.80
2	Badraman canal	0.52	5.97		45.79
3	Diroutiah canal	0.78	9.01		45.68
4	Ibrahimia canal D/S "DGR"	13.44	155.58		45.88
5	Sahelyia canal	0.34	3.90		45.75
6	Irad Delgaw canal	0.23	2.67		44.80
7	Abo Gabal canal	0.54	6.21		45.70
8	Ibrahimia canal U/S "DGR"	30.74	355.76		-

Table (2)	4): Hvdro	ological Co	ondition d	luring (alibration
				······································	

The equivalent model flow discharge through El-Ibrahimia main canal upstream of "DGR" as well as that through the seven branched canals downstream of "DGR" as well as the corresponding water surface level were worked out and adjusted in the model as listed in Table (25). Those values were calculated according to the selected model scale of 1 to 25 in the vertical and horizontal directions and according to the above mentioned simulation rules. As the flow discharge and the corresponding water surface level through each branch would be adjusted, the existing distribution for the flow velocity profile would be measured and compared with that acquired from the prototype.

No.	Canal	Prototype discharge		Model discharge
		(mm ³ /day)	(m ³ /s)	(l/s)
1	Bahr-Yusef canal	14.6 7	169.80	54.34
2	Badraman canal	0.52	5.97	1.91
3	Diroutiah canal	0.78	9.01	2.88
4	El-lbrahimia D/S "DGR"	13.44	155.58	49.79
5	Sahelyia canal	0.34	3.90	1.25
6	Irad Delgaw canal	0.23	2.67	0.85
7	Abo Gabal canal	0.54	6.21	1.99
8	El-lbrahimia U/S "DGR"	30.74	355.76	113.84

Table (25): Model Discharges during Calibration

8.2. Existing Prototype Conditions

This stage would be carried out in such a way as to record the existing flow conditions along the modeled reach upstream and downstream "DGR" before constructing the new "DGR" at the downstream in case of maximum and minimum flow discharges. As the model was calibrated against the field measurements of the prototype data, the two selected hydrological cases for the maximum and minimum flow conditions – which are listed in Tables (26 and 27) respectively - would be successively tested in the model. For each of the two flow conditions, several velocity profiles along each branched canal would be measured and the existing turbulent waves downstream the existing "DGR" could be recorded as well as the distribution of the flow current along the simulated canals.

Hydraulics Research Institute

39

No.	Canal name	Disch	arge	WS	SL
		Prototype	Model	U/S	D/S
		(m^{3}/s)	(l/s)	(m)	(m)
1	Bahr-Yusef canal	204.42	65.41	46.00	45.60
2	Badraman canal	8.23	2.63		45.85
3	Diroutiah canal	11.574	3.70		45.85
4	El-lbrahimia D/S "DGR"	178.78	57.21		45.15
5	Sahelyia canal	4.16	1.33		45.85
6	Irad Delgaw canal	8.53	2.73		45.00
7	Abo Gabal canal	6.11	1.96		45.85
8	El-Ibrahimia U/S "DGR"	421.81	134.98		-

Table (26)	: Existing	Hydrological	Records at Maximum	Discharge
------------	------------	--------------	---------------------------	-----------

Table (27): Existing Hydrological Records at Minimum Discharge

No.	Canal name	Dischar	rge	WS	5L
		Prototype	Model	U/S(m)	D/S
		(m ³ /s)	(l/s)		(m)
1	Bahr-Yusef canal	18.52	5.93	43.35	42.55
2	Badraman canal	0.44	0.14		***
3	Diroutiah canal	0.63	0.20		***
4	El-Ibrahimia D/S "DGR"	2.08	0.67		41.55
5	Sahelyia canal	0.22	0.07		***
6	Irad Delgaw canal	0.46	0.15		***
7	Abo Gabal canal	0.32	0.10		***
8	El-Ibrahimia U/S "DGR"	22.67	7.25		-

8.3. Testing the New "DGR"

The recommended design for the new Dairut Group of Regulators "DGR" would be then assembled according to proposed design by "JICA" which was previously detailed in this report. This would be affixed according to the recommended location, orientation and levels. Several model measurements for flow velocity distributions and flow currents upstream and downstream the new "DGR" would be justified for maximum and minimum flow discharges.

9. MODEL INSTRUMENTATION

In order to smooth the progress of the experimental work in the model as well as to fulfill the required accuracy, several advanced instruments would be utilized which can be illustrated as follows:

9.1. Ultra-sonic Flow-meter

To determine the flow discharge into the model with high accurately, an ultrasonic flow-meter is used. As shown in plate (9996) which would be installed on the one 10 inch-diameter feeding pipe. This flow meter read the water flow rate with an accuracy of $\pm 1\%$.

9.2. Electro-Magnetic Current meter

The flow velocity distribution in different branched canals would be measured in the model using an Electro-Magnetic current meter type E.M.S. Plate (7), which was manufactured by Delft Hydraulics of the Netherlands. The device was connected to a mean value meter to show the average velocity within a selected time period.

Point Gauges

To monitor and follow the water surface levels along each of branched canals downstream of "DHR" in the model, one point gauge with side stilling wells would be installed at an appropriate distance downstream the modeled "DGR". Also, another point gauge would be employed to measure water surface elevations along the main El-Ibrahimia canal upstream of "DGR". These point gauges can read the model water surface level with accurately up to ± 0.1 mm in the model which equivalent to ± 0.25 cm in the prototype.

Piezometer Tubes

In order to measure the pressure distribution on the horizontal apron, twelve cells 2 m apart (prototype scale) were fixed at the centerline of the apron surface. These cells are connected to twelve glass water manometers fixed on a vertical board to directly determine the pressure head above the inclined and horizontal apron Plate (9).

Video and Photo - Camera

Video and Photo cameras documentations are essential in such hydraulic study to record flow patterns for different flow cases and to monitor the stability of downstream rip-rap zones Plate (10).

Photos (from 5 to 19) illustrat some steps for model construction

Photo No. (5)

Photo No. (6)

Photo No. (7)

Photo No. (8)

Photo No. (9)

Photo No. (10)

Photo No. (11)

Photo No. (12)

Photo No. (13)

Photo No. (14)

Photo No. (15)

Photo No. (16)

Photo No. (17)

Photo No. (18)

Photo No. (19)

Physical Model Study of Dairut Group of Regulators

Progress Report No. 3

Model Set-up and Calibration

Authors

Prof. Ahmed Fahmy Ahmed Dr. Mohamed Mohamed Abdel-Lateef Eng. Eman Mahmoud El-Sherbiny Director Prof. Khaled Ramadan

Jan. 2016 HRI- 2/2016

HRI

Hydraulics Research Institute

Delta Barrae, Alkanater, Egypt P.O. Box 13621 E-mail info@ hri-egypt.org

Physical Model Study of Dairut Group of Regulators

Progress Report No. 3

Model Set-up and Calibration

Authors

Prof. Ahmed Fahmy Ahmed Dr. Mohamed Mohamed Abdel-Lateef Eng. Eman Mahmoud El-Sherbiny

Director Prof. Khaled Ramadan

Jan. 2016

HRI- 2/2016

Hydraulics Research Institute (HRI) National Water Research Center (NWRC) Ministry of Water Resources and Irrigation (MWRI) P.O.Box 13621, Delta Barrage, Egypt.

<u>Team Work</u>

Prof. Ahmed Fahmy Ahmed Dr. Mohamed Mohamed Abdel-Lateef Eng. Eman Mahmoud El-Sherbiny Emeritus Professor (Team Leader)

Associate Research Professor

Research Assistance

Table of contents

ABSTRACT	1
1. INTRODUCTION	2
2. MODEL DESCRIPTION	3
2.1. Model Entrance	6
2.2. Modelled Reach	8
2.3. Model Outlets	9
3. MODELED HYDRAULIC STRUCTURES	
3.1. Head Regulators	15
3.2. Leaf Gates	19
3.3. Bridges	20
4. DISCHARGE MEASURING	22
4.1. The Inflow Measuring	22
4.2. The Outflow Measuring	24
5. SIMULATED FLOW CONDITIONS	27
5.1. Calibration Flow Condition	27
5.2. Max. & Min. Flow Conditions	
5.3. Dominant Flow Condition	35
6. MODEL OPERATION	40
7. CALIBRATION RESULTS	42
7.1. Inflow Discharge Calibration	42
7.2. Establishing Calibration Condition	44
7.3. Velocity Measurements Calibration	45

List of Tables:

TABLE (1): CONDUCTED SURVEY AND FIELD MEASUREMENTS	4
TABLE (2): SIMULATED CANAL LENGTHS IN THE MODEL	4
TABLE (3): SIMULATED CROSS SECTIONS IN THE MODEL	5
PHOTO (10): LAYOUT OF THE EXISTING DAIRUT GROUP OF REGULATORS	14
TABLE (4): CURRENT FORMATION OF DAIRUT GROUP OF REGULATORS	14
TABLE (5): CURRENT STATUS OF THE GATES OF THE "DGR"	20
Table (6): Passing Discharge for Sharp Plated Weir of 0.2m Width	25
Table (7): Passing Discharge for Sharp Plated Weir of 0.5m Width	26
TABLE (8): HYDROLOGICAL CONDITION DURING CALIBRATION	28
Table (9): Model Discharges during Calibration	28
TABLE (10): MODEL RECORDS AT CALIBRATION STAGE	29
TABLE (11): HYDROLOGICAL DATA OF EL-IBRAHIMIA HEAD REGULATOR	
TABLE (12): HYDROLOGICAL RECORDS AT MAXIMUM DISCHARGE	31
TABLE (13): HYDROLOGICAL RECORDS AT MINIMUM DISCHARGE	31
TABLE (14): EXISTING HYDROLOGICAL RECORDS AT MAXIMUM DISCHARGE	32
TABLE (15): EXISTING HYDROLOGICAL RECORDS AT MINIMUM DISCHARGE	32
TABLE (16): MODEL DATA FOR MAXIMUM FLOW DISCHARGE	
TABLE (17): MODEL DATA FOR MINIMUM FLOW DISCHARGE	34
TABLE (18): DESIGN DISCHARGE BASED ON THE QUOTA AT "DGR"	36
TABLE (19): HYDROLOGICAL RECORDS AT DOMINANT DISCHARGE (23/7/2014)	36
TABLE (20): HYDROLOGICAL RECORDS AT DOMINANT DISCHARGE (23/8/2014)	36
TABLE (21): CONCLUDED RECORDS AT DOMINANT DISCHARGE	
TABLE (22): DOMINANT DISCHARGE BASICS FORE THE MODEL	
TABLE (23): MODEL DATA FOR DOMINANT FLOW DISCHARGE	
TABLE (25): HYDROLOGICAL CONDITION DURING CALIBRATION	40
TABLE (28): HYDROLOGICAL CONDITION DURING CALIBRATION	44
TABLE (29): MID-DEPTH VELOCITY DISTRIBUTION ON IRAD DELGAW CANAL	45
TABLE (30): MID-DEPTH VELOCITY DISTRIBUTION ON ABOU GABAL CANAL	46
TABLE (31): MID-DEPTH VELOCITY DISTRIBUTION ON BAHR YUSSEF CANAL	46
TABLE (32): MID-DEPTH VELOCITY DISTRIBUTION ON BADRAMAN CANAL	47
TABLE (33): MID-DEPTH VELOCITY DISTRIBUTION ON EL-DAIRUTIAH CANAL	48
TABLE (34): MID-DEPTH VELOCITY DISTRIBUTION ON EL-IBRAHIMIA CANAL	49
TABLE (35): MID-DEPTH VELOCITY DISTRIBUTION ON EL-SAHELIA CANAL	50

List of Figures:

FIGURE (1): GENERAL LAYOUT OF THE SURVEYED CANALS	3
FIGURE (2): GENERAL LAYOUT OF THE MODEL	5
FIGURE (3): MODEL ENTRANCE DESIGN	7
FIGURE (4): INSTALLED POINT GAUGES ALONG THE MODEL	9
FIGURE(7): SIMULATED PIERS FOR BAHR YUSEF, IBRAHIMIA, BADRMAN AND DIROTIAH REGULATORS	15
FIGURE (8): SIMULATED PIERS FOR ABO GABAL AND IRAD DELGAW HEAD REGULATORS	15
FIGURE (9): SIMULATED PIERS FOR EL-SAHELYIA HEAD REGULATORS	16
FIGURE (10): OPERATION OF THE THREE LEAF GATES	19
FIGURE (11): SHAPED PIERS OF EL-KORASHIA BRIDGE	21
FIGURE (12): CALIBRATION CHART FOR SHARP PLATED WEIR	26
FIGURE (13): LOCATION OF THE MEASURED VELOCITY PROFILES	27
FIGURE (14): DAILY FLOW RECORDS FOR EL-IBRAHIMIA HEAD REGULATOR IN YEAR 2014	35
FIGURE (15): CALIBRATION RESULTS OF ULTRASONIC FLOW METER	43
FIGURE (16): IN AND OUTFLOW CALIBRATION RESULTS	43
FIGURE (18): VELOCITY DISTRIBUTION AT IRAD DELGAW CANAL	45
FIGURE (19): VELOCITY DISTRIBUTION AT ABOU GABAL CANAL	46
FIGURE (20): VELOCITY DISTRIBUTION OF BAHR USSEF CANAL	47
FIGURE (21): VELOCITY DISTRIBUTION AT BADRAMAN CANAL	47
FIGURE (22): VELOCITY DISTRIBUTION AT EL-DAIRUTIA CANAL	48
FIGURE (23): VELOCITY DISTRIBUTION OF EL-IBRAHIMIA CANAL	49

List of Photos:

PHOTO (1): GENERAL MODEL PHOTO LOOKING DOWNSTREAM	6
PHOTO (2): GENERAL MODEL PHOTO LOOKING UPSTREAM	6
PHOTO (3): MODEL ENTRANCE CONSTRUCTION	8
PHOTO (4): MODEL ENTRANCE AFTER CONSTRUCTION	8
PHOTO (5): SHARP CRESTED WEIRS FOR IRAD DELGAW AND ABOU GABAL CANALS	10
PHOTO (6): END TAIL GATE OF BADRAMAN AND DAYTUTIAH CANALS	11
PHOTO (7): SHARP CRESTED WEIRS OF BADRAMAN AND DAYTUTIAH CANALS	11
PHOTO (9): MOUNTED END TAIL GATE FOR EL-IBRAHIMIA CANAL	12
PHOTO (10): FORMING MODELED PIERS	16
PHOTO (11): SHAPED REINFORCED CONCRETE PIERS	16
PHOTO (12): MOUNTING EL-IBRAHIMIA HEAD REGULATOR	
PHOTO (13): MOUNTED DAIRUT GROUP OF REGULATORS	
PHOTO (15): MOUNTED BAHR YUSSEF HEAD REGULATOR	
PHOTO (16): MOUNTED BADRAMAN-DAYRUTIA HEAD REGULATOR	
PHOTO (17): MOUNTED EL-IBRAHIMIA HEAD REGULATOR	
PHOTO (18): MOUNTED EL-SAHELIAH HEAD REGULATOR	19
PHOTO (19): EL-KORASHIA BRIDGE CONSTRUCTION	20
PHOTO (20): MOUNTED EL-KORASHIA BRIDGE	21
PHOTO (21): THE ELECTRO-MAGNETIC FLOW-METER	22
PHOTO (22): FIXED ULTRASONIC FLOW METER AROUND FEEDING PIPE	23
PHOTO (23): ULTRA-SONIC FLOW-METER GAUGE	23
PHOTO (24): USED ELECTRO-MAGNETIC CURRENT-METER TYPE E.M.S	41

ABSTRACT

Dairut group regulators "DGR" is located on El-Ibrahimiya canal at km 60.600 downstream of El-Ibrahemiya head barrages which is branched from the west Nile River bank at km 544.450 downstream of Old Aswan Dam "OAD" and about 400 m upstream the existing Assiut barrages. This group of regulators was constructed in 1872 to play a vital role of delivering about 9.6 billion m³/year of irrigation water to all beneficiary area of about 1.43 millions feddans through El- Ibrahimia main canal. "DGR" branches at El-Ibrahimia main canal at Dairut into seven main canals, namely El-Ibrahimia canal, Bahr-Yusef canal, Sahelyia canal, El-Diroutia canal, Badraman canal, Abo Gabal canal and Irad Delgaw canal. The Bahr-Yousef canal is the largest canal in capacity among the seven canals. Its length extends as long as 312 km downstream of "DGR" and there are four regulators along the canal, namely El-Lahoun regulator, Mazoura regulator, Sakoula regulator and Dahab regulator. Those regulators have been rehabilitated by Japan's Grant Aid since 1995.

One important point should be raised concerning the existing "DGR" which is that Dairut Group of Regulators was constructed in 1872 and can be considered as the oldest active regulator in Egypt, and the their weirs cannot function well due to their age. For this reason rehabilitation of such hydraulic construction should be urgently implemented. It is expected that the impacts of the rehabilitation of the "DGR" should be significant considering the vast beneficiary area and very long canal networks. Therefore, rehabilitation of "DGR" was quite urgent for seeking effective use of the limited water resources and due to limited facilities as well as high cost operation and maintenance.

Based on such an understanding, the Government of Egypt "GOE" requested informally to the Government of Japan "GOJ" for the Japanese Official Development Assistance by Yen-Loan. Accordingly, Japan International Cooperation Agency "JICA" dispatched the study team for the preparatory survey for the rehabilitation and improvement of Dairut Group of Regulators "DGR". Therefore, in order to increase agricultural production and to keep sustainability of agricultural industry in the Upper Egypt region the main objectives of the conducted study were defined as the following:

- 1. To formulate the rehabilitation plan for Dairut Group of Regulators "DGR";
- 2. To formulate the improving water distribution plan for the entire operation and maintenance of "DGR" and other regulators that are located along the main canals;
- 3. To evaluate the present situation and the rehabilitation plan of the existing minor structures based on the result of the inventory survey carried out by the Ministry of Water Resources and Irrigation "MWRI"; and
- 4. To carry out technology transfer to the implementation agency through the study period on the above mentioned subjects.

To fulfill the above mentioned objectives, a three dimensional physical model study would be carried out in the Hydraulics Research Institute "HRI" which is the main concern of the present reports.

1. INTRODUCTION

The current investigation is being carried out referring to letter No. 1379/156 dated on the 8th day of May 2014 from the Reservoirs and Grand Barrages Sector "RGBS" of the Ministry of Water Resources and Irrigation "MWRI" which requested "HRI" to prepare for a technical and financial proposal to carry out hydraulic physical model for testing a new alternative for Dairut Group Regulators "DGR". The focal objective of the proposed testing program is to adopt the best alignment and hydraulic design for the new barrages group components which fulfills the new emerged flow morphology regime through El-Ibrahimiya canal after the construction of the new Assuit barrages. Flow capacity and velocity distribution upstream and downstream each of the new group components would be physically tested and investigated.

To achieve the above mentioned study objectives, several field and laboratory activities were carried out which can be summarized as follows:

- 1. Topographic, bathymetric survey and field measurements were conducted to cover about 6.5 km which comprises the branched canals downstream Dairut Group of Regulators "DGR" and main El-Ibrahimia canal upstream "DGR". Field measurements involved every needed detail to construct and calibrate the physical model. Accordingly the first report was released by "HRI" in August 2015 which was mainly focused on the field measurements for conducting the model study.
- 2. Different hydrological information for passing flow discharges and the corresponding water surface levels for each of the seven branched canals was collected. These data were summarized and analyzed for the case of existing conditions as well as for the maximum and minimum flow discharges. Also the detailed dimensions of the existing barrages and head regulators at "DGR" were collected to be simulated in the model.
- 3. The second progress report entitled "Model Design and Construction" was raised on September 2015 in which the prototype condition, the hydrological and hydraulic properties of the existing and the new proposed "DGR" were comprised.
- 4. Several hydrological details of the passing flow discharges and the corresponding water surface levels for different branched canals downstream of "DGR" as well as general description of the model construction and design similarity rules were also comprised within the second progress report.

The current report (the third one) would be directed to cover all details of the model set-up and the calibration results under the following sections:

- Model description
- Modeled hydraulic structures
- Discharge measuring
- Simulated flow conditions
- Model operation
- Calibration results

Description of different branched canals concerning the carried out measurements and the corresponding hydraulic properties as well as the attainable results would be provided and arrangement in this report following clock wise direction.

3

2. MODEL DESCRIPTION

The model was constructed according to the conducted field measurements that were recently carried out by "HRI" survey staff on June 2015. The measurements included topographic, bathymetric and hydrometric measurements along the seven branched canals downstream "DGR" and the located reach of El-Ibrahmia canal upstream of "DGR". Also, the field survey included velocity measurements and collecting some bed samples. The survey was done at the project site using advanced survey equipments. General layout of the contour map for the surveyed branches is illustrated in Figure (1) while summary of the conducted topographic and bathymetric field measurements are listed in Table (1).

Figure (1): General Layout of the Surveyed Canals

No.	Branch name	Symbol	Survey	Veloc	Velocity profiles		l samples
		-	Length	No.	Location	No.	Location
			(m)		(m)		(m)
1	El-Ibrahimia U.S. "DGR"	AA	1280	1	AA1080	3	AA1080
2	Irad Delgaw canal	BB	500	1	BB215		
3	Abo Gabal canal	CC	600	1	CC130		
4	Bahr-Yusef canal	DD	1075	2	DD250	3	DD540
					DD500		
5	Badraman canal	EE	580	1	EE230		
6	Diroutiah canal	FF	550	1	FF230		
7	Ibrahimia canal	GG	1230	2	GG250	2	GG690
					GG500		
8	Sahelyia canal	HH	590	1	HH325		
	Total Survey activities		6405	10		8	

	Table (1):	Conducted	Survey	and Field	Measurements
--	-------------------	-----------	--------	-----------	--------------

The model was constructed in open air area within the northern experimental hall of "HRI" of about 46 m length and 24 m average width to cover about 910 m². This area was deliberately selected not only to guarantee high flow discharges and other experimental requirements, but also to secure adequate lengths for the downstream branched canals when testing the new proposed "DGR". The model was constructed to simulate appropriate reaches of the 7 branched canals downstream "DGR" and the main El-Ibrahima canal upstream of "DGR". The model would be a fixed bed undistorted scale of equal horizontal and vertical construction scale of 1 to 25. Details of measured lengths and cross sections for each of eight modeled canals are listed in Tables (2 and 3) while Figure (2) and Photos (1 and 2) show general lay out and general view of the model. The model consists of three main components; the entrance, the modeled reach, and the outlet. Full description of the abovementioned model components are as follows:

No.	Canal name	Prototype condition (m)				Modeled
		Survey length (m)		Cross s	length	
		Measured	Modeled	Measured	Modeled	(m)
1	Bahr-Yusef canal	1075	577	34	18	23
2	Badraman canal	580	353	12	7	14
3	Diroutiah canal	550	351	12	7	14
4	Ibrahimia canal	1230	563	40	18	23
5	Sahelyia canal	590	112	15	2	4
6	Irad Delgaw canal	500	221	19	9	9
7	Abo Gabal canal	600	205	16	7	8
8	Ibrahimia Main canal	1280	652	40	20	26
Total Length (m)		6405	3032		88	121

Table (2): Simulated Canal Lengths in the Model

No.	Canal name	Symbol	Measured	Modeled sections	
			Sections	From	То
1	Ibrahimia Main canal	AA	20	AA20	AA41
2	Irad Delgaw canal	BB	8	BB1	BB8
3	Abo Gabal canal	СС	7	CC1	CC7
4	Bahr-Yusef canal	DD	18	DD1	DD18
5	Badraman canal	EE	8	EE1	EE8
6	Diroutiah canal	FF	8	FF1	FF8
7	Ibrahimia canal	GG	18	GG1	GG18
8	Sahelyia canal	HH	3	HH1	HH3
Total Length (m)			90		

Table (3): Simulated Cross Sections in the Model

Photo (1): General Model Photo Looking Downstream

Photo (2): General Model Photo Looking Upstream

2.1. Model Entrance

The model entrance – as illustrated in Figure (3) and Photos (3 and 4) was made of 0.18 m thickness bricks wall covered with 0.02 m cement mortar at both sides mixed with chemical isolated materials to prevent seepage. The entrance is 6.0 m width, 3.30 m long and consists of three successive divisions one meter long each. The upstream one is constructed of 2.0 m high closed walls to receive the delivered pump water from the underground reservoir to the model. While the following division is one meter height and mainly constructed to convey the delivered water from the upstream compartment straightforwardly to the simulated model reach through a unfilled wall. The third downstream division is opened to guide the flow discharge to the modelled reach through an access ramp as shown in Figure (3). The third division is provided with a frame of pieces of wood to distribute the entering water flow through the entire model cross section in such a way as to simulate the prototype condition.

