2．社会経済調查結果

2:Socio-economic Survey

Introduction

This report is a socio-economic survey of the Preparatory Study for Formulation of the Program for Rural Development in Southern Part of Eastern Province in Rwanda (Irrigated Agriculture). The objective of this survey is to grasp current socio-economic situations and to examine the proper scale and functions of irrigation facilities and its feasibility. The survey covered four communities which are adjoining to four proposed dam sites in the Eastern Province. The proposed dams are located in; Gashora Sector (Bugesera District), Remera and Rurenge Sectors (Ngoma District) and Rugarama Sector (Gatsibo District).

The team of Sanyu Consultant Inc. and Devnet carried out the fieldwork between 24th and 31st March 2009. We should like to thank all the three Districts of Eastern Province and Sectors officials we spoke to for their cooperation, assistance and time.

The report uses the approach adopted in the feasibility study of development projects or programs of participatory for strengthening ownership as the basic organizing principle for the study. The methodology adopted also provides a framework for building on the baseline survey in future work. The questionnaire and the information gathered can be replicated in a number of ways, and possibly integrated into the regular agriculture programs (irrigation) surveys that already take place.

The report contains four sections. The first is concerned with the methods of the survey. The second contains the summary report of $1^{\text {st }}$ day workshop with Sector officials and community leaders. The third contains the summary of $2^{\text {nd }}$ day workshop with the potential farmer beneficiaries of the project and the last part contains the analysis of the individual household questionnaire survey (baseline survey).

1. Methods of Survey

The socio-economic survey was carried out with the set of workshops and interviews with questionnaire to potential farmer beneficiaries. Following table shows the program of the socio-economic survey.

Table 1.1.1 Program of the Socio-economic Survey

Schedule	Target	Items for Survey and Explanation to the Beneficiaries
1st day Key-informant interview	Officers of Sector, Cell and representatives of Imidugudu	Confirm benefited imidugudu, population, issues in the area, agriculture practice, farmer organizations, land, extension services, water, electricity, health, and other social aspects.
2nd day Explanation for potential beneficiaries and workshopPotential farmer beneficiaries of target imidugudu	Current farming, irrigation practice, explanation on project, necessity of farmer organization for O\&M, location of the project, discussion on the project	
3rd day to 6th day Individual interview with questionnaire (baseline survey)	Potential farmer beneficiaries of imidugudu (around 40househods per site)	Family structure, land use, cropping pattern, farm inputs, crop production, market, constraints on farming, income, interest in the project and willingness for farmer organization, etc.

The Socio-economic survey started on March 23 and by March 26, the exercises of the first and second programs were completed in all the 4 sites. After that, the baseline survey was carried out and the survey was completed in 3 days in each site. When we conducted the workshop with potential farmer beneficiaries in Rurenge Sector, it was found that part of the potential beneficial area (on the other side of the valley hill) belongs to the neighbor Sector, Remera. There for another workshop with the
concerned farmers in Remera Sector was held for the Rurenge site (Ngoma 21 Rurenge). On the workshops with the farmers, majority of the participants was male, but female participants were relatively high in Gashora and Remera Sectors. Table below summarizes the outline of the execution of the socio-economic survey.

Workshop with farmers in Rurenge Sector

Table 1.1.2 Outline of the Socio-economic Survey Execution

Site	$\begin{gathered} \hline \text { 1st Day } \\ \text { (Key-informant Interview) } \end{gathered}$	2nd Day (Workshop with Potential Farmer Beneficiaries)	Baseline Survey
Gashora Sector (Bugesera2)	March 23 At Sector office Participants:13 (Sector officer: 7) (Cell officer:6)	March 24 At Kagomashi Cell office Participants: 47 (male 29, female 18) 3 Imidugudu residents participated.	```March 25~ 27 Valid HH 40```
Remera Sector (Ngoma 21)	March 25 At Sector office Participants: 11 (Sector / Cell officer:6) Imidugudu rep.:5)	March 26 At Bugera Cell office Participants: 26 (male 17, female 9) 4Imidugudu residents participated.	$\begin{aligned} & \hline \text { March } 27 ~ \\ & 29 \\ & \text { Valid HH } \\ & 39 \end{aligned}$
Rurenge Sector (Ngoma 22)	March 25 At Sector office Participants:36 (Sector / Cell officer:10) (Imidugudu rep.: 26)	March 26 At project site (on the day, there was a communal workand people were working on clearing the road to the project site. After the work, the workshop was held.) Participants: 206 (male 195, female 11) 4 Imidugudu residents from RurengeSector participated. April 17 2 Imidugud residents from Remera Sector participated. Participants: 35 (male 22, female 13)	$\begin{aligned} & \hline \text { March } 27 ~ \\ & 29 \\ & \text { Valid HH } \\ & 37 \end{aligned}$
Rugarama Sector (Gatsibo 31)	March 23 At Gihuta Cell office (beneficial site) Participants: 10 (Sector / Cell officer: 5) (Imidugudu rep.: 5)	March 24 At the yard of Sector office compound Participants: 96 (male 82, female 14) Potential beneficial Imidugud would 4, but because there was a survey team recently came in to survey nearby another dam construction site funded by Rural Sector Support Program (RSSP), some people were mixed up with that project. Hence another 2 Imidugudu residents, who would be benefited from the other dam construction came to the workshop. The number of participants of 4 Imidugudu, which would be benefited from this project, was 70 (male 59, female 11).	$\begin{array}{\|l} \hline \text { March } 25 ~ \\ 27 \\ \text { Valid HH } \\ 38 \end{array}$

2. The First Day Session

2.1 Bugesera 2 Gashora

Workshop with Sector / Cell representatives: No. 2 Gashora Sector, Bugesera District
$23^{\text {rd }}$ March 2009 from 09:30 to 14:00
At Gashora Sector office Total Participants: 13

2.1.1 The Sector

The sector has a big potential for irrigation and agricultural development since it has plenty of marshland (4 lakes belong to the sector). The sector is promoting maize crops with the support of the private company named "PRODEV Bugesera". In this project, the company provides seeds, fertilizer and agricultural machinery to the farmers and the company is getting 50% of the crop yields. The cooperative produce maize crops with its area of 300 ha.

There is an irrigation project with its scale of 104 ha which was started with the support by Luxemburg government. 34 ha of its irrigation area belong to Kagomasi cell. As for RSSP project, MINAGRI is supporting the cooperatives with the irrigation area of 9 ha in Kasava.

2.1.2 Income Sources of Residents

Major income sources of the residents in the Sector are: crop farming, livestock, fishery, small trading and labor at construction work.

2.1.3 Agriculture

(1) Crop Production

In the Sector, production of maize and beans is increasing, while sorghum and sweet potato are decreasing. The reasons: the regional agricultural policy is to increase the highly marketable crops for the increasing crops. However, there is not enough storage for the decreasing crops.

For maize, it is increasing to the present production of 4 ton/ha compared to that of $1-2$ ton/ha because the farmers used fertilizers. For cassava, it is increasing because of the policy change of land consolidation and improvement of seeds.
(2) Use of Fertilizers / Pesticides

Organic fertilizer: 70% of the farmers use organic fertilizer and all the farmers use compost. As for chemical fertilizers, it is estimated that 30% of the farmers use N.P.K.17.17 and Urea. MINAGRI provides the chemical fertilizers to the farmers and the farmers pay 50% at harvest ("Voucher" system). Prices are: N.P.K.17.17: 460 Rwf/kg, Urea: 410 Rwf/kg
(3) Procurement of Seeds

Procurement of seeds in the Sector is explained as following table:

Table 2.1.1 Procurement of Seeds in the Sector

Rice	No cultivation now.
Maize	Agriculture cooperative provides the seeds. Quality: Good, Price: 335 Rwf/kg, Supply quantity: Enough
Haricot bean	MINAGRI supplies the seeds. Quality: Good, Price: $400 \mathrm{Rwf} / \mathrm{kg}$, Supply quantity: Not enough at dry season.
Cassava	MINAGRI supplies the seeds. Quality: Good, Price: 400 Rwf/kg, Supply quantity: Not enough, Variety: TM14, TM63
Sorghum	The seeds are provided by the farmers who have seeds. Quality: Not Good, Price: 250 Rwf/kg, Supply quantity: Enough
Sweet potato	The seeds are provided by the farmers who have seeds. Quality: Not Good, Price: 500 Rwf/kg, Supply quantity: Enough
Vegetables	Cooperative provides the seeds from seed shops. Quality: Good1) Cabbage Price: 1,500 Rwf/mg, Not enough quantity at dry season 2) Tomato 3,800 Rwf/500mg 3) Onion 3,000 Rwf/50g 4)

(4) Farm Labor

The following type of farmers is common in the cell:

- farmers who cultivate their own lands
- farmers who work as laborer
- farmers who is doing a collective farming

The farmers who cultivate their lands by themselves is most common. The farmers who provide their labor force follows above farmers, and these farmers are more common than the farmers who is doing a collective farming. The farmers who provide their labor are hired at any season. The labor cost is 1,000 Rwf/man-day.
(5) Milling Facilities, Post-harvest, and Marketing

There are 12 milling facilities in the target area (Cell). They store the crop products at plastic storage cell (50 ton/cell). Farmers sell the crops directly to the market. Selling Prices are: maize: 150 Rwf/kg, haricot bean: $300 \mathrm{Rwf} / \mathrm{kg}$, Cassava (After milling): 240 Rwf/kg, cassava (No process): 70 Rwf/kg, Sorghum: 250 Rwf/kg, Sweat potato: 150 Rwf/kg. For transporting crops, farmers carry the produces on the head or bicycle.

(6) Farmers Organization

There are 12 Cooperatives exist in the Sector and 1 cooperative is situated in Kagomasi Cell. The cooperatives are divided into each groups by their living area. Following table shows the cooperatives in and around the target area.

Table 2.1.2 Cooperatives in and around the Target Area

Name	Indakuki	COAIQR
Established year	2007	2007
Legal status	Registered by MINICO	Registered by MINICO
Objectives of Coop.	$\bullet \quad$ Maize cropping	\bullet Growing vegetables
	$\bullet \quad$ Growing cassava	
	$\bullet \quad$ Soap production	
	$\bullet \quad$ Dyeing of local cloths	
No. of member	2,500	232
Membership fee	16,000 Rwf/entry	10,000 Rwf/entry
Current status (active or not?)	Active	Active

(7) Conflicts

They have some conflicts at the inheritance or succession of their lands. In this case, the Sector leader solves the conflict by making discussion between each parties concerned. They also apply a national law and impose punishment on the persons of crime. They also have local court and the party concerned can appeal to the court. The property mismanagement is common in cooperatives.
(8) Ranking of Issues Concerning Agriculture

The participants were asked to rank the agricultural issues in the area. Following are the issues ranked:

1. No water at dry season
2. The marshlands are not developed for agricultural development.
3. Processing facility of crop products toward increasing their marketability is not enough.

2.1.4 Rural Lives

(1) Energy Source

For cooking, firewood from forests are used. However, the quantity of firewood is in shortage. For lightening, candle or kerosene lamp are commonly used. No electricity is distributed at the villages.
(2) Water Source

For drinking, there are 35 public water taps at the sector. For domestic use (washing clothes, dishes), people use the public tap water or lake water. For animals, they use lake water.

(3) Education

Following are the data on education status in the Sector:
a) No. of nursery schools and enrolment ratio (No. 204 Enrolment ratio: 20 \%)
b) No. of Elementary school, Enrolment ratio, and Drop-out ratio (No.: 4 Enrolment ratio (male 44 \% female 56 \%), Drop-out ratio: (male 0.6 \% female 0.9 \%)
c) No. of Secondary school, Enrolment ratio, Drop-out ratio (No.: 2 Enrolment ratio: (male 45\% female 56 \%), Drop-out ratio: (male 0.7 \% female 0.3 \%)
d) Literacy rate: (male 48\% female 52%)
(4) Health

There is a clinic from 200 m from the sector office. The number of doctor and nurse is 9 and there are 20 beds in the clinic. Popular diseases in the area are malaria, respiratory infections, parasite infection, and physical injuries.
(5) Finance

A rural bank provides an access for finance to the farmers at planting seasons. Only 20 farmers use the finance. Solidarity guarantee is the basic condition. Tontine system by rotating fund is used among the farmers.
(6) Projects Implemented in the Sector

Following table shows the projects recently implemented in the Sector:
Table 2.1.3 Projects Recently Implemented in the Sector

Name of Project	Purpose	Year implemented	Fund source (amount)	Status (successful?)
RWAA22 Project in Bugesera	Irrigation	2006		Nor successful. It took long procedures for procurement. The procurement is delayed.
Electrification project (Nyabagenawa - Gashora)	Electrification	2009	CDF (National Government) 600 Million RWF	Started this year. Good progress.
Health care access extension project	Public health	2008	USAID	Complete July this year. Good progress

2.1.5 Opinions on Irrigation Development

(1) Compensation

Compensation by money is a basis. The compensation is carried out by studying the property value. The compensation is made only for land owners. The compensation for landless farmers is not conducted.

(2) Change of Land Use

The change of land use or change of crop types depends on the type of crops or farming seasons. There is no regulation for the change of crop types.
3) Reallocation of Land

There is no problem if the project contributes the beneficiary of 50 farmers. The average size of farm land is 1 ha /farmer and its maximum size is 2 ha /farmer.
4) Necessity of the project

The project is necessary. They hope the early implementation. The follow-up or training is also necessary.

2.2 Ngoma 21 Remera

Workshop with Sector / Cell representatives: No. 21 Remera Sector, Ngoma District
$25^{\text {th }}$ March 2009 from 09:00 to 12:30
At Remera Sector office Total Participants: 11

2.2.1 The Sector

The feature of the Sector is characterized with the aspects below:

1) Enough fertile land
2) Flat area will make the farmers active for farming and selling products.
3) The settlement of population is growing due to the government policy of land consolidation for cultivation.
4) There is an irrigation project with its scale of 104 ha which was started with the support by

2.2.2 Income Sources of Residents

Major income sources of the residents in the Sector are: crop farming, livestock, small trading, craft (carpentry), and masonry (production of construction materials).

2.2.3 Agriculture

(1) Crop Production

In the Sector, production of haricot beans (Season A), sorghum (Season B), banana and tomato is increasing since they are marketable. On the other hand, production of sweet potato, taro and cassava is decreasing since they are not marketable. Specifically the unit yield of banana is increasing because the farming technique is improved and farmers could get a new variety of seeds.
(2) Use of Fertilizers / Pesticides

Approximately 85% of the farmers use manure, and 95% of farmers use compost. Farmers using chemical fertilizers are very few (2\%). Farmers can get chemicals from 2 local cooperatives by credit and pay them back after harvest.
(3) Procurement of Seeds

Procurement of seeds in the Sector is explained as following table:
Table 2.2.1 Procurement of Seeds in the Sector

Rice	Milling plant provides seeds to the cooperatives. The cooperatives distribute the seeds to the farmers. The farmers pay them later. Variety: (Short grain, ling grain), Quality: Good, Quantity: Not enough, Price: 250 Rwf/kg
Maize	MINAGRI provides the seeds. Variety: Katumani, Quality: Not productive, Price: 200 Rwf/kg, Supply quantity: Not enough
Haricot bean	Farmers keep the seeds for next season. Variety: Short Climbing, Price: 300 Rwf/kg, Supply quantity: Enough
Cassava	Farmers rotate the seeds. Variety: Flour cassava and fresh cassava, Price: 200 Rwf/heap, Supply quantity: Enough
Sorghum	Farmers keep the seeds for next season. Variety: Traditional seeds, Price: 200 Rwf/kg, Supply quantity: Enough
Sweet potato	Farmers keep the seeds for next season. Variety: No name, Price: 1,000 Rwf/basket, Supply quantity: Enough
Vegetables	1) Tomato: Farmers buy seeds at shops. Variety: 2, Price: 34,000 Rwf/kg, Enough 2) Cassava: Farmers buy seeds at shops. Variety: 1, Price: 900 Rwf/500mg, Enough

(4) Farm labor

The following type of farmers is common in the cell

- The farmers who cultivate their own lands: Common (No.1)
- The farmers who is doing a collective farming: Follows above (No.2)
- The farmers who work as laborer: No. 3

Hiring labors is done for weeding or harvesting. Wage is about $1,000 \mathrm{Rwf} / \mathrm{man}$.day. People who can afford to pay hire the labors.

In the Sector, they have drying facility for paddy, milling facility for maize and sorghum. Farmers store the crop products by bags. There are no storage facilities. Loss by mouse for maize and sorghum are observed.

Farmers sell the crops directly to the market. Selling price of the produces are: maize: $200 \mathrm{Rwf} / \mathrm{kg}$, rice: 250 Rwf/kg, Cassava (After milling): 150 Rwf/kg, sorghum: $200 \mathrm{Rwf} / \mathrm{kg}$, Sweet potato: 1,000Rwf/basket, Tomato: 14,000Rwf/basket, and Onion: 350 Rwf/Kg. Farmers transport crops either on the head or by bicycle.

(6) Farmers Organization

There are 4 agricultural cooperatives in the Sector as following table:
Table 2.2.2 Agricultural Cooperatives in the Sector

Name	Abakanqukirakawa	Banana	Maize	Rice
Established year	2006	2008	2008	n.a.
Legal status by	Registered MINICO	Registered MINICO	Registered MINICO	n.a.
Objectives of Coop.	Assist farmers in milling coffee.	Promotion banana crops	Promotion of maize crops	n.a.
No. of member	2800	115	n.a.	n.a.
Membership fee	20,000 RWF/entry	5,000 RWF/entry	n.a.	n.a.
Current status (active or not?)	Active	Active	n.a.	n.a.

(7) Conflicts

There is no conflict at present. In case of small conflict, farmers appeal to Imidugudu leader together with other farmers to settle it. There is no regulation for settling the conflicts.
(8) Ranking of Issues Concerning Agriculture

Following are the ranking of issues concerning agriculture in the area by the participants:

1) Climate change: little water at dry season.
2) Access to input: fertilizer, improvement of seeds
3) Poor farming technology and farming practice.
4) Farmers do not have big and specific market place.

2.2.4 Rural Lives

(1) Energy Source

For cooking, firewood from forests are used. For lightening, kerosene lamp is commonly used. Electricity is distributed very few.
(2) Water Source

For drinking, there are 8 public tap and also there is spring but the quantity is not enough. For domestic use, people use public tap water, well, and rain water. For animals, public tap water, well, and river water are used.
(3) Health

There are 2 clinics, but no hospital and no doctor in the Sector. Popular diseases are malaria and worm diseases. They have a health insurance system named "Mutnelle" (1,000Rwf per year x household) to health care. In case of sickness, patient pays only 15% of the total payment.).
(4) Finance

A rural bank provides an access for finance to the farmers at planting seasons. Present guarantee such as forest, banana plant or coffee plain is the basic condition. Very few use the bank.
(5) Projects Implemented in the Sector

There was a project called Intra-health Project. The project purpose was to improve public health situation. The project was implemented in 2004 under the finance of USAID. The project is working well.

2.2.5 Opinions on Irrigation Development

1) Compensation

There is no house and only farm lands. They follow the compensation regulation. They don7t know the process. They don't object to the compensation by money. Ministry of Infrastructure will pay the compensation.
2) Change of land use

There is no regulation for changing land use. A good sample or practice in other projects will let the farmers to change their mind for changing their land use.
3) Reallocation of land

The existing land area is very small. Therefore, they think that the reallocation will be very difficult.
4) Necessity of the project

The project is necessary.

2.3 Ngoma 22 Rurenge

Workshop with Sector / Cell representatives: No. 22 Rurenge Sector, Ngoma District
$25^{\text {th }}$ March 2009 from 10:30 to 13:20
At Rurenge Sector office Total Participants: 36

2.3.1 The Sector

In 2006, the Sector was established merging three sectors: Rurenge, Rumbuwe and Kaberangae Sectors. Total population of Rurenge Sector is 20,183 and the Sector consists of 6 Cells: Rujambara, Musya, Bwikubo, Kagarai, Rugesi, and Muhurire. The proposed dam site is located in Rujambara Cell in Rurenge Sector and Ndekeme Cell in neighboring Remera Sector. The boundary of the two sectors is at the bottom of the target valley.

Rurenge Sector has a natural forest of 6ha with wildlife in there. The Sector wishes to make the forest a national park. There is a big pond for fish breeding in the Sector constructed by Chinese.

Imidugudu to be involved in the beneficiary area and upstream reaches of the proposed dam are

Nyabaganza, Gitobe, Mbonwa and Masyoza. Nyabaganza and Gitobe are rather situated in the upstream reaches of the proposed dam axis. Imidugudu called Akarambaraye could also be in the beneficial area. As for Remera side, Gikomero imidugudu in Ndekeme Cell will be the beneficiary imidugudu.

2.3.2 Land Use

There are sharecroppers in the Sector though they are not many. The landowner shares with renter 50: 50 of inputs and harvest. There are also few absentee landowners but not in paddy fields.

2.3.3 Income Sources of Residents

Major income source of the people in the Sector is agriculture. Major products are rice, beans, tomatoes, coffee and sorghum. Milk and beef cow is also an important income source. There are very few people who are engaged in commerce.

2.3.4 Agriculture

(1) Crop Production

Major crops are rice in valley, tomatoes, banana, beans, pineapples, and sorghum. Coffee is also seen a lot as coffee tress are grown in 26,000ha in the Sector. Season A records better production than season B.

There are three marshlands in which rice is cultivated. They are Mwambo (90ha), Gisaya (50ha), and Rwampunga (15ha). The proposed dam site covers Rwampunga marshland. Unit yield of rice in the marshland is around 4t/ha in season A (Aug/Sep - Jan/Feb) and 2.5t $\sim 3.5 t /$ ha in season B (Feb/Mar July). In Mwambo, there is a weir in the stream for rice irrigation.

Generally the crop production shows increasing tendency due to fertilizer application, introducing new variety seeds, though rice yield remains still low.
(2) Use of Fertilizers / Pesticides

Chemical fertilizers are used for rice and coffee (NPK and Urea). For rice, coffee and tomato, farmers are using chemical fertilizers and pesticides. Price of fertilizers are: NPK: 480Rwf/kg, Urea: 410Rwf/kg and DAP 550Rwf/kg. The Cooperative (union?) of the Eastern Province, COCURIRWA supplies the fertilizers. They used to provide DAP but stopped it now. For rice, 100kg/ha of NPK and $100 \mathrm{~kg} / \mathrm{ha}$ of Urea ($50 \mathrm{~kg} x 2$ times) are recommended to apply and farmers are practicing it.

Crops (rice, banana, potato) are attacked by "kirabiranya". It makes crop shrinking and dry-up. When caterpillars (igishorogwa) attacks crop, kirabiranya occurs. Also rice is attacked by flies. Farmers use supermetrine, riceband and benerate. Supermetrine and riceband cost 4,500Rwf/liter each. Benerate costs 9,000Rwf/kg. In Gisaya marchland standard use of pesticides is 20 liters/50ha. Farmers also use chiyoda and ditan for coffee and tomatoes. Farmers go to shop to buy pesticides
(3) Procurement of Seeds

There are many varieties of rice grown in the marshland. They are as local name; union, zogingi (machine), Pekin, which are a group of kigoli (short grain) and wat, namde, facagiro, muturage (tall grain). The cooperative used to bring seeds, but now farmers are multiplying seeds by themselves. Presisent of the cooperative in Gisya marchland heard about Nerica rice.

Though the government has been distributing hybrid maize seeds, maize is not much grown in the area. Seeds of beans, sorghum and sweet potato are recycled by farmers. Farmers buy seeds of vegetables from shop (traders come to sell seeds at the market days). Cassava has been attacked by disease (cassava mosaic).

(4) Farm Labor

They have collective work for transplanting and harvesting of rice and also harvesting of coffee. Collective work is common but hire labor is more common because hiring labor is more quickly arranged. To get people for collective work takes more time. Wage is $600-700 \mathrm{Rwf} / \mathrm{day}$ (half day). Poor people in the area and sometimes from outside come to work for hired labor.
(5) Milling facilities, Post-harvest, and Marketing

Few farmers have knapsack spryer. Other farmers are renting the sprayer from the owners. Renting fee is $200 \mathrm{Rwf} /$ day. There are 2 rice milling machines in the area. Their capacities are around $6 \mathrm{t} /$ day . The milling machines are privately owned. If farmers bring small quantity like $25-35 \mathrm{~kg}$, milling cost is 25 Rwf.kg, but if they bring bigger quantity, it will be $20 \mathrm{Rwf} / \mathrm{kg}$. According to the rule of the rice cooperative, farmers should sell at least 80% of products to the cooperative. Rice is therefore sold mainly through the cooperative. For other crops like beans, tomatoes, middlemen come to buy them. Coffee is also sold through the coffee cooperative.
(6) Farmers Organization
a) Rice Cooperatives

Each marshland has a rice cooperative. Basic information is as follows:
Table 2.3.1 Rice Cooperatives in the Marshlands of the Sector

Marshland	Mwambu	Gisaya	Rwmpunga
Name of coop	Kiearama rice farmers coop.	COPAGRI	TWLFATANYE
Establishment	Established in 1986 by Chinese. In 2003 established as an COCRIRWA (provincial level coop) took over it and in 2006 transferred to the current coop and registered.	In association and registered in 2006 to the Ministry of branch of Commerce.	COCRIRWA but made their own coop, but it has not been registered yet.
Membership	More than 300	378	180 (Remera saido around 80, Rurenge side around 100)
Fee	5,000Rwf and no more payment	5,000Rwf and no more payment	5,000Rwf as membership and $500 R w f / y e a r . ~$

There is a land tax: 25 mx 20 m of paddy field: $1,000 \mathrm{Rwf} / \mathrm{year}$ to the District office
b) Other Organizations

They have cow keeping group, pineapple growers group, beekeepers group, coffee cooperative, banana growers, 3 basket weaving groups, motorcycle group, bicycle group and commerce group.

(7) Conflict

Cooperative is in charge of conflict management. If the conflict goes beyond the control of coop, it will be taken to court / police. Cooperative organizes water management (assign one person to distribute water). Sometimes farmers do not give the share of products to the coop.
(8) Ranking of Issues concerning Agriculture

1. Climate change (change abruptly)
2. Marketing (perishable is difficult to store)
3. Machinery (no adoption)
4. Marshlands are not well prepared.
5. They cannot cultivate in season C (dry season).
6. It is not easy to find pesticides (expensive).

2.3.5 Rural Lives

(1) Energy Source

Cooking energy is firewood. Lighting is mainly kerosene lump. Only one village (Kalama) near the Sector office has been electrified, but most of the villagers still do not access to the electricity.
(2) Water Source

For drinking water, they fetch it from stream and boil. There are also 18 springs in the Sector. There are also around 9 wells along Mwambu valley, but out of them 5 wells are working. For other wells, when you pump sands come up. There are 10 roof catchments (water tank). Local NGO called Intra Health assisted the Sector for water tank.
(3) Education

There are 17 nursery schools, 4 primary schools, 1 secondary school and 2 district schools. Due to change of the policy, every child has to go to school and can go to school free (for secondary up to standard 3).
(4) Health

There is one health center in the Sector. There is no doctor but 8 nurses. There is also 27 beds in the health center. Popular diseases are malaria, intestine worms, respiratory breeding (coughing), and typhoid.

(5) Finance

Not many farmers are using finance. Mainly commerce people use the finance facility.
When I saw the Bank of Popularie next to the Sector office, there were photographs of 28 people (24 men and 4 women). They were delinquents. They were warned by this method.
(6) Projects Implemented in the Sector)

There is a project for building houses for returned refugees by Red Cross from 2007 to 2009. In total 150 houses are to build. Remaining is 47 .

By CDF (Community Development Fund by the government), the health center was rehabilitated in 2008.

2.3.6 Opinions on Irrigation Development

Everybody needs water and therefore we also need project for other areas, too. Water should not only be for irrigation but also for domestic use.

2.4 Gatsibo 31 Rugarama

Workshop with Sector / Cell / Imdiugudu reperesentatives: No. 31 Rugarama
23rd March 2009 from 10:45 to 13:35
At Gihuta cell office Total participants: 10

2.4.1 The Sector

Rugarama Sector with current boundary was established in 2006 when the government implemented the renovation of the local administrations. The participants described Rugarama Sector as agriculture dominated area with mainly rice, banana, sugarcane, a large-scale market in the Sector and they looked proud of the existence of a health center established with the assistance of a NGO (ADRA).

Rugarama Sector consists of 6 Cells: Gihuta, Bugarama, Kanyangese, Motare, Remera and Matunguru. The beneficiariy area and the dam site are located in Gihuta and Kanyangese Cells, of which Gihuta Cell covers both the dam construction site and the first downstream beneficial uplands. As for Kanyangese, the area is located in the tale of the potential beneficial area beyond the tarmac road from the proposed dam site.

Imidugudu to be involved in the beneficial area and dam site are total 4: Gasbenyi I and Agatare in Gihuta and Rwagitima and Amahoro in Knyangese. The land which would be submerged by the dam belong to Gasbenyi I and Agatare.

2.4.2 Income Sources of Residents

Major income sources of the residents in the Sector are agriculture, commerce (selling agriculture products), carpentry, and handcraft (basket weaving).

24.3 Agriculture

(1) Crop Production

Major crops in the Sector are rice, banana, and sugarcane. Vegetables are few but cabbages are major vegetable grown in the Sector. The crop seasons are seasons A and B and there is no irrigated farming during dry season in the Sector.

The participants reported that the cultivated area is decreasing due to soil erosion and also the cultivated area per capita is decreasing due to population increase. They also observe that crop yields are generally decreasing due to climate change, poor agriculture technology, and population increase. Because of population increase, the land use is becoming more intensive so that the soil fertility has been degraded. They also mentioned about unstable water supply depending on rain.

Average unit yield of rice in this area is reported around 3t/ha.
(2) Use of Fertilizers / Pesticides

Majority of farmers use compost / manure for banana and maize. Rice farmers are using chemical fertilizers (Urea, NPK, DAP) and pesticides. Pesticides are also used for cabbage and tomato crop (chiyoda).

Fertilizers are provided by the government to the cooperative with 50% of subsidy. As for pesticides, farmers buy them at shop.
(3) Procurement of Seeds

Varieties of rice are Chigoli (local name), Yumi etc. Cooperative is distributing the seeds to farmers. As for maize seeds, farmers used to recycle them. In 2008 the government has started program of distributing hybrid seeds free through RADA. Also RADA has been providing cassava seed potato, which is disease tolerant (cassava mosaic disease), since 2007. Other seeds of crops such as haricot bean, sorghum, and sweet potato are all recycled by farmers. Farmers buy the seeds of vegetables from shops.

(4) Farm Labor

Customary collective work for farming operation is not so common in this area, but cooperative and associations sometimes organize collective work e.g. road clearing when soil was eroded from the gulley).

Hired labor is common though there are not many hired labor. Wage is 600Rwf/day (6:00-12:00) for both men and women. Hire labor is used for all of the farming operation. Most of the hired labor is from the same imidugudu and few come from outside.
(5) Milling facilities, Post-harvest, and Marketing

There are more than 10 mills for maize using diesel in the Sector. They are private millers and milling cost is $30 \mathrm{Rwf} / \mathrm{kg}$. There is 1 milling facility in the Sector run by cooperative. The facility has been installed for 4 years with the assistance of NGO (ADRA). The capacity of the rice mill is $3 \mathrm{t} / \mathrm{day}$ and milling price is $25 \mathrm{Rwf} / \mathrm{kg}$.

There is no public store for maize and rice and farmers are storing the harvest at home. Post-harvest loss is not much (but loss of maize by birds was observed) but farmers harvest the produce at the same time and sell them at the same time, os the price of maize becomes very low.

Farmers sell rice to the cooperative and maize directly to market (where middlemen also come). Price is $400 \mathrm{Rwf} / \mathrm{kg}$ (milled rice) for rice and 200Rwf/kg for maize (some people sell maize after milling and the price is about $250 \mathrm{Rwf} / \mathrm{kg}$).
(6) Farmers Organization
a) Rice Cooperative (COPRORIZ Ntende)

The cooperative was established in 2003 and already registered (to the Ministry of Commerce). Total membership is 916 . Membership fee, at the beginning was $3,700 \mathrm{Rwf}$ but now increased to 25,660 Rwf. Apart from the membership fee, the members are to pay $750 \mathrm{Rwf} / 10 \mathrm{a} /$ season. They are considered as No. 1 cooperative in the District. The cooperative covers 3 Sectors: Rwimboga, Gitoki and Rugarama. Their office is located in Rugarama Sector.
b) Other Organizations

In the Sector, there are many groups (cooperatives, associations) for various activities. These are: basket making, cow breeding, beekeeping, handcraft, sewing, mechanics, meat sellers, etc.
(7) Conflict

Sometimes conflict occurs between farmers over the border of their farms. Firstly cooperative will mediate the conflict and if the issue goes beyond control, issue is taken to the government (court).
(8) Ranking of Issues concerning Agriculture

Following are the ranking of the issues by the participants:

1. Storages for farm products
2. Irrigation
3. Pests
4. Fertilizers

2.4.4 Rural Lives

(1) Energy Source

Energy for cooking is firewood. Firewood is one of the most difficult issues in the Sector because the trees have been decreasing in the Sector. People are even buying firewood (1,500Rwf/bunch). Both men and women go to fetch firewood.

For lighting, people use kerosin most and candle at second. Some people can access to electricity.
(2) Water Source

There are 10 taps in Gihuta Cell and 2 wells in the lowland. Water quality is ok.
(3) Education

There is no nursery school but churches take a role of taking care of small children.
There are 5 primary schools in the Sector. Due to the law, primary education is compulsory, so that every child goes to school. There is some drop-out from primary school.

There is 1 secondary school in the Sector. The enrolment ratio is not known but due to the change of government policy, school fee has become free up to standard 3 since 2008 so that now every child is going to secondary school.
(4) Health

There is one health center in the Sector. There is no doctor at the center but around 10 nurses and technicians. Popular diseases in the Sector are malaria, TB, intestine worms, typhoid, and HIV. According to the government policy all the residents are to buy health insurance, which cost 1,000Rwf/person.
(5) Finance

Not many people are using finance facility.
(6) Projects Implemented in the Sector)

ADRA (NGO) has implemented 1) reclamation of marshland from 2002 to 2003, 2) construction of schools / houses in 4 sites in 2002, and 3) construction of wells in 2003 and 4) construction of the health center in 2004. RSSP has also been implemented to construct a factory of cassava processing located in Gihuta Cell. The factory has not been operated since they are still waiting for the installation of a machine. Cassava cooperative in the area requested this project to RSSP and it was appraised. The membership of the cooperative is 180 (This RSSP project could be the Second RSSP).

