Appendix

Appendix List

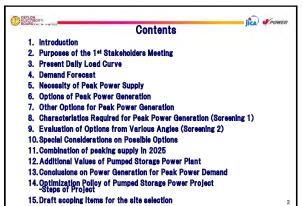
	Appendix List
No.	Title
A 6.1	List of IBAs in Sri Lanka
A 7.1	Participant List of SHM-1
A 7.2	Participant List of SHM-2
A 7.3	Participant List of SHM-3
A 7.4	Presentation Material for SHM-1
A 7.5	Presentation Material for SHM-2
A 7.6	Presentation Material for SHM-2- Presentation Material for SHM-3-Session I
A 7.8	Presentation Material for SHM-3-Session II to IV
11 7.0	
A 8.1	Trial Calculation of Contribution to Greenhouse Gas Reduction by Pumped Storage Power Project
A 9.1	Flow Gauge Stations in Sri Lanka
A 9.2	Rain Gauge Stations Functioning
A 9.3	Peak Flow Data
A 9.4	Evaporation and Wind Speed Data
A 9.5	Kiriketi 1, Kiriketi 2 Plan
A 9.6	Mausakelle A, Mausakelle B Plan
A 9.7	Hargran 1, Hargran 2 Plan
A 9.8	Hargran 3, Hargran 4 Plan
A 9.9	Maha 1, Maha 2, Maha 3 Plan
A 9.10	Loggal Plan
A 12.1	Geology evaluation of the most promising site Maha 3
A 12.2	Basic Information Questionnaire (PI Draft)
A 12.3	Draft Scoping Table of the Proposed Pumped Storage Power Plant Development at Maha area
A 12.4	Terms of Reference Environmental Impact Assessment Study (TENTATIVE AND DRAFT ONLY)
A 12.5	Drawings of the most promising site (Maha 3)

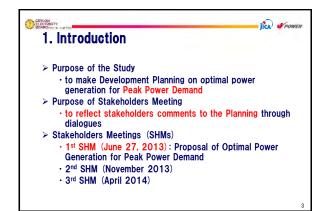
No.	Name	No.	Name
1	Jafna Lagoon	36	Kithulgala
2	Araly South-Punalai	37	Gilimale-Eratna
3	Kayts Island-Mandathive	38	Bambarabotuwa
4	Amaipaddukkai	39	Dotalugala/Rassagala
5	Periyakalapuwa mouth	40	Delmella
6	Giants Tank	41	Ayagama
7	Usgala Siyambalanduwa	42	Karawita
8	Seguwantive mudflats	43	Waratalgoda
9	Periyakadawela	44	Udawalawa
10	Mundel Lake	45	Delgoda/Kudumiriya/Kobahadukanda
11	Anaiwilundawa complex	46	Delwela/Panilkanda/Walankanda
12	Neugalkanda	47	Sinharaja
13	Padaviya	48	Rammalkanda
14	Anuradhapura	49	Namunukula
15	Minneriya/Girithale/Kaudulla	50	Tangamalai
16	Kumbuk Wewa	51	Haputale
17	Polonnaruwa	52	Muturajawela
18	Wasgomuwa	53	Bellanwila-Attidiya
19	Pimburettewa Tank	54	Labugama
20	Kantale Tank	55	Bodhinagala
21	Rugam Tank	56	Morapitiya-Runakanda
22	Madura Oya	57	Kalugala
23	Ampara	58	Yagirala
24	Senanayake Samudraya/Nilgala	59	Beraliya-Kudagala
25	Sigiriya	60	Haycock/Habarakada
26	Knuckles	61	Malambure
27	Udawattakele	62	Kombala-Kottawa
28	Kandapola-Seethaeliya/Pedro	63	Beraliya-Akurassa
29	Nuwara Eliya	64	Nakiyadeniya/Kanneliya/Dediyagala
30	Hakgala/Meepilimana	65	Dellawa/Diyadawa
31	Dikoya	66	Welihena
32	Agrapatana-Bopaththalawa	67	Mulatiyana
33	Horton plains / Ohiya / Pattipola-Ambewela	68	Bundala complex
34	Peak Wilderness	69	Wirawila
35	Amanawala	70	Yala

Appendix 6.1: List of IBAs in Sri Lanka

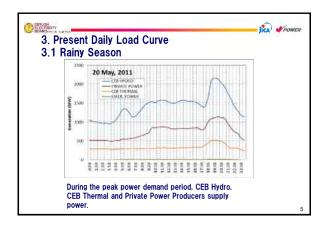
Appendix 7.1 Participant List of SHM-1

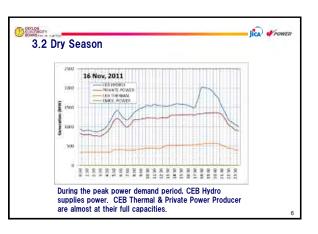
(個人情報につき省略)

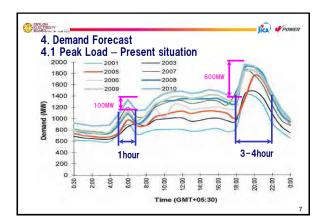

Appendix 7.2 Participant List of SHM-2

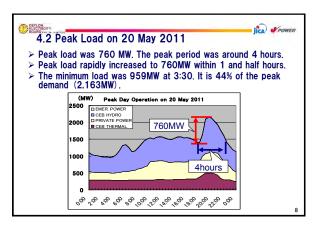

(個人情報につき省略)

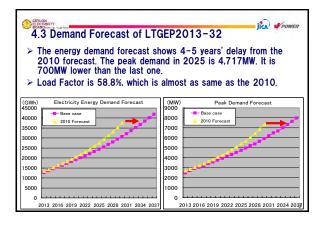
Appendix 7.3 Participant List of SHM-3

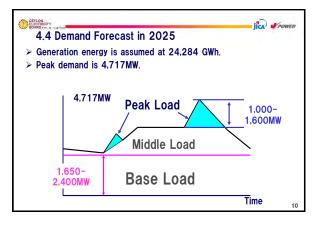

(個人情報につき省略)

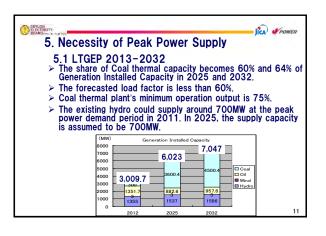


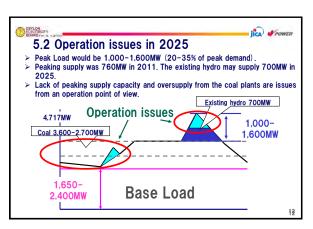


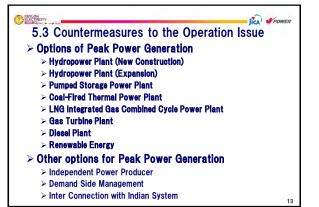


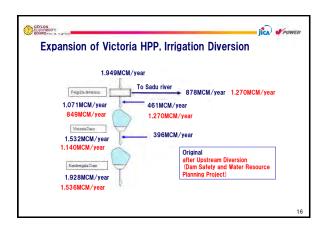


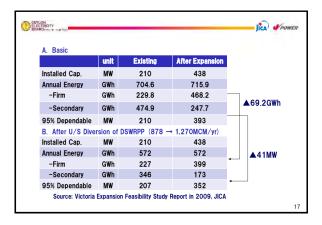


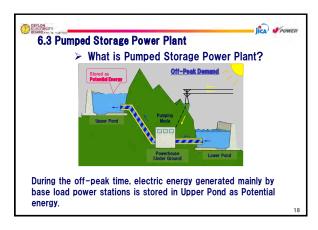


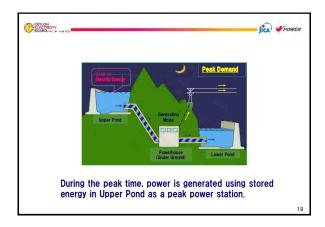


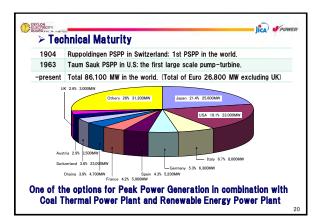


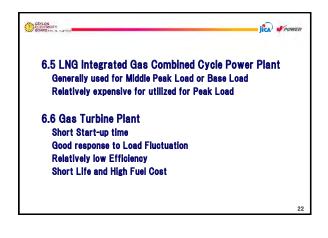


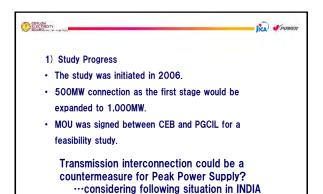


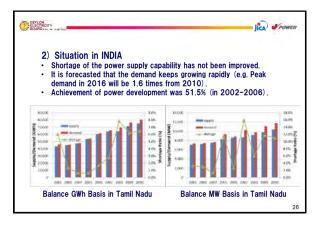


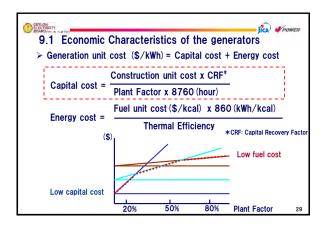


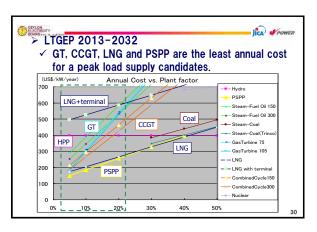

Smanarawewa	120 MW	for peaking duty, environmental issues
Wimalasurendra	-	upgrading
New Laxapana	-	upgrading
Old Laxapana	-	upgrading
Victoria	228 MW	for peaking duty, irrigation intake issue
Kotmale	-	30m dam raising, 20% energy to be increase
Total	348 MW	

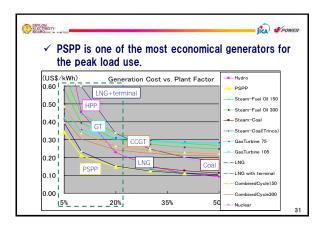





•	ely Low Fuel I for Base Log	Cost ad Power Generation
Puttalam	300MW x 3unts	2 nd and 3 rd units are under construction
Trincomalee	250MW x 4units	Not committed
New Site	300MW x 6units	Expected up to 2025


7. Other Options	
for Peak Power Generation	
7.1 IPP	
Current Total Capacity: 804.5 MW (small D:371.5MW, CC:433MW)	
They are used for Middle Peak Load and Peak Load.	
PPA with IPP will not be extended, as a CEB policy.	
7.2 Demand Side Management	
Introduction of energy-saving equipment, hourly varied tari	f
Necessary activity but uncertainty of effect in Peak Demand	
7.3 Inter Connection with Indian System	
Inter connection makes Sri Lankan System Stable	
India has the same daily load curve as Sri Lanka	





8. Characteristics Required for Peak Power Generation (Screening 1)					
Requirements 1	or Peak Pov	ver Gene	eration		
Options	Power Control Range	Power Variation	Start-up Time	Ability to Adapt	
Hydropower	25-100%	50%/min	1-2 min	Very good	
PSPP	25-100%	50%/min	1-2 min	Very good	
Thermal Power (Oil)	30-100%	3%/min	3-5 hr	Fair	
Thermal Power (Coal)	30-100%	1%/min	3-5 hr	Poor	
Thermal Power (LNG)	20-100%	3%/min	3-5 hr	Fair	
LNG IGCC	20-100%	10%/min	1 hr	Good	
Gas Turbine	-	-	15-20 min	Good	

9. Evaluation of Options from Various Angles (Screening 2)					
	Hydropower (Expansion)	PSPP	LNG IGCC	Gas Turbine	
Construction Period	Good	Fair	Good	Very good	
Potential Capacity	Fair-Good	Very good	Very good	Fair	
Procurement of Fuel	– (Very good)	-	Fair	Good	
Life	Fair	Very good	Good	Fair	
External Restriction	Fair	Very Good	Fair	Fair	
Economical Efficiency	Very good	Good (to be studied)	Good (to be studied)	Fair	

(1) Air pollutio	on		Just	e PO
Power Generation Option	SO ₂ (t SO ₂ /TWh)	NOx (t NOx/TWh)	Particulate Matter (t/TWh)	Ratin
Hydro capacity expansion	Less than New hydro PP	Less than New hydro PP	Less than New hydro PP	1
Pumped storage PP	More than New hydro PP	More than New hydro PP	More than New hydro PP	2
Gas combined cycle thermal PP	4 to 15,000+	13+ to 1,500	1 to 10+	2
Gas turbine thermal PP	N/A	N/A	N/A	2
Diesel PP	84 to 1.550	316+ to 12.300	122 to 213+	3
Transmission interconnection	Depending	on the situation in the	e Indian side.	2
Demand side management	Nil	Nil	Nil	0

(2) water	pollution			
Power Generation Option	Impacts	Probability of occurrence	Severity of impacts with mitigation	Ratin
Hydro capacity expansion	 Alternation of the water temperature Prolongation of turbid water discharging 	Low	Low	1
Pumped storage PP	 Alternation of the water temperature Prolongation of turbid water discharging 	Low	Low	1
Gas combined cycle thermal PP	Change of the water temperature due to heated effluent Boiler blowdown Boiler cleaning wastes	Low	Low	1
Gas turbine thermal PP	Change of the water temperature due to heated effluent Boiler blowdown Boiler cleaning wastes	Low	Low	1
Diesel PP	Boiler cleaning wastes	Low	Low	1
Transmission interconnection	Depending on the situation ir	1 the Indian side.		1
Demand side management	Nil	Nil	Nil	0

3) Greenhous	e gas emissions	101 9
Power Generation Option	Greenhouse Gas Emissions (kt eq. CO_2/TWh)	Rating
Hydro capacity expansion	Less than New hydro PP	1
Pumped storage PP	More than New hydro PP	2
Gas combined cycle thermal PP	389 to 511	2
Gas turbine thermal PP	Similar to Gas combined cycle thermal PP.	2
Diesel PP	555 to 883	3
Transmission interconnection	Depending on the situation in the Indian side.	2
Demand side management	Nil	0

(4) Impac	ts on ecosystem	S			
Power Generation Option	Impacts	Local and regional ecosystems	Biomass	Genetic diversity at the world level	Rating
Hydro capacity expansion	Nil	Nil	Nil	Nil	0
Pumped storage PP	Barriers to migratory fish Loss of terrestrial habitats Change in water quality Modification of water flow Climate change Acid precipitation	x x x x x	x	x	2
Gas combined cycle thermal PP	Climate change Acid precipitation Loss of coastal habitats Change of the water temperature due to heated effluent	x x x x	x	x	3
Gas turbine thermal PP	Climate change Acid precipitation Loss of coastal habitats Change of the water temperature due to heated effluent	x x x	x	x	3
Diesel PP*	Climate change Acid precipitation	x	x	x	2
Transmission interconnection	Loss of terrestrial habitats Loss of marine substrates	x			1
Demand side management	Nil	Nil	Nil	Nil	0

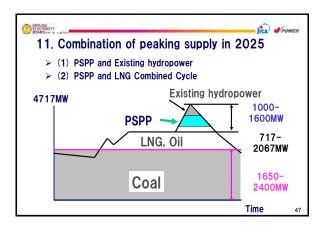
(5) Impacts ca	aused by resettle	ement	jîca) 🖋 P
Power Generation Option	Land Requirements (km²/TWh/y)	Severity of impacts with mitigation	Rating
Hydro capacity expansion	Nil	Nil	0
Pumped storage PP	Less than New hydro PP	High to Low	2
Gas combined cycle thermal PP	Small	Medium to Low	2
Gas turbine thermal PP	Small	Medium to Low	2
Diesel PP	Small	Low	1
Transmission interconnection	Small	Low	1
Demand side management	Nil	Nil	0

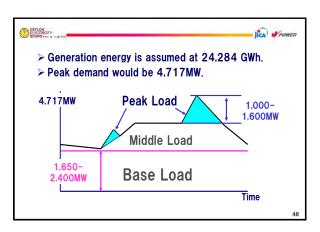
6) Impacts	s on water right/wate	r resour		PO
Power Generation Option	Impacts	Probability of occurrence	Severity of impacts with mitigation	Ratin
Hydro capacity expansion	Nil	Nil	Nil	0
Pumped storage PP	Change in the flow pattern	Low	Low	1
Gas combined cycle thermal PP	Change of the water temperature due to heated effluent	Low	Low	1
Gas turbine thermal PP	· Change of the water temperature due to heated effluent	Low	Low	1
Diesel PP	Nil	Nil	Nil	0
Transmission interconnection	Nil	Nil	Nil	0
Demand side management	Nil	Nil	Nil	0

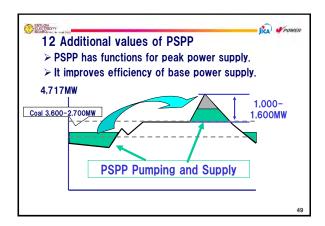
(7) Impact	ts on agriculture			
Power Generation Option	Impacts	Probability of occurrence	Severity of impacts with mitigation	Rating
Hydro capacity expansion	Nil	Nil	Nil	0
Pumped storage PP	 Loss of land Degradation of water quality Change in the flow pattern 	Low	Low	1
Gas combined cycle thermal PP	 Loss of land Degradation of air quality 	Low	Low	1
Gas turbine thermal PP	 Loss of land Degradation of air quality 	Low	Low	1
Diesel PP	 Loss of land Degradation of air quality 	Low	Low	1
Transmission interconnection	Loss of land	Low	Low	1
Demand side management	Nil	Nil	Nil	0

(8) Impact	s on fishery			3.0
Power Generation Option	Impacts	Probability of occurrence	Severity of impacts with mitigation	Rating
Hydro capacity expansion	Nil	Nil	Nil	0
Pumped storage PP	Change in the flow pattern	Low	Low	1
Gas combined cycle thermal PP	Change in water quality Loss of coastal habitats Change of the water temperature due to heated effluent Degradation on substrate	Medium	Low	2
Gas turbine thermal PP	Change in water quality Loss of coastal habitats Change of the water temperature due to heated effluent Degradation on substrate	Medium	Low	2
Diesel PP	Nil	Nil	Nil	0
Transmission interconnection	Degradation on substrate	Low	Low	1
Demand side management	Nil	Nil	Nil	0

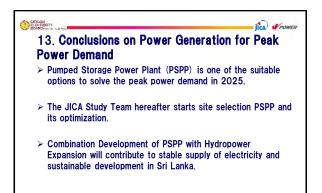
(9) Impacts	on tourism			
Power Generation Option	Impacts	Probability of occurrence	Severity of impacts with mitigation	Rating
Hydro capacity expansion	Nil	Nil	Nil	0
Pumped storage PP	Change in the flow pattern	Low	Low	1
Gas combined cycle thermal PP	 Impacts on sport / leisure Impacts on landscape 	Low	Low	1
Gas turbine thermal	 Impacts on sport / leisure Impacts on landscape 	Low	Low	1
Diesel PP	 Impacts on sport / leisure Impacts on landscape 	Low	Low	1
Transmission interconnection	Impacts on landscape	Low	Low	1
Demand side management	Nil	Nil	Nil	0

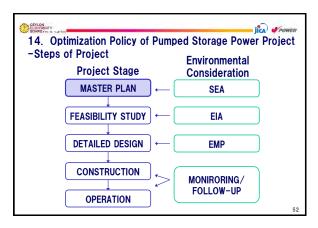

(10) Impac	cts on human healt	h		
Power Generation Option	Impacts	Probability of occurrence	Severity of impacts with mitigation	Rating
Hydro capacity expansion	Risks from water-borne diseases, particularly when there is irrigation Dam break	Low	Low	1
Pumped storage PP	Dam break Climate change Acid precipitation	High to Low	Low	2
Gas combined cycle thermal PP	Climate change Acid precipitation Photochemical smog Fire Explosion	High to Low	Medium	2
Gas turbine thermal PP	Climate change Acid precipitation Photochemical smog Fire Explosion	High to Low	Medium	2
Diesel PP	Climate change Acid precipitation Photochemical smog Particulate matter Fire	High to Low	Medium	2
Transmission interconnection	Electromagnetic wave	High	Low	2
Demand side management	Nil	Nil	Nil	0

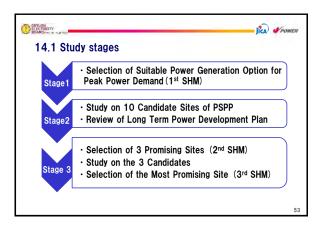

≻ Result of ass	es	sm	nen	t					,	ua ·	PL
POWER GENERATION OPTION	Air pollution	Water pollution	Greenhouse gas emissions	Impacts on ecosystems	Impacts caused by resettlement	Impacts on water right/ water resources	Impacts on agriculture	Impacts on fishery	Impacts on tourism	Impacts on human health	TOTAL
Hydro capacity expansion	1	1	1	0	0	0	0	0	0	1	4
Pumped storage PP	2	1	2	2	2	1	1	1	1	2	15
Gas combined cycle thermal PP	2	1	2	3	2	1	1	2	1	2	17
Gas turbine thermal PP	2	1	2	3	2	1	1	2	1	2	17
Diesel thermal PP	3	1	3	2	1	0	1	0	1	2	14
Transmission interconnection	2	1	2	1	1	0	1	1	1	2	12
Demand side management	0	0	0	0	0	0	0	0	0	0	0

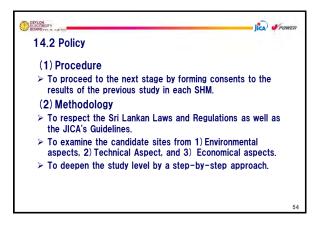


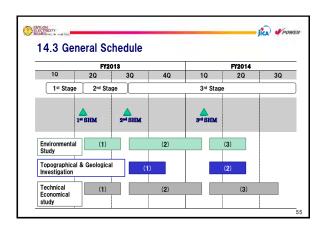

> Secon	d Screeni	ng: Result		
Power Generation Options Evaluation Point	Hydropower (Expansion)	PSPP	LNG IGCC	Gas Turbin
Technical aspect	Good	Very good - Good	Good	Good
Economical aspect	Very good	Good	Good	Fair
Environmental aspect	Very good	Good	Good	Good
OVERALL EVALUATION	Very good	Very good - Good	Good	Good

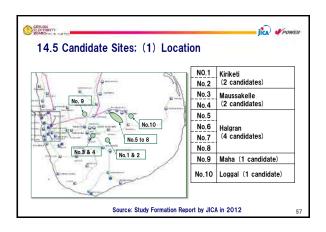










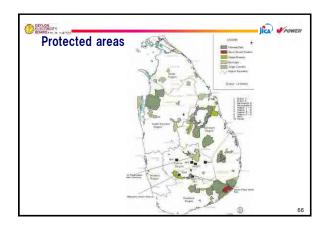


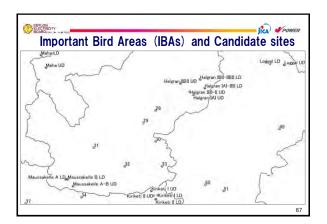
Preliminary Design etc.) are identified of	for Project Evaluation (main structure layout, reservoir capacity, acquired potential hea on topographical maps (scale 1:50,000 or 1:10,000)) will be the ranking study will be conducted from the following aspects:
Environmental Aspects	Laws and regulations Social environmental impacts Natural environmental impacts
Technical Aspects	Topographical condition, Geological condition Hydrological Condition (Design Flood, Sedimentation) Construction Condition (Access, Temporary facility, etc.) Others (Operation, Distance from demand area, Project scale, relation to Transmission lines and substations, etc.)
Economical Aspects	Construction cost per kW Benefit/Cost Economic IRR, Financial IRR

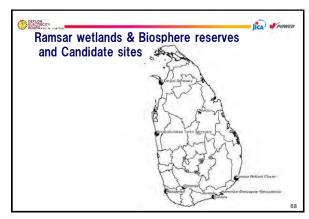
.5 C	andidate	Sites:	(2) G	eneral featu	es
	Name	P (MW)	H (m)	Upper Pond V (MCM) A (km ²)	Lower Pond V (MCM) A (km²)
NO.1 No.2	Kiriketi	500	780 -700	1.8-2.0 0.17-0.05	2.1-2.4 0.08-0.10
No.3 No.4	Maussakelle	500	490	3.4 0.4	3.9-4.3 0.24-0.25
No.5 No.6 No.7	Halgran	500	620 -870	2.0-3.9 0.13-0.22	2.3-5.9 0.13-0.25
No.8 No.9	Maha	500	500	2.0 0.18	5.0 0.20
No.10	Loggal	500	780	3.2 0.20	13.1 0.85

