The Republic of Panama Secretaría del Metro de Panamá

THE FEASIBILITY STUDY ON PANAMA CITY URBAN TRANSPORTATION LINE-3 PROJECT

Final Report (Summary)

September 2014

JAPAN INTERNATIONAL COOPERATION AGENCY

NIPPON KOEI CO., LTD. TONICHI ENGINEERING CONSULTANTS, INC. TOSTEMS, INC. NIPPON KOEI LAC CO., LTD.

The Republic of Panama Secretaría del Metro de Panamá

THE FEASIBILITY STUDY ON PANAMA CITY URBAN TRANSPORTATION LINE-3 PROJECT

Final Report (Summary)

September 2014

JAPAN INTERNATIONAL COOPERATION AGENCY

NIPPON KOEI CO., LTD. TONICHI ENGINEERING CONSULTANTS, INC. TOSTEMS, INC. NIPPON KOEI LAC CO., LTD.

Exchange Rate (October 2013)

- 1 Balboa (B/.)
- 1 Yen 1 US Dollar (US\$)
- 1 US\$

= 99.7 Yen (JPY) = 0.01003 Balboa = 99.7 Yen = 1 Balboa

- •This is an image of a bridge conceptual phase.
- It has possibilities of changing its appearance by future investigation. •This image is the copyright of JICA unless stated.
- This image is the copyright of JICA unless stated.
 All rights reserved.

•This is an image of a bridge conceptual phase. It has possibilities of changing its appearance by future investigation. •This image is the copyright of JICA unless stated. All rights reserved.

This is an image of a bridge conceptual phase.
It has possibilities of changing its appearance by future investigation.
This image is the copyright of JICA unless stated.
All rights reserved.

IN THE REAL PROPERTY AND A REAL PROPERTY OF A R

•This is an image of a bridge conceptual phase.

- It has possibilities of changing its appearance by future investigation. •This image is the copyright of JICAunless stated. All rights reserved.

This is an image of a bridge conceptual phase. It has possibilities of changing its appearance by future investigation.
This image is the copyright of JICA unless stated. All rights reserved.

This is an image of a bridge conceptual phase.
It has possibilities of changing its appearance by future investigation.
This image is the copyright of JICA unless stated.

All rights reserved.

Albrook Station

Standard Station

THE FEASIBILITY STUDY ON PANAMA CITY URBAN TRANSPORTATION LINE-3 PROJECT

FINAL REPORT (SUMMARY)

Table of Contents

Part 1 Project Necessity

Chapter 1	Outline of the Project1	-1
1.1 Bac	kground of the Project1	-1
1.2 Pro	ject Scope1	-1
1.3 Stu	dy Purpose1	-2
1.3.1	Urban Transportation Line-31	-2
1.3.2	4th Panama Canal Bridge1	-2
1.4 Stu	dy Scope1	-2
1.5 Sur	vey Area1	-3
1.6 Wo	rk Schedule 1	-4
Chapter 2	Necessity of the Project	-1
2.1 Cur	rent Situation and Issues of Urban Transportation Sector	-1
2.1.1	Socioeconomic Situation and Urban Development	-1
2.1.2	Transportation Network	-3
2.1.3	Public Transport	-3
2.1.4	Current Situation and Problems of Urban Transportation	-3
2.2 Poli	icies and Plans for the Urban Transportation Sector	-5
2.3 Inte	rnational Assistance in Transportation Sector	-5
2.4 Nec	essity of the Project	-5
2.4.1	Necessity of transport infrastructure crossing the canal	-5
2.4.2	Necessity of the 4 th Bridge Project	-6
2.4.3	Necessity of Urban Transportation Line-3	-6
2.5 Eva	luation of Alternatives	-6
2.6 Cor	clusion2	-6
Chapter 3	Demand Forecast	-1
3.1 Intr	oduction	-1
3.2 Der	nand Forecast of ACP's Pre-Feasibility Study	-1
3.3 Trat	ffic Surveys	-1
3.4 Soc	ioeconomic Framework	-2
3.4.1	Economic Growth Rate	-2
3.4.2	Population Projection	-2
3.4.3	Car ownership	-3
3.5 Der	nand Forecasting Model	-3
3.5.1	Traffic Volume crossing the Panama Canal	-3
3.5.2	OD Matrices	-4
3.5.3	Modal Share	-5
3.5.4	Demand of Panama Pacifico	-6
3.5.5	Transit Assignment	-6
3.5.6	Traffic Assignment	-6
3.6 Fut	ure Passenger Demand3	-7
3.6.1	Peak Hour Passenger Demand	-7
3.6.2	Daily Traffic	-8
3.6.3	Results of Traffic Assignment	-9

Chapter 4 Natural Conditions	
4.1 Geography	
4.2 Geography of Project Site	
4.3 Subsoil Conditions	
4.4 Climate	
4.4.1 Temperature	
4.4.2 Humidity	
4.4.3 Rainfall	
4.4.4 Wind	
4.5 Hydrology (Including Channel Bed Scouring)	
4.6 Earthquake	
···· 1	

Part 2 Project Implementation Plan of Metro Line-3

Chapter 5	System Selection
5.1 Rot	te Alternatives
5.1.1	Comparison items
5.1.2	Comparison method
5.1.3	Evaluation
5.2 Firs	t Screening
5.3 Mu	lti-criteria Analysis
5.3.1	System Selection Chart
5.3.2	Conditions and Method of Comparison
5.3.3	Comparison in a Radar Chart
5.4 Cor	nelusion
Chapter 6	Poute Dian 6.1
Chapter 0	Koule Flail
6.1 Kot	the Condition
6.2 KOL	Tenegraphical Conditions 6.1
6.2.1	Coographical Conditions
6.2.2	Utilities
0.2.3	Ulludes
0.2.4 6.2.5	Hydrological Condition 6.5
0.2.3	ion L continu
0.5 Stat	ion Location
Chapter 7	Project Design
7.1 Alig	gnment7-1
7.2 Rol	ling Stock7-2
7.2.1	Transportation Capacity7-2
7.2.2	Specifications of Rolling Stock
7.2.3	RAMS
7.3 Trai	in Operation Plan
7.3.1	Preconditions of Examination
7.3.2	Train Operation Plan
7.4 Civ	il Structure
7.4.1	Basic policy
7.4.2	Applicable Design Standards
7.5 Gui	deway Structures
7.5.1	Super Structure
7.5.2	Substructures
7.5.3	Foundation7-11
7.5.4	Switch Bridges

7.5.5	Other facilities on the track	7-12
7.5.6	Design Loads	7-12
7.6 St	ation	7-14
7.6.1	Station equipment	7-14
7.6.2	Station Geometry	7-15
7.6.3	Barrier free and universal design	7-15
7.6.4	Structure of the stations	7-15
7.6.5	Platform	7-16
7.6.6	Platform Screen Door (PSD)	7-17
7.6.7	Automatic Fare Collection	7-18
7.7 In	termodal Facilities	7-20
7.7.1	Statioin Type	7-20
7.7.2	Universal Design in the Intermodal Facility area	7-20
7.7.3	Development Approach for Intermodal Facility	7-20
7.8 D	epot	7-24
7.8.1	Depot Size and Location	7-24
7.8.2	Depot and Workshop	7-24
7.9 Pe	ower Supply	7-27
7.9.1	Power Supply System in Panama	7-27
7.9.2	Transmission Line System	7-27
7.9.3	Traction Power Feeding System Plan	7-27
7.9.4	Contact Line System	7-28
7.9.5	Utility Power supply	7-28
7.9.6	Lightning Protection	7-31
7.10 Si	gnaling System	7-32
7.11 Te	elecommunication	7-34
Chapter 8	Project Implementation Plan	
8.1 E	ngineering Service	8-1
8.2 L	and Acquisition	8-1
8.3 Pi	oject Cost Estimate	8-1
8.3.1	Cost Estimate Conditions	
8.3.2	Cost Estimate Results	
8.4 C	onstruction Plan	
8.4.1	Substructure	
8.4.2	Superstructure	
8.4.3	Installation of Electric Power, Signal and Communications Systems	
8.4.4	Traffic Management Plans and Safety Management Plans during Construction .	
8.4.5	Procurement of Materials and Equipment	8-6
8.4.6	Consulting Services	
8.4.7	Construction Schedule	
8.5 Pi	ocurement Package	8-10
8.6 Pi	ıblic-Private Partnership	8-11
8.7 In	plementation Schedule	8-13
Chapter 9	Institution and Organization	9-1
9.1 In	nplementation Structure	9-1
9.2 In	nplementation Organization	9-1
9.2.1	Implementation Organization for the Project	9-1
9.2.2	Finance and Budget Structure	9-1
9.2.3	Technical Level	9-1
03 0		
9.5 0	&M Organization	9-1
9.3.1	&M Organization Concept of O&M Organization	9-1 9-1

9.4.1	Precondition for Operation and Maintenance Plan	9-2
9.4.2	Organization and Personnel Plan	9-3
9.4.3	Maintenance Plan	9-3
9.4.4	Estimation of O&M Cost	

Part 3 Project Implementation Plan of 4th Panama Canal Bridge

Chapter 10	Comparison Study on Bridge Planning	10-1
10.1 Scre	eening of Main Bridge Type for 4th Panama Canal Bridge	10-1
10.1.1	Objective	10-1
10.1.2	Preconditions	10-1
10.1.3	Selection of Alternative Main Bridge Type	10-2
10.1.4	Screening Method	10-5
10.1.5	Evaluation Results and Conclusion	10-7
10.2 Stud	dy of Platform Plan for 4th Panama Canal Bridge	10-8
~		
Chapter 11	Preliminary Road Design	11-1
11.1 Obj	ective	11-1
11.2 Stud	dy Items	11-1
11.3 Ger	heral Condition of the Route	11-2
11.3.1	General condition of the Route	11-2
11.3.2	Existing Traffic Condition	11-2
11.3.3	Obstacles	11-2
11.4 Col	lection and Review of Existing Material	11-4
11.4.1	Collection of Existing Materials	11-4
11.4.2	Proposal of Road Alignment	11-4
11.5 Prel	liminary Design	11-5
11.5.1	Design Conditions	11-5
11.5.2	Preliminary Design	11-6
11.5.3	Revisions and Proposals based on the Pre-F/S	11-10
11.6 Cor	ncept Design	11-11
11.6.1	Study of the Concept Design	11-11
11.6.2	Micro Simulation	11-13
~		
Chapter 12	Preliminary Bridge Design	12-1
12.1 Obj	ective	12-1
12.2 Iten	ns included in the Preliminary Design	12-1
12.3 Res	ults of Preliminary Design	12-1
12.4 Plar	nning Conditions and Design Criteria	12-2
12.4.1	Planning Conditions	12-2
12.4.2	Design Standards and Criteria	12-3
12.5 Prel	liminary Designs of Bridge Structures	12-4
12.5.1	Main Bridge	12-4
12.5.2	Access Bridges to the Bridge of the Americas	12-24
12.6 Brid	lge Ancillary Works	12-25
12.6.1	Expansion Joint	12-25
12.6.2	Bearings	12-26
12.6.3	Sidewalk	12-26
12.6.4	Maintenance Walkways	12-26
12.6.5	Paint (weathering steel)	12-26
12.7 Dra	wings and Work Quantities of Preliminary Design	12-27
12.8 Pen	ding Studies for the D/D	12-27

Chapter 13 13.1 Obj	Preliminary Electrical and Mechanical Design	
13.2 Stu	dy Items	13-1
13.3 Stu	dy Results	
13.3.1	Selection of Necessary Equipment for the Project	
13.3.2	Coordination with the Metro Line-3 Project	
13.3.3	Equipment Plan	
13.3.4	Preliminary Designs	
13.3.5	Utility Installation Plan (Out of the Scope of the Project)	
13.3.6	Plan for Relocating Existing Utilities	
13.3.7	Drawings of Preliminary Designs and Estimated Work Quantities	
13.4 Cor	iclusion	
Chapter 1/	Preliminary Operation and Maintenance Plan	14-1
14.1 Obi	ective	
14.1 00j 14.2 Stu	dv Items	14-1
14.2 Stu	vav Rasulte	
1/31	Summary of Survey Results	
14.3.1	Preliminary Operation and Maintenance Plan	
14.3.2	Outline of the Operation Maintenance and Management System	
14.3.3	Draliminary Maintenance Dan	
14.3.4	r remininary Mannenance Flan	
14.4 COI		14-7
Chapter 15	Preliminary Construction Planning and Project Cost Estimate	15-1
15.1 Prel	iminary Construction Planning	
15.1.1	Summary	15-1
15.1.2	Related Regulation and Standards	15-1
15.1.3	Contract Packaging	
15.1.4	Procurement of Labor, Material and Equipment	
15.1.5	Construction Method	
15.1.6	Temporary Facilities	
15.1.7	Construction Schedule	
15.1.8	Traffic Management and Safety Management during Construction Period	
15.1.9	Conclusion	
15.2 Prel	iminary Project Cost Estimate	
15.2.1	Objective	
15.2.2	Study Items	
15.2.3	Related Laws and Regulations	
15.2.4	Conditions of the Cost Estimate	
15.2.5	Methodology of Cost Estimate	
15.2.6	Unit Costs	
15.2.7	Preliminary Project Cost	
15.2.8	Conclusion	15-18
15.3 Prel	iminary Operation and Maintenance Cost	
15.3.1	Objective	15-18
15.3.2	Preliminary Operation and Maintenance Cost	
15.3.3	Environmental Monitoring Cost	
15.3.4	Conclusion	15-18
01 11		
Chapter 16	Comparison Study between the Pre-F/S Option and the JICA Study Option.	
16.1 UDJ	onary of Praliminary Design Desults	10-1 16 1
10.2 SUII 1601	III a y of i reminiary Design Results	10-1 16 1
16.2.1	Pre-F/S Ontion	10-1 16 1
10.2.2	110-175 Option	