2.4.5 Opinions on Irrigation Development

People in the area are suffering from soil erosion through the gulley, which are in the target dam site.

Due to soil erosion when heavy rain comes, the road is blocked and crops are damaged. People are clearing the road by community work.

Some people showed anxiety of flood incidence, which could damage the houses in the downstream reaches of the proposed dam site.

Lands which will be submerged by dam should be compensated with money.
If dam was constructed, people in the hill side would cultivate rice or vegetables. Some also wish to feed fish in the dam.

3. The Second Day Mission

3.1 Gashora (Bugesera 2)

Workshop with Potential Farmer Beneficiaries: No. 2 Gashora Sector, Kagomashi Cell
24th March 2009 from 09:00 to 12:00
At Kagomasi Cell office

1) Potential beneficial imidugudu and participants:

Sector	Cell	Imidugudu	Male	Female
Gashora	Kagomasi	Akagako	4	3
		Kuwuruganda	17	11
		Kagomasi	8	5
		Total	29	19

2) Questions from the participants to the Project

Q: Can the proposed dam reserve the water at dry season? Is there any possibility for dry-up on the proposed dam reservoir? Because, the rain water is very little at the project site.

A: The specialists of the JICA team are studying now based on the meteorological, hydrological geological and engineering viewpoints.

Q: In order to avoid the dry-up of the reservoir, I recommend you to connect the water of the downstream lake with the proposed reservoir. How do you think of my idea?

A: We are still studying the proposed project from technical, economical, social and environmental viewpoints. However, we also have to consider the increase of the project cost.

Q: Can you make higher the dam height more than the proposed height (15m).
A: If we raise the dam height, the reservoir water will reach and overtop the road and military land which are located at the downstream side of the proposed reservoir.

Q: Can the proposed dam shift to the lake in terms of supply of stable water?
A: We are still studying the proposed project from technical, economical, social and environmental viewpoints.

Q: I am worrying about the erosion at the upstream side. How do you think of this issue?
A: We also consider planning the proposed in order to avoid such erosion.

3) Farmers Organization

Q1: Are you a member of any group? Number: male	15	female	6	
Group 1 group name INDAKUKI,	male	female	fee 16,000	Rwf

Activity of the group: Maize cropping, growing cassava
Q2: Do you understand the necessity of Water Users' Association? Number:
Q3: How do you establish the Water Users’ Association?

The participants discussed that the farmers need a meeting to discuss how to create a committee for such organization. 1st meeting is necessary after the construction of dam. After that they conduct election for deciding the committee member. Then, the committee contributes a fund.

Q4: How much per year will you pay for water fee?

0Rwf	None	
500 Rwf	None	
1,000Rwf		All
More than 1,000Rwf	None	

4) Discussion on land reallocation, if the dam will be constructed.

Q1: Compensation for the farmers whose farmland will be submerged.
Basically, the farmers need the compensation by money. They need at least $700 \mathrm{Rwf} / \mathrm{m} 2$ taking the case of consideration of road construction ($400 \mathrm{Rwf} / \mathrm{m} 2$) into consideration.

Q2: Compensation for the farmers whose farmland will be occupied by irrigation facilities.
Same as above.
Q3: How do you allocate irrigation area? (How about landless farmers?)
The change of the crop types is not a problem for the farmers. The cooperative will manage the land allocation. For the lost land, the cooperative will rent a land from farmers and will distribute it to the farmer who has lost a land. As for the issue of landless farmer, the government should take care for them.

Q4: How can you share the benefit of irrigation fairly?
The surplus of the crop products will be sold at the local market. The benefit will be used for health insurance. The benefit will be contributed by the cooperative.

5) Impacts of the Project

Positive impact: household starvation will be reduced at this area. Housing will be improved by the increase of the chance of earning income. Job will be increased for landless people at the downstream side. The income level of female will be improved.

Negative impact: The dam will cause over-flooding in case of heavy rain.

6) Crops to grow if the dam was constructed

(1) Rice: They don't have enough quantity of rice. Also, they are marketable.
(2) Vegetables: The soil is suitable for their production. (Tomato, cabbage, green beans)
(3) Maize

7) for Project

All the participants agreed with the project. The reasons are:
(1) The project will prolong the stable water even at dry season.
(2) The farmers can produce crops at 3 seasons.
(3) The jobless people will have a chance for getting their jobs.

3.2 Remera (Ngoma 21)

Workshop with Potential Farmer Beneficiaries: No. 21 Remera Sector, Bugera Cell
26th March 2009 from 09:50 to 12:00
At Bugera Cell office

1) Potential beneficial imidugudu and participants:

Sector	Cell	Imidugudu	Male	Female
Remera	Bugera	Munini 1	8	4
		Munini 2	7	1
		Jisunda	2	2
		Gesero	0	2
		Total	17	9

2) Questions from the participants to the Project

Q: Will the irrigation water be supplied only to the marshland? Will it be supplied to upland hill?
A: The JICA study team is studying now on the technical and also economical point of view.
Q: The canal will not be possible because of its location. The canal should be located at more upstream side in terms of providing more beneficiaries.

A: The JICA study team is studying now on the technical and also economical point of view.
Q: Some farmland will be submerged in the upstream by the project. Does the project developer provide an alternative land?

A: We conducted an interview with the sector officer yesterday. At that meeting they answered that the compensation for the submerged farmland will be made by money.

Q: When will the project start?
A: Its construction will start next year.

3) Location of farmland

Whose farmland will be submerged:
Whose farmland is located at upstream reaches of proposed dam:
4

Whose farmland is located at the downstream reaches of proposed dam

4 (same as above)
8

4) Irrigation

Nobody says that they have enough water. Only 1 person irrigates by using container.

5) Farmers Organization

10 males and 4 females among the participants belong to cooperative. There are cooperatives in and around the Cell:

Group 1 group name Coffee Cooperative number 400 (total)
Group 2 group name Banana Plant. Coop, number 118 (total)
Group 3 group name Rice Farmer Coop., number n.a.
fee 10,000 Rwf
fee 5,000 Rwf
fee n.a. Rwf

Activity of the group
Group 1: Milling by a milling equipment
Group 2: Training farmers to take new technology to develop marketable crop production
Group 3: To assist farmers to develop marshlands, to provide seeds to the market
The participants understood the necessity of Water Users’ Association or farmers organization for irrigation water management and discussed the organization as follows.
(1) Basically, all beneficiaries of the farm land should be members of WUA.
(2) A committee should be elected from the members. This committee should do the registration of WUA and collect membership fee from the members.
(3) Water fee is basically necessary. However, they cannot decide how much the membership fee should be at this moment.

6) Discussion on land reallocation, if the dam will be constructed

Q1: Compensation for the farmers whose farmland will be submerged.
(1) The farmers think that the compensation should be made by money.
(2) On other hand, they also think that more guarantee for their lives should be considered. On these points, they think that alternatives lands take priority over the compensation by money.
(3) JICA should compensate for the submerged farmlands.
(4) Some farmers think that they cannot decide because the stage is before construction.
(5) First of all, they want to know the exact location to clarify the compensation issue.

Q2: How do you allocate irrigation area? (How about landless farmers?)
(1) Basically, the farmers don't have enough lands. On this point, they don't think that they can be members of WUA.
(2) The marshland is basically government land. If the land is reallocated, all the farmers will have benefit equally.
(3) The people who are not benefited by the project will buy the crops which are produced by the irrigated water.
(4) As for the landless farmers, they will be able to provide their labor forces at construction stage, However, they have no idea for it after construction. The sector officer should have responsibility for land reallocation.
(5) Some part of upland can be exchanged with marshland. On this point, they support the reallocation of land (About 30 participants support this opinion.)

7) Impacts of the Project.

Positive impact: They will get jobs. They will be able to grow vegetables to improve their life of households. Even for the landless people, they will get jobs during construction and get crops after construction.

Negative impact: None

8) Crops to grow if the dam was constructed

(1) Rice: They are marketable.
(2) Vegetables: They are marketable.
(3) Maize

9) for the Project

All the participants agreed with the project. The reasons are: 1) the project will provide jobs and 2) the farmers will get enough water at dry season.

3.3 Rurenge (Ngoma 22)

3.3.1 Rurenge Side

Workshop with Potential Farmer Beneficiaries: No. 22 Rurenge Sector, Rujambara Cell 26th March 2009 from 10:40 to 12:10
At the proposed dam site

1) Potential beneficial imidugudu and participants:

Sector	Cell	Imidugudu	Location	Male	Female
Rurenge	Rujambara	Nyabaganza	Upstream	60	2
		Gitobe	Upstream	30	1
		Mbonwa	Downstream	34	0
		Mashyoza	Downstream	34	4
		Akarambaroye	Upstream? (not directly involved)	37	4
Remera	Ndekeme	Gikomero	Both Upstream and downstream	0	0
			Total	195	11

Total 206 people attended. This day, there was a community work to clear the road to the rice irrigation site. The meeting was held after the community work. Women also went to attend animal vaccination, therefore, less women attendance. Since the meeting was organized by Rurenge Sector, people who belong to Remera Sector did not come (not informed).

2) Location of farmland

Among the participants:
Whose farmland will be submerged: 26
Whose farmland is located at upstream reaches of the proposed dam: 18
Whose farmland is located at downstream reaches of the proposed dam: 31

3) Irrigation

Nobody says that they have enough water. 40 participants irrigate their farmland by watering cans and basins. And all the participants showed their wish to have stable water supply.

4) Farmers Organization

65 men and 5 women join in groups or cooperatives. 30 men and 4 women do not join any group. There is a rice cooperative in the target area. Name of the cooperative is TWIFATANYE.

Memebrship is 180 (around 80 from Remera side, around 100 from Rurenge side). Area is around 15 ha and annual fee is $500 \mathrm{Rwf} /$ year.

There are 3 groups of merry-go-round (each member contribute money and each one takes the money in turn).

Name	$\underline{\text { male }}$	female	$\underline{\text { fee }}$
Intorezayesu	90 (both male and female)		100Rwf/week
Tuzamurane	20 (both male and female)	38	1,200Rwf/month
Twiyubaka	32	38	200Rwf/week

All the participants responded that they understand the necessity of water users association.
On how to establish the water users association:

- Form a cooperative. This coope might be a different one from the existing rice cooperative.
- Form a different cooperative from the existing one but the new cooperative should collaborate with the existing one.
- Existing cooperative covers the existing paddy fields in the bottom of the valley. New cooperative will be formed for the owners of the farmland in the slope.
- These two cooperatives can be combined and select one president.

31 persons showed willingness to pay 500Rwf for water fee.

5) Discussion on land reallocation

- Compensation to the land on upstream of the dam should be money to buy other land.
- How to share benefit: for those who do not have land in the irrigation area, paid labor will be given to them.
- Those who do not have land in the irrigated land should al be a member of cooperative and get share of income through cooperative activities.
- Those who do not have land can be engaged in fish culture in the dam.
- The dam lake could be developed for water park (boat service etc.)

6) Impacts of the Project

- Blocking water upstream may cause water shortage at downstream reaches.
- Construction of dam may affect for domestic and drinking water source in downstream reaches.
- There are Tanzanian refugees who got land from the government in this area.

7) Crops to grow if the dam was constructed

Rice, tomato, cabbage, maize, carrot, eggplant

8) for Project

All the participants agreed with the project.

3.3.2 Remera Side

Workshop with Potential Farmer Beneficiaries: No. 22 Remera Sector, Ndekwe Cell 17th April 2009 from 9:50 to 12:00
At Ndekwe Cell office

1) Potential beneficial imidugudu and participants:

Sector	Cell	Imidugudu	Male	Female
Remera	Ndekwe	Gikomero	19	13
		Rugando	3	0
		Total		22
13				

2) Questions from the participants to the Project

Q: We are worrying about the compensation which will be caused by the project.
A: MINAGRI has a policy for compensation for the affected farmers and has some experiences on compensation in other projects.

3) Location of farmland

Among the participants:
Whose farmland will be submerged: 5
Whose farmland is located at upstream reaches of the proposed dam: 5
Whose farmland is located at downstream reaches of the proposed dam: 14

4) Irrigation

None of the participants have enough irrigation water and no one practices irrigated agriculture.

5) Farmers Organization

There are following groups in the Imidugudu.
Group 1 group name: Rice Cooperative 8 participants were the members of the cooperative.
Group 2 group name: Association for funeral: 65 - 80 members
fee: 200Rwf/month
Group 3 group name: Building / repair a house: 70 members
fee: 1,100 Rwf/2months
Activity of the group
Group 1: Cooperative activities for rice production
Group 2: Securing people for preparing a funeral for a person's death
Group 3: Collecting money from the members for building and repairing a house
All the participants agreed with the necessity of farmers organization (Water Users’ Association) for irrigation water management. They discussed the establishing the organization as follows:
(1) Call the farmers who will receive direct benefits
(2) Hold a meeting and form a association which is based on contract

6) Discussion on land reallocation, if the dam will be constructed.

Q1: Compensation for the farmers whose farmland will be submerged.
The farmers think that the compensation should be made by money because the government will not provide lands

Q2: Compensation for the farmers whose farmland will be occupied by irrigation facilities.
Same as previous question

Q3: How do you allocate irrigation area? (How about landless farmers?)
To have a meeting is first.
Q4: How can you share the benefit of irrigation fairly?
Same as previous question and to have a meeting is very important.

7) Impacts of the project.

Negative impact: they are worrying about the negative impact on the existing springs.

8) Crops to grow if the dam was constructed

They hope to grow the crops which consume a lot of water. Therefore, they hope to grow rice.

9) for the Project

All the participants agreed with the project. The reason is that the project will provide water.

3.4 Rugarama (Gatsibo 31)

Workshop with Potential Farmer Beneficiaries: No. 31 Rugarama
$24^{\text {th }}$ March 2009 from 10:00 to 12:00
At Gihuta cell office compound

There is another gulley near the proposed dam site and recently somebody visited the gulley and did some work like measurement. Therefore, some people misunderstood the proposed site was that gulley and came to the meeting. Only few members of the rice cooperative were present at the meeting.
(A farmer says) The rice cooperative (COPRORIZ Ntende) started with few members and those original farmers left the coop, but the coop remained. This existing cooperative can help establish new association for water management.
(A farmer says) People are also interested in fish breeding in the dam.

1) Potential beneficial imidugudu and participants:

Sector	Cell	Imidugudu	Location	Male	Female
Rugarama	Gihuta	Gashenyi I	Upstream	18	6
		Agatare	Upstream	24	3
		Out of the target area	5	1	
		Out of the target area	4	0	
		Out of the target area	17	2	
		Rwagitima	Downstream	10	2
		Amahoro	Downstream	7	0
				82	14

Total 96 people attended.

2) Location of farmland

Among the participants:
Whose farmland will be submerged: 4

Whose farmland is located at upstream reaches of the proposed dam: 2
Whose farmland is located at downstream reaches of the proposed dam:

3) Irrigation

Nobody says that they have enough water and nobody irrigates their field. And all the participants showed their wish to have stable water supply.

4) Farmers Organization

Name COPRORIZ (rice farmers coop)	$\underline{\text { male }}$	$\underline{\text { female }}$	fee
Tubungabunga ibikorwa rewezo (care of infrastructure (clean road)	1	0	
Dushygikiye umuco (Basket weaving)	0	22	5,000Rwf
COTAMORU	3	0	$31,000 \mathrm{Rwf}$

4. Baseline Survey

4.1 Method

Baseline survey was conducted with questionnaire attached hereunder with around 40 households from each site. The questionnaire was developed with discussions between JICA Study Team and Local Consultant Team and enumerators who are recruited from the target 4 sites, so that they are very familiar with the local situation of the sites. After we confirmed the Imidugudu, which are concerned with the project area on the $1^{\text {st }}$ day of the socio-economic survey exercises, the enumerators visited the concerned Imidugudu and randomly selected households and carried out individual interviews.

4.2 Provisional Results of the Survey

This section presents the results of the baseline survey from various aspects. Data is still under revision, so that the results shown in this section are still provisional.

4.2.1 Demographical Feature

(1) Family Size

Average family sizes of the sample households in Gashora, Remera, Rurenge and Gatsibo are 5.1, 4.9, 4.9 and 6.0 respectively. Those who live alone in Gashora and Remera are all adult men. Number of households whose head is widow is 5 in Gashora, 9 in Remera, 10 in Rurenge and 15 in Rugarama.

Table 4.2.1 Family Size of the Sample Households (Provisional)

Family Size	Gashora		Remera		Rurenge		Gatsibo	
	No.	$(\%)$	No.	$(\%)$	No.	$(\%)$	No.	$(\%)$
1	1	3%	2	5%	0	0%	0	0%
2	1	3%	1	3%	3	8%	1	3%
3	5	13%	8	21%	10	27%	0	0%
4	10	25%	7	18%	4	11%	6	16%
5	5	13%	8	21%	9	24%	11	29%
6	8	20%	6	15%	3	8%	9	24%
7	6	15%	3	8%	2	5%	4	11%
8	4	10%	0	0%	2	5%	2	5%
9	0	0%	1	3%	4	11%	3	8%
$10-$	0	0%	3	8%	0	0%	2	5%
Average	$\mathbf{5 . 1}$	100%	$\mathbf{4 . 9}$	100%	4.9	100%	$\mathbf{6 . 0}$	100%
Widow headed	5	13%	9	23%	10	27%	15	39%

(2) Population Structure by Age Group

Following table shows the number of population of the sample households by age group. In all the sites, the younger generation has significant share for both female and male. The share of population under 29 years old is around 70% in all the sites. The share of population of male under 29 years old is slightly higher than female in each site.

Table 4.2.2 Population of the Sample Households by Age Group (Provisional)

Age Group	Gashora				Remera				Rurenge				Rugarama			
	Female		Male													
	No.	(\%)														
0-9	31	29\%	30	31\%	17	19\%	16	16\%	26	30\%	28	30\%	28	24\%	28	25\%
10-19	30	28\%	23	23\%	30	34\%	44	43\%	21	24\%	32	34\%	29	25\%	37	33\%
20-29	17	16\%	20	20\%	13	15\%	17	17\%	17	20\%	15	16\%	14	12\%	12	11\%
30-39	8	7\%	7	7\%	12	13\%	6	6\%	13	15\%	11	12\%	8	7\%	13	12\%
40-49	9	8\%	6	6\%	10	11\%	8	8\%	3	3\%	5	5\%	16	14\%	10	9\%
50-59	8	7\%	9	9\%	6	7\%	6	6\%	3	3\%	0	0\%	9	8\%	6	5\%
60-69	4	4\%	3	3\%	1	1\%	2	2\%	3	3\%	1	1\%	3	3\%	3	3\%
70-79	0	0\%	0	0\%	0	0\%	1	1\%	0	0\%	1	1\%	4	3\%	2	2\%
80 -	0	0\%	0	0\%	0	0\%	3	3\%	0	0\%	0	0\%	4	3\%	0	0\%
Total	107	100\%	98	100\%	89	100\%	103	100\%	86	100\%	93	100\%	115	100\%	111	100\%

(3) Occupation

Almost all the family members of the sample households are engaged in farming apart from students. In Remera, 2 persons are working as shopkeepers and 1 person is engaged in trading. In Rugarama 2 persons are working as teachers and 1 person is engaged in trading and 1 in carpentry.

(4) Education Status

Tables below show the educational status of the population of the sample households by age group. Since the government of Rwanda has introduced free primary education, the enroll ratio of the primary education shows higher in younger generations. Basically it is indicated that the education status of male is higher than female, especially of secondary enrollment. This tendency is clearer for elder generations. There are 3 persons who went to university in Rugarama. One male of the three is still at schools and other two males are working as teachers.

Table 4.2.3 Education Status by Age Group in Gashora (Provisional)

Age Group	Gashora													
	Female							Male						
	No.	Primary		Secondary		Over		No.	Primary		Secondary		Over	
		No.	(\%)	No.	(\%)	No.	(\%)		No.	(\%)	No.	(\%)	No.	(\%)
6-9	13	9	69\%	-	-	-	-	15	12	80\%	-	-	-	-
10-19	30	28	93\%	1	3\%	0	0\%	23	19	83\%	1	4\%	0	0\%
20-29	17	11	65\%	0	0\%	0	0\%	20	13	65\%	2	10\%	0	0\%
30-39	8	5	63\%	0	0\%	0	0\%	7	5	71\%	0	0\%	0	0\%
40-49	9	2	22\%	0	0\%	0	0\%	6	4	67\%	0	0\%	0	0\%
50-59	8	3	38\%	0	0\%	0	0\%	9	6	67\%	0	0\%	0	0\%
60-69	4	1	25\%	0	0\%	0	0\%	3	2	67\%	0	0\%	0	0\%
70-79	0	-	-	-	-	-	-	0	-	-	-	-	-	-
80 -	0	-	-	-	-	-	-	0	-	-	-	-	-	-
Total	89	59	66\%	1	1\%	0	0\%	83	61	73\%	3	4\%	0	0\%

Table 4.2.4 Education Status by Age Group in Remera (Provisional)

Age Group	Remera													
	Female							Male						
	No.	Primary		Secondary		Over		No.	Primary		Secondary		Over	
		No.	(\%)	No.	(\%)	No.	(\%)		No.	(\%)	No.	(\%)	No.	(\%)
6-9	12	12	100\%	-	-	-	-	10	10	100\%	-	-	-	-
10-19	30	17	57\%	11	37\%	0	0\%	44	28	64\%	16	36\%	0	0\%
20-29	13	10	77\%	0	0\%	0	0\%	17	7	41\%	10	59\%	0	0\%
30-39	12	2	17\%	0	0\%	0	0\%	6	3	50\%	1	17\%	0	0\%
40-49	10	5	50\%	0	0\%	0	0\%	8	6	75\%	0	0\%	0	0\%
50-59	6	0	0\%	0	0\%	0	0\%	6	2	33\%	0	0\%	0	0\%
60-69	1	0	0\%	0	0\%	0	0\%	2	1	50\%	0	0\%	0	0\%
70-79	0	-	-	-	-	-	-	1	0	0\%	0	0\%	0	0\%
80 -	0	-	-	-	-	-	-	3	0	0\%	0	0\%	0	0\%
Total	84	46	55\%	11	13\%	0	0\%	97	57	59\%	27	28\%	0	0\%

Table 4.2.5 Education Status by Age Group in Rurenge (Provisional)

Age Group	Rurenge													
	Female							Male						
	No.	Primary		Secondary		Over		No.	Primary		Secondary		Over	
		No.	(\%)	No.	(\%)	No.	(\%)		No.	(\%)	No.	(\%)	No.	(\%)
6-9	11	11	100\%	-	-	-	-	12	12	100\%	-	-	-	-
10-19	21	16	76\%	4	19\%	0	0\%	32	27	84\%	3	9\%	0	0\%
20-29	17	16	94\%	0	0\%	0	0\%	15	13	87\%	1	7\%	0	0\%
30-39	13	9	69\%	0	0\%	0	0\%	11	10	91\%	0	0\%	0	0\%
40-49	3	2	67\%	0	0\%	0	0\%	5	5	100\%	0	0\%	0	0\%
50-59	3	3	100\%	0	0\%	0	0\%	0		-	-	-	-	-
60-69	3	2	67\%	0	0\%	0	0\%	1	0	0\%	0	0\%	0	0\%
70-79	0	-	-	-	-	-	-	1	1	100\%	0	0\%	0	0\%
80 -	0	-	-	-	-	-	-	0	-	-	-	-	-	-
Total	71	59	83\%	4	6\%	0	0\%	77	68	88\%	4	5\%	0	0\%

Table 4.2.6 Education Status by Age Group in Rugarama (Provisional)

Age Group	Rugarama													
	Female							Male						
	No.	Primary		Secondary		Over		No.	Primary		Secondary		Over	
		No.	(\%)	No.	(\%)	No.	(\%)		No.	(\%)	No.	(\%)	No.	(\%)
6-9	11	8	73\%	-	-	-	-	11	10	91\%	-	-	-	-
10-19	29	27	93\%	1	3\%	0	0\%	37	27	73\%	8	22\%	0	0\%
20-29	14	8	57\%	5	36\%	0	0\%	12	8	67\%	3	25\%	1	8\%
30-39	8	6	75\%	0	0\%	0	0\%	13	7	54\%	4	31\%	2	15\%
40-49	16	12	75\%	0	0\%	0	0\%	10	8	80\%	1	10\%	0	0\%
50-59	9	4	44\%	0	0\%	0	0\%	6	4	67\%	2	33\%	0	0\%
60-69	3	3	100\%	0	0\%	0	0\%	3	2	67\%	0	0\%	0	0\%
70-79	4	2	50\%	0	0\%	0	0\%	2	2	100\%	0	0\%	0	0\%
80-	4	2	50\%	0	0\%	0	0\%	0	-	-	-	-	-	-
Total	98	72	73\%	6	6\%	0	0\%	94	68	72\%	18	19\%	3	3\%

4.2.2 Crop Farming

(1) Land Tenure

Most of the sample households are small-scale farmers. They own one or few pieces of farmland. Those who rent or rent out the land are few. Because farmers are not really recognizing the exact size of their farmland, it seems the accuracy of the answers on the land size by the households is low.

(2) Present Crop Production

Because the accuracy on the size of farmland is in question, here summarizes the number (share) of the sample households who grow certain crops and their amount of production. Tables 4.2.7 to 4.2.10 show the share of the households who grow each crop and the average production in kg. Major crops grown commonly in the 4 sites are sorghum, bean, maize, cassava, sweet potato, and banana. Vegetables are comparably grown more in Remera. Rice is also cultivated in Rurenge and Rugarama. But for Rugarama, rice crop is seen in the downstream marshland, where the project cannot cover due to avoid overlapping with the beneficial area of RSSP.

Although the unit yield per area is difficult to assess while the accuracy of the land size is in question, the yield could be presumed low due to inter-cropping and rain-fed agriculture. Since the inter-cropping is common in all the sites, density of crop stands is lower than that of mono-cropping, that would result in low unit yield if the data of one crop was taken from the inter-cropped farmland. Also under rain-fed cropping, the yield would be unstable. It may required to conduct spot yield survey to obtain accurate unit yield of crops.

Table 4.2.7 No.(\%) of Household who grow each crop and Average Production (Gashora)

Crop	Bean	Cassava	Sorghum	Maize	Sweet potato	Banana
No. of HH (\%)	93%	83%	80%	80%	50%	35%
Average Harvest (kg)	296	579	300	87	233	130

Table 4.2.8 No.(\%) of Household who grow each crop and Average Production (Remera)

Crop	Cassava	Sorghum	S. potato	Bean	Tomato	Maize
No. of HH (\%)	62%	56%	51%	41%	23%	15%
Average Harvest (kg)	848	406	382	160	118	59

Table 4.2.9 No.(\%) of Household who grow each crop and Average Production (Rurenge)

Crop	Sorghum	Bean	Maize	Rice	Cassava	S. potato	Banana	Cabbage
No. of HH (\%)	68%	46%	32%	19%	19%	11%	8%	3%
Average Harvest (kg)	416	273	357	65	101	96	28	157

Table 4.2.10 No.(\%) of Household who grow each crop and Average Production (Rugarama)

Crop	Maize	Sorghum	Bean	Banana	Rice	Cassava	S. potato	Cabbage
No. of HH $(\%)$	63%	42%	37%	16%	11%	5%	5%	5%
Average Harvest (kg)	180	248	72	270	53	27	21	13

(3) Present Cropping Pattern

With the result of the baseline survey and also considering the filed visit of the sites, present cropping pattern in the 4 sites are described. At present, inter-cropping of several crops such as sorghum, bean, maize, cassava and sweet potato are common. Crop season is basically season A (Sep. to Jan.) and season B (Feb. to Jun.). There is no report of significant irrigation agriculture during the season C (dry season: Jul. to Sep.) in all the sites. Tables 4.2 .11 to 14 show the present cropping pattern in the 4 sites.

Table 4.2.11 Present Cropping Pattern in Bugesera 2 Gashora

Crop	Area	Inter/ Mond	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Sorghum	22\%	Inter crop												
Maize	12\%	Inter crop												
Sweet potato	7\%	Inter crop												
Haricot bean	30\%	Inter crop												
Cassava	24\%	Inter crop												
Banana	4\%	Mono crop												

Table 4.2.12 Present Cropping Pattern in Ngoma 21 Remera

Crop	Area	Inter/ Mond	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Sorghum	29\%	Inter crop												
Maize	7\%	Inter crop												
Sweet potato	17\%	Inter crop												
Haricot bean	16\%	Inter crop												
Vegetable (1)	4\%	Mono crop												
Vegetable (2)	4\%	Mono crop												
Cassava	18\%	Inter crop												
Banana	5\%	Mono crop												

Table 4.2.13 Present Cropping Pattern in Ngoma 22 Rurenge

Crop	Area	Inter/ Mond	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Rice	15\%	Mono crop												
Sorghum	24\%	Inter crop												
Maize	20\%	Inter crop												
Sweet potato	5\%	Inter crop												
Haricot Bean	24\%	Inter crop												
Vegetable (Cabbage)	2\%	Mono crop												
Cassava	5\%	Inter crop												
Banana	5\%	Mono crop												

Table 4.2.14 Present Cropping Pattern in Ngoma 22 Rurenge

Crop	Area	Inter/ Mond	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Sorghum	24\%	Inter crop												
Maize	34\%	Inter crop												
Sweet potato	2\%	Inter crop												
Haricot bean	15\%	Inter crop												
Cassava	4\%	Inter crop												
Banana	21\%	Monocrop												

(4) Issue of Farming

Problems on farming were asked to the interviewees. Figures below show the answers of the interviewees on the question. Interviewees were to pick the first, second and third serious issue from the list of issues. In all the four sites, most of the interviewees ranked "lack of irrigation water" as the most serious issue. This result would be borne to the fact that the project aims at irrigation development. The answer would have been biased from the intention of the survey. But in Remera some interviewees picked other issues as the most serious one such as "Lack of seeds", "Lack of storage facilities", "Lack of fertilizers" etc. "Lack of seeds" were picked as the second serious issue in Remera and Rurenge, while the second serious issue were "Lack of fertilizers" in Rugarama. In Gashora, the number of interviewees who picked Lack of seeds or Lack of fertilizers as second or third was about equal. Incidence of pests and diseases were also found as a significant issue in the four sites.

Figure 4.2.1 Issues of Farming (Gashora)

Figure 4.2.2 Issues of Farming (Remera)

Figure 4.2.3 Issues of Farming (Rurenge)

Figure 4.2.4 Issues of Farming (Rugarama)

(5) Aspiration of Farmers on Crop with Irrigation

Interviewees were asked if they would like to grow rice if there were enough irrigation water. All the interviewees in Gashora and Remera and 84\% in Rurenge answered that they would like to grow rice. As for Rugarama, only 24% was positive with growing rice.

Table 4.2.15 Farmers Aspiration for Rice Cultivation with Irrigation

Crop	Gashora	Remera	Rurenge	Rugarama
No. of Sample HH	40	39	37	38
Rice	100%	100%	84%	24%

Also the interviewees were asked if they wish to grow other crops if there were enough irrigation water. As the table below shows, they selected maize, cabbage, tomato, carrot and other vegetables with irrigation.

Table 4.2.16 Farmers Aspiration for Selecting Crops with Irrigation

Crop	Gashora	Remera	Rurenge	Rugarama
No. of Sample HH	40	39	37	38
Maize	55%	79%	16%	82%
Cabbage	55%	41%	59%	-
Tomato	30%	28%	41%	3%
Carrot	33%	28%	30%	3%
Other Vegetables	53%	26%	57%	84%

Other Vegetables: onion, eggplant, leek etc.
(6) Willingness to Pay for Irrigation Water Fee

The interviewees were also asked if they were willing to pay for irrigation water fee for O\&M of the irrigation facilities, if they were constructed. Most of the interviewees responded positively, but in Rugarama 31% of the interviewees was reluctant to pay the fee. The mode of value that they are willing to pay is 1,000 Rwf per year except for Rurenge, in which the mode is 500Rwf.

Table 4.2.17 Willingness to Pay for Irrigation Water Fee

Rwf/year	Gashora		Remera		Rurenge		Rugarama	
	No.	(\%)	No.	(\%)	No.	(\%)	No.	(\%)
0	1	3\%	0	0\%	2	6\%	10	31\%
0-499	4	11\%	3	10\%	2	6\%	1	3\%
500-999	6	16\%	6	20\%	21	60\%	0	0\%
1000-1499	26	68\%	13	43\%	9	26\%	20	63\%
1500-1999	0	0\%	0	0\%	0	0\%	0	0\%
2000-	1	3\%	8	27\%	1	3\%	1	3\%
Mode (Rwf)	1,000		1,000		500		1,000	
Max. (Rwf)	2,000		15,000		2,000		2,000	
Average (Rwf)	834		2,233		620		694	

(7) Conflict over Water

There are few conflicts over water in the 4 sites except for Remera, where conflict incidence was given from 46% of the interviewees. Generally few case of conflict over water would be due to absence of irrigation. Because of rain-fed agriculture, though farmers are somehow controlling water by terracing and ditches, it would not cause so much conflict among farmers.

Table 4.2.18 Conflict over Irrigation Water

Site	Answer "Yes"		Conflict Incidence
	No.	$(\%)$	
Gashora	1	3%	It was in dry season and people fed the crops with water but they got bad harvests
Remera	18	46%	Negotiation over shortage of rain water, storage of rainwwater, water sharing
Rurenge	2	5%	Negotiatino over storages of rain water
Rugarama	0	-	

4.2.4 Farm Inputs

(1) Seeds

Tables 4.2.19 to 4.2.22 show how farmers are procuring seeds by crop. It is indicated that self-supply (multiplication) of seeds is the majority for each crop. In Gashora and Rurenge, the case of buying seeds of bean is more than self-supply. When they buy seeds, majority is buying seeds from shops. In Rugarama, the government program to provide free hybrid seeds of maize has been implemented in the area and that effects are reflected to the answer of the interviewees.