Figure (3): Model Entrance Design

Photo (3): Model Entrance Construction

Photo (4): Model Entrance after Construction

2.2. Modelled Reach

The modeled reach is the main study model element which simulates the 7 branched canals downstream of "DHR" and part of the main El-Ibrahimia canal upstream of "DGR". Those branches were shaped according to the existing configurations, levels and locations in equal horizontal and vertical construction scale of 1 to 25 which were constructed of about 0.07 m thick layer of plane concrete. The modeled reach was formed in such a way as to imitate the prototype condition and according to the latest field and bathymetric measurements which were carried out by "HRI" survey team. To guarantee high accuracy, the measured cross section in the prototype were scaled down and allocated according to their orientation, location and levels in the prototype. Then the separation between each successive two cross sections were filled up and shaped with plane mortar. The modeled regulators which simulate the existing "DGR" were constructed in the "HRI" workshop following the same undistorted model scale of 1 to 25. Level of the constructed reach was previously determined in the hydraulic laboratory in such a way as to provide the necessary water levels upstream each of the installed sharp crested weirs and the tailgates.

In order to monitor and follow the water surface levels along the model in El-Ibrahimia canal upstream "DGR" and along the seven branched canals downstream "DGR", eight point gauges were installed along those branches as shown in Figure (4). Each point gauge was affixed on a vertical 10 inch diameter side well which was in term connected to the bed of one branch through 10 mm diameter plastic tube. Therefore, the point gauges can measure water surface levels along the whale length of the model and read accurately up to \pm 0.1 mm. with height accuracy of 0.1 mm. The point gauge locations were previously assigned to be downstream of the proposed location for the new "DGR" and in such a way as to avoid the back water curve upstream the installed end tail gate downstream each of the seven branched canals.

Figure (4): Installed Point Gauges along the Model

2.3. Model Outlets

The principal function of the model outlets is to maintain water surface level through each modeled branch canales in such a way as to reproduce all the existing hydraulic and hydrology conditions in the prototype, then leading the passing flow discharge to the outlet sharp crested weir. For this reason the model exit consists of the tailgate and the approach channel. The tailgate is used to adjust the water surface level in the upstream which was made of 5mm rectangular steel plate and hinged from bottom and can be easily rotated around the lower hinge

to adjust the upstream water surface level through each modeled branch. This tailgate type was used at the exit end of the two modeled reaches of El-Ibrahimia and Bahr Yussef canals. While in case of the other small branched canals another vertical and simple tail gates were utilized.

The outlet of the modeled branches for each of El-Sahelyia canal, El-Dairutia canal, Badraman canal, Abo Gabal canal and Irad Delgaw canal was provided and equipped with a sharp crested weir of 30 cm height and 20 cm width as shown in Figure (5) and Photos (5, 6, and 7). While two flap tailgates of about 4.0 m long were affixed at the downstream end of the modeled parts of Bahr Yussef canal and El-Ibrahimia canal downstream of "DGR" as shown in Photos (8 and 9). While two sharp crested weirs of 30 cm height and 50 cm width each was used at the modeled outlet of El-Ibrahimia and Bahr-Yusef canals. The model feeding system consists of an electric centrifugal pump of 10 inch diameter and a suction pipe connected to the sump. Water was pumped from the underground reservoir and delivered to the model entrance through the delivery pipeline.

Figure (5): Model End Tail Gate for Small Branches

Photo (5): Sharp Crested Weirs for Irad Delgaw and Abou Gabal Canals

Photo (6): End Tail Gate of Badraman and Daytutiah Canals

Photo (7): Sharp Crested Weirs of Badraman and Daytutiah Canals

Photo (8): Mounted End Tail Gate for Bahr-Yussef Canal

Photo (9): Mounted End Tail Gate for El-Ibrahimia Canal

3. MODELED HYDRAULIC STRUCTURES

The existing Dairut group of regulators "DGR" was constructed in 1872 on El-Ibrahimiya canal at km 60.600 downstream of El-Ibrahemiya head barrages which is branched from the west Nile River bank at km 544.450 downstream of Old Aswan Dam "OAD" and about 400 m upstream the existing Assiut barrages. Those regulators are mainly constructed to feed seven downstream canals, namely from west to east; Irad Delgaw canal, Abo Gabal canal, Bahr-Yusef canal, Badraman canal, El-Dairutia canal, El-Ibrahimia canal, and El- Sahelyia canal. This group of regulators comprises only five main head regulators. This because each of the two branches of Irad Delgaw and Abou Gabal canals and two branches of Badraman canal and Dairutia canals are branched downstream only one head regulator as shown in Figure (6) and Photo (10), and listed in Table (4).

Figure (6): Main Branch Canals Downstream of "DGR"

Photo (10): layout of the Existing Dairut Group of Regulators

Name of	Regulator	Dimensions of the regulator unit		
canal at DGR	unit	Structural	Gates	
Bahr Yusef	No. of gates	5 vents	3m width x 5 vents	
	Pier	4 units & width 1.80~2.25m	Total height 7.5 m	
	Mid. Apron	L=43.25m, thickness 3m	3 leaves of gate	
	Foundation	Limestone partially concrete	Bottom elevation (39.50) m	
	Lock	width 8.5m	Operational high water level (46.00) m	
Badraman	No. of gates	2 vents (1 vent closed)	3m wide x 2 vents total height 7.5m	
& Dirotiah	Pier	2 units & width 1.80~2.25m	3 leaves of gate	
	Mid. apron	L=38.65m,	Bottom elevation (39.30) m	
	Foundation	limestone, t=unknown	Operational high water level (46.00)m	
Ibrahimia	Ibrahimia No. of gates 7 vents		3m width x 7 vents	
Pier		6 units & width 1.80~2.25m	Total height 7.5 m	
	Mid. apron L=39.70m, thickness 3m		3 leaves of gate	
	Foundation limestone partially concrete		Bottom elevation (39.81) m	
	Lock	width 8.5m	Operational high water level (46.00) m	
Sahelyia	No. of gates	2 vents	3m wide x 2 vents total height 5.5 m	
(right bank)	Pier	1 unit & width 1.80~2.25m	1 leaves of gate	
	Mid. apron	L=18.90m,	Bottom elevation (41.80) m	
	Foundation	limestone, t=unknown	Operational high water level (46.00) m	
Abo Gabal	No. of gates	3 vents	3m wide x 3 vents total height 5.5 m	
& Irad	Pier	2 units & width 1.80~2.25m	1 leaves of gate	
Delgaw	Mid. apron	L=28.60m,	Bottom elevation (42.00) m	
(left bank)	Foundation	limestone, t=unknown	Operational high water level (46.00) m	

Table (4):	Current	Formation	of Dairut	Group of	of Regulators
------------	---------	-----------	-----------	----------	---------------

On the other hand, three more bridges are installed within the study reach which are located on Abo Gabal canal, El- Sahelyia canal and El-Korashia bridge at Km 60.100 on El-Ibrahimia canal at km 60.100 upstream of "DGR". Those mounted hydraulic structures in the model can be illustrated as follows:

3.1. Head Regulators

In order to assemble the modeled regulators, the conducted Japan International Cooperation Agency "JICA" report for the preparatory survey for the rehabilitation and improvement of Dairut Group of Regulators "DGR" were utilized and some more details of the engineering drawings were obtained from the Reservoirs and Grand Barrages Sector "RGBS". Moreover some particular details and pictures were recorded for each structure by "HRI" survey group to support and help model simulation. Those references were utilized to work out all detailed dimensions and features of the modeled hydraulic structures. According to "JICA" report, "DGR" consists of five head regulators comprise 19 continuous arch structural vents made by bricks. This is one of the typical models of river structures, and was the most advanced technology at the time when reinforced concrete was not popular yet. The width of each vent is three meters. The assembled piers to construct the five head regulators in the model are shown in Figures (from 7 to 9).

Figure (8): Simulated Piers for Abo Gabal and Irad Delgaw Head Regulators

Figure (9): Simulated Piers for El-Sahelyia Head Regulators

The modeled two head regulators for the two branched canals of Badraman and El-Dairutia, and El- Sahelyia canal were completely erected and assembled of a special type of timber in "HRI" workshop. While each pier of the other three head regulators were shaped of reinforced concrete by using wooden form work as shown in Photos (10 and 11).

Photo (10): Forming Modeled Piers

Photo (11): Shaped Reinforced Concrete Piers

Those piers and attached lock chambers were then placed according to their levels and locations to assemble each of the three modeled head regulators as shown in Photos (12 and 13). Also Photos (from 14 to 18) show each of the five mounted "DGR" head regulators.

Photo (12): Mounting El-Ibrahimia Head Regulator

Photo (13): Mounted Dairut Group of Regulators

Photo (14): Mounted Irad Delgaw Head Regulator

Photo (15): Mounted Bahr Yussef Head Regulator

Photo (16): Mounted Badraman-Dayrutia Head Regulator

Photo (17): Mounted El-Ibrahimia Head Regulator
2/2016

Photo (18): Mounted El-Saheliah Head Regulator

3.2. Leaf Gates

Each vent of the three head regulators of Bahr Yusef, Badraman, and El-Ibrahimia head regulators, have three gates with upper, middle and lower gates of 7.5 m high. The gutter of each gate is made of cast metal and divided into three rows. Flow discharge and the corresponding water surface level upstream each of the three regulator is controlled using the three leaf gates that fixed at downstream side of every vent as illustrated in Figure (10). This reveals the following:

- Case (1) which used to be applied at the ordinary and regular flow discharges. The discharge in this case is controlled by using upper and middle gates while the upstream gate is lowered on the floor as shown in Figure (10-a).
- Case (2) which used to be applied at the passing low flow discharges. The discharge in this case is controlled by using upper gate while the two upstream gates (the lower and middle gates) are lowered to raise the upstream water surface level as in Figure (10-b).
- Case (3) which used to be applied at the case of maintenance work to flush deposited sedimentation. The discharge in this case is passing without any control by lifting the three leaf gates above the existing water surface level as shown in Figure (10-c).

Figure (10): Operation of the Three Leaf Gates

On the other side, each vent of El-Sahelyia head regulator and Abo Gabal head regulator consists of one life gate with 5.5 m height. The current operation gates of the existing "DGR" are listed in Table (5). Those gates were assembled by using a special type of wood to control the entering water discharge downstream each of the seven assembled head regulator.

Regulator Name	No. from	Upper	Mid.	Lower	Remarks
Regulator Marine	left Bank	Gate	Gate	Gate	
Ibrahimia Reg.	No. 1	0	0	0	
	No. 2 to 6	0	0	ंХ	without chain
	No.7	0	0	0	
Bhar Yusef Reg.	No. 1to 5	0	0	0	
Badraman Reg.	No. 1 to 2	0	0	0	
Abo Gabal Reg.	No. 1to 3		0		
El-Sahelia	No. 1 to 2		0		

 Table (5): Current Status of the Gates of the "DGR"

3.3. Bridges

The mounted three bridges within the modeled reach were scaled and assembled according to the model scale on Abo Gabal canal, El- Sahelyia canal, and El-Ibrahimia canal upstream of "DGR". Although each of the two constructed bridges on Abo Gabal canal, and El- Sahelyia canal are simple constructions, the existing bridge on El-Ibrahimia canal upstream of "DGR" is rather dense. This bridge consists of seven combined piers; each comprises 20 square piles of 0.4 m side long, while a middle circular pier comprises 28 square piles 0.4 m side long (which equal to 1.6 cm in the model). In order to protect the bridge against navigation units a main wooden fender was constructed around the middle circular pier which is supported on 26 circular piles 0.3 m diameter each (which equal to 1.2 cm in the model) as shown in Photos (19 and 20). While the two sided piers were partially protected from upstream and downstream directions by four elements of wooden finders. Each element was supported on 3 circular piles 0.3 m diameter each (which equal to 1.2 cm in the model) as shown in Photos (19 and 20) and Figure (11).

Photo (19): El-Korashia Bridge Construction

Photo (20): Mounted El-Korashia Bridge

Figure (11): Shaped Piers of El-Korashia Bridge

4. DISCHARGE MEASURING

The model was constructed on a large underground reservoir to work as a feeding and drainage basin at the same time which can be assigned as a recalculated feeding system. The capacity of the underground reservoir was completely sufficient to feed the model with more than the maximum required flow discharge. Two electric centrifugal pumps of 10 and 6 inch diameters pipe lines with capacity of 150 and 60 l/s respectively were utilized. The required flow discharge in the model is pumped from the underground reservoir via either of the two provided pumps and delivered to the upstream room of the model entrance. While the spelt flow discharges downstream each of the seven installed sharp crested weirs is directed back to the underground reservoir.

Two flow discharge measuring techniques were applied during testing program in the model. The first one is used on the two delivery pipe lines which are pumping water from the underground feeding reservoir to the upstream model entrance. While the second one is measuring the outlet flow rate over 7 sharp crested weirs that are affixed at the downstream end of each branched canal in the model. The outlet flow was determined by using the variation in the flow water levels over the sharp crested weir which is consequently diverted to corresponding out flow rates for each branched canal in the model. For this reason, the measuring flow discharges in the model can be classified into inflow and outflow as follows:

4.1. The Inflow Measuring

To determine the flow discharge into the model accurately, two flow-meters were employed. As shown in Photo (21), an Electro-Magnetic flow-meter type E.M.S. was installed on 10 inch pipeline diameter of the major electric feeding pump. The flow-meters can be used to measures the passing flow rate with \pm 1% accuracy.

Photo (21): The Electro-Magnetic Flow-Meter

Also one portable Ultrasonic (Flexim) flow meter was affixed on the 6 inch pipeline diameter of the assisting feeding pump to be used for small discharges as shown in Photos (22 and 23). This flow meter uses the transit time difference principle to measure the difference in travel time between pulses transmitted in the direction of flow and pulses transmitted against the flow. The difference between the upstream and downstream transit times can be correlated to flow rate through the meter. With this in mind, the following specifications were fulfilled:

- The allowed flow velocity is ranged between 0.01 m/s and 25.0 m/s
- The measuring accuracy is ranged between ± 1.6 % of reading ± 0.01 m/s (standard)
- The pipe diameter range is from 10.0 mm to 12.00 m

Photo (22): Fixed Ultrasonic Flow Meter around Feeding Pipe

Plate (23): Ultra-Sonic Flow-meter Gauge

4.2. The Outflow Measuring

The present section would be elaborated to record the variation in the passing flow discharges out of the model over the sharp crested weir to precisely determine the corresponding prototype discharges. Two steps would be involved in the present section which is recording the existing steady water level over the sharp crested weir then determining the corresponding flow rate due to the measured flow head. The Swiss Specifications that were published for approach channel of 100 cm width and 40 cm weir height was utilized. To determine the passing flow over any sharp crested weir, the following formula was applied:

$$Q = \frac{2}{3}\mu..B.\sqrt{2g}.H^{1.5}$$

Where,

- Q = Discharge (m3/s)
- μ =Discharge coefficient =0.64
- B =Weir length (m)
- G = gravity acceleration (m^2/s)
- H =Weir head (distance between the weir crest and u/s water level) (m)

Reading over weir crest=70cm

On the other hand, as the passing flow discharge through the small modeled branches upstream of "DGR" would be very diminutive with respect to that through Bahr Yussef canal and El-Ibrahimia canal at Dairut, sharp plated weirs of 0.2 m width were utilized at the outlet of the small branched canals. While the outlet of the modeled branches for each of Irad Delgaw canal, Abo Gabal canal, Badraman canal, El-Dairutia canal, and El-Sahelyia canal was equipped with a sharp crested weir of 30 cm height and 20 cm width. While two sharp crested weirs of 30 cm height and 50 cm width each was used at the modeled outlet of Bahr-Yusef canal and El-Ibrahimia canal.

The published equations to determine the passing flow discharges in litters per second were applied for every one mm height step for sharp crested weir of 0.3 m height and for 0.20 m and 0.50 m approach channel width respectively as listed in Tables (6 and 7) and shown in Figure (12).

Head (H)			Flow	Discharg	ge in (L/s) for each	n one mm	step		
(mm)	0	1	2	3	4	5	6	7	8	9
0		0.025	0.052	0.083	0.119	0.159	0.202	0.249	0.299	0.351
10	0.407	0.465	0.525	0.588	0.653	0.721	0.790	0.862	0.936	1.012
20	1.090	1.170	1.251	1.335	1.420	1.507	1.596	1.687	1.779	1.873
30	1.969	2.066	2.165	2.265	2.367	2.470	2.575	2.682	2.790	2.899
40	3.010	3.123	3.237	3.352	3.468	3.586	3.706	3.826	3.949	4.072
50	4.197	4.323	4.450	4.579	4.709	4.840	4.973	5.106	5.242	5.378
60	5.515	5.654	5.794	5.936	6.078	6.222	6.367	6.513	6.660	6.808
70	6.958	7.109	7.261	7.414	7.568	7.723	7.880	8.038	8.197	8.357
80	8.518	8.680	8.843	9.008	9.173	9.340	9.508	9.676	9.846	10.017
90	10.190	10.363	10.537	10.712	10.889	11.066	11.245	11.424	11.605	11.787
100	11.970	12.153	12.338	12.524	12.711	12.899	13.088	13.278	13.469	13.661
110	13.854	14.048	14.243	14.440	14.637	14.835	15.034	15.234	15.435	15.637
120	15.841	16.045	16.250	16.456	16.663	16.871	17.080	17.290	17.501	17.713
130	17.926	18.140	18.355	18.571	18.788	19.006	19.225	19.444	19.665	19.887
140	20.109	20.333	20.557	20.783	21.009	21.237	21.465	21.694	21.924	22.155
150	22.387	22.620	22.854	23.089	23.325	23.562	23.799	24.038	24.277	24.518
160	24.759	25.001	25.245	25.489	25.734	25.980	26.226	26.474	26.723	26.972
170	27.223	27.474	27.727	27.980	28.234	28.489	28.745	29.002	29.259	29.518
180	29.777	30.038	30.299	30.561	30.824	31.088	31.353	31.618	31.885	32.153
190	32.421	32.690	32.960	33.231	33.503	33.776	34.049	34.324	34.599	34.876
200	35.153	35.431	35.709	35.989	36.270	36.551	36.834	37.117	37.401	37.686
210	37.971	38.258	38.546	38.834	39.123	39.413	39.704	39.996	40.288	40.582
220	40.876	41.171	41.467	41.764	42.062	42.361	42.660	42.960	43.261	43.563
230	43.866	44.170	44.474	44.780	45.086	45.393	45.701	46.009	46.319	46.629
240	46.940	47.252	47.565	47.879	48.193	48.509	48.825	49.142	49.459	49.778
250	50.098	50.418	50.739	51.061	51.384	51.707	52.032	52.357	52.683	53.010
260	53.338	53.666	53.995	54.325	54.656	54.988	55.321	55.654	55.988	56.323
270	56.659	56.996	57.333	57.672	58.011	58.350	58.691	59.033	59.375	59.718
280	60.062	60.407	60.752	61.098	61.446	61.794	62.142	62.492	62.842	63.193
290	63.545	63.898	64.251	64.606	64.961	65.317	65.673	66.031	66.389	66.748
300	67.108	67.469	67.830	68.192	68.555	68.919	69.284	69.649	70.015	70.382

 Table (6): Passing Discharge for Sharp Plated Weir of 0.2m Width

Head (H)			Fl	ow Discha	rge in (L/s) for each	one mm s	tep		
(mm)	0	1	2	3	4	5	6	7	8	9
0	0.00	0.063	0.129	0.208	0.298	0.398	0.506	0.623	0.747	0.879
10	1.017	1.162	1.313	1.470	1.633	1.802	1.976	2.156	2.340	2.530
20	2.725	2.924	3.128	3.337	3.550	3.768	3.990	4.217	4.448	4.683
30	4.922	5.165	5.412	5.663	5.917	6.176	6.439	6.705	6.975	7.249
40	7.526	7.807	8.091	8.379	8.671	8.966	9.264	9.566	9.871	10.180
50	10.492	10.807	11.125	11.447	11.772	12.100	12.432	12.766	13.104	13.445
60	13.789	14.136	14.486	14.839	15.195	15.554	15.916	16.281	16.650	17.021
70	17.395	17.772	18.152	18.534	18.920	19.309	19.700	20.094	20.491	20.891
80	21.294	21.700	22.108	22.519	22.933	23.350	23.769	24.191	24.616	25.044
90	25.474	25.907	26.343	26.781	27.222	27.666	28.112	28.561	29.013	29.467
100	29.924	30.383	30.846	31.310	31.778	32.247	32.720	33.195	33.673	34.153
110	34.635	35.121	35.609	36.099	36.592	37.087	37.585	38.085	38.588	39.094
120	39.602	40.112	40.625	41.140	41.658	42.178	42.701	43.226	43.754	44.284
130	44.816	45.351	45.888	46.428	46.970	47.515	48.062	48.611	49.163	49.717
140	50.273	50.832	51.393	51.957	52.523	53.092	53.662	54.235	54.811	55.389
150	55.969	56.551	57.136	57.723	58.313	58.904	59.498	60.095	60.694	61.295
160	61.898	62.504	63.112	63.722	64.334	64.949	65.566	66.186	66.807	67.431
170	68.057	68.686	69.316	69.949	70.585	71.222	71.862	72.504	73.148	73.794
180	74.443	75.094	75.747	76.403	77.060	77.720	78.382	79.046	79.713	80.381
190	81.052	81.725	82.401	83.078	83.758	84.440	85.124	85.810	86.498	87.189
200	87.882	88.577	89.274	89.973	90.674	91.378	92.084	92.792	93.502	94.214
210	94.929	95.645	96.364	97.085	97.808	98.533	99.260	99.990	100.721	101.455
220	102.191	102.929	103.669	104.411	105.155	105.902	106.650	107.401	108.154	108.908
230	109.665	110.425	111.186	111.949	112.714	113.482	114.251	115.023	115.797	116.573
240	117.351	118.131	118.913	119.697	120.483	121.271	122.062	122.854	123.649	124.445

 Table (7): Passing Discharge for Sharp Plated Weir of 0.5m Width

5. SIMULATED FLOW CONDITIONS

The model would be operated according to four flow circumstances that representing various and possible flow conditions in the prototype which can be reviewed as follows:

2/2016

- 1. Calibration flow condition
- 2. Maximum and minimum flow conditions
- 3. Dominant flow condition

Hydraulic and morphological characteristics of each of the above four flow cases were worked out in view point of the passing flow discharge and the corresponding water surface flow upstream and downstream of the existing "DGR" for each branched canal. Calculation of each flow case and the application in the model would be summarised as follows:

5.1. Calibration Flow Condition

This flow condition illustrates the existing hydraulic and hydrologic flow conditions upstream and downstream "DGR" as well as through each of the branched canals during the field survey work. Those measurements were especially carried out not only to scale down and build the model, but also to indicate the horizontal velocity distribution along some cross sections within the project reach which covered El-Ibrahimia canal upstream "DGR" and each branched canal as shown in Figure (13). The water surface slope through the seven branched canals was also measured during the field measurements which ranged between 4.30 cm/km for Irad Delgaw canal and 8.9 cm/km for El-Dairutia canal.