 16.3 Comparison Study between the Pre-F/S Option and the JICA Study Option	
Chapter 17 Implementation Plan	
17.1 Project Components	17-1
17.1.1 Scope of Construction Works	
17.1.2 Relocation of Existing Utilities	
17.2 Demarcation between Metro Line-3 and 4th Panama Canal Bridge	
17.3 Fund Procurement Plan	
17.4 Project Implementation Structure	
17.4.1 Project Implementation Organizations	
17.4.2 Financial and Budgetary Status and Technical Level of the Executing Agency	· 17-3
17.4.3 Financial and Budgetary Status and Technical Level of the Maintenance Age	ncy 17-3
17.5 Procurement Plan	
17.5.1 Procurement of the Consultant	
17.5.2 Procurement of the Construction Contractor(s)	
17.6 Implementation Schedule of the 4th Panama Canal Bridge Project	
17.7 Other Items to be Implicated	

Part 4 Project Impacts

Chapter 18	Project Impacts	
18.1 Gre	enhouse Gas Emissions Reductions	
18.2 Ope	eration and Effect Indicators	
18.3 Qua	alitative Impacts	
18.4 Ecc	onomic Analysis	
18.5 Fin	ancial Analysis	
Chapter 19	Environmetnal and Social Considerations	
_		
Chapter 20	Introduction of Applicable Japanese Technology	
20.1 Ger	neral	
20.2 Me	tro Line-3 Project	
20.2.1	Battery Power System (BPS) for Railway	
20.3 4th	Panama Canal Bridge Construction Project	
20.3.1	Steels for Bridge High Performance Structure (SBHS)	
20.3.2	Advanced Weathering Steel (Nickel Type)	
20.3.3	Steel Pipe Sheet Pile (SPSP)	
20.3.4	Low-position Lighting	
Chapter 21	Conclusions and Recommendations	
21.1 Cor	nclusions	
21.2 Rec	commendations on Project Implementation Stage	
21.2.1	Urban Transport Line-3	
21.2.2	4th Panama Canal Crossing Bridge	
21.3 Rec	commendations on Project Operation Stage	
21.3.1	Urban Transportation Line-3	
21.3.2	4th Panama Canal Bridge	
	č	

LIST OF TABLES

Table 2.1	Population breakdown of Panama	
Table 2.2	Donor Approval of loans to Panama in the last 5 years (cumulative)	
Table 3.1	Population Projection	
Table 3.2	No. of Vehicles per 1000 inhabitants (Projection)	
Table 3.3	Estimation of Passenger Volume from West to East	
Table 3.4	Estimation of Passenger Volume from East to West	
Table 3.5	Intermediate Year Forecast of Panama Pacifico Traffic	
Table 3.6	Network Scenarios	
Table 3.7	Projection of Future Truck Traffic (No. of Vehicles per Day)	
Table 3.8	Forecast of Peak Hour Traffic	
Table 3.9	Daily Boarding Passengers by Station (Full Development Case)	
Table 3.10	Daily Boarding and Alighting Passengers by Station (Phase-1 Case)	
Table 3.11	Result of Demand Forecast (Population High Projection)	3-11
Table 3.12	Results of Demand Forecast - 4th Bridge (No. of Vehicles per day)	3-12
Table 5.1	Evaluation Grades and Coefficients	
Table 5.2	Route Selection Comparison Table	
Table 5.3	First System Screening Chart	
Table 5.4	System Comparison Chart	
Table 6.1	Bearing Layer Depths Determined Based on Geotechnical Investigation	6-4
Table 6.2	The List of Authorities Related to Public Utilities	6-4
Table 6.3	Station Location	6-6
Table 7.1	Principal Specifications	7-3
Table 7.2	Required Train Operation Time and Commercial Speed (After 2025)	7-6
Table 7.3	Calculation of Train Operation Plan at Peak Hour (East and West Section)	7-7
Table 7.4	Calculation Result of the required Number of Train-sets/Cars	7-7
Table 7.5	Train Operation Frequency/Headway of a Whole Day (2020-2050)	7-8
Table 7.6	Axle Loads	7-13
Table 7.7	Installation of AFC gates	7-19
Table 7.8	Proposed Plan for Intermodal Facility for each Station	
Table 7.9	Summary of the Basic Concepts of the Project's Signaling System	
Table 7.10	Design standards	7-34
Table 8.1	Land Acquisition Summary	
Table 8.2	Cost estimate conditions	
Table 8.4	Construction costs	
Table 8.4	Consulting services	
Table 8.5	Proposed process for civil works	
Table 8.6	Construction schedule	
Table 8.7	Comparison of Project Scheme Alternatives	8-12
Table 9.1	Calculation Results for the Number of Personnel in Line-3 (Phase1)	9-3
Table 9.2	Overview of Inspection/Maintenance of Track facilities, Railway struc	tures and
Statio	n equipment	9-4
Table 9.3	Overview of Inspection/Maintenance (Repair) of Electrical Equipment	9-4
Table 9.4	Summary of Total O&M Cost	
Table 10.1	Preconditions of Bridge Plan	10-1
Table 10.2	Applicable and Maximum Span Lengths for Each Bridge Type	10-2
Table 10.3	Selected Alternatives and Reasons	10-3
Table 10.4	Bridge Elements	10-4
Table 10.5	Evaluation Items and Weighting	10-5
Table 10.6	Evaluation Criteria	10-6
Table 10.7	Evaluation Results	10-7
Table 10.8	Summary of Study Results of Platform Plan (Main Bridge of 4th Pana	ma Canal

Bridge))	
Table 11.1	Measures for the obstacles	11-2
Table 11.2	Crossing Condition (East Side of 4th Panama Canal Bridge)	
Table 11.3	Summary of the Navigation Channel	11-3
Table 11.4	Summary of the Civil Aviation Requirements	
Table 11.5	List of Collected Materials	
Table 11.6	Summary of Running Speed and Grades	
Table 11.7	Proposed Revised Value Corresponding to Pre-F/S	
Table 11.8	Geometric Design Standard (Preliminary Design)	
Table 11.9	Cross Section Elements of Approach Roads (Preliminary Design)	
Table 11.10	Summary of the Results of Preliminary Design	11-10
Table 11.11	Summary of the Results of Concept Design	11-11
Table 11.12	Design Condition of Ramps (Concept Design)	11-12
Table 11.13	Average Simulated Speed of Each Case	11-14
Table 12.1	Summary of Preliminary Bridge Design Results	
Table 12.2	Pier Locations and reasons for the Decision	
Table 12.3	Designated Points for Stress Calculation	
Table 12.4	Analysis Conditions	
Table 12.5	Structure Types by Span Lengths	12-16
Table 12.6	Pier Types	
Table 12.7	Conjunction Points with Metro Line 3	
Table 12.8	Locations of Viaduct Abutments	
Table 12.9	Most Favorable Span Length by Pier Heights	12-17
Table 12.10	Bridge Lengths and Span Arrangements	12-17
Table 12.11	Abutment Locations (Flyover)	
Table 12.12	Bridge Length and Span Arrangements of Flyovers	
Table 12.13	Abutment Locations	
Table 12.14	Summary Table of Expansion Joints	12-25
Table 12.15	Summary of Bearings	12-26
Table 15.1	Superstructure Erection Methods (Main Bridge of 4th Panama Canal Bridge	dge) 15-3
Table 15.2	Technical Risk Analysis of the Superstructure (Arch Rib) Erection (Main	n Bridge of
4th Pan	ama Canal Bridge)	
Table 15.3	Risk Items and Countermeasures	
Table 15.4	Construction Yard Area	15-12
Table 15.5	Conditions of Cost Estimate	15-14
Table 15.6	Preliminary Project Cost and Annual Disbursement (Using the Navigatio	n Channel)
		15-16
Table 15.7	Preliminary Project Cost and Annual Disbursement (Without Using the	Navigation
Channe	el)	
Table 15.8	Preliminary Project Cost	15-18
Table 15.9	Preliminary Operation and Maintenance Cost	15-18
Table 16.1	Summary of Preliminary Design Results of Arch Bridge (JICA Study)	
Table 16.2	Summary of Preliminary Design Results of Cable-stayed Bridge (Pre-F/S	5)16-3
Table 16.3	Risk Cost (Main Bridge of 4th Panama Canal Bridge)	
Table 16.4	Both Options after Adjustment of Comparison Conditions	
Table 16.5	Comparison Study Results	
Table 17.1	Scope of Construction Works	
Table 18.1	CO ₂ Reduction by the Project	
Table 18.2	Operation Indicators	
Table 18.3	Targets of Economic Analysis	
Table 21.1	Project Cost	

LIST OF FIGURES

Figure 1.1	Survey area for route study	1-3
Figure 2.1	Annual GDP (current USD) of Panama	2-1
Figure 2.2	Map of Urbanized Areas and Main Roads	2-2
Figure 2.3	Metro Plan	2-3
Figure 2.4	Congested conditions during morning peak hour on the Pan-American Highway	2-4
Figure 2.5	Number of Registered Vehicles by year	2-4
Figure 3.1	Traffic Zoning System.	3-4
Figure 3.2	Flow for making the OD Matrix	3-5
Figure 3.3	Section Traffic for Peak Direction	3-8
Figure 5.1	Route Alternatives	5-1
Figure 5.2	Radar Chart comparison between monorail and MRT	5-6
Figure 6.1	Outline of Line-3 Route	6-1
Figure 6.2	Satellite image, profile outline and photos along the first half of the project route	e.6-2
Figure 6.3	Satellite image, profile outline and photos along the last half of the project route	6-3
Figure 7.1	Car Dimensions and Seat arrangement of "Long Seat Type"	7-2
Figure 7.2	Seat arrangement of "Semi-cross Seat Type"	7-2
Figure 7.3	Arrangement of Major Equipment	7-4
Figure 7.4	Track Layout Plan at Stations of Line 3 (Phase 1)	7-5
Figure 7.5	Cross Section of pre-stressed concrete girder (L=25m)	.7-10
Figure 7.6	Cross Section of Steel Girder Bridge (L=50m)	.7-10
Figure 7.7	Typical Cross Section of Monorail Piers	. 7-11
Figure 7.8	Typical Cross Section of a Monorail Viaduct Portal Type Pier	. 7-11
Figure 7.9	Profile and Cross Section of a Monorail switch bridge	.7-12
Figure 7.10	Axle arrangement	.7-13
Figure 7.11	Cross section of Station (Platform)	.7-16
Figure 7.12	Road Cross Section at Station	.7-16
Figure 7.13	Station Layout	.7-17
Figure 7.14	Platform Screen Door System	.7-18
Figure 7.15	Entry/Exit Gates	. 7-18
Figure 7.16	Representative example of Major Interchange Station	.7-21
Figure 7.17	Representative example of Exchange Station	.7-21
Figure 7.18	Representative example of a Park and Ride Station	. 7-22
Figure 7.19	Target Area for Land Acquisition	. 7-22
Figure 7.20	Depot Candidate Sites	. 7-24
Figure 7.21	Depot Layout	. 7-25
Figure 7.22	Workshop Layout	.7-26
Figure 7.23	Transmission Line System Plan	. 7-29
Figure 7.24	Feeding System Diagram	.7-30
Figure 7.25	Alternative Plans of Overhead Ground Wire and Protection Area	. 7-31
Figure 7.26	Schematic Diagram of Signaling System	.7-33
Figure 7.27	Outline of Track Layout for Metro Line-3	.7-33
Figure 8.1	PC beam erection	8-5
Figure 8.2	Beam transport by cranes and by beam transport and erection machine	8-5
Figure 8.3	Maintenance vehicle	8-6
Figure 8.4	Implementation Schedule	. 8-14
Figure 9.1	Organizational Structure of Monorail Operator (Recommendation)	9-2
Figure 9.2	Total O&M Cost and Number of Staffs)	9-5
Figure 10.1	Evaluation Items and Weighting	. 10-5
Figure 10.2	Radar Chart (Evaluation Results)	. 10-7
Figure 11.1	Location Map of the Design Road	. 11-1
Figure 11.2	Project Road Plan (Preliminary Design)	. 11-9
Figure 11.3	Project Road Profile (Preliminary Design)	. 11-9

Figure 11.4	Typical Cross Section, Earth work (6 lanes) (Preliminary Design)	11-9
Figure 11.5	Typical Cross Section, Retaining Wall (4 lanes) (Preliminary Design)	11-9
Figure 11.6	Layout of the Concept Design (East Side)	11-12
Figure 11.7	Layout of the Concept Design (West Side)	11-13
Figure 11.8	Network Models applied to Micro Simulation (Existing and Future)	11-14
Figure 12.1	Scope of application for SBHS500	
Figure 12.2	Typical Cross Sections of Main Bridge (Arch Bridge)	12-6
Figure 12.3	Span Arrangement of Main Bridge (Arch Bridge)	
Figure 12.4	Designated Points for Stress Calculation	12-9
Figure 12.5	Designed Sections based on the Stress Calculation	12-10
Figure 12.6	Outcomes of the Substructure and Foundation Designs (1/2)	12-12
Figure 12.7	Modeling of cross point between the arch-rib and the stiffening girder	12-14
Figure 12.8	Analysis Model	12-14
Figure 12.9	Results of the FEM analysis CASE3	12-15
Figure 12.10	Span arrangement of the West Bank Approach Viaduct No.2	12-18
Figure 12.11	Typical Cross Section of Approach Viaduct	12-18
Figure 12.12	Portal Rigid Frame for the Combined Section of Metro Line 3 and	Approach
Viaduct	~	12-19
Figure 12.13	Cantilever type Piers at the Independent (Separate) Section	12-19
Figure 12.14	Span Arrangement of Flyover No.1	12-21
Figure 12.15	Span Arrangement of Flyover No.2-1	12-21
Figure 12.16	Span Arrangement of Flyover No.2-2	12-21
Figure 12.17	Typical Cross Sections of Flyovers	12-22
Figure 12.18	Cross Sections of Cantilever Type Piers for Flyovers	12-23
Figure 12.19	Typical Cross Section of Access Bridges to the Bridge of the Americas	12-24
Figure 12.20	Typical Pier Section of Access Bridges to the Bridge of the Americas	12-25
Figure 15.1	Construction Sections	
Figure 15.2	Erection Procedure of Main Bridge of 4th Panama Canal Bridge using I	Navigation
Channel.		15-3
Figure 15.3	Erection Plan of Arch Rib (Lifting Method)	
Figure 15.4	Erection Plan of Stiffening Girders for Median (Cantilever Erection)	15-6
Figure 15.5	Erection Plan of Stiffening Girders for Side Brackets (Cantilever Erection	on) 15-6
Figure 15.6	Erection Plan of Arch Rib (using Cable Cranes with Oblique Hang)	15-7
Figure 17.1	Demarcation between the two Projects (Metro Line-3 Project, 4th Pan	ama Canal
Bridge Pi	roject)	
Figure 17.2	Project Implementation Scheme	
Figure 17.3	Project Implementation Schedule for the Case of "Using" the Navigation	on Channel
(Arch-Ri	b Lifting Method)	
Figure 17.4	Project Implementation Schedule for the Case of "Without" Using the I	Navigation
Channel	(Cable Erection Method)	
Figure 18.1	Fare Revenue Projection	
Figure 20.1	Components using SBHS in the Project (Main Bridge of the 4th Pana	ama Canal
Bridge)		

