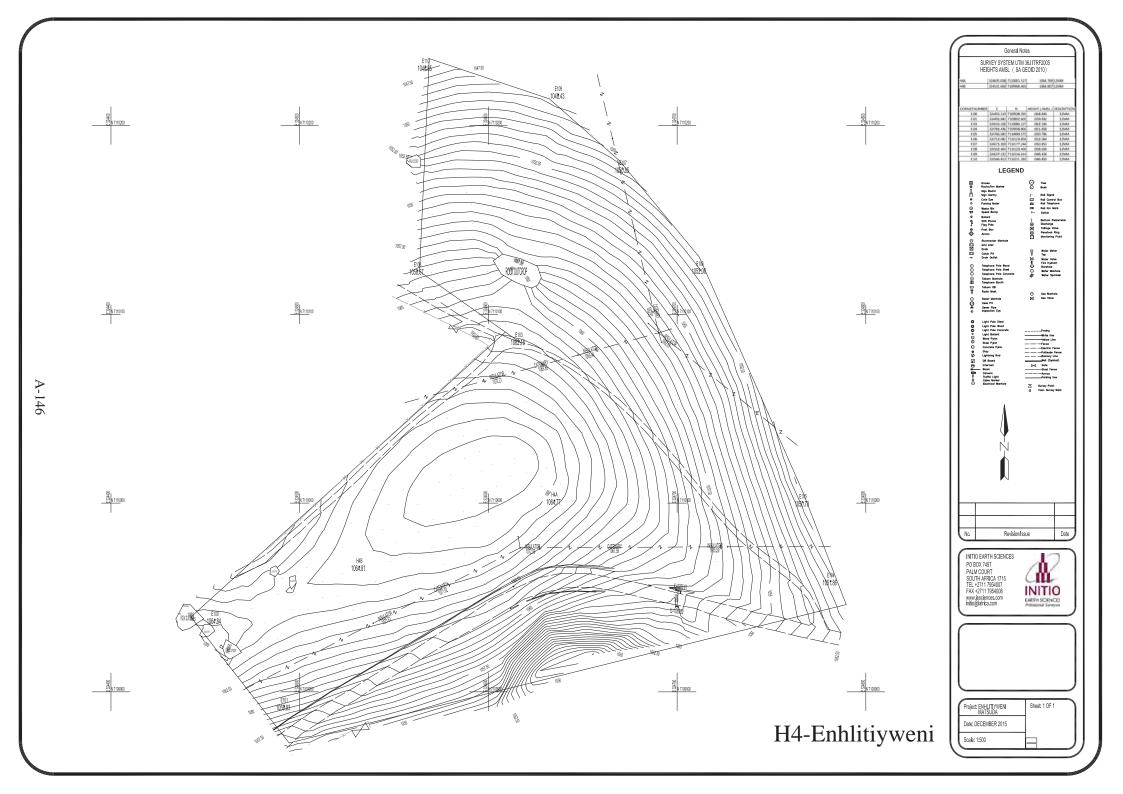
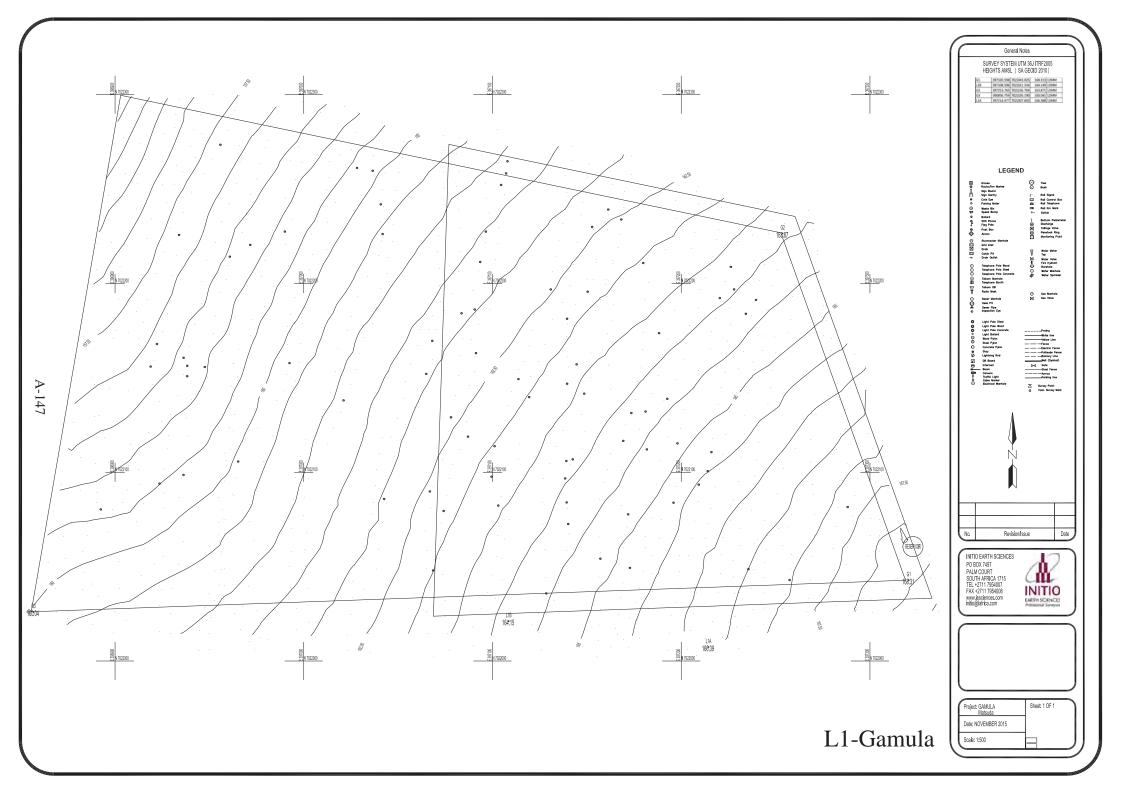

- 6. その他の資料・情報
- 6-1 敷地測量図




M1-Boyane

S1-Eqinisweni

6-2 地盤調査結果

SOIL TESTING SERVICES

GEOTECHNICAL REPORT – BOYANE

CONSTRUCTION OF NEW SECONDARY SCHOOLS AND UP-GRADING OF FACILITIES IN EXISTING SECONDARY SCHOOLS AIMED AT PROMOTING INCLUSIVE EDUCATION IN THE KINGDOM OF SWAZILAND

FOR

MATSUDA CONSULTANTS INTERNATIONAL CO. LTD

Lot 321, Samora Machel Street P.O. Box A233 Swazi Plaza Mbabane H101 Swaziland

MARCH 2016

TABLE OF CONTENTS

GEOTECHNICAL REPORT - BOYANE	2
1.0 INTRODUCTION	2
2.0 SCOPE OF WORK	2
3.0 SITE DESCRIPTION	2
Location and Topography	2
Rainfall and Drainage	2
Access	3
4.0 GENERAL GEOLOGY OF SITE	3
5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING	3
Methods of Investigation and Testing	3
6.0 INTERPRETIVE INFORMATION	6
Site Stratigraphy	6
Materials	6
Engineering Geological Evaluation	7
7.0 CONCLUSION AND RECOMMENDATIONSError! Bookmark	not defined.
GENERAL NOTES ON THE REPORT	10
APPENDIX A	11
APPENDIX B	15

GEOTECHNICAL REPORT - BOYANE

1.0 INTRODUCTION

This report is based on the Preparatory Survey on "the Project for the Construction of New Secondary Schools and Upgrading of Facilities in Existing Secondary Schools aimed at Promoting Inclusive Education" based upon request from the Government of Swaziland to the Japan International Cooperation Agency (JICA). The survey is to obtain geotechnical data and information at Boyane, central Swaziland, where the proposed Boyane High School will be constructed, for the design of earthworks, foundation and structures of the buildings.

2.0 SCOPE OF WORK

The following activities were expected to be executed in the cause of the study.

- (1) Field works on each site
 - Dynamic Cone Penetration test (DCP)
 Nine (09) points, depth up to Two (02) m from the ground level
 - Soil Sampling
 - Percolation Test Two (02) points
- (2) Laboratory testing (for each sample)
 - Triaxial Compression Test
 - Moisture Density Test
 - Particle Size Analysis
 - Atterberg limit test

3.0 SITE DESCRIPTION

Location and Topography

The new Boyane High School is to be built in a gentle sloping site facing north. The site is located at Boyane, an area past Ludzeludze, next to Boyane Primary School. Part of the area is the garden and football pitch of the primary school. The rest of the area lies outside the Boyane Primary School in an area currently used a grazing land. It is vegetated by indigenous grass cover and iron wood trees and some wattle trees.

Rainfall and Drainage

Boyane is an area located in the Middleveld climatic zone of the country. It has a 720m elevation with summer rainfall received between October and March. The average annual rainfall is 600mm with a temperate climate. Winters are generally harsh and known to experience frost.

The Boyane area has no watercourse way running through it. Off site there is a small stream that drains the area. Water supply in the area is through an established rural water scheme. Alternative water can be sourced through drilling for underground water.

Access

Boyane is easily accessible along the way from Manzini to Mbekelweni. The area is about 2km from the tar road after a turnoff at Soweto area. It is accessed through a dusty distributor road with no wearing course.

4.0 GENERAL GEOLOGY OF SITE

The proposed school site is underlain by granodiorite, a medium to coarse grained crystalline rock. Its composition varies from quartz diorite to hornblende granodiorite to biotite granodiorite. The granodiorite suite has been intruded by small fairly localized diabase dykes. They trend approximately north to south or east to west, which corresponds to the general tectonic trends of the region. The granodiorite suite can also be associated with the intrusion of quartz veins which often indicate the presence of tectonic faulting.

Depth to granodiorite bedrock can be highly variable and can be expected to be overlain by a weathered rock to soil derived from complete weathering of the bedrock. This soil profile can in itself be overlain by soils of colluvial origin, typically, gravity transported in the site.

A scanned and cropped geological map of the area is presented in Appendix A. It is taken from a 1:50 000 geological map sheet 12 (2631 AD) published by the Swaziland Geological Survey Department

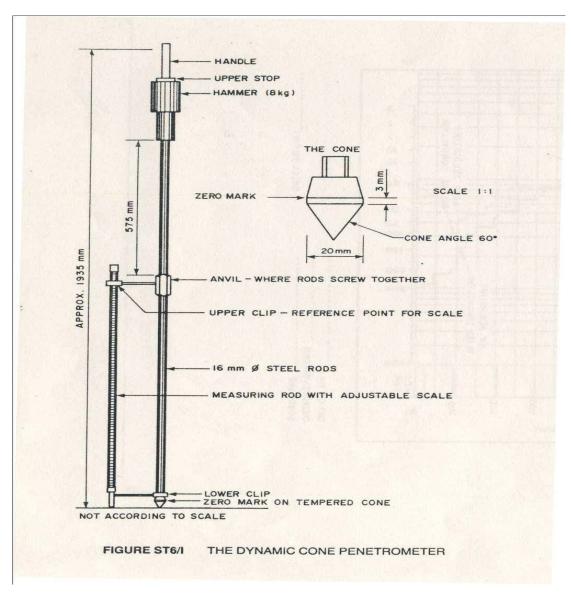
5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING

Methods of Investigation and Testing

Field investigations, sampling and laboratory testing has been designed to provide information as follows:

Trial Pits

Two Trial Pits (TP) were excavated at positions determined by the client with pits attaining some depth of 2.4m using a Tractor Loader Backhoe (TLB), 4x4 capability with 600mm bucket width and flywheel power rating of at least 70kW. The aim of the excavation of the trial pits was to determine the soil stratigraphy, and extraction of soil samples.


All test pits had stable walls and were profiled using profiling standard procedure outlined in the Association of Engineering Geologists (South African Section), 'Guidelines for soil and rock logging in SA" (1990). Representative soil samples were taken from the soil profile for laboratory testing. Bulk samples of the residual soil material were taken; topsoil and sub-soil layers were recorded

and are shown in detail in Trial Pit profiles. The stratigraphy revealed by each pit was carefully logged with special notes taken of the thickness and conditions of the various layers.

Dynamic Cone Penetration Test (DCP)

Dynamic Cone Penetrometer (DCP) tests were conducted at 9 positions around the site. The exact locations of all DCP tests carried out were performed at positions determined by Matsuda Consultants International Co., Ltd.

Prior to the performance of a series of tests, the zero reading of the penetrometer was determined. The dynamic penetrometer tests were then performed by taking readings of cone penetration after a number of blows depending on the consistency of the layer being penetrated. The tests were terminated at maximum depths of 2000mm wherever possible.

Percolation Test

The percolation test consist of digging a 300 mm diameter hole to the stratum for which information is required, cleaning and backfilling the bottom with coarse sand or gravel, filling the hole with water and providing a soaking period of sufficient length to achieve saturation. During the soaking period, water is added as necessary to prevent loss of all water. The percolation rate is then obtained by filling the hole to a prescribed water level and measuring the drop in water level over a set time. The times required for soaking and for measuring the percolation rate vary with the soil type.

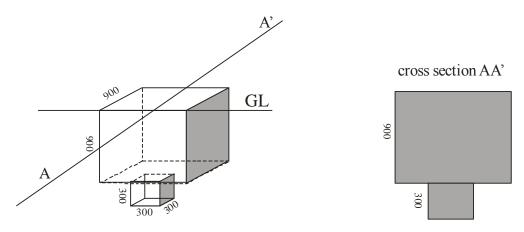
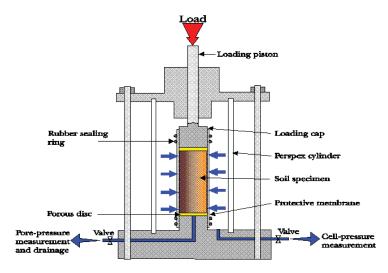


Figure 2. Cross section of percolation test pit

Laboratory Testing

Laboratory tests were performed by Soil Testing Services (Pty) Ltd in Mbabane. As specified by Matsuda Consultants International Co., Ltd this testing comprised of foundation indicator testing only.


The following laboratory tests were executed for the preliminary design:

- determination of grain size distribution
- determination of natural moisture content
- determination of Atterberg limits
- execution of Proctor tests (moisture density relation, MDD/OMC)

Stress Triaxial Stress Tests: Unconsolidated - Undrained (BS 1377-7:1990 Clause 7)

Stress Triaxial Stress Tests were conducted at Metrolab Group, Republic of South Africa according to the standard **BS 1377-7:1990 Clause 7**. This involved subjecting a cylindrical soil sample to radial stresses (confining pressure) and controlled increases in axial stresses or axial displacements. The cylindrical soil specimen was of ~50mm diameter and ~100mm height dimension. As this is cohesive soil samples were prepared directly from saturated compacted samples, either undisturbed

or remolded. The specimen was vertically enclosed with a thin rubber membrane and placed between two rigid ends inside a pressure chamber. The upper plate can move vertically and apply vertical stresses to the specimen. The axial strain/stress of the sample is controlled through the movement of this vertical axis. Also, the confining pressure is controlled by the water pressure surrounding the sample in the pressure chamber. The volume change of the sample is also controlled by measuring the exact volume of moving water.

Triaxial apparatus

6.0 INTERPRETIVE INFORMATION

Site Stratigraphy

The stratigraphy of the Boyane High School site can be summarized as colluvial and residual soils.

Colluvial soils on the site generally consist of some 300mm thick layer of slightly moist slightly moist, dark brown soft to dense topsoil. In Trial Pit 453 some 1280mm colluvial layer was intercepted below the top soil and consists of moist, dark red, slightly dense, sandy clay. This layer lies directly above residual layer from the weathering of the granodiorite suite.

The residual soils are derived from complete in-situ weathering of the granodiorite suite expected underneath. In this site the granodiorite was not encountered. The soils are moist, soft and intact silt-clay. The dark red soil in profile shows colour variation from light yellowish orange/ dark red/light reddish orange to light red/light reddish brown/ dark yellow.

Materials

The table below summarizes some of the laboratory test results and the complete test results are presented in Appendix B

Test Pit No.	Sample no & depth(m)	Horizon	O.M.C%	LL	PI	Shrinkage	Soil Class AASHTO
452	0.5-2.0	Residual granodiorite	16.3	46	10	4	A-7-5(7)
453	1.6-2.4	Residual granodiorite	14.0	48	16	7.5	A-7-5(10)

Engineering Geological Evaluation

Groundwater

Groundwater inflow was not encountered in any of the excavated test pits. It is expected that the groundwater table will occur at depth at the fresh rock soil interface.

Expansive soils

No soils susceptible to swelling or heaving were encountered on site, and problematic movements associated with expansion are not expected.

From the Foundation Indicator tests carried out all the horizons tested displayed a "low" potential for expansiveness classification.

Potentially Collapsible Soils

The soil horizons encountered are not considered to be collapsing in nature. It is, therefore, not anticipated that any special precautions will need to be taken with regard to collapsible soils.

Percolation Rate

The soils in this area are suitable for a normal French drain. Both percolation tests positions displays good seepage and as such are suitable for normal French drain development.

Bearing Capacity

The laboratory triaxial compression tests the Boyane High School site with unconsolidated undrained (UU) shear strength (c_u) of between 424kPa and 1100kPa display allowable bearing capacity of between an estimated 727kPa and 1886kPa. Based on the correlation chart (Appendix C) of maximum bearing stress that can be applied to the foundation such that it is safe against instability due to shear failure the site's allowable bearing capacity is highly safe for building development. From the field Dynamic Cone Penetrometer (DCP) tests, for most of the tests positions, it reveals safe bearing capacities above 79kPa for single story buildings. For most of the test positions, at depths >1.2m, the bearing capacities of the soil drops below this threshold to some 52kPa and

below. However, for test positions DCP 8 and 9 the low bearing capacities of 52kPa are reached at shallow depths (600mm). This has to be taken into consideration during designing the foundation.

Based on the above field test, the residual soil is relatively homogenous, save for the last three tests site and buildings can be founded at depths of 800 to 1000mm as it is below the colluvial soil.

Excavatibility

There were no recorded excavation refusals during pitting to the depths of 2.4m. It is anticipated that excavation to bedrock level will be of soft excavation class at the site. No major instabilities were recorded during the excavation of the test pits which further suggests that excavation may safely extend vertically to depths of about 3.00m without the need for lateral support, if of a temporary nature (during construction) and in the dry season.

Seismicity

One type of seismic activities occurs in Swaziland, and that is natural seismic activity. There is no mining-induced seismic activity. In accordance with the Seismic Hazard Zone map contained in the draft SANS 10160-4, southern Swaziland is classified as Zone 1 and is subject to natural seismic activity only. Boyane is in central part of Swaziland and falls outside this area. The South African "loading" code, SABS 0160-4:2011, shows that Boyane is situated in an area where the peak ground acceleration with a 10% probability of being exceeded in a 50 year period is some 100 cm/sec².

The soil profile of the site can be described as slightly soft, intact, silt-clay with shear strength between 424 and 1100kPa c_u . The contrasting identified ground types in accordance with the consolidated undrained shear strength and soil profile, type 2 and 3 respectively, indicates that the lacking v_s profile at the site is taken as "the most reliable predictor of the site dependent characteristics of the seismic action at stable sites".

7.0 CONCLUSION AND RECOMMENDATIONS

- The absence of rock outcrop on the site suggests that bedrock will only be present at depth. The bedrock surface is likely to be undulatory and, therefore, highly variable in depth.
- No special precaution has to be taken as no water seepage was experienced in any of the Trial Pits and no problem of dampness is thus expected.
- The soils are of intermediate plasticity and it is expected that they will be prone to erosion. Precaution is expected to be taken during site clearing to avoid excessive soil erosion.

Building Foundations

The allowable bearing capacity of the sand clays is estimated at 727kPa and silt clays at 1886kPa. This is safe to establish a foundation on the site for any building structure.

Field and laboratory test recommend that foundations be placed on the residual soil, at depths of 800 to 100mm, on the weathered granodiorite.

From the other Foundation Indicator tests carried out all the horizons tested displayed a "low" potential for expansiveness classification. As the soils are not susceptible to swelling or heaving it is not expected that significant swell-shrink movement of the footing will occur.

Despite the low expansive potential of the soils it is worth taking the following precautions:

- Attention to proper site drainage and storm water runoff management is essential to prevent ponding of water near structures.
- Water supply pipes and sewers must be maintained and leaks or blockages timeously detected and repaired.
- No water loving vegetation or large trees may be allowed to grow within 15m of any structure and it is not recommended to allow gardening directly around the structures. Instead concrete aprons should be installed to prevent wetting of foundations.

Parking Areas and Roadways

The material quality at surface display a good bearing capacity from DCP analyses and for the construction of parking can easily be stabilized and paved. But for roadways it cannot be used as fill. It is recommended that material for pavements layers required for road works be imported from outside the site.

NOTE:

 Additional investigations or at least an assessment of the ground conditions exposed during construction can often result in significant construction cost and time savings.

GENERAL NOTES ON THE REPORT

The information and recommendations contained within this report relate to data supplied by Soil Testing Services, comprising test pit profiles, DCP penetration data, soil percolation test results and soil grading tests.

The report has been compiled on the assumption that all the data supplied by Soil Testing Services (and the assumptions made in this report where this supplied data is inadequate) is correct and is generally representative of the site area.