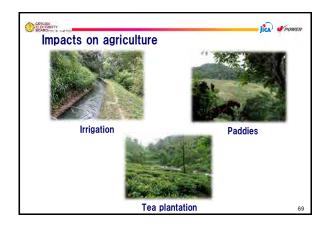
eferen	ce: Performand	ce of PSPP a	as "Battery	Device"
Item	Pumped Storage	Sodium-sulfur (NaS)	Redox Flow	Li-ion
Capacity	500 - 2.100MW (6-8hrs)	1MW (10hrs)	6MW (10hrs)	0.003MW (8hrs)
Efficiency	70 %	70 % (total)	70 % (total)	85 %
Cost	~1.000 USD/kW	2.000 USD/kW	2.500 USD/kW	-
Life Span	50 years	15 years	10 years	10 years
Merits	Large scale Technical maturity Long lifespan Cost	Dispersed placement Flexibility in charging and discharging	Dispersed placement Flexibility in charging and discharging	High efficiency Compactness Dispersed Placemen Flexibility of chargin and discharging
Demerits	Inflexibility in operation Depending on topological conditions	Temperature control (400°C) and sodium control are required.	Temperature control is required.	Using Li (rare meta Expensive Complexity in contr

15. Draft scoping items for	the site selection
Strategic Environmental Ass	sessment (SEA)
➤ SEA at the site selection state	ges.
The important considerations	are:
. To equally consider environ economic aspects of the pr	· · · · · · · · · · · · · · · · · · ·
i. To conduct comparison exa	mination of sites; and,
ii. To disclose information in a	narticinatory manner

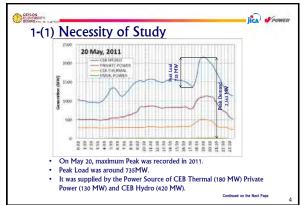

EYL	SEA	steps at the site selec	ہی میں partion stage
		2 nd SEA: Site selection (10 sites)	July – Oct. 2013
	2 nd stage	3 rd SEA: Site selection (best 3 sites out of 10)	Nov. 2013 – Apr. 2014
		Last SEA: Site selection (the best site out of 3)	May – Jun. 2014

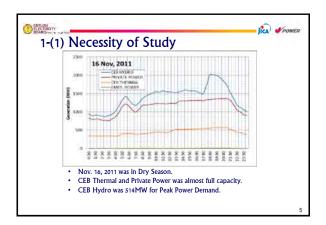


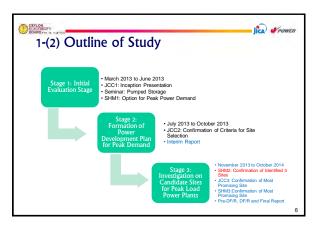



Candidate site	Present situation
Candidate site	Present situation
	- Under construction of mini-hydropower plant
Loggal (Kekale)	- Mini-hydropower plan
	- No protected area
	- Tea plantation
	- Prone to landslides
	- Paddy cultivation
Halgran	- Tea plantation
	- Settlements
	- Shortage of water for paddies during dry season
	- Tea plantation
Maha	- Rock outcrops
	 Existing mini-hydropower plants
	 Water shortage during dry season
Kiriketi	- Natural forest
	- Tea plantation
	- Big waterfalls
Maussakelle	- Natural forest
	- Tea plantation

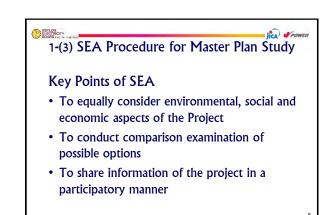
		Inundated forest area
Maharat		
Natural	Impacts on fauna and flora	Impacts on protected areas
environment		Impacts on endangered species (especially fish and other
		aquatic species)
		Number of those who to be resettled
	Impacts on local	Area of land to be appropriated
	communities	Impacts on water utilization (e.g. drinking water)
		Impacts on utilization of forest and grassland
Social		Impacts on public facilities (e.g. school)
environment		Agriculture
	Impacts on industries	Forestry
		Tourism
	Impacts on cultural	Religious and/or cultural facilities
	heritages	Impacts on landscape


	Site	Properties	Registered yea
	1. Sacred City of Amiradhapura	Cultural heritage	1982
	2. Ancient City of Poloimaruwa	Cultural heritage	1982
	3. Ancient City of Siguriya	Cultural heritage	1982
1	4. Sinharaja Forest Reserve	Natural heritage	1988
	5 Sacred City of Kandy	Cultural heritage	1988
	6. Old Town of Galle and its Fortifications	Cultural heritage	1988
***	7. Golden Temple of Dambulla	Cultural heritage	1991
	8. Central Highlands of Str Lanka	Natural heritage	2010
Sanatined town have Dispute Advertige		ag/en/statesparties/lk (A	ccessed on 1 May

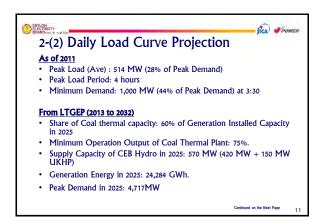


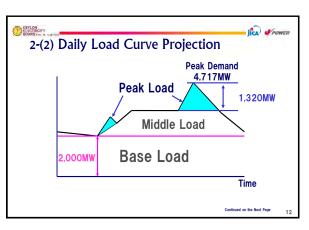


BOARDy and a marking	jica) Power
	CONTENTS
Session I	Introduction
Session II	Primary Screening Results (from 11 Candidate sites to 3 promising sites)
Session III	Methodology of Secondary Screening (from 3 promising sites to the most promising site)
Session IV	Overall Discussion & Conclusion



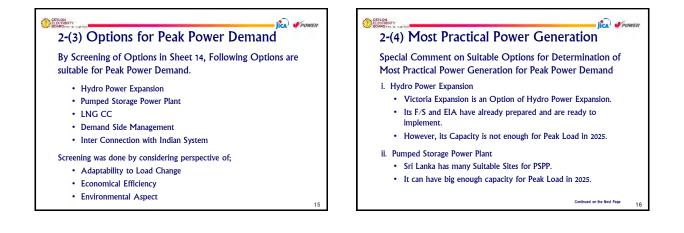






	ocedure for Ma Environment Assess	
-	Design Stage	Assessment applied
Master Plan Study		
[Selection of options	SEA
	Site selection	SEA
Feasibility Study	Basic design	EIA
D. 1 (D. 1		
Detailed Design Study	Detailed design	EMP
Construction	Construction	Monitoring/ Follow-up
Management	COIDE WEIIOII	Follow-up
Operation	Operation	Monitoring/ Follow-up

Comparison of the end of the


Expected Power Generation for Middle Load

- Supposedly 1,400 MW (Average)
- CEB Oil Fired Thermal + IPP + LNG CC

Expected Power Generation for Base Load

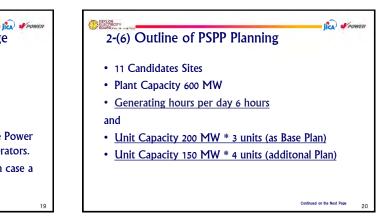
- Supposedly 2,000 MW (Average)
- CEB Coal Fired Thermal

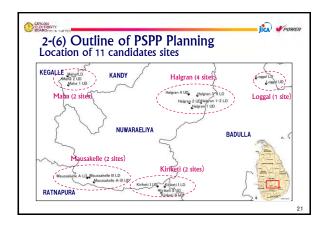
2-(4) Most Practical Power Generation

iii. LNG CC

- Available for Peak Power Load
- · For its Economic Efficiency, It should be used for Middle Load
- Its Development Schedule has still uncertainty
- iv. Demand Side Management
 - Peak Demand comes from Domestic Use that cannot be shifted except introducing Battery System
 - Hourly Electricity Tariff may not be applied
- v. Inter Connection with Indian System
 - · No merit for Peak Power Load because of Same Peak in India

Substantial merit for power stability
 Continued on the Next Page

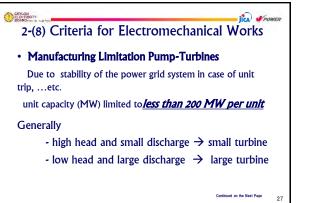

2-(4) Most Practical Power Generation

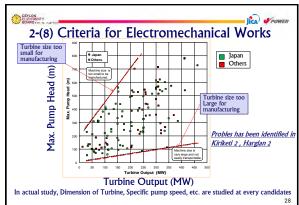

As a result of Selection of Options Optimal Power Generation for Peak Power Demand is: Combination of Victoria Expansion and Pumped Storage Power Plant

- Victoria Expansion (228MW) for Demand in 2020
- Pumped Storage Power Plant for Demand in 2025

2-(5) Special Merits of Pumped Storage Power Plant

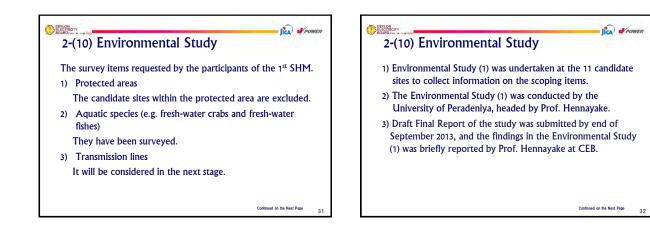
- Free from Drought Risk
- Enabling coal fired power plants to operate continuously at high efficiency level
- Absorption of Surplus Supply from Unstable Power Sources such as Wind and Solar Power Generators.
- Improvement of Off-peak System Stability in case a Variable Speed PSPP Applied.

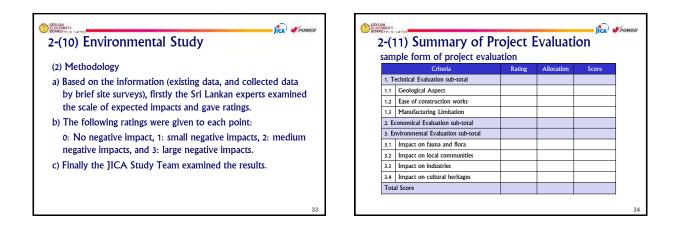


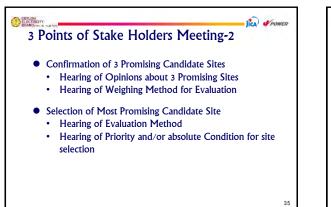

2-(6) Outline of PSPP Planning General Features of 11 Candidates Sites									
General Te	atures	Kir 1	Kiri 2	Mau A	Mau B	Hai 1	Hai 2		
UD reservoir capa.	MCM	1.9	0.9	3.6	3.7	2.8	2.3		
LD reseroivr capa.	MCM	1.5	0.7	3.7	3.5	2.9	2.3		
Discharge (generating)	m³/s	108	98	156	155	125	106		
Gross Head	m	700	770	474	488	606	715		
Installed capa.	MW	600	600	600	600	600	600		
Generating hours	hrs	3.80	2.52	6.42	6.28	6.19	6.11		
Upper Dam H*L	m	40*250	85*300 +S200	40*1200 +\$1,000	40*1200	85*250	120*500		
Lower Dam H*L	m	95*320	75*270	60*300	55*350	85*420	85*420		
Waterway Length	m	2,830	1,630	3,290	2,540	4,370	4,460		

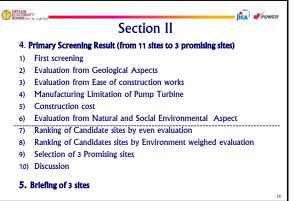
-(6) Outline	e of	PSPP	Plann	ing		
eneral Featur				_		
cherar reacur		Hal 3	Hal 4	Mah 1	Mah 2	Log
UD reservoir capa.	MCM	2.4	3.4	3.7	3.7	3.1
LD reservoir capa.	MCM	2.5	3.4	3.4	3.6	2.8
Discharge (generating)	m³/s	110	155	155	166	128
Gross Head	m	692	490	489	458	591
Installed capa.	MW	600	600	600	600	600
Generating hours	hrs	6.05	6.10	6.03	6.09	6.16
Union David Ust				*	80*310	45*220
Upper Dam H*L	m	60*200	90*550	55*200		
Lower Dam H*L	m	70*220	75*290	80*360	80*360	80*540
Waterway Length	m	4,790	3,360	3,360	2,410	4.090

	ED.
2-(7) Criteria for Civil Works	.n
Geological conditions	
for example;	
- strength of foundation rock	
- water tightness	
- major faults	
- thickness depositions on river beds at dams' axises	
- slope stability around reservoirs	
etc.	
So far, no serious geological problems are identified in	
candidates sites	24

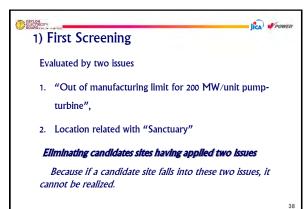


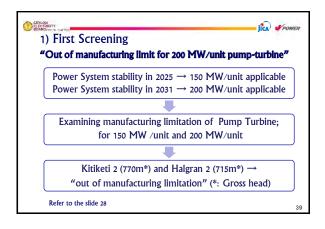

CEYLON ELECTRIC	IV BOWER
2-	(9) Economic Evaluation
Pro	ject cost calculation
•]	ICA Hydropower Development Guide Manual 2011
• L	ayout on 1:10,000 topographic map
(Civil Works: unit prices of similar works in Sri Lanka Upper Kotmale HPP, Umaoya HPP, etc. Some of items referring rom other countries)
• E	Electro-mechanical Works: international prices
Incl	uding land acquisition and compensation, environmental mitigation,
	ign and engineering services, contingency, etc. and all of those are on
<u>stan</u>	<u>dard basis</u>

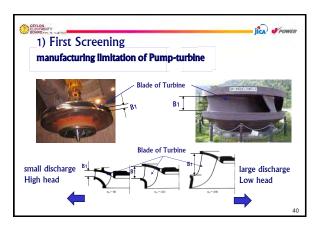

29

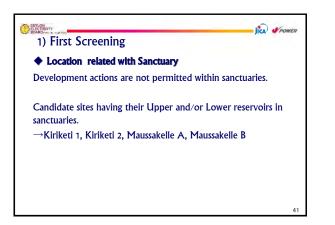

Economy of every project is evaluated by "Cost per kW"

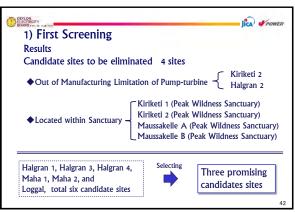
	nvironmenta	
Environm	• •	sented at the 1 st SHM, and the s been conducted to study these tes.
Natural environment	Impacts on fauna and flora	Inundated forest area Impacts on protected areas Impacts on endangered species (especially fish and other aquati species)
		Risk of landslide* Number of those who to be resettled
Social	Impacts on local communities	Number of those who to be resetted Area of land to be acquired Impacts on water utilization (e.g. drinking water, irrigation) Impacts on utilization of forest and grassland Impacts on public facilities (e.g. school)
environment	Impacts on industries	Agriculture Forestry Tourism
		Religious, cultural and/or archeological facilities

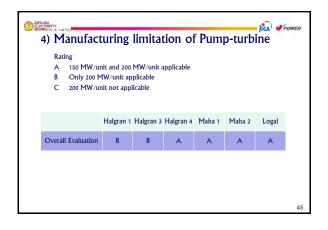






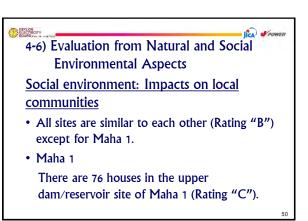




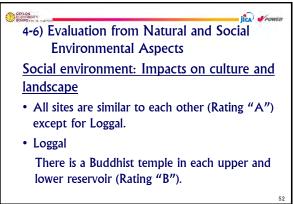


B Lik	ely to l	to have ma nave some j to have som	problems	ns or limite roblems	d, if any		
		Halgran 1	Halgran 3	Halgran 4	Maha 1	Maha 2	Logal
Strength Impermeability Faults Riverbed Deposit		В	В	А	В	В	А
		А	В	В	В	В	А
		В	В	В	В	В	А
		А	А	А	А	А	В
Slope		В	А	В	В	В	Α
Overall eval	uation	В	В	В	В	В	В

3) E	valuation fro	om Ea	se of (Consti	ructio	n aspe	ects
Ra	ting						
Α	Not likely to have	major pro	blems or li	mited, if a	ту		
В	Likely to have som	e problem	IS				
С	Expected to have s	ome majo	r problems				
		Halgran 1	Halgran 3	Halgran 4	Maha 1	Maha 2	Loga
Acce	Access to Upper Dam Access to Lower Dam		В	С	Α	А	Α
Acce			В	В	А	А	В
Tem	porary Yards	С	А	С	А	А	Α
Othe	ers						
(D	rawdown depth)			С			
(A	ccess Tun. to PH)				А		
Over	rall Evaluation	С	В	С	А	А	В

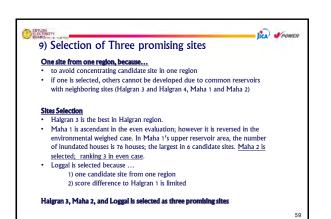

CEVL ELEC BOAS	5) Evaluati Rating A Less than B 1,200 - 1 C More tha	1,200 US ,400 USD	SD/kW /kW	onstru	iction	cost		A YPOW	VER	
		unit	Halgran 1	Halgran 3	Halgran 4	Maha 1	Maha 2	Loggal		
	Construction Cost USD/kW 1,335 1,042 1,414 1,094 1,216 1,280									
	Evaluation		В	А	С	А	В	В		
	Note; Cost for 600Mi than 1,000 kW Interest during Construction C Calculated base Level of constr of their scale n	class PSPP constructi Cost for Tr ed on JIC/ uction cos	in South-w ion cost not ansmission A Hydropo its would be	vest & Sout t included lines not in wer Develo	h-east Asian cluded pment Man	countries)			46	

Refer	valuation from Construence	
	$P(kw) = g(m/s^2) \times \eta t \times \eta g \times Q(m^3/s^2)$	$(s) \times H(m)$
	Conventional Hydro	Pumped Storage Power
Q	Large river flow preferable; - Broad catchment area (downstream area) - Plenty of precipitation	Large river flow not needed (determined by only capacities of upper/lowe reservoir)
Н	High potential energy is preferable - steep riverbed (upstream area), or - a long waterway or a high dam	Same or rather sever than the conventional; however, - (comparatively) easier to use a high potentia between two different basins
(storage)	for annual regulation; a large dam and reservoir	For daily operation; two small dams


Env	vironm	iental	Aspec	ts		
Site Evaluation items	Halgran 1	Haigran 3	Halgran 4	Maha 1	Maha 2	Loggal
Impacts on fauna and flora	В	В	В	В	В	В
Impacts on local communities	В	В	В	С	В	В
Impacts on industries	В	В	В	В	В	В
Impacts on culture and landscape	А	А	А	А	А	В

- Biodiversity and species richness are low to high.
- Several upper and/or lower dams have a few endangered species.

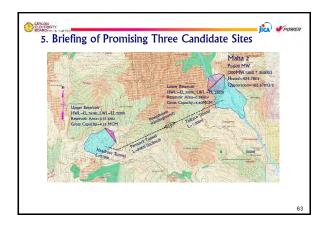
ESYLON ELECTRICITY BOARD, and a manufacture		6	X1 .			A Powe
4-6) Eval Env			Natur Aspec		Socia	I
Site Evaluation items	Halgran 1	Halgran 3	Halgran 4	Maha 1	Maha 2	Loggal
Impacts on fauna and flora	В	В	В	В	В	В
Impacts on local communities	В	В	В	С	В	В
Impacts on industries	В	В	В	В	В	В
Impacts on culture and landscape	A	A	A	A	A	В

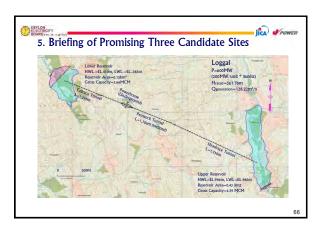

	ple form of score calculat efore ranking of candidate			
	Criteria	Rating	Score allocation	Score
1. T	echnical Evaluation sub-total		25	15.75
1.1	Geological Aspect	A (1.0)	7.5	7.5
1.2	Ease of construction works	C (0.3)	7.5	2.25
1.3	Manufacturing Limitation	B (0.6)	10	6
2. E	conomical Evaluation sub-total	B (0.6)	25	15
3. EI	nvironmental Evaluation sub-total		50	37.2
3.1	Impact on fauna and flora	B (0.6)	12	7.2
3.2	Impact on local communities	B (0.6)	20	12
3.3	Impact on industries	A (1.0)	9	9
3.4	Impact on cultural and landscape	A (1.0)	9	9
Tota	al Score		100	67.95

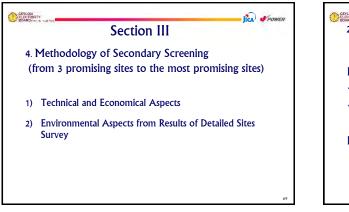
		Score		eran 1		ran 3		ran 4		ha 1		ha 2		egal
	Criteria	allocation	Eva	Score		score	Eva	Score	Eva	na 1 Score		na 2 Score		ggai Score
1. Te	chnical Evaluation	25		12.75		15.00		16.75		22.00		22.00		19.00
1.1	Geological aspects	7.5	В	4.50	В	4.50	В	4.50	В	4.50	В	4.50	В	4.50
1.2	Ease of construction works	7.5	с	2.25	В	4.50	с	2.25	А	7.50	А	7.50	В	4.50
1.3	Manufacturing Limitation	10	В	6.00	В	6.00	А	10.00	А	10.00	А	10.00	А	10.00
2. Ec	conomical Evaluation	25	В	15.00	А	25.00	С	7.50	А	25.00	В	15.00	В	15.00
3. En	vironmental Evaluation	50		33.60		33.60		33.60		27.60		33.60		30.00
3.1	Impact on Fauna and Flora	12	В	7.20	В	7.20	В	7.20	В	7.20	В	7.20	В	7.20
3.2	Impact on local communities	20	В	12.00	В	12.00	В	12.00	С	6.00	В	12.00	В	12.00
3.3	Impact on industries	9	В	5.40	В	5.40	В	5.40	В	5.40	В	5.40	В	5.40
3.4	impact on cultural heritages	9	А	9.00	А	9.00	А	9.00	А	9.00	А	9.00	В	5.40
	Total	100		61.35		73.60		57.85		74.60		70.60		64.00
	Rank			5		2		6		1		3		4

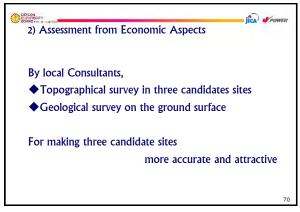
7) Ranking of	f Car	ndio	date	e Si	tes	(E\	/en	eva	alua	tio	n ca	ase	2)
											ha 2		
Criteria	Score allocatio	Eva	ran 1 Score		gran 3 Score		gran 4 Score		ha 1 Score	Ma Eva		Eva	ggal Score
. Technical Evaluation	25		12.75		15.00		16.75		22.00		22.00		19.00
1.1 Geological aspects	7.5	В	4.50	В	4.50	в	4.50	В	4.50	в	4.50	В	4.50
1.2 Ease of construction works	7.5	с	2.25	В	4.50	С	2.25	А	7.50	А	7.50	В	4.50
1.3 Manufacturing Limitation	10	В	6.00	В	6.00	А	10.00	А	10.00	А	10.00	А	10.00
. Economical Evaluation	25	В	15.00	А	25.00	С	7.50	А	25.00	В	15.00	В	15.00
. Environmental Evaluation	50		32.80		32.80		32.80		27.40		32.80		30.00
8.1 Impact on Fauna and Flora	18	В	10.80	В	10.80	В	10.80	В	10.80	В	10.80	В	10.80
3.2 Impact on local communities	18	В	10.80	В	10.80	В	10.80	С	5.40	В	10.80	В	10.80
8.3 Impact on industries	7	В	4.20	В	4.20	В	4.20	В	4.20	В	4.20	В	4.20
impact on culture and landscape	7	A	7.00	A	7.00	A	7.00	A	7.00	А	7.00	В	4.20
Total	100		60.55		72.80		57.05		74.40		69.80		64.00
Rank			5		2		6		1		3		- 4