ABBREVIATIONS

Abbreviation	Official Term
AASHTO	American Association of State Highway and Transportation Officials
ABEI	Central American Bank for Economic Integration
ACP	Autoridad del Canal de Panama
AFC	Automatic Fare Collection
AGT	Automated Guideway Transit
AMP	Panama Maritime Authority
ANA	National Customs Authority
ANAM	Autoridad Nacional del Ambiente
ANAPYME	Authority of Macro, Small and Medium Enterprises
ANATI	Autoridad Nacional de Administración de Tierras
AP	Autopista
ARAP	Autoridad de Recursos Acuáticos de Panamá
ASCE	American Society of Civil Engineers
ASTER	Advanced Spaceborne Thermal Emission and Reflection Radiomete
ATO	Automatic Train Operation
ATP	Automatic Train Protection system
ATS	Automatic Traffic Supervision system
ATT	Autridad del Transito y Transporte Terrestrede Panama
	Add Value Machine
	Basic Design
BBA	British Bankers Association
	Paginning Doint
DF BDT	Bug Danid Transit
BTN	Backhone Transmission Network
BTO	Build Transfer Operate
CAF	Corporation Andina de Fomento
CAP	Corrective Action Plan
CBTC	Communication Based Train Control
CCR	Central Control Room
CCTV	Closed Circuit Television
CDM	Clean Development Mechanism
CELADE	Latin America Demographic Center
CGP	Panamanian General
CO2	Carbon dioxide
COD	Chemical Oxygen Demand
CPS	Country Partnership Strategy
CTC	Centralized train control
D/D	Detailed Design
DC	Direct Current
DDR	Due Diligence Report
E&M	Electric and Mechanical
EED	Emergency Escape Door
EIA	Environment Impact Assessment
EIB	European Investment Bank
EIRR	Economic Internal Rate of Return

EL	Elevation Level
EMP	Environmental Management Plan
EN	Exchange of Notes
ENA	Empresa Nacional de Autopistas
EP	End Point
ESAL	Equivalent Single Axle Load
ESIA	Environmental and Social Impact Assessment
ESMP	Environmental and Social Management Plan
F/S	Feasibility Study
FC	Foreign Currency
FEM	Finite Element Method
FHWA	Federal Highway Administration
FIRR	Financial Internal Rate of Return
FP	Fixed Screens
GDP	Gross Domestic Product
GIS	Geographic Information System
GOP	The Government of Panama
GPS	Global Positioning System
GPS	Global Positioning System
HDI	Human Development Index
HDM	Highway Design and Maintenance Standards Model
IALA	International Association of Lighthouse Authorities
IBRD	International Bank for Reconstruction and Development
IC	Integrated Circuit
ICB	International Competitive Bidding
IDB	Inter-American Development Bank
IDC	Interest During Construction
IDDAN	Instituto de Acueductos y Alcantarillados Nacionales
IEC	Integrated Electric Control
IEE	Initial Environmental Examination
IL	Interlocking System
INEC	National Institute of Statistics and Census
IP	Internet Protocol
IR	Inductive Radio
ITBMS	Impuesto a las Transferencias de Bienes Corporales Muebles y la Prestacion de Servicios
IUCN	International Union for Conservation of Nature
JICA	Japan International Cooperation Agency
JIS	Japanese Industrial Standards
LC	Local Currency
LCC	Life Cycle Cost
LCD	Liquid Crystal Display
LCX	Leakage Coaxial Cable
LF	Low Frequency

LIBOR	London InterBank Offered Rate
LMA	Limit of Moving Authority
LRFD	Load and Resistance Factor Design
LRT	Light Rail Transit
Maglev	Magnetic levitation
MEF	Ministry of Economy and Finance
METI	Ministry of Economy, Trade and Industry
MIDES	Ministry of Social Development
MIGA	Multilateral Investment Guarantee Agency
MITRADEL	Ministry of Works and Labor Development
MLWS	Mean Low Water Spring
МОР	Ministry of Public Works
MRT	Mass Rapid Transit
MSD	Manual Secondary Door
NPV	Net Present Value
O&M	Operation & Maintenance
OCC	Operation Control Center
OD	Origin and Destination
OSHA	Occupational Safety & Health Administration
P/Q	Pre Qualification
РА	Panamericana
PAS	Public Addressing System
PC	Pre-stressed Concrete
PCDP	Public Consultation and Disclosure Plan
PCRC	Panama Canal Railway Company
PGA	Peak Ground Acceleration
PHPDT	Peak Hour Peak Direction Traffic
PIDS	Information Display System
PIS	Passenger Information System
PPIAF	Public-Private Initiative Advisory Facility
PPP	Public Private Partnership
Pre-F/S	Pre-Feasibility Study
PSC	Public Sector Comparator
PSD	Platform Screen Door
PTS	Pentax Total Station
PVC	Polyvinyl Chloride
PWS	Parallel Wire Strand
RAMS	Reliability, Availability, Maintainability and Safety
RAP	Resettlement Action Plan
RC	Reinforced Concrete
REP	Reglamento de la Construccion Panama
RoW	Right of Way
RQD	Rock Quality Designation
RSS	Receiving SubStations

S&C	Signaling and Telecommunication equipment
SBHS	Steel for Bridge High Performance Structures
SCADA	Supervisory Control and Data Acquisition system
SCR	Station Control Room
SDH	Synchronous Digital Hierarchy
SFRL	Social and Fiscal Responsibility Law
SIV	Static Inverter
SMP	Secretaria del Metro de Panama
SP	Stated Preference
SPF	Shadow Pricing Factor
SPT	Standard Penetration Test
SR	Space Wave Radio
SRAP	Strategic Resettlement Action Plan
STM	Synchronous Transport Module
TD	Train Detection System
ТОМ	Ticket Office Machine
ToR	Terms of Reference
TSS	Transmission SubStation
TTC	Travel Time Cost
TVM	Ticket Vending Machine
UABR	Administrative Unit of Reverted Properties
UAS	Environmental Sectrial Unit
UHF	Ultra High Frequency
UTM	Universal Transverse Mercator
UTO	Un-attendant train Operation
VCR	Vertical Curve Radius
VFM	Value For Money
VHF	Very High Frequency
VOC	Vehicle Operating Cost
VOT	Value of Time
VVVF	Variable Voltage Valuable Frequency
WACC	Weighted Average Cost of Capital
WGS84	World Geodetic System 84 (1984)

Chapter 1 Outline of the Project

1.1 Background of the Project

Traffic congestion in Panama City, the capital of the Republic of Panama, and surrounding areas has become worse year by year due to the rapid increase in the number of cars following high economic growth of the country. To alleviate this problem, in 2009, the Government of Panama established the "Secretaria del Metro de Panama" (SMP) under the Presidential Office, and SMP has drawn up a metro network plan consisting of four metro lines. Line-1, Line-2 and Line-4 are planned within Panama City, while Line-3 is planned for the west side of the Panama Canal, to connect Panama City and the suburban areas such as Araijan and La Chorrera.

The population of the districts of Arraijan and La Chorrera has been growing rapidly in recent years, and the congestion of the road connecting Panama City with these districts has become a serious problem. In order to solve this problem, the Government of Panama (GOP) is planning to construct Line-3 concurrently with Line-2.

Under such situation, the Ministry of Economy, Trade and Industry (METI) of Japan carried out a study for the Line-3 Project. The METI study proposed a monorail system for Line-3, which would follow the Pan-American and "Autopista" Highways and cover the demand on the west side of the Panama Canal.

The GOP is currently undertaking the Canal expansion project to allow the passage of Post-Panamax ships, and the construction of a 4th bridge across the Canal is in the planning stage. The Panama Canal Authority (ACP) has been conducting the Pre-F/S for the 4th Bridge since 2012. The GOP plans to provide track space on the 4th Bridge for Line-3.

Under the above-mentioned circumstances, the Japan International Cooperation Agency (JICA) and the GOP agreed to conduct a feasibility study for the Line-3 Project in March 2013, and the study started in July 2013. The study on the section of the 4th Bridge was not included in the study scope in the beginning because the 4th Bridge had been studied by ACP as mentioned above¹. Meanwhile, GOP expressed its interest to fund the 4th Panama Bridge Construction Project - with a Japanese Yen Loan. After this, GOP and Government of Japan (GOP) held a meeting on July 12, 2013 and agreed that GOJ will conduct the study for the 4th Bridge. As a result, the Study for the 4th Panama Bridge Construction Project was commenced under JICA's technical assistance from September, 2013.

1.2 Project Scope

The Project covers the following components of the mass transit system for the section between Nuevo Arraijan and Albrook through the 4th Bridge.

- Civil Works (including Stations, Track works, a Depot, Workshops, and Intermodal Facilities)
- E&M (Power Supply, Signal & Telecommunication, Operation Control, etc.)
- Rolling Stock
- Consulting Services

¹ METI Study also assumed the construction of the 4th Bridge for crossing the Panama Canal

1.3 Study Purpose

1.3.1 Urban Transportation Line-3

The purpose of this study is as follows:

- Confirmation of the necessity/validity of the Panama City Urban Transportation Line-3 Project;
- Undertaking of a feasibility study including a preliminary design and cost estimate for the Project; and
- Selection of the most suitable urban transit system that would reinforce the connectivity of the East-West axis of the Panama Metropolitan Area.

1.3.2 4th Panama Canal Bridge

Pre-F/S was conducted by ACP based on the cable-stayed bridge option; however, the comparative study on the selection of the main bridge type was not conducted.

Main purposes in this Study are as follows:

- Review Pre-F/S on the Project
- Conduct alternative study on the main bridge type of 4th Panama Canal Bridge
- Conduct preliminary design of the selected main bridge type and approach sections
- Determine Project scope
- Estimate Project cost
- Compare the main bridge type of 4th Panama Canal Bridge
- between the option proposed by the Pre-F/S and the option proposed by this Study
- Prepare reports and documents on project evaluation

1.4 Study Scope

Study scope is in accordance with the following minutes of meeting between GOP and GOJ:

- Minutes of Meeting on the 4th Panama Canal Bridge Study (September 3, 2013)
- Minutes of Meeting on the 4th Panama Canal Bridge Study (December 6, 2013)

Summary of study scope in the above minutes of meeting is as follows:

- Confirmation of the project background and necessity
- Demand forecast
- Review of existing studies and the implementation of additional studies
- Proposal of the project framework
- Consideration of environmental and social impacts
- Assessment of the project's effectiveness
- Recommendation for the project implementation and operation phase (risks and issues), including the identification of matters which may require further development

1.5 Survey Area

1.6 Work Schedule

The study was commenced at the end of July 2013; the Inception Report and Interim Report were submitted in July 2013 and November 2013, respectively. The study on the 4th Bridge was added to the original scope in August 2013, and the amendment of the contract between the JICA Study Team and JICA was signed on February and April 2014 for Environmental Impact Assessment and other tasks. The work was completed in August 2014.

Chapter 2 Necessity of the Project

2.1 Current Situation and Issues of Urban Transportation Sector

2.1.1 Socioeconomic Situation and Urban Development

(1) Socioeconomic Situation

The Republic of Panama is the southernmost country of Central America connecting North and South America. It is bordered by Costa Rica to the west and Colombia to the southeast. The capital is Panama City. The country boasts the world-renown Panama Canal connecting the Pacific Ocean and Atlantic Ocean.

The country is categorized as an upper-middle income country with a GDP of USD36.25 billion and a 10.8% annual growth rate. As shown in Figure 2.1, Panama's economy has grown rapidly in recent years. The nominal GDP per capita of Panama is USD 9,850 surpassing that of Costa Rica, at USD 8,740 in 2012 (2012, The World Bank).

Source: JICA Study Team based on the World Bank Database Figure 2.1 Annual GDP (current USD) of Panama

Panama's total population is 3.4 million with 1.7 million in the metropolitan area (Panama City, San Miguelito, Arraijan and La Chorrera Districts). 51% of the total population is in the Panama City metropolitan area as shown in Table 2.1. The population growth rate is 1.84% per year for the last 10 years (National Census, 2010). The population increase and concentration in the metropolitan have multiplied the number of cars resulting in serious traffic congestion.

Area	Population in 2010	Ratio					
Panama Metropolitan Area	1,723,284	51%					
Arraijan District	230,311	13%)					
La Chorrera District	167,799	10%)					
Panama District	989,100	57%)					
San Miguelito District	336,074	20%)					
Other Districts	1,682,529	49%					
Panama Total	3,405,813	100%					

Table 2.1Population breakdown of Panama

Source: JICA Study Team

The main industry of the Arraijan District is fishing, and the main industry of La Chorrera District is agriculture and farming, such as cultivating pineapples and raising pigs. But the main source of employment for the inhabitants of these districts is Panama City highlighting the need for efficient public transportation.

La Chorrera and Arraijan districts have been urbanized mainly along the Pan-American Highway. Furthermore, the area along the "Autopista" was urbanized in recent years as shown in Figure 2.2. This figure also shows that urbanizations in several areas have spread vertically from the main corridors, such as in Burunga, Arraijan and Vacamonte.

Source: JICA Study Team Figure 2.2 Map of Urbanized Areas and Main Roads

Photo: SMP

Panama Pacifico, located to the southwest of the Panama Canal, has planned an urban development project for the future. Howard airport is located in the area, but only a few chartered aircrafts use the airport. The area will have 20,000 houses and 40,000 employees according to the master plan.

