ARAB REPUBLIC OF EGYPT MINISTRY OF WATER RESOURCES AND IRRIGATION RESERVOIR AND GRAND BARRAGES SECTOR

THE ARAB REPUBLIC OF EGYPT THE PROJECT FOR CONSTRUCTION OF THE NEW DIROUT GROUP OF REGULATORS

DETAILED DESIGN STUDY

FINAL REPORT Appendix (1/3)

May, 2017

JAPAN INTERNATIONAL COOPERATION AGENCY

SANYU CONSULTANTS INC.

RD
CR (2)
17–034

Table of Contents

Appendix (1/3)

- A. Design of Regulators
- B. Water Management System
- C. Quantity Calculation Sheets
- D. Construction Planning

Appendix (2/3)

- E. Cost Estimation
- F. Environmental and Social Consideration
- G. Mathematic al Model Analysis
- H. Minutes of Discussions

Appendix (3/3)

I. Drawings

APPENDIX A

DESIGN OF REGULAOTORS

A-1. Hydraulic Calculation	A- 1
A-2. Examination sheet of Seismic Conditions	A- 9
A-3. Traffic Survey Report – Dirout Regulator Bridge	A- 14
A-4. Calculation sheet for the Structural Stability of NDGRs	A- 23
A-5. Examination sheet of Bearing Capacity	A-130
A-6. Structural Analysis of NDGRs	A-157
A-7. Structural Calculation of Pile Foundation	A-279
A-8. Structural Calculation of Steel Sheet Pile Works	A-305
A-9. Structural Calculation of Ancillary Bridge	A-413
A-10. Design of Architecture	A-449
A-11. Structural Calculation of Gate Facilities and Related Structures	A-490
A-12. Structural Calculation of Road Crossing Culvert	
for Hydraulic Pipe of Ibrahimia Regulator	A-750
A-13. Road Alignment on the railway crossing	A-795
A-14. Connecting works between the new and existing regulators	
for Abo Gabal and Sahelyia regulators	A-797
A-15. Stability calculation of gabion works	A-804

APPENDIX A-1

Hydraulic Calculation

														SE=Sudden F	xpantion		GE=Gradual	Expantion	
Non-unit	form flow ca	lculation ta	able											SC=Sudden (Contraction		GC=Gradual	Contraction	
Case	[Bahr Yı	isef]			Necessary	water leve	1	46.00 m	<	46.30m	ОК			$L\lambda = Inflow he$	ead loss				
		Interval	Quantity	Area of	Complex	Hydraulic	Flow	Water	Bed	Water	Velocity	Friction bo	ad loss	C	ther head losse	s	Total	Total hea	.d a1 ∆× 2
	Station	distance	of flow	water flow	roughness	radius	velocity	depth	elevation	level	head	Thereinine	441035	llead	Coefficient	Name	head	Upstream	Downstream
N⊵	name				coefficient					Zb+h				loss	of loss	of loss	Нь	Φ	Ψ
		$\Delta \mathbf{x}$	Q	A	л	R	U	h	Zb	(a)	(b)	(c)	(d)		f		(a)+(b)	(a)+(b)+(c)	(a)-(b)-(d)
	205.00	(m)	(m /s)	(m [*])		(m)	(m s)	(m)	(m)	(m)	(m)	(m)	(m)	(m)			(m)	(m)	(m)
1	295.00		227.000	246.347	0.0250	3.877	0.921	5.020	40.800	45.820	0.050	0.001					45.870	45.871	
2	270.70	24.300	227.000	293.684	0.0250	3.925	0.773	4.738	41.100	45.838	0.034	0.001	0.001				45.872	45.873	45.871
3	246.90	23.800	227.000	292.094	0.0250	4.006	0.777	4.840	41.000) 45.840	0.034	0.001	0.001				45.873	45.874	45.873
4	220.00	26.900	227.000	321.752	0.0250	4.147	0.706	5.647	40.200	45.847	0.028	0.000	0.001				45.875	45.875	45.874
5	202.70	17.300	227.000	345.837	0.0250	4.350	0.656	5.452	40.400	45.852	0.024	0.000	0.000				4 5.876	45.876	45.875
6	183.60	19.100	227.000	405.490	0.0250	4.591	0.560	7.557	38.300	45.857	0.019	0.000	0.000				45.876	45.876	45.876
7	166.00(+)	17.600	227.000	608.922	0.0250	6.591	0.373	10.168	35.700	45.868	0.008	0.000	0.000				45.876	45.876	45.876
														0.030	0.452	SE			
8	166.00(-)	0.000	227.000	199.718	0.0150	4.520	1.137	6.340	39,500	45.840	0.066	0.000	0.000				45.90 6	45.906	45.876
9	148.50(+)	17.500	227.000	199.736	0.0150	4.521	1.136	6.341	39,500) 45.841	0.066	0.000	0.000				45.90 7	45.907	45.906
														0.007	0.059	SE			
10	148.50(-)	0.000	227.000	37.792	0.0150	2.032	1.502	6.299	39.500) 45.799	0.115	0.001	0.000				45.914	45.915	45.907
11	135,75	12.750	227,000	37.807	0.0150	2,032	1.501	6,301	39.500	45,801	0,115	0,000	0,001				45,9 16	45,916	45.915
12	134,25	1.500	227,000	34.679	0.0150	1,975	1.636	5,780	40.000	45,780	0.137	0,001	0,000				45,9 16	45.917	45.916
13	129,25	5.000	227.000	34.686	0.0150	1,975	1.636	5.781	40.000	45,781	0.137	0.001	0.001				45,918	45.918	45.917
14	124,25	5.000	227.000	34.693	0.0150	1,975	1.636	5.782	40.000) 45,782	0.137	0.000	0.001				45,919	45.919	45.918
15	122,75	1.500	227.000	37.825	0.0150	2.033	1.500	6.304	39.500	45,804	0.115	0.000	0.000				45,919	45,919	45.919
16	121,50(+)	1.250	227.000	37.826	0.0150	2.033	1.500	6.304	39.500	45.804	0.115	0.000	0.000				45,919	45.919	45.919
														0.011	0.097	SC			
17	121.50(-)	0.000	227.000	200.491	0.0150	4.533	1.132	6.365	39.500	45.865	0.065	0.000	0.000				45.930	45.930	45.919
18	109.00(+)	12.500	227.000	200.504	0.0150	4.533	1.132	6.365	39.500	45.865	0.065	0.000	0.000				45.931	45.931	45.930
														0.022	0.336	SC			
19	109.00(-)	0.000	227.000	461.728	0.0250	4.992	0.492	7.139	38.800	45.939	0.014	0.000	0.000				45.952	45.953	45.931
20	84.80	24.200	227.000	406.592	0.0250	4.931	0.558	7.135	38.800	45.935	0.018	0.000	0.000				45.953	45.953	45.953
21	47.15(-)	37.650	227.000	230.696	0.0250	4.738	0.981	6.101	39.800) 45.901	0.054	0.000	0.001				15.955	45.955	45.951
														0.001	0.015	SE			
22	47.15(-)	0.000	227.000	202.824	0.0150	4.985	1.119	6.182	.39.700) 45.882	0.074	0.001	0.000				45.956	45.956	45.955
23	15.00(-)	32,150	227.000	184.060	0.0150	4.674	1.233	6.165	39.700) 45.865	0.092	0.000	0.001				45.957	45.957	45.956
	15 00()	0.000	227.000	202 699	0.0160	2.040	1.000	6 400	20.000	15.005	0.050	0.000	0.000	0.004	0.054	SC	47.0/1	45.070	45.057
24	13.00(-)	0.000	227,000	222.300	0.0150	3.649	1.020	0.403	39.500	+5.905	0.050	0.000	0.000				45,901	45.902	43.937
25	0.00(+)	15.000	227.000	222.606	0.0150	3.849	1.020	6.406	39.500) 45.906	0.056	0.000	0.000	0.012	0.110	CE	45,962	45.962	45.961
76	0.007.5	0.000	777 000	148 974	0.0150	1 654	1 575	6 777	20 500	15 022	0.147	0.002	0.000	0.013	0.110	ЭĽ.	15 075	45 077	45 047
20	15 20(1)	15 700	227.000	148.020	0.0150	1,050	1.525	6 227	20.500	, +5.055	0.142	0.002	0.000				45.975	45.977	45.902
21	-12/20(L)	10.500	227.000	148.924	0.0130	1,030	1.52+	/ دد.ه	39.300	, +3.83/	0.142	0.000	0.002	0.024	0.200	L M	+3.979	40.979	43.977
28	-1530(-)	0.000	227.000	1300 102	0.0150	6 104	0.175	6 501	30 500	46 001	0.002	0.000	n ano	0.021	0.200	I N	46 003	46 003	45 070
79	-35.30	70 (004	227.000	1300.192	0.0745	6 104	0.175	6 501	30 500	a 46 /01	0.002	0.000	0.000				46 003	46 (103	46.002
30	-11530	20.000	227.000	649 670	0.0245	5 750	0.1/5	6 407	30 500	, TU.001	0.002	0.000	0.000				46.003	10.003	46.002
70	-112/20	av.000	227.000	049.070	0.0240	5.750	0.549	0.497	39.300	, 45.997	0.006		0.000				40.003		40.005

													;	SE=Sudden 1	xpantion		GE=Gradual	Expantion	
Non-un	iform flow c	alculation t	able										;	SC=Sudden	Contraction		GC=Gradual	Contraction	
Case	[Tbrahii	nia			Necessary	water leve	1	45,22 m	<	46.30m	ОК			IN=Inflow h	ead loss				
		Interval	Quantity	Area of	Complex	Hydraulic	Flow	Water	Bed	Water	Velocity	Friction ho	ad loss	C	ther head losse	s	Total	T otal hea	id at ∆× 2
	Station	distance	of flow	water flow	roughness	radius	velocity	depth	clevation	level	head			Head	Coefficient	Name	head	Upstream	Downstream
No	name				coefficient				-1	Zb+h	(1)		< 10	loss	of loss	of loss	H	Ψ	Ψ
		Λx ()	Q (m ³ /m)	A (²)	n	R ()	(h (m)	∠b (m)	(a)	(b) (m)	(c)	(d)	()	Ť		(a)+(b)	(a)+(b)+(c)	(a)−(b)-(d)
<u> </u>	212.00	(m)	(m /s)	(m)	0.0250	(m)	(m s)	(m)	(m)	(m)	(ጠ)	(m)	(m)	(m)			(m)	(171)	(m)
1	243.30		186.000	286.448	0.0250	4.018	0.649	5.750	.39.400	45.130	0.023	0.000					45.153	45.154	
2	225.40	17.900	186.000	290.626	0.0250	4.752	0.640	5.831	39.300	45.131	0.023	0.000	0.000				45.154	45.154	45.153
3	203.00	22.400	186.000	295.571	0.0250	4.586	0.629	5.932	39.200	45.132	0.022	0.000	0.000				45.154	45.155	45.154
4	181.60	21.400	186.000	328.244	0.0250	5.020	0.567	5.838	39.300	45.138	0.018	0.000	0.000				45.155	45.155	45.155
5	166.00(+)	15.600	186.000	288.988	0.0250	4.601	0.644	5.832	39.300	45.132	0.024	0.000	0.000				45.156	45.156	45.155
,								•						0.009	0.151	SE			
6	166.00(-)	0.000	186.000	176.641	0.0150	4,135	1.05.5	5.608	.39.500	45.108	0.057	0.000	0.000				45.164	45,165	45.156
7	148.50(+)	17.500	186.000	176.659	0.0150	4.136	1.053	5.608	39.500	45.108	0.057	0.000	0.000	0.007	0.050		45.165	45.165	45.164
U	1/8 50/)	0.000	196 000	22.425	0.0150	1.050	1 201	5 577	20.500	15 077	0.000	0.001	0.000	0.006	0.059	SE	45 171	45 177	45 145
0	1+6.30(-)	0.000	100.000	33.432	0.0150	1.950	1.391	5.572	39.300	+5.072	0.099	0.001	0.000				+0.171	45.172	45.105
9	135.75	12.750	186.000	33.446	0.0150	1.950	1.390	5.574	39.500	+5.074	0.099	0.000	0.001				45.175	45.173	45.172
10	134,25	1.500	186.000	30.320	0.0150	1.882	1.554	5.053	40.000	45.053	0.120	0.001	0.000				45,173	45,174	45.173
11	129,25	5.000	186.000	30.326	0.0150	1.883	1.533	5.054	40.000	45.054	0.120	0.001	0.001				45,174	45,175	45.174
12	124.25	5.000	186.000	30.333	0.0150	1.883	1.533	5.055	40.000	45.055	0.120	0.000	0.001				45,175	45.176	45.175
13	122,75	1.500	186,000	33.462	0.0150	1,951	1.390	5.577	39.500	45.077	0.099	0.000	0.000				45,176	45,176	45.175
14	121.50(+)	1.250	186.000	33.463	0.0150	1.951	1.390	5.577	39.500	45.077	0.099	0.000	0.000				4 5.176	45.176	45.176
														0.010	0.097	SC			
15	121.50(-)	0.000	186.000	177.314	0.0150	4.147	1.049	5.629	39,500	15.129	0.056	0.000	0.000				45.185	45.185	45.176
16	109.00(+)	12.500	186.000	177.326	0.0150	1.147	1.049	5.629	39.500	15.129	0.056	0.000	0.000				45.186	45.186	45.185
17	100 00()	0.000	106.000	219.017	0.0050	2.45	0.050	5.0.17	20.200		0.042	0.000	0.000	0.004	0.064	SC	45 100	45.101	45.105
17	109.00(-)	0.000	186.000	218.917	0.0250	3.447	0.850	5.847	.39.300	45.147	0.042	0.002	0.000				45.189	45.191	45.185
18	61.20	47.800	186.000	2.39.387	0.0250	4.516	0.777	5.758	.19.400	45.158	0.034	0.001	0.001				45.192	45.193	45.191
19	27.00(-)	34.200	186.000	242.031	0.0250	4.293	0.768	5.761	.39.400	45.161	0.033	0.000	0.001	0.001	0.015		45.194	45.194	45.193
20	27.00()	0.000	196 000	210.200	0.0160	2 015	0.005	5 152	40.000	45 152	0.043	0.000	0.000	0.001	0.017	SE	45 105	45 105	46 101
20	27.00(-)	11.650	180.000	210.200	0.0150	2.045	0.005	5.155	40.000	+5.155	0.042	0.000	0.000				45 105	45.195	45.194
21	15.35(-)	11.050	180.000	210.278	0.0150	0.840	0.885	5.155	40.000	45.155	0.042	0.000	0.000	0.001	0.020	ec.	45.195	45.195	45.195
22	15 35(-)	0.000	186,000	242 302	0.0150	3 788	0.768	5 355	39.810	45 165	0.031	0.000	0.000	0.001	0.027	30	45 196	45 196	45 195
22	0.00(1)	15 350	186.000	242 314	0.0150	3 788	0.768	5 355	30.810	45 165	0.031	0.000	0.000				45 106	45 106	45 106
23	0.00(1)	15.550	100,000	_=	0.0130	5.100	0.708	0,000	55.010	+0.100	0.031	0.000	0.000	0.000	0.125	SE	40,190	40.190	40.190
24	0.00(-)	0.000	186,000	156.684	0.0150	1.484	1.187	5.311	39,810	45,121	0.084	0.001	0.000	0.009	0.120		45,206	45,207	45,197
25	-15.30(+)	15,300	186.000	156.769	0.0150	1.484	1.186	5,314	39,810	45.124	0.084	0.000	0.001				45,708	45,208	45 207
2.1	1000(-)	10.000	100,000	1.0.07	0.0100	1.101	1.100	27211	57.510	12/221	0.001	0.000	0.001	0.014	0.200	JN	17.200	15.200	1.0.2007
26	-15.30(-)	0.000	186.000	2861.186	0.0150	5.594	0.065	5.722	39.500	45.222	0.000		0.000				45.223		45.208

Non-u Case	niform flow ca Badran	dculation f nan]	able		Necessary	water leve	4	45.96m	<	46.30m	OK			SE=Sudden . SC=Sudden IN=Inflow h	Expantion Contraction cad loss		GE=Gradual GC=Gradual	Expantion Contraction	
		Interval	Quantity	Area of	Complex	Hydraulie	Flow	Water	Bed	Water	Velocity	Diriction be	and loss	C	Other head loss	cs	Total	Total hea	ad at $\Lambda x/2$
	Station	distance	of flow	water flow	roughness	radius	velocity	depth	elevation	level	head	t nedon ne	and 1036	Head	Coefficient	Name	head	Upstream	Downstream
.N <u>1</u>	name	A.v.	0		coetricient	_		le .	71.	Zb+h	(h)		(4)	loss	ot loss	of loss	H ₂ (A) (b)	Φ	Ψ (a) (a) (a)
		(m)	(m ³ /s)	(m ²)	"	(m)	(m/s)	(m)	∠∪ (m)	(m)	(n) (m)	(0) (m)	(m)	(m)	ľ		(a) (0) (m)	(m)	(m)
1	-150.75(-)	、	9.00	23.78	0.03	1.63	0.38	2.65	43.25	45.90	0.01	0,000	、 <i>/</i>	. ,			45.91	+5.91	. ,
														0.01	0.34	SE			
2	-150.75(-)	0.00	9.00	1.96	0.02	0.71	0.91	2.48	43.10	45.88	0.01	0.002	0.000				45.92	15.92	45.91
3	-136.90	13.85	9.00	4.97	0.02	0.71	0.91	2.48	43.40	45.88	0.04	0.000	0.002				45.93	45.93	45.92
														0.01	0.20	GE			
4	-1.35.90	1.00	9.00	3.93	0.02	0.66	1.15	1.96	4.3.90	45.86	0.07	0.002	0.000				45.93	45.93	45.93
5	-128.40	7.50	9.00	3.94	0.02	0.66	1.14	1.97	43.90	45.87	0.07	0.000	0.002				45.93	45.94	45.93
														0.00	0.10	GC			
6	-127.40	1.00	9.00	4.99	0.02	0.71	0.90	2.50	43.40	45.90	0.04	0.000	0.000				45.94	45.94	45.94
7	-126.05(-)	1.35	9.00	4.99	0.02	0.71	0.90	2.50	43,40	45.90	0.04	0.000	0.000				45.94	45.94	45,94
														0.01	0.36	SC			
8	-126.05(-)	0.00	9.00	24.74	0.03	2.16	0.36	2.95	42.99	45.94	0.01	0.001	0.000				45.95	45.95	45.94
9	-30.00(-)	96.05	9.00	27.64	0.03	2.35	0.33	3.15	42.80	45.95	0.01	0.000	0.001	0.00	0.00	<i>au</i>	45.96	15.96	45.95
	22.22(1)			02.24					40.00	15.05				0.00	0.00	SE	45.05	15.05	45.04
11.	-30.00(+)	0.00	9.00	83.36	0.02	5.22	0.11	5.95	40.00	45.95	0.00	0.000	0.000				45.95	45.95	45.96
	-12.00(-)	18.00	9.00	8.550	0.02	3.22	0.11	5.95	40.00	45.95	0.00	0.000	0.000	0.00	0.00	en.	45.95	40.90	45.96
13	12,00(1)	0.00	0.00	38.60	0.02	2.10	0.23	5.05	40.00	15.05	0.00	0.000	0.000	0.00	0.29	512	15.06	15.06	15.06
12	-12.00(F)	7.15	9.00	28.60	0.02	2,10	0.23	5.05	40.00	45.95	0.00	0.000	0.000				45.90	+5,90	45.90
15	-4,05	7,15	9.00	10.09	0.02	2.10	0.23	5.95	40.00	40.90	0.00	0.000	0.000	0.00	0.20	(FF	43.90	+5.90	45.90
14	-2.45	2.40	9.00	17 84	0.02	1.20	0.50	5.95	40.00	45.95	0.01	0.000	0.000	0.00	0.20	UL,	45.96	15.96	45.96
15	15.35(-)	17.80	9.00	17.84	0.02	1.20	0.50	5.95	40.00	45.95	0.01	0.000	0.000				45.96	45,96	45,96
		1,000	,,,,,,		0.02	1.20	0.00				0.02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00	0.10	IN		10170	10100
16	15.35(+)	0.00	<u>9.</u> 00	5 95 .99	0.03	5.33	0.02	5.96	40.00	45.96	0.00		0.000				45.96		45.96

Non-un Case	iform flow ca Dirouti	lculation t ah]	able		Necessary	water leve	1	45.95m	<	46.30m	OK			SE=Sudden SC=Sudden IN=Inflow h	Expantion Contraction cad loss		GE=Gradual GC=Gradual	Expantion Contraction	
		Interval	Quantity	Area of	Complex	Hydraulie	Flow	Water	Bed	Water	Velocity	Printion he	ad loss	0	Other head loss	cs	Total	Total her	ad at Ax/2
	Station	distance	of flow	water flow	roughness	radius	velocity	depth	elevation	level	head	t nesion ne	and 10/30	Head	Coefficient	Name	head	Upstream	Downstream
-70	name	^ v	0		coencient	Þ		h	Zh	$Z_{D} + n$	(b)		(d)	1088	or loss f	OF LOSS	⊟_: (a) I/(b)	(a) - (b) - (c)	T
		(m)	(m ³ /s)	(m ²)		(m)	(m/s)	(m)	(m)	(m)	(m)	(m)	(n)	(m)			(m)	(m) (m)	(m)
1	150.75(-)		9.00	30.24	0.03	1.71	0.30	2.40	43.50	45.90	0,00	0,000					45.90	+5.90	
														0.01	0.32	SE			
2	-150.75(-)	0.00	9.00	1.38	0.02	0.69	0.69	2.19	43.70	45.89	0.02	0.001	0.000				45.91	45.91	45.91
3	-136.90	13.85	9.00	4.32	0.02	0.68	1.04	2.16	43.70	45.86	0.06	0.000	0.003				45.92	45.92	45.91
														0.01	0.20	GE			
4	-1.35.90	1.00	9.00	3.26	0.02	0.62	1.38	1.63	44.20	45.83	0.10	0.003	0.000				45.93	45.93	45.92
5	-128.40	7.50	9.00	3.27	0.02	0.62	1.38	1.63	44.20	45.83	0.10	0.000	0.003				45.93	45.93	45.93
,	177.40	1.00	0.00	1.7/	0.03	0.70	1.07	2.18	47.70	45 00	0.05	0.000	0.000	0.00	0.10	GC	45 114	15 () (45.07
0 7	-127.40	1.00	9.00	+.30	0.02	0.09	1.03	2.18	43.70	45.88	0.05	0.000	0.000				45.94	+5.9+	45.93
'	-120.0.3(-)	1,55	9.00	+.4)	0.02	0.09	0.08	2,21	45.70	40.91	0.02	0.000	0.000	0.01	0.22	8C	43.94	+5.9+	40,94
8	-176()5(-)	0.00	9.00	79.61	0.03	1.99	0.30	2 35	43 50	45.94	0.01	0.001	0.000	0.01	0.55	.00	45.94	45.95	45 94
9	-30.00(-)	96.05	9.00	31.12	0.03	2.01	0.26	2 39	43.55	45.94	0.00	0.000	0.000				45.95	15.95	45.95
														0.00	0.35	SC			
10	-30.00(+)	0.00	9.00	83.25	0.02	3.22	0.11	5.95	40.00	45.95	0.00	0.000	0.000				45.95	45.95	45.95
11	-12.00(-)	18.00	9.00	83.25	0.02	3.22	0.11	5.95	40.00	45.95	0.00	0.000	0.000				45.95	45.95	45.95
														0.00	0.29	SE			
12	-12.00(F)	0.00	9.00	38.64	0.02	2.10	0.23	5.95	40.00	45.95	0.00	0.000	0.000				45.95	45.95	45.95
13	-4.85	7.15	9.00	38.64	0.02	2.10	0.23	5.95	40.00	45.95	0.00	0.000	0.000				45.95	45.95	45.95
														0.00	0.20	GE			
14	-2.45	2.40	9.00	17.81	0.02	1.20	0.51	5.94	40.00	45.94	0.01	0.000	0.000				45.95	15.95	45.95
15	15.35(-)	17.80	9.00	17.81	0.02	1.20	0.51	5.94	40.00	45.94	0.01	0.000	0.000				45.95	45.95	45.95
							0.6-						0.077	0.00	0.10	IN			
16	15.35(+)	0.00	9.00	595.21	0.03	5.32	0.02	5.95	40.00	45.95	0.00		0.000				45.95		45.95

N	on-unif	form flow ca	deulation t	able		Naaan			45.0.4		46.20	0V		1	SC=Sudden	Contraction		GC=Gradual	Contraction	
C	ase	[ADO G	เมลเ]			recessary	water leve	1	45.9411	<	40.30m	UK			in=milow h	ead loss				
			Interval	Quantity	Area of	Complex	Hydraulie	Flow	Water	Bed	Water	Velocity	Driction b	and loss	C	Other head loss	ics	Total	Total hea	ad at Ax/2
	N2	Station	distance	of flow	water flow	roughness coefficient	radius	velocity	depth	elevation	level Zb+h	head	i nelion ii	ent i USS	Head loss	Coefficient of loss	Name of loss	head H _a	Upstream Φ	Downstream Ψ
		name	∧x	Q	А	п	R	U	h	Zb	(a)	(b)	(c)	(d)		f		(a) F(b)	(a) -(b) -(c)	(a)+(b)-(d)
			(m)	(m³/s)	(m ²)		(m)	(m/s)	(m)	(m)	(m)	(m)	(m)	(m)	(m)			(m)	(m)	(m)
	1	-100.00(-)		7.00	19.09	0.03	1.53	0.37	2.30	43.60	45.90	0.01	0.001					45.91	45.91	
	2	-66.50(-)	33.50	7.00	19.11	0.03	1.53	0.37	2.30	43.60	45.90	0.01	0.000	0.001				45.91	45.91	45.91
															0.00	0.05	SE			
	3	-66.50(+)	0.00	7.00	14.94	0.02	1.35	0.47	2.30	43.60	45.90	0.01	0.001	0.000				45.91	45.91	45.91
	4	-20.80(-)	45.70	7.00	14.95	0.02	1.35	0.47	2.30	43.60	45.90	0.01	0.000	0.001				45.91	45.91	45.91
															0.00	0.05	SE			
	5	-20.80(±)	0.00	7.00	11.68	0.02	1.08	0.60	3.89	42.00	45.89	0.02	0.000	0.000				45.91	45.91	45.91
	6	-11,40	9,40	7.00	11.68	0.02	1.08	0.60	3.89	42.00	45.89	0.02	0,001	0.000				45.91	45,91	45,91
	7	4.20	15.60	7.00	11.68	0.02	1.08	0.60	3.89	42.00	45.89	0.02	0.000	0.001				45.91	45.91	45.91
	8	5.20	1.00	7.00	11.68	0.02	1.08	0.60	3.89	42.00	45.89	0.02	0.000	0.000				45.91	45.91	45.91
															0.00	0.20	GC			
	9	14.65	9.45	7.00	18.09	0.02	1.45	0.39	3.91	42.00	45.91	0.01	0.000	0.000				45.92	45.92	45.91
															0.01	0.20	GE			
	10	16.80(-)	2.15	7.00	8.69	0.02	1.03	0.81	1.74	44.15	45.89	0.03	0.000	0.000				45.92	45.92	45.92
															0.00	0.04	SE			
	11	16.80(+)	0.00	7.00	3.44	0.02	0.63	1.02	1.72	44.15	45.87	0.05	0.003	0.000				45.92	45.93	45.92
	12	31.00(-)	14.20	7.00	3.45	0.02	0.63	1.01	1.73	44.15	45.88	0.05	0.000	0.003				45.93	45.93	45.93
															0.01	0.10	IN			
	13	31.00(F)	0.00	7.00	293.94	0.03	2.78	0.02	2.94	43.00	45.94	0.00		0.000				45.94		45.93

SE=Sudden Expantion

GE=Gradual Expantion

No Ca	on-unif ase	orm flow ca Irad Do	alculation t elgaw]	able		Necessary	water leve	4	45.95m	<	46.30m	ОК			SC=Sudden IN=Inflow h	Contraction ead loss		GC=Gradual	Contraction	
			Interval	Quantity	Area of	Complex	Hydraulie	Flow	Water	Bed	Water	Velocity	Datastan In		(Other head loss	cs	Total	Total hea	ad at $\Lambda x/2$
	No	Station	distance	of flow	water flow	roughness coefficient	radius	velocity	depth	elevation	level Zb+h	head	r nenon ne	adioss	Head loss	Coefficient of loss	Name of loss	head H	Upstream Φ	Downstream Ψ
		name	∧x	Q	А	п	R	U	h	Zb	(a)	(b)	(c)	(d)		f		(a) I(b)	(a) -(b) -(c)	(a)+(b)-(d)
			(m)	(m ³ /s)	(m ²)		(m)	(m/s)	(m)	(m)	(m)	(m)	(m)	(m)	(m)			(m)	(m)	(m)
	1	-50.00(-)		9.00	23.78	0.03	1.63	0.38	2.65	43.25	45.90	0.01	0.001					45.91	45.91	
	2	-20.80(-)	29.20	9.00	23.80	0.03	1.63	0.38	2.65	43.25	45.90	0.01	0.000	0.001				45.9 1	45.91	45.91
															0.00	0.10	SC			
	3	-20.80(+)	0.00	9.00	31.63	0.02	1.99	0.28	3.91	42.00	45.91	0.00	0.000	0.000				45.91	45.91	45.91
	4	-11.40(-)	9.40	9.00	31.63	0.02	1.99	0.28	3.91	42.00	45.91	0.00	0.000	0.000				45.91	45.91	45.91
															0.00	0.07	SE			
	5	11.40(E)	0.00	9.00	11.71	0.02	1.08	0.38	3.90	42.00	45.90	0.01	0.000	0.000				45.91	45.91	45.91
	6	4,20(-)	15,60	9.00	11.71	0.02	1,08	0.38	3.90	42.00	45.90	0.01	0,000	0.000				45,91	45,91	45.91
	7	5.20	1.00	9.00	11.71	0.02	1.08	0.38	3.90	42.00	45.90	0.01	0.000	0.000				45.91	45.91	45.91
	8	14.65	9.45	9.00	8.53	0.02	0.85	0.53	3.90	42.00	45.90	0.01	0.000	0.000				45.91	45.91	45,91
															0.02	0.20	GE			
	9	16.80	2.15	9.00	3.37	0.02	0.63	1.33	1.69	44.15	45.84	0.09	0.005	0.001				45.93	45.93	45.91
															0.00	0.10	GC			
	10	31.00(-)	14.20	9.00	3.40	0.02	0.63	1.33	1.70	44.15	45.85	0.09	0.000	0.005				45.94	45.94	45.93
															0.01	0.10	LN			
	11	31.00(+)	0.00	9.00	294.64	0.03	2.78	0.03	2.95	43.00	45.95	0.00		0.000				45.95		45.94

SE=Sudden Expantion

GE=Gradual Expantion

Non-u	mifor m flow c	alculation t	able											SC=Sudden	Contraction		GC=Gradual	Contraction	
Case	[Sahely	ia]			Necessary	water leve	4	45.93m	<	46.30m	OK			IN=hillow h	ead loss				
		Interval	Quantity	Area of	Complex	Hydraulie	Flow	Water	Bed	Water	Velocity	Driction by	ad loss	(Other head loss	iC5	Total	Total he	ad at Ax/2
N	Station	distance	of flow	water flow	roughness coefficient	radius	velocity	depth	elevation	level Zb+h	head		au 1088	Head loss	Coefficient of loss	Name of loss	head H	Upstream Φ	Downstream Ψ
	name	∧×	Q	A	n	R	U	h	Zb	(a)	(b)	(c)	(d)		f		(a)	(a) -(b) -(c)	(a)⊦(b) - (d)
		(m)	(m²/s)	(m²)		(m)	(m/s)	(m)	(m)	(m)	(m)	(m)	(m)	(m)			(m)	(m)	(m)
1	-50.00(-)		5.00	19.22	0.03	1.42	0.26	2.10	43.80	45.90	0.00	0.000					45.90	45.90	
2	-22.70(-)	27.30	5.00	19.22	0.03	1.42	0.26	2.10	43.80	45.90	0.00	0.000	0.000				45.90	45.90	45.90
														0.00	0.32	SC			
3	-22.70(+)	0.00	5.00	42.16	0.02	2.28	0.12	5.20	40.70	45.90	0.00	0.000	0.000				45.91	45.91	45.90
4	-11.10(-)	11.60	5.00	42.16	0.02	2.28	0.12	5.20	40.70	45.90	0.00	0.000	0.000				45.91	45.91	45.91
														0.00	0.07	SE			
5	-11.10(F)	0.00	5.00	15.61	0.02	1.16	0.16	5.20	40.70	45.90	0.00	0.000	0.000				45.91	45.91	45.91
6	4,60(-)	15,70	5.00	15.61	0.02	1,16	0.16	5.20	40.70	45.90	0.00	0,000	0.000				45,91	45,91	45,91
7	5.60	1.00	5.00	15.61	0.02	1.16	0.16	5.20	40.70	45.90	0.00	0.000	0.000				45.91	45.91	45.91
8	6.85	1,25	5.00	14.36	0.02	1.09	0.17	5.20	40.70	45.90	0.00	0.000	0.000				45,91	45,91	45.91
														0.01	0.20	GE			
9	10.80	3.95	5.00	2.43	0.02	0.55	1.03	1.21	44.65	45.86	0.05	0.004	0.001				45.92	45.92	45.91
-														0.00	0.10	GC			
10	24.00(-)	13.20	5.00	2.44	0.02	0.55	1.02	1.22	44.65	45.87	0.05	0.000	0.003				45 92	45.92	45.92
	=	10120			0101	0.00	1102		11102		0100	01000	01000	0.01	0.10	I N			
11	$24.00(\pm)$	0.00	5.00	242.92	0.03	2 32	0.02	2.43	43.50	45.93	0.00		0.000	0.01	0.10	2.1	45.93		45.92
	=	0.00	2.00	272.72	0.05	2	0.02	4.7.7	40.00		0.00		0.000				40.70		70.74

SE=Sudden Expantion

GE=Gradual Expantion

APPENDIX A-2

Examination sheet of Seismic Conditions

Seismic Design of Dairout Regulator

1. MAINITEMS USED IN THE SEISMIC DESIGN

First, the main items that used in the seismic design will be reviewed according to the Egyptian code for design and construction of bridges (especially, part (4): loads and forces on bidges).

- a) Design Ground Acceleration (ag):
 - The Structure under study lies in Dairout city (Assuit governorate) between Minia and Assuit governorates
 - According to Table (4-9-2-b) Assuit ----- zone (1) Minia ----- zone (1)

According to Table (4-9-2-a) Dairout ----- zone (1)

b) Limit State & Working Stress Design Methods

- The seismic design loads used in the Egyptian loads for bridges are loads for limit state design method.
- For working stress design method, design loads can be divided by 1.40
- c) Importance Factor (γ_I):

The Structure under study is a main structure

$\gamma_{\rm I} = 1.30 \bullet \bullet$

(Factor is upgraded to 1.4 due to important structure)

- d) Appropriate Method of Analysis
 - The Structure under study achieves the conditions of uniform structural system.

[Table.(4-9-6)]

- The Structure lies in zone (1).

From Table (4.9.8) Uniform load method is

the appropriate method of analysis.

- e) Equivalent Live Load:
 - Equivalent Live Load can be taken equal to 500 kg/m² for roadway bridges.

[clause 4.9.8.1.4]

The percentage of live load (ψ) that used in the design load (W) is equal to 0.20 for roadway bridges. $\psi = 0.20$

[Table (4-9-7)]

- -

[clause 4.9.1.1]

[clause.4.9.6]

Zone (1) ----- $a_g = 0.1g$

f) Subsoil Class:

- From soil test $\cdots 50 > N_{SPT} > 15$

According to Table (4.9.8)

Subsoil class is "C"

- g) Type of Response Spectrum:
 - The Structure under study lies in Dairout city (Assuit governorate) between Minia and Assuit governorates.
 - Type (1) of response spectrum curve is the appropriate type.

-

[clause 4.9.4.2.1.3]

- h) Effective Properties of Cross Section Area (A_{\rm eff} , I_{\rm eff}):
 - No reduction in the cross section area due to cracks effect. $A_{eff} = A_g$ Where A_g = gross area of the cross section
 - Due to cracks effect, the moment of inertia of the cross section is reduced as follow $I_{eff} = 0.70 I_g$ ------ for reinforced concrete walls

Where I_g = gross moment of inertia of the cross section

[clause 4.9.8.1.2]

- i) Response Modification Factor (R):
 - Vertical piers in bending
 - $\begin{array}{c|c} & a_s = 9.00/2.50 > 3.00 \\ \hline From Table (4.9.9) \\ \hline \hline R = 3.50 \end{array}$

2. SEISMIC DESIGN USING UNIFORM LOAD METHOD

2.1 Horizontal Components of the seismic action

a. Design criteria

$$F - S(T_1) \frac{W}{g}$$

Where,

F = Equivalent static force

 $S(T_1) =$ Horizontal design spectrum

W = Design weight (weight of the bridge + weight of the upper half of piers and abutments + and percentage of equivalent live load)

$$\begin{split} 0 &\leq T \leq T_{b} \qquad S_{d}(T) = a_{g} \ \gamma_{I} \ S\left[\frac{2}{3} + \frac{T}{T_{b}}\left(\frac{2.5}{R} - \frac{2}{3}\right)\right] \\ T_{b} &\leq T \leq T_{c} \qquad S_{d}(T) = a_{g} \ \gamma_{I} \ S\frac{2.5}{R} \\ T_{c} &\leq T \leq T_{d} \qquad S_{d}(T) - a_{g} \ \gamma_{I} \ S\frac{2.5}{R}\left[\frac{T_{c}}{T}\right] \geq 0.20 \ a_{g} \ \gamma_{I} \\ T_{d} &\leq T \leq 4 \, \mathrm{sec.} \qquad S_{d}(T) = a_{g} \ \gamma_{I} \ S\frac{2.5}{R}\left[\frac{T_{c}}{T^{2}}\right] \geq 0.20 \ a_{g} \ \gamma_{I} \end{split}$$

Using type (1) of response spectrum & for subsoil class "C" S=1.50

$$T_{b} = 0.10 \qquad T_{c} = 0.25 \qquad T_{d} = 1.20$$
$$T = 2\pi \sqrt{\frac{M}{K}}$$
Where, M= design mass = W/g

ere, M= αes_{15} . $K = \frac{L_s}{\Delta}$

> L_s = bridge length in the required direction. Δ = maximum drift in the required direction.

$$T = 2\pi \sqrt{\frac{528.86 \times 9.81}{9.81 \times 214646}} = -0.312 \,\text{sec}\,.$$

$$(T_c = 0.25) \le (T = 0.312) \le (T_d = 1.20)$$

 $S_d(T) = a_g \gamma_I S \frac{2.5}{R} \left[\frac{T_c}{T} \right] \ge 0.20 a_g \gamma_I$

 $S_{d}(T) = (0.1g) (1.30) (1.50) \frac{2.5}{3.50} \left[\frac{0.25}{0.312} \right] = 0.112g \ge (0.20 a_{g} \gamma_{I} = 0.026g)$ $S_{d}(T) = 0.112g \qquad \text{Limit State Design}$ $S_{d}(T) = 0.112g/1.40$

= 0.08g Working Stresses Design

- b. Horizontal Component perpendicular the Traffic Direction No need to check the Horizontal Component perpendicular the Traffic Direction because the high stiffness of the structure in this direction
- 2.2 Vertical Component

The effects of the vertical seismic component on the piers may be omitted in cases of low and moderate seismicity [zones (1), (2) and (3)]. In zones of high seismicity these effects need only to be taken into account if the piers are subject to high bending stresses due to vertical permanent actions of the deck, or when the structure is located within 5 km of an active seism tectonic fault.

[clause 5.3.3.8.2]

APPENDIX A-3

Traffic Survey Report – Dirout Regulator Bridge

Dairut Regulator Bridge - Traffic Study

Input data:

- Classified 24-hr traffic counts for motorized and non-motorized traffic. Traffic counts were conducted during a typical weekday (Monday) and on weekend (Friday). Counts were conducted in April 2010. Counts were projected to year 2016 using 2% annual growth rate.
- Width of the existing Dairut Regulator Bridge is about 12 m.
- Attachment 1 includes the traffic counts.

Assumptions:

- Annual growth rate = 2%
- Width of the existing bridge acts as 2 lanes for motorized traffic with width of 7.0 m, and two walkways (each of 3-m wide) for non-motorized traffic.
- Capacity of one lane deducted for motorized traffic = 1000 passenger car units per hour
- Capacity of each walkway is 60 person per minute considering that the effective width of a walkway is equal 2 m.
- Traffic projection is made every 5 years to year 2050.
- Passenger car unit equivalency to normal car (according to the Egyptian Code for "Rural and Urban Roads " (104-2008) the second volume "Traffic Engineering":

Big	Mid		Mini	Normal				
Track	Track	Buss	Bus	Car	Tractor	Moto Cycle	Bicycle	Caret
3	2	3	1	1	3	0.5	0.5	3

• Person unit equivalency

Donkey/Horse	Pedestrian
4	1

Findings:

- Peak traffic volumes for both motorized and non-motorized for weekdays are higher than that of Friday.
- The current volume to capacity ratio is almost or exceeding capacity.
- Width of the bridge will need to be doubled by year 2050.