Prepared for Geo Solutions

Noah Nhleko

BSc (Biology & Chemistry); PhD Geology

APPENDIX A

A) Tractor Loader Backhoe (TLB)

B) Typical Trial Pit

SOIL TESTING SERVICES * (SWAZILAND) (PTY) LTD P.O. BOX A235, SWAZI PLAZA TEL: 404 1956, 404 2227 SOIL LABOR ATORY

Site Name :

M1

BOYANE

Region:

Manzini

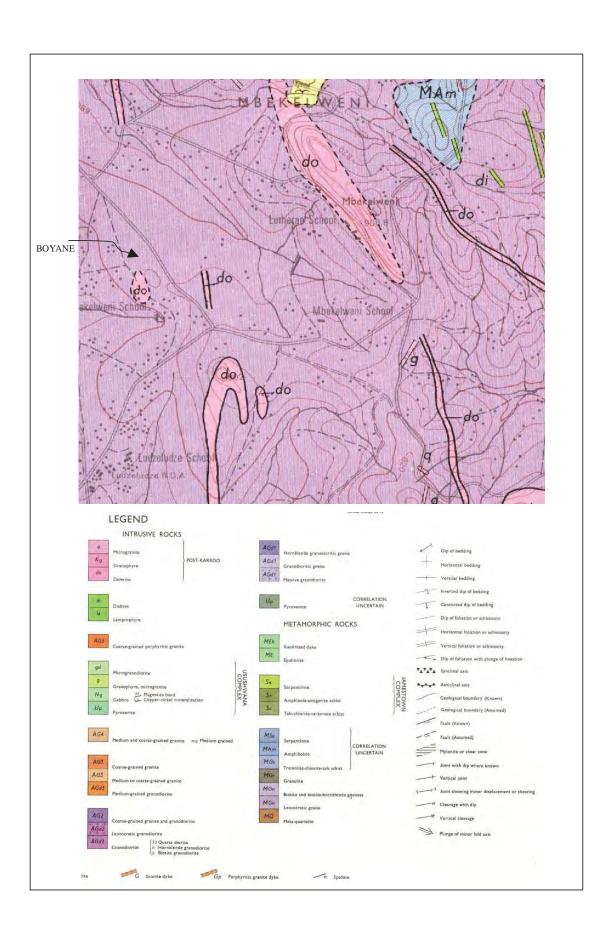
Contact Person

Mr. DRAMINI SICELO Cel: 7607 1911

Ms. LENNY N. HLAWE

Cel: 7618 7755

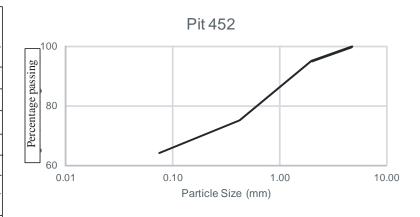
Other information


The bounday of the site is indicated by blue line. All boundary points have been staked with red sprayed rebars. If you contact to the person mentioned above, they show you the boundary points.

The Surveyor should excavete two pits in total indicated in the map:

Boundary Point	Latitude / Longitude	Note
429	S26 26.278 E31 18.315	Reference of boundary point
431	S26 26.216 E31 18.313	Ditto
433	S26 26.056 E31 18.147	Ditto
435	S26 26.062 E31 18.135	Ditto
437	S26 26.145 E31 18.137	Ditto

Boundary Point	Latitude / Longitude	Note
439	S26 26.160 E31 18.161	Reference of boundary point
441	S26 26.285 E31 18.190	Ditto

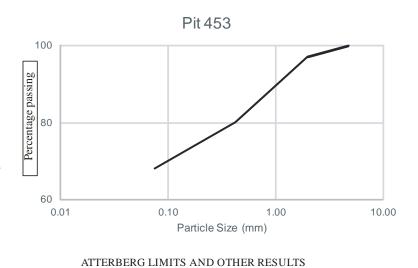

APPENDIX B

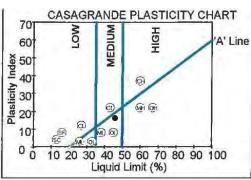
Projec		Trial Pi	t No.		Loca	ation		Date	
Matsuda Internati	Matsuda consultants nternational Ltd TP 452		2	Boyane				04/12/2016	
Mater	ial and Soil	Description						I	
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Со	onsistency	Moisture
	Topsoil		520	0-520		dark browr	1		moist
Soil Horizons	silt-clay, h Granodion	ighly weathered	1480	520-2000		dark red Inprofile, light red/ light reddish brown/ dark yellow.	slight	ly soft, intact	Moist

Projec		Trial Pi	t No.		Loca	ation		Date	
	Matsuda consultants nternational Ltd TP 453		3	Boyane				04/12/2016	
Mater	rial and Soil	Description							
Layer	Stratig	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture
	Topsoil		300	0-300		dark brown	1		slightly moist
Soil Horizons	sandy c	lay	1280	300-1580		dark red	sligh	tly dense	Moist
	silt-clay, highly Granodiorite	y weathered	820	1580-2400		dark red Inprofile, light yellowis orange/ dark red/ light reddish orang	sh	ly soft, intact	moist

FOUNDATION INDICATOR RESULTS					
Client	Matsuda Consultants International	Sample no.	T.P. 452	Date	
Project	Boyane High School	Sample Depth		Client	

sieve size mm	Percentage passing
75	
53.0	
37.5	
26.5	
19.0	
13.2	
4.75	100
2.00	95
0.425	75
0.075	64


ATTERBERG LIMITS AND OTHER RESULTS


60	LOW	MEDIUM	HIGH	'A' Lin
§ 50		Z	1	
€ 40			(i)	
Plasticity Index 30				
£ 20		9	WH OH	
10		a b		
00		40.5	0 60 70 80	90 100
	10 20 00 L	iquid	Limit (%)	00 100

Liquid Limit (LL)	46
Plastic Index (PI)	10
Linear Shrinkage	4
Grading Modulus	0.66
Natural Moisture Content	16.3
PI of whole sample	
AASTHO Classification	A-7-5(7)
TRH 14	

FOUNDATION INDICATOR RESULTS					
Client	Matsuda Consultants International	Sample no.	T.P. 453	Date	
Project	Boyane High School	Sample Depth		Client	

sieve size mm	Percentage passing
75	
53.0	
37.5	
26.5	
19.0	
13.2	
4.75	100
2.00	97
0.425	80
0.075	68
	·

Liquid Limit (LL)	48
Plastic Index (PI)	16
Linear Shrinkage	7.5
Grading Modulus	0.55
Natural Moisture Content	14.0
PI of whole sample	
AASTHO Classification	A-7-5(10)
TRH 14	

SOIL TESTING SERVICES
MATSUDA CONSUNTANTS INTERNATIONAL
BOYANE NEW HIGH SCHOOL
DCP TEST RESULTS

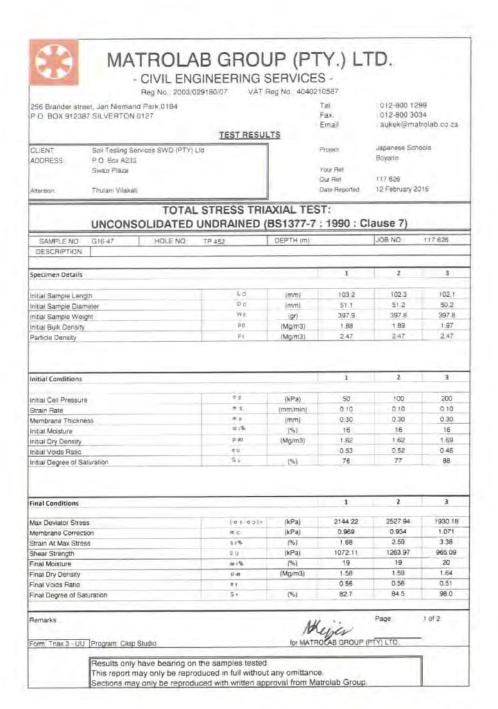
21	604	120	15

Mary 11 Control			
Depth (mm	No. Blows	mm/blows	kPa
0			
100	5	20	173
200	6	17	213
300	4	25	129
400		17	219
500	5	20	1/3
600	5	70	173
700	4	25	129
250	4	25	129
500	4	25	129
1000	4	25	129
1100	3	33	28
1200	3	33	19
1300	3	33	89
1400	2	50	52
1500	2	50	57
1600	3	33	89
1760	2	50	52
1800	3	100	21
1900	2	50	52
2000	1	100	21
	100		
	- N		

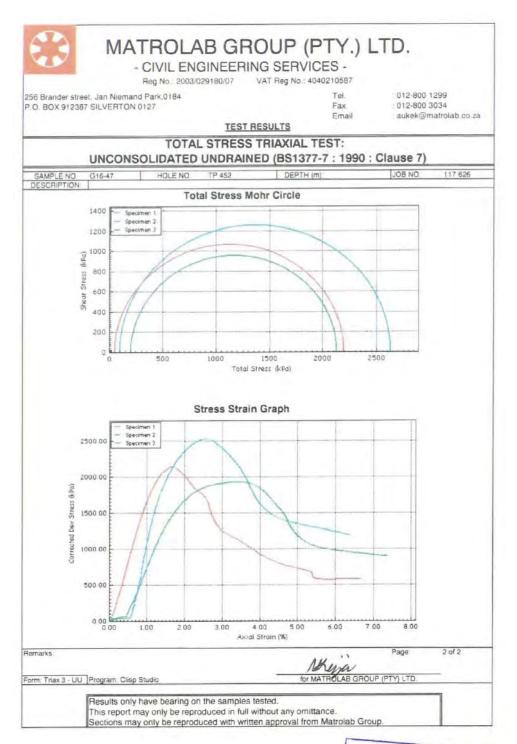
DCP (2)		NGL	
Debtu (mm)	No. Blows	mm/blows	kPa
0	0		100
100	14	7	68e
200	12		540
300	10	10	426
400	6	11	219
500		47	218
800	5	70	173
700	7	14	268
568	5	20	173
900	4	25	129
1000	2	33	63
1100	-3	33	89
1700	3	50	52
1390	2	50	52
1459	40	100	21
1500	2	50	52
1688	7	100	21
1700	4	100	21
1880		100	21
1900	3	100	21
2000	*	100	21
		1	

Depth (mm)	no, Blows	mm/blows	kPa
		100	
		20	173
200		20	173
306	5	20	1/3
480	4	25	129
500	2	50	52
1993	3	33	89
/00	4	25	129
806	3	33	89
900	3	33	89
1000	3	32	88
1100	2	50	52
1200	3	33	89
1300	2	50	52
1400	3	33	89
1500	2	50	52
1600	2	50	52
1700	2	50	52
1200	- 1	100	21
1000	2	50	52
7000	2	50	52
	3.1		100
- 1			
	- 4		

C 0 0 100 112 8 54b 100 10 0 112 100 112 100 114 200 21 5 100 114 200 21 5 100 114 200 21 5 100 114 200 21 5 100 114 200 21 5 100 114 200 21 5 100 114 200 21 10 10 10 10 10 10 10 10 10 10 10 10 10	DCP (4)		NGL	-	DCP (5)		NGL	
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Depth (mm)	No. Blows	mm/blows	kPa	Depth (mm)	No. Blows	mm/blows	kP:
200 9 11 271 200 21 5 380 6 17 219 300 14 7 400 5 26 177 490 10 16 500 5 20 177 490 10 16 600 4 25 129 600 8 13 800 3 33 89 800 4 25 800 3 33 89 800 4 25 1000 3 33 88 90 4 25 1100 4 25 129 1100 3 33 1100 4 25 129 1100 3 33 1100 4 25 120 1100 3 33 1100 4 25 120 1100 3 33 1100 4 25 120 1100 3 33 1100 4 25 120 1100 3 33 1100 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					0			
200 9 11 271 200 21 5 5 340 40 14 7 400 15 20 177 500 5 5 20 177 500 27 14 7 600 4 7 7 600 4 7 7 600 4 7 7 600 4 7 7 7 600 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		12	8	540	100	11		482
388					200		5	7111
500 5 20 1/3 500 7 14 10 10 10 10 10 10 10 10 10 10 10 10 10		6			300	14	y I	690
500 5 20 177 500 7 144 600 8 143 700 3 3 33 89 500 4 25 50 52 1400 3 3 33 33 69 1300 3 33 33 69 1300 3 33 33 69 1300 3 33 33 69 1300 3 33 31 500 52 1400 2 5 50 52 1400 3 3 33 1500 3 3 33 1500 3 3 33 50 1500 7 50 50 52 1400 3 3 33 1500 3 3 33 1500 3 3 33 1500 3 3 33 33 33 35 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 52 1400 3 3 33 35 1500 7 50 50 50 50 50 50 50 50 50 50 50 50 50		. 5		173	400		10	429
600 4 25 429 600 8 43 700 3 33 89 700 4 25 800 3 23 89 800 4 25 800 3 23 89 800 4 25 1000 2 50 52 1000 3 33 100 3 33 60 1300 4 25 1000 3 25 50 52 1000 3 33 1500 3 33 60 1300 3 33 1500 2 50 52 1400 3 33 1500 2 50 52 1400 3 33 1500 2 50 52 1400 3 33 1500 3 33 60 33 1500 2 50 52 1400 3 33		5	20	1/3	500			268
700 3 23 29 700 4 25 50 52 1500 4 25 1500 2 1 1500 4 25 1500 3 13 29 1500 3 13 25 1500 3 13 25 1500 3 13 25 1500 3 13 25 1500 3 13 25 1500 3 13 25 1500 3 13 25 1500 3 13 25 1500 4 25 1500 5 2 1500 5		4.		129	600		13	318
800 3 33 89 800 4 25 800 3 33 89 900 4 25 1900 2 50 52 1900 3 33 1100 4 25 129 1108 3 33 1200 3 33 40 1300 3 33 1400 2 50 52 1400 3 33 1400 2 50 52 1400 3 33 1600 2 50 52 1400 3 33 1600 2 50 52 1400 3 33 1600 1 100 21 1800 3 33		3		29	700	4		120
900 3 33 28 99 990 4 25 1600 2 50 52 1990 3 33 1100 4 25 129 1199 3 33 1299 2 50 52 1200 4 25 1500 3 33 69 1390 3 33 1500 2 50 52 1409 3 33 1500 2 50 52 1409 3 33 1500 2 1 100 21 1500 4 25		3			200	4		129
1000 2 50 52 1000 3 53 1100 4 25 129 1199 3 33 1200 2 50 52 1200 4 25 1300 3 33 60 1200 3 33 1400 2 50 52 1400 3 13 1500 2 50 52 1400 3 13 1500 2 50 57 1500 4 25 1600 1 100 21 1660 3 33		3			900	4		179
1100 4 25 129 1199 3 33 1299 2 59 52 1200 4 25 1500 3 33 49 1390 5 3 33 1490 2 50 52 1409 3 33 1500 2 50 52 1409 3 33 1500 4 25 1600 1 100 21 1800 2 3 33		2		52	1990	2	33	89
7480 2 50 52 1400 3 33 15 1500 2 50 52 1500 4 25 1600 1 100 2t 1860 3 33		4		129	1100	3		89
7480 2 50 52 1400 3 33 15 1500 2 50 52 1500 4 25 1600 1 100 2t 1860 3 33		2		52	1200		25	129
1490					1360	3	33	89
1500 2 50 52 1500 4 25 1600 1 100 21 1600 3 33		2			1400	3		89
1600 1 1600 21 1600 3 33		2	50		1500	4		129
1700 1 109 24 1700 4 25 1800 2 50 32 1800 4 25 1800 2 50 32 1800 5 26 22 2800 1 180 24 2800 3 33		1			1600	3		89
1800 X 59 57 1800 4 25 1800 2 50 52 1800 5 20 2000 1 100 21 2000 3 33		1	100	21	1700	4		129
1800 2 50 52 1909 5 20 2009 1 180 21 2000 3 33		X			1800	4		129
2000 1 100 21 2000 3 39		2			1900	5	20	173
	5060	.1	100	21	2:000	3		89
		1	- 1					
	= 1							


epth (mm)	No. Blows	mm/blows	ows kPa	
0	0			
100		47	215	
200	7	14	268	
390	7	14	288	
400		17	219	
500		17	219	
neo		17	219	
700	5	20	173	
800	5	20	173	
900	3	33	89	
1000	5	20	173	
1100	4	25	129	
1200	4	25	129	
1200	- 4	25	129	
1400	4	25	129	
1560	4	25	129	
1600	3	33	82	
1700	2	50	52	
1200	3	23	8.9	
1900	9	33	89	
2005	2	50	52	
		1.0		
- 1				

OCP (7)	No. Blows	man for a con-	100	DCP (8)		NGL.	_
		SWOIGHTE	kPa	Depth (mm)	No. Blows	mm/blows	KP:
0	0			0	0		_
100	12		540	100	1	100	21
200	5.	-11	371	200	4	100	21
700	7	14	263	300	3	33	89
400	5	20	173	400	4	25	129
500	3	25	128	500	. 3	33	85
600	3	33	89	600	3	33	89
700	2 2	50	52	700	3 Z	50	52
800	2	50	52	800	2	50	62
900	2	50	52	990	1	100	21
1000	2	50	52	1000	2	50	52
1100	3 3 2	33	89	1100	2	50	52
1200	3	33	89	1200	11	100	21
1300		50	52	1300	2	50	52
1400	1	100	21	1400	2	50	52
1500	2	50	52	1500	2	59	52
1600	1	100	21	4500	2	50	52
1700	1	5	21	1700	2	50	52
1800	2	50	52	1800	2	50	52
T900	1	100	21	1909	2 2 2	30	52
2,000	2	50	52	2600	2	50	52
			î þ				15


Depth (mm)	No. Blows	mm/blows	kPa
0	0		100
100	2	58	52
200	2	50	52
360	4	25	129
409	4	25	129
500	4	25	129
600	3	33	119
700	2	50	52
HOD	2	50	52
900	2	50	52
1000	2	50	52
1100	2	50	52
1200	2	50	52
1300	- 0	190	21
1460	2	50	52
1500	2	50	52
1000	2	50	57
1700	2	50	52
1806	2	50	52
1900	2	50	52
2000	2	50.	52

COLATION	gation Log Sheet				
BOYANE NEW HIST	Y SCHOOL	Date	22/12/2015		
HOYANE			_		
ce of unusual land usel NOTES		- H	HOLE 2 NOTES		
hole was used for PER Hole was presosked the	BY A HAND SPADE was us COLATION investigation day before and and soak to expage suitable for french	× 24 HRS	(2) The hole was (3) The Hole was	used for PERCOLATI	fore and soak for 25 HKS
HOLE 1	Presoaking Ti	me (24hrs)	HOLE 2	Presoaking	Time (25hrs)
DEPTH	TIME	SEEPAGE mm/min.	DEPTH	TIME	SEEPAGE movimin.
0 10 30 50 70 85 100 120 130 150 165 180 200 215 235 280 290 290	0.0 2.0 4.0 8.0 8.0 10.0 12.0 14.0 16.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0	5.0 10.0 10.0 7.5 7.6 10.0 5.0 10.0 7.5 7.5 10.0 7.5 15.0 5.0	0 20 30 40 50 70 80 95 110 130 180 260 210 220 220 220 220 220 220 220 220 22	0.0 2.0 4.0 8.0 12.0 14.0 16.0 16.0 22.0 22.0 24.0 22.0 34.0 35.0 40.0 45.0 55.0	10.0 5.0 5.0 5.0 7.5 7.5 10.0 10.0 5.0 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
			Tochnical signate	R. SALISM XVINACI	NG SERVICES ND) (PTY) LTD 휴다에스하다 스자스

SOIL TESTING SERVICES (SWAZILAND) (PTY) LTD P.O. BOX A233. SWAZI PLAZA TEL: 404 1956 494 2227 SO/L

SOIL TESTING SERVICES (SWAZILAND) (PTY) LTD P.O. BOX A233, SWAZI PLAZA TEL: 404 1956 404 2227 SOIL LUBORATORY

MATROLAB GROUP (PTY.) LTD.

- CIVIL ENGINEERING SERVICES -

Reg No.: 2003/029180/07

VAT Reg No.: 4040210587

DEPTH (m):

256 Brander street, Jan Niemand Park,0184

P.O. BOX 912387 SILVERTON 0127

Tel. : 012-800 1299 Fax. : 012-800 3034

Email

: aukek@matrolab.co.za

117 626

TEST RESULTS

CLIENT:

Soil Testing Services SWD (PTY) Ltd

HOLE NO:

ADDRESS:

P.O. Box A233

Swazi Plaza

Attention:

SAMPLE NO.

