Facility Planning Method

(Exercise)

Text

Exercise [System planning for mega-solar]

1. Procedures of a mega-solar system planning in the exercise

In this exercise, the system planning for a mega-solar at 1MW is implemented. In the implementation of the mega-solar system planning, the data in your country shall be used for the natural conditions such as solar radiation and temperature. Also, environmental conditions such as snow in your country shall be considered.

Figure 1-1 shows procedures of PV system planning in this exercise. In the exercise, the system planning of mega-solar at 1MW (AC terminal of PCS) is implemented, and calculate annual energy production. Study of the PV array rack and foundation are not included. Also, study of system configuration for connecting to the electric power system is performed.

In the real system planning, it is necessary to calculate the approximate cost after determination of system configuration, and perform an economical evaluation. However, we perform up to system configuration study in this exercise.

Figure 1-1 Procedure of system planning for mega-solar

2. Exercise (system planning for mega-solar)

1 Selection of tilt angle and azimuth of PV panel

The optimal tilt angle and azimuth of PV panel in each country is determined using HOMER (<u>https://users.homerenergy.com/</u>) or RETScreen (<u>http://www.retscreen.net/</u>). The solar radiation of the daily average in each month at selected optimal tilt angle and azimuth is recorded. Also, the average temperature in each month is recorded.

②Selection of PV module

Select PV module from the table 2-1 "PV module list".

	PV module A	PV module B	PV module c	PV module D
Туре	Monocrystalline	Polycrystalline	Multi-junction Hybrid	CIS
	silicon	silicon		
	(HIT Power 240S)	(KD250GX-LFB2)	(F-NJ150)	(SF160-S)
Nominal Max. Output (P _{max})	240W	240W	150W	160W
PV module conversion efficiency	19.0	14.6	9.60	12.6
Nominal Max. Output Working Voltage (V _{pm})	43.7V	29.8V	125.8V	84.0V
Nominal Max. Output Working Current (I _{pm})	5.51A	8.06A	1.20A	1.91A
Nominal Open Circuit Voltage (V _{oc})	52.4V	36.9V	158.1V	110V
Nominal Short Circuit Current (I _{sc})	$5.85\mathrm{A}$	8.59A	1.45A	2.2A
External Dimensions (mm) W×L×D	1,580 imes 798 imes 35	$1,\!662\!\times\!990\!\times\!46$	$1,500 \times 1,100 \times 50$	$1,\!257\! imes\!977\! imes\!35$
Temperature coefficient of short circuit current($I_{\rm sc}$)	+0.03%/K	+0.060%/K	+0.055%/K	+0.01%/K
Temperature coefficient of open circuit voltage(V_{oc})	-0.24%/K	-0.36%/K	-0.39%/K	-0.30%/K
Temperature coefficient of Max. $output(P_{max})$	-0.30%/K	-0.46%/K	-0.35%/K	-0.31%/K

Table 2-1	PV module list

%The temperature coefficient of output working voltage shall be the same as the temperature coefficient of open circuit voltage.

③Selection of Power Conditioning System

Selecting Power Conditioning System from the table 2-2 "Power Conditioning System list".

Table 2-2 Power Conditioning System list

		PCS-A	PCS-B	PCS-C	PCS-D
Output capa	acity	10kW	100kW	250kW	500kW
DC input	Rated voltage	400V	345V	350	350
	DC voltage range	0~600V	0∼650V	0~600V	0~600V
	Range of MPPT	$200{\sim}550V$	315~600V	320~550V	320~550V
	Number of phase	Three-phase	Three-phase	Three-phase	Three-phase
		three-wire	three-wire	three-wire	three-wire
AC input	Rated voltage	202V	202V	415V	210V
	Rated frequency	50 or 60Hz	50 or 60Hz	50 or 60Hz	50 or 60Hz
	Power conversion efficiency	94.5%	95.3%	95.7%	96.8%

*You can confirm specifications for each solar module and power conditioner at the following site to assist you in making your selection. (<u>http://www.enfsolar.com/</u>)

(4) Study on the number of series connection of PV modules

The number of series connection of PV modules is considered from the specification of the selected PV module and a Power Conditioning System. The number of series connection of PV modules is: 110% of rated voltage (on DC side) of a selected PCS is divided by the maximum working voltage of the PV module, as a reference value. Also, the number of series connection of PV modules is determined in consideration of following points eventually.

- Is the variation by the temperature characteristics of a PV string's open circuit voltage within a the DC voltage range (below the upper limit of the DC voltage range) of a power conditioning system?
- Is the variation by the temperature characteristics of a PV string's output working voltage within MPPT (maximum power point tracking) range of a power conditioning system?

The highest and the lowest PV module temperatures are calculated by the following formulas:

- The highest PV module temperature=Annual highest temperature in each country + weighted average PV module temperature rise⊿T
- The lowest PV module temperature=Annual lowest temperature in each country + weighted average PV module temperature rise⊿T
- * Installation type is a back open type (rack-mount type), the weighted average PV module temperature rise ⊿T is at 18.4 (°C). (JIS C 8907 Estimation method of generating electric energy by PV power system)

⑤Study of the PV array configuration

In consideration of the PV array configuration, the number of parallel connections of the PV strings in the PV array is determined, and then the number of lines and rows of PV modules is determined. If the size of the PV array is specified, it is necessary to consider the PV array to fit its size as specified. The PV array consists of the number of PV modules of the integral multiple of the determined PV modules connected in series.

[Conditions of PV array arrangement]

Condition 1: The width of a PV array shall be 25m and below.

(Consideration given for efficiency during inspection)

Condition 2: Maximum height of a PV array is 2.0m and below from GL.

(Consideration given for reach)

The bottom of a PV panel shall be 0.5m from GL.

(To minimize the impact of insects, small animals, and grass)

Condition 3: The spaces between PV modules and the edge of PV modules shall be kept at 50mm. (Space is created with mounting brackets. In cases where the mounting brackets are specified, 10 mm brackets are sometimes used.)

6 Study of the PV array arrangement

The number of the PV array is determined to be set at 1MW (AC terminal of PCS) and work out the PV array arrangement. The conversion efficiency of PCS and DC loss (2%) should consider when determining the number of the PV array. It assumes that the site for the PV array arrangement is a flat land, and the arrangement should be formed as a square shape as much as possible.

[Conditions of PV array arrangement]

- Condition 1: The space at 10m x 10m for installing a collecting box, PCS, a transformer board, and an interconnection board is secured.
- Condition 2: The distance of PV arrays facing to the north-south is set in consideration of shade impact by a front PV array. Please refer to figure 2-2.
- Condition 3: The distance of PV arrays facing to the east-west should be more than 1.5m. Please refer to figure 2-3.

Figure 2-2 Conditions of PV array arrangement 2

Figure 2-3 Conditions of PV array arrangement 3

⑦Estimation of annual energy production

Annual energy production is calculated from the capacity of the PV array Expected annual energy Ep can be represented by the following equation:

- $Ep = \Sigma H_A / Gs \times K \times P_{AS}$
 - Ep = Expected annual energy (kWh/year)
 - H_A = Average daily irradiation on a monthly basis (kWh/m²/day)
 - Gs = Irradiance under standard condition = 1 (kW/m^2)
 - K = Total design factor (= Kd × Kt × η_{INV})
 - * DC correction factor Kd:

Corrects change in solar irradiance due to stains on the PV cell surface and characteristic difference in PV cell. Kd is about 0.9.

* Temperature correction factor Kt:

Corrects temperature rise of PV cell and change in conversion efficiency due to sunlight.

 $Kt = 1 + \alpha (Tm - 25) / 100$

α: Temperature coefficient at max. output (%/°C) Tm: Module temperature (°C) = Tav + Δ T

Tav: Monthly mean temperature (°C) Δ T: Module's temperature rise (°C) = 18.4 (°C)

* PCS efficiency η_{INV} : AC/DC conversion efficiency of the inverter.

• P_{AS} = PV array output under standard condition (kW)

AM = 1.5*; Irradiance = 1 kW/m²; PC cell temperature = 25°C

8 Study of the PV system configuration

As shown in the figure below, solar power generation reaches 90% or more only a few % of the hours per year. Therefore, the PCS rated output or more power cannot be generated, but to effectively increase the annual power generation output, extra PV modules should be installed such that their output total is approximately 10% of PCS rated output.

<Example>

PCS output	= PV module output DC9.88kW × DC loss 98% (-2%)
	×PCS conversion efficiency 95% $=$ <u>AC9.20kW</u>
PCS output	= PV module output DC11.4kW × DC loss 98% (-2%)

×PCS conversion efficiency 95% = AC10.61kW

 \rightarrow PCS rated output, but actually <u>AC10kW</u>

DC9.88kW-AC10kW	DC11.4kW-AC10kW
11,251kWh/year	12,852kWh/ year
(9.88kW*8760h*0.13)	(11.4kW*8760h*0.13*0.99)

Dilation curve of solar power output (1 second measurement)

Others. In the consideration of the PV system configuration, the specification of each equipment except PV array and PCS is worked out. Also, the number of circuits and the necessary number of units of the junction box and the collection box are worked out. A junction box is selected from four, eight, ten, twelve or sixteen circuits, and calculates the required number of units. A collection box is set per PCS, and calculates required number of circuits. In addition, it is necessary to configure the PV system for connecting to the electric power system in each country. (Installation of the step-up transformer to the system voltage, etc.)

Exercise[The facility planning sheet for Mega Solar]

Mega Solar planned installation site:[Country]

[Area]

① Tilt angle of PV panel _____°

Azimuth

Solar irradiation in the above-mentioned tilt angle and azimuth

Month	Solar irradiation per day (kWh/m²/day)	Ambient temperature (°C)
January		
February		
March		
April		
May		
June		
July		
August		
September		
October		
November		
December		
Annual		

② Specification of selected PV module

Туре	
Nominal Max. Output (P _{max})	
PV module conversion efficiency	
Nominal Max. Output Working Voltage (V_{pm})	
Nominal Max. Output Working Current (Ipm)	
Nominal Open Circuit Voltage(Voc)	
Nominal Short Circuit Current (I _{sc})	
External Dimensions (mm) W×L×D	
Temperature coefficient of short circuit current	
Temperature coefficient of open circuit voltage	
Temperature coefficient of Max. output	

③ Specification of selected PCS

Output capaci	ty	
DC output	Rated voltage	
	DC voltage range	
	Range of MPPT	
	Number of phase	
AC output	Rated voltage	
	Rated frequency	
	Power conversion efficiency	

④ Number of series connection	of PV modules in series		
PV string open circuit voltage	(PV module temperature 25°C)	:	V
	(Max. PV module temperature	°C):	V
	(Min. PV module temperature	°C):	V
PV string output working voltag	e (PV module temperature 25°C)	:	V
	(Max. PV module temperature	°C):	V
	(Min. PV module temperature	°C):	V

5 PV array configuration	lines	rows (PV module	pieces)
_	in series	in parallel	
PV array output	kW		
PV array size (W)	m×(L)	<u>m (projected area</u>	in the horizontal surface)
PV array max. height	<u>m</u>		

PV array arrangement ______
 Number of PV array ______ unit _____
 Total output of PV array ______ kW

⑦ Annual energy production

Month	Generated energy (kWh)
January	
February	
March	
April	
May	
June	
July	
August	
September	
October	
November	
December	
Annual	

(8) System configuration

- Gernation scale <u>kW (AC)</u>
- Number of arrays
- Array output _____ kW (DC)
- Number of PCS
- System voltage _____kV
- Step-up transformer _____ kVA
- Primary voltage/Secondary voltage _____ V/ V
- Power transformer for substation <u>kVA</u>

 Primary voltage/Secondary voltage <u>kV/ V</u>

Exercise [System planning sheet for mega-solar] (Suggested answer)

Mega solar planned installation site: [Country] Japan [Area] Naha

① Tilt angle of PV panel <u>18 °</u>

Azimuth South

Solar irradiation in the above-mentioned tilt angle and azimuth

Month	Solar irradiation per day (kWh/m²/day)	Ambient Temperature (°C)
January	2.89	17.4
February	3.13	17.4
March	3.79	19.1
April	4.54	21.7
May	4.99	24.3
June	5.46	26.9
July	6.57	29.1
August	6.22	28.9
September	5.66	27.8
October	4.79	25.5
November	3.70	22.6
December	3.11	19.2
Annual	4.58	17.4

② Specification of selected PV module

	PV module B
Туре	Polycrystalline Silicon
Nominal Max. Output(P _{max})	240W
PV module conversion efficiency	14.6
Nominal Max. Output Working Voltage (Vpm)	29.8V
Nominal Max. Output Working Current (Ipm)	8.06A
Nominal Open Circuit Voltage (Voc)	36.9V
Nominal Short Circuit Current (Isc)	8.59A
External Dimensions (mm) W×L×D	$1,\!662\! imes\! 990\! imes\! 46$
Temperature coefficient of short circuit current	+0.060%/K
Temperature coefficient of open circuit voltage	-0.36%/K
Temperature coefficient of Max. output	-0.46%/K

③ Specification of selected power conditioning system

		PCS-A
Output capacity		10kW
DC input	Rated voltage	400V
	DC voltage range	$0{\sim}600V$
	Range of MPPT	$200{\sim}550\mathrm{V}$
	Number of phase	三相3線
AC output	Rated voltage	202V
	Rated frequency	50 or 60Hz
	Power conversion efficiency	94.5%

④ Number of series connection of PV modules <u>16 in series</u>	
PV string open circuit voltage(PV module temperature 25°C) :	475.52 V
(Max. PV module temperature 54.0°C) : 42	27.25 V
(Min. PV module temperature 25.0°C) : 47	<u>5.52 V</u>
PV string output working voltage (PV module temperature 25°C) : 3	<u>388.80 V</u>
(Max. PV module temperature 54.0°C) : <u>34</u>	19.34 V
(Min. PV module temperature 25.0°C) : <u>38</u>	8.80 V

 $(\mbox{Calculation})$

- Calculation of the number of series connection of the PV module from the rated voltage of a power conditioning system and the nominal maximum output voltage of a PV module. Rated voltage of power conditioning system: 400V, Nominal max. output voltage of PV module: 29.3V 400V× 1.1 = 440V 440V / 29.3V = 15.02 = 16 in series
- 2) Calculation of maximum and minimum PV module temperature Maximum temperature in Naha: 35.6°C, Minimum temperature in Naha: 6.6°C Max. PV module temperature = 35.6 + 18.4 = <u>54.0°C</u> Min. PV module temperature = 6.6 + 18.4 = <u>25.0°C</u>
- 3) Calculation of the PV string open circuit voltage at the highest and the lowest PV module temperature Temperature coefficient of the PV module open circuit voltage: -0.36% / °C
 PV string open circuit voltage at PV module temperature of 25°C
 36.9V × 16 = <u>590.4V</u>
 PV string open circuit voltage at the maximum PV module temperature (54.0°C)
 590.4V × {1 0.0036× (54.0 25)} = <u>528.76V</u>
 PV string open circuit voltage at the minimum PV module temperature (25.0°C)
 590.4V × {1 0.0036× (25.0 25)} = <u>590.40V</u>

4) Calculation of PV string output working voltage at the maximum and the minimum PV module temperature

Temperature coefficient of PV module output working voltage: -0.36% / °C (Same as the temperature coefficient of open circuit voltage)

PV string output working voltage at PV module temperature of $25^{\circ}C$ 29.3V × 16 = <u>468.8V</u>

PV string output working voltage at the maximum PV module temperature (54.0°C) 468.8V× {1 - 0.0036 × (54.0 - 25)} = 349.336 \doteq <u>419.86V</u> PV string output working voltage at the minimum PV module temperature (25.0°C)

468.8V × {1 - 0.0036 × (25.0 - 25)} = <u>468.80V</u>

(Check on DC voltage range and MPPT range)

DC voltage range

The PV string open circuit voltage operates in the range of 528.76 to 590.40V to the DC voltage range of a power conditioning system at 0 to 600V. Hence, there is no problem.

MPPT range

The PV string output working voltage operates in the range of 419.86V to 468.80V to the maximum power point tracking range of a power conditioning system in 200V to 550V. Hence, there is no problem.

5PV array configuration <u>4 lines 12 rows (PV modules: 48 pieces)</u>

(Calculation)

1) Calculation of the maximum number of lines and rows of the PV array The maximum number of lines of the PV array: a

The maximum height of PV array: 2.0m and below from GL (The bottom of the PV panel is 0.5m from GL), Tilt angle of the PV panel: 18°

Depth of PV module: 990mm

(2.0m - 0.5m) = 1.5m

 $1.5m \ge X \times \sin 18^\circ \Rightarrow 4.854m \ge X$

 $4.854 / 0.99 \doteq 4.9$ <u>a = 4 lines</u>

The maximum number of rows of the PV array: b

The maximum width of PV array: 25m and below, width of the PV module: 1,662mm

25 / 1.662 ≒ 15.1 <u>b = 15 rows</u>

The maximum number of the PV module piece only on the conditions of PV array arrangement is 4 lines, 15 rows and 60 pieces.