Figure (13): Location of the Measured Velocity Profiles

2/2016

Those measurements would be utilized to check and assure the simulation between the model and prototype conditions as well as to guarantee model performance and validity. According to the achieved field measurements by "HRI" field group, the attainable results for the measured flow discharges as well as the corresponding water surface levels upstream and downstream the existing "DGR" are listed in Table (8).

No.	Canal name	Vel.	. Discharge		Water level (m)		(m)
		No.	(mm ³ /day)	(m^{3}/s)	U/S	D/S	At C.S.
1	Ibrahimia canal U/S "DGR"	[1]	30.672	355.00	(46.02)		(46.100)
2	Irad Delgaw canal	[9]	0.185	2.150		(44.80)	(44.794)
3	Abo Gabal canal	[2]	0.530	6.134		(45.75)	(45.725)
4	Bahr-Yusef canal (1)	[3]	14.738	170.578		(45.82)	(45.803)
5	Bahr-Yusef canal (2)	[4]	14.915	172.627		(45.82)	(45.786)
6	Badraman canal	[5]	0.528	6.111		(45.70)	(45.684)
7	Diroutiah canal	[6]	0.794	9.190		(45.90)	(45.879)
8	Ibrahimia canal D/S "DGR" (1)	[7]	13.591	157.303		(45.05)	(45.017)
9	Ibrahimia canal D/S "DGR" (2)	[8]	13.723	158.830		(45.05)	(44.998)
10	Saheleya canal	[10]	0.265	3.067		(45.80)	(45.718)

 Table (8): Hydrological Condition during Calibration

The equivalent model flow discharge through El-Ibrahimia main canal upstream of "DGR" as well as that through the seven branched canals downstream of "DGR" and the corresponding water surface level – within the model boundaries - were worked out and adjusted in the model as listed in Table (9). Those values were calculated according to the decided model scale of 1 to 25 in the vertical and horizontal directions and according to the similarity rules.

No.	Canal	Prototype discharge		Model discharge
		(mm ³ /day)	(m^3/s)	(l/s)
1	Ibrahimia canal U/S "DGR"	30.672	355.00	113.600
2	Irad Delgaw canal	0.185	2.150	0.688
3	Abo Gabal canal	0.530	6.134	1.963
4	Bahr-Yusef canal	14.738	170.578	54.585
5	Badraman canal	0.528	6.111	1.956
6	Diroutiah canal	0.794	9.190	2.941
7	Ibrahimia canal D/S "DGR"	13.723	157.303	50.337
8	Saheleya canal	0.265	3.067	0.981

 Table (9): Model Discharges during Calibration

Each of the flow discharges and water surface levels for each of the seven branched canals were adjusted according to that listed in Tables (8 and 9) applying two steps. Using the affixed head regulators leaf gates and the point gauges upstream each of the sharp crested weirs the assigned flow discharge through each branched canal was adjusted during the first step. Therefore, using the installed tail gate at the downstream end of each branched canal, the corresponding water surface level through each branch was adjusted during the second step. Several attempts were tried during each of the first and second steps till reach the final setting as listed in Table (10).

No.	Hydraulic Article		Measured water surface levels along the modeled branches						
1	Canal Number	1	2	3	4	5	6	7	8
2	Canal Name	Ibrah US	I.Delgaw	AboGabal	BahrYusef	Badraman	Dirotiah	Ibrah DS	Sahelia
3	Canal code	AA	BB	СС	DD	EE	FF	GG	HH
4	Prototype Discharge Q _P (mm ³ /day)	30.52	0.23	0.54	14.67	0.52	0.78	13.44	0.34
5	Prototype Discharge Q _P (m ³ /s)	350.00	2.15	6.134	170.578	6.111	9.190	157.303	3.067
6	Model discharge Q _m (l/s)	113.600	0.688	1.963	54.585	1.956	2.941	50.337	0.981
7	Weir head H (mm)		16.89	30.09	146.18	29.39	38.85	139.12	22.96
8	Reference reading for weirs (cm)		[10.47]	[13.30]	[17.29]	[5.60]	[6.10]	[30.61]	[29.28]
9	Weir readings (cm)		8.781	10.291	2.672	2.661	2.215	16.698	26.984
10	D/S/ water surface level (m)	((46.02))	(44.80)	(45.75)	(45.82)	(45.70)	(45.90)	(45.05)	(45.80)
11	Water surface slope (cm/km)		4.30	7.13	6.19	6.51	8.90	7.40	4.65
12	Gauging location in model (m)		3.68	3.33	14.50	9.37	10.50	10.28	2.67
13	Gauging location in prototype (m)		92.00	83.25	362.50	234.25	262.50	257.00	66.75
14	WSL drop (cm)		0.396	0.594	2.244	1.525	2.336	1.901	0.310
15	WSL at point gauge (m)		(44.796)	(45.744)	(45.798)	(45.685)	(45.877)	(45.031)	(45.797)
16	Reference reading for WSL (cm)	[52.12]	[53.39]	[54.49]	[54.50]	[56.26]	[57.28]	[55.34]	[59.35]
17	Gauge readings (cm)	24.46	33.57	34.55	35.69	41.59	48.62	40.83	54.01

Table (10): Model Records at Calibration Stage

5.2. Max. & Min. Flow Conditions

Those tests would be experimentally carried out following the achieved model calibration results. The intention of those two tests is to monitor the existing hydraulic and hydrological conditions and different flow parameters at various possible flow circumstances before building the new "DGR". Those measurements can be repeated after the construction of the proposed new "DGR" to allocate any variation in flow arrangements and morphology than that at the existing condition. However, such study should be related to the actual maximum and minimum capacities of El-Ibrahimia canal which used to be distributed through the branched canals in the downstream. This in other words means that the overall some of the maximum and minimum capacities of the downstream branched canals would be more and less than the actual prototype values in El-Ibrahimia canal upstream of "DGR" respectively.

Therefore to deal with such case in realistic way as well as to imitate the real hydrological prototype conditions, the maximum and minimum flow discharges and water surface levels through El-Ibrahimia canal head regulator at Assuit during last ten years from 2005 to 2014 were employed as listed in Table (11) and shown Figure (14).

No.	Year	W.S.L. U.S.	Dairut (m)	Discharge at	Assuit (m m³/day)
		Max.	Min.	Max.	Min.
1	2005	46.00	42.40	39.500	2.000
2	2006	46.20	43.60	41.000	1.500
3	2007	<mark>46.50</mark>	42.80	<mark>41.800</mark>	2.000
4	2008	46.20	42.30	41.000	1.000
5	2009	46.16	43.60	37.500	2.000
6	2010	45.92	43.40	36.700	1.800
7	2011	45.98	43.50	37.800	1.000
8	2012	45.98	43.30	37.900	1.800
9	2013	46.10	43.15	38.300	0.850
10	2014	45.98	42.60	38.800	2.000

 Table (11): Hydrological Data of El-Ibrahimia Head Regulator

Figure (14): Historical Hydrological Records U.S. El-Ibrabimia Head Regulator

The above Table and Figure was then utilized to determine the flow discharge through each of "DGR" head regulators and the corresponding upstream and downstream water surface level for each branched canal at the case of minimum and maximum flow conditions as follows:

- The maximum flow discharge downstream El-Ibrahimia head regulator at Assuit during last ten years was worked out as 41.80 m m³/day which was recorded in 8/6/2007
- The minimum flow discharge downstream El-Ibrahimia head regulator at Assuit during last ten years was worked out as 0.850 m m³/day which was recorded in 7/1/2013
- Suppose one day lag time and two days lag time for the flow to reach upstream "DGR" at the case of the maximum and minimum flow discharges respectively, therefore the maximum and minimum flow discharges upstream Dairut are expected on 9/6/2007 and 9/1/2013 respectively.
- As the accessible records for the above mentioned dates are limited to the existing water surface levels downstream each branched canal and only the flow discharge through Bahr Yussef and El-Ibrahimia canals, the reported flow ratio distribution by "JICA" study was used to produce the required flow discharge through each branched canal as listed in Tables (12 and 13).

No.	Canal name	Discha	rge	WSI	L (m)
		(mm ³ /day)	(m^{3}/s)	U/S	D/S
1	El-Ibrahimia U/S "DGR"	36.444	421.81	46.00	-
2	Irad Delgaw canal	0.737	8.53		45.00
3	Abo Gabal canal	0.528	6.11		45.85
4	Bahr-Yusef canal	17.662	204.42		45.60
5	Badraman canal	0.711	8.23		45.85
6	Diroutiah canal	1.000	11.574		45.85
7	El-Ibrahimia D/S "DGR"	15.447	178.78		45.15
8	Sahelyia canal	0.359	4.16		45.85

 Table (12): Hydrological Records at Maximum Discharge

Table (15): Hydrological Records at Minimum Discharge	Table (12)	. II-uduala ai aal	Decende of Minimum	Diashawas
	Table (15)	: Hydrological	Records at Minimum	Discharge

No.	Canal name	Dischar	.ge	WSL (m)	
		(mm³/day)	(m^3/s)	U/S	D/S
1	El-Ibrahimia U/S "DGR"	1.959	22.67	43.35	-
2	Irad Delgaw canal	0.040	0.46		***
3	Abo Gabal canal	0.028	0.32		***
4	Bahr-Yusef canal	1.600	18.52		42.55
5	Badraman canal	0.038	0.44		***
6	Diroutiah canal	0.054	0.63		***
7	El-Ibrahimia D/S ''DGR''	0.180	2.08		41.55
8	Sahelyia canal	0.019	0.22		***

In this case the actual flow discharge though El-Ibrahimia and Bahr Yussef canals on 9/6/2007 (at the case of maximum discharge) which are equivalent to 15.447 and 17.662 mm³/day represented 36.95% and 42.25% of the total entering discharge downstream the main El-Ibrahimia head regulator at Assuit during the previous day respectively. While on 9/1/2013 (at the case of minimum discharge) which are equivalent to 0.180 and 1.600 mm³/day represented

21.18% and 188.23% of the total entering discharge downstream the main El-Ibrahimia head regulator at Assiut during the previous day respectively. Knowing the model scale, the two reached hydrological records for the maximum and minimum flow conditions were worked out as listed in Tables (14 and 15) respectively. In this case, the passing discharge downstream of "DGR" during minimum flow would be mainly distributed between Bahr-Yussef and El-Ibrahimia canals, and the other five branches are nearly closed.

No.	Canal name	Disch	arge	WSL	
		Prototype	Model	U/S	D/S
		$(\mathbf{m}^3/\mathbf{s})$	(l/s)	(m)	(m)
1	El-Ibrahimia U/S "DGR"	421.81	134.98	46.00	-
2	Irad Delgaw canal	8.53	2.73		45.00
3	Abo Gabal canal	6.11	1.96		45.85
4	Bahr-Yusef canal	204.42	65.41		45.60
5	Badraman canal	8.23	2.63		45.85
6	Diroutiah canal	11.574	3.70		45.85
7	El-Ibrahimia D/S ''DGR''	178.78	57.21		45.15
8	Sahelyia canal	4.16	1.33		45.85

 Table (14): Existing Hydrological Records at Maximum Discharge

Toble (1	I 5 \. L'	wigting L	Inducio	giaol Da	aanda at	Minimum	Dicohorgo
Table (131: 14	XISUII2 I	1 VUI OIO	vicai re	COPUS AL		Discharge
			-,	B			

No.	Canal name	Discharge		WSL	
		Prototype	Model	U/S(m)	D/S
		$(\mathbf{m}^3/\mathbf{s})$	(l /s)		(m)
1	El-Ibrahimia U/S ''DGR''	22.67	7.25	43.35	-
2	Irad Delgaw canal	0.46	0.15		***
3	Abo Gabal canal	0.32	0.10		***
4	Bahr-Yusef canal	18.52	5.93		42.55
5	Badraman canal	0.44	0.14		***
6	Diroutiah canal	0.63	0.20		***
7	El-Ibrahimia D/S "DGR"	2.08	0.67		41.55
8	Sahelyia canal	0.22	0.07		***

Due to unavailable data records for the existing water surface slope through each branched canal during the maximum and minimum flow discharges, and as the flow through each branched canal just downstream of the existing "DGR" can be considered under gravity and following normal depth, the longitudinal water surface slope would be nearly parallel to the bed slope. Therefore, the magnitude of water surface slope during maximum and minimum flow discharges were considered as same as that measured during field investigation along each branched canal. Therefore, the corresponding point gauge readings for water surface levels and outflow discharges for each branched canal in the model were worked out for the maximum and minimum flow discharge cases as listed in Tables (16 and 17) respectively.

No.	Hydraulic Article		Me	asured water	surface levels	along the mo	deled branch	nes	
1	Canal Number	1	2	3	4	5	6	7	8
2	Canal Name	Ibrah US	I.Delgaw	AboGabal	BahrYusef	Badraman	Dirotiah	Ibrah DS	Sahelia
3	Canal code	AA	BB	CC	DD	EE	FF	GG	HH
4	Prototype Discharge Q _P (mm ³ /day)	36.444	0.737	0.528	17.662	0.711	1.000	15.447	0.359
5	Prototype Discharge Q _P (m ³ /s)	421.81	8.53	6.11	204.42	8.23	11.574	178.78	4.16
6	Model discharge Q _m (l/s)	134.98	2.73	1.96	65.41	2.63	3.70	57.21	1.33
7	Weir head H (mm)		37.44	30.00	165.70	36.51	46.00	152.13	23.00
8	Reference reading for weirs (cm)		[10.47]	[13.30]	[17.29]	[5.60]	[6.10]	[30.61]	[29.28]
9	Weir readings (cm)		6.73	10.3	0.72	1.95	1.5	15.4	26.98
10	D/S Water Surface Level (m)	((46.00))	(45.00)	(45.85)	(45.60)	(45.85)	(45.85)	(45.15)	(45.85)
11	Water surface slope (cm/km)		4.30	7.13	6.19	6.51	8.90	7.40	4.65
12	Gauging location in model (m)		3.68	3.33	14.50	9.37	10.50	10.28	2.67
13	Gauging location in prototype (m)		92.00	83.25	362.50	234.25	262.50	257.00	66.75
14	WSL drop (cm)		0.396	0.594	2.244	1.525	2.336	1.901	0.310
15	WSL at point gauge (m)		(44.996)	(45.844)	(45.578)	(45.835)	(45.827)	(45.131)	(45.847)
16	Reference reading for WSL (cm)	[52.12]	[53.39]	[54.49]	[54.50]	[56.26]	[57.28]	[55.34]	[59.35]
17	Gauge readings (cm)	24.46	33.57	34.55	35.69	41.59	48.62	40.83	54.01

Table (16): Model Data for Maximum Flow Discharge

No.	Hydraulic Article		Me	asured water	surface levels	along the mo	deled branch	nes	
1	Canal Number	1	2	3	4	5	6	7	8
2	Canal Name	Ibrah US	I.Delgaw	AboGabal	BahrYusef	Badraman	Dirotiah	Ibrah DS	Sahelia
3	Canal code	AA	BB	CC	DD	EE	FF	GG	HH
4	Prototype Discharge Q _P (mm ³ /day)	1.959	0.040	0.028	1.600	0.038	0.054	0.180	0.019
5	Prototype Discharge Q _P (m ³ /s)	22.67	0.46	0.32	18.52	0.44	0.63	2.08	0.22
6	Model discharge Q _m (l/s)	7.25	0.15	0.10	5.93	0.14	0.20	0.67	0.07
7	Weir head H (mm)								
8	Reference reading for weirs (cm)		[10.47]	[13.30]	[17.29]	[5.60]	[6.10]	[30.61]	[29.28]
9	Weir readings (cm)	===							
10	D/S Water Surface Level (m)	((43.35))	***	***	(42.55)	***	***	(41.55)	***
11	Water surface slope (cm/km)		4.30	7.13	6.19	6.51	8.90	7.40	4.65
12	Gauging location in model (m)		3.68	3.33	14.50	9.37	10.50	10.28	2.67
13	Gauging location in prototype (m)		92.00	83.25	362.50	234.25	262.50	257.00	66.75
14	WSL drop (cm)		0.396	0.594	2.244	1.525	2.336	1.901	0.310
15	WSL at point gauge (m)		***	***	42.528	***	***	41.531	***
16	Reference reading for WSL (cm)	[52.12]	[53.39]	[54.49]	[54.50]	[56.26]	[57.28]	[55.34]	[59.35]
17	Gauge readings (cm)								

Table (17): Model Data for Minimum Flow Discharge

2/2016

5.3. Dominant Flow Condition

As the gap between maximum and minimum flow discharges corresponding to El-Ibrahimia canal at "DGR" is relatively wide, one more intermediate discharge stage was established. This flow discharge stage is called the dominant flow which is usually taken place for a considerable period during the midterm between the high and low flow seasons through the water year. Therefore, the present tests would be carried out applying three flow cases entitles the maximum, dominant, and minimum flow discharges. In this case, each of the three flow cases would be respectively evaluated at "DGR" according to the corresponding condition downstream El-Ibrahimia head regulator at Assuit. This would be carried out by considering the lag time and the outflow between El-Ibrahemia head regulator at Assuit and at km 60.600 just upstream of the existing "DGR".

On the other hand, to determine the dominant discharge, the daily passing flow discharge records downstream El-Ibrahimia head regulator at Assuit during the whole year of 2014 were analysed and plotted as shown in Figure (15). This year was deliberately selected as a last complete data for the recorded flow discharge downstream El-Ibrahimia head regulator at Assuit. Figure (15) revealed that maximum and minimum passing flow discharges downstream El-Ibrahimia head regulator at Assuit during year 2014 is 38.800 mm³/day and 2.0 mm³/day respectively which were recorded on 29th of May and the 3rd of January respectively. While the mean average value of the passing flow discharges is 25.798 mm³/day.

Figure (15): Daily Flow Records for El-Ibrahimia Head Regulator in Year 2014

The above Figure was then utilized to conclude the nearby value of dominant discharge downstream El-Ibrahimia head regulator at Assuit which is $25.00 \text{ mm}^3/\text{day}$ and recorded on 22^{nd} of July and 22^{nd} of August 2014. Suppose one day lag time for the flow to reach upstream "DGR", the minimum flow discharge upstream Dairut can be expected to occur on 23/7/2014 and 23/8/2014. The received distributions for the flow discharges and water surface levels upstream and downstream "DGR" during the two mentioned dates were utilized to produce the hydraulic essentials at dominant discharge.

However, as the received data records were limited to the existing water surface levels downstream each branched canal and only the flow discharge through Bahr Yussef and El-Ibrahimia canals, the reported flow ratio distribution by "JICA" study in Table (18) was used to produce the required flow discharge as listed in Tables (19 and 20). The listed data in Table (18) was based on the existing commend of the served area and the quota which were reported in "JICA" study according to the agreement of Water Distribution Sector "WDS" in (2002) for the flow discharge distribution downstream of El-Ibrabimia canal.

No.	No. Canal		Design discharge		Ratio
		Area	Min.	Max.	(%)
		(Fed)	(m^{3}/s)	(m^3/s)	
1	Ibrahimia canal	576,700	23.63	161.62	36.84%
2	Bahr-Yusef canal	808,000	33.11	226.50	51.63%
3	Sahelyia canal	15,100	0.60	4.20	0.96%
4	Diroutiah canal	41,800	1.70	11.70	2.67%
5	Badraman canal	29,700	1.20	8.30	1.90%
6	Abo Gabal canal	22,000	0.90	6.20	1.41%
7	Irad Delgaw canal	30,800	1.30	8.60	1.97%
8	Direct intake(Upstream of DGR)	41,000	1.70	11.50	2.62%
	Total	1,565,100	64.14	438.62	100%

Table (18): Design Discharge Based on the Quota at "DGR"

Table (19): Hydrological Records at Dominant Discharge (23/7/2014)

No.	Canal name	Discharge		WSL (m)	
		(mm ³ /day)	(m^{3}/s)	U/S	D/S
1	El-Ibrahimia U/S "DGR"			45.67	
2	Irad Delgaw canal				
3	Abo Gabal canal				
4	Bahr-Yusef canal	12.750	147.57		44.85
5	Badraman canal				
6	Diroutiah canal				
7	El-Ibrahimia D/S ''DGR''	11.000	127.31		44.40
8	Sahelyia canal				

Table (20). Hyutological Records at Dominant Discharge (23/0/20	ischarge (23/8/2014	ominant Discharg	Dominan	Records at	Hydrological	(20):	Table
---	---------------------	------------------	---------	-------------------	--------------	-------	-------

No.	Canal name	Discharge		WSL (m)	
		(mm ³ /day)	(m^3/s)	U/S	D/S
1	El-Ibrahimia U/S "DGR"			45.65	
2	Irad Delgaw canal				
3	Abo Gabal canal				
4	Bahr-Yusef canal	13.000	150.46		44.90
5	Badraman canal				
6	Diroutiah canal				
7	El-Ibrahimia D/S ''DGR''	11.250	130.21		44.95
8	Sahelyia canal				

The deduced values in the above two Tables (19 and 20) are uncompleted and still needed from Water Distribution Sector "WDS" of the Ministry of Water Resources and Irrigation "MWRI". The available data in Tables (19 and 20) were then merged to determine the mean values which would be recommended to represent the dominant discharge condition as listed in Table (21). Those values were then utilized to produce the corresponding elements to operate the model as listed in Table (22).

2/2016

January 2016

No.	Canal name	Discharge		WSL (m)	
		(mm³/day)	(m^{3}/s)	U/S	D/S
1	El-Ibrahimia U/S "DGR"			45.66	
2	Irad Delgaw canal				
3	Abo Gabal canal				
4	Bahr-Yusef canal	12.375	150.46		44.875
5	Badraman canal				
6	Diroutiah canal				
7	El-Ibrahimia D/S ''DGR''	11.125	130.21		44.675
8	Sahelyia canal				

 Table (21): Concluded Records at Dominant Discharge

No.	Canal name	Discharge		WSL	
		Prototype (m ³ /s)	Model (l/s)	U/S (m)	D/S (m)
1	El-Ibrahimia U/S ''DGR''			45.66	
2	Irad Delgaw canal				
3	Abo Gabal canal				
4	Bahr-Yusef canal	150.46	48.147		44.875
5	Badraman canal				
6	Diroutiah canal				
7	El-Ibrahimia D/S ''DGR''	130.21	41.667		44.675
8	Sahelyia canal				

Considering the magnitude of water surface slope during dominant flow discharge as same as that measured for the case of maximum and minimum flow discharges along each branched canal. Therefore, the corresponding point gauge readings for water surface levels and outflow discharges for each branched canal in the model were worked out for the dominant flow discharge cases as listed in Table (23).