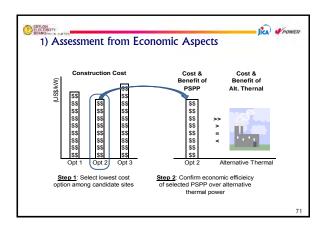
	B) Ranking of (Ŭ			ĺ.		
	Criteria	Score	Halg	gran 1	Halg	gran 3	Halg	gran 4	Ma	ha 1	Ma	ha 2	Lo	ggal
	Criteria	allocation	Eva	Score	Eva	Score	Eva	Score	Eva	Score	Eva	Score	Eva	Score
1. Te	chnical Evaluation	15		7.65		9.00		10.05		13.20		13.20		11.4
1.1	Geological aspects	4.5	В	2.70	В	2.70	В	2.70	В	2.70	В	2.70	В	2.7
1.2	Ease of construction works	4.5	С	1.35	В	2.70	С	1.35	А	4.50	Α	4.50	В	2.7
1.3	Manufacturing Limitation	6	В	3.60	В	3.60	А	6.00	А	6.00	А	6.00	А	6.0
2. E	conomical Evaluation	15	В	9.00	А	15.00	С	4.50	А	15.00	В	9.00	В	9.0
3. En	vironmental Evaluation	70		46.80		46.80		46.80		37.80		46.80		42.0
3.1	Impact on Fauna and Flora	16	В	9.60	В	9.60	В	9.60	В	9.60	В	9.60	В	9.6
3.2	Impact on local communities	30	В	18.00	В	18.00	В	18.00	С	9.00	В	18.00	В	18.0
3.3	Impact on industries	12	В	7.20	В	7.20	В	7.20	В	7.20	В	7.20	В	7.2
3.4	impact on culture and landscape	12	A	12.00	A	12.00	А	12.00	А	12.00	А	12.00	в	7.2
	Total	100		63.45		70.80		61.35		66.00		69.00		62.4
	Rank			4		1		6		3		2		

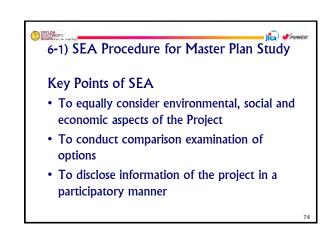


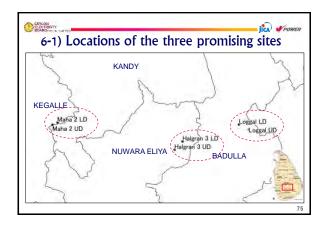




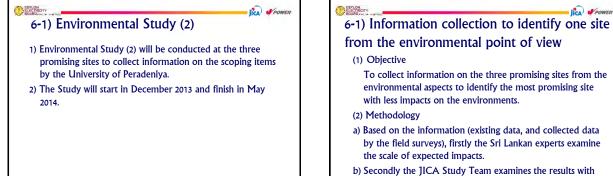


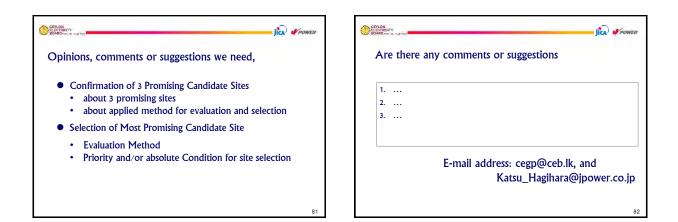




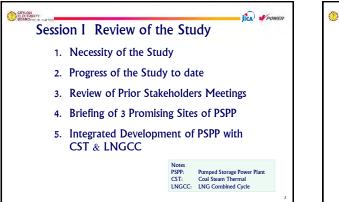


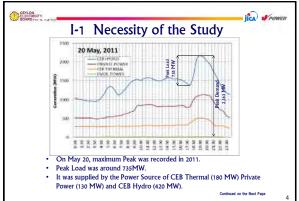
5-1) SEA P	rocedure for N	Master Plan Study
	Design Stage	Assessment applied
Master Plan Study		
[Selection of options	SEA
[Site selection	SEA
The state of the s	·····	
Feasibility Study	Basic design 🔸	EIA
Detailed Design [
Study	Detailed design	EMP
Construction	Construction	Monitoring/ Follow-up
Management		
Operation	Operation	Monitoring/ Follow-up

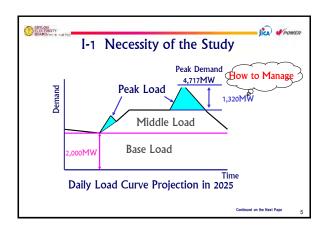


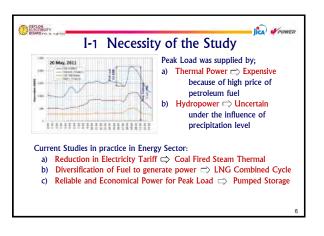

He	arings fr	om GN Div	isions	
Date	Name of site	Name of GN Division	Divisional Secretariat	District
11 th Nov.	Loggal Upper Loggal Lower	Pitamaruwa Kalugahakandura	Meegahakiula	Badulla
12 th Nov.	Halgran 3 Upper Halgran 3 Lower	Morabedda Mantreehena Dambagolla Puranakumbura Denamure Hagama	Walapane	Nuwara Eliya
13 th	Maha 2 Upper	Podape Narangala Pathithalawa	Aranayake Ganga Ihala Korale	Kegalle Kandy
Nov.	Maha 2 Lower	Arama Deiyanwela	Aranayake	Kegalle
	Mana 2 Lower	Uduwella Watakedenya	Ganga Ihala Korale	Kandy

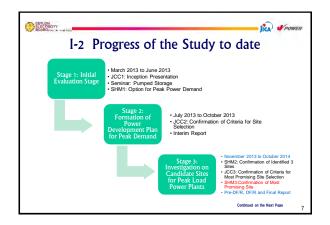
		e three promising sites
í.		ie unce promising sites
		Inundated forest area (including natural, secondary, plantation forests,
		and home garden)
Natural environment	Impacts on fauna and flora	Impacts on faunal endangered species (including aquatic species)
		Impacts on floral endangered species (including aquatic species)
		Impacts on ecosystems
		Number of those who to be resettled
		Area of land to be acquired
	Impacts on local communities	Number of those who to be affected by losing livelihood
		Impacts on public facilities (e.g. school, road)
	communities	Impacts on the poor people and minority
Social environment		Impacts on water utilization (e.g. drinking water, bathing, washing,
		irrigation, mini-hydropower plant) of rivers and wells
	Impacts on industries	Agriculture (including tree & rubber plantation)
	impacts on industries	Tourism (e.g. water fall)
	Impacts on culture and	Religious, and/or cultural facilities, burial ground
	landscape	Impacts on landscape

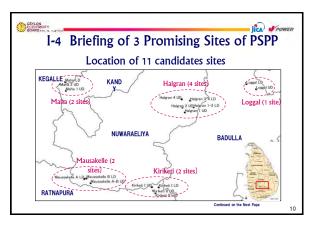




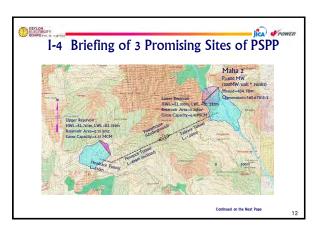


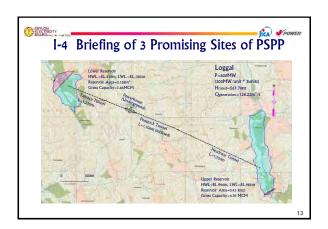


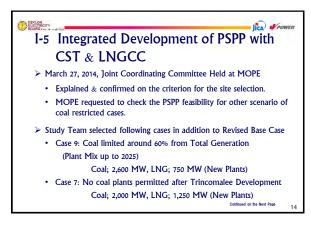

jia Veower
CONTENTS
Briefing of the Study
Evaluation of Promising Sites
Technical/Economic Evaluation of Options
Environmental Evaluation of Options
Overall Rating & Ranking for Most Promising Site
Overall Discussion & Conclusion

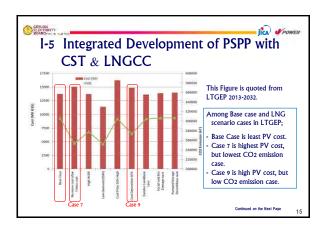


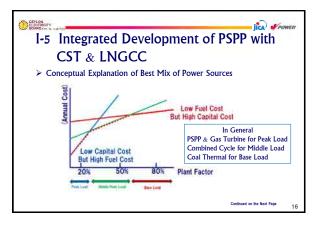


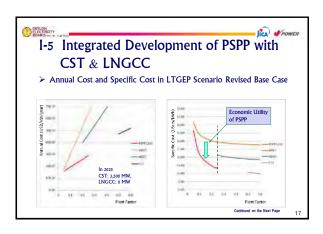



	progress of the	Study to date
	Project Stage	Time Scale
Master Plan St	age	
	Selection of Options	June 27, 2013 SHM - 1
	Site Selection	May 27, 2014 SHM - 3
Feasibility Stu	dy Stage	
	Basic Design	2015 to 2017
Detailed Desig	n Stage	
	Detailed Design	2018 to 2020
Construction 5	Stage	
construction	Construction	2019 to 2025
Operation Sta	ge	
	Operation	from 2025

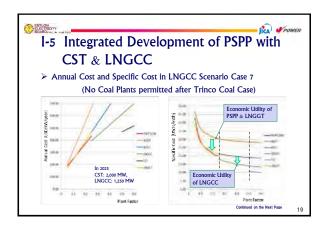


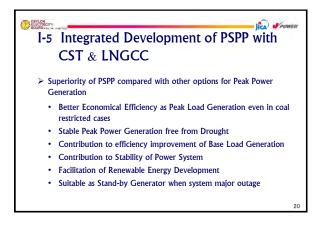


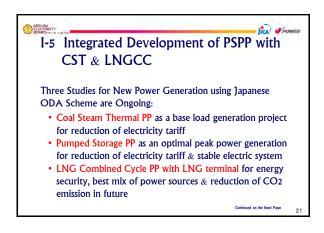


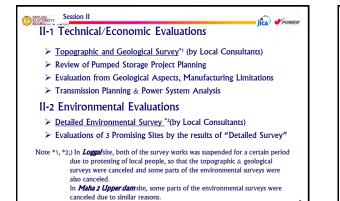


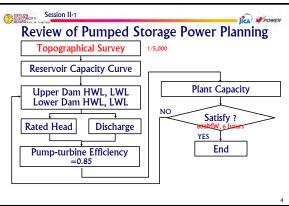


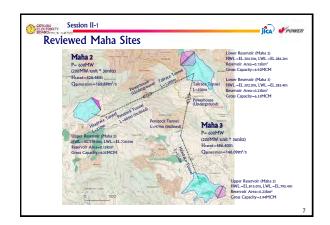


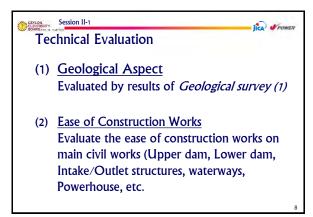


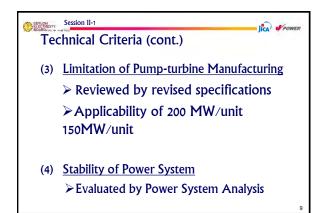




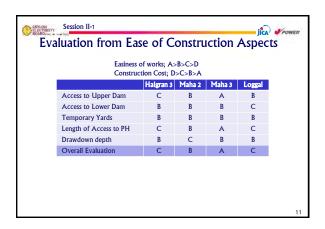


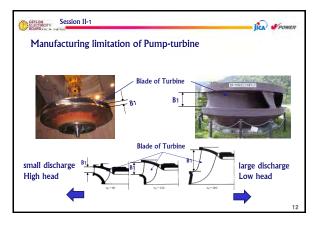

	CONTENTS
Session II	Evaluation of 3 Promising Sites
II-	1 Technical/Economic Evaluations
П	-2 Environmental Evaluations
Session II	I-1 Overall Evaluation and Ranking for
	the Most Promising Site
III	-2 Next Phase of the Study
Session IV	/ Overall Discussion & Conclusion

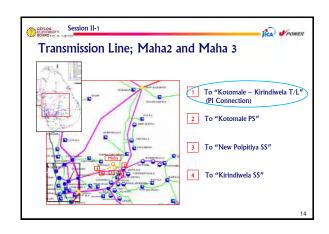


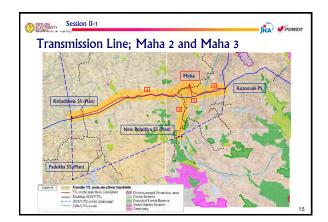


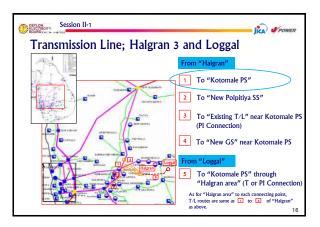
Three P	romisin	g Ca	ndida	ite Si	tes			
	Halgran 3	Ma	ha 2	Ma	ha 3	Lo	ggal	
Location	Nuwara Eliya	Kandy, Kegalle		Kandy,	Kegalle	Bac	fulla	
Installed Capacity	600 MW	600 MW		600 MW		600	MW	
Unit Numbers	3	3	4	3	4	3	4	
Unit Capacity	200 MW	200 MW	150 MW	200 MW	150 MW	200 MW	150 MW	
Generating Hours	6 hours	6 h	6 hours 6 hour		our	6 hours		
Upper Dam	H70m*L210m	H80m*L250m		H61m*L275m		H42m*L220m		
Lower Dam	H75m*L280m	H71m ³	H71m*L350m		H68m*L350m		H76m*L540m	
Headrace Tun.	D4.9m*L1,350m	D6.0m	1*510m	D5.7m*	D5.7m*L1,100m		*1,750m	
Penstock Tun.	D3.8m*L1,212m	D4.7m	*L885m	D4.4m	*L979m	D4.1m*L1,106m		

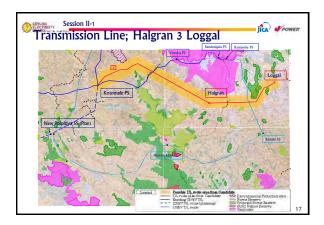


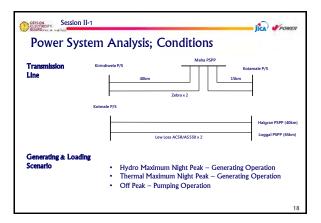


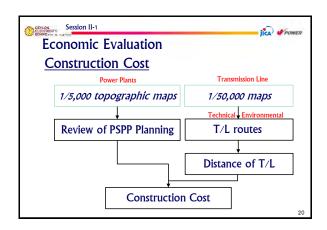


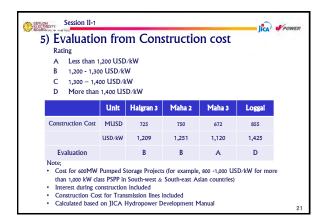

Items	ł	laigra	n 3		Maha	2		Maha	3		Logga	1
	UD	LD	Route	UD	LD	Route	UD	LD	Route	UD	LD	Rou
Rock Quality	В	С	В	А	В	В	В	В	В	А	В	В
Impermeability	С	С		В	В		В	В		В	В	
Faults	В	В	С	Α	С	В	Α	С	Α	Α	Α	B
River bed Deposit	Α	В		Α	Α		Α	Α		Α	С	
Slope Silding	Α	С		Α	С		В	С		Α	В	
Direction			С			Α			С			Α
Overall Evaluation		С			А			В			С	

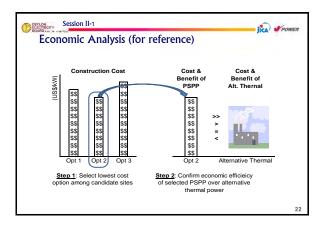


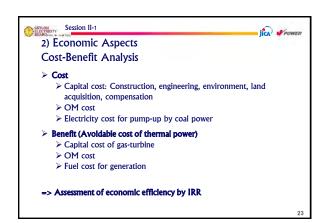


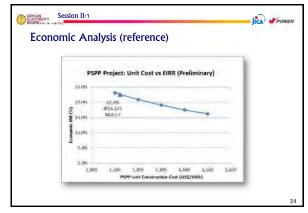

Manufacturing limitation of Pump-turbine Margin to the criteria; A>B>C, not applicable; D, for "Overall Evaluation" A; both applicable, C; only 200 MW applicable, D; both not applicable) Ímage: Strain	EGERICITY	ion II-1	itation	of Pu	mp-fi		ica Pow
Halgran 3Maha 2Maha 3Loggal200 MW/unitBAA150 MW/unitDAA	• Mar • for '	gin to the criteria; A: 'Overall Evaluation"	⊳B>C, not a	applicable;	D,		able, D;
150 MW/unit D A A B			Halgran 3	Maha 2	Maha 3	Loggal	
		200 MW/unit	В	А	А	А	
Overall Evaluation C A A B		150 MW/unit	D	А	А	В	
		Overall Evaluation	С	А	А	В	










Items	Halgran 3	Maha 2	Maha 3	Loggal
Power Fault Analysis	A	В	В	A
Short Circuit Currents Analysis	А	А	А	А
Stability to 3-phase line fault	А	А	А	D
200 MW unit Trip	В	В	В	В
Overall Evaluation	А	В	В	D

Session II-2 Environmental Evaluations

- The Environmental Study (2) has been was conducted at the three (3) promising sites to collect information on the scoping items. The scoping items were presented at the 2nd SHM and agreed among the participants.
- 2) The Study has been undertaken by the University of Peradeniya, headed by Prof. Hennayake.
- The results have been utilized by the JICA Study Team to compare the three candidate sites to select the most promising site.

EVLON Sessio	on II-2	1	POWER
Enviro	nmental S	Study (2); 3 Promising S	ites
The follow	ving scoping	table was presented at the 2nd SH	IM, and
the Study	has been co	nducted.	
		Inundated forest area (including natural, secondary, plantation forests, and home garden)	
Natural environment	Impacts on fauna and flora	Impacts on faunal endangered species (including aquatic species) Impacts on floral endangered species (including aquatic species)	
		Impacts on ecosystems	
		Number of those who to be resettled	
		Area of land to be acquired Number of those who to be affected by losing livelihood	
	Impacts on local	Impacts on public facilities (e.g. school, road)	
Social	communities	Impacts on the poor people and minority	
environment		Impacts on water utilization (e.g. drinking water, bathing, washing, irrigation, mini-hydropower plant) of rivers and wells	
	Impacts on industries	Agriculture (including tree & rubber plantation)	
	impacts on moustnes	Tourism (e.g. water fall)	
	Impacts on culture and	Religious, and/or cultural facilities, burial ground	
	landscape	Impacts on landscape	26

Session II-2

Environmental Study (2); Transmission Line An assessment on **the transmission lines** is conducted as part of the Study.

ICA POW

ICA POWER

- Alternative routes with buffer zones are selected by CEB and the transmission experts considering the following points.
 - To connect to the existing and planned facilities
 - To avoid major barriers (populated areas, major public facilities, cultural heritages)
 - To avoid protected areas, forest reserves and IBAs
- 2) The routes are assessed by the Study.

ELECTRICITY Session II-	2			- i	A SPO	
Evaluation from Environmental Aspects						
Site Evaluation items		Halgran	Maha 2	Maha 3	Loggal	
Impacts on fauna and flora	Forest area	с	D	D	с	
	Endangered species (fauna)	D	D	D	D	
	Endangered species (flora)	D	с	с	D	
	Ecosystem	D	с	с	с	
Impacts on local communities	Resettlement	В	D	с	с	
	Acquired land	В	с	с	D	
	Losing livelihood	D	D	с	с	
	Public facilities	А	А	А	с	
	Water utilization	С	D	D	D	
Impacts on industries	Agriculture	А	с	с	D	
	Tourism	А	А	A	А	
Impacts on culture and landscape	Religious and cultural sites	A	с	с	с	
	Landscape	А	В	В	А	

Session II-2

Evaluation from Environmental Aspects

Natural environment

- Area of inundated forest at each site is relatively small.
- All sites have some endangered species. Halgran site has two Critically Endangered species.
- Biodiversity and species richness are moderate to high.
- All sites are outside of the protected areas (e.g. reserved forests and national parks).

Session II-2

Evaluation from Environmental Aspects Social environment: Impacts on local

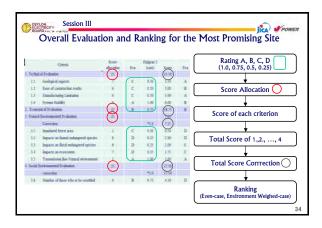
ICA POWER

communities

- Families to be resettled Halgran: 4 families; Maha 2: 45 families; Maha 3: 39 families; and 25 families
- Area to be acquired Halgran: 30 ha; Maha 2: 38 ha; Maha 3: 46 ha; and Loggal: 53 ha

Session II-2

Evaluation from Environmental Aspects


- Social environment: Impacts on industries
- Agriculture land to be inundated Halgran: 19 ha; Maha 2: 32 ha; Maha 3: 39 ha; and Loggal 48 ha.

Session II-2

4-6) Evaluation from Environmental Aspects Social environment: Impacts on culture and landscape

• All clusters have religious temples. They are not registered religious temples, but they are important for the local people.

Session II-2 4-6) Evaluation from Environmental Aspects Transmission lines There are no major problems on their routes / buffer zones.

	Score Allocation	Halgran 3	Maha 2	Maha 3	Loggal
I. Technical Evaluation	25.00	15.50	22.00	21.75	12.50
. Economic Evaluation	25.00	18.75	18.75	25.00	6.25
. Natural Environment	25.00	7.25	9.68	10.75	7.20
. Social Environment	25.00	17.50	10.35	13.75	9.40
Total	100.00	59.00	60.78	71.25	35.35
Rank		3	2	1	4

	Score Allocation	Halgran 3	Maha 2	Maha 3	Loggal
. Technical Evaluation	15.00	9.30	13.20	13.05	7.50
e. Economic Evaluation	15.00	11.25	11.25	15.00	3.75
8. Natural Environment	35.00	10.15	13.55	15.05	10.08
. Social Environment	35.00	24.50	14.49	19.25	13.16
Total	100.00	55.20	52.49	62.35	34.49
Rank		2	3	1	4

Environmental Evaluat	ion-Even Na	tural : Soc	ial = 50 :	50	
	Score Allocation	Halgran 3	Maha 2	Maha 3	Loggal
Natural Environment	25.00	7.25	9.68	10.75	7.20
Social Environment	25.00	17.50	10.35	13.75	9.40
Total	50.00	24.75	20.03	24.50	16.60
Rank		1	3	2	4
Environmental Evaluat	Score	l : Social = Halgran 3		Maha 3	Loggal
Environmental Evaluat 3. Natural Environment				Maha 3	Loggal 10.08
	Score Allocation	Halgran 3	Maha 2		
. Natural Environment	Score Allocation 35.00	Halgran 3 10.15	Maha 2 13.55	15.05	10.08

ELECTRICITY Session III-2 Session IV JICA POWER jica Power ... Next Phase of the Study **Overall Discussion & Conclusion** For the Most Promising Site, • Selection of Most Promising Candidate Site 1. Topographic Survey; Dams Area (1:1,000) • Evaluation method applied 2. Geological Survey (Drilling Investigations at Upper dam and • Evaluation results, etc. Lower dam) 3. Preliminary design by 1 to 1,000 topographic map • Confirmation of the Most Promising Site 4. PI preparations 5. Draft Final Report (on August by the initial schedule) • Suggestions for the next phase study 6. Final Report (on October by the initial schedule)

s: cegp@ceb.lk, and atsu_Hagihara@jpower.co.