The maximum PV array dimension based on the tilt angle of the PV panel

2) Calculation of the maximum number of parallel connection and the number of the PV module pieces from the number of series connection of the PV module

The maximum number of PV module piece only on the conditions of PV array arrangement: 60 pieces

The number of series connection of the PV module: 16 in series

60 / 16≒3.75 <u>3 in parallel</u>

16 in series \times 3 in parallel = <u>48 pieces</u>

- Calculation of the PV array output from the number of PV module pieces Nominal maximum output of the PV module: 240W
 240W × 48 = 11,520W ⇒ <u>11.52kW</u>
- 4) Calculation of the number of PV array rows from the number of PV module pieces
 The number of PV module piece: 48 pieces, the maximum number of lines of PV array a: 4 lines
 48 / 4 = 12 <u>12 rows</u>
- 5) Calculation of the PV array size from the number of lines and rows of the PV array Dimension of the PV panel

Depth of the PV module: 990mm, The space between PV modules and the edge of the PV modules: 50mm

 $(0.99 \times 4) + \{0.05 \times (4 + 1)\} = 4.21m$

The maximum height of the PV array

Tilt angle of the PV panel: 18°Height of the bottom of the PV panel: 0.5m from GL

 $(4.21 \text{m} \times \sin 18^\circ) + 0.5 \text{m} = 1.801 \text{m}$

Length of the PV array L (projection of horizontal surface)

 $4.21m \times \cos 18^{\circ} = 4.004m$

Width of the PV array W

Width of the PV module: 1,662mm

 $(1,662 \times 12) + \{0.05 \times (12 + 1)\} = 20.594m$

6 PV array arrangement

Number of PV array	100	units	_
Total output of PV array	1	,152	kW

(Calculation)

- 1) Calculation of the total output of the PV arrays $11.52kW \times 100 = 1.152kW$
- Calculation of the shadow scale factor of north and south direction The latitude and the longitude in Naha: North latitude 26.1312, East longitude 127.4048 Solar altitude h: 19.35° Azimuth: 50.11°
- *The data is at 9am on the winter solstice (21^{st} of December 2012), the azimuth is directly south at 0°

Scale factor of the shadow R

R = L_S / L = coth × cos α = cot (19.35°) × cos (50.11°) = 1.826

(The length "Ls" of the shadow of north and south direction cast by the object of height "L".)

- 3) Calculation of the distance of PV arrays facing to the north-south The maximum height of PV array: 1.801m (1.801- 0.5) ×1.826 ≒ 2.375 m
- PV array arrangement and total area Install according to the location. Consider with SketchUp.

Month	Generated energy
	(kWh)
January	80,025
February	78,283
March	104,033
April	118,981
May	133,295
June	139,198
July	171,031
August	162,096
September	143,598
October	127,138
November	96,510
December	85,323
Annual	1,439,509

⑦ Annual Energy Production

*Annual energy production is the sum total of monthly expected energy production.

Annual power generation projections can be made using HOMER

(<u>https://users.homerenergy.com/)</u> or RETScreen (<u>http://www.retscreen.net/</u>) .

The calculation method is as shown below.

(Calculation)

1) Calculation of expected monthly energy production [January](kWh / Month)

Average daily irradiation on monthly basis H_A : 2.89kWh/m²/day, Irradiance under standard condition Gs: 1kW/m²

PCS conversion efficiency η_{INV} : 94.5%, DC correction factor Kd: 0.9, Temperature coefficient at max. outputa: -0.46 % / K

Monthly mean temperature Tav: 17.4°C, Weighted average PV module temperature rise⊿T: 18.4°C Module temperature Tm

Tm = Tav + \angle T = 17.4 + 18.4 = 35.8°C

Temperature correction factor Kt

 $Kt = 1 + \alpha (Tm-25) / 100 = 1 - 0.46 (35.8 - 25) / 100 = 0.95032$

Total design factor K

 $K = Kd \times Kt \times \eta_{INV} = 0.9 \times 0.95032 \times 0.945 = 0.808247$

Expected monthly energy production Ep

Ep = ΣH_A / Gs × K × P_{AS} = 31 × 2.89 / 1 × 0.808247 × 1,152 \doteq 83,417kWh

- 8 System configuration
 - Generation scale <u>1,000 kW (AC)</u>
 - Number of arrays <u>100</u>
 - Array output <u>1,152 kW (DC)</u>
 - Number of PCS <u>100</u>
 - System voltage <u>6.6 kV</u>
 - Step-up transformer <u>1,000 kVA</u> Primary voltage / Secondary voltage <u>6.6 kV/ 415 V</u>
 - Power transformer for substation <u>50 kVA</u> Primary voltage / Secondary voltage <u>6.6 kV/ 200 V</u>

<u>Republic of Seychells Project</u> for formulation of Master Plan for Development of Micro Grid

Facility Planning Method (Skethup)

Text

Table of Contents

Chapter 1 Preparation	03
1. Download and installation of SketchUp	03
2. Launch and end	04
3. Loading and saving file	04
Chapter 2 Operation screen (interfaces) and tools	05
1. Names of the parts of the operation screen	05
2. Display of the toolbar	05
3. Screen operation	06
Chapter 3 Basic operations	07
1. Draw a line ·····	07
2. Create a rectangle and circle	08
3. Create a cube ······	10
4. Selecting a shape	10
5. Move and copy ·····	12
6. Rotation	14
7. Characters and dimensions	16
8. Shadow settings ·····	
Chapter 4 PV array layout plan	20
1. PV module creation ·····	20
2. Create PV array	22
3. Layout plan for the PV array	29
4. Check for obstructions to sunlight	

Chapter 1 Preparation

1. Download and installation of SketchUp

Access the following URL. http://www.sketchup.com/intl/ja/index.html

Click the download button and open the link.

Click "Accept and download."

Double-click the downloaded file and install.

Click "I agree to the terms of the license agreement."

Proceed according to the instructions to complete the installation.

2. Launch and end

Double-click the icon to start [SketchUp].

Usage instructions and the template selection screen Select template per metric unit. are displayed.

To end SketchUp Select [File] -> [Exit].

The template screen is displayed.

The "instructor" who explains how to operate can be displayed later, so close for now.

3. Loading and saving file

[File] menu

1-4. Import and export file

Chapter 2 Operation screen (interface) and tools

1. Names of the parts of the operation screen

- Menu bar : Tools from the menu bar can be selected.
- Toolbars : Select a tool and operate.
 - : Description of the operation is displayed.

(The key is to effectively use the status bar at the bottom of the screen)

• Measurement toolbar : Value of the dimension is displayed.

(The values for length and angles can be input to draw accurate shapes)

2. Display of the toolbar

Status bar

The required tools can be displayed on screen with the [Toolbar] from the [View] menu.

3. Screen operation

Can zoom in / out by dragging the screen up or down. * This can also be done by using the scoll wheel.

[Pan] tool

Move the screen perpendicularly and parallel.

Change the angle of the screen.

Chapter 3 Basic operations

1. Draw a line

Along the red axis (x-axis), the line is red.

Along the green axis (y-axis), the line is green.

* Plane: Red (x-axis), green (y-axis)

The values for length and angles can be input into the measuring box to draw accurate shapes.

Enter a length. Press [2.5] + [Enter] key.

Press the **Esc** key during an operation to cancel it, and the operation can be redone.

Even after finalizing, the size can be changed if it is done before the next operation.

To restore the original for errors after finalizing, Undo **Ctrl** + **Z** Along the blue axis (z-axis), the line is blue. * Height: Blue (z-axis)

2. Create a rectangle and circle

Clicking after moving the mouse creates a rectangle.

Enter the dimensions.

Press [50,50] + [Enter] key.

Move the cursor to specify the RADIUS and press the [Enter] key.

Create a circle with a radius of 1m.

• Specify the number of segments (number of lines).

When the circle tool is selected, **[24]** is displayed in the value control box.

This means to draw a circle in the form of a 24-sided polygon, but the value can be changed.

Press [5] + [Enter]

* Number of segments: 24 (default setting)

Polygons can be created.

• Specify the number of segments (number of lines).

Right-click the circumference with the [Select] tool and select [Entity information].

Change the number of segments and press the **[Enter]** key.

н			-
5	レイヤ(1):	Layer0 -	•
	半径:	1.000m	
	セグメント数:	48	
	長さ;	6.283m	
厂 非表	テ マ	投影	

The number segments can be increased for a smoother circle, but the file size becomes larger causing operations to become slower.

3. Create a cube

Specify and enter the value. Press [25] + [Enter] key.

25m 距離 25.000m 選択します。 Ctrl = 新しい

4. Selecting a shape

[Select] tool

Click the [side] you want to select to change it to the selected state.

When a [line] is selected, it becomes a bold blue To deselect, click an area outside the shape. line.

Double-click the [side]

The side and the surrounding lines are selected simultaneously.

Triple click a [line] or [side]. The entire shape including its lines and sides are selected.

Drag the [Select] tool to select the entire shape. Or, select the entire shape by pressing Ctrl + A.

• Delete a line or side.

Select the side and press [Delete].

Select the line and press [Delete].

The side is deleted.

The line and adjacent sides are deleted.

The line and the sides adjacent to it are selected

Double-click the [line]

simultaneously.

5. Move and copy

Select the entire shape and click any location with the [Move] tool.

Move the cursor from the point clicked. The shape is moved the same distance.

• Copy the shape.

Press the **CTRL** key and a [+] mark is displayed above and to the right of the cursor and changes to copy mode.

Move the cursor

Click to copy.

• Create multiple copies at equal intervals. Select the entire shape and click an [end point].

Specify and copy the value. [2] + [Enter]

In the selected state Press [*3] + [Enter].

• Create multiple copies placed equidistantly. One copy 6m away. [6] + [Enter]

• Change the size of the circle.

Select the [Move] tool.

Click an [end point].

In the selected state, press [/3] + [Enter]. 3 copies created within a 6m range.

With an [end point] where the circumference has changed to the selected color (blue), the entire circle moves, and its size cannot be changed.

* Will result in move.

Move the cursor to the inside of the circle, and it Move the cursor to the outside of the circle, and it becomes small.

becomes large.

6. Rotate

Select the entire shape, click the [Select] tool, Right click the drawing to group.

Click a corner. (It becomes the axis of rotation.)

Select the [Rotate] tool, and a protractor mark appears.

The color of the protractor changes according to the axis of rotation (red, green, blue).

Click another corner. (It becomes the starting point of rotation.)

Rotate.

• Copy rotation.

Click the center of the rotation.

Specify the degree of rotation. [45] + [Enter]

Move the cursor and click the point to start rotation.

cursor and changes to copy mode.

Subsequently, press [*12]+[Enter].

12 copies of the shape rotated 45° each are created.

Press CTRL when executing with the [Rotate] tool, When entering [45] for the degree of rotation, and a [+] is displayed above and to the right of the a 45° rotation is copied. [45] + [Enter]

• Rotate with the [Move] tool. Group the shapes in advance.

Select the [Move] tool.

When you move the cursor to the surface you want to rotate, 4[+] marks are displayed.

protractor is displayed. Click the [+].

When you move the cursor to a [+] mark, a Move the cursor or enter the degree of rotation, and press [Enter].

7. Enter dimensions and characters

Select the [Build] tool from the [View] menu.

Or select [Dimensions] tool from the [Tools] menu.

Select the [Dimensions] tool, and click two points.

Move the cursor and the dimensions are displayed.

• Enter characters.

[Text] tool

Enter the characters in the part where the coordinates are displayed.

Click the vertex and move the cursor, and the coordinate values are temporarily displayed.

Double-click a side

The area is temporarily displayed, changes to a Characters without a leader line can be entered character input state.

• Create a three-dimensional character. Select [3D Text] from the [Tools] menu.

Enter the characters and click the [Align] button.

Solar	power		
フォント(F)	Arial Black	→ 太	字 🔹
フォント(E) 立置揃え(A)	Arial Black 左 💌	★ 太 高さ(H) 2	字 <u></u> 000.000m
フォント(E) 立置揃え(A) 種類 ▽ 塗	Arial Black 左 ・ りつぶし(1) マ :	→ 太 高さ(H) 2 押し出し(E) 2	字 <u></u> 000.000m 500.000m

Click on any location.

The 3D text is created.

8. Shadow settings

From the [Windows] menu select the [Shadow] tool. Click the [Show/hide shadow] button at the top left

Click the [Show/hide shadow] button, and the shadow disappears.

• Change the time and date.

Click the $[\mathbf{\nabla}]$ button on the far right of the [Date] slider to change the date.

Click the [Show/hide shadow] button at the top left of the [Shadow settings] dialog box displayed.

影設定	×
UTC+09:00	
時刻 06:13 正午 16	13:30 +
日付 1 2 3 4 5 6 7 8 9 101	1112 11/8 •
明,	80 ÷
暗 ————————————————————————————————————	45 -
ワシェーディングに太陽を使 表示:	用する
☑ 面上 ☑ 地面上	「 エッジから

Shadows are displayed.

On the [Time] slider, move the slide bar or enter a value to change the time.

The shadow changes according to the time set; the shadow extends.

Chapter 4 PV array layout plan

1. PV module creation

Create a 3D PV module.

Here, the dimensions of the PV module are as provided in the sample module.

Sample module dimensions: 1,500mm x 990mm x 36mm Module spacing: 50mm

Draw a 0.05m x 0.05m and 1.5m x 0.99m rectangle on the x-y plane as shown below.

With the [Push/Pull] tool, raise only the module portion 0.039m to make it 3D.

Specify the entire range.

From the [Edit] menu, select [Create Group] and group as a PV module.

ファイル(F) 🗍	編集(E) 表示(V) カメラ(C) 描画(R) ツール(T) ウィンドウ(V	W) ヘレプ(H)	
* 1	元に戻す 消去 やり直し	Alt+Backspace Ctrl+Y	13 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	
	切り取り(T)	Shift+削除		
	コピー(C)	Ctrl+C		
	貼り付け(P)	Ctrl+V		
	所定の位置に貼り付け(A)			
	削除(D)	削除		
	ガイドを削除(G)			
	すべて選択(S)	Ctrl+A		
	すべて選択解除(N)	Ctrl+T		
	非表示(H)			
	表示(E)			
	ロック(L)			
	ロック解除(K)			
	コンポーネントを作成(B)			
	グループを作成(M)			
	グループ/コンボーネントを閉じる	5(0)		
	面を交差(I)			
	38 個のエンティティ			
-		2.3		
			Calcat [Oursts Oursum]	
			Select [Greate Group]	
1 States		<u>}</u>		
$\bigcirc \bigcirc \bigcirc \bigcirc$? 選択したジオメトリからグル	ープを作成		測定
1	i 🖸 🧉 🧕 🖉			般 🥗 🥬 🕐 🕼 кана 🗸 🔺 📭 📴ні 🔥 🍐 17:24

The PV module is completed.

The $0.05m \ge 0.05m$ squares at the corners serve as a guide for module spacing.

We continue without deleting these for now, but if they become an impediment in the finishing process, they may be deleted.

2. Create PV array

Create a 3D PV array.

Here, the PV array is arranged as in the sample array.

```
Sample array 12 columns 4 rows
```


Select [Edit]-[Copy] on the PV module you created on the previous page and select [Edit]-[Paste], and a copy linked to the mouse cursor will appear on the screen.

Verify that the mouse cursor reacts when placed at the end point of the shape and drag.

We continue so that the module has 12 columns as in the above.

Select the module's 12 columns and select [Edit]-[Create Group] to group.

Also repeat [Copy] \rightarrow [Paste] for each column.

When 12 columns and 4 rows have been created, group again.

Select the Rotate tool and align the mouse cursor at the end point of the PV module near the origin. Verify that the protractor mark appears on the x-y plane.

Click once on the horizontal position (along the y-axis from the end point) and move the mouse in the direction of rotation.

For the value input, enter [18] so that the array has an 18-degree angle.

Align the mouse cursor on an end point of the module's $0.05m \times 0.05m$ spacing guide.

For the front side of the array, draw a 0.5m straight line along the Z-axis, and for the rear side, draw a 1.801m straight line along the Z-axis.

Connect the bottom of the straight lines drawn for the array's front and rear sides with a line along the y-axis.

This is the bottom of the array which will be in contact with the ground.

Draw the other side of the array in the same manner, connecting the entire perimeter of the array's bottom.

Draw a 1.5m straight line from the bottom edge of the array along the x-axis (the array's east-west separation).