No.	Hydraulic Article		Me	easured water	surface levels	along the mod	leled brancl	nes	
1	Canal Number	1	2	3	4	5	6	7	8
2	Canal Name	Ibrah US	I.Delgaw	AboGabal	BahrYusef	Badraman	Dirotiah	Ibrah DS	Sahelia
3	Canal code	AA	BB	CC	DD	EE	FF	GG	HH
4	Prototype Discharge Q _P (mm ³ /day)								
5	Prototype Discharge Q _P (m ³ /s)								
6	Model discharge Q _m (l/s)								
7	Weir head H (mm)								
8	Reference reading for weirs (cm)		[10.47]	[13.30]	[17.29]	[5.60]	[6.10]	[30.61]	[29.28]
9	Weir readings (cm)	===							
10	D/S Water Surface Level (m)								
11	Water surface slope (cm/km)		4.30	7.13	6.19	6.51	8.90	7.40	4.65
12	Gauging location in model (m)		3.68	3.33	14.50	9.37	10.50	10.28	2.67
13	Gauging location in prototype (m)		92.00	83.25	362.50	234.25	262.50	257.00	66.75
14	WSL drop (cm)		0.396	0.594	2.244	1.525	2.336	1.901	0.310
15	WSL at point gauge (m)								
16	Reference reading for WSL (cm)	[53.39]	[54.48]	[54.50]	[56.23]	[57.98]	[55.34]	[59.35]	[52.12]
17	Gauge readings (cm)								

Table (23): Model Data for Dominant Flow Discharge

January 2016

While Table (24) lists summary of the represented hydraulic aspects for model operation during various flow conditions

No.	Flow case	Prototype discharge		Model discharge	U/S level
		(mm ³ /day)	(m^{3}/s)	(l /s)	(m)
1	Calibration discharge	30.672	355.00	113.600	(46.02)
2	Minimum flow case	1.959	22.67	7.25	(43.35)
3	Dominant flow case	***	***	***	(45.66)
4	Maximum flow case	36.444	421.81	134.98	(46.00)

Table (24): Represented Flow Conditions for Model Operation

Noting that (***) in the above Table is referring to unavailable data.

6. MODEL OPERATION

As the model was constructed according to the recently conducted field measurements and the received drawings of the existing hydraulic structures (head regulators and cross bridges) at Dairut, the following preliminary experimental measures were carried out:

- 1. The reference point gauge reading which indicates the water surface elevation just prior to bridge over the sharp crested weir was determined for each of the seven installed sharp crested weirs at the model outlet.
- 2. The corresponding water surface elevation in the model to that in the prototype was determined at one appropriate location for each branched canal upstream and downstream of (DGR). This was carried out through the installed point gauge on the side well which can indicates the water surface levels precisely and read up to \pm 0.1 mm accuracy. The point gauge locations for all branches were previously assigned to be downstream of the proposed location for the new "DGR" and in such a way as to avoid the back water curve upstream the mounted end tail gate downstream each of the seven branched canals.

The model was then adjusted to represent the prototype flow conditions during field measurements as listed in Table (25). In this case, using the mounted point gauge at each sharp crested weir and the head regulator gates, the calculated flow discharge through each branch was adjusted. The installed tail gate downstream the end of each branched canal was then utilized to adjust the corresponding water surface level through each branch. The measured water surface slope and the monitored downstream water surface elevation for each branch in the prototype was then utilized to determine the corresponding water surface level at the mounted point gauge for each branched canal as listed in Table (26). The applied magnitudes for water surface slopes in Table (26) for each branch was worked out by HRI field work team during field investigation.

No.	Canal name	Passing di	ischarge	Water l	evel (m)
		Prototype	Model	U/S	D/S
		(m^3/s)	(L/s)		
1	Ibrahimia canal U/S "DGR"	355.00	113.600	(46.02)	
2	Irad Delgaw canal	2.150	0.688		(44.80)
3	Abo Gabal canal	6.134	1.963		(45.75)
4	Bahr-Yusef canal	170.578	54.585		(45.82)
5	Badraman canal	6.111	1.956		(45.70)
6	Diroutiah canal	9.190	2.941		(45.90)
7	Ibrahimia canal D/S "DGR"	157.303	50.337		(45.05)
8	Saheleya canal	3.067	0.981		(45.80)

Table (25): Hydrological Condition during Calibration

No.	Canal name	Gauging location		Water	Water	WSL just	WSL at model
		D/S hea	D/S head regulator		surface	D/S head	Gauging
		Model Prototype		slope	drop	regulator	location
		(m)	(m)	(cm/km)	(cm)	(m)	(m)
1	Irad Delgaw canal	3.68	92.00	4.30	0.396	(44.80)	(44.796)
2	Abo Gabal canal	3.33	83.25	7.13	0.594	(45.75)	(45.744)
3	Bahr-Yusef canal	14.50	362.5	6.19	2.244	(45.82)	(45.798)
4	Badraman canal	9.37	234.25	6.51	1.525	(45.70)	(45.685)
5	Diroutiah canal	10.50	262.50	8.90	2.336	(45.90)	(45.877)
6	El-Ibrahimia canal	10.28	257.00	7.40	1.901	(45.05)	(45.031)
7	Sahelyia canal	2.67	66.75	4.65	0.310	(45.80)	(45.797)

 Table (26): Water Surface Levels during Calibration

The flow velocities in the model were then measured using an Electro-Magnetic current-meter type E.M.S., manufactured by Delft Hydraulics, Holland as shown in Photo (24). The device was connected to a mean value meter to show the average velocity within a selected time period.

Photo (24): Used Electro-Magnetic Current-Meter type E.M.S.

7. CALIBRATION RESULTS

Model calibration is the process for judging reliability and consistency between the constructed model and prototype condition. In order to ensure that, the model should fulfill the geometric, kinematic and dynamic similarity conditions. The geometric similarity was already applied during the model construction. The kinematic and dynamic similarity would be accomplished by measuring some flow velocity profiles in the prototype then compared it with that in the model. Therefore, the model calibration should include all the above mentioned conditions in addition the water surface slope which should be the same in the model as prototype value.

The three dimensions "DGR" model would be calibrated with bathymetric and hydraulic measurements and flow conditions that carried out during "HRI" field investigations which were conducted on June 2015. The model was calibrated against one cross section velocity profile along each of the seven branched canals downstream of the existing "DGR". The flow discharge in the model and accordingly through each branched canal were worked out according to the flow condition during field measurements. The water surface slope through the seven branched canals was also measured during the field measurements which ranged between 4.30 cm/km for Irad Delgaw canal and 8.9 cm/km for El-Dairutia canal. Applying the above mentioned procedure for operating the model, the calibration process was carried out through the following three phases:

- Inflow discharge calibration
- Establishing calibration condition
- Velocity measurement calibration

The applied procedure for each phase and the attainable results can be illustrated as follows:

7.1. Inflow Discharge Calibration

This test was firstly carried out to assure the accuracy of the affixed Electro-Magnetic flow meter on the 10 inch diameter delivery pipe line upstream the model entrance. This group of tests was carried out by comparing the indicated flow discharges by the ultrasonic flow meter at the model entrance with the corresponding measured flow discharge on the affixed sharp crested weirs at the tail end of Bahr Yussef and El-Ibrahimia canals which are listed in Table (7). This test was carried out for six different discharges and the attainable results are Illustrated in Figures (16 and 17) and listed in Table (27).

2/2016

Figure (17): In and Outflow Calibration Results

Test			Outlet	discharg		Entering	Difference	Percent		
No.	Bahr-Y	Bahr-Yusef canal (DD) El-Ibrahimia canal (GC						flow		
	DDQ = [171.6] mm			GGQ = [308.5] mm			outlet	discharge		
	Gauge	\mathbf{H}_{1}	Q ₁	Gauge	Gauge H ₂		discharge			
	(mm)	(mm)	(l /s)	(mm)	(mm)	(l /s)	(l /s)	(l /s)	(l /s)	(%)
1	336.6	165.0	64.949	50.20	193.5	85.467	150.416	150.00	+ 0.416	+ 0.28%
2	311.2	139.6	50.273	48.15	173.0	69.949	120.222	123.00	- 2.778	- 2.26%
3	291.7	120.1	39.602	45.35	145.0	53.092	92.694	96.00	- 3.306	- 3.44%
4	272.2	100.6	29.924	42.75	119.0	39.094	69.018	69.00	+0.018	+0.026%
5	241.8	70.2	17.395	40.58	97.3	28.564	45.956	46.00	-0.044	- 0.096%
6	227.2	55.6	12.266	39.08	82.3	22.103	34.374	34.00	+0.374	+ 1.10%

Table (27): Entering Discharge Calibration

This test revealed high matching between the measured inflow rate by the mounted Electro-Magnetic flow meter at the model entrance and that over the sharp crested weir downstream each of the branched canals. In this case, the determined percentage difference between in and outflow did not exceed 3.44% as shown in Figures (16 and 17) and listed in Table (27) which are accepted results.

7.2. Establishing Calibration Condition

This test was carried out to check and assure the simulation between the model and prototype conditions as well as to guarantee model performance and validity by using the attainable results from the recently carried out field survey measurements. According to the achieved field measurements by "HRI" field group, the horizontal velocity distribution along ten cross sections were carried out which covered El-Ibrahimia canal upstream "DGR" and each branched canal downstream "DGR" as previously shown in Figure (12). The attainable results for the measured flow discharges as well as the corresponding water surface levels upstream and downstream the existing "DGR" are listed in Table (28).

No.	Canal name	Vel.	Disch	arge	W	ater level	(m)
		No.	(mm ³ /day)	(m^{3}/s)	U/S	D/S	At C.S.
1	Ibrahimia canal U/S ''DGR''	[1]	30.672	355.00	(46.02)		(46.100)
2	Irad Delgaw canal	[9]	0.185	2.150		(44.80)	(44.794)
3	Abo Gabal canal	[2]	0.530	6.134		(45.75)	(45.725)
4	Bahr-Yusef canal (1)	[3]	14.738	170.578		(45.82)	(45.803)
5	Bahr-Yusef canal (2)	[4]	14.915	172.627		(45.82)	(45.786)
6	Badraman canal	[5]	0.528	6.111		(45.70)	(45.684)
7	Diroutiah canal	[6]	0.794	9.190		(45.90)	(45.879)
8	Ibrahimia canal D/S "DGR" (1)	[7]	13.591	157.303		(45.05)	(45.017)
9	Ibrahimia canal D/S "DGR" (2)	[8]	13.723	158.830		(45.05)	(44.998)
10	Saheleya canal	[10]	0.265	3.067		(45.80)	(45.718)

 Table (28): Hydrological Condition during Calibration

It is clear from Table (28) that the velocity distribution was measured along two cross sections in each of Bahr Yussef canal and El-Ibrahimia canal downstream "DGR", while only one cross section was measured along the other canals. Although, the velocity distribution measurements Hydraulic Research Institute 44

were carried out for all branches during one day only, some diminutive variations were obtained in the calculated flow discharges in Bahr Yussef and El-Ibrahimia canals. The evaluated difference in Table (28) reached to 1.2% and 0.96% for the two canals respectively which can be neglected.

7.3. Velocity Measurements Calibration

Mid – depth velocity was measured in the model at different point along the entire length of each cross section for the seven branched canals. The measured velocity profiles in the model were compared with that of the prototype. In order to improve the similarity between the measured mid – depth flow velocity measurements in the model with that of the prototype, some trails and minor adjustment in bed roughness were made in a few locations in the model. The compared flow velocity between model and prototype at different cross sections are listed in Tables (from 29 to 35) and Figures (from 19 to 25).

Prototype data Model data Converted model data Point Velocity Distance Distance Velocity Distance Velocity No. (**m**) (m/s)(cm) (cm/s)(**m**) (m/s)1 0.00 0.00 00 0.00 0.00 0.00 2 2.00 0.15 8 3.2 2.00 0.16 3 4.00 0.12 16 2.3 4.00 0.14 4 24 3.0 6.00 0.15 6.00 0.15

32

48

0.15

0.00

3.2

0.00

8.00

12.00

0.16

0.00

Figure (19): Velocity Distribution at Irad Delgaw Canal

5

6

8.00

12.00

Point No.	Prototy	pe data	Mode	l data	Converted model data		
	Distance (m)	Velocity (m/s)	Distance (cm)	Velocity (cm/s)	Distance (m)	Velocity (m/s)	
1	0	0	0.00	0.00	0	0	
2	2	0.61	8	12.6	2	0.63	
3	4	0.65	16	12.0	4	0.6	
4	6	0.63	24	12.0	6	0.6	
5	8	0.368	32	9.0	8	0.45	
6	9	0	36	0.00	9	0	

Table (30): Mid-Depth Velocity Distribution on Abou Gabal Canal

Figure (20): Velocity Distribution at Abou Gabal Canal Table (31): Mid-Depth Velocity Distribution on Bahr Yussef Canal

Point	Prototy	pe data	Mode	l data	Converted model data		
No.	Distance (m)	Velocity (m/s)	Distance (cm)	Velocity (cm/s)	Distance (m)	Velocity (m/s)	
1	2.00	0.38	8	5.0	2.00	0.25	
2	3.75	0.43	15	10.2	3.75	0.51	
3	10.00	0.59	40	11.6	10.00	0.58	
4	16.25	0.72	65	16.0	16.25	0.80	
5	22.50	0.82	90	14.0	22.50	0.70	
6	28.75	0.89	115	15.0	28.75	0.75	
7	35.00	0.89	140	16.8	35.00	0.84	
8	41.25	0.82	165	15.6	41.25	0.78	
9	47.50	0.77	190	14.6	47.50	0.73	
10	53.75	0.67	215	12.0	53.75	0.60	
11	60.00	0.49	240	9.0	60.00	0.45	

2/2016

Figure (21): Velocity Distribution of Bahr Ussef Canal

Point No	Prototy	pe data	Mode	l data	Converted model data		
110.	Distance (m)	Velocity (m/s)	Distance (cm)	Velocity (cm/s)	Distance (m)	Velocity (m/s)	
1	0.00	0.00	0.00	0.00	0.00	0.00	
2	2.00	0.36	8.0	8.2	2.00	0.41	
3	4.00	0.42	16	7.8	4.00	0.39	
4	6.00	0.39	24	8.0	6.00	0.40	
5	8.00	0.25	32	5.6	8.00	0.28	
6	10.40	0.00	42	0.00	10.50	0.00	

Table (32): Mid-Depth Velocity Distribution on Badraman Canal

Figure (22): Velocity Distribution at Badraman Canal

Point	Prototy	pe data	Mode	l data	Converted	Converted model data		
NO.	Distance (m)	Velocity (m/s)	Distance (cm)	Velocity (cm/s)	Distance (m)	Velocity (m/s)		
1	0.00	0.00	0.00	0.00	0.00	0.00		
2	1.75	0.20	7	4.0	1.75	0.20		
3	2.28	0.33	9	6.2	2.28	0.31		
4	3.68	0.13	15	3.0	3.75	0.15		
5	5.42	0.44	22	8.2	5.50	0.41		
6	6.31	0.37	25	8.2	6.25	0.41		
7	7.50	0.40	30	8.0	7.50	0.40		
8	8.75	0.41	35	7.8	8.75	0.39		
9	10.00	0.39	40	7.8	10.00	0.39		
10	11.19	0.32	45	6.0	11.25	0.30		
11	12.50	0.34	50	7.0	12.50	0.35		
12	14.75	0.00	59	0.00	14.75	0.00		

Table (33): Mid-Depth Velocity Distribution on El-Dairutiah Canal

Figure (23): Velocity Distribution at El-Dairutia Canal

Point No	Prototy	pe data	Mode	l data	Converted model data		
10.	Distance Velocity (m) (m/s)		Distance (cm)	Velocity (cm/s)	Distance (m)	Velocity (m/s)	
1	6.25	0.40	25	10.6	6.25	0.53	
2	12.50	0.64	50	16.4	12.50	0.82	
3	18.75	0.79	75	15.4	18.75	0.77	
4	25.00	0.89	100	16.0	25.00	0.80	
5	31.25	0.90	125	17.0	31.25	0.85	
6	37.50	0.88	150	18.2	37.50	0.91	
7	43.75	0.77	175	15.4	43.75	0.77	
8	50.00	0.58	200	12.8	50.00	0.64	
9	56.25	0.34	225	5.0	56.25	0.25	

Table (34): Mid-Depth Velocity Distribution on El-Ibrahimia Canal

Figure (24): Velocity Distribution of El-Ibrahimia Canal

Point No	Prototy	pe data	Mode	l data	Converted model data			
190.	Distance (m)	Velocity (m/s)	Distance (cm)	Velocity (cm/s)	Distance (m)	Velocity (m/s)		
1	0.00	0.000	0.00	0.00	0.00	0.00		
2	1.50	0.283	6.0	6.2	1.50	0.31		
3	3.00	0.286	12.0	5.4	3.00	0.27		
4	4.50	0.299	18.0	6.0	4.50	0.30		
5	6.00	0.280	24.0	5.6	6.00	0.28		
6	7.50	0.246	30.0	4.6	7.50	0.23		
7	8.00	0.000	32.0	0.00	8.00	0.00		

 Table (35): Mid-Depth Velocity Distribution on El-Sahelia Canal

Figure (25): Velocity Distribution at El-Sahelia Canal

The achieved calibration results that illustrated in the above Tables and Figures revealed that the measured mid –depth velocity profiles in the model are following the same trend as that in the prototype. This in other words means that there are good agreement between the model and prototype and the model can be accurately simulate the prototype conditions.

Physical Model Study of Dairut Group of Regulators Installation of the New Dirout Regulators and Flow Velocity Measurements

Author Dr. Mohamed MohamedAbdellatif

Director Prof. Khaled Ramadan

November 2016

HRI- 53-2016

HRI Hydraulics Research Institute Delta Barrae, Alkanater, Egypt P.O. Box 13621 E-mail info@ hri-egypt.org

Team Work

Prof. Ahmed Fahmy Ahmed Dr. Mohamed MohamedAbdellatif Eng.Mohamed Khaled Emeritus Professor (Team Leader) Associate Research Professor

Assistance Research

CLIENT:	Reservoirs and Grand Barrage Sector (RGBs), Ministry of Water Resources and Irrigation (MWRI), Egypt										
TITLE:	Physical Model Study of Dairut Group of Regulators										
	Installation of the New Dirout Regulators and Flow Velocity Measurements										

ABSTRACT

This report includes the following:

- 1. Installation of the New Regulators at the physical model according to the design drawings submitted by the RGBs and the D/D Consultant on April 27th 2016.
- 2. Flow velocity measurements according to the test program submitted by the RGBs and the D/D consultant of September 8^{th} 2016.
- 3. The testing procedure includes:
 - Measuring the flow velocity distribution in a three consecutive cross sections downstream the new regulators of Ibrahimia and Bahr Yusef Canals.
 - The operation requirements of the test embrace the opening of Bahr Yusef Lock while closing Ibrahimia Canal Lock.
 - A floating debris and dye were used to track the flow pattern downstream the new regulators such as flow vortices and dead zones.

It was found that, the maximum flow velocity reaches up 2.8 m/s near the bed at cross section located 30 m from the gate (nearest cross section to the gate) while the flow is forced to pass under the gate. It is recommended to remove the dead zones area formed downstream the new regulators by filling it with a filler material to impose the flow distribution released from the gate.

VER	ORIGINATOR		DA	DATE REMARKS		J	REVI	EW	APPROVED BY				
FV1	Dr. Mohamed Mohamed Abdellatif		25/10	/2016			Prof. Ahmed Fahmy			Prof.Dr. Khaled Ramadan			
FV1	Eng. Mohamed H												
PROJECT IDENTIFICATION:			HRI-	HRI-53-2016									
CONTEN	NTS:	TEXT PAGES		TABLES FIGURES 1 APPENDICES									
CONFID	ENTIAL: 🔀 Y	ES, until (date)				NO							
STATUS: PRELIMINARY DRAFT PROPOSAL													

Contents

1INTRODUCTION	. 1
2 LAYOUT OF THE NEW REGULATORS	. 2
2.1LOCATION OF THE NEW REGULATORS	. 2 . 3 . 3 . 3 . 4
2.0 HEIGHT AND THICKNESS OF PIERS	. 5
4 HYDROLOGICAL CONDITIONS	, o 10
4.1 DISTRIBUTION OF THE MAXIMUM FLOW DISCHARGE	10 11 12
5TEST PROGRAM	13
 5.1 OPERATING SCENARIOS FOR THE GATES OF THE NDGRS 5.2FLOW VELOCITY MEASUREMENTS OF THE LARGE SCALE REGULATORS 5.3 OPERATING SCENARIOS FOR THE NAVIGATION LOCKS OF THE DGRS 	13 13 13
6RESULTS	15
6.1GATE OPENINGS 6.2 FLOW VELOCITY DISTRIBUTION	15 15 18
7CONCLUSIONS	20
List of Figure

Figure (1): Schematic Diagram of the Location of the New Regulators2
Figure (2): Selected Over-flow Type Gate for New "DGR"
Figure (3): Schematic Drawing for Apron's Top Level on gate section
Figure (4): Schematic drawing for top elevation of the gate and its height
Figure (5): Manufacturing of the New Regulators in the HRI workshop7
Figure (6): Painting of the New Regulators in the HRI workshop7
Figure (7): Physical Model Preparation to Place the New Regulator
Figure (8): New Regulator and the Curtain Wall
Figure (9): New and Existing Regulator
Figure (10): Operation of the Gates Using Vertical Screw Bar9
Figure (12): Location of the Flow Velocity Measurements14
Figure (13): Formation of Dead Zone Downstream Ibrahimia New Regulator
Figure (14): Formation of Flow Circulation Zone Downstream Ibrahemia New Regulator19
Figure (15): Formation of Dead Zone Downstream Bahr Yusef New Regulator19
Figure (16): Formation of Flow Circulation Zone Downstream Bahr Yusef New Regulator20

List of Table

Table (1): Top Level of the Apron of Each Branch Canal	4
Table (2): Top Level of the Apron of Each Branch Canal	5
Table (3): Height of pier for each regulator	6
Table (4): Represented Flow Conditions for Model Operation	10
Table (5): Hydrological Records for Maximum Flow Distribution	11
Table (6): Hydrological Records for Dominant Flow Distribution	11
Table (7): Hydrological Records for Minimum Flow Distribution	12
Table (8): Gate Openings of the Regulators at Different Discharges	15
Table (9): Absolute Values of the Flow Velocities at Sections downstream of the N	lew Large
Regulators	17

1 INTRODUCTION

The construction of new regulators at Dirout to replace the existing one is imperative in the context of water resources management. This is because the existing regulator, which is responsible to deliver about 10 billion cubic meters of Nile water annually, is old and has been builtin 1872. The new regulators at Dirout will be constructed at a 140 m distance downstream of the existing one. The design of the new regulators at Dirout is done by Sanyu Consultant incorporation selected by Japan International Cooperation Agency (JICA). This is based on an agreement between the JICA and the Reservoir and Grand Barrage Sector (RGBS) of the Ministry of Water Resources and Irrigation, Egypt.

The RGBS commissioned the Hydraulics Research Institute (HRI), Egypt to conduct 3-D physical model to optimize the design of the new regulators. The HRI has completed the model, construction, and calibration. This includes the existing and the new regulators at Dirout. The physical model of the existing regulators was introduced in earlier progress reports. This report presents the physical model installation of the new regulators.

2 LAYOUT OF THE NEW REGULATORS

2.1 Location of the New Regulators

The location of new regulators of Bahr Yusef and IbrahimiaCanals and New Badraman Regulators are at 140m downstreamof the existing ones, and the other new small regulators of Sahelyia and Abo GabalCanals are in front of the existing regulators. Figure (1) shows the location of the new regulators.