Trial Calculation of Contribution to Greenhouse Gas Reduction by Pumped Storage Power Project

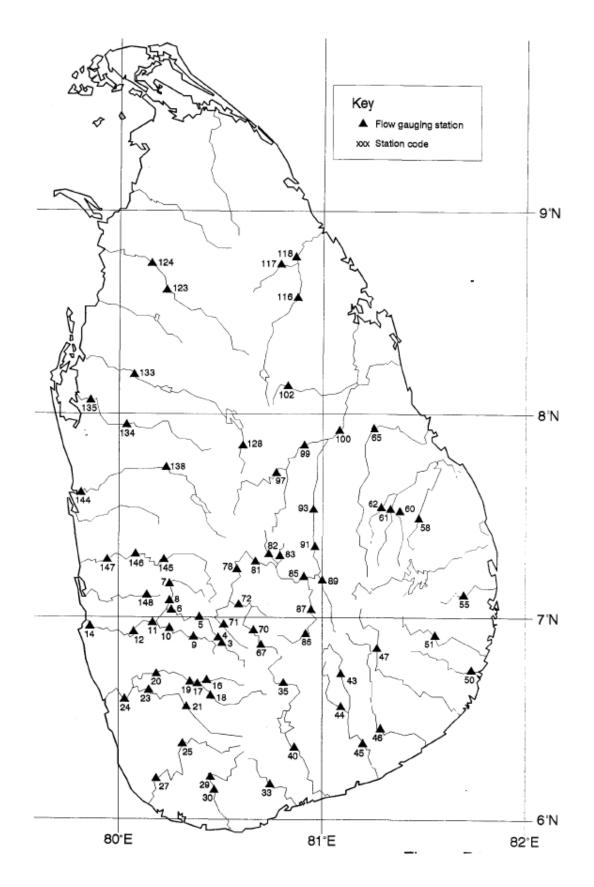
- Since Pumped Storage Power Plant (PSPP) needs power sources for pumping, the emission amount of CO₂ from PSPP is expressed as the summation of that by itself and by power plants for pumping energy. Consequently, the concept of life cycle CO₂ emission as eigenvalue index, which is commonly used for power generation option, seems unfit for PSPP, because CO₂ emission from PSPP is subject to the lineup of power plant of whole power supply system.
- CO₂ emission from PSPP is expressed as follows;
 (CO₂ emission of pumping energy) × (1/70%) + (indirect CO₂ emission from PSPP) (contribution of PSPP to decreasing CO₂ emission)
- 3. The component of energy sources in 2025 (as a year for trial computation) is as following table from LTGEP 2013-2032;

Power Source	Annual Energy (GWh)	Component Ratio (%)
Major Hydro	4,692	19.3
Coal Thermal	17,731	73.0
Oil Thermal	233	1.0
Wind	869	3.6
Solar	153	0.6
Mini-hydro & Dendro	604	2.5
Total	24,282	100.0

4. Life Cycle CO₂ emission from each power source is tabulated as follows (source: CRIEPI News No. 468, August 2010);

Power Source	e Direct Emission Indirect Emission (g-CO ₂ /kWh) (g-CO ₂ /kWh)		Total (g-CO ₂ /kWh)
Hydro	0	11	11
Coal Thermal	864	79	943
Oil Thermal	695	43	738
Wind	0	25	25
Solar	0	53	53
LNG CC	376	98	474

- Weighted average of CO₂ emission from whole power supply system can be calculated as 699 g-CO₂/kwh (assuming CO₂ emission from mini-hydro and dendro is same as hydro) from the tables in the Clause 3 and 4.
- 6. Assuming indirect emission of PSPP is same as hydro;
 699 g-CO₂/kWh × 1/70% + 11 g-CO₂/kWh (contribution of PSPP to decreasing CO₂ emission)


= 1,010 g-CO₂/kWh - (contribution of PSPP to decreasing CO₂ emission)

- 7. That is, CO₂ emission of PSPP is evaluated as being equivalent or more than that of Coal Fired Thermal, in case that contribution of PSPP to decreasing CO₂ is not considered.
- 8. As contribution of PSPP to decreasing CO₂ emission, increment of wind power development by PSPP installation is considered, under the assumption that energy generated by wind power increment can replace that by coal thermal plant. CO₂ emission reduction is calculated as follows;
 - Critical condition for wind power development is whether long period output fluctuation (zero-full) cause by wind power particularly in off-peak demand duration can be absorbed or not. In case of isolated Sri Lankan power system, it is usually contemplated that maximum capacity of wind powers installation is around 10% of the total system capacity.
 - If PPSP is installed, long period output fluctuation having adverse impact to the power system as mentioned in the Clause 1) is absorbed by PPSP operation during off-peak demand.
 - 3) That is, if 600MW PSPP is installed, 600MW of wind powers can be developed other than 10% of the power system capacity.
 - 4) If the off peak power system capacity in 2025 is assumed as 2,000MW, maximum capacity of wind powers to be installed is 800MW (2,000MW×10%+600MW). Since wind power capacity planned already is 310MW according to the table in the Clause 3, another 490 MW wind powers can be developed.
 - 5) Assuming plant factor of wind power as 20% and that of coal thermal 80%, 490MW wind power is equivalent to 122MW (490MW × 20% / 80%) coal thermal in respect of energy generation. This means the 600MW PSPP can replace 122MW coal thermal with 490 MW wind power in 2025.
 - Deduction of CO₂ emission by this replacement can be considered as contribution of PSPP to decreasing CO₂ emission which is expressed as follows (assuming plant factor of PSPP as 25%);.

(943 g-CO₂/kWh × 122MW×80% – 25 g-CO₂/kWh × 490MW × 20%) / (600 MW × 25 %) = 597 g-CO₂/kWh

- 9. Hence, CO₂ emission is calculated again by the formula in the Clause 2;
 699 g-CO₂/kWh × (1/70%) + 11 g-CO₂/kWh 597 g-CO₂/kWh = 413 g-CO₂/kWh
- If the value calculated in the Clause 9 can be regarded as basic unit of CO₂ emission in 2025, it is judged that CO₂ emission by PPSP is equivalent to that of LNG CC (474 g-CO₂/kWh) as a quantitative evaluation result including contribution of PSPP to decreasing CO₂ emission.

<u>River Flow Gauging Stations in Sri Lanka</u>

Station code	Name	No. years	Latitude (°N)	Longitude (°E)	MAF (m ³ /s)	AREA (km²)	AAR (mm)
SRI003	Maskeli Oya at Mausakele	.19	06:52:30	80:31:30	347	122	2820
SRI004	Maskeli Oya at Laxapana	12	06:53:10	80:31:05	274	154	3170
SRI005	Kelani Ganga at Kitulgala	40	06:59:30	80:24:45	706	383	3670
SRI006	Kelani Ganga at Matiyadola	33	07:01:34	80:16:26	802	606	3930
SRI007	Gurugoda Oya at Holombuwa	18	07:11:35	80:15:45	224	155	3330
SRI008	Gurugoda Oya at Imbulanala	26	07:03:47	80:15:40	343	329	3420
SRI009	Sitawaka Ganga at Deraniyagala	28	06:55:15	80:20:40	332	154	4950
SRI010	Sitawaka Ganga at Algoda	16	06:56:55	80:15:40	634	344	4620
SRI011	Kelani Ganga at Glencourse	39	06:58:30	80:10:51	1708	1463	4060
SRI012	Kelani Ganga at Hanwella	14	06:54:36	80:05:00	1603	1782	3840
SRI014	Kelani Ganga at Nagalagam Street	33	06:57:30	79:52:30	1314	2085	3940
SRI016	Kalu Ganga at Malwala	24	06:41:15	80:25:24	759	329	4420
SRI017	Kalu Ganga at Ratnapura	12	06:40:36	80:24:18	407	604	3420
SRI018	Wey Ganga at Dela	31	06:37:20	80:27:10	133	220	2720
SRI019	Kalu Ganga at Nambapana	22	06:41:11	80:23:05	499	629	3740
SRI020	Kalu Ganga at Ellagawa	32	06:43:52	80:13:00	674	1393	4010
SRI021	Kukule Ganga at Kukulegama	9	06:33:48	80:19:48	403	334	3280
SRI023	Kuda Ganga at Millakanda	27	06:37:25	80:10:25	438	769	4230
SRI024	Kalu Ganga at Putupaula	41	06:36:40	80:03:55	1073	2598	3970
SRI025	Gin Ganga at Tawalama	13	06:20:30	80:19:48	726	377	3910
SRI027	Gin Ganga at Agaliya	53	06:11:15	80:11:45	369	681	3850
	Nilwala Ganga at Pitabeddhara	14	06:12:42	80:29:00	208	333	3400
	Nilwala Ganga at Bopagoda	44	06:09:20	80:29:05	328	411	3360
	Urubokka Oya at Julampitiya	11	06:11:10	80:44:40	73	141	2510
	Walawe Ganga at Samanalawewa	18	06:40:30	80:48:05	527	337	2860
	Walawe Ganga at Embilipitiya	22	06:20:40	80:53:55	892	1580	2190
	Kirindi Oya at Wellawewa	29	06:43:55	81:06:25	140	159	2300
	Kuda Oya at Kuda Oya	21	06:31:30	81:07:24	543	291	1780
	Kirindi Oya at Lunuganwehera	25	06:21:40	81:13:10	560	913	1830
	Menik Ganga at Kataragama	37	06:25:25	81:19:45	335	787	1710
	Kumbukkan Oya at Nakkala	14	06:53:18	81:17:48	99	216	1390
	Wila Oya at Wedagama	9	06:45:42	81:44:36	221	404	1730
	Heda Oya at Siyambalanduwa	28	06:54:20	81:32:40	148	295	2080
	Pannal Oya at Thottama	13	07:06:30	81:41:25	168	95	1880
	Magalavadavan Aru at Periya Aru	32	07:30:05	81:29:20	268	119	2060
	Rambukkan Oya at Nilobe	30	07:30:40	81:22:40	126	161	2150
	Maha Oya at Maha Oya	11	07:31:54	81:26:36	282	300	2150
SRI062	Galodai Aru at Weragoda	35	07:33:35	81:19:50	156	224	2140

Station code	Name	No. years	Latitude (°N)	Longitude (°E)	MAF (m ³ /s)	AREA (km²)	AAR (mm)
SRI065	Maduru Oya at Welikanda	• 29	07:56:10	81:15:15	754	1062	2100
SRI067	Agra Oya at Holbrook	16	06:52:52	80:41:40	103	121	2390
SRI070	Kotmale Oya at Talawakele	23	06:56:25	80:39:45	269	290	2390
SRI071	Mahaweli Ganga at Watawala	18	06:56:50	80:32:10	72	65	3950
SRI072	Kotmale Oya at Morape (Nedeco)	31	07:03:40	80:37:20	481	531	2760
SRI078	Mahaweli Ganga at Peradeniya	37	07:15:42	80:35:30	1264	1189	2970
SRI081	Mahaweli Ganga at Gurudeniya	33	07:16:30	80:40:30	1412	1417	2810
SRI082	Hulu Ganga at Teldeniya	23	07:17:48	80:45:54	252	161	3560
SRI083	Galmal Oya at Moragahamula	16	07:16:57	80:48:26	161	73	3670
SRI085	Mahaweli Ganga at Randenigala (Nedeco)	24	07:12:10	80:56:10	1251	2370	2760
SRI086	Uma Oya at Welimada	17	06:54:15	80:54:30	167	179	2010
SRI087	Uma Oya at Talawakanda	19	07:00:30	80:58:25	262	505	1890
SRI089	Badulu Oya at Kandeketiya	15	07:10:30	81:00:24	209	387	2100
SRI091	Mahaweli Ganga at Weragantota (Nedeco)	35	07:19:02	80:59:10	2447	4040	2500
SRI093	Mahaweli Ganga at Hembarawa	10	07:31:35	80:58:20	1385	4530	2580
SRI097	Amban Ganga at Elahera (Nedeco)	33	07:40:45	80:45:25	421	772	2520
SRI099	Amban Ganga at Anagamedilla (Nedeco)	13	07:51:12	80:55:00	691	1435	2350
SRI100	Mahaweli Ganga at Manampitiya (Nedeco)	28	07:54:40	81:05:10	1666	7343	2500
SRI102	Gal Oya at Gal Oya	12	08:09:12	80:50:20	321	199	1590
SRI116	Yan Oya at Horowupotana	34	08:34:36	80:52:42	390	948	1520
SRI117	Yan Oya at Wahalkada	18	08:43:36	80:51:05	81	91	1620
SRI118	Yan Oya at Pangurugaswena	33	08:44:55	80:52:45	689	1311	1710
SRI123	Aruvi Oya at Kappachchi	35	08:35:45	80:16:30	690	2121	1450
SRI124	Malwathu Oya at Tekkam	11	08:44:30	80:11:00	1492	3072	1430
SRI128	Kala Oya at Dambulla	12	07:51:00	80:37:00	38	189	1780
SRI133	Kala Oya at Kala Oya	26	08:12:00	80:05:48	614	1948	1520
SRI134	Mi Oya at Mahauswewa	16	07:57:50	80:04:08	187	588	1450
SRI135	Mi Oya at Tabbowa	17	08:02:50	79:55:05	140	1077	1380
SRI138	Deduru Oya at Ridibandi Ela	18	07:43:42	80:15:48	746	1370	1940
SRI144	Deduru Oya at Chilaw	19	07:40:00	79:48:58	612	2611	1790
SRI145	Maha Oya at Alawwa	20	07:17:30	80:14:26	973	803	2450
SRI146	Maha Oya at Giriulla	26	07:19:30	80:06:55	815	1191	2480
SRI147	Maha Oya at Badalgama	31	07:18:10	79:58:50	860	1360	2380
SRI148	Attanagola Oya at Karasnagala	17	07:06:30	80:10:30	508	53	3170

Rain Gauge Stations Functioning District Wise

Amparai District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01AM001E	ADDALACHENAI	7.23 N	81.85 E	0	10/1/2002
2	01AM001C	AKKARAIPATTU	7.22 N	81.85 E	16	4/1/1993
3	01AM0012	AMPARAI TANK	7.28 N	81.67 E	27.4	1879-01-01
4	01AM126C	GALMADUWA	0.00 N	0.00 E	0	1/1/2010
5	01AM0182	IRAKKAMAN	7.25 N	81.73 E	12.2	1869-01-01
6	01AM257A	KUDASIGIRIYA	7.68 N	81.13 E	0	1/1/1993
7	01AM368B	NAVATKIRI ARU TANK	7.47 N	81.72 E	16	1/1/1941
8	01AM373A	NEETHTHA	0.00 N	0.00 E	0	8/1/2009
9	43999	POTTUVIL	6.88 N	81.83 E	3.6	1868-01-03
10	01AM0459	SAGAMAM TANK	7.13 N	81.80 E	16	1879-01-01
11	01AM459A	SAMANTHURAI	7.37 N	81.68 E	0	10/1/2002
12	01AM493B	THIRUKKOVIL	7.07 N	81.82 E	5	6/8/2006
13	01AM509B	UHANA COCONUT	7.37 N	81.62 E	16	12/1/1991
		<u>.</u>	2 2 3			
			-			

Anuradhapura District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	43421	ANURADHAPURA	8.35 N	80.38 E	92.5	1870-05-08
2	01AN104A	EHETUGASWEWA	8.97 N	80.83 E	1,111.00	3/1/1990
3	01AN105B	ELAYAPATHTHUWA	8.40 N	80.32 E	16	12/1/1978
4	01AN109B	ELAYAPATHUWA-NLDB FARM	8.42 N	80.25 E	0	1/1/2004
5	01AN112A	EPPAWALA WATER SUPPLY	8.13 N	80.40 E	0	1/1/1994
6	01AN141A	HABARANA LODGE	8.05 N	80.77 E	0	4/1/2001
7	01AN172C	HOROWUPATANA,AGA OFFICE	8.55 N	80.15 E	16	10/1/1977
8	01AN174A	HURULUWEWA	8.22 N	80.72 E	16	1/1/1948
9	01AN193A	KAHATAGASDIGILIYA W/S	8.42 N	80.68 E	0	1/1/1994
10	01AN197A	KALAWEWA COCONUT	8.02 N	80.53 E	16	5/1/1993
11	01AN0197	KALAWEWA TANK	8.00 N	80.53 E	122	1888-12-01
12	01AN227A	KEBITHIGOLLEWA W/S	8.63 N	80.67 E	0	2/1/1995
13	01AN233A	KEKIRAWA WATER SUPPLY	8.03 N	80.58 E	0	1/1/1994
14	43422	MAHA ILLUPPALLAMA	8.12 N	80.47 E	117.2	1868-01-01
15						
16						
17					· · · · · · · · · · · · · · · · · · ·	
18						

Badulla District

						BEGIN-
	STN-ID	STN-NAME	LAT	LON	ELEVATION	DATE
1	01BD0006	ALUTHNUWARA	7.32 N	81.00 E	92	1899-10-01
2	43479	BADULLA	6.98 N	81.05 E	669.6	1868-09-01
	01BD0034	BANDARA ELIYA ESTATE	6.78 N	81.02 E	0	1/1/1935
4	143476	BANDARAWELA	6.82 N	80.97 E	1,225.30	8/20/1990
5	01BD0036	BANDARAWELA-IRRIGATION	6.83 N	80.98 E	1,219.50	4/1/1947
6	01BD048B	BOGAHAMADITTA	6.97 N	81.05 E	111	4/1/1991
7	01BD058A	CANAWARELLA GROUP	6.90 N	81.12 E	1,237.80	1/1/1941
8	01BD074D	DAMBATENNE	6.78 N	81.00 E	1,566.00	8/1/1996
9	01BD0079	DEBEDDE ESTATE	6.95 N	81.12 E	16	11/1/1925
10	01BD093A	DIYATALAWA-SURVEY CAMP	6.82 N	80.97 E	111	10/1/1990
11	01BD0102	DYRABBA ESTATE	6.88 N	80.93 E	1,299.50	3/1/1914
12	01BD126A	GALOOLA ESTATE	7.07 N	81.15 E	16	4/1/1972
13	01BD127A	GALPURAYAYA - G/KOTTE	7.45 N	81.02 E	125	12/1/2002
14	01BD134E	GIRADURUKOTTE	7.45 N	81.02 E	80	3/1/2006
15	01BD134C	GIRANDURUKOTTE W/S	7.45 N	81.08 E	0	6/1/1995
	01BD135A	GLEN ALPIN ESTATE	6.95 N	81.08 E	0	1/1/1993
17	01BD131A	GLENANORE	6.77 N	80.92 E	1,392.00	8/1/1996
	01BD139B	GONAMOTAVA	6.78 N	80.98 E	1,348.00	8/1/1996
	01BD152A	HAPUTALE FACTORY	6.77 N	80.95 E	1,418.00	8/1/1996
	01BD159B	HILPANKANDURA ESTATE	7.52 N	80.15 E	16	4/1/1992
	01BD193B	KAHAGALLA ESTATE	6.78 N	80.97 E	0	8/1/1996
	01BD0207	KANDAKETIYA	7.17 N	81.02 E	16	4/1/1947
	01BD0247	KIRKLEES ESTATE	6.98 N	80.93 E	1,432.90	2/1/1934
	01BD0271	LEDGERWATTE ESTATE	7.03 N	81.02 E	16	1893-11-01
	01BD0277	LOWER SPRING VALLEY	6.92 N	81.10 E	16	1884-08-02
	01BD0290	MAHADOWA ESTATE	7.02 N	81.17 E	16	2/1/1902
	01BD310A	MAPAKADAWEWA	7.27 N	81.03 E	16	1/1/1941
	01BD330C	MICKLEFIELD FARM	6.85 N	80.88 E	0	1/1/1993
	01BD368D	NAYABEDDE	6.80 N	80.00 E	0	8/1/1996
	01BD411B	PASSARA TEA SHAKTHI	6.95 N	81.20 E	0	10/1/2005
	02BD0025	PASSARA,AGMET	6.92 N	81.13 E	96	1/1/1990
	01BD424C	PITARAT MALAI ESTATE	6.78 N	80.98 E	1,524.00	8/1/1996
	01BD428F	POONAGALA GROUP, FACTORY	6.77 N	81.03 E	0	1/7/1997
	01BD317Q	RANTEMBE	7.20 N	80.93 E	0	4/1/1997
	01BD452A	RIDIMALIYADDA	7.22 N	80.12 E	200	6/27/2008
	01BD473C	ST.CATHERINE DIVISION	6.78 N	81.02 E	0	8/1/1996
	01BD501B	TISSAPURA	7.30 N	81.08 E	150	6/27/2008
	01BD0539	WELIMADA GROUP	6.90 N	80.90 E	16	1/1/1941
	01BD0541	WEST HAPUTALE-UDAVERIYA	6.78 N	80.83 E	1,707.00	4/1/1925
1	01BD0545	WEWESSA ESTATE	6.97 N	81.10 E	16	8/1/1913
¥1						0,1,1,1,1
42						·
43		· · · · · · · · · · · · · · · · · · ·				
44					1	
45			1			

Batticaloa District

						BEGIN-
	STN-ID	STN-NAME	LAT	LON	ELEVATION	DATE
1	43436	BATTICALOA	7.72 N	81.70 E	7.8	1869-02-01
2	01BT197B	KALKUDAH	7.88 N	81.55 E	0	7/1/1996
3	01BT0357	MYLAMBAVELLY ESTATE	7.77 N	81.63 E	16	4/1/1935
4	01BT410B	PASSIKUDA	7.93 N	81.55 E	5	4/29/2005
5						
6						
7						
8						
9						

Colombo District

						BEGIN-
	STN-ID	STN-NAME	LAT	LON	ELEVATION	DATE
1	01CB0016	ANGODA MENTAL HOSPITAL	6.93 N	79.92 E	15.2	4/1/1930
2	01CB0025	AVISSAWELLA ESTATE	6.92 N	80.18 E	228.7	1897-01-01
3	01CB0026	AVISSAWELLA HOSPITAL	6.95 N	80.22 E	30.5	1879-01-01
4	01CB0038B	BATTARAMULLA	6.90 N	79.92 E	15	4/5/2007
5	01CB469B	COLOMBO PORT	6.93 N	79.85 E	0	1/1/1993
6	2043466	COLOMBO, AGROMET	6.90 N	79.87 E	7.3	1/1/1976
7	01CB068A	CINNAMON LAKE SIDE HOTEL	6.92 N	79.83 E	0	1/1/1993
8	01CB0080	DEHIWALA ZOO	6.85 N	79.87 E	16	9/10/1936
9	01CB109A	ELSTON	6.93 N	80.17 E	16	1/1/1984
10	01CB0150	HANWELLA GROUP	6.88 N	80.12 E	16	6/1/1932
11	01CB166A	HOMAGAMA	6.83 N	80.02 E	11	11/1/1990
12	01CB0179	INDIKADE	6.88 N	80.15 E	16	1/1/1941
13	01CB0268	LABUGAMA TANK	6.83 N	80.18 E	16	1879-07-08
14	01CB369A	MEEGODA-NAWALAMULLA	6.87 N	80.03 E	0	6/3/2002
15	01CB0390	ORUWALA	6.88 N	80.00 E	16	2/1/1967
16	01CB393A	PADUKKA ESTATE	6.82 N	80.12 E	0	9/1/1993
17	43467	RATMALANA	6.82 N	79.88 E	5	1868-01-01
18	01CB469B	SRI LANKA PORT AUTHORITY	6.93N	79.85E		
19						
20						
21						
22						
23						
24	-				1 	• •

Galle District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01GL0030	BADDEGAMA ESTATE	6.18 N	80.18 E	15.2	10/1/1908
2	01GL0041	BEAUSEJOUR(LOWER)	6.15 N	80.33 E	61	1/1/1905
3	01GL041C	BENTOTA ESTATE	6.35 N	80.17 E	400	7/1/2007
4	01GL087C	DEVITURAI ESTATE	6.25 N	80.15 E	0	1/1/1994
5	43495	GALLE	6.03 N	80.22 E	12.5	1869-01-01
6	01GL164A	HINIDUMA	6.30 N	80.32 E	0	1/1/1994
7	01GL0165	HIYARE	6.07 N	80.32 E	100.6	1/1/1910
8	01GL0267	LABUDUWA	6.07 N	80.23 E	16	9/1/1928
9	01GL501A	TITAGALLA, HANDUNGODA	6.02 N	80.35 E	0	11/20/1996
10						
11						
12						
13					· · · · · · · · · · · · · · · · · · ·	
14						