Draw a 2.375m straight line from the bottom edge of the array along the x-axis (the array's north-south separation).

Select the entire range including the array's spacing guide straight lines and group them.

Align the mouse cursor on the bottom edge of the array near the origin and click to align with the origin.

This completes the PV array.

3. Layout plan for the PV array

Place the created PV array on the planned site.

Here, we will place it on the parking lot in front of Okinawa Enetech's building as a sample site.

無题 - SketChUp						
ファイル(F) 編集(E) 表示(V) カメラ(C)	描画(R) ツール(T)) ウィンドウ(W) ヘレプ(H)				
新規(N)	Ctrl+N	C (* \$ 13 9 × 2	B & L B & # B			
閹<(0)	Ctrl+0			1		
保存(S) 名称を付けて保存(A) コビーに名称を付けて保存(Y) デンプレートとして保存(B) 元に戻す(R)	Ctrl+S					
LayOut に送信 (Pro.のみ) Google Earth でプレビュー(H)						
ジオロケーション(G)		場所を適加	A. C.			
ビルディング メーカー(D) 30 ギャラリー(W) インボート(I) エクスボート(E)		場所をクリア(C) 地形を表示(5)		THEFT	Æ	
プリンタの設定(T) 印刷プレビュー(V) 印刷(P)	Ctrl+P		7	HHHH	The	
1 無職 2 C:¥Users¥higac-304¥Desktop¥無題						
終了(X)						
		Select [File] – [Geolocati	on] – [Add locatio	on].	
① ① 〇 ② モデルにジオロケーシ	ヨンを追加し、近く(の土地情報を収集。			測定	
😂 🗔 🖸 é o 🛛				◎ A 般 ¹⁰ 9	🥯 🕜 kana - + 🎮 🕅	all 🍓 🎒 21:44

Select [File] - [Geolocation] - [Add location].

Search for the planned site on the map displayed in the pop-up window. Click the [Select range] button to switch to the range selection screen, and click [Get] to get the site location.

Once you get it, the range acquired is displayed on the screen in 3D as shown below. This includes latitude and longitude.

Place one array on the designated location.

The y-axis corresponds to North-South direction, and the x-axis corresponds to East-West direction. If the site is in the Southern Hemisphere, at this point, use the [Rotate] tool to rotate the array 180 degrees.

While separating by 1.5m along the x-axis (array East-West direction) and 2.375m along the y-axis (array North-South direction), place the arrays using $[Copy] \rightarrow [Paste]$.

1 開闢 华 ※回 Sweetcholp ファイル(F) 編集(E) 表示(V) カメ · / EOC 0 # 28 5 400 \$ 739 7 5 5 6 8 8 9 0 ⑦ かメラをパン表示する方向にドラック
 ◎ ⑦ カメラをパン表示する方向にドラック 0 é 👩 🔟 🕖 🤞 A 般 🐸 🗐 🥔 🗊

Place the planned arrays below on the planned site.

This completes the layout plan.

* If there is not enough space, reduce the angle of inclination which reduces separation in the North-South direction, and thus secures more space.

This may be omitted taking 1.5m of separation in the East-West direction as well as maintenance into account.

4. Check for obstructions to sunlight

You can also use the [Shadow] tool to check for obstructions to sunlight.

The arrays are displayed with shadows as shown below.

This shadow depends on the latitude and longitude, date, and time set in the [Geolocation] settings.

Select [Window] - [Shadow] to display the shadow settings window and change the date and time settings. Change the date to winter solstice (Dec. 21, 2012 for Okinawa), and the time to 9:00.

Verify that the shadow of the front array does not affect the PV module surface of the rear array.

* This completes the PV array layout plan.

Homer Software

April, 2016 Okinawa Enetech Co., Inc.

HOMER (Hybrid Optimization of Multiple Electric Renewables).

HOMER simplifies the task of designing of distributed generation (DG) systems - both on and off-grid for a variety of applications.

In configuration of the system helps in

- What components does it make sense to include in the system design
- How many and what size of each component should you use.

HOMER's optimization and sensitivity analysis algorithms make it easier to evaluate the many possible system configurations

Core capabilities Simulation, Optimization, Sensitivity Analysis

Simulation: At its core, HOMER is a simulation model. It will attempt to simulate a viable system for all possible combinations of the equipment that you wish to consider. Depending on how you set up your problem, HOMER may simulate hundreds or even thousands of systems.

Optimization: The optimization step follows all simulations. The simulated systems are sorted and filtered according to criteria that you define, so that you can see the best possible fits. Although HOMER fundamentally is an economic optimization model, you may also choose to minimize fuel usage.

Sensitivity analysis: This is an optional step that allows you to model the impact of variables that are beyond your control, such as wind speed, fuel costs, etc, and see how the optimal system changes with these variations

HOMER® Pro can help you design the best micropower system to suit your needs.

HOMER Pro lets you:

Evaluate off-grid or grid-connected power system designs

Choose the best system based on cost, technical requirements, or environmental considerations

Simulate many design configurations under market price uncertainty and evaluate risk

Choose the best addition or retrofit for an existing system

The HOMER Support Site has many resources to help you wit

.Create a system with a load, generator, wind turbine, batteries, and a system converter.

Perform an economic optimization to find the best combination of battery bank, converter, generator, and wind turbine quantities and capacities.

.**Perform a sensitivity analysis** to investigate how results are affected by fuel price, wind speed, and load size.

.Explore the effect of **interest rate** on the optimal system type.

Step 1: Create a new HOMER file

A HOMER file contains all of the information about the technology options, component costs and resource availability required to analyze power system designs. The HOMER file also contains the results of any calculations HOMER makes as part of the optimization and sensitivity analysis processes. HOMER file names end in .hmr, for example:

Resources	8	NominalDisco	untRate (%)	8	ExpectedInflat	tionRate (%)	E
Solar	release and Calms 5	Variable:	NominalDiscountRate (%)		Variable:	ExpectedInflation	Rate (%)
Global horizontal radiation	n, monthly averaged d (July 1983 - June	Link with:	<none></none>	+	Link with:	<none></none>	•
2005). Temperature NASA Surface meteor Air temperature, monthly 22 year period (July 1983 Wind NASA Surface meteory	rology and Solar Er averaged values over - June 2005)	Values:	NominalDiscou (%) 8		Values:	ExpectedInflat (%) 2	
Wind speed at 50m above earth for terrain similar to averaged values over 10 y - June 1993)	e the surface of the a irports, monthly year period (July 1983						
Down	load Cancel		ОК	Cancel			OK Cancel
		Capacity Shor	tage (%)	8	Project Lifetin	ne (years)	3
		Variable:	Capacity Shortage (%)		Variable:	Project Lifetime (years)
		Link with:	<none></none>	•	Link with:	<none></none>	•
		Values:	Capacity Shor (%)		Values:	Project Lifetin (years)	
			0			25	
			ОК	Cancel			OK Cancel

LOAD COMPONENTS RESOURCES	PROJECT SYSTEM HELP	New Average and the second	
	AL B		
Design Acaulta Library	<u>6</u>		
		DECTEN	
		003104	
Bectric Load #1 ELECTRIC LOAD	Iame Bectric Load #1 Remove		
List and a	Daily Profile	Seasonal Profile	
Mour Ined (00) 10		8	
IRED CHANGES 1 0095 12			
a sources to the micros 2 0.095	1		
and of ELANTE Pro and a 0.095 ≥ 0.5 -			
4 0.327			
5 0.500 0.4	- all null front life.		
6 0.550 7 0.500			
8 0.420 0	· · · · · · · · · · · · · · · · · · ·		3 8 1 8
9 0.430		Yearly Profile	
10 0.495 24	A THE REAL PROPERTY AND A REAL PROPERTY AND A	Contract of the second s	
11 0.533	and an even of the set of the bar and the set	and the second standard statement of the first statement and	Contrast Contrast (1)
12 0.591 38-	A PARTY OF A	and the first of the first of the second states of the	a conduct or the market of the
14 0.415 12	a state of a contract of the table to be a base of the	Landersviellere tellere utsahebeter See	And the Market West Party of the United States
15 0.397	e de Deuxe e la filipitad transfer de Carlos Poul	and All and Annal and All and Manufacture and All and	ADDISED DOLON
15 0.409 e- 21 bes	使"你们,你吗~儿儿们有了"你们就在"啊!"他们说出这个句。	an bha an interaction for the to a color of the first section of	Manata California da Manata da
17 0.658	the second s		and the second se
18 1.231 e-			
Show All Months	Metric Baseline Scaled	180 275	20
Time Step Size: 60 minutes	Average (kWh/d) 1126 1126		
Random Variability	Average (kW) .47 .47 #esk (kW) 2.09 2.09		
Day-to-day (%): 10	Linad Factor 22 -27		
Timestep (%): 20	Load Type # 4C ① DC		
Peak Month: January			
MED	Scaled Annual Average (kWh/d): 11.26		
MEK I	and the second se	Plot_ Export_	

2.47.	0-0.00			
77414 1	ホーム 挿入 ペーシレイアウト 取式 データ ち	🖳 Load 2025	2016/01/11 15:17	Microsoft Exce
m ×	dioReg MS PJSe9 - 11 - A	ILOad 2026	2016/01/11 15:19	Microsoft Exce
AND ITS	atra la antip B / U · □ · Δ··Δ·	図 Load 2027	2016/01/11 15:19	Microsoft Exce
07.H	078-1 - 7450-	ILoad 2028	2016/01/11 15:20	Microsoft Exce
	A B G	I load 2029	2016/01/11 15:21	Microsoft Exce
1	16343	load 2020	2016/01/11 15:21	Microsoft Exce
2	14916		2010/01/11 15.21	PICTOSOTE EXCE
3	13849	Load 2015.prn	2016/01/11 13:44	PRNJPAJL
4	13389	Load 2016.prn	2016/01/11 15:09	PRN ファイル
5	13084	Load 2017.prn	2016/01/11 15:10	PRNファイル
0	13084	Load 2018.pm	2016/01/11 15:11	PRN ファイル
8748	12092	Load 2019.prp	2016/01/11 15:12	PRN ファイル
8750	20640		2016/01/11 15:12	DPN 7- /IL
8751	20732		2010/01/11 13:13	PKN 22-176
8752	18961	Load 2021.prn	2016/01/11 15:14	PRNファイル
8753	19115	Lond 2022 pm	2016/01/11 15:15	EDN TH ZI
8754	19452			
8755	22224		C	
8756	24387		Save in txt. file	
8757	21981			
8758	20030			

1hour each 365 days data

Home Design Results Libra	LOAD COMPONENTS RESOURCES PROJECT	SYSTEM HELP Bolie Hydro Reformer Electrolyzer Hydrog En Grid Thermal Load Controller
SCHEMATIC		DESIGN
REQUIRED CHANGES ad a load dd power sources to the micros dd arenewable energy source ewer version of HOMER Pro aw	Choose one: PROPERTIES Set N1 Set N2 DOWN Genset Set N2 DOWN Genset DOWN Gen	Use the drop down box to select a generator that you would like to add to the model. A guideline for the total power available to the microgrid is 1.2 times the peak load. All operations to add and remove generators take place on this Add/Remove page for generators. The list of generators in the model will replace this text after generators have been added. You may add up to 20 generators to the model.
Komer		Redefining RE Systems Discover Energy Advanced Tubular Plate batteries deliver proven reliability in RE applications and remote, high temperature or unstable power network installations.

Step 3: System Design (Generator) D HOMER Pro Microgrid Analysis Tool 3.3.3 FILE LOAD COMPONENTS RESOURCES PROJECT SYSTEM HELP
 Image: New Joint View
 Q Home Design Results Library Generator PV SCHEMATIC DESIGN Gen500 Add/Remove 500kW Genset Remove GENERATOR Name: 500kW Genset Abbreviation: Gen500
 Replacement
 Oc

 (\$)
 (\$)

 >> 00
 \$0.030
 Properties -Costs Search Space Capacity (kW) Capital (\$) 0&M (\$/hr) Size (kW) **REQUIRED CHANGES** Name: 500kW Genset 500 Abbreviation: Gen500 1 \$500.00 × Add a load Add a renewable energy source E Manufacturer: Generic Click here to add new item lewer version of HOMER Pro Website: www.homerenergy.com (..) Notes: + Multiplier: Site Specific Input Minimum Load Ratio (%): 25.00 (--) Lifetime (Hours): 15,000.00 Minimum Runtime (Minutes): 0.00 Electrical Bus $\sqrt{}$ // Fuel Resource Fuel Curve Emissions Maintenance Schedule PROPERTIES SELECT FUEL: Diesel

Manage Fuels Lower Heating Value (MJ/kg): 43.2 820 Density (kg/m3): Carbon Content (%): 88 Sulfur Content (%): 0.33 Limit Consumption (L); 5,000.00 Diesel Fuel Price (\$/L): 1.00 (..) HOMER

uel Resource Fuel Curve Emissions Maintenance S	chedule	
Reference generator capacity 500		Chart Type: Fuel Flow Efficiency
Intercept Coefficient (L/hr/kW rated): 0.0140	()	§ 140
Slope (L/hr/kW output): 0.2440	()	tito
Fuel Curve Table		60 -
Output (kW) Consumption (L/hr)		
Click here to add new item		
		0 100 200 300 400 500 600
		A JUTPALIT PRIMAP (PAN)
		Output Power (kw)
uel Resource Fuel Curve Emissions Maintenance S	chedule	Output Power (kw)
Fuel Resource Fuel Curve Emissions Maintenance S Carbon Monoxide (g/L of fuel):	6.5	Output Power (kw)
Fuel Resource Fuel Curve Emissions Maintenance S Carbon Monoxide (g/L of fuel): Unburned Hydrocarbons (g/L of fuel):	ichedule β.5 0.72	Output Power (kw)
Fuel Resource Fuel Curve Emissions Maintenance S Carbon Monoxide (g/L of fuel): Unburned Hydrocarbons (g/L of fuel): Particulate Matter (g/L of fuel):	ichedule 6.5 0.72 0.49	Output Power (kw)
Fuel Resource Fuel Curve Emissions Maintenance S Carbon Monoxide (g/L of fuel): Unburned Hydrocarbons (g/L of fuel): Particulate Matter (g/L of fuel): Proportion of Fuel Sulfur converted to PM (g/L of fuel):	5chedule 5.5 0.72 0.49 2.2	Output Power (kw)

uel Resource Fuel Curve	Emissions Maintenance Schedule			
Consider Maintenance	Schedule			
Procedure	Interval (op hrs.)	Down time (real hrs.)	Cost (\$)	
Click here to add new ite	m			

Fuel Resource	Fuel Curve	Emissions	Maintenance	Schedule										
Step 1: Select	an operating	mode:	00-00	-	_	_	Gene	erator Sc	hedule	_			-	_
Forced On C	Forced Off	 Optimize 	d											
Step 2: Select	a time perio	d: Waskandr												
Step 3: Click o	on the chart t	o indicate												
when the sele applies.	cted operatir	ng mode	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Step 3: System Design (PV) B HOMER Pro Microgrid Analysis Tool 3.3.3 LOAD COMPONENTS RESOURCES PROJECT SYSTEM HELP *
 Image: Second View SCHEMATIC DESIGN AC DC → PV Add/Remove Generic flat plate PV Gen500 Remove PV Name: Generic flat plate PV Abbreviation: PV Copy To Library Properties Search Space -Capacity (kW) Capital Replacement O&M (\$) (\$/year) Size (kW) **REQUIRED CHANGES** Name: Generic flat plate PV (\$) (\$) (\$/y \$3,000.00 \$10.00 \$3,000.00 × Abbreviation: PV Add a load Add a solar GHI resource. Click here to add new item Panel Type: Flat plate Add a system converter. Rated Capacity (kW): 0 lewer version of HOMER Pro av Multiplier: (1-3) (1.) Manufacturer: Generic Weight (lbs): 160 Site Specific Input -Footprint (in2): 9000 (..) Lifetime (years): 25.00 Website: www.homerenergy.com Electrical Bus (..) Derating Factor (%): 80.00 Notes: This is a gener PV system. MPPT Advanced Input Temperature Ignore dedicated converter Search Space Use Efficiency Table? Lifetime (years): Size (kW) Efficiency (%); 95
 Costs
 Capital
 Replacement
 O&M (\$)
 O&M (\$/year)

 1
 \$0.00
 \$0.00
 \$0.00
 \$0.00
 Input Percentage (%) Efficiency (%) Click here to add new item Click here to add new item **H**•MER 翻 沖縄エネテック

Advanced Input Tempe	rature		
Ground Reflectance (%):	20.00 (i))	
Tracking System:	No Tracking	•	
Use default slope Panel Slope (degrees):		0.00	
Use default azimuth	et of Coutble	190.00	
Fallel Azimuti (degrees we	st of addrig.	100.00	
	1		