Figure 1: Schematic Diagram of the Location of the New Regulators

2.2 Gates

Overflow type double-leaf gate with hydraulic cylinder as hoisting devices will be installed in large regulators. On the other hand, slide gate instead of double leaf gate will be installed in small regulators, and hoisting devices will be electric rack and pinion. Figure (2) shows a schematic diagram of the selected over-flow type gate of the new regulators.

Figure (2): Selected Over-flow Type Gate for New "DGR"

2.3 Navigation Locks

The existing Bahr Yusef and Ibrahimia navigation locks are not operated since long time ago. According to a discussion between MWRI and River Transportation Authority (RTA) it was decided that there is no need to provide the new regulators of Ibrahimia and Bahr Yusef with navigation locks. So, the new group of regulators do not have navigation locks.

2.4 Elevation of the Top of Apron on Gate Section

The elevation for top of apron under the gate is determined by the location of the new regulators and the existing bed elevation of the canal in order not to incur any trouble induced by sediments.

The location of the new regulators is classified into two types: one for Abo Gabal and Sahelyia Regulators which are constructed in the upstream of DGRs at right angle against the flow direction (TYPE1), and another for Bahr Yusef, Badraman, and Ibrahimia Regulators which are constructed in the downstream of DGRs (TYPE2).Figure (3) shows a schematic diagram of the apron's top level for the two types. Table (1) shows the apron's top level for each canal at the gate section.

Figure 3: Schematic Drawing for Apron's Top Level on gate section

where:

- GL: The existing bed level of the canal
- **El.1:** Level of the apron of type 1 regulator
- **El.2:** Level of the apron of type 2 regulator

Table 1: Top Level of the Apron of Each Branch Canal

Regulator	Existing Canal Bed Level GL. (m)	Level of the Apron: (El.1) (m)	Level of the apron at the gate section: (El.2) (m)
Abo Gabal	43.00	44.15	44.15
Sahelyia	44.00	44.65*	44.65
Bahr Yusef	39.50	39.50	40.00
Badraman	43.00	43.40	43.90
Diroutiah	43.50	43.70	44.20
Ibrahimia	39.50	39.50	40.00

2.5 Gate Height

The top level of the gate is designed as EL.46.55m (Upstream Maximum Design Water Level 46.30m + Free Board 0.25m). The height of the gate is designed as the difference in elevation between the top of the gate and the apron on the gate section, shown in Table (2). Figure (4) shows schematic drawing for top level of the gate and its height.

Regulator	Gate's top level (El.3) (m)	Apron's level (El.2) (m)	Gate Height H (m)	Gate Type
Bahr Yusef	46.55m	40.00m	6.55m	Double leaf
Ibrahimia	46.55m	40.00m	6.65m	Double leaf
Sahelyia	46.55m	44.65m	1.90m	Single leaf
Diroutiah	46.55m	44.20m	2.35m	Single leaf
Badraman	46.55m	43.90m	2.65m	Single leaf
Abo Gabal	46.55m	44.15m	2.40m	Single leaf

 Table 2: Top Level of the Apron of Each Branch Canal

where:

El.3: Top level of the gate

2.6 Height and thickness of piers

The height of pier is determined by the bottom level and height of fully open gate, height of free-board, and the thickness of the regulator top floor. Table (3) shows the pier's height for each regulator. The thickness of pier should satisfy the enough room

for the groove, transfer the load of the gate into the pier body, and secure the enough stability from the structural aspect. The thickness of the piers is 2.50m for large scale regulators and 1.00 m for small scale regulators, as given from the D/D consultant. The basic full design of the new regulators can be seen in the "Basic Design Report, 2016" submitted by the consultant. A full set of the design drawings can be seen in Annex (1).

Regulator	Bottom level of fully open gate (m)	Height of fully open gate (m)	Free board (m)	Top Thickness of regulator (m)	Top level of the pier (m)
Bahr Yusef	47.50	3.40	1.00	0.60	52.50
Ibrahimia	47.50	3.40	1.00	0.60	52.50
Sahelyia	47.50	1.90	0.50	0.50	50.40
Diroutiah	47.50	2.35	0.50	0.50	50.85
Badraman	47.50	2.65	0.50	0.50	51.15
Abo Gabal	47.50	2.40	0.50	0.50	50.90

 Table 3: Height of pier for each regulator

3 INSTLLATION OF THE NEW REGULATORS IN THE MODEL

3.1. Manufacturing the New Regulators in the Workshop

To install the modeled new regulators in the physical model as designed by the consultant, the process starts with scaling down the design with the model scale which is 1:25. After that the new regulators were manufactured in the workshop of the Hydraulics Research Institute (HRI) by skilled labors. Top quality wood is used to form the different elements of the regulators then collected and fixed by using steel nails to form one unit as seen in the drawings. After that the wood is painted for protection purposes as it will be submerged in the water most of the time. Figure (5) shows the manufacturing of the regulator in the workshop. Figure (6) shows the painting of the modeled new regulator after construction.

Figure 5: Manufacturing of the New Regulators in the HRI workshop

Figure 6: Painting of the New Regulators in the HRI workshop

3.2. Installing the New Regulators in the Physical Model

It starts by preparing the physical model to install the regulator according to the correct coordinates and elevation. Figure (7) shows the process of preparing the model to install the model of the new regulator. Figure (8) shows the shape of the model of the new regulator after placing it into the physical model. It also shows the curtain wall in the east bank of the canal. Figure (9) shows the location of the new regulator is located downstream of the existing regulator.

Figure (7): Physical Model Preparation to Place the New Regulator

Figure (8): New Regulator and the Curtain Wall

Figure (10) shows how the gates of the model are operated to adjust the flow discharges. The gates are connected to each other by a horizontal steel bar which in turn is connected with a vertical screw bar which rotates on a roller. By moving the screw bar counter clockwise, the gates are going up to lessen the flow discharges and when it rotate clockwise the gates are going down to increase the discharges. This is in case of overflow discharges.

Figure (9): New and Existing Regulator

Figure (10): Operation of the Gates Using Vertical Screw Bar

4 HYDROLOGIC CONDITIONS

The flow velocity measurements after installing the new regulators would be acquired in the model under three circumstances that representing various and possible flow conditions in the prototype which can be named as maximum, dominant, and minimum flow conditions. The main characteristics of each of the three mentioned flow conditions are summarized in Table (4). The hydraulic characteristics of each of the above three flow cases were worked out in view point of the passing flow discharge and the corresponding water surface flow upstream and downstream of the existing "DGR" for each branched canal. Calculation of each flow case and the application in the model would be summarised as follows:

Table (4). Represented Flow Conditions for Model Operation
--

		Prototype o	lischarge		U/S
No.	Flow condition	(mm ³ /day) (m ³ /s		Model discharge (l/s)	water level (m)
1	Maximum flow case	39.312	455.00	145.60	(46.30)
2	Dominant flow case	26.445	306.00	98.32	(46.30)
3	Minimum flow case	1.959	22.67	7.25	(46.30)

4.1 Distribution of the Maximum Flow Discharge

The maximum (design) flowconditionwas confirmed during the 6thTechnical Advisory Committee "TAC" meeting which was held in the Ministry of Water Resources and Irrigation "MWRI" on the 16thday of November 2015. The design hydrological data for the proposed new "DGR" were assigned as listed in Table (5). In this case the design high water surface level was (46.30) m.

]	W	SL		
No.	Canal name	Prototype (mm ³ /day)	Prototype (m ³ /s)	Model (l/s)	U/S (m)	D/S (m)
1	IradDelgaw canal	0.778	9.00	2.88		45.00
2	Abo Gabal canal	0.605	7.00	2.24		45.85
3	Bahr-Yussef canal	19.613	227.00	72.64		45.60
4	Badraman canal	0.778	9.00	2.88	(46.20)	45.85
5	Diroutiah canal	1.037	12.00	3.84	(40.30)	45.85
6	El-Ibrahimia D/S ''DGR''	16.070	186.00	59.52		45.15
7	Sahelyia canal	0.432	5.00	1.60		45.85
8	El-Ibrahimia U/S ''DGR''	39.312	455.00	145.60		-

Table (5): Hydrological Records for Maximum Flow Distribution

4.2 Distribution of the Dominant Flow Discharge

The dominant discharge was calculated by the Hydraulics Research Institute, HRI based on a daily data record from 2009 to 2014. This discharge was confirmed by both the project consultant and the GBRS. Table (6) shows the dominant discharge for each branch.

Table	(6):	Hydrol	logical	Records	for	Dominant	Flow	Distributio	n

		Discharge			WS	L
No.	Canal name	Prototype (mm ³ /day)	Prototype (m ³ /s)	Model (l/s)	U/S (m)	D/S (m)
1	IradDelgaw canal	0.559	6.470	2.070		44.60
2	Abo Gabal canal	0.384	4.444	1.422		45.60
3	Bahr-Yussef canal	14.042	162.523	52.007		45.30
4	Badraman canal	0.513	5.938	1.900		45.60
5	Diroutiah canal	0.724	8.380	2.681	(46.30)	45.60
6	El-Ibrahimia D/S ''DGR''	10.021	115.984	37.115		44.50
7	Sahelyia canal	0.261	3.021	0.967]	45.65
8	El-Ibrahimia U/S ''DGR''	26.494	306.644	98.126	1	-

4.3 Distribution of the Minimum Flow Discharge

Table (7) shows the minimum flow discharge passing through the new regulators. it should be noted that most of the flow discharge in the minimum flow period passes through Bahr Yusef and El-Ibrahemia Canals.

			WS	L		
No.	Canal name	Prototype (mm ³ /day)	Prototype (m ³ /s)	Model (l/s)	U/S (m)	D/S (m)
1	IradDelgaw canal	0.040	0.46	0.15		***
2	Abo Gabal canal	0.028	0.32	0.10		***
3	Bahr-Yussef canal	1.600	18.52	5.93		42.55
4	Badraman canal	0.038	0.44	0.14		***
5	Diroutiah canal	0.054	0.63	0.20	(46.30)	***
6	El-Ibrahimia D/S ''DGR''	0.180	2.08	0.67		41.55
7	Sahelyia canal	0.019	0.22	0.07		***
8	El-Ibrahimia U/S ''DGR''	1.959	22.67	7.25		-

 Table (7): Hydrological Records for Minimum Flow Distribution

*** no flow

5 TEST PROGRAM

The test program as submitted by the consultant of the project includes the operation scenarios of the gates of the new regulators (NDGRs), the location of the flow velocity measurements across the branch canals and the situation of the navigation locks of the existing regulator (DGRs). The following is the NDGRs operation during the flow velocity measurements.

5.1 Operating Scenarios for the Gates of the NDGRs

The consultant of the project confirmed the following operation rules for the gates of the small and large regulators as follows:

- For the small regulators (Abo Gabal, Badraman, Sahelyia and Diroutia), in all cases of maximum, minimum and dominant discharges have to be controlled by under flow gates.
- For the large regulator (Bahr Yusef and Ibrahemia Regulators), in cases of minimum and dominant discharges have to be controlled by over flow gate operation.
- For the large regulators (Bahr Yusef and Ibrahemia Regulators), in case of maximum discharge has to be controlled by over flow and under flow gate operation.

5.2 Flow Velocity Measurements of the Large Regulators

The consultant confirmed the following flow velocity measurements cross sections:

- Two cross sections at 30 and 50 m downstream of the center line of the new gate by necessity, and
- One cross section at 100 downstream of the center of the new gate if possible.
- For each cross section the flow velocity measurements include the average flow velocity (at the middle in the vertical direction) and the bottom flow velocity.

Figure (12) shows the location of the flow velocity measurements with respect to the large regulators at Ibrahemia and Bahr Yusef Canals.

5.3 Operating Scenarios for the Navigation Locks of the DGRs

The consultant of the project suggested the following scenarios for the operation of the navigation locks of the existing regulators of Bahr Yusef and Ibrahemia after the completion of the construction of the NDGRs:

- Gates of navigation lock of the existing Bahr Yusef have to be opened.
- Gates of navigation lock of the existing Ibrahemia Regulator have to be closed.

Figure (12): Location of the Flow Velocity Measurements

6 RESULTS

6.1 Gate Openings

Table (8) shows the gate openings of the new regulators at the maximum, dominant and minimum discharges. Also, it shows the gate openings of the large regulators of Bahr Yusef and Ibrahimia Canals when the discharges are flowing under the gates.

Table (8): Gate Openings of the Regulators at Different Discharges

		Gate Openings (m)				
No.	Canal name	Over]	Flow Discharge	Under Flow DischargeCase		
		Maximum	Dominant	Minimum	Maximum	
1	IradDelgaw canal	0.750	0.500		0.750	
2	Abo Gabal canal	0.600	0.525		0.600	
3	Bahr-Yusef canal				2.500	
4	Badraman canal	0.625	0.525		0.950	
5	Diroutiah canal	0.750	0.525		0.750	
6	El-Ibrahimia D/S ''DGR''				1.775	
7	Sahelyia canal	0.450	0.300		0.450	

6.2 Flow Velocity Distribution

Table (9) shows the absolute values of the maximum, minimum and average flow velocities in the successive cross sections 1, 2, and 3. Also, the flow velocity distribution for all the cases stated in the test program can be found in Annex 3. It can be seen from Table (9) and Annex 3 the following:

- To track the formation of dead zones and flow circulation zones, the flow velocity distribution in the longitudinal direction was used in this study.
- Negative flow velocity values as appeared in Annex 2 means that the flow direction reverses its direction to be from the downstream to upstream, while the positive flow velocity values means the flow direction is from the upstream to further downstream (flow direction).
- The maximum absolute flow velocity occurs when the discharge is passing under the gate in the maximum flow period.

- The maximum absolute flow velocity is 2.8 m/s and it occurs at section (1) downstream Ibrahimia new regulator.
- The maximum absolute flow velocity downstream Bahr Yusef new regulator is 2.52 m/s
- The flow distribution at section (1) is influenced by the regulator. A sinusoidal flow distribution is recognized with the peak velocity at the center of the vent and low velocity is at the center of the pier.
- Downstream Ibrahimia Regulator, it was recognized that the flow velocity values near the bottom of cross section (1) is larger than that in the mid depth velocity values in the same section in the case of maximum overflow conditions (see Annex 3). As an explanation to this phenomenon, in the maximum overflow condition the flow momentum dominates the gravity at this section causing a disturbance at the water surface while it increases the flow velocity in bottom layers leading to the above mentioned phenomena.

Table (9): Absolute Values of the Flow Velocities at Sections downstream of the New Large Regulators for the Over flow and Underflow Conditions

Sec.	Canal	Over Flow									Under Flow		
		Maximum Discharge			Dominant Discharge			Minimum Discharge			Maximum Discharge		
		V _{max} . (m/s)	V _{min} . (m/s)	V _{ave} . (m/s)	V _{max} (m/s)	V _{min} . (m/s)	V _{ave} . (m/s)	V _{max} (m/s)	V _{min} . (m/s)	V _{ave} . (m/s)	V _{max} (m/s)	V _{min} . (m/s)	V _{ave} . (m/s)
Sec. 1	Ibrahimia	2.60	0.50	1.55	1.80	0.28	1.05	0.28	0.01	0.14	2.80	0,60	1.70
	Bahr Yusef	1.20	0.20	0.70	0.57	0.02	0.30	0.28	0.02	0.15	2.52	0.89	1.70
Sec. 2	Ibrahimia	1.75	0.02	0.88	1.04	0.02	0.52	0.18	0.01	0.09	1.33	0.03	0.66
	Bahr Yusef	1.43	0.02	0.72	1.20	0.05	0.62	0.43	0.01	0.22	1.50	0.05	0.75
Sec. 3	Ibrahimia	1.05	0.07	0.53	0.82	0.04	0.43	0.27	0.07	0.14	0.90	0.03	0.46
	Bahr Yusef	1.12	0.02	0.56	0.96	0.16	0.56	0.266	0.07	0.16	1.08	0.06	0.57

6.3 Dead Zones and Flow Circulation

It can be realized from Figure (13) and Figure (14) the following:

- Formation of dead zone and flow circulation zone downstream of the new Ibrahimia regulator.
- The dead zone is attached to the right bank of Ibrahemia canal and occupies almost one third of the entire width of the canal and extends about 57.5 m further downstream of the new regulator.
- The average flow velocity in the circulation zone reads about 0.5 m/s in the maximum flow discharges and the flow direction is opposite to the main flow direction which is from the upstream of the NDGR to its downstream causing flow circulation as can be seen in Figure (13).

Figure (13): Formation of Dead Zone Downstream Ibrahimia New Regulator

Physical Model Study of Dairut Group of Regulators Report No. 5Installation of the New Dirout Regulators and Flow Velocity Measurements

Figure (14): Formation of Flow Circulation Zone Downstream Ibrahemia New Regulator

Figure (15) and Figure (16) show that a dead zone and a flow circulation zone took place attached to the left bank of Bahr Yusef Canal. The dead zone occupies almost half the entire width of the Bahr Yusef Canal and it extends a distance of 87.5 m further downstream of the new regulator. The average flow velocity at the circulation zone reads about 0.5 m/s and the maximum flow velocity under the gate is 2.8 m/s.

Figure (15): Formation of Dead Zone Downstream Bahr Yusef New Regulator

Physical Model Study of Dairut Group of Regulators Report No. 5Installation of the New Dirout Regulators and Flow Velocity Measurements

Figure (16): Formation of Flow Circulation Zone Downstream Bahr Yusef New Regulator

More photos of the circulation zone in the maximum, dominant and minimum flow conditions can be seen in Annex 3.

7 CONCLUSIONS

The operation of the new regulators (NDGRs) at Dirout shows the following:

- Formation of dead zones downstream of the new regulators at Bahr Yusef and Ibrahimia Canal.
- The flow distribution amongst the gates of the new regulators is influenced by the upstream arrangements such as the lock situation and the arrangement of the existing regulator vents with respect to the new regulators vents.
- the water level in Ibrahimia Canal upstream the existing regulator (DGRs) is influenced by the pool formed at water level of 46.30 m (MSL) between the existing and the new regulators.
- The flow distribution shape downstream the new regulator, especially at section (1), is influenced by the piers of the regulator.
- The maximum flow velocity at downstream the new regulator of Ibrahimia Canal is 2.8 m/s, while it is 2.52 m/s for Bahr Yusef Canal.
- It is recommended to remove the dead zones downstream the new regulators of Bahr Yusef and Ibrahimia Canals. This can be one by filling these zones with a filler material (e.g. sand, silt and clay mixture) and consider it as part of the bank of the canal.

- Cross section (1) is located in highly turbulent and hydraulically unstable vicinity.
- It is not recommended to measure the flow velocity distribution in this vicinity because it gives ambiguous results.

ANNEX 1 (Design Drawings of the New Dirout Regulators)

ANNEX 2 (Flow Velocity Measurements) ANNEX 3 (Photos of theModeled New Dirout Regulators)

MAXIMUM DISCHARGES

SECTION # 1 OVER_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 1

Figure (2): Bottom Flow Velocity Distribution at Cross Section 1

Figure (3): Flow Velocity Distribution at Mid Depth of Cross Section 1

Figure (4): Bottom Flow Velocity Distribution at Cross Section 1

SECTION # 1 UNDUR_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 1

Figure (2): Bottom Flow Velocity Distribution at Cross Section 1

Figure (3): Flow Velocity Distribution at Mid Depth of Cross Section 1

Figure (4): Bottom Flow Velocity Distribution at Cross Section 1

SECTION # 2 OVER_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 2

Figure (2): Bottom Flow Velocity Distribution at Cross Section 2

Figure (3): Flow Velocity Distribution at Mid Depth of Cross Section 2

Figure (4): Bottom Flow Velocity Distribution at Cross Section 2
SECTION # 2 UNDUR_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 2

Figure (2): Middle Flow Velocity Distribution at Cross Section 2

Figure (3): Flow Velocity Distribution at Mid Depth of Cross Section 2

Figure (4): Bottom Flow Velocity Distribution at Cross Section 2

SECTION # 3 OVER_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 3

Figure (2): Bottom Flow Velocity Distribution at Cross Section 3

Figure (3): Flow Velocity Distribution at Mid Depth of Cross Section 3

Figure (4): Bottom Flow Velocity Distribution at Cross Section 3

SECTION # 3 UNDUR_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 3

Figure (2): Bottom Flow Velocity Distribution at Cross Section 3

Figure (3): Flow Velocity Distribution at Mid Depth of Cross Section 3

Figure (4): Bottom Flow Velocity Distribution at Cross Section 3

DOMINANT DISCHARGES

SECTION # 1 OVER_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 1

Figure (2): Bottom Flow Velocity Distribution at Cross Section 1

Figure (3): Flow Velocity Distribution at Mid Depth of Cross Section 1

Figure (4): Bottom Flow Velocity Distribution at Cross Section 1

SECTION # 2 OVER_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 2

Figure (2): Bottom Flow Velocity Distribution at Cross Section 2

Figure (3): Flow Velocity Distribution at Mid Depth of Cross Section 2

Figure (4): Bottom Flow Velocity Distribution at Cross Section 2

SECTION # 3 OVER_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 3

Figure (2): Bottom Flow Velocity Distribution at Cross Section 3

Figure (3): Flow Velocity Distribution at Mid Depth of Cross Section 3

Figure (4): Bottom Flow Velocity Distribution at Cross Section 3

MINIMUM DISCHARGES

SECTION # 1 OVER_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 1

Figure (2): Bottom Flow Velocity Distribution at Cross Section 1

Figure (2): Flow Velocity Distribution at Mid Depth of Cross Section 1

Figure (4): Bottom Flow Velocity Distribution at Cross Section 1

SECTION # 2 OVER_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 2

Figure (2): Bottom Flow Velocity Distribution at Cross Section 2

Figure (3): Flow Velocity Distribution at Mid Depth of Cross Section 2

Figure (4): Bottom Flow Velocity Distribution at Cross Section 2

SECTION # 3 OVER_FLOW

Figure (1): Flow Velocity Distribution at Mid Depth of Cross Section 3

Figure (2): Flow Velocity Distribution at Mid Depth of Cross Section 3

Ministry of Water Resources and Irrigation Revisers Ground Barrage Sector The Arab Republic of Egypt 740 27th April 2016 SANYU CONSULTANTS INC.

Ibrahimia Reg

S=1:100

G-294

74

	Ministry of Water Revisers Gr The Arab F	Resources an ound Barrage Republic of Egy	d Irrigation Sector ypt
	1800	2000/	
~	27th Apr	20/	DRW. NO.
	SANYU CON	SULTANTS IN	С.
	PREPARED BY:	CHECKED BY:	APPROVED BY :
DATE	DATE	DITE	INATIC -

G-297

	Ministry of Water Revisers Gr The Arab F	Resources an ound Barrage Republic of Egy	nd Irrigation Sector ypt
	1.8k) Moo	$\overline{\boldsymbol{\Sigma}}$
	and a	h	DRW. NO
	2/ th A	MA 20,	
	SANYU CON	SULTANTS IN	C.
	PREPARED BY :	CHECKED BY;	APPROVED BY :
DATE		a	

Sahelyia

G-298

Coordinates

Point No.	X (m)	Y (m)
1	283987. 377	3050174, 916
2	284006. 794	3050173.368
3	284005, 022	3050163, 018
4	283986, 196	3050168.017

100 3550 4000 Ministry of Water Resources and Irrigation Revisers Ground Barrage Sector The Arab Republic of Egypt me DRW. NO. Ston April 2016 SANYU CONSULTANTS INC. APPROVED B

Diroutiah

S=1:100

G-300

Ministry c Revi The	of Water Res sers Ground Arab Repul	sources and Barrage Se p∐ic of Egyp	lrrigation etor ot
	Sta	no	\geq
	×	1-	DRW. NO.
22	2 Apr	A2201	\ll
	SANYU CONSU	LTANTS INC.	
	PREPARED BY:	CHECKED BY:	APPROVED BY:
DATE:	DATE:	DATE:	DÁTE:

Diroutiah S=1:100

Coordinates

Point No.	X (m)	Y (m)
1	283888. 280	3050386.877
2	283883. 164	3050414.100
3	283892, 992	3050415.947
4	283898, 108	3050388, 724

	Ministry Revi Th	of Water Re isers Ground e Arab Repu	sources and Barrage S blic of Egy	f Irrigation lector ypt
	Ministry Revi	of Water Re isers Ground e Arab Repu San Ratio	sources and barrage S blic of Egy	d Irrigation lector ypt DRW. NO.