Table 4.2.19 Procurement of Seeds (Gashora)

| Where to get | Maize | | Bean | | Cassava | | Sorghum | | Sweet potato | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | No. | No | No. | $(\%)$ | No. | $(\%)$ | No. | $(\%)$ | No. | $(\%)$ |
| Self-supply only | 20 | 65% | 16 | 43% | 19 | 68% | 29 | 76% | 10 | 63% |
| Self + Buy | 10 | 32% | 20 | 54% | 7 | 25% | 9 | 24% | 6 | 38% |
| Buy only | 1 | 3% | 1 | 3% | 2 | 7% | 0 | 0% | 0 | 0% |
| Where to buy | | | | | | | | | | |
| Other farmer | 0 | 0% | 0 | 0% | 1 | 14% | 0 | 0% | 3 | 50% |
| Shop | 7 | 64% | 11 | 55% | 3 | 43% | 5 | 63% | 1 | 17% |
| Middlemen | 2 | 18% | 1 | 5% | 2 | 29% | 1 | 13% | 0 | 0% |
| Government | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
| Others | 2 | 18% | 8 | 40% | 1 | 14% | 2 | 25% | 2 | 33% |

Table 4.2.20 Procurement of Seeds (Remera)

| Where to get | Maize | | Bean | | Cassava | | Sorghum | | Sweet potato | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | No. | $(\%)$ |
| Self-supply only | 10 | 77% | 17 | 94% | 28 | 100% | 24 | 92% | 27 | 90% |
| Self + Buy | 2 | 15% | 0 | 0% | 0 | 0% | 1 | 4% | 1 | 3% |
| Buy only | 1 | 8% | 1 | 6% | 0 | 0% | 1 | 4% | 2 | 7% |
| Where to buy | | | | | | | | | | |
| Other farmer | 2 | 67% | - | - | - | - | 1 | 100% | 1 | 50% |
| Shop | 1 | 33% | - | - | - | - | 0 | 0% | 1 | 50% |
| Middlemen | 0 | 0% | - | - | - | - | 0 | 0% | 0 | 0% |
| Government | 0 | 0% | - | - | - | - | 0 | 0% | 0 | 0% |
| Others | 0 | 0% | - | - | - | - | 0 | 0% | 0 | 0% |

Table 4.2.21 Procurement of Seeds (Rurenge)

| Where to get | Maize | | Bean | | Cassava | | Sorghum | | Rice | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | No. | No | No. | $(\%)$ | No. | $(\%)$ | No. | $(\%)$ | No. | $(\%)$ |
| Self-supply only | 11 | 50% | 6 | 38% | 2 | 67% | 18 | 78% | 5 | 71% |
| Self + Buy | 9 | 41% | 8 | 50% | 1 | 33% | 1 | 4% | 1 | 14% |
| Buy only | 2 | 9% | 2 | 13% | 0 | 0% | 4 | 17% | 1 | 14% |
| Where to buy | | | | | | | | | | |
| Other farmer | 9 | 82% | 9 | 90% | 1 | 100% | 0 | 0% | 2 | 100% |
| Shop | 10 | 91% | 9 | 90% | 1 | 100% | 4 | 80% | 1 | 50% |
| Middlemen | 1 | 9% | 0 | 0% | 0 | 0% | 1 | 20% | 0 | 0% |
| Government | 0 | 0% | 0 | 0% | 0 | 0% | 1 | 20% | 0 | 0% |
| Others | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% | 0 | 0% |
| | $\mathrm{~N}=11$ | | $\mathrm{~N}=10$ | | $\mathrm{~N}=1$ | | $\mathrm{~N}=5$ | | $\mathrm{~N}=2$ | |

Table 4.2.22 Procurement of Seeds (Rugarama)

Where to get	Maize		Bean		Cassava		Sorghum	
	No.	$(\%)$	No.	$(\%)$	No.	$(\%)$	No.	$(\%)$
Self-supply only	8	19%	12	60%	3	43%	5	45%
Self + Buy	10	23%	0	0%	3	43%	4	36%
Buy only	0	0%	2	10%	1	14%	2	18%
Gv't provision	25	58%	6	30%	0	0%	0	0%
Where to buy								
Other farmer	5	14%	1	13%	4	100%	1	17%
Shop	0	0%	0	0%	0	0%	0	0%
Middlemen	1	3%	0	0%	0	0%	1	17%
Government	25	71%	6	75%	0	0%	0	0%
Others	0	0%	0	0%	0	0%	0	0%
	$\mathrm{~N}=35$		$\mathrm{~N}=8$		$\mathrm{~N}=4$		$\mathrm{~N}=6$	

(2) Fertilizers and Pesticides

Only few sample households are using chemical fertilizers and non of the households are using pesticides. It is significant that 68% of the households in Gashora apply compost / manure. Table below shows the use of fertilizers and pesticides.

Table 4.2.23 Use of Fertilizers and Pesticides

Site	Gashora		Remera		Rurenge		Rugarama	
	No.	$(\%)$	No.	$(\%)$	No.	$(\%)$	No.	$(\%)$
Chemical Fertilizers	1	3%	4	10%	9	24%	1	3%
Compost / Manure	27	68%	2	5%	0	0%	0	0%
Pesticides	0	0%	0	0%	0	0%	0	0%

(3) Farm Labor

Mode of wage for farming work is 700Rwf per day for both male and female in Gashora, 800Rwf for both male and female in Remera, and 600Rwf for both male and female in Rugarama. In Rurenge, the mode of wage for farming work for male is 1,000 Rwf per day while the one for female is 800 Rwf per day. In Rurenge, wage for male shows high rate and difference from female unlike the other sites. One factor would be the paddy work like plowing and paddling, which is considered more tedious than upland cropping. Normally such paddy work is charged at 1,000 Rwf per day.
(4) Tools and Equipment

All the farmers are using simple hand tools only for farming such as hoes, machetes and sacks to put the harvest. All the tools are replaced within 2 years. Majority of sample farmers replace the tools every year.

4.2.5 Marketing

Majority of farm produces are sold directly to the local markets. Also there are cases that farmers are selling their produces to middlemen. Crops also often sold to middlemen are maize, cassava, rice, banana, and sorghum. Transportation from farm to house and from house to market is all by manual labor. Almost all the sample farmers say they carry their produces on their heads from the farms to their houses. As for carrying the produces to market, some people use bicycle (45\% in Gashora and 58\% in Rugarama).

4.2.6 Extension Services

(1) Extension Service Received

On question of whether they have received any extension services, the households in Gashora was found much less received the services than other sites. Table below summarizes the experience of extension services and their contents. In Remera and Rurenge, both of which are in Ngoma District, the households have received relatively many services. The service providers are not only the government but also NGOs.

Table 4.2.24 Extension Services Received in the Four Sites

	Gashora	Remera	Rurenge	Rugarama
Yes	$1(3 \%)$	$17(44 \%)$	$17(46 \%)$	12 (32\%)
Kind	Dissemination of new variety	Dissemination of new variety Fertilization Pest/desease control Agro forestry Soil erosion control Storing / processing	Dissemination of new variety Fertilization Pest/desease control Agro forestry Soil erosion control Storing / processing	Dissemination of new variety Fertilization Soil erosion control
Who	NGO	Agriculture Officer, NGO	Agriculture Officer, NGO	Agriculture Officer, NGO

(2) Extension Services Wished

Interviewees were also asked what kind of extension services they wish to receive. In Gashora, major contents the interviewees specified are fertilization, soil erosion control, pest / disease control, and dissemination of new varieties. In Remera, request for fertilization was significantly high and storing / processing, pest / disease control, dissemination of new varieties and soil erosion control followed. In Rurenge, dissemination of new varieties, soil erosion control, fertilization, and pest disease control are major requests. As particular point, fish breeding and crop husbandry specifically for maize, cabbage
and tomato were requested in Rurenge. In Rugarama, significant number of the interviewees raised requests for soil erosion control particularly acquiring skills for terracing.

Table 4.2.25 Requested Extension Services

Site	Extension Service	No. of Vote
	Fertilization	16
	Soil erosion control	15
	pest/ disease control	15
	Dissemination of new variety	14
	Agro-forestry	10
	Storing/ processing	10
	Livestock realing	4
	All kinds on training	17
	Fertilization	30
	Storing/processing	19
	Pest/disease control	18
	Dissemination of new variety	15
	Soil erosion control	15
	Agro-forestry	14
	Livestock rearing	1
	All kinds on training	6
Rurenge	Dissemination of new variety	7
	Soil erosion control	7
	Fertilization	6
	Pest/disease control	5
	Fish breeding	2
	Maize crop	2
	Cabbage and tomato crop	13
	Terracing (Soil erosion control)	13
	Fertilization	2
	Dissemination of new variety	2
	Pest/disease control	10

4.2.7 Farm Household Income

Average annual farm household income in Gashora, Remera, Rurenge and Rugarama is estimated at $146,000 \mathrm{Rwf}, 425,000 \mathrm{Rwf}, 241,000 \mathrm{Rwf}$ and $135,000 \mathrm{Rwf}$ respectively. Out of them income from crop production occupies $81 \%, 50 \%, 91 \%$ and 75% in Gashora, Remera, Rurenge and Rugarama respectively. Income level in Remera is the highest among the 4 sites and also income from toher than crop is high in Remera. Table 4.2.26 below shows the average annual income of the 4 sites.

Farmers allocates significant amount of farm produce for their self-consumption. The monetary value of produce for the self-consumption was also estimated. The value of the annual self-consumption in Gashora, Remera, Rurenge and Rugarama is 158,000 Rwf, 155,000 Rwf, 118,000 Rwf and 73,000 Rwf respectively. Total annual farm household income and self-consumption value are estimated at 304,000Rwf in Gashora, 580,000Rwf in Remera, 359,000Rwf in Rurenge and 209,000Rwf in Rugarama.

Table 4.2.26 Average Annual Income of the Sample Households in the Four Sites

Item	Gashora		Remera		Rurenge		Rugarama	
	Rwf	$(\%)$	Rwf	$(\%)$	Rwf	$(\%)$	Rwf	$(\%)$
Crop	118,521	81%	211,351	50%	219,297	91%	101,493	75%
Livestock	17,008	12%	44,282	10%	8,703	4%	18,283	13%
Fishery	0	0%	7,692	2%	0	0%	0	0%
Forest	1,625	1%	82,538	19%	0	0%	0	0%
Farm labor	7,710	5%	0	0%	0	0%	1,389	1%
Other	1,550	1%	79,231	19%	13,108	5%	14,278	11%
Total	146,414	100%	425,094	100%	241,108	100%	135,443	100%
Home Cosumption Value	157,813		155,333		118,068		73,181	
Total Value	304,227		580,427		359,176		208,624	
Crop + Home Consumption	276,334	91%	366,684	63%	337,365	94%	174,674	84%

Table 4.2.27 and Figure 4.2.5 below show the share of the sample households by income group. In this table and figure include the cash income and the value of self-consumption. Share of households under the annual income of 500,000 Rwf occupy 90% in Gashora, 62% in Remera, 73% in Rurenge and 92% in Rugarama.

Table 4.2.27 Sample Households in the Four Sites by Income Group

Annual Income + Home consumption Value (Rwf)	Gashora			Remera			Rurenge			Rugarama		
	No.	Share	Acc.									
$<100,000$	8	20%	20%	6	15%	15%	3	8%	8%	13	36%	36%
$100,000<200,000$	7	18%	38%	5	13%	28%	7	19%	27%	12	33%	69%
$200,000<300,000$	8	20%	58%	4	10%	38%	10	27%	54%	5	14%	83%
$300,000<400,000$	6	15%	73%	6	15%	54%	4	11%	65%	1	3%	86%
$400,000<500,000$	7	18%	90%	3	8%	62%	3	8%	73%	2	6%	92%
$500,000<600,000$	0	0%	90%	3	8%	69%	5	14%	86%	1	3%	94%
$600,000<700,000$	2	5%	95%	1	3%	72%	3	8%	95%	1	3%	97%
$700,000<800,000$	0	0%	95%	3	8%	79%	0	0%	95%	0	0%	97%
$800,000<900,000$	0	0%	95%	0	0%	79%	1	3%	97%	0	0%	97%
$900,000<1,000,000$	1	3%	98%	1	3%	82%	0	0%	97%	0	0%	97%
$1,000,000<$	1	3%	100%	7	18%	100%	1	3%	100%	1	3%	100%
Total	40	100%		39	100%		37	100%		36	100%	

Figure 4.2.5 Sample Households in the Four Sites by Income Group

Questionnaire for the $1^{\text {st }}$ Day:

Questionnaire for Baseline Survey

Date of Survey: \qquad , Time: from : to

No.

Name of Surveyor:
Participants: \rightarrow List of Participants

1. On the Sector

1.1 When was the Sector established? (

1.2 Remarkable Features and Achievements in the Sector

1.3 Current Population

Please provide data (attached Table 1)
1.4 Which imidugudu would be located at upstream / downstream of the proposed dam axis?

Please identify the imidugudu and provide data (attached Tables 2 and 3)
1.5 Number of farm households according to land tenure

Please provide data attached Table 4

2. Land Use

Total area by use, land distribution etc.
Please provide data on land use and land distribution as attached Tables 5 and 6

3. Income Sources of Residents

What kind of income sources the residents have? By rank

1.	6.
2.	7.
3.	8.
4.	9.
5.	10.

4. Agriculture

4.1 Major Crop Area and Production by Season

What are the major crops? How are the productions?

Please provide the data as attached Tables 7 and 8
4.2 Are there farmers growing crops with irrigation during dry season? (Yes No)
Season C (Irrigation in Dry Season June 2008 to August 2008)

4.3 Trend of Crop Area

Is the total cropping area increasing or decreasing? Which crops are increasing or decreasing? and the reasons for the trend.

4.4 Trend of crop yield

Are the yields (production per unit) of crops increasing or decreasing? Which crops? Reasons.

4.5 Use of Fertilizers and Pesticides (both organic and chemical)

1) How is the use of chemicals / manure / compost by farmers? (\% of total farmers, what kind of chemicals?)

2) Where do they get chemicals? Price?

3) Do you recommend farmers to use chemicals?

4.6 Procurement of seeds

How are the farmers procuring seeds? Major variety? How is the quality? Price? Is seeds supply enough? Do you know Nerica rice? etc.
(answer by crop)

Rice	
Maize	
Haricot bean	
Cassava	
Sorghum	
Sweet potato	
Vegetables	

4.7 Farm labor (hired labor / customary collective work)

1) Are there any customary collective work for farming? Are they very common or not?
2) How common is hired labor on farming? For which farm operation labor is hired? How much is the wage? What kind of people gets the hired labor?

4.8 Agriculture Machinery

1) What kind of farming tools is commonly used? Are there any drying or milling facilities in the villages?

2) In case there is milling machines in their villages

No.	Place	How old?	Capacity	Fee for milling	Who is Owner
1					
2					
3					
4					
5					

4.9 Post- harvesting and Marketing of farm products

1) How are farmers storing harvest? How is the loss?

2) How are farmers selling products? Directly to market, middlemen, etc. How is the price? How do they transport the products?

4.10 Organizations of farmers (cooperatives and others)

1) Are there Agriculture Cooperatives? (name, objective, legal status, membership fee, current status)

Name		
Established year		
Legal status		
Objectives of Coop.		
No. of member		
Membership fee		
Current status (active or not?)		

2) Any other organizations in the villages?
(1)

4.11 Any conflict over farming? And how do you solve?

4.12 Ranking of issues concerning agriculture in the area

Please rank the critical issues on agriculture development in your area (irrigation, inputs, pests, marketing etc.)

5. Rural Lives

5.1 Energy source of villages

What are the energy source in the village?

1) For cooking (
2) For lightening (
3) For warming (

Remarks

5.2 Domestic water sources

1) For drinking (
2) For domestic use (washing clothes, dishes) (
3) For animals (
)
)
)

Remarks (Number of water points, distance from villages, water quality)

No.	Location (valley or top of hill?) and type (spring. borehole etc.)	Distance from village (km)	Water quality	Water capacity
1				
2				
3				
4				
5				

5.3 Education (By sector)

1) No. of Nursery schools and enrolment ratio (No.

Enrolment ratio
2) No. of Elementary school, Enrolment ratio, and Drop-out ratio

No. () Enrolment ratio (male \% female \%) Drop-out ratio (male \% female \%)
3) No. of Secondary school, Enrolment ratio, Drop-out ratio

No.() Enrolment ratio (male \% female \%) Drop-out ratio (male \% female \%)
4) Literacy rate (by sector)
(male \% female \%)

5.4 Health (location of clinic (how far), popular diseases)

1) No. of clinic and hospital (public or private) and location, No. of doctors and No. of beds

2) Popular diseases

3) Are there any insurance system that farmers are applying?

5.5 Finance for farmers

Access of finance for farmers, conditions, how often farmers are using finance facilities, (
5.6 Any Project implemented in the Sector (by resident themselves, by support of government or NGO or donors)

Name of Project	Purpose	Year implemented	Fund source (amount)	Status (successful?)

6. Opinions on Irrigation Development

- Compensation of farmland which would be submerged if the dam was constructed
- Change of land use (from upland crop to paddy field)
- Reallocation of land
- It the project necessary? etc.

Questionnaire of $\mathbf{2}^{\text {nd }}$ Day:

Farmers' Workshop

Number of Attendants
Name of Imidugudu

	Male	Female
Male	Female	
Male	Female	
Male	Female	

1. Explanation of the project
1.1 Location of the dam
1.2 Location of the reservoir
1.3 Irrigation area
1.4 Merit of the project

- Irrigation in the dry season. Stable water supply. Increase of production.
- Training on farming. Introducing appropriate technology.
1.5 Demerit of the project
- Some farmland will be submerged
- Maintenance work should be done by the farmers.
- Farm land reallocation
1.6 Question
1.6.1 Location of farmland
- Is your farmland in the area which will be submerged? (count number) \qquad
- Is your farmland in the upstream area of proposed dam? (count number) \qquad
- Is your farmland in the downstream area of proposed dam? (count number) \qquad
1.6.2 Irrigation

Do you have enough water supply now? (count number)
Do you irrigate your farmland now?
(count number) \qquad
How do you irrigate?
Do you need stable water supply? (count number)
2. Necessity of establishment of water users' association (group)
2.1 Role of water users' association

- Operation of irrigation facilities (irrigation plan, rotation irrigation)
- Maintenance of irrigation facilities
- Collection of water fee
2.2 Water fee
- Water fee is used for operation and maintenance of irrigation facilities; wage for gate keeper, wage for maintenance work (cleaning canals, repair work etc.), cost for maintenance material(cement, sand, stones etc.) and so on.
- Water fee is about 800 Rwf /season (example: another irrigation scheme)
2.3 Question
- Are you a member of any group? (count number) male female
- Cooperative (count number) male female membership fee Group 1 group name , number male female fee


```
- Activity of the group
    Group 1
    Group 2
    Group }
```

 - Do you understand the necessity of water users' association? (count number)
 \qquad

- How do you establish water users' association? (discussion)
\qquad
\qquad
\qquad
\qquad
- How much per year will you pay for water fee? $\quad 0 \quad$ 500Rwf \quad 1000Rwf

More than 1000Rwf Others
2.4 Discussion on land reallocation, if the dam would be constructed..

- Compensation for the farmers whose farmland will be submerged.
\qquad
\qquad
- Compensation for the farmers whose farmland will be occupied by irrigation facilities.
\qquad
\qquad
\qquad
- How do you allocate irrigation area? (How about landless farmers?)
\qquad
\qquad
\qquad
- How can you share benefit of irrigation fairly?
\qquad
\qquad
\qquad

3. Discussion with groups on impacts of the project.
(What would happen? eg. To female, male, poor group etc.)
\qquad
\qquad
4. Question

Do you need this project? (count number) male female
The reason why yes; \qquad

The reason why no; \qquad
\qquad
\qquad
Thank you very much

Questionnaire for Baseline Survey:

Questionnaire for Baseline Survey

> No.

Date of Survey: 1 \qquad 1 , Time: from : to \qquad :
Name of Surveyor: \qquad
I

Name of Imidugudu: \qquad (How many years do you live in the village?)
Name of Cell:
Name of Sector:
Location of farm land: Upstream / Downstream of Proposed dam Axis

1. Personal Data:

| 1. Name: | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3. | Age: | 4. Sex: M / F | 5. Education: | Marital status: M / S / widow (er) |

2. Family Structure (Family members are those who share food)

No	Sex $(\mathrm{M} / \mathrm{F})$	Age	Relation with you	Education	Occupation
1					
2					
3					
4					
5					
6					
7					
8					
10					

3. Land Ownership

3.1 Land holding

a-1. Owned: (Total ha)	a-2. How many pieces of farmland do you own? ()
b. Leased from somebody (paying a fee)	Season A: (ha)	Season B: (ha)
c. Rent to somebody (receiving a fee)	Season A: (ha)	Season B: (ha)
d. How long are you leasing the farmland? (1. only one crop season, 2 2. one year, 3 . more than 2 years)				

(*):Season A = around September - Jan Season B = around Feb- Jun,

3.2 In terms of contract

3.2.1 Lease from somebody

1. Product: \qquad kg of \qquad per (season / year / others \qquad) to be given to landowner
2. Cash: Rwf per (season / year / others \qquad) to be given to landowner
3. Others:

3.2.2 Rent out to somebody

1. Product:
2. Cash:
kg of \qquad per (season / year / others \qquad) to be received
3. Others:

Rwf per (season / year / others \qquad _) to be received

4. Agriculture

4.1 When do you plant and harvest by crop? And how much is planted/harvested area,

 yield, etc.| | Mono-crop Or Inter-crop | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Cropped area (ha) | $\begin{aligned} & \text { Yield } \\ & \text { (kg) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Example) | | | | | | | | | | | | | | | |
| Rice in season A | (M I) | | | | | | | | | | | | | | |
| Rice in season B | ($\mathrm{M} \mathrm{I}_{\text {I }}$) | | | | | | | | | | | | | | |
| Haricot beans | (M I) | | | | | | | | | | | | | | |
| Sorghum | (M I) | | | | | | | | | | | | | | |
| Maize in season A | (M I) | | | | | | | | | | | | | | |
| Maize in season B | ($\mathrm{M} \mathrm{I}_{\text {I }}$) | | | | | | | | | | | | | | |
| Cassava | ($\mathrm{M} \mathrm{I}_{\text {I }}$) | | | | | | | | | | | | | | |
| Sweet Potato | ($\left.\begin{array}{ll}\mathrm{M} & \mathrm{I}\end{array}\right)$ | | | | | | | | | | | | | | |
| Banana | ($\mathrm{M} \mathrm{I}_{\text {I }}$) | | | | | | | | | | | | | | |
| | $\begin{gathered} \text { Mono-crop } \\ \text { Or } \\ \text { Inter-crop } \end{gathered}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Cropped area (ha) | $\begin{aligned} & \text { Yield } \\ & \text { (kg) } \end{aligned}$ |
| Vegetables
 () | (M I) | | | | | | | | | | | | | | |
| () | ($\mathrm{M} \mathrm{I}_{\text {I }}$) | | | | | | | | | | | | | | |
| () | (M I) | | | | | | | | | | | | | | |

()	(M															
()	(M	I)														
()	(M	I)														

M= mono-crop, $\mathrm{I}=$ inter-crop
4.2 What are the most serious problems on farming operation?

a. Lack of irrigation water, b. Lack of seeds, c. Lack of fertilizer, d. Incidence of pests and diseases, e. Lack of storage facilities, f. Poor marketing facilities, g. Lack of capital /credit, h. Lack of availability of labor, i. Lack of machinery j. Others (
Problem Ranking (Choose the number what to be circled above) $: 1$.

4.3 Where and how do you dry rice or maize after harvested?

Where $($ \qquad _)

How (
4.4 Where and how do you mill rice or maize?
(1) Rice:

Where (\qquad
How (_)
(2) Maize:

Where $($ \qquad
How (

5. Irrigation

5.1.1 Would you want to grow rice in dry season if dam and irrigation facilities were constructed?

$$
(\quad \text { Yes } / \text { No })
$$

5.1.2 Would you want to grow other crops in dry season with irrigation if dam and irrigation facilities were constructed?
(Yes 1) No if yes which crops?
5.2 Would it be possible for you to contribute water users' fee in cash or kind if dam and irrigation facilities were constructed? (Yes / No)
5.2.1 If the answer of 5.2 is "Yes", what is the maximum water fee you are willing to pay?

Product: kg per (season / year / others \qquad)
Or cash: Rwf per (season / year / others___
5.3 Do you have some experiences of conflict concerning the irrigation water?
(Yes / No)
5.3.1 If the answer of 5.3 is "Yes", How was the situation, what were the reasons and how did you solve the conflict?
\qquad

6 Agriculture Inputs

6.1 Seeds:

\qquad	Self supply (kg) (1)	External supply (kg) (2)	$\begin{gathered} \hline \text { Total Supply } \\ (\mathrm{kg}) \\ (3)=(1)+(2) \\ \hline \end{gathered}$	Where to get seeds (select from below)	Price for external supply (Rwf)
$\begin{array}{\|ll\|} \hline \text { Rice in season A } \\ \text { Variety }(& \\ \hline \end{array}$				a b c d e	
Rice in season B \quad) Variety (a b c d e	
Maize in season A Variety (a b c d e	
Maize in season B Variety ()				a b c d e	
Haricot beans				a b c d e	
Cassava					
Sorghum				a b c d e	
Sweet Potato				a b c d e	
Vegetables()				a b c d e	
()				a b c d e	
()				a b c d e	
(\quad)				a b c d e	
(\quad)				a b c d e	

Where to get seeds: $\mathrm{a}=$ from other farmer, $\mathrm{b}=$ from shop in nearby town, $\mathrm{c}=$ middlemen, $\mathrm{d}=$ government, $\mathrm{e}=\mathrm{others}$

6.2 Chemical Fertilizer and Pesticides

	Price (Rwf)	$\begin{aligned} & \text { Total } \\ & \text { (kg) or } \\ & \text { (liter) } \end{aligned}$	Rice (kg) or (liter)	Maize (kg) or (liter)	$\frac{\text { Cassava }}{\text { (kg) or }}$ (liter)	Sorghum (kg) or (liter)	Vegetables \qquad (kg) or (liter	
Urea								
(Others)								
Manure / compost								

6.3 Labor Distribution

Crop	Operation	Family labor (man • day)		Hired labor (man • day)	
		Male	Female	Male	Female
Rice	Land preparation				
	Planting				
	Weeding				
	Harvesting/transporting				
	Other work ()				
Maize	Land preparation				
	Planting				
	Weeding				
	Harvesting/transporting				
	Other work ()				
Cassava	Land preparation				
	Planting				
	Harvesting/transporting				
	Other work ()				
Sorghum	Land preparation				
	Planting				
	Weeding				
	Harvesting/transporting				
	Other work ()				

Crop	Operation	Family labor (man • day)		Hired labor (man • day)	
		Male	Female	Male	Female
Sweet potato	Land preparation				
	Planting				
	Weeding				
	Harvesting / transporting				
	Other work ()				
Irish potato	Land preparation				
	Planting				
	Weeding				
	Harvesting / transporting				
	Other work ()				
$\begin{array}{\|l\|} \hline \text { Vegetables } \\ (\end{array}$	Land preparation				
	Planting				
	Weeding				
	Harvesting / transporting				
	Other work ()				
$\begin{array}{\|l\|} \hline \text { Vegetables } \\ (\end{array}$	Land preparation				
	Planting				
	Weeding				
	Harvesting / transporting				
	Other work (
$\begin{array}{\|l\|} \hline \text { Vegetables } \quad \\ (\end{array}$	Land preparation				
	Planting				
	Weeding				
	Harvesting / transporting				
	Other work ()				

6.4 Average wage rate for hired labor:
Male: () Rwf/day, Female: () Rwf/day
6.5 Tools: What kind of tools are you using

Tools	Number you have	Price (Ref/piece)	How often do you replace?

7 Marketing

7.1 Marketing condition

	$\begin{gathered} \text { Home } \\ \text { Consump } \\ \text {-tion } \\ \\ (1) \\ \hline \end{gathered}$	Sold to Whom			$\begin{gathered} \hline \text { Total } \\ \text { Sold } \\ (\mathrm{kg}) \\ (5)=(2) \\ +(3)+ \\ (4) \\ \hline \end{gathered}$	Total Cash Income (Rwf)	Farm-gate Price Average (Rwf/kg) (7) $=$ (6) / (5)
		directly selling to Market (2)	Middleman (3)	$\binom{\text { Others }}{(4)}$			
Rice	kg	kg	kg	kg	kg		
Maize	kg	kg	kg	kg	kg		
Banana	kg	kg	kg	kg	kg		
Sorghum	kg	kg	kg	kg	kg		
Cassava	kg	kg	kg	kg	kg		
Sweet Potato	kg	kg	kg	kg	kg		
Irish Potato	kg	kg	kg	kg	kg		
Vegetable ()	kg	kg	kg	kg	kg		
()	kg	kg	kg	kg	kg		
)	kg	kg	kg	kg	kg		
)	kg	kg	kg	kg	kg		
()	kg	kg	kg	kg	kg		

7.2 How do you transport the crops from farm to house and from house to market?
a. From farm to house (
b. From house to market (

8. Extension Services

8.1 Have you received any agriculture extension services? (Yes / No)
8.1.1 If the above answer is "Yes", from whom and what kinds of assistance have you received?

Kind of technical assistance you received	a. Agricultural Officer, b. NGOs (c. Others (
a. Dissemination of new variety	
b. Fertilization	
c. Pest / disease control	
d. Storing / Processing	
e. Soil erosion control	
f. Agro forestry	
g. Livestock rearing	
h. Fish breeding	
i. Others	

8.2 Are there any technical assistance, which you want to receive?

Kind of technical assistance you want to receive	
a. Dissemination of new variety	
b. Fertilization	
c. Pest / disease control	
d. Storing / Processing	
e. Soil erosion control	
f. Agro forestry	
g. Livestock rearing	
h. Fish breeding	
i. Others	

9. Incomes and Expenditure

9.1 Information on Income (excluding self consumption)

Source of Income apart from crop farming	Annual Income (Rwf)
a. Livestock (by species / products) Sales of animals (Specie (Heads	
- Sales of poultry	
- Sales of eggs (. . pieces/day x price (\quad.-.... RWf/piece)	
- Sales of milk (liters/day x price (\quad RWf/liter)	
b. Selling fish	
c. Forestry products (wood, firewood, etc.)	
d. Farm labor	
e. Other paid work: ()	
f. Business ()	
g. Migrant work (to where?:) (for how long?	
h. Loan	
i. Others	
Total	

9.2 Information on Expenditure (excluding self consumption)

Expenses apart from crop farming	Annual Expenditure (Rwf)
a. Livestock	
b. Education Pasture, Feeding, Transportation, etc.)	
c. Food	
d. Medication	
e. Tax etc.	
f. Energy	
g. Repayment for credit	
h. Social Activities (Religious event, marriage, etc.)	
i. Cloths, general goods for living life, etc.	
j. Water fee	
k. Saving	
l. Others	
Total	

10. What kind of improvement concerning agriculture do you want?

| 1. Irrigation water sufficiently,
 organization,
 4. | 2. Agricultural extension services, | 3. Strengthening the farmer's |
| :--- | :--- | :--- | :--- | :--- |
| $($ | | |

Thank you very much for your cooperation.

3．測量調査結果

	10:8981	588968
	os:998	00.08E
	96:09E	00.098
	L9¢981	00006
	$8 \mathrm{rz9E}$	00028
	19.0981	00.00¢
	92.6581	00.082
	66. 2551	00.092
	559591	00.062
	$10 \cdot 5581$	00028
	${ }^{86} 1551$	00.002
	$\begin{aligned} & 81: 581 \\ & 29 \cdot 2581 \end{aligned}$	$\begin{aligned} & 6 z^{\prime} 961 \\ & 00 \cdot 081 \end{aligned}$
	10.858	00.091
	9585¢1	00.006
	20.5581	00082
	28.9581	00.001
	128551	00.08
	ع00981	00.09
	20'bse	00.0b
	b2'5951	00.02
	10:2991	000
	$\stackrel{\square}{\circ}$	0 0 0 0 0 0

。
$i_{1}^{10} 12030$ in 1

4．土質試験結果

5．水質試験結果

KIGALI INSTITUTE OF SCIENCE AND TECHNOLOGY

INSTITUT DES SCIENCES ET TECHNOLOGIE DE KIGALI BP 3900, Avenue de L'Armee, Kigali, Rwanda.website: www.kist.ac.rw

FACULTY OF TECHNOLOGY
DEPARTMENT OF CIVIL ENGINEERING AND-ENVIRONMENTAL TECHNOLOGY SOL MECHANICS \& GEOTECHNICAL ENGINEERING LABORATORY

LABORATORY SOLL TEST RESULTS ON
 IRRIGATED AGRICULTURE IN EASTERN PROVINCE PROFECT

GASHORA SITE

INSTITUT DES SCIENCES ET TECHNOLOGIE DE KIGALI
BP 3900, Avenue de L'Armee, Kigali, Rwanda website:www.kistac.Iw

SOIL MECEANICS LABORATORY
 LABORATORY TEST REPORT

Job No :SC0004/ 2009
Date:28/04/2009
Client: SANYU CONSULTANTS INC
Project: IRRIGATED AGRICULTURE IN EASTERN PROVINCE

1.Introduction.

At the request of the client, Soil samples taken from the GASHORA SITE for testing, in KIST
Soil Mechanics Laboratory.Test Method used ASTM D4318, D422, D2216, D854-00
The tests performed and results are shown in the table of the results below:

SOIL MECHANICS LABORATORY
LABORATORY TEST REPORT
Date:28/04/2009
Job No :SC0004 / 2009
Client: SANYU CONSULTANTS INC
Project: IRRIGATED AGRICULTURE INEASTERN PROVINCE

1.Introduction.