2.1.2 Transportation Network

There are two bridges over the Panama Canal: the Bridge of Americas (4-lane) located at the entrance of the Panama Canal in the Pacific side and Centennial Bridge located at 15km north of the entrance. The Bridge of Americas forms a part of Pan-American Highway connecting the center of Panama City and the urbanized area in Arraijan and La Chorrera. The Centennial Bridge is a part of an expressway which is called as Autopista, which connect the east and west of the canal making a large diversion route in the north of the city. In the Panama City, there are two expressways such as Corredor Norte and Corredor Sur. Albrook terminal is located at the beginning of Corredor Norte and Albrook Station of Line-1 is located at the opposite side. A complex shaped roundabout is located to the south of Albrook terminal.

2.1.3 Public Transport

Panama has a plan to introduce four metro lines (rail-base urban transport system), and Line-1 with a total length of 13.7km opened in April 2014. In the Study Area, buses (second hand school buses from USA) called "Diablo Rojo" have been operated but modern type buses called Metrobus has been introduced in Panama City since 2010. Metrobus is not introduced in Arraijan and La Chorrera where Diablo Rojo is still operated. Since bus capacity is not enough to cover the demand, taxi and unofficial taxi called as "pirate" are operated.

2.1.4 Current Situation and Problems of Urban Transportation

There is serious traffic congestion in Panama City at all times of the day and on the west side of the Panama Canal at peak hours. The main business and government offices, and schools, are located in Panama City and there is a large number of commuting employees and students. In addition, the construction of Line-1 and road improvement projects has further worsened traffic conditions.

Traffic congestion afflicts not only Panama City, but also the Pan-American Highway,

specifically between the Bridge of the Americas and Arraijan, during the morning and evening hours. This section becomes so congested that drivers use the shoulder as a traffic lane during peak hours as shown in Figure 2.4.

Source: JICA Study Team

The Metro Bus of Panama City is a functional public transportation system, but the buses do not operate with a time schedule. Many times the buses cannot carry all the waiting passengers at peak hours due to traffic congestion and overcrowded buses. This requires bus users to leave their homes at earlier hours in the morning to be able to arrive at work on time, with 2-hour or longer commutes being common.

In addition to the above urban transportation problems, the number of cars is increasing year by year in Panama as shown in Figure 2.5, but the frequency of buses between Panama City, Arraijan and La Chorrera is low. This is another reason the number of cars continue to increase.

Source: INEC – National Institute of Statistics and Census - Panama Figure 2.5 Number of Registered Vehicles by year

2.2 Policies and Plans for the Urban Transportation Sector

Presently, the following projects are undertaken for transportation sector in Panama.

- Canal Expansion
- Atlantic Bridge (the 3rd Bridge)
- Metro Line-1
- Metro Line-2

2.3 International Assistance in Transportation Sector

The main international donors to the Government of Panama are the Inter-American Development Bank (IDB), Corporacion Andina de Fomento (CAF), International Bank for Reconstruction and Development (IBRD), European Investment Bank (EIB) and Central American Bank for Economic Integration (CABEI). Among them, IDB is the major financing source, which represents 12% of total public debt and 65% of total external debt from multilateral financial organizations in 2012. CAF has approved US\$1,989 million in five years from 2008 to 2012 with US\$906 million designated for financing the transportation sector, which is almost 2 times the amount approved by IDB in the same period.

Private financing is utilized for the Panama Canal Expansion Project, and some road development projects have also been carried out by private initiative.

				(1	JS\$ million)
	IDB	CAF	IBRD	EIB	CABEI
Approved	1,593.69	1,989.30	516.00	711.00	25.00
No. of Projects	33	20	8	2	1
Transportation Sector	470	906	0	0	0
No. of Project	2	4	0	0	0

 Table 2.2
 Donor Approval of loans to Panama in the last 5 years (cumulative)

Source: Web page of each organization

2.4 Necessity of the Project

2.4.1 Necessity of transport infrastructure crossing the canal

The population of Panama Metropolitan area (Panama, City, San Miguelito, Arraijan and La Chorrera Districts) is 1.72 million at present (2010), and it is forecasted that the population would reach 2.17 million in 2020 and 2.87 million in 2050 (Chapter 3). The population of Arraijan and La Chorrera in total is 398,000 at present (2010) and is forecasted to reach 553,000 in 2020 and 778,000 in 2050. In Panama Metropolitan area, car ownership shows rapid expansion and the suburban style residential development which subjects to usage of cars is very active in the west of the Study Area as shown in the photo in page 2-2. From these, it is expected that the traffic connecting the western side of the canal as a suburban residential area and the eastern side as the commercial and business district would continue to increase.

Presently, the Bridge of Americas, the age of which has exceeded more than 50 years, and the access roads of the both sides of the bridge cannot respond to the increasing traffic demand, which causes heavy traffic congestion every day. Since the congestion will

become heavier and heavier, development of transport infrastructure crossing the canal is necessary for the development in the west area. Under the circumstances mentioned above, the Government of Panama plans to construct a new bridge crossing the canal near the Bridge of Americas and an urban transportation system. The necessity and justification of these transport infrastructures is described in the subsequent sections.

2.4.2 Necessity of the 4th Bridge Project

The 4th Bridge is necessary because of the following reasons.

- 1) For Post-Panamax vessels
- 2) Expansion of road capacity across the Panama Canal
- 3) Construction of Metro Line-3
- 4) Alternative to the Bridge of Americas

2.4.3 Necessity of Urban Transportation Line-3

Urban Transportation Line-3 is necessary because of the following reasons.

- 1) To alleviate road traffic congestion in the area to the west of the canal
- 2) To improve public transport services
- 3) To promote public transport use

2.5 Evaluation of Alternatives

To justify the implementation of both the 4th Bridge and Line-3, alternatives were evaluated as shown below.

Alternatives	Evaluation					
Without Project	Regional development in the area to the west of the canal will					
	stagnate, and economic loss due to traffic congestion and					
	environmental problem due to CO2 emission will continue.					
Line-3 Only	Traffic congestion will be relieved in the short term, although the					
	congestion on the Bridge of Americas will worsen again due to					
	the increase in car traffic.					
Tunnel	Although there are some advantages such that the impact on the					
	landscape is less than that of the bridge plan, the disadvantage of					
	high project cost is very large.					
Construct Line-3 and 4 th	Flexibility of carrying out the projects is the advantage but the					
Bridge as different projects	project cost will be larger.					

2.6 Conclusion

The Project will implement the construction of the 4th Bridge and Urban Transportation Line 3 as a unified project. The objective of the Project is to alleviate the traffic congestion on the Bridge of Americas by expanding the transportation capacity connecting the east and the west areas of the Panama Canal.

The metropolitan area of Panama is growing as one of the economic centers in the Central America, and the west area of the canal is emerging as the suburban area of the metropolitan. On the other hand, the traffic on the Bridge of Americas, connecting the west and the east of the Panama Canal, has rapidly increased and the congestion in the morning and evening peak

hours is getting heavier and heavier due to the capacity limitation, which becomes a threaten to the economic development of the metropolitan area of Panama. In addition, public transport services in the west area is very poor presently depending on buses and taxis, which causes increase in car usage and deteriorate the traffic congestion.

The Project is necessary in order to respond the increasing traffic demand in the metropolitan area of Panama and alleviate traffic congestion, and encourage the urban development in the west area of the Panama Canal. In addition, the urban transport Line-3 is necessary to improve public transportation in the west area of the canal and to reduce CO_2 emission.

Chapter 3 Demand Forecast

3.1 Introduction

The traffic demand forecast for the 4^{th} Bridge was carried out by ACP in 2013. In the beginning of the Study, the traffic demand forecast for the 4^{th} Bridge was not included in the Study, although it was carried out after the study of the 4^{th} Bridge was added to the Study.

The horizontal years for the demand forecast in the Study are 2020, 2025, 2030, 2035, 2040, and 2050, while the base year of the demand forecast is 2013.

3.2 Demand Forecast of ACP's Pre-Feasibility Study

The origin-destination (OD) matrices used in the ACP's Study were developed from OD data in "Feasibility Study for the Project Panama Canal Crossing, 2001, Ministry of Public Works (MOP's Study)".

The characteristics of the ACP's Study are summarized as:

- ACP' Study lacks the forecast years because the Study need the demand forecast for 20 years after the opening of the bridge while ACP's Study estimated it till 2026.
- Since the area of traffic zone is very large, the zoning cannot be used for the traffic simulation at Omar Torrijos Intersection which is required in the Study.
- Since traffic growth rate is estimated based on the population growth only, the rapid growth in the number of cars is not taken into account.
- It is not clear how Line-3, which is planned to be constructed with the 4th Bridge, is considered in the ACP's Study.

3.3 Traffic Surveys

In addition to a traffic count survey at three places on August 13 (Wednesday), 2013 in the Study, three traffic count surveys were used for the Study.

- 1) METI Study:August 9 (Thursday), 20122) ACP1:October 23 (Tuesday), 2012
- 3) ATTT: July 8-14 (Monday-Sunday), 2013

In the METI Study, the vehicles were classified into three types: sedans, buses, and trucks. Taxis were included in sedans. In the ACP's Study, buses and trucks were counted as the same category. The data of ACP's Study and ATTT were obtained after the commencement of the Study.

In addition to the traffic count survey at three points, following surveys were carried out in the Study.

- Passenger OD Survey
- Stated Preference Survey

¹ Studies and Preliminary Design for a New (Fourth) Bridge over the Panama Canal at the Pacific Side

• Travel Time Survey

3.4 Socioeconomic Framework

3.4.1 Economic Growth Rate

The assumption on the economic growth rates are applied to the estimation of the future car ownership and truck traffic in the Study. The Study employed the forecast by IMF for the economic growth rates from 2013 to 2018, and the economic growths after 2018 were assumed as 5.0% (2019, 2020), 4.0% (2021-2030), 3.0% (2031-2040), and 2.0% (2041-2050). Under this assumption, the GDP of Panama in 2050 would be four times that of 2012 and the per capita GDP would be approximately 2.7 times, becoming the level in developed countries at present.

3.4.2 Population Projection

Presently, Arraijan and La Chorrera districts have a population of 230,000 and 168,000, respectively, according the Census of 2010. The total population of both districts is 398,000. The metropolitan area (Panama, San Miguelito, Arraijan, and La Chorrera districts) has a population of 1.7 million in total.

The National Institute of Statistics and Census (INEC) estimated the population in Panama at the district level up to the year 2020. The same methodology as the INEC projection was used to estimate the population up to 2050 for the Study Area. In the high case projection, the population of the western area (Arraijan and La Chorrera) in 2050 is estimated at 778,000, which is 1.96 times the population in 2010.

High Case						
Year	Panamá	San Miguelito	Arraijan	La Chorrera	Subtotal	Metropolitan
2010	989,100	336,074	230,311	167,799	398,110	1,723,284
2015	1,109,286	362,484	287,329	197,659	484,988	1,956,758
2020	1,231,582	390,810	333,072	219,971	553,043	2,175,435
2025	1,324,951	413,951	373,677	239,373	613,050	2,351,952
2030	1,399,486	437,855	403,452	253,486	656,938	2,494,279
2035	1,462,119	458,500	431,054	266,288	697,342	2,617,961
2040	1,514,134	476,896	453,973	277,659	731,632	2,722,662
2045	1,555,295	493,774	471,981	287,124	759,105	2,808,174
2050	1,584,017	506,836	484,499	293,927	778,426	2,869,279
Growth Rate						
2010-15	2.3%	1.5%	4.5%	3.3%	4.0%	2.6%
2015-20	2.1%	1.5%	3.0%	2.2%	2.7%	2.1%
2020-25	1.5%	1.2%	2.3%	1.7%	2.1%	1.6%
2025-30	1.1%	1.1%	1.5%	1.2%	1.4%	1.2%
2030-35	0.9%	0.9%	1.3%	1.0%	1.2%	1.0%
2035-40	0.7%	0.8%	1.0%	0.8%	1.0%	0.8%
2040-45	0.5%	0.7%	0.8%	0.7%	0.7%	0.6%
2045-50	0.4%	0.5%	0.5%	0.5%	0.5%	0.4%

Table 3.1Population Projection

Source: JICA Study Team

3.4.3 Car ownership

The future number of vehicles was estimated by using the linear function based on the regression analysis as shown in Table 3.2. It is estimated that car ownership will be 2.08 times the current rate in 2050. Under this projection, even in 2050 the number of vehicles per 1000 inhabitants will still be lower than that of developed countries.

Year	Population	No. of vehilcles	No. of vehicles	
			per 1000	Ratio to
	('000)	('000)		2013
2013	3,851	566	146.9	1.00
2020	4,279	780	182.3	1.24
2030	4,835	1,084	224.3	1.53
2040	5,230	1,407	269.0	1.83
2050	5,507	1,683	305.6	2.08

 Table 3.2
 No. of Vehicles per 1000 inhabitants (Projection)

Source: Projection by JICA Study Team

3.5 Demand Forecasting Model

3.5.1 Traffic Volume crossing the Panama Canal

The number of passengers (public transportation) crossing the Panama Canal in the morning peak hour peak direction was estimated to be 10,653 (5:00-6:00), 6,453 (6:00-7:00), and 6,792 (7:00-8:00), based on the results of the traffic count survey. The number of buses using the Centenario Bridge in the peak hour was as little as 17 (2012) carrying an estimated 935 passengers (55 passengers per bus). Table 3.3 shows the estimated number of passengers traveling from the west to east of the canal, while Table 3.4 shows that for the east- west direction.

			<u> </u>				
Public						Private	
	Passengers			Car			
Time	Bus	Taxi	Bus	Taxi	Total	Vehicles	Passengers
			45/bus	3/taxi			1.5/car
5:00-6:00	210	401	9,450	1,203	10,653	2,018	3,027
6:00-7:00	124	291	5,580	873	6,453	2,362	3,543
7:00-8:00	144	104	6,480	312	6,792	1,647	2,471
2 hour (5-7)	334	692	15,030	2,076	17,106	4,380	6,570
2 hour (6-8)	268	395	12,060	1,185	13,245	4,009	6,014
Peak Centenario	23	-	1,265	-	1,265	2,946	4,419
Peak (2 hour)					18,371		10,989

 Table 3.3
 Estimation of Passenger Volume from West to East

Note: Large size buses (seating capacity of 55) account for 50% according to another traffic survey by COTRANS at the same place. Since seating capacity of small buses is 35 in general, the average occupancy rate of a bus is calculated at 45 (55*0.5+35*0.5).