Thulani Vilakati

G16_46

Project

Japanese Schools

Boyane

Your Ref Our Ref

117 626

JOB NO:

Date Reported

14 March 2016

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7 : 1990 : Clause 7)

pecimen Details			1	2	3
Initial Sample Length	Lo	(mm)	101.8	101.4	100.9
Initial Sample Diameter	Do	(mm)	50.3	50.3	50.2
Initial Sample Weight	Wo	(gr)	393.0	393.1	393.5
Initial Bulk Density	ρo	(Mg/m3)	1.94	1.95	1.97
Particle Density	рs	(Mg/m3)	2.58	2.58	2.58

itial Conditions			1	2	3
Initial Cell Pressure	σ3	(kPa)	50	100	200
Strain Rate	m s	(mm/min)	0.10000	0.10000	0.10000
Membrane Thickness	mь	(mm)	0.30	0.30	0.30
Initial Moisture	ω i%	(%)	14	14	14
Initial Dry Density	b 40	(Mg/m3)	1.70	1.71	1.73
Initial Voids Ratio	e 0		0.51	0.51	0.49
Initial Degree of Saturation	S o	(%)	70	71	73

Final Conditions			1	2	3
Max Deviator Stress	(01-03)f	(kPa)	570.41	960.27	1014.58
Membrane Correction	m c	(kPa)	0.970	1.040	2.258
Strain At Max Stress	5 f%	(%)	1.56	3.14	8.33
Shear Strength	си	(kPa)	285.21	480.13	507.29
Final Moisture	ω _f %	(%)	14	14	14
Final Dry Density	p df	(Mg/m3)	1.70	1.71	1.73
Final Voids Ratio	e _f		0.51	0.51	0.49
Final Degree of Saturation	Sf	(%)	70.1	71.3	72.7

Remarks:

Page:

Heira

for MATROLAB GROUP (PTY) LTD.

1 of 2

Form: Triax 3 - UU Program: Clisp Studio

Results only have bearing on the samples tested.

This report may only be reproduced in full without any omittance.

Sections may only be reproduced with written approval from Matrolab Group.

MATROLAB GROUP (PTY.) LTD.

- CIVIL ENGINEERING SERVICES -

Reg No.: 2003/029180/07

VAT Reg No.: 4040210587

256 Brander street, Jan Niemand Park,0184 P.O. BOX 912387 SILVERTON 0127

Fax.

: 012-800 1299

: 012-800 3034

Email

: aukek@matrolab.co.za

TEST RESULTS

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7: 1990: Clause 7)

APPENDIX C

Table 1: Correlation chart of maximum bearing stress (allowable bearing capacity) of rocks and soil materials

Category	Types of rocks and soils	Bearing value (kPa)
Non-cohesive soils	Dense gravel or dense sand and gravel	>600
	Medium dense gravel, or medium dense sand and gravel	<200 to 600
	Loose gravel, or loose sand and gravel	<200
	Compact sand	>300
	Medium dense sand	100 to 300
	Loose sand	<100 depends on degree of looseness
Cohesive soils	Very stiff bolder clays & hard clays	300 to 600
	Stiff clays	150 to 300
	Firm clay	75 to 150
	Soft clays and silts	< 75
	Very soft clay	Not applicable
Peat		Not applicable
Made ground		Not applicable

SOIL TESTING SERVICES

GEOTECHNICAL REPORT – QINISWENI

CONSTRUCTION OF NEW SECONDARY SCHOOLS AND UPGRADING OF FACILITIES IN EXISTING SECONDARY SCHOOLS AIMED AT PROMOTING INCLUSIVE EDUCATION IN THE KINGDOM OF SWAZILAND

FOR

MATSUDA CONSULTANTS INTERNATIONAL CO. LTD

Lot 321, Samora Machel Street P.O. Box A233 Swazi Plaza Mbabane H101 Swaziland

TABLE OF CONTENTS

EOTECHNICAL REPORT - QINISWENI	2
.0 INTRODUCTION	2
2.0 SCOPE OF WORK	2
3.0 SITE DESCRIPTION	2
Location and Topography	2
Rainfall and Drainage	3
Access	3
4.0 GENERAL GEOLOGY OF SITE	3
5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATOR	Y TESTING4
Methods of investigation and testing	4
6.0 INTERPRETIVE INFORMATION	7
Site Stratigraphy	7
Materials	8
Engineering Geological Evaluation	8
7.0 CONCLUSION AND RECOMMENDATIONS	Error! Bookmark not defined.
GENERAL NOTES ON THE REPORT	8
APPENDIX A	12
APPENDIX B	16
APPENDIX C	16

GEOTECHNICAL REPORT - QINISWENI

1.0 INTRODUCTION

This report is based on the Preparatory Survey on "the Project for the Construction of New Secondary Schools and Upgrading of Facilities in Existing Secondary Schools aimed at Promoting Inclusive Education" based upon request from the Government of Swaziland to the Japan International Cooperation Agency (JICA). The survey is to obtain geotechnical data and information at Qinisweni, southern Swaziland, where the proposed Qinisweni High School will be constructed, for the design of earthworks, foundation and structures of the buildings.

2.0 SCOPE OF WORK

The following activities were expected to be executed in the cause of the study.

- (1) Field works on each site
 - Dynamic Cone Penetration test (DCP)
 Nine (09) points, depth up to Two (02) m from the ground level
 - Soil Sampling
 - Percolation Test Two (02) points
- (2) Laboratory testing (for each sample)
 - Triaxial Compression Test
 - Moisture Density Test
 - Particle Size Analysis
 - Atterberg limit test

3.0 SITE DESCRIPTION

Location and Topography

The new Eqinisweni High School site lies in a topographically flat area, with a very gentle slope to the south.

Most of the site consists of an area currently used as a soccer field for the existing Qinisweni Primary School, about 10km from Nhlangano town. It is possibly also used for field and track events during school's athletic competitions. There is indigenous grass cover on the pitch. The remainder portion to the west is currently used for commercial tree farming with grown up eucalyptus forest.

Rainfall and Drainage

The area lies in the Highveld climatic condition of Swaziland. It has an elevation of 1020m above sea level, and like the rest of the country experiences summer rainfall. The area has warm summers and cold winters and receives an annual rainfall of 870mm. In winter the area experiences frost.

There is no stream draining this area besides a water spring to the west of the area. Water is sourced from a community water scheme, and can also be sourced by drilling a borehole.

Access

The site and the nearby primary school are situated along the Nhlangano-Lavumisa tarred road, in 20m proximity. Access to the site will be through opening a short road from the nearby paved road.

4.0 GENERAL GEOLOGY OF SITE

The Qinisweni site is underlain by the quartzo-feldspathic Nhlangano gneiss that is distinguishable by its distinctive pinkish-red weathered color. The rocks are cut by veins of quartz and feld-spar which produce a very obvious banding that is commonly folded. The Nhlangano gneiss has a granitoid appearance, but no unambiguous evidence of cross-cutting relationships with other formations is known. The formation is of metamorphic origin than igneous genesis. The outcrop pattern and the distribution of the fold plunge depressions indicate that the gneiss has been folded into a number of domes.

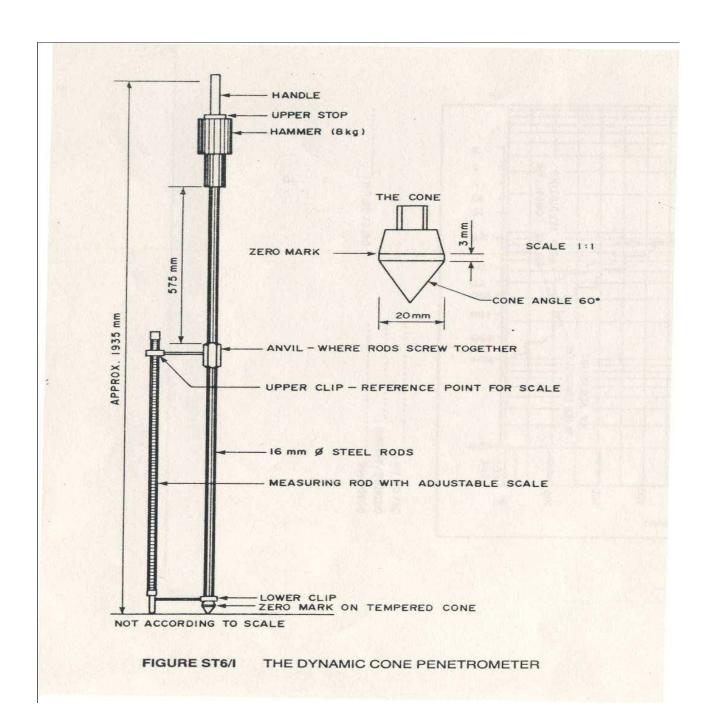
A scanned and cropped geological map of the area is presented in Appendix A. It is taken from a 1:50 000 geological map sheet 12 (2631 AD) published by the Swaziland Geological Survey Department

5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING

Methods of investigation and testing

Field investigations, sampling and laboratory testing have been designed to provide information as follows:

Trial Pits


Three Trial Pits (TP) were excavated at positions determined by the client with pits attaining some depth of 2.4m using a Tractor Loader Backhoe (TLB), 4x4 capability with 600mm bucket width and flywheel power rating of at least 70kW. The aim of the excavation of the trial pits was to determine the soil stratigraphy, and extraction of soil samples.

All test pits had stable walls and were profiled using profiling standard procedure outlined in the Association of Engineering Geologists (South African Section), 'Guidelines for soil and rock logging in SA" (1990). Representative soil samples were taken from the soil profile for laboratory testing. Bulk samples of the residual soil material were taken; topsoil and sub-soil layers were recorded and are shown in detail in Trial Pit profiles. The stratigraphy revealed by each pit was carefully logged with special notes taken of the thickness and conditions of the various layers.

Dynamic Cone Penetration Test (DCP)

Dynamic Cone Penetrometer (DCP) tests were conducted at 9 positions around the site. The exact locations of all DCP tests carried out were performed at positions determined by Matsuda Consultants International Co., Ltd.

Prior to the performance of a series of tests, the zero reading of the penetrometer was determined. The dynamic penetrometer tests were then performed by taking readings of cone penetration after a number of blows depending on the consistency of the layer being penetrated. The tests were terminated at maximum depths of 2000mm wherever possible.

Percolation Test

The percolation test consist of digging a 300 mm diameter hole to the stratum for which information is required, cleaning and backfilling the bottom with coarse sand or gravel, filling the hole with water and providing a soaking period of sufficient length to achieve saturation. During the soaking period, water is added as necessary to prevent loss of all water. The percolation rate is then obtained by filling the hole to a prescribed water level and measuring the drop in water level over a set time. The times required for soaking and for measuring the percolation rate vary with the soil type.

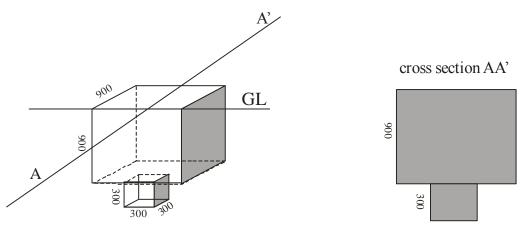
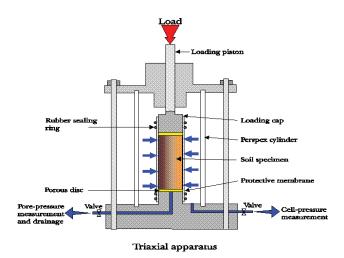


Figure 2. Cross section of percolation test pit

Laboratory Testing


Laboratory tests were performed by Soil Testing Services (Pty) Ltd in Mbabane. As specified by Matsuda Consultants International Co., Ltd this testing comprised of foundation indicator testing only.

The following laboratory tests were executed for the preliminary design:

- determination of grain size distribution
- determination of natural moisture content
- determination of Atterberg limits
- execution of Proctor tests (moisture density relation, MDD/OMC)
- ·specific gravity tests

Stress Triaxial Stress Tests: Unconsolidated - Undrained (BS 1377-7:1990 Clause 7)

Stress Triaxial Stress Tests were conducted at Metrolab Group, Republic of South Africa according to the standard BS 1377-7:1990 Clause 7. This involved subjecting a cylindrical soil sample to radial stresses (confining pressure) and controlled increases in axial stresses or axial displacements. The cylindrical soil specimen was of ~50mm diameter and ~100mm height dimension. As this is cohesive soil samples were prepared directly from saturated compacted samples, either undisturbed or remolded. The specimen was vertically enclosed with a thin rubber membrane and placed between two rigid ends inside a pressure chamber. The upper plate can move vertically and apply vertical stresses to the specimen. The axial strain/stress of the sample is controlled through the movement of this vertical axis. Also, the confining pressure is controlled by the water pressure surrounding the sample in the pressure chamber. The volume change of the sample is also controlled by measuring the exact volume of moving water.

6.0 INTERPRETIVE INFORMATION

Site Stratigraphy

Stratigraphy of the Qinisweni High School site is defined by dark brown topsoil invariably underlain by a thin pebble marker. These soil horizons overly residual soils derived from the in place weathering of the Nhlangano gneiss rock that lies at depth below the existing ground level. In all the Trial Pits this rock unit was not encountered except for the occasional float on site.

The residual soil in this site lies at 600mm depth and consists of various materials mainly distinguishable by colour variation. They comprise of fine grained soils typically dark red, dark yellowish orange or dark reddish orange in color. These soils are mainly moist, slightly soft to slightly dense, silt clay materials.

Materials

The table below summarizes some of the laboratory test results and the complete test results are presented in Appendix B.

Test Pit No.	Sample no & depth(m)	Horizon	O.M.C%	LL	PI	Shrinkage	Soil Class AASHTO
329	0.6-2.2	Residual	9	34	14	3.5	A-7-6(12)
330	0.6-2.3	Residual	14.6	38	18	4.5	A-7-6(12)
331	0.6-2.4	residual	13	35	7	3.5	A-7-6(12)

Engineering Geological Evaluation

Groundwater

Groundwater inflow was not encountered in any of the excavated test pits. It is expected that the groundwater table will occur at depth.

Expansive soils

No soils susceptible to swelling or heaving were encountered on site, and problematic movements associated with expansion are not expected.

From the Foundation Indicator tests carried out all the horizons tested displayed a "low" potential for expansiveness classification.

Potentially Collapsible Soils

The soil horizons encountered are not considered to be collapsing in nature. It is, therefore, not anticipated that any special precautions will need to be taken with regard to collapsible soils.

Percolation Rate

The soils in this area are suitable for a normal French drain. Both percolation tests positions display good seepage and as such are suitable for normal French drain development.

Bearing Capacity

The laboratory triaxial compression tests the Qinisweni High School site with unconsolidated undrained (UU) shear strength (c_u) of between 665kPa and 1109 kPa display allowable bearing ca-

pacity of between an estimated 1138kPa and 1900kPa. Based on the correlation chart (Appendix C) of maximum bearing stress that can be applied to the foundation such that it is safe against instability due to shear failure the site's allowable bearing capacity is highly safe for building development.

The Dynamic Cone Penetrometer (DCP) tests confirm the observations made during soil profiling. It displays dense soil material of colluvial nature and relatively soft (slightly soft) for the residual material. The apparent refusal recorded at DCP position 6 can be explained by the possibility of a pebble blocking the cone penetration along the pebble marker horizon. The tests reveal safe bearing capacities notwithstanding the generally low values displayed for the residual soil.

Field tests of both DCP and soil profiling suggest that foundations can be of some 800 to 1000mm depths. This is generally beyond the colluvial and pebble marker layers situated at some 600mm depth.

Excavatibility

There were no recorded excavation refusals during pitting to the depths of 2.4m. It is anticipated that excavation to bedrock level will be of soft excavation class at the site. No major instabilities were recorded during the excavation of the test pits which further suggests that excavation may safely extend vertically to depths of about 3.00m without the need for lateral support, if of a temporary nature (during construction) and in the dry season.

Seismicity

One type of seismic activities occurs in Swaziland, and that is natural seismic activity. There is no mining-induced seismic activity. In accordance with the Seismic Hazard Zone map contained in the draft SANS 10160-4, southern Swaziland is classified as Zone 1 and is subject to natural seismic activity only. Qinisweni area is located in southern Swaziland found in Zone 1 area.. The South African "loading" code, SABS 0160-4:2011, shows that Qinisweni is situated in an area where the peak ground acceleration with a 10% probability of being exceeded in a 50 year period is some 130 cm/sec²

The soil profile of the site can be described as slightly dense, silt-clay to slightly soft, silt-clay with an average between 665kPa and 1109 kPa c_u shear strength. Considering the undrained shear strength and soil profile this area can be tentatively classified as Ground Type 2. However, the lacking v_s profile at the site is taken as "the most reliable predictor of the site dependent characteristics of the seismic action at stable sites".

7.0 CONCLUSION AND RECOMMENDATIONS

- The absence of rock outcrop on the site suggests that bedrock will only be present at depth. The bedrock surface is likely to be undulatory and, therefore, highly variable in depth.
- No special precaution has to be paid as no water seepage was experienced in any of the Trial Pits and no problem of dampness is thus expected.

Building Foundations

Allowable bearing capacities of between 1138kPa and 1900kPa are safe to base the foundations of building structures in the sand clay soil.

Foundations are recommended to be placed on the residual soil, at depths of 800 to 100mm, to avoid the marked variability of the colluvial soil.

It is recommended that all foundations be placed on the residual soil below the Pebble Marker, but care should be taken to ensure foundations are located at less than 1m depths to avoid the low bearing capacities. This is to avoid the marked variability of the soil material's bearing capacity and ensure no differential settling of the structures/buildings.

From the Foundation Indicator tests carried out all the horizons tested displayed a "low" potential for expansiveness classification. As the soils are not susceptible to swelling or heaving it is not expected that significant swell-shrink movement of the footing will occur.

Despite the low expansive potential of the soils it is worth taking the following precautions:

- Attention to proper site drainage and storm water runoff management is essential to prevent ponding of water near structures.
- Water supply pipes and sewers must be maintained and leaks or blockages timeously detected and repaired.
- No water loving vegetation or large trees may be allowed to grow within 15m of any structure and it is not recommended to allow gardening directly around the structures. Instead concrete aprons should be installed to prevent wetting of foundations.

Parking Areas and Roadways

The material quality at surface display a good bearing capacity from DCP analyses and for the construction of parking can easily be stabilized and paved. But for roadways it cannot be used as fill. It is recommended that material for pavements layers required for road works be imported from outside the site

NOTE:

• Additional investigations or at least an assessment of the ground conditions exposed during construction can often result in significant construction cost and time savings.

GENERAL NOTES ON THE REPORT

The information and recommendations contained within this report relate to data supplied by Soil Testing Services, comprising test pit profiles, DCP penetration data, soil percolation test results and soil grading tests.

The report has been compiled on the assumption that all the data supplied by Soil Testing Services (and the assumptions made in this report where this supplied data is inadequate) is correct and is generally representative of the site area.

Prepared for Geo Solutions

Noah Nhleko

BSc (Biology & Chemistry); PhD Geology

APPENDIX A

A) Tractor Loader Backhoe (TLB)

B) Typical Trial Pit

SOIL TESTING SERVICES (SWAZILAND) (PTY) LTD P.O. BOX A233, SWAZI PLAZ TEL: 404 1956 404 2 SOIL LABO ATOR

Site Name :

51

EQINISWENI

Region:

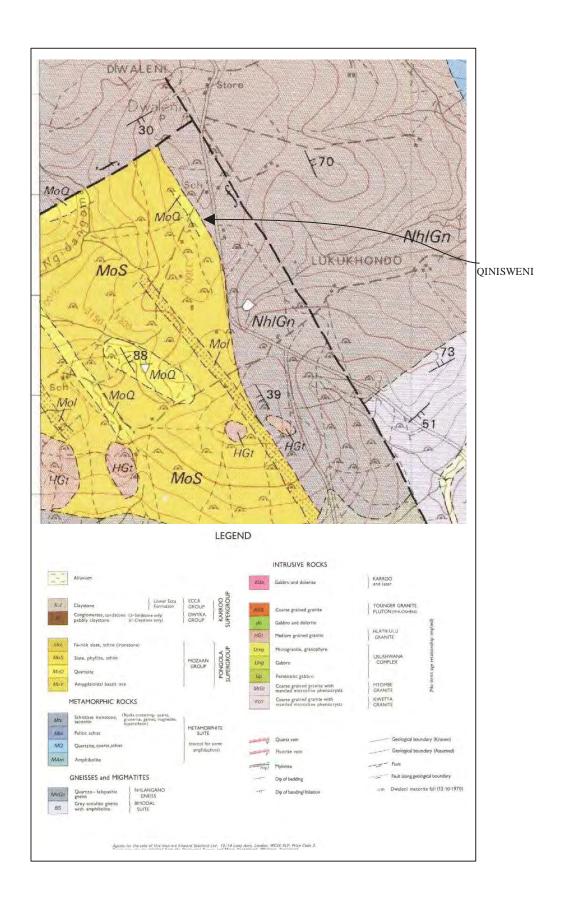
Shiselweni

Contact Person

Ms. BETY NKHONTA Cel: 76073145

Other information

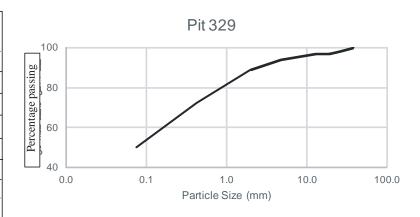
The bounday of the site is indicated by blue line. All boundary points have been staked with red sprayed rebars. If you contact to the person mentioned above, they show you the boundary points.


While the Japanese consultant team inspected two pit (No. 329 and 331), the Surveyor should excavete three pits indicated in the map.