At the request of the client, Soil samples taken from the GASHORA SITE for testing, in KIST
Soil Mechanics Laboratory .Test Method used ASTM D4318, D422, D2216, D854-00
The tests performed and results are shown in the table of the results below:
2.Table of the results:

S/N	Test performed	Test results		
1	Test performed Depth (m)	$\begin{gathered} \hline \text { Gashora B } \\ 0.30-1.0 \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Gashora B } \\ 1.0-3.0 \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Gashora B } \\ 3.0 \mathrm{~m}-5.0 \mathrm{~m} \\ \hline \end{gathered}$
2	Natural Moisture Content \%	10.5	11.8	4.6
3	Atterberg i) Liquid Limit $\%$ \vdots ii) Plastic Limit $\%$ iii) Plasticity Index $\%$	30.4	33.1	26.3
		15.6	17.6	15.9
		14.8	15.5	10.4
4	Specific Gravity	2.68	2.67	2.70
5	Partical sizes (sieve size mm)	Percentage Passing \%		
	14 mm	100	100	100
	10mm	100	100	100
	4.75 mm	100	100	93.8
	2.36 mm	100	98.0	82.4
	1.18 mm	94.4	87.2	63.8
	$600 \mu \mathrm{~m}$	87.4	82.4	59.2
	$425 \mu \mathrm{~m}$	83.2	79.4	57.0
	$300 \mu \mathrm{~m}$	77.0	76.0	54.6
	$150 \mu \mathrm{~m}$	60.6	66.4	47.2
	$75 \mu \mathrm{~m}$	52.3	57.2	39.6

Notes:Finer Particals than $75 \mu \mathrm{~m}$ see graph attached

Tested by: KABAYIZA Bertin
Genterhnical Senior I abnratorv Technician
\forall əloh exoyseg

$\begin{array}{lr}\text { Sieve size } \% \text { Passing } \\ \mathrm{mm} & \\ 14 & 100 \\ 10 & 100 \\ 4.75 & 100 \\ 2.36 & 100 \\ 1.18 & 89.6 \\ 0.6 & 85 \\ 0.425 & 82.6 \\ 0.3 & 79.6 \\ 0.15 & 71.2 \\ 0.075 & 62.4 \\ 0.073 & 61.4 \\ 0.058 & 59.8 \\ 0.039 & 58.2 \\ 0.028 & 56.6 \\ 0.019 & 55 \\ 0.013 & 51.4 \\ 0.0085 & 43.7 \\ 0.006 & 38.8 \\ 0.0038 & 32.3 \\ 0.0025 & 27.5 \\ 0.0016 & 22.6 \\ 0.0012 & 19.4 \\ 0.00079 & 3.2\end{array}$

Sieve size \％Passing

NON
N

mm

$\begin{array}{lr}\begin{array}{l}\text { Sieve size } \\ \text { mm } \\ \mathrm{mm}\end{array} & \\ 14 & 100 \\ 10 & 100 \\ 4.75 & 100 \\ 2.36 & 100 \\ 1.18 & 94.4 \\ 0.6 & 87.4 \\ 0.425 & 83.2 \\ 0.3 & 77 \\ 0.15 & 60.6 \\ 0.075 & 52.3 \\ 0.073 & 51.8 \\ 0.058 & 48.5 \\ 0.039 & 45.3 \\ 0.028 & 43.7 \\ 0.019 & 42 \\ 0.013 & 40.4 \\ 0.0085 & 38.8 \\ 0.006 & 35.6 \\ 0.0038 & 29.1 \\ 0.0025 & 25.9 \\ 0.0016 & 19.4 \\ 0.0012 & 16.2 \\ 0.00079 & 12.9\end{array}$

\%Passing
 $\checkmark \underset{\sim}{\checkmark}$ 앤 Sieve size mm

宕			
			\％${ }^{3}$ \％${ }^{\text {\％}}$

GASHORA HOLE B

REMERA SITE

KIGALI INSTITUTE OF SCIENCE AND TECHNOLOGY

INSTITUT DES SCIENCES ET TECHNOLOGIE DE KIGALI

BP 3900, Avenue de L'Armee, Kigali, Rwanda website:www.kistac. 1 w
SOIL MECHANICS LABORATORY
LABORATORYTEST REPORT
Date:28/04/2009
Job No :SC0004 / 2009
Client: SANYU CONSULTANTS INC
Project: IRRIGATED AGRICULTURE INEASTERN PROVINCE

1.Introduction.

At the request of the client, Soil samples taken from the REMERA SITE for testing, in KIST Soil Mechanics Laboratory :. Test Method used ASTM D4318, D422, D2216, D854-00 The tests performed and results are shown in the table of the results below:

2.Table of the results:

S/N	Test performed

INSTITUT DES SCIENCES ET TECHNOLOGIE DE KIGALI

BP 3900, Avenue de L'Armee, Kigali, Rwanda.website:www.kist.ac.rw
SOLL MECHANICS LABORATORY
LABORATORY TEST REPORT
Job No : SC0004 / 2009
Date:28/04/2009
Client: SANYU CONSULTANTS INC
Project: IRRIGATED AGRICULTURE IN EASTERN PROVINCE

1.Introduction.

At the request of the client, Soil samples taken from the REMERA SITE for testing, in KIST Soil Mechanics Laboratory. Test Method used ASTM D4318, D422, D2216, D854-00 The tests performed and results are shown in the table of the results below:
2.Table of the results:

S/N	Test performed	Test results		
1	Depth (m)	$\begin{gathered} \text { Remera B } \\ 0.30 \mathrm{~m}-1.0 \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { Remera B } \\ & 1.0 \mathrm{~m}-3.0 \mathrm{~m} \end{aligned}$	$\begin{gathered} \hline \text { Remera B } \\ 3.0 \mathrm{~m}-5.0 \mathrm{~m} \end{gathered}$
2	Natural Moisture Content \%	12.5	14.6	16.5
3	Atterberg i) Liquid Limit $\%$ ii) Plastic Limit $\%$ iii) Plasticity Index $\%$	34.2	57.7	57.6
		19.7	29.3	28.9
		14.5	28.4	28.7
4	Specific Gravity	2.67	2.64	2.64
5	Partical sizes (sieve size mm)	Percentage Passing \%		
	14 mm	100	100	100
	10 mm	100	100	100
	4.75 mm	100	100	100
	2.36 mm	99.2	99.4	97.0
	1.18 mm	98.2	98.0	95.0
	$600 \mu \mathrm{~m}$	96.4	96.8	93.2
	$425 \mu \mathrm{~m}$	95.2	95.2	92.4
	$300 \mu \mathrm{~m}$	93.8	94.2	91.8
	$150 \mu \mathrm{~m}$	90.6	90.6	90.2
	$75 \mu \mathrm{~m}$	86.2	83.0	86.8

Notes:Finer Particals than $75 \mu \mathrm{~m}$ see graph attached

Tested by: KABAYIZA Bertin
Geotechnical Senior Laboratory Technician

응
0
0
0
0 mm

Size range of grains

Size range of grains


``` mm
``` pulsed\%


Remera Hole B

 6uḷsed\%
 Sieve size mm

REMERA HOLE B

\section*{RULENGE SITE}

\title{
KIGALI INSTITUTE OF SCIENCE AND TECHNOLOGY
}

INSTITUT DES SCIENCES ET TECHNOLOGIE DE KIGALI
BP 3900 , Avenue de L'Armee, Kigali, Rwanda website:www.kistac..w

\section*{SOLL MECHANICS LABORATORY \\ LABORATORY TEST REPORT}

Job No :SC0004 / 2009
Date:28/04/2009

\section*{1.Introduction.}

At the request of the client, Soil samples taken from the RULENGE SITE for testing, in KIST
Soil Mechanics Laboratory Test Method used ASTM D4318, D422, D2216, D854-00
The tests performed and results are shown in the table of the results below:
2.Table of the results:
\begin{tabular}{|c|c|c|c|c|}
\hline S/N & Test performed & \multicolumn{3}{|c|}{Test results} \\
\hline 1 & Depth (m) & \[
\begin{gathered}
\text { Rulenge A } \\
0.20 \mathrm{~m}-1.5 \mathrm{~m}
\end{gathered}
\] & \[
\begin{gathered}
\text { Rulenge } \mathrm{A} \\
1.5 \mathrm{~m}-3.5 \mathrm{~m}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Rulenge A } \\
& 3.5 \mathrm{~m}-5.0 \mathrm{~m}
\end{aligned}
\] \\
\hline 2 & Natural Moisture Content \% & 9.6 & 10.4 & 11.6 \\
\hline \multirow[t]{3}{*}{3} & \multirow[t]{3}{*}{\begin{tabular}{rr}
Atterberg i) Liquid Limit & \(\%\) \\
ii) Plastic Limit & \(\%\) \\
iii) Plasticity Index & \(\%\)
\end{tabular}} & 40.9 & 58.6 & 55.6 \\
\hline & & 19.2 & 28.7 & 27.9 \\
\hline & & 21.7 & 29.9 & 27.7 \\
\hline 4 & Specific Gravity & 2.65 & 2.66 & 2.70 \\
\hline 5 & Partical sizes (sieve size mm) & \multicolumn{3}{|c|}{Percentage Passing \%} \\
\hline \multirow[t]{10}{*}{} & 14 mm & 100 & 100 & 100 \\
\hline & 10 mm & 100 & 100 & 100 \\
\hline & 4.75 mm & 100 & 100 & 100 \\
\hline & \(\cdots\) \% \(\quad 2.36 \mathrm{~mm}\) & 98.8 & 100 & 98.6 \\
\hline & 1.18 mm & 97.2 & 98.2 & 97.2 \\
\hline & \(600 \mu \mathrm{~m}\) & 95.2 & 96.4 & 95.6 \\
\hline & \(425 \mu \mathrm{~m}\) & 93.4 & 95.6 & 94.8 \\
\hline & \(300 \mu \mathrm{~m}\) & 91.4 & 94.6 & 93.6 \\
\hline & \(150 \mu \mathrm{~m}\) & 85.4 & 91.4 & 90.2 \\
\hline & \(75 \mu \mathrm{~m}\) & 78.0 & 86.4 & 84.2 \\
\hline
\end{tabular}

Notes:Finer Particals than \(75 \mu m\) see graph attached

Tested by: KABAYIZA Bertin
Geotechnical Senior Laboratory Technician

INSTITUT DES SCIENCES ET TECHNOLOGIE DE KIGALI
BP 3900, Avenue de L'Armee, Kigali, Rwanda. website:www.kistac.rw

\title{
SOIL MECHANICS LABORATORY
}

LABORATORY TEST REPORT
Job No :SC0004/ 2009
Date:28/04/2009
Client: SANYU CONSULTANTS INC
Project: IRRIGATED AGRICULTURE IN EASTERN PROVINCE

\section*{1.Introduction.}

At the request of the client, Soil samples taken from the RULENGE SITE for testing, in KIST
Soil Mechanics Laboratory Test Method used ASTM D4318, D422, D2216, D854-00
The tests performed and results are shown in the table of the results below:

\section*{2.Table of the results:}
\begin{tabular}{|c|c|c|c|c|}
\hline S/N & Test performed & \multicolumn{3}{|c|}{Test results} \\
\hline 1 & Depth (m) & Rulenge B
\(0.20 \mathrm{~m}-1.0 \mathrm{~m}\) & \[
\begin{aligned}
& \text { Rulenge } \mathrm{B} \\
& 1.0 \mathrm{~m}-3.5 \mathrm{~m} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Rulenge B \\
\(3.5 \mathrm{~m}-5.0 \mathrm{~m}\)
\end{tabular} \\
\hline 2 & Natural Moisture Content \% & 7.6 & 9.6 & 6.8 \\
\hline \multirow[t]{3}{*}{3} & \multirow[t]{3}{*}{\begin{tabular}{rl}
Atterberg i) Liquid Limit & \(\%\) \\
ii) Plastic Limit & \(\%\) \\
iii) Plasticity Index & \(\%\)
\end{tabular}} & 57.9 & 44.7 & 38.4 \\
\hline & & 27.5 & 22.8 & 17.6 \\
\hline & & 30.4 & 21.9 & 20.8 \\
\hline 4 & Specific Gravity & 2.65 & 2.63 & 2.70 \\
\hline \multirow[t]{11}{*}{5} & Partical sizes (sieve size mm) & \multicolumn{3}{|c|}{Percentage Passing \%} \\
\hline & 14 mm & 100 & 100 & 100 \\
\hline & 10 mm & 100 & 89.8 & 100 \\
\hline & 4.75 mm & 100 & 71.0 & 93.6 \\
\hline & 2.36 mm & 100 & 60.0 & 87.0 \\
\hline & 1.18 mm & 100 & 55.0 & 83.6 \\
\hline & \(600 \mu \mathrm{~m}\) & 98.2 & 52.6 & 80.8 \\
\hline & \(425 \mu \mathrm{~m}\) & 97.2 & 51.4 & 79.6 \\
\hline & \(300 \mu \mathrm{~m}\) & 96.0 & 50.2 & 78.4 \\
\hline & \(150 \mu \mathrm{~m}\) & 92.6 & 47.4 & 75.0 \\
\hline & \(75 \mu \mathrm{~m}\) & 88.4 & 44.6 & 70.4 \\
\hline
\end{tabular}

Notes:Finer Particals than \(75 \mu \mathrm{~m}\) see graph attached

Tested by: KABAYIZA Bertin Geotechnical Senior Laboratory. Technician

 mm

\begin{tabular}{lr}
\multicolumn{2}{l}{ Sieve size } \\
mm & \multicolumn{1}{l}{ \%Passing } \\
& 14 \\
10 & 100 \\
4.75 & 100 \\
2.36 & 89.8 \\
1.18 & 71 \\
0.6 & 60 \\
0.425 & 55 \\
0.3 & 52.6 \\
0.15 & 50.4 \\
0.075 & 47.4 \\
0.067 & 44.6 \\
0.052 & 38 \\
0.041 & 29.5 \\
0.03 & 26.7 \\
0.02 & 24.7 \\
0.015 & 21.6 \\
0.01 & 20.4 \\
0.007 & 17.8 \\
0.0051 & 16.5 \\
0.0042 & 13.5 \\
0.0021 & 11.7 \\
0.0012 & 7.8 \\
0.00077 & 5.7
\end{tabular}

\section*{RULENGE HOLE B}

INSTITUT DES SCIENCES ET TECHNOLOGIE DE KIGALI
BP 3900, Avenue de L'Armee, Kigali, Rwanda.website:www.kist.ac.rw

\section*{SOLL MECHANICS LABORATORY}

LABORATORY TEST REPORT
Job No :SC0004 / 2009
Date:28/04/2009
Client: SANYU CONSULTANTS INC

Project: IRRIGATED AGRICULTURE IN EASTERN PROVINCE

\section*{1.Introduction.}

At the request of the client, Soil samples taken from the GATSIBO SITE for testing, in KIST
Soil Mechanics Laboratory. Test Method used ASTM D4318, D422, D2216, D854-00
The tests performed and results are shown in the table of the results below:

\section*{2.Table of the results:}
\begin{tabular}{|c|c|c|c|c|}
\hline S/N & Test performed & \multicolumn{3}{|c|}{Test results} \\
\hline 1 & Depth (m) & \[
\begin{gathered}
\text { Gatsibo A } \\
0.20 \mathrm{~m}-3.0 \mathrm{~m}
\end{gathered}
\] & \[
\begin{gathered}
\text { Gatsibo A } \\
3.0 \mathrm{~m}-4.0 \mathrm{~m}
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { Gatsibo A } \\
& 4.0 \mathrm{~m}-5.0 \mathrm{~m} \\
& \hline
\end{aligned}
\] \\
\hline 2 & Natural Moisture Content \% & 8.6 & 10.4 & 7.5 \\
\hline \multirow[t]{3}{*}{3} & \multirow[t]{3}{*}{\begin{tabular}{rll}
Atterberg i) Liquid Limit & \(\%\) \\
& ii) Plastic Limit & \(\%\) \\
& iii) Plasticity Index & \(\%\)
\end{tabular}} & 38.8 & 39.5 & 47.9 \\
\hline & & 17.5 & 18.5 & 23.9 \\
\hline & & 21.3 & 21.0 & 24.0 \\
\hline 4 & Specific Gravity & 2.70 & 2.68 & 2.64 \\
\hline \multirow[t]{11}{*}{5} & Partical sizes (sieve size mm) & \multicolumn{3}{|c|}{Percentage Passing \%} \\
\hline & 14 mm & 100 & 100 & 100 \\
\hline & 10 mm & 100 & 100 & 100 \\
\hline & 4.75 mm & 100 & 97.6 & 99.0 \\
\hline & 2.36 mm & 100 & 94.6 & 98.6 \\
\hline & 1.18 mm & 100 & 93.6 & 97.4 \\
\hline & \(600 \mu \mathrm{~m}\) & 99.0 & 92.6 & 96.6 \\
\hline & \(425 \mu \mathrm{~m}\) & 98.6 & 91.8 & 96.0 \\
\hline & \(300 \mu \mathrm{~m}\) & 97.8 & 90.6 & 95.2 \\
\hline & \(150 \mu \mathrm{~m}\) & 93.4 & 85.5 & 91.0 \\
\hline & \(75 \mu \mathrm{~m}\) & 70.6 & \[
\begin{gathered}
73.4 \\
\text { of ScIEAS }
\end{gathered}
\] & 81.0 \\
\hline
\end{tabular}

\section*{Notes:Finer Particals than \(75 \mu \mathrm{~m}\) see graph attached}

\title{
KIGALI INSTITUTE OF SCIENCE AND TECHNOLOGY
}

\section*{INSTITUT DES SCIENCES ET TECHNOLOGIE DE KIGALI}

BP 3900, Avenue de L'Armee, Kigali, Rwanda. website:www.kistac.rw

\title{
SOIL MECHANICS LABORATORY \\ LABORATORY TEST REPORT
}

Job No :SC0004 / 2009
Date:28/04/2009
Client: SANYU CONSULTANTS INC
Project: IRRIGATED AGRICULTURE IN EASTERN PROVINCE

\section*{1.Introduction.}

At the request of the client, Soil samples taken from the GATSIBO SITE for testing, in KIST
Soil Mechanics Laboratory . Test Method used ASTM D4318, D422, D2216, D854-00
The tests performed and results are shown in the table of the results below:
2.Table of the results:
\begin{tabular}{|c|c|c|c|c|}
\hline S/N & Test performed & \multicolumn{3}{|c|}{Test results} \\
\hline 1 & Depth (m) & \[
\begin{gathered}
\hline \text { Gatsibo B } \\
0.20-1.0 \mathrm{~m}
\end{gathered}
\] & \[
\begin{gathered}
\text { Gatsibo B } \\
1.0 \mathrm{~m}-3.0 \mathrm{~m}
\end{gathered}
\] & \[
\begin{gathered}
\text { Gatsibo B } \\
3.0 m-5.0 m
\end{gathered}
\] \\
\hline 2 & Natural Moisture Content \% & 10.4 & 11.9 & 6.2 \\
\hline \multirow[t]{3}{*}{3} & \multirow[t]{3}{*}{\begin{tabular}{|cc|}
\hline Atterberg i) Liquid Limit & \(\%\) \\
ii) Plastic Limit & \(\%\) \\
iii) Plasticity Index & \(\%\)
\end{tabular}} & 48.6 & 40.2 & 37.2 \\
\hline & & 24.8 & 17.6 & 16.7 \\
\hline & & 23.8 & 22.6 & 20.5 \\
\hline 4 & Specific Gravity & 10.4 & 11.9 & 6.2 \\
\hline \multirow[t]{11}{*}{5} & Partical sizes (sieve size mm) & \multicolumn{3}{|c|}{Percentage Passing \%} \\
\hline & 14 mm & 100 & 100 & 100 \\
\hline & 10 mm & 100 & 100 & 100 \\
\hline & 4.75 mm & 100 & 100 & 100 \\
\hline & 2.36 mm & 100 & 99.8 & 96.6 \\
\hline & 1.18 mm & 99.0 & 98.8 & 94.2 \\
\hline & \(600 \mu \mathrm{~m}\) & 98.0 & 97.4 & 92.4 \\
\hline & \(425 \mu \mathrm{~m}\) & 97.0 & 96.4 & 91.2 \\
\hline & \(300 \mu \mathrm{~m}\) & 95.8 & 95.0 & 89.8 \\
\hline & \(150 \mu \mathrm{~m}\) & 91.0 & 88.2 & 83.0 \\
\hline & \(75 \mu \mathrm{~m}\) & 81.4 & 73.0 & 68.8 \\
\hline
\end{tabular}

Notes:Finer Particals than 75 7 m see graph attached Juirs
Tested by: KABAYIZA Bertin
Geotechnical Senior Laboratory Technician

GATSIBO HOLE B
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& 0.0 \mathrm{~m}-0.20 \mathrm{~m} \\
& \text { TOP SOLL }
\end{aligned}
\] \\
\hline & \(0.20 m-1.0 m\) Grey slit clay soil \\
\hline & \begin{tabular}{l}
\[
1.0 \mathrm{~m}-2.0 \mathrm{~m}
\] \\
Grey slit clay soil
\end{tabular} \\
\hline \begin{tabular}{l}
 14 (ounokydyk \\

\end{tabular} & \begin{tabular}{l}
\(2.0 \mathrm{~m}-3.0 \mathrm{~m}\) \\
Grey slit clay soil
\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 \\
 \\
 \\

\end{tabular} & \(3.0 \mathrm{~m}-4.0 \mathrm{~m}\) Grey slit clay soil with Gravel \\
\hline & 4.0m-5.0m \\
\hline & Grey slit clay \\
\hline & soil with \\
\hline & Gravel and \\
\hline & weathered rock \\
\hline & At 5 m \\
\hline & \\
\hline
\end{tabular}

National University of Rwanda Université Nationale du Rwanda

FACULTY OF SCIENCE
FACULTE DES SCIENCES
LABORATOIRE D'ANALYSES DE L'EAU

\section*{WATER QUALITY TESTING REPORT}

SANYU CONSULTANTS INC.
\begin{tabular}{|l|l|c|c|c|c|}
\hline & Unit & \(N^{\circ}\) 2: Gashora & \(N^{\circ}\) 21: Remera & \(N^{\circ}\) 22: Rurenge & \(N^{\circ}\) 31: Rugarama \\
\hline pH & & 7.65 & 7.09 & 7.08 & 7.49 \\
\hline E. Conductivity & \(\mu \mathrm{S} / \mathrm{cm}\) & 21.0 & 210 & 151.8 & 423 \\
\hline Dissolved Oxygen & \(\mathrm{mg} / \mathrm{I}\) & 5.3 & 2.0 & 6.2 & 4.5 \\
\hline Suspended Solids & \(\mathrm{mg} / \mathrm{I}\) & 3330 & 7 & 189 & 61 \\
\hline Total Nitrogen & \(\mathrm{mg} / \mathrm{I}\) & 1.2 & 0.7 & 7.5 & 3.25 \\
\hline Arsenic & \(\mathrm{mg} / \mathrm{I}\) & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Copper & \(\mathrm{mg} / \mathrm{I}\) & 0.00 & 0.06 & 0.00 & 0.00 \\
\hline Zinc & \(\mathrm{mg} / \mathrm{I}\) & 0.00 & 0.00 & 0.00 & 0.04 \\
\hline COD & \(\mathrm{mg} / \mathrm{I}\) & 2 & 0 & 0 & 6 \\
\hline
\end{tabular}

BIRORI Mardochée

Excellence in Education and Service to the People

6．地質調査結果

7．調査対象地域の予備的スコーピング

\section*{添付資料 6 調査対象地域の予備的スコーピング}

\section*{1 予備的スコーピング}

各サイトのプロジェクトの実施による環境社会影響について，表1に示す。

\section*{社会環境}

貯水池の湛水により家屋の水没はなく，住民移転は想定されないが，貯水池上流部で農地が水没 し，農地所有者の農家への影響が想定される。計画地には，自作農家以外に社会的弱者として土地 を持たない労役農民も存在し，上流部農地が水没した場合，こうした農家へも生計手段が喪失され ることも想定される一方，工事中の雇用の喪失及び供用時の乾季の灌溉用水供給による収穫量の増大による雇用機会の創出が期待されることもあり，影響は現時点では不明である。土地利用につい ては，供用時に圃場整備を行う必要があり，これに向けた土地利用変更等の影響が想定される。現時点では計画地には灌溉施設はなく，工事完成後，計画地には新たな灌溉用水が導入されることに なるが，灌溉施設や水使用の維持管理を行う組織の設立が必要になり，また，水の配分を巡る農民間の軋轢，裨益の不均衡及び利益の対立が想定される。災害については，各サイトとも工事中の作業員や周辺農民への事故による影響，供用時には，特に，No． 2 の Gashora サイトにおいて洪水時 の洪水吐から流出した水による隣接する LWH プロジェクトのオペレーションに及ぼす影響，No． 31 の Rugarama サイトにおける貯水による斜面崩壊が想定される。

\section*{自然環境}

供用時には，No． 31 の Rugarama サイトにおいて貯水による土壌浸食及び斜面崩壊が想定される。 No． 21 Remera 及び No． 22 Rurenge サイトにおいて，工事完了後の湧水への影響が想定される。

\section*{公害}

計画地では，化学肥料の使用や農薬の使用は現時点では少ないが，供用時では，作付け・耕作作業においては，農民の所得向上によるこうした化学物質の使用機会が増えると想定さる。特に，No． 2 の Gashora サイトでは，距離は離れているが，下流側に湖があり，化学肥料の使用量の増大により，冨栄養化へのリスクが高まる。

工事中においては，各サイトとも，作業員による廃棄物の排出，建設廃棄物の不適切な処理，騒音•振動及び交通問題が想定される。特に，工事用道路は，急勾配の斜面上にあり，沿道には一部家屋が存在するため，こうした家屋への影響が想定される。

表1 予備的スコーピング結果（各 4 サイト）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{No．} & \multirow[b]{2}{*}{想定されるマイナス面の影響} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { 総 } \\
& \text { 合 } \\
& \text { 判 } \\
& \text { 定 }
\end{aligned}
\]} & \multicolumn{2}{|l|}{計画段階} & \multicolumn{5}{|c|}{工事段階} & \multicolumn{5}{|c|}{供用段階} \\
\hline & & & & \[
\begin{aligned}
& \pm \\
& \text { 地 } \\
& \text { 桜 } \\
& \text { 监 }
\end{aligned}
\] & \(\pm\)
地
梨
前
計
画
変
更 & \[
\begin{gathered}
\text { 工 } \\
\text { 事 } \\
\text { 用 } \\
\text { 道 } \\
\text { の } \\
\text { 建 } \\
\text { 設 }
\end{gathered}
\] & タ
寺
軸
付
近
掘
削
作
業 & \[
\begin{array}{cc}
\text { 及 } & \pm \\
\text { 岩 漡 } \\
\text { 石 } \\
\text { 及 } \\
\text { び } \\
\text { 掘 採 } \\
\text { 場 } \\
\text { か } \\
5 \\
\text { の } \\
\text { 士 砂 }
\end{array}
\] & \[
\begin{aligned}
& \text { ダ } \\
& \text { 築 } \\
& \text { 秲 } \\
& \text { 作 }
\end{aligned}
\] & 業 水
路
取
取
水
施
設
洪
水
叶
建
設
作 & \[
\begin{aligned}
& \text { 水 } \\
& \text { 利 } \\
& \text { 組 } \\
& \text { 織 } \\
& \text { 設 } \\
& \text { 立 }
\end{aligned}
\] & \[
\begin{gathered}
\text { ダ } \\
ム \\
\text { の } \\
\text { 貯 } \\
\text { 水 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 水 } \\
& \sigma \\
& \text { 配 } \\
& \text { 分 }
\end{aligned}
\] & 圃
場
整
備 & 作
付
V
－
耕
作
作
業 \\
\hline \multirow{12}{*}{\[
\begin{aligned}
& \text { 社 } \\
& \text { 会 } \\
& \text { 環 } \\
& \text { 境 }
\end{aligned}
\]} & & 1住民移転 & & & & & & & & & & & & & \\
\hline & & 2 生活•生計 & C & C & & C & C & C & C & C & & C & & & C \\
\hline & & 3 土地利用 & B & & B & & & & & & & & & B & \\
\hline & & 4地域分断，住民組織 & B & & & & & & & & B & & & & \\
\hline & & 5 交通•生活施設，サービス & B & & & B & B & & B & B & & & & & \\
\hline & & 6 貧困層，先住民族•少数民族 & C & & & C & C & & C & C & & & & & C \\
\hline & & 7 禆益等の不均衡 & B & & B & & & & & & B & & B & B & \\
\hline & & 8 遺跡•文化財 & & & & & & & & & & & & & \\
\hline & & 9利益の対立 & B & B & & & & & & & B & & B & B & \\
\hline & & 水利権•入会権 & & & & & & & & & & & & & \\
\hline & & 1 保健衛生 & & & & & & & & & & & & & \\
\hline & & 2災害（リスク），伝染病 & B & & & B & B & B & B & B & & \(B^{* 1}\) & & & \\
\hline \multirow{9}{*}{\[
\begin{aligned}
& \text { 自 } \\
& \text { 然 }
\end{aligned}
\]
環
境} & & 3 地形•地質 & & & & & & & & & & & & & \\
\hline & & 4 地下水（湧水） & & & & & & & & & & & \(\mathrm{B}^{* 3}\) & & \\
\hline & & 土壌浸食 & \(B^{* 2}\) & & & & & & & & & \(\mathrm{B}^{* 2}\) & & & \\
\hline & & 湖沼－河川流況 & & & & & & & & & & & & & \\
\hline & & 7 海岸•海域 & & & & & & & & & & & & & \\
\hline & & 8動植物，生物多様性 & & & & & & & & & & & & & \\
\hline & & 9気象 & & & & & & & & & & & & & \\
\hline & 20 & 0景観 & & & & & & & & & & & & & \\
\hline & & 1 地球温暖化 & & & & & & & & & & & & & \\
\hline \multirow{9}{*}{\[
\begin{aligned}
& \text { 公 } \\
& \text { 害 }
\end{aligned}
\]} & 22 & 2 大気汚染 & & & & & & & & & & & & & \\
\hline & 23 & 3 水質污濁 & B & & & & & & & & & & & & B \\
\hline & 24 & 4 土壌汚染 & & & & & & & & & & & & & \\
\hline & & 5 廃棄物 & B & & & B & B & B & B & B & & & & & \\
\hline & & 6 騒音•振動 & B & & & B & B & B & B & B & & & & & \\
\hline & & 7 地盤沈下 & & & & & & & & & & & & & \\
\hline & & 8悪臭 & & & & & & & & & & & & & \\
\hline & & 9底質 & & & & & & & & & & & & & \\
\hline & & 0交通事故等 & B & & & B & B & B & B & B & & & & & \\
\hline
\end{tabular}

注）
＊1：12 の災害については，No． 2 の Gashora サイト及び No． 31 の Rugarama サイトのみに影響が想定
＊2：15 の土壌浸食については，No． 31 の Rugarama サイトのみに影響が想定
＊3：No．21Remera 及び No．22Rurenge サイトにおいて影響が想定
判定の区分；A：重大な影響が見込まれる，B：多少の影響が見込まれる C：不明（要検討）空欄：ほとん ど負の影響は考えられない

\section*{2 予測される環境社会影響の要約，調査方法及び軽減策}

本プロジェクトにより想定される環境影響，影響の程度把握のための調査方法及び環境影響に対 する提言される影響緩和策を表 2 に示す。ダム貯水池湛水により水没する農地については，現時点 では土地所有状況に係る正確な情報はなく，本プロジェクトの実施が決定された段階で，正確な所有状況，農地面積について調査を行う必要がある。土地無し農民については，プロジェクト実施後

に雇用の増大，灌溉土地への割当ても含めた可能性について協議する必要がある。工事中の影響に ついては，工事中のモニタリングを実施する必要がある。No． 21 Remera 及び No． 22 Rurenge サイト では，現状で湧水が利用されているため，工事完了後の湧水の流量及び水質に関するモニタリング を提言する。

表2 環境影響に対する調査方法及び提言される影響緩和策
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{想定される環境影響} & 評
定 & 調査方法 & 提言される影響緩和策 \\
\hline \multirow{8}{*}{\begin{tabular}{l}
社 \\
会 \\
環 \\
境
\end{tabular}} & 経済活動，生活•生計 & C & 計画地の土地の所有状況については，現時点では正確な情報はなく，工事開始前までに，計画の実施により影響が想定される地主の特定，影響農地面積等について調査を行う必要がある。 & 事業者による適切な補償計画の策定，影響農民への周知，協議及び関係者間の合意。補償実施後のモニタリング。 \\
\hline & 土地利用 & B & 現況の土地利用状況及びプロジェクト実施後の土地利用計画について関係機関や事業者からの聞取りを行う。 & 事業者による適切な土地利用計画（圃場整備計画）の策定。 \\
\hline & 地域分断，住民組織 & B & プロジェクトの実施が決まった後，水利組織の組織形成，組織への加入意思，水利費用の支払い意思等について，関係者（セクター・セル行政官，農民等）に意識調査を行う。 & 関係者（事業者，セクター・セル行政官，裨益農民）による協議。事業実施後のモニタリング。組織運営に係るトレーニング。 \\
\hline & 交通•生活施設， サービス & B & 工事用道路沿道の家屋調査。入札段階における工事業者の工事計画の碓認
調昷を行う。 & 工事中の交通誘導官の配置。工事中のモニタリング。 \\
\hline & 貧困層•先住民族•少数民族 & C & 計画地の影響が想定される土地無し農民の分布，労賃及び生活状況に関す る調查，事業実施後の生計手段に係る意識調査。事業実施が決定された段階における影響が想定される弱者も含めた雇用計画に係る聞取り。 & 事業者による適切な雇用計画の策定，土地無し農民への圃場整備後 の土地割当ての可能性。供用時のモニタリング。 \\
\hline & 裨益の不均衡 & B & プロジェクトの実施が決まった後，水配分や裨益の配分について，関係者 （セクター行政官，農民等）に意識調査を行う。 & 関係者（事業者，セクター・セル行政官，裨益農民）による協議。事業実施後のモニタリング。 \\
\hline & 利害の対立 & B & プロジェクトの実施が決まった後，水配分や裨益の配分等に起因する利害 の対立について，関係者（セクター行政官，農民等）に意識調査を行う。 & 関係者（事業者，セクター・セル行政官，裨益農民）による協議。事業実施後のモニタリング。 \\
\hline & 災害（リスク），伝染病 & B & 基本設計や詳細設計における地形•地質調査。 & No． 2 の Gashora プロジェクトについては，関係機関（MINAGRI 等） との協議。災害を低減させる設計法。事業の見直し。 \\
\hline \multirow[t]{2}{*}{自然環境} & 土壌浸食 & B & 基本設計や詳細設計における地形•地質調査。 & 災害を低減させる設計法，事業の見直し（No． 31 Rugarama サイト）。 \\
\hline & 地下水（湧水） & B & 湧水䈯所を避け，地下水流に影響を与えない基本設計。地形•地質調査。 & 涌水箇所の流量•水質のモニタリング（No． 21 及び No． 22 サイト） \\
\hline \multirow{4}{*}{公害} & 水質污濁 & B & No． 2 の Gashora サイトでは，ダムサイト下流側の湖の水質調査の実施に よる富栄養化の把握。No． 21 及び No． 22 の湧水箇所の流量及び水質調查。 & 工事前，工事中及び供用時における計画灌溉地域からの排水の水質 モニタリングの実施。工事前，工事中及び供用時におけるNo． 21 及 びNo． 22 の湧水の流量•水質モニタリング \\
\hline & 廃棄物 & B & 入札時の入札者の工事計画に係る検討，工事中の建設現場から排出される廃棄物の処理状況の把握。 & 工事中に排出される一般廃棄物及び建設廃棄物の適正処理。工事中 のモニタリング。 \\
\hline & 騒音•振動 & B & 入札時の入札者の工事計画に係る検討，工事中の居住地域における騒音•振動調査。 & 工事中の騒音•振動を低減させる工法の採用。 \\
\hline & 交通事故等 & B & 入札時の入札者の工事計画に係る検討，建設業者の安全対策に係る調査。 & 工事中の交通誘導官の配置。工事中のモニタリング。 \\
\hline
\end{tabular}
（注）評定の区分 \(A:\) 重大な負の影響が見込まれる，\(B:\) 多少の負の影響が見込まれる，\(C:\) 影響の程度は今後の調査によって確認する