Source: Traffic Count Survey in August 2013, JICA Study Team

	Public			Private			
	Vehicles		Passengers			Car	
Time	Bus	Taxi	Bus	Taxi	Total	Vehicles	Passengers
			45/bus	2/taxi			1.5/car
5:00-6:00	37	194	1,665	388	2,053	194	291
6:00-7:00	82	33	3,690	66	3,756	354	531
7:00-8:00	97	72	4,365	144	4,509	571	857
2 hour (5-7)	119	227	5,355	454	5,809	548	822
2 hour (6-8)	179	105	8,055	210	8,265	925	1,388
Peak Centenario	8	-	440	-	440	433	650
Peak (7-8)					4,949		1,506

Table 3.4	Estimation	of Passenger	Volume from	East to	West
14010 0.4	Loundation	of i assenger	volume from	Last	11 Cot

Source: Traffic Count Survey in August 2013, JICA Study Team

3.5.2 OD Matrices

The Study's OD matrix was prepared by modifying the SMP 2009 OD matrix, which consists of 75 zones, with 5 zones in the Arraijan District and one zone in the La Chorrera District. In the Study, nine zones were added by subdividing the zones in Arraijan and La Chorrera Districts based on the political divisions called "corregimiento". Figure 3.1 shows the zoning system applied in the Study.

Source: JICA Study Team

Figure 3.1 Traffic Zoning System

The process for projecting the future OD matrix is shown in Figure 3.2. The major points of the flowchart are:

1) Replaces the OD that crosses the canal with the estimated OD based on the traffic

survey.

- 2) Modal shift from public mode to private mode takes into account the increasing number of cars.
- 3) Increases the OD data by including the population growth.
- 4) Adds new traffic related to the development of Panama Pacifico.
- 5) Makes new traffic zones within the walking distance of stations by splitting the OD.
- 6) Modal shifts made from private mode to public mode for the OD pairs along Line-1, 2, and 3.

Source: JICA Study Team

Figure 3.2 Flow for making the OD Matrix

In the Study, since the transport capacity will largely increase after the opening of Line-3, it was assumed that the peak traffic that is presently distributed in the peak 2-hours will concentrate on the peak 1 hour. For the traffic assignment, the 2-hour OD matrix was used as the peak hour OD.

3.5.3 Modal Share

If the destination of a trip is within the walking area of a station, modal shift from car to Line-3 is anticipated by using Park & Ride facilities. It was assumed that the rate of the modal shift to the corresponding OD would be 55% (2020), 60% (2030), and 70% (2050).

3.5.4 Demand of Panama Pacifico

Panama Pacifico will have 20,000 houses and 40,000 employees in the future according to the master plan. The peak hour trips from/to Panama Pacifico were estimated based on several assumptions

Since the development schedule of Panama Pacifico is not clear, it is assumed that the number of trips would reach 50% of the estimated number of trips in 2020, 80% in 2025, and 100% in 2030.

	2020	2025	2030	2035	2040	2050
Generation	2,100	3,360	4,200	4,200	5,460	5,880
Attraction	2,950	4,720	5,900	5,900	7,670	8,260

Source: Estimation by JICA Study Team

3.5.5 Transit Assignment

To estimate public transport demand, transit assignments were carried out by using JICA STRADA. Bus speed on general roads was assumed as 10km/h in Panama City and 20km/h in the area to the west of the canal, which the bus speed on expressways is assumed as 40km/h in case of normal buses, and 60km/h in case of express buses. The fare of Line-3 was assumed to be a flat fare of USD 0.65 up to 18km (distance between Albrook and Arraijan) and increase USD 0.042 per kilometer.

3.5.6 Traffic Assignment

(1) Traffic Assignment Model

The traffic assignment of private modes (private cars) was done by JICA STRADA applying the incremental assignment method. In the traffic assignment, the number of buses was added to the link flow before the private car assignment, and the private OD matrix (peak hour) was assigned to the minimum path of the road network.

- The passenger car unit (PCU) of a bus is assumed to be 2.0.
- Link is classified into 7 types with the BPR function for link cost functions.
- Time value is assumed as USD 6.57. Fares of toll roads are converted to time by using the time value.

(2) Network Scenarios

There are three network scenarios in the Study: 1) Present, 2) 4th Bridge, and 3) 4th Bridge and Line-3 scenarios. It is assumed that the Bridge of Americas remains in these scenarios, although the fourth scenario prepared from the third scenario excluding the Bridge of Americas was also studied. Cinta Costera III, which is under construction, is included in all network scenarios. These scenarios are summarized as show in Table 3.6.

		Scenario						
	1) Present	1) Present 2) 4^{th} Bridge 3) 4^{th} Bridge and 4) 4^{th} Bridge						
			Line-3	Line-3 without the				
				Bridge of Americas				
No. of lanes of Pan-American	4	6	6	6				
Highway								
4 th Bridge	Non existant	Exists	Exists	Exists				
Line-3	Non existant	Non existant	Exists	Exists				
Omar Torrijos	Non existant	Exists	Exists	Exists				
Roundabout Improvement								
Bridge of Americas	Exists	Exists	Exists	Non existant				

Table 3.6Network Scenarios

Source: JICA Study Team

(3) Truck Assignment

The number of trucks crossing the canal was estimated as shown in Table 3.7 by using a regression analysis.

	Growth	Present Cas	e	4th Bridge Case			4th Bridge and Line-3 Case		
Year	Ratio (2013=1)	Centenario	Bridge of Americas	Centenario	Bridge of Americas	4th Bridge	Centenario	Bridge of Americas	4th Bridge
2013	1.00	4,387	1,760	4,387			4,387		
2020	1.35	5,901	2,367	5,901	1,184	1,184	5,901	1,184	1,184
2025	1.57	6,872	2,757	6,872	1,379	1,379	6,872	1,379	1,379
2030	1.84	8,054	3,231	8,054	1,616	1,616	8,054	1,616	1,616
2035	2.08	9,110	3,655	9,110	1,827	1,827	9,110	1,827	1,827
2040	2.36	10,335	4,146	10,335	2,073	2,073	10,335	2,073	2,073
2045	2.57	11,263	4,519	11,263	2,259	2,259	11,263	2,259	2,259
2050	2.80	12,288	4,930	12,288	2,465	2,465	12,288	2,465	2,465

Table 3.7Projection of Future Truck Traffic (No. of Vehicles per Day)

Source: JICA Study Team

3.6 Future Passenger Demand

3.6.1 Peak Hour Passenger Demand

(1) Section Traffic

The peak hour traffic in the full development case is estimated at 19,359 in 2020, 22,153 in 2035, and 24,519 in 2050 as shown in Table 3.8. It is estimated that the modal share of public transport will decrease in accordance with the increase in the number of vehicles per inhabitant. However, the modal share of public transport will be higher than that in the without project case.

	Full	Development	Case	Phase-1 Case			
	Public	No. of	Public		No. of		
	Mode	boarding	PHPDT	Mode	boarding	PHPDT	
	Share (%)	passengers		Share (%)	passengers		
2013	66.0	-	-	66.0	-	-	
2020	61.7	23,703	19,359	60.6	19,015	16,578	
2025	58.5	25,375	20,493	57.4	20,664	17,824	
2030	55.6	26,765	21,367	54.4	21,794	18,620	
2035	53.7	28,034	22,153	52.3	22,881	19,408	
2040	53.7	29,336	22,905	52.0	23,684	19,945	
2050	50.9	31,862	24,519	48.8	24,740	20,667	

 Table 3.8
 Forecast of Peak Hour Traffic

Note: Fare= 0.65 + 0.042 * MAX(0, x-18), where x = distance of travel Source: JICA Study Team

Figure 3.3 shows the traffic volume by section in the case of full development. The peak section is found between St3 (Panama Pacifico) and St4 (Loma Coba), due to the development of Panama Pacifico.

Note: Left=Full development case, Right=Phase-1 Case (Both are high population growth case) Source: JICA Study Team

Figure 3.3Section Traffic for Peak Direction

3.6.2 Daily Traffic

The estimated OD matrices represent the traffic in the morning peak hours, and it is likely that the OD matrix in the afternoon peak hours is the transposed matrix of the morning peaks. It is assumed that the daily OD is calculated from the combined matrix of the morning and afternoon peak hours by multiplying a scalar value.

According to the traffic survey, the bus traffic in the morning peak hours for both directions accounts for 12% of the daily traffic. The rate of the total trips in the morning peaks to that of a day is assumed to be 12%. From this, the number of boarding and alighting passengers in a day was calculated from that of peak hours by multiplying 1/0.12.

The result of the calculation of barding passengers is shown in Table 3.9 and Table 3.10.

	e e e e e e e e e e e e e e e e e e e	0				/
Station	2020	2025	2030	2035	2040	2050
1	84,346	88,679	92,813	97,721	101,663	110,854
2	2,779	3,067	3,400	3,604	3,825	4,358
3	8,871	11,250	12,621	12,783	14,175	15,163
4	3,788	4,063	4,350	4,658	4,963	5,392
5	11,004	11,754	12,433	12,983	13,767	15,021
6	4,754	5,088	5,421	5,800	6,179	6,688
7	14,696	15,808	16,979	18,042	18,917	20,692
8	7,363	7,975	8,629	9,183	9,654	10,854
9	2,667	2,854	3,033	3,179	3,300	3,613
10	12,833	13,758	14,233	14,746	15,225	15,783
11	4,125	4,388	4,575	4,733	4,883	5,117
12	3,283	3,488	3,575	3,679	3,742	3,975
13	6,179	6,608	6,879	7,133	7,329	7,917
14	763	863	879	958	1,033	1,167
15	1,413	1,558	1,679	1,808	1,958	2,204
16	5,179	5,988	6,496	6,971	7,563	8,242
17	23,483	24,271	25,046	25,633	26,292	28,479
Total	197,525	211,458	223,042	233,617	244,467	265,517

Table 3.9	Daily Boarding Passe	ngers by Station	(Full Development Case)

Source: JICA Study Team

T-11-210	D. 1. D	1 A 12 - 1 42 D	L C4 - 4 ¹	$(\mathbf{D}_{\mathbf{D}}}}}}}}}}$
1able 3.10	Daily Boarding and	1 Alignung Passengers	by Station	(Phase-1 Case)

Station	2020	2025	2030	2035	2040	2050
1	74,496	80,529	84,750	88,913	91,975	96,058
2	2,150	2,438	2,708	2,925	3,079	3,279
3	2,846	3,646	4,083	4,363	4,667	5,146
4	3,483	3,783	4,054	4,267	4,500	4,767
5	9,442	10,321	11,083	11,800	12,308	13,021
6	4,004	4,433	4,779	5,142	5,346	5,663
7	10,300	11,242	12,008	12,871	13,508	14,221
8	6,392	7,021	7,725	8,296	8,771	9,525
9	2,700	2,967	3,150	3,388	3,496	3,713
10	12,504	13,758	14,383	15,075	15,463	16,092
11	5,529	5,954	6,217	6,421	6,542	6,629
12	5,388	5,833	6,071	6,279	6,358	6,388
13	8,292	8,963	9,296	9,663	9,975	10,392
14	10,933	11,313	11,308	11,275	11,379	11,275
Total	158,458	172,200	181,617	190,675	197,367	206,167

Source: JICA Study Team

3.6.3 Results of Traffic Assignment

(1) **Peak Hour Traffic**

Under the Present scenario, the future peak hour traffic of the Bridge of Americas must be almost the same as the present traffic because the peak hour traffic volume cannot exceed the traffic capacity of the Pan-American Road. After the peak hour traffic on the Centenario Bridge exceeds the capacity, the hourly traffic crossing the canal in the future becomes the same as the present traffic. On the other hand, traffic flow in off-peak hour will continue to increase.

In the demand forecast model, the peak hour traffic is estimated using the peak hour OD matrix although the "peak hour traffic" does not necessarily represent the peak hour traffic,

because it should be considered that a part of the traffic would shift to other hours. Table 3.11 (A-C) shows the result of the demand forecast for the peak hour.

(2) Daily Traffic

The peak hour traffic on the Bridge of Americas accounts for 7% of 24 hours of traffic according to the traffic survey conducted in 2013 by the JICA Study Team. The daily traffic was estimated from the peak hour traffic by applying the peak hour rate. Table 3.11 (D) shows the result of the demand forecast of the daily traffic (no. of vehicles). The results of the demand forecast represent the traffic flow in a typical weekday instead of AADT used in the ACP's Study.

To compare the results with the ACP's Study, the results of the demand forecast were converted to AADT (5:00-21:00) using the conversion factors (from a daily to AADT) of 1.0595 and 1.0246 for cars and buses, respectively, which are used in the ACP's Study. The results are shown in Table 3.11 (E).