Boundary Point		Latitude / Longitude	Note
	305	S27 10.152 E31 16.024	
	307	S27 10.207 E31 16.027	Reference of boundary point
	309	S27 10.213 E31 15.940	Ditto
	311	S27 10.172 E31 15.906	Ditto
	313	S27 10.129 E31 15.898	Ditto
		527 10.129 E31 15.898	Ditto

ary Point	Latitude / Longitude	Note
315	S27 10.132 E31 15 927	
317	S27 10.145 E31 15.927	Reference of boundary point Ditto

APPENDIX B

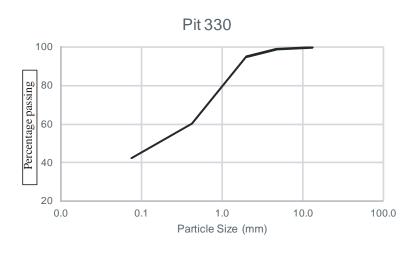

Project	t	Trial Pi	it No.		Loca	ntion		Date	
Matsuda	uda TP 329			Eqi	nisweni		01/12/2016		
Mater	ial and Soil	Description							
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Со	onsistency	Moisture
	Topsoil		380	0-380		dark reddisl brown	ı		slightly dry
	sandy clay (Pebble marker)	220	380-600		dark red	den	ıse	Moist
Soil Horizon	silt-clay (Residual soil)	1560	600-2160		dark yellowish orange	sligh	ntly dense	Moist

Projec	ct Trial Pit No.			Location			Date		
Matsud	da TP 330			Eqi	nisweni		01/12/2016		
Mater	rial and Soil	Description		•					
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Со	onsistency	Moisture
	Topsoil		400	0-400		dark reddish brown			dry
	sandy clay (F	Pebble marker)	260	400-660		dark red	de	nse	Moist
Soil Horizon	silt-clay	residual soil	1570	660-2230		dark reddish orange	sligh	ntly dense	Moist

Projec	t	Trial Pi	it No.		Location			Date	
Matsud	da TP 331			Eqinisweni			01/12/2016		
Mater	rial and Soil	Description							
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	onsistency	Moisture
	Topsoil		400	0-400		dark brown			dry
	sandy clay (P	Pebble marker)	230	400-630		dark reddisi red	n de	nse	slightly moist
Soil Horizon	silt-clay ((Residual soil)	1730	630-2400		dark red	sligŀ	ntly soft	Moist

FOUNDATION INDICATOR RESULTS						
Client	Matsuda Consultants International	Sample no.	T.P. 329	Date		
Project	Qinisweni High School	Sample Depth		Client		

sieve size mm	Percentage passing
75	
53.0	
37.5	100
26.5	98
19.0	97
13.2	97
4.75	94
2.00	89
0.425	72
0.075	50

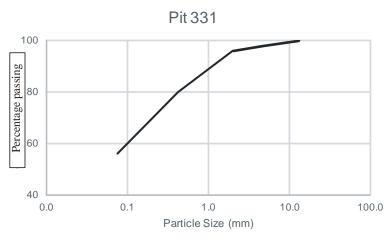

ATTERBERG LIMITS AND OTHER RESULTS

60	LOW	MEDIUM	HIGH	'A' Li
§ 50		Σ	7	
€ 40			(CH	
Plasticity Index				
E 20		9	WH OH	
10		M (1)		
00	- Control of the last of the l	40.5	0 60 70 8	0 90 100
	10 20 00 L	iquid	Limit (%)	0 00 100

Liquid Limit (LL)	34
Plastic Index (PI)	14
Linear Shrinkage	3.5
Grading Modulus	0.89
Natural Moisture Content	9
PI of whole sample	
AASTHO Classification	A-7-6(12)
TRH 14	

FOUNDATION INDICATOR RESULTS						
Client	Matsuda Consultants International	Sample no.	T.P. 330	Date		
Project	Qinisweni High School	Sample Depth		Client		

Percentage passing
100
99
95
60
42


ATTERBERG LIMITS AND OTHER RESULTS

70 60	LOW	MEDIUM	HIGH	'A' Lir
ĕ 50 t		M	-	
Plasticity Index			(i)	
₫ 30				
g 20		9	WH OH	
10	(Q) (SC) (M) (Q)	M (1)		
00	The second second		60 70 80	90 100

Liquid Limit (LL)	38
Plastic Index (PI)	18
Linear Shrinkage	4.5
Grading Modulus	1.03
Natural Moisture Content	14.6
PI of whole sample	
AASTHO Classification	A-7-6(12)
TRH 14	

	FOUNDATIO	N INDICATO	OR RESULTS		
Client	Matsuda Consultants International	Sample no.	T.P. 331	Date	
Project	Qinisweni High School	Sample Depth		Client	

sieve size mm	Percentage passing
75	
53.0	
37.5	
26.5	
19.0	
13.2	100
4.75	98
2.00	96
0.425	80
0.075	56
	·

ATTERBERG LIMITS AND OTHER RESULTS

70 60 <u>8</u> 50	LOW	MEDIUM	HIGH	'A' Line
Plasticity Index		9	@ @ @	
10			0 60 70 80 imit (%)	90 100

Liquid Limit (LL)	35
Plastic Index (PI)	7
Linear Shrinkage	3.5
Grading Modulus	0.68
Natural Moisture Content	13
PI of whole sample	
AASTHO Classification	A-7-6(12)
TRH 14	

SOIL TESTING SERVICES
MATSUDA CONSUNTANTS INTERNATIONAL
EQINISWENI NEW HIGH SCHOOL
DCP TEST RESULTS

	NGL	
No. Blows	mm/blows	kPa
0		
18	6	915
10	10	426
7	14	268
3	28	473
4	25	129
4	25	129
3	33	89
3	33	89
3	33	89
3	33	89
4	75	129
- 3	33	89
3	33	89
4	75	129
3	33	88
3	33	ED
- 3	33	44
3.	93	88
2	33	29
2	50	52
	0 12 10 7 2 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	No. Blows imm/blows 6 11 6 10 10 14 5 28 4 25 4 25 3 3 3 3 4 7 4 7 3 3 3 3 3 3 3 3 3 3 3 3

Depth (mm)	No. Blows	mm/blows	kPa
0	0		
100	32	3	1933
200	30	2	1772
300	19	5	984
400	70	5	1049
500	10	6	785
600	12	2	540
700	7	14	268
800	6	17	219
900	5	20	173
1000	4	25	128
1100	5	20	173
1200	4	25	129
1300	5	20	173
1400	4	25	129
1500	4	25	129
1600	3	33	89
1790	3	33	88
1800	2	50	52
1900	2	50	52
2000	2	50	52
1	100		
1			

	T-64		
Depth (mm)	No. Blows	mm/blows	kPa
0	0		
100	48		915
200	13	8	599
360	22		1187
400	10	10	426
500	7	14	268
800	7	14	268
700	5	20	173
860	4	26	120
800	4	25	128
1000	3	33	89
1100	2	33	89
1200	3	33	28
1300	2	50	57
1400	1	100	21
1500	3	33	89
1800	3	33	89
1700	8	25	129
1800	3	33	89
1500	3	33	88
2000	3	33	88
2000	3	23	88

DCP (4)		NGL	-	DCP (5)		NGL	
Depth (mm)	No. Blows	mm/blows	kPa	Depth (mm)	No. Blows	mm/blows	kPa
	.0	- 1	LIES III	.0			
100	21	5	11138	100	22	3	1197
200	17	8	849	200	11	9	482
300	20	5	1049	350	11	9	482
400	19	5	991	400	11	9	482
500	10	10	426	500	8	13	318
609	7	14	268	600	6	17	219
700		13	318	780	3	33	89
008	4	25	129	800	3	33	89
900	3	33	89	990	2	50	52
1000	3	33	89	1000	2	50	52
1100	2 2	58	52	1100		50	52
1200	2	50	52	1200	2 2	50	52
1300	2	50	62	1300	7	50	52
1400	2	50	62	1400	2	50	52
1500	2	50	52	1500	2	541	52
1600	1	100	21	1600	2	50	52
1700	.2.	50	52	1709	2	50	52
1800	3 3 2	33	9:0	4860	2 2 2 2 2	50	52
1500	3	33	80	1900	2	58	52
2000	2	33	28	7,000	2	50	52
				1 2 2 7 7	100	25.	
		- 1		1 1			
				1 1	. 7		

DCP (6) Depth (mm)	No. Blows	MGL mm/blows	kPa
D	0	3.01.0	417 4
200	20	5	1045
300	20 75	5	1040
400	30	3	1778
480	30	3	2376
entrance.			
	100	M III	
- 1		1	
		1	
	- 1		
- 1	- 1		
	- 1		
- 1			
	- 1		
	- 1		

		NGL		DCP (8)	2	NGL	
Depth (mm)	No. Blows	mm/blows	kPa .	Depth (mm)	No. Blows	mm/blows	KP:
9	. 0	F		0	0		
100	40	3	2585	100	22	5	118
200	75	4	1402	200	32	3	193
300	31	2	1855	300	31	3	185
400	28	4	1476	400	30	3	1771
500	18	6	915	500	30	3	1771
500	12	1.0	540	000	21	6	111
700	10	10	428	700	15	4	785
800	10	10	426	800	10		482
900	.6	12	219	500		-11	3/1
1000	5	20	173	1000	7	14	288
1100	5	20	173	1100	2		52
1200	4	25	129	1200	3	50 33	89
1300	4	25	128	1306	3	33	89
1400	4	25	129	1400	4	33 25	129
1500	3	33	89	1500	4	25	129
1600	3	33	89	1600	4	25	129
1700	4	25	129	1700	4	25	129
1806	3 3	33	89	1800	3	33	89
1900	3	33	89	1900	2	50	52
20st	3	33	89	2000	2	50	52

Depth (mm)	No. Blows	mm/blows	kP:
0	. 0	-	
100	44	2	7976
200	32	3	1937
300	37	3	2335
400	28	4	1825
500	19	5	981
608	23	4	1268
700	17	6	849
808	13	8	599
900	10	10	428
1800	75	14	286
7100	3	33	39
1200	2	56	52
1300	2	50	52
1450	4	25	129
1500	4	25	129
1600	2	50	52
1700	2	50	52
1800	2	50	52
1906	2	50	52
2006	.7	50	52
1			
	- 1		
- 4			

2___

SOIL TESTING SERVICES (SWAZILAND) (PTY) LTD P.C. 12 KA233, SWAZ I 14 1956 4 1 222/ ISOIL LABOR I

	ZENI NEW HIGH SC		ONAL						
ite <u>EQINISW</u>		HOOL		Date 22/12/	2015				
	EN								
otential influence of unusual			water						
1) A TLE AND PRI 2) The hole was use 3The Hole was pres 4)This hole has a ve	ed for PERCOLATI sosked the day before	ION investig ore and and	ration I soak for 24 HR	ha hole.	(2) The hall (3) The Hol	AND PRE le was use e was pres	d for PERO	A HAND SPADE OLATION investig tay before and so a suitable for frence	ak for 25 HRS
IOLE 1	Presoaki	ing Time	(2dhes)	HOLE 2		Presna	king Tim	a (25hrs)	
DEPTH	TIME		SEEPAGE	DEPT	н	TIME	T THE	SEEPAGE	
mm o	Minutes 0.0		medmin.	mm	+	Minutes 0.0	-	mm/min.	
50	2.0		25,0	15		1.0	11	15.0	
80	4.0		15.0	25		2.0		10,0	
110	6.0	1	15.0	30		3.0	1	5.0	
120	10.0		5.0 12.5	50	1 1	5,0		10.0	
155	12.0		5.0	75		6.0		15.0	
170	14.0		7.5	85		7.0		10.0	
175	16.0		2.5	95	1 1	8.0		10.0	
190	18.0		7.5	100	1 1	9.0		5.0	
205	20.0		7.5	110	1 1	10.0		10.0	
215	24.0		2.5	150	1 1	15.0		4.0	
220	26,0		2.5	160	1 1	30.0		1.0	
230	29.0		5,0	170		40.0		1.0	
240	30.0		5.0	180		50.0	. 11	1.0	
260	32.0		10.0	200		80.0	n - 0	2.0	
280	34.0 35.0	1 1	5.0	210 215	1 1	70.0	1	1.0	
300	38.0		5.0	220	1 1	90.0		0.5	
1905	1,000	Average	8.3		1 1	20.0	Average	6.9	
					1 1		2.000.00		
					1 1				
	1	100			1 1				
		1							
	-3			4 44					
						-			
						SO	IL TES	TING SE	RVICES
						(5)	WAZIU	AND) (PT	VILTO
						P.O.	BON	283 5144	17410
					1 1	Ť	ELMA	Cele MA	PLAZA
					Torchoich T	nuitan. T	620	MAINTENES ACT	JESTING SERVICES

MATROLAB GROUP (PTY.) LTD.

- CIVIL ENGINEERING SERVICES -

Reg No.: 2003/029180/07

VAT Reg No.: 4040210587

DEPTH (m)

256 Brander street, Jan Niemand Park,0184 P.O. BOX 912387 SILVERTON 0127

HOLE NO

:012-800 1299 Tel. : 012-800 3034 Fax.

Email

: aukek@matrolab.co.za

117 626

TEST RESULTS

CLIENT

Soil Testing Services SWD (PTY) Ltd

ADDRESS:

P.O Box A233 Swazi Plaza

Attention

SAMPLE NO

Thulani Vilakati

Project

Japanese Schools

Eqinisweni

Your Ref

Our Ref

JOB NO

Date Reported

12 February 2016

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7: 1990: Clause 7)

DESCRIPTION:					
Specimen Details			1	2	3
	Lo	(200 000)	102.1	101.2	101.0
Initial Sample Length	Do	(mm)	50.5	50.6	50.7
Initial Sample Diameter	Wa	(mm)	402.7	403.3	403.0
Initial Sample Weight		(gr)		1.98	1.98
Initial Bulk Density	60	(Mg/m3)	1.97		
Particle Density	D's	(Mg/m3)	2.49	2.49	2.49

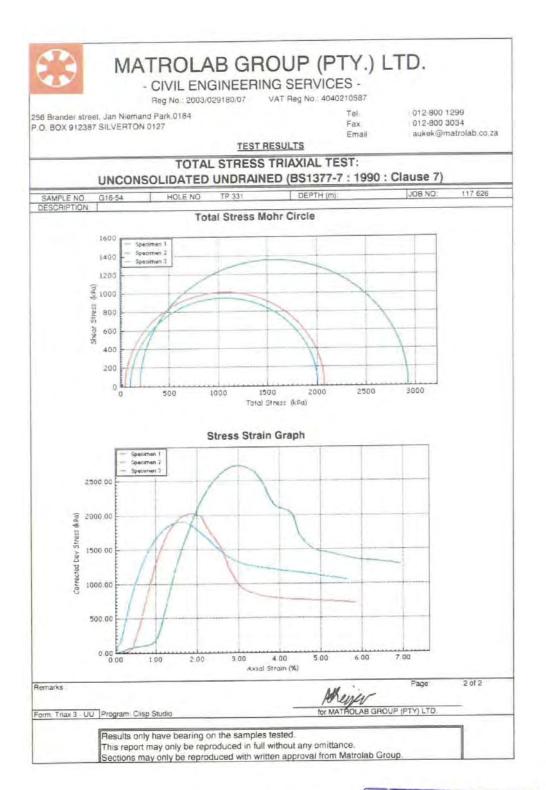
Initial Conditions			1	2	3
Initial Call Branquis	σ3	(kPa)	50	100	200
Initial Cell Pressure Strain Rate	m s	(mm/min)	0.10	0.10	0.10
Membrane Thickness	m b	(mm)	0.30	0.30	0.30
Initial Moisture	00 1%	(%)	13	13	13
Initial Dry Density	b 40	(Mg/m3)	1.74	1.75	1.75
Initial Voids Ratio	eo		0.43	0.42	0.42
Initial Degree of Saturation	Sa	(%)	75	77	76

Final Conditions			1	2	3
A. B. inter Change	(01-03)+	(kPa)	2025.02	1906.17	2721.13
Max Deviator Stress Membrane Correction	m c	(kPa)	0.881	0.852	1.008
Strain At Max Stress	51%	(%)	1.87	1.65	2.94
Shear Strength	CU	(kPa)	1012.51	953.08	1360.56
Final Moisture	w+%	(%)	14	14	14
Final Dry Density	D df	(Mg/m3)	1.73	1.75	1.74
Final Voids Ratio	61		0.44	0.43	0.43
Final Degree of Saturation	S+	(%)	78.0	78.9	78.6

Remarks

Page:

1 of 2


Form: Triax 3 - UU Program: Clisp Studio

HUEN TO MATROLAB GROUP (PTY) LTD.

Results only have bearing on the samples tested.

This report may only be reproduced in full without any omittance.

Sections may only be reproduced with written approval from Matrolab Group.

SOIL TESTING SERVICES (SWAZILAND) (PTY) LTD P.O. BOX A233, SWAZI PLAZA TEL: 404 1956, 404 2227 SOIL LABORATORY

MATROLAB GROUP (PTY.) LTD.

- CIVIL ENGINEERING SERVICES -

Reg No.: 2003/029180/07

VAT Reg No.: 4040210587

256 Brander street, Jan Niemand Park,0184 P.O. BOX 912387 SILVERTON 0127

Tel. : 012-800 1299 Fax. : 012-800 3034

Email

: aukek@matrolab.co.za

TEST RESULTS

CLIENT:

Soil Testing Services SWD (PTY) Ltd

ADDRESS:

P.O. Box A233 Swazi Plaza

Attention:

SAMPLE NO.

Thulani Vilakati

Project

Japanese Schools

Eqinisweni

Your Ref

Our Ref

117 626

Date Reported

14 March 2016

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7: 1990: Clause 7)

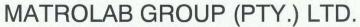
TP 330

Specimen Details			1	2	3
Initial Sample Length	Lo	(mm)	99.7	99.6	99.6
Initial Sample Diameter	Do	(mm)	49.8	49.9	49.9
Initial Sample Weight	Wo	(gr)	325.4	327.0	327.7
Initial Bulk Density	90	(Mg/m3)	1.68	1.68	1.68
Particle Density	ρs	(Mg/m3)	2.59	2.59	2.59

nitial Conditions			1	2	3
Initial Cell Pressure	σ3	(kPa)	50	100	200
Strain Rate	m s	(mm/min)	0.10000	0.10000	0.10000
Membrane Thickness	m b	(mm)	0.30	0.30	0.30
Initial Moisture	ω 1%	(%)	15	15	15
Initial Dry Density	P d0	(Mg/m3)	1.46	1.46	1.46
Initial Voids Ratio	e 0		0.78	0.77	0.77
Initial Degree of Saturation	S o	(%)	50	50	51

Final Conditions			1	2	3
Max Deviator Stress	(01-03)f	(kPa)	1070.87	1292.73	1625.57
Membrane Correction	m c	(kPa)	0.752	0.883	0.959
Strain At Max Stress	£ f%	(%)	0.80	1.80	2.40
Shear Strength	cu	(kPa)	535.43	646.36	812.78
Final Moisture	ω f%	(%)	16	15	15
Final Dry Density	p df	(Mg/m3)	1.44	1.46	1.46
Final Voids Ratio	e f		0.80	0.77	0.77
Final Degree of Saturation	Sf	(%)	52.6	49.5	50.6

Remarks:


Page: TO MATROLAB GROUP (PTY) LTD. 1 of 2

Form: Triax 3 - UU Program: Clisp Studio

Results only have bearing on the samples tested.

This report may only be reproduced in full without any omittance.

Sections may only be reproduced with written approval from Matrolab Group.

CIVIL ENGINEERING SERVICES -

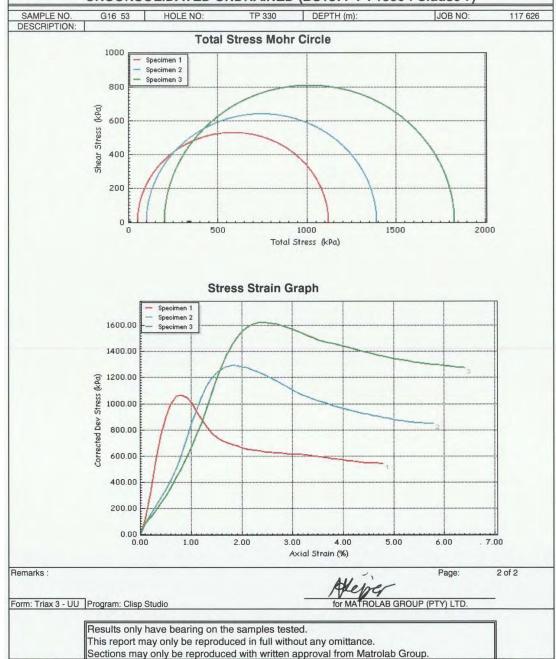
Reg No.: 2003/029180/07 VAT Reg No.: 4040210587

256 Brander street, Jan Niemand Park,0184

P.O. BOX 912387 SILVERTON 0127

Fax.