-0,500 47,00

13.00

S	株合	式社	111	ф	名中	E	I	1	2	5	-	"	17	,
	a	5	1	Ñ.	ĥ.	w	A	y.	14	£.	π	×.	12. H	

Temperature effects on power (%/°C):

Nominal operating cell temperature (°C): Efficiency at standard test conditions (%):

Step 3: System Design (Wind Turbine) D HOMER Pro Microgrid Analysis Tool 3.3.3 - 0 X FILE LOAD SYSTEM COMPONENTS RESOURCES PROJECT HELP * 🕅 Library Generator PV Wind Battery Flywhe Converter Turbine el * Hydrokinetic Grid Thermal Load 1 3 -Home Design Results mier Electrolyzer Hydrog View SCHEMATIC DESIGN AC DC PV WIND TURBINE SET UP + Gen500 5 Щ. 500kW Ge Use the drop down box to select a wind turbine that you would like to add to the model. A guideline for the total power available to the microgrid is 1.2 times the peak load. -PROPEI Set 87 Set 87 Set 87 Set 87 Set 81 Nan; Set 82 JokW Genset JokW Genset SokW Genset SokW Censet All operations to add and remove wind turbines take place on this Add/Remove page for wind turbines. The list of wind turbines in the model will replace this text after wind turbines have been added. You may add up to 2 different types of wind turbine to the model **REQUIRED CHANGES** Add a load Add a solar GHI resource. Rate John V Geneet Mari 2000kW Geneet Autosize Geneet Wei Generic 725kW Pim Innovus VSG600 Innovus VSG1200 Innovus VSG2400 Add a system converter. Newer version of HOMER Pro a Add Wind Turbine Microgrid News ... HEMER 19 Online news and analysis focusing on microgrid advances, projects, and market drivers around the world 語:沖縄エネテック

HOMER Pro Microgrid Analysis	Tool 3.3.3
ue	LOAD COMPONENTS RESOURCES PROJECT SYSTEM HELP
Home Design Results Libra	serve
SCHEMATIC	DESIGN
AC DC Gen500 PV	Add/Remove Generic 3 kW
←	WIND TURBINE Amme: Generic 3 kW Abbreviation: G3 Remove
G3	Properties Costs Capital Perdormant ORM
	Name: Generic 3 kW Quantity (\$) (\$) (\$/year) Quantity 0
	Abbreviation: G3
REQUIRED CHANGES	Manufacture:
Add a load	Website: - Multiplier: (() (()
Add a solar GHI resource. Add a system converter.	Site Specific Input
Add a wind resource.	Lifetime (years): 20.00 (Hub Height (m): 17.00 (
	Consider ambient temperature effects?
	● AC ◎ DC
	Power Curve Turbine Losses Maintenance
	Wind Turbine Power Curve
	Wind Speed (m/s) Power Output (kW)
	3 0 0 15 4 0.06 9 1
	5 011
VeMED	6 0.28 - 0 5 10 15 20 25 30

The second secon	tenance			
Availability Losses (%):	þ	Wake Effects Losses (%):	0	
Turbine Performance Losses (%):	0	Electrical Losses (%):	0	
Environmental Losses (%):	0	Curtailment Losses (%):	0	
Other Losses (%):	0			
Overall Loss Factor (%):	0	Loss factors combine	multiplicatively rather	
	*			
Power Curve Turbine Losses Main	tenance			
Dower Curve Turbine Losses Main	tenance			
Power Curve Turbine Losses Main Consider Maintenance Schedule Procedure	tenance Interval (op hrs.)	Down time (real hrs.)	Cost (\$)	
Power Curve Turbine Losses Main Consider Maintenance Schedule Procedure Click here to add new item	tenance Interval (op hrs.)	Down time (real hrs.)	Cost (\$)	

D HOMER Pro Microgrid Analysis	Tool 3.3.3	
FILE	LOAD COMPONENTS RESOURCES PROJECT SYST	TEM HELP
Home Ho	ary Generator PV Wind Battery Flywhe el Converter Boile	*** ***
AC DC		DESIGN
$\begin{array}{c} \text{Gen500} \\ \hline \\ $	CONVERTER System Converter System Converter System Converter System Converter System Converter	er Abbreviation: Convert Remove Copy To Library
	P) Leenis of P9053 L2.5WF / JOVIde Leeniss MTP413FP 25KW 240Vde Leeniss MTP413FP 20KW 240Vde Leeniss 5219CPH 5KW 48Vde Leeniss 5219CPH 5KW 48Vde ZBB EnerSection®	Costs Capital Replacement O&/M Size (kW) Size (kW) 1 \$300.00 \$300.00 \$0.0 \$\$ Click here to add new item Click here to add new item \$\$ \$\$
Add a load	Weight (lbs): 1500	
Add a solar GHI resource. Add a wind resource. Newer version of HOMER Pro ava	Pootprint (in.2): 2000 Website: <u>www.homerenergy.com</u> Notes: This is a generic system converter.	
		Multiplier:
	Inverter Input	Rectifier Input
	Lifetime (years): 15.00	Relative Capacity (%): 100.00
	Efficiency (%): 90.00	Efficiency (%): 85.00
HOMER		

HOMER Pro Microgrid Analysis Tool 3.3.3	
E LOAD COMPONENTS RESOURCES PROJECT	SYSTEM HELP
Image: Design Results Image: Design Results	r Bailer Hydro Reformer Electrolyzer Hydrog Hydrogi Grid Controller
SCHEMATIC	DESIGN
AC DC Gen500 Converter PV Add/Remove Generic 1kWh Lead Acid	
G3 Iswin I Iswin I Iswin I Iswin	Mead Acid Abbreviation: I.Wh U I.Kemove Costs CopyTorSubmare Search Space Quantity Capital Replacement OSM 1 \$300.00 \$300.00 \$10.00 \$2 Click here to add new item Image: Cost Space Image: Cost Space Image: Cost Space Multiplier: Image: Cost Space Image: Cost Space Image: Cost Space Site Specific Input Image: Cost Space Image: Cost Space Batteries per string: 1 (12 V bus) Initial State of Charge (%): Image: Cost Space Image: Cost Space Minimum State of Charge (%): Image: Cost Space Image: Cost Space
Weight (Us): 25 Volume (in3): 0.0125 Footprint (in2): 0.05 Website <u>www.homerenergy.com</u> Notes: This is a generic 12 volt lead acid battery with 1 kWh or storage.	Lifetime Throughput (kWh): 800.00 (G) Enforce minimum battery life? Minimum battery life (yr): 5.00 (G) f energy

W A

HOMER Pro Microgrid Analysis Tool	333	and the second se	
EVE IO	AD COMPONENTS RESOLIE	RCES PROJECT SYSTEM HELP	
	🐔 🙁 🚝 🛛		
Home Design Results Library View	Solar GHI Solar DNI Wind Ten	nperature Fuels Hydrokinetic Hydro Biomass	
SCHEMATIC	5	DESIGN	
AC DC			Remove
Converter PV	WIND RESOUR	CE	Kenove
	Choose Data Source:	Enter monthly averages Import from a time series	data file or the library
Gen500 1kWh LA			
		Download From Internet	Import and Edit Library:
	Monthly Average Wind Speed	d Data	
G3	Month Average (m.	(s) (s 6) (s - 1)	Downloaded at 2/11/2016 2:17:51 PM
	January 3.590		NASA Surface meteorology and Solar
	February 3.680	9 3 0 0 0 0 0	Energydatabase. Wind speed at 50m above the surface of
	March 3.490	≦ ≥ 2-	the earth for terrain similar to airports,
REQUIRED CHANGES	April 3.560	80 1 -	monthly averaged values over 10 year period (July 1983 - June 1993)
Add a load	May 4.220		CellNumber: 90180
Newer version of HOMEK Pro available	June 5.210	Vieway And Vieway And Vieway And Vieway And Vieway Viewa	CellDimensions: 1 degree x 1 degree
	July 4.690	ter ter	CellMidpointLongitude: 0.5
	August 4.300		
	September 4.400	Parameters Variation With Height Advanced Pa	irameters
	October 4.560	Altitude above sea level (m): 0	
	November 4.570		
	December 4.090	Anemometer height (m): 50	
LESAFD	Annual Average (m/s): 4.20		
ROMER		Scaled Appual Average (m/s): 4 20	D Rel Frent
PRO		Scaled Alfilidal Average (III/s). 4.20	

Homerci no microgria milarysis roor a	3.3.3	and the second sec	
LOA	AD COMPONENTS RESOURCES	PROJECT SYSTEM HELP	
tome besign Results Library yiew	Solar GHI Solar DNI Wind Temperat	ture Fuels Hydrokinetic Hydro Eomas	
SCHEMATIC	Q	DESIGN	
AC DC Gen500 Converter PV ↔ ♥ ↔ ♥	TEMPERATURE RE Choose Data Source: @ Er	SOURCE	Remove
Gen500 1kWh LA ↔	Monthly Average Temperature Dat	Download From Internet Import Umpert and Edit L	ibrary:
	Month Daily Temperature (°C)	28	
	January 25.890	- 26	
	February 26.320	0.20 9	
REQUIRED CHANGES	March 26.700		
lewer version of HOMER Pro available	April 26.870	8 24 -	
	lune 24.790		
	July 23,590	□ □ 23 -	
	August 23.440	.22 -	
	September 24.080		
	October 25.000	21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	* * *
	November 25.590	the trans the second	Octor
	December 25,780	Downloaded at 2/11/2016 2:18:28 PM from: NASA Surface meteorology and Solar Energydatabase. Air temperature, monthly averaged values over 22 year period (July 1983 - June 2005) CellNumer 90180 CellDimensions: J degree x 1 degree CellMidpointLatitude 0.5	Ϋ́ζ, Ϋ́, Έ
Kaaapd	Annual Average (°C): 25.38	CellMidpointLongitude: 0.5	
HOMEK		Scaled Annual Average (°C): 25.38 () Plot. Egypt.	

B HOMER Pro Microgrid Analysis Tool	.3.3	1 <u>-</u> 2
Home Design Results Library years of the second sec	D COMPONENTS RESOURCES PROJECT SYSTEM HELP COLAR GHT SOLAR DNT WIND TEmperature Fuels Hydrokinetic Hydra Barmess DESIGN HYDROKINETIC RESOURCE	move
Gen500 IkWh LA ↔	Choose Data Source: Enter monthly averages Import from a time series data file or the library Import are Edita Library: Monthly Average Water Speed Data	
Contraction of HOMER Pro available	Month Water Speed (m/s) 0.5 January 0.000 0.4 February 0.000 0.3 March 0.000 0.3 April 0.000 0.1 Jane 0.000 0.1 June 0.000 0.1 July 0.000 0.1 July 0.000 0.1 October 0.000 0.00 November 0.000 0.00 December 0.000 0.00 December 0.000 0.00	4800
LANAED.	Annual Average (m/s): 0.00	
	Scaled Annual Average (m/s): 0.00 (i-) Flot Export	

SCHEMATIC
AC DC Gen10 Electric Load #1 S0.00 KW/Wd 10.53 KW pesk
REQUIRED CHANGES:
Add a system converter.
Add a wind resource.
Model does not match results

Notice the "Required Changes": add a system converter (since you have components on the AC and DC buses) and add a wind resource (since you have a wind turbine). "Model does not match results" indicates that you have changed the model since the last time "Calculate" was performed. We have added a wind turbine and batteries since then.

Red items are required changes and will prevent calculations. Yellow items are important warnings, and green items are suggestions.

Step 5: Calculation & Analysis

Click the "Calculate" button in the upper-right corner of the HOMER window.

You'll see the results screen, which consists of two related tables. Sensitivity cases are listed in the top table, and simulation runs are listed in the bottom table. You can double click the entry in the lower table to show the detailed "simulation results" for that simulation.

						RESULTS				
	Expe	ort	Column Choi	ces ses	s: Left Click	on sensitivity case	to see optimizati	 1 on cases. 	fabular () Graphic
		Architect	ure			Cost		System	G	en10
	1	Gen10 (kW)	Dispatch 💙	COE (\$)	NPC 7 (\$)	Operating cost V (\$)	Initial capital V (\$)	Ren Frac V (%)	Fuel V	Hours V
	-	des a la constante de la const	00	** **	6310.046	\$22,020	\$22,500	0	16 002	0.760
-	-	15	CC.	\$1.35	\$319,040	322,939	\$22,500	0	10,005	0,700
	Exp	15 ort Architect	Optim	\$1.35	ases: Left D	Double Click on sime Cost	ulation to examin	e details. () System	Categoriz	ed () Ov
	Expo	15 ort Architect Gen10 (kW)	Optim ure Dispatch V	\$1.35 ization Ca COE (\$) ▼	NPC (\$)	Cost Operating cost	ulation to examin Initial capital V (\$)	e details. System Ren Frac (%)	Categoriz Gi Fuel V	ed () Ov en 10 Hours V

31

Calculate

Step 5: Calculations & Analysis

HOMER will run a few thousand simulations, and the results tables will display. In the upper table, each row corresponds to one sensitivity case. For each case, the configuration for the lowest net present cost system is listed.

Click on the column headings to sort by the different parameters. If you select a sensitivity case, the lower table will show all system configurations that were simulated for that case. Infeasible system configurations are not included.

E	xpc	ort		Column Choices Sensitivity Case					s: Left Clic	k on sensi							
		Architecture								Cost		System	Gen10				
<u>.</u>	+	-	-	2	G10 🏹	Gen10 (kW)	1kWh LA 🗸	Converter (kW)	7 Dispatch V	COE 7	NPC 7	Operating cost (\$)	Initial capital V	Ren Frac V	Fuel V	Hours V	,
	+	6	603	2	1	15	8	6	CC	\$0.81	\$191,522	\$10,104	\$60,900	31	5,883	3,174	
E	xpc	ort							Optimization Ca	ases: Left	Double Cli	ck on simulation to	examine details.			-	Categorized (
E	xpc	ort				Archit	ecture		Optimization Ca	ases: Left	Double Cli	ick on simulation to Cost	examine details.	System	G	en10	Categorized
E	×pc	ort			G10 V	Archit Gen10 (kW)	tecture 1kWh LA V	Converter (kW)	Dptimization Co	COE (\$)	NPC (\$)	ck on simulation to Cost Operating cost (\$)	examine details. Initial capital V (5)	System Ren Frac (%)	G Fuel V	en10 Hours V	Categorized
E	хрс + +	ort			G10 又 1	Archit Gen10 (kW) 15	ecture 1kWh LA V	Converter (kW) 6	Dptimization Ca 7 Dispatch マ CC	COE (\$) \$0.81	NPC (\$) \$191,522	Cost Cost Operating cost (\$) \$10,104	examine details. Initial capital (5) \$60,900	System Ren Frac (%) 31	G Fuel √ (L) √ 5,883	en10 Hours V 3,174	Categorized
E	хрс † †	ort			G10 文 1	Archit Gen10 (kW) 15 15	lecture 1kWh LA V 8	Converter (kW) 6 6	Detimization Co Dispatch V CC CC	COE (\$) \$0.81 \$1.11	Double Cli NPC (\$) ▼ \$191,522 \$261,535	ck on simulation to Cost Operating cost ⊽ (\$) \$10,104 \$17,841	examine details. Initial capital (S) \$60,900 \$30,900	System Ren Frac V (%) 31 0	G Fuel V (L) V 5,883 11,407	en10 Hours V 3,174 6,104	• Categorized (
E	ixpc 十 十 十	ort			G10 👽 1	Archit Gen10 (kW) 15 15 15	1kWh LA V 8	Converter (kW) 6 6	Dispatch V CC CC CC	COE √ (S) √ \$0.81 \$1.11 \$1.17	NPC (\$) \$191,522 \$261,535 \$275,171	ck on simulation to Cost Operating cost \$10,104 \$17,841 \$17,225	examine details. Initial capital (S) \$60,900 \$30,900 \$52,500	System Ren Frac V (%) 31 0 0	G Fuel V (L) V 5,883 11,407 11,579	en 10 Hours V 3,174 6,104 6,383	Categorized

33

Calculate

You can also edit the search space in the search space editor. Go to the System tab and click on the "Search Space" button. You will see the values 16 and 24 that you just added to the battery search space.

Add the number 2 to the column "G10 Quantity" to include 2 in the wind turbine search space.

Add 10 and 20 kW to the "Gen10 Capacity" search space. Click OK.