Table 1

Peak-Hour Motorized Traffic

		Weekda	iy		Friday	
Year	E-W	W-E	Total	E-W	W-E	Total
2016	980	1,110	2,090	213	179	392
2020	1,061	1,201	2,262	230	19 4	424
2025	1,171	1,326	2, 497	254	2 14	468
2030	1,293	1,464	2,757	281	236	517
2035	1,427	1,617	3,04 4	310	261	571
2040	1,576	1,785	3,361	342	288	630
2045	1,740	1,971	3,711	378	318	696
2050	1,921	2,176	4,097	417	351	768

Volume to Capacity Ratios for Motorized Traffic

		Weekda	ау	Friday					
Year	E-W	W-E	Total	E-W	W-E	Total			
2016	98%	111%	104%	21%	18%	20%			
2020	106%	120%	113%	23%	19%	21%			
2025	117%	133%	125%	25%	21%	23%			
2030	129%	146%	138%	28%	24%	26%			
2035	143%	162%	15 2%	31%	26%	29%			
2040	158%	179%	168%	34%	29%	32%			
2045	174%	197%	186%	38%	32%	35%			
2050	192%	218%	205%	42%	35%	38%			

		Weekda	ау	Friday					
Year	E-W	W-E	Total	E-W	W-E	Total			
2016	1,617	716	2,333	282	244	526			
2020	1,750	775	2,526	305	265	569			
2025	1,933	856	2,789	336	292	629			
2030	2,134	945	3,079	371	322	69 4			
2035	2,356	1,043	3,399	410	356	766			
2040	2,601	1,152	3,753	453	393	846			
2045	2,872	1,272	4,14 4	500	434	93 4			
2050	3,171	1,404	4,575	552	479	1,031			

Peak-Hour Non-Motorized Traffic

Table 2

Volume to Capacity Ratios for Non-Motorized Traffic

		Weekda	ау	Friday					
Year	E-W	W-E	Total	E-W	W-E	Total			
2016	45%	20%	32%	8%	7%	7%			
2020	49%	22%	35%	8%	7%	8%			
2025	54%	24%	39%	9%	8%	9%			
2030	59%	26%	43%	10%	9%	10%			
2035	65%	29%	47%	11%	10%	11%			
2040	72%	32%	52%	1 3%	11%	12%			
2045	80%	35%	58%	14%	12%	13%			
2050	88%	39%	64%	15%	13%	14%			

According to the Egyptian Code for "Rural and Urban Roads" 104-2008) the third volume "Geometric Design " the minimum width of the lane is from 3m to 3.6m, and the sidewalk width is equal to 1.5m, it could be concluded that:

From the traffic prediction the total width of the bridge after 50 years should be 24 meters (which means 8 lanes, 3 meters each) undivided for both directions. This will make conflicts as the traffic is mixed including motorized and non-motorized traffic (caret, donkey/horse, pedestrian) which needs to be divided by a median or a curb one meter width. Pedestrians also need two sidewalks 1.5m each (according to the Egyptian Code) on each side of the bridge.

With the existing bridge width the current traffic will only be accepted for four years with lot of conflicts and delays.

So it could be concluded the following options:

- 1- To keep and use the bridge width of 12 meters for another 4 years till 2020.
- 2- To widen the bridge to be 6 lanes (3 meters each) divided by a median or a curb one meter which make the total width 25 meters.
- 3- To construct another bridge as the limitation of the existing bridge is 12 meters and cannot be widened.

It should be taken into consideration that the prediction of the traffic after 100 years will be more than double the predicted for the 50 years which needs a full study of the options of using other alternatives depending on the land use, the extension of the city and the growth of population.

Attachment 1

Place Sur	veyed:	Dairut Ro	gulator Bri	dgc								
Survey D	ate:	Monday,	February 08	, 2010								
Direction	n:	East to W	est	Westbou	nd							
							_					
AM/PM	Time	Big Track	Mid Track	Buss	Mini Bus	Normal Car	Tractor	Moto Cycle	Bicycle	Caret	Donkey/Horse	Pedestrian
PM	6-7	0	37	0	50	22	2	195	24	36	45	270
	7-8	0	89	0	99	86	4	384	42	94	70	779
	8-9	0	66	0	85	43	Z	359	42	98	114	980
	9-10	0	23	0	62	20	3	197	20	24	24	791
	10-11	0	7	0	20	2	4	128	6	18	7	724
	1 1 -12	0	17	0	39	34	0	203	4	31	31	522
	12-1	0	24	0	1 4	7	0	115	12	0	32	339
AM	1-2	0	12	0	15	0	0	39	0	0	0	331
	2-3	0	12	0	1 4	10	5	86	15	27	25	284
	3-4	0	20	0	18	19	28	117	8	14	8	410
	4-5	0	10	0	18	11	27	106	8	5	4	385
	5-6	0	8	0	7	7	17	94	8	12	4	348
	6-7	0	7	0	10	5	15	114	4	2	2	273
	7-8	0	5	0	8	14	12	69	8	2	0	115
	8-9	0	4	0	12	17	20	104	12	0	0	88
	9-10	0	12	0	7	22	17	70	10	8	0	108
	10-11	0	11	0	12	23	6	87	8	5	0	120
	1 1 -12	0	8	0	5	25	Z	65	12	0	٥	80
РM	12-1	0	9	0	7	12	0	28	5	0	0	56
	1-2	0	3	0	2	5	0	32	1	0	0	34
	2-3	0	1	0	3	6	0	16	0	0	0	8
	3-4	0	0	0	0	1	0	4	0	0	0	0
	4-5	0	0	0	1	2	0	0	0	16	3	D
	5-6	0	23	0	45	18	0	167	12	23	34	160
Total		0	408	0	553	41 1	164	2779	261	415	403	7205

Place Su	rveyed:	Dairut Re	gulator Bri	dge								
Survey D	ate:	Monday, I	February 08	, 2010								
Direction	ו :	West to E	ast	Eastbound	b							
AM/PM	Time	Big Track	Mid Track	Buss	Mini Bus	Normal Car	Tractor	Moto Cyc	Bicycle	Caret	Donkey/H	Pedestriar
PM	6-7	1	16	0	22	14	0	53	20	16	12	50
	7-8	2	44	0	49	43	2	109	52	52	33	95
	8-9	0	108	0	108	107	0	272	129	118	104	220
	9-10	0	40	0	40	38	1	151	65	46	42	260
	10-11	0	15	0	15	16	0	122	30	21	25	205
	1 1 -12	0	17	0	17	13	1	117	29	22	30	160
	12-1	0	19	0	19	19	1	186	30	20	23	135
AM	1-2	0	51	0	51	41	9	302	57	35	33	331
	2-3	0	61	0	61	48	14	173	32	39	60	178
AM 1 2 2 2	3-4	0	40	0	40	68	27	223	47	68	67	253
	4-5	0	46	0	46	53	6	248	18	34	44	303
	5-6	0	38	0	38	43	13	193	22	43	52	281
	6-7	0	23	0	23	56	19	207	28	9	38	193
	7-8	0	13	0	13	63	11	168	24	. 11	0	87
	8-9	0	9	0	9	18	8	119	13	8	0	121
	9-10	0	18	0	18	57	7	154	16	6	0	168
	10-11	0	6	0	19	45	2	200	12	2	0	156
	1 1 -12	0	3	0	20	34	0	230	8	0	0	140
PM	12-1	0	7	0	9	23	0	170	7	0	0	76
	1-2	0	2	0	7	16	0	76	1	0	0	34
	2-3	0	0	0	3	8	0	34	0	0	0	16
	3-4	0	0	0	0	1	0	C	0	0	0	1
	4-5	0	5	0	0	0	0	C	0	12	3	0
	5-6	0	14	0	13	5	1	65	13	16	9	45
Total		3	595	0	640	829	122	3572	653	578	575	3508

Place Su	rve y ed:	Dairut Re	gulator Bri	dge								
Survey D	Date:	Friday, Fe	- bruary 12, 1	2010								
Direction	n:	East to We	est	Westbour	nd							
AM/PM	Time	Big Track	Mid Track	Buss	Mini Bus	Normal C	Tractor	Moto Cyc	Bicycle	Caret	Donkey/H	Pedestriar
PM	6-7	0	6	0	9	5	0	20	6	6	9	25
	7-8	0	7	0	7	7	0	33	9	10	23	55
	8-9	0	9	0	7	7	1	60	13	11	23	97
	9-10	0	12	0	6	9	2	64	21	15	15	108
	10-11	1	14	0	12	14	1	97	22	13	12	147
	1 1 -12	0	21	0	14	9	0	104	- 30	19	12	202
	12-1	0	10	0	7	8	0	59	18	9	7	112
AM	1-2	0	6	0	8	9	0	34	15	10	9	76
	2-3	0	17	0	10	15	2	64	20	12	10	138
	3-4	1	15	0	11	7	0	73	14	10	7	116
	4-5	1	13	0	8	10	2	74	15	8	5	117
	5-6	0	14	0	13	9	0	85	22	13	10	144
	6-7	0	19	0	14	9	0	49	17	10	3	103
	7-8	0	9	0	14	8	0	51	13	4	2	96
	8-9	0	12	0	5	8	0	33	10	5	0	69
	9-10	0	10	0	8	5	0	24	7	5	0	45
	10-11	0	8	0	6	6	0	25	8	7	0	54
	1 1- 12	1	7	1	5	7	0	23	5	3	0	23
PM	12-1	0	3	0	3	3	0	8	6	2	0	18
	1-2	0	1	0	1	2	0	6	2	0	0	21
	2-3	0	0	0	0	1	0	2	1	0	0	5
	3-4	0	0	0	0	0	0	0	0	0	0	0
	4-5	0	0	0	0	1	1	2	0	5	0	0
	5-6	0	4	0	8	3	2	14	4	8	7	25
Total		4	217	1	176	162	11	1004	278	185	154	1796

Place Surveyed: Dairut Regulator Bridg		dge										
Survey Da	te:	Friday, Fe	bruary 12, 2	2010								
Direction:		Westto Ea	ast	Eastboun	d							
AM/PM	Time	Big Track	Mid Track	Buss	Mini Bus	Normal Ca	Tractor	vloto Cycl€	Bicycle	Caret	Donkey/Horse	Pedestrian
PM	6-7	2	4	0	4	5	4	10	4	2	5	6
	7-8	1	6	0	7	10	5	36	12	7	7	52
	8-9	0	10	0	7	6	0	44	15	8	7	81
	9-10	0	14	0	9	4	0	68	14	12	3	15
	10-11	0	18 0 12 6 2 13 0 8 3 3		2	78	18	17	8	128		
	11-12 0 12-1 0		13	0	8	3	3	76	18	10	4	160
	12-1	0	0 10 0 4 4		4	3	85	1 1	8	9	169	
AM	1-2	0	8	0	7	4	2	66	8	6	7	104
	2-3	0	11	0	6	8	5	78	7	9	5	132
	3-4	0	6	0	4	4	1	40	4	5	4	77
	4-5	0	11	0	6	4	2	57	2	6	4	105
	5-6	0	10	0	4	6	1	96	9	9	21	133
	6-7	0	5	0	2	2	0	88	4	3	1	156
	7-8	0	6	0	2	2	1	91	1	2	3	128
	8-9	0	7	0	3	4	0	70	0	3	0	85
	9-10	0	2	0	1	2	0	24	0	2	0	26
	10-11	0	7	0	4	5	0	50	5	6	0	45
	11-12	0	6	0	5	7	0	45	2	3	0	87
PM	12-1	0	3	0	3	3	0	43	0	1	0	34
	1-2	0	6	0	5	5	0	32	0	0	0	12
	2-3	0	5	0	2	1	0	6	0	0	0	5
	3-4	0	2	0	0	0	0	1	٥	0	0	1
	4-5	0	1	0	4	0	2	3	1	0	Û	0
	5-6	0	5	0	5	4	7	8	6	6	3	15
Total		3	176	0	1 14	99	38	1195	14 1	125	91	1756

APPENDIX A-4

Calculation sheet for the Structural Stability of NDGRs

A-4-1. Bahr Yusef and Ibrahimia Regulator	A- 24
A-4-2. Badra man Regulator in Badraman canal	A- 46
A-4-3. Badra man Regulator in Diroutiah canal	A- 67
A-4-4. Abo Gabal Regulator	A- 88
A-4-5. Sahelyia Regulator	A-109

A-4-1. Bahr Yusef and Ibrahimia Regulator

o		u	'n	Vertical force	Resistant moment	Horizontal force	Torque moment	For	he sliding	For the	fa l down	^{^cte1)} F	or the ground re	action		
Pier	ase	ectio	nditic	V	V∙x	Н	Н∙у	Sa	afe ratio	Eccentricity	B/6	Ground reactior	Ground reaction	Bearing	əfbr	Remarks
	0	Dir	COL	(kN)	(kN•m)	(kN)	(kN∙m)	Required ratio	Desing	e (m)	(Allowable)	Q1 (kN/m2)	Q2 (kN/m2)	(kN/m2)	۱۲	
	1	Long,	Regular	91,358.69	1,220,699.63	883,93	9,863.23	1.50	≦ 62.01	-0.48	≦ 4.65	82,72	101 <u>.</u> 76		OK	
	2	Long,	Regular	88,729.08	1,141,261.14	14,388.83	42,991.19	1.50	≦ 3.70	-0.60	≦ 4.65	78.03	101 <u>.</u> 14		OK	
tor	3	Long.	Regular	134,758.39	1,829,038.99	987.46	9,781.09	1.50	≦ 81.88	-0.30	≦ 4. 65	127.28	144.84		ОК	
jul a [:]	4	Lateral.	Regular	90,408.54	1,604,751.58	724,42	7,830.98	1.50	≦ 74.88	0.09	≦ 5.92	92,67	89.89		OK	
Reç	5	Lateral.	Regular	88,729.08	1,57 4, 941.17	1,777.68	17,865.68	1.50	≦ 29.95	0.20	≦ 5.92	92.61	86.56		OK	
mia	6	Lateral.	Regular	134,758.39	2,391,961.42	2,506.86	16,645 <u>.</u> 55	1.50	≦ 32,25	0.12	≦ 5.92	138 <u>.</u> 82	133.30		ОК	
rahi	7	Long.	Sei sm	85,846.08	1,093,259.19	25,761 <u>4</u> 2	91,358.30	1 .1 5	≦ 2.00	-0.15	≦ 9.30	83 <u>.</u> 88	89 <u>.</u> 47		OK	
d b	8	Long.	Seism	131,875.39	1,788,821.14	10,550.03	50,299.11	1 .1 5	≦ 7.50	0.00	≦ 9.30	1 33 <u>.</u> 15	133,15		OK	
if an	9	Lateral.	Seism	87,525.54	1,553,578.33	14,202.59	68,505.54	1 .1 5	≦ 3.70	0.78	≦ 11.83	100.02	76.72		OK	
use	10	Lateral.	Seism	85,846.08	1,523,767.92	11,09 1 ,17	52,615.99	1 .1 5	≦ 4.64	0.61	≦ 11.83	95 <u>.</u> 61	77 <u>.</u> 74		OK	
ar Y	11	Lateral.	Seism	131,875.39	2,340,788.17	10,550.03	50,299.11	1 .1 5	≦ 7.50	0.38	≦ 11.83	1 41.70	124.60		OK	
ų	12	Long.	Seism	89,965.54	1,194,735.08	10,909.75	54,140.20	1 .1 5	≦ 4.95	-0.07	≦ 9.30	89.47	92.20		ОК	
	13	Long.	Regular	80,093.13	1,187,305.92	2,811.86	9,431.98	1.50	≦ 17.09	0.99	≦ 4.65	98.08	63.65		OK	Bahr Yusef
	13	Long.	Regular	80,819.68	1,181,724.85	4,765.33	17,219.80	1.50	≦ 10.18	0.88	≤ 4. 65	97.04	66.16		OK	Ibrahimia

Summary table of result on the stability examination for Bahr Yusef and Ibrahimia Regulator

Note 1) Ground reaction for the bearing capacity should be consideration in Chapter 12

Bahr Yuse	ef and	brahimia	Regulator	/ Stability	examination
1.Design conditio	n				

(1)Dimens	sion of fo	rm for ab	u t ment P	ier (unit	te:m〕								
A(1)=	27.90	A(2)=	0 <u>.</u> 00	A(3)=	1.65	A(4)=	1.00	A(5)=	9.00	A(6)=	1.00	A(7)=	15.25
A(8)=	1.00	A(9)=	24 <u>.</u> 90	A(10)=	2.00	A(11)=	4.0 0	A(12)=	1.00	A(13)=	2 .4 0	A(14)=	1.00
A(15)=	16.50	A(16)=	5 <u>.</u> 00	A(17)=	4.40	A(18)=	18,50	A(19)=	2,15	A(20)=	2.25	A(21)=	1.00
A(22)=	1.00	A(23)=	1.00	A(24)=	0.71	A(25)=	0.60	A(26)=	1.09	A(27)=	7.25	A(28)=	1 1.25
A(29)=	1.00	A(30)=	1 <u>.00</u>	A(31)=	1.00	A(32)=	1.00	A(33)=	1.00	A(34)=	2.00	A(35)=	23.50
B(1)=	3.00	B(2)=	2 <u>.</u> 00	B(3)=	5.0 0	B(4)=	2.00	B(5)=	0.85	B(6)=	1,15	B(7)=	0,85
B(8)=	1. 15	B (9)=	0.85	B(10)=	1.15	B(11)=	2.00	B(12)=	0.00	B(13)=	1.00		
C(1)=	2.00	C(2)=	8 <u>.</u> 00	C(3)=	5.0 0	C(4)=	2.00	C(5)=	0.50	C(6)=	7.50	C(7)=	4.00
C(8)=	1.00	C(9)=	0 <u>.</u> 50	C(10)=	0 .40	C(11)=	0.50	C(12)=	1.60	C(13)=	0.40	C(14)=	0.50
C(15)=	0.50	C(16)=	0.50	C(17)=	0.40								

(2)Dimens	sion of fo	o <mark>rm</mark> for Mio	ddle Pier	[unite:m]]								
D(1)=	27.90	D(2)=	0.50	D(3)=	1.15	D(4)=	1.00	D(5)=	9.00	D(6)=	1.00	D(7)=	15.25
D(8)=	1.25	D(9)=	24 <u>.</u> 40	D(10)=	1.25	D(11)=	3.25	D(12)=	1.00	D(13)=	2.40	D(14)=	1.00
D(15)=	16.75	D(16)=	4 <u>.</u> 50	D(17)=	4.40	D(18)=	18 .0 0	D(19)=	2.15	D(20)=	2.25	D(21)=	1.00
D(22)=	1.00	D(23)=	1.00	D(24)=	0.71	D(25)=	0.60	D(26)=	1.09	D(27)=	7.25	D(28)=	10.75
D(29)=	1.00	D(30)=	1 .00	D(31)=	1.00	D(32)=	1.00	D(33)=	1.00	D(34)=	2.00	D(35)=	0.50
D(36)=	23.50												
E(1)=	3.00	E(2)=	2 <u>.</u> 50	E(3)=	3.00	E(4)=	8.50	E(5)=	2.50	E(6)=	0.85	E(7)=	0.80
E(8)=	0.85	E (9)=	0.85	E(10)=	0.80	E(11)=	0.85	E(12)=	0.85	E(13)=	0.80	E(14)=	0.85
E(15)=	0.85	E(16)=	0.80	E (17)=	0.85	E(18)=	1.00	E(19)=	1.00				
F(1)=	2.00	F (2)=	8 <u>.00</u>	F(3)=	5.00	F(4)=	2.00	F(5)=	0.50	F(6)=	7.50	F(7)=	4.00
F(8)=	1.00	F (9)=	0 <u>.</u> 50	F(10)=	0.40	F(11)=	0.50	F(12)=	1.60	F(13)=	0.40	F(14)=	0.50
F(15)=	0.50	F(16)=	0.50	F(17)=	0 .40								

(3)Number and slide distance of center for each pier [unite:m]

Number of pier :	abutment	2 piers					active(y)	х	у	z
	middle	3 piers					or not(n)	(m)	(m)	(m)
Number of vent:		4			Right abutn	nent pi	у	0.00	0.00	0.00
					Left abutme	ent pier	у	0.00	0.00	35.50
Entire regulator w	idth: 3	5.50 m			Middle pier	1	у	0.00	0.00	5.00
Entire regulator le	ength: 2	7.90 m			Middle pier	2	y	0.00	0.00	13.50
					Midd l e pier	3	у	0.00	0.00	22.00
(4)Main level of foundation Apron bottom:	н EL37 <u>.</u> 50r	n								
Gate bottom:	EL40.00r	n								
(5)Unite weight 〔unit:I RC:	kN/m ³) 25.00	Soil	(Wet)	:	18.00	Soil	(Saturat	ion] :	20.00	
Concrete :	23.00	Soil (in	water]	:	10.00			Water :	10.00	

(6)Seismic co-efficient

KH= 0.08

KH'= 0.08 (submerged condition)

(7)Case of examination

Case	Direction		Water Level		Situation of gate	Condi.	Additional	(m)
Canol	Long	U.S.	WL47 .00m	HWL	Onen arte	Pogular		
Caser	Long.	D.S.	WL47.00m	HWL		Regular	_	
6.0002	Long	U.S.	WL46.55m	Max.WL	Class acts	Poqular	sedimentation	0.3
Casez	Long.	D.S.	WL39.50m	Low	Close gale	Regula		
C 89.02	Long	U.S.	_	No WL	Open agte	Pogular		
Caseo	Long.	D.S.	_	No WL		Negulai		
Cased	Lateral	U.S.	WL46 .55m	Max.WL	Open date	Regular		_
Caseq	Lateral.	D.S.	WL46.55m	Max.WL	<u>Open gale</u>	Regular		
Caso5	Latoral	U.S.	WL46.55m	Max.WL	Close anto	Rogular	sedimentation	0.3
Cased	Lateral.	D.S.	WL39.50m	Low	Close gale	Кеуша		
Casal	Lateral	U.S.		No WL	Open date	Rogular		_
Caseo	Lateral.	D.S.		No WL	<u>Open gate</u>	Negulai		
Case7 Long	U.S.	WL46 .5 5m	Max.WL	Close date	Seism of	sedimentation	0.3	
04367	Long.	D.S.	WL39.50m	Low	Olose gale	case2		
Case8	Long	U.S.	—	No WL	Open gate	Seism of	_	_
Casco	Long.	D.S.	_	No WL	<u>open gate</u>	case3		
CaseQ	Lateral	U.S.	WL46 .5 5m	Max.WL	Onen date	Seism of		_
04363	Lateral.	D.S.	WL46.55m	Max.WL	<u>open gate</u>	case4		
Case10	Lateral	U.S.	WL46.55m	Max.WL	Close date	Seism of	sedimentation	0.3
	Lateral.	D.S.	WL39.50m	Low	Close gale	case5		
Case11	Lateral	U.S.		No WL	Open date	Seism of		
Caserr	Lateral.	D.S.		No WL	<u>open gate</u>	case6		
Case12	Long	U.S.	WL46.55m	Max.WL	Open date	Seism of		_
Case 12	Long.	D.S.	WL46.55m	Max.WL		case6		
Case 13	Long	U.S.	WL46.55m	Max WL	Maintenace cate	Regular		0.3
Case13	Long.	D.S.	WL45.82m	Low	Maintenace yale	ricyulai		

(8)Coefficient of earth pressure

hternal friction :	φ= 30°			
	Regular case	Seismic case	Seismic (submerged)	Sedimentation
Friction for wall	0°	٥°	0°	_
Active EP coe.	0.333	0.411	0.383	0.5
Passive EP coe.	3.000	2.784	2 <u>.</u> 858	—

(9)Weight of the gate facility

tem of de	tem of design load			Remarks			
Gate leaf	(kN/vent)	173.00	Upper 66.00 Lower 1			1 07 . 0 0	
Hiost (Emargency)	(kN/vent)	1186.00	including the hoist weight				
Hiost	(kN/vent)	576.00	including the groove weight				
Actual vent wide	(m)	6.00					
Height of gate	(m)	6,55					
Stop Log gate	(kN/vent)	224.00					

(10)Weight of the bridge

Item of design load		Regular case	Seismic case		
Vertical load (body)	(kN/vent)	17 5 2. 1 0	1752. 1 0	Height of the handrail=	1.10 (m)
Vertical load (body +live load)	(kN/vent)	2472.85	—	Thick of the bridge=	2.77 (m)
Horizontal force by wind	(kN/vent)	83.59	—		
Counter force for right angle	(kN)	—	59.20		

(11)Wind pressure

w= 3.0 (kN/m2)

[coefficient of form plane:

0.70]

1.20 round :

2.Caluculation of the regulator weight

(1) Enite regulator body weight

Regulator	W	х	W·x	у	W∙y	Z	W•z
abutment right	19,514,78	14.04	273,987.51	4.23	82,547.52	1.65	32,199.39
abutment left	19,514.78	14.04	273,987.51	4.23	82,547.52	33.85	660,575.30
Midle.1	27,613.81	13 .54	373,890.99	4.03	111,283.65	9.25	255,427.74
Midle.2	27,613.81	13 .54	373,890.99	4.03	11 1,283.65	17.75	490,145.13
Midle.3	27,613,8 1	13.54	373,890.99	4.03	111,283.65	26.25	7 2 4, 8 62.51
Σ	121,870.99		1,669,647.99		498,945.99		2,163,210.07

(2) Balance center of entire regulator body

$$X = \Sigma W \cdot x / \Sigma W = \frac{1.669,647.99}{121,870.99} = 13.70 (m)$$

$$Y = \Sigma W \cdot y / \Sigma W = \frac{498,945.99}{121,870.99} = 4.09 (m)$$

$$Z = \Sigma W \cdot z / \Sigma W = \frac{2.163,210.07}{121,870.99} = 17.75 (m)$$

(3) abutr	m <mark>ent</mark> P	i <mark>er : Right [un</mark> it	e:m]					
	#	W	x	W∙x	у	W∙y	Z	W·z
	1	0.00	0.00	0.00	1.00	0.00	2.50	0.00
	2	2912.50	5.83	16979.88	1.00	2912.50	2.50	7281_25
Γ	3	4062.50	19.78	80356.25	1.00	4062.50	2.50	10156 <u>.</u> 25
	4	18,75	2.32	43.50	2 <u>.</u> 17	40.69	3,50	65 <u>.</u> 63
	5	337.50	7.15	2413.13	2.25	759.38	3.50	118 1. 25
	6	37.50	11.98	449.25	2 <u>.</u> 17	81 <u>.</u> 38	3.50	13 1 _25
	7	16.25	0.33	5.36	2.25	36.56	1.00	16 _25
	8	12,50	1.98	24.75	2.33	29.13	1.00	12. 50
	9	12.50	12.32	154.00	2.17	27.13	1.00	12.50
	10	381.25	20.28	7731.75	2.25	857.81	1.00	381.25
	1 1	9,960.00	13.45	133,962 .00	5 <u>.</u> 75	57,270.00	1.00	9,960.00
Γ	12	750.00	27.90	20,925.00	5.75	4,312.50	1.00	750.00
	13	157.08	27.48	4,316.56	6.00	942.48	1.58	248.19
	14-1	200.00	5.50	1 ,100 .00	12.00	2,400.00	1 <u>.</u> 58	316.00
	14-2	0.00	5.50	0.00	12.00	0.00	1.58	0.00
	15-1	200.00	8.90	1,780.00	12.00	2,400.00	1.58	316.00
	15-2	0.00	8.90	0.00	12.00	0.00	1.58	0.00
	16	220,00	7.20	1,584.00	1 4.5 0	3,190.00	1 <u>.</u> 58	3 47 .60
	16'	25.00	4.67	116.75	14.33	358.25	2.67	66.75
	16"	1 25.0 0	4.00	500.00	14.75	1, 843.75	3.50	437.50
	17	1 12 .50	3.50	393 <u>.</u> 75	9 <u>.</u> 75	1,096.88	3.50	393.75
	17'	1 12.5 0	2 4 .40	2,745.00	9.80	1,102.50	3,50	393.75
	18	-37.50	3.50	-131.25	9.75	-365.63	3.50	- 13 1 .25
	18'	-37.50	24 .40	-915.00	9.80	-367.50	1.58	-59.25
	19	- 12.75	3.50	-44.63	6.25	-79.69	1.58	-20.15
	19'	-13.6 0	24. 40	-331.84	6.00	-81_60	1 <u>.</u> 58	-21 49
Γ	20	-2.40	3.50	-8.40	2.30	-5.52	1.58	-3.79
	21	-30.60	7.20	-220.32	6.25	-191.25	1.58	-48.35
	22	-1.80	7.01	-12.62	2.30	-4.1 4	1,58	-2.8 4
	23	-2.40	3.50	-8.40	1.80	-4.32	1.58	-3.79
	Σ	19,514.78		273,908.47		82,623.79		32,176.76

-Balance center of abut regulator

		Right abutment		Left abutment
		regulator	(slide distance)	regulator
X=ΣW•x∕ΣW=—	273,908.47 19.514.78	-=14 <u>.</u> 04(m)	+0.00(m)	=14 <u>.</u> 04(m)
Y=Σ₩•y∕Σ₩=—	82,623.79	-=4.23(m)	+0.00(m)	=4.23(m)
Z=ΣW·z∕ΣW=—	32,176.76	-=1.65(m)	-35.50(m)	= - 33.85(m)

(4) Mid	dle pier	: [unite:m]						
	#	W	х	W∙x	У	W•y	Z	W·z
	1	212.50	0.25	53.13	1.00	212.50	4.25	903.13
	2	4,738.75	6.08	28,811.60	1.00	4,738.75	4.25	20,139.69
	3	6,906.25	19.78	136,605.63	1.00	6,906.25	4.25	29,351 <u>.</u> 56
	4	37,50	2.32	87.00	2.17	81.38	4.25	159 <u>.</u> 38
	5	675. 0 0	7.15	4,826.25	2.25	1,518.75	4.25	2,868.75
	6	75.00	11.98	898.50	2 <u>.</u> 17	162.75	4.25	318.75
	7	0.00	0.45	0.00	2.25	0.00	4.25	0.00
	8	265 <u>.</u> 63	1.98	525.95	2 <u>.</u> 33	618.92	4 <u>.</u> 25	1,1 28 <u>.</u> 93
	9	15.63	12.32	192.56	2.33	36.42	4.25	66.43
	10	476.56	20.28	9,664.64	2.25	1,072.26	4.25	2,025.38
	1 1	12,200.00	13.95	17 0,19 0.00	6.25	76,250.00	4.25	51,850 <u>.</u> 00
	12	490.87	26.78	13,145.50	6.00	2,945.22	4.25	2,086.20
	13	490.87	1.22	598.86	6.00	2,945.22	4.25	2,086.20
	14-1	85.00	5.50	467.50	12 . 00	1,020.00	4.25	361.25
	14-2	85.00	5.50	467.50	12.00	1,020.00	4.25	361.25
	15-1	85.00	8.90	756.50	12.00	1,020.00	4.25	361.25
	15-2	85.00	8.90	756.50	12 <u>.</u> 00	1,020.00	4 <u>.</u> 25	361 <u>.</u> 25
	16	275.00	7.20	1,980.00	1 4.5 0	3,987.50	4,25	1,168.75
	16'	28.13	4.67	131.37	14.33	403.10	4.25	1 19 .55
	16"	212.50	4.00	850.00	14.75	3,134.38	4.25	903.13
	17	225.00	3.50	787.50	9 <u>.</u> 75	2,193.75	4 <u>.</u> 25	956.25
	17'	225.00	24.65	5,546.25	9 . 75	2,193.75	4.25	956.25
	18	-75.00	3.50	-262.50	9.75	-731.25	4.25	-318.75
	18'	-75.00	24 .65	-1,848.75	9.75	-731.25	4.25	-318.75
	19	-25.50	3.50	-89.25	6.25	-159.38	4.25	-108.38
	19'	-27_20	24.65	-670.48	6 . 00	-163_20	4 <u>.</u> 25	-115.60
	20	-4.80	3.50	-16.80	2.30	-1 1.04	4.25	-20.40
	21	61.20	7.20	-440.64	6.25	-382.50	4.25	-260.10
	22	-2.88	7.01	-20.19	2.30	6.62	4,25	-12. 24
	23	-4.80	24.65	-118.32	1.80	-8 .64	4.25	-20.40
	Σ	27,613.81		373,875.81		111,287.02		117,358.71

-Balance center of middle regulator

	Midd le regu l ator	(slide distance)	Mid. 1 regulator	(slide distance)	Mid. 2 regulator
$X = \Sigma W \cdot x / \Sigma W = \frac{373,875.8}{27,613.8}$	1113.54(m)	+0.00(m)	=13 <u>.</u> 54(m)	+0.00(m)	=13.54(m)
$Y = \Sigma W \cdot y / \Sigma W = \frac{111,287.02}{27,613.8}$	2 1 1 =4.03(m)	+0.00(m)	=4.03(m)	+0.00(m)	=4.03(m)
$Z = \Sigma W \cdot z / \Sigma W = \frac{117,358.7}{27,613.8}$	1=4.25(m)	+5.00(m)	=9.25(m)	+13.50(m)	=17.75(m)
		(slide distance)	Mid. 3 regulator		
		+0.00(m)	=13.54(m)		
		+0.00(m)	=4.03(m)		
		+22.00(m)	=26.25(m)		

4.Case of the examination

	CASE 1	: Regular	/ Longitudinal direction/ H.W.L. / Fu∎ OP)
--	--------	-----------	--

Lood	V	х	V·x	Н	у	H∙y
Load	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	121,870,99	13,70	1,669,632.56			
Gate leaf	692.00	7.15	4,947.80			
Hoist	4,744.00	7.15	33,919.60			
Bridge	9,891.40	16.65	164 ,691.81			
Weight of water	48,253,05	13,68	660,101.72			
Up-lift pressure	-94,092.75	13.95	-1,312,593.86			
Wind pre.(Reg. body)				223.41	12.83	2,866.35
Wind pre.(Gate. body)				282.96	9.13	2,583.42
Wind pre.(Bridge.body)				334.36	1 1. 94	3,992.26
Wind pre (Walk bridge, body)				43.20	9.75	421.20
Tota	91,358,69		1,220,699,63	883.93		9,863.23

Note : The water pressure should be caneled out for the symmetrical force.

a)Examination for the slide force

Fc. for sliding:	µ=0.60				
Safe ratio:	Fs=ΣV·µ/ΣH=	62.01	\geq	Fsa=1.5	⇒OK
b)Examination for the fall down					
Foundation width : B=	27.90 (m)				
Foundation length : L=	35.50 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	13 .47 (m)			
Eccentric distance :	е=X-B/2=	-0.48 (m)	≦	B/6=4.65(m)	⇒OK
				(Checked	d by absolute value)
c)Examination for the bearing o	n foundation (kN/m2)				
- -	Q1=ΣV/B/L(1+6 • e/B)=	82.72			
	Q2=ΣV/B/L(1-6 e/B)=	101.76			

Laod	V	Х	٧•x	Н	y	H•y
	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	121,870,99	13.70	1,669,632,56			
Gate leaf	692.00	7 <u>.</u> 15	4,947 <u>.</u> 80			
Hoist	2,304.00	7.15	16,473.60			
Bridge	9,891.40	16.65	164 ,691 <u>.</u> 81			
Weight of water	10,575.04	3.02	31,936.62			
Up-lift pressure	-57,233.15	13.07	-748,037,27			
Sedimentation	628.80	2.57	1,616.02			
Wind pre (Reg. body)				199.89	12.43	2,484.63
Wind pre.(Gate.body)				—	—	—
Wind pre.(Bridge.body)				334.36	1 1. 94	3,992.26
Water pre (up-st.)				14,537.70	2.54	36,925.76
Water pre.(dw-st.)				-710.00	0.67	-475.70
Earth pre. (sed.)				26.88	2.39	64.24
Total	88,729.08		1,141,261.14	14,388.83		42,991.19
a)Examination for the slide fo Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV • μ/ΣH=	1	3 70	≥	Fsa=1.5	⇒OK
)Examination for the fall dov Foundation width : B= Foundation length : L=	vn 27.90 (m) 35.50 (m)		5.10	=	130-1.5	

[CASE 2 : Regular / Longitudinal direction/ Max, water level / Full CL]

Safe ratio:	Fs=ΣV·µ/ΣH=	3.70	\geq	Fsa=1.5	⇒OK	
b)Examination for the fall down	I					
Foundation width : B=	27.90 (m)					
Foundation length : L=	35.50 (m)					
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	13.35 (m)				
Eccentric distance :	e=X-B/2=	-0.60 (m)	\leq	B/6=4.65(m)	⇒OK	
				(Checked	d by absolute value)	
c)Examination for the bearing of	on foundation (kN/m2)					
	Q1=ΣV/B/L(1+6 • e/B)=	78.03				
	Q2=ΣV/B/L(1-6 · e/B)=	101.14				
Land	V	Х	V-x	H	у	H∙y
---	-------------------------------	-------------	--------------	--------	----------------	-----------------
Lauu	(kN)	(m)	(kN ∙ m)	(kN)	(m)	(kN ∙ m)
Reg. body	121,870.99	13.70	1,669,632.56			
Gate leaf	692.00	7.15	4,947,80			
Hoist	2,304.00	7.15	16,473.60			
Bridge	9,891.40	13.95	137,985.03			
Weight of water	_	—	—			
Up-lift pressure	_	_	—			
Wind pre.(Reg. body)				370.14	8.66	3,205
Wind pre.(Gate.body)				282.96	9.13	2,583
Wind pre (Bridge body)				334.36	1 1 .94	3,992
Water pre (up-st.)				—	—	—
Water pre.(dw-st.)				—	—	—
Earth pre. (sed.)				—	—	—
Total	134,758.39		1,829,038.99	987.46		9,781
nination for the slide for Fc, for sliding : Safe ratio :	ce μ=0.60 Fs=ΣV · μ/ΣH=		81.88	2	Fsa=1.5	⇒OK

[CASE 3 : Regular / Longitudinal direction / Max. water level / Full OP]

b)Examination for the fall down Foundation width : B= 27.90 (m) Foundation length : L= 35.50 (m) Act point of the total force : $X=(\Sigma V \cdot x + \Sigma H \cdot y)/\Sigma V =$ 13.65 (m) Eccentric distance : ≦ B/6=4.65(m) ⇒OK **e**=X**-**B/2= 0.30 (m) (Checked by absolute value) c)Examination for the bearing on foundation (kN/m2) $Q1=\Sigma V/B/L(1+6 \cdot e/B)=$ 127<u>.</u>28 $Q2=\Sigma V/B/L(1-6 \cdot e/B)=$ 144.84

	-						
	Lood	V	z	V-z	Н	у	H•y
	Lauu	(kN)	(m)	(kN ∙m)	(kN)	(m)	(kN •m)
Reg. bo	ody	121,870.99	17 <u>.</u> 75	2,163,210.07			
Gate le	af	692.00	17 <u>.</u> 75	12,283.00			
Hoist		2,304.00	17.75	40,896.00			
Bridge		9,891.40	17.75	175,572.35			
Weight	of water	45 ,285.89	17.75	803,824.55			
Up-lift p	oressure	-89,635,74	17,75	-1,591,034,39			
Sedime	entation	—	—				
Wind pre	.(Reg. body)				724.42	10.81	7,830.98
Wind pre	(Gate, body)				—	—	—
Wind pre	(Bridge body)				_	—	—
Water p	re (canal side)				—	—	-
Water p	re.(enn.bk.side)				_	—	—
Earth p	re. (Embk.)	_	—		_	—	_
Earth p	re. (sed.)				_	—	—
	Tota	90,408.54		1,604,751.58	724.42		7,830.98
a)Examination Fc	for the slide for . for sliding: Safe ratio:	ce μ=0.60 Fs=ΣV • μ/ΣΗ=	=	74 <u>.</u> 88	≧	Fsa=1.5	⇒OK
b)Examination	for the fall dow	ĥ					
Foundat	ion width : B=	35.50 (m)					
Foundati	on length : L=	27.90 (m)					
Act point of th	e tota force :	X=(ΣV · x+ΣΗ	·y)/ΣV=	17 .84 (m)			
Eccent	tric distance :	e=X-B/2=		0.09 (m)	\leq	B/6=5.92(m)	⇒OK

[CASE 4 : Regular / Lateral direction / Max, water level / Full OP]

b)Ex Act Eccentric distance : e=X-B/2= 0.09 (m) B/6=5.92(m) \leq (Checked by absolute value) c)Examination for the bearing on foundation (kN/m2) $Q1=\Sigma V/B/L(1+6 \cdot e/B)=$ 92.67 Q2=ΣV/B/L(1-6 · e/B)= 89.89

Lood	V	Х	V•x	Н	у	H•y
Laod	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	121,870.99	17.75	2,163,210.07			
Gate leaf	692.00	17,75	12,283.00			
Hoist	2,304.00	17.75	40,896.00			
Bridge	9,891.40	17.75	175,572.35			
Weight of water	10,575.04	17.75	187,706.96			
Up-lift pressure	-57,233,15	17.75	-1,015,888.41			
Sedimentation	628.80	17.75	11,161.20			
Wind pre.(Reg. body)			1,777.68	10.05	17,865.68
Wind pre.(Gate.bod	у)			—	—	—
Wind pre.(Bridge.bo	dy)			_	—	—
Water pre.(canal	side)			_	—	—
Water pre.(embk.	side)				—	—
Earth pre. (Embl	(.) —	—	_	_	_	_
Earth pre. (sed.)				_	—	—
Total	88,729.08		1,574,941.17	1,777.68		17,865.68
)Examination for the sli Fc. for slidir Safe rat	de force g : μ=0.60 o : Fs=ΣV・μ/ΣI		29.95	2	Fsa=1.5	⇒OK
)Examination for the fa Foundation width Foundation length	I down : B= 35.50 (m) : L= 27.90 (m))				

[CASE 5 : Regular / Lateral direction/ Max, water level / Full CL]

, Fc. for sliding :	µ=0.60				
Safe ratio:	Fs=ΣV·µ/ΣH=	29.95	\geq	Fsa=1.5	⇒OK
b)Examination for the fall down					
Foundation width : B=	35.50 (m)				
Foundation length : L=	27.90 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	17.95 (m)			
Eccentric distance :	e=X-B/2=	0.20 (m)	≦	B/6=5.92(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing of	n foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	92 <u>.</u> 61			
	Q2=ΣV/B/L(1-6 · e/B)=	86.56			

	Land	V	X	V·x	Н	У	Ну
	Laud	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	121,870.99	17 <u>.</u> 75	2,163,210.07			
	Gate leaf	692.00	17 <u>.</u> 75	12,283.00			
	Hoist	2,304.00	17.75	40,896.00			
	Bridge	9,891.40	17.75	175,572.35			
	Weight of water	—	_	—			
	Up-lift pressure	—	_	—			
	Sedimentation	—	_	—			
	Wind pre (Reg. body)				2,506.86	6.64	16,645.55
	Wind pre (Gate body)				—	—	—
	Wind pre (Bridge body)				—	—	—
	Wind pre (Op. deck body)				_	_	—
	Water pre.(canal side)				—	—	—
	Water pre.(embk. side)				—	—	—
	Ear th pre . (Embk.)				_	_	—
	Sum	134,758.39		2,391,961.42	2,506.86		16,645.55
a)Exam	nination for the slide for Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV • μ/ΣΗ:	=	32.25	≧	Fsa=1.5	⇒OK
b)Exan	nination for the fall dow	'n					
l	Foundation width : B=	35.50 (m)					
F	oundation length : L=	27.90 (m)					
Act po	oint of the total force :	X=(ΣV · x+ΣΗ	·y)/ΣV=	17.87 (m)			
	Eccentric distance :	e=X-B/2=		0.12 (m)	\leq	B/6=5.92(m)	⇒OK
						(Checked b	y absolute value)

[CASE 6 : Regular / Lateral direction / N	water / Full OP
---	-----------------

Act c)Examination for the bearing on foundation (kN/m2) Q1=2V/B/L(1+6 • e/B)= 138.82 $Q2=\Sigma V/B/L(1-6 \cdot e/B)=$ 133.30