Badraman

S=1:100

Ministr	y of Water	Resources a	nd Irrigation
R	evisers Gro The Arch P	und Barrage	Sector
	THE ALAD M		BADI
	504		\rightarrow
	SA	AUS	
	-	1-	DRW. NO.
2	TUA	to last	X
	en rig	prace	20/6/
	SANYU CO	INSULTANTS I	NC.
	PREPARED BY:	CHECKED BY:	APPROVED BY:
DATE:	DATE:	DATE:	DATE:

G-303

Minist	y of Water R	esources ar	nd Irri	gation
6	levisers Grou	nd Barrage	Sector	
	The Arab Rep	<u>ublic of E</u>	gypt	
	04			
	· / SA	man		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		DRW. NO.
9	DATAN	ZA	// [`	$\overline{\langle}$
7	expr.	4201	0	$\times$
	SANYU CON	SULTANTS IN	IC.	
	PREFARED BY:	CHECKED BY:	APPRO	VED BY:
DATE:	DATE	DATE:	DATE:	



G-304

Ministry of Water Resources and Irrigation Revisers Ground Barrage Sector The Arab Republic of Egypt 201 DRW. NO. 27 ch April 2016 SANYU CONSULTANTS INC. PREPARED BY: CHECKED BY: ROVED



Minis	try of Water Revisers Grou The Arab Rej	esources and I nd Barrage Se public of Egypt	rrigation ctor
	STR	en C	a-
21	the pr	AD M	DRW. NO.
S	ANYU CONSL	LTANTS INC.	
	PREPARED BY :	CHECKED BY :	APPROVED BY :
DATE:	DATE :	DATE :	DATE :

Standard section of the Abo Gabal Regulator





Point No.	X (m)	Y (m)
1	283865. 751	3050174.132
2	283841.553	3050162.601
3	283849.598	3050146.499
4	283871.561	3050162, 502

i	Ministry of Water Revisers Gr The Arab F	Resources ar ound Barrage Republic of Eg	nd Irrigation Sector ypt
6	ASto	en er	$\sum$
	27 A A	DN 201	B DRW. NO
			$\searrow$
	SANYU CON	SULTANTS IN	C.
	PREPARED BY :	CHECKED BY :	APPROVED BY :
DATE:	DATE:	DATE :	DATE

## Flow Tracking Upstream DGRs



Photo 1: Flow Tracking Upstream Existing DGRs Using Floating Debris



Photo 2 : Flow Tracking Upstream Existing DGRs Using Colored Dye

## Flow Tracking Downstream NDGRs (Maximum Overflow Discharge)



Photo 3: Flow Tracking Downstream New Bahr Yusef Regulator Using Floating Debris



Photo 4: Flow Tracking Downstream New Bahr Yusef Regulator Using Colored Dye



Photo 5: Flow Tracking Downstream New Ibrahimia Regulator Using Floating Debris



Photo 6: Flow Tracking Downstream New Ibrahemia Regulator Using Colored Dye

## Flow Tracking Downstream NDGRs (Dominant Overflow Discharge)



Photo 7: Flow Tracking Downstream New Bahr Yusef Regulator Using Floating Debris



Photo 8: Flow Tracking Downstream New Bahr Yusef Regulator Using Colored Dye



Photo 9: Flow Tracking Downstream New Ibrahimia Regulator Using Floating Debris



Photo 10: Flow Tracking Downstream New Inrahimia Regulator Using Colored Dye

## Flow Tracking Downstream NDGRs (Minimum Overflow Discharge)



Photo 11: Flow Tracking Downstream New Bahr Yusef Regulator Using Floating Debris



Photo 12: Flow Tracking Downstream New Bahr Yusef Regulator Using Colored Dye



Photo 13: Flow Tracking Downstream New Ibrahimia Regulator Using Floating Debris



Photo 14: Flow Tracking Downstream New Ibrahimia Regulator Using Colored Dye

# Flow Tracking Downstream NDGRs (Maximum Underflow Discharge)



Photo 15: Flow Tracking Downstream New Bahr Yusef Regulator Using Floating Debris



Photo 16 : Flow Tracking Downstream New Bahr Yusef Regulator Using Colored Dye



Photo 17: Flow Tracking Downstream New Ibrahimia Regulator Using Floating Debris



Photo 18: Flow Tracking Downstream New Ibrahimia Regulator Using Colored Dye

## **Two Dimensional Model For**

## **Bahr Yusef New Regulator**



Authors Eng. Ahmed Ibrahim Eng. Eman Mahmoud Eng. Amira Samir

Report

LL.

Supervised By Dr. Abdelazim M. Ali

Director Prof. Khaled Abdel Hai Ramadan

January 2017

HRI-9/2017



### HRI

Hydraulics Research Institute Delta Barrae, Alkanater, Egypt P.O. Box 13621 F-mail info@ hri-egypt.org

G-321

## Two Dimensional Model For Bahr Yusef New Regulator

Authors

Eng. Ahmed Ibrahim Eng. Eman Mahmoud Eng. Amira Samir

Supervised By Dr. Abdelazim M. Ali

Director Prof. Khaled Abdel Hai Ramadan

January 2017

Hydraulics Research Institute (HRI) National Water Research Center (NWRC) Ministry of Water Resources and Irrigation (MWRI) P.O.Box 13621, Delta Barrage, Egypt. CLIENT: Reservoirs and Grand Barrage Sector, Ministry of Water Resources and Irrigation

TITLE:

Two Dimensional Model For Bahr Yousef New Regulator

### ABSTRACT:

The Reservoirs and Grand Barrages Sector (RGBS), the Ministry of Water Resources and Irrigation (MWRI) requested (letter No. 1339, dated 8/5 2016) the Hydraulics Research Institute (HRI) to carry out a Two- Dimensional hydraulic physical model to study the impact of the hydraulic jump phenomenon on the downstream vicinity of one single bay of the new regulator of Bahr Yousef Canal as part of the New Dirout Group of Regulators (NDGRs). The study is aiming at optimizing the stilling basin dimensions, design (if required) of the energy dissipation blocks and optimize the design of the rip rap protection layers downstream the apron of the regulator. Complete hydrograph of Bahr Yousef Canal will be used for achieving the above goals. Rectangular flume with length of 26m, width of 1.0m and height of 1.2m will be used in order to construct the model which includes one bay of new Bahr Yousef regulator. The study comprises two phases, the first one tests the original design of new Bahr Yousef regulator and the second phase tests the final design that is approved by the technical committee.

VER	ORIGINATOR	DATE	REMARKS	REVIEW			A	APPROVE	O BY	
FV1	Eng. Ahmed Ibrahim	2017		Dr. Abdelazim M. Ali		Prof	f. Khal	ed Abdel ITai	Ramadan	
FV1										
FV1										
PROJECT IDE	ENTIFICATION:	HF	RI- 9-2017							
CONTENTS:	TEXT PAGES	45	TABLES	13	FIGUF	RES	34	Photo	17	
CONFIDENTI	CONFIDENTIAL: YES, until (date) NO									
STATUS:	PRELIMINARY	DR.	AFT 🛛 🛛 P	ROGRESS REPORT						

### Contents

1 INTODUC	TION	. 1
1.1 Dir	OUT GROUP OF REGULATORS (DGRS)	1
1.2 Hyr	DRAULIC PHYSICAL MODELS FOR NDGRS	1
1.3 STU	IDY OBJECTIVES	3
1.4 Stu	dy Tools	3
2 THE PHYS	SICAL MODEL	. 4
2.1 MO	DEL SIMILARITY	5
2.2 Mo	del Arrangement	6
2.2.1	Model Construction	6
2.2.2	Model Feeding	8
2.3 Mo	DEL DESCRIPTION	8
2.3.1	Model Entrance	9
2.3.2	The Modelled Reach	9
2.3.3	Model Outlet	9
2.4 Mo	DEL INSTRUMENTATION	10
2.4.1	Ultra-sonic Flowmeter	10
2.4.2	Electro-Magnetic Currentmeter	11
2.4.3	Point Gauges	<b>1</b> 1
2.4.4	Piezometer Tubes	12
2.4.5	Video and Photo - Camera	13
2.5 Mo	DEL DISCHARGES AND BOUNDARY WATER LEVELS	13
2.51	Model Discharges	13
2.5.1	Water Levels Conditions	13
3 MODEL T	FST PROCRAM	17
3 1 TES		17
37 TIE	TINDEDTAKEN MEASIDEMENTS EAD FILLY ADEN GATES	10
3.2 111	Water loval Massurements FOR I ULLI OPEN GATES	10
2.2.1	Processing Managements	10
3.2.2	Head Losses	20
3.2.3	$\mathbf{\Pi} Cau Losses$	20
2.2 IHt	Collibration of Shiroway Dadial Cates	20
3.3.1	Elaw Valaciw Distribution	20
2.2.2	Flow V clocity Distribution	20
3.3.3	Hydraune Jump Characteristics	Z⊥ 22
3.3.4	Pressure Measurements	22
3,3,3 4 DECLUTE	Stability of Bcg Protection	22
4 RESULTS	AND ANALYSIS	23
4.1 CAS	SE - 1 "FLOW OVER GATE"	23
4.1.1	Flow Velocity Distribution	23
4.1.2	Characteristics of Flow over Gate	25
4.1.3	Pressure Distribution	26
4.2 CAS	SE -2 "FLOW UNDER GATE"	28
4.2.1	Calibration of the Gate	28
4.2.2	Flow Velocity Distribution	29
4.2.3	Ilydraulic Jump Characteristics	30
4.2.4	Characteristics of Flow under Gate	33
4.2.5	Pressure Distribution	34
4.3 CAS	GE-3 "GATES FULLY OPEN"	36
4.3.1	Water Level Measurements	36
4.3.2	IIcad Losses	37
4.3.3	Pressure Head	38
4.4 Sta	BILITY OF RIP-RAP PROTECTION LAYERS	39
5 CONLUSIONS AND RECOMMENDATION		
5.1 Cox	NCLUSIONS	43
5.2 REC	COMMENDATIONS	44
6. REFERENCE		

## List of Figures

Figure (1-1) Layout Of Dirout Group Regulators (Dgrs)	2
Figure (2-1) Model Layout In The Flume	4
Figure (2-2) Longitudinal Section Of The Proposed Design New Bahr Yousef Regulator	5
Figure (2-3) Plane Section Of Bahr Yusef Regulator	7
Figure 3.1 Locations Of Measured Water Level	19
Figure 3.2 Locations Of Pressure Cells	20
Figure 3.3 Locations Of The Cross Section Velocity Measurements	21
Figure 3.4 Point Depth Velocity Measurements At Each Profile	21
Figure 3.5 The Hydraulic Jump Parameters	21
Figure 4.1 Velocity Distribution, Test-1, Case-1, Flow Over Gate	23
Figure 4.2 Velocity Distribution, Test-2, Case-1, Flow Over Gate	23
Figure 4.3 Velocity Distribution, Test-3, Case-1, Flow Over Gate	24
Figure 4.4 Velocity Distribution, Test-4, Case-1, Flow Over Gate	24
Figure 4.5 Velocity Distribution, Test-5, Case-1, Flow Over Gate	24
Figure 4.6 Velocity Distribution, Test-6, Case-1, Flow Over Gate	24
Figure 4.7 Flow Over Gate	25
Figure 4.8 Relation Between Discharge (Q) And Discharge Coefficient (Cd)	26
Figure 4.9 Pressure Head Distributions, Case-1 (Flow Over Gate)	27
Figure 4.10 Calibration Of The Gate, Case-2, Flow Under Gate	28
Figure 4.11 Velocity Distribution, Test-7, Case-2, Flow Under Gate	29
Figure 4.12 Velocity Distribution, Test-8, Case-2, Flow Under Gate	29
Figure 4.13 Velocity Distribution, Test-9, Case-2, Flow Under Gate	29
Figure 4.14 Velocity Distribution, Test-10, Case-2, Flow Under Gate	29
Figure 4.15 Velocity Distribution, Test-11, Case-2, Flow Under Gate	30
Figure 4.16 Velocity Distribution, Test-12, Case-2, Flow Under Gate	30
Figure 4.17 Parameters Of The Hydraulic Jump Characteristics	31
Figure 4.18 Relation Between Discharge (Q) And Discharge Coefficient (Cd)	33
Figure 4.19 Relation Between Gate Openings And Discharge Coefficient	34
Figure 4.20 Pressure Head Distributions, Case-2 (Flow Under Gate)	35
Figure 4.21 Measured Pressure Head	38
Figure 4.22 Location Of Calculation Of Stability Of River Bed Protection	
Figure 4.23 Stability Coefficient B' Of Bed Protection, Flow Over Gate	41
Figure 4.24 Stability Coefficient B' Of Bed Protection, Flow Under Gate	41
Figure 4.25 Stability Coefficient B' Of Bed Protection, Fully Open Gate	42

## List of Plates

Plate (1) 2D Flume In The Hydraulic Laboratory Of The Hydraulics Research Institute (HRI), Egypt	3
Plate (2) The Sluiceway Gate And The Downstream Reach	7
Plate (3) The Upstream Reach	8
Plate (4) Tail Control Gate In The Downstream To Adjust The Water Surface Levels	10
Plate (5) Ultra-Sonic Flowmeter For Inflow Discharge To The Model	10
Plate (6) Electro-Magnetic Currentmeter For Velocity Measurements In The Model	11
Plate (7) Point Gauge Device For Adjusting The Model Water Level	12
Plate (8) Piezometer Tubes Board For Measuring Pressure Distribution On The Sill And	
The Horizontal Apron	12
Plate (9) Used Digital Camera	13
Plate (1A) Manufacturing Of The Half Pier	14
Plate (2A) Cutting The Plexiglas Of The Half Pier	15
Plate (3A) The Model Inside The Flume	15
Plate (4A) The Model During The Construction Inside The Flume	16
Plate (5A) The Model During The Operation (Flow Over Gate)	16
Plate (3.1) Show The Flow Over The Gate, Case -1	18
Plate (3.2) Show The Flow Under The Gate, Case -2	18
Plate (3.3) Show The Flow Through Fully Open Gate, Case -3	18

## List of Table

Table 3.1 Test Program For The Proposed Cases	17
Table 3.2 Locations Of Water Level Measurements	19
Table 4.1 Calculated Discharge Coefficeient And Height Of Gate For Each Test	25
Table 4.2 Pressure Head Distributions, Case-1 (Flow Over Gate)	
Table 4.3 Calibration Of The Regulator Openings With 4 Gates, Case-2, Flow Under Gate	
Table 4.4 Hydraulic Jump Characteristics Downstream The Gate	
Table 4.5 Calculated Hydraulic Jump Characteristics Downstream The Gate	
Table 4.6 Pressure Head Distributions, Case-2 (Flow Under Gate)	
Table 4.7 Measured Water Level With Fully Open Gate	
Table 4.8 Calculated Head Losses With Fully Open Gate	
Table 4.9 Pressure Head Distributions, Case-3 (Fully Open Gate)	
Table 4.10 Stability Coefficient For Rip-Rap Protection At Cross Sections D And F	40
(Case-1 And Case-2)	40
Table 4.11 Stability Coefficient For Rip-Rap Protection At Cross Sections1, D And F (Case-3)	41

## **1 INTODUCTION**

### **1.1 Dirout Group of Regulators (DGRs)**

The Dirout Group of Regulators (DGR) is located at the City of Dirout at 310.0 km south of Cairo. The DGR is located at Ibrahimia Canal at 60.0 km downstream of the Ibrahimia Intake nearby Assiut Barrage. The DGR delivers annually about 9.6 BCM of the Nile Water to almost 1.43 million feddans (about 600,000 ha) through Ibrahimia Canal. The DGR distributes irrigation water of Ibrahimia Canal into seven canals, namely Ibrahimia Canal, Bahr-Yusef Canal, Sahelyia Canal, Diroutia Canal, Badraman Canal, Abo Gabal Canal and Irad Delgaw Canal, see **Figure 1.1**. The DGR was built in 1872 and serves the population of five governorates. These governorates are; Giza, Fayum, Beni Suef, Minya and Assiut. The total area of these governorates is almost 14% of the total area of Egypt and its population represents 26% of the total population of Egypt. For the effective use of the limited water resources and the exceedance the life of old DGR above the life time, the Government of Egypt requested the Government of Japan to study the construction of a new Dairout group of regulators (NDGRs) to increase the agricultural production in the served area.

## **1.2 Hydraulic Physical Models for NDGRs**

The Reservoirs and Grand Barrages Sector (RGBS) of the Ministry of Water Resources and Irrigation (MWRI) requested the Hydraulics Research Institute (HRI) to carry out two and three dimensional (2D&3D) hydraulic physical models for NDGRs. The objective of the proposed testing program is to adopt the best alignment and hydraulic design for the new barrages group components which fulfils the new flow regime through Ibrahimia Canal after the construction of the new Assiut barrage. Flow capacity and velocity distribution upstream and downstream each of the new group components would be physically tested and investigated. The 3D physical hydraulic phenomena such as "Hydraulic Jumps" need larger scale to study in detail its characteristics and its impact on the downstream vicinity of the new regulators. A well designed 2-D hydraulic detail model with scale of 1:8.5 is the best tool to check the flow characteristics upstream and downstream of the proposed structure, check the efficiency of the stilling basin design and testing the bed protection (rip rap) downstream the stilling basin.

The current report will focus on the investigation study for one bay of new Bahr Yousef regulator. The model consists of one bay of Bahr Yousef regulator including two half piers, the stilling basin, the rip rap protection upstream and downstream of Bahr Yousef regulator.

Hydraulics Research Institute



Figure (1-1) Layout of Dirout Group Regulators (DGRs)

Hydraulics Research Institute

## **1.3 Study Objectives**

The objectives of the 2D physical model can be summarized as follows:

- Study the flow characteristics along the stilling basin including formation of hydraulic jump.
- Optimize the stilling basin dimensions based on the typed intensity of hydraulic jump.
- Check the head losses due to the construction of new Bahr Yousef regulator with fully open gates.
- Investigate the stability of the rip-rap protection layer downstream the apron.

## **1.4 Study Tools**

A well designed 2D hydraulic physical detail model for one bay of Bahr Yousef regulator is used. The model is constructed inside double glasses rectangular Flume with dimension of 26m long, 1.0m wide and 1.2m high. The inlet of the flume is provided with a sump which receives the discharge from the pump and followed by two boxes filled with gravel and 2 inch plastic pipes to dissipate the energy of the inflow to the model. The exit of the flume consists of tail gate which controls the downstream water level. The model area is located between the inlet and the exit of the flume. The stilling basin of the model is made of smooth wood and the two half piers are made of plexiglass which gives a good monitoring for the flow along the entire length of the model. The model bottom in the flume is shaped with sand overlain by rip-rap in upstream and downstream reaches, as shown in **Plate 1**.



Plate (1) 2D Flume in the Hydraulic Laboratory of the Hydraulics Research Institute (HRI), Egypt

Hydraulies Research Institute
# 2 THE PHYSICAL MODEL

A two dimensional model with an undistorted scale **1:8.5** was designed to simulate one bay of Bahr Yousef regulator, the stilling basin, the rip- rap in both upstream and downstream reaches. The model structure is made from Plexiglas material in a steel-framed glass walled flume of 26.0 m long and 1.0 m wide, and 1.2 m high as shown in **Figure 2.1**. The model bottom of the flume is shaped with sand overlaid by rip-rap in both upstream and downstream reaches, as shown in **Figure 2.2**. The glass panels allow visual observation and photographing of the flow patterns and other related phenomena in the vicinity of the tested structure.



Figure (2-1) Model Layout in the Flume



Figure (2-2) Longitudinal Section of the Proposed Design New Bahr Yousef Regulator

## 2.1 Model Similarity

For correct reproduction of the important hydraulic phenomena in a hydraulic model, a complete similarity including geometric and dynamic similarity between prototype and model must be fulfilled when determining the model scales.

Because the model has free surface flow, the inertia and gravitational forces are dominant. Therefore, for simulation, the model has to be based on Froude number equality with the prototype. To simulate the kinematics and dynamics of the flow field properly, an undistorted geometric scale model is required.

The Froude number, which represents the ratio of flow inertia forces to gravitational forces, is given by:

$$Fr=\frac{v}{\sqrt{gh}}$$

Where

 $F_{\tau}$  = Froude number,

v = average flow velocity, (m/s)

h = characteristic depth, (m)

g = gravitational acceleration,  $(m/s^2)$ .

From the condition that the Froude Number in both prototype and model should be equal, the velocity scale ratio can be determined from which the other scale ratios can be derived:

 $\begin{array}{lll} \mbox{Length Scale} &= n_L \\ \mbox{Velocity scale ratio} &= n_v &= (n_L)^{0.5}, \\ \mbox{Discharge scale ratio} &= n_Q &= (n_L)^{2.5}, \\ \mbox{Time scale ratio} &= n_t &= (n_L)^{0.5}. \end{array}$ 

An undistorted geometric scale of 1:8.5 was selected. Consequently, the ratios for the other quantities are:

 $n_b$ : depth scale ratio :  $h_p/h_m=8.5$ ,  $n_l$ : length scale ratio:  $l_p/l_m=8.5$ ,

n _a : area scale ratio:	$n_1^2$ =72.25,
n _v : velocity scale ratio:	$n_{\rm h}^{1/2} = 2.92,$
n _Q : discharge scale ratio:	$n_l^{2.5} = 210.64,$
n _t : time scale ratio:	$n_1^{1/2} = 2.92$

In which (p) is the prototype and (m) is the model.

## 2.2 Model Arrangement

#### **2.2.1** Model Construction

The model structure is made from Plexiglas material in a steel-framed glass walled flume of 26.0 m long, 1.0 m wide, and 1.2 m height as shown in **Figure 2.1 and 2.2**. The glass panels allow visual observation and photographing of the results of the flow patterns and other related phenomena in the vicinity of the tested structure. The model was constructed inside the Northern flume of HRI.

The modeled structure consists of one bay of the sluice way consists of two half piers of 1.25 m wide each (prototype scale) manufactured from Plexiglas. The upstream water level controlled by two gates made of Plexiglas each gate with 3.3m height. In the first test case the gates used as a weir. Under normal operations (case-2), the flow passes between the gate and the sill under gate which was made of wood in the model. The Stilling basin consists of 2 parts; Sill under gate followed by a horizontal apron. Both of them are made from special water tight wood. The geometry and the dimension used for constructing the proposed design in the model is shown in **Figure 2.3** as a plan view **and Plates (1), (2), and (3).** 

The modeled structure was manufactured at HRI's workshop according to the detailed dimensions provided by consultant.