Gampaha District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01GM0011	AMBEPUSSA GOVT FARM	7.28 N	80.17 E	54.9	5/1/1927
2	01GM0158	HENARATHGODA BOT GRDNS	7.10 N	79.98 E	9.1	1891-01-01
3	43450	KATUNAYAKA	7.17 N	79.88 E	8.5	1868-01-01
4	01GM221B	KATUNAYAKE AIR FORCE	7.18 N	79.88 E	0	9/18/1996
5	01GM234A	KELEPITIMULLA	7.23 N	79.95 E	0	5/1/1996
6	01GM246A	KIRINDIWELA (COCONUT)	7.03 N	80.12 E	16	4/1/1992
7	01GM0373	NEGOMBO	7.22 N	79.83 E	3.1	1879-01-01
8	01GM378A	NITTAMBUWA	7.13 N	80.10 E	16	1/1/1993
9	01GM0412	PASYALA	7.15 N	80.13 E	16	10/1/1945
10	01GM487B	THAMMITA	7.10 N	79.95 E	0	5/1/1996
11	01GM0528	WALPITA	7.27 N	80.05 E	16	2/1/1941
12	01GM538B	WELISARA-NAVY	7.02 N	79.90 E	0	8/7/1997
13						
14						
15						
16			_			
17						

Hambanthota District

			0			BEGIN-
	STN-ID	STN-NAME	LAT	LON	ELEVATION	DATE
1	01HT0008	AMBALANTOTA GOVT, FARM	6.12 N	81.02 E	6.1	10/1/1921
2	01HT008A	AMBALANTOTA PADDY RESEAR	6.12 N	81.02 E	0	7/1/1995
3	01HT005A	ANGUNAKOLAPELESSA	6.17 N	80.88 E	16	4/1/1969
4	01HT028A	BADAGIRIYA TANK	6.23 N	81.15 E	16	3/1/1955
5	01HT0037	BATA ATA	6.10 N	80.92 E	24.4	10/1/1926
6	01HT037A	BATAATA	6.08 N	80.90 E	85	3/18/2006
7	01HT0053	BUNDALA LEWAYA	6.20 N	81.25 E	16	7/1/1947
8	43497	HAMBANTOTA	6.12 N	81.13 E	15.5	1869-01-01
9	01HT141C	HANDUNE_GALA	6.20 N	80.62 E	850	9/24/2008
10	01HT0244C	KEKIRIOBADA TANK	6.22 N	80.67 E	122	1879-01-01
11	01HT0276	LIYANGAHATOTA	6.23 N	80.93 E	16	2/1/1913
12	01HT280A	LUNUGAMWEHERA	6.33 N	81.20 E	16	5/1/1983
13	01HT0292	MAHA LEWAYA (HAMBANTOTA)	6.13 N	81.13 E	16	1/1/1937
14	01HT0303	MAMADOLA	6.13 N	80.97 E	16	1894-07-01
15	01HT356C	MURUTHAWELA WEWA	6.20 N	80.73 E	0	5/1/1995
16	01HT0396	PALATUPANA SALTERN	6.25 N	81.38 E	16	1/1/1932
17	01HT449C	RANMALA KANDA	6.23 N	80.63 E	87	10/23/2008
18	01HT0453	RIDIYAGAMA IRRIGATION	6.22 N	80.98 E	16	3/1/1923
19	01HT453A	RIDIYAGAMA IRRIGATION	6.18 N	80.97 E	0	1/1/1994
20	01HT460B	SAPUTHANTHRI KANDA	6.23 N	80.63 E	1,350.00	10/1/2008
21	01ht481a	SURIYAWEWA	6.32 N	80.00 E	200	1/1/1965
22	01HT484A	THALAPATH KANDA	6.22 N	80.62 E	1,100.00	9/1/2008
23	01HT0501	TISSAMAHARAMA IRRIGATION	6.28 N	81.30 E	16	1879-01-01
24						· · · · · · · · · · · · · · · · ·
25					·	
26						
27			1			
28			+ -			1

Jaffna District

						BEGIN-
	STN-ID	STN-NAME	LAT	LON	ELEVATION	DATE
1	01JF062A	CHAVAKACHCHERI	9.67 N	80.17 E	16	1893-11-01
2	43404	JAFFNA	9.68 N	80.03 E	3.1	1871-01-14
3	01JF251A	KONDAVIL	9.70 N	80.03 E	16	1/1/1968
4	01JF0258	KUDATHANAI	9.73 N	80.27 E	16	6/1/1967
5	01JF360A	NAINATIVU	9.60 N	79.77 E	16	4/1/1956
6	01JF0425	POINT PEDRO	9.83 N	80.23 E	16	1891-03-01
7						
8						
9						
10						
11						

Kalutara District

	\$TN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01KT021A	ARAMANAGOLLA	6.73 N	80.05 E	0	2/1/1984
2	01KT0035	BANDARAGAMA	6.72 N	80.00 E	16	10/1/1921
3	01KT0066	CLYDE ESTATE	6.58 N	80.03 E	24.4	7/1/1952
4	01KT073A	DELKEITH	6.57 N	80.20 E	95	7/22/2006
5	01KE0120	FROCESTER ESTATE	6.67 N	80.12 E	15.2	7/1/1952
6	01KT0132	GEEKIYANAKANDA ESTATE	6.60 N	80.12 E	106.7	1872-04-01
7	01KT0145	HALWATURA	6.72 N	80.20 E	137.2	3/1/1929
8	01KT169A	HORAGODA ESTATE	6.50 N	80.25 E	16	12/1/1954
9	01KT0171	HORANA	6.75 N	80.07 E	30.5	1/1/1941
10	01KT524A	KALUTARA, VOGAN GROUP	6.53 N	80.10 E	0	1/1/1994
11	01KT0200	KALUTARA-P.W.D.	6.58 N	79.95 E	3	1879-01-01
12	01KT253C	KOROSDUWA	6.65 N	79.95 E	18	3/16/2006
13	01KT359B	NAGODA	6.57 N	80.00 E	16	1/1/1944
14	01KT400C	PALLEGODA ESTATE	6.47 N	<u>80.05</u> E	0	9/1/1998
15	01KT414B	PELAWATTE	6.42 N	80.22 E	16	1/1/1959
16	01KT0450	RAYIGAMA	6.77 N	80.18 E	16	1897-05-01
17	01KT0467	SIRIKANDURA ESTATE	6.50 N	80.15 E	16	3/1/1920
18	01KT478B	ST.VINCENTS GROUP	6.52 N	80.00 E	16	1/1/1955
19	01KT513A	USK VALLEY S.P.	6.57 N	80.23 E	16	10/1/1954
20	01KT474B	YATADOLA (MATUGAMA DIV)	6.52 N	80.05 E	210	3/16/2006
21	01KT474A	YATADOLA(BOPITIYA)	6.50 N	80.08 E	100	3/16/2006
22		N				
23						
24						
25						
26						

Kandy District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01KY082E	DELTA ESTATE,EAST DIV	7.12 N	80.67 E	0	1/1/1996
2	01KY082D	DELTA ESTATE, SOUTH DIV	7.10 N	80.65 E	0	1/1/1996
3	01KY082F	DELTA NORTH DEVISION	0.00 N	0.00 E	0	9/26/2006
4	01KY0099	DUCKWARI ESTATE	7.35 N	80.78 E	1,006.10	1888-04-01
5	01KY0127	GALPHELE, WATTEGAMA	7.35 N	80.70 E	701.2	1898-01-01
6	01KY132A	GIDDAWA	7.42 N	80.73 E	480	1/29/2008
7	01KY147B	HANDESSA- DAULAGALA	7.23 N	80.57 E	16	6/1/1987
8	01KY0211	KANDY-KINGS PAVILION	7.30 N	80.63 E	510.4	8/1/1922
9	43444	KATUGASTOTA	7.33 N	80.63 E	417.1	1868-01-01
10	01KY317L	KOTHMALE POWER STATION	7.12 N	80.57 E	0	1/1/1996
11	01KY317I	KOTHMALE POWER STN -D/S	7.02 N	80.58 E	0	1/1/1990
12	01KY317N	KOTHMALE RESERVOIR	7.02 N	80.58 E	0	1/1/1998
13	01KY0262	KUNDASALE FARM	7.27 N	80.68 E	492	10/1/1947
14	01KY286B	MADULKEIE	7.37 N	80.73 E	750	2/1/2003
15	01KY286A	MAHABERIYATENNA	7.27 N	80.77 E	16	1/1/1989
16	01KY328A	MELFORT	7.12 N	80.63 E	16	4/1/1991
17	01KY0370	NAWALAPITIYA	7.07 N	80.53 E	16	7/1/1937
18	01KY0374	NEW FOREST	7.15 N	80.68 E	16	1/1/1901
19	01KY389B	OVALA RATTOTA	7.52 N	80.15 E	16	3/1/1992
20	01KY401A	PALLEKELE	7.28 N	80.72 E	470	11/16/2007
21	01KY407B	PANVILATENIYA	7.15 N	80.62 E	760	2/25/2006
22	01KY0418	PERADENIYA BOT.GARDENS	7.27 N	80.60 E	16	1883-07-01
23	01KY3170	POLGOLLA	7.32 N	80.62 E	440.8	6/1/1996
24	01KY0471	SOGAMA ESTATE	7.12 N	80.62 E	16	1884-11-01
25	01KY317P	VICTORIA	7.25 N	80.78 E	0	5/1/1994
26	01KY536B	WELIGALLA	7.18 N	80.43 E	540	11/14/2009
27	01KY0547	WOODSIDE ESTATE	7.27 N	80.83 E	950	1897-10-01
28	143444	KANDY, OLD MET	**	**	16	1868-01-01
29 -	01KY317K	BADULLA	**	**	0	1/1/1994
30						
31						
32						
33						
34						1

Kegalle District

	\$TN-ID	\$TN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01KE009B	AMBANPITIYA ESTATE	7.23 N	80.32 E	201.2	3/1/2003
2	01KE0021	ARANAYAKE GOVT. HOSPITAL	7.18 N	80.47 E	16	8/1/1905
3	01KE021B	ARANAYAKE MINI HYDRO PRO	7.13 N	80.47 E	0	10/1/2004
4	01KE0064	CHESTERFORD	7.07 N	80.18 E	198.2	9/1/1949
5	01KE079B	DEDIGAMA	7.22 N	80.25 E	100	6/1/2003
6	01KE0089	DIGALLA ESTATE	6.95 N	80.30 E	122	1886-03-01
7	01KE0100	DUNEDIN ESTATE	7.03 N	80.28 E	122	1882-11-01
8	01KE104C	EILA ESTATE	6.98 N	80.33 E	220	11/1/2000
9	01KE0113	ERAMINIGOLLA	7.30 N	80.38 E		11/1/1938
10	01KE113B	ERAMINIGOLLA (COCONUT)	7.30 N	80.37 E	16	1/1/1993
11	01KE152C	НАІМАТТА	7.07 N	80.25 E	50	10/5/2006
12	01KE141D	HAKBELLAWAKA	6.98 N	80.35 E	200	2/24/2010
13	301	MALIBODA	6.88 N	80.43 E	274.4	8/1/1913
14	01KE345B	MORALIOYA	7.02 N	80.22 E	90	10/1/2006
15	01KY356A	MURUTALAWA,SURIYAGODA	7.32 N	80.40 E	16	8/1/1991
16	01KE0458	RUWANWELLA REST HOUSE	7.05 N	80.25 E	16	7/1/1910
_17	01KE104D	UDABAGE	6.97 N	80.35 E	440	6/24/2005
18	01KE0503	UNDUGODA	7.13 N	80.37 E	16	1/1/1950
19	01KE0523	VINCIT ESTATE	7.08 N	80.22 E	16	9/18/1925
20	01KE0526	WAGOLLA	7.30 N	80.38 E	16	11/1/1949
21	01KE530A	WARAKAPOLA(NIYADURUPOLA)	7.15 N	80.22 E	280	5/26/2003
22	01KE0544	WEWELTALAWA ESTATE	7.05 N	80.38 E	16	1/1/1944
23	01KE319A	MATHEMAGODA (COCONUT)	**	**	16	1/1/1993
24		· · · · · · · · · · · · · · · · · · ·				
25					· · · · · · · · · · · · · · · · · · ·	
26						
27						
_28						
29						

Kilinochchi District

				_		BEGIN-
	STN-ID	STN-NAME	LAT	LON	ELEVATION	DATE
1	01KI001B	AKKARAYANKULAM	9.30 N	80.35 E	31.1	12/1/1961
2	01KI0183		0.25 N	00.40.5	20 5	C (4 /1010
4	01KI0183	IRANAMAĐU TANK	9.35 N	80.40 E	30.5	6/1/1910
2	041/22200		0.07 N	00 45 5		0.44.4000
3	01KI220B	KARIYALAINAGAPODUWAN	9.27 N	80.17 E	0	3/1/1998
4						
5						
6						
7						
8						

Kurunegala District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01KG014A	ANDIGAMA FARM	7.37 N	80.12 E	16	5/1/1967
2	01KG024A	ATHARAGALLA	7.92 N	80.28 E	0	1/1/1957
3	01KE0038	BATALAGODA TANK	7.52 N	80.45 E	16	1897-01-01
4	01KG049A	BOPITIYA	7.32 N	80.07 E	50	6/15/2007
5	01KG074C	DAMPELLASSA - NARAMMALA	7.42 N	80.20 E	16	3/1/1993
6	01KG082C	DELHENA	7.52 N	80.55 E	111	7/1/1988
7	01KG092B	DODANGASLANDA	7.57 N	80.53 E	165	6/1/1987
8	01KG0103	EGODAGAMA ELA	7.43 N	80.42 E	16	3/1/1941
9	01KG0253	HAKWATUNA-OYA	7.65 N	80.38 E	16	1/1/1991
10	01KG159D	HETTIPOLA	7.58 N	80.67 E	50	11/16/2007
11	159C	HINDAWA ESTATE				
12	01PU169B	HORAGASAGARA	7.57 N	79.95 E	16	1/1/1989
13	01KG175A	IBBAGAMUWA	7.52 N	80.42 E	140	11/16/2007
14	01KG0201	KAMALASRAM (UDUBADDAWA)	7.48 N	79.98 E	16	6/1/1950
15	01KG0256	KOULWEWA	7.53 N	79.93 E	16	3/1/1978
16	01KG258D	KULIYAPITIYA	7.45 N	80.08 E	60	10/4/2002
17	43441	KURUNEGALA	7.47 N	80.37 E	116.1	1885-06-01
18	01KG290A	MAHAGALKADAWLA,GALGAMUWA	8.07 N	80.28 E	111	11/1/1987
19	01KE300B	MAKANDURA	7.32 N	79.98 E	26	3/28/2007
20	01ke312A	MARANDAWILA FARM	7.63 N	79.95 E	0	1/1/1993
21	01KG0326	MEDIYAWA TANK	7.88 N	80.28 E	16	1/1/1905
22	01KG301B	MELCIRI PURA	7.63 N	80.60 E	170	11/16/2007
23	01KG0329	MELLAWA ESTATE	7.32 N	79.95 E	16	8/1/1978
24	01KG0377	NIKAWERATIYA	7.75 N	80.12 E	16	1/1/1941
25	01KG404A	PANDUWASNUWARA	7.60 N	80.12 E	1	3/1/1990
26	01KG407A	PANNALA VIRIDIYAWA EST	7.33 N	80.03 E	0	4/1/1996
27	01KG426A	POLGAHAWELA (COCONUT)	7.32 N	80.30 E	16	12/1/1992
28	01KG427A	POLONTALAWA	7.72 N	80.00 E	16	10/1/1953
29	01KG0452	RIDIBENDI ELA	7.73 N	80.25 E	16	6/1/1937
30	01KG469A	SIYAMBALANGAMUWA	7.95 N	80.45 E	16	12/1/1953
(31)	01KG0470	SIYAMBALAWEWA ESTATE	7.65 N	79.97 E	16	5/15/1936
32	01KG0532	WARIYAPOLA EXPTL.STATION	7.63 N	80.25 E	16	4/1/1930
33	01KG540C	WELLEWA	6.55 N	80.35 E	100	5/1/2007
34						
35			1			
36						
37		1	1			

Mannar District

	STN-ID	\$TN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01MN220A	KARUKKAIKULAM	8.92 N	80.02 E	16	1/1/1941
2	43413	MANNAR	8.98 N	79.92 E	3.6	1870-05-01
3	01MN0356	MURUNKAN	8.83 N	80.05 E	16	1/1/1901
4	01mu0356	MURUNKAN	0.13 N	80.05 E	40	1/1/1901
5		Long Second				
6						
7						
8						

Matale District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01ML317M	BOWATENNA	7.65 N	80.65 E	0	6/1/1996
2	01ML0072	CRYSTAL HILL ESTATE	7.50 N	80.65 E	426.8	1880-07-01
3	01ML107A	ELKADUWA ESTATE	7.42 N	80.68 E	762	12/1/1999
4	01ML150A	HAPPUWIDDE DIV (ELKADUWA	7.42 N	80.68 E	1,068.00	1999-12-91
5	01ML0177	ILLUKKUMBURA	7.55 N	80.77 E	1,219.50	6/1/1936
6	01ML0208	KANDALAMA	7.87 N	80.68 E	16	5/25/1952
7	01ML277A	LOOLKADE DIVISION	7.65 N	80.55 E	0	1/1/1989
8	01ML0318	MATALE-P.W.D.	7.47 N	80.62 E	16	1879-01-01
9	01ML324A	MEDAPEELLA	7.70 N	80.73 E	200	5/1/2008
10	01ML0337	MILLAWANA ESTATE	7.67 N	80.55 E	16	11/1/1937
11	01ML0361	NALANDA EXPER.STATION	7.67 N	80.63 E	16	11/1/1922
12	01ML389B	OWELLA - RATTOTA	7.52 N	80.65 E	16	9/1/1990
13	01ML0416	PELWEHERA	7.90 N	80.68 E	16	10/1/1929
14	01ML317J	UKUWELA	7.40 N	80.65 E	16	1/1/1993
15	01ML0531	WARIYAPOLA ESTATE	7.47 N	80.63 E	16	1887-01-01
16	01ML540D	WELLEWALA	7.67 N	80.82 E	160	5/1/2008
17	01ML544A	WEWELMADA	7.48 N	80.68 E	833.8	10/1/2003
18						
19						
20						
21						
22						

Matara District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01MT0018	ANNINGKANDA ESTATE	6.35 N	80.62 E	533.5	1884-06-01
2	01MT074B	DAMPAHALA TEA FACTORY	6.27 N	80.63 E	176	12/1/1992
3	01MT0076	DANDENIYA TANK	6.00 N	80.65 E	16	1880-01-15
4	01HT079C	DEHIGAHAHENA	6.20 N	80.62 E	300	10/23/2008
5	01MT0085	DENAGAMA	6.10 N	80.65 E	16	1879-01-01
6	01MT085B	DENIYAYA, WILLIE GROUP	6.33 N	80.55 E	0	11/20/1996
7	01MT232A	KEKANADURA FARM	5.97 N	80.57 E	11	1/1/1989
8	01MT0232	KEKENADURA (MATARA)	<u>5.97 N</u>	80.57 E	48.8	1879-02-01
9	01MT0311	MAPALANA	6.07 N	80.57 E	16	5/1/1941
10	01MT0322	MAWARELLA ESTATE	6.20 N	80.58 E	16	3/1/1925
11	01MT0400	PALLEGAMA, RATHNAYAKE GP	6.35 N	80.53 E	16	1/1/1989
12	01MT404B	PANETIYANA	6.03 N	80.45 E	200	7/1/2003
13	01MT484A	TALAPATH KANDA	6.22 N	80.62 E	1,100.00	9/3/2008
14	01MT537A	WELIGAMA (COCONUT)	5.98 N	80.40 E	16	4/1/1993
15						
16						
17						
18						

Monaragala District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01MG044A	BIBLE AGRI, TRAINING CEN	7.15 N	81.22 E	820	6/1/2000
2	01MG055C	BUTTALA - KONKETIYA	6.65 N	81.27 E	0	6/1/2004
3	01MG141B	HANDAPANAGALA	6.65 N	81.12 E	150	11/16/2007
4	01MG260A	KUMBUKKANA	6.77 N	80.28 E	440	3/10/2006
5	00043MMM	MONARAGALA	6.50 N	81.30 E	165	3/1/2009
6	01MG343B	MONARAGALA WATER SUPPLY	6.87 N	81.35 E	475	6/1/2000
7	01MG0385	OKKAMPITIYA	6.75 N	81.30 E	16	1/1/1941
8	01MG488A	TANAMALWILA WATER SUPPLY	6.47 N	81.12 E	250	6/1/2000
9	01MG501B	TISSAPURA	7.30 N	81.08 E	150	6/27/2008
10	01MG538A	WELIPITIYA COCONUT	7.15 N	81.25 E	16	1/1/1992
11	01MG540A	WELLAWAYA	6.73 N	81.10 E	16	10/1/1983
12	01MG540B	WELLAWAYA WATER SUPPLY	6.72 N	81.08 E	300	6/1/2000
13						
14						
15						
16						
17						

Mullaitivu District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01MU0216	KANNUKKENI TANK	9.20 N	80.80 E	30.5	3/1/1905
2	01MU357A	MUTU IYANKADDU	9.22 N	80.65 E	16	5/1/1978
3						
4						
5						
6						
7						

Nuwara Eliya District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01NE0010	AMBEWELA	6.88 N	80.80 E	1,828.40	1/1/1952
2	01NE0017	ANNFIELD ESTATE	6.87 N	80.63 E	1,311.00	1887-11-01
3	01NE033A	BAMBRAKELLY - LINDULA	6.88 N	80.65 E	0	9/1/1995
4	01BD042B	BEAUVAIS ESTATE	6.78 N	80.90 E	0	8/1/1996
5	01NE0049	BOPATTHALAWA	6.83 N	80.72 E	1,539.60	11/1/1941
6	01NE0058	CAMPION ESTATE	6.78 N	80.70 E	1,820.30	1885-08-01
7	01NE317A		6.88 N	80.53 E	16	1/1/1983
8	01NE317B	CASTLEREIGH	6.87 N	80.57 E	16	1/1/1983
9	01NE098A	DRAYTON	6.92 N	80.62 E	0	4/1/1996
10	01NE140B	GAURAVILLA ESTATE	6.78 N	80.60 E	1,443.00	10/1/1999
11	01NE138A	GOONAPITIYA	7.05 N	80.80 E	0	3/1/1996
12	01NE0142	HAKGALA BOTANICAL GDNS	6.92 N	80.82 E	1,701.20	1883-07-01
13	01ne0153	HATTUN ROSITA	6.92 N	80.60 E	1,311.00	6/1/1978
14	01NE0156	HELBODDE ESTATE	7.08 N	80.67 E	834.1	1885-01-01
15	01NE0157	HELBODDE NORTH	7.08 N	80.68 E	1,493.90	4/15/1929
16	01NE159A	HIGH FOREST ESTATE	7.07 N	80.83 E	16	3/1/1986
17	01NE157B	HOLLY ROOD ESTATE	6.95 N	80.67 E	0	4/1/1996
18	01NE0166	HOLMWOOD ESTATE	6.85 N	80.72 E	1,685.00	1881-08-01
19	01NE0167	HOPE ESTATE	7.10 N	80.75 E	1,432.90	1885-10-01
20	· · · · ·	KENILWORTH (STRATHELLIE)	7.00 N	80.48 E	762.2	1/1/1912
21	01NE236A	KENILWORTH ESTATE	6.08 N	80.48 E	520	9/27/2006
22	01NE0264	KURUNDU OYA	7.07 N	80.83 E	16	1882-07-01
23	01NE0266	LABUKELLE	7.02 N	80.72 E	16	1/1/1941
24	01NE317D	LAXAPANA	6.90 N	80.52 E	16	1/1/1983
25	01NE0274	LIDDES DALE	7.02 N	80.85 E	1,570.00	1/1/1923
26	01NE277C	LOOLECONDERA ESTATE	7.12 N	80.70 E	1,080.00	1/1/2003
27	01NE315A	MARIGOLD FACTORY	7.07 N	80.82 E	0	4/1/1996
28	01NE0316	MASKELIYA HOSPITAL	6.83 N	80.57 E	16	1882-08-01
29	01NE317F	MAUSSAKELLE	6.85 N	80.55 E	16	1/1/1983
30	01NE317E	NORTON	6.92 N	80.52 E	16	4/1/1984
31	01NE317G	SAMANALA POWER STATION	6.98 N	80.47 E	16	1/1/1989
32	01NE0460	SANDRINGHAM ESTATE	6.85 N	80.75 E	16	1881-07-01
33	01NE464A	SHANNON ESTATE	6.90 N	80.57 E	0	4/1/1996
34	01NE467B	SITA ELIYA	6.93 N	80.80 E	0	1/1/1966
35	01NE467C	SITAELIYA GOVT FARM	6.95 N	80.78 E	0	11/19/1990
36	01NE485D	ST. CLAIR	6.93 N	80.65 E	0	11/18/199
37	01NE362A	SUMMERSET	6.93 N	80.70 E	0	11/18/199
38	01NE166B	SUTTON DIVISON HOLMWOOD	6.85 N	80.70 E	1,440.00	9/28/2006
39	01NE506B	UDARADELLA	6.97 N	80.82 E	16	1/1/1989
40	01NE0534	WATAWALA	6.97 N	80.52 E	16	4/1/1910
41	01NE534B	WATAWALA, MOUNT JEAN	6.95 N	80.52 E	0	11/19/199
42	01NE534A	WATAWALA, RAILWAY STATION	6.97 N	80.52 E	16	1/1/1993
43	01NE317H	WIMALASURENDRA POWER ST	6.90 N	80.53 E	16	1/1/1983
44			1			