-				-			
	and	V	Х	V•x	Н	у	Н•у
	.a uu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. boo	ly	12 1 ,870.99	13.70	1,669,632.56	9,749.68	4.23	41,2 41.1 5
Gate lea	f	692.00	7.15	4,947.80	55.36	5.78	319.70
Hoist		2,304.00	7.15	16,473.60	184.32	15.00	2,764.80
Bridge		7,008.40	16.65	116,689.86	560.67	10.00	5,606.70
Weight o	f water	10,575.04	3.02	31,936.62	_	—	_
Up-lift pr	essure	-57,233,15	13.0 7	-748,037.27	—	—	_
Sedimen	tation	628.80	2.57	1,616.02	_	—	_
Wind pre.(I	Reg. body)				_	—	_
Wind pre.(Gate, body)				—	—	_
Wind pre.(I	Bridge, body)				—	—	_
Wind pre.(Op.deck body)				—	—	_
Water pr	e (up-st.)				14,537.70	2.54	36,925.76
Water pr	e.(dw-st.)				-710.00	0.67	-475.70
Seism Wat	er pre (up-st.)				1,356.81	3.62	4,911.65
Earth pre	e. (sed.)				26.88	2.39	64.24
	lota 🛛	85,846.08		1,093,259.19	25,761.42		91,358.30
a)Examination for the slide force Fc. for sliding : μ=0.60 Safe ratio : Fs=ΣV・μ/ΣH=				2.00	≧	Fsa=1.15	⇒OK
b)Examination fo	or the fall dow	n					
Foundatio	n width:B=	27.90 (m)					
Foundation	n length : L=	35.50 (m)					
Act point of the	total force :	Χ=(ΣV · x+ΣΗ	·y)/ΣV=	13.80 (m)			
Eccentri	c distance :	e=X-B /2=		0.15 (m)	≦	B/3=9.30(m)	⇒OK
						(Checked b	y absolute value)
c)Examination for	r the bearing	on foundation (kN	J /m2)				

89.47

[CASE 7 : Seism / Longitudinal direction / Max water level / Full CL]

Q1=2V/B/L(1+6 • e/B)=

 $Q2=\Sigma V/B/L(1-6 \cdot e/B)=$

	bool	V	x	V-x	Н	У	Н·у
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	121,870.99	13.70	1,669,632.56	9,749.68	4.23	41,2 41.1 5
	Gate leaf	692.00	7,15	4,947.80	55.36	12.40	686.46
	Hoist	2,304.00	7.15	16,473.60	184.32	15.00	2,764.80
	Bridge	7,008.40	13.95	97,767.18	560.67	10.00	5,606.70
	Weight of water		_	_		_	_
	Up-lift pressure	_	_	_		_	_
	Wind pre.(Reg. body)				_	—	_
	Wind pre.(Gate.body)					_	_
	Wind pre (Bridge, body)				—	—	—
	Wind pre.(Op.deck.body)				—	—	—
	Water pre (up-st.)				_	—	—
	Water pre.(dw-st.)				_	—	—
	Total	131,875.39		1,788,821.14	10,550.03		50,299.11
a)Exam	Fc. for sliding: Safe ratio: ination for the slide for	μ=0.60 Fs=ΣV · μ/ΣΗ= rce	=	7.50	2	Fs a=1.1 5	⇒OK
F b)Exam	Foundation width : B= oundation length : L= int of the total force : Eccentric distance :	27.90 (m) 35.50 (m) X=(ΣV·x+ΣH e=X-B/2=	•y)/ΣV=	13.95 (m) 0.00 (m)	Š	B/3=9.30(m) (Checked b	⇒OK y absolute value)

133.15

【CASE 8 : Seism / Longitudinal direction / No water / Full OP】

c)Examination for the bearing on foundation (kN/m2) $\label{eq:Q1=} Q1= \Sigma V/B/L(1+6 \cdot e/B)= \\ Q2= \Sigma V/B/L(1-6 \cdot e/B)=$

Lood		V	z	V-z	Н	у	H•y
Laoo		(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body		121,870.99	17.75	2,163,210.07	9,749.68	4.23	41,2 41.1 5
Gate leaf		692.00	17 <u>.</u> 75	12,283.00	55.36	12.40	686.46
Hoist		2,304.00	17.75	40,896.00	184.32	15.00	2,764.80
Bridge		7,008.40	17.75	124,399.10	560.67	10.00	5,606.70
Weight of water		45,285.89	17.75	803,824.55	_	_	—
Up-lift pressure		-89,635,74	17 <u>.</u> 75	-1,591,034.39	—	—	—
Sedimentation		—	-	—	—	—	—
Wind pre.(Reg. bod	y)					_	—
Wind pre.(Gate. bo	dy)				—	—	—
Wind pre.(Bridge.b	ody)				_	_	_
Wind pre.(Op. deck	body)				—	—	—
Seism water pre. (A	.but)				647.13	4.82	3,119.17
Seism water pre. (N	(lid.)				3,005.43	5.02	15,087.26
Earth pre. (sed.)				_	_	_
Total		87,525.54		1,553,578.33	14,202.59		68,505.54
a)Examination for the s Fc. for slidi Safe ra	lide force ng : tio :	e μ=0.60 Fs=ΣV・μ/ΣΗ=	=	3.70	≧	Fsa=1.15	⇒OK
b)Examination for the fa	all down						
Foundation width	1 : B=	35.50 (m)					
Foundation lengtl	ו:L=	27.90 (m)					
Act point of the total for	rce:	X=(ΣV∙x+ΣH	·y)/ΣV=	18.53 (m)			
Eccentric dista	nce:	e=X-B/2=		0.78 (m)	\leq	B/3=11.83(m)	⇒OK

[CASE 9 : Seism / Lateral direction / Max. water level / Full OP]

Sale ratio :	Γ5-2V*μ/2Π-	5.70	≦	F5d-1.10	→UK
b)Examination for the fall down					
Foundation width : B=	35.50 (m)				
Foundation length : L=	27.90 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	18.53 (m)			
Eccentric distance :	e=X-B/2=	0.78 (m)	\leq	B/3=11.83(m)	⇒OK
				(Checked	by absolute value)
c)Examination for the bearing o	n foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	100.02			
	Q2=ΣV/B/L(1-6 · e/B)=	76.72			

Lood	V	X	V·x	Н	у	H•y
Land	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	121,870.99	17.75	2,163,210.07	9,749.68	4.23	41,241.15
Gate leaf	692.00	17,75	12,283.00	55.36	5.78	319.98
Hoist	2,304.00	17.75	40,896.00	184.32	15.00	2,764.80
Bridge	7,008.40	17.75	124,399.10	560.67	10.00	5,606.70
Weight of water	10,575.04	17 <u>.</u> 75	187,706.96	_	_	—
Up-lift pressure	-57,233,15	1 7,75	-1, 0 15,888.41	_	—	—
Sedimentation	628.80	17.75	1 1 ,161 .20		_	—
Wind pre (Reg. body)					_	_
Wind pre (Gate, body)				_	—	—
Wind pre (Bridge body)				_	—	—
Wind pre (Op. deck body)				_	_	—
Seism water pre. (Abul)				165.84	4.82	799.35
Seism water pre. (Mid.)				375.30	5.02	1,884.01
Earth pre. (sed.)					—	—
Total	85,846.08		1,523,767.92	11,091.17		52,615.99
amination for the slide fo Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV • μ/ΣH=		4.64	≧	Fsa=1.15	⇒OK
amination for the fall dow Foundation width : B= Foundation length : L=	n 35.50 (m) 27.90 (m)					

[CASE 10 : Seism / Lateral direction / Max.water level / Full CL]

µ=0.60				
$F_S = \Sigma V \cdot \mu / \Sigma H =$	4.64	≧	Fsa=1.15	⇒OK
35.50 (m)				
27 <u>.</u> 90 (m)				
$X=(\Sigma V \cdot x + \Sigma H \cdot y)/\Sigma V=$	18.36 (m)			
е=Х-В/2=	0.61 (m)	\leq	B/3=11.83(m)	⇒OK
			(Checked	by absolute value)
foundation				
Q1=ΣV/B/L(1+6 · e/B)=	95.61			
Q2=ΣV/B/L(1-6 · e/B)=	77 <u>.</u> 74			
	$\mu=0.60 \\ F_{S}=\Sigma V \cdot \mu / \Sigma H = \\ 35.50 (m) \\ 27.90 (m) \\ X=(\Sigma V \cdot x + \Sigma H \cdot y) / \Sigma V = \\ e=X-B/2 = \\ foundation \\ Q1=\Sigma V / B / L (1+6 \cdot e/B) = \\ Q2=\Sigma V / B / L (1-6 \cdot e/B) = \\ \end{bmatrix}$	$\begin{array}{lll} \mu = 0.60 \\ F_{S} = \Sigma V \cdot \mu / \Sigma H = & 4.64 \\ & & \\ 35.50 \ (m) \\ 27.90 \ (m) \\ X = (\Sigma V \cdot x + \Sigma H \cdot y) / \Sigma V = & 18.36 \ (m) \\ e = X - B / 2 = & 0.61 \ (m) \\ foundation \\ Q1 = \Sigma V / B / L (1 + 6 \cdot e / B) = & 95.61 \\ Q2 = \Sigma V / B / L (1 - 6 \cdot e / B) = & 77.74 \end{array}$	$\begin{array}{ll} \mu = 0.60 \\ F_{S} = \Sigma V \cdot \mu / \Sigma H = & 4.64 & \geqq \\ & 35.50 \ (m) \\ 27.90 \ (m) \\ X = (\Sigma V \cdot x + \Sigma H \cdot y) / \Sigma V = & 18.36 \ (m) \\ e = X - B/2 = & 0.61 \ (m) & \leq \\ foundation \\ Q1 = \Sigma V / B / L (1 + 6 \cdot e / B) = & 95.61 \\ Q2 = \Sigma V / B / L (1 - 6 \cdot e / B) = & 77.74 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

	Land	V	X	V·x	Н	у	H•y		
	Laud	(kN)	(m)	(kN ∙ m)	(kN)	(m)	(kN •m)		
	Reg. body	121,870.99	17.75	2,163,210.07	9,749.68	4.23	41,2 41.1 5		
	Gate leaf	692.00	17 <u>.</u> 75	12,283,00	55.36	12.40	686.46		
	Hoist	2,304.00	17.75	40,896.00	184.32	15.00	2,764.80		
	Bridge	7,008.40	17.75	124,399.10	560.67	10.00	5,606.70		
	Weight of water	—	_	_		—	—		
	Up-lift pressure	-	-	—	—	—	—		
	Sedimentation	—	_	—		—	—		
	Wind pre.(Reg. body)					—	—		
	Wind pre (Gate, body)				—	—	—		
	Wind pre (Bridge body)				—	—	—		
	Wind pre (Op. deck body)				—	—	—		
	Seism water pre. (Abut)				_	—	—		
	Seism water pre. (Mid.)				—	—	—		
	Earth pre. (sed.)					—	—		
	Tota	131,875.39		2,340,788.17	10,550.03		50,299.11		
a)Exan	nination for the slide for Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV • μ/ΣΗ=	=	7.50	≧	Fsa=1.15	⇒OK		
b)Exan	nination for the fall dow	'n							
F	Foundation width : B=	35.50 (m) 27.90 (m)							
Act po	oint of the total force :	Χ=(ΣV · x+ΣΗ	•y)/ΣV=	18.13 (m)					
	Eccentric distance :	e=X-B/2=		0.38 (m)	\leq	B/3=11.83(m)	⇒OK		
						(Checked by absolute value)			

【CASE 11 : Seism / Lateral direction / No water / Full OP】

Foundation width : B=	35.50 (m)			
Foundation length : L=	27.90 (m)			
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	18.13 (m)		
Eccentric distance :	e=X-B/2=	0.38 (m)	\leq	B/3=11.
				(C
c)Examination for the bearing of	on foundation			
	Q1=ΣV/B/L(1+6 • e/B)=	141.70		
	Q2=ΣV/B/L(1-6 · e/B)=	124.60		

Land	V	Х	V•x	Н	У	Н•у
Load	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	121,870.99	13,70	1,669,632.56	9,749.68	4.23	41,2 41.1 5
Gate leaf	692.00	7,15	4,947.80	55.36	12.40	686.46
Hoist	4,744.00	7.15	33,919.60	379.52	15.00	5,692.80
Bridge	7,008.40	16.65	1 16,689.86	560.67	10.00	5,606.70
Weight of water	45 ,285.89	13.69	619,963.83	_	_	_
Up-lift pressure	-89,635,74	13,95	-1 ,2 50,4 18. 57	_	—	
Wind pre.(Reg. body)				_	—	
Wind pre.(Gate. body)						_
Wind pre (Bridge, body)						_
Wind pre (Walk bridge, body)						_
Seism Water pre (up-st.)				164.52	5.55	913.09
Tota	89,965.54		1 ,194 ,735.08	10,909,75		54,140.20

[CASE 12 : Seism / Longitudinal direction/ Max.water level / Full OP]

Note: The water pressure should be caneled out for the symmetrical force.

Fc. for sliding:	µ=0.60				
Safe ratio:	Fs=ΣV·µ/ΣH=	4.95	\geq	Fsa=1.15	⇒OK
b)Examination for the fall down					
Foundation width : B=	27.90 (m)				
Foundation length : L=	35.50 (m)				
Act point of the total force :	$X = (\Sigma V \cdot x + \Sigma H \cdot y) / \Sigma V =$	13.88 (m)			
Eccentric distance :	e=X-B/2=	-0.07 (m)	\leq	B/3=9.30(m)	⇒OK
				(Checked	by absolute value)
c)Examination for the bearing or	n foundation (kN/m2)			,	• •
,	$Q1 = \Sigma V/B/L(1+6 \cdot e/B) =$	89.47			
	Q2=ΣV/B/L(1-6 · e/B)=	92.20			

	V	х	V·x	Н	v	H•v
Laod	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	121,870,99	13,70	1,669,632,56			
Gate leaf for 3vents	519.00	7.15	3,710.85			
Hoist for 3vents	1,728.00	7.15	12,355.20			
Stoplog Gate of U.S.	224.00	3.50	784.00			
Stoplog Gate of D.S.	224,00	24 .40	5,465.60			
Bridge	9,891.40	16.65	164 ,691 . 81			
Weight of water	39,929.38	13.59	542,640.27			
Weight of water at stoplog	-8,547.90	1.75	-14,958.83			
Up-lift pressure	-86,283.04	13.89	-1,198,471.43			
Sedimentation	628.80	2.57	1,616.02			
Sedimentation at stoplog	-91.50	1,75	-160.13			
Wind pre (Reg. body)				199.89	12.43	2,484.63
Wind pre.(Gate.body)				—	-	—
Wind pre.(Bridge.body)				334.36	1 1 .94	3,992.26
Water pre (up-st.)				14,537.70	2.54	36,925.76
Water pre.(dw-st.)				-12,286.97	2.77	-34,034.91
Earth pre. (sed.)				26.88	2.39	64.24
Tota	80,093 13		1,187,305.92	2,811.86		9,431.98

[CASE 13 : Regular / Longitudinal direction/ Max. water level / Maintenace case]

µ=0.60				
Fs=ΣV·μ/ΣH=	17.09	≧	Fsa=1.5	⇒OK
27.90 (m)				
35.50 (m)				
$X=(\Sigma V \cdot x + \Sigma H \cdot y)/\Sigma V=$	14.94 (m)			
e =X - B/2=	0.99 (m)	\leq	B/6=4.65(m)	⇒OK
			(Checked	l by absolute value)
foundation (kN/m2)				
Q1=ΣV/B/L(1+6 • e/B)=	98.08			
Q2=ΣV/B/L(1-6 · e/B)=	63.65			
	$\begin{array}{l} \mu = 0.60 \\ F_{S} = \Sigma V \cdot \mu / \Sigma H = \\ \\ 27.90 \ (m) \\ 35.50 \ (m) \\ X = (\Sigma V \cdot x + \Sigma H \cdot y) / \Sigma V = \\ e = X - B / 2 = \\ foundation \ (kN/m2) \\ Q1 = \Sigma V / B / L (1 + 6 \cdot e / B) = \\ Q2 = \Sigma V / B / L (1 - 6 \cdot e / B) = \end{array}$	$\begin{array}{c} \mu = 0.60 \\ F_{S} = \Sigma V \cdot \mu / \Sigma H = & 17.09 \\ \\ 27.90 \ (m) \\ 35.50 \ (m) \\ X = (\Sigma V \cdot x + \Sigma H \cdot y) / \Sigma V = & 14.94 \ (m) \\ e = X - B / 2 = & 0.99 \ (m) \\ \end{array}$ foundation (kN/m2) $\begin{array}{c} Q1 = \Sigma V / B / L (1 + 6 \cdot e / B) = & 98.08 \\ Q2 = \Sigma V / B / L (1 - 6 \cdot e / B) = & 63.65 \end{array}$	$\begin{array}{lll} \mu=0.60 \\ Fs=\Sigma V \cdot \mu / \Sigma H= & 17.09 & \geqq \\ & & \\ 27.90 \ (m) \\ & & \\ 35.50 \ (m) \\ X=(\Sigma V \cdot x+\Sigma H \cdot y) / \Sigma V= & 14.94 \ (m) \\ e=X-B/2= & 0.99 \ (m) & \leqq \\ foundation \ (kN/m2) \\ Q1=\Sigma V/B/L(1+6 \cdot e/B)= & 98.08 \\ Q2=\Sigma V/B/L(1-6 \cdot e/B)= & 63.65 \end{array}$	$\begin{array}{cccc} \mu=0.60 \\ Fs=\Sigma V \cdot \mu / \Sigma H= & 17.09 & \geqq & Fsa=1.5 \\ & & & & \\ 27.90 \ (m) \\ 35.50 \ (m) \\ X=(\Sigma V \cdot x+\Sigma H \cdot y) / \Sigma V= & 14.94 \ (m) \\ e=X-B/2= & 0.99 \ (m) & \leqq & B/6=4.65 \ (m) \\ & & & \\ Checked \\ foundation \ (kN/m2) \\ Q1=\Sigma V/B/L(1+6\cdot e/B)= & 98.08 \\ Q2=\Sigma V/B/L(1-6\cdot e/B)= & 63.65 \end{array}$

Ibrahimia reg. only 【CASE 13 : Regular / Longitudinal direction/ Max. water level / Maintenace case】

Lood	V	х	V•x	Н	У	Н∙у
Laod Reg. body Gate leaf for 3vents Hoist for 3vents Stoplog Gate of U.S Stoplog Gate of D.S Bridge Weight of water Weight of water at stoplog Up-lift pressure Sedimentation Sedimentation at stoplog Wind pre.(Reg. body)	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	121,870,99	13,70	1,669,632.56			
Gate leaf for 3vents	519.00	7.15	3,710.85			
Hoist for 3vents	1,728.00	7.15	12,355.20			
Stoplog Gate of U.S.	224.00	3.50	784.00			
Stoplog Gate of D.S.	224,00	24 40	5,465.60			
Bridge	9,891.40	16.65	164 ,691 . 81			
Weight of water	36,665.63	13.27	486,552.91			
Weight of water at stoplog	-7,731.96	1.75	-13,530.93			
Up-lift pressure	-83,108.68	13.83	-1,1 49, 393. 04			
Sedimentation	628.80	2.57	1,616.02			
Sedimentation at stoplog	-91.50	1.75	-160 .1 3			
Wind pre (Reg. body)				199.89	12.43	2,484.63
Wind pre.(Gate.body)				_	_	_
Wind pre.(Bridge.body)				334.36	1 1. 94	3,992.26
Water pre (up-st.)				14,537.70	2.54	36,925.76
Water pre (dw-st.)				-10,333.50	2. 54	-26,247.09
Earth pre. (sed.)				26.88	2.39	64.24
Total	80,819.68		1,181,724.85	4,765.33		17,219.80

Fc. for sliding:	µ=0.60				
Safe ratio:	$Fs=\Sigma V \cdot \mu / \Sigma H=$	10.18	≧	Fsa=1.5	⇒OK
b)Examination for the fall down					
Foundation width : B=	27.90 (m)				
Foundation length : L=	35.50 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	14.83 (m)			
Eccentric distance :	e =X - B/2=	0.88 (m)	\leq	B/6=4.65(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing on	foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	97.04			
	Q2=ΣV/B/L(1-6 · e/B)=	66.16			

A-4-2. Badraman Regulator in Badraman canal

		n	lon (Vertical force	Resistant moment	Horizontal force	Torque moment	For	he sliding	For the	fal down	^{^cte1)} F	or the ground re	eaction		
Pier	ase	ectio	nditic	V	V∙x	н	Н·у	Sa	afe ratio	Eccentricity	B/6	Ground reactior	Ground reaction	Bearing	agbr	Remarks
	0	Dir	Co	(kN)	(kN∙m)	(kN)	(kN•m)	Required ratio	Desing	e (m)	(Allowable)	Q1 (kN/m2)	Q2 (kN/m2)	(kN/m2)	۱Ļ	
	1	Long,	Regular	13,430.09	178,984.42	104.09	717.19	1.50	≦ 77.4	-0.72	≦ 4.70	57 <u>.</u> 61	78.46		OK	
nal	2	Long.	Regular	14,503.18	198,871.00	756.63	1,496.07	1.50	≦ 11 <u>.</u> 5	-0.28	≦ 4.70	69.09	77.85		OK	
ı cal	3	Long.	Regular	19,551.97	267,435.44	112.37	682.94	1.50	≦ 104.4	-0.39	≦ 4.70	90.83	107.27		ОК	
mar	4	Lateral,	Regular	13,758.58	48,155.04	328,56	1,787.37	1.50	≦ 25.1	3 0.13	≦ 1.17	77 <u>.</u> 47	61,93		OK	
n Badrai	5	Lateral.	Regular	14,503.18	50,761.13	858 .16	4,505.34	1.50	≦ 10.1	0.31	≦ 1.17	92.99	53.95		OK	
	6	Lateral,	Regular	19,551.97	68,431.90	421 <u>.</u> 82	1 ,615 <u>.</u> 57	1.50	≦ 27.8	0 <u>.</u> 08	≦ 1 <u>.</u> 17	105 <u>.</u> 84	92,26		ОK	
tori	7	Long.	Seism	13,006.18	178,736.35	2,198.20	4,747.79	1 .1 5	≦ 3,5	0,01	≦ 9 <u>.</u> 40	66,03	65,75		OK	
gula	8	Long.	Seism	18,054.97	246,327.74	1,444.40	3,637.76	1 .1 5	≦ 7.5	-0.26	≦ <u>9.</u> 40	86.40	96.52		ОK	
Re	9	Lateral.	Seism	12,261.58	42,915.54	2,025.88	5,283.23	1 .1 5	≦ 3.6	0.43	≦ 2.33	85.01	39.22		OK	
man	10	Lateral,	Seism	13,006.18	45,521.63	1,490.28	3,760.28	1 .1 5	≦ 5.2	0,29	≦ 2 <u>.</u> 33	82.27	49,51		OK	
11 Badrau 12	11	Lateral.	Seism	18,054.97	63,192.40	1,444.40	3,637.76	1 .1 5	≦ 7.5	0.20	≦ 2.33	107 <u>.</u> 14	75.78		OK	
	12	Lang.	Seism	12,319.58	164,463.54	1,471.21	3,721.86	1 .1 5	≦ 5.0	-0.45	≦ 9.40	56.43	68.38		ОК	
	13	Long.	Regular	12,656.70	185,830.14	550.38	1,193.45	1.50	≦ 13.8	0.68	≦ 4.70	73,39	54.84		OK	

Summary table of result on the stability examination for Badraman Regulator in Badraman canal

Note 1) Ground reaction for the bearing capacity should be consideration in Chapter 12

Badraman Regulator in Badraman canal / Stability examination 1.Design condition

(1)Dimension of form for abutment Pier [unite : m]													
A(1)=	28.20	A(2)=	0 <u>.</u> 00	A(3)=	1 .0 0	A(4)=	1.00	A(5)=	5.35	A(6)=	1.00	A(7)=	19.85
A(8)=	0.50	A(9)=	22 <u>.</u> 70	A(10)=	4.50	A(11)=	3.50	A(12)=	0.50	A(13)=	0.70	A(14)=	0.50
A(15)=	17 .50	A(16)=	4 .00	A(17)=	1,70	A(18)=	22.50	A(19)=	0.85	A(20)=	0.85	A(21)=	1.00
A(22)=	1.00	A(23)=	1.00	A(24)=	0.19	A(25)=	0.32	A(26)=	0.20	A(27)=	8.25	A(28)=	14.75
A(29)=	1.00	A(30)=	1.00	A(31)=	1.00	A(32)=	0.50	A(33)=	0.00	A(34)=	0.50	A(35)=	0.00
B(1)=	1.00	B(2)=	1 <u>.00</u>	B(3)=	2,00	B(4)=	1.0 0	B(5)=	0.13	B(6)=	0.87	B(7)=	0.20
B(8)=	0.80	B(9)=	0.20	B(10)=	0.80	B(11)=	1.00	B(12)=	0.00	B(13)=	0.00		
C(1)=	1.50	C(2)=	4 <u>.</u> 10	C(3)=	3.35	C(4)=	1.50	C(5)=	0.50	C(6)=	3.60	C(7)=	2.85
C(8)=	0.50	C(9)=	0.50	C(10)=	0.13	C(11)=	0.50	C(12)=	0.80	C(13)=	0.30	C(14)=	0.00
C(15)=	0.50	C(16)=	0.50	C(17)=	0.40								

(2)Dimens	sion of fo	o <mark>rm</mark> for Mid	d dle Pie r	[unite:m]									
D(1)=	28.20	D(2)=	0.50	D(3)=	0.50	D(4)=	1.00	D(5)=	5.35	D(6)=	1.00	D(7)=	19.85
D(8)=	0.50	D(9)=	22 <u>.</u> 20	D(10)=	0.50	D(11)=	3.00	D(12)=	0.50	D(13)=	0.70	D(14)=	0.50
D(15)=	17.50	D(16)=	4 <u>.</u> 00	D(17)=	1.70	D(18)=	18 .0 0	D(19)=	0.85	D(20)=	0.85	D(21)=	1.00
D(22)=	1.00	D(23)=	1.00	D(24)=	0.19	D(25)=	0.32	D(26)=	0.20	D(27)=	8.25	D(28)=	9.75
D(29)=	1.00	D(30)=	1 .00	D(31)=	1 .0 0	D(32)=	0.50	D(33)=	0.00	D(34)=	0.50	D(35)=	4.00
D(36)=	0.00												
E(1)=	1.00	E(2)=	1 <u>.</u> 00	E(3)=	1 .0 0	E(4)=	3.00	E(5)=	1.00	E(6)=	0.13	E(7)=	0.74
E(8)=	0.13	E (9)=	0.20	E(10)=	0.60	E(11)=	0.20	E(12)=	0.50	E(13)=	0.00	E(14)=	0.50
E(15)=	0.20	E(16)=	0 <u>.</u> 60	E(17)=	0.20	E(18)=	0.00	E(19)=	0.00				
F(1)=	1.50	F (2)=	4 <u>.</u> 10	F(3)=	3.35	F(4)=	1.50	F(5)=	0.50	F(6)=	3.60	F(7)=	2.85
F(8)=	0.50	F (9)=	0 <u>.</u> 50	F(10)=	0,13	F(11)=	0.50	F(12)=	0.80	F(13)=	0.30	F(14)=	0.00
F(15)=	0.50	F(16)=	0.50	F(17)=	0.30								

(3)Number and slide distance of center for each pier [unite:m]

	Number of pier : abutment		2 p	iers			active(y)	x	у	z
		middle	1 p	iers			or not(n)	(m)	(m)	(m)
	Number of vent:		2			Right abutment p	ie y	0.00	0.00	0.00
						Left abutment pie	r y	0.00	0.00	7.00
	Entire regulator wid	ith: 7	.00 m	ו		Middle pier 1	у	0.00	0.00	2.00
	Entire regulator len	gth: 28	.20 m	ı		Middle pier 2	n	0.00	0.00	0.00
						Middle pier 3	n	0.00	0.00	0.00
(4) Main	level of foundation Apron bottom: Gate bottom:	EL41.90m EL43.90m	1							
(5)Unite	weight [unit : kN RC : Concrete :	N/m ³] 25.00 23.00	Soil	Soil (Wet) (in water)	:	18.00 Soi 10.00	l 〔Saturat	ion〕: Water:	20.00 10.00	

(6)Seismic co-efficient

KH= 0.08

KH = 0.09 (submerged condition)

(7)Case of examination

Case	Direction		Water Leve		Situation of gate	Condi.	Additional	(m)
Canol	Long	U.S.	WL47.00m	HWL	Onen arte	Pogular		
Caser	Long.	D.S.	WL47.00m	HWL	<u>Open gale</u>	Regular	_	
6.0002	Long	U.S.	WL46.55m	Max.WL	Class date	Poqular	sedimentation	0.3
Casez	Long.	D.S.	WL43.40m	Low	Close gale	Regula		
C 0002	Long	U.S.	—	No WL	Open agte	Pogular		
0 4360	Long.	D.S.		No WL	<u>Open gale</u>	Negulai		
Case4	Lateral	U.S.	WL46.55m	Max.WL	Open date	Regular		_
Case4 Latera	Lateral.	D.S.	WL46.55m	Max.WL	<u>Open gale</u>	Regular		
C 2805	Latoral	U.S.	WL46.55m	Max.WL	Close date	Rogular	sedimentation	0.3
Cased La	Lateral.	D.S.	WL43.40m	Low	Close gale	Кеуша		
Casal	Lateral	U.S.		No WL	Open date	Rogular		_
Caseo	Lateral.	D.S.		No WL	<u>Open gale</u>	Negulai		
Case7	Long	U.S.	WL46 .5 5m	Max.WL	Close gate	Seism of	sedimentation	0.3
Caser	Long.	D.S.	WL43.40m	Low	Oldse gale	case2		
Case8	Long	U.S.	_	No WL	Open gate	Seism of	_	
Casco	Long.	D.S.	_	No WL	Open gate	case3		
CaseQ	lateral	U.S.	WL46 .5 5m	Max.WL	Open date	Seism of		
04363	Lateral.	D.S.	WL46.55m	Max.WL	<u>open gate</u>	case4		
Case10	latoral	U.S.	WL46.55m	Max.WL	Close date	Seism of	sedimentation	0.3
	Lateral.	D.S.	WL43.40m	Low	Close gale	case5		
Case11	lateral	U.S.	_	No WL	Open date	Seism of		_
Caserr	Lateral.	D.S.		No WL	<u>open gate</u>	case6		
Case12	Long	U.S.	WL46.55m	Max.WL	Open date	Seism of		-
Case 12	Long.	D.S.	WL46.55m	Max.WL		case6		
Case 13	Long	U.S.	WL46.55m	Max.WL	Maintenace cate	Regular		0.3
Case J	Long.	D.S.	WL45.90m	Low	Mantenace yale	ricyulai		

(8)Coefficient of earth pressure

nternal friction :	φ= 30	0		
	Regular case	Seismic case	Seismic (submerged)	Sedimentation
Friction for wall	0°	0°	0°	—
Active EP coe.	0.333	0.383	0.39	0.5
Passive EP coe.	3.000	2.858	2,84	—

(9)Weight of the gate facility

tem of de	Design load	Remarks				
Gate leaf	9,00	Upper	9.00	Lower	0.00	
Hiost (Emargency)	(kN/vent)	including	ncluding the hoist weight (300%)			
Hiost	(kN/vent)	24.00	including the groove weight			
Actual vent wide	(m)	2.00				
Height of gate	(m)	2.65				
Stop Log gate	9.00					

(10)Weight of the bridge

Item of design load	1	Regular case	Seismic case	
Vertical load (body)	(kN/vent)	509.1 1	5 0 9. 1 1	
Vertical load (body +live load)	(kN/vent)	1257 <u>.</u> 61	—	
Horizontal force by wind	(kN/vent)	18.72	—	
Counter force for up-to-down st	(kN)	_	40.73	
Counter force for right angle	(kN)	—	40.73	

Height of the handrail= 1.10 (m) Thick of the bridge= 1.50 (m)

(11)Wind pressure

w= 3.0 (kN/m2)

2.Caluculation of the regulator weight

(1) Enite regulator body weight

Regulator	W	х	W·x	у	W•y	Z	W·z
abutment right	5,381,44	14.04	75,55 5. 42	2.31	1 2,431 .1 3	0.73	3,928.45
abutment left	5,381.44	14.04	75,555.42	2.31	12,431.13	6.27	33,741.63
Midle.1	6,207.87	12.98	80,578.15	2.19	13,595.24	3.50	21,727 <u>.</u> 55
Midle.2	0.00	12.98	0.00	2.19	0.00	1.50	0.00
Midle.3	0.00	12.98	0.00	2.19	0.00	1.50	0.00
Σ	16,970.75		231,688.99		38,457.50		59,397.63

(2) Balance center of entire regulator body

$$X = \Sigma W \cdot x / \Sigma W = \frac{231,688.99}{16,970.75} = 13.65 (m)$$

$$Y = \Sigma W \cdot y / \Sigma W = \frac{38,457.50}{16,970.75} = 2.27 (m)$$

$$Z = \Sigma W \cdot z / \Sigma W = \frac{59,397.63}{16,970.75} = 3.50 (m)$$

(3) abu	<mark>tment</mark> P	lier : Right [unit	e:m]					
	#	W	x	W∙x	у	W∙y	Z	W·z
	1	0.00	0.00	0.00	0.75	0.00	1.00	0.00
	2	551.25	3.68	2028.60	0.75	413 <u>.</u> 44	1.00	551 <u>.</u> 25
	3	1563 <u>.</u> 75	17 <u>.</u> 78	27803.48	0 <u>.</u> 75	1 172 <u>8</u> 1	1 <u>.</u> 00	1563.75
	4	6,25	1 <u>.</u> 67	10. 44	1 <u>.</u> 67	10.4 4	1 <u>.</u> 50	9 <u>.</u> 38
	5	66.88	4.68	313.00	1.75	1 17. 04	1.50	100.32
	6	12.50	7.68	96.00	1 <u>.</u> 67	20.88	1.50	18.75
	7	6.25	0.25	1.56	1 .7 5	10.94	0.50	3 <u>.</u> 13
	8	6 .2 5	1.33	8.31	1 <u>.</u> 83	11_4 4	0 <u>.</u> 50	3.13
	9	6.25	8.02	50.13	1.67	10.4 4	0.50	3.13
	10	248 <u>.</u> 13	18.28	4535.82	1.75	434.23	0.50	124 <u>.</u> 07
	1 1	2,326.75	11.85	27,571.99	3.30	678 <u>.</u> 28, 7	0.50	1,163.38
	12	405.00	28.20	11,421.00	3.30	1,336.50	0.50	202.50
	13	20.13	27.99	563.44	3 <u>.</u> 55	71.46	0.58	11 <u>.</u> 68
	14-1	35 <u>.</u> 63	4.25	151.43	7.03	250.48	0 <u>.</u> 58	20 <u>.</u> 67
	14-2	0.00	4.25	0.00	7.03	0.00	0.58	0.00
	15-1	35.63	5.45	194 .18	7.03	250.48	0.58	20.67
	15-2	0.00	5.45	0.00	7.03	0.00	0.58	0.00
	16	21,25	4.85	103.06	8 .7 0	184.88	0.58	12.33
	16'	0.00	4.00	0.00	8.45	0.00	1.33	0.00
	16"	12.50	3.75	46.88	8.70	108.75	1.50	18.75
	17	37.50	2.50	93.75	5.35	200.63	1.50	56.25
	17'	37,50	22.20	832.50	5.40	202.50	1 <u>.</u> 50	56.25
	18	-12.50	2.50	-31.25	5.35	-66.88	1.50	-18.75
	18'	-12.50	22.20	-277.50	5.40	-67.50	0.90	-11.25
	19	_1 <u>.</u> 44	2.50	-3.60	3.80	5.47	0.90	-1.30
	19'	-1,64	22.20	-36.41	3 .5 5	-5.82	0.90	-1.48
	20	-0.60	2.50	-1.50	1.85	-1 .1 1	0.90	-0 .54
	21	-0.66	4.85	-3.20	3.80	2.51	0.94	-0.62
	22	-0.32	4.84	-1.55	1.94	0.62	0.90	-0_29
ĺ	23	-0.80	2.50	-2.00	1.30	-1.04	0.90	-0.72
	Add	12.50	5.45	68.13	8.70	108.75	1.00	12.50
	Σ	5,381.44		75,536.69		12,443.42		3,916.94

Balance center of abut regulator

		Right abutment		Left abutment
		regulator	(slide distance)	regulator
X=ΣW•x∕ΣW=	75,536.69 5,381.44	-=14.04(m)	+0 .0 0(m)	=14.04(m)
Y=Σ₩•y∕Σ₩=—	12,443.42 5,381.44	-=2.31(m)	+0.00(m)	=2.31(m)
Z=ΣW•z∕ΣW=	3,916.94 5,381.44	==0.73(m)	-7.00(m)	=-6,27 (m)

(4) Midd	le pier	: [unite:m]						
	#	W	x	W∙x	У	W∙y	Z	W·z
	1	56.25	0.25	14.06	0.75	42.19	1.50	84.38
	2	770.63	3.93	3,028.58	0.75	577 <u>.</u> 97	1.50	1,155 <u>.</u> 95
	3	2,345.63	17 <u>.</u> 78	41,705.30	0 <u>.</u> 75	1, 759_22	1 <u>.</u> 50	3,518 <u>.</u> 45
	4	12,50	1.67	20.88	1 <u>.</u> 67	20.88	1,50	18.75
	5	133.75	4.68	625.95	1.75	234.06	1.50	200.63
	6	25.00	7.68	192 .00	1 <u>.</u> 67	4 1.75	1.50	37 <u>.</u> 50
	7	0.00	0.50	0.00	1 <u>.</u> 75	0.00	1.50	0.00
	8	37.50	1.33	49.88	1.83	68.63	1.50	56 <u>.</u> 25
	9	6.25	8.02	50.13	1.83	1 1 .4 4	1.50	9.38
	10	248.13	18.28	4,535.82	1.75	434.23	1.50	372.20
	1 1	2,275.50	12.10	27,533.55	3.80	8,646.90	1.50	3,413 <u>.</u> 25
	12	40.25	23.95	963.99	3.55	142.89	1.50	60 <u>.</u> 38
	13	40.25	0.79	31.80	3 <u>.</u> 55	142.89	1.50	60 <u>.</u> 38
	14-1	1 7,81	4.75	84.60	7.03	125.20	1,50	26.72
	14-2	1 7.81	4.75	84.60	7.03	125.20	1.50	26.72
	15-1	1 7. 8 1	5.95	105.97	7.03	125.20	1.50	26.72
	15-2	1 7.81	5.95	105.97	7.03	125.20	1.50	26.72
	16	21,25	5.35	113.69	8.70	184.88	1,50	31 <u>.</u> 88
	16'	0.00	4.50	0.00	8.45	0.00	1.50	0.00
	16"	18.75	4.25	79.69	8.70	163 .13	1.50	28.13
	17	75.00	3.00	225.00	5.35	401.25	1.50	112 <u>.</u> 50
	17'	75,00	22.20	1,665.00	5.35	401.25	1,50	1 12. 50
	18	-25.00	3.00	-75.00	5.35	-133.75	1.50	-37.50
	18'	-25.00	22.20	-555.00	5.35	-133.75	1.50	-37.50
	19	-2.88	3.00	-8.64	3.80	-10.94	1.50	-4 <u>.</u> 32
	19'	-3,28	22.20	-72.82	3 .5 5	- 1 1.64	1,50	-4 <u>.</u> 92
	20	-1.20	3.00	-3.60	1.85	-2.22	1.50	-1.80
	21	-5.04	5.35	-26.96	3.80	-19.15	1.50	7.56
	22	-0,16	4.84	-0.77	1.94	0.31	1,50	-0 <u>.</u> 24
	23	-1.20	22.20	-26.64	1.35	-1.62	1.50	-1.80
	Add	18.75	5.45	102.19	8.70	163.13	1.50	28.13
	Σ	6,207.87		80,549.22		13,624,11		9,311.88

Balance center of middle regulator

	Middle		Mid. 1		Mid. 2
	regulator	(slide distance)	regulator	(slide distance)	regulator
$X = \Sigma W \cdot x / \Sigma W = $	30,549.22 6,207.87 = 12.98(m)	+0.00(m)	=12.98(m)	+0.00(m)	=12.98(m)
Y=ΣW·y∕ΣW=1	13,624.11 6,207.87 = 2.19(m)	+0.00(m)	=2.19(m)	+0.00(m)	=2.19(m)
Z=ΣW·z∕ΣW=	$\frac{9,311.88}{6,207.87} = 1.50(m)$	+2.00(m)	=3,50(m)	+0.00(m)	= 1.50(m)
			Mid. 3		
		(slide distance)	regulator		
		+0.00(m)	=12.98(m)		
		+0.00(m)	=2.19(m)		
		+0.00(m)	=1.50(m)		

4.Case of the examination

	CASE 1	:	Regular /	Longitudinal	direction/	H.W.L.	/ Full OP】	
••			- Nogular /	Longituumu				

Lood	V	х	V•x	Н	у	H∙y
Load	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	16,970,75	13.65	231 ,650,74			
Gate leaf	18.00	4.85	87.30			
Hoist	106.00	4.85	514.10			
Bridge	2,515.22	13.45	33,829.71			
Weight of water	3,887.52	14 1 1	54,852 . 91			
Up-lift pressure	-10,067.40	14.10	-1 41,950 . 34			
Wind pre.(Reg. body)				40.37	7.42	299.55
Wind pre.(Gate. body)				19.08	6.33	120.78
Wind pre.(Bridge.body)				37.44	6.90	258.34
Wind pre (Walk bridge, body)				7.20	5.35	38.52
Tota	13,430,09		178,984,42	104.09		717.19

Note : The water pressure should be caneled out for the symmetrical force.