\section*{8．経済分析結果}

\section*{ANNEX: Economic Analysis}

\section*{1. Water Requirement and Irrigable Area at Each Site}

Table 1 Total Irrigable Area by Site and Case
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Site case & Cropping Pattern & \begin{tabular}{l}
Irrigfation \\
Water \\
Requirement
\end{tabular} & Irrigation Efficiency & \begin{tabular}{l}
Water \\
Requirement
\end{tabular} & Total Water Requirement & Effective Reservoir Capacity & Total Irrigable area \\
\hline & & mm & \% & \(\mathrm{m}^{\wedge} 3 / \mathrm{ha}\) & m^3/ha & 1000 m ^3 & ha \\
\hline Bugesera 2 (1) & Banana20\%, Pineapple80\% & 240.10 & 65 & 3,694 & 3,694 & 375.0 & 102 \\
\hline Bugesera 2 (2) & Maize65\%, Vegetables(1) 15\%, Vegetables(2)15\%, Banana5\% & 361.90 & 65 & 5,568 & 5,568 & 375.0 & 67 \\
\hline Bugesera 2 (3-1) & Maize45\%, Vegetables(1) 15\%, Vegetables(2)15\%, Banana5\% & 283.76 & 65 & 4,366 & 7,418 & 375.0 & 51 \\
\hline Bugesera 2 (3-2) & Paddy 20\% & 152.63 & 50 & 3,053 & & & \\
\hline Bugesera 3 (1) & Banana10\%, Pineapple90\% & 182.85 & 65 & 2,813 & 2,813 & 419.6 & 149 \\
\hline Bugesera 3 (2) & \begin{tabular}{l}
Maize65\%, Vegetables(1) 15\%, \\
Vegetables(2)15\%, Banana5\%
\end{tabular} & 361.90 & 65 & 5,568 & 5,568 & 419.6 & 75 \\
\hline Bugesera 3 (3-1) & Maize45\%, Vegetables(1) 15\%, Vegetables(2)15\%, Banana5\% & 283.76 & 65 & 4,366 & 7,418 & 419.6 & 57 \\
\hline Bugesera 3 (3-2) & Paddy 20\% & 152.63 & 50 & 3,053 & & & \\
\hline Bugesera 4 (1) & Banana20\%, Mangoes20\% & 734.40 & 65 & 11,298 & 11,298 & 812.5 & 72 \\
\hline Bugesera 4 (2) & Maize65\%, Vegetables(1) 15\%, Vegetables(2)15\%, Banana5\% & 361.90 & 65 & 5,568 & 5,568 & 812.5 & 146 \\
\hline Bugesera 4 (3-1) & Maize45\%, Vegetables(1) 15\%, Vegetables(2)15\%, Banana5\% & 283.76 & 65 & 4,366 & 7,418 & 812.5 & 110 \\
\hline Bugesera 4 (3-2) & Paddy 20\% & 152.63 & 50 & 3,053 & & & \\
\hline Ngoma 21(1) & Banana20\%, Avocado80\% & 509.32 & 65 & 7,836 & 7,836 & 376.3 & 48 \\
\hline Ngoma 21(2) & Maize75\%, Vegetables(1) 10\%, Vegetables(2)10\%, Banana5\% & 400.46 & 65 & 6,161 & 6,161 & 376.3 & 61 \\
\hline Ngoma 21(3-1) & Maize55\%, Vegetables(1) 10\%, Vegetables(2)10\%, Banana5\% & 309.99 & 65 & 4,769 & 7,722 & 376.3 & 49 \\
\hline Ngoma 21(3-2) & Paddy 20\% & 147.64 & 50 & 2,953 & & & \\
\hline Ngoma 22 (1-1) & Pineapple80\% & 42.74 & 65 & 658 & 3,610 & 1,132.9 & 314 \\
\hline Ngoma 22 (1-2) & Paddy 20\% & 147.64 & 50 & 2,953 & & & \\
\hline Ngoma 22 (2-1) & Maize15\%, Vegetables(1) 30\%, Vegetables(2)30\%, Banana5\% & 255.29 & 65 & 3,928 & 6,880 & 1,132.9 & 165 \\
\hline Ngoma 22 (2-2) & Paddy 20\% & 147.64 & 50 & 2,953 & & & \\
\hline Gatsibo 31 (1) & Banana10\%, Coffee90\% & 743.71 & 65 & 11,442 & 11,442 & 14.6 & 1 \\
\hline Gatsibo 31 (2) & Maize70\%, Vegetables(1) 5\%, Vegetables(2)5\%, Banana20\% & 486.65 & 65 & 7,487 & 7,487 & 14.6 & 2 \\
\hline
\end{tabular}

\section*{2. Project Cost: Case 1}

Table 2 Cost estimation (Unit: Rwf): Financial Price
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra2} & \multicolumn{4}{|c|}{Bugesra3} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & 21,660,000 & 1 & 21,660,000 & 10,830,000 & 10,830,000 & 1 & 15,603,000 & 7,801,500 & 7,801,500 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge}\) & 5,700 & 1,500 & 8,550,000 & 7,011,000 & 1,539,000 & 1,300 & 5,982,000 & 4,905,240 & 1,076,760 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge}\) & 4,560 & 20,000 & 91,200,000 & 74,784,000 & 16,416,000 & 6,893 & 48,246,000 & 39,561,720 & 8,684,280 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 111,000 & 632,700,000 & 518,814,000 & 113,886,000 & 114,612 & 487,532,000 & 399,776,240 & 87,755,760 \\
\hline Spillway & m & 319,200 & 160 & 51,072,000 & 43,411,200 & 7,660,800 & 210 & 51,894,000 & 44,109,900 & 7,784,100 \\
\hline Outlet Works & LS & 34,200,000 & 1 & 34,200,000 & 29,070,000 & 5,130,000 & 1 & 133,573,000 & 113,537,050 & 20,035,950 \\
\hline Others & LS & 17,100,000 & 1 & 17,100,000 & 8,550,000 & 8,550,000 & 1 & 14,585,000 & 7,292,500 & 7,292,500 \\
\hline Pipeline & m & 171,000 & 4,110 & 702,810,000 & 618,472,800 & 84,337,200 & 3,833 & 582,709,200 & 512,784,096 & 69,925,104 \\
\hline TOTAL & & & & 1,559,292,000 & 1,310,943,000 & 248,349,000 & 1 & 1,340,124,200 & 1,129,768,246 & 210,355,954 \\
\hline /ha & & & & 15,287,176 & & & & 8,994,122 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra2} & \multicolumn{4}{|c|}{Bugesra3} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & & 1 & 20,793,600 & 9,963,600 & 10,830,000 & 1 & 14,978,880 & 7,177,380 & 7,801,500 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & & 1,500 & 7,989,120 & 6,450,120 & 1,539,000 & 1,300 & 5,589,581 & 4,512,821 & 1,076,760 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & & 20,000 & 85,217,280 & 68,801,280 & 16,416,000 & 6,893 & 45,081,062 & 36,396,782 & 8,684,280 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & & 111,000 & 591,194,880 & 477,308,880 & 113,886,000 & 114,612 & 455,549,901 & 367,794,141 & 87,755,760 \\
\hline Spillway & m & & 160 & 47,599,104 & 39,938,304 & 7,660,800 & 210 & 48,365,208 & 40,581,108 & 7,784,100 \\
\hline Outlet Works & LS & & 1 & 31,874,400 & 26,744,400 & 5,130,000 & 1 & 124,490,036 & 104,454,086 & 20,035,950 \\
\hline Others & LS & & 1 & 16,416,000 & 7,866,000 & 8,550,000 & 1 & 14,001,600 & 6,709,100 & 7,292,500 \\
\hline Pipeline & m & & 4,110 & 653,332,176 & 568,994,976 & 84,337,200 & 3,833 & 541,686,472 & 471,761,368 & 69,925,104 \\
\hline TOTAL & & & & 1,454,416,560 & 1,206,067,560 & 248,349,000 & 1 & 1,249,742,740 & 1,039,386,786 & 210,355,954 \\
\hline /ha & & & & 21,707,710 & & & & 16,663,237 & & \\
\hline
\end{tabular}

Table 4 Cost estimation (Unit: Rwf): Financial Price
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra4} & \multicolumn{4}{|c|}{Ngoma21} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & 21,660,000 & 1 & 16,801,000 & 8,400,500 & 8,400,500 & 1 & 21,660,000 & 10,830,000 & 10,830,000 \\
\hline Coffer Dam & m^3 & 5,700 & 1 & 0 & 0 & 0 & 1,500 & 8,550,000 & 7,011,000 & 1,539,000 \\
\hline Cut-off Trench & m^3 & 4,560 & 16,800 & 151,200,000 & 123,984,000 & 27,216,000 & 24,000 & 109,440,000 & 89,740,800 & 19,699,200 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 224,905 & 1,010,900,000 & 828,938,000 & 181,962,000 & 140,000 & 798,000,000 & 654,360,000 & 143,640,000 \\
\hline Spillway & m & 319,200 & 180 & 15,806,000 & 13,435,100 & 2,370,900 & 250 & 79,800,000 & 67,830,000 & 11,970,000 \\
\hline Outlet Works & LS & 34,200,000 & 1 & 17,459,000 & 14,840,150 & 2,618,850 & 1 & 34,200,000 & 29,070,000 & 5,130,000 \\
\hline Others & LS & 17,100,000 & 1 & 15,783,000 & 7,891,500 & 7,891,500 & 1 & 17,100,000 & 8,550,000 & 8,550,000 \\
\hline Pipeline & m & 171,000 & 2,026 & 186,691,531 & 164,288,547 & 22,402,984 & 2,754 & 470,934,000 & 414,421,920 & 56,512,080 \\
\hline TOTAL & & & & 1,414,640,531 & 1,161,777,797 & 252,862,734 & & 1,539,684,000 & 1,281,813,720 & 257,870,280 \\
\hline /ha & & & & 19,647,785 & & & & 32,076,750 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra4} & \multicolumn{4}{|c|}{Ngoma21} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & & 1 & 16,128,960 & 7,728,460 & 8,400,500 & 1 & 20,793,600 & 9,963,600 & 10,830,000 \\
\hline Coffer Dam & m^3 & & 1 & 0 & 0 & 0 & 1,500 & 7,989,120 & 6,450,120 & 1,539,000 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & & 16,800 & 141,281,280 & 114,065,280 & 27,216,000 & 24,000 & 102,260,736 & 82,561,536 & 19,699,200 \\
\hline Dam & m^3 & & 224,905 & 944,584,960 & 762,622,960 & 181,962,000 & 140,000 & 745,651,200 & 602,011,200 & 143,640,000 \\
\hline Spillway & m & & 180 & 14,731,192 & 12,360,292 & 2,370,900 & 250 & 74,373,600 & 62,403,600 & 11,970,000 \\
\hline Outlet Works & LS & & 1 & 16,271,788 & 13,652,938 & 2,618,850 & 1 & 31,874,400 & 26,744,400 & 5,130,000 \\
\hline Others & LS & & 1 & 15,151,680 & 7,260,180 & 7,891,500 & 1 & 16,416,000 & 7,866,000 & 8,550,000 \\
\hline Pipeline & m & & 2,026 & 173,548,447 & 151,145,463 & 22,402,984 & 2,754 & 437,780,246 & 381,268,166 & 56,512,080 \\
\hline TOTAL & & & & 1,321,698,307 & 1,068,835,573 & 252,862,734 & & 1,437,138,902 & 1,179,268,622 & 257,870,280 \\
\hline /ha & & & & 9,052,728 & & & & 23,559,654 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Ngoma22} & \multicolumn{4}{|c|}{Gatsibo31} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & 21,660,000 & 1 & 21,660,000 & 10,830,000 & 10,830,000 & 1 & 21,660,000 & 10,830,000 & 10,830,000 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 1,500 & 8,550,000 & 7,011,000 & 1,539,000 & 1,500 & 8,550,000 & 7,011,000 & 1,539,000 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & 4,560 & 12,000 & 54,720,000 & 44,870,400 & 9,849,600 & 13,200 & 60,192,000 & 49,357,440 & 10,834,560 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 65,000 & 370,500,000 & 303,810,000 & 66,690,000 & 35,000 & 199,500,000 & 163,590,000 & 35,910,000 \\
\hline Spillway & m & 319,200 & 160 & 51,072,000 & 43,411,200 & 7,660,800 & 100 & 31,920,000 & 27,132,000 & 4,788,000 \\
\hline Outlet Works & LS & 34,200,000 & 1 & 34,200,000 & 29,070,000 & 5,130,000 & 1 & 34,200,000 & 29,070,000 & 5,130,000 \\
\hline Others & LS & 17,100,000 & 1 & 17,100,000 & 8,550,000 & 8,550,000 & 1 & 17,100,000 & 8,550,000 & 8,550,000 \\
\hline Pipeline & m & 171,000 & 15,224 & 2,603,304,000 & 2,290,907,520 & 312,396,480 & 1,500 & 256,500,000 & 225,720,000 & 30,780,000 \\
\hline TOTAL & & & & 3,161,106,000 & 2,738,460,120 & 422,645,880 & & 629,622,000 & 521,260,440 & 108,361,560 \\
\hline /ha & & & & 19,158,218 & & & & & & \\
\hline
\end{tabular}

Table 7 Cost estimation (Unit: Rwf): Economic Price
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Ngoma22} & \multicolumn{4}{|c|}{Gatsibo31} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & & 1 & 20,793,600 & 9,963,600 & 10,830,000 & 1 & 20,793,600 & 9,963,600 & 10,830,000 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & & 1,500 & 7,989,120 & 6,450,120 & 1,539,000 & 1,500 & 7,989,120 & 6,450,120 & 1,539,000 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & & 12,000 & 51,130,368 & 41,280,768 & 9,849,600 & 13,200 & 56,243,405 & 45,408,845 & 10,834,560 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & & 65,000 & 346,195,200 & 279,505,200 & 66,690,000 & 35,000 & 186,412,800 & 150,502,800 & 35,910,000 \\
\hline Spillway & m & & 160 & 47,599,104 & 39,938,304 & 7,660,800 & 100 & 29,749,440 & 24,961,440 & 4,788,000 \\
\hline Outlet Works & LS & & 1 & 31,874,400 & 26,744,400 & 5,130,000 & 1 & 31,874,400 & 26,744,400 & 5,130,000 \\
\hline Others & LS & & 1 & 16,416,000 & 7,866,000 & 8,550,000 & 1 & 16,416,000 & 7,866,000 & 8,550,000 \\
\hline Pipeline & m & & 15,224 & 2,420,031,398 & 2,107,634,918 & 312,396,480 & 1,500 & 238,442,400 & 207,662,400 & 30,780,000 \\
\hline TOTAL & & & & 2,942,029,190 & 2,519,383,310 & 422,645,880 & & 587,921,165 & 479,559,605 & 108,361,560 \\
\hline /ha & & & & 17,830,480 & & & & & & \\
\hline
\end{tabular}

\section*{3. Project Cost: Case 2}

Table 8 Cost estimation (Unit: Rwf): Financial Price
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra2} & \multicolumn{4}{|c|}{Bugesra3} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & 21,660,000 & 1 & 21,660,000 & 10,830,000 & 10,830,000 & 1 & 15,603,000 & 7,801,500 & 7,801,500 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge}\) & 5,700 & 1,500 & 8,550,000 & 7,011,000 & 1,539,000 & 1,300 & 5,982,000 & 4,905,240 & 1,076,760 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge}\) & 4,560 & 20,000 & 91,200,000 & 74,784,000 & 16,416,000 & 6,893 & 48,246,000 & 39,561,720 & 8,684,280 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 111,000 & 632,700,000 & 518,814,000 & 113,886,000 & 114,612 & 487,532,000 & 399,776,240 & 87,755,760 \\
\hline Spillway & m & 319,200 & 160 & 51,072,000 & 43,411,200 & 7,660,800 & 210 & 51,894,000 & 44,109,900 & 7,784,100 \\
\hline Outlet Works & LS & 34,200,000 & 1 & 34,200,000 & 29,070,000 & 5,130,000 & 1 & 133,573,000 & 113,537,050 & 20,035,950 \\
\hline Others & LS & 17,100,000 & 1 & 17,100,000 & 8,550,000 & 8,550,000 & 1 & 14,585,000 & 7,292,500 & 7,292,500 \\
\hline Pipeline & m & 171,000 & 2,700 & 461,700,000 & 406,296,000 & 55,404,000 & 1,930 & 329,952,273 & 290,358,000 & 39,594,273 \\
\hline TOTAL & & & & 1,318,182,000 & 1,098,766,200 & 219,415,800 & 1 & 1,087,367,273 & 907,342,150 & 180,025,123 \\
\hline /ha & & & & 19,674,358 & & & & 14,498,230 & & \\
\hline
\end{tabular}

\section*{Table 9 Cost estimation (Unit: Rwf): Economic Price}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra2} & \multicolumn{4}{|c|}{Bugesra3} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & & 1 & 20,793,600 & 9,963,600 & 10,830,000 & 1 & 14,978,880 & 7,177,380 & 7,801,500 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & & 1,500 & 7,989,120 & 6,450,120 & 1,539,000 & 1,300 & 5,589,581 & 4,512,821 & 1,076,760 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge}\) & & 20,000 & 85,217,280 & 68,801,280 & 16,416,000 & 6,893 & 45,081,062 & 36,396,782 & 8,684,280 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & & 111,000 & 591,194,880 & 477,308,880 & 113,886,000 & 114,612 & 455,549,901 & 367,794,141 & 87,755,760 \\
\hline Spillway & m & & 160 & 47,599,104 & 39,938,304 & 7,660,800 & 210 & 48,365,208 & 40,581,108 & 7,784,100 \\
\hline Outlet Works & LS & & 1 & 31,874,400 & 26,744,400 & 5,130,000 & 1 & 124,490,036 & 104,454,086 & 20,035,950 \\
\hline Others & LS & & 1 & 16,416,000 & 7,866,000 & 8,550,000 & 1 & 14,001,600 & 6,709,100 & 7,292,500 \\
\hline Pipeline & m & & 2,700 & 429,196,320 & 373,792,320 & 55,404,000 & 1,930 & 306,723,633 & 267,129,360 & 39,594,273 \\
\hline TOTAL & & & & 1,230,280,704 & 1,010,864,904 & 219,415,800 & 1 & 1,014,779,901 & 834,754,778 & 180,025,123 \\
\hline /ha & & & & 18,362,399 & & & & 13,530,399 & & \\
\hline
\end{tabular}

\section*{Table 10 Cost estimation (Unit: Rwf): Financial Price}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra4} & \multicolumn{4}{|c|}{Ngoma21} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & 21,660,000 & 1 & 16,801,000 & 8,400,500 & 8,400,500 & 1 & 21,660,000 & 10,830,000 & 10,830,000 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 1 & 0 & 0 & 0 & 1,500 & 8,550,000 & 7,011,000 & 1,539,000 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & 4,560 & 16,800 & 151,200,000 & 123,984,000 & 27,216,000 & 24,000 & 109,440,000 & 89,740,800 & 19,699,200 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 224,905 & 1,010,900,000 & 828,938,000 & 181,962,000 & 140,000 & 798,000,000 & 654,360,000 & 143,640,000 \\
\hline Spillway & m & 319,200 & 180 & 15,806,000 & 13,435,100 & 2,370,900 & 250 & 79,800,000 & 67,830,000 & 11,970,000 \\
\hline Outlet Works & LS & 34,200,000 & 1 & 17,459,000 & 14,840,150 & 2,618,850 & 1 & 34,200,000 & 29,070,000 & 5,130,000 \\
\hline Others & LS & 17,100,000 & 1 & 15,783,000 & 7,891,500 & 7,891,500 & 1 & 17,100,000 & 8,550,000 & 8,550,000 \\
\hline Pipeline & m & 171,000 & 4,108 & 702,491,586 & 618,192,596 & 84,298,990 & 3,500 & 598,500,000 & 526,680,000 & 71,820,000 \\
\hline TOTAL & & & & 1,930,440,586 & 1,615,681,846 & 314,758,740 & & 1,667,250,000 & 1,394,071,800 & 273,178,200 \\
\hline /ha & & & & 13,222,196 & & & & 27,331,967 & & \\
\hline
\end{tabular}

Table 11 Cost estimation (Unit: Rwf): Economic Price
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra4} & \multicolumn{4}{|c|}{Ngoma21} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & & 1 & 16,128,960 & 7,728,460 & 8,400,500 & 1 & 20,793,600 & 9,963,600 & 10,830,000 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & & 1 & 0 & 0 & 0 & 1,500 & 7,989,120 & 6,450,120 & 1,539,000 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & & 16,800 & 141,281,280 & 114,065,280 & 27,216,000 & 24,000 & 102,260,736 & 82,561,536 & 19,699,200 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & & 224,905 & 944,584,960 & 762,622,960 & 181,962,000 & 140,000 & 745,651,200 & 602,011,200 & 143,640,000 \\
\hline Spillway & m & & 180 & 14,731,192 & 12,360,292 & 2,370,900 & 250 & 74,373,600 & 62,403,600 & 11,970,000 \\
\hline Outlet Works & LS & & 1 & 16,271,788 & 13,652,938 & 2,618,850 & 1 & 31,874,400 & 26,744,400 & 5,130,000 \\
\hline Others & LS & & 1 & 15,151,680 & 7,260,180 & 7,891,500 & 1 & 16,416,000 & 7,866,000 & 8,550,000 \\
\hline Pipeline & m & & 4,108 & 653,036,178 & 568,737,188 & 84,298,990 & 3,500 & 556,365,600 & 484,545,600 & 71,820,000 \\
\hline TOTAL & & & & 1,801,186,038 & 1,486,427,298 & 314,758,740 & & 1,555,724,256 & 1,282,546,056 & 273,178,200 \\
\hline /ha & & & & 12,336,891 & & & & 25,503,676 & & \\
\hline
\end{tabular}

Table 12 Cost estimation (Unit: Rwf): Financial Price
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Ngoma22} & \multicolumn{4}{|c|}{Gatsibo31} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & 21,660,000 & 1 & 21,660,000 & 10,830,000 & 10,830,000 & 1 & 21,660,000 & 10,830,000 & 10,830,000 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 1,500 & 8,550,000 & 7,011,000 & 1,539,000 & 1,500 & 8,550,000 & 7,011,000 & 1,539,000 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & 4,560 & 12,000 & 54,720,000 & 44,870,400 & 9,849,600 & 13,200 & 60,192,000 & 49,357,440 & 10,834,560 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 65,000 & 370,500,000 & 303,810,000 & 66,690,000 & 35,000 & 199,500,000 & 163,590,000 & 35,910,000 \\
\hline Spillway & m & 319,200 & 160 & 51,072,000 & 43,411,200 & 7,660,800 & 100 & 31,920,000 & 27,132,000 & 4,788,000 \\
\hline Outlet Works & LS & 34,200,000 & 1 & 34,200,000 & 29,070,000 & 5,130,000 & 1 & 34,200,000 & 29,070,000 & 5,130,000 \\
\hline Others & LS & 17,100,000 & 1 & 17,100,000 & 8,550,000 & 8,550,000 & 1 & 17,100,000 & 8,550,000 & 8,550,000 \\
\hline Pipeline & m & 171,000 & 8,000 & 1,368,000,000 & 1,203,840,000 & 164,160,000 & 1,500 & 256,500,000 & 225,720,000 & 30,780,000 \\
\hline TOTAL & & & & 1,925,802,000 & 1,651,392,600 & 274,409,400 & & 629,622,000 & 521,260,440 & 108,361,560 \\
\hline /ha & & & & 11,671,527 & & & & & & \\
\hline
\end{tabular}

\section*{Table 13 Cost estimation (Unit: Rwf): Economic Price}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Ngoma22} & \multicolumn{4}{|c|}{Gatsibo31} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & & 1 & 20,793,600 & 9,963,600 & 10,830,000 & 1 & 20,793,600 & 9,963,600 & 10,830,000 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & & 1,500 & 7,989,120 & 6,450,120 & 1,539,000 & 1,500 & 7,989,120 & 6,450,120 & 1,539,000 \\
\hline Cut-off Trench & m^3 & & 12,000 & 51,130,368 & 41,280,768 & 9,849,600 & 13,200 & 56,243,405 & 45,408,845 & 10,834,560 \\
\hline Dam & m^3 & & 65,000 & 346,195,200 & 279,505,200 & 66,690,000 & 35,000 & 186,412,800 & 150,502,800 & 35,910,000 \\
\hline Spillway & m & & 160 & 47,599,104 & 39,938,304 & 7,660,800 & 100 & 29,749,440 & 24,961,440 & 4,788,000 \\
\hline Outlet Works & LS & & 1 & 31,874,400 & 26,744,400 & 5,130,000 & 1 & 31,874,400 & 26,744,400 & 5,130,000 \\
\hline Others & LS & & 1 & 16,416,000 & 7,866,000 & 8,550,000 & 1 & 16,416,000 & 7,866,000 & 8,550,000 \\
\hline Pipeline & m & & 8,000 & 1,271,692,800 & 1,107,532,800 & 164,160,000 & 1,500 & 238,442,400 & 207,662,400 & 30,780,000 \\
\hline TOTAL & & & & 1,793,690,592 & 1,519,281,192 & 274,409,400 & & 587,921,165 & 479,559,605 & 108,361,560 \\
\hline /ha & & & & 10,870,852 & & & & & & \\
\hline
\end{tabular}

\section*{4. Project Cost: Case 3}

Table 14 Cost estimation (Unit: Rwf): Financial Price
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra2} & \multicolumn{4}{|c|}{Bugesra3} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & 21,660,000 & 1 & 21,660,000 & 10,830,000 & 10,830,000 & 1 & 15,603,000 & 7,801,500 & 7,801,500 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 1,500 & 8,550,000 & 7,011,000 & 1,539,000 & 1,300 & 5,982,000 & 4,905,240 & 1,076,760 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & 4,560 & 20,000 & 91,200,000 & 74,784,000 & 16,416,000 & 6,893 & 48,246,000 & 39,561,720 & 8,684,280 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 111,000 & 632,700,000 & 518,814,000 & 113,886,000 & 114,612 & 487,532,000 & 399,776,240 & 87,755,760 \\
\hline Spillway & m & 319,200 & 160 & 51,072,000 & 43,411,200 & 7,660,800 & 210 & 51,894,000 & 44,109,900 & 7,784,100 \\
\hline Outlet Works & LS & 34,200,000 & 1 & 34,200,000 & 29,070,000 & 5,130,000 & 1 & 133,573,000 & 113,537,050 & 20,035,950 \\
\hline Others & LS & 17,100,000 & 1 & 17,100,000 & 8,550,000 & 8,550,000 & 1 & 14,585,000 & 7,292,500 & 7,292,500 \\
\hline Pipeline & m & 171,000 & 1,644 & 281,124,000 & 247,389,120 & 33,734,880 & 1,173 & 200,610,982 & 176,537,664 & 24,073,318 \\
\hline TOTAL & & & & 1,137,606,000 & 939,859,320 & 197,746,680 & 1 & 958,025,982 & 793,521,814 & 164,504,168 \\
\hline /ha & & & & 22,306,000 & & & & 16,807,473 & & \\
\hline
\end{tabular}

Table 15 Cost estimation (Unit: Rwf): Economic Price
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra2} & \multicolumn{4}{|c|}{Bugesra3} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & & 1 & 20,793,600 & 9,963,600 & 10,830,000 & 1 & 14,978,880 & 7,177,380 & 7,801,500 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge}\) & & 1,500 & 7,989,120 & 6,450,120 & 1,539,000 & 1,300 & 5,589,581 & 4,512,821 & 1,076,760 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & & 20,000 & 85,217,280 & 68,801,280 & 16,416,000 & 6,893 & 45,081,062 & 36,396,782 & 8,684,280 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & & 111,000 & 591,194,880 & 477,308,880 & 113,886,000 & 114,612 & 455,549,901 & 367,794,141 & 87,755,760 \\
\hline Spillway & m & & 160 & 47,599,104 & 39,938,304 & 7,660,800 & 210 & 48,365,208 & 40,581,108 & 7,784,100 \\
\hline Outlet Works & LS & & 1 & 31,874,400 & 26,744,400 & 5,130,000 & 1 & 124,490,036 & 104,454,086 & 20,035,950 \\
\hline Others & LS & & 1 & 16,416,000 & 7,866,000 & 8,550,000 & 1 & 14,001,600 & 6,709,100 & 7,292,500 \\
\hline Pipeline & m & & 2,700 & 261,332,870 & 227,597,990 & 33,734,880 & 1,415 & 186,487,969 & 162,414,651 & 24,073,318 \\
\hline TOTAL & & & & 1,062,417,254 & 864,670,574 & 197,746,680 & 1 & 894,544,237 & 730,040,069 & 164,504,168 \\
\hline /ha & & & & 15,856,974 & & & & 11,927,256 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra4} & \multicolumn{4}{|c|}{Ngoma21} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & 21,660,000 & 1 & 16,801,000 & 8,400,500 & 8,400,500 & 1 & 21,660,000 & 10,830,000 & 10,830,000 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 1 & 0 & 0 & 0 & 1,500 & 8,550,000 & 7,011,000 & 1,539,000 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & 4,560 & 16,800 & 151,200,000 & 123,984,000 & 27,216,000 & 24,000 & 109,440,000 & 89,740,800 & 19,699,200 \\
\hline Dam & \(\mathrm{m}^{\wedge} 3\) & 5,700 & 224,905 & 1,010,900,000 & 828,938,000 & 181,962,000 & 140,000 & 798,000,000 & 654,360,000 & 143,640,000 \\
\hline Spillway & m & 319,200 & 180 & 15,806,000 & 13,435,100 & 2,370,900 & 250 & 79,800,000 & 67,830,000 & 11,970,000 \\
\hline Outlet Works & LS & 34,200,000 & 1 & 17,459,000 & 14,840,150 & 2,618,850 & 1 & 34,200,000 & 29,070,000 & 5,130,000 \\
\hline Others & LS & 17,100,000 & 1 & 15,783,000 & 7,891,500 & 7,891,500 & 1 & 17,100,000 & 8,550,000 & 8,550,000 \\
\hline Pipeline & m & 171,000 & 2,476 & 423,419,586 & 372,609,236 & 50,810,350 & 2,249 & 384,579,000 & 338,429,520 & 46,149,480 \\
\hline TOTAL & & & & 1,651,368,586 & 1,370,098,486 & 281,270,100 & & 1,453,329,000 & 1,205,821,320 & 247,507,680 \\
\hline /ha & & & & 11,310,744 & & & & 23,825,066 & & \\
\hline
\end{tabular}

Table 17 Cost estimation (Unit: Rwf): Economic Price
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Bugesra4} & \multicolumn{4}{|c|}{Ngoma21} \\
\hline & Unit & Unit Price USD & Q & Cost & F/C & L/C & Q & Cost & F/C & L/C \\
\hline Preparation, Mobilization & LS & & 1 & 16,128,960 & 7,728,460 & 8,400,500 & 1 & 20,793,600 & 9,963,600 & 10,830,000 \\
\hline Coffer Dam & \(\mathrm{m}^{\wedge} 3\) & & 1 & 0 & 0 & 0 & 1,500 & 7,989,120 & 6,450,120 & 1,539,000 \\
\hline Cut-off Trench & \(\mathrm{m}^{\wedge} 3\) & & 16,800 & 141,281,280 & 114,065,280 & 27,216,000 & 24,000 & 102,260,736 & 82,561,536 & 19,699,200 \\
\hline Dam & \(\mathrm{m}^{\wedge}\) & & 224,905 & 944,584,960 & 762,622,960 & 181,962,000 & 140,000 & 745,651,200 & 602,011,200 & 143,640,000 \\
\hline Spillway & m & & 180 & 14,731,192 & 12,360,292 & 2,370,900 & 250 & 74,373,600 & 62,403,600 & 11,970,000 \\
\hline Outlet Works & LS & & 1 & 16,271,788 & 13,652,938 & 2,618,850 & 1 & 31,874,400 & 26,744,400 & 5,130,000 \\
\hline Others & LS & & 1 & 15,151,680 & 7,260,180 & 7,891,500 & 1 & 16,416,000 & 7,866,000 & 8,550,000 \\
\hline Pipeline & m & & 4,080 & 393,610,847 & 342,800,497 & 50,810,350 & 3,500 & 357,504,638 & 311,355,158 & 46,149,480 \\
\hline TOTAL & & & & 1,541,760,707 & 1,260,490,607 & 281,270,100 & & 1,356,863,294 & 1,109,355,614 & 247,507,680 \\
\hline /ha & & & & 10,560,005 & & & & 22,243,661 & & \\
\hline
\end{tabular}

\section*{Table 18 O\&M Cost (Unit: Rwf): Financial Price}
\begin{tabular}{|l|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ Item } & \multirow{2}{*}{ Q'ty } & \multicolumn{3}{|c|}{ Amount (Rwf per year) } \\
\cline { 3 - 5 } & \multicolumn{1}{|c|}{ Total } & \multicolumn{1}{c|}{ F/C } & \multicolumn{1}{c|}{ L/C } \\
\hline Dam operator & \(1 \mathrm{M} \times 12 \mathrm{M}\) & 24,000 & - & 24,000 \\
\hline Gate operator & \(4 \mathrm{M} \times 12 \mathrm{M}\) & 96,000 & - & 96,000 \\
\hline Dam cleaning & 50 MD & 25,000 & - & 25,000 \\
\hline Road maintenance & 50 MD & 25,000 & - & 25,000 \\
\hline Spillway cleaning & 50 MD & 25,000 & - & 25,000 \\
\hline Materials for maintenance & LS & 15,000 & 12,000 & 3,000 \\
\hline Pipeline spare & LS & 250,000 & 225,000 & 25,000 \\
\hline \multicolumn{1}{|c|}{ Total } & & 460,000 & 237,000 & 223,000 \\
\hline
\end{tabular}