		Search Spa	ce	x
his table displays the combinations of thes he Component Input	e values of all optin e variables. You ca : menus.	nization variables. I n also edit the sear	HOMER simulates the set of a ch space for each component	ll possible individually in
Converter Capacity	1kWh LA Strings	Gen10 Capacity	G10 Quantity	-
6.00	(#)	15.00	0.00	
0.00	8.00	0.00	1.00	
12.00	16.00	10.00	2.00	
	24.00	20.00		

Thank you very much for your attention

ご清聴ありがとうございました

World trend (Upper-middle income countries - 1)

	REGL	JLATOR	Y POL	ICIES			FISC	AL INC	ENTIVE	S	FINAL	IC NCING	
	Feed-in tariff (incl. premium payment)	Electric utility quota obligation/ RPS	Net metering	Biofuels obligation/ mandate	Heat obligation/ mandate	Tradable REC	Capital subsidy, grant, or rebate	Investment or production tax credits	Reductions in sales, energy, CO ₂ , VAT, or other taxes	Energy production payment	Public investment, loans, or grants	Public competitive bidding	
UPPER-MIDDLE INCO	ME CO	UNTRIE	S									\$\$\$	
Algeria	•						1				1	-	e national-level
Argentina	•											•	policy
Belarus													O state/provinc
Bosnia & Herzegovina	•												poncy
Botswana													
Brazil				•	0							•	
Bulgaria	۲	-							٠				
Chile		0		1	•								
China		0											
china													
Colombia													
Colombia Costa Rica												_	
cnina Colombia Costa Rica Dominican Republic	•		•				•		0				
Colombia Costa Rica Dominican Republic Ecuador	•		•		•		•		•				

Net Metering (2)

Measured with a bi-directional meter or a pair of unidirectional meters spinning in opposite directions.

Advantages	Disadvantages	
Additional financial incentives for RE	Revenue losses for electricity utilities might induce them to raise their	
Awareness for energy consumption is enhanced	prices	
Incentives for consumers to adjust their load to their generation	Remuneration too low for PV without further incentives	
Decentralization and higher efficiency in electricity-use	Profitable to producers only if consumption is not considerably lower than production in case energy consumed is compensated with energy produced (see Italy)	

FIT by Energy Nautics: Methodology & Rates

- With parameters shown in APPENDIX D
- FIT duration: 15 and 20 years
- W/ and w/o PV rebate
- Seychelles FIT MODEL (Excel) with annual 10% of ROE as a Goal
- FIT rates is calculated by Goal Seek function of Excel

Contract Length & Rebate Assumption	Solar PV 1-10kW	Solar PV 11-100kW	Wind 1-100kW	
15-Year (With Rebate)	2.59	3.87	n/a	
15-Year (Without Rebate)	3.30	4.05	5.49	
20-Year (With Rebate)	2.33	3.52	n/a	
20-Year (Without Rebate)	2.97	3.69	4.97	

FIT by Energy Nautics: Impact to PUC (1)

Deployment Scenario	Residential-scale Solar PV (1-10kW)	Commercial-scale Solar PV (11-100kW)	Commercial-scale Wind (1-100kW)	Total	
Scenario A: Residential- Scale Solar	# projects: 1000 System size: 5 kW 433 projects receive PV rebate Total capacity: 5 MW	None	None	# projects: 1000 Total capacity: 5 MW	
Scenario B: Commercial- Scale Solar	None	# projects: 100 System size: 50 kW All receive PV rebate Total capacity: 5 MW	None	# projects: 100 Total capacity: 5 MW	
Scenario C: Residential & Commercial Solar & Wind	# projects: 150 System size: 5 kW All receive PV rebate Total capacity:	# projects: 75 System size: 50 kW All receive PV rebate Total capacity:	# projects: 10 System size: 50 kW Total capacity: 0.5 MW (10%)	# projects: 235 Total capacity: 5 MW	

Table 66: Summary of deployment scenario assumptions

FIT by Energy Nautics: Impact to PUC (2)

	Policy Scenarios:				
Deployment Scenarios:	Scenario 1: Gross FIT	Scenario 2: Net Metering	Scenario 3: No Policy		
Scenario A: Residential- Scale Solar	\$(0.4)	\$(7.6)	\$(11.4)		
i cenario B: Commercial- icale Solar	\$(6.2)	\$(14.7)	\$(14.7)		
Scenario C: Residential & Commercial Solar & Wind	\$(5.6)	\$(12.6)	\$(13.9)		

Table 67: Summary of Policy Cost Scenarios to PUC (in Millions SR)

Scenario 3 (No Policy): No reverse power flow, no power selling

Scenario 2, 3 could not be got by re-calculation.

Reduced fuel cost is added in this analysis. However, this is not valid in Profit/Loss Table calculation in accounting.

Feeder Voltage

Certificate of Inverter

UL174 / IEEE1547	(11.)
Standard for Inverters, Converters, Controllers and	(<u>U</u> L)
Interconnection System Equipment for Use With Distributed	
Energy Resources	
CAN/CSA-C22.2 NO. 107.1	
General Use Power Supplies	(2)
AS4777.2 & .3	
Grid connection of energy systems via inverters Part 2: Inverter	
requirements, Part 3: Grid protection requirements	
VDE0126-1-1	
Automatic disconnection device between a generator and the	
public low-voltage grid	
TÜV / IEC62109-1 IEC62109-2	
Safety of power converters for use in photovoltaic power systems	
- Part 1: General requirements. Part 2: Particular requirements	
for inverters	A A
EN62109-1 EN62109-2	TÜV
Safety of power converters for use in photovoltaic power system	SUD
-Part 1: General requirement. Part 2: Particular requirements for	
inverters	

Secure detection, but need several seconds

Passive detection

- On power outage, detect phase change of P, Q balance
- Possible instant detection
- But used as backup of active detection for grid connected generator in high voltage, because of little change at rotating generator
- → Use multiple detection to detect surely

1000 (B)		gillind.new/LISEX1/11 ICAME/Index.ni
UL Online database.ul.co	Certifications Dim × (Qi) UKH 2466978 – Static Inv. × + m/(cgi-bin/XYV/cgiffind.new/LISEXT/IFRAME/Index.htm)	
	ONLINE CERTIFICATIONS DIRECTORY	Quick Guide Contact Us UL.com
(1) QIKH	BEGIN A BASIC SEARCH To begin a search, please enter one or more search criteria in the parameters below. Company Name (options) City US State Select a state US Zip Code Country Select a country Select a region Postal Code (non-US)	ABOUT THE ONLINE CERTIFICATIONS DIRECTORY You can use the UL Online Certification Directory to: • Verify a UL Listing, Classification, or Recognition • Verify a UL Listed product use • Verify a product use • Verify a product safety standard Looking for ULC certifications? Go to the ULC Online Directories Learn more with the Quick Guide to the Online Certifications Directory SPECIFIC SEARCHES
	UL Category Code (options) UL File Number (help) Keyword	FEATURED LINKS

Grid Connection Approval

- The application Process
- Who is responsible for analysis/approval
- Demarcation of cost for installation & connection
- Safety and protection requirement
- Testing and commissioning procedure
- Communication and information exchange

SGC13: System Voltage (1)

The distribution system network operates at the nominal voltages indicated in the table below:

Low Voltage (LV)	230 Volts – phase to neutral 400 Volts – phase to phase
Medium Voltage (MV)	11,000 Volts (11kV) 33,000 Volts (33kV)

The low voltage range tolerance is 230V +/- 10% (phase to neutral). The resulting voltage at different points on the system is expected to be in accordance with the table below under steady state and normal operating conditions.

	Nominal Voltage (phase-phase)	Steady-state Tolerance	
	400V	+/- 10%	
	11kV	+/- 10%	
	33kV	+/- 10%	
ienerators m	hay not disconnect due to	o voltage deviation as long as	5
system vo	oltage remains within the	e given ranges.	1

SGC12: Frequency Rating and Limits (1)

The nominal frequency of the distribution system voltage is 50Hz. The deviation of the average frequency over a 30-day period should be kept as close to zero as possible by PUC. Under normal operating conditions the mean value measured over 10s of the fundamental frequency shall be within a range of: 50Hz -5/+3% (i.e. 47.5 to 51.5Hz). Generators shall not disconnect due to frequency deviation as long as the system frequency remains within the following ranges:

- 47.0 Hz 47.5 Hz: for 20 seconds
- 47.5 Hz 49.0 Hz: for 90 minutes
- 49.0 Hz 51.0 Hz: unlimited
- 51.0 Hz 51.5 Hz: for 90 minutes
- 51.5 Hz 52.0 Hz: for 15 minutes

SGC18: Maximum Frequency Gradient

Generators shall withstand frequency gradients of up to 2.0 Hz per second in either direction without tripping as long as the steady state frequency limits are not exceeded.

Rationale

Measurement data from Mahé collected by Energynautics suggest that frequency gradients of more than 1.0 Hz per second can occur occasionally. Such steep frequency gradients are due to the low inertia in the system and should not cause generator tripping, as significant loss of generation would lead to more severe problems.

15

SGC25: Fault ride-through (1)

Generators above 10 kW nominal power must not disconnect from the grid due to voltage drops above the blue line in the following figure, representing the smallest line-to-line voltage at the generator terminals:

SGC27: Description of system protection (1)

The purpose of system protection is to safely and reliably disconnect the generator from the grid in case of unsafe conditions of voltage and frequency. The following protection functions must be implemented:

Protection against #	Name 🕶	Limit₽	Disconnection Time	e# 4
Undervoltage 🛃	U< 🕶	0.8 p.u.*	1.52.4 s* •	
Overvoltage (1) +2	U> +2	1.1 p.u. +2	1 min 🕫	
Overvoltage (2) +2	U>>*2	1.15 p.u. **	100 ms*	•
Underfrequency +2	f<₽	47.0 Hz 🕫	100 ms 🕶	
Overfrequency **	f> **	52.0 Hz +*	100 ms+	

* Time to be assigned by PUC<</p>

 Limits apply to the half-cycle effective value (RMS), except for "U>" (Overvoltage (1)), which shall be based upon a 10- minute moving average. Any single limit violation must reliably trigger disconnection.

- Generators below 10 kW nominal power may disconnect due to "U<" (Undervoltage) or "U>" (Overvoltage (1)) with shorter time delays than the disconnection times listed above.
- Generators above 100 kW nominal power must automatically disconnect from the grid after 0.5 seconds if all line-line voltages are below 0.85 p.u. and the generator consumes inductive reactive power at the same time.

19

20

Example: Trip Setting of SMA Sunny Boy

11.6	Trip	Limits	/Trip	Times

Nominal	Trip Limit		Trip Frequencies		Trip Times	
60Hz	0 Hz > 60.5 Hz < 57.0 Hz 59.8 Hz (standard 59.3 Hz)		60.45 Hz	···60.55 Hz	n	nax. 0.1602 s
			z 56.95 Hz … 59.85 Hz (standard 59.25 Hz … 59.35 Hz)		adjustable, 0.16 s…300 (standard max, 0.1602 s	
	< 57.0 H	:	56.95 Hz	··57.05 Hz	n	тах. 0.1602 s
oltage						
Nominal Voltage	Trip Limit	Trip Co T Co	Voltages onductor- Neutral inductor*	Trip Voltz Conduct Conduct	ages tor- or	Trip Times
208 V	50 %	57.6	V62.4 V	99.8 V 10	08.2 V	max. 0.1602 s
	88 %	103.2 V 108.0 V		178918	37.2V	max. 2.002 s
	110%	129.6	V134.4 V	224.6 V2	33.0V	max. 1.001 s
	120%	141.6V-146.4V		245.4 V253.8 V		max. 0.1602 s
240 V	50%	57.6	V62.4V	115.2 V····1	24.8V	max. 0.1602 s
	88 %	103.2	V-108.0 V	206.4 V2	16.0V	max 2.002 s
	110%	129.6	V134.4 V	259.2 V2	68.8V	max 1.001 s
	120%	141.6	V146.4 V	283.2 V2	92.8V	max. 0.1602 s
277 V	50%	133.0	V144.0 V	Notapplic	able	max. 0.1602 s
	88 %	238.2	V249.3V			max 2.002 s
	110%	299.2	V310.2V			max. 1.001 s
	120%	326.9	V337.9 V			max. 0.1602 s

0.1 % of nominal trip time

Trip frequency: ±0.1 % of nominal frequency

Republic of Seychelles Project for Formulation of Master Plan for Development of Micro Grid System

Okinawa Enetech Co. Inc. Energy Development Department Luis Kakefuku, Masanori Shimabuku, Chihiro Tobaru, Yuma Uezu Jun Hagihara, Noboru Yumoto

INDEX 1. Okinawa Enetech Overview 2. Project Introduction 3. Support matters for the project 3.1 Maximum allowable amount of renewables Summary of issues with stable grid operations due to high RE penetration Short period issues-Shortage of frequency adjustable margin Long period issues – Surplus energy Sorting out PV interconnection constraints 3.2 Method for caculating the amount of RE deployable Algebraic method / short period constraints ·Using Homer software / long period constraints 3.3 Planning and designing PV-diesel hybrid system Technical assistance in planning and design Use of SketchUp software 3.4 Results of the project Mahe Is. • Praslin Is., La Digue Is. Desroches Is. · Curieuse Is. 3.5 Optimizing operation of existing diesel gen set Economical load dispatch operation method • EDC 3.6 Legal system related to renewable energy • Grid Code Incentives for PV system 4. Master Plan for Seychelles (draft)

0

1. Okinawa Enetech Overview

Company Overview

Background

Okinawa Enetech was established as an affiliated company of Okinawa Electric Power Co. Inc. in May 1994 specializing in research, design, and construction supervision of electric power facilities.

Corporate info

- Name : Okinawa Enetech Co. , Ltd.
- Location : Urasoe, Okinawa Prefecture
- Capital : 40 million yen
- Established : May 10, 1994
- No. of employees : 63

- Business areas
- (1) Civil engineering design
- (2) Building & facilities design
- (3) Environmental survey
- (4) Design of power facilities
- (5) Renewable energy
- (6) Overseas projects

1. Okinawa Enetech Overview Organization chart Board member Management Engineering Energy dept. dept. development dept. Administration division Sales division Energy Environment Power Substation Civil group group engineering transmission group & distribution group group

2

1. Okinawa Enetech Overview Renewables Energy related works

Structural reengineering of foreign-made WT tower to ensure compliance with Japanese standard

Survey, planning, and construction work management of 200 kW PV project in Kita Daito Island

Survey, planning, and construction work management of 4 MW solar power project in Miyako Island

Survey, planning, and construction management of 240 kW PV project at an agricultural products processing plant in Higashi Village (Okinawa mainland)

1. Okinawa Enetech Overview

Overseas Renewable Energy Related Works

Participation in OEPC NEDO project in Laos. General base plan, PV system design, construction work management, and validation Research (Micro Hydro + PV + capacitor)

Participation in demonstrative research project for interconnected PV system in Thailand

Performance evaluation of renewable energy system in Mongolia

Preparatory study for sustainable system development project for remote islands (operation of diesel generators) (JICA project)

8

2. Project Introduction

2. Project Introduction

Purpose of the Project

The purpose is to help develop a microgrid deployment plan for remote islands in Seychelles and an operating structure for grid stabilization technology based on Japan's experience in island regions.

Support areas for the project

- \checkmark Evaluation method to determine the RE integration capacity.
- \checkmark Technical and economic study on the efficient use of diesel generators.
- ✓ Planning and designing PV-diesel hybrid power generation equipment.
- ✓ Proposal of a remote island microgrid deployment plan suitable to the characteristics of the power grid.
- ✓ Development of institutions for stable remote island microgrid operation.
- ✓ Introduction to grid stabilization technology for island regions of Japan through the training program in Japan.

2. Project Introduction

Expected results of the project

- ✓ Formulation of a remote island microgrid master plan.
- Evaluation of the maximum allowable amount of RE that can be interconnected to the grid and transfer of the evaluation methods.
- Presentation of sample plans and designs of hybrid systems (photovoltaic-diesel generation), and transfer of design technology.
- Proposal for improving power plant efficiency by improving power plant operation and transfer of optimization technology

2. Project Introduction

Implementation cooperation structure

Project for Formulation of Master Plan for Development of Micro Grid in Remote Islands.

Schedule

This project is conducted from March 2015 through June 2016.

14

2. Project Introduction

Target island for the project

The survey was conducted on Mahe Island, Praslin Island, La Digue Island, Curieuse Island, and Desroches Island.