Fc. for sliding:	µ=0.60				
Safe ratio:	Fs=ΣV·μ/ΣH=	77.41	\geq	Fsa=1.5	⇒OK
b)Examination for the fall down					
Foundation width : B=	28.20 (m)				
Foundation length : L=	7 .00 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	13.38 (m)			
Eccentric distance :	e=X-B/2=	-0.72 (m)	\leq	B/6=4.70(m)	⇒OK
				(Checked	by absolute value)
c)Examination for the bearing o	n foundation (kN/m2)			·	
· •	Q1=ΣV/B/L(1+6 e/B)=	5 7 .61			
	Q2=ΣV/B/L(1-6 e/B)=	78.46			

Lood	V	х	V•x	Н	У	Н•у
Lauq	(kN)	(m)	(kN ∙ m)	(kN)	(m)	(kN ∙m)
Reg. body	16,970.75	13.65	231,650,74			
Gate leaf	18.00	4 <u>.</u> 85	87 <u>.</u> 30			
Hoist	48.00	4.85	232.80			
Bridge	2,515.22	13.45	33,829,71			
Weight of water	516.72	2.07	1,069 <u>.</u> 61			
Up-lift pressure	-5,640,71	12.08	-68,139,78			
Sedimentation	75.20	1.87	140.62			
Wind pre.(Reg.body)				36.02	7.02	252.86
Wind pre.(Gate. body)				_	—	—
Wind pre (Bridge body)				37.44	6.90	258.34
Water pre (up-st.)				756.80	1.34	1,014.11
Water pre.(dw-st.)				-78.75	0.50	-39.38
Earth pre. (sed.)				5.12	1.98	10.14
Total	14,5 03.18		198,871.00	756.63		1,496.07
Examination for the slide for Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV · μ/ΣH=		11 50	2	Fsa=1.5	⇒0K
Examination for the fall dow Foundation width : B=	n 28.20 (m) 7 20 (m)		11.50	=	130-1.5	

[CASE 2 : Regular / Longitudinal direction/ Max, water level / Full CL]

Fc. for sliding :	μ=0.60					
Safe ratio:	Fs=ΣV·µ/ΣH=	11.50	\geq	Fsa=1.5	⇒OK	
b)Examination for the fall down						
Foundation width : B=	28.20 (m)					
Foundation length : L=	7.00 (m)					
Act point of the total force :	X=(ΣV • x+ΣH • y)/ΣV=	13.82 (m)				
Eccentric distance :	e=X-B/2=	-0.28 (m)	\leq	B/6=4.70(m)	⇒OK	
				(Checked	d by absolute valu	Je)
c)Examination for the bearing o	n foundation (kN/m2)					
-	Q1=ΣV/B/L(1+6 · e/B)=	69.09				
	$Q2=\Sigma V/B/L(1-6 \cdot e/B)=$	77.85				
	. ,					

-						
Lood	V	Х	V - x	Н	у	Н•у
Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	16,970.75	13.65	231,650,74			
Gate leaf	18.00	4.85	87 <u>.</u> 30			
Hoist	48.00	4.85	232.80			
Bridge	2,515.22	14.10	35,464.60			
Weight of water	_	_	_			
Up-lift pressure	-	-	—			
Wind pre.(Reg. body)				55.85	5.4 4	303.82
Wind pre.(Gate. body)				19.08	6.33	120.78
Wind pre (Bridge body)				37.44	6.90	258.34
Water pre (up-st.)				—	-	—
Water pre.(dw-st.)				_	—	—
Earth pre. (sed.)				_	—	—
Total	19,551.97		267,435.44	112.37		68 2. 94
amination for the slide for	ce					
Fc, for sliding:	μ=0 . 60					
Safe ratio:	Fs=ΣV·µ/ΣH=		104.40	≧	Fs a=1. 5	⇒OK
amination for the fall down	n					
Foundation width : B=	28.20 (m)					
Foundation length : L=	7.00 (m)					
point of the total force :	$X = (\Sigma V \cdot x + \Sigma H \cdot$	·y)/ΣV=	13.71 (m)			

[CASE 3 : Regular / Longitudina] direction/ Max. water [eve] / Full OP]

a)Exa

Fc. for sliding :	μ=0 . 60				
Safe ratio:	Fs=ΣV·μ/ΣH=	104.40	\geq	Fs a=1. 5	⇒OK
b)Examination for the fall down					
Foundation width : B=	28.20 (m)				
Foundation length : L=	7.00 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	13.71 (m)			
Eccentric distance :	e =X - B/2=	-0.39 (m)	≦	B/6=4.70(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing or	n foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	90 <u>.</u> 83			
	Q2=ΣV/B/L(1-6 · e/B)=	107.27			

	Lood	V	z	V-z	Н	у	H•y
	Laou	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	16,970.75	3.50	59,397.63			
	Gate leaf	18.00	3,50	63.00			
	Hoist	48.00	3.50	168.00			
	Bridge	2,515.22	3.50	8,803.27			
	Weight of water	3,385.71	3.50	11,849.99			
	Up-lift pressure	-9 ,179 1 0	3,50	-32,126,85			
	Sedimentation	_	-	_			
	Wind pre.(Reg. body)				328.56	5.44	1,787 <u>.</u> 37
	Wind pre.(Gate. body)						
	Wind pre.(Bridge.body)						
	Water pre.(canal side)						
	Water pre.(embk. side)				_	—	—
	Earth pre. (Embk.)	_	_	_			
	Earth pre. (sed.)				_	_	_
	Total	13,758.58		48,155.04	328.56		1,787 <u>.</u> 37
a)Exan	nination for the slide fo Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV · μ/ΣΗ:	=	25.13	≧	Fsa=1.5	⇒ОК
b)Exan	nination for the fall dow	lμ					
	Foundation width : B=	7.00 (m)					
F	oundation length : L=	28.20 (m)					
Act po	pint of the total force :	X=(ΣV∙x+ΣΗ	•y)/ΣV=	3.63 (m)			
	Eccentric distance :	e=X-B/2=		0.13 (m)	\leq	B/6=1.17(m)	⇒OK
						(Checked b	y absolute value)
c)Exan	nination for the bearing	on foundation (k)	\ /m2)				

[CASE 4 : Regular / Lateral direction / Max, water level / Full OP]

ccentric distance :	e=X-B/2=	0.13 (m)	≦	B/6=1.17((Che
ation for the bearing	on foundation (kN/m2)			V =
-	Q1=ΣV/B/L(1+6 • e/B)=	77.47		
	Q2=ΣV/B/L(1-6 · e/B)=	61.93		

LUAS	E 5 : Regular / Lateral	direction/ Max. w					
	Laod	V	Х	٧·٧	Н	У	Н∙у
	Lauu	(kN)	(m)	(kN ∙ m)	(kN)	(m)	(kN ∙m)
	Reg. body	16,970.75	3.50	59,397.63			
	Gate leaf	18.00	3.50	63.00			
	Hoist	48.00	3.50	168.00			
	Bridge	2,515.22	3.50	8,803.27			
	Weight of water	516.72	3.50	1,808.52			
	Up-lift pressure	-5,640,71	3.50	-19,7 42,4 9			
	Sedimentation	75.20	3.50	263.20			
	Wind pre.(Reg. body)				858.16	5.25	4,505.34
	Wind pre.(Gate. body)				—	—	—
	Wind pre (Bridge body)				—	—	—
	Water pre.(canal side)				_	—	—
	Water pre (embk. side)				_	—	—
	Earth pre. (Embk.)	—	—	_			
	Earth pre. (sed.)				_	—	—
	Total	14,503.18		50,761.13	858.16		4,505.34
a)Exan	nination for the slide for	ce					
	Fc. for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV・µ/ΣΗ=		10.14	\geq	Fsa=1.5	⇒OK
b)Exan	nination for the fall down	n					
.	Foundation width : B=	7.00 (m)					
F	oundation length : L=	28.20 (m)					
Act po	bint of the total force :	X=(ΣV · x+ΣΗ ·	·y)/ΣV=	3.81 (m)			
	Eccentric distance :	e=X-B/2=		0.31 (m)	\leq	B/6=1.17(m)	⇒OK
						(Checked b	y absolute value)
c)Exan	nination for the bearing	on foundation (kN	/m2)				
		Q1=ΣV/B/L(1+	-6 - e/B)=	92.99			

[CASE 5 : Regular / Lateral direction/ Max, water level / Full CL]

Q2=ΣV/B/L(1-6 · e/B)=

	Lood	V	Х	V-x	Н	у	H•y
	Laud	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
	Reg. body	16,970.75	3 <u>.</u> 50	59,397.63			
	Gate leaf	18.00	3 <u>.</u> 50	63.00			
	Hoist	48.00	3.50	168.00			
	Bridge	2,515.22	3.50	8,803.27			
	Weight of water	—	_	_			
	Up-lift pressure	—	-	—			
	Sedimentation	—	_	_			
	Wind pre.(Reg. body)				421.82	3.83	1,615.57
	Wind pre (Gate, body)				—	—	—
	Wind pre (Bridge body)				—	—	_
	Wind pre.(Op. deck body)				_	—	—
	Water pre.(canal side)				_	—	—
	Water pre.(embk. side)				_	_	_
	Earth pre. (Embk.)				_	—	—
	Sum	19,551.97		68,431.90	421.82		1,615.57
a)Exan	nination for the slide fo Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV • μ/ΣΗ=	=	27 <u>.</u> 81	≧	Fsa=1.5	⇒OK
b)Exan	nination for the fall dow	'n					
	Foundation width : B=	7 .00 (m)					
F	oundation length : L=	28 <u>.</u> 20 (m)					
Act po	pint of the total force :	X=(ΣV · x+ΣΗ	·y)/ΣV=	3.58 (m)			
	Eccentric distance :	e=X-B/2=		0.08 (m)	\leq	B/6=1.17(m)	⇒OK
						(Checked b	y absolute value)

92.26

[CASE 6 : Regular / Lateral direction / No water / Full OP]

c)Examination for the bearing on foundation (kN/m2)					
Q1=ΣV/B/L(1+6 · e/B)=					
Q2=ΣV/B/L(1-6 · e/B)=					

-							
	Lood	V	Х	V-x	Н	у	Н•у
	Lauu	(kN)	(m)	(kN ∙ m)	(kN)	(m)	(kN ∙ m)
	Reg. body	16,970.75	13.65	231,650.74	1,357.66	2.31	3,136.19
	Gate leaf	18.00	4.85	87.30	1 .4 4	3.33	4.79
	Hoist	48.00	4.85	232.80	3.8 4	8.95	34.37
	Bridge	1,018.22	13.45	13,695.06	81.46	5.60	456.18
	Weight of water	516.72	2.07	1,069.61	_	_	—
	Up-lift pressure	-5,640.71	12,08	-68,139.78	_	_	—
	Sedimentation	75.20	1.87	140.62	_	_	—
	Wind pre.(Reg. body)				_	_	—
	Wind pre (Gate, body)				—	—	—
	Wind pre (Bridge body)				_	_	—
	Wind pre.(Op.deck body)				_	_	—
	Water pre (up-st.)				756.80	1.34	1,014.11
	Water pre.(dw-st.)				-78.75	0.50	-39.38
	Seism Water pre (up-st.)				70.63	1.86	131.39
	Earth pre. (sed.)				5.12	1.98	10.14
	Tota	13,006.18		178,736.35	2,198.20		4,747.79
a)Exam	ination for the slide for	rce					
	Fc. for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV・μ/ΣΗ=	=	3.55	≧	Fsa=1.15	⇒OK
b)Exam	ination for the fall dow	'n					
I	Foundation width : B=	28.20 (m)					
F	oundation length : L=	7.00 (m)					
Act po	int of the total force :	Χ=(ΣV · x+ΣΗ	•y)/ΣV=	14 .11 (m)			
	Eccentric distance :	e=X-B/2=		0.01 (m)	≦	B/3=9.40(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation (kN	l /m2)				
		Q1=ΣV/B/L(1·	+6•e/B)=	66.03			

[CASE 7 : Seism / Longitudinal direction / Max water level / Full CL]

 $Q2=\Sigma V/B/L(1-6 \cdot e/B)=$

	boel	V	Х	V-x	Н	У	H•y
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
	Reg. body	16,970.75	13.65	231,650,74	1,357.66	2.31	3,136.19
	Gate leaf	18.00	4.85	87 <u>.</u> 30	1.44	7.65	11.02
	Hoist	48.00	4.85	232.80	3.8 4	8.95	34.37
	Bridge	1,018.22	14 .10	14,356.90	81.46	5.60	456.18
	Weight of water	_	_	—	_	_	_
	Up-lift pressure	-	-	_	_	_	_
	Wind pre.(Reg. body)				_	_	_
	Wind pre.(Gate.body)				_		_
	Wind pre (Bridge, body)				_	_	_
	Wind pre.(Op.deck.body)				—	—	—
	Water pre (up-st.)				_	_	—
	Water pre (dw-st.)				_		—
	Total	18,054.97		246,327.74	1,444.40		3,637.76
	Fc. for sliding:	μ=0 .60					
	Safe ratio:	Fs=ΣV·µ/ΣH	=	7.50	≧	Fsa=1.15	⇒OK
a)Exam	ination for the slide for	rce					
I F	Foundation width : B= oundation length : L=	28.20 (m) 7.00 (m)					
b)Exam	int of the total force :	X=(ΣV · x+ΣH	•y)/ΣV=	13.8 4 (m)			
	Eccentric distance :	e =X - B/2=		-0.26 (m)	≦	B/3=9.40(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation (k)	l /m2)				
		Q1=ΣV/B/L(1	+6•e/B)=	86 <u>.</u> 40			
		Q2=ΣV/B/L(1	-6 • e/B)=	96.52			

[CASE	8:	Seism / Longit	udinal direction	/ N	owater/Fu	OP】

				1.1		
Land	V	z	٧·z	Н	У	Н•у
Luou	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	16,970,75	3.50	59,397 <u>.</u> 63	1,357.66	2.31	3,13 6.19
Gate leaf	18.00	3,50	63.00	1.44	7.65	11 <u>.</u> 02
Hoist	48.00	3.50	168.00	3.8 4	8.95	34.37
Bridge	1,018.22	3.50	3,563.77	81.46	5.60	456.18
Weight of water	3,385.71	3.50	11,849,99	_	—	—
Up-lift pressure	-9 ,179, 1 0	3.50	-32,126,85	_	—	—
Sedimentation	-	—	-	_	—	—
Wind pre (Reg. body)				_	—	—
Wind pre (Gate, body)					—	—
Wind pre (Bridge body)				_	—	_
Wind pre.(Op. deck body)					—	—
Seism water pre. (Abul)				130.58	2.76	360.40
Seism water pre. (Mid.)				450.90	2.85	1,285.07
Earth pre. (sed.)				_	—	—
Total	12,261.58		42,915.54	2,025.88		5,283.23
nination for the slide for Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV・μ/ΣΗ=		3.63	≧	Fsa=1.15	⇒OK
nination for the fall dow	'n					
Foundation width : B=	7 .00 (m)					
Foundation length : L=	28.20 (m)					

【CASE 9 : Seism / Lateral direction / Max. water level / Full OP】

a)Examination for the slide force					
Fc. for sliding:	µ=0.60				
Safe ratio:	$F_S = \Sigma V \cdot \mu / \Sigma H =$	3.63	≧	Fsa=1.15	⇒OK
b)Examination for the fall down					
Foundation width : B=	7 .00 (m)				
Foundation length : L=	28.20 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	3 <u>.</u> 93 (m)			
Eccentric distance :	e=X-B/2=	0.43 (m)	≦	B/3=2.33(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing on	foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	85.01			
	Q2=ΣV/B/L(1-6 · e/B)=	39.22			

Lood	V	Х	٧٠x	Н	У	Н•у
Laoo	(kN)	(m)	(kN ∙ m)	(kN)	(m)	(kN •m)
Reg. body	16,970.75	3.50	59,397.63	1,357.66	2.31	3,136.19
Gate leaf	18.00	3.50	63.00	1.44	3.33	4.80
Hoist	48.00	3.50	168.00	3.84	8.95	34.37
Bridge	1,018.22	3.50	3,563.77	81.46	5.60	456.18
Weight of water	516.72	3.50	1,808.52	_	—	—
Up-lift pressure	-5,640,71	3.50	-19,7 42,49	_	-	—
Sedimentation	75.20	3.50	263.20	_	-	—
Wind pre.(Reg. body)					_	—
Wind pre.(Gate, body)					—	—
Wind pre (Bridge body)				-	-	_
Wind pre.(Op. deck body)					—	—
Seism water pre. (Abut)				22.46	2.76	61.99
Seism water pre. (Mid.)				23.42	2.85	66.75
Earth pre. (sed.)					_	
Total	13,006.18		45,521,63	1,490.28		3,760.28
xamination for the slide force	e .					
Fc. for sliding:	µ=0.60					
Safe ratio:	Fs=ΣV·µ/ΣΗ=		5.24	\geq	Fsa=1.15	⇒OK
amination for the fall down						
Foundation width : B=	7.00 (m)					

[CASE 10 : Seism / Lateral direction / Max.water level / Full CL]

r c. lor sinding .	μ=0.00					
Safe ratio:	Fs=ΣV · μ/ΣΗ=	5.24	\geq	Fsa=1.15	⇒OK	
b)Examination for the fall down						
Foundation width : B=	7 .00 (m)					
Foundation length : L=	28.20 (m)					
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	3.79 (m)				
Eccentric distance :	e=X-B/2=	0.29 (m)	≦	B/3=2.33(m)	⇒OK	
				(Checked	l by absolute valu	ıe)
c)Examination for the bearing o	n foundation					
	Q1=ΣV/B/L(1+6 • e/B)=	82.27				
	Q2=ΣV/B/L(1-6 · e/B)=	49.51				

		V	Y	V	Н	V	H.v
	Laod	(kN)	(m)	(kN ⋅ m)	(kN)	y (m)	(kN •m)
	Reg. body	16,970,75	3.50	59.397.63	1.357.66	2.31	3,136,19
	Gate leaf	18,00	3,50	63.00	1.44	7.65	11.02
	Hoist	48.00	3.50	168.00	3.84	8.95	34.37
	Bridge	1,018.22	3.50	3,563.77	81.46	5.60	456.18
	Weight of water	—	_	_	_		—
	Up-lift pressure	—	_	—	_	_	—
	Sedimentation	—	_	—	_	_	—
	Wind pre.(Reg. body)						
	Wind pre (Gate, body)						
	Wind pre (Bridge body)				_	_	
	Wind pre.(Op. deck body)				_	_	—
	Seism water pre. (Abut)				_		
	Seism water pre. (Mid.)				—	_	_
	Ear th pre . (sed.)				—	—	—
	Tota	18,054.97		63 ,192 40	1,444.40		3,637.76
a)Exam	ination for the slide for	rce					
	Fc. for sliding :	μ=0.60					
	Safe ratio:	Fs=ΣV • μ/ΣH=	=	7.50	≧	Fsa=1.15	⇒OK
b)Exam	nination for the fall dow	/ĥ					
, I	Foundation width : B=	7 .00 (m)					
F	oundation length : L=	28.20 (m)					
Act po	oint of the total force :	X=(ΣV · x+ΣH	•y)/ΣV=	3.70 (m)			
•	Eccentric distance :	e=X-B/2=		0.20 (m)	\leq	B/3=2.33(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation					

【CASE 11 : Seism / Lateral direction / No water / Full OP】

Q1=ΣV/B/L(1+6 • e/B)= 107.14 Q2=ΣV/B/L(1-6 • e/B)= 75.78

Land	V	Х	V•x	Н	у	Н•у
Load	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	16,970.75	13.65	231,650.74	1,357.66	2.31	3,136.19
Gate leaf	18,00	4,85	87.30	1.44	7.65	11.02
Hoist	106.00	4.85	514.10	8.48	8.95	75.90
Bridge	1,018.22	13.45	13,695.06	81.46	5.60	456.18
Weight of water	3,385.71	14 .16	47,941.65	_		
Up-lift pressure	-9 ,179 1 0	14 .10	- 12 9,4 25, 31	—	_	—
Wind pre (Reg. body)				—	_	—
Wind pre (Gate. body)				—	_	
Wind pre (Bridge, body)				—		_
Wind pre.(Walk bridge.body)				—	_	_
Seism Water pre (up-st.)				22.17	1.92	42.57
Tota	12,319,58		164,463,54	1,471.21		3,721.86

[CASE 12 : Seism / Longitudinal direction/ Max.water level / Full OP]

Note: The water pressure should be caneled out for the symmetrical force.

Fc. for sliding:	µ=0.60				
Safe ratio:	Fs=ΣV·µ/ΣH=	5.02	\geq	Fsa=1.15	⇒OK
b)Examination for the fall down					
Foundation width : B=	28 20 (m)				
Foundation length : L =	7 00 /m				
Foundation length . L-	7.00 (III)				
Act point of the total force :	X=(ΣV · x+ΣΗ · y)/ΣV=	13 <u>.</u> 65 (m)			
Eccentric distance :	e=X-B/2=	0.4 5 (m)	\leq	B/3=9.40(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing o	n foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 · e/B)=	56.43			
	Q2=ΣV/B/L(1-6 e/B)=	68.38			

Lood	V	X	V-x	Н	у	Н∙у
Laod Reg, body Gate leaf for 3vents Hoist for 3vents Stoplog Gate of U.S. Stoplog Gate of D.S. Bridge Weight of water at stoplog Up-lift pressure Sedimentation Sedimentation at stoplog Wind pre.(Reg. body) Wind pre.(Bridge. body) Wind pre.(Bridge. body) Water pre.(up-st.) Water pre.(dw-st.)	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	16,970,75	13 <u>.</u> 65	231,650,74			
Gate leaf for 3vents	9.00	4.85	43.65			
Hoist for 3vents	24.00	4.85	1 16 40			
Stoplog Gate of U.S.	9.00	2.50	22.50			
Stoplog Gate of D.S.	9.00	22.20	199.80			
Bridge	2,515.22	13.45	33,829.71			
Weight of water	2,784.40	13.72	38,201.97			
Weight of water at stoplog	-1,267.65	1.25	-1,584.56			
Up-lift pressure	-8,448.72	13.82	-1 16,761.31			
Sedimentation	75.20	1.87	1 40 .62			
Sedimentation at stoplog	-23.50	1.25	-29.38			
Wind pre (Reg. body)				36.02	7.0 2	252.86
Wind pre.(Gate.body)						
Wind pre.(Bridge.body)				37 <u>.</u> 44	6.90	258.34
Water pre (up-st.)				756.80	1.34	1,014 .11
Water pre (dw-st.)				-285.00	1.20	-342.00
Earth pre. (sed.)				5.12	1.98	10.14
Total	12,656 70		185,830 14	550.38		1,193.45

[CASE 13 : Regular / Longitudinal direction/ Max. water level / Maintenace case]

Fc. for sliding :	μ=0.60				
Safe ratio:	$F_S = \Sigma V \cdot \mu / \Sigma H =$	13.80	≧	Fsa=1.5	⇒OK
b)Examination for the fall down					
Foundation width : B=	28.20 (m)				
Foundation length : L=	7.00 (m)				
Act point of the total force :	Χ=(ΣV · x+ΣΗ · y)/ΣV=	1 4.78 (m)			
Eccentric distance :	e=X-B/2=	0.68 (m)	\leq	B/6=4.70(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing on	foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	73.39			
	Q2=ΣV/B/L(1-6 · e/B)=	54.84			

A-4-3. Badraman Regulator in Diroutiah canal

		n	'n	Vertical force	Resistant moment	Horizontal force	Torque moment	For f	he sliding	For the	fa l down	^{^cte1)} F	or the ground re	action		
Pier	ase	ectio	nditic	V	V∙x	н	Н∙у	Sa	afe ratio	Eccentricity	B/6	Ground reaction	Ground reaction	Bearing	agbr	Remarks
	0	Dir	CO	(kN)	(kN∙m)	(KN)	(kN∙m)	Required ratio	Desing	e (m)	(Allowable)	Q1 (kN/m2)	Q2 (kN/m2)	(kN/m2)	۱Ļ	
	1	Long,	Regular	17,457 <u>.</u> 71	226,559.63	143.26	947.66	1.50	≦ 73.12	-0.82	≦ 4 <u>.</u> 62	51,83	74 <u>.</u> 22		OK	
a	2	Long.	Regular	18,666.57	249,465.22	944.36	1,737.70	1.50	≦ 11.86	-0.39	≦ 4.62	61.70	73.08		OK	
can	3	Long.	Regular	25,481.45	339,837.04	152.98	901.14	1.50	≦ 99.94	-0.48	≦ 4.62	82.43	101.56		ОК	
tiah	4	Latera l ,	Regular	17,904.87	89,524.35	428.96	2,204.85	1.50	≦ 25.04	0.12	≦ 1.67	69.29	59,98		OK	
irou	5	Lateral.	Regular	18,666.57	93,332.85	897.86	4,471.34	1.50	≦ 12.47	0.24	≦ 1.67	77.09	57.68		OK	
in D	6	Lateral,	Regular	25,481 <u>.</u> 45	127,407.25	763,28	2,785 <u>.</u> 97	1.50	≦ 20,03	0 <u>.</u> 1 1	≦ 1 <u>.</u> 67	98.06	85 <u>.</u> 92		ОK	
itor	7	Long.	Seism	17,021 <u>.</u> 07	227,333.25	2,835.85	5,811.79	1 .1 5	≦ 3,60	-0 <u>.</u> 15	≦ 9 <u>.</u> 23	59.45	63 <u>.</u> 44		OK	
gula	8	Long.	Seism	23,835.95	317,046.87	1,906.87	4,620.87	1 .1 5	≦ 7.50	-0.35	≦ 9 <u>.</u> 23	79 <u>.</u> 53	92,57		OK	
l Re	9	Lateral.	Seism	16,259.37	81,296.85	2,799.11	7,039.36	1 .1 5	≦ 3.49	0.43	≦ 3.33	73.84	43.55		OK	
mar	10	Lateral,	Seism	17,021 <u>.</u> 07	85,105.35	1,958.83	4,752.73	1 .1 5	≦ 5.21	0,28	≦ 3.33	71,77	51 <u>.</u> 12		OK	
adra	11	Lateral.	Seism	23,835.95	119,179.75	1,906.87	4,620.87	1 .1 5	≦ 7.50	0.19	≦ 3.33	95.86	76.24		OK	
ĝ	12	Long.	Seism	16, 322. 37	21 1 ,761.19	1,933.29	4,704.88	1 .1 5	≦ 5.07	-0.59	≦ 9.23	51.39	66.46		ОК	
	13	Long.	Regular	17,020.59	235,905.48	6 01 .16	1,265.34	1.50	≦ 16.99	0.08	≦ 4.62	62.51	60.38		OK	

Summary table of result on the stability examination for Badraman Regulator in Diroutiah canal

Badraman Regulator in Diroutiah canal / Stability examination 1.Design condition

-													
(1)Dimen	sion of fo	o <mark>rm</mark> for ab	utment P	ier (u <mark>n</mark> it	:e : m]								
A(1)=	27.70	A(2)=	0.00	A(3)=	1.00	A(4)=	1.00	A(5)=	5.35	A(6)=	1.00	A(7)=	19.35
A(8)=	0.50	A(9)=	22 <u>.</u> 70	A(10)=	4.50	A(11)=	3 .5 0	A(12)=	0.50	A(13)=	0.70	A(14)=	0.50
A(15)=	17.50	A(16)=	4 <u>.</u> 00	A(17)=	1.70	A(18)=	22.50	A(19)=	0.85	A(20)=	0.85	A(21)=	1,00
A(22)=	1.00	A(23)=	1.00	A(24)=	0.19	A(25)=	0.32	A(26)=	0.20	A(27)=	8.25	A(28)=	14.25
A(29)=	1.00	A(30)=	1 <u>.00</u>	A(31)=	1 .0 0	A(32)=	0.50	A(33)=	0.00	A(34)=	0.50	A(35)=	0.00
B(1)=	1.00	B(2)=	1 <u>.</u> 00	B(3)=	2.00	B(4)=	1.00	B(5)=	0.13	B(6)=	0.87	B(7)=	0,20
B(8)=	0.80	B(9)=	0.20	B(10)=	0.80	B(11)=	1.00	B(12)=	0.00	B(13)=	0.00		
C(1)=	1.50	C(2)=	3 <u>.</u> 80	C(3)=	3.35	C(4)=	1.50	C(5)=	0.50	C(6)=	3.30	C(7)=	2.85
C(8)=	0.50	C(9)=	0.50	C(10)=	0.13	C(11)=	0.50	C(12)=	0.80	C(13)=	0.30	C(14)=	0.00
C(15)=	0.50	C(16)=	0.50	C(17)=	0.40								

(2)Dimens	sion of fo	o <mark>rm</mark> for Mi	ddle Pier	[unite:m]]								
D(1)=	27 .7 0	D(2)=	0.50	D(3)=	0.50	D(4)=	1.00	D(5)=	5.35	D(6)=	1.00	D(7)=	19.35
D(8)=	0.50	D(9)=	22 <u>.</u> 20	D(10)=	0.50	D(11)=	3.00	D(12)=	0.50	D(13)=	0.70	D(14)=	0.50
D(15)=	17.50	D(16)=	3.50	D(17)=	1,70	D(18)=	18 .0 0	D(19)=	0.85	D(20)=	0.85	D(21)=	1.00
D(22)=	1.00	D(23)=	1.00	D(24)=	0.19	D(25)=	0.32	D(26)=	0.20	D(27)=	8.25	D(28)=	9.75
D(29)=	1.00	D(30)=	1.00	D(31)=	1 .0 0	D(32)=	0.50	D(33)=	0.00	D(34)=	0.50	D(35)=	4.00
D(36)=	0.00												
E(1)=	1.00	E(2)=	1 <u>.</u> 00	E(3)=	1 .0 0	E(4)=	3.00	E(5)=	1.00	E(6)=	0.13	E(7)=	0.74
E(8)=	0.13	E (9)=	0.20	E(10)=	0.60	E(11)=	0.20	E(12)=	0.50	E(13)=	0.00	E(14)=	0.50
E(15)=	0.20	E(16)=	0.60	E (17)=	0.20	E(18)=	0.00	E(19)=	0.00				
F (1)=	1.50	F(2)=	3.80	F(3)=	3.35	F(4)=	1.50	F(5)=	0.50	F(6)=	3.30	F(7)=	2.85
F(8)=	0.50	F (9)=	0.50	F (10)=	0 <u>.</u> 13	F(11)=	0.50	F(12)=	0.80	F(13)=	0.30	F(14)=	0.00
F(15)=	0.50	F (16)=	0.50	F(17)=	0.30								

(3)Number and slide distance of center for each pier [unite:m]

	Number of pier : abutment			2 piers			ac		х	у	z
		middle	2 pie	ers				or not(n)	(m)	(m)	(m)
	Number of vent:		3			Right abutm	nent pie	у	0.00	0.00	0.00
						Left abutme	ent pier	у	0.00	0.00	10.00
	Entire regulator width :		10.00 m			Middle pier 1		у	0.00	0.00	2.00
	Entire regulator length:		2 7.70 m			Middle pier 2		y	0.00	0.00	5.00
						Midd l e pier	3	n	0.00	0.00	0.00
(4) Main	level of foundation										
Apron bottom : EL42.3		EL42.2	0m								
	Gate bottom:	EL44 <u>.</u> 2	0m								
(5)Unite	weight [unit : kl	N/m ³]									
	RC :	25.00	S	ioil (Wet)	:	18.00	Soil	(Saturat	ion] :	20.00	
	Concrete :	23.00	Soil	(in water)	:	10.00		1	Water :	10.00	

(6)Seismic co-efficient

KH= 0.08

KH = 0.09 (submerged condition)
(7)Case of examination

Case	Direction	Water Level			Situation of gate	Condi.	Additional	(m)
Canol	Long	U.S.	WL47.00m	HWL	Onen arte	Pogular		
Caser	Long.	D.S.	WL47.00m	HWL	<u>Open gale</u>	Regular	_	
6.0002	Long	U.S.	WL46.55m	Max.WL	Class date	Poqular	sedimentation	0.3
Casez	Long.	D.S.	WL43.70m	Low	Close gale	Negulai		
Cano3	Long	U.S.	—	No WL	Open gate	Rogular		
0 4360	Long.	D.S.	_	No WL	<u>Open gale</u>	Кеуша		
CaseA	lateral	U.S.	WL46.55m	Max.WL	Open date	Regular	_	
04364	Lateral.	D.S.	WL46.55m	Max.WL	<u>Open gate</u>	Regular		
C 28.05	∣ atoral	U.S.	WL46.55m	Max.WL	Close date	Rogular	sedimentation	0.3
0 4360	Lateral.	D.S.	WL43.70m	Low	Close gale	1 Cegular		
Casef	lateral	U.S.	_	No WL	Open date	Regular		
04360			—	No WL	<u>Open gate</u>	Regular		
Case7	Long	U.S.	WL46 .5 5m	Max.WL	Max.WL Close gate	Seism of	sedimentation	0.3
04307	Long.	D.S.	WL43.70m	Low	Oldse gale	case2		
Case8	Long	U.S.	_	No WL	Open gate	Seism of	_	_
04300	Long.	D <u>.</u> S.	—	No WL	<u>open gate</u>	case3		
Case9	lateral	U.S.	WL46 .5 5m	Max.WL	Open date	Seism of	_	
04300	Latoral.	D.S.	WL46.55m	Max.WL		case4		
Case10	Lateral	U.S.	WL46.55m	Max.WL	Close date	Seism of	sedimentation	0.3
CLISC TO	Latoral.	D.S.	WL43.70m	Low	Olose gale	case5		
Case11	lateral	U.S.	—	No WL	Open date	Seism of	_	
Caserr	Lateral.	D.S.		No WL	<u>open gate</u>	case6		
Case12	Long	U.S.	WL46.55m	Max.WL	Open date	Seism of		-
Case 12	Long.	D.S.	WL46.55m	Max.WL		case6		
Case13	Long	U.S.	WL46.55m	Max.WL	Maintenace cate	Regular		0.3
Case13	Long.	D.S.	WL45.90m	Low	Mantenace yale	ricyulai		

(8)Coefficient of earth pressure

nternal friction :	φ= 30°			
	Regular case	Seismic case	Seismic (submerged)	Sedimentation
Friction for wall	0°	0°	0°	_
Active EP coe.	0.333	0.383	0.39	0.5
Passive EP coe.	3.000	2.858	2,84	—

(9)Weight of the gate facility

tem of de	tem of design load			Remarks			
Gate leaf	(kN/vent)	8,00	Upper 8.00 Lower 0			0.00	
Hiost (Emargency)	(kN/vent)	45.00	including the hoist weight (300%)				
Hiost	(kN/vent)	24.00	including the groove weight				
Actual vent wide	(m)	2.00					
Height of gate	leight of gate (m) 2.35						
Stop Log gate (kN/vent) 8.00							

(10)Weight of the bridge

Item of design load		Regular case	Seismic case	
Vertical load (body)	(kN/vent)	509.05	509.05	
Vertical load (body +live load)	(kN/vent)	1057.55	_	
Horizontal force by wind	(kN/vent)	18.72	—	
Counter force for up-to-down st.	(kN)	_	40.72	
Counter force for right angle	(kN)	_	40.72	

Height of the handrail= 1.10 (m) Thick of the bridge= 1.50 (m)

(11)Wind press	ure
----------------	-----

w= 3.0 (kN/m2)

2.Caluculation of the regulator weight

(1) Enite regulator body weight

Regulator	W	х	W·x	у	W∙y	Z	W•z
abutment right	5,132,51	13.85	71,085.26	2.20	11,291,52	0.74	3,798.06
abutment left	5,132.51	13.85	71,085.26	2.20	11,291.52	9.26	47,527.04
Midle. 1	5,973.89	12.82	76,585.27	2.10	12,545.17	3.50	20,908.62
Midle 2	5,973.89	12.82	76,585.27	2.10	12,545.17	6.50	38,830,29
Midle.3	0.00	12.82	0.00	2.10	0.00	1.50	0.00
Σ	22,212.80		295,341.06		47,673.38		1 1 1, 0 64.0 1

(2) Balance center of entire regulator body

$$X = \Sigma W \cdot x / \Sigma W = \frac{295,341.06}{22,212.80} = 13.30 (m)$$

$$Y = \Sigma W \cdot y / \Sigma W = \frac{47,673.38}{22,212.80} = 2.15 (m)$$

$$Z = \Sigma W \cdot z / \Sigma W = \frac{111,064.01}{22,212.80} = 5.00 (m)$$

(3) abu	tment P	l <mark>ier : Right (unit</mark>	e:m]					
	#	W	x	W·×	у	W∙y	Z	W·z
	1	0.00	0.00	0.00	0.75	0.00	1.00	0.00
[2	551.25	3.68	2028.60	0.75	413 <u>.</u> 44	1.00	551 <u>.</u> 25
	3	1526.25	17 . 53	26755 <u>1</u> 6	0 <u>.</u> 75	1 1 4 4_69	1.00	1526 <u>.</u> 25
	4	6 <u>.</u> 25	1 . 67	10. 44	1 <u>.</u> 67	10.4 4	1 <u>.</u> 50	9 <u>.</u> 38
	5	66.88	4.68	313.00	1.75	1 17.0 4	1.50	100.32
	6	12.50	7.68	96.00	1.67	20.88	1.50	18.75
	7	6.25	0.25	1.56	1 <u>.</u> 75	10.94	0.50	3.13
	8	6 .2 5	1.33	8.31	1 <u>.</u> 83	11_4 4	0 <u>.</u> 50	3.13
	9	6.25	8.02	50.13	1.67	10.4 4	0.50	3.13
	10	241.88	18.03	4361.10	1.75	423.29	0.50	120.94
	1 1	2,156.50	11.85	25,554.53	3 <u>.</u> 15	6,792.98	0.50	1, 07 8,25
	12	371.25	27.70	10,283.63	3 <u>.</u> 15	1,1 69.4 4	0.50	185.63
	13	18 <u>.</u> 65	27.49	512.69	3 <u>.</u> 40	63 .4 1	0.58	10 <u>.</u> 82
	14-1	35,63	4.25	151 <u>.</u> 43	6 <u>.</u> 73	239.79	0,58	20 <u>.</u> 67
	14-2	0.00	4.2 5	0.00	6.73	0.00	0.58	0.00
	15-1	35.63	5.45	194 .18	6.73	239.79	0.58	20.67
	15-2	0.00	5.45	0.00	6 <u>.</u> 73	0.00	0.58	0.00
	1 6	21,25	4.85	103 . 06	8 . 40	178.50	0,58	12.33
	16'	0.00	4.00	0.00	8.15	0.00	1.33	0.00
	16"	12.50	3.75	46.88	8.40	105.00	1.50	18.75
	17	37.50	2.50	93 <u>.</u> 75	5.05	189.38	1 <u>.</u> 50	56.25
	17'	37,50	21.70	813.75	5 . 10	191 <u>.</u> 25	1 <u>.</u> 50	56.25
	18	-12.50	2.50	-31.25	5.05	-63.13	1.50	-1 8.75
	18'	-12.50	21 .70	-271.25	5.10	-63.75	0.90	-11.25
	19	-1 <u>.</u> 32	2.50	-3.30	3.65	4.82	0.90	-1.19
	19'	-1.52	21 . 70	-32.98	3.40	5.17	0.90	-1.37
[20	-0.60	2.50	-1.50	1.85	-1.11	0.90	-0.54
[21	-0.60	4 85	-2.91	3 65	2 19	0 94	-0.56
[22	-0.32	4.84	-1.55	1.94	0.62	0.90	-0_29
[23	-0.80	2.50	-2.00	1.30	-1.04	0.90	-0.72
[Add	12.50	4.95	61.88	8.40	105.00	1.00	12.50
[Σ	5,132.51		71,093.34		1 1, 295 3 1		3,773 73

Balance center of abut regulator

		Right abutment		Left abutment
		regulator	(slide distance)	regulator
X=ΣW•x∕ΣW=	71,093.34 5,132.51	-=13.85(m)	+0 .0 0(m)	=13.85(m)
Y=Σ₩•y∕Σ₩=—	11,295.31 5,132.51	-=2.20(m)	+0.00(m)	=2.20(m)
Z=ΣW•z∕ΣW=	3,773.73 5,132.51	-=0.74(m)	-10.00(m)	=-9,26 (m)

(4) Mid	dle pier	: [unite:m]						
	#	W	x	W∙x	У	W∙y	Z	W∙z
	1	56.25	0.25	14.06	0.75	42.19	1.50	84.38
	2	770.63	3.93	3,028.58	0.75	577.97	1.50	1,155 <u>.</u> 95
	3	2,289.38	17.53	40,132.83	0.75	1, 717. 04	1.50	3,434 <u>.</u> 07
	4	12,50	1.67	20.88	1.67	20.88	1,50	18.75
	5	133.75	4.68	625.95	1.75	234.06	1.50	200.63
	6	25.00	7.68	192 .00	1.67	4 1.75	1.50	37 <u>.</u> 50
	7	0.00	0.50	0.00	1 <u>.</u> 75	0.00	1.50	0.00
	8	37 <u>.</u> 50	1.33	49.88	1 <u>.</u> 83	68.63	1,50	56 <u>.</u> 25
	9	6.25	8.02	50.13	1.83	11.4 4	1.50	9 <u>.</u> 38
	10	241.88	18.03	4,361.10	1.75	423.29	1.50	362 <u>.</u> 82
	1 1	2,109.00	12 <u>.</u> 10	25,518.90	3 <u>.</u> 65	7,697.85	1.50	3,163 <u>.</u> 50
	12	37.31	23.45	874.92	3 <u>.</u> 40	126.85	1.50	55 <u>.</u> 97
	13	37 <u>.</u> 31	0 <u>.</u> 79	29 <u>.</u> 47	3 <u>.</u> 40	126.85	1 <u>.</u> 50	55 <u>.</u> 97
	14-1	1 7.81	4.25	75 <u>.</u> 69	6 <u>.</u> 73	1 19. 86	1 <u>.</u> 50	26.72
	14-2	1 7. 8 1	4.2 5	75.69	6.73	119.86	1.50	26.72
	15-1	1 7. 8 1	5.45	97 .0 6	6.73	1 19.8 6	1.50	26.72
	15-2	1 7 <u>.</u> 81	5.45	97 .0 6	6.73	1 19 .86	1 <u>.</u> 50	26 <u>.</u> 72
	16	21.25	4.85	103 .0 6	8.40	178.50	1 <u>.</u> 50	31 <u>.</u> 88
	16'	0.00	4.00	0.00	8.15	0.00	1.50	0.00
	16"	18.75	3.75	7 0.3 1	8.40	157.50	1.50	28.13
	17	75.00	2.50	187 <u>.</u> 50	5.05	378.75	1 <u>.</u> 50	112 <u>.</u> 50
	17'	75.00	21.70	1,627.50	5.05	378.75	1 <u>.</u> 50	1 12. 50
	18	-25.00	2.50	-62.50	5.05	-126.25	1.50	-37.50
	18'	-2 5.00	21 .70	-542.50	5.05	-126.25	1.50	-37 <u>.</u> 50
	19	-2.64	2.50	-6.60	3.65	-9.64	1.50	-3 <u>.</u> 96
	19'	-3.04	21 . 70	-65.97	3.40	-10.34	1 <u>.</u> 50	-4 <u>.</u> 56
	20	-1.20	2.50	-3.00	1.85	-2.22	1.50	-1.80
	21	-4.62	4.85	-22.41	3.65	-16.86	1.50	6.93
	22	-0.16	4.84	-0.77	1.94	-0.31	1.50	-0.24
	23	-1.20	21.70	-26.04	1.35	-1.62	1.50	-1_80
	Add	18.75	5.45	102.19	8.40	157.50	1.50	28.13
	Σ	5,973.89		76,604.97		12,525.75		8,960.90