: 012-800 1299


: 012-800 3034

Email

: aukek@matrolab.co.za

TEST RESULTS

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7: 1990: Clause 7)

APPENDIX C

 $\begin{tabular}{ll} Table 1: Correlation chart of maximum bearing stress (allowable bearing capacity) of rocks and soil materials \\ \end{tabular}$

Category	Types of rocks and soils	Bearing value (kPa)
Non-cohesive soils	Dense gravel or dense sand and gravel	>600
	Medium dense gravel, or medium dense sand and gravel	<200 to 600
	Loose gravel, or loose sand and gravel	<200
	Compact sand	>300
	Medium dense sand	100 to 300
	Loose sand	<100 depends on degree of looseness
Cohesive soils	Very stiff bolder clays & hard clays	300 to 600
	Stiff clays	150 to 300
	Firm clay	75 to 150
	Soft clays and silts	< 75
	Very soft clay	Not applicable
Peat		Not applicable
Made ground		Not applicable

SOIL TESTING SERVICES

GEOTECHNICAL REPORT – ENHLITIYWENI

CONSTRUCTION OF NEW SECONDARY SCHOOLS AND UP-GRADING OF FACILITIES IN EXISTING SECONDARY SCHOOLS AIMED AT PROMOTING INCLUSIVE EDUCATION IN THE KINGDOM OF SWAZILAND

FOR

MATSUDA CONSULTANTS INTERNATIONAL CO. LTD

Lot 321, Samora Machel Street P.O. Box A233 Swazi Plaza Mbabane H101 Swaziland

MARCH 2016

TABLE OF CONTENTS

3	EOTECHNICAL REPORT - ENHLITIYWENI	2
	1.0 INTRODUCTION	2
	2.0 SCOPE OF WORK	2
	3.0 SITE DESCRIPTION	2
	Location and Topography	2
	Rainfall and Drainage	2
	Access	3
	4.0 GENERAL GEOLOGY OF SITE	3
	5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING	3
	Methods of Investigation and Testing	3
	6.0 INTERPRETIVE INFORMATION	6
	Site Stratigraphy	6
	Materials	7
	Engineering Geological Evaluation	7
	7.0 CONCLUSION AND RECOMMENDATIONS	9
	GENERAL NOTES ON THE REPORT	10
	APPENDIX A	11
	APPENDIX B	15

GEOTECHNICAL REPORT - ENHLITIYWENI

1.0 INTRODUCTION

This report is based on the Preparatory Survey on "the Project for the Construction of New Secondary Schools and Upgrading of Facilities in Existing Secondary Schools aimed at Promoting Inclusive Education" based upon request from the Government of Swaziland to the Japan International Cooperation Agency (JICA). The survey is to obtain geotechnical data and information at KaNcesi, northern Swaziland, where the proposed Enhlitiyweni High School will be constructed, for the design of earthworks, foundation and structures of the buildings.

2.0 SCOPE OF WORK

The following activities were expected to be executed in the cause of the study.

- (1) Field works on each site
 - Dynamic Cone Penetration test (DCP)
 Nine (09) points, depth up to Two (02) m from the ground level
 - Soil Sampling
 - Percolation Test Two (02) points
- (2) Laboratory testing (for each sample)
 - Triaxial Compression Test
 - Moisture Density Test
 - Particle Size Analysis
 - Atterberg limit test

3.0 SITE DESCRIPTION

Location and Topography

The new Enhlitiyweni High School site is located at KaNcesi in the Hhohho Region. This area is partially flat and sloping on the northern boundary.

The site is grass covered and part of it is a sport field. Although the land is not arable it is not necessarily used as a pasture as it is within homesteads, and cattle can only graze freely in winter.

Rainfall and Drainage

This area has a 1060m elevation and is designated as the Highveld climatic region of the country. The area has warm summers and cold winters. In winter the area experiences frost.

There area is drained by a number of small streams downslope. There are no scour surfaces on the site itself.

Access

The school site can be accessed through a distributor gravel road to Eluvinjelweni. The road leads from the tarred road to Maguga Dam to the north of this area. It is well maintained and has a wearing course.

4.0 GENERAL GEOLOGY OF SITE

The KaNcesi area has a young granite pluton, Mswati granite, as its bedrock. The granite is typically coarse grained and contains megacrysts of microcline and orthoclase. The granite is unfoliated and contains a few aplites and pegmatites. They are sharply cross-cutting and contain apparent xenoliths of earlier granite and mafic bodies. Veins of this granite lie to the south of the area and are disposed roughly concentrically around the Mbabane pluton to the south. The granite is well jointed in rectilinear patterns.

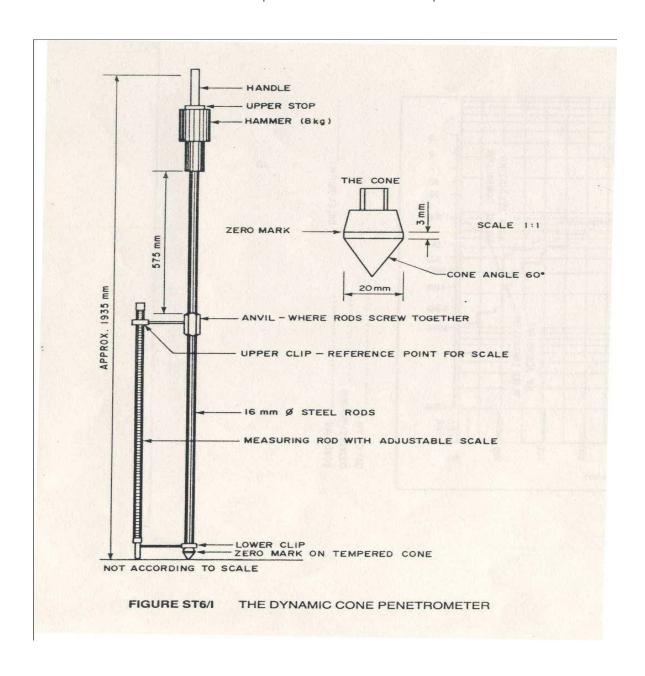
A scanned and cropped geological map of the area is presented in Appendix A. It is taken from a 1:50 000 geological map sheet 5 (2630 BB) published by the Swaziland Geological Survey Department

5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING

Methods of Investigation and Testing

Field investigations, sampling and laboratory testing has been designed to provide information as follows:

Trial Pits


Three Trial Pits (TP) were excavated at positions determined by the client with pits attaining some depth of 2.1m using a Tractor Loader Backhoe (TLB), 4x4 capability with 600mm bucket width and flywheel power rating of at least 70kW. The aim of the excavation of the trial pits was to determine the soil stratigraphy, and extraction of soil samples.

All test pits had stable walls and were profiled using profiling standard procedure outlined in the Association of Engineering Geologists (South African Section), 'Guidelines for soil and rock logging in SA" (1990). Representative soil samples were taken from the soil profile for laboratory testing. Bulk samples of the residual soil material were taken; topsoil and sub-soil layers were recorded and are shown in detail in Trial Pit profiles. The stratigraphy revealed by each pit was carefully logged with special notes taken of the thickness and conditions of the various layers.

Dynamic Cone Penetration Test (DCP)

Dynamic Cone Penetrometer (DCP) tests were conducted at 9 positions around the site. The exact locations of all DCP tests carried out were performed at positions determined by Matsuda Consultants International Co., Ltd.

Prior to the performance of a series of tests, the zero reading of the penetrometer was determined. The dynamic penetrometer tests were then performed by taking readings of cone penetration after a number of blows depending on the consistency of the layer being penetrated. The tests were terminated at maximum depths of 2000mm wherever possible.

Percolation Test

The percolation test consist of digging a 900x900x900mm deep at the centre 300x300x300mm deep see figure 2 hole to the stratum for which information is required, cleaning and backfilling the bottom with coarse sand or gravel, filling the hole with water and providing a soaking period of sufficient length to achieve saturation. During the soaking period, water is added as necessary to prevent loss of all water. The percolation rate is then obtained by filling the hole to a prescribed water level and measuring the drop in water level over a set time. The times required for soaking and for measuring the percolation rate vary with the soil type.

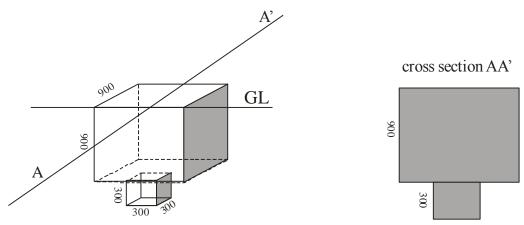
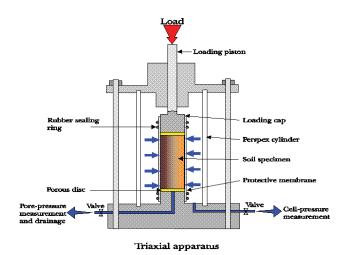


Figure 2. Cross section of percolation test pit

Laboratory Testing

Laboratory tests were performed by Soil Testing Services (Pty) Ltd in Mbabane. As specified by Matsuda Consultants International Co., Ltd this testing comprised of foundation indicator testing only.


The following laboratory tests were executed for the preliminary design:

- determination of grain size distribution
- determination of natural moisture content
- determination of Atterberg limits
- execution of Proctor tests (moisture density relation, MDD/OMC)

Stress Triaxial Stress Tests: Unconsolidated - Undrained (BS 1377-7:1990 Clause 7)

Stress Triaxial Stress Tests were conducted at Metrolab Group, Republic of South Africa according to the standard **BS 1377-7:1990 Clause 7**. This involved subjecting a cylindrical soil sample to radial stresses (confining pressure) and controlled increases in axial stresses or axial displacements. The

cylindrical soil specimen was of ~50mm diameter and ~100mm height dimension. As this is cohesive soil samples were prepared directly from saturated compacted samples, either undisturbed or remolded. The specimen was vertically enclosed with a thin rubber membrane and placed between two rigid ends inside a pressure chamber. The upper plate can move vertically and apply vertical stresses to the specimen. The axial strain/stress of the sample is controlled through the movement of this vertical axis. Also, the confining pressure is controlled by the water pressure surrounding the sample in the pressure chamber. The volume change of the sample is also controlled by measuring the exact volume of moving water.

6.0 INTERPRETIVE INFORMATION

Site Stratigraphy

The stratigraphy of the Enhlitiyweni High School site can be summarized as colluvial and residual soils.

Colluvial soils on the site generally consists some 300mm thick layer of dry dark brown to dark reddish brown topsoil. This is gravity transported soil.

The lower layer of colluvial soils averages about 900mm, except for TP20 where it was not encountered, and consists of moist, slightly dense, sandy clay. It is gravity transported and dark red in colour and represents the lower limit of colluvial soils and directly lies above residual soils.

Residual soils derived from the complete in-situ weathering of the underlying Mswati granite, the underlying rock. This soil lies at depth ranging from 1100mm to 1200mm, and is moist to slightly moist, slightly soft, fissured or intact, silt-clay. At TP20, however, it lies at 230mm depth and very shallow. The residual soil display lateral material variation discernible by their colour variation. They consist of pale red to light red material.

Materials

The table below summarizes some of the laboratory test results and the complete test results are presented in Appendix

Test Pit No.	Sample no & depth(m)	Horizon	O.M.C%	LL	PI	Shrinkage	Soil Class AASHTO
18	1.1-2.1	Residual granite	14.4	50	21	6.5	A-7-6(5)
19	1.2-2120	Residual granite	8.8	47	30	5.5	A-7-6(4)
20	0.23-1.5	Residual granite	11.6	45	16	6.0	A-7-6(4)

Engineering Geological Evaluation

Groundwater

No groundwater inflow was encountered in any of the excavated test pits. It is, however, expected that the groundwater table will occur at depth.

Expansive soils

No soils susceptible to swelling or heaving were encountered on site, and problematic movements associated with expansion are not expected.

From the Foundation Indicator tests carried out all the horizons tested displayed a "medium" to "low" potential for expansiveness classification.

Potentially Collapsible Soils

The soil horizons encountered are not considered to be collapsing in nature. It is, therefore, not anticipated that any special precautions will need to be taken with regard to collapsible soils.

Percolation Rate

The soils in this area are suitable for a normal French drain. Both percolation tests positions displays good seepage and as such are suitable for normal French drain development.

Bearing Capacity

The laboratory triaxial compression tests the site with unconsolidated undrained (UU) shear strength (c_u) of between 952kPa and 1290kPa display allowable bearing capacity of between an estimated 1631kPa and 2210kPa. The correlation chart in Appendix C of maximum bearing stress that can be applied to the foundation such that it is safe against instability due to shear failure the site's allowable bearing capacity is highly safe for any building development.

Field Dynamic Cone Penetrometer (DCP) tests display higher bearing capacities for the upper 1m soils and relatively low bearing capacities at greater depths (>1m). This is in effect result in softer material at depth and slightly dense material near surface. Test positions DCP 8 and 9 display low bearing capacities of 52kPa at shallow depths (300mm). DCP Test no. 5 displays a layered nature of the residual soil.

the field and laboratory tests above indicates that residual soil from the weathered granite is relatively homogenous, and buildings can be founded at depths of 800 to 1000mm on the site.

Excavatibility

There were no recorded excavation refusals during pitting to the depths of 2.1m. It is anticipated that excavation to bedrock level will be of soft excavation class at the site. No major instabilities were recorded during the excavation of the test pits that further suggests that excavation may safely extend vertically to depths of about 3.00m without the need for lateral support, if of a temporary nature (during construction) and in the dry season.

Seismicity

One type of seismic activities occurs in Swaziland, and that is natural seismic activity. There is no mining-induced seismic activity. In accordance with the Seismic Hazard Zone map contained in the draft SANS 10160-4, southern Swaziland is classified as Zone 1 and is subject to natural seismic activity only. KaNcesi area is on the northern part of the country outside the Zone 1 area. The South African "loading" code, SABS 0160-4:2011, shows that Ka Ncesi area is situated in an area where the peak ground acceleration with a 10% probability of being exceeded in a 50 year period is just less than 100 cm/sec²

The soil profile of the site can be described as slightly soft, intact, silt-clay with an average shear strength between 952kPa and 1290kPa c_u . The contrasting identified ground types in accordance with the consolidated undrained shear strength and soil profile, type 2 and 3 respectively, indicates that the lacking v_s profile at the site is taken as "the most reliable predictor of the site dependent characteristics of the seismic action at stable sites".

7.0 CONCLUSION AND RECOMMENDATIONS

- The absence of rock outcrop on the site suggests that bedrock will only be present at depth. The bedrock surface is likely to be undulatory and of boulder nature as can be seen in the outcrops nearby.
- No special precaution with regards to water seepage and dampness has to be paid as no water seepage was experienced in any of the Trial Pits.
- The soils are of intermediate plasticity and it is expected that they will be prone to erosion. Precaution is expected to be taken during site clearing to avoid excessive soil erosion.

Building Foundations

The allowable bearing capacity of the sandy clays in the site reveals values between 1631kPa and 2210kPa in the new school site. This indicates that the site is relatively homogenous in strength and no major differential settling is expected.

It is recommended that foundations be placed on the residual soil, at depths of 800 to 100mm, to avoid the colluvial soil material.

From the other Foundation Indicator tests carried out all the horizons tested displayed a "low" potential for expansiveness classification. As the soils are not susceptible to swelling or heaving it is not expected that significant swell-shrink movement of the footing will occur.

Despite the low expansive potential of the soils it is worth taking the following precautions:

- Attention to proper site drainage and storm water runoff management is essential to prevent ponding of water near structures.
- Water supply pipes and sewers must be maintained and leaks or blockages timeously detected and repaired.
- No water loving vegetation or large trees may be allowed to grow within 15m of any structure and it is not recommended to allow gardening directly around the structures. Instead concrete aprons should be installed to prevent wetting of foundations.

Parking Areas and Roadways

The material quality at surface display a good bearing capacity from DCP analyses and for the construction of parking can easily be stabilized and paved. But for roadways it cannot be used as fill. It is recommended that material for pavements layers required for road works be imported from outside the site.

NOTE:

• Fluctuations in the level of groundwater can occur due to variations in the rainfall, landsaping, and other factors that may not been evident prior to the start of construction, so

the depth of groundwater should be verified to allow for modification of the design, if

required.

• Additional investigations or at least an assessment of the ground conditions exposed dur-

ing construction can often result in significant construction cost and time savings.

GENERAL NOTES ON THE REPORT

The information and recommendations contained within this report relate to data supplied by Soil Testing Services, comprising test pit profiles, DCP penetration data, soil percolation test re-

sults and soil grading tests.

The report has been compiled on the assumption that all the data supplied by Soil Testing Services (and the assumptions made in this report where this supplied data is inadequate) is correct

and is generally representative of the site area.

Prepared for Geo Solutions

Noah Nhleko

BSc (Biology & Chemistry); PhD Geology

A-218

APPENDIX A

A) Tractor Loader Backhoe (TLB)

B) Typical Trial Pit

SOIL TESTING SERVICES (SWAZILAND) (PTY) LTD P.O. BOX A233, SWAZI PLAZA TEL: 404 1956 404 2227 SOIL LABORATOR

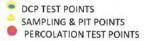
Site Name :

<u>H4</u>

ENHLITIYWENI

Region : Hhohho

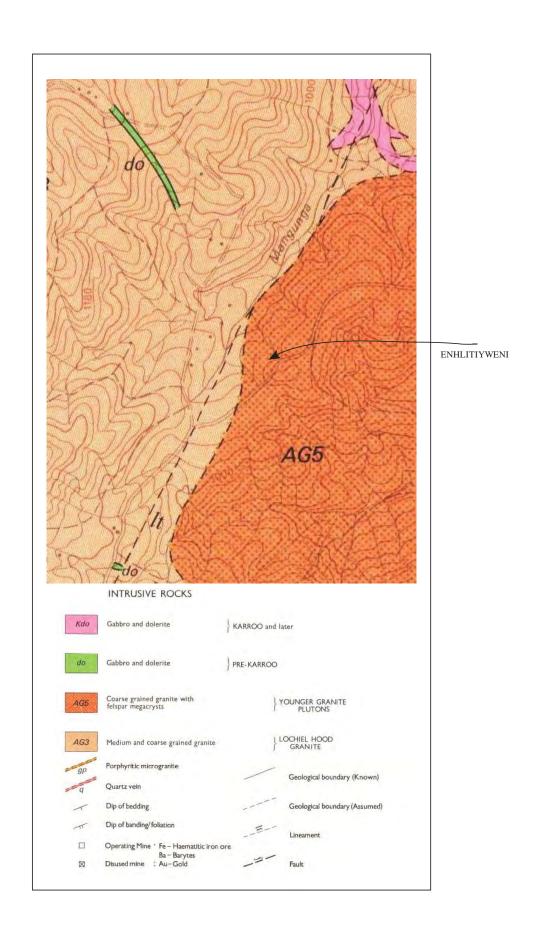
Contact Person


Mr. SAKHI DLAMINI Cel; 7617 7079

Other information

The bounday of the site is indicated by blue line. All boundary points have been staked with red sprayed rebars. If you contact to the person mentioned above, they show you the boundary points.

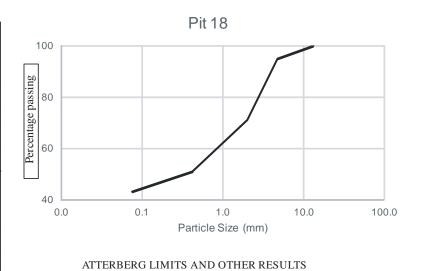
The Surveyor should excavete three pits in total indicated in the map.



Boundary Point	Latitude / Longitude	Note
000	S26 07.136 E31 14.855	Reference of boundary point
000	S26 07.114 E31 14.846	Ditto
000	S26 07.046 E31 14.814	Ditto
009	S26 07.018 E31 14.789	Ditto
011	S26 07.000 E31 14.767	Ditto

Boundary Point	Latitude / Longitude	Note
012	S26 06.988 E31 14.729	Reference of boundary point
013	S26 07.049 E31 14.725	Ditto
014	S26 07.070 E31 14.757	Ditto
015	S26 07.148 E31 14.659	Ditto
017	S26 07.173 E31 14.680	Ditto

APPENDIX B

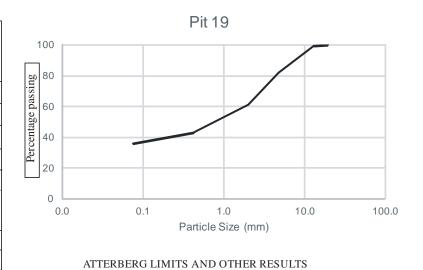

Projec		Trial Pi	t No.	Location				Date	
Internati	consultants ional Ltd	TP 18		(KaNc Enhlitiy			9/12/2015	
Mater	rial and Soil	Description							
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture
	Topsoil		250	0-250		dark brown	L		moist
•	sandy cl transpor	lay ted soil	810	250-1100		dark red	sli	ghtly dense	moist
Soil Horizons									
	silt-clay, higl Mswati grani	nly weathered te	1000	1100-2100		ight red Inprofile, ight yellowis orange/ pale red/ ight brown		ly soft, intact	Moist

Projec		Trial Pi	t No.		Location			Date	
Internat	a consultants ional Ltd	TP 19		(1	KaNc Enhlitiy			9/12/2015	
Mate	rial and Soil	Description							
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Со	nsistency	Moisture
	Topsoil		330	0-330		dark reddish brown			moist
Soil Horizons	sandy cl transpor		870	330-1200		dark red	slig	ghtly dense	moist
	silt-clay, higl Mswati grani	nly weathered te	920	1200-2120		pale red Inprofile, light yellowis orange/light reddish brow	h	ly soft, fissure	ed Moist

Projec		Trial Pi	t No.		Location			Date	
Internat	consultants ional Ltd	TP 20			KaNo Enhlitiy			9/12/2015	
Mate	rial and Soil	Description							
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Со	nsistency	Moisture
	Topsoil		230	0-230		dark brown			moist
Soil Horizons	silt-clay, high Mswati grani	ly weathered	1270	230-1500		light red Inprofile, dark red/ light reddisl orange/ pale red	h	y dense, intac	e moist

FOUNDATION INDICATOR RESULTS					
Client	Matsuda Consultants International	Sample no.	T.P. 18	Date	
Project	Enhlitiyweni High School	Sample Depth		Client	

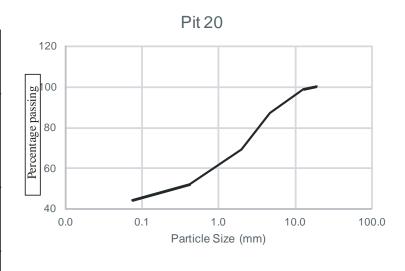
sieve size mm	Percentage passing
75	
53.0	
37.5	
26.5	
19.0	
13.2	100
4.75	95
2.00	71
0.425	51
0.075	43



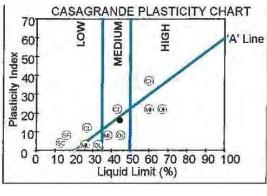
Liquid Limit (LL)	50
Plastic Index (PI)	21
Linear Shrinkage	6.5
Grading Modulus	1.35
Natural Moisture Content	14.4
PI of whole sample	
AASTHO Classification	A-7-6(5)
TRH 14	

FOUNDATION INDICATOR RESULTS					
Client	Matsuda Consultants International	Sample no.	T.P. 19	Date	
Project	Enhlitiyweni High School	Sample Depth		Client	

sieve size mm	Percentage passing
75	
53.0	
37.5	
26.5	
19.0	100
13.2	99
4.75	82
2.00	61
0.425	43
0.075	36



CASAGRANDE PLASTICITY CHART 70 60 60 70 Fig. 10 Fig.