Table 19 O\&M Cost (Unit: Rwf): Economic Price
\begin{tabular}{|l|c|r|r|r|}
\hline \multicolumn{1}{|c|}{ Item } & \multirow{2}{*}{ Q'ty } & \multicolumn{3}{|c|}{ Amount (Rwf per year) } \\
\cline { 3 - 5 } & \multicolumn{2}{|c|}{ Total } & F/C & \multicolumn{1}{c|}{ L/C } \\
\hline Dam operator & \(1 \mathrm{M} \times 12 \mathrm{M}\) & 12,000 & - & 12,000 \\
\hline Gate operator & \(4 \mathrm{M} \times 12 \mathrm{M}\) & 48,000 & - & 48,000 \\
\hline Dam cleaning & 50 MD & 12,500 & - & 12,500 \\
\hline Road maintenance & 50 MD & 12,500 & - & 12,500 \\
\hline Spillway cleaning & 50 MD & 12,500 & - & 12,500 \\
\hline Materials for maintenance & LS & 14,040 & 11,040 & 3,000 \\
\hline Pipeline spare & LS & 232,000 & 207,000 & 25,000 \\
\hline \multicolumn{1}{|c|}{ Total } & & 343,540 & 218,040 & 125,500 \\
\hline
\end{tabular}

\section*{5. Unit Price for Financial and Economic Analyses}

Table 20 Unit Price
\begin{tabular}{|c|c|c|c|c|}
\hline Item & Unit & Financial Price & Economic Price & Remark \\
\hline \multicolumn{5}{|l|}{Products} \\
\hline Sorghum & kg & 300 & 276 & SCF \\
\hline Sweet potato & kg & 55 & 51 & SCF \\
\hline Cassava & kg & 50 & 46 & SCF \\
\hline Rice & kg & 280 & 258 & SCF \\
\hline Maize & kg & 250 & 230 & SCF \\
\hline Haricot bean & kg & 300 & 276 & SCF \\
\hline Banana & kg & 50 & 46 & SCF \\
\hline Cabbage & kg & 100 & 92 & SCF \\
\hline Tomato & kg & 200 & 184 & SCF \\
\hline Pineapple & kg & 150 & 138 & SCF \\
\hline Avocado & pcs & 50 & 46 & SCF \\
\hline Mango & kg & 400 & 368 & SCF \\
\hline Coffee (cherry) & kg & 600 & 552 & SCF \\
\hline \multicolumn{5}{|l|}{Seeds/Seedlings} \\
\hline Sorghum & kg & 180 & 166 & SCF \\
\hline Sweet potato & vine & 150 & 150 & non-tradable \\
\hline Cassava & nos & 10 & 9 & SCF \\
\hline Rice & kg & 500 & 460 & SCF \\
\hline Maize & kg & 300 & 276 & SCF \\
\hline Haricot bean & kg & 300 & 276 & SCF \\
\hline Banana & kg & 300 & 276 & SCF \\
\hline Cabbage & kg & 800 & 736 & SCF \\
\hline Tomato & kg & 21,667 & 19,934 & SCF \\
\hline Pineapple & nos & 44 & 40 & SCF \\
\hline Avocado & seedling & 2,000 & 1,840 & SCF \\
\hline Mango & seedling & 1,000 & 920 & SCF \\
\hline Coffee (cherry) & seedling & 25 & 23 & SCF \\
\hline \multicolumn{5}{|l|}{Fertilizers} \\
\hline NPK & kg & 480 & 480 & no tariff \\
\hline DAP & kg & 480 & 480 & no tariff \\
\hline Urea & kg & 410 & 410 & no tariff \\
\hline DSP & kg & 500 & 500 & no tariff \\
\hline CAN & kg & 400 & 400 & no tariff \\
\hline Manure & kg & 5 & 5 & non-tradable \\
\hline \multicolumn{5}{|l|}{Pesticides} \\
\hline Thiodan & liter & 11,000 & 10,120 & SCF \\
\hline Ridomil & kg & 10,000 & 9,200 & SCF \\
\hline Dithane & kg & 1,600 & 1,472 & SCF \\
\hline Dimethoate & liter & 6,000 & 5,520 & SCF \\
\hline Kitazine & liter & 8,500 & 7,820 & SCF \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Materials} \\
\hline Multing grass & kg & 500 & 500 & non-tradable \\
\hline Farm Labor & man-day & 800 & 320 & Labor conversion \\
\hline
\end{tabular}

Note: Tools such as hoes, saw, shovels re coneerted by SCF to economic price.
Economic price of local materials is equivalent to market price
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Table 21 Standard Conversion Factor} & (Unit: million US\$) \\
\hline Item & 2006 & 2007 & 2008 & Average \\
\hline (1) Import & 548.06 & 737.19 & 589.31 & 624.85 \\
\hline (2) Export & 147.30 & 176.70 & 145.30 & 156.43 \\
\hline (3) Import Tax & 64.96 & 66.25 & 64.99 & 65.40 \\
\hline (4) Export Tax & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline (5) Subsidy for Export & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline (6) \(=(1)+(2)\) & 695.36 & 913.89 & 734.61 & 781.29 \\
\hline \((7)=(1)+(2)+(3)-(4)+(5)\) & 760.32 & 980.14 & 799.60 & 846.69 \\
\hline (8)SCF \(=(6) \div(7)\) & 0.91 & 0.93 & 0.92 & 0.92 \\
\hline
\end{tabular}

Data: BNR, Statistical year book, MINEFIN
Data on Import and Export: BNR
Data on Import Tax: MINFIN Revenue data
Exchange Rate: Rwanda Statistics and Figures in Year 2008
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Activities} & \multirow[t]{2}{*}{Unit} & \multicolumn{3}{|c|}{Sorghum} & \multicolumn{3}{|c|}{Sweet Potato} & \multicolumn{3}{|c|}{Cassava} \\
\hline & & Unit Price & Quantity & Total Price & Unit Price & Quantity & Total Price & Unit Price & Quantity & Total Price \\
\hline \multicolumn{11}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 300 & 1,200 & 360,000 & 55 & 12,000 & 660,000 & 50 & 10,000 & 500,000 \\
\hline By-product & Kg & & & & & & & & & \\
\hline Total Gross Income & & & & 360,000 & & & 660,000 & & & 500,000 \\
\hline \multicolumn{11}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{11}{|l|}{Labor} \\
\hline Clearing land & MD & 800 & 10 & 8,000 & 800 & 10 & 8,000 & 800 & 10 & 8,000 \\
\hline Plowing & MD & 800 & 66 & 52,800 & 800 & 66 & 52,800 & 800 & 66 & 52,800 \\
\hline Lotary Plow? & MD & 800 & 50 & 40,000 & 800 & 50 & 40,000 & 800 & 50 & 40,000 \\
\hline Leveling & MD & 800 & 10 & 8,000 & 800 & 10 & 8,000 & 800 & 10 & 8,000 \\
\hline Transport and manure application(10t) & MD & 800 & 50 & 40,000 & 800 & 50 & 40,000 & 800 & 50 & 40,000 \\
\hline Chemical fertilizer application & MD & 800 & 0 & 0 & 800 & 0 & 0 & 800 & 0 & 0 \\
\hline Planting & MD & 800 & 50 & 40,000 & 800 & 50 & 40,000 & 800 & 50 & 40,000 \\
\hline Weeding & MD & 800 & 90 & 72,000 & 800 & 90 & 72,000 & 800 & 90 & 72,000 \\
\hline Pesticide application & MD & 800 & 0 & 0 & 800 & 0 & 0 & 800 & 0 & 0 \\
\hline Bird chasing (Guarding) & MD & 800 & 45 & 36,000 & 800 & 60 & 48,000 & 800 & 60 & 48,000 \\
\hline Defanage & MD & 800 & & 0 & 800 & 10 & 8,000 & 800 & & 0 \\
\hline Harvesting & MD & 800 & 10 & 8,000 & 800 & 18 & 14,400 & 800 & 43 & 34,400 \\
\hline Threshing & MD & 800 & 7 & 5,600 & 800 & & 0 & 800 & & 0 \\
\hline Winnowing & MD & 800 & 6 & 4,800 & 800 & & 0 & 800 & & 0 \\
\hline Drying & MD & 800 & 5 & 4,000 & 800 & & 0 & 800 & & 0 \\
\hline Storing & MD & 800 & 3 & 2,000 & 800 & 20 & 16,000 & 800 & & 0 \\
\hline Sub-total & & & 402 & 321,200 & & 434 & 347,200 & & 429 & 343,200 \\
\hline \multicolumn{11}{|l|}{Inputs} \\
\hline Seeds (Suckers) & Kg & 180 & 30 & 5,400 & 150 & 2,000 & 300,000 & 10 & 10,000 & 100,000 \\
\hline Manure & Kg & 5 & 10,000 & 50,000 & 5 & 10,000 & 50,000 & 5 & 10,000 & 50,000 \\
\hline NPK & Kg & 480 & 0 & 0 & 480 & 0 & 0 & 480 & 0 & 0 \\
\hline Urea & Kg & 410 & 0 & 0 & & & 0 & & & 0 \\
\hline Pestcides (Thiodan) & Liter & 11,000 & 0 & 0 & & & 0 & & & 0 \\
\hline Pestcides (Ridomil) & Kg & & & 0 & 10,000 & 0 & 0 & 10,000 & 0 & 0 \\
\hline Pestcides (Dithane) & Kg & & & 0 & 1,600 & 0 & 0 & & & 0 \\
\hline Pestcides (Dimethoate) & Liter & & & 0 & 6,000 & 0 & 0 & & & 0 \\
\hline Sub-total & & & & 55,400 & & & 350,000 & & & 150,000 \\
\hline Grand Total & & & & 376,600 & & & 697,200 & & & 493,200 \\
\hline (C) Net Return & & & & -16,600 & & & -37,200 & & & 6,800 \\
\hline (D) Family Labor & \% of labor & & 80 & 256,960 & & 80 & 277,760 & & 80 & 274,560 \\
\hline (E) Production Cost exclude family labor & & & & 119,640 & & & 419,440 & & & 218,640 \\
\hline (F) Net Income & & & & 240,360 & & & 240,560 & & & 281,360 \\
\hline
\end{tabular}

Note: Analysis is based on the data collected from RADA, socio-economic survey of the JICA Study Team and data collected in the local markets and villages.
Table 23 Without Project Situation (Economic Price)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Activities} & \multirow[t]{2}{*}{Unit} & \multicolumn{3}{|c|}{Sorghum} & \multicolumn{3}{|c|}{Sweet Potato} & \multicolumn{3}{|c|}{Cassava} \\
\hline & & Unit Price & Quantity & Total Price & Unit Price & Quantity & Total Price & Unit Price & Quantity & Total Price \\
\hline \multicolumn{11}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 276 & 1,200 & 331,200 & 51 & 12,000 & 612,000 & 46 & 10,000 & 460,000 \\
\hline By-product & Kg & & & & & & & & & \\
\hline Total Gross Income & & & & 331,200 & & & 612,000 & & & 460,000 \\
\hline \multicolumn{11}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{11}{|l|}{Labor} \\
\hline Clearing land & MD & 400 & 10 & 4,000 & 400 & 10 & 4,000 & 400 & 10 & 4,000 \\
\hline Plowing & MD & 400 & 66 & 26,400 & 400 & 66 & 26,400 & 400 & 66 & 26,400 \\
\hline Lotary Plow? & MD & 400 & 50 & 20,000 & 400 & 50 & 20,000 & 400 & 50 & 20,000 \\
\hline Leveling & MD & 400 & 10 & 4,000 & 400 & 10 & 4,000 & 400 & 10 & 4,000 \\
\hline Transport and manure application(10t) & MD & 400 & 50 & 20,000 & 400 & 50 & 20,000 & 400 & 50 & 20,000 \\
\hline Chemical fertilizer application & MD & 400 & 0 & 0 & 400 & 0 & 0 & 400 & 0 & 0 \\
\hline Planting & MD & 400 & 50 & 20,000 & 400 & 50 & 20,000 & 400 & 50 & 20,000 \\
\hline Weeding & MD & 400 & 90 & 36,000 & 400 & 90 & 36,000 & 400 & 90 & 36,000 \\
\hline Pesticide application & MD & 400 & 0 & 0 & 400 & 0 & 0 & 400 & 0 & 0 \\
\hline Bird chasing (Guarding) & MD & 400 & 45 & 18,000 & 400 & 60 & 24,000 & 400 & 60 & 24,000 \\
\hline Defanage & MD & 400 & & 0 & 400 & 10 & 4,000 & 400 & & 0 \\
\hline Harvesting & MD & 400 & 10 & 4,000 & 400 & 18 & 7,200 & 400 & 43 & 17,200 \\
\hline Threshing & MD & 400 & 7 & 2,800 & 400 & & 0 & 400 & & 0 \\
\hline Winnowing & MD & 400 & 6 & 2,400 & 400 & & 0 & 400 & & 0 \\
\hline Drying & MD & 400 & 5 & 2,000 & 400 & & 0 & 400 & & 0 \\
\hline Storing & MD & 400 & 3 & 1,000 & 400 & 20 & 8,000 & 400 & & 0 \\
\hline Sub-total & & & 402 & 160,600 & & 434 & 173,600 & & 429 & 171,600 \\
\hline \multicolumn{11}{|l|}{Inputs} \\
\hline Seeds (Suckers) & Kg & 166 & 30 & 4,980 & 150 & 2,000 & 300,000 & 9 & 10,000 & 90,000 \\
\hline Manure & Kg & 5 & 10,000 & 50,000 & 5 & 10,000 & 50,000 & 5 & 10,000 & 50,000 \\
\hline NPK & Kg & 480 & 0 & 0 & 480 & 0 & 0 & 480 & 0 & 0 \\
\hline Urea & Kg & 410 & 0 & 0 & & & 0 & & & 0 \\
\hline Pestcides (Thiodan) & Liter & 10,120 & 0 & 0 & & & 0 & & & 0 \\
\hline Pestcides (Ridomil) & Kg & & & 0 & 9,200 & 0 & 0 & 9,200 & 0 & 0 \\
\hline Pestcides (Dithane) & Kg & & & 0 & 1,472 & 0 & 0 & & & 0 \\
\hline Pestcides (Dimethoate) & Liter & & & 0 & 5,520 & 0 & 0 & & & 0 \\
\hline Sub-total & & & & 54,980 & & & 350,000 & & & 140,000 \\
\hline Grand Total & & & & 215,580 & & & 523,600 & & & 311,600 \\
\hline (C) Net Return & & & & 115,620 & & & 88,400 & & & 148,400 \\
\hline (D) Family Labor & \% of labor & & 80 & 128,480 & & 80 & 138,880 & & 80 & 137,280 \\
\hline (E) Production Cost exclude family labor & & & & 87,100 & & & 384,720 & & & 174,320 \\
\hline (F) Net Income & & & & 244,100 & & & 227,280 & & & 285,680 \\
\hline
\end{tabular}
7. Cost and Benefit of Crops per Ha/Season
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit Price} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Crop} & \multicolumn{2}{|r|}{2nd Crop} & \multicolumn{2}{|r|}{3rd Crop} & \multicolumn{2}{|r|}{4th Crop} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 280 & 3,000 & 840,000 & 5,000 & 1,400,000 & 6,200 & 1,736,000 & 6,800 & 1,904,000 & 7,000 & 1,960,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 840,000 & & 1,400,000 & & 1,736,000 & & 1,904,000 & & 1,960,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{13}{|l|}{1. Nursery} \\
\hline Nursery preparation & MD & 800 & 45 & 36,000 & 45 & 36,000 & 45 & 36,000 & 45 & 36,000 & 45 & 36,000 \\
\hline Seeds & Kg & 500 & 10 & 5,000 & 10 & 5,000 & 10 & 5,000 & 10 & 5,000 & 10 & 5,000 \\
\hline Sub-total & & & & 41,000 & & 41,000 & & 41,000 & & 41,000 & & 41,000 \\
\hline \multicolumn{13}{|l|}{2. Production (Labor)} \\
\hline Land clearing & MD & 800 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 \\
\hline Plowing & MD & 800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 \\
\hline Puddling & MD & 800 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 \\
\hline Paddying & MD & 800 & 65 & 52,000 & 65 & 52,000 & 65 & 52,000 & 65 & 52,000 & 65 & 52,000 \\
\hline Mixing & MD & 800 & 40 & 32,000 & 40 & 32,000 & 40 & 32,000 & 40 & 32,000 & 40 & 32,000 \\
\hline Leveling & MD & 800 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 \\
\hline Chemical Fertilizing & MD & 800 & 0 & & 5 & 4,000 & 8 & 6,400 & 9 & 7,200 & 10 & 8,000 \\
\hline Transplanting & MD & 800 & 60 & 48,000 & 60 & 48,000 & 60 & 48,000 & 60 & 48,000 & 60 & 48,000 \\
\hline Weeding & MD & 800 & 95 & 76,000 & 95 & 76,000 & 95 & 76,000 & 95 & 76,000 & 95 & 76,000 \\
\hline Watering & MD & 800 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 \\
\hline Pestcides application & MD & 800 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 \\
\hline Guarding / bird chasing & MD & 800 & 75 & 60,000 & 75 & 60,000 & 75 & 60,000 & 75 & 60,000 & 75 & 60,000 \\
\hline Harvesting & MD & 800 & 9 & 7,200 & 14 & 11,200 & 18 & 14,400 & 19 & 15,200 & 20 & 16,000 \\
\hline Threshing & MD & 800 & 26 & 20,800 & 43 & 34,400 & 53 & 42,400 & 58 & 46,400 & 60 & 48,000 \\
\hline Drying & MD & 800 & 9 & 7,200 & 14 & 11,200 & 18 & 14,400 & 19 & 15,200 & 20 & 16,000 \\
\hline Winnowing & MD & 800 & 9 & 7,200 & 14 & 11,200 & 18 & 14,400 & 19 & 15,200 & 20 & 16,000 \\
\hline Storing and Weighing & MD & 800 & 4 & 3,200 & 7 & 5,600 & 9 & 7,200 & 10 & 8,000 & 10 & 8,000 \\
\hline Sub-total & & & 568 & 454,400 & 608 & 486,400 & 635 & 508,000 & 645 & 516,000 & 651 & 520,800 \\
\hline \multicolumn{13}{|l|}{3. Production (Inputs)} \\
\hline Fertilizer: DAP & Kg & 480 & 0 & - & 50 & 24,000 & 80 & 38,400 & 90 & 43,200 & 100 & 48,000 \\
\hline Fertilizer: Urea & Kg & 410 & 0 & & 50 & 20,500 & 80 & 32,800 & 90 & 36,900 & 100 & 41,000 \\
\hline Pesticdes: Kitazine & Liter & 8,500 & 3 & 25,500 & 3 & 25,500 & 3 & 25,500 & 3 & 25,500 & 3 & 25,500 \\
\hline Pesticdes: Dimethoate & Liter & 6,000 & 3 & 18,000 & 3 & 18,000 & 3 & 18,000 & 3 & 18,000 & 3 & 18,000 \\
\hline Sub-total & & & & 43,500 & & 88,000 & & 114,700 & & 123,600 & & 132,500 \\
\hline \multicolumn{13}{|l|}{4. Other} \\
\hline Land tax & 1ha & 10,000 & 1 & 10,000 & 1 & 10,000 & 1 & 10,000 & 1 & 10,000 & 1 & 10,000 \\
\hline Contribution & 1ha & 20,000 & 1 & 20,000 & 1 & 20,000 & 1 & 20,000 & 1 & 20,000 & 1 & 20,000 \\
\hline Sub-total & & & & 30,000 & & 30,000 & & 30,000 & & 30,000 & & 30,000 \\
\hline Grand Total & & & & 568,900 & & 645,400 & & 693,700 & & 710,600 & & 724,300 \\
\hline (C) Net Return & & & & 271,100 & & 754,600 & & 1,042,300 & & 1,193,400 & & 1,235,700 \\
\hline (D) Family Labor & \% of labor & & 80 & 392,320 & 80 & 417,920 & 80 & 435,200 & 80 & 441,600 & 80 & 445,440 \\
\hline \multicolumn{2}{|l|}{(E) Production Cost exclude family labor} & & & \((121,220)\) & & 336,680 & & 607,100 & & 751,800 & & 790,260 \\
\hline (F) Net Income & & & & 961,220 & & 1,063,320 & & 1,128,900 & & 1,152,200 & & 1,169,740 \\
\hline Incremental Achievement & & & & & 50\% & & 80\% & & 95\% & & 100\% & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit Price} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Crop} & \multicolumn{2}{|r|}{2nd Crop} & \multicolumn{2}{|r|}{3rd Crop} & \multicolumn{2}{|r|}{4th Crop} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 258 & 3,000 & 774,000 & 5,000 & 1,290,000 & 6,200 & 1,599,600 & 6,800 & 1,754,400 & 7,000 & 1,806,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 774,000 & & 1,290,000 & & 1,599,600 & & 1,754,400 & & 1,806,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{13}{|l|}{1. Nursery} \\
\hline Nursery preparation & MD & 400 & 45 & 18,000 & 45 & 18,000 & 45 & 18,000 & 45 & 18,000 & 45 & 18,000 \\
\hline Seeds & Kg & 460 & 10 & 4,600 & 10 & 4,600 & 10 & 4,600 & 10 & 4,600 & 10 & 4,600 \\
\hline Sub-total & & & & 22,600 & & 22,600 & & 22,600 & & 22,600 & & 22,600 \\
\hline \multicolumn{13}{|l|}{2. Production (Labor)} \\
\hline Land clearing & MD & 400 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 \\
\hline Plowing & MD & 400 & 66 & 26,400 & 66 & 26,400 & 66 & 26,400 & 66 & 26,400 & 66 & 26,400 \\
\hline Puddling & MD & 400 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 \\
\hline Paddying & MD & 400 & 65 & 26,000 & 65 & 26,000 & 65 & 26,000 & 65 & 26,000 & 65 & 26,000 \\
\hline Mixing & MD & 400 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 \\
\hline Leveling & MD & 400 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 \\
\hline Chemical Fertilizing & MD & 400 & 0 & & 5 & 2,000 & 8 & 3,200 & 9 & 3,600 & 10 & 4,000 \\
\hline Transplanting & MD & 400 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 \\
\hline Weeding & MD & 400 & 95 & 38,000 & 95 & 38,000 & 95 & 38,000 & 95 & 38,000 & 95 & 38,000 \\
\hline Watering & MD & 400 & 20 & 8,000 & 20 & 8,000 & 20 & 8,000 & 20 & 8,000 & 20 & 8,000 \\
\hline Pestcides application & MD & 400 & 20 & 8,000 & 20 & 8,000 & 20 & 8,000 & 20 & 8,000 & 20 & 8,000 \\
\hline Guarding / bird chasing & MD & 400 & 75 & 30,000 & 75 & 30,000 & 75 & 30,000 & 75 & 30,000 & 75 & 30,000 \\
\hline Harvesting & MD & 400 & 9 & 3,600 & 14 & 5,600 & 18 & 7,200 & 19 & 7,600 & 20 & 8,000 \\
\hline Threshing & MD & 400 & 26 & 10,400 & 43 & 17,200 & 53 & 21,200 & 58 & 23,200 & 60 & 24,000 \\
\hline Drying & MD & 400 & 9 & 3,600 & 14 & 5,600 & 18 & 7,200 & 19 & 7,600 & 20 & 8,000 \\
\hline Winnowing & MD & 400 & 9 & 3,600 & 14 & 5,600 & 18 & 7,200 & 19 & 7,600 & 20 & 8,000 \\
\hline Storing and Weighing & MD & 400 & 4 & 1,600 & 7 & 2,800 & 9 & 3,600 & 10 & 4,000 & 10 & 4,000 \\
\hline Sub-total & & & 568 & 227,200 & 608 & 243,200 & 635 & 254,000 & 645 & 258,000 & 651 & 260,400 \\
\hline \multicolumn{13}{|l|}{3. Production (Inputs)} \\
\hline Fertilizer: DAP & Kg & 480 & 0 & - & 50 & 24,000 & 80 & 38,400 & 90 & 43,200 & 100 & 48,000 \\
\hline Fertilizer: Urea & Kg & 410 & 0 & & 50 & 20,500 & 80 & 32,800 & 90 & 36,900 & 100 & 41,000 \\
\hline Pesticdes: Kitazine & Liter & 7,820 & 3 & 23,460 & 3 & 23,460 & 3 & 23,460 & 3 & 23,460 & 3 & 23,460 \\
\hline Pesticdes: Dimethoate & Liter & 5,520 & 3 & 16,560 & 3 & 16,560 & 3 & 16,560 & 3 & 16,560 & 3 & 16,560 \\
\hline Sub-total & & & & 40,020 & & 84,520 & & 111,220 & & 120,120 & & 129,020 \\
\hline \multicolumn{13}{|l|}{4. Other} \\
\hline Land tax & 1ha & & 1 & & 1 & & 1 & & 1 & & 1 & \\
\hline Contribution & 1ha & 20,000 & 1 & 20,000 & 1 & 20,000 & 1 & 20,000 & 1 & 20,000 & 1 & 20,000 \\
\hline Sub-total & & & & 20,000 & & 20,000 & & 20,000 & & 20,000 & & 20,000 \\
\hline Grand Total & & & & 309,820 & & 370,320 & & 407,820 & & 420,720 & & 432,020 \\
\hline (C) Net Return & & & & 464,180 & & 919,680 & & 1,191,780 & & 1,333,680 & & 1,373,980 \\
\hline (D) Family Labor & \% of labor & & 80 & 196,160 & 80 & 208,960 & 80 & 217,600 & 80 & 220,800 & 80 & 222,720 \\
\hline \multicolumn{2}{|l|}{(E) Production Cost exclude family labor} & & & 268,020 & & 710,720 & & 974,180 & & 1,112,880 & & 1,151,260 \\
\hline (F) Net Income & & & & 505,980 & & 579,280 & & 625,420 & & 641,520 & & 654,740 \\
\hline Incremental Achievement & & & & & 50\% & & 80\% & & 95\% & & 100\% & \\
\hline
\end{tabular}

\footnotetext{
Note: Analysis is based on the data collected from RADA, socio-economic survey of the JICA study Team and data collected in the local markets and villages,
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \hline \text { Unit } \\
& \text { Price }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Crop} & \multicolumn{2}{|r|}{2nd Crop} & \multicolumn{2}{|r|}{3rd Crop} & \multicolumn{2}{|r|}{4th Crop} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 250 & 1,500 & 375,000 & 3,250 & 812,500 & 4,125 & 1,031,250 & 4,475 & 1,118,750 & 5,000 & 1,250,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 375,000 & & 812,500 & & 1,031,250 & & 1,118,750 & & 1,250,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{13}{|l|}{Labor} \\
\hline Clearing land & MD & 800 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 \\
\hline Plowing & MD & 800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 \\
\hline 2nd Plowing & MD & 800 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 \\
\hline Leveling & MD & 800 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 \\
\hline Transport and manure application(10t) & MD & 800 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 \\
\hline Chemical fertilizer application & MD & 800 & 0 & 0 & 5 & 4,000 & 7 & 5,600 & 9 & 7,200 & 10 & 8,000 \\
\hline Planting & MD & 800 & 12 & 9,600 & 12 & 9,600 & 12 & 9,600 & 12 & 9,600 & 12 & 9,600 \\
\hline Weeding & MD & 800 & 70 & 56,000 & 70 & 56,000 & 70 & 56,000 & 70 & 56,000 & 70 & 56,000 \\
\hline Watering & MD & 800 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 \\
\hline Pesticide application & MD & 800 & 0 & 0 & 4 & 3,200 & 6 & 4,800 & 7 & 5,600 & 8 & 6,400 \\
\hline Bird chasing (Guarding) & MD & 800 & 30 & 24,000 & 30 & 24,000 & 30 & 24,000 & 30 & 24,000 & 30 & 24,000 \\
\hline Harvesting & MD & 800 & 8 & 6,400 & 16 & 12,800 & 21 & 16,800 & 22 & 17,600 & 25 & 20,000 \\
\hline Removing seeds & MD & 800 & 6 & 4,800 & 13 & 10,400 & 17 & 13,600 & 18 & 14,400 & 20 & 16,000 \\
\hline Winnowing & MD & 800 & 1 & 800 & 3 & 2,400 & 3 & 2,400 & 4 & 3,200 & 4 & 3,200 \\
\hline Drying & MD & 800 & 3 & 2,400 & 3 & 2,400 & 3 & 2,400 & 3 & 2,400 & 3 & 2,400 \\
\hline Grading & MD & 800 & 1 & 800 & 1 & 800 & 1 & 800 & 1 & 800 & 1 & 800 \\
\hline Storing & MD & 800 & 1 & 800 & 1 & 800 & 1 & 800 & 1 & 800 & 1 & 800 \\
\hline Sub-total & & & 338 & 270,400 & 364 & 291,200 & 377 & 301,600 & 383 & 306,400 & 390 & 312,000 \\
\hline \multicolumn{13}{|l|}{Inputs} \\
\hline Seeds & Kg & 300 & 30 & 9,000 & 30 & 9,000 & 30 & 9,000 & 30 & 9,000 & 30 & 9,000 \\
\hline Manure & Kg & 5 & 10,000 & 50,000 & 10,000 & 50,000 & 10,000 & 50,000 & 10,000 & 50,000 & 10,000 & 50,000 \\
\hline DAP & Kg & 480 & 0 & 0 & 50 & 24,000 & 70 & 33,600 & 90 & 43,200 & 100 & 48,000 \\
\hline Urea & Kg & 410 & 0 & 0 & 25 & 10,250 & 35 & 14,350 & 45 & 18,450 & 50 & 20,500 \\
\hline Pestcides (Thiodan) & Liter & 11,000 & 0 & 0 & 1.5 & 16,500 & 2 & 22,000 & 2.5 & 27,500 & 3 & 33,000 \\
\hline Sub-total & & & & 59,000 & & 109,750 & & 128,950 & & 148,150 & & 160,500 \\
\hline Grand Total & & & & 329,400 & & 400,950 & & 430,550 & & 454,550 & & 472,500 \\
\hline (C) Net Return & & & & 45,600 & & 411,550 & & 600,700 & & 664,200 & & 777,500 \\
\hline (D) Family Labor & \% of labor & & 80 & 216,320 & 80 & 232,960 & 80 & 241,280 & 80 & 245,120 & 80 & 249,600 \\
\hline (E) Production Cost exclude family labor & & & & 113,080 & & 167,990 & & 189,270 & & 209,430 & & 222,900 \\
\hline (F) Net Income & & & & 261,920 & & 644,510 & & 841,980 & & 909,320 & & 1,027,100 \\
\hline Incremental Achievement & & & & & 50\% & & 75\% & & 85\% & & 100\% & \\
\hline
\end{tabular}

Table 27 Crop: Maize (Economic Price)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \hline \text { Unit } \\
& \text { Price }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Crop} & \multicolumn{2}{|r|}{2nd Crop} & \multicolumn{2}{|r|}{3rd Crop} & \multicolumn{2}{|r|}{4th Crop} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 230 & 1,500 & 345,000 & 3,250 & 747,500 & 4,125 & 948,750 & 4,475 & 1,029,250 & 5,000 & 1,150,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 345,000 & & 747,500 & & 948,750 & & 1,029,250 & & 1,150,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{13}{|l|}{Labor} \\
\hline Clearing land & MD & 400 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 \\
\hline Plowing & MD & 400 & 66 & 26,400 & 66 & 26,400 & 66 & 26,400 & 66 & 26,400 & 66 & 26,400 \\
\hline 2nd Plowing & MD & 400 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 \\
\hline Leveling & MD & 400 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 & 10 & 4,000 \\
\hline Transport and manure application(10t) & MD & 400 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 \\
\hline Chemical fertilizer application & MD & 400 & 0 & 0 & 5 & 2,000 & 7 & 2,800 & 9 & 3,600 & 10 & 4,000 \\
\hline Planting & MD & 400 & 12 & 4,800 & 12 & 4,800 & 12 & 4,800 & 12 & 4,800 & 12 & 4,800 \\
\hline Weeding & MD & 400 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 \\
\hline Watering & MD & 400 & 20 & 8,000 & 20 & 8,000 & 20 & 8,000 & 20 & 8,000 & 20 & 8,000 \\
\hline Pesticide application & MD & 400 & 0 & 0 & 4 & 1,600 & 6 & 2,400 & 7 & 2,800 & 8 & 3,200 \\
\hline Bird chasing (Guarding) & MD & 400 & 30 & 12,000 & 30 & 12,000 & 30 & 12,000 & 30 & 12,000 & 30 & 12,000 \\
\hline Harvesting & MD & 400 & 8 & 3,200 & 16 & 6,400 & 21 & 8,400 & 22 & 8,800 & 25 & 10,000 \\
\hline Removing seeds & MD & 400 & 6 & 2,400 & 13 & 5,200 & 17 & 6,800 & 18 & 7,200 & 20 & 8,000 \\
\hline Winnowing & MD & 400 & 1 & 400 & 3 & 1,200 & 3 & 1,200 & 4 & 1,600 & 4 & 1,600 \\
\hline Drying & MD & 400 & 3 & 1,200 & 3 & 1,200 & 3 & 1,200 & 3 & 1,200 & 3 & 1,200 \\
\hline Grading & MD & 400 & 1 & 400 & 1 & 400 & 1 & 400 & 1 & 400 & 1 & 400 \\
\hline Storing & MD & 400 & 1 & 400 & 1 & 400 & 1 & 400 & 1 & 400 & 1 & 400 \\
\hline Sub-total & & & 338 & 135,200 & 364 & 145,600 & 377 & 150,800 & 383 & 153,200 & 390 & 156,000 \\
\hline \multicolumn{13}{|l|}{Inputs} \\
\hline Seeds & Kg & 276 & 30 & 8,280 & 30 & 8,280 & 30 & 8,280 & 30 & 8,280 & 30 & 8,280 \\
\hline Manure & Kg & 5 & 10,000 & 50,000 & 10,000 & 50,000 & 10,000 & 50,000 & 10,000 & 50,000 & 10,000 & 50,000 \\
\hline DAP & Kg & 480 & 0 & 0 & 50 & 24,000 & 70 & 33,600 & 90 & 43,200 & 100 & 48,000 \\
\hline Urea & Kg & 410 & 0 & 0 & 25 & 10,250 & 35 & 14,350 & 45 & 18,450 & 50 & 20,500 \\
\hline Pestcides (Thiodan) & Liter & 10,120 & 0 & 0 & 1.5 & 15,180 & 2 & 20,240 & 2.5 & 25,300 & 3 & 30,360 \\
\hline Sub-total & & & & 58,280 & & 107,710 & & 126,470 & & 145,230 & & 157,140 \\
\hline Grand Total & & & & 193,480 & & 253,310 & & 277,270 & & 298,430 & & 313,140 \\
\hline (C) Net Return & & & & 151,520 & & 494,190 & & 671,480 & & 730,820 & & 836,860 \\
\hline (D) Family Labor & \% of labor & & 80 & 108,160 & 80 & 116,480 & 80 & 120,640 & 80 & 122,560 & 80 & 124,800 \\
\hline (E) Production Cost exclude family labor & & & & 85,320 & & 136,830 & & 156,630 & & 175,870 & & 188,340 \\
\hline (F) Net Income & & & & 259,680 & & 610,670 & & 792,120 & & 853,380 & & 961,660 \\
\hline Incremental Achievement & & & & & 50\% & & 75\% & & 85\% & & 100\% & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit Price} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Crop} & \multicolumn{2}{|r|}{2nd Crop} & \multicolumn{2}{|r|}{3rd Crop} & \multicolumn{2}{|r|}{4th Crop} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 300 & 900 & 270,000 & 1,350 & 405,000 & 1,575 & 472,500 & 1,665 & 499,500 & 1,800 & 540,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 270,000 & & 405,000 & & 472,500 & & 499,500 & & 540,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{13}{|l|}{Labor} \\
\hline Clearing land & MD & 800 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 \\
\hline Plowing & MD & 800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 \\
\hline 2nd Plowing & MD & 800 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 \\
\hline Leveling & MD & 800 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 & 10 & 8,000 \\
\hline Transport and manure application(10t) & MD & 800 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 \\
\hline Chemical fertilizer application & MD & 800 & 0 & 0 & 5 & 4,000 & 7 & 5,600 & 9 & 7,200 & 10 & 8,000 \\
\hline Planting & MD & 800 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 & 20 & 16,000 \\
\hline Weeding & MD & 800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 & 66 & 52,800 \\
\hline Pesticide application & MD & 800 & 0 & 0 & 8 & 6,400 & 11 & 8,800 & 14 & 11,200 & 16 & 12,800 \\
\hline Bird chasing (Guarding) & MD & 800 & 15 & 12,000 & 15 & 12,000 & 15 & 12,000 & 15 & 12,000 & 15 & 12,000 \\
\hline Harvesting & MD & 800 & 10 & 8,000 & 15 & 12,000 & 18 & 14,400 & 19 & 15,200 & 20 & 16,000 \\
\hline Threshing & MD & 800 & 10 & 8,000 & 15 & 12,000 & 18 & 14,400 & 19 & 15,200 & 20 & 16,000 \\
\hline Winnowing & MD & 800 & 3 & 2,400 & 4 & 3,200 & 4 & 3,200 & 5 & 4,000 & 5 & 4,000 \\
\hline Drying & MD & 800 & 3 & 2,400 & 3 & 2,400 & 3 & 2,400 & 3 & 2,400 & 3 & 2,400 \\
\hline Grading & MD & 800 & 1 & 800 & 1.5 & 1,200 & 1.5 & 1,200 & 1.5 & 1,200 & 1.5 & 1,200 \\
\hline Storing & MD & 800 & 1 & 800 & 1.5 & 1,200 & 1.5 & 1,200 & 1.5 & 1,200 & 1.5 & 1,200 \\
\hline Sub-total & & & 315 & 252,000 & 340 & 272,000 & 351 & 280,800 & 359 & 287,200 & 364 & 291,200 \\
\hline \multicolumn{13}{|l|}{Inputs} \\
\hline Seeds (Suckers) & Kg & 300 & 70 & 21,000 & 70 & 21,000 & 70 & 21,000 & 70 & 21,000 & 70 & 21,000 \\
\hline Manure & Kg & 5 & 10,000 & 50,000 & 10000 & 50,000 & 10000 & 50,000 & 10000 & 50,000 & 10000 & 50,000 \\
\hline DAP & Kg & 480 & 0 & 0 & 50 & 24,000 & 70 & 33,600 & 90 & 43,200 & 100 & 48,000 \\
\hline Pestcides (Dimethoate) & Liter & 6,000 & 0 & 0 & 1.5 & 9,000 & 2 & 12,000 & 2.5 & 15,000 & 3 & 18,000 \\
\hline Sub-total & & & & 71,000 & & 104,000 & & 116,600 & & 129,200 & & 137,000 \\
\hline Grand Total & & & & 323,000 & & 376,000 & & 397,400 & & 416,400 & & 428,200 \\
\hline (C) Net Return & & & & -53,000 & & 29,000 & & 75,100 & & 83,100 & & 111,800 \\
\hline (D) Family Labor & \% of labor & & 90 & 226,800 & 90 & 244,800 & 90 & 252,720 & 90 & 258,480 & 90 & 262,080 \\
\hline (E) Production Cost exclude family labor & & & & 96,200 & & 131,200 & & 144,680 & & 157,920 & & 166,120 \\
\hline (F) Net Income & & & & 173,800 & & 273,800 & & 327,820 & & 341,580 & & 373,880 \\
\hline Incremental Achievement & & & & & 50\% & & 75\% & & 85\% & & 100\% & \\
\hline
\end{tabular}
\begin{tabular}{l}
Table 29 Crop: Haricot Bean (Long) (Economic Price) \\
\hline
\end{tabular}

Note: Analysis is based on the data collected from RADA, socio-economic survey of the JICA Study Team and data collected in the local markets and villages.