Balance center of middle regulator

		Middle		Mid. 1		Mid. 2
		regu ator	(slide distance)	regulator	(slide distance)	regulator
X=ΣW•x∕ΣW=	76,604.97 5,973.89	12 . 82(m)	+0.00(m)	=12.82(m)	+0.00(m)	= 12.82(m)
Y=Σ₩•y∕Σ₩=	12,525.75 5,973.89	2.10(m)	+0.00(m)	=2.10(m)	+0.00(m)	=2.10(m)
Z=ΣW•z∕ΣW=	8,960.90 5,973.89	1 . 50(m)	+2.00(m)	=3.50(m)	+5.00(m)	=6.50(m)
				Mid. 3		
			(slide distance)	regulator		
			+0.00(m)	= 12.82(m)		
			+0.00(m)	=2.10(m)		
			+0.00(m)	=1.50(m)		

4.Case of the examination

【CASE 1 : Regular / Longitudinal direction/ H.W.L. / Fu∎ OP】

Laad	V	х	V•x	Н	у	Н∙у
Load	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	22,212,80	13,30	29 5, 430.2 4			
Gate leaf	24.00	4.85	116.40			
Hoist	135.00	4.85	654.75			
Bridge	3,172.65	13.45	42,672.14			
Weight of water	5,209,26	13,79	71,835.70			
Up-lift pressure	-13,296.00	13.85	-184,149.60			
Wind pre.(Reg. body)				50.92	7.18	365.61
Wind pre (Gate, body)				25.38	6.18	156.85
Wind pre (Bridge body)				56.16	6.60	370.66
Wind pre (Walk bridge, body)				10.80	5.05	54.54
Tota	17,457,71		226,559,63	143.26		947.66

Note : The water pressure should be caneled out for the symmetrical force.

a)Examination for the slide force

Fc. for sliding:	μ=0.60				
Safe ratio:	Fs=ΣV·µ/ΣH=	73.12	\geq	Fsa=1.5	⇒OK
b)Examination for the fall down					
Foundation width : B=	27.70 (m)				
Foundation length : L=	10.00 (m)				
Act point of the total force :	$X=(\Sigma V \cdot x + \Sigma H \cdot y)/\Sigma V =$	13.03 (m)			
Eccentric distance :	e=X-B/2=	-0.82 (m)	\leq	B/6=4.62(m)	⇒OK
				(Checke	d by absolute value)
c)Examination for the bearing c	on foundation (kN/m2)			· ·	. ,
, č	Q1=ΣV/B/L(1+6 · e/B)=	51.83			
	Q2=ΣV/B/L(1-6 e/B)=	74.22			

Lood	V	X	V-x	Н	у	H-y
Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	22,212.80	13.30	295,430,24			
Gate leaf	24.00	4,85	116 <u>.</u> 40			
Hoist	72.00	4.85	349.20			
Bridge	3,172.65	13.45	42,672.14			
Weight of water	634.46	1.84	1 ,16 7.4 1			
Up-lift pressure	-7,549. 64	1 1.98	-90,444.69			
Sedimentation	100.30	1.74	174.52			
Wind pre.(Reg.body)				47.52	6.77	321.71
Wind pre.(Gate.body)				—	-	—
Wind pre.(Bridge.body)				56.16	6.60	370.66
Water pre (up-st.)				946.14	1.15	1,088.06
Water pre.(dw-st.)				-112.50	0.50	-56.25
Earth pre. (sed.)				7.04	1.92	13.52
Total	18,666.57		249,465.22	944.36		1,737.70
a)Examination for the slide for Fc. for sliding :	ce µ=0.60				_	
Safe ratio:	Fs=ΣV•µ/ΣH=		11.86	≧	Fsa=1.5	⇒OK
)Examination for the fall dowr	n					
Foundation width : B=	27.70 (m)					
Foundation length : I =	10.00 (m)					

[CASE 2 : Regular / Longitudinal direction/ Max. water level / Full CL]

Sale fallo :	rs-zv•µ/2n-	00.11	≦	FSd-1.0	→OK
b)Examination for the fall down	I				
Foundation width : B=	27.70 (m)				
Foundation length : L=	10.00 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	13.46 (m)			
Eccentric distance :	e=X-B/2=	-0.39 (m)	\leq	B/6=4.62(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing of	on foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	61.70			
	Q2=ΣV/B/L(1-6 · e/B)=	73.08			

Lood	V	X	V-x	Н	у	H•y
Laod	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	22,212.80	1 3 <u>.</u> 30	295,430,24			
Gate leaf	24,00	4,85	116.40			
Hoist	72.00	4.85	349.20			
Bridge	3,172.65	13.85	43,941.20			
Weight of water	_	_	—			
Up-lift pressure	—	—	—			
Wind pre.(Reg. body)				71.44	5.23	373.63
Wind pre.(Gate.body)				25.38	6.18	156.85
Wind pre (Bridge, body)				56.16	6.60	370.66
Water pre.(up-st.)				—	—	—
Water pre (dw-st.)				_	_	—
Earth pre. (sed.)				_	—	—
Total	25,481.45		339,837.04	152.98		901.1 4
mination for the slide for	rce					
Fc. for sliding:	µ=0.60					
Safe ratio:	Fs=ΣV・µ/ΣΗ=	:	99.9 4	\geq	Fs a=1. 5	⇒OK
mination for the fall dow	'n					
Foundation width : B=	27.70 (m)					
Foundation length : L=	10.00 (m)					
ooint of the total force :	$X=(\Sigma V \cdot x+\Sigma H)$	•y)/ΣV=	13.37 (m)			
Eccentric distance :	e =X - B/2=		-0.4 8 (m)	≦	B/6=4.62(m)	⇒OK

[CASE 3 : Regular / Longitudina] direction/ Max. water [eve] / Full OP]

a)Ex

Fc. for sliding :	µ=0.60				
Safe ratio:	Fs=ΣV·µ/ΣH=	99.9 4	\geq	Fs a=1. 5	⇒OK
b)Examination for the fall down					
Foundation width : B=	27.70 (m)				
Foundation length : L=	10.00 (m)				
Act point of the total force :	Χ=(ΣV・x+ΣΗ・y)/ΣV=	13.37 (m)			
Eccentric distance :	e =X - B/2=	-0.4 8 (m)	≦	B/6=4.62(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing or	n foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	82.43			
	Q2=ΣV/B/L(1-6 · e/B)=	101.56			

Land	V	Z	V·z	Н	у	Н-у
Laud	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	22,212.80	5 <u>.</u> 00	111,064.00			
Gate leaf	24,00	5 <u>.</u> 00	120.00			
Hoist	72.00	5.00	360.00			
Bridge	3,172.65	5.00	15,863.25			
Weight of water	4,472.92	5.00	22,364.60			
Up-lift pressure	-12,049.50	5.00	-60,247.50			
Sedimentation	_	_				
Wind pre.(Reg. body)				428.96	5.14	2,204.85
Wind pre.(Gate. body)					—	
Wind pre (Bridge body)					—	_
Water pre.(canal side)					_	
Water pre.(embk.side)					—	—
Earth pre. (Embk.)	_	_	_		_	
Earth pre. (sed.)					_	
Total	17,9 04 .87		89,524.35	428.96		2,204.85
nination for the slide for Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV · μ/ΣΗ=		25.04	≧	Fsa=1.5	⇒OK
nination for the fall dow Foundation width:B= Foundation length:L=	n 10.00 (m) 27.70 (m)					

[CASE 4 : Regular / Lateral direction / Max. water level / Full OP]

a)Examination for the slide force					
Fc. for sliding:	µ=0.60				
Safe ratio:	$F_{S}=\Sigma V \cdot \mu / \Sigma H =$	25.04	\geq	Fsa=1.5	⇒OK
b)Examination for the fall down					
Foundation width : B=	10.00 (m)				
Foundation length : L=	27.70 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	5 .1 2 (m)			
Eccentric distance :	e=X-B/2=	0.12 (m)	\leq	B/6=1.67(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing on	foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	69.29			
	Q2=ΣV/B/L(1-6 · e/B)=	59.98			

LOAS	E 5 : Regular / Latera	direction/ max. w					
	hoe	V	X	V·x	Н	у	Н•у
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
	Reg. body	22,212.80	5.00	111,064.00			
	Gate leaf	24.00	5,00	120.00			
	Hoist	72.00	5.00	360.00			
	Bridge	3,172.65	5.00	15,863.25			
	Weight of water	634.46	5.00	3,172.30			
	Up-lift pressure	-7,549. 64	5.00	-37 ,7 48 ,20			
	Sedimentation	100.30	5.00	501.50			
	Wind pre.(Reg. body)				897.86	4.98	4,471.34
	Wind pre (Gate, body)					_	—
	Wind pre (Bridge body)					_	
	Water pre. (canal side)					_	
	Waterpre.(embk.side)					_	
	Earth pre. (Embk.)	_	_	_	-	_	_
	Earth pre. (sed.)						
	Total	18,666.57		93,332,85	897.86		4,471.34
a)Exan	nination for the slide for	ce					
	Fc. for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV ∙ μ/ΣΗ⊧	=	12.47	≧	Fsa=1.5	⇒OK
b)Exan	nination for the fall dow	n					
	Foundation width : B=	10.00 (m)					
F	oundation length : L=	27.70 (m)					
Act po	pint of the total force :	X=(ΣV · x+ΣH	•y)/ΣV=	5 <u>.</u> 24 (m)			
	Eccentric distance :	e =X - B/2=		0.24 (m)	≦	B/6=1.67(m)	⇒OK
						(Checked b	y absolute value)
c)Exan	nination for the bearing	on foundation (kN	J /m2)				
		Q1=ΣV/B/L(1	+6 • e/B)=	77 <u>.</u> 09			
		Q2=ΣV/B/L(1-	-6 • e/B)=	57.68			

[CASE 5 : Regular / Lateral direction/ Max. water level / Full CL]

	-	V	v	\/_v	Ц	v	H - v
	Laod	V (LNI)	× ()	V "A (I-N	11	y	•y (:\)
		(KN)	(m)	(KIN • m)	(KN)	(m)	(KN • m)
Reg. bo	dy	22,2 1 2.80	5 <u>.</u> 00	1 11,064 . 00			
Gate lea	af	24.00	5.00	120.00			
Hoist		72.00	5.00	360.00			
Bridge		3,172.65	5.00	15,863.25			
Weight	of water		—	—			
Up-lift p	ressure		—	_			
Sedime	ntation	_	—	_			
Wind pre.	(Reg. body)				763.28	3.65	2,785.97
Wind pre.	(Gate, body)				—	—	—
Wind pre.	(Bridge_body)				—	_	—
Wind pre.	(Op.deck body)				—	—	—
Water pr	e.(canal side)				—	—	—
Water pr	e.(embk.side)				—	_	—
Earth pr	e. (Embk.)				—	_	—
	Sum	25, 4 81.45		127,407,25	763.28		2,785.97
a)Examination f	or the slide for	rce					
Fc.	for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV・µ/ΣΗ=	:	20.03	\geq	Fsa=1.5	⇒OK
b)Examination f	or the fall dow	'n					

[CASE 6 : Regular / Lateral direction / No water / Full OP]

		00.00	~		. 01/	
Sate ratio :	⊢s=ΣV · µ/ΣH=	20.03	≧	⊢sa=1.5	⇒OK	
b)Examination for the fall down						
Foundation width : B=	10.00 (m)					
Foundation length : L=	27.70 (m)					
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	5 .11 (m)				
Eccentric distance :	e=X-B/2=	0.11 (m)	≦	B/6=1.67(m)	⇒OK	
				(Checked	l by absolute val	ue)
c)Examination for the bearing o	n foundation (kN/m2)					
	Q1=ΣV/B/L(1+6 • e/B)=	98.06				
	Q2=ΣV/B/L(1-6 · e/B)=	85.92				

_				-			
	Lood	V	Х	V-x	Н	у	H•y
	Laud	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
	Reg. body	22,212.80	1 3 <u>.</u> 30	295,430.24	1,777.02	2.20	3,909 .4 4
	Gate leaf	24,00	4 <u>.</u> 85	116.40	1.92	3 <u>.</u> 18	6.10
	Hoist	72.00	4.85	349.20	5.76	8.65	49.82
	Bridge	1,527.15	13.45	20,540.17	122.17	5.30	647.50
	Weight of water	634.46	1.84	1 ,16 7.4 1	_	_	—
	Up-lift pressure	-7,549. 64	11 <u>.</u> 98	-90,444.69	—	—	—
	Sedimentation	100.30	1.74	174.52	_	_	_
	Wind pre.(Reg. body)					_	—
	Wind pre (Gate, body)				—	—	—
	Wind pre (Bridge body)				—	—	_
	Wind pre.(Op. deck body)				—	—	—
	Water pre.(up-st.)				946.14	1. 15	1,088.06
	Water pre.(dw-st.)				-112.50	0.50	-56.25
	Seism Water pre (up-st.)				88.30	1. 74	153.60
	Earth pre. (sed.)				7 <u>.</u> 04	1.92	13.52
	Tota	17,021.07		227,333,25	2,835.85		5,811.79
a)Exan	nination for the slide for Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV・μ/ΣH:	=	3.60	≧	Fsa=1.15	⇒OK
b)Exan	nination for the fall dow	'n					
	Foundation width : B=	27.70 (m)					
F	oundation length : L=	10 <u>.</u> 00 (m)					
Act po	oint of the total force :	Χ=(ΣV∙x+ΣΗ	∙y)/ΣV=	13.70 (m)			
	Eccentric distance :	e=X-B/2=		-0.15 (m)	≦	B/3=9.23(m)	⇒OK
						(Checked b	y absolute value)
c)Exan	nination for the bearing	on foundation (kN	J /m2)				

63.44

[CASE 7 : Seism / Longitudinal direction / Max water level / Full CL]

Q1=2V/B/L(1+6 • e/B)=

 $Q2=\Sigma V/B/L(1-6 \cdot e/B)=$

	hoe	V	х	V-x	Н	У	Н•у
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	22,212.80	13.30	295,430,24	1,777.02	2.20	3,909.44
	Gate leaf	24,00	4.85	116 40	1.92	7.35	14 .11
	Hoist	72.00	4.85	349.20	5.76	8.65	49.82
	Bridge	1,527.15	13.85	21,151 <u>.</u> 03	122.17	5.30	647.50
	Weight of water	_					
	Up-lift pressure	—	-	—	—	—	_
	Wind pre (Reg. body)						
	Wind pre (Gate, body)						
	Wind pre (Bridge body)						
	Wind pre (Op. deck body)						
	Water pre (up-st.)						
	Water pre (dw-st.)						
	Total	23,835.95		317,046.87	1,906.87		4,620.87
	Fc. for sliding :	μ=0 . 60					
	Safe ratio :	· Fs=ΣV · μ/ΣΗ=	=	7.50	\geq	Fsa=1.15	⇒OK
a)Exam	ination for the slide for	ce					
I	Foundation width : B=	27.70 (m)					
F	oundation length : L=	10.00 (m)					
b)Exam	int of the total force :	X=(ΣV·x+ΣH	•y)/ΣV=	13.50 (m)			
	Eccentric distance :	e =X - B/2=		-0.35 (m)	≦	B/3=9.23(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation (kN	l /m2)				
		Q1=ΣV/B/L(1	+6•e/B)=	79 <u>.</u> 53			
		Q2=ΣV/B/L(1	-6 •e/B)=	92 <u>.</u> 57			

【CASE 8 : Seism / Longitudinal direction / No water / Full OP】

Lood	V	z	٧·z	Н	У	Н·у
Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	22,212.80	5.00	111,064.00	1,777.02	2.20	3,909 .4 4
Gate leaf	24.00	5 <u>.</u> 00	120 <u>.</u> 00	1.92	7.35	14 <u>.</u> 11
Hoist	72.00	5.00	360.00	5.76	8.65	49.82
Bridge	1,527.15	5.00	7,635.75	122 <u>.</u> 17	5.30	647.50
Weight of water	4,472.92	5 <u>.</u> 00	22,364.60	_	—	—
Up-lift pressure	-12,049.50	5 <u>.</u> 00	-60,247,50	_	_	—
Sedimentation	_	—	_	_	_	—
Wind pre.(Reg.bady)					—	—
Wind pre.(Gate.body)					—	—
Wind pre.(Bridge.body)				_	—	—
Wind pre (Op. deck body)				—	—	—
Seism water pre. (Abut)				105.00	2.64	277.20
Seism water pre. (Mid.)				7 87.2 4	2.72	2,141.29
Earth pre. (sed.)				—	—	—
Total	16,259.37		81,296,85	2,799.11		7,039.36
mination for the slide forc Fc. for sliding: Safe ratio:	ce μ=0.60 Fs=ΣV ⋅ μ/ΣH=	:	3.49	2	Fsa=1.15	⇒OK
mination for the fall down	1					

【CASE 9 : Seism / Lateral direction / Max. water level / Full OP】

Safe ratio :	Fs=ΣV • μ/ΣΗ=	3 <u>.</u> 49	≧	Fsa=1.15	⇒OK
b)Examination for the fall down					
Foundation width : B=	10.00 (m)				
Foundation length : L=	27.70 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	5 .4 3 (m)			
Eccentric distance :	e=X-B/2=	0.43 (m)	≦	B/3=3.33(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing c	n foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	73 <u>.</u> 84			
	Q2=ΣV/B/L(1-6 · e/B)=	43.55			

	Land	V	X	V·x	Н	у	H•y
	Laou	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	22,212.80	5.00	111,064.00	1,777.02	2.20	3,909.44
	Gate leaf	24,00	5.00	120.00	1.92	3.18	6.11
	Hoist	72.00	5.00	360.00	5.76	8.65	49.82
	Bridge	1,527.15	5.00	7,635.75	122 <u>.</u> 17	5.30	647.50
	Weight of water	634.46	5.00	3,172.30		_	
	Up-lift pressure	-7,549. 6 4	5.00	-37,748,20		—	
	Sedimentation	100.30	5.00	501.50		—	
	Wind pre.(Reg. body)					—	_
	Wind pre (Gate, body)					_	
	Wind pre (Bridge body)					—	
	Wind pre.(Op. deck body)					_	
	Seism water pre. (Abut)				18.38	2.64	48.52
	Seism water pre. (Mid.)				33.58	2.72	9 1. 34
	Earth pre. (sed.)					_	
	Total	17,021.07		85,105.35	1,958.83		4,752.73
a)Exan	nination for the slide for Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV • μ/ΣΗ=	=	5.21	≧	Fsa=1.15	⇒OK
b)Exan	nination for the fall dow	/ĥ					
	Foundation width : B=	10.00 (m)					
F	oundation length : L=	27 <u>.</u> 70 (m)					
Act po	oint of the total force :	X=(ΣV · x+ΣΗ	•y)/ΣV=	5,28 (m)			
	Eccentric distance :	e=X-B/2=		0.28 (m)	≦	B/3=3.33(m)	⇒OK
c)Exan	nination for the bearing	on foundation				(Unecked b	y absolute value)

51.12

[CASE 10 : Seism / Lateral direction / Max.water level / Full CL]

 $Q1=\Sigma V/B/L(1+6 \cdot e/B)=$

 $Q2=\Sigma V/B/L(1-6 \cdot e/B)=$

	Land	V	X	V·x	Н	у	H•y
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	22,212.80	5.00	111,064.00	1,777.02	2.20	3,909.44
	Gate leaf	24.00	5.00	120.00	1.92	7.35	14 .11
	Hoist	72.00	5.00	360.00	5.76	8.65	49.82
	Bridge	1,527.15	5.00	7,635.75	122 <u>.</u> 17	5.30	647.50
	Weight of water	_	_	_		_	
	Up-lift pressure	—	_	_		—	
	Sedimentation	—	_	_		—	
	Wind pre.(Reg. bady)					—	_
	Wind pre (Gate, body)					_	
	Wind pre (Bridge body)				_	_	
	Wind pre.(Op. deck body)					_	
	Seism water pre. (Abul)				_	_	
	Seism water pre. (Mid.)				_	—	—
	Ear th pre . (sed.)				_	—	—
	Total	23,835.95		1 19,179.75	1,906.87		4,620.87
a)Exar	nination for the slide fo Fc. for sliding: Safe ratio:	rce μ=0.60 Fs=ΣV • μ/ΣΗ:	=	7.50	≧	Fsa=1.15	⇒OK
b)Exar	nination for the fall dow	/ĥ					
	Foundation width : B=	10.00 (m)					
F	Foundation length : L=	27.70 (m)					
Act p	oint of the total force :	X=(ΣV · x+ΣΗ	•y)/ΣV=	5 .1 9 (m)			
	Eccentric distance :	e=X-B/2=		0.19 (m)	\leq	B/3=3.33(m) (Checked b	⇒OK v absolute value)
c)Exan	nination for the bearing	on foundation					, <u> </u>

76.24

【CASE 11 : Seism / Lateral direction / No water / Full OP】

 $Q1=\Sigma V/B/L(1+6 \cdot e/B)=$

 $Q2=\Sigma V/B/L(1-6 \cdot e/B)=$

Land	V	Х	V•x	Н	у	Н•у
Load	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	22,212.80	13.30	295,430.24	1,777.02	2.20	3,90 9.4 4
Gate leaf	24,00	4,85	116.40	1.92	7.35	14 .11
Hoist	135.00	4.85	654.75	10.80	8.65	93.42
Bridge	1,527.15	13.45	20,540.17	122 <u>.</u> 17	5.30	647.50
Weight of water	4, 47 2,92	13.84	61 ,905.21	—	—	-
Up-lift pressure	-12,049.50	13.85	-166,885,58	—	_	
Wind pre.(Reg. body)				—	_	
Wind pre.(Gate. body)						_
Wind pre (Bridge, body)						_
Wind pre (Walk bridge, body)						_
Seism Water pre (up-st.)				21.38	1.89	40.41
Tota	16,322.37		211,761,19	1,933.29		4,704.88

[CASE 12 : Seism / Longitudinal direction/ Max.water level / Full OP]

Note: The water pressure should be caneled out for the symmetrical force.

a)Examination for the slide force

Fc. for sliding:	µ=0.60				
Safe ratio:	Fs=ΣV·µ/ΣH=	5.07	\geq	Fsa=1.15	⇒OK
b)Examination for the fall down					
Foundation width : B=	27.70 (m)				
Foundation length : L=	10.00 (m)				
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	13.26 (m)			
Eccentric distance :	e=X-B/2=	0.59 (m)	\leq	B/3=9.23(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing or	n foundation (kN/m2)				
· •	Q1=ΣV/B/L(1+6 · e/B)=	51.39			
	Q2=ΣV/B/L(1-6 · e/B)=	66.46			

Lood	V	Х	V•x	Н	у	Н∙у
Laod	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	22,212,80	13,30	29 5, 430,2 4			
Gate leaf for 3vents	16.00	4.85	77.60			
Hoist for 3vents	48.00	4.85	232.80			
Stoplog Gate of U.S.	8.00	2.50	20.00			
Stoplog Gate of D.S.	8.00	2 1,70	173.60			
Bridge	3,172.65	13.45	42,67 2.1 4			
Weight of water	3,580.38	13.40	47,977.09			
Weight of water at stoplog	-1 ,083.01	1.25	-1,353.76			
Up-lift pressure	-11,023.20	13.56	-1 49,474.59			
Sedimentation	100.30	1.74	174 <u>.</u> 52			
Sedimentation at stoplog	-19.33	1.25	-24.16			
Wind pre (Reg. body)				47.52	6.77	321.71
Wind pre.(Gate.body)				—	—	—
Wind pre.(Bridge.body)				56.16	6.60	370.66
Water pre (up-st.)				946.14	1. 15	1,088.06
Water pre.(dw-st.)				-455.70	1.16	-528.61
Earth pre. (sed.)				7.04	1.92	13.52
Total	17,020.59		235,905 48	601.16		1,265.34

[CASE 13 : Regular / Longitudinal direction/ Max. water level / Maintenace case]

a)Examination for the slide force

µ=0.60				
Fs=ΣV·µ/ΣH=	16.99	≧	Fsa=1.5	⇒OK
27.70 (m)				
10.00 (m)				
Χ=(ΣV · x+ΣΗ · y)/ΣV=	13.93 (m)			
e =X - B/2=	0.08 (m)	≦	B/6=4.62(m)	⇒OK
			(Checked	l by absolute value)
foundation (kN/m2)				
Q1=2V/B/L(1+6 · e/B)=	62.51			
$Q2=\Sigma V/B/L(1-6 \cdot e/B)=$	60.38			
	$\begin{array}{l} \mu = 0.60 \\ F_{S} = \Sigma V \cdot \mu / \Sigma H = \\ \\ 27.70 \ (m) \\ 10.00 \ (m) \\ X = (\Sigma V \cdot x + \Sigma H \cdot y) / \Sigma V = \\ e = X - B / 2 = \\ foundation \ (kN/m2) \\ Q1 = \Sigma V / B / L (1 + 6 \cdot e / B) = \\ Q2 = \Sigma V / B / L (1 - 6 \cdot e / B) = \end{array}$	$\begin{array}{c} \mu = 0.60 \\ Fs = \Sigma V \cdot \mu / \Sigma H = & 16.99 \\ \\ 27.70 \ (m) \\ 10.00 \ (m) \\ X = (\Sigma V \cdot x + \Sigma H \cdot y) / \Sigma V = & 13.93 \ (m) \\ e = X - B / 2 = & 0.08 \ (m) \\ \end{array}$ foundation (kN/m2) $\begin{array}{c} Q1 = \Sigma V / B / L (1 + 6 \cdot e / B) = & 62.51 \\ Q2 = \Sigma V / B / L (1 - 6 \cdot e / B) = & 60.38 \end{array}$	$\begin{array}{lll} \mu=0.60 \\ Fs=\Sigma V \cdot \mu / \Sigma H= & 16.99 & \geqq \\ & & \\ 27.70 \ (m) \\ 10.00 \ (m) \\ X=(\Sigma V \cdot x+\Sigma H \cdot y) / \Sigma V= & 13.93 \ (m) \\ e=X-B/2= & 0.08 \ (m) & \leqq \\ foundation \ (kN/m2) \\ Q1=\Sigma V/B/L(1+6 \cdot e/B)= & 62.51 \\ Q2=\Sigma V/B/L(1-6 \cdot e/B)= & 60.38 \end{array}$	$\begin{array}{cccc} \mu=0.60 \\ Fs=\Sigma V \cdot \mu / \Sigma H= & 16.99 & \geqq & Fsa=1.5 \\ & & & \\ 27.70 \ (m) \\ 10.00 \ (m) \\ X=(\Sigma V \cdot x+\Sigma H \cdot y) / \Sigma V= & 13.93 \ (m) \\ e=X-B/2= & 0.08 \ (m) & \leqq & B/6=4.62 \ (m) \\ & & & \\ Checked \\ foundation \ (kN/m2) \\ Q1=\Sigma V / B / L (1+6 \cdot e/B)= & 62.51 \\ Q2=\Sigma V / B / L (1-6 \cdot e/B)= & 60.38 \end{array}$

A-4-4. Abo Gabal Regulator

		n	n	Vertical force	Resistant moment	Horizontal force Torque moment For the sliding For the fall down ^{^cter1)} For the ground reaction		eaction								
Pier	ase	ectio	nditic	V	V∙x	Н	Н∙у	Sa	ife r atio	Eccentricity	B/6	Ground reactior	Ground reaction	Bearing	agbr	Remarks
	0	Dir	Col	(kN)	(kN•m)	(kN)	(kN•m)	Required ratio	Desing	e (m)	(Allowable)	Q1 (kN/m2)	Q2 (kN/m2)	(kN/m2)	JL	
	1	Long,	Regular	14,280.64	118,050.05	222 <u>.</u> 51	1,726.95	1.50	≦ 38,51	0.29	≦ 2.70	75 <u>.</u> 09	60,53		OK	
	2	Long.	Regular	16,19 0. 06	131,176.82	1,861.31	3,835.16	1.50	≦ 5.22	0.24	≦ 2.70	83.71	70.04		OK	
	3	Long.	Regular	20,949 .1 7	171,879.71	245.56	1,692.48	1.50	≦ 51.19	0.19	≦ 2.70	106.47	92.47		ОК	
L	4	Latera l .	Regular	14,531.51	94,454.82	403.70	2,652.31	1.50	≦ 21,60	0 <u>.</u> 18	≦ 2.17	74,73	63.27		OK	
ato	5	Lateral.	Regular	16,190.06	105,235.40	7 14.26	4,449.84	1.50	≦ 13.60	0.27	≦ 2.17	86.46	67.30		OK	
egu	6	Lateral,	Regular	20,949 <u>.</u> 17	136,169 <u>.</u> 61	914 <u>.</u> 61	4,015.14	1.50	≦ 13 <u>.</u> 74	0 <u>.</u> 19	≦ 2 <u>.</u> 17	108 <u>.</u> 20	90,75		OK	
al R	7	Long.	Seism	16,154.06	130,782.62	3,541 <u>.</u> 61	7,509.83	1 .1 5	≦ 2.74	0 <u>.</u> 46	≦ 5.40	89 <u>.</u> 77	63.64		OK	
Gab	8	Long.	Seism	20,913 .1 7	171,588.11	1,673.05	4,606.68	1 .1 5	≦ 7.50	0.33	≦ 5.40	111 <u>.</u> 44	87.17		OK	
Abo	9	Lateral.	Seism	14,495.51	94,220.82	2,273.50	6, 474. 08	1 .1 5	≦ 3.83	0.45	≦ 4. 33	83.12	54 .53		OK	
	10	Lateral,	Seism	16,154.06	105,001.40	1,815,29	5,032.07	1 .1 5	≦ 5.34	0 <u>.</u> 31	≦ 4.33	87.68	65.73		OK	
	11	Lateral.	Seism	20,913.17	135,935.61	1,673.05	4,606.68	1.15	≦ 7.50	0.22	≦ 4.33	109.39	89.22		OK	
	12	Long.	Seism	14,635.51	120,995.69	1,717.28	4,796.56	1 .1 5	≦ 5.11	0.50	≦ 5.40	82.36	56.63		OK	
	13	Long.	Regular	14,043.24	121,596.92	967.19	2,203.10	1.50	≦ 8.71	0.72	≦ 2.70	84.46	48.90		OK	

Summary table of result on the stability examination for Abo Gabal Regulator

Note 1) Ground reaction for the bearing capacity should be consideration in Chapter 12

Abo Gabal Regulator / Stability examination

1.Design condition

(1)Dimens	sion of fo	rm for ab	u t ment P	ier (unit	e:m]								
A(1)=	16.20	A(2)=	0 <u>.</u> 00	A(3)=	1.85	A(4)=	0.00	A(5)=	3.75	A(6)=	0.21	A(7)=	10.39
A(8)=	0.50	A(9)=	15 <u>.</u> 70	A(10)=	0.00	A(11)=	3 .5 0	A(12)=	1.20	A(13)=	0 <u>.</u> 17	A(14)=	0.50
A(15)=	10,50	A(16)=	4.00	A(17)=	1,70	A(18)=	10.50	A(19)=	0.85	A(20)=	0.85	A(21)=	1.00
A(22)=	1.00	A(23)=	1.00	A(24)=	0.27	A(25)=	0.17	A(26)=	0.27	A(27)=	5.25	A(28)=	5.25
A(29)=	0.00	A(30)=	0.30	A(31)=	1.35	A(32)=	0.65	A(33)=	0.00	A(34)=	0.65	A(35)=	0.00
B(1)=	1.00	B(2)=	1 <u>.</u> 00	B(3)=	2.00	B(4)=	1.00	B(5)=	0.25	B(6)=	0.75	B(7)=	0.20
B(8)=	0.80	B (9)=	0.20	B(10)=	0.80	B(11)=	1.00	B(11')=	0.75	B(12)=	0.00	B(13)=	0.00
C(1)=	1.50	C(2)=	4.75	C(3)=	3.95	C(4)=	1.50	C(5)=	0.85	C(6)=	3.90	C(7)=	3.45
C(8)=	0.50	C(9)=	0.50	C(10)=	0.25	C(11)=	0.85	C(12)=	0.80	C(13)=	0.25	C(14)=	0.00
C(15)=	0.50	C(16)=	0.00	C(17)=	0.25								

(2)Dimens	sion of fo	o <mark>rm</mark> for Mi	d dle Pi er	[unite:m]]								
D(1)=	16.20	D(2)=	0.50	D(3)=	1.35	D(4)=	0.00	D(5)=	3.75	D(6)=	0.21	D(7)=	10.39
D(8)=	0.50	D(9)=	15 <u>.</u> 20	D(10)=	0.00	D(11)=	3.00	D(12)=	1.20	D(13)=	0.17	D(14)=	0.50
D(15)=	10.50	D(16)=	3 <u>.</u> 50	D(17)=	1,70	D(18)=	10.50	D(19)=	0.85	D(20)=	0.85	D(21)=	1.00
D(22)=	1.00	D(23)=	1.00	D(24)=	0.27	D(25)=	0.17	D(26)=	0.27	D(27)=	5.25	D(28)=	5.25
D(29)=	0.00	D(30)=	0.30	D(31)=	1.35	D(32)=	0.65	D(33)=	0.00	D(34)=	0.65	D(35)=	0.00
D(36)=	0.00												
E(1)=	1.00	E(2)=	1 <u>.</u> 00	E(3)=	1 .0 0	E(4)=	3.00	E(5)=	1.00	E(6)=	0.25	E(7)=	0.50
E(8)=	0.25	E (9)=	0.20	E(10)=	0.60	E(11)=	0.20	E(12)=	0.25	E(13)=	0.50	E(14)=	0.25
E(15)=	0.20	E(16)=	0 <u>.</u> 60	E(17)=	0.20	E(18)=	0.00	E(19)=	0.00				
F(1)=	1.50	F (2)=	4.75	F(3)=	3.95	F(4)=	1.50	F(5)=	0.85	F(6)=	3.90	F(7)=	3.45
F(8)=	0.50	F (9)=	0 <u>.</u> 50	F(10)=	0 <u>.</u> 25	F(11)=	0.85	F(12)=	0.80	F(13)=	0.25	F(14)=	0.00
F(15)=	0.50	F(16)=	0.00	F(17)=	0.25								

(3)Number and slide distance of center for each pier [unite:m]

Number of pier :	abutment	2	piers			active(y)	х	у	Z
	middle	3	piers			or not(n)	(m)	(m)	(m)
Number of vent:		4			Right abutment	oi y	0.00	0.00	0.00
					Left abutment pi	er y	0.00	0.00	13.00
Entire regulator v	vidth: 1	3.00	m		Middle pier 1	у	0.00	0.00	2.00
Entire regulator	ength: 1	6.20	m		Middle pier 2	y	0.00	0.00	5.00
					Middle pier 3	у	0.00	0.00	8.00
(4)Main level of foundation Apron bottom: Gate bottom: (5)Unite weight 〔unit: RC: Concrete:	n EL41.25 EL43.60 kN/m ³] 25.00 23.00	m m So	Soil (Wet) il (in water)	:	18.00 So 10.00	il 〔Satural	lion〕: Water:	20.00 10.00	

(6)Seismic co-efficient

KH= 0.08

KH = 0.09 (submerged condition)

(7)Case of examination

Case	Direction		Water Leve		Situation of gate	Condi.	Additional	(m)
Canol	Long	U.S.	WL47.00m	HWL	Onen arte	Pogular		
Caser	Long.	D.S.	WL47.00m	HWL	<u>Open gale</u>	Regular	_	
60002	Long	U.S.	WL46.55m	Max.WL	Class gate	Poqular	sedimentation	0.3
Casez	Long.	D.S.	WL42.75m	Low	Close gale	Regula		
C 0002	Long	U.S.	—	No WL	Open agte	Poqular		
0 4360	Long.	D.S.	_	No WL	<u>Open gale</u>	Кеуша		
Case4	Lateral	U.S.	WL46.55m	Max.WL	Open date	Regular		_
C 4304	Lateral.	D.S.	WL46.55m	Max.WL	<u>Open gale</u>	Regular		
C 28.05	Latoral	U.S.	WL46.55m	Max.WL	Close date	Rogular	sedimentation	0.3
Cased	Lateral.	D.S.	WL42.75m	Low	Close gale	Кеуша		
Case6	Lateral	U.S.	_	No WL	Open date	Regular	_	
04360	Lateral.	D.S.		No WL	<u>Open gate</u>	Regular		
Case7	Long	U.S.	WL46 .5 5m	Max.WL	Close gate	Seism of	sedimentation	0.3
Uuser	Long.	D.S.	WL42.75m	Low	Oldse gale	case2		
Case8	Long	U.S.	—	No WL	Open gate	Seism of	_	_
04300	Long.	D.S.	—	No WL	<u>open gate</u>	case3		
Case9	Lateral	U.S.	WL46 .5 5m	Max.WL	Open date	Seism of	_	
04363	Lateral.	D.S.	WL46.55m	Max.WL	<u>open gate</u>	case4		
Case10	Lateral	U.S.	WL46.55m	Max.WL	Close date	Seism of	sedimentation	0.3
	Lateral.	D.S.	WL42.75m	Low	Close gale	case5		
Case11	Lateral	U.S.	—	No WL	Open date	Seism of	_	
043011	Latoral.	D.S.	—	No WL	<u>open gate</u>	case6		
Case12	Long	U.S.	WL46.55m	Max WL	Open gate	Seism of	_	_
	Long.	D.S.	WL46.55m	Max.WL		case6		
Case13	Long	U.S.	WL46.55m	Max.WL	Maintenace date	Regular		0.3
Case 13	Long.	D.S.	WL45.90m	Low	Mantenace yale	Togula		

(8)Coefficient of earth pressure

hternal friction:	φ= 30°			
	Regular case	Seismic case	Seismic (submerged)	Sedimentation
Friction for wall	0°	٥°	0°	—
Active EP coe.	0.333	0.383	0.39	0.5
Passive EP coe.	3.000	2.858	2,84	—

(9)Weight of the gate facility

tem of de	sign load	Design load	Remarks
Gate leaf	(kN/vent)	10.00	Upper 10.00 Lower 0.00
Hiost (Emargency)	(kN/vent)	64.00	including the hoist weight
Hiost	(kN/vent)	29.00	including the groove weight
Actual vent wide	(m)	2.00	
Height of gate	(m)	2.95	
Stop Log gate	(kN/vent)	10.00	

(10)Weight of the bridge / note : Include to weight of regulator body

Item of design load	4	Regular case	Seismic case	
Vertical load (body)	(kN/vent)	_	-	
Vertical load (live load only)	(kN/vent)	9.00	0.00	
Horizontal force by wind	(kN/vent)	18.72	—	
Counter force for up-to-down st.	(kN)	_		
Counter force for right angle	(kN)	—		

Height of the handrail= 1.10 (m)

Thick of the bridge= 1.50 (m)

Note : Bridge weight is included to Regulator body weight 3.0 (kN/m2) w=

(11)Wind pressure

1.20 round : 0.70] [coefficient of form plane:

2.Caluculation of the regulator weight

(1) Enite regulator body weight

Regulator	W	х	W·x	у	W∙y	Z	W•z
abutment right	3,744,46	8.17	3 0,59 2.2 4	2.70	1 0,1 10. 04	0.74	2,770.90
abutment left	3,744.46	8.17	30,592.24	2.70	10,110.04	12.26	45,907.08
Midle.1	4, 4 22.75	8.27	36,576.14	2.78	12,295.25	3.50	15,479.63
Midle.2	4, 4 22. 7 5	8.27	36,576.14	2.78	12,295.25	6.50	28,747.88
Midle.3	4, 422, 75	8.27	3 6, 576.1 4	2.78	12,295.25	9.50	42,016.13
Σ	20 ,757. 1 7		170,912.90		57,105.83		134, 921 .62

(2) Balance center of entire regulator body

$$X = \Sigma W \cdot x / \Sigma W = \frac{170,912.90}{20,757.17} = 8.23(m)$$

$$Y = \Sigma W \cdot y / \Sigma W = \frac{57,105.83}{20,757.17} = 2.75(m)$$

$$Z = \Sigma W \cdot z / \Sigma W = \frac{134,921.62}{20,757.17} = 6.50(m)$$

<mark>(3) abu</mark>	<mark>itment</mark> P	l <mark>ier : Right (un</mark> it	e:m]					
	#	W	x	W∙x	у	W∙y	Z	W·z
	1	0.00	0.00	0.00	0.75	0.00	1.00	0.00
	2	420.00	2.80	1 176.00	0.75	315.00	1.00	420.00
	3	795.00	10 .9 0	8665.50	0 <u>.</u> 75	596.25	1.00	795 <u>.</u> 00
	4	0.00	1.85	0.00	1.78	0.00	1 <u>.</u> 50	0.00
	5	79.69	3.73	297.24	1.93	153.80	1.50	1 19. 54
	6	4.46	5.67	25.29	1.78	7 <u>.</u> 94	1.50	6.69
	7	28.69	0.68	19.5 1	1.93	55 <u>.</u> 37	0.50	14 <u>.</u> 35
	8	0.00	1.8 5	0.00	2 <u>.</u> 07	0.00	0.50	0.00
	9	2.23	5.74	12.80	1.78	3.97	0.50	1.12
	10	220.79	11.01	2430.90	1.93	426.12	0.50	1 10 <u>4</u> 0
	1 1	1,864.38	8.35	15,567.57	3.45	6,432 .1 1	0.50	932.19
	12	0.00	16.20	0.00	3.45	0.00	0.50	0.00
	13	23.32	15.99	372 <u>.</u> 89	3.88	90.48	0.58	13 <u>.</u> 53
	14-1	77 <u>.</u> 63	4. 60	357 .10	7.98	619.49	1 <u>.</u> 63	126.15
	14-2	0.00	4.60	0.00	7.98	0.00	0.58	0.00
	15-1	43.13	5.45	235.06	7 .98	344.18	1.50	64.70
	15-2	0.00	5.45	0.00	7.98	0.00	0.58	0.00
	16	21.25	4.85	103 .0 6	9.95	2 1 1.44	0.58	12.33
	16'	0.00	4.00	0.00	9.70	0.00	1.33	0.00
	16"	16.25	3.68	59.80	9.95	161.69	1.50	24.38
	17	37.50	2.50	93.75	6.00	225.00	1.50	56.25
	17'	0.00	15.38	0.00	6.13	0.00	1 <u>.</u> 50	0.00
	18	-12.50	2.50	-31.25	6.00	-75.00	1.50	-18.75
	18'	0.00	14.70	0.00	6.13	0.00	0.90	0.00
	19	-1.56	2.50	-3.90	4.30	6.71	0.90	-1.40
	19'	-0.57	15.38	-8.77	3.88	-2.21	0.90	-0.51
	20	-0.50	2.50	-1.25	2.23	-1.12	0.90	-0.45
	21	-1.37	4.85	-6.64	4. 30	5.89	0.88	-1.21
	22	-0.09	4.85	-0.44	2.23	-0.20	0.90	-0.08
	23	-0.15	2.50	-0.38	1.38	-0.21	0.90	-0.14
Bridge	Add1	81.25	14.95	1,214.69	4.60	373.75	1.50	121.88
Deck	Add2	8 <u>.</u> 13	5.95	48.37	9 <u>.</u> 95	80.89	1.00	8 <u>.</u> 13
Side	Add3	37,50	-0.50	-18.75	3.13	117.38	-0.50	-18.75
	Σ	3,744.46		30,608.15		10,123.52		2,785.35