Liquid Limit (LL)	47
Plastic Index (PI)	30
Linear Shrinkage	5.5
Grading Modulus	1.6
Natural Moisture Content	8.8
PI of whole sample	
AASTHO Classification	A-7-6(4)
TRH 14	

	FOUNDATION INDICATOR RESULTS				
Client	Matsuda Consultants International	Sample no.	T.P. 20	Date	
Project	Enhlitiyweni High School	Sample Depth		Client	

sieve size mm	Percentage passing
75	
53.0	
37.5	
26.5	
19.0	100
13.2	99
4.75	87
2.00	69
0.425	52
0.075	44

ATTERBERG LIMITS AND OTHER RESULTS

Liquid Limit (LL)	45
Plastic Index (PI)	16
Linear Shrinkage	6.0
Grading Modulus	1.35
Natural Moisture Content	11.6
PI of whole sample	
AASTHO Classification	A-7-6(4)
TRH 14	

SOIL TESTING SERVICES
MATSUDA CONSUNTANTS INTERNATIONAL
ENHLITIYWENI NEW HIGH SCHOOL
DCP TEST RESULTS

DCP (1)		NGL	
Depth (mm)	No. Blows	mm/blows	kPa
0	0		700
100	. 6	17	219
200		17	371
300		-11	371
409	11	9	482
500	6	17	218
800	- 6	97	210
700	5	20	173
886	5	20	173
900	3	33	89
1000	3	33	89
1100	3	33	89
1200	8.	-17	219
1300	2	50	57
1400	2	50	52
1500	2	50	52
1660	3.	100	21
1700	2	50	52
1800	2	50	52
1900	2	50	52
2000	2	50	52

Depth (mm)	No. Blows	mm/blows	kPa
	0.		
100	7	14	288
200	10	10	476
300	10	10	426
400	12	8	540
500	16	10	426
600	9	- 11	3/1
700	9	13	318
600	1	14	268
900	5	20	173
1600	- 5	70	173
1100	16	6	785
1200	19	6	915
1360	17	T T	540
1400		13	315
1500	3	33	68
1600	4	25	129
1760	3	33	89
1800	2	33	89
1900	- A	100	21
2000	2	50	52

CP (3)		NGL	
Septh (mm)	No. Blows	mm/blows	kPa
0	0		Cons
100	14	7	060
200	15	7	724
300	13	8.	599
400	9	at	1/E
500	5	20	173
908	5	20	173
700	5	20	173
800	4	25	129
900	4	25	129
1000	4	25	123
1100	3	33	89
1200	2	50	52
1300	2	50	52
1400	3	33	89
1500	2	50	52
1600	4	25	129
1760	3	33	89
1800	3	33	29
1909	Z	50	57
2000	2	50	52
2000	2	50	52

	NGL		DCP (5)		NGL	
No. Blows	mm/blows	kPa	Depth (mm)	No. Blows	mm/blows	kPa
0			0	0		7
7	14	268	100		17	218
3	11.	974	200	7	14	76E
12		540	300	42	8	540
	48	318	409	12	8	540
Ti .	17	219	500	11	9	482
- 5	20	173	660	8	13	318
5	70	173	780	6	17	219
3	33	89	868	5	20	173
3	33	69	900	5	20	173
2	33	88	1000	4	25	129
- 1	33	69	1100	3	33	63
2	50	52	120e	2	50	52
3	33	89	1300	1	100	71
2	50	52	1400	2	50	52
2	50	52	1500	4	25	129
	33	89	1600	3	33	89
	33	89	1700	5	20	1/3
2	50		1800	10	10	420
2	50	52	1900	12	8	540
2	50	52	2000	9	11	971
3	50	52	2000		11	
	0 7 12 8 8 5 5 2 2 2	9 111 12 4 8 117 5 177 5 20 20 13 33 33 33 33 23 59 2 59 2 59 2 59 2 59	0 14 268 7 7 14 268 7 7 14 268 7 7 14 268 7 7 17 17 1 17 1 17 1 17 1 17 1 17 1	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 10 174 200 7 174 200 7 174 200 7 174 200 7 174 200 7 175 200 7 175 200 7 175 200 7 175 200 7 175 200 7 175 200 9 175 200	9 9 9 11 268 180 18 17 17 18 18 180 18 180 18 180 18 180 18 180 18 180 18 180 18 180 18 180 18 180 18 180 18 180 18 180 18 18 18 18 18 18 18 18 18 18 18 18 18

6 0 1 77 200 U 57 300 U 58 300		No. Blaws	mm/blows	- kPa
200 d 97 3 3 3 3 3 100 2 56 1200 2 56 1200 1 100 1500 1 100 1 100 1500 1 10	0	0		
1 2 3 4 5 6 6 6 6 6 6 6 6 6	100		17	210
400 9 11 1 9 11 9 11 9 11 9 11 9 11 9 11	200	u.	31	374
5811 9 14 6812 700 6 17 700 6 17 700 6 17 700 6 17 700 6 17 700 6 17 700 700 700 700 700 700 700 700 700	300	10	9	487
880 8 13 700 5 17 800 4 25 900 4 25 1100 2 50 1100 2 50 1100 2 50 1100 2 50 1100 1 100 1100 1 100	400		11	3/1
700 6 17 800 4 26 900 A 25 1000 3 33 1100 2 50 1200 2 50 1300 1 100 1500 1 100	500	9	11	371
800 4 26 900 3 35 1000 2 50 17200 2 50 17200 2 50 1600 1 100 1500 1 100	600	8	.13	318
906 A 25 1400 3 33 1100 2 50 1200 2 50 1200 1 50 1400 1 100	700	5	-17	219
1000 3 33 1100 2 50 1200 2 50 1300 7 50 1400 1 100		4		129
1100 2 50 1200 2 50 1200 2 50 1200 1 100 1500 1 100		4		129
1200 2 50 1300 2 50 1400 1 100 1508 1 100	1000	.3	33	89
1380 2 50 1490 1 100 1569 1 100	1100	2	50	52
1400 1 100 1509 1 100	1200	2	50	52
1500 1 100	1300	- 3	50	52
	1400	- 1	100	21
	1500	-11	100	71
	1500	2	50	52
1700 2 50	1700	2	50	52
1800 2 50		2		52
1900 2 50			50	52
2000 2 50	2000	2	50	52

OCP (7)		NGL	-	DCP (8)		NGL	
Jepth (mm)	No. Blows	mm/blows	kPa	Depth (mm)	No. Blows	mm/blows	kPa
0	. 0			0			
100	10	10	426	100	10	10	476
700	15	7	721	700	2	13	318
300	13	8	590	300	3	33	82
400	19	5	981	460	3	33	338
500	10	10	428	500	1	14	288
900		13	318	800	2	59	52
700	4	25	124	700	2	50	52
8011	2	37	89	800	2	50	52
900	4	25	129	900	2	50	52
1000	3	33	69	1000	2	50	52
1100	2	33	68	1100	3	33	89
1200	14.	25	129	1200	72	5	1187
1300		20	173	1300	4	25	129
1400	3	39	89	1400	3	33	25
1500	5	20	173	1500	-4	25	129
1600	2	50	52	1690	3	33	89
1790	2	- 6	52	1700	3	33	69
1800	2	50	52	1600	3	33	89
				1600	3	33	89
2000	5	20	173	2000	3.	33	89
1900 2000	5	33 20	89 173		3 3		

0 0 100 200 100 100 100 100 100 100 100	10 18 18 25 50 50 50 50 90	426 426 426 129 52 52 52 52
260 190 190 190 190 190 190 2 2 1900 2 1160 2 1260 2 1260 2 1260 2 1260 2 1260 2 1260 2 1260 2 1260 2 1	10 10 25 50 50 50 50 50	426 426 129 52 52 57 52
390 16 490 4 500 2 500 2 700 2 700 2 700 2 1000 2 1160 2 1200 2 1160 2 1300 2 1300 2 2	10 25 50 50 50 50 50	426 129 52 52 52 52
490 4 500 2 700 2 800 2 800 2 1000 2 1100 2 1200 2	25 50 50 50 50 50 50	129 52 52 52 52
500 2 600 2 700 2 800 2 900 2 1000 2 1100 2 1200 2	50 50 50 50 50	52 52 52 52
600 7 700 2 800 2 900 2 1000 2 1100 2 1200 2	50 50 50 50 50	52 52 52
700 Z 900 Z 900 Z 1000 Z 1100 Z 1200 Z	50 50 50 50	52 52
900 2 900 2 1000 2 1100 2 1200 2	50 50 50	52
990 2 1000 2 1100 2 1200 2 1300 2	50 50	
1000 2 1100 2 1200 2 1300 2	90	
1160 Z 1200 Z 1300 Z		52
1200 Z 1300 Z	50	57
1300 2		52
	58	52
	58	52
1400 2	50	52
1500 2	50	52
1600 7	59	52
1700 2	50	52
1200 2	50	52
1990 2	30	52
2000 2	-50	52

SOIL TESTING SERVICES (SWAT AND) (PTY) LTD P.O. BC WW33, SWAZI PLAE TEL 404 1956, 404 2227 SOIL LABORATOR

	SC	IL LESTIN	G SERVICES		
eatechnical Invest	lgation Log Shee	t			
RCOLATION					
MATSUDA CONSU	TANTS INTERNATIONAL				
ject EHLITIYWENI NEW	HIGH SOLDOL	Dot	19/12/2015		
EHLITIYWENI					
4					
ential influence of running					
lence of unusual land use(n	nining/fill)				
LE 1 NOTES			HOLE 2 NOTES	OFFICE HE A HAND	SPADE was used to excevate t
A TLB AND PREPARED B		sed to excavate the hole.		sed for PERCOLATION	
The hole was used for PER he Hole was presosked the		De SALIDS		resosked the day befor	
ne mote was presosked the his hole has a very good so				very good seepage su	
ras nose mas a very good so	sopage surracio for frenci	wan	(4).113.1106.1415.1	seri Sood souhado na	THE PERSON NAMED IN COLUMN SERVICE
			0.00	4	e casia la
HOLE 1		Time (24hrs)	HOLE 2	Presoaking T	Ime (25hrs)
DEPTH	TIME	SEEPAGE mm/min.	DEPTH	Minutes	mm/min.
mai	0.0	mitvmiri.	0	0.0	Thinkshin.
40	2.0	20.0	30	2.0	15.0
60	3.0	20.0	50	3.0	20.0
80	4.0	20.0	70	4.0	20.0
100	5.0	20.0	90	5.0	26.0
110	5.0	10.0	110	6.0	20.0
120	7.0	10.0	125	7,0	15.0
		15.0	135	8.0	10.0
135	8.0	10.0	150	9.0	15.0
145	9.0	10.0	160	10.0	10.0
155	16.0	19.271	180	11.0	20.0
170	11.0	15.0	180	12.0	10.0
175	12.0	5.0	1,775	250	10.0
195	13.0	10.0	200	13.0	10.0
180	14.0	5.0	210	1915.	5.0
200	15.0	10.0	215	15.0	10.0
205	16.0	5,0	225 235	17.0	10.0
210	17.0	5.0	260	18.0	25.0
215	18.0	5,0	265	19.0	5.0
225	19.0	1.40.10	270	20.0	5.0
235	20.0	10.0	275	21.0	5.0
240 245	22.0	5.0	280	22.0	5.0
250	23.0	5.0	285	23.0	5.0
250	24.0	5.0	290	24.0	5.0
255 260	25.0	5,0	300	25.0	10.0
	1,000	5.0	500	Avera	
265	26.0			Avora	30 11.0
270	27.0	5,0			
300	32,0	6.0			
	Ave	age 9.5			
		7	S	OIL TESTING	0.00
				SIMAZU	G SERVICES
			1 2	GUALIZAWE	(PTYLLTO
			I P.O	BESA KOB C	SAME TO THE
				TEL LITTE	AVALLI PLAZA
				SOUTHER	7 404 2227
				- CHAMASO	KATOR:
			Technical signator	THULANIS VILABOTE	FOR SOIL TISTING SERVICES

- CIVIL ENGINEERING SERVICES -

Reg No.: 2003/029180/07 VAT Reg No.: 4040210587

256 Brander street, Jan Niemand Park,0184

P.O. BOX 912387 SILVERTON 0127

: 012-800 1299 : 012-800 3034 Fax.

: aukek@matrolab.co.za Email

TEST RESULTS

CLIENT:

Soil Testing Services SWD (PTY) Ltd

HOLE NO:

ADDRESS:

P.O. Box A233

Swazi Plaza

Attention:

SAMPLE NO.

Thulani Vilakati

G16 83

Project

Japanese Schools

ENHLITIWENI

Your Ref Our Ref

117 626

JOB NO:

117 626

Date Reported

14 March 2016

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7: 1990: Clause 7)

DEPTH (m):

TP 18

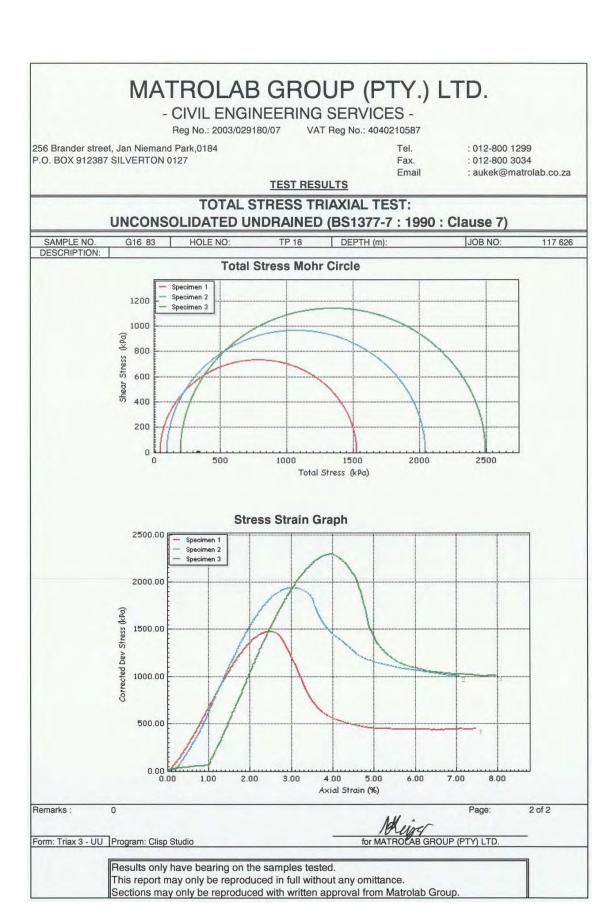
Specimen Details			1	2	3
Initial Sample Length	Lo	(mm)	101.4	99.0	95.2
Initial Sample Diameter	Do	(mm)	50.0	50.2	51.2
Initial Sample Weight	Wo	(gr)	390.1	392.1	392.6
Initial Bulk Density	ρO	(Mg/m3)	1.96	2.00	2.00
Particle Density	ρs	(Mg/m3)	2.65	2.65	2.65

Initial Conditions	tial Conditions			2	3
Initial Cell Pressure	σ3	(kPa)	50	100	200
Strain Rate	ms	(mm/min)	0.10000	0.10000	0.10000
Membrane Thickness	m b	(mm)	0.30	0.30	0.30
Initial Moisture	ω i%	(%)	14	14	14
Initial Dry Density	P d0	(Mg/m3)	1.71	1.75	1.75
Initial Voids Ratio	e o		0.55	0.51	0.51
Initial Degree of Saturation	So	(%)	70	74	74

Final Conditions	al Conditions			2	3
Max Deviator Stress	(01-03)f	(kPa)	1477.09	1940.30	2294.15
Membrane Correction	m c	(kPa)	1.088	1.035	1.116
Strain At Max Stress	ε f%	(%)	2.49	3.07	3.97
Shear Strength	cu	(kPa)	738.54	970.15	1147.08
Final Moisture	ω f%	(%)	14	14	13
Final Dry Density	p df	(Mg/m3)	1.72	1.76	1.77
Final Voids Ratio	e f		0.54	0.51	0.50
Final Degree of Saturation	Sf	(%)	68.1	71.7	71.2

Remarks:

Page:


GROUP (PTY) LTD.

1 of 2

Form: Triax 3 - UU Program: Clisp Studio

Results only have bearing on the samples tested. This report may only be reproduced in full without any omittance.

Sections may only be reproduced with written approval from Matrolab Group.

- CIVIL ENGINEERING SERVICES -

Reg No.: 2003/029180/07

G16 84 HOLE NO: TP 19

VAT Reg No.: 4040210587

DEPTH (m):

256 Brander street, Jan Niemand Park,0184

P.O. BOX 912387 SILVERTON 0127

Tel. : 012-800 1299 Fax. : 012-800 3034

Email : auk

: aukek@matrolab.co.za

117 626

TEST RESULTS

CLIENT:

Attention:

SAMPLE NO.

Soil Testing Services SWD (PTY) Ltd

ADDRESS:

P.O. Box A233

Swazi Plaza

Thulani Vilakati

Project

Japanese Schools ENHLITIWENI

ENHLII

Your Ref Our Ref

117 626

Date Reported

14 March 2016

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7 : 1990 : Clause 7)

Specimen Details			1	2	3
Initial Sample Length	Lo	(mm)	101.1	103.4	103.3
Initial Sample Diameter	Do	(mm)	49.7	50.4	50.5
Initial Sample Weight	Wo	(gr)	394.2	395.7	396.4
Initial Bulk Density	po	(Mg/m3)	2.01	1.92	1.92
Particle Density	ρs	(Mg/m3)	2.55	2.55	2.55

nitial Conditions			1	2	3
Initial Cell Pressure	σ3	(kPa)	50	100	200
Strain Rate	m s	(mm/min)	0.10000	0.10000	0.10000
Membrane Thickness	mь	(mm)	0.30	0.30	0.30
Initial Moisture	ω i%	(%)	8.80	8.80	8.80
Initial Dry Density	b 40	(Mg/m3)	1.85	1.76	1.76
Initial Voids Ratio	e 0		0.38	0.44	0.45
Initial Degree of Saturation	So	(%)	59	50	50

nal Conditions			1	2	3
Max Deviator Stress	(01-03)1	(kPa)	2405.33	2596.40	2736.21
Membrane Correction	m c	(kPa)	0.559	0.987	0.982
Strain At Max Stress	E f %	(%)	1.54	2.71	2.69
Shear Strength	cu	(kPa)	1202.66	1298.20	1368.11
Final Moisture	ω _f %	(%)	12	12	12
Final Dry Density	p df	(Mg/m3)	1.80	1.72	1.70
Final Voids Ratio	e f		0.42	0.48	0.49
Final Degree of Saturation	Sf	(%)	71.4	62.3	64.0

Remarks:

Page:

AB GROUP (PTY) LTD.


1 of 2

Form: Triax 3 - UU Program: Clisp Studio

Results only have bearing on the samples tested.

This report may only be reproduced in full without any omittance.

Sections may only be reproduced with written approval from Matrolab Group.

CIVIL ENGINEERING SERVICES -

Reg No.: 2003/029180/07 VAT Reg No.: 4040210587

256 Brander street, Jan Niemand Park,0184 P.O. BOX 912387 SILVERTON 0127

Fax.

: 012-800 1299 : 012-800 3034

Email

: aukek@matrolab.co.za

117 626

TEST RESULTS

CLIENT: ADDRESS:

Attention:

SAMPLE NO.