3.1 Maximum allowable amount of renewables

- Summary of issues with stable grid operations due to high RE penetration
- Short-period issues-Shortage of frequency adjustability
- Long-period issues Surplus energy
- Sorting out PV interconnection constraints

3. Support areas for the project

3.1 Maximum allowable amount of renewables> Issues with the implementation of RE

PV Features	Impact	Issues	Summary
Connection to distribution	Distribu tion system	① Failure restoration	If a blackout area arising from a distribution line failure receives electricity from another power distribution line, since the shared power must also make up for the power that was generated by the stopped PV in the area, it may result in excess current flowing through the distribution line sharing power.
system	,	② Voltage management	With the increase of reverse power flow to the distribution system from PV, distribution line voltage management becomes difficult.
Output Er fluctuation g	Entire grid	③ Surplus power (Long-period constraints)	In order for thermal power generation to maintain operation, output must be maintained at or over a certain value. Even when demand is low, since output can not be decreased below this value, power supply would exceed demand due to RE power generation.
		④ Frequency adjustability (short-period constraints)	A shortage in frequency adjustability occurs due to the expansion of PV and wind power output fluctuation range, and thus results in larger frequency fluctuations.
Impact of PCSs	Entire grid	⑤ Grid stability during failures	Due to a decrease in the number of thermal generators in operation, synchronizing capacity decreases. Unnecessary disconnections during frequency and voltage disturbances foster power system disturbances.

3. Support areas for the project 3.1 Maximum allowable amount of renewables Short-period issues • Variability of RE PV and wind power output fluctuates according to changes in weather conditions such as solar radiation and wind speed.

3. Support areas for the project

3.1 Maximum allowable amount of renewables

Short-period issues • Energy Balance

• Influence of frequency fluctuation

Since electricity cannot be stored, the amount of production and consumption has to be equal (principle of the same amount at a time). If this is not maintained, frequency varies.

Demand (consumption) < Supply (production) ⇒ Frequency increase

When exceeding a certain amount, fluctuations cannot be compensated for by increasing or decreasing the output of thermal power generators which may lead to the inability to maintain a constant frequency (60 Hz).

24(85)

18

3.1 Maximum allowable amount of renewables ≻Long-period issues • Surplus energy

Thermal power generators have an operational lower limit, and output cannot be reduced below this value. When this level is reached, the total power generation amount of the PV and thermal power generators exceeds the demand causing the frequency to rise. This affects the stable operation of the thermal power generators, and in the worst case, it could cause a power outage.

3.2 Method for caculating the amount of RE deployable

- Algebraic method / short-period constraints
- Using Homer software / long-period constraints

3. Support areas for the project

3.2 Method for caculating the amount of RE deployable

(1) Algebraic method (simplified method)

- This estimation method is simple and clear.
- It has been proven in Japan and is highly reliable.
- Model construction of generators is unnecessary, and when expanding the adjustability of generators and storage batteries, estimation is possible by applying it to the LFC value.

(2) Simulation method (detailed method)

- This method reflects the grid's unique characteristics and is used in order to verify the validity of the algebraic method.
- Real wind and solar power data is used, so it is highly reliable.
- It requires dedicated tools for calculating and highly specialized knowledge.

24

Short-Period Constraint

Definition of evaluation time window, output fluctuation range, and output change rate

3.2 Method for calculating the amount of RE deployable (Algebraic Method) Result of load rejection test

The formula below expresses the relationship between power fluctuation of the grid ΔP and frequency fluctuation. Here, constant value is defined as the system constant. If the system constant for the grid is known, the amount of power fluctuation that occurred can be inversely calculated from frequency deviation. The algebraic method uses the system constant, which was estimated when conducting a load rejection test to calculate the allowable adjustable margin, to calculate the value for the maximum allowable power fluctuation.

Test situation

Time of test	16/03/201	6 9:17	7	
			Run	Trip
	SET 8B	6.00	0	
	SET A21	6.00		0
	SET A31	6.00	0	
Time of test Rated Output (MW) Generator Output (MW)	SET A41	6.00		
	SET A51	8.00	0	
Rated Output (MW)	SET A61	8.00	0	
	SET B11	6.00	0	
	SET B21	6.00	0	
	SET B31	6.00	0	
	SET B41	8.00	0	
	SET B51	8.00	0	
	SET 8B	4.50		
	SET A21	2.06		
Rated Output (MW) Generator Output (MW) Demand (MW)	SET A31	4.31		
	SET A41			
	SET A51	6.49		
Generator Output (MW)	SET A61	6.59		
	SET B11	4.47		
	SET B21	4.53		
	SET B31	4.05		
	SET B41	6.72		
	SET B51	7.26		
Demand (MW)	50.98			

Resut of test

Original frequency(Hz)	50.05	
Bottom frequency(Hz)	49.21	
Frequency deviation (Hz)	0.84	
Dropout generator output(MW)	4.14	
Time of bottom frequency(s)	1.32	
End frequency(Hz)	49.87	

System constant

-,	System constant(%MW/Hz)	7.99
----	-------------------------	------

 $\Delta P~(\% MW)$ = $~\Delta P~(MW)$ / total rated output of parallel input generators

K (%MW/Hz) = $\Delta P / \Delta F$

K : system constant

Short-Period Constraint

3.2 Method for calculating the amount of RE deployable (Algebraic Method) Result of load rejection

30

Short-Period Constraint

3. Support areas for the project

3.2 Method for calculating the amount of RE deployable (Algebraic Method) Result of load rejection test

31

Short-Period Constraint

3.2 Method for calculating the amount of RE deployable (Algebraic Method) Result of load rejection test

Mahe Is.	Demand (MW)	PV Fluctuation rate (%)	PV (MW)	WT (MW)	RE (MW)
	32		0		6
Probability (95%)	40	80	0	6	6
	50		2		8
16/03/2016	50	100	1.6	6	7.6

Praslin Is.	Demand (MW)	PV Fluctuation rate (%)	PV (MW)	WT (MW)	RE (MW)
	4.5		0.41		0.41
Probability (95%)	5.5	80	0.50	0	0.5
	6.5		0.59		0.59
23/03/2016	6.5	50	0.94	0	0.94

When system demand is low, it is difficult interconnect PV due to small system constant.

3.2 Maximum allowable amount of renewables (Using Homer software)

HOMER (Hybrid Optimization of Multiple Electric Renewables).

HOMER simplifies the task of designing distributed generation (DG) systems - both on and off-grid for a variety of applications.

For configuration of the system, it helps in determining:

- What components does it make sense to include in the system design
- How many and what size of each component should be used

HOMER's optimization and sensitivity analysis algorithms make it easier to evaluate the many possible system configurations.

Long-Period Constraint

3. Support areas for the project

3.2 Maximum allowable amount of renewables (Using Homer software)

Core capabilities Simulation, Optimization, Sensitivity Analysis

Simulation: At its core, HOMER is a simulation model. It will attempt to simulate a viable system for all possible combinations of the equipment that you wish to consider. Depending on how you set up your problem, HOMER may simulate hundreds or even thousands of systems.

Optimization: The optimization step follows all simulations. The simulated systems are sorted and filtered according to criteria that you define, so that you can see the best possible fits. Although HOMER fundamentally is an economic optimization model, you may also choose to minimize fuel usage.

Sensitivity analysis: This is an optional step that allows you to model the impact of variables that are beyond your control, such as wind speed, fuel costs, etc, and see how the optimal system changes with these variations.

3.2 Maximum allowable amount of renewables (Using Homer software)

36

Long-Period Constraint

3. Support areas for the project

3.2 Maximum allowable amount of renewables (Using Homer software)

Long-Period Constraint

3.2 Maximum allowable amount of renewables (Using Homer software)

			н	lomer Simula	tion Result in I	Mahe Is.						
	Scenar	io		Cost of energy	Power generated	Excess of energy	PV generation rate	WT generation rate	% of RE	Max. RE rate	Estimated Inicial Cost	
RE implementation	PV	(kW)										
(kW)	PUC	Domestic PV	WT(kW)	\$\$/kWh	kWh		*	`	*	*	\$	
7,200	0	1,200	6,000	0.286	313,118,114	0.0	0.66	2.89	3.55	24.4	0	
8,200	1,000	1,200	6,000	0.286	313,365,024	0.0	1.22	2.88	4.10	26.2	2,800,000	
9,200	2,000	1,200	6,000	0.286	313,611,968	0.1	1.76	2.88	4.64	28.8	5,600,000	
10,200	3,000	1,200	6,000	0.286	313,858,848	0.1	2.32	2.88	5.20	31.4	8,400,000	
11,200	4,000	1,200	6,000	0.287	314,105,824	0.1	2.87	2.88	5.75	34.0	11,200,000	
12,200	5,000	1,200	6,000	0.287	314,352,704	0.1	3.41	2.87	6.28	36.6	14,000,000	
13,200	6,000	1,200	6,000	0.287	314,599,616	0.2	3.96	2.87	6.83	39.3	16,800,000	Use of Battery Storage
14,200	7,000	1,200	6,000	0.287	314,846,496	0.2	4.51	2.87	7.38	41.9	19,600,000	system for long-period
15,200	8,000	1,200	6,000	0.287	315,093,472	0.2	5.06	2.87	7.93	44.5	22,400,000	constraint
16,200	9,000	1,200	6,000	0.287	315,340,384	0.2	5.60	2.87	8.47	47.1	25,200,000	constraint
17,200	10,000	1,200	6,000	0.288	315,588,096	0.3	6.15	2.86	9.01	49.7	28,000,000	
18,200	11,000	1,200	6,000	0.288	315,836,896	0.3	6.69	2.86	9.55	52.4	30,800,000	
19,200	12,000	1,200	6,000	0.288	316,086,624	0.3	7.24	2.86	10.10	55.0	33,600,000	
20,200	13,000	1,200	6,000	0.288	316,338,784	0.3	7.78	2.86	10.64	57.6	36,400,000	
21,200	14,000	1,200	6,000	0.288	316,596,512	0.4	8.32	2.85	11.17	60.2	39,200,000	
22,200	15,000	1,200	6,000	0.288	316,863,392	0.4	8.86	2.85	11.71	62.8	42,000,000	
23,200	16,000	1,200	6,000	0.289	317,143,008	0.4	9.40	2.85	12.25	65.5	44,800,000	
24,200	17,000	1,200	6,000	0.289	317,435,776	0.5	9.93	2.85	12.78	68.6	47,600,000	
25,200	18,000	1,200	6,000	0.289	317,748,800	0.5	10.46	2.84	13.30	71.6	50,400,000	
26,200	19,000	1,200	6,000	0.289	318,088,992	0.6	11.00	2.84	13.84	74.7	53,200,000	\sim
27,200	20,000	1,200	6,000	0.289	318,463,776	0.7	11.53	2.84	14.37	77.8	56,000,000	
28,200	21,000	1,200	6,000	0.290	318,882,208	0.7	12.06	2.83	14.89	80.8	58,800,000	
29,200	22,000	1,200	6,000	0.290	319,357,376	0.8	12.58	2.83	15.41	83.9	61,600,000	
30,200	23,000	1,200	6,000	0.290	319,900,928	1,0	13.10	2.82	15.92	86.9	64,400,000	
31,200	24,000	1,200	6,000	0.290	320,519,424	1.1	13.62	2.82	16.44	90.0	67,200,000	
32,200	25,000	1,200	6,000	0.291	321,218,304	1.3	14.13	2.81	16.94	93.0	70,000,000	
33,200	26,000	1,200	6,000	0.291	321,998,976	1.5	14.63	2.81	17.44	96.1	72,800,000	
34,200	27,000	1,200	6,000	0.292	322,856,640	1.7	15.12	2.80	17.92	99.1	75,600,000	
35,200	28,000	1,200	6,000	0.292	323,794,240	2.0	15.62	2.79	18.41	102.2	78,400,000	
36,200	29,000	1,200	6,000	0.293	324,805,632	2.3	16.10	2.78	18.88	105.2	81,200,000	
37,200	30,000	1,200	6,000	0.293	325,886,944	2.6	16.58	2.77	19.35	108.3	84,000,000	

38

3. Support areas for the project

3.2 Maximum allowable amount of renewables (Using Homer software)

		Homer Simulation R	esult in Praslin (+ La Dig	ue) Is.			
組合	せ例	Cost of energy	Power generated	Excess of energy	PV generation rate	Max. RE rate	Estimated Inicial Cost
	PV(kW)						
RE implementation (kW)	PUC	\$/kWh	kWh	%	%	%	s
0	0	0.264	42,872,584	0.0	0.00	0.0	(
100	100	0.264	42,897,248	0.0	0.40	2.5	230,000
200	200	0.264	42,921,928	0.0	0.81	5.0	460,000
300	300	0.263	42,946,596	0.0	1.21	7.4	690,00
400	400	0.263	42,971,300	0.1	1.61	9.9	920,000
500	500	0.263	42,995,992	0.1	2.01	12.4	1,150,00
600	600	0.262	43,020,696	0.1	2.42	14.9	1,380,00
700	700	0.262	43,045,356	0.1	2.82	17.4	1,610,00
800	800	0.262	43,070,060	0.2	3.22	19.9	1,840,00
900	900	0.261	43,094,724	0.2	3.62	22.3	2,070,00
1,000	1,000	0.261	43,119,432	0.2	4.02	24.8	2,300,00
1,100	1,100	0.261	43,144,100	0.2	4.42	27.3	2,530,00
1,200	1,200	0.260	43,168,776	0.2	4.82	29.8	2,760,00
1,300	1,300	0.260	43,193,468	0.2	5.21	32.3	2,990,00
1,400	1,400	0.260	43,218,180	0.3	5.61	34.7	3,220,00
1,500	1,500	0.259	43,242,864	0.3	6.01	37.2	3,450,00
1,600	1,600	0.259	43,267,564	0.3	6.41	39.7	3,680,00
1,700	1,700	0.259	43,292,244	0.3	6.80	42.2	3,910,00
1,800	1,800	0.258	43,316,940	0.3	7.20	44.7	4,140,00
1,900	1,900	0.258	43,341,616	0.4	7.59	47.2	4,370,00
2,000	2,000	0.257	43,366,316	0.4	7.99	49.6	4,600,00
2,100	2,100	0.257	43,391,004	0.4	8.38	52.1	4,830,00
2,200	2,200	0.257	43,415,672	0.4	8.78	54.6	5,060,00
2,300	2,300	0.256	43,223,656	0.4	9.17	57.1	5,290,00
2,400	2,400	0.256	43,238,916	0.5	9.57	59.6	5,520,00
2,500	2,500	0.256	43,489,760	0.5	9.96	62.1	5,750,00
2,600	2,600	0.255	43,269,444	0.5	10.35	64.5	5,980,00
2,700	2,700	0.255	43,284,720	0.5	10.74	67.0	6,210,00
2,800	2,800	0.255	43,300,000	0.5	11.13	69.5	6,440,00
2,900	2,900	0.254	43,315,244	0.5	11.53	72.0	6,670,00
3.000	3.000	0.254	43.613.208	0.6	11.92	74.5	6,900,00

Long-Period Constraint

3.3 Planning and designing PV-diesel hybrid system

- Technical assistance in planning and design
- Use of SketchUp software

3. Support areas for the project3.3 Planning and designing PV-diesel hybrid system

Introduction

★ With small-scale power systems, due to limitations on scale and adjustment capacity, they are sensitive to the output fluctuations of renewable energy such as grid-connected PV systems.

★ If these fluctuations are large, balancing supply and demand and securing power quality become difficult.

★ When deploying a high percentage of grid-connected PV systems, a hybrid system which supplies power in coordination with the existing diesel generators (DG) is regarded as promising.

40

3.3 Planning and designing PV-diesel hybrid system

Introduction of the PV-diesel hybrid system developed in Okinawa

- \star The 3 basic types are shown below.
- ① PV-diesel hybrid system
- 2 PV-WT-diesel hybrid system
- ③ PV-battery-diesel hybrid system
- Keeping in mind that in any case, the deployment will take place on a small remote island, the configuration will consist of multiple generators.
- We believe that by using a multi-unit configuration, serviceability can be enhanced on small remote islands where backup and repair are not easy.

3. Support areas for the project3.3 Planning and designing PV-diesel hybrid system

① PV-diesel hybrid system

In most cases, a system stabilizing device such as storage batteries is incorporated in PV-diesel hybrid systems. However, power system stabilizers are expensive, so if such equipment is incorporated, the economic burden on Seychelles to deploy the system alone is heavy and makes it unfeasible. Therefore, in this project, we will propose and design a system that does not feature a stabilizer such as a power storage battery. An example system is described below.

3.3 Planning and designing PV-diesel hybrid system

[Example] (1) PV-diesel hybrid system <Features/advantages of the system>

Ex. Sustainable PV System configuration
3.3 Planning and designing PV-diesel hybrid system

- [Example] ① PV-diesel hybrid system
- <Schematic of frequency stabilization measures through PCS quantity control>

3. Support areas for the project

3.3 Planning and designing PV-diesel hybrid system

[Example] ① PV-diesel hybrid system

<Schematic of measures for low-load DG operation through PCS quantity control>

3.3 Planning and designing PV-diesel hybrid system

Facility Planning Method using SketchUp software

3.4 Results of the project

- •Mahe Is.
- Praslin Is., La Digue Is.
- Desroches Is.
- Curieuse Is.