-Balance center of abut regulator

	Right abutment regulator (slide distance	Left abutment e) regulator
$X = \Sigma W \cdot x / \Sigma W = \frac{30,603}{3.74}$	$\frac{3.15}{1.46}$ = 8.17(m) +0.00(m)	=8.17(m)
$Y = \Sigma W \cdot y / \Sigma W = \frac{10,122}{3.744}$	$\frac{3.52}{1.46} = 2.70(m) + 0.00(m)$	=2.70(m)
$Z = \Sigma W \cdot z \times \Sigma W = \frac{2,788}{3,744}$	$\frac{5.35}{1.46} = 0.74$ (m) -13.00(m)	=-12.26(m)

(4) Mid	ld le pier	:〔unite : m〕						
	#	W	х	W·x	у	W∙y	Z	W·z
	1	56.25	0.25	14.06	0.75	42.19	1.50	84.38
	2	573.75	3.05	1,749.94	0.75	430.31	1.50	860.63
	3	1,192.50	10.90	12,998.25	0 <u>.</u> 75	894.38	1.50	1, 7 88 <u>.</u> 75
	4	0.00	1.85	0.00	1.78	0.00	1,50	0.00
	5	159.38	3.73	594.4 9	1.93	307.60	1.50	239.07
	6	8.93	5.67	50.63	1.78	15.90	1.50	13.40
	7	18 <u>.</u> 06	0 <u>.</u> 93	16.80	1.93	34_86	1 <u>.</u> 50	27 <u>.</u> 09
	8	0.00	1.8 5	0.00	2 <u>.</u> 07	0.00	1 <u>.</u> 50	0.00
	9	2.23	5.74	12.80	2.07	4.62	1.50	3.35
	10	220.79	11.01	2,430.90	1.93	426.12	1.50	331.19
	1 1	1,805.00	8.60	15,523.00	4. 30	7,761.50	1 <u>.</u> 50	2,707 <u>.</u> 50
	12	0.00	16.20	0.00	3.88	0.00	1.50	0.00
	13	46.63	0.79	36.84	3.88	180.92	1.50	69 <u>.</u> 95
	14-1	51,75	4. 60	238.05	7.98	412.97	1 <u>.</u> 50	77 <u>.</u> 63
	14-2	0.00	4.60	0.00	7.98	0.00	1.50	0.00
	15-1	10.78	5.45	58.75	7.98	86.02	1. 13	12.13
	15-2	10 <u>.</u> 78	5.45	58.75	7.98	86.02	1.88	20.21
	16	21.25	4.85	103.06	9.95	2 11.4 4	1 <u>.</u> 50	31.88
	16'	0.00	4.00	0.00	9.70	0.00	1.50	0.00
	16"	24.38	3.68	89.72	9.95	242.58	1.50	36.57
	17	75.00	2.50	187.50	6.00	450.00	1.50	112 <u>.</u> 50
	17'	0.00	15.38	0.00	6.25	0.00	1,50	0.00
	18	-25.00	2.50	-62.50	6.00	-150.00	1.50	-37.50
	18'	0.00	14.70	0.00	6.25	0.00	1.50	0.00
	19	<u>-3.</u> 12	2.50	-7.80	4. 30	-13.42	1.50	-4 <u>.</u> 68
	19'	-1 .14	1 4. 70	-16.76	3.88	4.42	1 <u>.</u> 50	-1.71
	20	-1.00	2.50	-2.50	2.23	-2.23	1.50	-1.50
	21	-2.73	4.85	-13.24	4. 30	-11.74	1.50	-4.10
	22	-0,17	4.62	-0.79	2.23	0.38	1,50	-0.26
	23	-0.30	14.70	-4.41	1.38	-0.41	1.50	-0.45
	Add1	162.50	14.95	2,429.38	4.60	747.50	1.50	243.75
	Add2	16.25	5.95	96.69	9.95	161 69	1.50	24.38
	Σ	4, 422.7 5		36,581.61		12,314.02		6,634.16

Balance center of middle regulator

		Midd l e regulator	(slide distance)	Mid. 1 regulator	(slide distance)	Mid. 2 regulator
X=ΣW•x∕ΣW=	36,581.61 4,422.75	=8.27(m)	+0.00(m)	=8.27(m)	+0.00(m)	=8.27(m)
Y=Σ₩•y∕Σ₩=—	12,314.02 4,422.75	=2.78(m)	+0.00(m)	=2.78(m)	+0.00(m)	= 2.78(m)
Ζ=Σ₩·z∕Σ₩=—	6,634.16 4,422.75	=1.50(m)	+2.00(m)	=3.50 (m)	+5.00(m)	=6.50(m)
			(s l ide distance)	Mid. 3 regulator		
			+0.00(m)	=8.27(m)		
			+0.00(m)	=2.78(m)		
			+8.00(m)	=9.50(m)		

4.Case of the examination

|--|

Lood	V	Х	V·x	Н	у	Н•у
Load	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	20 ,757. 1 7	8,23	1 70, 831.5 1			
Gate leaf	40.00	4.85	194.00			
Hoist	256.00	4.85	1,241.60			
Bridge	_	10.95	_			
Weight of water	5,336.97	8,22	43,869.89			
Up-lift pressure	-12,109.50	8.10	-98,086.95			
Wind pre.(Reg. body)				90.75	8.37	759.58
Wind pre (Gate, body)				42.48	7.43	315.63
Wind pre (Bridge body)				74.88	7.55	565.34
Wind pre (Walk bridge, body)				14.40	6.00	86.40
Tota	14,280,64		118,050.05	222.51		1,726.95

Note: The water pressure should be caneled out for the symmetrical force.

Note : Bridge weight is included to Regulator body weight

a)Examination for the slide force

Fc. for sliding: Safe ratio:	μ=0.60 Fs=ΣV · μ/ΣΗ=	38.51	≧	Fsa=1.5	⇒OK	
b)Examination for the fall down						
Foundation width : B=	16.20 (m)					
Foundation length : L=	13.00 (m)					
Act point of the total force :	$X=(\Sigma V \cdot x + \Sigma H \cdot y)/\Sigma V=$	8.39 (m)				
Eccentric distance :	e=X-B/2=	0.29 (m)	\leq	B/6=2.70(m)	⇒0K Lhv absolute v	(میادی
c)Examination for the bearing c	n foundation (kN/m2)				i by absolute i	valuej
ojexaminatori for the boaring e	Ω1=ΣV/B/I (1+6 • e/B)=	75 09				
	$Q2=\Sigma V/B/L(1-6 \cdot e/B)=$	60.53				

	Land	V	Х	٧٠x	Н	у	Н·у
	Laud	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
	Reg. body	20,757.17	8.23	17 0,831 <u>.</u> 51			
	Gate leaf	40.00	4 <u>.</u> 85	194 <u>.</u> 00			
	Hoist	1 1 6.00	4.85	562.60			
	Bridge (Live load only)	36.00	10.95	394.20			
	Weight of water	1,332.49	2.16	2,878.18			
	Up-lift pressure	-6,333.81	6.96	-44,083.32			
	Sedimentation	242.21	1.65	399.65			
	Wind pre.(Reg. body)				88.30	8.06	711.70
	Wind pre (Gate, body)				—	—	—
	Wind pre (Bridge body)				74.88	7.55	565.34
	Water pre (up-st.)				1,825.85	1.42	2,592.71
	Water pre (dw-st.)				-146.25	0.50	-73.13
	Earth pre. (sed.)				18.53	2.08	38.54
	Total	16,190.06		131 ,176 .82	1 ,861.31		3,835.16
Note : Bridge weight is included to Regulator body weight							
a)Exam	ination for the slide for	rce					
	Fc. for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV • μ/ΣH=	=	5.22	\geq	Fsa=1.5	⇒OK
b)Exam	ination for the fall dow	'n					
·	oundation width : B=	16.20 (m)					
Foundation length : L=		13.00 (m)					
Act po	int of the total force :	X=(ΣV·x+ΣH	•y)/ΣV=	8.34 (m)			
	Eccentric distance :	e=X-B/2=		0.24 (m)	≦	B/6=2,70(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation (kN	¶/m2)				
		Q1=ΣV/B/L(1	+6 • e/B)=	83.71			
		Q2=ΣV/B/L(1	-6 •e/B)=	70.04			

[CASE 2 : Regular / Longitudinal direction/ Max. water level / Full CL]

bool	V	Х	V-x	Н	У	Н•у
	(kN)	(m)	(kN·m)	(kN)	(m)	(kN •m)
Reg. body	20,757.17	8.23	17 0,831.51			
Gate leaf	40.00	4.85	194.00			
Hoist	116.00	4.85	562.60			
Bridge (Live load only)	36.00	8.10	291.60			
Weight of water	—	_	—			
Up-lift pressure						
Wind pre.(Reg. body)				128.20	6.33	811.51
Wind pre.(Gate. body)				42.48	7.43	315.63
Wind pre (Bridge body)				74.88	7.55	565.34
Water pre.(up-st.)						
Water pre (dw-st.)						
Earth pre. (sed.)						
Total	20,949 17		171,879. 71	245.56		1,692.48
Note: Bridge weight is	included to Regulato	r body weight				
a)Examination for the slide for	rce					
Fc. for sliding:	µ=0.60					
Safe ratio:	Fs=ΣV∙μ/ΣΗ	=	51 .19	\geq	Fs a=1. 5	⇒OK
b)Examination for the fall dov	Vn					
Foundation width : B=	 16 20 (m)					
Foundation length : I =	13.00 (m)					
Act point of the total force :	X=(ΣΛ•X+ΣΗ	•v)/ΣV=	8 29 (m)			
Fccentric distance :	e=X_B/2=	,	0.19 (m)	<	B/6=2 70(m)	⇒∩ĸ
	5-1-0/2-		0.10 (11)	=	(Checked h	v absolute value)
c)Examination for the bearing	on foundation (k)	J/m2)			(OTICORED D	y absolute value/
	Q1=ΣV/B/L(1	+6 • e/B)=	106.47			
	Q2=ΣV/B/L(1	-6 · e/B)=	92.47			

【CASE 3 : Regular / Longitudinal direction / Max. water level / Full OP】

	Land	V	Z	V • z	Н	у	H-y
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	20,757 17	6.50	1 34,921_61			
	Gate leaf	40.00	6,50	260.00			
	Hoist	1 1 6.00	6.50	754.00			
	Bridge (Live load only)	36.00	6.50	234.00			
	Weight of water	4,744.14	6.50	30,836.91			
	Up-lift pressure	-11 ,161.80	6.50	-72,551,70			
	Sedimentation	_	_	_			
	Wind pre.(Reg. bady)				403.70	6.57	2,652.31
	Wind pre.(Gate. body)						_
	Wind pre (Bridge body)				_	_	_
	Water pre.(canal side)				_	_	—
	Water pre.(embk. side)				_		
	Earth pre. (Embk.)	_	_	_	_	_	_
	Ear th pre . (sed.)				—	_	—
	Total	14,531.51		94,454.82	403.70		2,652.31
	Note: Bridge weight is i	ncluded to Regulato	r body weight				
a)Exan	nination for the slide fo	rce					
	Fc.forsliding:	μ=0.60					
	Safe ratio:	Fs=ΣV • μ/ΣH	=	21.60	≧	Fsa=1.5	⇒OK
b)Exam	nination for the fall dow	/ĥ					
I	Foundation width : B=	13.00 (m)					
F	oundation length : L=	16.20 (m)					
Act po	pint of the total force :	X=(ΣV · x+ΣΗ	•y)/ΣV=	6. 68 (m)			
	Eccentric distance :	e=X-B/2=		0.18 (m)	≦	B/6=2.17(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	nination for the bearing	on foundation (k)	\ /m2)				
		Q1=ΣV/B/L(1	+6•e/B)=	74.73			
		Q2=ΣV/B/L(1	-6 • e/B)=	63.27			

[CASE 4 : Regular / Lateral direction / Max. water level / Full OP]

L CHO	E 5 : Regular / Latera						
	Laod	V	Х	V-x	Н	У	Н•у
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN • m)
	Reg. body	20,757.17	6.50	1 34,921.61			
	Gate leaf	40.00	6.50	260.00			
	Hoist	1 1 6.00	6.50	754.00			
	Bridge (Live load only)	36.00	6.50	234.00			
	Weight of water	1,332.49	6.50	8,661 .19			
	Up-lift pressure	-6,333.81	6.50	-4 1 ,169.77			
	Sedimentation	242.21	6.50	1,574.37			
	Wind pre.(Reg. body)				714.26	6.23	4,449.84
	Wind pre (Gate, body)				—	—	—
	Wind pre (Bridge body)				—	—	—
	Water pre.(canal side)						—
	Waterpre.(embk.side)						—
	Earth pre. (Embk.)	—	_	_			
	Earth pre. (sed.)						
	Tota	16,190.06		105,235.40	714.26		4,449.84
	Note: Bridge weight is in	ncluded to Regulato	r body weight				
a)Exarr	ination for the slide fo	rce					
	Fc. for sliding:	μ=0.60					
	Safe ratio:	Fs=ΣV • μ/ΣH=	=	13.60	\geq	Fsa=1.5	⇒OK
b)Exam	ination for the fall dow	<i>I</i> Ĥ					
	Foundation width : B=	13.00 (m)					
F	oundation length : I =	16 20 (m)					
Act point of the total force :		$X = (\Sigma V \cdot x + \Sigma H)$	•v)/ΣV=	6.77 (m)			
	Eccentric distance :	e=X-B/2=)) - -	0.27 (m)	\leq	B/6=2.17(m)	⇒OK
						(Checked b	v absolute value)
c)Exam	ination for the bearing	on foundation (k)	\ /m2)			(,,
,	0	Q1=ΣV/B/L(1	+6-e/B)=	86.46			
		Q2=ΣV/B/L(1	-6 • e/B)=	67.30			
		· · · · · · · · · · · · · · · · · · ·					

[CASE 5 : Regular / Lateral direction/ Max. water level / Full CL]

	Land	V	Х	٧٠x	Н	У	Н•у
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	20,757.17	6.50	1 34,921 <u>.</u> 61			
	Gate leaf	40.00	6,50	260.00			
	Hoist	1 1 6.00	6.50	754.00			
	Bridge (Live load only)	36.00	6.50	234.00			
	Weight of water	—	—	—			
	Up-lift pressure	—	-	—			
	Sedimentation	—	-	—			
	Wind pre.(Reg. body)				914.61	4.39	4,015.14
	Wind pre (Gate, body)					—	—
	Wind pre (Bridge body)				—	—	—
	Wind pre.(Op.deck body)				_	_	—
	Water pre (canal side)				—	—	—
	Water pre.(embk. side)				—	—	—
	Ear th pre . (Embk.)				—	—	—
	Sum	20,949.17		1 36,169,61	914.61		4,015.14
	Note : Bridge weight is i	ncluded to Regulato	r body weight				
a)Exarr	ination for the slide fo	rce					
	Fc. for sliding :	μ=0.6 0					
	Safe ratio:	Fs=ΣV•µ/ΣH	=	13.74	≧	Fsa=1.5	⇒OK
b)Exam	ination for the fall dow	'n					
I	Foundation width : B=	13.00 (m)					
F	oundation length : L=	16.20 (m)					
Act po	int of the total force :	X=(ΣV · x+ΣΗ	•y)/ΣV=	6.69 (m)			
	Eccentric distance :	e=X-B/2=		0.19 (m)	\leq	B/6=2.17(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation (k)	\ /m2)				
	-	Q1=ΣV/B/L(1	+6•e/B)=	108.20			
		Q2=ΣV/B/L(1	-6 • e/B)=	90.75			

【CASE 6 : Regular / Lateral direction / No water / Full OP】

Land	V	X	V · x	Н	у	H•y
	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	20,757.17	8.23	17 0,831.51	1,660.57	2.70	4,483.54
Gate leaf	40.00	4,85	194.00	3.20	3.83	1 2. 24
Hoist	1 1 6. 0 0	4.85	562.60	9.28	10.20	94.66
Bridge	-	10.95	—		6.25	_
Weight of water	1,332.49	2 .1 6	2,878.18			
Up-lift pressure	-6,333.81	6,96	-44,083.32			
Sedimentation	242.21	1.65	399.65			
Wind pre.(Reg. body)					_	_
Wind pre (Gate, body)				_	_	—
Wind pre (Bridge body)				_		
Wind pre.(Op. deck body)						
Water pre.(up-st.)				1,825.85	1.42	2,592.71
Water pre.(dw-st.)				-146.25	0.50	-73.13
Seism Water pre (up-st.)				17 0.43	2.12	361.27
Earth pre. (sed.)				18.53	2.08	38.54
Tota	16,154,06		130,782.62	3,541.61		7,509.83
Note : Bridge weight is in	ncluded to Regulato	r body weight				
nination for the slide for	rce					
Fc. for sliding:	µ=0.60					
Safe ratio:	Fs=ΣV・µ/ΣΗ	=	2.74	\geq	Fsa=1.15	⇒OK
ination for the fall dow	'n					
Foundation width : B=	16.20 (m)					
oundation length : L=	13 <u>.</u> 00 (m)					
oint of the total force :	Χ=(ΣV · x+ΣΗ	·y)/ΣV=	8.56 (m)			
Eccentric distance :	e=X-B/2=		0 .4 6 (m)	≦	B/3=5.40(m)	⇒OK
(Checked by abso						
ination for the bearing	on foundation (k)	\ /m2)				
	Q1=ΣV/B/L(1	+6•e/B)=	89.77			
	Q2=ΣV/B/L(1	-6 • e/B)=	63.64			
	Laod Reg. body Gate leaf Hoist Bridge Weight of water Up-lift pressure Sedimentation Wind pre.(Reg. body) Wind pre.(Gate. body) Wind pre.(Gate. body) Wind pre.(Gate. body) Wind pre.(Gate. body) Wind pre.(Op. deck body) Water pre.(up-st.) Seism Water pre.(up-st.) Earth pre. (sed.) Total Note : Bridge weight is in in ation for the slide for Fc. for sliding : Safe ratio : hination for the fall dow Foundation width : B= foundation length : L= bint of the total force : Eccentric distance : hination for the bearing	LaodV (kN)Reg. body $20,757.17$ Gate leaf $40,00$ Hoist 116.00 BridgeWeight of water $1,332.49$ Up-lift pressure $-6,333.81$ Sedimentation 242.21 Wind pre.(Reg. body)Wind pre.(Gate. body)Wind pre.(Gate. body)Wind pre.(Gate. body)Wind pre.(Op. deck body)Wind pre.(Op. deck body)Water pre.(up-st.)Seism Water pre.(up-st.)Seism Water pre.(up-st.)Earth pre. (sed.)Total $16,154.06$ Note : Bridge weight is included to Regulatonination for the slide forceFc. for sliding : $\mu=0.60$ Safe ratio :Fs= $\Sigma V \cdot \mu/\Sigma H$ nination for the fall downFoundation width : B= 16.20 (m)oundation length : L= 13.00 (m)oint of the total force : $X=(\Sigma V \cdot x+\Sigma H)$ Eccentric distance : $e=X-B/2=$ nination for the bearing on foundation (kN) $Q1=\Sigma V/B/L(1)$	Laod V x (kN) (m) Reg. body 20,757.17 8.23 Gate leaf 40,00 4.85 Hoist 116.00 4.85 Bridge 10.95 Weight of water 1,332.49 2.16 Up-lift pressure -6,333.81 6.96 Sedimentation 242.21 1.65 Wind pre.(Reg. body)	$\begin{tabular}{ c c c c c c } \hline V & x & V\cdot x \\ \hline (kN) & (m) & (kN\cdot m) \\ \hline Reg, body & 20,757,17 & 8,23 & 170,831,51 \\ \hline Gate leaf & 40,00 & 4.85 & 194,00 \\ \hline Hoist & 116,00 & 4.85 & 562,60 \\ \hline Bridge & - & 10.95 & - \\ \hline Weight of water & 1,332,49 & 2.16 & 2,878,18 \\ \hline Up-lift pressure & -6,333,81 & 6.96 & 44,083,32 \\ \hline Sedimentation & 242,21 & 1.65 & 399,85 \\ \hline Wind pre.(Reg. body) & & & & \\ \hline Wind pre.(Gate, body) & & & & \\ \hline Wind pre.(Gate, body) & & & & \\ \hline Wind pre.(Gate, body) & & & & \\ \hline Wind pre.(Gate, body) & & & & \\ \hline Wind pre.(Gate, body) & & & & \\ \hline Wind pre.(Qp, deck body) & & & & \\ \hline Wind pre.(Qp, deck body) & & & & \\ \hline Water pre.(up-st.) & & & & \\ \hline Seism Water pre.(up-st.) & & & & \\ \hline Earth pre. (sed.) & & & & \\ \hline Total & 16,154,06 & & 130,782,62 \\ \hline Note: Bridge weight is included to Regulator body weight trination for the slide force \\ \hline Fc. for sliding : & \mu=0,60 \\ & Safe ratio : & Fs=\Sigma V \cdot \mu/\Sigma H= & 2.74 \\ \hline nination for the fall down \\ \hline Foundation width : B= & 16,20 (m) \\ \hline coundation width : B= & 16,20 (m) \\ \hline coundation length : L= & 13,00 (m) \\ \hline bint of the total force : & X=(\Sigma V \cdot x + \Sigma H \cdot y)/\Sigma V = & 8.56 (m) \\ \hline Eccentric distance : & e=X-B/2= & 0.46 (m) \\ \hline mination for the bearing on foundation (kN/m2) \\ & Q1=\Sigma V/B/L(1+6 \cdot e/B)= & 89.77 \\ & Q2=\Sigma V/B/L(1-6 \cdot e/B)= & 63.64 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline V & X & V \cdot X & H \\ \hline (kN) & (m) & (kN \cdot m) & (kN) \\ \hline Reg. body & 20,757,17 & 8,23 & 170,831,51 & 1,660,57 \\ \hline Gate leaf & 40,00 & 4,85 & 194,00 & 3,20 \\ \hline Hoist & 116,00 & 4.85 & 562,60 & 9,28 \\ \hline Bridge & - & 10.95 & - & - \\ \hline Weight of water & 1,332,49 & 2,16 & 2,878,18 & - \\ \hline Up-lift pressure & -6,333,81 & 6,96 & 44,083,32 & - \\ \hline Sedimentation & 242,21 & 1.65 & 399,65 & - \\ \hline Wind pre,(Reg. body) & & & - \\ \hline Wind pre,(Gate, body) & & & & - \\ \hline Wind pre,(Gate, body) & & & & - \\ \hline Wind pre,(Gate, body) & & & & & - \\ \hline Wind pre,(Up-st.) & & & & & 1,825,85 \\ \hline Water pre.(up-st.) & & & & & & 1,825,85 \\ \hline Water pre.(up-st.) & & & & & & & 1,825,85 \\ \hline Water pre.(up-st.) & & & & & & & & 1,825,85 \\ \hline Water pre.(up-st.) & & & & & & & & & & & & & \\ \hline In ation for the slide force & Fc. for sliding : & $\mu = 0,60$ & $130,782,62$ & $3,541,61$ \\ \hline Note: Bridge weight is included to Regulator body weight traitation for the slide force & Fc. for sliding : & $\mu = 0,60$ & 364 ratio : $Fs = $V \cdot $\mu/$\SigmaH = $2,74$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

[CASE 7 : Seism / Longitudinal direction / Max water level / Full CL]

Lood	V	Х	V-x	Н	У	Н•у
Lauq	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	20,757.17	8.23	17 0,831.51	1,660.57	2.70	4,483.54
Gate leaf	40.00	4 <u>.</u> 85	194.00	3.20	8.90	28.48
Hoist	1 1 6. 0 0	4.85	562.60	9.28	10.20	94.66
Bridge	_	8.10	_	—	6.25	_
Weight of water	_	_	_	_	_	
Up-lift pressure	—			_	—	—
Wind pre.(Reg. body)				_	_	
Wind pre.(Gate.body)				_	_	_
Wind pre (Bridge, body)				—	—	—
Wind pre.(Op. deck body)				—	—	—
Water pre (up-st.)				_	_	
Water pre (dw-st.)						
Total	20,913.17		171,588.11	1,673.05		4,606.68

[CASE 8 : Seism / Longitudina] direction / No water / Full OP]

Note : Bridge weight is included to Regulator body weight

Fc. for sliding:	µ=0.60				
Safe ratio:	Fs=ΣV·μ/ΣΗ=	7.50	\geq	Fs a=1 .15	⇒OK
a)Examination for the slide forc	e				
Foundation width : B=	16.20 (m)				
Foundation length : L=	13.00 (m)				
b)Examint of the total force :	Χ=(ΣV・x+ΣΗ・y)/ΣV=	8.43 (m)			
Eccentric distance :	e =X - B/2=	0.33 (m)	≦	B/3=5.40(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing o	n foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	1 11<u>.</u>4 4			
	Q2=ΣV/B/L(1-6 · e/B)=	87.17			

	Lood	V	z	V·z	Н	у	Н•у
	Laou	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	20,757.17	6.50	1 34,921 <u>6</u> 1	1,660.57	2.70	4,483.54
	Gate leaf	40.00	6.50	260.00	3.20	8.90	28.48
	Hoist	1 1 6.00	6.50	754.00	9.28	10.20	94.66
	Bridge	_	6.50	—	—	6.25	_
	Weight of water	4,74 4 14	6.50	30,836.91			
	Up-lift pressure	-11,161.80	6.50	-72,551,70			
	Sedimentation	_	_	_			
	Wind pre.(Reg. body)				—	_	_
	Wind pre (Gate, body)						
	Wind pre (Bridge body)				_		
	Wind pre.(Op. deck body)						
	Seism water pre. (Abut)				109 .1 7	3.02	329.69
	Seism water pre. (Mid.)				491.28	3.13	1,537.71
	Ear th pre . (sed.)				—	—	—
	Tota	14, 4 95.51		94,220,82	2,273.50		6,474.08
	Note: Bridge weight is in	ncluded to Regulato	r body weight				
a)Exan	nination for the slide for	rce					
	Fc.forsliding:	µ=0.60					
	Safe ratio:	Fs=ΣV・µ/ΣΗ:	=	3 <u>.</u> 83	≧	Fsa=1.15	⇒OK
b)Exam	nination for the fall dow	ľ					
I	Foundation width : B=	13.00 (m)					
F	oundation length : L=	16.20 (m)					
Act po	oint of the total force :	X=(ΣV∙x+ΣH	•y)/ΣV=	6.95 (m)			
	Eccentric distance :	e=X-B/2=		0.45 (m)	\leq	B/3=4.33(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation (k)	\ /m2)				
		Q1=ΣV/B/L(1	+6•e/B)=	83.12			
		Q2=ΣV/B/L(1	-6 •e/B)=	54.53			

[CASE 9 : Seism / Lateral direction / Max. water level / Full OP]

	Lood	V	Х	V-x	Н	у	Н•у
	Laud	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	20,757.17	6.50	1 34,921 <u>6</u> 1	1,660.57	2.70	4,483.54
	Gate leaf	40.00	6.50	260.00	3.20	3.83	12.26
	Hoist	1 1 6.00	6.50	754.00	9.28	10.20	94.66
	Bridge	—	6.50	—	-	6.25	_
	Weight of water	1,332.49	6.50	8,661.19	_	—	_
	Up-lift pressure	-6,333,81	6.50	-41,169,77			
	Sedimentation	242.21	6.50	1,574.37	_	_	_
	Wind pre.(Reg. body)				_	_	
	Wind pre (Gate, body)						
	Wind pre (Bridge body)						
	Wind pre.(Op. deck body)						
	Seism water pre. (Abut)				32.68	3.02	98.69
	Seism water pre. (Mid.)				109.56	3.13	342.92
	Earth pre. (sed.)						
	Tota	16,154.06		105,001,40	1,815,29		5,032.07
	Note: Bridge weight is in	ncluded to Regulato	r body weight				
a)Exan	ination for the slide for	rce					
	Fc. for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV • μ/ΣH=	=	5 <u>.</u> 34	≧	Fsa=1.15	⇒OK
b)Exam	ination for the fall dow	'n					
	Foundation width : B=	13.00 (m)					
F	oundation length : L=	16.20 (m)					
Act po	int of the total force :	X=(ΣV · x+ΣH	•y)/ΣV=	6.81 (m)			
	Eccentric distance :	e=X-B/2=		0.31 (m)	≦	B/3=4.33(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation					
		Q1=ΣV/B/L(1	+6•e/B)=	87 <u>.</u> 68			
		Q2=ΣV/B/L(1	-6 • e/B)=	65.73			

[CASE 10 : Seism / Lateral direction / Max.water level / Full CL]
	Laod	V	Х	V•x	Н	У	Н∙у
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
	Reg. body	20,757.17	6.50	134,921.61	1,660.57	2.70	4,483.54
	Gate leaf	40.00	6.50	260.00	3.20	8.90	28.48
	Hoist	116.00	6.50	754.00	9.28	10.20	94.66
	Bridge	—	6.50	—	—	6.25	—
	Weight of water	_	_	_			_
	Up-lift pressure	_	_	_			_
	Sedimentation	_	_	_			_
	Wind pre.(Reg. body)				—	_	—
	Wind pre (Gate, body)						
	Wind pre (Bridge body)				—		—
	Wind pre (Op. deck body)				_	_	—
	Seism water pre. (Abut)						
	Seism water pre. (Mid.)				_		—
	Earth pre. (sed.)				_		—
	Total	20,913.17		1 35,935 61	1,673.05		4,606.68
	Note : Bridge weight is in	ncluded to Regulato	r body weight				
a)Exarr	nination for the slide for	rce					
	Fc. for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV・µ/ΣΗ=	=	7.50	≧	Fsa=1.15	⇒OK
b)Exam	ination for the fall dow	'n					
I	Foundation width : B=	13.00 (m)					
F	oundation length : L=	16.20 (m)					
Act po	oint of the total force :	Χ=(ΣV · x+ΣΗ	•y)/ΣV=	6.72 (m)			
	Eccentric distance :	e=X-B/2=		0.22 (m)	\leq	B/3=4.33(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation					
		Q1=ΣV/B/L(1	+6 • e/B)=	109.39			
		Q2=ΣV/B/L(1	-6 • e/B)=	89.22			

【CASE 11 : Seism / Lateral direction / No water / Full OP】

Land	V	Х	V-x	Н	у	H∙y
Load	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	20,757.17	8.23	17 0,831.51	1,660.57	2.70	4,483.54
Gate leaf	40,00	4,85	194.00	3.20	8.90	28.48
Hoist	256.00	4.85	1,241.60	20.48	10.20	208.90
Bridge	_	10.95	_	_	6.25	_
Weight of water	4,744.14	8.25	3 9,139 .1 6	_	_	—
Up-lift pressure	-11,161,80	8.10	-90,410.58	_	_	_
Wind pre (Reg. body)				_	_	_
Wind pre.(Gate.body)				_	_	_
Wind pre (Bridge, body)				—	—	—
Wind pre (Walk bridge, body)				—	—	—
Seism Water pre (up-st.)				33.03	2.29	75.64
Tota	14,635,51		120,995,69	1,717.28		4,796.56

[CASE 12 : Seism / Longitudinal direction/ Max.water level / Full OP]

Note : The water pressure should be caneled out for the symmetrical force.

Note : Bridge weight is included to Regulator body weight

a)Examination for the slide force

Fc. for sliding: Safe ratio:	μ=0.60 Fs=ΣV · μ/ΣΗ=	5.11	2	Fsa=1.15	⇒OK	
b)Examination for the fall down						
Foundation width : B=	16.20 (m)					
Foundation length : L=	13.00 (m)					
Act point of the total force :	X=(ΣV · x+ΣΗ · y)/ΣV=	8.60 (m)				
Eccentric distance :	e=X-B/2=	0.50 (m)	\leq	B/3=5.40(m) (Checked	⇒OK I bv absolute v	value)
c)Examination for the bearing c	n foundation (kN/m2)			,	•	,
,	Q1=ΣV/B/L(1+6 • e/B)=	82.36				
	Q2=ΣV/B/L(1-6 · e/B)=	56.63				

J .				-		
Lood	V	х	ו۷	Н	У	Н∙у
Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	20 ,757. 1 7	8.23	170,831,51			
Gate leaf for 3vents	30.00	4.85	145.50			
Hoist for 3vents	87.00	4.85	421.95			
Stoplog Gate of U.S.	10.00	2.50	25 <u>.</u> 00			
Stoplog Gate of D.S.	10.00	15,38	153 <u>.</u> 80			
Bridge (Live load only)	36.00	10.95	394.20			
Weight of water	4,151.83	7.92	32,882.49			
Weight of water at stoplog	-899.31	1.25	-1,124.14			
Up-lift pressure	-10,335.21	7.98	-82,474.98			
Sedimentation	242.21	1.65	399.65			
Sedimentation at stoplog	-46.45	1.25	-58.06			
Wind pre (Reg. body)				65.95	8.09	533.54
Wind pre.(Gate.body)				—	—	—
Wind pre.(Bridge.body)				74.88	7.55	565.34
Water pre (up-st.)				1,825.85	1.42	2,592.71
Water pre (dw-st.)				-1,018.02	1.50	-1,527.03
Earth pre. (sed.)				18.53	2.08	38.54
Total	14,043.24		121,596.92	967.19		2,203.10
Note: Bridge weight is in	ncluded to Regulator	r body weight				
nination for the slide for	rce					
Fc. for sliding:	µ=0.60					
Safe ratio	$E_{0} = \sum \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$	-	8 71	>	Eco-15	⇒∩k

[CASE 13 : Regular / Longitudinal direction/ Max. water level / Maintenace case]

Safe ratio: Fs=ΣV · μ/ΣH= 8.71 Fsa=1.5 ⇒0K \leq b)Examination for the fall down Foundation width : B= 16.20 (m) 13.00 (m) Foundation length : L= Act point of the total force : $X=(\Sigma V \cdot x + \Sigma H \cdot y)/\Sigma V =$ 8.82 (m) ≦ Eccentric distance : e=X-B/2= 0.72 (m) B/6=2.70(m) ⇒OK (Checked by absolute value) c)Examination for the bearing on foundation (kN/m2) $Q1=\Sigma V/B/L(1+6 \cdot e/B)=$ 84.46 $Q2=\Sigma V/B/L(1-6 \cdot e/B)=$ 48.90

A-4-5. Sahelyia Regulator

		L.		v tion	tion	tion	Vertical force	Resistant moment	Horizontal force	Torque moment	For t	he sliding	For the	fa l down	^{^cte1)} F	or the ground re	eaction		
Pier	ase	ectio	nditic	۷	V∙x	Н	Н·у	Sa	ife r atio	Eccentricity	B/6	Ground reactior	Ground reaction	Bearing	agbr	Remarks			
	0	Dir	CO	(kN)	(kN · m)	(kN)	(kN•m)	Required ratio	Desing	e (m)	(Allowable)	Q1 (kN/m2)	Q2 (kN/m2)	(kN/m2)	JL				
	1	Long,	Regular	9,296.64	72,509.84	129 <u>.</u> 69	1,193.07	1.50	≦ 43 <u>.</u> 01	0.33	≦ 2 <u>.</u> 53	98,76	75,99		OK				
	2	Long.	Regular	10,778.76	82,364.34	1,517.09	3,776.88	1.50	≦ 4.26	0.39	≦ 2.53	116.90	85.71		OK				
	3	Long.	Regular	13,479.82	103,926.34	149.64	1,190.92	1.50	≦ 54.05	0.20	≦ 2.53	136.69	116.69		ОK				
	4	Latera l ,	Regular	9,411.63	32,940.71	243.00	1,941.57	1.50	≦ 23.24	0.21	≦ 1.17	1 04,38	72 <u>.</u> 53		OK				
ator	5	Lateral.	Regular	10, 778. 76	37,725.67	615.62	4,543.28	1.50	≦ 10.51	0.42	≦ 1.17	137.77	64.83		OK				
nbə	6	Latera l ,	Regular	13,479.82	47,179.37	362 <u>.</u> 13	1,897 <u>.</u> 56	1.50	≦ 22 <u>.</u> 33	0.14	≦ 1 . 17	1 41 <u>.</u> 89	111 <u>4</u> 9		ОK				
a Re	7	Long.	Seism	10,763.76	82,207.59	2,639,74	6,633 <u>.</u> 25	1 .1 5	≦ 2.45	0.65	≦ 5.07	1 27 <u>.</u> 12	75 <u>.</u> 21		OK				
elyi	8	Long.	Seism	13,464.82	103,812.34	1,077 <u>.</u> 19	3,360 <u>.</u> 93	1 .1 5	≦ 7 <u>.</u> 50	0.36	≦ 5 <u>.</u> 07	1 44 <u>.</u> 53	108.57		OK				
Sah	9	Latera l .	Seism	9,396.63	32,888.21	1,529.00	4,980.70	1 .1 5	≦ 3.69	0.53	≦ 2.33	128.43	48.19		OK				
	10	Latera l ,	Seism	10,763.76	37,673.17	1,204.34	3,804.37	1 .1 5	≦ 5.36	0.35	≦ 2.33	1 31 <u>.</u> 51	70 <u>.</u> 81		OK				
	11	Lateral.	Seism	13,464.82	47,126.87	1,077.19	3,360.93	1.15	≦ 7.50	0.25	≦ 2.33	153.67	99.43		ОК				
	12	Long.	Seism	9,498.63	74,072.27	1,127.58	3,572.45	1 .1 5	≦ 5.05	0.57	≦ 5.07	109.36	69.19		OK				
	13	Long.	Regular	8,513.80	73,537.34	389.29	1,397.34	1.50	≦ 13.12	1.20	≦ 2.53	1 17.92	42.11		OK				

Summary table of result on the stability examination for Sahelyia Regulator

Note 1) Ground reaction for the bearing capacity should be consideration in Chapter 12

Sahelyia Regulator / Stability examination

1.Design condition

(1)Dimens	sion of fo	o <mark>rm</mark> for ab	utment P	ier (unit	e:m]								
A(1)=	15.20	A(2)=	0.00	A(3)=	1.85	A(4)=	0.00	A(5)=	3.75	A(6)=	0.36	A(7)=	9.24
A(8)=	0.50	A(9)=	14 <u>.</u> 70	A(10)=	0.00	A(11)=	3 .5 0	A(12)=	1.20	A(13)=	0.22	A(14)=	0.50
A(15)=	9,50	A(16)=	4 .00	A(17)=	1,70	A(18)=	9.50	A(19)=	0.85	A(20)=	0.85	A(21)=	1.00
A(22)=	1.00	A(23)=	1.00	A(24)=	0.27	A(25)=	0.17	A(26)=	0.22	A(27)=	4.75	A(28)=	4.75
A(29)=	0.00	A(30)=	0.70	A(31)=	0.15	A(32)=	0.65	A(33)=	0.00	A(34)=	0.65	A(35)=	0.00
B(1)=	1.00	B(2)=	1 <u>.00</u>	B(3)=	2.00	B(4)=	1.00	B(5)=	0.25	B(6)=	0.75	B(7)=	0,20
B(8)=	0.80	B(9)=	0.20	B(10)=	0.80	B(11)=	1.00	B(11')=	0.75	B(12)=	0.00	B(13)=	0.00
C(1)=	1.50	C(2)=	5 <u>.</u> 95	C(3)=	4.55	C(4)=	1.50	C(5)=	1.45	C(6)=	4.50	C(7)=	4.05
C(8)=	0.50	C(9)=	0.50	C(10)=	0.25	C(11)=	1.45	C(12)=	0.80	C(13)=	0.25	C(14)=	0.00
C(15)=	0.50	C(16)=	0.00	C(17)=	0.25								

(2)Dimens	sion of fo	o <mark>rm</mark> for Mi	ddle Pier	[unite:m]]								
D(1)=	15.20	D(2)=	0.50	D(3)=	1.35	D(4)=	0.00	D(5)=	3.75	D(6)=	0.36	D(7)=	9.24
D(8)=	0.50	D(9)=	14 <u>.</u> 20	D(10)=	0.00	D(11)=	3.00	D(12)=	1.20	D(13)=	0.22	D(14)=	0.50
D(15)=	9.50	D(16)=	3.50	D(17)=	1.70	D(18)=	9.50	D(19)=	0.85	D(20)=	0.85	D(21)=	1.00
D(22)=	1.00	D(23)=	1.00	D(24)=	0.27	D(25)=	0.22	D(26)=	0.22	D(27)=	4.75	D(28)=	4.75
D(29)=	0.00	D(30)=	0.70	D(31)=	0 .15	D(32)=	0.65	D(33)=	0.00	D(34)=	0.65	D(35)=	0.00
D(36)=	0.00												
E(1)=	1.00	E(2)=	1 <u>.</u> 00	E(3)=	1 .0 0	E(4)=	3.00	E(5)=	1.00	E(6)=	0.25	E(7)=	0.50
E(8)=	0.25	E (9)=	0.20	E(10)=	0.60	E(11)=	0.20	E(12)=	0.25	E(13)=	0.50	E(14)=	0.25
E(15)=	0.20	E(16)=	0 <u>.</u> 60	E(17)=	0.20	E(18)=	0.00	E(19)=	0.00				
F(1)=	1.50	F (2)=	5.95	F(3)=	4.55	F(4)=	1.50	F(5)=	1.45	F(6)=	4.50	F(7)=	4.05
F(8)=	0.50	F (9)=	0 <u>.</u> 50	F(10)=	0 <u>.</u> 25	F(11)=	1.45	F(12)=	0.80	F(13)=	0.25	F(14)=	0.00
F(15)=	0.50	F (16)=	0.00	F(17)=	0.25								

(3)Number and slide distance of center for each pier [unite:m]