\section*{7. Cost and Benefit of Crops per Ha/Season}

Table 30 Crop: Banana (Financial Price)

Note: Analysis is based on the data collected from RADA, socio-economic survey of the JICA Study Team and data collected in the local markets and villages.
Table 31 Crop: Banana (Economic Price)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit Price} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{4}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Crop} & \multicolumn{2}{|r|}{2nd Crop} \\
\hline & & & & & Qu'ty & Total Price & Qu'ty & Total Price \\
\hline \multicolumn{9}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 46 & 12,000 & 552,000 & 20,198 & 929,126 & 22,248 & 1,023,408 \\
\hline By-product (suckers) & Kg & 276 & 2,213 & 610,654 & 3,724 & 1,027,852 & 4,102 & 1,132,152 \\
\hline Total Gross Income & & & & 1,162,654 & & 1,956,979 & & 2,155,560 \\
\hline \multicolumn{9}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{9}{|l|}{Labor} \\
\hline Clearing land & MD & 400 & 77 & 30,800 & 77 & 30,800 & 77 & 30,800 \\
\hline Plowing & MD & 400 & 93 & 37,200 & 93 & 37,200 & 93 & 37,200 \\
\hline Lotary Plow? & MD & 400 & 21 & 8,400 & 21 & 8,400 & 21 & 8,400 \\
\hline Digging for banana & MD & 400 & 21 & 8,400 & 21 & 8,400 & 21 & 8,400 \\
\hline Transport and manure application(10t) & MD & 400 & 15 & 6,000 & 15 & 6,000 & 15 & 6,000 \\
\hline Planting banana sucker & MD & 400 & 9 & 3,600 & 9 & 3,600 & 9 & 3,600 \\
\hline Weeding & MD & 400 & 354 & 141,600 & 354 & 141,600 & 354 & 141,600 \\
\hline Multing (banana) & MD & 400 & 8 & 3,200 & 8 & 3,200 & 8 & 3,200 \\
\hline Harvesting & MD & 400 & & 0 & & 0 & & 0 \\
\hline Sub-total & & & 598 & 239,200 & 598 & 239,200 & 598 & 239,200 \\
\hline \multicolumn{9}{|l|}{Inputs} \\
\hline Seeds (Suckers) & Kg & 276 & 1,100 & 303,600 & 1,100 & 303,600 & 1,100 & 303,600 \\
\hline Manure & Kg & 5 & 55,000 & 275,000 & 55,000 & 275,000 & 55,000 & 275,000 \\
\hline Sub-total & & & & 578,600 & & 578,600 & & 578,600 \\
\hline Grand Total & & & & 817,800 & & 817,800 & & 817,800 \\
\hline (C) Net Return & & & & 344,854 & & 1,139,179 & & 1,337,760 \\
\hline (D) Family Labor & \% of labor & & 90 & 215,280 & 90 & 215,280 & 90 & 215,280 \\
\hline (E) Production Cost exclude family labor & & & & 602,520 & & 602,520 & & 602,520 \\
\hline (F) Net Income & & & & 560,134 & & 1,354,459 & & 1,553,040 \\
\hline Incremental Achievement & & & & & 80\% & & 100\% & \\
\hline
\end{tabular}

\footnotetext{
Note: Analysis is based on the data collected from RADA, socio-economic survey of the JICA Study Team and data collected in the local markets and villages.
}

Table 32 Crop: Cabbage (Financial Price)

Table 33 Crop: Cabbage (Economic Price)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit Price} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Crop} & \multicolumn{2}{|r|}{2nd Crop} & \multicolumn{2}{|r|}{3rd Crop} & \multicolumn{2}{|r|}{4th Crop} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 92 & 10,000 & 920,000 & 16,500 & 1,518,000 & 19,750 & 1,817,000 & 21,050 & 1,936,600 & 23,000 & 2,116,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 920,000 & & 1,518,000 & & 1,817,000 & & 1,936,600 & & 2,116,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{13}{|l|}{Seed Bed Making} \\
\hline Preparing seed beds & MD & 400 & 4 & 1,600 & 4 & 1,600 & 4 & 1,600 & 4 & 1,600 & 4 & 1,600 \\
\hline Watering & MD & 400 & 24 & 9,600 & 24 & 9,600 & 24 & 9,600 & 24 & 9,600 & 24 & 9,600 \\
\hline Sub-total & & & & 11,200 & & 11,200 & & 11,200 & & 11,200 & & 11,200 \\
\hline \multicolumn{13}{|l|}{Inputs for Bed Making} \\
\hline Grass & & 5,000 & 1 & 5,000 & 1 & 5,000 & 1 & 5,000 & 1 & 5,000 & 1 & 5,000 \\
\hline Compost manure & & 1,500 & 10 & 15,000 & 10 & 15,000 & 10 & 15,000 & 10 & 15,000 & 10 & 15,000 \\
\hline Seeds & kg & 736 & 0.4 & 294 & 0.4 & 294 & 0.4 & 294 & 0.4 & 294 & 0.4 & 294 \\
\hline Fungicides /Pesticides & Liter & 1,472 & 1 & 1,472 & 1 & 1,472 & 1 & 1,472 & 1 & 1,472 & 1 & 1,472 \\
\hline Watering tools & & 2,300 & 2 & 4,600 & 2 & 4,600 & 2 & 4,600 & 2 & 4,600 & 2 & 4,600 \\
\hline Sub-total & & & & 26,366 & & 26,366 & & 26,366 & & 26,366 & & 26,366 \\
\hline \multicolumn{13}{|l|}{Labor} \\
\hline Clearing & MD & 400 & 8 & 3,200 & 8 & 3,200 & 8 & 3,200 & 8 & 3,200 & 8 & 3,200 \\
\hline Plowing & MD & 400 & 45 & 18,000 & 45 & 18,000 & 45 & 18,000 & 45 & 18,000 & 45 & 18,000 \\
\hline Ridging & MD & 400 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 \\
\hline Leveling & MD & 400 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 \\
\hline Compost manure transport & MD & 400 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 \\
\hline Chemical fertilizing & MD & 400 & 0 & 0 & 20 & 8,000 & 30 & 12,000 & 34 & 13,600 & 40 & 16,000 \\
\hline Planting & MD & 400 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 \\
\hline Watering & MD & 400 & 30 & 12,000 & 30 & 12,000 & 30 & 12,000 & 30 & 12,000 & 30 & 12,000 \\
\hline Spraying Pesticides & MD & 400 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 \\
\hline Weeding & MD & 400 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 \\
\hline Harvesting & MD & 400 & 35 & 14,000 & 57 & 22,800 & 69 & 27,600 & 73 & 29,200 & 80 & 32,000 \\
\hline Sub-total & & & & 175,200 & & 192,000 & & 200,800 & & 204,000 & & 209,200 \\
\hline \multicolumn{13}{|l|}{Inputs} \\
\hline Fertilizer (DSP) & kg & 500 & 0 & 0 & 125 & 62,500 & 188 & 94,000 & 213 & 106,500 & 250 & 125,000 \\
\hline Fertilizer (CAN) & kg & 400 & 0 & 0 & 25 & 10,000 & 38 & 15,200 & 43 & 17,200 & 50 & 20,000 \\
\hline Pesticdes (Dimethoate) & Liter & 5,520 & 3.3 & 18,216 & 3.3 & 18,216 & 3.3 & 18,216 & 3.3 & 18,216 & 3.3 & 18,216 \\
\hline Pesticdes (Dithane) & kg & 1,472 & 20 & 29,440 & 20 & 29,440 & 20 & 29,440 & 20 & 29,440 & 20 & 29,440 \\
\hline Sub-total & & & & 47,656 & & 120,156 & & 156,856 & & 171,356 & & 192,656 \\
\hline Grand Total & & & & 260,422 & & 349,722 & & 395,222 & & 412,922 & & 439,422 \\
\hline (C) Net Return & & & & 659,578 & & 1,168,278 & & 1,421,778 & & 1,523,678 & & 1,676,578 \\
\hline (D) Family Labor & \% of labor & & 90 & 167,760 & 90 & 182,880 & 90 & 190,800 & 90 & 193,680 & 90 & 198,360 \\
\hline (E) Production Cost exclude family labor & & & & 92,662 & & 166,842 & & 204,422 & & 219,242 & & 241,062 \\
\hline (F) Net Income & & & & 827,338 & & 1,351,158 & & 1,612,578 & & 1,717,358 & & 1,874,938 \\
\hline Incremental Achievement & & & & & 50\% & & 75\% & & 85\% & & 100\% & \\
\hline
\end{tabular}

\footnotetext{
Note: Analysis is based on the data collected from RODHA, socio-economic survey of the JICA Study Team and data collected in the local markets and villages.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Crop} & \multicolumn{2}{|r|}{2nd Crop} & \multicolumn{2}{|r|}{3rd Crop} & \multicolumn{2}{|r|}{4th Crop} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 200 & 7,000 & 1,400,000 & 12,500 & 2,500,000 & 15,250 & 3,050,000 & 16,350 & 3,270,000 & 18,000 & 3,600,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 1,400,000 & & 2,500,000 & & 3,050,000 & & 3,270,000 & & 3,600,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{13}{|l|}{Seed Bed Making} \\
\hline Preparing seed beds & MD & 800 & 4 & 3,200 & 4 & 3,200 & 4 & 3,200 & 4 & 3,200 & 4 & 3,200 \\
\hline Watering & MD & 800 & 24 & 19,200 & 24 & 19,200 & 24 & 19,200 & 24 & 19,200 & 24 & 19,200 \\
\hline Sub-total & & & & 22,400 & & 22,400 & & 22,400 & & 22,400 & & 22,400 \\
\hline \multicolumn{13}{|l|}{Materials for Bed Making} \\
\hline Trees & & 2,000 & 12 & 24,000 & 12 & 24,000 & 12 & 24,000 & 12 & 24,000 & 12 & 24,000 \\
\hline Grass & & 5,000 & 1 & 5,000 & 1 & 5,000 & 1 & 5,000 & 1 & 5,000 & 1 & 5,000 \\
\hline Compost manure & & 1,500 & 10 & 15,000 & 10 & 15,000 & 10 & 15,000 & 10 & 15,000 & 10 & 15,000 \\
\hline Seeds & kg & 21,667 & 0.3 & 6,500 & 0.3 & 6,500 & 0.3 & 6,500 & 0.3 & 6,500 & 0.3 & 6,500 \\
\hline Fungicides/Pesticides & Liter & 1,600 & 1 & 1,600 & 1 & 1,600 & 1 & 1,600 & 1 & 1,600 & 1 & 1,600 \\
\hline Watering tools & & 2,500 & 2 & 5,000 & 2 & 5,000 & 2 & 5,000 & 2 & 5,000 & 2 & 5,000 \\
\hline Sub-total & & & & 57,100 & & 57,100 & & 57,100 & & 57,100 & & 57,100 \\
\hline \multicolumn{13}{|l|}{Labor} \\
\hline Clearing & MD & 800 & 8 & 6,400 & 8 & 6,400 & 8 & 6,400 & 8 & 6,400 & 8 & 6,400 \\
\hline Plowing & MD & 800 & 45 & 36,000 & 45 & 36,000 & 45 & 36,000 & 45 & 36,000 & 45 & 36,000 \\
\hline Ridging & MD & 800 & 60 & 48,000 & 60 & 48,000 & 60 & 48,000 & 60 & 48,000 & 60 & 48,000 \\
\hline Leveling & MD & 800 & 40 & 32,000 & 40 & 32,000 & 40 & 32,000 & 40 & 32,000 & 40 & 32,000 \\
\hline Compost manure transport & MD & 800 & 40 & 32,000 & 40 & 32,000 & 40 & 32,000 & 40 & 32,000 & 40 & 32,000 \\
\hline Chemical fertilizing & MD & 800 & 0 & 0 & 20 & 16,000 & 30 & 24,000 & 34 & 27,200 & 40 & 32,000 \\
\hline Planting & MD & 800 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 & 50 & 40,000 \\
\hline Watering & MD & 800 & 30 & 24,000 & 30 & 24,000 & 30 & 24,000 & 30 & 24,000 & 30 & 24,000 \\
\hline Spraying Pesticides & MD & 800 & 60 & 48,000 & 60 & 48,000 & 60 & 48,000 & 60 & 48,000 & 60 & 48,000 \\
\hline Weeding & MD & 800 & 70 & 56,000 & 70 & 56,000 & 70 & 56,000 & 70 & 56,000 & 70 & 56,000 \\
\hline Harvesting & MD & 800 & 31 & 24,800 & 56 & 44,800 & 68 & 54,400 & 73 & 58,400 & 80 & 64,000 \\
\hline Sub-total & & & & 347,200 & & 383,200 & & 400,800 & & 408,000 & & 418,400 \\
\hline \multicolumn{13}{|l|}{Inputs} \\
\hline Materials required & & 15,000 & 25 & 375,000 & 25 & 375,000 & 25 & 375,000 & 25 & 375,000 & 25 & 375,000 \\
\hline Chemical fertilizers (DSP) & DSP & 500 & 0 & 0 & 125 & 62,500 & 188 & 94,000 & 213 & 106,500 & 250 & 125,000 \\
\hline Chemical fertilizers (CAN) & CAN & 400 & 0 & 0 & 25 & 10,000 & 38 & 15,200 & 43 & 17,200 & 50 & 20,000 \\
\hline Pesticdes (Dimethoate) & liter & 6,000 & 3.3 & 19,800 & 3.3 & 19,800 & 3.3 & 19,800 & 3.3 & 19,800 & 3.3 & 19,800 \\
\hline Pesticdes (Dithane) & kg & 1,600 & 20 & 32,000 & 20 & 32,000 & 20 & 32,000 & 20 & 32,000 & 20 & 32,000 \\
\hline Storing materials & & 300 & 1,000 & 300,000 & 1,000 & 300,000 & 1,000 & 300,000 & 1,000 & 300,000 & 1,000 & 300,000 \\
\hline Sub-total & & & & 726,800 & & 799,300 & & 836,000 & & 850,500 & & 871,800 \\
\hline Grand Total & & & & 1,153,500 & & 1,262,000 & & 1,316,300 & & 1,338,000 & & 1,369,700 \\
\hline (C) Net Return & & & & 246,500 & & 1,238,000 & & 1,733,700 & & 1,932,000 & & 2,230,300 \\
\hline (D) Family Labor & \% of labor & & 90 & 332,640 & 90 & 365,040 & 90 & 380,880 & 90 & 387,360 & 90 & 396,720 \\
\hline (E) Production Cost exclude family labor & & & & 820,860 & & 896,960 & & 935,420 & & 950,640 & & 972,980 \\
\hline (F) Net Income & & & & 579,140 & & 1,603,040 & & 2,114,580 & & 2,319,360 & & 2,627,020 \\
\hline Incremental Achievement & & & & & 50\% & & 75\% & & 85\% & & 100\% & \\
\hline
\end{tabular}

Note: Analysis is based on the data collected from RODHA, socio-economic survey of the JICA Study Team and data collected in the local markets and villages.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Unit } \\
& \text { Price }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Crop} & \multicolumn{2}{|r|}{2nd Crop} & \multicolumn{2}{|r|}{3rd Crop} & \multicolumn{2}{|r|}{4th Crop} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 184 & 7,000 & 1,288,000 & 12,500 & 2,300,000 & 15,250 & 2,806,000 & 16,350 & 3,008,400 & 18,000 & 3,312,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 1,288,000 & & 2,300,000 & & 2,806,000 & & 3,008,400 & & 3,312,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{13}{|l|}{Seed Bed Making} \\
\hline Preparing seed beds & MD & 400 & 4 & 1,600 & 4 & 1,600 & 4 & 1,600 & 4 & 1,600 & 4 & 1,600 \\
\hline Watering & MD & 400 & 24 & 9,600 & 24 & 9,600 & 24 & 9,600 & 24 & 9,600 & 24 & 9,600 \\
\hline Sub-total & & & & 11,200 & & 11,200 & & 11,200 & & 11,200 & & 11,200 \\
\hline \multicolumn{13}{|l|}{Materials for Bed Making} \\
\hline Trees & & 2,000 & 12 & 24,000 & 12 & 24,000 & 12 & 24,000 & 12 & 24,000 & 12 & 24,000 \\
\hline Grass & & 5,000 & 1 & 5,000 & 1 & 5,000 & 1 & 5,000 & 1 & 5,000 & 1 & 5,000 \\
\hline Compost manure & & 1,500 & 10 & 15,000 & 10 & 15,000 & 10 & 15,000 & 10 & 15,000 & 10 & 15,000 \\
\hline Seeds & kg & 19,934 & 0.3 & 5,980 & 0.3 & 5,980 & 0.3 & 5,980 & 0.3 & 5,980 & 0.3 & 5,980 \\
\hline Fungicides /Pesticides & Liter & 1,472 & 1 & 1,472 & 1 & 1,472 & 1 & 1,472 & 1 & 1,472 & 1 & 1,472 \\
\hline Watering tools & & 2,300 & 2 & 4,600 & 2 & 4,600 & 2 & 4,600 & 2 & 4,600 & 2 & 4,600 \\
\hline Sub-total & & & & 56,052 & & 56,052 & & 56,052 & & 56,052 & & 56,052 \\
\hline \multicolumn{13}{|l|}{Labor} \\
\hline Clearing & MD & 400 & 8 & 3,200 & 8 & 3,200 & 8 & 3,200 & 8 & 3,200 & 8 & 3,200 \\
\hline Plowing & MD & 400 & 45 & 18,000 & 45 & 18,000 & 45 & 18,000 & 45 & 18,000 & 45 & 18,000 \\
\hline Ridging & MD & 400 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 \\
\hline Leveling & MD & 400 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 \\
\hline Compost manure transport & MD & 400 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 & 40 & 16,000 \\
\hline Chemical fertilizing & MD & 400 & 0 & 0 & 20 & 8,000 & 30 & 12,000 & 34 & 13,600 & 40 & 16,000 \\
\hline Planting & MD & 400 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 & 50 & 20,000 \\
\hline Watering & MD & 400 & 30 & 12,000 & 30 & 12,000 & 30 & 12,000 & 30 & 12,000 & 30 & 12,000 \\
\hline Spraying Pesticides & MD & 400 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 & 60 & 24,000 \\
\hline Weeding & MD & 400 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 \\
\hline Harvesting & MD & 400 & 31 & 12,400 & 56 & 22,400 & 68 & 27,200 & 73 & 29,200 & 80 & 32,000 \\
\hline Sub-total & & & & 173,600 & & 191,600 & & 200,400 & & 204,000 & & 209,200 \\
\hline \multicolumn{13}{|l|}{Inputs} \\
\hline Materials required & & 15,000 & 25 & 375,000 & 25 & 375,000 & 25 & 375,000 & 25 & 375,000 & 25 & 375,000 \\
\hline Chemical fertilizers (DSP) & DSP & 500 & 0 & 0 & 125 & 62,500 & 188 & 94,000 & 213 & 106,500 & 250 & 125,000 \\
\hline Chemical fertilizers (CAN) & CAN & 400 & 0 & 0 & 25 & 10,000 & 38 & 15,200 & 43 & 17,200 & 50 & 20,000 \\
\hline Pesticdes (Dimethoate) & liter & 5,520 & 3.3 & 18,216 & 3.3 & 18,216 & 3.3 & 18,216 & 3.3 & 18,216 & 3.3 & 18,216 \\
\hline Pesticdes (Dithane) & kg & 1,472 & 20 & 29,440 & 20 & 29,440 & 20 & 29,440 & 20 & 29,440 & 20 & 29,440 \\
\hline Storing materials & & 300 & 1,000 & 300,000 & 1,000 & 300,000 & 1,000 & 300,000 & 1,000 & 300,000 & 1,000 & 300,000 \\
\hline Sub-total & & & & 722,656 & & 795,156 & & 831,856 & & 846,356 & & 867,656 \\
\hline Grand Total & & & & 963,508 & & 1,054,008 & & 1,099,508 & & 1,117,608 & & 1,144,108 \\
\hline (C) Net Return & & & & 324,492 & & 1,245,992 & & 1,706,492 & & 1,890,792 & & 2,167,892 \\
\hline (D) Family Labor & \% of labor & & 90 & 166,320 & 90 & 182,520 & 90 & 190,440 & 90 & 193,680 & 90 & 198,360 \\
\hline (E) Production Cost exclude family labor & & & & 797,188 & & 871,488 & & 909,068 & & 923,928 & & 945,748 \\
\hline (F) Net Income & & & & 490,812 & & 1,428,512 & & 1,896,932 & & 2,084,472 & & 2,366,252 \\
\hline Incremental Achievement & & & & & 50\% & & 75\% & & 85\% & & 100\% & \\
\hline
\end{tabular}

\section*{7. Cost and Benefit of Crops}

Table 36 Crop: Pineapple (Financial Price)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit Price} & \multicolumn{2}{|l|}{With Project (3Years)} & \multicolumn{6}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Year} & \multicolumn{2}{|r|}{2nd Year} & \multicolumn{2}{|r|}{3rd Year} \\
\hline & & & & & Qu'ty & Total Price & Qu'ty & Total Price & Qu'ty & Total Price \\
\hline \multicolumn{11}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 150 & 50,000 & 7,500,000 & 0 & 0 & 25,000 & 3,750,000 & 25,000 & 3,750,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 7,500,000 & & 0 & & 3,750,000 & & 3,750,000 \\
\hline \multicolumn{11}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{11}{|l|}{Labor} \\
\hline Clearing & MD & 800 & 10 & 8,000 & 10 & 8,000 & 0 & 0 & 0 & 0 \\
\hline First plowing & MD & 800 & 50 & 40,000 & 50 & 40,000 & 0 & 0 & 0 & 0 \\
\hline Second plowing & MD & 800 & 66 & 52,800 & 66 & 52,800 & 0 & 0 & 0 & 0 \\
\hline Leveling & MD & 800 & 10 & 8,000 & 10 & 8,000 & 0 & 0 & 0 & 0 \\
\hline Planting suckers & MD & 800 & 350 & 280,000 & 350 & 280,000 & 0 & 0 & 0 & 0 \\
\hline Mulching & MD & 800 & 100 & 80,000 & 40 & 32,000 & 30 & 24,000 & 30 & 24,000 \\
\hline Organic manure & MD & 800 & 70 & 56,000 & 50 & 40,000 & 10 & 8,000 & 10 & 8,000 \\
\hline Weeding and harvesting & MD & 800 & 2,160 & 1,728,000 & 720 & 576,000 & 720 & 576,000 & 720 & 576,000 \\
\hline Sub-total & & & & 2,252,800 & & 1,036,800 & & 608,000 & & 608,000 \\
\hline \multicolumn{11}{|l|}{Inputs} \\
\hline Buying suckers & Nos & 44 & 45,000 & 1,980,000 & 45,000 & 1,980,000 & 0 & 0 & 0 & 0 \\
\hline Buying mulching grass & & 500 & 500 & 250,000 & 200 & 100,000 & 150 & 75,000 & 150 & 75,000 \\
\hline Buying manure & ton & 5 & 20,000 & 100,000 & 14,000 & 70,000 & 3,000 & 15,000 & 3,000 & 15,000 \\
\hline Sub-total & & & & 2,330,000 & & 2,150,000 & & 90,000 & & 90,000 \\
\hline Grand Total & & & & 4,582,800 & & 3,186,800 & & 698,000 & & 698,000 \\
\hline (C) Net Return & & & & 2,917,200 & & -3,186,800 & & 3,052,000 & & 3,052,000 \\
\hline (D) Family Labor & \% of labor & & 90 & 2,027,520 & 90 & 933,120 & 90 & 547,200 & 90 & 547,200 \\
\hline (E) Production Cost exclude family labor & & & & 2,555,280 & & 2,253,680 & & 150,800 & & 150,800 \\
\hline (F) Net Income & & & & 4,944,720 & & -2,253,680 & & 3,599,200 & & 3,599,200 \\
\hline 3 year-cycle & & & & & & & & & & \\
\hline
\end{tabular}

Note: Analysis is based on the data collected from RADA, socio-economic survey of the JICA Study Team and data collected in the local markets

Table 37 Crop: Pineapple (Economic Price)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit Price} & \multicolumn{2}{|l|}{With Project (3Years)} & \multicolumn{6}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st Year} & \multicolumn{2}{|r|}{2nd Year} & \multicolumn{2}{|r|}{3rd Year} \\
\hline & & & & & Qu'ty & Total Price & Qu'ty & Total Price & Qu'ty & Total Price \\
\hline \multicolumn{11}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 138 & 50,000 & 6,900,000 & 0 & 0 & 25,000 & 3,450,000 & 25,000 & 3,450,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 6,900,000 & & 0 & & 3,450,000 & & 3,450,000 \\
\hline \multicolumn{11}{|l|}{(B) Procution Cost} \\
\hline \multicolumn{11}{|l|}{Labor} \\
\hline Clearing & MD & 400 & 10 & 4,000 & 10 & 4,000 & 0 & 0 & 0 & 0 \\
\hline First plowing & MD & 400 & 50 & 20,000 & 50 & 20,000 & 0 & 0 & 0 & 0 \\
\hline Second plowing & MD & 400 & 66 & 26,400 & 66 & 26,400 & 0 & 0 & 0 & 0 \\
\hline Leveling & MD & 400 & 10 & 4,000 & 10 & 4,000 & 0 & 0 & 0 & 0 \\
\hline Planting suckers & MD & 400 & 350 & 140,000 & 350 & 140,000 & 0 & 0 & 0 & 0 \\
\hline Mulching & MD & 400 & 100 & 40,000 & 40 & 16,000 & 30 & 12,000 & 30 & 12,000 \\
\hline Organic manure & MD & 400 & 70 & 28,000 & 50 & 20,000 & 10 & 4,000 & 10 & 4,000 \\
\hline Weeding and harvesting & MD & 400 & 2,160 & 864,000 & 720 & 288,000 & 720 & 288,000 & 720 & 288,000 \\
\hline Sub-total & & & & 1,126,400 & & 518,400 & & 304,000 & & 304,000 \\
\hline \multicolumn{11}{|l|}{Inputs} \\
\hline Buying suckers & Nos & 40 & 45,000 & 1,800,000 & 45,000 & 1,800,000 & 0 & 0 & 0 & 0 \\
\hline Buying mulching grass & & 500 & 500 & 250,000 & 200 & 100,000 & 150 & 75,000 & 150 & 75,000 \\
\hline Buying manure & ton & 5 & 20,000 & 100,000 & 14,000 & 70,000 & 3,000 & 15,000 & 3,000 & 15,000 \\
\hline Sub-total & & & & 2,150,000 & & 1,970,000 & & 90,000 & & 90,000 \\
\hline Grand Total & & & & 3,276,400 & & 2,488,400 & & 394,000 & & 394,000 \\
\hline (C) Net Return & & & & 3,623,600 & & -2,488,400 & & 3,056,000 & & 3,056,000 \\
\hline (D) Family Labor & \% of labor & & 90 & 1,013,760 & 90 & 466,560 & 90 & 273,600 & 90 & 273,600 \\
\hline (E) Production Cost exclude family labor & & & & 2,262,640 & & 2,021,840 & & 120,400 & & 120,400 \\
\hline (F) Net Income & & & & 4,637,360 & & -2,021,840 & & 3,329,600 & & 3,329,600 \\
\hline 3 year-cycle & & & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Note: Analysis is based on the data collected from RADA, socio-economic survey of the JICA Study Team and data collected in the local markets
}

\section*{7. Cost and Benefit of Crops per Ha/Season}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit Price} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st year} & \multicolumn{2}{|r|}{2nd year} & \multicolumn{2}{|r|}{3rd year} & \multicolumn{2}{|r|}{4th year} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & pcs & 50 & 61,200 & 3,060,000 & & & & & & & 61,200 & 3,060,000 \\
\hline By-product & pcs & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 3,060,000 & & 0 & & 0 & & 0 & & 3,060,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Labor} \\
\hline Clearing & MD & 800 & 10 & 8,000 & 10 & 8,000 & & 0 & & 0 & & 0 \\
\hline 1st Plowing & MD & 800 & 40 & 32,000 & 40 & 32,000 & & 0 & & 0 & & 0 \\
\hline 2nd Plowing & MD & 800 & 50 & 40,000 & 50 & 40,000 & & 0 & & 0 & & 0 \\
\hline Organic manure application & MD & 800 & 30 & 24,000 & 30 & 24,000 & & 0 & & 0 & & 0 \\
\hline Chemical fertilizers & MD & 800 & 20 & 16,000 & 20 & 16,000 & & 0 & & 0 & & 0 \\
\hline Leveling & MD & 800 & 15 & 12,000 & 15 & 12,000 & & 0 & & 0 & & 0 \\
\hline Preparing seeds & MD & 800 & 10 & 8,000 & 10 & 8,000 & & 0 & & 0 & & 0 \\
\hline Planting & MD & 800 & 40 & 32,000 & 40 & 32,000 & & 0 & & 0 & & 0 \\
\hline Weeding (3) & MD & 800 & 210 & 168,000 & 70 & 56,000 & 70 & 56,000 & 70 & 56,000 & & 0 \\
\hline Watering & MD & 800 & 15 & 12,000 & 5 & 4,000 & 5 & 4,000 & 5 & 4,000 & & 0 \\
\hline Harvesting & MD & 800 & 90 & 72,000 & & 0 & & 0 & & 0 & 90 & 72,000 \\
\hline Grading & MD & 800 & 5 & 4,000 & & 0 & & 0 & & 0 & 5 & 4,000 \\
\hline Sub-total & & & & 428,000 & & 232,000 & & 60,000 & & 60,000 & & 76,000 \\
\hline \multicolumn{13}{|l|}{Inputs} \\
\hline Buying seedlings & & 2,000 & 204 & 408,000 & 204 & 408,000 & & 0 & & 0 & & 0 \\
\hline Buying manure kg & & 5 & 10,200 & 51,000 & 10,200 & 51,000 & & 0 & & 0 & & 0 \\
\hline Buying chamical fertilizers & & 500 & 50 & 25,000 & 50 & 25,000 & & 0 & & 0 & & 0 \\
\hline Buying pestcides & & 100,000 & 1 & 100,000 & 1 & 100,000 & & 0 & & 0 & & 0 \\
\hline Sub-total & & & & 584,000 & & 584,000 & & 0 & & 0 & & 0 \\
\hline Grand Total & & & & 1,012,000 & & 816,000 & & 60,000 & & 60,000 & & 76,000 \\
\hline (C) Net Return & & & & 2,048,000 & & -816,000 & & -60,000 & & -60,000 & & 2,984,000 \\
\hline (D) Family Labor & \% of labor & & 90 & 385,200 & 90 & 208,800 & 90 & 54,000 & 90 & 54,000 & 90 & 68,400 \\
\hline (E) Production Cost exclude family labor & & & & 626,800 & & 607,200 & & 6,000 & & 6,000 & & 7,600 \\
\hline (F) Net Income & & & & 2,433,200 & & -607,200 & & -6,000 & & -6,000 & & 3,052,400 \\
\hline
\end{tabular}
(F) Net Income