Scenario Present 4th Bridge Heridge of Americas Ath Bridge of Americas <th>A: Peak H</th> <th>our Peak Di</th> <th>rection (PCU</th> <th>J)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	A: Peak H	our Peak Di	rection (PCU	J)							
Vent Centennin Bridge of Americas Antidge of Americas Bridge of Americas Bridge of Americas Ath Bridge Ath Bridge Centennin Ath Bridge Ath Bridge Centennin Ath Bridge Ath Bridge Centennin Ath Bridge Ath Bridge 2020 1.746 3.445 1.727 1.127 1.170 1.709 1.451 1.1242 2.368 2030 3.282 4.362 2.287 2.875 1.914 2.222 2.323 2.007 4.313 2040 4.533 5.522 3.379 2.299 3.953 2.746 2.715 3.118 5.010 5.899 2045 5.173 6.956 4.083 3.422 4.01 3.391 2.014 3.397 2.004 3.897 4.01 3.991 2.014 3.991 2.014 3.991 2.014 3.991 2.014 3.991 2.014 3.991 2.014 3.991 2.014 3.991 2.014 3.991 2.014 3.991 2.014 3.991 3.016 3.016 3.0	Scenario	Present		4th Bridge			4th Bridge a	nd Line-3		Without Brid Americas	ge of
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Year	Centenario	Bridge of Americas	Centenario	Bridge of Americas	4th Bridge	Centenario	Bridge of Americas	4th Bridge	Centenario	4th Bridge
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2020	1,746	3,445	1,379	1,921	1,877	1,157	1,709	1,451	1,264	2,985
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2025	2,578	3,871	1,823	2,186	2,425	1,512	2,045	1,841	1,642	3,685
2025 3.669 5,124 3,131 2,598 3,045 2,237 2,436 2,711 3,067 2,607 4,753 2040 4,533 5,527 3,095 3,442 2,114 3,106 2,794 3,175 3,420 5,897 2050 5,173 6,956 4,083 3,442 4,611 3,391 2,904 3,977 4,208 5,997 2050 5,173 6,956 4,083 3,442 4,611 3,391 2,904 3,977 4,208 5,997 2020 6,35 6,970 6,093 6,041 82 549 605 605 607 742 2020 6,35 6,70 609 85 598 604 82 549 605 607 742 2040 885 820 834 101 752 825 101 684 842 775 2040 885 820 837 166 712 788	2030	3,282	4,362	2,329	2,425	2,875	1,914	2,222	2,323	2,067	4,319
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2035	3,669	5,124	3,133	2,598	3,045	2,287	2,436	2,711	2,607	4,754
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2040	4,533	5,522	3,379	2,799	3,953	2,746	2,715	3,118	3,106	5,402
2050 5,173 6,956 4,083 3,442 4,611 3,391 2,904 3,977 4,208 5,995 B: Peak Hour OfT-peak Direction (PCU) th Bridge th Bridge Without Bridge of Americas 4th Bridge Centenario Ath Bridge of Americas 4th Bridge Centenario Ath Bridge of Americas 4th Bridge of Americas 4th Bridge OT 4th Bri	2045	5,131	5.979	4.008	3,123	3.963	3.459	2,754	3.175	3.420	5.897
B: Peak Hour Off-peak Direction (PCU) 0.001	2050	5,173	6,956	4.083	3.442	4 611	3,391	2.904	3,977	4.208	5,995
Scenario Present 4th Bridge 4th Bridge of Americas 4th Bridge of Americas Without Bridge of Americas Without Bridge of Americas 4th Bridge of Am	B: Peak H	our Off-peal	k Direction (PCU	0,112	.,011	0,071	2,>01	3,711	1,200	0,770
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Scenario	Present	(4th Bridge			4th Bridge a	nd Line-3		Without Brid Americas	lge of
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Year	Centenario	Bridge of Americas	Centenario	Bridge of Americas	4th Bridge	Centenario	Bridge of Americas	4th Bridge	Centenario	4th Bridge
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2020	635	670	609	85	598	604	82	549	605	625
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2025	694	713	655	89	648	645	88	588	645	671
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2030	751	742	699	86	693	697	84	631	698	710
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2035	812	779	766	98	712	759	98	650	760	742
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2035	885	820	834	101	752	825	101	68/	820	775
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2040	000	020	034	101	700	023	101	717	029	01/
2020 12 738 879 112 738 871 842 Scenario Present 4th Bridge of Americas 5th 45 5th 45 </td <td>2045</td> <td>922</td> <td>808</td> <td>028</td> <td>100</td> <td>99</td> <td>802</td> <td>104</td> <td>717</td> <td>804</td> <td>014 942</td>	2045	922	808	028	100	99	802	104	717	804	014 942
C: Pear Hour Both Directions (PCO) 4th Bridge 4th Bridge of Americas 4th Bridge of Americas 4th Bridge of Americas Without Bridge of Americas Year Centenario Bridge of Americas 4th Bridge of Americas 4th Bridge Centenario Bridge of Americas 4th Bridge Centenario 4th Bridge Centenario 4th Bridge 2020 2,381 4,115 1.988 2,006 2,475 1,761 1,791 2,000 1,869 3,610 2030 4,033 5,104 3,028 2,511 3,568 2,611 2,306 2,954 2,765 5,029 2035 4,481 5,903 3,899 2,696 3,777 3,046 2,534 3,361 3,367 5,496 2040 5,418 6,424 4,878 3,229 4,762 4,321 2,858 3,892 4,284 6,711 2050 6,131 7,846 5,011 3,555 5,426 4,287 3,016 4,715 5,105 6,838 D: Day (24 hours: No. of Ve	2030	938	890	920	115	813	890	112	/38	897	843
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C: Peak H	our Both Di	rections (PC	0)			1			MULL (D.)	C C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Scenario	Present		4th Bridge	1	1	4th Bridge a	nd Line-3		Americas	ige of
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Year	Centenario	Bridge of Americas	Centenario	Bridge of Americas	4th Bridge	Centenario	Bridge of Americas	4th Bridge	Centenario	4th Bridge
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2020	2,381	4,115	1,988	2,006	2,475	1,761	1,791	2,000	1,869	3,610
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2025	3,272	4,584	2,478	2,275	3,073	2,157	2,133	2,429	2,287	4,356
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2030	4,033	5,104	3,028	2,511	3,568	2,611	2,306	2,954	2,765	5,029
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2035	4,481	5,903	3,899	2,696	3,757	3,046	2,534	3,361	3,367	5,496
2045 6,053 6,847 4,878 3,229 4,762 4,321 2,858 3,892 4,284 6,711 2050 6,131 7,846 5,011 3,555 5,426 4,287 3,016 4,715 5,105 6,838 D: Day (24 hours: No. of Vehicles) Scenario Present 4th Bridge 4th Bridge of Americas	2040	5,418	6,342	4,213	2,900	4,705	3,571	2,816	3,802	3,935	6,177
2050 6,131 7,846 5,011 3,555 5,426 4,287 3,016 4,715 5,105 6,838 D: Day (24 hours: No. of Vehicles) Scenario Present 4th Bridge 4th Bridge of Americas 4th Bridge of Americas Without Bridge of Americas Without Bridge of Americas 4th Bridge of	2045	6,053	6,847	4,878	3,229	4,762	4,321	2,858	3,892	4,284	6,711
D: Day (24 hours: No. of Vehicles) 4th Bridge 4th Bridge of Americas Without Bridge of Americas Without Bridge of Americas Year Centenario Bridge of Americas Centenario Bridge of Americas 4th Bridge Centenario Bridge of Americas 4th Bridge Centenario Americas 4th Bridge of Americas 4th Bridge Centenario Ath Bridge of Americas Ath Bridge Centenario Secon Secon Secon Secon Secon Secon Secon Secon Secon	2050	6.131	7.846	5.011	3.555	5.426	4.287	3.016	4.715	5,105	6,838
Scenario Present 4th Bridge 4th Bridge of Americas Without Bridge of Americas Without Bridge of Americas Year Centenario Bridge of Americas Centenario Bridge of Americas 4th Bridge Centenario Bridge of Americas 4th Bridge 2020 39,280 56,132 33,837 28,269 33,112 30,615 25,905 28,705 32,144 52,560 2025 52,951 62,800 41,794 32,236 41,507 37,222 30,950 34,900 39,072 63,457 2030 64,982 70,495 50,818 35,830 48,616 44,882 33,651 42,566 47,068 73,481 2035 72,418 82,126 64,310 38,663 51,342 52,146 37,113 48,520 56,718 80,505 2045 97,013 96,226 80,442 46,709 65,867 72,492 42,195 56,424 71,949 98,619 2050 99,138 110,894 83,367 51,608 </td <td>D: Day (24</td> <td>hours: No.</td> <td>of Vehicles)</td> <td>.,</td> <td>-,</td> <td>.,</td> <td>.,,</td> <td>-,</td> <td>.,,</td> <td>0,000</td> <td>0,000</td>	D: Day (24	hours: No.	of Vehicles)	.,	-,	.,	.,,	-,	.,,	0,000	0,000
Year Centenario Bridge of Americas Bridge of Americas Hermicas Hermicas Bridge of Americas Hermicas Bridge of Americas Hermicas Hermicas<	Scenario	Present		4th Bridge			4th Bridge a	nd Line-3		Without Brid Americas	lge of
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Year	Centenario	Bridge of Americas	Centenario	Bridge of Americas	4th Bridge	Centenario	Bridge of Americas	4th Bridge	Centenario	4th Bridge
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2020	39,280	56,132	33,837	28,269	33,112	30,615	25,905	28,705	32,144	52,560
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2025	52,951	62,800	41,794	32,236	41,507	37,222	30,950	34,900	39,072	63,457
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2030	64,982	70,495	50,818	35,830	48,616	44,882	33,651	42,566	47,068	73,481
2040 87,071 89,361 70,021 41,823 65,002 60,857 41,402 55,009 66,050 90,668 2045 97,013 96,226 80,442 46,709 65,867 72,492 42,195 56,424 71,949 98,619 2050 99,138 110,894 83,367 51,608 75,508 73,024 44,665 68,351 84,695 100,808 E: AADT (No. of Vehicles) Scenario Bridge of Americas Centenario Bridge of Americas Gentenario Bridge of Americas Without Bridge of Americas 2020 31,525 50,906 26,382 25,615 30,246 23,341 23,361 26,010 25,613 48,988 2020 31,525 50,906 26,382 25,615 30,246 23,341 23,361 26,010 25,613 48,988 2025 43,512 56,846 32,976 29,177 37,996 28,661 27,940 31,677 31,427 59,243 2030 53,754	2035	72,418	82,126	64,310	38,663	51,342	52,146	37,113	48,520	56,718	80,505
2015 97,013 96,226 80,442 46,709 65,867 72,492 42,195 56,424 71,949 98,619 2050 99,138 110,894 83,367 51,608 75,508 73,024 44,665 68,351 84,695 100,808 E: AADT (No. of Vehicles) Without Bridge of Americas 4th Bridge 4th Bridge Centenario Bridge of Americas Without Bridge of Americas 4th Bridge Centenario Bridge of Americas 25,615 30,246 23,341 23,361 26,010 25,613 48,988 2020 31,525 50,906 26,382 25,615 30,246 23,341 23,361 26,010 25,613 48,988 2025 43,512 56,846 32,976 29,177 37,996 28,661 27,940 31,677 31,427 59,243 2030 53,754 63,668 40,379 32,346 44,488 34,775 30,266 38,690 38,078 68,563 2030 53,754 63,668 40,379	2040	87.071	89.361	70.021	41.823	65.002	60.857	41.402	55.009	66.050	90.668
2050 99,138 110,894 83,367 51,608 75,508 73,024 44,665 68,351 84,695 100,808 E: AADT (No. of Vehicles) Scenario Present 4th Bridge 4th Bridge of Americas 4th Bridge of Amer	2045	97.013	96.226	80.442	46.709	65.867	72.492	42.195	56.424	71.949	98.619
E: AADT (No. of Vehicles) 4th Bridge 4th Bridge 4th Bridge of Americas Without Bridge of Americas Without Bridge of Americas Year Centenario Bridge of Americas Centenario Bridge of Americas 4th Bridge Centenario Centenario Centenario Bridge of Americas 4th Bridge Centenario Centenario Centenario Bridge of Americas 4th Bridge Centenario Centenario 4th Bridge Centenario Centenario Americas Centenario Centenario 4th Bridge Centenario Centenario Ath Bridge	2050	99,138	110,894	83,367	51,608	75,508	73.024	44 665	68,351	84,695	100,808
L. AAD 1 (10: of venters) Without Bridge of Americas Without Bridge of Americas Without Bridge of Americas Year Centenario Bridge of Americas Centenario Bridge of Americas 4th Bridge Centenario Bridge of Americas 4th Bridge Centenario Centenario 4th Bridge Centenario Centenario 4th Bridge Centenario Centenario 4th Bridge Centenario Americas 4th Bridge Centenario 4th Bridge Centenario Americas 4th Bridge Centenario 4th Bridge Centenario 4th Bridge Centenario Americas 4th Bridge Centenario 4th Bridge Centenario Americas 4th Bridge Centenario 4th Bridge Centenario 4th Bridge Centenario Americas 4th Bridge Centenario Americas 4th Bridge Centenario Stassa Centenario Stassa Stassa	F. AADT	(No. of Vehi		00,007	01,000	,0,000	78,02	1,,000	00,001	01,070	100,000
Scenario Present 4th Bridge 4th Bridge of Americas 4th Bridge of Americas </td <td></td> <td></td> <td>cics)</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>Without Brid</td> <td>ge of</td>			cics)	1			1			Without Brid	ge of
Year Centenario Bridge of Americas Centenario Bridge of Americas eth Bridge Americas Bridge of Americas eth Bridge Americas Bridge of Americas eth Bridge Americas Centenario Bridge of Americas eth Bridge Americas eth Bridge Americas <t< td=""><td>Scenario</td><td>Present</td><td></td><td>4th Bridge</td><td></td><td>1</td><td>4th Bridge a</td><td>ind Line-3</td><td></td><td>Americas</td><td></td></t<>	Scenario	Present		4th Bridge		1	4th Bridge a	ind Line-3		Americas	
2020 31,525 50,906 26,382 25,615 30,246 23,341 23,361 26,010 25,613 48,988 2025 43,512 56,846 32,976 29,177 37,996 28,661 27,940 31,677 31,427 59,243 2030 53,754 63,668 40,379 32,346 44,488 34,775 30,266 38,690 38,078 68,563 2035 59,775 74,253 52,116 34,821 46,867 40,634 33,334 44,113 46,464 75,005 2040 72,448 80,602 56,350 37,572 59,532 47,700 37,149 50,007 54,377 84,444 2045 80,958 86,753 65,310 42,008 60,177 57,806 37,722 51,169 59,229 91,841 2050 81,996 100,210 67,103 46,436 69,085 57,341 39,859 62,233 70,669 93,577	Year	Centenario	Bridge of Americas	Centenario	Bridge of Americas	4th Bridge	Centenario	Bridge of Americas	4th Bridge	Centenario	4th Bridge
2025 43,512 56,846 32,976 29,177 37,996 28,661 27,940 31,677 31,427 59,243 2030 53,754 63,668 40,379 32,346 44,488 34,775 30,266 38,690 38,078 68,563 2035 59,775 74,253 52,116 34,821 46,867 40,634 33,334 44,113 46,464 75,005 2040 72,448 80,602 56,350 37,572 59,532 47,700 37,149 50,007 54,377 84,444 2045 80,958 86,753 65,310 42,008 60,177 57,806 37,722 51,169 59,229 91,841 2050 81,996 100,210 67,103 46,436 69,085 57,341 39,859 62,233 70,669 93,577	2020	31,525	50,906	26,382	25,615	30,246	23,341	23,361	26,010	25,613	48,988
2030 53,754 63,668 40,379 32,346 44,488 34,775 30,266 38,690 38,078 68,563 2035 59,775 74,253 52,116 34,821 46,867 40,634 33,334 44,113 46,464 75,005 2040 72,448 80,602 56,350 37,572 59,532 47,700 37,149 50,007 54,377 84,444 2045 80,958 86,753 65,310 42,008 60,177 57,806 37,722 51,169 59,229 91,841 2050 81,996 100,210 67,103 46,436 69,085 57,341 39,859 62,233 70,669 93,577 Source: Estimation by the UCA Study Team Team Team Team Team Team Team Team Team	2025	43,512	56,846	32,976	29,177	37,996	28,661	27,940	31,677	31,427	59,243
2035 59,775 74,253 52,116 34,821 46,867 40,634 33,334 44,113 46,464 75,005 2040 72,448 80,602 56,350 37,572 59,532 47,700 37,149 50,007 54,377 84,444 2045 80,958 86,753 65,310 42,008 60,177 57,806 37,722 51,169 59,229 91,841 2050 81,996 100,210 67,103 46,436 69,085 57,341 39,859 62,233 70,669 93,577 Source: Estimation by the UCA Study Team Team Team Team Team Team Team	2030	53,754	63,668	40,379	32,346	44,488	34,775	30,266	38,690	38,078	68,563
2040 72,448 80,602 56,350 37,572 59,532 47,700 37,149 50,007 54,377 84,444 2045 80,958 86,753 65,310 42,008 60,177 57,806 37,722 51,169 59,229 91,841 2050 81,996 100,210 67,103 46,436 69,085 57,341 39,859 62,233 70,669 93,577 kourse: Estimation by the UCA Study Team	2035	59,775	74,253	52,116	34.821	46.867	40.634	33.334	44,113	46,464	75,005
2045 80,958 86,753 65,310 42,008 60,177 57,806 37,722 51,169 59,229 91,841 2050 81,996 100,210 67,103 46,436 69,085 57,341 39,859 62,233 70,669 93,577 Super-Estimation by the UCA Study Team	2040	72.448	80.602	56.350	37.572	59.532	47.700	37.149	50.007	54.377	84.444
2050 81,996 100,210 67,103 46,436 69,085 57,341 39,859 62,233 70,669 93,577 Source: Estimation by the UCA Study Team 51,000 57,341 39,859 62,233 70,669 93,577 <td>2045</td> <td>80.958</td> <td>86.753</td> <td>65.310</td> <td>42.008</td> <td>60.177</td> <td>57.806</td> <td>37.722</td> <td>51.169</td> <td>59.229</td> <td>91.841</td>	2045	80.958	86.753	65.310	42.008	60.177	57.806	37.722	51.169	59.229	91.841
Survey Estimation by the IICA Study Team	2050	81,996	100.210	67,103	46.436	69.085	57,341	39,859	62.233	70 669	93,577
	Source: Fo	timation by	the IICA S	tudy Team	.0,150	07,005	07,011	27,007	52,255	. 0,009	,,,,,,,,