	Number of pier : a	abutment	2 pier	S				active(y)	х	у	z
		middle	1 pier	S				or not(n)	(m)	(m)	(m)
	Number of vent :		2			Right abutm	nent pie	у	0.00	0.00	0.00
						Left abutme	ent pier	у	0.00	0.00	7.00
	Entire regulator w	idth :	7.00 m			Middle pier	1	у	0.00	0.00	2.00
	Entire regulator le	ngth: 1	l 5.20 m			Middle pier	2	n	0.00	0.00	0.00
						Midd l e pier	3	n	0.00	0.00	0.00
(4) Main	level of foundation	EI 40 05	m								
	Gate bottom :	EL43.00	m								
(5)Unite	weight [unit : k RC : Concrete :	:N/m ³] 25.00 23.00	So Soil (il (Wet) in water)	:	18.00 10.00	Soil	(Saturat	ion〕: Water:	20.00 10.00	

(6)Seismic co-efficient

KH= 0.08

KH = 0.09 (submerged condition)

(7)Case of examination

Case	Direction		Water Leve		Situation of gate	Condi.	Additional	(m)
Canol	Long	U.S.	WL47.00m	HWL	Onen arte	Pogular		
Caser	Long.	D.S.	WL47.00m	HWL	<u>Open gale</u>	Regular	_	
6.0002	Long	U.S.	WL46.55m	Max.WL	Class date	Poqular	sedimentation	0.3
Casez	Long.	D.S.	WL41.55m	Low	Close gale	Negulai		
Cano3	Long	U.S.	—	No WL	Open gate	Rogular		
0 4360	Long.	D.S.		No WL	<u>Open gale</u>	Negulai		
Case4	Lateral	U.S.	WL46.55m	Max.WL	Open date	Regular		_
Ca3 0 4	Lateral.	D.S.	WL46.55m	Max.WL	<u>Open gale</u>	Regular		
C 28.05	∣ atoral	U.S.	WL46.55m	Max.WL	Close date	Rogular	sedimentation	0.3
Cased	Lateral.	D.S.	WL41.55m	Low	Close gale	Кеуша		
Case6	lateral	U.S.	_	No WL	Open date	Regular	_	
04300	Lateral.	D.S.		No WL	<u>Open gate</u>	Regular		
Case7	Long	U.S.	WL46 .5 5m	Max.WL	Close gate	Seism of	sedimentation	0.3
04307	Long.	D.S.	WL41.55m	Low	Oldse gale	case2		
Case8	Long	U.S.		No WL	Onen gate	Seism of	_	
04300	Long.	D <u>.</u> S.	—	No WL	<u>open gate</u>	case3		
Case9	lateral	U.S.	WL46 .5 5m	Max.WL	Open date	Seism of	_	_
04300	Latoral.	D.S.	WL46.55m	Max.WL		case4		
Case10	Lateral	U.S.	WL46.55m	Max.WL	Close date	Seism of	sedimentation	0.3
000010	Latorul.	D.S.	WL41.55m	Low	ologe guie	case5		
Case11	lateral	U.S.	_	No WL	Open date	Seism of	_	_
043011	Latoral.	D.S.	—	No WL	<u>open gate</u>	case6		
Case12	Long	U.S.	WL46.55m	Max.WL	Open date	Seism of	_	_
	Long.	D.S.	WL46.55m	Max.WL		case6		
Case13	Long	U.S.	WL46.55m	Max.WL	Maintenace date	Regular		0.3
Case 13	Long.	D.S.	WL45.90m	Low	Mantenace yale	Togula		

(8)Coefficient of earth pressure

hternal friction :	φ= 30°			
	Regular case	Seismic case	Seismic (submerged)	Sedimentation
Friction for wall	0°	٥°	0°	—
Active EP coe.	0.333	0.383	0.390	0.5
Passive EP coe.	3.000	2.858	2,84	—

(9)Weight of the gate facility

tem of de	sign bad	Design load	Remarks
Gate leaf	(kN/vent)	12.00	Upper 12.00 Lower 0.00
Hiost (Emargency)	(kN/vent)	86.00	including the hoist weight (300%)
Hiost	(kN/vent)	35.00	including the groove weight
Actual vent wide	(m)	2.00	
Height of gate	(m)	3,55	
Stop Log gate	(kN/vent)	12.00	

(10)Weight of the bridge / note : Include to weight of regulator body

Item of design load	d	Regular case	Seismic case	
Vertical load (body)	(kN/vent)			
Vertical load (live load only)	(kN/vent)	7.50	0.00	
Horizontal force by wind	(kN/vent)	18.72	—	
Counter force for up-to-down st.	(kN)	_	_	
Counter force for right angle	(kN)	—	_	

Height of the handrail= 1.10 (m)

Thick of the bridge= 1.50 (m)

Note : Bridge weight is included to Regulator body weight 3.0 (kN/m2) w=

(11)Wind pressure

1.20 round : 0.70]

2.Caluculation of the regulator weight

(1) Enite regulator body weight

Regulator	W	х	W·x	у	W•y	Z	W·z
abutment right	4,220,52	7.72	32,582. 41	3.06	12,914,79	0.73	3,080.98
abutment left	4,220.52	7.72	32,582.41	3.06	12,914.79	6.27	26,462.66
Midle.1	4,929.78	7.76	38,255.09	3.43	16,909.15	3.50	17,254.23
Midle.2	0.00	7.76	0.00	3.43	0.00	1.50	0.00
Midle.3	0.00	7.76	0.00	3.43	0.00	1.50	0.00
Σ	13,370.82		103,419.91		42,738.73		46,797.87

(2) Balance center of entire regulator body

$$X = \Sigma W \cdot x / \Sigma W = \frac{103,419.91}{13,370.82} = 7.73(m)$$

$$Y = \Sigma W \cdot y / \Sigma W = \frac{42,738.73}{13,370.82} = 3.20(m)$$

$$Z = \Sigma W \cdot z / \Sigma W = \frac{46,797.87}{13,370.82} = 3.50(m)$$

(3) abu	(3) abutment Pier : Right [unite: m]									
	#	W	x	W∙x	у	W∙y	Z	W·z		
	1	0.00	0.00	0.00	0.75	0.00	1.00	0.00		
	2	420.00	2.80	1176.00	0.75	315.00	1.00	420.00		
	3	720.00	10.40	7488.00	0.75	540.00	1.00	720 <u>.</u> 00		
	4	0.00	1.85	0.00	1.98	0.00	1,50	0.00		
	5	135.94	3.73	507.06	2.23	303.15	1.50	203.91		
	6	13.05	5.72	74.65	1.98	25.84	1.50	19 <u>.</u> 58		
	7	48.94	0.68	33.28	2.23	109 .1 4	0.50	24 .47		
	8	0.00	1.8 5	0.00	2. 47	0.00	0.50	0.00		
	9	6.53	5.84	38.14	1.98	12.93	0.50	3.27		
	10	334.95	10.58	3543.77	2.23	7 4 6.94	0.50	167 .4 8		
	1 1	2,186.63	7.85	17,16 5.05	3.75	8,199.86	0.50	1,093.32		
	12	0.00	15.20	0.00	3.75	0.00	0.50	0.00		
	13	29.21	1 4.9 9	437.86	4. 48	130.86	0.58	16 <u>9</u> 4		
	14-1	91 .1 3	4. 60	419.20	9.48	863.91	1 <u>.</u> 63	1 4 8.09		
	14-2	0.00	4.60	0.00	9.48	0.00	0.58	0.00		
	15-1	50.63	5.45	275.93	9.48	479.97	1.50	75 <u>.</u> 95		
	15-2	0.00	5.45	0.00	9.48	0.00	0.58	0.00		
	16	21.25	4.85	103.06	11.75	249.69	0.58	12.33		
	16'	0.00	4.00	0.00	11.50	0.00	1.33	0.00		
	16"	16.25	3.68	59.80	11.75	190.94	1.50	24.38		
	17	37.50	2.50	93 .75	7.20	270.00	1.50	56.25		
	17'	0.00	14.78	0.00	7.33	0.00	1,50	0.00		
	18	-12.50	2.50	-31.25	7.20	-90.00	1.50	-18.75		
	18'	0.00	14.70	0.00	7.33	0.00	0.90	0.00		
	19	-1.80	2.50	-4.50	5.20	-9.36	0.90	-1 <u>.</u> 62		
	19'	-1.67	14.78	-24.68	4. 48	-7.48	0.90	-1.50		
	20	-0.50	2.50	-1.25	2.83	-1.42	0.90	-0.45		
	21	-1.46	4.88	-7.12	5.20	-7.59	0.88	-1.28		
	22	-0.09	4.88	-0.44	2.83	0.25	0.90	-0 <u>.</u> 08		
	23	-0.35	2.50	-0.88	1.38	-0.48	0.90	-0.32		
Bridge	Add1	81.25	1 4.9 5	1,214.69	4.60	373.75	1.50	121.88		
Deck	Add2	8.13	5.95	48.37	11 .7 5	95.53	1.00	8.13		
Side	Add3	37.50	-0.50	-18.75	3.73	139.88	-0.50	-18,75		
	Σ	4,220.52		32,589.74		12,930.81		3,073.23		

-Balance center of abut regulator

		Right abutment regulator	(slide distance)	Left abutment regulator
X=ΣW•x∕ΣW=	32,589.74 4,220.52	-=7.72(m)	+0.00(m)	=7.72(m)
Y=Σ₩•y∕Σ₩=—	12,930.81 4,220.52	-=3.06(m)	+0.00(m)	=3.06(m)
Z=ΣW·z∕ΣW=	3,073.23 4,220.52	-=0.73(m)	-7.00(m)	=-6.27 (m)

(4) Mid	ld le pier	: [unite:m]						
	#	W	х	W∙x	у	W∙y	Z	W·z
	1	56.25	0.25	14.06	0.75	42.19	1.50	84.38
	2	573.75	3.05	1,749.94	0.75	430.31	1.50	860.63
	3	1,080.00	10.40	11,232.00	0.75	810.00	1.50	1,620 <u>.</u> 00
	4	0.00	1.85	0.00	1.98	0.00	1 <u>.</u> 50	0.00
	5	271.88	3.73	1,014.11	2.23	606.29	1.50	407.82
	6	26.10	5.72	149.29	1.98	51.68	1.50	39.15
	7	30.81	0.93	28.65	2.23	68.71	1.50	46 .22
	8	0.00	1.85	0.00	2. 47	0.00	1.50	0.00
	9	6.53	5.84	38.14	2.47	16.13	1.50	9.80
	10	334.95	10.58	3,543.77	2.23	7 4 6.94	1.50	502.43
	1 1	2,112.25	8.10	17,109.23	5.20	10,983.70	1 <u>.</u> 50	3,168 <u>.</u> 38
	12	0.00	15.20	0.00	4. 48	0.00	1.50	0.00
	13	58.41	0.79	46.14	4.48	261.68	1.50	87 <u>.</u> 62
	14-1	60.75	4.60	279.45	9.48	575.91	1,50	91.13
	14-2	30.38	4.60	139.75	9.48	288.00	1.50	45.57
	15-1	12.66	5.45	69.00	9.48	120.02	1.50	18.99
	15-2	12.66	5.45	69.00	9.48	120.02	1.50	18 <u>.</u> 99
	16	21.25	4.85	103.06	11.75	249.69	1,50	31.88
	16'	0.00	4.00	0.00	11.50	0.00	1.50	0.00
	16"	24.38	3.68	89.72	11.75	286.47	1.50	36.57
	17	75.00	2.50	187.50	7.20	540.00	1.50	112 <u>.</u> 50
	17'	0.00	1 4. 78	0.00	7.45	0.00	1 <u>.</u> 50	0.00
	18	-25.00	2.50	-62.50	7 .2 0	-180.00	1.50	-37.50
	18'	0.00	14.70	0.00	7.45	0.00	1.50	0.00
	19	-3.60	2.50	-9.00	5.20	-18.72	1.50	-5.40
	19'	-3,33	1 4. 70	-48.95	4. 48	-14.92	1,50	-5.00
	20	-1.00	2.50	-2.50	2.83	-2.83	1.50	-1.50
	21	-3.13	4.85	-15.18	5.20	-16.28	1.50	-4.70
	22	-0.22	4.59	-1.01	2.83	-0.62	1,50	-0.33
	23	-0.70	14.70	-10.29	1.38	-0.97	1.50	-1.05
Bridge	Add1	162.50	1 4 .95	2,429.38	4.60	747.50	1.50	243.75
Deck	Add2	16 <u>.</u> 25	5.95	96.69	11 <u>.</u> 75	190.94	1.50	24.38
	Σ	4,929.78		38,239.45		1 6, 9 01 . 84		7,394.71

Balance center of middle regulator

	Midd l e regulator	(slide distance)	Mid, 1 regulator	(slide distance)	Mid <u>.</u> 2 regulator
$X = \Sigma W \cdot x / \Sigma W = \frac{38,239.4}{4,929.7}$	$\frac{5}{8} = 7.76$ (m)	+0.00(m)	=7.76(m)	+0.00(m)	= 7.76(m)
$Y = \Sigma W \cdot y / \Sigma W = \frac{16,901.8}{4,929.7}$	$\frac{4}{8}$ = 3.43(m)	+0.00(m)	= 3.43(m)	+0.00(m)	= 3.43(m)
$Z = \Sigma W \cdot z / \Sigma W = \frac{7,394.7}{4,929.7}$	<u>/1</u> /8 = 1.50(m)	+2.00(m)	=3.50(m)	+0.00(m)	=1.50(m)
		(slide distance)	Mid. 3 regulator		
		+0.00(m)	=7.76(m)		
		+0.00(m)	=3.43(m)		
		+0.00(m)	= 1.50(m)		

4.Case of the examination

	CASE 1	:	Regular /	Longitudinal	direction/	H.W.L.	/ Full OP】	
••			- Nogular /	Longituumu				

Load	V	х	V•x	Н	У	Н∙у
	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	13,370,82	7,73	103,356.44			
Gate leaf	24.00	4.85	116.40			
Hoist	172.00	4.85	834.20			
Bridge	_	10.45	—			
Weight of water	3,124,62	7,81	24,403.28			
Up-lift pressure	-7,394.80	7.60	-56,200.48			
Wind pre.(Reg. body)				59.49	9.84	585.38
Wind pre.(Gate. body)				25.56	8.93	228.25
Wind pre (Bridge body)				37.44	8.75	327.60
Wind pre (Walk bridge, body)				7.20	7.20	51.84
Tota	9,296.64		72,509,84	129.69		1,193.07

Note: The water pressure should be caneled out for the symmetrical force.

Note : Bridge weight is included to Regulator body weight

a)Examination for the slide force

Fc. for sliding: Safe ratio:	μ=0.60 Fs=ΣV · μ/ΣΗ=	43.01	2	Fsa=1.5	⇒OK	
b)Examination for the fall down						
Foundation width : B=	15,20 (m)					
Foundation length : L=	7.00 (m)					
Act point of the total force :	$X = (\Sigma V \cdot x + \Sigma H \cdot y) / \Sigma V =$	7.93 (m)				
Eccentric distance :	e=X-B/2=	0.33 (m)	Ś	B/6=2.53(m) (Checked	⇒OK I by absolute va	alue)
c)Examination for the bearing c	on foundation (kN/m2)			·		
· •	Q1=ΣV/B/L(1+6 · e/B)=	98.76				
	Q2=ΣV/B/L(1-6 e/B)=	75.99				

	Lood	V	Х	٧٠x	Н	у	Н•у
	Laud	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	13,370.82	7.73	103,356.44			
	Gate leaf	24.00	4.85	116.40			
	Hoist	70.00	4.85	339.50			
	Bridge (Live load only)	15.00	10.45	156.75			
	Weight of water	815.93	2 .1 1	1,721.61			
	Up-lift pressure	-3,682,50	6.40	-23,568.00			
	Sedimentation	165.51	1.46	241.64			
	Wind pre.(Reg. body)				55.14	9.51	524.38
	Wind pre (Gate, body)					_	_
	Wind pre (Bridge body)				37.44	8.75	327.60
	Water pre (up-st.)				1,478.75	1.96	2,898.35
	Water pre (dw-st.)				-78.75	0.50	-39.38
	Earth pre. (sed.)				2 4.51	2.69	65.93
	Total	1 0 ,778.76		82,364.34	1,517.09		3,776.88
	Note : Bridge weight is in	ncluded to Regulato	r body weight				
a)Exam	ination for the slide fo	rce					
	Fc. for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV • μ/ΣΗ	=	4.26	\geq	Fsa=1.5	⇒OK
h)Evan	ination for the fall dow	'n					
	Equipation width : B=	15 20 (m)					
	oundation length : I =	7.00 (m)					
Acting	int of the total force :	7.00 (III) Y=/\ v+\U	·v)/5\/-	7.90 (m)			
Actpu	Eccontric distance :	$= (2 \nabla^2 X^2 Z^2)$	y)/2V-	7.35 (m)	<	P/6-2.53(m)	
	Eccentric distance.	6-V-D/Z-		0.39 (11)	=	0-2.03(iii)	$\rightarrow Or$
c)Exam	ination for the hearing	on foundation (k)	l/m2)			(Checked D	y absolute value)
u,∟хаш	mation for the bearing		₩/!!!∠/ +6.o/B)=	116.90			
		$Q_1 = 2 V/B/L(1)$	6.e/B)-	10.90 85.74			
			-0-8/0/-	00.71			

[CASE 2 : Regular / Longitudinal direction/ Max. water level / Full CL]

	Land	V	X	V-x	Н	У	H-y
	Laou	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	13,370.82	7.73	103,356 44			
	Gate leaf	24.00	4.85	116 40			
	Hoist	70.00	4.85	339.50			
	Bridge (Live load only)	15.00	7.60	114.00			
	Weight of water	_	_	_			
	Up-lift pressure	_	_	_			
	Wind pre (Reg. body)				86.64	7.33	635.07
	Wind pre (Gate. body)				25.56	8.93	228.25
	Wind pre (Bridge, body)				37.44	8.75	327.60
	Water pre (up-st.)						
	Water pre (dw-st.)						
	Earth pre. (sed.)						
	Total	13,479.82		103,926.34	149.64		1,190.92
	Note : Bridge weight is i	ncluded to Regulato	r body weight				
a)Exam	ination for the slide fo	rce					
	Fc. for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV・µ/ΣH	=	54.05	2	Fs a=1 .5	⇒OK
b)Exam	ination for the fall dow	<i>i</i> n					
ŀ	Foundation width : B=	15.20 (m)					
F	oundation length : L=	7.00 (m)					
Act po	int of the total force :	Χ=(ΣV•x+ΣΗ	•y)/ΣV=	7.80 (m)			
	Eccentric distance :	e =X - B/2=		0.20 (m)	≦	B/6=2.53(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation (kl	\ /m2)				
	-	Q1=ΣV/B/L(1	+6 • e/B)=	136.69			

1**16**.69

【CASE 3 : Regular / Longitudinal direction / Max. water level / Full OP】

Q2=ΣV/B/L(1-6 e/B)=

	Land	V	Z	V-z	H	у	H•y
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN • m)
	Reg. body	13,370.82	3.50	46,797.87			
	Gate leaf	24.00	3,50	84.00			
	Hoist	70.00	3.50	245.00			
	Bridge (Live load only)	15.00	3.50	52.50			
	Weight of water	2,847.81	3.50	9,967.34			
	Up-lift pressure	-6,916.00	3,50	-24,206.00			
	Sedimentation	-	_	_			
	Wind pre.(Reg. body)				243.00	7.99	1,9 41. 57
	Wind pre.(Gate. body)					_	—
	Wind pre (Bridge body)						
	Water pre (canal side)					_	—
	Water pre.(embk.side)				_	_	—
	Earth pre. (Embk.)	_	_	_			
	Earth pre. (sed.)						
	Total	9,411.63		32,940.71	243.00		1,9 41. 57
	Note: Bridge weight is in	ncluded to Regulato	r body weight				
a)Exan	nination for the slide for	rce					
	Fc.forsliding:	µ=0.60					
	Safe ratio:	Fs=ΣV•µ/ΣH	=	23.24	≧	Fsa=1.5	⇒OK
b)Exam	nination for the fall dow	ľ					
I	Foundation width : B=	7 .00 (m)					
F	oundation length : L=	15.20 (m)					
Act po	oint of the total force :	X=(ΣV∙x+ΣH	•y)/ΣV=	3 .71 (m)			
	Eccentric distance :	e=X-B/2=		0.21 (m)	\leq	B/6=1.17(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	nination for the bearing	on foundation (k)	\ /m2)				
		Q1=ΣV/B/L(1	+6•e/B)=	104.38			
		Q2=ΣV/B/L(1	-6 • e/B)=	72.53			

[CASE 4 : Regular / Lateral direction / Max. water level / Full OP]

			L/			
Laod	V	X	V-x	Н	У	Ну
Laou	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	13,370.82	3 <u>.</u> 50	46,797.87			
Gate leaf	24.00	3,50	84.00			
Hoist	70.00	3.50	245.00			
Bridge (Live load only)	15.00	3.50	52.50			
Weight of water	815.93	3.50	2,855.76			
Up-lift pressure	-3,682.50	3,50	-12,888.75			
Sedimentation	165.51	3.50	579.29			
Wind pre.(Reg.body)				615.62	7.38	4,543.28
Wind pre.(Gate.body)				—	—	—
Wind pre.(Bridge.body)				—	—	—
Water pre.(canal side)				_	_	—
Water pre.(embk. side)				—	—	—
Earth pre. (Embk.)	—	-		—	—	—
Earth pre. (sed.)				—	_	—
Total	10,778.76		37,725.67	615.62		4,543.28
Note : Bridge weight is	included to Regulato	r body weight				
a)Examination for the slide for	orce					
Fc. for sliding :	µ=0.60					
Safe ratio:	Fs=ΣV・µ/ΣΗ=	=	10.51	≧	Fsa=1.5	⇒OK
b)Examination for the fall dow	wn					
Foundation width : B=	7 .00 (m)					
Foundation length : L=	15 20 (m)					
Act point of the total force :	X=(ΣV·x+ΣH	•y)/ΣV=	3.92 (m)			
Eccentric distance :	e=X-B/2=		0.42 (m)	\leq	B/6=1.17(m)	⇒OK
					(Checked b	y absolute value)
c)Examination for the bearing	g on foundation (kN	J /m2)			-	,
	Q1=ΣV/B/L(1	+6 • e/B)=	137.77			
	Q2=ΣV/B/L(1-	-6 e/B)=	64.83			

CASE 5 : Regular / Lateral direction/ Max. water level / Full CL

	Land	V	Х	٧٠x	Н	у	Н∙у
	Laoo	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
	Reg. body	13,370.82	3.50	46,797.87			
	Gate leaf	24.00	3,50	84.00			
	Hoist	70.00	3.50	245.00			
	Bridge (Live load only)	15.00	3.50	52.50			
	Weight of water	—	_	—			
	Up-lift pressure	_	_	_			
	Sedimentation	_	_	_			
	Wind pre.(Reg. body)				362.13	5.24	1,897.56
	Wind pre (Gate, body)						
	Wind pre (Bridge body)				_		
	Wind pre.(Op. deck body)				_	_	—
	Water pre.(canal side)				_		
	Water pre.(embk. side)				—		_
	Ear th pre . (Embk.)						—
	Sum	13,479.82		47,179.37	362.13		1,897.56
	Note: Bridge weight is i	ncluded to Regulato	r body weight				
a)Exan	nination for the slide fo	rce					
	Fc.forsliding:	µ=0.60					
	Safe ratio:	Fs=ΣV・µ/ΣΗ:	=	22.33	≧	Fsa=1.5	⇒OK
b)Exan	nination for the fall dow	ľ					
I	Foundation width : B=	7 .00 (m)					
F	oundation length : L=	15.20 (m)					
Act po	oint of the total force :	X=(ΣV · x+ΣH	·y)/ΣV=	3.64 (m)			
	Eccentric distance :	e=X-B/2=		0.1 4 (m)	\leq	B/6=1.17(m)	⇒OK
						(Checked b	y absolute value)
c)Exam	ination for the bearing	on foundation (k)	\ /m2)				
		Q1=ΣV/B/L(1	+6 • e/B)=	141.89			
		Q2=ΣV/B/L(1	-6 • e/B)=	1 11.49			

【CASE 6 : Regular / Lateral direction / No water / Full OP】

	Lood	V	Х	V-x	Н	у	H-y
	Laou	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	13,370.82	7.73	103,356.44	1,069.67	3.06	3,273.19
	Gate leaf	24,00	4,85	116.40	1.92	4.73	9.07
	Hoist	70.00	4.85	339.50	5.60	12.00	67.20
	Bridge		10.45	_	_	7 <u>.</u> 45	_
	Weight of water	815.93	2 .1 1	1,721.61	_	—	—
	Up-lift pressure	-3,682.50	6,40	-23,568.00		_	_
	Sedimentation	165.51	1.46	241.64		_	_
	Wind pre.(Reg. body)				_	—	—
	Wind pre.(Gate. body)				—	—	—
	Wind pre (Bridge body)				_	_	_
	Wind pre.(Op. deck body)					_	_
	Water pre.(up-st.)				1,478.75	1.96	2,898.35
	Water pre.(dw-st.)				-78.75	0.50	-39.38
	Seism Water pre (up-st.)				138.04	2.60	358.89
	Earth pre. (sed.)				24.51	2.69	65.93
	Tota	10,763.76		82,20 7. 59	2,639.74		6,633.25
	Note : Bridge weight is in	ncluded to Regulato	r body weight				
a)Exan	nination for the slide for	rce					
	Fc. for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV · µ/ΣH	=	2.45	≧	Fsa=1.15	⇒OK
b)Exan	nination for the fall dow	/n					
	Foundation width : B=	15.20 (m)					
F	oundation length : L=	7 <u>.</u> 00 (m)					
Act po	oint of the total force :	X=(ΣV · x+ΣH	•y)/ΣV=	8.25 (m)			
	Eccentric distance :	e=X-B/2=		0.65 (m)	≦	B/3=5.07(m)	⇒OK
						(Checked b	y absolute value)
c)Exan	nination for the bearing	on foundation (k)	\ /m2)				
		Q1=ΣV/B/L(1	+6•e/B)=	1 27.1 2			
		Q2=ΣV/B/L(1	-6 • e/B)=	75 _21			

[CASE 7 : Seism / Longitudinal direction / Max water level / Full CL]

Lood	V	Х	V-x	Н	у	Н•у
Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	13,3 7 0.82	7.73	103,356.44	1,069.67	3.06	3,273.19
Gate leaf	24.00	4,85	116.40	1.92	10.70	20.54
Hoist	70.00	4.85	339.50	5.60	12.00	67.20
Bridge	_	7.60	_	_	7.45	
Weight of water	_	_	_	_	_	_
Up-lift pressure		—	_	_	_	—
Wind pre.(Reg. body)				_	_	_
Wind pre.(Gate.body)				_	_	
Wind pre (Bridge, body)				—	—	—
Wind pre.(Op. deck body)				—	—	—
Water pre (up-st.)				—	—	—
Water pre (dw-st.)					_	_
Total	13,464.82		103,812.34	1,077.19		3,360.93

[CASE 8 : Seism / Longitudina] direction / No water / Full OP]

Note : Bridge weight is included to Regulator body weight

Fc. for sliding:	µ=0.60				
Safe ratio:	Fs=ΣV·µ/ΣH=	7.50	\geq	Fs a=1. 15	⇒OK
a)Examination for the slide force	9				
Foundation width : B=	15.20 (m)				
Foundation length : L=	7.00 (m)				
b)Examint of the total force :	Χ=(ΣV • x+ΣΗ • y)/ΣV=	7.96 (m)			
Eccentric distance :	e =X - B/2=	0.36 (m)	≦	B/3=5.07(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing or	n foundation (kN/m2)				
	Q1=ΣV/B/L(1+6 • e/B)=	1 4 4 <u>.</u> 53			
	Q2=ΣV/B/L(1-6 · e/B)=	108.57			

	Land	V	z	V·z	Н	У	Н•у
	Laou	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	13,370.82	3.50	46,797.87	1,069.67	3.06	3,273.19
	Gate leaf	24.00	3,50	84.00	1.92	10.70	20.54
	Hoist	70.00	3.50	245.00	5.60	12.00	67.20
	Bridge	_	3.50	_	_	7.45	_
	Weight of water	2,847.81	3.50	9,967.34			_
	Up-lift pressure	-6,916.00	3,50	-24,206.00			_
	Sedimentation	_	_	_			_
	Wind pre.(Reg. body)				_	_	—
	Wind pre (Gate, body)						_
	Wind pre (Bridge body)				_		_
	Wind pre.(Op. deck body)				—	—	—
	Seism water pre. (Abut)				177.33	3.50	620.66
	Seism water pre. (Mid.)				274.48	3.64	999.11
	Ear th pre . (sed.)				—	—	—
	Tota	9,396.63		32,888,21	1,529.00		4,980.70
	Note: Bridge weight is in	ncluded to Regulato	r body weight				
a)Exan	nination for the slide for	rce					
	Fc. for sliding:	µ=0.60					
	Safe ratio:	Fs=ΣV • μ/ΣΗ⊧	=	3.69	\geq	Fsa=1.15	⇒OK
b)Exan	nination for the fall dow	'n					
	Foundation width : B=	7 .00 (m)					
F	oundation length : L=	15.20 (m)					
Act po	oint of the total force :	X=(ΣV · x+ΣH	•y)/ΣV=	4.03 (m)			
	Eccentric distance :	e=X-B/2=		0.53 (m)	\leq	B/3=2.33(m)	⇒OK
						(Checked b	y absolute value)
c)Exarr	ination for the bearing	on foundation (kN	J /m2)				
		Q1=ΣV/B/L(1	+6 • e/B)=	128.43			
		Q2=ΣV/B/L(1	-6 • e/B)=	48.19			

[CASE 9 : Seism / Lateral direction / Max. water level / Full OP]

		V	Х	V·x	Н	у	H∙y
	Laod	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
	Reg. body	13,3 7 0.82	3.50	46,797.87	1,069.67	3.06	3,273.19
	Gate leaf	24.00	3,50	84.00	1.92	4.73	9.08
	Hoist	70.00	3.50	245.00	5.60	12.00	67.20
	Bridge	_	3.50	_		7.45	_
	Weight of water	815 <u>.</u> 93	3.50	2,855.76			
	Up-lift pressure	-3,682,50	3,50	-12,888,75			
	Sedimentation	165.51	3.50	579.29	_		
	Wind pre.(Reg. body)				_	—	—
	Wind pre (Gate, body)				—	_	_
	Wind pre (Bridge body)				_		
	Wind pre.(Op.deck body)				_	_	—
	Seism water pre. (Abut)				56.58	3.50	198.03
	Seism water pre. (Mid.)				70.57	3. 64	256.87
	Ear th pre . (sed.)					—	—
	Tota	10,763.76		37,673.17	1,204.34		3,804.37
	Note : Bridge weight is in	ncluded to Regulato	r body weight				
a)Exam	ination for the slide for	rce					
	Fc. for sliding :	µ=0.60					
	Safe ratio:	Fs=ΣV • μ/ΣΗ	=	5.36	\geq	Fsa=1.15	⇒OK
b)Exam	ination for the fall dow	'n					
I	Foundation width : B=	7 .00 (m)					
F	oundation length : L=	15.20 (m)					
Act po	int of the total force :	X=(ΣV · x+ΣH	·y)/ΣV=	3.85 (m)			
	Eccentric distance :	e=X-B/2=		0.35 (m)	\leq	B/3=2.33(m)	⇒OK
						(Checked b	y absolute value)
c)Exarr	ination for the bearing	on foundation					
		Q1=ΣV/B/L(1	+6•e/B)=	131.51			
		Q2=ΣV/B/L(1	-6 • e/B)=	70.81			

[CASE 10 : Seism / Lateral direction / Max.water level / Full CL]

Γ	Laod	V	Х	V-x	Н	У	H-y
	Lauu	(kN)	(m)	(kN · m)	(kN)	(m)	(kN • m)
ł	Reg. body	13,370.82	3.50	46,797.87	1,069.67	3.06	3,273.19
(Gate leaf	24,00	3,50	84.00	1.92	10.70	20.54
ł	Hoist	70.00	3.50	245.00	5.60	12.00	67.20
ł	Bridge		3.50			7.45	
١	Neight of water	_	_	—			
l	Jp-lift pressure	_	_	_	_	_	
2	Sedimentation	_	_	—			
١	Vind pre.(Reg. body)				—	_	_
١	Wind pre.(Gate. body)						
١	Wind pre (Bridge body)						
١	Wind pre.(Op.deck body)				_		
ę	Seism water pre. (Abut)						
ę	Seism water pre. (Mid.)						
ł	Earth pre. (sed.)						
	Total	13,464.82		47,126.87	1,077.19		3,360.93
1	Note : Bridge weight is in	ncluded to Regulato	r body weight				
a)Exami	nation for the slide for	rce					
	Fc.forsliding:	µ=0.60					
	Safe ratio:	Fs=ΣV • μ/ΣΗ:	=	7.50	\geq	Fsa=1.15	⇒OK
b)Exami	nation for the fall dow	'n					
F	oundation width : B=	7 .00 (m)					
Fo	oundation length : L=	15.20 (m)					
Act poi	nt of the total force :	X=(ΣV · x+ΣH	•y)/ΣV=	3.75 (m)			
	Eccentric distance :	e=X-B/2=		0.25 (m)	\leq	B/3=2.33(m)	⇒OK
						(Checked b	y absolute value)
c)Exami	nation for the bearing	on foundation					
		Q1=ΣV/B/L(1	+6 • e/B)=	153.67			
		Q2=ΣV/B/L(1	-6 • e/B)=	99.43			

【CASE 11 : Seism / Lateral direction / No water / Full OP】

Load	V	Х	V•x	Н	у	Н•у
Load	(kN)	(m)	(kN · m)	(kN)	(m)	(kN ∙m)
Reg. body	13,370.82	7.73	103,356.44	1,069.67	3.06	3,273.19
Gate leaf	24,00	4,85	116.40	1.92	10.70	20.54
Hoist	172.00	4.85	834.20	13.76	12.00	165.12
Bridge	—	10.45	_	_	7.45	_
Weight of water	2,847.81	7.84	22,326.83	_	_	_
Up-lift pressure	-6,916.00	7,60	-52,561.60	—	—	
Wind pre.(Reg. body)				—	—	
Wind pre.(Gate.body)				_	_	
Wind pre (Bridge, body)				—	—	_
Wind pre (Walk bridge, body)				—	_	_
Seism Water pre (up-st.)				42.23	2.69	113.60
Tota	9,498.63		74,072.27	1,127.58		3,572.45

[CASE 12 : Seism / Longitudinal direction/ Max.water level / Full OP]

Note: The water pressure should be caneled out for the symmetrical force.

Note : Bridge weight is included to Regulator body weight

a)Examination for the slide force

Fc. for sliding: Safe ratio:	μ=0.60 Fs=ΣV · μ/ΣΗ=	5.05	2	Fsa=1.15	⇒OK	
b)Examination for the fall down						
Foundation width : B=	15.20 (m)					
Foundation length : L=	7 .00 (m)					
Act point of the total force :	X=(ΣV · x+ΣH · y)/ΣV=	8 .17 (m)				
Eccentric distance :	е=Х-В/2=	0.57 (m)	\leq	B/3=5.07(m)	⇒OK	
		- ()		(Checke	d by absolute val	ue)
c)Examination for the bearing o	n foundation (kN/m2)			(,	,
, č	$Q1=\Sigma V/B/L(1+6 \cdot e/B)=$	109.36				
	Q2=ΣV/B/L(1-6 · e/B)=	69.19				

Lood	V	x	V·x	Н	у	Н•у
Laod	(kN)	(m)	(kN · m)	(kN)	(m)	(kN •m)
Reg. body	13,370,82	7.73	103 , 356 , 4 4			
Gate leaf for 3vents	12.00	4.85	58.20			
Hoist for 3vents	35.00	4.85	169.75			
Stoplog Gate of U.S.	12.00	2.50	30.00			
Stoplog Gate of D.S.	12,00	14.78	177 .36			
Bridge (Live load only)	15.00	10.45	156.75			
Weight of water	2,578.00	7.61	19,618.58			
Weight of water at stoplog	-1 ,122.15	1.25	-1,402.69			
Up-lift pressure	-6,495.72	7.51	-48,782.86			
Sedimentation	165.51	1.46	2 4 1 <u>.</u> 64			
Sedimentation at stoplog	-68,66	1.25	-85.83			
Wind pre (Reg. body)				46.39	9.51	441.17
Wind pre.(Gate.body)				—	_	_
Wind pre.(Bridge.body)				37.44	8.75	327.60
Water pre (up-st.)				1,478.75	1.96	2,898.35
Water pre (dw-st.)				-1,197.80	1.95	-2,335.71
Earth pre. (sed.)				24.51	2.69	65.93
Tota	8,513.80		73,537.34	389.29		1,397.34
Note : Bridge weight is in	ncluded to Regulato	r body weight				

[CASE 13 : Regular / Longitudinal direction/ Max. water level / Maintenace case]

a)Examination for the slide force

Fc. for sliding:	µ=0.60				
Safe ratio:	Fs=ΣV·µ/ΣH=	13.12	≧	Fsa=1.5	⇒OK
b)Examination for the fall down					
Foundation width : B=	15.20 (m)				
Foundation length : L=	7 .00 (m)				
Act point of the total force :	$X=(\Sigma V \cdot x + \Sigma H \cdot y)/\Sigma V=$	8.80 (m)			
Eccentric distance :	e =X - B/2=	1.20 (m)	\leq	B/6=2.53(m)	⇒OK
				(Checked	l by absolute value)
c)Examination for the bearing on	foundation (kN/m2)				
	Q1=2V/B/L(1+6 • e/B)=	117.92			
	Q2=ΣV/B/L(1-6 · e/B)=	42.11			

APPENDIX A-5

Examination sheet of Bearing Capacity

A-5-1. Bahr Yusef Regulator	A-131
A-5-2. Ibra himia Regulator	A-135
A-5-3. Badra man Regulato r	A-142
A-5-4. Abo Gabal Regulator	A-149
A-5-5. Sahelyia Regulator	A-153

A-5-1. Bahr Yusef Regulator

Examination of bearing capacity by Japanese of Terzaghi method

Bahr Yusef by JP

0.00 0.00 0.00 0.00

Equation 1 : $qu=Qu/Ae = (\alpha \cdot k \cdot c \cdot N_c \cdot S_c + k \cdot q \cdot N_q \cdot S_q + 1/2 \cdot r 1 \cdot \beta \cdot B_e \cdot N_r \cdot S_r)$ Equation 2 : $qa = 1/n \cdot qu$

	Ae	1st term	2nd term	3rd term	qu	n	qa (allowable)	q (actu	al stress)	ludgo	
	(m2)	a k c Nc Sc	k q Na Sa	1/2•r1•β•(BeorLe)•Nr•Sr	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	Judge	
	1.0	0	0	150.66	150.66	3	50.2	<	144.84	NG	ľ
•	1.0	0	0	119.63	119.63	3	39.9	<	138.82	NG	
	1.0	0	0	119.83	119.83	2	59.9	<	133.15	NG	
	1.0	0	0	10 1.5 4	101.54	2	50.8	<	141.7	NG	
_							1		1		-
		case	r1	r2	В	L	V	н	е	Ν	
	case		(kN/m3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)		
L	o ng .	Normal	10	10	27.90	35.50	134,758.39	987.46	0.3	6	
L	ateral	Normal	10	10	27.90	35.50	134,758.39	2,506.86	0.12	6	1
L	ong.	Seism	10	10	27.90	35.50	131,875.39	10,550.03	0	6	Ì
L	ateral	Seism	10	10	27.90	35.50	131,875.39	10,550.03	0.38	6	
_											٦
		case	Be=B or B-2e	Le=L or L-2e	tanθ	α	β	k (D†=0)	qu=N/0.082	φ=√ (40) \ 45	
			(m)	(m)	H/V	1+0.3 (Be/Le pr Le/Be)	1-0.4 · (Be/Le or Le/Be)	1-0.3(Df/Be or Df/_e)		(1 2N)+ 15	
L	ong.	Normal	27.30	35.50	0.01	1.231	0.692	1.000	73.17	23	
L	ateral	Normal	27.90	35.26	0.02	1.379	0.494	1.000	73.17	23	
L	ong.	Seism	27.90	35.50	0.08	1.236	0.686	1.000	73.17	23	
L	ateral	Seism	27.90	34.74	0.08	1.374	0.502	1.000	73.17	23	
						-		-			
		Case	С	Nc	Nq	Nr	Sr	B*	Df	q	
		0000	k N/m 2	(by graph)	(by graph)	(by graph)	(B*) ^ (-1/3)	Be/1 or Le/1	(m)	(kN/m2)	
L	ong.	Normal	0	0.00	0.00	4.80	0.33	27.30	0.00	0.00	Ĩ
L	ateral	Normal	0	0.00	0.00	4.50	0.30	35.26	0.00	0.00	Γ
L	o ng .	Seism	0	0.00	0.00	3.80	0.33	27.90	0.00	0.00	
L	ateral	Seism	0	0.00	0.00	3.80	0.31	34.74	0.00	0.00	Γ

Examination of bearing capacity by Egyptian code of Terzaghi method

Bahr Yusef by EGY

q

0.00 0.00 0.00 0.00

 $Equation \ 1: qu = c \cdot N_c \cdot \lambda c \cdot ic + \gamma 1 \cdot Df \cdot N_q \cdot \lambda_q \cdot i_q + \gamma 2 \cdot B_e \cdot N_r \cdot \lambda_r \cdot ir$

Equation 2 : qa = 1/n·qu

	1st term	2nd term	3rd term	qu	n	qa (allowable)	q (actu	al stress)	ludae	
	c•Νc•λc•ic	γ1 Df Ng λg ig	γ2 Be Nr λr ir	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	Judge	
	0	0	668.07	668.07	2.5	267_2	≧	144.84	OK	
	0	0	672.91	672.91	2.5	269_2	≧	138.82	OK	
	0	0	539.93	539.93	1.8	300.0	≥	133.15	OK	
	0	0	551.10	551.1 0	1.8	306.2	≥	141.7	OK	
·										
	case	r1	r2	В	L	V	н	e	Ν	
	0000	(kN/m3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)		
Long.	Normal	10	10	27.90	35.50	134,758.39	987.46	0.3	e	
Latera	Normal	10	10	27.90	35.50	134,758.39	2,506.86	0.12	6	
Long.	Seism	10	10	27.90	35.50	131,875.39	10,550.03	0	(
Latera	Seism	10	10	27.90	35.50	131,875.39	10,550.03	0.38	(
	case	Be=B or B-2e	Le=L or L-2e	tanθ	λq,λc	λr	Df	au=N/0.082	φ=√	
	0000	(m)	(m)	H/V	1+0.3• (Be/_e pr Le/Be)	1-0.3 (Be/Le or Le/Be)		qu 1001002	(12N)+15	
Long.	Normal	27.30	35.50	0.01	1.231	0.769	0.00	73 <u>.</u> 17	23	
Latera	Normal	27.90	35.26	0.02	1.379	0.621	0.00	73.17	23	
Long.	Seism	27.90	35.50	0.08	1.236	0.764	0.00	73.17	23	
Latera	Seism	27.90	34.74	0.08	1.374	0.626	0.00	73.17	23	
		С	Nc	Nq	Nr	ic	iq	ir	Fb	
	case	k N/m 2	(1)	(2)	(3)	(4)	(5)	(6)		
Long.	Normal	0	18.05	8.66	3.25	0.98	0.9847	0.98	2.50	
Latera	Normal	0	18.05	8.66	3.25	0.96	0.96	0.95	2.50	
Long.	Seism	0	18.05	8.66	3.25	0.82	0.84	0.78	1.80	
Latera	Seism	0	18.05	8.66	3.25	0.82	0.84	0.78	1.80	
۹		(1)	Nc=(Na-1) / ta	in Ø		I				