The model bed profile was shaped by sand of 2.5 mm mean diameter sand and overlaid by a rip-rap protection layer. The gradation of the rip rap protection downstream the apron of Bahr Yousef regulator has the following gradation;  $d_{15}=0.9$ cm,  $d_{50}=1.8$ cm and  $d_{85}=3.6$ cm. These layers were placed according to the elevation and location specified by the Consultant.



Figure (2-3) Plan Section of Bahr Yusef Regulator



Plate (2) The Sluiceway Gate and the Downstream Reach



Plate (3) The Upstream Reach

### 2.2.2 Model Feeding

The flume is provided with a recirculating system. The maximum feeding capacity of the system is  $0.4 \text{ m}^3$  s (400 l s). This capacity is sufficient as the maximum scaled discharge of the model which is 269 l/s. The required discharge is pumped directly by pump with capacity of 269 l s, from an isolated underground reservoir reserved specially for this model.

This underground reservoir has a length of 30 m, width of 1.5 m and height of 1.25 m with a total capacity of 56.25  $\text{m}^3$  which is quiet sufficient for assuring non aeration of pumps during model operation.

The ultrasonic flowmeter is installed on 16 inch-diameter flow pipe to measure the discharge. The ultrasonic flowmeter has an accuracy of  $\pm 1\%$ .

# 2.3 Model Description

The model consists of three main parts: model entrance, the modelled reach of Nile River, and model outlet. Herein, a brief description for each part is presented.

#### 2.3.1 Model Entrance

The model entrance consists of a steel basin of 1.5 m wide, 2.0 m long and 2.0 m height. This basin is used to receive the delivered water from the two main pipelines of the circulating system. In order to dissipate the flow energy that entering the model and to avoid any disturbance, a mesh box filled with coarse gravel followed by a screen mesh box filled with 2.0 inches diameter plastic pipes, are provided. Also, a bed ramp was shaped at the entrance to help in absorbing the rest of water energy before approaching the barrage model.

### 2.3.2 The Modelled Reach

The model simulates a length of the Nile River about 221 m including the new sluiceway. (91.59 m upstream and 77.56 m downstream), see Figure 2.1 and 2.2. The flow through the regulator bay represented in the model was controlled by means of the plexiglas gate.

The bed material of the model were formed by sand of 2.5 mm mean diameter covered by coarser material (rip-rap) to protect upstream and downstream areas of the structure. The Rip-Rap protection covered distance 71.4 m upstream stilling basin and covered distance 41.74 m from the end of blocks area downstream new regulator at upstream of the new regulator. The designed mean characteristic particle diameter  $D_{50}$  of the river bed protection at both upstream and downstream of the new regulator are as following:

Just Upstream the regulator up to 8m:	$D_{50}$	=	153	mm*
Just Downstream the regulator up to 41.74m:	$D_{50}$	=	153	mm*

* D₅₀ – mean characteristic particle diameter (mm)

### 2.3.3 Model Outlet

The model exit consists of a basin that starts directly at the end of the simulated reach of the Nile River followed by a steel tail control gate in the downstream to adjust the water surface level as shown in plate (4).



Plate (4) Tail Control Gate in the Downstream to Adjust the Water Surface Levels

# 2.4 Model Instrumentation

#### 2.4.1 Ultra-sonic Flowmeter

To determine the flow discharge into the model accurately, an ultrasonic flowmeters were used. As shown in **plate (5)**, flowmeter were installed on 16 inch-diameter feeding pipelines. flowmeter measure the water flow rate with an accuracy of  $\pm 1\%$ . The Ultra-Sonic flowmeter type E.M.S. was used to measure the discharge in the model up to 400 l/s (model).



Plate (5) Ultra-Sonic Flowmeter for Inflow Discharge to the Model

### 2.4.2 Electro-Magnetic Currentmeter

The flow velocities in the model are measured using an Electro-Magnetic currentmeter type E.M.S., manufactured by Delft Hydraulics, Holland, see plate (6). The device was connected to a mean value meter to show the average velocity within a selected time period.



Plate (6) Electro-Magnetic Currentmeter for Velocity Measurements in the Model

## 2.4.3 Point Gauges

To monitor and follow the water surface levels along the model, two point gauges with side stilling wells were installed at 60 m downstream and 60 m upstream the regulator crest, prototype scale. Also, mobile point gauge was used to measure the water surface elevations at any point along the flume length. These point gauges can read accurately up to + 0.1 mm. Plate (7) shows the Point Gauge device used in adjusting the water level in the model.



Plate (7) Point Gauge Device for Adjusting the Model Water level

## 2.4.4 Piezometer Tubes

In order to measure the pressure distribution on the horizontal apron, eight cells 37.93 m apart (prototype scale) were fixed at the centerline of the apron surface. These cells are connected to eight glass water manometers fixed on a vertical board to directly determine the pressure head above the inclined and horizontal apron, see **Plate (8)**.



#### Plate (8) Piczometer Tubes Board for Measuring Pressure Distribution on the Sill and the Horizontal Apron

## 2.4.5 Video and Photo - Camera

Video and Photo cameras documentations are essential in such hydraulic study to record flow patterns for different flow cases and to monitor the stability of the downstream rip-rap zones, see **Plate (9)**.



Plate (9) Used digital Camera

# 2.5 Model Discharges and Boundary Water Levels

### 2.5.1 Model Discharges

The model was carried out to simulate different prototype discharges ranging from  $18.52 \text{ m}^3/\text{s}$  to  $227 \text{ m}^3$  s. According to selected model arrangement and taking into account the Froude similarity, the model discharge is given by:

$$Q_{model} = \frac{1}{4} Q_{Sp,W.} n_h^{-2.5} = 0.001187 \, Q_{reg,W.}$$
 (1)

### 2.5.2 Water Levels Conditions

#### **Headpond levels**

The headpond is operated according to the "Regulator Operating Strategy" (ROS) as defined by the Feasibility Study. The target levels of the headpond is 46.30 m+asl.

	e e	
46.30 m msl	Minimum discharge	$Q = 18.52 \text{ m}^3 \text{ s}$
46.30 m msl	Dominant	$Q = 162.52 \text{ m}^3/\text{s}$
46.30 m msl	Maximum Discharge	$Q = 227 \text{ m}^{3}/\text{s}$

#### **Tailwater levels**

The tailwater rating curve to be used for the Dirout Group Regulator is defined by the following formula, valid for the present riverbed conditions (normal condition), without degradation, with  $h_{tailwater}$  in [m asl] and Q in m³/s:

```
\mathbf{h}_{\text{tailwater}} = -0.00005 \text{ Q}^2 + 0.0287 \text{ Q} + 42.037....(2)
```

Some plates during model construction is in Annex (A).



Plate (1A) Manufacturing of the Half Pier



Plate (2A) Cutting the Plexiglas of the Half Pier



Plate (3A) The Model Inside the Flume



Plate (4A) The Model During the Construction Inside the Flume



Plate (5A) The Model During the Operation (Flow over Gate)

# **3 MODEL TEST PROGRAM**

## 3.1 Test Program

The investigation of the detaile model of the sluiceway comprises 3 cases. Each case comprises a series of tests to achieve its objectives.

Case No.	Test No.	Discharge (Q) m ³ /s	U.S.W.L (m) + MSL	D.S.W.L (m) + MSL	Condition
	Test -1	18.52	46.3	42.55	2
	Test -2	80.00	46.3	44.01	Cat
c - 1	Test -3	120.00	46.3	44.76	, cr
asi	Test -4	162.52	46.3	45.30	ó
	Test -5	195.00	46.3	45.73	lo v
	Test -6	227.00	46.3	45.82	Γ.
Case - 2	Test -7	18.52	46.3	42.55	ite
	Test -8	80.00	46.3	44.01	ů (
	Test -9	120.00	46.3	44.76	der
	Test -10	162.52	46.3	45.30	Ū n
	Test -11	195.00	46.3	45.73	ð
	Test -12	227.00	46.3	45.82	F
	Test -13	18.52	46.3	42.55	tc
Case - 3	<b>Test</b> -14	80.00	46.3	44.01	Ga
	Test -15	120.00	46.3	44.76	ocu
	Test -16	162.52	46.3	45.30	j j
	Test -17	195.00	46.3	45.73	l fil
	Test -18	227.00	46.3	45.82	L L

 Table 3.1: Test Program for the Proposed Cases

The above test program comprises tests which were performed for discharges ranging from  $18.52 \text{ m}^3/\text{s}$  to  $227 \text{ m}^3/\text{s}$  and the upstream water level is a certain value 46.30m+msl and the downstream water value calculated from tail water rating curves. The following test conditions were applied for the current investigation:

- **Case 1:** tests from Test-1 to Test-6 were performed with over gate flow, consist of 6 tests.
- Case 2: tests from Test-7 to Test-12 were performed with flow passes under gate, consist of 6 tests.
- **Case 3:** tests from Test-13 to Test-18 were performed with fully open gate, consist of 6 tests.

Plates 3.1, 3.2 and 3.3 show the flow pass from upstream to downstream for the three tested cases.



Plate (3.1) Show the Flow over the Gate, case -1



Plate (3.2) Show the Flow under the Gate, case -2



Plate (3.3) Show the Flow through Fully Open Gate, case -3

# 3.2 The undertaken Measurements for Fully Open Gates

Through test series of gates fully open the following measurements were carried out:

#### 3.2.1 Water level Measurement

The water level measurements were carried out approximately at the locations that given in **Table 3.2** along the centre-line of the flume. **Figure 3.1** shows the location of water level measurements along the longitudinal section of the flume.

Location	Description
1	(32.53 m) upstream the gate
2	(24.03 m) upstream the gate
3	(15.53 m) upstream the gate
4	(7.88 m) upstream the gate
5	(5.33 m) upstream the gate
6	(3.63 m) upstream the gate
7	(0.62 m), directly downstream the gate
8	(4.87 m) downstream the gate
9	(9.12 m) downstream the gate
10	(13.37 m) downstream the gate
11	(17.62 m) downstream the gate
12	(19.83 m) downstream the gate
13	(22.04 m) downstream the gate
14	(30.54 m) downstream the gate
15	(39.04 m) downstream the gate
16	(47.54 m) downstream the gate
17	(56.04 m) downstream the gate
18	(64.54 m) downstream the gate

#### Table 3.2: Locations of water level measurements

Numbers between brackets are in prototype scale.



Figure 3.1 Locations of Measured Water Level

#### **3.2.2 Pressure Measurements**

The pressure head is measured at different locations starting at the end of sill under gate and ending at 3.4 m upstream the end of apron. Figure 3.2 shows the location of the pressure measurements.



#### Figure 3.2 Locations of Pressure Cells

#### 3.2.3 Head Losses

The total head losses between two sections were calculated. The locations of these two sections are at the upstream the gate by 32.53m (section 1) and downstream the gate by 64.54m (section 2). The total head losses were calculated based on the well-known Bernoulli equation.

# **3.3** The undertaken Measurements for Partially Open Gates

Through test series of partially open gates the following measurements were record:

### 3.3.1 Calibration of Sluiceway Radial Gates

In order to calibrate the sluiceway gate the gate opening was determined for each test during this phase of investigations with partially open gate. For better accuracy the gate opening was measured by micrometer device with high accuracy at three location under the gate on left, center and right in order to ensure that the radial gate is horizontal.

### **3.3.2** Flow Velocity Distribution

Velocity measurements were performed at six cross sections as shown in Figure (3.3), for the headpond and discharge conditions as explained before. The location of the cross section measurements are defined as following:

Sections A to F located at 11.72m; 20.48m; 28.98m; 43m; 58.05m and 73.09m downstream the gate. It should be mentioned that there are additional cross section located 33.4m upstream the gate for case of fully open gate.

For each cross section the velocity was measured at the middle of the cross section at 0.2, 0.4, 0.6, 0.8 and 0.9 of the water depth as shown in **Figure 3.4**.



Figure 3.3 Locations of the Cross Section Velocity Measurements



Figure 3.4 Point Depth Velocity Measurements at each Profile

#### 3.3.3 Hydraulic Jump Characteristics

The hydraulic jump characteristics were measured for each test during the partially open gates investigation. The measurements include the height of the vena contracta, the backup water depth behind the gate and the gate openings. Based on these measurements the Froude Number at the vena contracta was calculated and the classification of the hydraulic jump was performed. Figure 3.5 shows the different parameters of the hydraulic jump.



Figure 3.5 The Hydraulic Jump Parameters

#### Where:

- Upstream Water Depth, Hu (m)
- Tail Water Depth, yt (m)
- Thickness of flow jet at vena contracta,  $H_c(m)$
- Backup water depth  $H_3(m)$
- Gate opening, G.o [m]
- Conjugate Depth,  $y_2(m)$
- Length of Submerged Jump, Lsj (m)

#### **3.3.4 Pressure Measurements**

Pressure along the stilling basin downstream the gate was recorded at different locations to verify whether the pressure remains above atmospherically pressure, e.g. the jet downstream the gate is not separating from the back slope of the sill under gate.

The measurements were done as follows:

• 8 pressure cells were arranged on the sill under gate and the horizontal apron as shown Figure (3.2)

HRI- 9/2017

• Pressure distribution on sill under gate and the horizontal apron along bay center line and with 4.46 m (model seale) distances.

#### 3.3.5 Stability of Bed Protection

In order to ensure that the rip rap is stable the near bed velocity was measured at different location in both upstream (C.S 1) and downstream the gate C.S (D and F) in case of fully open gate, and in case of flow over gate and flow under gate the stability was checked at downstream only (Cross section D and F). The standard deviation was measured with each single velocity near to bed. The stability factor was calculated at different locations.

# 4 **Results and Analysis**

## 4.1 Case -1 "Flow over Gate"

#### 4.1.1 Flow Velocity Distribution

The velocity distribution was measured at six cross sections downstream of the gate. These cross sections are sec. A, B, C, D, E and F. At each cross section the velocity distribution was measured at the center of the channel. **Figures from 4.1 to 4.6** shows the velocity distribution for the tested river discharges, the upstream water level is 46.30m+msl for all tests and downstream water level ranged from 42.55m+msl at minimum discharge and 45.82m+msl at maximum discharge. The following figures show that velocity distribution near bed over apron is backward flow and forward flow near surface. The velocity reaches 2.72m/s at test-3 corresponding to discharge 120m³/s at C.S (A) directly downstream the gate, the near bed velocity reaches 0.85m/s at C.S (D) at test-5 with discharge 195m³/s and the maximum near bed velocity at C.S (F) at the end of blocks area was at test-6 corresponding to discharge 227m³/s and it was 0.98m/s.

U.S.W.L=46.30



Figure 4.1 Velocity Distribution, Test-1, Case-1, Flow over Gate



Figure 4.2 Velocity Distribution, Test-2, Case-1, Flow over Gate





U.S.W.L=46.30 Test 4, Q=162.52 m3/s D.S.W.L=45.3 3,27 1,83 1,14 .82 3 33 2.35 .72 /1.29 .92 82 .73 66 65 -1.03  $\binom{3}{43}$ 1.59 .72 117 -.58

Figure 4.4 Velocity Distribution, Test-4, Case-1, Flow over Gate



Figure 4.6 Velocity Distribution, Test-6, Case-1, Flow over Gate

#### 4.1.2 Characteristics of Flow over Gate

The characteristics of flow over gate were investigated in order to define the discharge coefficient " $C_d$ " with different operational mode and river flow conditions as shown in **Figure 4.7**. The discharge coefficient was calculated according to the following formula of the flow over gate (the gate acting as a weir) in presence of free hydraulic jump:

$$Q = \frac{2}{3} * Cd * B * \sqrt{2g} * H^{1.5}$$
 4.1

Where:



Figure 4.7 Flow over Gate

**Table 4.1** show the discharge coefficient which was calculated based on the measured Head over gate "II" which obtained during the test run for all tests with different river flow conditions. From the experimental results the discharge coefficient " $C_d$ " was ranged from 0.3 to 0.74. Figure 4.8 shows the relation between the discharge and discharge coefficient for all obtained data.

**Table 4.1** shows that when the gate rested on sill under gate we didn't control the upstream water level so it reaches 46.33m+msl in test-5 and 46.59m+msl in test-6.

Test	Q	U.S.W.L	D.S.W.L	Height of Gate	Gate Crest Level	Н	$C_d$
No.	m ³ /s	m+MSL	m+MSL	(m) m+MSL		(m)	(-)
Test-1	18.52	46.3	42.55	5.38	45.38	0.92	0.30
Test-2	80.00	46.3	44.01	4.97	44.97	1.33	0.74
Test-3	120.00	46.3	44.76	4.56	44.56	1.74	0.74
Test-4	162.52	46.3	45.3	3.87	43.87	2.43	0.60
Test-5	195.00	46.33	45.73	3.32	43.32	3.02	0.53
Test-6	227.00	46.59	45.82	3.32	43.32	3.28	0.54

Table 4.1 Calculated Discharge Coefficeient and Height of Gate for each Test



Figure 4.8 Relation between Discharge (Q) and Discharge Coefficient (C_d)

#### 4.1.3 **Pressure Distribution**

The pressure distribution was measured at eight locations on the sill under gate and on the horizontal apron using eight pressure cells, 4.46m (model scale) distance as shown in **Figure 3.2** in the previous chapter. Pressure head measurements were carried out for different flow discharges ranging from  $18.52m^3$ /s to  $227m^3$ /s. The results are shown in **Table 4.2** and **Figure 4.9**.

Tost No	Pressure Head (m)							
Test NO	<b>P</b> 1	<b>P2</b>	<b>P3</b>	<b>P4</b>	<b>P5</b>	P6	<b>P7</b>	<b>P8</b>
Test-1	3.17	3.41	3.19	3.17	3.16	2.98	3.15	3.13
Test-2	4.06	5.03	4.36	4.40	4.48	4.34	4.62	4.62
Test-3	4.44	5.87	5.17	5.06	5.13	4.22	5.29	5.32
Test-4	5.10	5.61	5.56	5.57	5.70	4.80	5.88	5.87
Test-5	5.57	6.06	6.04	6.04	6.13	5.63	6.31	6.31
Test-6	5.57	6.06	6.03	6.04	6.21	5.75	6.41	6.43

<b>Table 4.2 Pressure</b>	Head Distributions,	Case-1	(Flow over	Gate)
			(	,



Figure 4.9 Pressure Head Distributions, Case-1 (Flow over Gate)

**Figure 4.9** shows that the minimum pressure head was at the sill under gate (cell-1) for (test-2, test-5 and test-6) and for rest of tests the minimum pressure head was at the end of the pier (cell-6).

# 4.2 Case -2 "Flow under Gate"

## 4.2.1 Calibration of the Gate

The gate was calibrated to define the different gate openings for different flow conditions, the river flow discharges ranging from  $18.52 \text{m}^3/\text{s}$  to  $227 \text{m}^3/\text{s}$ . The upstream water level was 46.30 m+msl for all tested river discharges and the downstream water levels were varying from 42.55 and 45.82 m+msl. The model results of the calibration of the gate are shown in **Table 4.3 and Figure 4.10**.

All the obtained data were plotted for the relation between the discharge and the gate opening and the trend line shown in **Figure 4.10** with Power fitting.

Test No.	Q _{River} (m ³ /s)	U.S.W.L (m) + MSL	D.S.W.L (m) + MSL	Gate Opening (m)
Test-7	18.52	46.30	42.55	0.13
Test-8	80.00	46.30	44.01	0.60
Test-9	120.00	46.30	44.76	1.10
Test-10	162.52	46.30	45.30	1.76
Test-11	195.00	46.30	45.73	2.78
Test-12	227.00	46.30	45.82	3.02



Figure 4.10 Calibration of the Gate, Case-2, Flow under Gate

## 4.2.2 Flow Velocity Distribution

The velocity distribution was measured at the same cross section of case-1,the velocity distribution was measured at the center of the Flume. Figures from 4.11 to 4.16 shows the velocity distribution for the tested river discharges, the upstream water level is 46.30m+msl for all tests and downstream water level ranged from 42.55m+msl at minimum discharge and 45.82m+msl at maximum discharge. The following figures show that velocity distribution near bed on apron is forward flow and backward flow near surface at cross section close to gate. The near bed velocity reaches 3.69m/s at test-10 corresponding to discharge 162.52m³/s at C.S (A) directly downstream the gate, the near bed velocity reaches 0.94m/s at test-12 with discharge 227m³/s and the maximum velocity at C.S (F) at the end of blocks area was at test-12 corresponding to discharge 227m³/s and it was 0.95m/s. the velocity distribution is became well distributed at the end of concrete slab (cross section D).



Figure 4.11 Velocity Distribution, Test-7, Case-2, Flow under Gate



Figure 4.12 Velocity Distribution, Test-8, Case-2, Flow under Gate



Figure 4.13 Velocity Distribution, Test-9, Case-2, Flow under Gate



Figure 4.14 Velocity Distribution, Test-10, Case-2, Flow under Gate



Figure 4.15 Velocity Distribution, Test-11, Case-2, Flow under Gate



Figure 4.16 Velocity Distribution, Test-12, Case-2, Flow under Gate

### 4.2.3 Hydraulic Jump Characteristics

It is required to check the designed apron with regard to the hydraulic jump formations. The tests are conducted for the case of normal flow conditions. The flow characteristics under the gate and the flow condition downstream the gate. The characteristics of the hydraulic jump were investigated in order to classify its type. The conditions that applied for all tests and the measured and calculated parameters are shown in **Figure 4.17** and listed here below as following:

#### **Test conditions:**

* Sill under gate elevation:	40.00 m+msl
* Apron elevation:	39.50 m+msl
* Discharge:	varying from $18.52 \text{m}^3/\text{s}$ to $227 \text{m}^3/\text{s}$

#### * Measured parameters:

- Gate opening, GO [m]
- Thickness of flow jet at vena contracta,  $H_c$  (m)
- Backup water depth  $H_3$  (m)
- * Calculated parameters:
  - Velocity at vena contracta,  $v_c [m/s]$ ,  $v_c = Q/(H_c b)$
  - Froude number,  $F_{r1} = v_c/(g.H_c)^{0.5}$
  - Conjugate depth,  $y_2$  (m)
  - Length of submerged hydraulic jump Lsj (m)
  - Relative energy losses  $E_L/E_1$  (%)



Figure 4.17 Parameters of the Hydraulic Jump Characteristics

**Table 4.4** shows the measured results for the parameters of the hydraulic jump characteristics downstream the gates of new regulator. The measured parameters of the hydraulic jump are the height of the jet at vena contracta "Hc" and back up water depth downstream the gate "H₃". Also, the gate opening was measured too. Based on the measured parameters, the velocity at vena contracta "V_c", Froude No. "Fr₁" at vena contracta "Fr₁" and the length of submerged hydraulic jump "Lsj" were calculated as shown in **Table 4.5**.

The Froude No. " $Fr_1$ " and the relative energy losses "EL/E1" were calculated. Table 4.5 shows the calculated parameters of the hydraulic jump in order to evaluate the efficiency of the design of the stilling basin of new regulator.