Table 3.11 Result of Demand Forecast (Population High Projection)

The future traffic volume by vehicle type on the 4th Bridge in the case of the "4th Bridge and Line-3 Scenario" is summarized in Table 3.12, with the calculation of ESALs. It was assumed that ESAL of each vehicle type was: Car=0, Bus=1, Small truck=0.018, 2-Axle truck=0.64, and 3 or more axle truck=2.03. These ESALs are the same as those in ACP' Study except for small truck. The proportion of 2-axle trucks to 3 or more axle trucks was assumed to be 9:1 based on the ACP's Study.

Table 3.12	Results of Demand Forecast - 4th Bridge (No. of Vehicles per day)
	High Population Projection

	Tingh T optimition T toject								
		No. of vehicles							
Voor	Cor	Due	Light Truck	2-Axle	3 or more	Total	Veen	Accumlate	
I eal	Car Dus	Light Huck	Truck	axle truck	Total	Tear	(million)		
2020	26,471	1,050	793	352	39	28,705	451,629	0.45	
2025	32,343	1,179	924	409	45	34,900	511,358	2.86	
2030	39,700	1,250	1,082	480	53	42,566	555,977	5.53	
2035	45,371	1,321	1,224	543	60	48,520	598,375	8.41	
2040	51,557	1,379	1,389	616	68	55,009	639,056	11.51	
2045	52,729	1,436	1,514	671	75	56,424	674,447	14.79	
2050	64,414	1,471	1,651	732	81	68,351	704,486	18.24	

Source: Estimation by the JICA Study Team

Chapter 4 Natural Conditions

4.1 Geography

Panama is located in the Central America region, bordering both the Caribbean Sea in the north and the Pacific Ocean in the south, and between Colombia in the east and Costa Rica in the west. The total land area is 77,082 square kilometers. Panama is located on the narrow isthmus, where the world critical sea lane Panama Canal runs, between the North and South American Continents.

4.2 Geography of Project Site

The Republic of Panama sits atop two colliding tectonic plates - Central and South America and the Project site of the 4th Panama Canal Bridge is located in the Panama Canal Basin. The Pedro Miguel, Limon and related faults comprise a zone that extends from the southern flank of the mountain range in north central Panama southward crossing the Panama Canal between the Miraflores and Pedro Miguel Locks, and extending southwards. The Pedro Miguel fault ruptured in a large earthquake in 1621.

4.3 Subsoil Conditions

Basalt rocky mountain extends to the east bank of the Panama Canal, and siltstone and sandstone are found westwards. Low-land swamps containing soft and weak mud sediments cover the Panama Canal area.

4.4 Climate

4.4.1 Temperature

Air temperature in Panama is almost stable at around 27C throughout the year.

4.4.2 Humidity

Relative humidity around the Project site is shown below. According to the records for the years between 1985 and 2012, the monthly relative humidity ranges from 73.7% to 83.7% and is constantly above 80% in the high-humidity season from May to November.

4.4.3 Rainfall

Panama has a tropical climate with high humidity and high temperature, and rainy season is from May to November with heaviest rainfall in November.

4.4.4 Wind

Wind direction and velocity at the Balboa Observation Station, the nearest location to the 4th Panama Canal Bridge, is discussed below.

(1) Wind Direction

Northwest wind is predominant in the vicinity of the 4th Panama Canal Bridge site.

(2) Wind Velocity

In the Project site, the maximum wind speed of 81.9km/hr (22.7m/sec) was observed in June, 1990.

(3) Occurrence of Wind Velocity

In the vicinity of the Project site of the 4th Panama Canal Bridge, wind velocity between 0.5 to 2.1 m/sec is predominant sharing 50% of occurrence.

4.5 Hydrology (Including Channel Bed Scouring)

Flow velocity of the Panama Canal is very low and stable at approximately 0.3 m/sec in the vicinity of the Project site. According to the interview survey made to ACP, scouring of the channel bed materials does not occur in the Project site.

4.6 Earthquake

Panama is earthquake prone and was damaged by earthquakes in the past. In 1882, earthquakes collapsed many buildings in the Panama City. The Pedro Miguel fault, close to the Project site, was the epicenter of a large earthquake in 1621 which ruptured Panama City in Spanish colonial time.

Chapter 5 System Selection

5.1 Route Alternatives

There are two alternatives for the urban transportation Line-3 to the west of Arraijan – Pan American Highway and Autopista. Although Pan-American Highway runs through the urbanized area, conditions of terrain, such as slopes exceeding 6% gradient and curves with radius less than 100m, are hard for introducing an urban transport system. On the other hand, construction is easy along Autopista, although the route is apart from urbanized area because it is on the expressway.

Figure 5.1 Route Alternatives

5.1.1 Comparison items

To compare the two alternatives mentioned above, the JICA Study Team and SMP agreed to apply 11 evaluation items, which was categorized into four groups such as (1) demand and service, (2) physical, (3) land availability and resettlement, and (4) environmental.

5.1.2 Comparison method

All the comparison items were evaluated in 6 grades, from Excellent to Not Applicable as shown below. A coefficient is given to each grade, from 1.0 to 0. These coefficients are multiplied by the allocated weight of each category to calculate the scores.

		000000000000000000000000000000000000000
Evaluation	Coefficient	Evaluation score
(A) Excellent:	1.0	Weight x 1.0
(B) Good:	0.8	Weight x 0.8
(C) Fair:	0.6	Weight x 0.6
(D) Insufficient:	0.4	Weight x 0.4
(E) Poor:	0.2	Weight x 0.2
(F) Not applicable:	0.0	Weight x 0.0

Table 5.1	Evaluation Grades	and Coefficients

Source: JICA Study Team

5.1.3 Evaluation

The comparison items of "Autopista" and Pan-American routes were analyzed and evaluated in meetings between SMP and JICA Study Team.

Through a series of discussions held between the JICA Study Team and SMP, an agreement was reached on the route evaluation as shown in the table below. The total points allocated to the Pan-American route were 79.8 against 71.8 for the "Autopista" route, out of 100 points.

Based on the result, Pan-American route was selected.

Ne					100	Malaki		0	Den American Deute	0
No.			Components	Subjects for Comparison		Neight	Autopista Route	Score	Pan American Route	Score
			Concept of the Route Selection: Type of Service for each route	Commuter		4	Main target users will be commuters to Panama. Due to relatively moderate topographic	4	Not only commuters to Panama, but also local passengers within Arraijan - La Chorrera will be the	2.4
1				Commuter and local		6	condition, train operation speed can be higher that that on Pan Americana road and line is shorter.	1.2	Target users. Express train operation can be planned during morning and evening peak hours. Line is longer.	6
2	2 and and service		Potential for generation of demand from current and future development	Existing spatial occupation and tendency	50	12	The Autopista is an intercity highway and development has not been planned along the road. The unplanned developments are mainly detached houses intended for middle-income car users. Development toward the south is for middle income housing.	7.2	The urban area between Arraijan and La Chorrera has the Pan Am road as its focus. Most local business and residences (particularly of lower income families) are nearby. The area is a mixof old buildings and new developments. Development toward the north seems for low to middle income housing.	12
3	μοC	5	Expected demand considering future extension to La Chorrera	Current and future population in the area of influence (walking distance)		8	Limited access for people living along Pan Am road	4.8	High demand can be expected because all housing complexes have access roads to Pan Am road.	8
4			Station	Number and accessibility		5	4 stations, access is difficult and limited	2	5 stations, easy access	5
5			Intermodal Facilities (Park & Ride)	Accessibility		5	Access roads to parking facilities shall be provided	2	Existing road network provide easier access	4
6			Feeder bus services	Accessibility		5	Local access roads to highway are limited and network to feeder facilities has to be constructed	2	Bus bays can be constructed along Pan Am road with some road widenning	4
7			Operation speed	Speed including stop time at stations		5	Schedule speed: 40km/h	5	Schedule speed: 35km/h or less	3
8			Total length of Phase 1 and future extension to La Chorrera	Length between Arraijan - Nuevo Arraijan - La Chorrera		5	Arraijan - N. Arraijan: 7.42km Arraijan - Chorrera: 7.07km Total: 14.49km	5	Arraijan - N. Arraijan: 8.91km Arraijan - Chorrera: 7.62km Total: 16.53km	4
	5	200	Alignment between Arraijan - Nuevo Arraijan		18					
9	Dhue	Ś	(1) Steep gradient sections Number and length of steeper than 6%			5	No slope higher than 6%	5	3 locations. Total length is 780m	2
			(2) Small curves	Number of curves with radius less than R160m		5	No curve less than R=160m	5	5 locations.	3
			(3) Impacts on utilities	Number of affected utilities		3	Affected utilities are limited	3	Manyutilities	1.8
	p		Land acquisition and resettlement (land availability for)							
	lity an	ent	(1) Depot	Distance from main line to avoid resettlement		3	Adjacent to Autopista	3	800m from Pan Am road.	1.8
10	ailabi	ettlem	(2) Stations	Location and space and need for resettlement		3	Road side. There seems to be enought Right-of-Way (ROW).	3	Above the road and may exceed ROW space.	2.4
	nd Av	Res	(3) Intermodal facilities	Location and space		3	Bus terminal and P&R space are outside of ROW	1.8	Bus terminal is along the road, P&R space is outside of ROW	2.4
	La		(4) Alignment	Consideration for resettlement		3	Within existing ROW	3	Existing ROW is not enough	1.2
			Impact on natural and human environment during construction and operation							
			(1) Air pollution	Impacts for inhabitants during construction	32	1	Low density of population	1	Medium density of population	0.6
		ary	(2) Noise and vibration	ditto	1	1	ditto	1	ditto	0.6
	ental	mpor	(3) Safety	Impacts on traffic and pedestrians	1	3	Low risk	2.4	High risk	1.8
11	vironm	Tei	(4) Traffic	Disturbance for road traffic during construction		3	Low disturbance	2.4	High disturbance	1.8
	En	term	(5) Local economy, employment and livelihoods	Business generation and service for existing community		8	Maygenerate business around stations in future	4.8	Much better service for existing community	8
		Long	(6) Land use	Availability of land for future development and potential densification of urban areas		4	Space is available for future development	3.2	Land development and densification of urban development can be expected.	4
			Total			100		71.8		79.8

Table 5.2	Route Selection	Comparison Table	•

Source: JICA Study Team

5.2 First Screening

The system was selected through a two-step process. In the first screening all the potential urban transport systems were listed and evaluated by four criteria, as listed below.

1) Impact on road traffic;

2) A system in use or in experimental stage;

- 3) Uses fossil fuel; and
- 4) Nominal standard capacity greater than 20,000 PHPDT.

BRT (either at grade or in a dedicated lane), surface LRT, hanging type monorail and maglev were filtered out because they do not meet above-mentioned criteria.

As a result, six systems are considered in the second stage of the comparison.

Table 5.3First System Screening Chart

		insportation System	ns			
/		BRT at grade	BRT using dedicated lane	LRT at grade	LRT using dedicated lane	AGT
	Impacts to road traffic					
Subjects for 1st	Experimental stage					
Screening	Using fossil fuel					
	Standard capacity	3,000-5,000	5000-10,000	3,000-8,000	8,000-20,000	8,000-2,2000
	1st Screening					

		Monorail hanging type	Monorail straddle type	Maglev	Linear Metro	M RT conventional	LRT/MRT for steep slope
	Impacts to road traffic						
Subjects for 1st	Experimental stage						
Screening	Using fossil fuel						
	Standard capacity	5,000-10,000	10,000-36,000	5,000-12,000	20,000-50,000	25,000-60,000	15,000-45,000
	1st Screening						

Source: JICA Study Team

5.3 Multi-criteria Analysis

5.3.1 System Selection Chart

Six systems were evaluated in the second stage of the comparison. The results of the evaluation are shown in Table 5.4. Ten criteria were selected from a long list of potential criteria, via brainstorming and discussion sessions held among the SMP and Study Team members. In the evaluation process, the weighted points for each criterion were first established by the SMP and the Study Team. After the weighted distribution was determined, the systems were evaluated by each criterion. Finally, the overall calculation was made by adding the product of the coefficient values (0-1) multiplied by weighted points for each criterion.