(2) Nr=(Nq-1) $\tan \phi$

(3) Nq= $e^{\pi \tan \phi} \tan^2(45 + \phi/2)$

(4) ic=iq-(1-iq)/(Nq-1)

(5) $iq = \{1-0.7 \cdot (H^*Fb/(V^*Fb+A \cdot c \cdot \cot \phi))\}^3$

(6) $ir=\{1-(Hb/(Vb+A\cdot c \cdot cot \phi))\}^3$

A-5-2. Ibrahimia Regulator

Examination of bearing capacity by Japanese of Terzaghi method

Ibrahimia by JP

0.00 0.00 0.00 0.00

Equation 1 : $qu=Qu/Ae = (\alpha \cdot k \cdot c \cdot N_c \cdot S_c + k \cdot q \cdot N_q \cdot S_q + 1/2 \cdot r 1 \cdot \beta \cdot B_e \cdot N_r \cdot S_r)$ Equation 2 : $qa = 1/n \cdot qu$

Ae	1st term	2nd term	3rd term	qu	n	qa (allowable)	q (actu	al stress)	ludgo	
(m2)	a k c No Sc	k q Na Sa	1/2•r1•β•(BeorLe)•Nr•Sr	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/ m2)	Judge	l
1	1.0 0	0	285.03	285.03	3	95.0	<	144.84	NG	ĺ
1	1.0 0	0	225.97	225.97	3	75.3	<	138.82	NG	
1	1.0 0	0	220.75	220.75	2	110_4	<	133.15	NG	
1	1.0 0	0	187.04	187.04	2	93.5	<	141.7	NG	
			Γ		Γ					•
	case	r1	r2	В	L	V	н	е	Ν	
		(kN/m3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)		
Long.	Normal	10	10	27.90	35.50	134,758.39	987.46	-0.3	13	
Latera	l Normal	10	10	27.90	35.50	134,758.39	2,506.86	0.12	13	
Long.	Seism	10	10	27.90	35.50	131,875.39	10,550.03	0	13	
Latera	ll Seism	10	10	27.90	35.50	131,875.39	10,550.03	0.38	13	
		Be=B or B-2e	Le=L or L-2e	tanθ	α	β	k (Df=0)		φ=√	
	case	(m)	(m)	НN	1+0.3 (Be/Le pr Le/Be)	1-0.4 (Be/Le or Le/Be)	1-C.3(Df/Be or Df/_e)	qu=N/0.082	(12N)+15	
Long.	Normal	28.50	35.50	0.01	1.241	0.679	1.000	158.5 4	27	
Latera	l Normal	27.90	35.26	0.02	1.379	0.494	1.000	158.54	27	
Long.	Seism	27.90	35.50	0.08	1.236	0.686	1.000	158.54	27	
Latera	ll Seism	27.90	34.74	0.08	1.374	0.502	1.000	158.54	27	
							D *	D(r
	case	C	NC	Nq	Nr	Sr	B.	Df	q	
		kN/m2	(by graph)	(by graph)	(by graph)	(B*)^(-1/3)	Be/1 or Le/1	(m)	(kN/m2)	
Long.	Normal	0	0.00	0.00	9.00	0.33	28.50	0.00	0.00	<u> </u>
Latera	l Normal	0	0.00	0.00	8.50	0.30	35.26	0.00	0.00	
Long.	Seism	0	0.00	0.00	7.00	0.33	27.90	0.00	0.00	
Latera	l Seism	0	0.00	0.00	7.00	0.31	34.74	0.00	0.00	1

A-137

Examination of bearing capacity by Egyptian code of Terzaghi method

Ibrahimia by EGY

q

0.00 0.00 0.00 0.00

 $Equation \ 1: qu = c \cdot N_c \cdot \lambda c \cdot ic + \gamma 1 \cdot Df \cdot N_q \cdot \lambda_q \cdot i_q + \gamma 2 \cdot B_e \cdot N_r \cdot \lambda_r \cdot ir$

Equation 2 : qa = 1/n·qu

	1st term	2nd term	3rd term	qu	n	qa (allowable)	q (actu	al stress)	ludae
	c•Νc•λc•ic	γ1 Df Ng λg ig	γ2 Be Nr λr ir	(kN/m2)	(safety ratio)	(kN/m2)	(kN	/m2)	Judge
	0	0	1278.66	1,278.66	2.5	511.5	≧	144.84	OK
	0	0	1281.78	1,281.78	2.5	51 2_ 7	≧	138.82	OK
	0	0	1031.50	1,031.50	1.8	573.1	≧	133.15	OK
	0	0	1053.85	1,053.85	1.8	585.5	≧	141.7	OK
	case	r1	r2	В	L	V	н	е	Ν
	0000	(kN/m3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)	
Long.	Normal	10	10	27.90	35.50	127,556.95	920.94	0.28	13
Lateral	Normal	10	10	27.90	35.50	127,556.95	2,506.86	0.13	13
Long.	Seism	10	10	27.90	35.50	126,836.95	10,146.96	0.01	13
Lateral	Seism	10	10	27.90	35.50	126,836.95	10,146.96	0.36	13
	C 380	Be=B or B-2e	Le=L or L-2e	tanθ	λq,λc	λr	Df	au=N/0.082	φ=√
	0450	(m)	(m)	H/V	1+0.3 (Be/_e or Le/Be)	1-0.3 (Be/Le or Le/Be)		qu-1001002	(12N)+15
Long.	Normal	27.34	35.50	0.01	1.231	0.769	0.00	158.54	27
Lateral	Normal	27.90	35.24	0.02	1.379	0.621	0.00	158.54	27
Long.	Seism	27.88	35.50	0.08	1.236	0.764	0.00	158.54	27
Lateral	Seism	27.90	34.78	0.08	1.374	0.626	0.00	158.54	27
	•								
		С	Nc	Ng	Nr	ic	iq	ir	Fb
	case	kN/m2	(1)	(2)	(3)	(4)	(5)	(6)	
Long.	Normal	0	23.94	13.20	6.22	0.98	0.9849	0.9785	2.50
Lateral	Normal	0	23.94	13.20	6.22	0.96	0.96	0.94	2.50
Long.	Seism	0	23.94	13.20	6.22	0.83	0.84	0.78	1.80
Lateral	Seism	0	23.94	13.20	6.22	0.83	0.84	0.78	1.80
		(1)	Nc=(Ng-1) / ta	nø		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

(2) Nr=(Nq-1) $\tan \phi$

(3) Nq= $e^{\pi \tan \phi} \tan^2(45 + \phi/2)$

(4) ic=iq-(1-iq)/(Nq-1)

(5) $iq=\{1-0.7 \cdot (H^*Fb/(V^*Fb+A \cdot c \cdot \cot \phi))\}^3$

(6) $ir=\{1-(Hb/(Vb+A \cdot c \cdot \cot \phi))\}^3$

Examination of bearing capacity by Japanese of Terzaghi method

Ibrahimia (L) by JP

C*

0.00 0.00 0.00 0.00

Equation 1 : qu=Qu/Ae = ($\alpha \cdot \mathbf{k} \cdot \mathbf{c} \cdot \mathbf{N}_c \cdot \mathbf{S}_c + \mathbf{k} \cdot \mathbf{q} \cdot \mathbf{N}_q \cdot \mathbf{S}_q + 1/2 \cdot \mathbf{r} \mathbf{1} \cdot \beta \cdot \mathbf{B}_e \cdot \mathbf{N}_r \cdot \mathbf{S}_r$)

Equation 2 : qa = 1/n·qu

Note) Much of much of eccentricity and stress cause to ground failure and is not allowed to usual foundation type

	Ae (m2)	1st term a•k•c•Nc•Sc	2nd term k·q·Nq·Sq	3rd term 1/2-1-β-(Belor Le)-Nr-Sr	qu (KN/m2)	n (safety ratio)	qa (allowable) (kN/m2)	q (actu (kN	al stress) I/m2)	Judge
lor.	1.0	0	0	6.65	6.65	3	2_2	<	68.53	NG
lor.+ Jplift	1.0	0	0	0.00	0.00	3	N/A	٨I	68.49	N/A
Sei.	1.0	0	0	6.83	6.83	2	3_4	<	82.84	NG
Sei.+U slift	1.0	0	0	0.00	0.00	2	N/A		34.86	N/A
		case	r1 (kN/m3)	r2 (kN/m3)	В (m)	L (m)	V (kN)	H (kN)	e (m)	Ν
	Lateral	Normal	10	10	7.50	23.50	11,750.00	5,376.60	0.035	9
	Latera	Normal	10	10	7.50	23.50	6,021.88	7,168.48	1.256	9
	Lateral	S ei sm	10	10	7.50	23.50	12,976.04	6,245.61	-0.156	9
	Lateral	Seism	10	10	7.50	23.50	3,962.58	5,376.00	0.688	9
		case	Be=B or B-2e (m)	Le=L or L-2e (m)	tanθ H/V	α 1+0.3•(Be/Le)	β 1-0.4• (Be/Le)	k (Df=0) 1+0.3(Df/Be)	qu=N/0.082	φ=√ (12N)+15
	Lateral	Normal	7.43	23.50	0.46	1.095	0.874	1.000	109.76	25
	Lateral	Normal	7.50	20.99	1.19	1 .107	0.857	1.000	109.76	25
	Lateral	Seism	7.81	23.50	0.48	1 .100	0.867	1.000	109.76	25
	Lateral	Seism	7.50	22.12	1.36	<mark>1.102</mark>	0.864	1.000	109.76	25
		case	C k N /m2	Nc (by graph)	Nq (by graph)	Nr (by graph)	Sr (B*)^(-1/3)	B* Be/1 or Le/1	Df (m)	q (kN/m2)
	Latera	Normal	0	0.00	0.00	0.40	0.51	7.43	0.00	0.00

	0020	C	NC	Nq	NE	Sr	B,	Df	q	Í
	Case	k N /m2	(by graph)	(by graph)	(by graph)	(B *)^(-1/3)	Be/1 or Le/1	(m)	(kN/m2)	
Lateral	Normal	0	0.00	0.00	0.40	0.51	7.43	0.00	0.00	
Lateral	Normal	0	0.00	0.00	0.00	0.51	7.50	0.00	0.00	
Lateral	Seism	0	0.00	0.00	0.40	0.50	7.81	0.00	0.00	
Latera	Seism	0	0.00	0.00	0.00	0.51	7.50	0.00	0.00	

Examination of bearing capacity by Egyptian code of Terzaghi method

Ibrahimia (L) by EGY

q

0.00 0.00 0.00

0.00

Equation 1 : $qu = c \cdot N_c \cdot \lambda c \cdot ic + \gamma 1 \cdot Df \cdot N_a \cdot \lambda_a \cdot i_a + \gamma 2 \cdot B_e \cdot N_r \cdot \lambda_r \cdot ir$

Equation 2 : qa = 1/n·qu

Lateral Seism

Note) Much of much of eccentricity and stress cause to ground failure and is not allowed to usual foundation type

					1				
	1st term	2nd term	3rd term	qu	n	qa (allowable)	q (actu	q (actual stress)	
	c-Nc-λc-ic	γ1 Df Nq λq iq	γ2 Be Nr λr ir	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	oddgo
·.	0	0	48.36	48.36	2.5	19.3	<	68.53	NG
	0	0	-5.83	-5.83	2.5	-2.33	<	68.49	N/A
-	0	0	44.22	44.22	1.8	24.6	<	82.84	NG
-	0	0	-40.64	-40.64	1.8	-22.58	<	34.86	N/A
		-1	-2	р		1/	Ц		N
	case	(1-N1/2)	12 (I-N//2)	D ()	L ()	V (1-N1)		e (ma)	IN
1	Nerver	(KIN/III3) 40	(KIN/113)	(m)	(m)	(KN)	(KIN)	(m)	
Long.	Norma	10	10	7.50	23.50	11,750.00	5,376.60	0.035	
Latera	Normal	10	10	7.50	23.50	6,021.88	7,168.48	1.256	
Long.	Seism	10	10	7.50	23.50	12,976.04	6,245.61	-0.156	
Latera	Seism	10	10	7.50	23.50	3,962.58	5,376.00	0.688	
		Be=B or B-2e	Le=L or L-2e	tanθ	yď'yc	λr	Df		ω=√
	case	(m)	(m)	HN	1+0.3 (Be/Le or Le/Be)	1-0.3- (Be/Le or Le/Be)		qu= N /0.082	(12N)+15
Long.	Normal	7.43	23.50	0.46	1.095	0.905	0.00	109.76	2
Latera	Normal	7.50	20.99	1.19	1.107	0.893	0.00	109.76	2
Long.	Seism	7.81	23.50	0.4813186	1.100	0.900	0.00	109.76	2
Lateral	Seism	7.50	22.12	1.3566919	1.102	0.898	0.00	109.76	2
	case	С	Nc	Nq	Nr	ic	iq	ir	Fb
		kN/m2	(1)	(2)	(3)	(4)	(5)	(6)	
Long.	Normal	0	20.72	10.66	4. 51	0.24	0.3140	0.1596	2.5
Lateral	Normal	0	20.72	10.66	4.51	-0.10	0.00	-0.01	2.5
Long.	Seism	0	20.72	10.66	4.5 1	0.22	0.29	0.14	1.8
Latera	Seism	0	20.72	10.66	4.51	-0.10	0.00	-0.05	1.8

20.72 0 (1) Nc=(Nq-1) / tan ϕ

(2) Nr=(Nq-1) tan ϕ

(3) Nq=e^{π tan ϕ} tan²(45+ ϕ /2)

ic=iq-(1-iq)/(Nq-1) (4)

 $iq = \{1-0.7 (H^*Fb/(V^*Fb+A c \cot \phi))\}^3$ (5)

 $ir=\{1-(Hb/(Vb+A-c \cdot \cot \phi))\}^3$ (6)
A-5-3. Badraman Regulator

Badraman at Badraman C. by JP

Sc

1.00

1.00

1.00

1.00

1.00

Equation 1 : $qu=Qu/Ae = (\alpha \cdot k \cdot c \cdot N_c \cdot S_c + k \cdot q \cdot N_q \cdot S_q + 1/2 \cdot r 1 \cdot \beta \cdot B_e \cdot N_r \cdot S_r)$ Equation 2 : $qa = 1/n \cdot qu$

109.76

109.76

4.80

4.80

	Ae	1st term	2nd term	3rd term	qu	n	qa (allowable)	q (actu	al stress)	ludae	
	(m2)	a k c No Sc	k∙q•Nq•Sq	1/2•r1•β (Be or Le) Nr Sr	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	Judge	
or.	1.0	585.09	0	0.00	585.09	3	195.03		107.27	OK	
or.	1.0	1184.09	0	0.00	1,184.09	3	394,70		105.84	OK	
ei.	1.0	563.15	0	0.00	563.15	2	281.57	> I I<	96. 52	OK	
ei.	1.0	1 1 54.51	0	0.00	1 ,15 4. 51	2	577.25		107.14	OK	
Г					n		N		<u> </u>	N	
		case	(kN/m3)	r∠ (kN/m3)	⊡ (m)	с (m)	v (kN)	п (kN)	e (m)	N	
I	Lo ng .	Normal	10	10	7.00	28.20	19,551.97	112.37	0.39	18	
Ī	∟ateral	Normal	10	10	7.00	28.20	19,551.97	421.82	0.08	18	
Ī	∟ong.	Seism	10	10	7.00	28.20	18,054.97	1,444.40	0.26	18	
I	∟ateral	Seism	10	10	7.00	28.20	18,054.97	1,444.40	0.2	18	
г					-					_	l
		case	Be=B or B-2e	Le=L or L-2e	tanθ	α	β	k (Df'=0)	qu=N/0.082	φ=√	
			(m)	(m)	HN	1+0.3 (Be/_e pr Le/Be)	1-0.4 (Be/Le or Le/Be)	1+0.3(Df/Be or Df/Le)	•	(12N)+15	
l	_ong.	Normal	6.22	28.20	0.01	1.066	0.912	1.000	219.51	0	Clay
I	∟ateral	Normal	7.00	28.04	0.02	2.202	1.000	1.000	219.51	0	Clay
l	∟ong.	Seism	6.48	28.20	0.08	1.069	0.908	1.000	219.51	0	Clay
l	∟ateral	Seism	7.00	27.80	80.0	2.191	1.000	1.000	219.51	0	Clay
Long. S€ Lateral S€		0380	С	Nc	Nq	Nr	Sr	B*	Df	q	C*
		Case	kN/m2	(by graph)	(by graph)	(by graph)	(B*)^(-1/3)	Be/1 or Le/1	(m)	(kN/m2)	
I	∟ong.	Normal	109.76	5.00	0.00	0.00	0.54	6.22	0.00	0.00	1.00
Ī	∟ateral	Normal	109.76	4.90	0.00	0.00	0.33	28.04	0.00	0.00	1.00

0.00

0.00

0.00

0.00

0.54

0.33

6.48

27.80

0.00

0.00

0.00

0.00

Seism

Seism

Long.

Lateral

支持力保数の寸法効果は、式(解 10.3.3)で求められる補正係数を支持力係数に 築じることによって考慮するものとした。ここで、式(10.3.1)において、支持力 係数 N.及び N₆がかかる頃には寸法の次元を持つ定数が含まれていないが、いずれ の支持力係数も地盤のせん断抵抗角 ♦ の関数であり、基礎掘に比例してすべり線の 長さが変化し、そのすべり線上で発現する ♦ の 値が異なることから寸法効果が生じ、 るものである。

Se - (6)2]

Badraman at Badraman C. by EGY

0.00 0.00 0.00 0.00

Equation 1 : $qu = c \cdot N_c \cdot \lambda c \cdot ic + \gamma 1 \cdot Df \cdot N_q \cdot \lambda_q \cdot i_q + \gamma 2 \cdot B_e \cdot N_r \cdot \lambda_r \cdot ir$

Equation 2 : qa = 1/n·qu

	1st term	2nd term	3rd term	qu	n	qa (allowable)	e) q (actual stress)		ludgo	
	c•Νc•λc•ic	γ1 Df Ng λg ig	γ2 Be Nr λr ir	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	Judge	
	598.10	0	0.00	598.10	2.5	239_24	≧	107.27	OK	
	1217.69	0	0.00	1,217.69	2.5	487_07	≧	105.84	OK	
	571.31	0	0.00	571.31	1.8	317.39	≧	96.52	OK	
	1175.24	0	0.00	1,175.24	1.8	652.91	≧	107.14	ОК	
									<u> </u>	
	case	r1	r2	В	L	V	Н	e	N	
-		(kN/m3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)		
Long.	Normal	10	10	7.00	28.20	19,551.97	112.37	0.39	18	
Lateral	Normal	10	10	7.00	28.20	19,551.97	421.82	0.08	18	
Long.	Seism	10	10	7.00	28.20	18,054.97	1,444.40	0.26	18	
Lateral	Seism	10	10	7.00	28.20	18,054.97	1,444.40	0.2	18	
		Bo-B or B Jo		tanû		15	Df			
	case	Be-B of B-ze	Le-L of L-2e		Λq,ΛC		DI	qu=N/0.082	φ=√ (12N)+15	
Long	Normal	(11)	(11)	0.01	1+0.3 (Be/Le or Le/Be)		0.00	210.51	0.001	
Long.	Normal	7.00	20.20	0.01	2.000	1.000	0.00	219.51	0.001	
Lateral	Roinm	7.00	20.04	0.02	2.202	0.021	0.00	219.51	0.001	
Long.	Seism	7.00	20.20	0.00	2.404	1.000	0.00	219.51	0.001	
Latera	Seisiii	7.00	27.00	0.00	2.191	1.000	0.00	219.51	0.001	
		C	Nc	Na	Nr	ic	ia	ir	Fh	
	case	kN/m2	(1)	(2)	(3)	(4)	'ч (5)	(6)	15	ч
Long.	Normal	109.76	5.14	1.00	0.00	0.99	1.0000	1.0000	2.50	
Lateral	Normal	109.76	5.14	1.00	0.00	0.98	1.00	1.00	2.50	
Long.	Seism	109.76	5.14	1.00	0.00	0.95	1.00	1.00	1.80	
Lateral	Seism	109.76	5.14	1.00	0.00	0.95	1.00	1.00	1.80	
	1 1	(1)	Nc=(Nq-1) / ta	nφ		1		1 1		

(2) Nr=(Nq-1) tan ϕ

(3) Nq= $e^{\pi \tan \phi} \tan^2(45 + \phi/2)$

(4) ic=iq-(1-iq)/(Nq-1)

(5) $iq = \{1-0.7 \cdot (H^*Fb/(V^*Fb+A \cdot c \cdot \cot \phi))\}^3$

(6) $ir = \{1 - (Hb/(Vb + A \cdot c \cdot \cot \phi))\}^3$

Badraman at Dairutiah C. by JP

Sc

0.00

1.00

0.00

1.00 1.00 1.00

1.00

Equation 1 : $qu=Qu/Ae = (\alpha \cdot k \cdot c \cdot N_c \cdot S_c + k \cdot q \cdot N_q \cdot S_q + 1/2 \cdot r 1 \cdot \beta \cdot B_e \cdot N_r \cdot S_r)$ Equation 2 : $qa = 1/n \cdot qu$

85.37

	Ae	1st term	2nd term	3rd term	qu	n	qa (allowable)	q (actu	al stress)	ludao	
	(m2)	a k c No Sc	k∙q•Nq•Sq	1/2 r1 β (Be or Le) Nr Sr	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	Judge	
•	1.0	468.62	0	0.00	468.62	3	156.21		101.56	OK	
	1.0	763.13	0	0.00	763.13	3	254,38		98.06	OK	
	1.0	451.03	0	0.00	451.03	2	225.51	> I I	92.57	OK	
•	1.0	745.59	0	0.00	745.59	2	372.80		95.86	OK	
_				2	-		• /				-
		case	r1	r2	В	L	V	н	e	Ν	
			(kN/m3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)		
Lo	ong.	Normal	10	10	10.00	27.70	25,481.45	152.98	0.48	14	
La	iteral	Normal	10	10	10.00	27.70	25,481.45	763.28	0.1 1	14	
Lo	ong.	Seism	10	10	10.00	27.70	23,835.95	1,906.87	0.35	14	
La	iteral	Seism	10	10	10.00	27.70	23,835.9 5	1,906.87	0.19	14	
_					-						I
		case	Be=B or B-2e	Le=L or L-2e	tanθ	α	β	k (Df'=0)	gu=N/0.082	φ=√	
			(m)	(m)	HN	1+0.3 (Be/_e prile/Be)	1-0.4 (Be/Le or Le/Be)	1+0.3(Df/Be or Df/Le)	•	(1 2N)+ 15	
Lo	ong.	Normal	9.04	27.70	0.01	1.098	0.869	1.000	170.73	0	Clay
La	iteral	Normal	10.00	27.48	0.03	1.824	1.000	1.000	170.73	0	Clay
Lo	ong.	Seism	9.30	27.70	0.08	1.101	0.866	1.000	170.73	0	Clay
La	iteral	Seism	10.00	27.32	0.08	1.820	1.000	1.000	170.73	0	Clay
		C 280	С	Nc	Nq	Nr	Sr	B*	Df	q	C*
		0030	k N/m 2	(by graph)	(by graph)	(by graph)	(B*)^(-1/3)	Be/1 or Le/1	(m)	(kN/m2)	
Lo	ong.	Normal	85.37	5.00	0.00	0.00	0.48	9 .0 4	0.00	0.00	1.00
La	iteral	Normal	85.37	4.90	0.00	0.00	0.33	27.48	0.00	0.00	1.00
Lo	ng.	Seism	85.37	4.80	0.00	0.00	0.48	9.30	0.00	0.00	1.00

0.00

0.00

0.33

27.32

4.80

Lateral

Seism

支持力保数の寸法効果は、式(解 10.3.3)で求められる補正係数を支持力係数に 築じることによって考慮するものとした。ここで、式(10.3.1)において、支持力 係数 N.及び N₆がかかる頃には寸法の次元を持つ定数が含まれていないが、いずれ の支持力係数も地盤のせん断抵抗角 ♦ の関数であり、基礎掘に比例してすべり線の 長さが変化し、そのすべり線上で発現する ♦ の 値が異なることから寸法効果が生じ、 るものである。

$S_c = (c^*)^{\perp}$

 $S_q = (q^*)^u$ $S_r = (B^*)^u$ $(4q^* 10.3.3)$

Badraman at Dairutiah C. by EGY

0.00 0.00 0.00 0.00

Equation 1 : $qu = c \cdot N_c \cdot \lambda c \cdot ic + \gamma 1 \cdot Df \cdot N_q \cdot \lambda_q \cdot i_q + \gamma 2 \cdot B_e \cdot N_r \cdot \lambda_r \cdot ir$

Equation 2 : qa = 1/n·qu

	1st term	2nd term	3rd term	qu	n	qa (allowable)	q (actu	al stress)	ludgo	
	c•Νc•λc•ic	γ1 Df Ng λg ig	γ2 Be Nr λr ir	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	Judge	
	478.39	0.00	0.00	478.39	2.5	191.36	≧	101.56	OK	
	774.19	0.00	0.00	774.19	2.5	309_68	≧	98.06	OK	
	452.35	0.00	0.00	452.35	1.8	251.30	≧	92.57	OK	
	750.68	0.00	0.00	750.68	1.8	417.04	≧	95.86	OK	
r			_	_				Г Г		
	case	r1	r2	В	L	V	н	e	N	
		(kN/m3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)		
Long.	Normal	10	10	10.00	27.70	25,481.45	152.98	0.48	14	
Lateral	Normal	10	10	10.00	27.70	25,481.45	763.28	0.11	14	
Long.	Seism	10	10	10.00	27.70	23,835.95	1,906.87	0.35	14	
Lateral	Seism	10	10	10.00	27.70	23,835.95	1,906.87	0.19	14	
-						I		Г — Г	_	
	case	Be=B or B-2e	Le=L or L-2e	tanθ	λq,λc	λr	Df	gu=N/0.082	φ=√	
		(m)	(m)	H/V	1+0.3• (Be/_e pr Le/Be)	1-0.3 (Be/Le or Le/Be)		'	(12N)+15	
Long.	Normal	9.04	27.70	0.01	1.098	0.902	0.00	170.73	0.001	
Lateral	Normal	10.00	27.48	0.03	1 . 824	0.176	0.00	170.73	0.001	
Long.	Seism	9.30	27.70	0.08	1 .101	0.899	0.00	170.73	0.001	
Lateral	Seism	10.00	27.32	0.08	1.820	0.180	0.00	170.73	0.001	
	0000	С	Nc	Nq	Nr	ic	iq	ir	Fb	q
	Case	kN/m2	(1)	(2)	(3)	(4)	(5)	(6)		
Long.	Normal	85.37	5.14	1.00	0.00	0.99	1.0000	1.0000	2.50	
Lateral	Normal	85.37	5.14	1.00	0.00	0.97	1.00	1.00	2.50	
Long.	Seism	85.37	5.14	1.00	0.00	0.94	1.00	1.00	1.80	
Lateral	Seism	85.37	5.14	1.00	0.00	0.94	1.00	1.00	1.80	
•	I	(1)	Nc=(Nq-1) / ta	nφ		1		1 1		

(2) Nr=(Nq-1) $\tan \phi$

(3) Nq= $e^{\pi \tan \phi} \tan^2(45 + \phi/2)$

(4) ic=iq-(1-iq)/(Nq-1)

(5) $iq = \{1-0.7 \cdot (H^*Fb/(V^*Fb+A \cdot c \cdot \cot \phi))\}^3$

(6) $ir=\{1-(Hb/(Vb+A \cdot c \cdot \cot \phi))\}^3$

A-5-4. Abo Gabal Regulator

Abo Gabal by JP

Sc

1.00 1.00 1.00

1.00

Equation 1 : $qu=Qu/Ae = (\alpha \cdot k \cdot c \cdot N_c \cdot S_c + k \cdot q \cdot N_q \cdot S_q + 1/2 \cdot r 1 \cdot \beta \cdot B_e \cdot N_r \cdot S_r)$ Equation 2 : $qa = 1/n \cdot qu$

152.44

4.80

0.00

0.00

0.40

15.70

0.00

0.00

1.00

ſ	Ae	1st term	2nd term	3rd term	qu	n	qa (allowable)	q (actu	al stress)	ludae	
	(m2)	a k c No Sc	k∙q•Nq•Sq	1/2•r1•β (Be or Le) Nr•Sr	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	Judge	
or.	1.0	940.04	0	0.00	940.04	3	313,35	≧	106.47	OK	
or.	1.0	1021.37	0	0.00	1,021.37	3	340,46		108.2	OK	
ei.	1.0	898.10	0	0.00	898.10	2	449.05	> I I<	111.44	OK	
ei.	1.0	996.81	0	0.00	996.81	2	498.41		109.39	OK	
ſ	Г										
	Ae 1st term (m2) α·k·c·Nc·Sc 1.0 940.0 1.0 1021.3 1.0 1021.3 1.0 898.1 1.0 996.8 Case Long. Long. Normal Lateral Normal Lateral Seism Lateral Seism Lateral Normal Lateral Normal Lateral Seism Lateral Seism Lateral Seism Lateral Seism Lateral Seism Lateral Seism Lateral Seism	r1	r2	В	L	V	н	е	Ν		
		cuco	(kN/m3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)		
	Long.	Normal	10	10	13.00	16.20	20,949.17	245.56	0.2	25	
	Lateral	Normal	10	10	13.00	16.20	20,949.17	914.61	0.14	25	
ſ	Long.	Seism	10	10	13.00	16.20	20,913.17	1,673.05	0.36	25	
Ī	Lateral	Seism	10	10	13.00	16.20	20,913.17	1,673.05	0.25	25	
-									r		
		case	Be=B or B-2e	Le=L or L-2e	tanθ	α	β	k (Df'=0)	au=N/0.082	φ=√	
			(m)	(m)	H/V	1+0.3 (Be/_e pr Le/Be)	1-0.4 (Be/Le or Le/Be)	1+0.3(Df/Be or Df/Le)	1	(12N)+15	
	Long.	Normal	12.60	16.20	0.01	1.233	0.689	1.000	304.88	0	Clay
	Lateral	Normal	13.00	15.92	0.04	1.367	0.510	1.000	304.88	0	Clay
	Long.	Seism	12.28	16.20	0.08	1.227	0.697	1.000	304.88	0	Clay
	Lateral	Seism	13.00	15.70	80.0	1.362	0 <mark>.</mark> 517	1.000	304.88	0	Clay
-											
ſ	Lateral Normal Long. Seism Lateral Seism	0000	С	Nc	Nq	Nr	Sr	В*	Df	q	C*
		Case	kN/m2	(by graph)	(by graph)	(by graph)	(B*)^(-1/3)	Be/1 or Le/1	(m)	(kN/m2)	
Ī	Long.	Normal	152.44	5.00	0.00	0.00	0.43	12.60	0.00	0.00	1.00
Ī	Lateral	Normal	152.44	4.90	0.00	0.00	0.40	15.92	0.00	0.00	1.00
Γ	Long.	Seism	152.44	4.80	0.00	0.00	0.43	12.28	0.00	0.00	1.00

Lateral

Seism

支持力保数の寸法効果は、式(解 10.3.3)で求められる補正係数を支持力係数に 築じることによって考慮するものとした。ここで、式(10.3.1)において、支持力 係数 N.及び N₆がかかる頃には寸法の次元を持つ定数が含まれていないが、いずれ の支持力係数も地盤のせん断抵抗角 ♦ の関数であり、基礎掘に比例してすべり線の 長さが変化し、そのすべり線上で発現する ♦ の 値が異なることから寸法効果が生じ、 るものである。

Se - (6)2]

Abo Gabal by EGY

0.00 0.00 0.00 0.00

Equation 1 : $qu = c \cdot N_c \cdot \lambda c \cdot ic + \gamma 1 \cdot Df \cdot N_q \cdot \lambda_q \cdot i_q + \gamma 2 \cdot B_e \cdot N_r \cdot \lambda_r \cdot ir$

Equation 2 : qa = 1/n·qu

	1st term	2nd term	3rd term	qu	n	qa (allowable)	ble) q (actual stress)		ludgo	
	c Νc λc ic	γ1 Df Ng λg ig	γ2 Be Nr λr ir	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	Judge	
<u>.</u>	959.21	0.00	0.00	959.21	2.5	383.69	≧	106.47	OK	
.	1038.09	0.00	0.00	1,038.09	2.5	415_24	≧	108.2	OK	
-	924.06	0.00	0.00	924.06	1.8	513.37	≧	111.44	OK	
	1026.79	0.00	0.00	1,026.79	1.8	570_44	≧	109.39	OK	
r			-	_				[]		
	case	r1	r2	В	L	V	Н	е	Ν	
		(kN/m3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)		
Long.	Normal	10	10	13.00	16.20	20,949.17	245.56	0.19	25	
Lateral	Normal	10	10	13.00	16.20	20,949.17	9 14. 61	0.19	25	
Long.	Seism	10	10	13.00	16.20	20,913.17	1,673.05	0.33	25	
Lateral	Seism	10	10	13.00	16.20	20,913.17	1,673.05	0.22	25	
	case	Be=B or B-2e	Le=L or L-2e	tanθ	λq,λc	λι	Df	qu=N/0.082	φ=√	
		(m)	(m)	H/V	1+0.3 (Be/_e or Le/Be)	1-0.3 (Be/Le or Le/Be)		1	(12N)+15	
Long.	Normal	12.62	16.20	0.01	1.234	0.766	0.00	304.88	0.001	
Lateral	Normal	13.00	15.82	0.04	1.365	0.635	0.00	304.88	0.001	
Long.	Seism	12.34	16.20	0.08	1.229	0.771	0.00	304.88	0.001	
Lateral	Seism	13.00	15.76	0.08	1.364	0.636	0.00	304.88	0.001	
	0000	С	Nc	Nq	Nr	ic	iq	ir	Fb	q
	Case	kN/m2	(1)	(2)	(3)	(4)	(5)	(6)		
Long.	Normal	152.44	5.14	1.00	0.00	0.99	1.0000	1.0000	2.50	
Lateral	Normal	152.44	5.14	1.00	0.00	0.97	1.00	1.00	2.50	
Long.	Seism	152.44	5.14	1.00	0.00	0.96	1.00	1.00	1.80	
Lateral	Seism	152.44	5.14	1.00	0.00	0.96	1.00	1.00	1.80	
		(1)	Nc=(Nq-1) / ta	nφ				I		

(2) Nr=(Nq-1) $\tan \phi$

(3) Nq= $e^{\pi \tan \phi} \tan^2(45 + \phi/2)$

(4) ic=iq-(1-iq)/(Nq-1)

(5) $iq=\{1-0.7 \cdot (H^*Fb/(V^*Fb+A \cdot c \cdot \cot \phi))\}^3$

(6) $ir=\{1-(Hb/(Vb+A\cdot c \cdot cot \phi))\}^3$

A-5-5. Sahelyia Regulator

Sahelyia by JP

Sc

1.00

1.00

1.00

1.00

1.00

Equation 1 : $qu=Qu/Ae = (\alpha \cdot k \cdot c \cdot N_c \cdot S_c + k \cdot q \cdot N_q \cdot S_q + 1/2 \cdot r 1 \cdot \beta \cdot B_e \cdot N_r \cdot S_r)$ Equation 2 : $qa = 1/n \cdot qu$

97.56

97.56

4.80

4.80

Ae	1st term	2nd term	3rd term	qu	n	qa (allowable)	q (actu	al stress)	ludae	
(m2)	a k c No Sc	k q Nq Sq	1/2 r1 β (Be or Le) Nr Sr	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	Judge	
. 1.	0 549.81	0	0.00	549.81	3	183.27	≧	139.69	OK	
. 1.	0 786.60	0	0.00	786.60	3	262,20	≥∥	141.89	OK	
1.	0 525.60	0	0.00	525.60	2	262.80	≧	144.53	OK	
1.	0 766.53	0	0.00	766.53	2	383.26	≥∥	153.67	OK	
		r1	r)	в	1	V	н	P	N	1
	case Long. Normal Lateral Normal	(k N/m 3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)		
Long.	Normal	10	10	7.00	15.20	7,999.49	95.23	0.28	16	
Lateral	Normal	10	10	7.00	15.20	7,999.49	176.47	0.07	16	
Long.	Seism	10	10	7.00	15.20	7,981.49	638.52	0.40	16	
Lateral	Seism	10	10	7.00	15.20	7,981.49	638.52	0.17	16]
	case	Be=B or B-2e	Le=L or L-2e	tanθ	α	β	k (Df=0)	au=N/0.082	φ=√	
		(m)	(m)	HN	1+0.3 (Be/_e or Le/Be)	1-0.4 (Be/Le or Le/Be)	1+0.3(Df/Be or Df/Le)	4	(12N)+15	
Long.	Normal	6.44	15.20	0 <u>.</u> 01	1 <mark>.127</mark>	0.831	1.000	195.12	0	Clay
Lateral	Normal	7.00	15.06	0.02	1.645	0.139	1.000	19 5.12	0	Clay
Long.	Seism	6.20	15.20	0.08	1.122	0.837	1.000	19 5.1 2	0	Clay
Lateral	Seism	7.00	14.86	0.08	1.637	0.151	1.000	195.12	0	Clay
	Case	С	Nc	Nq	Nr	Sr	B*	Df	q	C*
	0000	kN/m2	(by graph)	(by graph)	(by graph)	(B*)^(-1/3)	Be/1 or Le/1	(m)	(kN/m2)	
Long	Normal	97.56	5.00	0.00	0.00	0.54	6.44	0.00	0.00	1.00
Lateral	Norma	97.56	4.90	0.00	0.00	0.40	15.06	0.00	0.00	1.00

0.00

0.00

0.00

0.00

0.54

0.41

6.20

14.86

0.00

0.00

0.00

0.00

Seism

Seism

Long.

Lateral

支持力保数の寸法効果は、式(解 10.3.3)で求められる補正係数を支持力係数に 築じることによって考慮するものとした。ここで、式(10.3.1)において、支持力 係数 N.及び N₆がかかる頃には寸法の次元を持つ定数が含まれていないが、いずれ の支持力係数も地盤のせん断抵抗角 ♦ の関数であり、基礎掘に比例してすべり線の 長さが変化し、そのすべり線上で発現する ♦ の 値が異なることから寸法効果が生じ、 るものである。

Se - (6)2]

Sahelyia by EGY

0.00 0.00 0.00 0.00

Equation 1 : $qu = c \cdot N_c \cdot \lambda c \cdot ic + \gamma 1 \cdot Df \cdot N_q \cdot \lambda_q \cdot i_q + \gamma 2 \cdot B_e \cdot N_r \cdot \lambda_r \cdot ir$

Equation 2 : qa = 1/n·qu

	1st term	2nd term	3rd term	qu	n	qa (allowable)	e) q (actual stress)		ludgo	
	c·Nc·λc·ic	γ1 · Df·Nq·λq·iq	γ2·Be·Nr·λr·ir	(kN/m2)	(safety ratio)	(kN/m2)	(kN	l/m2)	Judge	
-	558.14	0.00	0.00	558.14	2.5	223.25	≥	139.69	OK	
	792.56	0.00	0.00	792.56	2.5	317_02	≧	141.89	OK	
	515.87	0.00	0.00	515.87	1.8	286.60	≧	144.53	OK	
	753.17	0.00	0.00	753.17	1.8	418.43	≧	153.67	OK	
								1		
	case	r1	r2	В	L	V	н	е	Ν	
		(kN/m3)	(kN/m3)	(m)	(m)	(kN)	(kN)	(m)		
Long.	Normal	10	10	7.00	15.20	13,479.82	149.64	0.2	16	
Latera	Normal	10	10	7.00	15.20	13,479.82	362.13	0.14	16	
Long.	Seism	10	10	7.00	15.20	13,464.82	1,077.19	0.36	16	
Latera	Seism	10	10	7.00	15.20	13,464.82	1,077.19	0.25	16	
	case	Be=B or B-2e	Le=L or L-2e	tanθ	λq,λc	λr	Df	au=N/0.082	φ=√	
		(m)	(m)	HN	1+0.3 (Be/_e or Le/Be)	1-0.3 (Be/Le or Le/Be)			(12N)+15	
Long.	Normal	6.60	15.20	0.01	1.130	0.870	0.00	195.12	0.001	
Lateral	Normal	7.00	14.92	0.03	1.639	0.361	0.00	195.12	0.001	
Long.	Seism	6.28	15.20	0.08	1 .12 4	0.876	0.00	195.12	0.001	
Latera	Seism	7.00	14.70	80.0	1.630	0.370	0.00	195.12	0.001	
		С	Nc	Nq	Nr	ic	iq	ir	Fb	
	case	kN/m2	(1)	(2)	(3)	(4)	(5)	(6)		
Long.	Normal	97.56	5.14	1.00	0.00	0.98	1.0000	1.0000	2.50	
Latera	Normal	97.56	5.14	1.00	0.00	0.96	1.00	1.00	2.50	
Long.	Seism	97.56	5.14	1.00	0.00	0.91	1.00	1.00	1.80	
Latera	Seism	97.56	5.14	1.00	0.00	0.92	1.00	1.00	1.80	
L	I	(1)	Nc=(Nq-1) / ta	nφ		1 1		1 1		

(2) Nr=(Nq-1) tan ϕ

(3) Nq= $e^{\pi \tan \phi} \tan^2(45 + \phi/2)$

(4) ic=iq-(1-iq)/(Nq-1)

(5) $iq = \{1-0.7 \cdot (H^*Fb/(V^*Fb+A \cdot c \cdot \cot \phi))\}^3$

(6) $ir=\{1-(Hb/(Vb+A\cdot c \cdot cot \phi))\}^3$