4.2

The energy losses at section 1 (at vena contracta) was calculated by using the following formula:

$$E_1 = \frac{H3}{Hc} + \frac{(Fr1)^2}{2}$$

Where:

 $E_1$  = the energy at section 1(at vena contracta)

 $H_3$  = the backup water depth (water depth just downstream the radial gate)

IIc = the height of the jet at vena contracta

 $Fr_1$  = the Froude No. (at vena contracta)

Also, the total energy losses between section 1 and section 2 were calculated by using the following formula (Rajaratnam et al 1963:

1

$$E_{L} = \frac{H3}{Hc} - \left(\frac{1+S_{t}}{2}\right) \times \left(\sqrt{\left(1+8(Fr1)^{2}\right)} - 1\right) + \frac{(Fr1)^{2}}{2} \left(1 - \frac{4}{\left(1+S_{t}\right)^{2} \times \left(\sqrt{\left(1+8(Fr1)^{2}\right)} - 1\right)^{2}}\right)$$
4.3

Where:

 $S_t$  = the submergence ratio  $(y_t-y_2)/y_2$ 

 $y_t = tail water depth$ 

 $y_2$  = sequent water depth of the classical hydraulic jump

In addition, the relative energy losses  $E_L/E_1 *100$  was also calculated in order to check the efficiency of the design of new regulator stilling basin.

Tost No.	Q	U.S.W.L	D.S.W.L	Gate Opening	Backup Water	Vena Contracta	Velocity at Vena.	Froude No.
1051.10.	m ³ /s	(m)+MSL	(m)+MSL	G.O (m)	Depth H ₃ (m)	H _e (m)	Contracta V _c (m/s)	Fr ₁ (-)
Test - 7	18.52	46.3	42.55	0.13	2.25	0.17	4.54	3.51
Test - 8	80.00	46.3	44.013	0.60	3.49	0.77	4.36	1.59
Test - 9	120.00	46.3	44.76	1.10	4.34	0.68	7.35	2.85
Test - 10	162.52	46.3	45.3	1.76	4.89	1.23	5.49	1.58
Test - 11	195.00	46.3	45.73	2.78	5.31	2.00	4.07	0.92
Test - 12	227.00	46.3	45.82	3.02	5.44	2.38	3.97	0.82

Table (4.4) Hyuraung Jump Characteristics downstream the Gate
---------------------------------------------------------------

#### Table (4.5) Calculated Hydraulic Jump Characteristics downstream the Gate

Test No.	Q	Cd	yι	Energy Losses	Energy Losses(E _L )	Relative Energy Losses	Length of Sub. Jump	Length of Sub. Jump
	m ³ /s	(-)	<u>(m)</u>	at Sec.1 E ₁ (m)	(m)	E _L /E ₁ (%)	(Lsj) _{meas.} (m)	(Lsj) _{Cal.} (m)
Test - 7	18.52	0.71	3.05	19.43	8.53	43.90	5.40	16.46
Test - 8	80.00	0.82	4.51	5.82	1.42	24.44	17.60	24.37
Test - 9	120.00	0.83	5.26	10.43	3.92	37.58	19.64	29.28
Test - 10	162.52	0.87	5.80	5.21	1.29	24.79	14,96	31.67
Test - 11	195.00	0.87	6.23	3.08	0.57	18.66	21.08	33.27
Test - 12	227.00	1.02	6.32	2.62	0.46	17.61	25.25	33.76

### 4.2.4 Characteristics of Flow under Gate

The characteristics of flow under new regulator gate were investigated in order to define the discharge coefficient " $C_d$ " with different operational mode and river flow conditions. The discharge coefficient was calculated according to the following formula of the flow under gate in presence of submerged hydraulic jump:

$$Q = C_d * B * G \cdot O * \sqrt{2 * g * \Delta h}$$
4.4

Where:

Q	= the sluiceway discharge/gate	$(m^{3}/s)$
$C_d$	= the discharge coefficient	(-)
В	= the width of the gate	(m)
G.O	= the gate openings	(m)
g	= the gravity acceleration (9.81)	$(m^{2}/s)$
$\Delta h$	= the differential head	(m)

**Table 4.5** show the discharge coefficient which was calculated based on the measured gate openings "G.O" which obtained during the test run for all tests with different river flow conditions. The results showed that the discharge coefficient was ranged from 0.71 to 1.02. Figure 4.18 shows the relation between the discharge and discharge coefficient for all obtained data of case-2, at which Figure 4.19 shows the relation between the gate openings and the discharge coefficient for the obtained data.



Figure 4.18 Relation between Discharge (Q) and Discharge Coefficient (Cd)



Figure 4.19 Relation between Gate Openings and Discharge Coefficient

### 4.2.5 **Pressure Distribution**

The pressure distribution was measured at eight locations on the sill under gate and on the horizontal apron using eight pressure cells, 4.46m (model scale) distance as shown in **Figure 3.2** in the previous chapter. Pressure head measurements were carried out for different flow discharges ranging from  $18.52m^3$ /s to  $227 m^3$ /s. The results are shown in **Table 4.6 and Figure 4.20**.

Test	Pressure Head (m)									
No.	<b>P1</b>	P2	<b>P3</b>	<b>P4</b>	P5	<b>P6</b>	<b>P7</b>	<b>P8</b>		
Test-7	2.42	3.12	3.10	3.15	3.16	2.98	3.14	3.15		
Test-8	3.68	4.81	4.28	4.34	4.45	4.31	4.62	4.59		
Test-9	4.48	4.90	4.28	5.06	5.12	4.91	5.34	5.36		
Test-10	5.09	5.31	5.71	5.61	5.65	5.59	5.87	5.87		
Test-11	5.59	5.90	6.16	6.05	6.09	6.12	6.28	6.31		
Test-12	5.68	5.98	6.26	6.16	6.22	6.24	6.39	6.41		

Table 4.6 Pressure Head Distributions, Case-2 (Flow under Gate)



Figure 4.20 Pressure Head Distributions, Case-2 (Flow under Gate)

**Figure 4.20** shows that the minimum pressure head was at the sill under gate (cell-1) for all tests except test-9 the minimum pressure head was at (cell-3).

# 4.3 Case-3 "Gates Fully Open"

#### 4.3.1 Water Level Measurements

The water level was measured at the predefined locations as explained in the previous chapter along the center line of the flume between 32.53m upstream the gate and 64.54m downstream the gate as shown in **Figure 3.1**. **Table 4.7** shows the results of the measured water levels. Six tests were carried out which are Test 13 to Test 18 corresponding to discharges of 18.52, 80, 120, 162.52, 195 and 227  $m^3$ /s respectively. The model results show that the maximum drop in the water level was 0.03, 0.03, 0.03, 0.09, 0.07, 0.08m for tests from 13 to 18 respectively, as shown in **Figure 4.21 and Plate 4.1**.

Location of	Mcasured Water Level (m+MSL)									
Measured W.L	Test-13	Test-14	Test-15	Test-16	Test-17	Test-18				
Upstream (1)	42.52	44.00	44.77	45.30	45.76	45.85				
2	42.56	44.01	44.76	45.30	45.76	45.83				
3	42.53	43.99	44.77	45.30	45.75	45.84				
4	42.55	44.01	44.76	45.27	45.70	45.82				
5	42.55	43.99	44.74	45.27	45.71	45.79				
6	42.55	43.98	44.74	45.27	45.69	45.78				
7	42.55	43.98	44.74	45.27	45.69	45.77				
8	42.55	43.98	44.74	45.27	45.70	45.77				
9	42.55	43.99	44.74	45.27	45.70	45.77				
10	42.55	43.99	44.74	45.28	45.70	45.79				
11	42.54	43.99	44.74	45.27	45.70	45.79				
12	42.52	44.00	44.74	45.27	45.70	45.78				
13	42.54	43.99	44.74	45.27	45.71	45.81				
14	42.55	44.01	44.76	45.22	45.72	45.84				
15	42.54	44.01	44.75	45.31	45.72	45.82				
16	42.54	44.00	44.76	45.30	45.73	45.85				
17	42.55	44.01	44.76	45.30	45.73	45.82				
Downstream (18)	42.55	44.01	44.76	45.30	45.73	45.82				

Table 4.7 Measured Water Level with Fully Open Gate



Figure 4.21 Drop in Water Level



Plate 4.1 Drop of Water around Pier, Test-17

#### 4.3.2 Head Losses

Head losses were calculated between upstream U/S and downstream D/S at cross-sections 1 and 18 at 32.53 m upstream the gate and at 64.54 m downstream the gate (prototype scale). The head losses were calculated for six river discharges ranged from (18.52 and 227  $m^3$ /s) for normal conditions of river bed. The head loss was calculated using the following equation:

$$Z_{l} + H_{l} + \frac{V_{l}^{2}}{2g} = Z_{2} + H_{2} + \frac{V_{2}^{2}}{2g} + h_{l}$$
 4.5

Where:

 $Z_1$  : Upstream elevation head (m),

- Z₂ : Downstream elevation head (m),
- $H_1$  : Upstream water depth (m),
- H₂ : Downstream water depth (m),
- V₁ : Upstream cross-sectional average velocity (m/s),
- V₂ : Downstream cross-sectional average velocity (m/s), and
- $h_L$  : Head losses between section 1 & 18 (m).

The calculated head losses are based on the measured water level and the average velocity at the two locations, section 1 and 18. **Table 4.8** shows the calculated head losses for the six tested river discharges.

Test	Q	U.S.W.L	$\mathbf{V}_{1}$	$V_1^2/2g$	D.S.W.L	$\mathbf{V}_2$	$V_2^2/2g$	հլ
No.	(m ³ /s)	(m)+MSL	(m/s)	(m)	(m)+MSL	(m/s)	(m)	(m)
Test-13	18.52	42.57	0.24	0.003	42.55	0.18	0.002	0.02
Test-14	80	44.04	0.49	0.012	44.01	0.43	0.009	0.03
Test-15	120	44.80	0.64	0.021	44.76	0.59	0.018	0.04
Test-16	162.52	45.36	0.72	0.026	45.30	0.71	0.025	0.06
Test-17	195	45.80	0.90	0.042	45.73	0.79	0.031	0.08
Test-18	227	45.92	0.98	0.049	45.82	0.95	0.046	0.11

 Table 4.8 Calculated Head Losses with Fully Open Gate

The maximum head loss values between cross sections no. (1) and (18) are 0.11m for the test Test-18 which corresponds to discharge of 227 m³/s. Also, the minimum calculated head losses was found to be 0.02m which corresponding to discharge of 18.52 m³/s.

It should be mentioned that the head losses which are calculated in the 2D flume is only due to the effect of the single one bay of the new sluiceway and not taking into consideration the effect of the whole structure across the river at the project site. So, based on that fact the final head losses should be measured in the 3-D model.

#### 4.3.3 Pressure Head

The pressure head were measured at the predefined eight pressure cells on the sill under gate and horizontal apron with 37.93m as shown in Figure 3.2. During the fully open gates the pressure head is measured for six river discharges ranged from 18.52 to 227  $\text{m}^3$ /s, see Table 4.9 and Figure 4.22.

Test No.	Pressure Head (m)									
	1	2	3	4	5	6	7	8		
Test-13	2.70	3.22	3.21	3.18	3.17	3.16	3.15	3.15		
Test-14	4.15	<b>4.6</b> 7	4.66	4.63	4.62	4.62	4.62	4.61		
Test-15	4.89	5.41	5.40	5.38	5.37	5.36	5.36	5.36		
Test-16	5.41	5.93	5.94	5.91	5.89	5.88	5.89	5.90		
Test-17	5.83	6.35	6.36	6.32	6.32	6.32	6.32	6.32		
Test-18	5.93	6.44	6.45	6.43	6.41	6.41	6.43	6.43		





#### Figure 4.22 Measured Pressure head

Figure 4.22 shows that the minimum pressure head was at cell (1) and the pressure head at the rest of cells is approximately constant.

#### 4.4 Stability of Rip-Rap Protection Layers

The stability of rip-rap protection layer was investigated for different flow discharges ranging from  $18.52 \text{ m}^3/\text{s}$  to  $227 \text{ m}^3/\text{s}$ . The Rip-Rap protection shall be dimensioned for releases characterized by low Froude Numbers and small energy dissipation. The flow phenomena require that certain care is applied to determine stability of Rip-Rap particles used to prevent scouring downstream of the apron.

The criteria for selection of the Rip-Rap size include a "stability coefficient" **B**'. The stability coefficient **B**' indicates that the riprap is stable if **B**' below 1.25-1.30. Remembering that the stability of the Rip-Rap downstream of a stilling basin depends on both velocity and turbulence level, the stability coefficient was formulated by Römisch, K. et al ,1995[4]:

$$B' = \frac{v_{bottom} \left( 1 + C.Tu \right)}{\sqrt{d_{50} \cdot g.\Delta'}}$$
4.6

Where:

B'= Stability coefficient ranges from 1.25-1.30 $v_{bottom}$ = Bottom velocityC= 3.00 to 3.17, see [4]Tu= Relative turbulence intensity $d_{50}$ = Mean size of Rip-Rap particles $\Delta'$ = Relative density of the submerged Rip-Rap

No turbulence measurements were provided in the scope of the model tests. However, there were short duration measurements of the bottom velocity available with indications of bulk turbulence. Hence, the above formula was modified to include the measured velocity fluctuations formula (4.7):

$$B' = \frac{V_{bottom} \left(1 + 3SDV\right)}{\sqrt{d_{50} \cdot g \cdot \Delta'}}$$

$$4.7$$

Where:

SDV = Standard deviation of the velocity fluctuations.

The rip rap stability was investigated at both upstream and downstream the gate for different operational mode and hydraulic flow condition. The stability of riprap were calculated at two cross sections downstream the gate these sections are **D** and **F** for Case-1 and Case-2 (flow over gate and flow under gate) respectively, and another section added upstream the gate (**cross section 1**) at Case-3 of fully open gate. **Cross section (D)** is located 43 m downstream the gate (at the end of stilling basin), **C.S. (F)** is located 30m downstream section D (at the end of blocks area) and C.S. (1) located 33.4m upstream the gate as shown in **Figure 4.23**.

The velocity used in Römisch formula is velocity at 0.9 from the water depth and standard deviation is also measured for near bed velocity.


Figure 4.23 Location of Calculation of Stability of River Bed Protection

**Table 4.10** shows the stability coefficient B' as calculated from modified formula with the measured standard deviation of the velocity fluctuations at the two cross sections (**D**) and (**F**) for tests from 1 to 12. Based on the measured near bed velocity fluctuation and the standard deviation the stability coefficient B' was found safe for all tested flow conditions of the Cases of flow over gate and flow under gate, see Figures 4.24and 4.25.

**Table 4.11 and Figure 4.26** show the stability coefficient of case-3 (flow of fully open gate) and the table represents that river bed protection is stable for cross section (1) at upstream and cross sections (**D** and **F**) at downstream.

Test No.	Q m ³ /s		Cross See	tion (D)		Cross Section (F)					
		V _{0.9} (m/s)	SD.V	<b>B'</b>	Safety	V _{0.9} (m/s)	SD.V	<b>B'</b>	Safety		
Test - 1	18.52	0.109	0.018	0.063	Safe	0.180	0.021	0.105	Safe		
<b>Test - 2</b>	80	0.372	0.135	0.288	Safe	0.338	0.062	0.221	Safe		
Test - 3	120	0.545	0.269	0.542	Safe	0.496	0.101	0.355	Safe		
Test - 4	162.52	0.429	0.328	0.468	Safe	0.766	0.161	0.625	Safe		
Test - 5	195	0.846	0.300	0.885	Safe	0.868	0.107	0.631	Safe		
Test - 6	227	0.685	0.516	0.961	Safe	0.979	0.135	0.757	Safe		
<b>Test - 7</b>	18.52	0.075	0.024	0.044	Safe	0.153	0.034	0.093	Safe		
Test - 8	80	0.385	0.106	0.279	Safe	0.397	0.070	0.265	Safe		
Test - 9	120	0.542	0.224	0.499	Safe	0.526	0.057	0.339	Safe		
<b>Test - 10</b>	162.52	0.818	0.331	0.898	Safe	0.535	0.082	0.366	Safe		
<b>Test - 11</b>	195	0.584	0.298	0.609	Safe	0.613	0.110	0.449	Safe		
<b>Test - 12</b>	227	0.937	0.398	1.132	Safe	0.947	0.100	0.677	Safe		

#### Table (4.10) Stability Coefficient for Rip-Rap Protection at Cross Sections D and F

(Case-1 and Case-2)

Hydraulics Research Institute



Figure 4.24 Stability Coefficient B' of Bed Protection, Flow over Gate



Figure 4.25 Stability Coefficient B' of Bed Protection, Flow under Gate

Table (4.11) Stability	Coefficient for Rip-Rap	<b>Protection at Cross</b>	Sections1. D and F (Case-3)
Iubic ( III) Stubility	Coefficient for http http	1 locetion at Closs	Sectionsly D und I (Cuse S)

Test No.	Q	Cross Section (1)				Cross Section (D)				Cross Section (F)			
	m ³ /s	V _{0.9} (m/s)	SD.V	<b>B'</b>	<b>Safety</b>	V _{0.9} (m/s)	SD.V	<b>B'</b>	Safety	V _{0.9} (m/s)	SD.V	<b>B'</b>	Safety
<b>Test - 13</b>	18.52	0.173	0.022	0.102	Safe	0.142	0.069	0.094	Safe	0.136	0.015	0.078	Safe
<b>Test - 14</b>	80	0.400	0.053	0.256	Safe	0.305	0.037	0.187	Safe	0.366	0.036	0.223	Safe
Test - 15	120	0.554	0.102	0.398	Safe	0.423	0.074	0.284	Safe	0.524	0.051	0.332	Safe
Test - 16	162.52	0.568	0.080	0.387	Safe	0.525	0.074	0.353	Safe	0.611	0.049	0.385	Safe
<b>Test - 17</b>	195	0.604	0.087	0.420	Safe	0.631	0.129	0.482	Safe	0.695	0.061	0.453	Safe
Test - 18	227	0.610	0.109	0.446	Safe	0.678	0.090	0.475	Safe	0.814	0.108	0.593	Safe

Hydraulics Research Institute



Figure 4.26 Stability Coefficient B' of Bed Protection, Fully Open Gate

Hydraulics Research Institute

# 5 CONLUSIONS AND RECOMMENDATION

### 5.1 Conclusions

A 2D model was carried out to investigate and optimize the proposed design of the stilling basin of new Bahr Yusuf regulator. The main aim of the model is to check the efficiency of the proposed design of stilling basin of new regulator. The model simulates one bay of the new regulator including the proposed design of the stilling basin and the gate in addition to canal reach of 91.59m upstream the gate and 77.56m at downstream.

The investigation tested the sluiceway with flow over gate, flow under gate and with fully open gate. The main findings of the hydraulic model for the new regulator are summarized as following:

#### 1st.case the flow passes over the gate:

- In low discharges due to big difference between upstream and downstream levels, the velocity distributions close to the gate is forward flow near to bed and backward flow in the surface, the maximum velocity near to bed is 2.72m/s.
- In dominant and high discharges due to the low head difference between upstream and downstream the velocity distributions close to the gate is backward flow near to bed and forward flow close to surface.
- The maximum velocity near to bed at cross section (F) at the end of blocks area is 0.98m/s at high discharge (227m³/s).
- The discharge coefficient " $C_d$ " was ranged from 0.3 to 0.74.
- For discharges 195m³/s and 227m³/s the gate was rested on the sill under gate and we didn't control the upstream water level, so it reaches 46.33 and 46.59m+msl in test-5 and test-6 respectively.
- The river bed protection (riprap) was found stable for both cross sections D and F, cross section-D (at the end of the apron) and cross section-F (at the end of blocks area).
- The maximum stability coefficient (**B'**) was found 0.961 at C.S.(D) and 0.757 at C.S.(F) for high discharge 227m³/s.

#### 2nd.case the flow passes under the gate:

- The gate openings were increased from **0.13m** with low discharge corresponding to 18.52m³/s until it reaches **3.02m** with discharge227m³/s (high discharge).
- In this case the velocity distribution near to gate is forward flow near to bed and backward flow close to the surface due to the jet of under gate flow, except test-7 (low discharge).
- The maximum value of forward velocity near to bed at C.S. No. (A) is 3.69m/s with the dominant discharge (162.52m³/s).
- The maximum near bed velocity at cross section (F) is 0.95 m/s with high discharge (227 m³/s).
- The measured vena contracta "H_c" was ranged from 0.17m in test-7 to 2.38m in test-12.
- The Froude No. " $Fr_1$ " at vena contracta was ranged from 0.82 to 3.51.
- The discharge coefficient " $C_d$ " was ranged from 0.71 to 1.02.
- The relative energy losses " $E_L/E_1$ " was ranged from 17.61% in test-12 to 43.90% in test-7.
- The minimum value of pressure head was found at sill under gate (location-1).
- The river bed protection (riprap) was found stable for both cross sections D and F for all tests. Hydraulies Research Institute 43

#### 3rd.case the flow passes through a fully open gate:

- The maximum drop in the water level was 0.09m at point 14 in test-16 corresponding to discharge 162.52m³/s.
- The maximum calculated head loss is found to be 0.11m for discharge 227m³/s.
- The minimum calculated head loss is found to be 0.02m for minimum discharge.
- The minimum value of pressure head was found at sill under gate (location-1).
- The river bed protection (riprap) was found stable for both upstream for the calculated section and downstream for both cross sections D and F.
- The maximum stability coefficient in the upstream section is 0.446 and for downstream sections D and F are 0.482 and 0.593 respectively.

## 5.2 **Recommendations**

Based on the obtained results the following recommendations are achieved:

- No need for the area with concrete blocks downstream the apron and it can be replaced by riprap protection.
- The length of the riprap protection D/S the apron can be taken as 20-30m.

# 6. REFERENCE

- [1] Hydraulic Model Investigations of the Sluiceway of New Nagh Hammadi Barrage, Hydraulic Research Institute, Delta Barrage 13621, Egypt. Report No. 42/1997.
- [2] Hydraulic Model Investigations of the Sluiceway, of New Nagh Hammadi Barrage, Hydraulic Research Institute, Delta Barrage 13621, Egypt. Report No. by Eng. Abdel-Azim. M. Ali, January 1998.
- [3] CHOW V.T. Open Channel Hydraulies McGraw -Hill Auckland, Bogota Guatemala, Hamburg, Lisbon, London, etc., 1973.
- [4] DREWES, U./ Erosion Downstream of Stilling Basins Caused by High Turbulent ROMISCH, K. Flows, 6th Int. Symposium on River Sedimentation, 1995 New Delhi, India.
- [5] HOFFMANS, Two dimensional mathematical modeling of local scour holes G.J.C.M. Doctoral thesis, Communication No. 92-7 Faculty of Civil Engineering, Hydraulic and Geotech. Engineering Division, Delft University of Technology, Delft 1992.

Further Literature used:

- Albertson, M., j.R. Bartan, and D.B. Simons, "Fluid Mechanics for Engineers", Prentice-Hall Civil Engineering Series, 1960.
- Bureau of Reclamation, "Hydraulic Laboratory Techniques", Second ed., rev. reprint, 1974.
- Bureau of Reclamation, "Hydraulic Laboratory Techniques" A Water Resources Technical Publication U.S. Department of Interior, Denver Colorado, 1980.
- De Vries, M. (1973), "Application of Physical and Mathematical Models for River Problems"; Delft Hydraulics Laboratory Publication No. 112.
- Helmut Kobus, "Hydraulic Modeling", German Association for Water Resources and Land Improvement, Bulletin 7.
- Maraget S. Peterson, "River Engineering", 1980 Yalin. M., "Theory of Hydraulic Models", Canada.
- New Esna Barrage Physical Model Report, HRI, 1990.
- NewNaga Hammadi Barrage feasibility study, Hydraulic model investigations sluiceway detail model Report, HRI, July 1997/January 1998.
- NewAssuit Barrage (Phase I), Hydraulic model investigations sluiceway detail model for configuration I Report, HRI, March 2009.

IIydraulics Research Institute