Soil Testing Services SWD (PTY) Ltd

HOLE NO:

P.O. Box A233

Swazi Plaza

Thulani Vilakati

Project

Japanese Schools

Enhilitiyweni

Your Ref Our Ref

117 626

JOB NO:

Date Reported

12 February 2016

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7: 1990: Clause 7)

DEPTH (m):

TP 20

ecimen Details		1	2	3	
Initial Sample Length	Lo	(mm)	102.9	101.6	102.9
Initial Sample Diameter	Do	(mm)	50.2	50.2	50.2
Initial Sample Weight	Wo	(gr)	419.3	419.5	419.9
Initial Bulk Density	ρο	(Mg/m3)	2.06	2.08	2.06
Particle Density	ρs	(Mg/m3)	2.58	2.58	2.58

Initial Conditions	ial Conditions			2	3
Initial Cell Pressure	σ3	(kPa)	50	100	200
Strain Rate	m s	(mm/min)	0.10	0.10	0.10
Membrane Thickness	mь	(mm)	0.30	0.30	0.30
Initial Moisture	∞ i%	(%)	11	11	11
Initial Dry Density	b 90	(Mg/m3)	1.86	1.88	1.86
Initial Voids Ratio	e o		0.39	0.37	0.39
Initial Degree of Saturation	So	(%)	72	75	73

Final Conditions			1	2	3
Max Deviator Stress	(01-03)f	(kPa)	1112.30	3393.46	1884.24
Membrane Correction	m c	(kPa)	1.113	0.948	1.102
Strain At Max Stress	E f %	(%)	2.75	2.36	3.65
Shear Strength	cu	(kPa)	556.15	1696.73	942.12
Final Moisture	ω f%	(%)	10	10	11
Final Dry Density	p df	(Mg/m3)	1.86	1.89	1.85
Final Voids Ratio	e _f	4	0.38	0.37	0.39
Final Degree of Saturation	Sf	(%)	70.2	73.4	73.8

Remarks:

MUYEN

for MATROLAB GROUP (PTY) LTD.

1 of 2

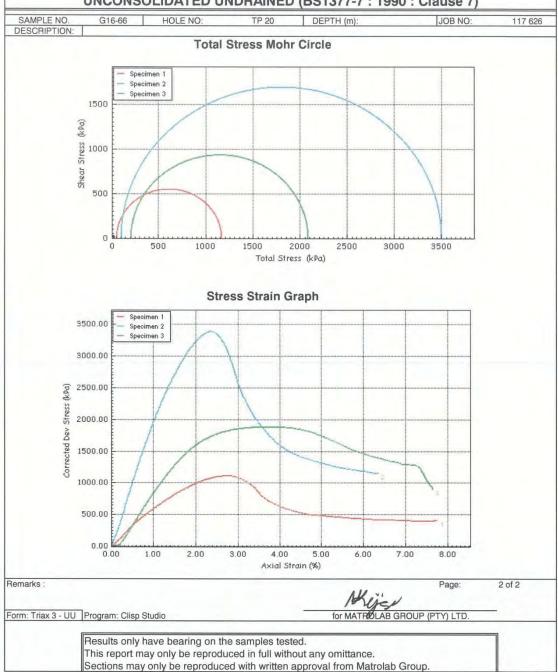
Form: Triax 3 - UU Program: Clisp Studio

Results only have bearing on the samples tested. This report may only be reproduced in full without any omittance.

Sections may only be reproduced with written approval from Matrolab Group

- CIVIL ENGINEERING SERVICES -

Reg No.: 2003/029180/07 VAT Reg No.: 4040210587


256 Brander street, Jan Niemand Park,0184 P.O. BOX 912387 SILVERTON 0127 Tel. : 012-800 1299 Fax. : 012-800 3034

Email

: aukek@matrolab.co.za

TEST RESULTS

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7 : 1990 : Clause 7)

APPENDIX C

Table 1: Correlation chart of maximum bearing stress (allowable bearing capacity) of rocks and soil materials

Category	Types of rocks and soils	Presumed bearing value kPa
Non-cohesive soils	Dense gravel or dense sand and gravel	>600
	Medium dense gravel, or medium dense sand and gravel	<200 to 600
	Loose gravel, or loose sand and gravel	<200
	Compact sand	>300
	Medium dense sand	100 to 300
	Loose sand	<100 depends on degree of looseness
Cohesive soils	Very stiff bolder clays & hard clays	300 to 600
	Stiff clays	150 to 300
	Firm clay	75 to 150
	Soft clays and silts	< 75
	Very soft clay	Not applicable
Peat		Not applicable
Made ground		Not applicable

SOIL TESTING SERVICES

GEOTECHNICAL REPORT – GAMULA

CONSTRUCTION OF NEW SECONDARY SCHOOLS AND UP-GRADING OF FACILITIES IN EXISTING SECONDARY SCHOOLS AIMED AT PROMOTING INCLUSIVE EDUCATION IN THE KINGDOM OF SWAZILAND

FOR

MATSUDA CONSULTANTS INTERNATIONAL CO. LTD

Lot 321, Samora Machel Street P.O. Box A233 Swazi Plaza Mbabane H101 Swaziland

MARCH 2016

TABLE OF CONTENTS

GEOTECHNICAL REPORT	2
1.0 INTRODUCTION	2
2.0 SCOPE OF WORK	2
3.0 SITE DESCRIPTION	2
Location and Topography	2
Rainfall and Drainage	2
Access	3
4.0 GENERAL GEOLOGY OF SITE	3
5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING	4
Methods of Investigation and Testing	4
6.0 INTERPRETIVE INFORMATION	7
Site stratigraphy	7
Materials	7
7.0 CONCLUSION AND RECOMMENDATIONS	9
GENERAL NOTES ON THE REPORT	11
APPENDIX A	12
APPENINIX B	16

GEOTECHNICAL REPORT - GAMULA

1.0 INTRODUCTION

This report is based on the Preparatory Survey on "the Project for the Construction of New Secondary Schools and Upgrading of Facilities in Existing Secondary Schools aimed at Promoting Inclusive Education" based upon request from the Government of Swaziland to the Japan International Cooperation Agency (JICA). The survey is to obtain geotechnical data and information at Gamula, southeastern Swaziland, where the proposed Gamula High School will be constructed, for the design of earthworks, foundation and structures of the buildings.

2.0 SCOPE OF WORK

The following activities were expected to be executed in the cause of the study.

- (1) Field works on each site
 - Dynamic Cone Penetration test (DCP)
 Nine (09) points, depth up to Two (02) m from the ground level
 - Soil Sampling
 - Percolation Test Two (02) points
- (2) Laboratory testing (for each sample)
 - Triaxial Compression Test
 - Moisture Density Test
 - Particle Size Analysis
 - Atterberg limit test

3.0 SITE DESCRIPTION

Location and Topography

The new school site is located in an area a bit remote of the residential areas of Gamula a few kilometers from Big Bend. The area is currently used as grazing land for the community. During the site investigation there was no grass cover and the main vegetation is thorny shrubs and dry land vegetation.

The topography of the school site is generally defined by a gentle hill slope facing to the west.

Rainfall and Drainage

Gamula receives lies in the Lowveld climatic zone of the country on the leeward side of the Lubombo escarpment. It lies about 170m above sea level and it is a summer rainfall area with rainfall falling between October and March. It experiences least rainfall in Swaziland with an annual average of 400 mm. It is thus semi-arid with dry climate conditions and temperatures range between 15 to more than 40 degrees Celsius in summer.

The hill slope has no scour surface or stream bed. The only water course is to the west beyond the western boundary. This is expected to carry flood water and serves as an ephemeral stream. Source of water is a community water scheme.

Access

The main road running close to the area is the MR8 running between Lavumisa and Big Bend, about 6km from Matata junction. A community road leads from MR8 through the residential areas into a motorable track with no wearing course that serves the community water reservoir. It is expected to offer some challenges during the rainy season with the clayey soil found along the track.

4.0 GENERAL GEOLOGY OF SITE

The site at Gamula is underlain by rhyolitic/rhyodacitic rocks that are interlayered with basalts. No clear *in situ* rocks could be found but the boulders common in the area are pale maroon-brown in colour, but on fresh surfaces are pale reddish or drab green. Randomly oriented insets, usually composed of oligoclase-andesine and orthoclase, are a common feature in the rock. Further, there is augite, titaniferous magnetite and quartz present as coarse-grains set in fine-grained matrix.

The basalt is composed of laths of feldspar and ragged grains of amphibole in which the cores of pyroxene are sometimes present. They may be defined by drab, olive green basalt with small, pealike amygdales of the Karoo Supergroup. Magnetite is usually abundant and areas of pale green, devitrified basaltic glass are common.

The general structural dip of the Karoo Supergoup is eastwards, and the rocks commonly dip between 25° and 35°. The area within the boundary is unaffected by faulting. However, the western limit of the area suggests a zone of weakness as manifest by the valley.

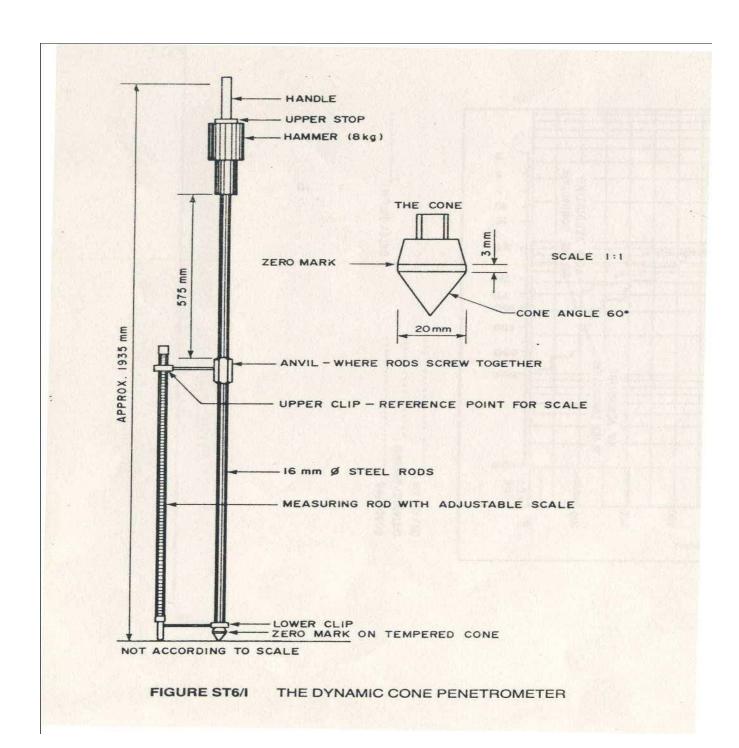
A scanned and cropped geological map of the area is presented in Appendix A. It is taken from a 1:50 000 geological map sheet 26 (2531 DD) published by the Swaziland Geological Survey Department

5.0 GEOTECHNICAL FIELD INVESTIGATIONS AND LABORATORY TESTING

Methods of Investigation and Testing

Field investigations, sampling and laboratory testing has been designed to provide information as follows:

Trial Pits


Three Trial Pits (TP) were excavated at positions determined by the client with pits attaining some depth of 1.7m using a Tractor Loader Backhoe (TLB), 4x4 capability with 600mm bucket width and flywheel power rating of at least 70kW. The aim of the excavation of the trial pits was to determine the soil stratigraphy, and extraction of soil samples.

All test pits had stable walls and were profiled using profiling standard procedure outlined in the Association of Engineering Geologists (South African Section), 'Guidelines for soil and rock logging in SA" (1990). Representative soil samples were taken from the soil profile for laboratory testing. Bulk samples of the residual soil material were taken; topsoil and sub-soil layers were recorded and are shown in detail in Trial Pit profiles. The stratigraphy revealed by each pit was carefully logged with special notes taken of the thickness and conditions of the various layers.

Dynamic Cone Penetration Test (DCP)

Dynamic Cone Penetrometer (DCP) tests were conducted at 9 positions around the site. The exact locations of all DCP tests carried out were performed at positions determined by Matsuda Consultants International Co., Ltd.

Prior to the performance of a series of tests, the zero reading of the penetrometer was determined. The dynamic penetrometer tests were then performed by taking readings of cone penetration after a number of blows depending on the consistency of the layer being penetrated. The tests were terminated at maximum depths of 2000mm wherever possible.

Percolation Test

The percolation test consist of digging a 300 mm diameter hole to the stratum for which information is required, cleaning and backfilling the bottom with coarse sand or gravel, filling the hole with water and providing a soaking period of sufficient length to achieve saturation. During the soaking period, water is added as necessary to prevent loss of all water. The percolation rate is then obtained by filling the hole to a prescribed water level and measuring the drop in water level over a set time. The times required for soaking and for measuring the percolation rate vary with the soil type.

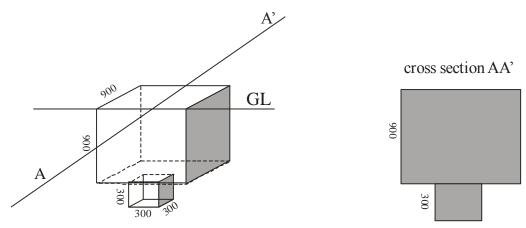
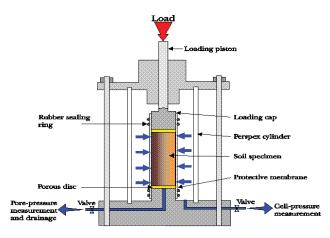


Figure 2. Cross section of percolation test pit

Laboratory Testing

Laboratory tests were performed by Soil Testing Services (Pty) Ltd in Mbabane. As specified by Matsuda Consultants International Co., Ltd this testing comprised of foundation indicator testing only.


The following laboratory tests were executed for the preliminary design:

- determination of grain size distribution
- determination of natural moisture content
- determination of Atterberg limits
- execution of Proctor tests (moisture density relation, MDD/OMC)

Stress Triaxial Stress Tests: Unconsolidated - Undrained (BS 1377-7:1990 Clause 7)

Stress Triaxial Stress Tests were conducted at Metrolab Group, Republic of South Africa according to the standard **BS 1377-7:1990 Clause 7**. This involved subjecting a cylindrical soil sample to radial stresses (confining pressure) and controlled increases in axial stresses or axial displacements. The

cylindrical soil specimen was of ~50mm diameter and ~100mm height dimension. As this is cohesive soil samples were prepared directly from saturated compacted samples, either undisturbed or remolded. The specimen was vertically enclosed with a thin rubber membrane and placed between two rigid ends inside a pressure chamber. The upper plate can move vertically and apply vertical stresses to the specimen. The axial strain/stress of the sample is controlled through the movement of this vertical axis. Also, the confining pressure is controlled by the water pressure surrounding the sample in the pressure chamber. The volume change of the sample is also controlled by measuring the exact volume of moving water.

Triaxial apparatus

6.0 INTERPRETIVE INFORMATION

Site stratigraphy

The stratigraphy of the Gamula High School site can be summarized as colluvial and residual soils. Colluvial soils on the site generally consist of about 500mm thick layer of very dry dark brown topsoil. This is gravity transported soil. At TP 162 another layer of about 600mm defines the lower limit of colluvial soils, and consists of very dry, very dense, sandy clay. It is pale red in colour.

Colluvial soils directly overly residual soils that are derived from moderately weathered rhyolitic/rhyodacitic rock. This soil is dry, very dense, course gravel and the material displays lateral variation in colour from dark reddish brown to light brown.

Materials

The table below summarizes some of the laboratory test results and the complete test results are presented in Appendix B

Test Pit No.	Sample no & depth(m)	Horizon	O.M.C%	LL	PI	Shrinkage	Soil Class AASHTO
162	1.2-1.7	Residual rhyolite	12.6	42	17	4.5	A-2-7(0)
163	1.0-1.5	Residual rhyolite	8.1	21	10	0.0	A-2-7(0)
164	0.5-1.6	Residual rhyolite	9.8	45	20	6.0	A-2-7(0)

Engineering Geological Evaluation

Groundwater

Groundwater inflow was not encountered in any of the excavated test pits. It is, generally, not expected to find groundwater at shallow levels on rhyolites as they are not good aquifers. Water strikes are known at great depth.

Expansive soils

No soils susceptible to swelling or heaving were encountered on site, and problematic movements associated with expansion are not expected.

From the Foundation Indicator tests carried out all the horizons tested displayed a "low" to "medium" potential for expansiveness classification.

Potentially Collapsible Soils

The soil horizons encountered are not considered to be collapsing in nature. It is, therefore, not anticipated that any special precautions will need to be taken with regard to collapsible soils.

Percolation Rate

The soils in this area are suitable for a normal French drain. Both percolation tests positions displays good seepage and as such are suitable for normal French drain development.

Bearing Capacity

The laboratory triaxial compression tests the Boyane High School site with unconsolidated undrained (UU) shear strength (c_u) of between 987kPa and 1389kPa display allowable bearing capacity of between an estimated 1691kPa and 2380kPa. Based on the correlation chart (Appendix C) of maximum bearing stress that can be applied to the foundation such that it is safe against instability due to shear failure the site's allowable bearing capacity is highly safe for building development.

From the field Dynamic Cone Penetrometer (DCP) tests, for most of the tests it, also, reveals safe bearing capacities by the very course gravel, well above the 79kPa for single story buildings. No certain precautions need to be taken during designing the foundation.

The residual soil is relatively homogenous, and is marked by coarse gravel at variable depths. There buildings will have to be founded at depths of 800 to 1000mm and the common shallow refusals at this area suggest that excavations have to be performed mechanically.

Excavatibility

Trial Pit 163 experienced excavation refusal whereas the other two did not. DCP on the other hand experienced refusals at ca.400mm. This indicates that during excavations for foundations it could be difficult to achieve depths beyond 500mm by hand digging. No instabilities were recorded during the excavation of the test pits which further suggests that excavations may safely be conducted without the need for lateral support, if of a temporary nature (during construction) and in the dry season.

Seismicity

One type of seismic activities occurs in Swaziland, and that is natural seismic activity. There is no mining-induced seismic activity. In accordance with the Seismic Hazard Zone map contained in the draft SANS 10160-4, southern Swaziland is classified as Zone 1 and is subject to natural seismic activity only. Gamula area is to the east-central part of Swaziland and as such falls outside this area. The South African "loading" code, SABS 0160-4:2011, shows that Gamula is situated in an area where the peak ground acceleration with a 10% probability of being exceeded in a 50 year period is just less than 100 cm/sec².

The soil profile of the site can be described as very dense, course to very course gravel with average shear strength between 987kPa and 1389kPa c_u . The area can be identified as Ground Type2. A v_s profile at the site is, however, "the most reliable predictor of the site dependent characteristics of the seismic action at stable sites", and is lacking to conclusively predicts the ground seismicity.

7.0 CONCLUSION AND RECOMMENDATIONS

- The absence of rock outcrop on the site suggests that bedrock will only be present at depth. The bedrock surface is likely to be undulatory and, therefore, highly variable in depth.
- No special precaution has to be taken with regards to dampness as no water seepage was experienced in any of the Trial Pits.

• The soils are of intermediate plasticity and it is expected that they will be prone to erosion. Precaution is expected to be taken during site clearing to avoid excessive soil erosion.

Building Foundations

The sandy clay in the site has a far more safe allowable bearing capacity and can support any building development of 2380kPa whereas the gravels are at 1691kPa.

It is recommended that foundations be placed on the residual soil, at depths of 800 to 100mm, to avoid the colluvial soil material.

From the Foundation Indicator tests carried out all the horizons tested displayed a "low" to "medium" potential for expansiveness classification. As the soils are not susceptible to swelling or heaving it is not expected that significant swell-shrink movement of the footing will occur, and it is recommended that foundations be placed on the residual soil at any desirable depth.

Despite the low expansive potential of the soils it is worth taking the following precautions:

- Attention to proper site drainage and storm water runoff management is essential to prevent ponding of water near structures.
- Water supply pipes and sewers must be maintained and leaks or blockages timeously detected and repaired.
- No water loving vegetation or large trees may be allowed to grow within 15m of any structure and it is not recommended to allow gardening directly around the structures. Instead concrete aprons should be installed to prevent wetting of foundations.

Parking Areas and Roadways

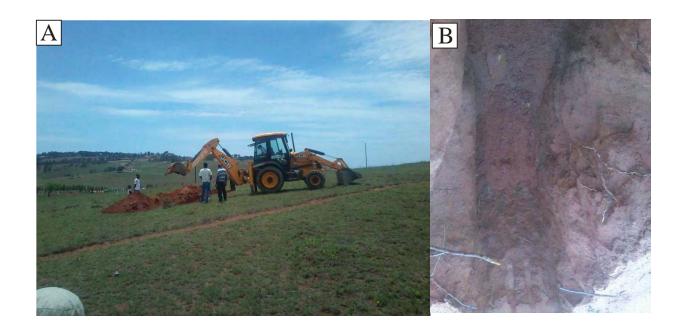
The material quality at surface display a good bearing capacity from DCP analyses and for the construction of parking and roadways can easily be stabilized and paved. It can be used for subgrade material as well as in the formation (fill) required for roads. It is recommended that material for pavements layers required for road works be imported from outside the site.

NOTE:

 Additional investigations or at least an assessment of the ground conditions exposed during construction can often result in significant construction cost and time savings.

GENERAL NOTES ON THE REPORT

The information and recommendations contained within this report relate to data supplied by Soil Testing Services, comprising test pit profiles, DCP penetration data, soil percolation test results and soil grading tests.


The report has been compiled on the assumption that all the data supplied by Soil Testing Services (and the assumptions made in this report where this supplied data is inadequate) is correct and is generally representative of the site area.