Polonnaruwa District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01PL0015	ANGAMEDILLA	7.85 N	80.92 E	16	1/1/1941
2	01PL020A	ARALAGANWILA	7.80 N	81.15 E	60	3/1/2003
3	01PL0031	BAKAMUNA	7.77 N	80.82 E	16	1/1/1941
4	01PL092A	DIYABEDUMA	7.93 N	80.87 E	16	1/1/1960
5	01PL093B	DIYASENAPURA	8.12 N	81.02 E	0	1/1/1993
6	01PL104B	ELAHERA	7.68 N	80.82 E	16	6/1/1991
7	01PL134A	GIRITALE	8.00 N	80.93 E	16	7/1/1953
8	01PL134D	GIRITALE (Wild Life)	8.00 N	80.93 E	16	1/1/2004
9	01PL141A	HABARANA LODGE	8.03 N	80.75 E	0	4/1/2001
10	01PL0162	HINGURAKGODA-AGRICULTURE	8.05 N	80.95 E	39.6	1/1/1941
11	01PL224A	- KAUDULLA WEWA	8.13 N	80.93 E	16	5/1/1953
12	01PL0340	MINNERIYA TANK	8.05 N	80.90 E	16	1899-03-01
13	00043PPP	POLONNARUWA	7.87 N	81.05 E	43	2/1/2009
14	01PL0427	POLONNARUWA AGRI.STATION	7.92 N	81.03 E	16	1/1/1940
15	01PL0538C	WELIKANDA (SINGHAPURA)	8.00 N	81.22 E	40	1/1/2002
16						
17						
18	 			 		
19						
20						

Puttalam District

	STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01PU0013	ANAMADUWA DISPENSARY	7.88 N	80.00 E	76.3	5/1/1933
2	01PU040A	BATTULUOYA	7.72 N	79.82 E	5	1/1/2005
3	01PU0065	CHILAW-P.W.D	7.58 N	79.78 E	3	11/1/1911
4	01PU307A	DEVISIPURA	7.85 N	79.82 E	130	1/1/2005
5	01PU099A	DUMMALASOORIYA	6.00 N	<u>80.85 E</u>	260	11/1/2005
_6	02PU0013	ELUVANKULAMA,AGMET	8.27 N	79.85 E	100	9/29/1975
7	01PU0170	HORAKELLE ESTATE	7.45 N	79.85 E	15.2	1868-10-01
_8	01PU201A	KAMANDALUWA	7.77 N	80.00 E	0	4/1/1999
9	01PU216A	KARANDIPOOVAL	8.15 N	79.85 E	0	4/1/1999
10	01PU0221	KARUKKUWA ESTATE	7.50 N	79.83 E	16	5/1/1911
11	01PU256A	KOTTUKACHCHIYA	7.92 N	79.97 E	16	6/1/1939
12	01PU0281	LUNUWILA (BANDIRIPPUWA)	7.33 N	79.87 E	16	8/1/1950
13	01PU313A	MARAWILA	7.40 N	79.83 E	0	7/1/1995
14	353E	MUNDALAMA				
15	01PU282C	NORACHOLAI	8.05 N	79.82 E	3	11/8/2006
16	01PU0397	PALAVI SALTERN	7.98 N	79.83 E	16	4/1/1919
17	01PU353D	PALMGROVE ESTATE	7.77 N	79.82 E	0	1/1/2005
18	01PU0402	PALUGASWEWA ESTATE	7.65 N	79.87 E	16	1/1/1910
19	01PU428B	POOTTWALA ESTATE	7.65 N	79.88 E	16	11/1/1992
20	43424	PUTTALAM	8.03 N	79.83 E	2.1	1869-01-01
21	2043424	V PUTTALAM, AGMET	8.03 N	79.83 E	2.1	2/9/1993
22	01PU0449	RATHMALAGARA AGMET	7.55 N	79.90 E	28	7/1/1938
	01PU473B	🔨 ST. ANNES ESTATE, DALUWA	8.08 N	79.75 E	0	12/1/1990
24	01PU0483	TABBOWA AGRICULTURE	8.05 N	79.95 E	16	8/1/1938
25	01PU514B	VANATHAWILLU	0.00 N	0.00 E	0	11/8/2006
26						
27						
28						
29				11.75		

Ratnapura District

	\$TN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01RT0005	ALUPOLLA GROUP	6.72 N	80.58 E	762.5	12/1/1931
2	01KE016A	ANHETIGAMA ESTATE	6.93 N	80.37 E	11	6/1/1990
3	01RT0032	BALANGODA POST OFFICE	6.65 N	80.70 E	527.4	7/1/1922
4	01RT042C	BELIHULOYA	6.72 N	80.77 E	670	6/7/2006
5	01RT050C	BELIHULOYA UPPER DIV	6.77 N	80.80 E	0	11/16/1996
6	01RT050B	BRAMPTON	6.75 N	80.82 E	0	4/1/1996
7	01RT0086	DEPEDENA GROUP	6.47 N	80.55 E	16	1/1/1942
8	01RT0087	DETANAGALLA	6.73 N	80.68 E	16	9/1/1912
9	01RT0104	EHELIYAGODA S.P.	6.85 N	80.27 E	225.6	3/1/1916
10	01RT0111C	EMBILIPITIYA,COCONUT	6.32 N	80.85 E	76.2	7/1/1930
11	01RT120A	GALABODA ESTATE	6.70 N	80.47 E	1	8/1/1990
12	01RT0124	GALATURA ESTATE	6.70 N	80.28 E	16	12/1/1936
13	01RT128A	GANGEYAYA	6.37 N	80.83 E	0	5/1/1995
14	01RT140D	GURULUWANA	6.75 N	80.43 E	0	10/1/2004
15	01RT0151	HAPUGASTENNA ESTATE	6.72 N	80.52 E	594.5	1/1/1944
16	01RT177B	ILLUBULUWA ESTATE	6.68 N	80.32 E	90	1/16/2007
17	01RT0195	KALATUWAWA	6.85 N	80.20 E	16	1/1/1941
18	01RT196A	KALAWANA	6.48 N	80.38 E	0	11/1/2005
19	01RT0237	KERAGALA	6.78 N	80.35 E	121.9	9/1/1912
20	01RT258A	KUDAWA	6.43 N	80.42 E	16	1/1/1980
21	01RT264A	KUTTIGALA,CHANDRIKAWEWA	6.25 N	80.90 E	16	1/1/1989
22	01RT269B	LANDSDOWN, MIDDLE DIV	6.67 N	80.47 E	0	4/1/1996
23	01RT271A	LELLOPITIYA ESTATE	6.68 N	80.50 E	16	12/1/1954
24	01RT345A	MORAHELA	6.67 N	80.67 E	0	7/1/1995
25	01NE0360	NAGRAK ESTATE	6.77 N	80.78 E	16	10/1/1933
26	01RT382B	NON PAREIL (BELIHULOYA)	6.75 N	80.78 E	0	4/1/1996
27	01RT0435	PUSSELLA S.P.	6.80 N	80.35 E	16	11/1/1951
28	43486	RATNAPURA	6.68 N	80.40 E	34.4	1869-09-01
29	01RT481B	- SOORIYAKANDA	6.43 N	80.63 E	884	7/1/2003
30	01RT539A	WELLANDURA ESTATE	6.53 N	80.57 E	16	1/1/1955
31	01RT539B	WELLANDURA TEA FACTORY	6.55 N	80.57 E	0	1/1/1993
32	01RT111C	EMBILIPITIYA,COCONUT NUR	**	**	16	1/1/1992
33						
34						
35						
36						
37						

Vavuniya District

STN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
01VA414A	PAVATKULAM	8.68 N	80.43 E	16	11/1/1955
43415	VAVUNIYA	8.75 N	80.50 E	97.5	1880-09-01
01VA0517	VAVUNIYA AGRICULTURE	8.77 N	80.48 E	16	4/1/1927
01VA0518	VAVUNIYA P.W.D.	8.75 N	80.50 E	16	1879-01-01
	01VA414A 43415	01VA414A PAVATKULAM 43415 VAVUNIYA 01VA0517 VAVUNIYA AGRICULTURE	01VA414A PAVATKULAM 8.68 N 43415 VAVUNIYA 8.75 N 01VA0517 VAVUNIYA AGRICULTURE 8.77 N	01VA414A PAVATKULAM 8.68 N 80.43 E 43415 VAVUNIYA 8.75 N 80.50 E 01VA0517 VAVUNIYA AGRICULTURE 8.77 N 80.48 E	01VA414A PAVATKULAM 8.68 N 80.43 E 16 43415 VAVUNIYA 8.75 N 80.50 E 97.5 01VA0517 VAVUNIYA AGRICULTURE 8.77 N 80.48 E 16

Trincomalee District

	\$TN-ID	STN-NAME	LAT	LON	ELEVATION	BEGIN- DATE
1	01TC0004	ALLAI TANK	8.40 N	81.32 E	6.1	1879-03-01
2	0 <u>1</u> TC0194	KAL AAR	8.30 N	81.27 E	12.2	1/1/1941
3	01TC0215	KANTALAI TANK	8.35 N	80.98 E	76.2	1879-01-01
4	01TC0395	PALAMPODDAR, THAMBALAGAMU	8.55 N	81.07 E	16	2/1/1944
			010011		10	2/1/1/1
5	43418	TRINCOMALEE	8.58 N	81.25 E	23.9	1869-01-01
6						
7						
/				-		
8						
9						
10						

Kelani Ganga at Glencourse		
Water Year	Flood Peaks in Cumecs	Date
70/71	2038.79	1971.09.23
71/72	1399.26	1972.05.13
72/73	826.00	1973.08.01
73/74	3120.49	1974.07.28
74/75	2981.79	1975.05.23
75/76	1322.95	1975.11.03
76/77	1380.43	1977.05.25
77/78	1680.53	1978.05.14
78/79	4219.17	1978.11.25
79/80	573.41	1979.11.11
80/81	2695.06	1981.09.17
81/82	1973.66	1982.06.09
82/83	1060.60	1983.08.20
83/84	4285.71	1984.07.12
84/85	2095.73	1985.06.06
85/86	1766.53	1985.10.05
86/87	781.25	1986.10.13
87/88	1585.73	1987.10.27
88/89	3500.00	1989.06.04
89/90	831.00	1989.11.01
90/91	1146.00	1990.11.03
91/92	1318.28	1992.06.03
92/93	1346.17	1992.10.14
93/94	1519.46	1993.10.08
94/95	660.00	1995.06.04
95/96	1361.18	1995.10.08
96/97	1550.00	1997.09.16
97/98	787.00	1997.11.04
98/99	1407.00	1999.04.20
99/00	810.58	2000.09.20
00/01	491.93	2001.02.04
01/02	595.97	2002.06.07
02/03	561.29	2003.05.17
03/04	516.70	2004.09.24
04/05	810.51	2004.11.02
05/06	1134.20	2006.06.20
06/07	1009.34	2006.11.11
07/08	1733.30	2008.04.29
08/09	921.43	2009.08.17
09/10	516.70	2010.05.20
10/11	1690.25	2011.05.27
11/12	380.24	2012.07.09

Water Year	Flood Peaks in Cumecs	Date
84/85	925.00	15-07-85
85/86	497.00	12-11-85
86/87	268.00	01-10-86
87/88	808.00	04-08-88
88/89	2157.00	30-05-89
89/90	704.00	17-05-90
90/91	247.00	02-11-90
91/92	886.00	03-06-92
92/93	853.00	28-06-93
93/94	577.00	08-10-93
94/95	704.00	17-06-95
95/96	727.00	08-10-95
96/97	337.00	16-09-97
97/98	406.00	29-09-98
98/99	726.00	19-05-99
99/00	288.00	04-05-00
00/01	228.00	27-07-01
01/02	365.00	12-06-02
02/03	503.00	06-05-03
03/04	178.00	27-05-04
04/05	439.00	05-10-05
05/06	379.00	06-11-05
06/07	244.00	15-06-07
07/08	704.00	28-04-08
08/09	403.00	20-05-09
09/10	403.00	02-10-09
10/11	288.00	02-05-11
11/12	269.00	09-07-12

Kelani Ganga at Kithulgala

Water Year	Flood Peaks in Cumecs	Date
85/86	431.76	04-10-85
86/87	174.12	02-06-87
87/88	484.18	26-10-87
88/89	644.11	03-06-89
89/90	248.15	18-11-89
90/91	193.00	02-11-90
91/92	280.00	03-06-92
92/93	475.00	13-10-92
93/94	316.73	08-10-93
94/95	228.00	09-05-95
95/96	192.94	08-10-95
96/97	525.00	20-07-97
97/98	204.70	24-07-98
98/99	246.89	20-04-99
99/00	137.82	24-09-00
00/01	179.03	30-07-01
01/02	190.44	21-04-02
02/03	102.82	17-05-03
03/04	175.66	03-11-03
04/05	279.35	02-11-04
05/06	172.29	22-10-05
06/07	297.67	12-11-06
07/08	329.24	19-07-08
08/09	173.13	17-08-09
09/10	241.54	30-04-10
10/11	456.40	27-05-11
11/12	189.23	23-10-11

Gurugoda Oya at Holombuwa

	Flood Peaks in	
Water Year	Cumecs	Date
84/85	2312.60	315-85
85/86	654.44	12-11-85
86/87	932.83	15-10-86
87/88	701.42	03-06-88
88/89		03-06-89
89/90	2079.00	17-05-90
90/91	509.00	02-11-90
91/92	1476.00	03.06.92
92/93	1708.00	13-10-92
93/94	954.16	08-10-93
94/95	540.00	04-06-95
95/96	656.00	22-09-96
96/97	644.00	21-07-97
97/98	462.00	24-07-98
98/99	362.00	20-04-99
99/00	282.00	20-09-00
00/01	368.00	18-05-01
01/02	497.00	12-06-02
02/03	508.00	06-05-03
03/04	266.00	27-05-04
04/05	426.00	05-09-05
05/06	458.00	20-06-06
06/07	601.00	12-05-07
07/08	920.00	28-04-08
08/09	572.00	16-08-09
09/10	416.00	15-08-10
10/11	580.00	27-05-11
11/12	278.00	26-05-12

Seethawaka Ganga at Daraniyagala

Water Year	Flood Peaks in Cumecs	Date
77/78	370.94	27-09-78
78/79	520.31	24-11-78
79/80	349.71	12-07-80
80/81	453.06	17-09-81
81/82	579.15	08-06-82
82/83	339.14	28-11-82
83/84	506.58	12-07-84
84/85	472.59	24-05-85
85/86	513.48	04-10-85
86/87	395.43	01-10-86
87/88	531.00	02-06-86
88/89	764.54	31-05-89
89/90	492.78	07-05-90
90/91	370.99	02-06-91
91/92	446.05	03-06-92
92/93	458.79	31-05-93
93/94	589.06	08-10-93
94/95	360.37	04-06-95
95/96	477.90	08-10-95
96/97	463.04	21-07-97
97/98	419.00	29-09-98
98/99	552.00	20-04-99
99/00	320.00	01-06-00
00/01	268.00	29-09-01
01/02	392.00	12-06-02
02/03	686.88	18-05-03
03/04	350.00	30-05-04
04/05	459.00	05-09-05
05/06	356.68	20-06-06
06/07	322.02	01-09-07
07/08	547.27	28-04-08
08/09	355.20	30-06-08
09/10	368.45	19-05-10
10/11	395.33	29-04-11
11/12		

Kalu Ganga at Ellagawa			
Water Year	Flood Peaks in Cumecs	Date	
68/69	597.68	30-05-69	
69/70	495.54	31-03-70	
70/71	930.48	23-09-71	
71/72	861.67	15-05-72	
72/73	577.66	06-10-72	
73/74	770.21	29-07-74	
74/75	1113.41	08-05-75	
75/76	679.31	25-10-75	
76/77	529.10	05-06-77	
77/78	1336.54	15-05-78	
78/79	670.37	26-11-78	
79/80	663.17	03-06-80	
80/81	809.85	19-09-81	
81/82	1387.51	10-06-82	
82/83	641.09	29-11-82	
83/84	1005.24	14-07-84	
84/85	889.14	25-05-85	
85/86	852.33	06-10-85	
86/87	815.52	02-10-86	
87/88	1042.05	04-06-88	
88/89	1121.34	06-06-89	
89/90	745.00	09-05-90	
90/91	824.01	03-06-91	
91/92	883.60	05-06-92	
92/93	1081.69	01-06-93	
93/94	1047.86	10-10-93	
94/95	668.36	05-06-95	
95/96	1222.50	09-10-95	
96/97	1005.00	17-09-97	
97/98	1000.00	05-11-97	
98/99	1860.00	22-04-99	
99/00	680.00	21-09-00	
00/01	432.00	26-09-01	
01/02	360.00	23-10-01	
02/03	2620.00	19-05-03	
03/04	548.00	24-09-04	
04/05	690.00	06-09-05	
05/06	750.00	22-06-06	
06/07	710.00	01-09-07	
07/08	1680.00	01-06-08	
08/09	691.20	02-07-09	
09/10	1100.00	21-05-10	
10/11	880.00	30-04-11	
11/12	246.50	10-07-12	

Badulu Oya at Taldena		
Water Year	Flood Peaks in Cumecs	Date
95/96	42.18	05-02-96
96/97	78.72	28-11-96
97/98	258.38	09-03-98
98/99	32.08	03-03-99
99/00	309.23	29-02-00
00/01	56.81	29-01-01
01/02	26.31	07-12-01
02/03	32.08	19-12-02
03/04	21.26	11-01-04
04/05	73.33	16-12-04
05/06	49.96	14-01-06
06/07	258.38	20-12-06
07/08	730.22	13-03-08
08/09	198.85	29-11-08
09/10	295.96	12-12-09
10/11	585.17	02-02-11
11/12	309.23	25-11-11

Attanagalu Oya at Dunamale		
Water Year	Flood Peaks in Cumecs	Date
05/06	36.44	22-11-05
06/07	48.70	26-10-06
07/08	58.66	31-05-08
08/09	36.44	21-10-08
09/10	50.88	01-05-10
10/11	41.32	02-10-10
11/12	31.33	24-10-11

Mahaweli Ganga at Nawalapitiya		
Water Year	Flood Peaks in Cumecs	Date
89/90	238.00	06-08-90
90/91	199.40	31-07-91
91/92	294.80	03-06-92
92/93	360.27	28-06-93
93/94	218.60	01-08-94
94/95	262.50	17-06-95
95/96	266.40	20-09-96
96/97	238.64	21-07-97
97/98	259.25	29-09-98
98/99	250.00	20-04-99
99/00	112.00	01-06-00
00/01	154.60	27-07-01
01/02	199.07	09-08-02
02/03	187.00	10-07-03
03/04	166.00	27-05-04
04/05	187.00	31-08-05
05/06	130.00	20-06-06
06/07	145.00	03-11-06
07/08	212.04	23-09 -09
08/09	205.80	20-05-09
09/10	190.60	15-08-10
10/11		
11/12		

COLOMBO MET

Monthly Mean Pan Evaporation - (mm)

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1981	4.10	4.76	5.39	3.13	4.31	4.66	4.53	4.78	4.35	4.14	3.98	4.57
1982	N/A											
1983	N/A	N/A	N/A	N/A	N/A	N/A	3.91	1.97	N/A	4.57	4.25	3.34
1984	N/A											
1985	4.33	4.10	4.76	4.46	4.28	N/A	4.06	3.99	3.86	4.12	3.35	3.48
1986	3.07	4.36	3.78	3.90	4.10	4.17	2.93	3.58	3.38	2.89	3.44	3.23
1987	3.70	4.58	5.33	3.99	4.21	3.86	4.42	2.45	4.18	3.12	2.73	3.37
1988	5.70	4.06	3.18	3.98	3.73	3.89	3.45	3.75	N/A	N/A	N/A	N/A
1989	3.48	4.39	5.07	4.27	3.49	3.16	3.05	3.86	4.18	3.93	3.67	4.02
1990	3.47	4.58	4.41	4.32	3.53	3.42	3.27	3.33	4.14	3.53	N/A	2.66
1991	3.40	4.07	4.75	4.07	4.23	3.73	3.85	4.27	4.13	2.99	3.35	N/A
1992	3.93	4.47	5.07	4.88	3.74	3.77	3.47	3.87	4.04	3.48	2.94	3.13
1993	3.79	4.66	4.14	4.68	3.82	3.75	3.42	3.76	4.38	3.74	2.69	2.63
1994	3.03	3.50	4.26	4.26	3.85	3.80	3.78	3.71	3.86	2.82	2.72	3.55
1995	3.54	3.95	4.65	3.83	3.71	3.34	3.65	3.70	4.11	3.77	3.48	3.70
1996	3.81	3.69	4.79	3.29	3.78	2.81	3.37	4.14	3.18	3.42	3.80	2.84
1997	4.17	3.49	3.88	4.02	3.17	3.33	3.20	4.33	3.06	3.00	2.89	2.42
1998	3.06	4.12	4.90	4.40	3.37	3.36	3.13	3.03	3.50	3.07	2.75	2.59
1999	3.03	3.22	3.72	3.26	3.21	3.51	3.31	3.23	3.04	2.22	2.70	3.03
2000	3.01	3.32	3.85	3.71	3.35	3.15	3.80	3.43	3.18	3.47	3.07	3.22
2001	2.92	3.67	4.32	3.55	3.41	3.60	3.48	4.59	4.45	3.42	3.23	3.59
2002	3.64	4.11	4.47	3.87	3.30	3.68	4.02	4.24	4.72	3.13	2.68	2.61
2003	3.40	3.18	3.62	3.64	3.42	3.12	3.07	3.42	3.52	3.36	2.45	3.62
2004	4.39	4.61	4.30	4.06	2.94	3.24	3.08	3.53	2.72	2.68	2.24	2.98
2005	3.69	4.37	4.54	3.98	3.49	3.28	3.34	4.00	3.72	2.85	2.63	3.03
2006	3.38	3.91	3.73	3.81	3.28	3.14	3.39	3.27	3.42	3.41	2.99	2.87
2007	3.60	4.21	4.44	3.75	3.58	3.31	3.20	3.34	3.30	2.76	3.40	2.97
2008	3.22	3.78	3.22	3.47	3.47	3.33	2.97	3.34	4.04	3.41	2.70	3.40
2009	3.92	4.49	3.89	3.60	3.65	3.16	3.53	3.53	3.49	3.44	2.15	4.24
2010	4.25	4.33	4.19	3.64	3.14	3.27	3.17	3.44	3.29	3.35	2.49	2.19
Average	3.67	4.07	4.32	3.92	3.61	3.49	3.49	3.64	3.74	3.34	3.03	3.20