It should be noted that the differences in scores are not absolute but correlated. For example, all the compared systems offer a very safe service. The difference of 1.0 and 0.9 in scoring does not mean that one system is 10% safer than the other or vice versa, but that there is a relative advantage between the evaluated elements.

After a series of discussions and analysis, **it was concluded that a straddle type monorail system is the most appropriate technology for the Line-3**. The comparison table shows that the straddle type monorail has the best score followed by the conventional MRT. The dedicated lane LRT, AGT, linear metro and steep slope MRT were judged as not being appropriate systems for Line-3 because of significant disadvantages compared to the monorail and MRT. There are some notable aspects that reinforce the monorail as the better option for Line-3. Two of which are as follows:

- The initial cost for the monorail is more than USD200 million lower than the MRT for Line-3
- Technical difficulties are observed for some sections of the MRT line where very high piers are required to avoid large scale land acquisition.

					Urban Transpo	rtation Systems			
			LRT using	AGT (Automated	Monorail	Lincor Motro	MRT	LRT/MRT	
			dedicated lane	Guideway Transit)) Straddle Type		conventional	for steep slope	
	Trainel Cratemo under energia	n (Countra)	Manila LRT Line 1	Tokyo Yurikamome	Tokyo Monorail (Japan)	Tokyo Metro Oh-edo	Many cities in the world	Kobe Electric Railway	
	Typical Systems under operation	n (Country)	(Philippine)	(Japan)	(Dubai)	Line (Japan)		Arima Line (Japan)	
	Evaluating Items	Points allocated							
1)	Capacity (*1)	15	0.8	0.4	0.8	0.7	1.0	0.8	
2)	Initial Cost(System) (*2)	10	1.0	0.9	0.8	0.9	1.0	0.9	
3)	Initial Cost(Infrastructure) (*2)	20	0.6	0.8	1.0	0.8	0.6	0.8	
4)	O&M Cost (*3)	10	1.0	0.8	0.9	0.8	1.0	0.9	
5)	Proprietary (*4)	10	0.8	0.6	0.5	0.5	1.0	0.8	
6)	Safety (*5)	5	1.0	0.9	0.9	1.0	1.0	0.7	
7)	Resettlement (*6)	15	0.8	1.0	1.0	1.0	0.8	0.8	
8)	Impacts on Natural Environment (*7)	5	0.8	0.9	1.0	0.8	0.8	0.8	
9)	Landscape /Cityscape (*8)	5	0.6	0.6	1.0	0.6	0.6	0.6	
10)	Maintainability (*9)	5	1.0	1.0	0.9	1.0	1.0	0.9	
	Total Points	100	81.2	76.6	88.6	80.4	86.5	82.3	

Table 5.4	System	Comparison	Chart

Note:

The total points score is the sum of ten criteria scores calculated from each coefficient multiplied by points allocated (weighting).

*1: Headway is fixed at 3min., and the train composition is 6 coaches for all systems.

- *2: Initial costs cover civil work, E&M, and rolling stock costs. Maximum height of pier was set to 20m.
- *3: Calculation of the adjusted yearly O&M costs.
- *4: International competitive tender is possible.
- *5: Evacuation method, possibility of derailment, and rescue methods are evaluated.
- *6: Land acquisition and resettlement are evaluated.
- *7: Green area that would be removed
- *8: Impacts of elevated structure on landscape and cityscape
- *9: Ease of maintenance work.

Source: JICA Study Team

5.3.2 Conditions and Method of Comparison

The following preconditions and assumptions were used for the comparison exercise.

- Route length is L=25km via the Pan-American Highway.
- 10 stations are considered for the purpose of comparison.
- Initial demand is set at 20,000 PHPDT and final demand at 35,000 PHPDT;
- 4% slope is used for MRT and LRT whereas 6% slope is used for the monorail and other

systems;

- R=100m is used for the minimum horizontal curve for the monorail, AGT and Linear Metro, whereas R=160m was used for MRT and the rest; and
- 4 passengers $/m^2$ and 3 minute interval were used for the purpose of comparison.

5.3.3 Comparison in a Radar Chart

The top and the second systems, straddle-type monorail and MRT, were compared by using a radar chart as shown in Figure 5.2. A monorail system enjoys a significant advantage in lower initial investment in infrastructure, a better land/cityscape, lower impact on natural environment, and lower impact on land acquisition and resettlement. On the other hand, MRT shows its advantage in its capacity and proprietary aspects.

It should be noted that in order for the MRT system to achieve the aforementioned advantages over the monorail, it would have to be the large type with a car length of 20m; if shorter cars were used the advantages in capacity become insignificant in comparison to the monorail.

Feature Comparison between Monorail and MRT (Conventional)

Source: JICA Study Team based on multi-criteria comparison Figure 5.2 Radar Chart comparison between monorail and MRT

5.4 Conclusion

The total point of scores is calculated from the coefficient of each evaluation item for candidate systems by multiplying the coefficient by the weight as shown in Table 5.4.

Chapter 6 Route Plan

6.1 Route of Line-3

Line-3 is divided into Phase-1 and Phase-2 as shown below. Phase-1 is a 26km section from Albrook station to the depot, which is to be located near Arraijan and La Chorrera boarder, and Phase 2 is an extension of the line toward La Chorrera, although the route and the location of the terminal station have not yet been determined for Phase 2.

Source: JICA Study Team

Figure 6.1 Outline of Line-3 Route

6.2 Route Condition

6.2.1 Topographical Conditions

The topographical conditions to the west and east of the canal differ widely. On the east side of the canal the terrain is almost flat although there is a hill in the middle of the route, with a height of approximately 80m, which will require some earth moving works. The route will touch this hill and connect to the 4th Bridge

To the west of the Canal the terrain is hilly and no flat area can be observed in this area. The elevation gradually increases from the end of the 4th bridge on the west bank of the canal (approx. altitude 10m) and reaches an altitude of 130m at the highest point just before Arraijan. In the section between Panama Pacifico and Arraijan, jungles spread out on both sides of the road and the road has consecutive sharp curves and steep slopes. There is a section of steep slope for a distance of 1,300m just before Arraijan; the average gradient of this long slope is 6%.

Figure 6.2 shows a satellite image with the horizontal alignment, the vertical alignment, and photos of the first half of the route.

snaking curves

(Sosa Hill)

Figure 6.2 Satellite image, profile outline and photos along the first half of the project route

After passing Arraijan, houses and stores can be seen intermittently along the Panamericana. Since the Panamericana was constructed on the surface of hilly terrain, the selected route has consecutive sharp curves and steep slopes although the surrounding area has developed to some extent. By comparison, the Autopista, which runs parallel to the Line-3 route, has less curves and slopes since it is a highway that was constructed with considerable earth works.

The elevation decreases toward Nuevo Arraijan in last half of the route. There is a flat area in Nuevo Arraijan with an elevation of around 10m. This flat area experienced extensive flooding in 2012. Figure 6.3 shows a satellite image with the horizontal alignment, the vertical alignment, and photos of the last half of the route.

Figure 6.3 Satellite image, profile outline and photos along the last half of the project route

2012. (near the end point of the route)

6.2.2 Geographical Conditions

A geotechnical survey was carried out at 51 locations. Based on the result of investigation and the data obtained from ACP on the east bank of the canal, bearing layer depths to be used for this study were determined as shown in Table 6.1.

Section	Bearing Layer	Notes
B.P ∼2+600	20m	Determined based on 1 boring result from this Study and 7 locations provided by ACP
2+600~5+050		Monorail is constructed on the structure of the 4 th Bridge.
5+050~10+000	10m	Determined from 9 borings results
(6+900~7+100)	(20m)	(This section shall be 20m depth.)
10+000~19+000	15m	Determined from 19 borings results
19+000~終点	25m	Determined from 18 borings results
(24+000~25+500)	(30m)	(This section shall be 30m depth.)

 Table 6.1
 Bearing Layer Depths Determined Based on Geotechnical Investigation

Source: Result of Geotechnical Investigation

6.2.3 Utilities

There are different types of utilities along the project route. Some of the utilities such as fuel pipeline and water main should be considered as design controls to avoid the high cost and social impact of their relocation. Other utility service infrastructures such as minor water pipes, relatively small capacity transmission lines, telecommunication lines and so on should be relocated when they interfere with the project alignment.

The information on utility locations was collected not only through field visits but also through interviews with relevant authorities such as IDAAN for water pipes and the Administrative Unit for Reverted Estate of MEF for fuel pipelines. The data was obtained from these entities as physical copies or in digital formats.

The list of authorities related to public utilities along the project route is shown below.

Type of utility	Name of authority	Description					
Fuel pipeline and water pipe in the	Unidad Administrativa	Fuel pipelines from fuel tanks at Finca de					
reverted area	de Bienes Revertidos/	Tanque de Arraijan to Vasco Núñez de Balboa					
	Petroamerica Terminal	navy base should be avoided. Location					
	S.A.	information was obtained in CAD format.					
Water / Sewerage	IDAAN	There are pipes along the project route. The					
		location information was obtained partially in					
		GIS format.					
Power supply	ETESA	Line-3 route crossing some transmission lines					
		of medium capacity					
		Network information was obtained in paper					
Propane gas supply	Tropigas / Panagas	Gas service is provided in gas cylinders					
Telecommunication/Cable	Cable & Wireless /	Major service providers covers the area along					
	Cable Onda	the project route					

 Table 6.2
 The List of Authorities Related to Public Utilities

Source: JICA Study Team

The most challenging issue related to the utility service seems to be fuel pipelines and water/sewerage pipes along the project route. Through field visits and interviews with authorities, the important installations were identified.

6.2.4 Hydrological Conditions

The eastern end of the Line-3 alignment is located in the western watershed of the Curundu River, which includes the Canal, the Marcos A. Gelabert International Airport, and the Balboa area. The small streams in the area were channeled and pass under the existing buildings.

Water use in the watershed is devoted to crop irrigation and domestic use; the watershed is the main source of water for the community of La Chorrera. Near the urban area, the river is under pressure from over-extraction of water, disposal of waste materials and direct discharge of industrial wastes and sewage into the river.

As a result of the pressures on the Caimito River watershed, the quality of the rivers in the watershed has already declined, and it is likely to decline further.

The water table of the area exhibits significant seasonal variation; during the dry season it can decline to more than five meters below the surface. The water table rises during the rainy season to less than 50 cm from the surface creating problems in surface drainage, and in some cases, welling up onto the surface.

6.2.5 Meteorological Condition

Panama belongs to a tropical climate, having the average temperature of 27 degree through the year with the highest of 39 degree and the lowest of 15 degree. Panama has dry season and wet season, and the rain falls hard with thunders in wet season from May to November. The number of days when thunders are observed is approximately 50 in a year along the study route, and most of them are observed in the wet season (average from 2008 to 2012, ETESA).

6.3 Station Location

The stations of Line-3 are located in the central area of each region where there is a high potential for attracting passengers. The locations were decided as described below.

- In a level section of the railway alignment
- Adjacent to existing intermodal facilities such as a bus terminal or bus stop
- Adjacent to intersections of main roads
- Close to existing or developing residential areas
- Close to existing or developing industrial areas

The alignment of Line-3 begins from the Albrook area passing through Balboa and reaches the area where the 4th Bridge is to be constructed in the near feature. After passing over the 4th Bridge to the west side of the canal, the alignment follows the Panamericana Road up to Nuevo Arraijan. The total length of the alignment is approximately 26km from Station No.1 Albrook to Station No.14 Ciudad del Futuro. The longest distance between stations is 5.56km from Station No.3 Panama Pacifico to Station No.4 Loma Coba. An emergency station is planned for the mid point between these stations to provide for evacuation in case of an emergency event.

As mentioned above, Line-3 will have 14 stations and 1 emergency station. The structure of most stations is elevated with the exception of Station No.14 Ciudad del Futuro which is at grade level. Table 6.3 shows the locations of stations and the distances between stations.

Na	Station	Milea	Mileage (Km)		Nata
INO.	Station	Location Distance		ance	INOLE
E1	Albrook	0+000			Integration with Line-1 and AGNT
					(Albrook bus terminal)
			2.0)50	
E2	Balboa	2+050			Access to administrative district
			4.8	300	
E3	Panama Pacifico	6+850			Access to industrial area
			3.450		
	(Emergency Platform)	10+300		5.560	
			2.110		
E4	Loma Coba	12+410			Access to existing residential area
			1.9	940	
E5	Arraijan	14+350			Intersection with Arraijan and Burunga area
			1.1	20	
E6	Arraijan Mall	15+470			Access to future shopping mall
			0.9	980	
E7	Burunga	16+450			Access to existing residential area
			1.4	10	
E8	Nuevo Chorrillo	17+860			Intersection with Nuevo Chorrillo
					area
			1.2	290	
E9	Caceres	19+150			Access to new residential area
			1.450		
E9-1	(Future Station)	20+600		2.300	
			0.850		
E10	Vista Alegre	21+450			Intersection of two routes between Pan-American road and Vacamonte area
			0.920		
E11	Vista Alegre 2	22+370			Access to existing shopping mall
			1,180		
E12	Nuevo Arraijan	23+550	1.100		Access to existing residential area
			0.7	700	
E13	San Bernardino	24+250			Access to new development area
			1.6	500	
E14	Ciudad del Futuro	25+850			Intersection with La Chorrera area
		Total	25.	850	

Table 6.3	Station Location
-----------	------------------

Source: JICA Study Team

The average distance between stations for the entire line is 1.99km. It would appear that this distance is great, but this situation arises largely from the existence of a protected forest along Line-3. This forest has the function of protecting the canal watershed. There is no large development in the area, nor is there a plan to install a station here.

If the distance of the protected forest is removed, the average distance between stations is 1.34km. This distance is close to the figure for existing urban railways in the world.