Prepared for Geo Solutions

NOAH NHLEKO

BSc (Biology & Chemistry); PhD Geology

APPENDIX A

A) Tractor Loader Backhoe (TLB)

B) Typical Trial Pit

SOIL TESTING SERVICES

(SWAZILAND) (PTY) LTD P.O. BOX A233, SWAZI PLAZA TEL: 404 1956, 404 2227 SOIL LABORATORY

Site Name :

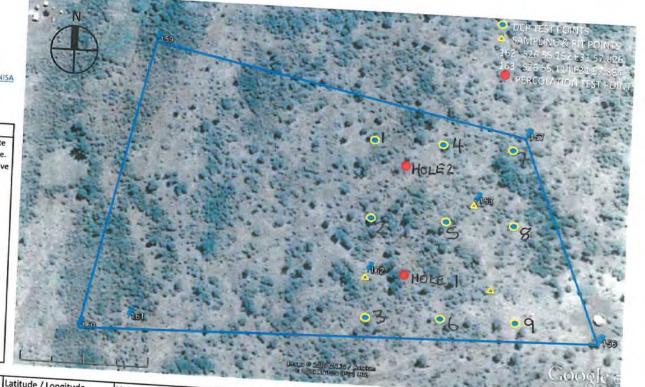
11

GAMULA

Region:

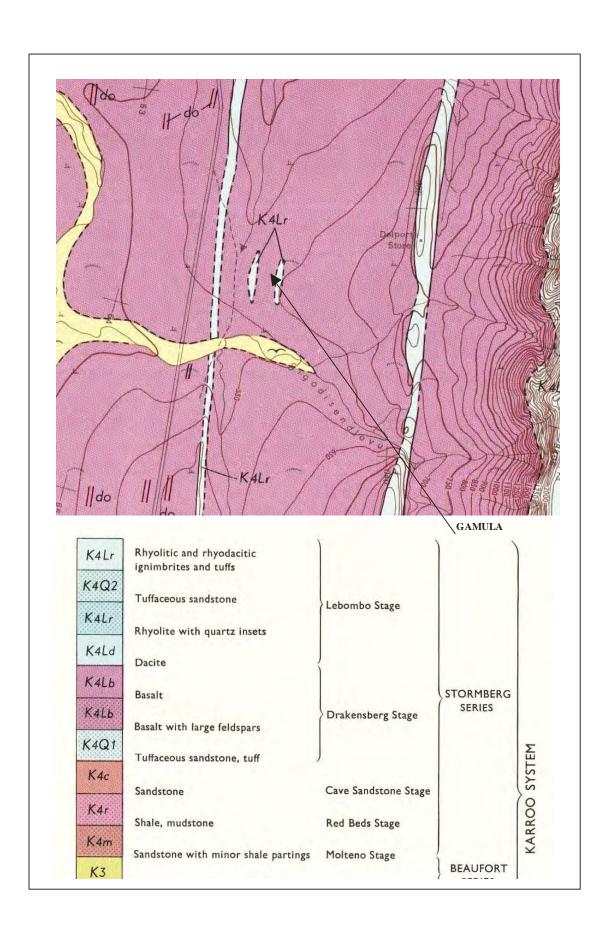
Lumbobo

Contact Person


Mr. MBONGENI NDZINISA

Cel: 7621 3156

Other information

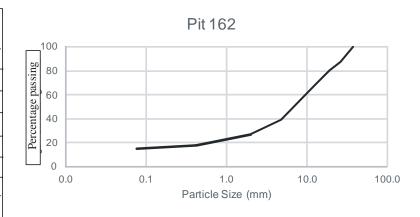

The bounday of the site is indicated by blue line. All boundary points have been staked by white painted timbers. If you contact to the person mentioned above, they show you the boundary points.

While the japanese consultant team inspected two pit (No. 162 and 163), the Surveyor should excavete three pits indicated in the map.

undary Point	Latitude / Longitude	Note
15	6 S26 55.180 E31 57 950	
15	7 S26 55.080 E31 57 911	Reference of boundary point
15	9 S26 55.039 E31 57 700	Ditto
16	0 S26 55.187 E31 57.670	-1110
	131 37.670	Ditto

e

APPENDIX B

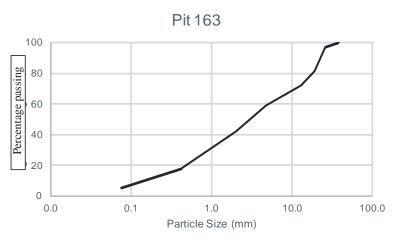

Project Trial Pit		t No.		Location			Date		
Matsuc	Matsuda TP 162		2		Gamula			30/11/2015	
Material and Soil Description									
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Со	nsistency	Moisture
	Topsoil		540	0-540		dark brown			very dry
Soil Horizon	sandy cla	y	630	540-1170		pale red	ver	y dense	Very dry
	coarse gravel Moderately w rhyodaciti/rh	eathered rock,	530	1170-1700		light brown	ver	y dense	Very dry
	coarse gravel Moderately w	, eathered rock,						-	

Projec	Project Trial Pit No.			Location		_	Date		
Matsud	Matsuda TP 163			Gamula			30/11/2015		
Mater	rial and Soil	Description							
Layer	Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Co	nsistency	Moisture
	Topsoil		500	0-500		dark brown			very dry
Soil Horizon	very course Moderately rhyodacitic REFUSAL	gravel, weathered rock, /rhyolitic rock	530	500-1030		dark reddish brown			Dry

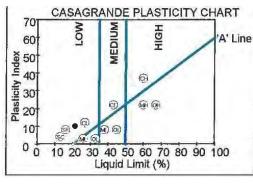
Project Trial Pit No.			Location			Date		
Matsuda Consultant Co. Ltd TP 164		4		Gar	mula		30/11/2015	
ial and Soil	Description							
Strati	graphy	Thickness mm	Depth mm	Layer scheme	Color	Со	nsistency	Moisture
Topso	oil	440	0-440		dark brown			very dry
very coarse g Moderately w	ravel, eathered rock,	760	440-1600		dark reddish brown	ver	y dense	Very dry
	Consultant ial and Soil Stratig Topso very coarse green green with the coarse green green with the coarse green gree	Consultant	Consultant TP 164 ial and Soil Description Stratigraphy Thickness mm Topsoil 440 very coarse gravel, Moderately weathered rock, 760	Consultant TP 164 Ital and Soil Description Stratigraphy Thickness Depth mm mm Topsoil 440 0-440 Very coarse gravel, Moderately weathered rock, 760 440-1600	Consultant TP 164 Gal Gal Gal Gal Addid and Soil Description Stratigraphy Thickness Depth mm scheme Topsoil 440 0-440 Very coarse gravel, Moderately weathered rock, 760 440-1600	Consultant TP 164 Gamula ial and Soil Description Stratigraphy Thickness Depth Layer scheme Color Topsoil 440 0-440 dark brown very coarse gravel, Moderately weathered rock, 760 440-1600 dark reddish brown	Consultant TP 164 Gamula ial and Soil Description Stratigraphy Thickness Depth Layer scheme Color Co Topsoil 440 0-440 dark brown very coarse gravel, Moderately weathered rock, 760 440-1600 dark reddish brown	Consultant TP 164 Gamula 30/11/2 ial and Soil Description Stratigraphy Thickness Depth mm scheme Color Consistency Topsoil 440 0-440 dark brown very coarse gravel, Moderately weathered rock, 760 440-1600 dark reddish brown very dense

FOUNDATION INDICATOR RESULTS						
Client	Matsuda Consultants International	Sample no.	T.P. 162	Date		
Project	Gamula High School	Sample Depth		Client		

sieve size mm	Percentage passing
75	
53.0	
37.5	100
26.5	87
19.0	80
13.2	69
4.75	39
2.00	27
0.425	18
0.075	15

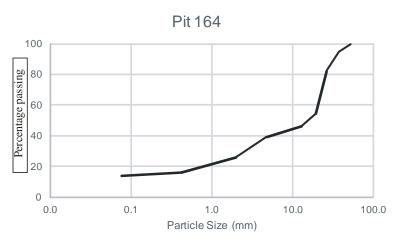


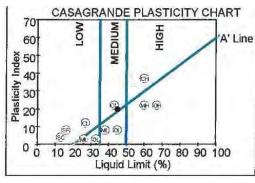
Liquid Limit (LL)	42
Plastic Index (PI)	17
Linear Shrinkage	4.5
Grading Modulus	2.4
Natural Moisture Content	12.6
PI of whole sample	
AASTHO Classification	A-2-7(0)
TRH 14	


ATTERBERG LIMITS AND OTHER RESULTS

FOUNDATION INDICATOR RESULTS						
Client	Matsuda Consultants International	Sample no.	T.P. 163	Date		
Project	Gamula High School	Sample Depth		Client		

sieve size mm	Percentage passing
75	
53.0	
37.5	100
26.5	97
19.0	81
13.2	72
4.75	59
2.00	42
0.425	18
0.075	5
-	·


ATTERBERG LIMITS AND OTHER RESULTS


Liquid Limit (LL)	21
Plastic Index (PI)	10
Linear Shrinkage	0.0
Grading Modulus	2.35
Natural Moisture Content	8.1
PI of whole sample	
AASTHO Classification	A-2-4(0)
TRH 14	

FOUNDATION INDICATOR RESULTS						
Client	Matsuda Consultants International	Sample no.	T.P. 164	Date		
Project	Gamula High School	Sample Depth		Client		

sieve size mm	Percentage passing
75	
53.0	100
37.5	95
26.5	82
19.0	54
13.2	46
4.75	39
2.00	26
0.425	16
0.075	14

ATTERBERG LIMITS AND OTHER RESULTS

Liquid Limit (LL)	45
Plastic Index (PI)	20
Linear Shrinkage	6.0
Grading Modulus	2.44
Natural Moisture Content	9.8
PI of whole sample	
AASTHO Classification	A-2-4(0)
TRH 14	

SOIL TESTING SERVICES
MATSUDA CONSUNTANTS INTERNATIONAL
GAMULA NEW HIGH SCHOOL
DCP TEST RESULTS

		NGL		DCP (2)		NGL		DCP (3)	No Blown	NGL mm/blows	kPa
pth (mm)	No. Blows	mm/blows	kPa	Depth (mm)	No. Blows	mm/blows		0	0	1	
109 200 380	29 21 25	3 5 7	1701 1118 853	100 200 300 400	15 23 25 26 36	7 4 4 4 6	721 1258 1402 771	106 200 306 338	7 11 22 23 24 24	14 7 4 1	268 721 1402 5353
CP (4) 5 100 240 300 405 405		NGL mm/blows \$ 5 4 4 2	λPα 540 951 1467 1462 3636	DCP (5) Depth (nm) a 198 200 200 420	No. Blows 0 2 120 29 38	NGL mm/blows 52 1 3 4	kPa 52 1925 1261 1462	DCP (6) Depth (mm) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No. Blows 6 8 21 73 25	NGL mm/blows 17 5 4 1	kPa 219 1045 1403 1132
GP (7) epth (mm) 105 208 309 430	No. Blows: 0 1 14 26 29	NGL mm/blows 33 7 4	kP-x 45 640 1476 1299	DCP (8) Depth (mm) 160 260 360 360	No. Blews 0 1 25 26 39	NGL mn/blows 17 4 4 3	kPa 219 1482 1478 2039	DCP (9)	No. Blows 6 2 2 30 25 25	NGL mni/blows	371 104 177 3401

MATROLAB GROUP (PTY.) LTD.

- CIVIL ENGINEERING SERVICES -

Reg No.: 2003/029180/07

VAT Reg No.: 4040210587

DEPTH (m):

256 Brander street, Jan Niemand Park,0184

P.O. BOX 912387 SILVERTON 0127

Tel. : 012-800 1299 Fax. : 012-800 3034

Email

: aukek@matrolab.co.za

117 626

TEST RESULTS

CLIENT:

Soil Testing Services SWD (PTY) Ltd

HOLE NO:

ADDRESS:

Attention:

SAMPLE NO.

P.O. Box A233

Thulani Vilakati

G16 64

Swazi Plaza

Project

Japanese Schools

f

Your Ref

117 626

Gamula

JOB NO:

Our Ref Date Reported

15 March 2016

TOTAL STRESS TRIAXIAL TEST:
UNCONSOLIDATED UNDRAINED (BS1377-7 : 1990 : Clause 7)

TP163

Specimen Details	1	2	3		
Initial Sample Length	Lo	(mm)	100.6	98.9	100.5
Initial Sample Diameter	Do	(mm)	49.7	50.0	49.9
Initial Sample Weight	Wo	(gr)	379.5	379.5	380.1
Initial Bulk Density	PO	(Mg/m3)	1.94	1.95	1.93
Particle Density	ρs	(Mg/m3)	2.48	2.48	2.48

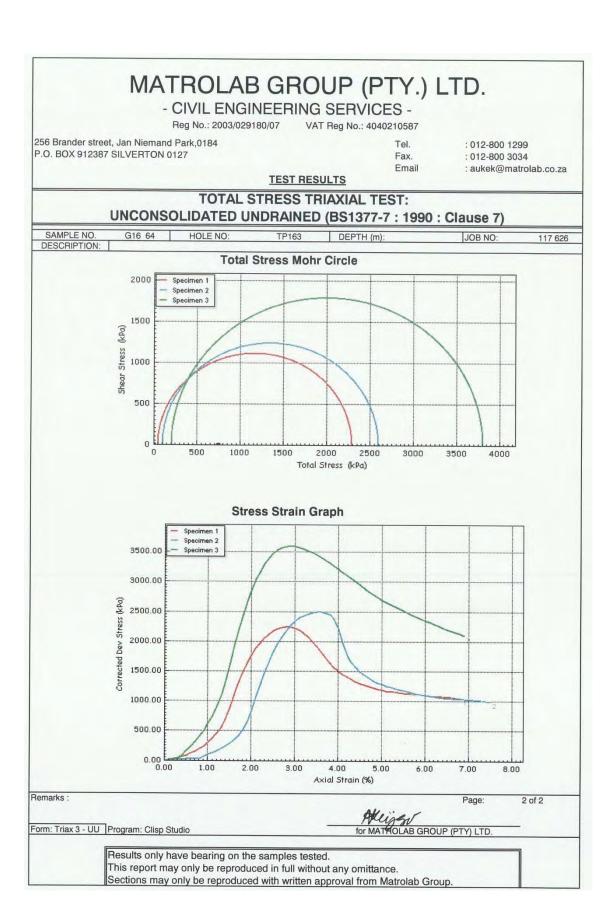
Initial Conditions	1	2	3		
Initial Cell Pressure	σ3	(kPa)	50	100	200
Strain Rate	m s	(mm/min)	0.07500	0.07500	0.07500
Membrane Thickness	mь	(mm)	0.30	0.30	0.30
Initial Moisture	w i%	(%)	9.00	9.00	9.00
Initial Dry Density	P d0	(Mg/m3)	1.78	1.79	1.77
Initial Voids Ratio	6.0		0.39	0.38	0.40
Initial Degree of Saturation	So	(%)	57	58	56

Final Conditions	1	2	3		
Max Deviator Stress	(01-03)+	(kPa)	2244.08	2491.46	3600.38
Membrane Correction	m c	(kPa)	1.012	1.089	1.020
Strain At Max Stress	ε ή%	(%)	2.80	3.51	2.90
Shear Strength	cu	(kPa)	1122.04	1245.73	1800.19
Final Moisture	ω f%	(%)	9.10	8.98	9.09
Final Dry Density	p df	(Mg/m3)	1.78	1.79	1.77
Final Voids Ratio	e _f		0.39	0.38	0.40
Final Degree of Saturation	Sf	(%)	57.6	58.1	56.4

Remarks:

Height Page:

for MATROLAB GROUP (PTY) LTD.


1 of 2

Form: Triax 3 - UU Program: Clisp Studio

Results only have bearing on the samples tested.

This report may only be reproduced in full without any omittance.

Sections may only be reproduced with written approval from Matrolab Group.

MATROLAB GROUP (PTY.) LTD.

- CIVIL ENGINEERING SERVICES -

Reg No.: 2003/029180/07

VAT Reg No.: 4040210587

256 Brander street, Jan Niemand Park,0184 P.O. BOX 912387 SILVERTON 0127

: 012-800 1299 : 012-800 3034

Email

: aukek@matrolab.co.za

TEST RESULTS

CLIENT:

Soil Testing Services SWD (PTY) Ltd

ADDRESS:

Attention:

P.O. Box A233

Thulani Vilakati

Swazi Plaza

Project

Japanese Schools

Gamula

Your Ref

117 626

Our Ref Date Reported

14 March 2016

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7: 1990: Clause 7)

	1100110	OLIDAILD O	ADITA INCL	D01011-1	. 1330 . 0	iduse ij	
SAMPLE NO.	G16_65	HOLE NO:	TP 164	DEPTH (m):		JOB NO:	117 62
DESCRIPTION:							
Specimen Details					1	2	3
Initial Sample Length			Lo	(mm)	101.1	100.9	100.8
nitial Sample Diameter			Do	(mm)	50.3	50.1	50.3
nitial Sample Weight			Wo	(gr)	433.1	434.3	434.6
Initial Bulk Density			po	(Mg/m3)	2.16	2.18	2.17
Particle Density			Ps	(Mg/m3)	2.58	2.58	2.58
nitial Conditions					1	2	3
mittal conditions					-		3
Initial Cell Pressure			α3	(kPa)	50	100	200
Strain Rate				(mm/min)	0.10000	0.10000	0.1000
Membrane Thickness			00000	(mm)	0.30	0.30	0.30
Initial Moisture			ω i%	(%)	9.80	9.80	9.80
Initial Dry Density			P 40	(Mg/m3)	1.96	1.99	1.98
Initial Voids Ratio			e 0		0.31	0.30	0.31
Initial Degree of Saturation			So	(%)	81	85	83
Strain Rate Membrane Thickness Initial Moisture Initial Dry Density Initial Voids Ratio	tion		m s m b 00 1% P dO	(mm/min) (mm) (%) (Mg/m3)	0.10000 0.30 9.80 1.96 0.31	0.10000 0.30 9.80 1.99 0.30	(
nal Conditions					1	2	3
Max Deviator Stress		1	(σ1-σ3)f	(kPa)	1586.62	1806.30	2528.1
Membrane Correction			m c	(kPa)	1.053	0.884	0.923
Strain At Max Stress			ε f%	(%)	2.25	1.83	2.17
Shear Strength			CU	(kPa)	793.31	903.15	1264.0
Final Moisture			ω ₁ %	(%)	9.90	10	9.94
Final Dry Density			P df	(Mg/m3)	1.96	1.98	1.97
Final Voids Ratio				(9/)	718-2-3		2000
Final Degree of Saturation			0 f		0.32	0.30	0.31

Remarks:

Page:

AB GROUP (PTY) LTD.

1 of 2

Form: Triax 3 - UU Program: Clisp Studio

Results only have bearing on the samples tested.

This report may only be reproduced in full without any omittance.

Sections may only be reproduced with written approval from Matrolab Group.

- CIVIL ENGINEERING SERVICES -

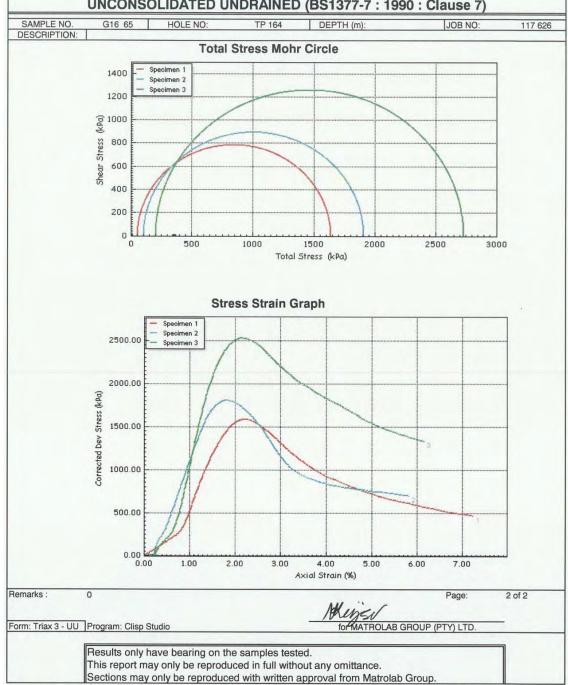
Reg No.: 2003/029180/07

VAT Reg No.: 4040210587

256 Brander street, Jan Niemand Park,0184

P.O. BOX 912387 SILVERTON 0127

Tel. Fax. : 012-800 1299


: 012-800 3034

Email

: aukek@matrolab.co.za

TEST RESULTS

TOTAL STRESS TRIAXIAL TEST: UNCONSOLIDATED UNDRAINED (BS1377-7 : 1990 : Clause 7)

APPENDIX C

Table 1: Correlation chart of maximum bearing stress (allowable bearing capacity) of rocks and soil materials

Category	Types of rocks and soils	Bearing value (kPa)
Non-cohesive soils	Dense gravel or dense sand and gravel	>600
	Medium dense gravel, or medium dense sand and gravel	<200 to 600
	Loose gravel, or loose sand and gravel	<200
	Compact sand	>300
	Medium dense sand	100 to 300
	Loose sand	<100 depends on degree of looseness
Cohesive soils	Very stiff bolder clays & hard clays	300 to 600
	Stiff clays	150 to 300
	Firm clay	75 to 150
	Soft clays and silts	< 75
	Very soft clay	Not applicable
Peat		Not applicable
Made ground		Not applicable