3.4 Result of Planning of PV-DEG Hybrid System (Mahe Is.) Supply-demand balance simulation

3.4 Result of Planning of PV-DEG Hybrid System (Mahe Is.)

Electric rate simulation

	Cost of energy	v	unit	output limit	Long tern	n issues b	atterv im	lementati	on
	Battery system	capacit	kWh	0	30.000	50.000	100.000	150.000	200
	PCS output		kW	0	30,000	50,000	100,000	150,000	200
	RE implementation	WT	PV						
	現状	6,000	1,200	0.232	-	-	-	-	-
_	計画	-			-	-	-	-	-
	1,000	0	1,000	0.232	-	-	-	-	-
	2,000	0	2,000	0.233	-	-	-	-	-
	3,000	0	3,000	0.233	-	-	-	-	-
	4,000	0	4,000	0.233	-	-	-	-	-
	5,000	0	5,000	0.233	-	-	-	-	-
	6,000	0	6,000	0.233	-	-	-	-	-
	7,000	0	7,000	0.234	-	-	-	-	-
	8,000	0	8,000	0.234	-	-	-	-	-
	9,000	0	9,000	0.234	-	-	-	-	-
	10,000	0	10,000	0.234	0.233	0.236	0.254	0.272	0
	11,000	0	11,000	0.235	0.229	0.236	0.255	0.272	0
	12,000	0	12,000	0.235	0.229	0.237	0.255	0.273	0
	13,000	0	13,000	0.235	0.228	0.235	0.254	0.271	0.
0	14,000	0	14,000	0.235	0.228	0.235	0.253	0.271	0.
3	15,000	0	15,000	0.235	0.228	0.235	0.253	0.271	0
E I	16,000	0	16,000	0.236	0.228	0.235	0.253	0.271	0
	17,000	0	17,000	0.236	0.227	0.234	0.253	0.270	0
ш	18,000	0	18,000	0.236	0.226	0.234	0.252	0.270	0
	19,000	0	19,000	0.236	0.225	0.232	0.251	0.269	0
	20,000	0	20,000	0.237	0.225	0.231	0.250	0.268	0
	21,000	0	21,000	0.237	0.225	0.230	0.249	0.267	0
	22,000	0	22,000	0.237	0.224	0.228	0.247	0.266	0.
	23,000	0	23,000	0.237	0.225	0.227	0.246	0.265	0.
	24,000	0	24,000	0.238	0 225	0.226	0.245	0.263	0
	25,000	0	25,000	0.238	0.225	0.225	0.243	0.262	0.
	26,000	0	26,000	0.238	0.226	0.224	0.241	0.260	0.
	27,000	0	27,000	0.239	0.226	0.224	0.240	0.259	0.
	28,000	0	28,000	0.239	0.227	0.225	0.239	0.257	0.
4	29,000	0	29,000	0.240	0.227	0.225	0.237	0.256	0.
	30,000	0	30,000	0.240	0.227	0.226	0.236	0.255	0.
•				Cost	of er	nergy	incre	ase	>

A sensitivity analysis on the correlation of battery capacity and electric rates was conducted using HOMER Pro when deploying more than 10,000 kW of PV. As a result, electric rates tended to decrease when batteries were deployed. The optimal combination would be to add 22,000 kW of PV and a 30,000 kWh battery system to the current system.

3.4 Result of Planning of PV-DEG Hybrid System (Mahe Is.)

Supply-demand balance simulation

Summary

- The integration capacity for long-period constraints on Mahe Island was approximately 10,000 kW.
- The cost benefits of PV integration in Mahe Island is low with the current fuel price of 0.32 USD.
- Cost benefits of PV integration arise when fuel prices exceed the 0.8 USD.
- According to the battery capacity sensitivity analysis, electric rates tended to decrease when batteries were deployed.
- For the time being, aiming for deployments of 10,000 kW of PV, which does not require a battery system, is recommended.

3.4 Result of Planning of PV-DEG Hybrid System

(Praslin Is.+ La Digue Is.) Supply-demand balance simulation

Short period constraint

1	Total demand	6500	kW
2	LFC	0	kW
3	Adjustable Frequency Margin	477	kW
4	System constant	9.8	%/Hz
5	Demand change rate	85	kW
6	Wind output fluctuation	0	kW
1	Allowable amout of Wind	0	kW
8	Wind change rate	-	
9	PV output fluctuation	470	kW
1	Allowable amount of PV	600	kW
1	PV change rate	0.8	-
	Total amount of RE	600	kW

- For short-period constraints, PV systems of 50 kW or more are taken into account, and if total output exceeds 600 kW, implementation of a stabilization device such as a battery system to suppress frequency fluctuations is required.
- For long period constraints, the expected PV integration capacity is about 1,900 kW. Integration of more than 2,000 kW is expected to require the implementation of a stabilization device such as a battery storage system to absorb the excess energy from RE.

3.4 Result of Planning of PV-DEG Hybrid System (Praslin Is.+ La Digue Is.) / electric rate simulation

3.4 Result of Planning of PV-DEG Hybrid System

(Praslin Is.+ La Digue Is.) Supply-demand balance simulation

La Digue Island power supply

Power is supplied through two submarine cables.

- From Praslin Power Plant to La Digue.
- From Praslin Power Plant to La Digue via Eva Island. (sea water desalination plant in Round Island)
 Planning for the construction of a third submarine cable.

Planning for La Digue Green Island (100% RE)

<image>

Logan Hospital

La Digue District Administration

La Digue primary school

3.4 Result of Planning of PV-DEG Hybrid System

(Praslin Is.+ La Digue Is.)

PV facility simulation (La Digue school) approx. 100 kW

Summary

- The integration capacity for long period constraints on Praslin Island was approximately 2,000 kW.
- The cost benefits of PV integration in Praslin Island is low with the current fuel price of 0.49 USD.
- Electric rates tended to decrease with a battery capacity ranging 1,500 kWh – 2,000 kWh.
- For the time being, aiming for deployments of 2,000 kW of PV, which does not require a battery system, is recommended.

3.4 Result of Planning of PV-DEG Hybrid System • Desroches Is. (Future plan)

Future plan for Desroches Is.

- Peak load 2.0 MW
- Replacement of all existing diesel generators

Study results using Homer software

- Diesel generator configuration 750 kW × 3 units
- Maximum PV implementation without battery storage system 450 kW
- PCS 300 kW
- -COE 0.534 USD/kWh

DG1	DG2	DG3	DG4	Dispatch	Cost/CO E (\$)
750	750	750		LF	0.550
750	750	750	750	LF	0.555
1000	1000	1000		LF	0.577
1000	1000	1000	1000	LF	0.583
1500	1500			LF	0.580
1500	1500	1500		LF	0.589
1500	1500	1500	1500	LF	0.598
2000	2000			LF	0.684
2000	2000	2000		LF	0.696

3.4 Result of Planning of PV-DEG Hybrid System

·Curieuse Is.

Current condition

Curieuse Island is one of the remote islands of the Seychelles Islands. It is located to the northwest of Praslin Island and has an area of 2.86 km² making it the second largest remote island in the Seychelles.

- · Generation equipment
- 1. 5.5 kVA diesel generator
- 2. 5 kVA gasoline generator
- 3. Normal feeding time: 17:00-6:00
- 4. Peak demand: approximately 7 kW
- 5. Gasoline price: 22 SCR/L (1.23 USD/L)

66

EAR PARTY LANAKANAN TA COLOR

States of Planning of PV-DEG Hybrid System Curieuse Is. Future plan V^{40W} Energency backup DEG 10 kW System composition PV 40 kW Battery storage system 350 kWh PCS 10 kW

Emergency backup DEG 10kW

	Componen	ts	electicity tariff	Amount of power generation	excess of energy	PV gen. rate	cost
PV (kW)	CON (KW)	BTT (kWh)	\$/kWh	kWh	%	%	\$
40	10	350	1.16	69,290	40.2	100	280,000
40	15	350	1.17	69,290	40.2	100	282,500
40	20	350	1.18	69,290	40.2	100	285,000
50	10	300	1.19	86,612	52.3	100	280,000
25	25	350	1.19	69,290	40.2	100	287,500
50	15	300	1.20	86,612	52.3	100	282,500
40	30	350	1.20	69,290	40.2	100	290,000
50	20	300	1.20	86,612	52.3	100	285,000
40	35	350	1.21	69,290	40.2	100	292,500
40	10	400	1.21	69,290	40.2	100	305,000

Battery storage system 350 kW

68

3.4 Result of Planning of PV-DEG Hybrid System • Curieuse Is.

Summary

- A simulation on the optimal combination with 10-50 kW PV, 10-50 kW CON, and 50-400 kWh BTT for PV deployment was conducted. The results showed that a system combining 40 kW of PV + 350 kWh of batteries + 10 kW CON is the best in terms of electric rates.
- The entire load for Curieuse Island and can be supplied with the PV in the system mentioned above. In addition, since Curieuse Island lacks a backup power supply in case the above system fails, installing a 10 kW diesel generator as emergency backup is recommended.

3.5 Optimizing operation of existing diesel gen set

 Technical and economic study on the efficient use of diesel generators

3. Support areas for the project 3.5 Technical and economic study on the efficient use of diesel generators Position of this study on the project

In order to aim for improving energy self-sufficiency in Seychelles, in addition to the replacement of petroleum fuels with renewable energy, it is necessary to reduce fuel consumption through efficient operation of the existing power supply.

70

3.5 Technical and economic study on the efficient use of DEG

· Position of this study on the project

Method of optimizing energy efficiency in power plant

- ① Proper maintenance to prevent worsening of fuel consumption characteristics (management of each individual generator)
- ② Application of economic load dispatch (EDC) operation to optimize fuel consumption (management of power plant operation)

3. Support areas for the project

3.5 Technical and economic study on the efficient use of diesel generators

Overview of EDC operation

EDC (Economic load Dispatching Control)

Amid changes in demand, which generators (which have different fuel consumption characteristics) should be operated and at what output will lead to the most efficient operation is considered in advance, and the efficient operation of the generators is carried out based on the results.

72

3.5 Technical and economic study on the efficient use of DEG

- · Applicability in Seychelles
- ① Economic load dispatch calculation is carried out with a commercial PC software (Microsoft Excel) using the fuel consumption characteristics of each generator (fuel consumption rate).
- 2 Based on the economic load dispatch calculation results, an economic load dispatch table for each combination of generators is prepared.
- ③ EDC operation based on the economic load dispatch table (EDC operation is performed by manual governor operation at the power plant)

3. Support areas for the project

3.5 Technical and economic study on the efficient use of DEG

Field survey for implementation

(1) Power plant assessment

Assessment items	MAHE	PRASLIN	LA DIGUE	DESROCHES	CURIEUSE
Existing power plant	YES	YES	NO Under sea cable to Praslin	YES	YES
Multiple generator operation	YES	YES	_	YES	NO Only 1 unit
Manual control for DEG output	YES	YES	-	NO Auto load sharing control	YES
Others	_	_	_	Will be replaced	_
Plants	selected for	survey on	EDC applica	bility	

3.5 Technical and economic study on the efficient use of DEG

Field survey for implementation

②Power plant assessment (MAHE • PRASLIN)
To enable FDC ensention we conducted a survey on the following

- To apply EDC operation, we conducted a survey on the following items.
 - ✓ Specification of generators
 - ✓ Operational status of generators
 - ✓ Status of measurement equipment
 - ✓ Structure of power plant maintenance
 - ✓ Constraints on power plant operation

3. Support areas for the project

3.5 Technical and economic study on the efficient use of DEG

Field survey for implementation

③ Collection of data required for implementation and confirmation of collection method It is necessary to determine the fuel consumption characteristic of each generator for EDC implementation.

Required Data: Fuel consumption rate at each output

■Measured item: Generated power (kWh), Fuel consumption (Liters)

Fuel consumption rate is measured at a constant output for a defined period of time to determine each generators efficiency (fuel consumption rate).

Fuel consumption measurement test Procedure example Fuel consumption measurement test (Fuel flow meter measurement)

3.5 Technical and economic study on the efficient use of DEG

③Collection of data required for implementation and confirmation of collection method Measurements on each DEG taken at Mahe PS. and Praslin PS. and results

3. Support areas for the project

3.5 Technical and economic study on the efficient use of DEG

③Collection of data required for implementation and confirmation of collection method Measurements on each DEG taken at Mahe PS. and Praslin PS. and results

Rated output	1500 k	W	
KW	800	1040	1300
%	53%	69%	87%
L/KWH	0.282	0.275	0.271
Praslin /P			
Rated output	<u>3000 k</u>	W	
KW	1000	1700	2000
%	54%	73%	81%
	0 0007	0 0 7 7 0 0	0 2723
L/KWH	0.2837	0.2729	0.2723
L/KWH Praslin 4P Rated output	0.2837	W.	0.2723
L/KWH Praslin 4P Rated output KW	0.2837 670 k 548	W 444	296
/KWH Praslin 4P Rated output	0.2837 670 k 548 82%	W 444 66%	<u>296</u> 44%
-/KWH Praslin 4P Rated output (W -/KWH	0.2837 670 k 548 82% 0.276	W 444 66% 0.278	296 44% 0.296
L/KWH Praslin 4P Rated output KW KW L/KWH Praslin M6 Rated output	0.2837 670 k 548 82% 0.276	W 444 66% 0.278	296 44% 0.296
L/KWH Praslin 4P Rated output KW KW L/KWH Praslin M6 Rated output KW	0.2837 670 k 548 82% 0.276 1000 k 840	W 444 66% 0.278	296 44% 0.296
_/KWH Praslin 4P Rated output KW _/KWH Praslin M6 Rated output KW	0.2837 670 k 548 82% 0.276 1000 k 840 84%	W 444 66% 0.278	296 44% 0.296

Rated output	3000	kW	
KW	2084	1576	1216
%	0.694667	0.525333	0.405333
L/KWH	0.260	0.272	0.292

3.5 Technical and economic study on the efficient use of DEG

(4) Confirmation of data collection method and EDC implementation method We confirmed data collection method by conducting actual measurement tests. Also, we confirmed how to prepare an EDC table required for EDC operation using the measurement data.

Confirmation of how to implement EDC 1

Confirmation of how to implement EDC 2

3. Support areas for the project

3.5 Technical and economic study on the efficient use of DEGImplementation effect (potential)

[Trial calculation conditions]

- Mahe Island Victoria C Power Plant was the target power plant.
- ◆ The target period was 11/1/2014 (Saturday) 11/7/2014 (Friday) for a total of 7 days.
- Fuel consumption are not actual values, but instead calculated from the measured fuel consumption rates and actual generator output values.
- For the estimated fuel consumption after the application of EDC operation, we used fuel consumption when load is optimally shared for actual system loads.

1	Eval consumption (A	Without EDC	190,972			Without EDC	221,058
01 Nov 14	Fuel consumption (c)	With EDC	190,275	OF Nev 14	Fuel consumption (t)	With EDC	220,501
01-1100-14	Deductor	[4]	697	03-1100-14	Deduction	[4]	557
	Reduction	[%]	0.365%		Reduction	[%]	0.252%
	Evel as a sum at is a 10	Without EDC	189,546		First constant in (A)	Without EDC	229,285
00 11-14	Fuel consumption (ℓ)	With EDC	189,173	00 11- 14	Fuel consumption (i)	With EDC	228,872
02-INOV-14	Deductor	[4]	373	06-INOV-14	Deductor	10	413
	Reduction	[%]	0.197%		Reduction	[%]	0.180%
1.000	Evel as a sum at is a 10	Without EDC	217,722		Evel and the the	Without EDC	219,332
02 Nov 14	Fuel consumption (i)	With EDC	217,268	07 Nov 14	Fuel consumption (i)	With EDC	218,845
03-INOV-14	Deduction	[4]	454	U7-INOV-14	Deduction	[0]	487
	Reduction	[%]	0.209%		Reduction	[%]	0.222%
	Evel an annual franches (A	Without EDC	222,207	· · · · · · · · · · · · · · · · · · ·	Evel an annual franch	Without EDC	1,490,123
04 Nov 44	Fuel consumption (<i>l</i>)	With EDC	221,844	TOTAL	Fuel consumption (<i>i</i>)	With EDC	1,486,777
04-INOV-14	Budates	[0]	364	TOTAL	Dedution	[0]	3,346
Reduction	Reduction	[%]	0.164%		reduction	[%]	1.588%

3.5 Technical and economic study on the efficient use of DEG

Future efforts for EDC implementation

(1) Continue measurement test on fuel consumption rate

Since efficiency of the generator is expected to constantly change due to conditions such as generator condition and weather conditions, it is necessary to accumulate and average the data through continuous measurement. Also, the condition of the generators can be determined by analyzing the accumulated data.