Monthly Mean Wind Run - (km/h)

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1981	3.3	3.4	3.3	3.8	4.1	5.6	5.1	5.3	4.9	3.2	3.7	3.3
1982	3.8	3.4	3.3	3.5	3.7	5.5	4.9	4.8	4.2	2.9	2.3	3.5
1983	3.9	3.2	3.2	3.5	3.8	3.6	3.4	3.8	2.9	3.0	3.0	3.1
1984	3.0	3.1	N/A	2.8	5.5	4.1	3.9	4.2	3.8	3.3	2.9	4.0
1985	3.5	3.0	4.6	5.4	6.9	7.2	6.7	6.7	5.8	5.2	5.2	5.3
1986	7.0	5.5	4.6	4.7	5.7	6.8	7.6	6.2	6.6	5.0	5.4	5.1
1987	6.7	6.2	5.5	4.9	5.1	7.3	5.9	5.8	5.1	3.9	7.0	6.0
1988	7.6	5.7	4.8	4.5	6.4	5.7	5.8	5.5	5.6	5.3	N/A	N/A
1989	6.2	5.5	4.7	4.9	6.4	7.0	N/A	N/A	6.5	4.5	4.1	4.4
1990	5.0	4.9	4.4	4.8	6.5	7.3	5.8	6.9	6.3	4.5	4.2	3.9
1991	4.3	4.7	4.4	4.9	4.9	8.0	7.1	7.6	6.3	4.8	3.8	4.3
1992	5.9	4.6	4.9	5.3	5.5	7.3	6.1	7.3	5.8	5.1	3.4	4.5
1993	4.8	5.1	4.5	4.3	5.6	7.8	7.3	6.9	6.2	5.2	3.5	3.5
1994	4.3	3.9	4.8	4.4	4.2	5.6	6.3	6.2	5.4	2.6	3.4	5.4
1995	4.7	4.4	4.6	4.3	6.6	6.3	6.2	6.7	5.7	4.5	2.6	4.1
1996	4.1	3.0	4.3	4.1	5.9	5.5	5.8	6.8	6.4	4.6	3.8	3.2
1997	4.4	4.5	4.1	4.1	4.5	4.5	6.0	6.7	4.4	2.4	2.0	2.3
1998	3.7	4.3	4.6	4.3	5.1	6.1	6.8	5.8	6.8	4.9	2.3	3.2
1999	4.2	3.7	3.6	5.5	6.0	6.4	6.5	5.8	4.8	3.8	2.9	3.4
2000	3.8	3.5	3.6	4.8	5.1	6.5	6.6	6.5	4.2	4.2	2.8	4.9
2001	3.9	3.2	4.3	3.1	4.8	5.9	5.5	7.0	5.8	5.0	3.3	4.8
2002	5.0	4.3	4.0	3.3	4.8	5.8	6.0	5.5	5.8	3.5	3.5	4.5
2003	4.4	3.1	3.4	3.6	6.1	5.7	5.7	6.2	5.7	4.8	3.4	5.7
2004	6.4	5.7	4.9	4.7	5.9	6.3	6.1	6.2	4.8	3.0	3.8	4.7
2005	5.4	4.9	4.1	3.4	4.8	6.6	5.7	5.5	6.0	4.3	4.7	8.3
2006	5.6	5.1	4.1	4.6	5.5	5.4	6.0	4.9	5.7	4.4	3.4	5.4
2007	5.8	5.2	4.7	3.8	6.0	5.6	5.6	5.5	6.3	4.5	4.6	4.8
2008	5.1	4.2	3.8	4.4	7.4	5.2	6.2	6.1	5.1	3.8	4.6	5.0
2009	5.6	5.2	4.1	5.0	7.1	6.7	5.4	6.4	7.0	4.5	2.3	3.3
2010	6.0	5.4	4.2	3.5	5.4	1.4	5.2	6.4	5.0	6.1	3.9	4.9
Average	4.9	4.4	4.3	4.3	5.5	6.0	5.9	6.0	5.5	4.2	3.6	4.4

RATNAPURA TRI

Monthly Mean Pan Evaporation - (mm)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1981	4.30	5.30	4.90	4.00	3.40	3.60	3.30	3.30	3.10	3.70	3.80	2.90
1982	3.53	4.03	4.21	3.94	3.70	3.51	3.50	2.98	3.54	2.39	3.48	2.94
1983	3.50	5.06	5.74	4.90	4.28	3.74	3.57	3.49	2.55	3.73	3.71	2.28
1984	3.00	3.24	3.37	3.01	3.65	3.82	2.89	4.25	4.34	3.67	3.58	3.47
1985	3.16	4.00	4.58	4.01	3.63	2.76	3.39	3.43	3.42	3.81	3.83	3.02
1986	3.42	4.41	3.73	4.09	3.59	4.40	3.23	3.83	2.81	3.63	3.39	3.39
1987	3.72	5.36	5.55	4.87	4.12	4.05	4.46	3.03	4.17	2.79	3.64	3.80
1988	3.86	4.42	4.40	3.78	3.07	**	3.02	3.54	4.05	4.51	4.34	3.43
1989	3.54	4.90	5.50	4.20	**	2.84	3.35	**	**	4.03	4.25	3.44
1990	4.32	5.10	4.59	3.87	3.96	3.15	3.23	3.47	3.69	3.12	**	3.83
1991	3.62	4.56	4.38	3.34	4.29	**	4.25	**	3.97	**	3.76	3.38
1992	3.70	5.53	6.21	4.97	**	**	3.61	3.47	**	**	**	2.89
1993	3.93	4.67	3.91	4.43	**	**	3.00	3.21	3.24	3.15	3.23	2.63
1994	2.77	3.84	4.11	3.98	**	3.54	3.32	3.40	3.04	3.58	**	2.83
1995	2.94	3.60	3.13	**	3.75	3.00	3.31	2.40	3.63	3.19	3.15	3.14
1996	2.95	2.98	5.09	3.39	4.08	3.02	3.01	3.19	***	3.24	3.10	3.16
1997	4.39	4.66	4.10	3.86	3.01	3.90	2.75	3.39	2.82	3.91	2.73	2.70
1998	3.32	4.33	4.73	4.17	3.28	2.93	3.81	3.01	2.93	3.14	4.52	1.40
1999	3.21	3.58	4.42	3.18	3.19	4.16	3.82	3.66	3.42	2.97	3.33	3.55
2000	2.74	3.55	3.67	4.01	4.10	2.90	4.10	2.58	3.10	3.77	2.40	2.74
2001	2.40	3.73	4.50	3.38	2.91	4.00	3.01	2.99	3.01	***	3.55	2.82
2002	2.84	3.17	3.53	2.79	2.64	3.34	2.48	2.97	3.71	2.15	2.83	2.07
2003	3.07	3.40	3.58	3.40	2.61	2.86	2.70	2.90	3.16	2.10	1.94	3.36
2004	3.24	3.46	3.43	2.79	2.84	3.20	2.41	2.81	3.01	2.77	2.48	2.62
2005	2.27	3.58	3.13	3.23	3.75	3.03	2.85	2.92	3.39	3.23	2.72	2.65
2006	2.40	2.66	2.74	2.61	2.67	2.65	2.62	2.82	2.36	2.66	2.07	2.05
2007	2.70	3.10	3.41	3.10	3.09	2.81	2.15	1.75	1.71	1.45	2.18	1.91
2008	1.92	1.94	1.16	0.75			0.95	1.51	2.80	2.36	2.19	2.33
2009	3.13	3.88	2.77	2.28	2.31	1.93	2.45	1.80	2.33	2.92	1.40	1.35
2010	2.86	3.08	2.97	2.13	2.97	2.06	2.43	2.26	2.10	2.53	1.62	1.71
Avearge	3.22	3.97	4.05	3.53	3.40	3.25	3.10	3.01	3.16	3.13	3.08	2.79

Monthly Mean Wind Run - (km/h)

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1981	2.3	2.6	2.3	2.4	2.5	4.0	3.8	3.6	2.6	2.5	2.6	1.6
1982	1.7	2.9	1.8	1.9	1.4	2.3	2.3	2.8	2.4	0.9	0.7	0.7
1983	2.2	3.5	3.7	3.5	3.6	4.1	4.2	4.3	3.2	4.1	3.5	3.8
1984	2.6	2.7	3.4	3.0	3.3	4.8	4.3	5.3	4.3	***	3.3	3.1
1985	2.3	2.3	2.9	3.1	3.8	4.6	4.1	4.1	3.3	3.3	2.9	2.0
1986	2.8	2.8	2.3	2.8	3.1	4.5	4.3	3.8	3.3	2.5	2.4	1.7
1987	2.0	2.6	2.7	2.4	2.3	4.5	3.7	2.6	2.6	1.9	2.1	2.5
1988	1.7	2.1	2.2	2.2	1.6	1.8	2.6	2.4	2.2	2.4	2.0	1.6
1989	5.3	8.0	7.7	7.1	4.3	2.2	2.3	2.6	1.7	2.1	3.2	2.4
1990	2.1	2.3	2.3	2.3	2.5	2.9	2.6	3.6	2.6	2.1	2.2	1.4
1991	1.6	1.9	2.0	2.0	2.0	2.1	2.4	2.9	2.7	2.4	1.7	1.5
1992	1.5	2.6	2.7	2.3	2.0	3.2	2.1	2.7	2.4	2.2	1.8	1.4
1993	1.4	2.1	2.0	1.8	1.8	2.7	3.0	2.4	2.0	1.8	1.4	1.5
1994	1.2	1.6	2.0	1.9	1.9	2.9	2.6	2.4	1.9	1.5	1.8	1.3
1995	1.6	1.9	2.2	2.3	2.6	2.5	3.8	2.7	3.1	2.2	2.4	1.7
1996	1.8	2.1	2.5	2.5	2.6	3.9	3.2	3.0	2.3	2.3	2.5	2.0
1997	2.1	2.5	2.3	2.9	2.1	2.3	2.5	3.1	2.1	1.7	1.9	1.4
1998	1.4	1.8	1.8	1.8	1.9	2.6	3.1	2.4	2.5	2.2	2.3	1.6
1999	1.5	1.8	1.7	1.6	1.9	2.3	2.7	2.0	1.8	1.8	1.8	1.7
2000	1.2	1.6	1.7	1.6	1.9	2.3	2.8	2.6	1.3	1.3	1.0	1.1
2001	0.9	1.1	1.3	0.9	1.5	1.9	1.9	2.0	1.7	1.7	1.4	1.1
2002	1.0	1.4	1.5	1.4	1.6	2.0	1.8	2.0	1.9	1.2	1.1	0.8
2003	0.9	1.0	1.1	1.2	1.7	1.3	1.5	1.5	1.3	1.1	0.9	1.0
2004	0.9	1.2	1.3	1.4	1.5	2.2	1.8	1.9	0.9	1.0	0.7	0.6
2005	0.8	0.9	0.9	0.8	1.1	1.4	1.7	1.8	1.7	1.0	1.1	1.2
2006	0.7	0.7	1.2	1.4	1.0	1.2	1.6	0.9	0.7	0.5	0.4	0.2
2007	***	***	***	***	***	***	***	***	***	***	***	***
2008	0.3	0.3	0.4	***	***	***	***	***	***	0.9	0.8	0.8
2009	0.72	1.16	1.00	1.10	1.17	1.21	2.08	1.43	1.64	1.49	0.92	0.76
2010	0.73	0.81	1.13	1.00	1.13	1.69	2.10	2.24	1.51	2.03	1.09	1.32
Average	1.62	2.07	2.14	2.16	2.13	2.70	2.74	2.68	2.20	1.86	1.79	1.51

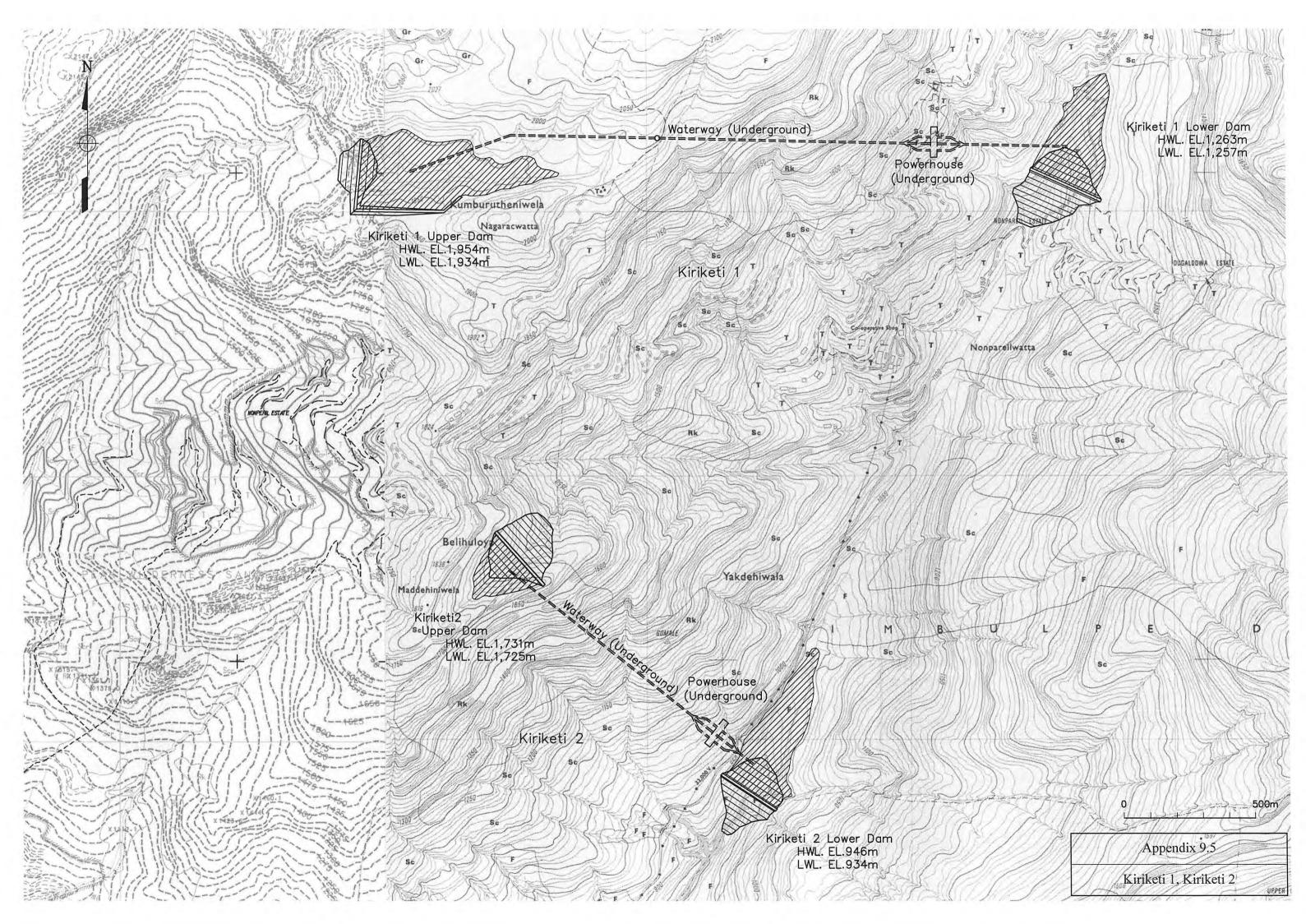
Bandarawela

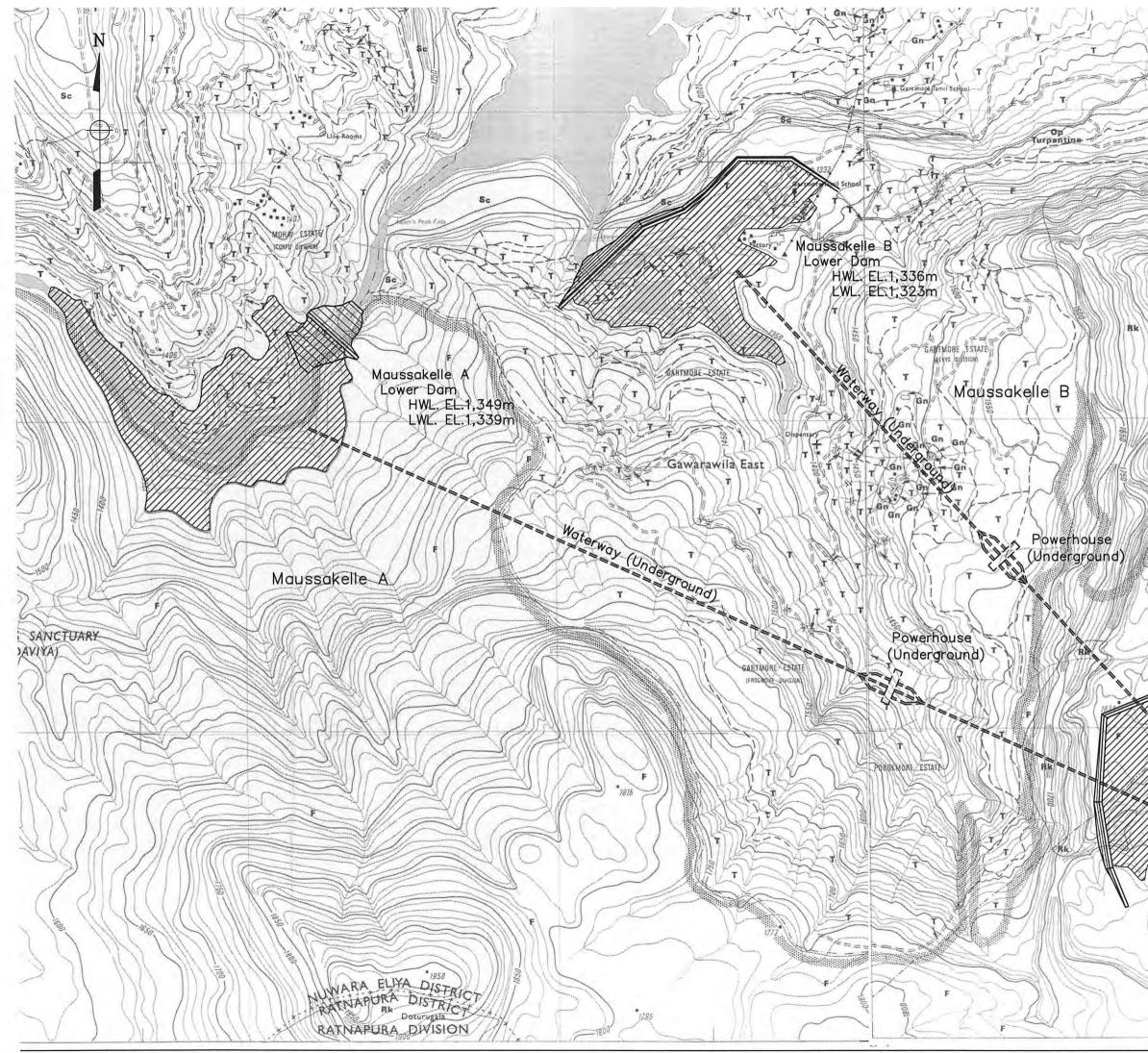
EVAPORATION - Monthly Mean (mm)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1981	2.70	3.20	3.00	2.50	2.80	3.90	3.40	4.50	3.20	2.50	2.30	1.90
1982	2.60	3.90	3.40	3.20	2.30	3.70	3.70	3.90	3.70	1.30	1.30	2.00
1983	2.40	4.70	4.70	4.30	3.30	4.00	4.10	3.70	3.80	3.30	2.30	1.30
1984	2.70	3.60	3.40	2.40	2.80	3.40	3.90	4.20	2.90	2.80	2.20	1.90
1985	1.70	3.10	2.70	3.10	3.40	3.60	3.20	2.90	3.40	3.70	2.50	2.90
1986	2.80	2.80	2.70	2.80	3.20	3.90	3.90	3.20	3.40	2.70	2.70	1.90
1987	2.10	3.20	2.90	2.90	2.90	4.20	4.20	2.90	4.20	XXX	2.40	2.10
1988	2.10	3.50	3.30	2.00	2.90	4.10	3.30	3.00	2.80	2.30	XXX	XXX
1989	XXX	3.69	3.89	3.21	2.76	3.21	2.41	3.69	2.81	2.70	2.30	2.01
1990	3.00	2.78	3.06	2.98	3.54	3.82	3.67	3.84	2.94	2.82	2.11	1.50
1991	1.63	3.00	3.12	2.62	2.44	3.29	3.45	4.08	2.80	2.42	1.94	1.35
1992	1.98	3.53	4.49	3.30	2.54	4.65	3.33	3.38	2.68	2.80	1.60	1.40
1993	2.34	2.90	2.95	3.61	2.73	3.03	3.70	3.89	2.93	2.23	1.40	1.21
1994	1.66	2.37	2.91	2.65	2.72	3.86	3.22	3.35	2.26	1.65	1.25	1.44
1995	1.78	2.89	2.85	2.67	2.98	3.34	3.54	3.43	3.19	2.28	2.03	2.01
1996	1.72	2.19	3.05	2.17	3.54	3.02	2.69	3.10	2.64	2.64	2.15	1.98
1997	2.80	2.98	3.86	2.76	2.54	3.06	3.46	3.93	2.54	2.23	1.87	1.46
1998	2.07	2.81	3.20	2.89	2.73	3.15	3.11	2.39	3.15	2.34	1.96	1.28
1999	1.77	1.81	2.63	2.48	2.80	2.91	3.77	3.69	2.93	1.79	1.65	1.75
2000	1.43	1.93	2.69	2.52	2.74	2.99	3.63	2.81	2.52	2.00	1.65	1.14
2001	1.57	3.05	3.52	2.51	3.18	3.91	3.28	3.78	2.83	2.59	2.26	2.17
2002	2.24	2.76	3.67	3.11	3.59	3.66	4.22	3.56	3.76	2.62	2.01	1.69
2003	2.40	3.00	3.40	3.31	3.38	3.35	2.81	3.42	3.19	3.37	1.40	2.92
2004	2.38	2.91	3.70	3.10	3.06	3.86	3.46	3.67	2.29	2.05	1.36	1.84
2005	1.92	4.25	3.33	3.03	3.10	3.78	3.77	3.79	2.97	1.97	1.76	2.43
2006	1.84	2.42	2.77	2.87	2.68	3.35	3.47	3.55	3.36	2.25	2.23	1.33
2007	2.07	2.66	3.93	2.43	3.16	2.54	3.35	3.27	3.07	2.10	2.33	1.67
2008	1.83	2.62	2.06	2.62	2.88	2.81	3.41	2.94	3.34	1.99	1.62	2.10
2009	2.48	3.33	3.04	2.46	2.86	3.86	3.54	3.27	2.94	2.95	1.76	1.62
2010	2.40	3.18	3.18	2.77	2.59	2.79	2.69	2.81	2.46	2.98	1.76	1.61
Average	2.60	3.14	3.04	2.89	3.22	3.48	3.46	3.25	2.75	2.20	1.86	1.79