(2) Digitization of daily power generation records

In addition to paper-based daily power generation records, by digitizing them, changes in system load and other factors required for EDC operation can be accumulated.

③ Understanding system load in real time

There are no meters at Mahe and Praslin Island Power Plants which constantly display system load, so there is no way to know the ever-changing demand. This is lacking synchronism required to perform EDC operation, which optimizes load dispatch of generators for each demand portion.

3.6 Legal system related to renewables energy

- Grid Code
- Incentives for PV system

3.6 Legal system related to renewable energy

Grid Code

If a power generation system connected in a distributed manner to the power transmission and distribution system provides power to the grid side (reverse power flow), the failure of the distributed power system, as well as the amount and quality of the power generated by it, would affect the grid of the power company, and the consumers supplied with electricity from the same power company will also be affected. Therefore, regarding the installation and operation of distributed power sources, prescribed standards must be met, and the owner must make efforts to ensure the quality of the generated power for public safety. For these reasons, guidelines for grid connection were improved.

General explanation on FIT and their world trend were made, and the approach for Seychelles in this project was described. As output, how to design a FIT scheme was provided.

Issues, which Seychelles faces in this field, were analyzed, and the country's biggest issue is financial resources for supporting a scheme such as FIT.

3.6 Legal system related to renewable energy

Incentives for PV system

Can be combined / mixed

Type of Incentives							
	Tax Crodit	Production tax	credit (PTC)				
Investment	lax credit	Investment tax	x credit (ITC)				
	Subsidy						
		Low Interest Loan					
		Food in Tariff (FIT)	Fixed type (FIT)				
	Price base (Demand pull)		Premium type (FIP)				
Operation		Net Meteri	ng (NEM)				
operation	Spread base (Tech. push,	Quota Obligation	Renewable Portfolio Standard (RPS)				
	Quota type)	Ten	der				

86

3.6 Legal system related to renewable energy • FIT and NEM

	FIT	NEM
Merit	 Stipulate selling energy at fixed price for long period Can evaluate investment recovery Can sell surplus energy at fixed price Dissemination speed can be controlled by tariff. Can accelerate dissemination of RE 	 Can set off generated and consumer energy Stipulate setoff, if agreement or act exists More simple Can hedge risk on soaring electricity price
Demerit	 Need contract More complex NEM is attractive, if electricity tariff is higher than FIT price Cannot hedge risks on soaring electricity price 	 Change rules drastically by Clearing method of surplus energy Generally, not very profitable for surplus energy Longer payback period with lowering price of electricity

3.6 Legal system related to renewable energy Japanese case

- FIT was intiated in 2012. (after Fukushima)
 - 42 JPY (4.43 SCR, 0.34 USD) / kWh for PV, No total limit
 - Resource is avoided fuel cost + surcharge on tariff
 - ⇒ Subdivision business of Mega-solar
 - No strict regulation: Elec. Business Act doesn't cover RE < 50kW
- Revised system in April 2014
 - 38 JPY JPY (4.01 SCR, 0.31 USD) / kWh for PV
 - Prohibited subdivision of mega-solar
 - ⇒ In March, application of 27,000 MW PV received
- But, revision was too late.
 - From September 2014, 5 utilities refused new PV connection.
 - Unlimited curtailment of PV output w/o compensation

3.6 Legal system related to renewable energy•Discussion on NEM in USA

- Demand charge
 - Contract capacity is determined based on max demand in a certain period.
- Grid access charge
 - Usage charge of utility's distribution line to access/connect with grid
- Standby charge
 - Charge to keep supply power for cloudy day and nighttime
- Installed capacity charge
 - Basic charge based on capacity of installed PV

3.6 Legal system related to renewable energy

Incentives for PV system

Avoidable Cost

- Decreased utility's cost by PV installation
- Very controversial issue
 - Fuel only?
 - May be: lube oil, fuel transportation cost, ...
 - NG?: distribution cost, # of employee, ...
- Can reduced fuel cost improve Utility's P/L?
 - Reduced fuel is just a fuel cost down in Loss.
 - Not a profit

3.6 Legal system related to renewable energy

- Both FIT and NEM have issues.
 - Hard to maintain FIT price in long term
 - Network access charge ... Fairness between PV owner and non-owner
 - Financial resource
- Plan
 - Review current situations and select better scheme with cap
 - What is avoided cost?
 - Estimate economic effect on utility and PV owner side in NPV
- Do [Implementation] \rightarrow Check
 - Monitor PV penetration and analyze impact to utility
- Act
 - Revise scheme periodically based on the evaluation

4. Master Plan for Seychelles

4. Master Plan for RE implementation in Seychelles Basic items for establishing a master plan

98

4. Master Plan for RE implementation in Seychelles

Maximization Method

Power system stabilization

- · EMS (Energy Management System)
- Grid stabilization using network available load, such us water facilities pump, fishing port ice makers, etc .
- Controlling of customers PV power conditioner.

104

4. Master Plan for RE implementation in Seychelles Mahe Is. (peak load 6% annual rise)

Master Plan for RE implementation in Seychelles Mahe Is. (6% peak load year increment)

item / Veer	9015	9016	9017	9019	9010	9090	9091	9099	9099	9094	9095	9098	9097	9099	9020	9030
	2010	2010	2017	2010	2010	2020	2021	LULA	2020	2024	2020	2020	2027	2020	LOLO	2000
Diesel Generators total Output(kW)	64,000	80,000	80,000	80,000	96,000	96,000	96,000	96,000	112,000	112,000	112,000	128,000	128,000	128,000	144,000	144,000
Domestic PV	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200
Lagoon PV		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
PUC / PV			2,000	4,300	6,600	9,300	12,300	15,500	19,300	23,000	27,300	32,000	37,000	42,800	48,700	55,500
Total Solar Power(kW)	1,200	5,200	7,200	9,500	11,800	14,500	17,500	20,700	24,500	28,200	32,500	37,200	42,200	48,000	53,900	60,700
Wind Power(kW)	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
TOTAL RE (KW)	7,200	11,200	13,200	15,500	17,800	20,500	23,500	26,700	30,500	34,200	38,500	43,200	48,200	54,000	59,900	68,700
Bettery Storage System (kWh)	0	0	0	0	0	0	5,100	15,300	29,920	32,300	44,200	54,400	68,000	81,600	96,600	119,000
PCS(W)	0	0	2,000	4,300	6,600	9,300	17,400	30,800	49,220	55,300	71,500	88,400	105,000	124,400	147,300	174,500
Peak Load (kW) 6% annual rise	50,000	53,000	58,200	59,500	63,100	66,900	71,000	75,200	79,700	84,500	89,500	95,000	100,600	108,600	113,000	119,800
Power Generation (kWh/year)	313,103,521	331,889,096	352,152,331	373,648,580	396,442,529	420,631,178	448,288,802	473,491,538	502,392,897	532,981,138	565,457,396	599,916,511	636,448,257	*******	716,360,944	760,019,752
RE total power generation(kWh)	11,114,917	18,042,695	21,506,584	25,316,874	29,473,551	34,149,800	39,345,639	44,887,849	51,469,249	57,877,459	65,324,795	73,464,919	82,124,835	92,169,967	102,388,479	114,165,663
Re penetration (%)	3.55	5.44	6.11	6.78	7.43	8.12	8.82	9.48	10.24	10.86	11.55	12.25	12.90	13.65	14.29	15.02
COE (USD/kWh)	0.2343	0.2325	0.2334	0.2344	0.2370	0.2363	0.2354	0.2329	0.2319	0.2332	0.2333	0.2342	0.2345	0.2336	0.2348	0.2344
Excess Electricity (kWh/year)	2.40	2.10	4.40	4.20	4.30	4.20	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.30	0.70	0.90
Capacity Shortage (kWh/year)	47,612.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Year 2020

Total solar power :	14,500 kW
Peak Load :	66,900 kW
Battery storage:	0 kWh
RE generation : 42	0,631,178 kWh/year
RE penetration :	8.12%

Year 2030

Total solar power :60,700 kWPeak Load :119,800 kWBattery storage:119,000 kWhRE generation :760,019,752 kWh/yearRE penetration :15.02%

4. Master Plan for RE implementation in Seychelles Mahe Is. (peak load 3% annual rise)

4. Master Plan for RE implementation in Seychelles Mahe Is. (peak load 3% annual rise)

item / year	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Diesel generators total output (kW)	64,000	80,000	80,000	80,000	80,000	80,000	80,000	80,000	80,000	96,000	96,000	96,000	96,000	96,000	96,000	96,000
Domestic PV	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200
Lagoon PV	0	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
PUC PV	0	0	1,300	2,800	4,800	6,700	8,700	10,800	13,200	15,300	17,900	20,500	23,300	26,100	29,000	32,500
Total Solar Power(kW)	1,200	5,200	6,500	8,000	10,000	11,900	13,900	16,000	18,400	20,500	23,100	25,700	28,500	31,300	34,200	37,700
Wind Power(kW)	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
TOTAL RE (KW)	7,200	11,200	12,500	14,000	16,000	17,900	19,900	22,000	24,400	26,500	29,100	31,700	34,500	37,300	40,200	43,700
Battery Storage System(kWh)	0	0	0	0	0	1,530	7,990	11,900	18,700	30,600	34,000	40,800	44,200	57,800	66,300	74,800
PCS(kW)	0	0	1,300	2,800	4,800	8,230	16,690	22,700	31,900	45,900	51,900	61,300	67,500	83,900	95,300	107,300
Peak Load (kW) 6% annual rise	50,000	51,500	53,050	54,600	56,300	58,000	59,700	61,500	63,300	65,200	67,200	69,200	71,300	73,400	75,600	77,900
Power Generation (kWh/year)	313,103,529	322,494,520	332,395,650	342,636,291	353,230,967	364,132,081	375,367,389	386,949,738	398,920,843	411,179,794	423,890,284	436,965,722	450,457,911	464,344,306	478,646,563	493,474,007
RE total power generation(kWh)	11,114,917	18,042,695	20,294,228	23,065,348	26,356,043	29,646,724	33,110,624	36,747,705	40,904,407	44,541,433	49,044,539	53,547,615	58,397,051	63,246,595	68,269,091	74,331,027
Re penetration (%)	3.66	5.59	6.11	6.73	7.46	8.14	8.82	9.50	10.25	10.83	11.57	12.25	12.96	13.62	14.28	15.06
COE (USD/kWh)	0.2344	0.2327	0.2332	0.2338	0.2345	0.2350	0.2344	0.2343	0.2329	0.2326	0.2311	0.2319	0.2319	0.2337	0.2337	0.2329
Excess Electricity (kWh/year)	2.4	2.1	4.3	4.10	4.2	0.00	0.00	0.00	0.00	0.00	0.00	0	0.1	0.1	0.2	0.40
Capacity Shortage (kWh/year)	47,612.00	0	0	0	0.00	0	0	0	0.00	0	0	0	0	0	0.00	0.00

Year 2020

Total solar power	: 11,900 kW
Peak Load :	58,000 kW
Battery storage:	1,530 kWh
RE generation :	29,646,724 kWh/year
RE penetration :	8.14%

Year 2030

Total solar power: 37,700 kWPeak Load: 77,900 kWBattery storage:74,800 kWhRE generation : 74,331,027 kWh/yearRE penetration :15.06%

4. Master Plan for RE implementation in Seychelles Praslin Is. + La Digue Is. (peak load 6% annual rise)

item / year	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Diesel generators total output (kW)	11,050	13,550	13,550	13,550	21,550	21,550	21,550	21,550	21,550	21,550	21,550	21,550	29,550	29,550	29,550	29,550
Existing PV (kW)	177	177	177	177	177	177	177	177	177	177	177	177	177	177	177	177
PUC PV (kW)	0	280	640	1,050	1,600	1,950	2,800	3,450	4,100	4,900	5,750	6,650	7,650	8,750	9,950	10,750
Total Solar Power(kW)	177	457	817	1,227	1,777	2,127	2,977	3,627	4,277	5,077	5,927	6,827	7,827	8,927	10,127	10,927
Battery Storage System(kWh)	0	0	0	0	0	0	0	0	0	0	0	0	0	680	2,040	4,080
PCS(kW)	0	457	640	1,050	1,600	1,950	2,800	3,450	4,100	4,900	5,750	6,650	7,650	9,430	11,990	14,830
Peak Load (KW) 6% annual rise	8,100	9,100	10,100	11,300	12,700	14,000	15,000	15,800	16,700	17,700	18,700	19,800	20,900	22,100	23,300	24,700
Power Generation (kWh/year)	42,872,548	48,001,823	53,746,282	60,175,496	67,380,419	67,441,036	79,808,100	84,429,391	89,309,297	94,484,999	99,954,476	105,736,388	111,856,175	118,333,823	125,181,685	125,320,125
RE total power generation(kWh)	307,324	792,390	1,416,048	2,126,325	3,079,139	3,685,466	5,157,990	6,284,044	7,410,062	8,795,994	10,268,531	11,827,657	13,580,038	15,465,678	17,544,542	18,930,436
Re penetration (%)	0.72	1.65	2.63	3.53	4.57	5.46	6.46	7.44	8.30	9.31	10.27	11.19	12.12	13.07	14.02	15.11
COE (USD/kWh)	0.2641	0.2682	0.2663	0.2667	0.2733	0.2725	0.2706	0.2694	0.2683	0.2672	0.2661	0.2651	0.2687	0.2681	0.2682	0.2693
Excess Electricity (kWh/year)	0.2	0.5	0.5	0.50	0.6	0.50	0.80	0.80	0.90	0.90	0.90	0.9	0.9	0.1	0.1	0.10
Capacity Shortage (kWh/year)	0.00	0	0	0	0.00	0	0	0	0.00	0	0	0	0	0	0.00	0.00

Year 2020

Total solar power	: 2,127 kW
Peak Load :	14,000 kW
Battery storage:	0 kWh
RE generation :	3,685,466 kWh/year
RE penetration :	5.46%

Year 2030

Total solar power :10,927 kWPeak Load :24,700 kWBattery storage:4,080 kWhRE generation :18,930,436 kWh/yearRE penetration :15.11%

4. Master Plan for RE implementation in Seychelles Praslin Is. + La Digue Is. (peak load 3% annual rise)

item / Year	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Dissel generators total output (kW)	11,050	13,550	13,550	13,550	13,550	13,550	13,550	13,550	13,550	13,550	21,550	21,550	21,550	21,550	21,550	21,550
Existing PV (kW)	177.00	177.00	177.00	177.00	177.00	177.00	177.00	177.00	177.00	177.00	177.00	177.00	177.00	177.00	177.00	177.00
PUC PV	0.00	260	550	870	1,250	1,630	2,050	2,450	2,850	3,350	3,800	4,300	4,820	5,300	5,950	6,600
Total Solar Power(kW)	177	437	727	1,047	1,427	1,807	2,227	2,627	3,027	3,527	3,977	4,477	4,997	5,477	6,127	6,777
Battery Storage System(kWh)	0	0	0	0	0	0	0	0	0	٥	0	٥	0	510	1,360	2,380
PCS(kW)	0	260	550	870	1,250	1,630	2,050	2,450	2,850	3,350	3,800	4,300	7,650	5,810	7,310	8,980
Peak Load (kW) 3% annual rise	8,100	8,588	9,101	9,647	10,225	10,838	11,163	11,497	11,841	12,198	12,561	12,937	13,325	13,724	14,135	14,559
Power Generation (kWh/year)	42,872,548	45,487,690	48,260,002	51,201,133	54,325,537	57,633,815	59,422,656	61,259,426	63,149,523	65,111,914	67,120,720	69,197,778	71,336,731	73,547,377	75,816,927	78,168,754
RE total power generation(kWh)	306,632	757,050	1,259,441	1,813,808	2,472,111	3,130,412	3,858,011	4,550,967	5,243,927	6,110,123	6,889,687	7,755,887	8,656,728	9,661,499	10,614,324	11,740,356
Repenstration (%)	0.72	1.68	2.61	3.54	4.55	5.43	6.49	7.43	8.30	9.38	10.28	11.21	12.14	13.14	14.00	15.02
COE (USD/kWh)	0.2641	0.2669	0.2682	0.2854	0.2847	0.2840	0.2631	0.2823	0.2617	0.2620	0.2659	0.2650	0.2629	0.2628	0.2633	0.2639
Excess Electricity (kWh/year)	0.20	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.00	0.00	0.00
Capacity Shortage (kWh/year)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Year 2020

Total solar power	: 1,807 kW
Peak Load :	10,838 kW
Battery storage:	0 kWh
RE generation :	3,130,412 kWh/year
RE penetration :	5.43%

Year 2030 Total solar power : 6,777 kW Peak Load : 14,599 kW Battery storage: 2,380 kWh RE generation : 11,740,356 kWh/year RE penetration : 15.02%

Thank you for your attention.