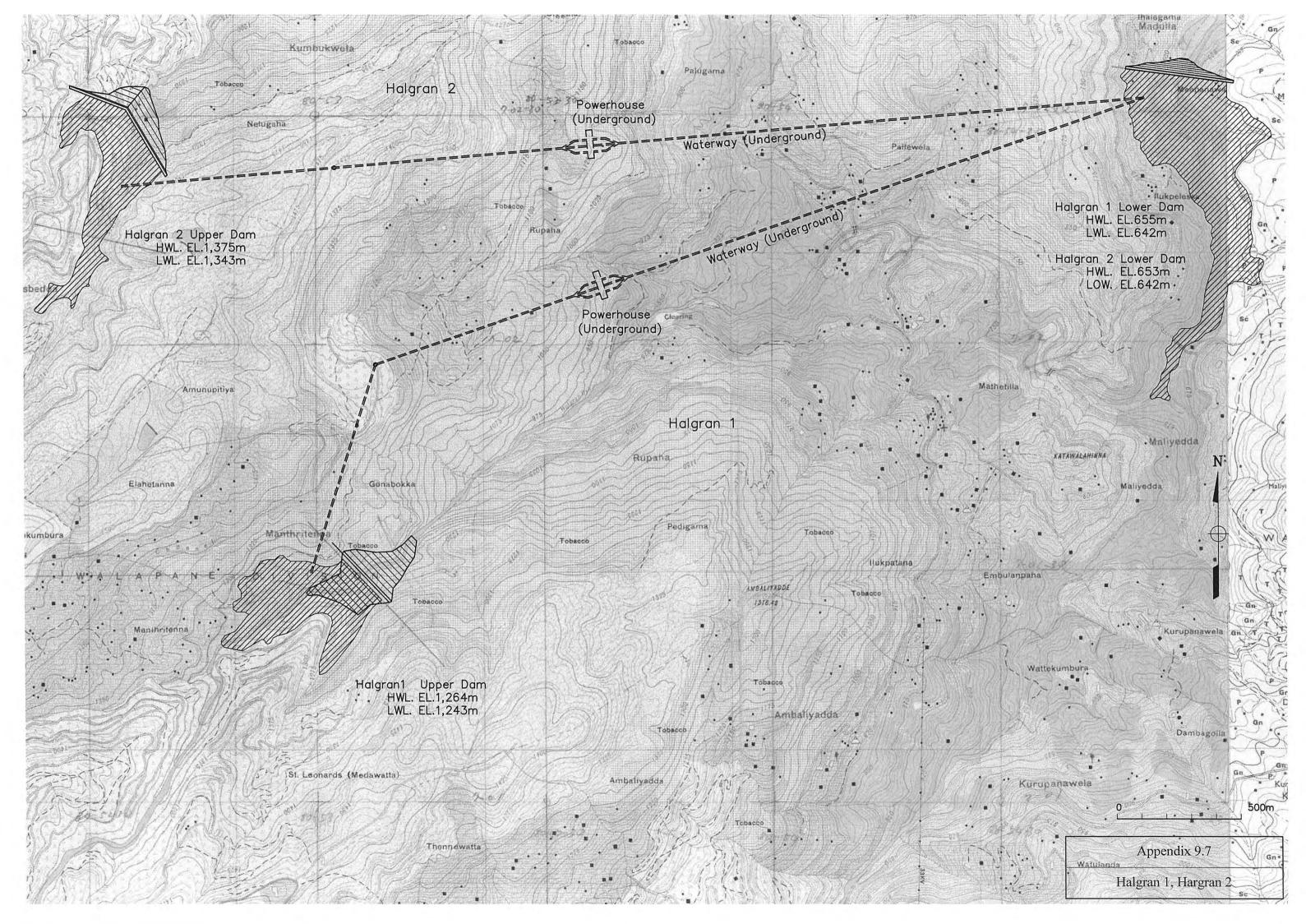
WIND SPEED - Monthly Mean (km/h)

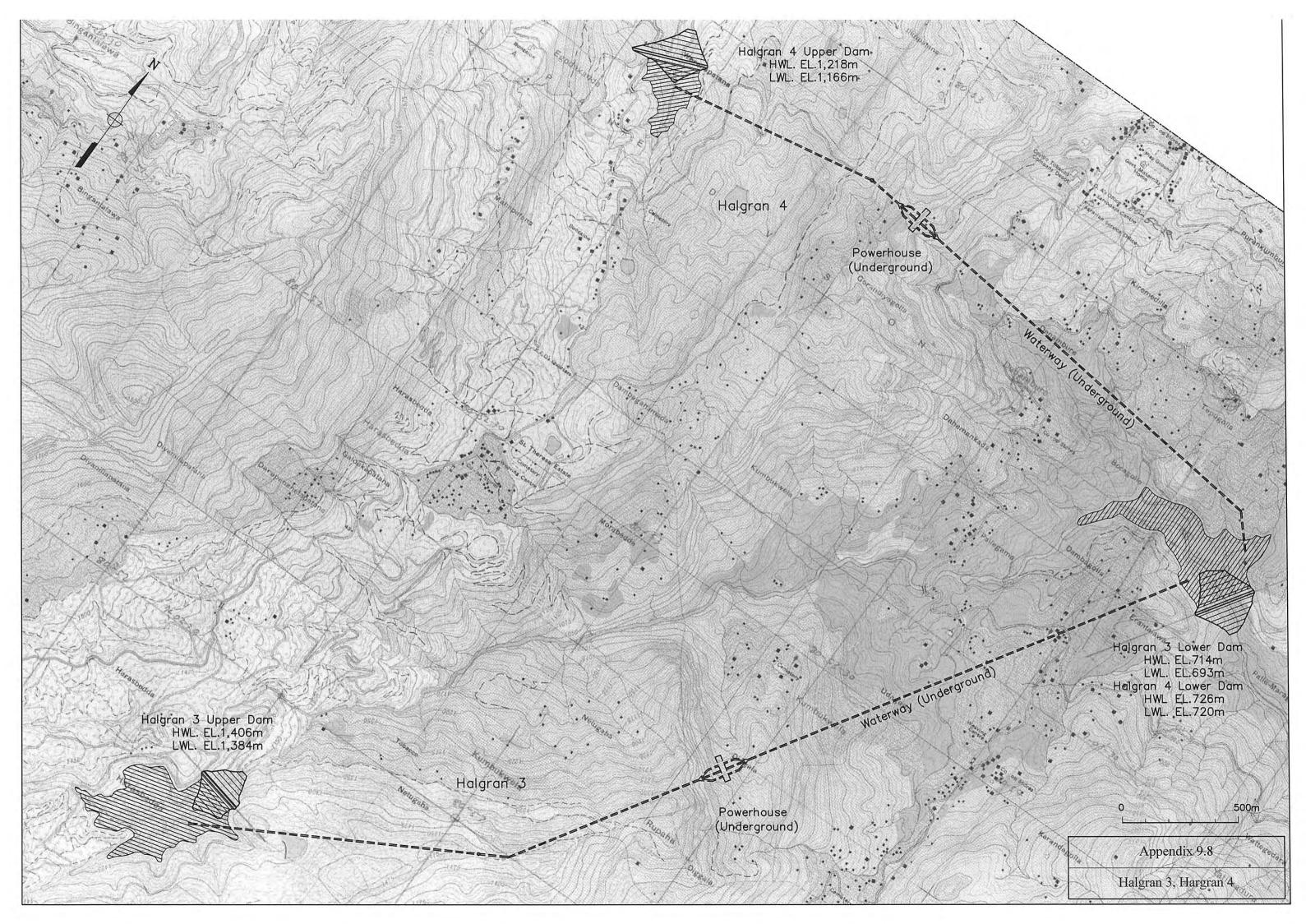
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1981	3.5	3.3	3.6	3.4	3.3	5.2	4.7	6.3	3.8	2.6	1.9	2.6
1982	3.2	3.0	3.0	2.5	3.2	5.0	5.5	3.7	3.7	1.6	2.0	1.9
1983	2.4	2.6	2.9	2.8	1.8	3.0	3.6	4.1	4.9	1.9	0.9	1.7
1984	1.4	2.0	1.2	0.9	0.8	4.6	3.7	2.6	1.4	1.5	1.4	1.0
1985	1.5	2.2	2.7	2.0	2.9	5.6	4.2	3.9	4.8	3.3	3.2	2.9
1986	2.9	3.1	3.2	2.7	3.4	6.1	6.5	4.9	4.0	2.0	2.6	3.0
1987	3.6	3.4	3.4	3.2	3.1	6.6	4.5	5.4	5.3	2.7	2.7	3.3
1988	3.2	2.1	0.9	0.8	0.8	3.1	2.4	2.5	2.3	0.5	NA	NA
1989	1.1	1.2	1.4	1.6	1.8	2.4	3.1	2.2	2.0	0.6	0.4	0.6
1990	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1991	NA	NA	NA	3.8	3.8	8.5	6.6	6.2	4.8	5.4	3.9	4.0
1992	4.5	4.5	5.0	4.4	4.6	8.0	6.0	6.4	4.2	4.6	3.6	2.8
1993	2.7	1.9	2.4	1.8	1.6	2.7	4.4	2.8	2.9	2.4	1.7	1.4
1994	1.3	1.5	1.8	1.5	2.5	3.2	3.3	2.5	2.4	1.4	0.7	0.7
1995	0.7	0.9	1.1	0.9	2.0	2.8	1.6	1.7	1.4	0.6	0.3	0.5
1996	0.4	0.5	0.6	0.2	0.6	4.1	2.7	0.9	2.4	0.9	0.2	0.3
1997	17.7	0.9	2.5	2.6	2.7	4.1	4.4	4.9	4.1	2.4	3.0	2.7
1998	3.4	3.6	3.5	3.2	3.4	6.0	5.5	3.7	4.7	3.6	2.8	2.8
1999	3.3	3.2	3.3	3.5	4.8	4.6	5.7	5.8	4.6	3.1	2.8	3.3
2000	3.4	3.1	3.4	3.0	3.2	5.6	6.5	6.5	3.7	3.2	3.2	3.4
2001	3.4	3.4	3.7	3.3	3.5	5.4	4.5	5.0	4.1	2.9	2.5	2.9
2002	3.1	3.5	3.7	3.2	3.9	5.2	5.5	5.6	4.4	3.3	2.8	3.5
2003	3.5	3.8	3.5	3.4	4.0	5.3	4.8	5.2	4.3	5.3	3.4	3.7
2004	4.0	3.8	4.0	3.4	5.4	6.5	5.2	5.6	4.0	3.3	3.1	3.4
2005	3.4	4.2	3.4	3.4	3.0	5.1	5.9	4.7	4.9	3.2	3.2	3.1
2006	3.7	3.9	3.5	3.1	3.9	4.4	5.4	5.3	6.3	3.4	2.8	3.4
2007	3.9	3.5	3.9	3.0	3.5	4.8	4.5	5.1	4.9	3.7	2.8	3.4
2008	3.0	3.4	3.6	NA	3.0	4.1	5.4	4.9	4.2	3.5	3.1	3.2
2009	3.8	3.7	3.4	3.1	3.9	5.4	5.4	4.8	4.5	3.9	3.3	3.0
2010	3.4	3.3	3.5	2.9	3.2	4.8	5.3	4.7	3.3	4.0	1.0	4.2
Average	3.4	2.8	2.9	2.6	3.0	4.9	4.7	4.4	3.9	2.8	2.3	2.6

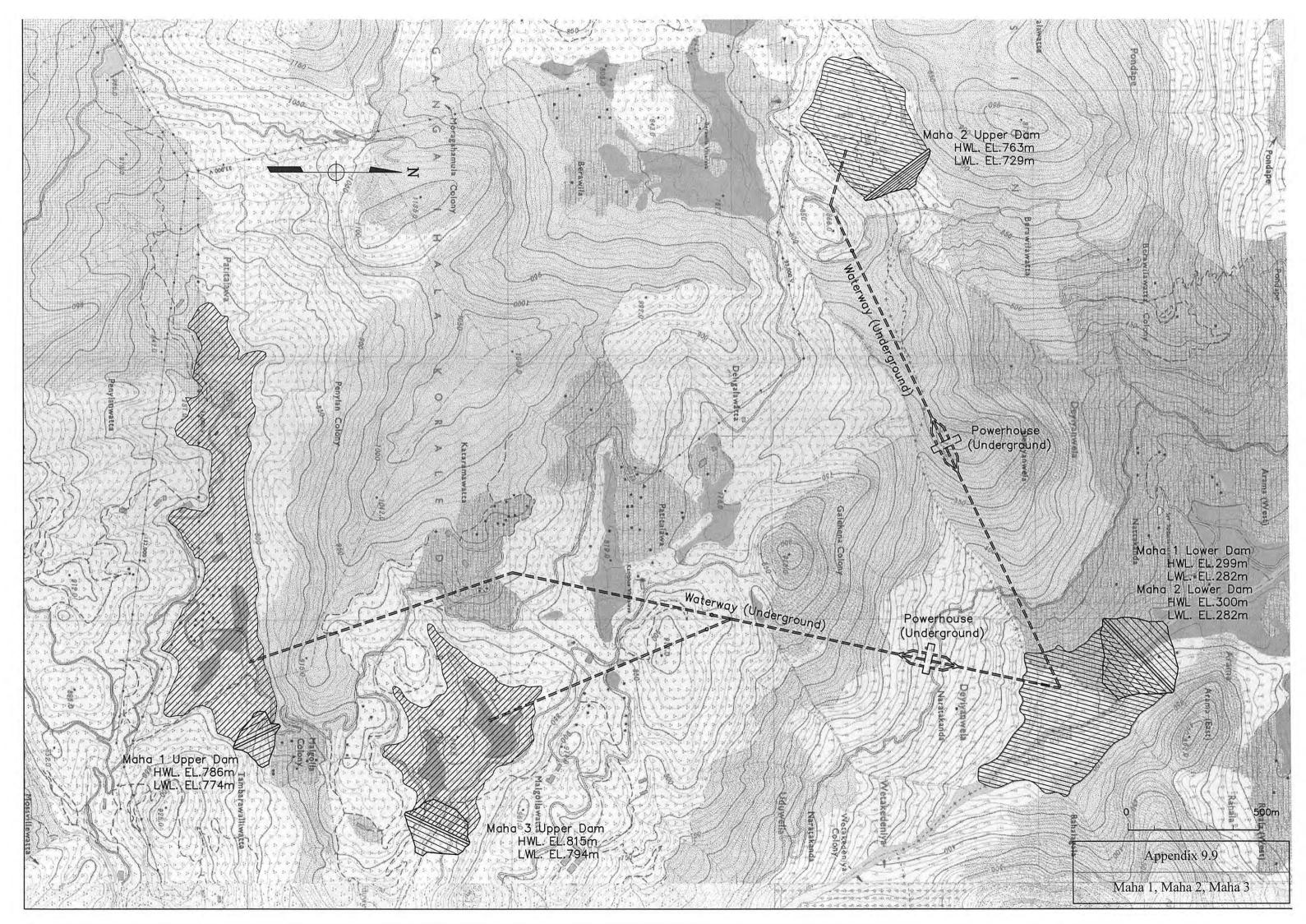

Sitaeliya

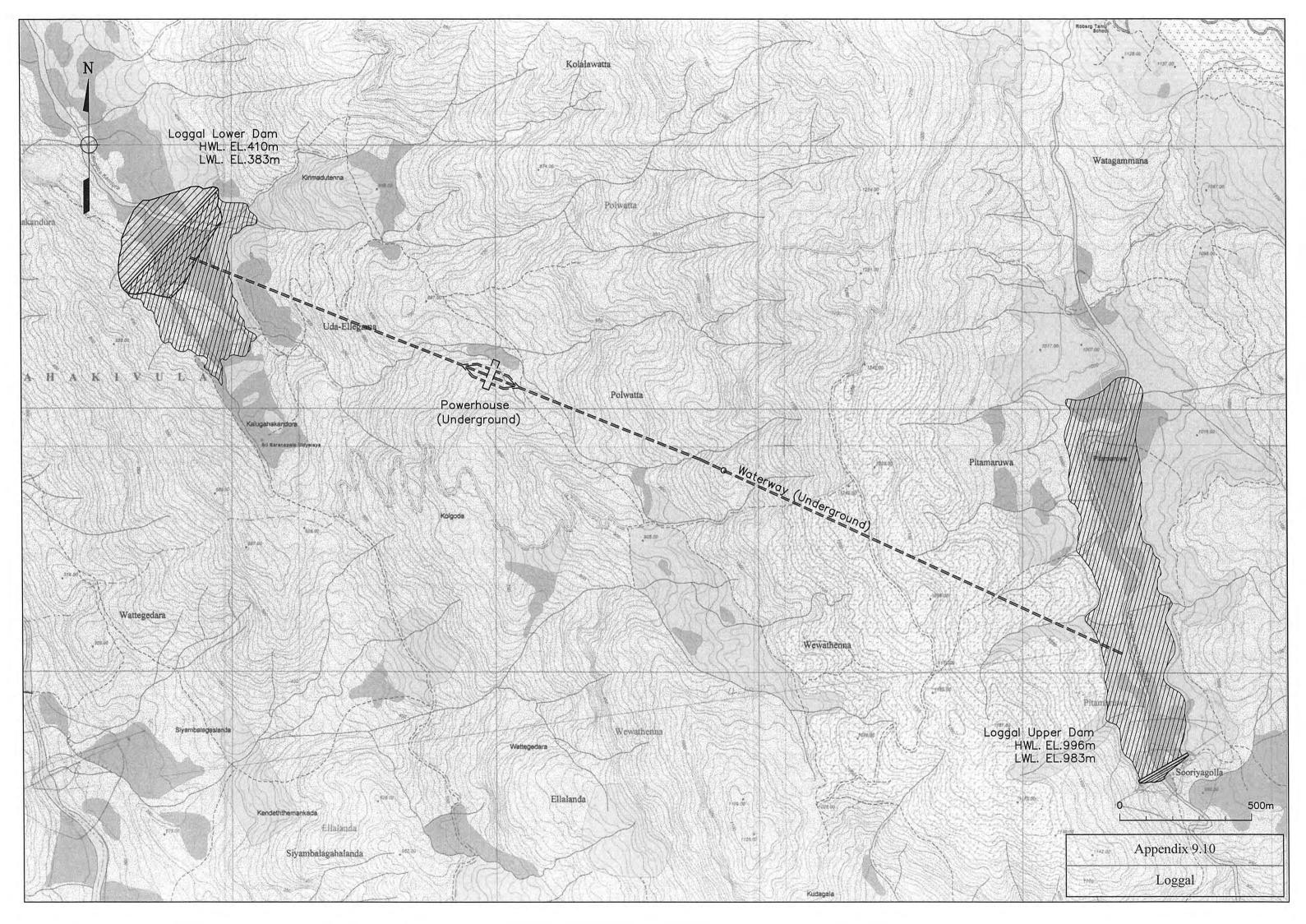

EVAPORATION - Monthly Mean (mm)

Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1981	3.22	4.17	3.33	3.76	4.28	XXX	XXX	2.70	XXX	XXX	XXX	XXX
1982	2.44	4.99	3.96	4.22	XXX	XXX	XXX	3.50	2.97	2.72	XXX	XXX
1983	2.60	5.10	5.00	5.10	2.90	3.10	3.79	2.86	2.87	3.60	2.60	2.20
1984	XXX	3.89	XXX	XXX	2.57	3.00						
1985	3.03	4.09	3.86	3.79	3.82	1.81	2.56	2.59	2.80	3.77	2.73	4.02
1986	2.70	2.78	3.60	2.50	3.43	3.45	3.15	3.77	2.07	2.87	3.43	2.90
1987	2.54	3.31	4.26	3.78	3.71	4.30	3.86	3.79	3.73	2.60	2.38	1.95
1988	2.66	3.38	3.46	3.87	3.26	3.05	2.72	2.44	3.59	3.00	3.08	2.60
1989	3.75	3.70	3.99	3.17	3.04	3.27	2.61	3.36	2.77	2.69	2.20	2.55
1990	3.61	2.05	2.75	3.29	2.93	2.48	2.70	2.89	2.78	XXX	2.97	XXX
1991	3.17	3.71	3.78	3.12	3.22	2.41	2.37	2.53	2.57	2.31	2.31	1.97
1992	2.63	4.51	5.29	4.21	2.93	2.67	2.05	2.65	2.32	2.98	2.43	2.29
1993	3.22	4.12	4.56	4.96	3.65	3.39	2.57	XXX	XXX	1.69	1.74	0.85
1994	1.71	2.88	3.71	XXX	2.78	2.28	2.08	2.15	2.03	1.91	1.74	0.85
1995	2.13	2.62	3.82	2.58	XXX	1.70	2.26	2.27	2.40	2.31	2.43	2.73
1996	XXX	XXX	4.11	2.54	3.51	2.65	1.77	1.61	2.08	2.98	1.66	1.93
1997	2.52	3.22	3.80	2.37	2.41	2.17	1.67	2.10	2.10	1.90	1.54	1.51
1998	1.83	2.86	4.31	3.65	2.71	1.98	1.73	1.92	1.74	1.75	1.66	1.54
1999	2.14	1.94	3.73	1.94	1.90	2.12	2.17	2.21	2.49	1.13	1.80	1.94
2000	1.84	2.03	3.23	2.94	2.50	1.56	2.46	1.51	2.09	2.13	2.02	1.21
2001	1.80	4.01	5.00	2.35	3.06	2.08	2.22	1.94	2.24	1.48	1.80	1.56
2002	2.36	2.78	4.06	2.73	2.83	2.70	2.20	2.18	3.18	2.01	1.99	1.67
2003	XXX	XXX	2.95	2.92	3.09	2.24	2.68	3.17	3.03	3.70	2.09	3.11
2004	2.74	3.22	3.95	3.53	2.91	2.74	2.65	3.35	2.52	2.63	1.92	2.20
2005	1.90	4.00	3.64	3.02	2.81	2.26	2.19	2.80	2.66	1.78	1.68	1.90
2006	2.45	2.87	3.29	3.02	2.09	3.09	2.52	2.49	2.37	2.45	1.97	1.64
2007	2.40	3.16	5.07	2.60	2.95	2.30	2.14	2.25	2.22	1.57	1.90	2.01
2008	2.53	2.83	2.18	3.00	2.69	1.93	2.26	2.21	3.07	2.08	1.99	2.03
2009	2.71	3.73	3.30	2.51	2.55	2.19	2.09	1.85	2.14	2.85	1.58	1.86
2010	2.86	4.07	4.18	2.76	3.77	3.26	**	**	**	**	**	1.30
Average	2.57	3.41	3.87	3.22	3.03	2.56	2.44	2.61	2.57	2.42	2.16	2.05


WIND SPEED - Monthly Mean (km/h)


Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1982	4.6	4.7	5.1	3.9	7.5	24.1	23.1	18.4	15.7	2.8	2.8	6.8
1983	6.2	5.2	5.0	5.8	6.8	17.1	16.5	21.3	18.7	10.2	7.1	5.3
1984	6.4	8.1	7.4	7.1	10.2	29.5	20.2	16.3	16.8	14.1	8.0	5.8
1997	5.9	5.9	6.6	4.5	6.4	9.4	16.9	16.7	10.2	4.9	5.1	7.0
1998	7.2	5.6	6.2	5.6	9.3	21.0	16.8	12.7	17.6	13.0	7.5	7.1
1999	8.1	7.5	7.0	11.5	16.6	17.1	21.0	15.7	12.5	13.0	6.2	7.1
2000	8.6	5.9	6.4	6.1	9.7	21.6	17.6	20.6	9.9	10.7	7.5	7.2
2001	6.9	6.9	6.5	5.2	11.8	21.7	15.7	18.0	13.8	11.0	5.9	6.9
2002	7.0	8.0	7.6	6.1	15.7	19.2	17.3	18.1	13.0	8.4	6.2	8.9
2003	7.1	7.5	6.2	5.4	10.7	14.3	15.1	16.0	14.2	13.0	9.5	6.9
2004	6.8	5.9	6.7	4.9	17.6	21.7	17.7	15.6	10.4	9.8	8.8	8.5
2005	6.3	8.8	4.9	7.4	7.2	17.7	5.1	12.5	17.4	10.1	6.2	6.8
2006	9.6	7.7	6.1	5.3	11.6	15.1	18.2	14.1	14.0	8.6	6.2	9.3
2007	10.2	5.7	7.9	5.9	9.0	16.1	15.7	14.4	16.9	12.3	4.3	7.2
2008	6.7	5.7	5.8	5.0	7.7	16.8	15.3	11.5	11.1	7.8	6.9	5.2
2009	7.2	6.0	6.2	6.1	14.0	17.2	16.6	12.6	15.2	8.6	5.6	6.0
2010	5.9	6.8	7.6	5.2	7.6	14.3	15.5	14.5	9.7	16.3	na	na
Average	7.4	6.7	6.5	6.0	11.1	17.4	16.0	15.2	13.3	10.5	6.6	7.2





Op Waterway (Underground) Powerho (Undergro Maussakelle A, B Upper Dam HWL, EL.1,823m LWL, EL.1,813m SRIPADA ADAVINA SANCTUA 1992 0 500m \$1832 Appendix 9.6 Maussakelle A, Maussakelle B