2,433,20

Table 39 Crop: Avocado (Economic Price)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit Price} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st year} & \multicolumn{2}{|r|}{2nd year} & \multicolumn{2}{|r|}{3rd year} & \multicolumn{2}{|r|}{4th year} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & pcs & 46 & 61,200 & 2,815,200 & & & & & & & 61,200 & 2,815,200 \\
\hline By-product & pcs & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 2,815,200 & & 0 & & 0 & & 0 & & 2,815,200 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Labor} \\
\hline Clearing & MD & 400 & 10 & 4,000 & 10 & 4,000 & & 0 & & 0 & & 0 \\
\hline 1st Plowing & MD & 400 & 40 & 16,000 & 40 & 16,000 & & 0 & & 0 & & 0 \\
\hline 2nd Plowing & MD & 400 & 50 & 20,000 & 50 & 20,000 & & 0 & & 0 & & 0 \\
\hline Organic manure application & MD & 400 & 30 & 12,000 & 30 & 12,000 & & 0 & & 0 & & 0 \\
\hline Chemical fertilizers & MD & 400 & 20 & 8,000 & 20 & 8,000 & & 0 & & 0 & & 0 \\
\hline Leveling & MD & 400 & 15 & 6,000 & 15 & 6,000 & & 0 & & 0 & & 0 \\
\hline Preparing seeds & MD & 400 & 10 & 4,000 & 10 & 4,000 & & 0 & & 0 & & 0 \\
\hline Planting & MD & 400 & 40 & 16,000 & 40 & 16,000 & & 0 & & 0 & & 0 \\
\hline Weeding (3) & MD & 400 & 210 & 84,000 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 & & 0 \\
\hline Watering & MD & 400 & 15 & 6,000 & 5 & 2,000 & 5 & 2,000 & 5 & 2,000 & & 0 \\
\hline Harvesting & MD & 400 & 90 & 36,000 & & 0 & & 0 & & 0 & 90 & 36,000 \\
\hline Grading & MD & 400 & 5 & 2,000 & & 0 & & 0 & & 0 & 5 & 2,000 \\
\hline Sub-total & & & & 214,000 & & 116,000 & & 30,000 & & 30,000 & & 38,000 \\
\hline \multicolumn{13}{|l|}{Inputs} \\
\hline Buying seedlings & & 1,840 & 204 & 375,360 & 204 & 375,360 & & 0 & & 0 & & 0 \\
\hline Buying manure kg & & 5 & 10,200 & 51,000 & 10,200 & 51,000 & & 0 & & 0 & & 0 \\
\hline Buying chamical fertilizers & & 500 & 50 & 25,000 & 50 & 25,000 & & 0 & & 0 & & 0 \\
\hline Buying pestcides & & 92,000 & 1 & 92,000 & 1 & 92,000 & & 0 & & 0 & & 0 \\
\hline Sub-total & & & & 543,360 & & 543,360 & & 0 & & 0 & & 0 \\
\hline Grand Total & & & & 757,360 & & 659,360 & & 30,000 & & 30,000 & & 38,000 \\
\hline (C) Net Return & & & & 2,057,840 & & -659,360 & & -30,000 & & -30,000 & & 2,777,200 \\
\hline (D) Family Labor & \% of labor & & 90 & 192,600 & 90 & 104,400 & 90 & 27,000 & 90 & 27,000 & 90 & 34,200 \\
\hline (E) Production Cost exclude family labor & & & & 564,760 & & 554,960 & & 3,000 & & 3,000 & & 3,800 \\
\hline (F) Net Income & & & & 2,250,440 & & -554,960 & & -3,000 & & -3,000 & & 2,811,400 \\
\hline
\end{tabular}

\footnotetext{
Note: Analysis is based on the data collected from R ODHA and data collected in the local market
}
7. Cost and Benefit of Crops per Ha/Season

Table 40 Crop: Mango (Financial Price)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit Price} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st year} & \multicolumn{2}{|r|}{2nd year} & \multicolumn{2}{|r|}{3 rd year} & \multicolumn{2}{|r|}{4th year} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 400 & 15,000 & 6,000,000 & & & & & & & 15,000 & 6,000,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 6,000,000 & & 0 & & 0 & & 0 & & 6,000,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Labor} \\
\hline Clearing & MD & 800 & 10 & 8,000 & 10 & 8,000 & & 0 & & 0 & & 0 \\
\hline 1st Plowing & MD & 800 & 40 & 32,000 & 40 & 32,000 & & 0 & & 0 & & 0 \\
\hline 2nd Plowing & MD & 800 & 50 & 40,000 & 50 & 40,000 & & 0 & & 0 & & 0 \\
\hline Organic manure application & MD & 800 & 30 & 24,000 & 30 & 24,000 & & 0 & & 0 & & 0 \\
\hline Chemical fertilizers & MD & 800 & 20 & 16,000 & 20 & 16,000 & & 0 & & 0 & & 0 \\
\hline Leveling & MD & 800 & 15 & 12,000 & 15 & 12,000 & & 0 & & 0 & & 0 \\
\hline Preparing seeds & MD & 800 & 10 & 8,000 & 10 & 8,000 & & 0 & & 0 & & 0 \\
\hline Planting & MD & 800 & 40 & 32,000 & 40 & 32,000 & & 0 & & 0 & & 0 \\
\hline Weeding (3) & MD & 800 & 210 & 168,000 & 70 & 56,000 & 70 & 56,000 & 70 & 56,000 & & 0 \\
\hline Watering & MD & 800 & 15 & 12,000 & 5 & 4,000 & 5 & 4,000 & 5 & 4,000 & & 0 \\
\hline Harvesting & MD & 800 & 90 & 72,000 & & 0 & & 0 & & 0 & 90 & 72,000 \\
\hline Grading & MD & 800 & 5 & 4,000 & & 0 & & 0 & & 0 & 5 & 4,000 \\
\hline Sub-total & & & & 428,000 & & 232,000 & & 60,000 & & 60,000 & & 76,000 \\
\hline \multicolumn{13}{|l|}{Inputs} \\
\hline Buying seeddlings & & 1,000 & 256 & 256,000 & 204 & 204,000 & & 0 & & 0 & & 0 \\
\hline Buying manure kg & & 5 & 10,200 & 51,000 & 10,200 & 51,000 & & 0 & & 0 & & 0 \\
\hline Buying chamical fertilizers & & 500 & 50 & 25,000 & 50 & 25,000 & & 0 & & 0 & & 0 \\
\hline Buying pestcides & & 100,000 & 1 & 100,000 & 1 & 100,000 & & 0 & & 0 & & 0 \\
\hline Sub-total & & & & 432,000 & & 380,000 & & 0 & & 0 & & 0 \\
\hline Grand Total & & & & 860,000 & & 612,000 & & 60,000 & & 60,000 & & 76,000 \\
\hline (C) Net Return & & & & 5,140,000 & & -612,000 & & -60,000 & & -60,000 & & 5,924,000 \\
\hline (D) Family Labor & \% of labor & & 90 & 385,200 & 90 & 208,800 & 90 & 54,000 & 90 & 54,000 & 90 & 68,400 \\
\hline (E) Production Cost exclude family labor & & & & 474,800 & & 403,200 & & 6,000 & & 6,000 & & 7,600 \\
\hline (F) Net Income & & & & 5,525,200 & & -403,200 & & -6,000 & & -6,000 & & 5,992,400 \\
\hline
\end{tabular}

Note: Analysis is based on the data collected from RODHA and RADA, and data collected in the local markets
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Activities} & \multirow[t]{3}{*}{Unit} & \multirow[t]{3}{*}{Unit} & \multicolumn{2}{|l|}{Without Project} & \multicolumn{8}{|c|}{With Project} \\
\hline & & & \multirow[t]{2}{*}{Qu'ty} & \multirow[t]{2}{*}{Total Value} & \multicolumn{2}{|r|}{1st year} & \multicolumn{2}{|r|}{2nd year} & \multicolumn{2}{|r|}{3 rd year} & \multicolumn{2}{|r|}{4th year} \\
\hline & & & & & Qu'ty & Total Price \\
\hline \multicolumn{13}{|l|}{(A) INCOME} \\
\hline Main Product & Kg & 368 & 15,000 & 5,520,000 & & & & & & & 15,000 & 5,520,000 \\
\hline By-product & Kg & & & 0 & & 0 & & 0 & & 0 & & 0 \\
\hline Total Gross Income & & & & 5,520,000 & & 0 & & 0 & & 0 & & 5,520,000 \\
\hline \multicolumn{13}{|l|}{(B) Procution Cost} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Labor} \\
\hline Clearing & MD & 400 & 10 & 4,000 & 10 & 4,000 & & 0 & & 0 & & 0 \\
\hline 1st Plowing & MD & 400 & 40 & 16,000 & 40 & 16,000 & & 0 & & 0 & & 0 \\
\hline 2nd Plowing & MD & 400 & 50 & 20,000 & 50 & 20,000 & & 0 & & 0 & & 0 \\
\hline Organic manure application & MD & 400 & 30 & 12,000 & 30 & 12,000 & & 0 & & 0 & & 0 \\
\hline Chemical fertilizers & MD & 400 & 20 & 8,000 & 20 & 8,000 & & 0 & & 0 & & 0 \\
\hline Leveling & MD & 400 & 15 & 6,000 & 15 & 6,000 & & 0 & & 0 & & 0 \\
\hline Preparing seeds & MD & 400 & 10 & 4,000 & 10 & 4,000 & & 0 & & 0 & & 0 \\
\hline Planting & MD & 400 & 40 & 16,000 & 40 & 16,000 & & 0 & & 0 & & 0 \\
\hline Weeding (3) & MD & 400 & 210 & 84,000 & 70 & 28,000 & 70 & 28,000 & 70 & 28,000 & & 0 \\
\hline Watering & MD & 400 & 15 & 6,000 & 5 & 2,000 & 5 & 2,000 & 5 & 2,000 & & 0 \\
\hline Harvesting & MD & 400 & 90 & 36,000 & & 0 & & 0 & & 0 & 90 & 36,000 \\
\hline Grading & MD & 400 & 5 & 2,000 & & 0 & & 0 & & 0 & 5 & 2,000 \\
\hline Sub-total & & & & 214,000 & & 116,000 & & 30,000 & & 30,000 & & 38,000 \\
\hline \multicolumn{13}{|l|}{Inputs} \\
\hline Buying seeddlings & & 920 & 256 & 235,520 & 204 & 187,680 & & 0 & & 0 & & 0 \\
\hline Buying manure kg & & 5 & 10,200 & 51,000 & 10,200 & 51,000 & & 0 & & 0 & & 0 \\
\hline Buying chamical fertilizers & & 500 & 50 & 25,000 & 50 & 25,000 & & 0 & & 0 & & 0 \\
\hline Buying pestcides & & 92,000 & 1 & 92,000 & 1 & 92,000 & & 0 & & 0 & & 0 \\
\hline Sub-total & & & & 403,520 & & 355,680 & & 0 & & 0 & & 0 \\
\hline Grand Total & & & & 617,520 & & 471,680 & & 30,000 & & 30,000 & & 38,000 \\
\hline (C) Net Return & & & & 4,902,480 & & -471,680 & & -30,000 & & -30,000 & & 5,482,000 \\
\hline (D) Family Labor & \% of labor & & 90 & 192,600 & 90 & 104,400 & 90 & 27,000 & 90 & 27,000 & 90 & 34,200 \\
\hline (E) Production Cost exclude family labor & & & & 424,920 & & 367,280 & & 3,000 & & 3,000 & & 3,800 \\
\hline (F) Net Income & & & & 5,095,080 & & -367,280 & & -3,000 & & -3,000 & & 5,516,200 \\
\hline
\end{tabular}

\footnotetext{
Note: Analysis is based on the data collected from RODHA and RADA, and data collected in the local market
}

\begin{tabular}{|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multicolumn{6}{|c|}{Irrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|r|}{Case 2} & \multicolumn{2}{|l|}{Case 3} & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|r|}{Case 2} & \multicolumn{2}{|c|}{Case 3} \\
\hline & & SA & SB \\
\hline Sorghum & 22\% & - & 22.4 & - & 14.7 & . & 10.8 & - & 240 & - & 240 & - & 240 & - & 5,376 & - & 3,528 & - & 2,592 \\
\hline Maize & 12\% & - & 12.2 & - & 8 & - & 5.9 & - & 262 & - & 262 & - & 262 & - & 3,196 & - & 2,096 & - & 1,546 \\
\hline Sweet potato & 7\% & 7.1 & 7.1 & 4.7 & 4.7 & 3.4 & 3.4 & 241 & 241 & 241 & 241 & 241 & 241 & 1,711 & 1,711 & 1,133 & 1,133 & 819 & 819 \\
\hline Beans & 30\% & 30.6 & 30.6 & 20.1 & 20.1 & 14.7 & 14.7 & 174 & 174 & 174 & 174 & 174 & 174 & 5,324 & 5,324 & 3,497 & 3,497 & 2,558 & 2,558 \\
\hline Cassava & 24\% & 24.5 & 24.5 & 16.1 & 16.1 & 11.8 & 11.8 & 281 & & 281 & & 281 & & 6,885 & & 4,524 & & 3,316 & \\
\hline Banana & 5\% & 5.1 & 5.1 & 3.4 & 3.4 & 2.5 & 2.5 & 611 & & 611 & & 611 & & 3,116 & & 2,077 & & 1,528 & \\
\hline Total & 100\% & 67.3 & 101.9 & 44.3 & 67.0 & 32.4 & 49.1 & & & & & & & & 32,643 & & 21,485 & & 15,73 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{6}{|c|}{Irrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline Crop & Share (\%) & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|r|}{Case 1} & \multicolumn{2}{|l|}{Case 2} & \multicolumn{2}{|l|}{Case 3} & \multicolumn{2}{|r|}{Case 1} & \multicolumn{2}{|l|}{Case 2} & \multicolumn{2}{|c|}{Case 3} \\
\hline & & SA & SB \\
\hline Sorghum & 22\% & - & 32.8 & . & 16.5 & - & 12.1 & - & 240 & - & 240 & - & 240 & - & 7,872 & - & 3,960 & - & 2,904 \\
\hline Maize & 12\% & \(\cdot\) & 17.9 & - & 9 & - & 6.6 & - & 262 & - & 262 & - & 262 & - & 4,690 & \(\cdot\) & 2,358 & \(\cdot\) & 1,729 \\
\hline Sweet potato & 7\% & 0.4 & 10.4 & 5.3 & 5.3 & 3.9 & 3.9 & 241 & 241 & 241 & 241 & 241 & 241 & 2,506 & 2,506 & 1,277 & 1,277 & 940 & 940 \\
\hline Beans & 30\% & 44.7 & 44.7 & 22.5 & 22.5 & 16.5 & 16.5 & 174 & 174 & 174 & 174 & 174 & 174 & 7,778 & 7,778 & 3,915 & 3,915 & 2,871 & 2,871 \\
\hline Cassava & 24\% & 35.8 & 35.8 & 18 & 18 & 13.2 & 13.2 & 281 & & 281 & & 281 & & 10,060 & & 5,058 & & 3,709 & \\
\hline Banana & 5\% & 7.5 & 7.5 & 3.8 & 3.8 & 2.8 & 2.8 & 611 & & 611 & & 611 & & 4,583 & & 2,322 & & 1,711 & \\
\hline Total & 100\% & 98.4 & 149.1 & 49.6 & 75.1 & 36.4 & 55.1 & & & & & & & & 47,773 & & 24,082 & & 17,675 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multicolumn{6}{|c|}{Irrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|r|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|l|}{Case 1} & \multicolumn{2}{|l|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|l|}{Case 1} & \multicolumn{2}{|r|}{Case 2} & \multicolumn{2}{|l|}{Case 3} \\
\hline & & SA & SB \\
\hline Sorghum & 22\% & - & 15.8 & - & 32.1 & - & 23.3 & - & 240 & - & 240 & - & 240 & - & 3,792 & - & 7,704 & - & 5,592 \\
\hline Maize & 12\% & - & 8.6 & - & 17.5 & - & 12.7 & - & 262 & - & 262 & - & 262 & - & 2,253 & - & 4,585 & . & 3,327 \\
\hline Sweet potato & 7\% & 5 & 5 & 10.2 & 10.2 & 7.4 & 7.4 & 241 & 241 & 241 & 241 & 241 & 241 & 1,205 & 1,205 & 2,458 & 2,458 & 1,783 & 1,783 \\
\hline Beans & 30\% & 21.6 & 21.6 & 43.8 & 43.8 & 31.8 & 31.8 & 174 & 174 & 174 & 174 & 174 & 174 & 3,758 & 3,758 & 7,621 & 7,621 & 5,533 & 5,533 \\
\hline Cassava & 24\% & 17.3 & 17.3 & 35 & 35 & 25.4 & 25.4 & 281 & & 281 & & 281 & & 4,861 & - & 9,835 & . & 7,137 & \\
\hline Banana & 5\% & 3.6 & 3.6 & 7.3 & 7.3 & 5.3 & 5.3 & 611 & & 611 & & 611 & & 2,200 & - & 4,460 & & 3,238 & \\
\hline Total & 100\% & 47.5 & 71.9 & 96.3 & 145.9 & 69.9 & 105.9 & & & & & & & & 23,032 & & 46,742 & & 33,926 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multicolumn{6}{|c|}{lrrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|l|}{Case 1} & \multicolumn{2}{|l|}{Case 2} & \multicolumn{2}{|c|}{Case 3} \\
\hline & & SA & SB \\
\hline Sorghum & 29\% & 13.9 & 13.9 & 17.7 & 17.7 & 13.6 & 13.6 & 240 & 240 & 240 & 240 & 240 & 240 & 3,336 & 3,336 & 4,248 & 4,248 & 3,264 & 3,264 \\
\hline Maize & 7\% & 3.4 & 3.4 & 4.3 & 4.3 & 3.3 & 3.3 & 262 & 262 & 262 & 262 & 262 & 262 & 891 & 891 & 1,127 & 1,127 & 865 & 865 \\
\hline Sweet potato & 17\% & 8.2 & 8.2 & 10.4 & 10.4 & 8 & 8 & 241 & 241 & 241 & 241 & 241 & 241 & 1,976 & 1,976 & 2,506 & 2,506 & 1,928 & 1,928 \\
\hline Beans & 16\% & 7.7 & 7.7 & 9.8 & 9.8 & 7.5 & 7.5 & 174 & 174 & 174 & 174 & 174 & 174 & 1,340 & 1,340 & 1,705 & 1,705 & 1,305 & 1,305 \\
\hline Vegetable (Cabbage) & 4\% & . & 1.9 & - & 2.4 & . & 1.9 & - & 884 & - & 884 & - & 884 & - & 1,680 & - & 2,122 & - & 1,680 \\
\hline Vegetable (Tomato) & 4\% & 1.9 & - & 2.4 & - & 1.9 & - & 579 & - & 579 & - & 579 & - & 1,100 & - & 1,390 & . & 1,100 & - \\
\hline Cassava & 18\% & 8.6 & 8.6 & 11 & 11 & 8.5 & 8.5 & 281 & & 281 & & 281 & & 2,417 & & 3,091 & & 2,389 & \\
\hline Banana & 5\% & 2.4 & 2.4 & 3.1 & 3.1 & 2.4 & 2.4 & 611 & & 611 & & 611 & & 1,466 & & 1,894 & & 1,466 & \\
\hline Total & 100\% & 46.1 & 46.1 & 58.7 & 58.7 & 45.2 & 45.2 & & & & & & & & 21,749 & & 27,669 & & 21,359 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multicolumn{6}{|c|}{lrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{-}} \\
\hline & & SA & SB & SA & SB & , & & SA & SB & SA & SB & & & SA & SB & SA & SB & & \\
\hline Rice & 15\% & 47.1 & 47.1 & 24.8 & 24.8 & \(\bigcirc\) & , & 961 & 961 & 961 & 961 & T & \(\bigcirc\) & 45,263 & 45,263 & 23,833 & 23,833 & \(\bigcirc\) & \(\bigcirc\) \\
\hline Sorghum & 24\% & - & 75.4 & - & 39.6 & , & , & - & 240 & - & 240 & \(\bigcirc\) & \(\bigcirc\) & - & 18,096 & - & 9,504 & , & \\
\hline Maize & 20\% & 62.8 & 62.8 & 33 & 33 & , & - & 262 & 262 & 262 & 262 & , & \(\bigcirc\) & 16,454 & 16,454 & 8,646 & 8,646 & , & , \\
\hline Sweet potato & 5\% & 15.7 & 15.7 & 8.3 & 8.3 & \(\bigcirc\) & \(\bigcirc\) & 241 & 241 & 241 & 241 & , & \(\bigcirc\) & 3,784 & 3,784 & 2,000 & 2,000 & \(\bigcirc\) & \(\bigcirc\) \\
\hline Beans & 24\% & 75.4 & 75.4 & 39.6 & 39.6 & \(\bigcirc\) & , & 174 & 174 & 174 & 174 & T & \(\bigcirc\) & 13,120 & 13,120 & 6,890 & 6,890 & \(\bigcirc\) & \\
\hline Vegetable (Cabbage) & 2\% & . & 6.3 & - & 3.3 & \(\bigcirc\) & \(\bigcirc\) & - & 884 & - & 884 & , & \(\square\) & - & 5,569 & - & 2,917 & & \(\bigcirc\) \\
\hline Cassava & 5\% & 15.7 & 15.7 & 8.3 & 8.3 & \(\bigcirc\) & \(\bigcirc\) & 281 & & 281 & & \(\bigcirc\) & \(\bigcirc\) & 4,412 & & 2,332 & & \(\bigcirc\) & \\
\hline Banana & 5\% & 15.7 & 15.7 & 8.3 & 8.3 & \(\bigcirc\) & \(\bigcirc\) & 611 & & 611 & & \(\bigcirc\) & \(\sim\) & 9,593 & & 5,071 & & \(\bigcirc\) & , \\
\hline Total & 100\% & 232.4 & 314.1 & 122.3 & 165.2 & \(\square\) & \(\square\) & & & & & \(\square\) & \(\square\) & & 194,912 & & 102,562 & , & \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multicolumn{6}{|c|}{lrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{-}} \\
\hline & & SA & SB & SA & SB & - & , & SA & SB & SA & SB & & , & SA & SB & SA & SB & & \\
\hline Sorghum & 24\% & . & 0.2 & - & 0.5 & , & \(\bigcirc\) & - & 240 & - & 240 & - & , & - & 48 & - & 120 & - & \(\bigcirc\) \\
\hline Maize & 34\% & 0.3 & 0.3 & 0.7 & 0.7 & , & \(\cdots\) & 262 & 262 & 262 & 262 & \(\cdots\) & \(\cdots\) & 79 & 79 & 183 & 183 & - & \(\bigcirc\) \\
\hline Sweet potato & 2\% & 0 & 0 & 0.0 & 0.0 & \(\bigcirc\) & \(\bigcirc\) & 241 & 241 & 241 & 241 & - & \(\bigcirc\) & . & - & - & . & \(\bigcirc\) & \(\bigcirc\) \\
\hline Beans & 15\% & 0.2 & 0.2 & 0.3 & 0.3 & \(\bigcirc\) & \(\bigcirc\) & 174 & 174 & 174 & 174 & , & \(\bigcirc\) & 35 & 35 & 52 & 52 & , & \(\bigcirc\) \\
\hline Cassava & 4\% & 0 & 0 & 0.1 & 0.1 & \(\bigcirc\) & \(\bigcirc\) & 281 & & 281 & & \(\bigcirc\) & \(\bigcirc\) & & & 28 & & \(\bigcirc\) & \(\bigcirc\) \\
\hline Banana & 21\% & 0.2 & 0.2 & 0.4 & 0.4 & \(\bigcirc\) & \(\bigcirc\) & 611 & & 611 & & \(\bigcirc\) & \(\sim\) & 122 & & 244 & & \(\bigcirc\) & , \\
\hline Total & 100\% & 0.7 & 0.9 & 1.5 & 2.0 & \(\bigcirc\) & , & & & & & \(\square\) & \(\bigcirc\) & & 398 & & 862 & , & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{\[
\begin{array}{|c}
\hline \begin{array}{c}
\text { Crop Are } \\
\text { (ha) }
\end{array} \\
\hline
\end{array}
\]} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/ha/year)} & \multicolumn{5}{|l|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Banana & 20\% & 20.4 & & 1,474 & 1,690 & 1,690 & 1,690 & & 30,070 & 34,476 & 34,476 & 34,476 \\
\hline Pineapple & 80\% & 81.6 & -2,254 & 3,599 & 3,599 & 3,599 & 3,599 & -183,926 & 293,678 & 293,678 & 293,678 & 293,678 \\
\hline Total & 100\% & 102 & & & & & & -183,926 & 323,748 & 328,154 & 328,154 & 328,15 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{\[
\begin{array}{|c}
\hline \begin{array}{c}
\text { Crop Are } \\
\text { (ha) }
\end{array} \\
\hline
\end{array}
\]} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/ha/year)} & \multicolumn{5}{|r|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Banana & 20\% & 29.8 & & 1,474 & 1,690 & 1,690 & 1,690 & & 43,925 & 50,362 & 50,362 & 50,362 \\
\hline Pineapple & 80\% & 119.2 & -2,254 & 3,599 & 3,599 & 3,599 & 3,599 & -268,677 & 429,001 & 429,001 & 429,001 & 429,001 \\
\hline Total & 100\% & 149 & & & & & & -268,677 & 472,926 & 479,363 & 479,363 & 479,363 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Crop Are \\
(ha)
\end{tabular}} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/ha/year)} & \multicolumn{5}{|r|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Banana & 20\% & 14.4 & & 1,474 & 1,690 & 1,690 & 1,690 & & 21,226 & 24,336 & 24,336 & 24,336 \\
\hline Pineapple & 80\% & 57.6 & -2,254 & 3,599 & 3,599 & 3,599 & 3,599 & -129,830 & 207,302 & 207,302 & 207,302 & 207,302 \\
\hline Total & 100\% & 72 & & & & & & -129,83 & 228,528 & 231,638 & 231,638 & 231,63 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Crop Are } \\
\text { (ha) } \\
\hline
\end{gathered}
\]} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/ha/year)} & \multicolumn{5}{|c|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Banana & 20\% & 9.6 & & 1,474 & 1,690 & 1,690 & 1,690 & & 14,150 & 16,224 & 16,224 & 16,224 \\
\hline Avocado & 80\% & 38.4 & -607 & -6 & -6 & 3,052 & 3,052 & -23,309 & -230 & -230 & 117,197 & 117,197 \\
\hline Total & 100\% & 48 & & & & & & -23,309 & 13,920 & 15,994 & 133,421 & 133,421 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Crop Are \\
(ha)
\end{tabular}} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/ha/year)} & \multicolumn{5}{|r|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Rice & 20\% & 62.8 & 2,192 & 2,322 & 2,322 & 2,322 & 2,322 & 137,658 & 145,822 & 145,822 & 145,822 & 145,822 \\
\hline Pineapple & 80\% & 251.2 & -2,254 & 3,599 & 3,599 & 3,599 & 3,599 & -566,205 & 904,069 & 904,069 & 904,069 & 904,069 \\
\hline Total & 100\% & 314.0 & & & & & & \(-428,547\) & 1,049,891 & 1,049,891 & 1,049,891 & 1,049,89 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Crop Are } \\
\text { (ha) }
\end{gathered}
\]} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/ha/year)} & \multicolumn{5}{|r|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Banana & 10\% & 0.1 & & 1,474 & 1,690 & 1,690 & 1,690 & & 147 & 169 & 169 & 169 \\
\hline Coffee & 90\% & 0.9 & -4,200 & -529 & 990 & 1,520 & 1,520 & -3,780 & -476 & 891 & 1,368 & 1,368 \\
\hline Total & 100\% & 1.0 & & & & & & -3,780 & -329 & 1,060 & 1,537 & 1,537 \\
\hline
\end{tabular}

\section*{Table 57 Bugesera 3 Net Return With Project (Financial Price): Case :}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Crop Area } \\
(\mathrm{ha})
\end{gathered}
\]} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Maize & 65\% & 48.8 & 645 & 842 & 909 & 1,027 & 1,027 & 1,027 & 1,027 & 1,027 & 31,476 & 41,090 & 44,359 & 50,118 & 50,118 & 50,118 & 50,118 & 50,118 \\
\hline Vegetable (Cabbage) & 15\% & 11.3 & - & 1,458 & - & 1,745 & - & 1,860 & - & 2,032 & - & 16,475 & - & 19,719 & - & 21,018 & - & 22,962 \\
\hline Vegetable (Tomato) & 15\% & 11.3 & 1,603 & - & 2,115 & - & 2,319 & - & 2,627 & - & 18,114 & - & 23,900 & - & 26,205 & - & 29,685 & - \\
\hline Beans & 15\% & 11.3 & 274 & 328 & 342 & 374 & 374 & 374 & 374 & 374 & 3,096 & 3,706 & 3,865 & 4,226 & 4,226 & 4,226 & 4,226 & 4,226 \\
\hline Banana & 5\% & 3.8 & - & & 1,474 & & 1,690 & & 1,690 & & & & 5,601 & & 6,422 & & 6,422 & \\
\hline Total & & 86.5 & & & & & & & & & & 113,957 & & 151,788 & & 162,333 & & 167,757 \\
\hline
\end{tabular}
\begin{tabular}{l}
Table 58 Bugesera 4 Net Return With Project (Financial Price): Case : \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area (ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Maize & 65\% & 94.9 & 645 & 842 & 909 & 1,027 & 1,027 & 1,027 & 1,027 & 1,027 & 61,211 & 79,906 & 86,264 & 97,462 & 97,462 & 97,462 & 97,462 & 97,462 \\
\hline Vegetable (Cabbage) & 15\% & 21.9 & - & 1,458 & - & 1,745 & - & 1,860 & - & 2,032 & - & 31,930 & - & 38,216 & - & 40,734 & - & 44,501 \\
\hline Vegetable (Tomato) & 15\% & 21.9 & 1,603 & - & 2,115 & - & 2,319 & - & 2,627 & - & 35,106 & - & 46,319 & - & 50,786 & - & 57,531 & - \\
\hline Beans & 15\% & 21.9 & 645 & 842 & 909 & 1,027 & 1,027 & 1,027 & 1,027 & 1,027 & 14,126 & 18,440 & 19,907 & 22,491 & 22,491 & 22,491 & 22,491 & 22,491 \\
\hline Banana & 5\% & 7.3 & - & & 1,474 & & 1,690 & & 1,690 & & - & - & 10,760 & & 12,337 & & 12,337 & \\
\hline Total & & 167.9 & & & & & & & & & & 240,719 & & 321,419 & & 343,763 & & 354,275 \\
\hline
\end{tabular}

Table 59 Ngoma 21 Remera Net Return With Project (Financial Price): Case :
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Crop } & Share (\%) & Crop Area & Net Return (000Rwf/ha) \\
\cline { 4 - 6 } & 1st Year & 2nd year & 3rd
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{\begin{tabular}{l}
Crop Area \\
(ha)
\end{tabular}} & \multicolumn{8}{|c|}{Net Return (000Rwtha)} & \multicolumn{8}{|c|}{Net Return (000Rwtha)} \\
\hline & & & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Maize & 75\% & 45.8 & 645 & 842 & 909 & 1,027 & 1,027 & 1,027 & 1,027 & 1,027 & 29,541 & 38,564 & 41,632 & 47,037 & 47,037 & 47,037 & 47,037 & 47,037 \\
\hline Vegetable (Cabbage) & 10\% & 6.1 & - & 1,458 & - & 1,745 & - & 1,860 & - & 2,032 & - & 8,894 & - & 10,645 & - & 11,346 & - & 12,395 \\
\hline Vegetable (Tomato) & 10\% & 6.1 & 1,603 & - & 2,115 & - & 2,319 & - & 2,627 & - & 9,778 & - & 12,902 & - & 14,146 & - & 16,025 & - \\
\hline Beans & 10\% & 6.1 & 274 & 328 & 342 & 374 & 374 & 374 & 374 & 374 & 1,671 & 2,001 & 2,086 & 2,281 & 2,281 & 2,281 & 2,281 & 2,281 \\
\hline Banana & 5\% & 3.1 & & & 1,474 & & 1,690 & & 1,690 & & & & 4,569 & & 5,239 & & 5,239 & \\
\hline Total & & 67.2 & & & & & & & & & & 90,449 & & 121,152 & & 129,367 & & 132,295 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Crop Area } \\
\text { (ha) }
\end{gathered}
\]} & \multicolumn{8}{|c|}{Net Return (000Rwt/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Rice & 20\% & 33 & 1,063 & 1,129 & 1,152 & 1,170 & 1,170 & 1,170 & 1,170 & 1,170 & 35,079 & 37,257 & 38,016 & 38,610 & 38,610 & 38,610 & 38,610 & 38,610 \\
\hline Maize & 15\% & 24.8 & 645 & 842 & 909 & 1,027 & 1,027 & 1,027 & 1,027 & 1,027 & 15,996 & 20,882 & 22,543 & 25,470 & 25,470 & 25,470 & 25,470 & 25,470 \\
\hline Vegetable (Cabbage) & 30\% & 49.5 & - & 1,458 & - & 1,745 & - & 1,860 & - & 2,032 & - & 72,171 & - & 86,378 & - & 92,070 & - & 100,584 \\
\hline Vegetable (Tomato) & 30\% & 49.5 & 1,603 & - & 2,115 & - & 2,319 & - & 2,627 & - & 79,349 & - & 104,693 & - & 114,791 & - & 130,037 & - \\
\hline Beans & 30\% & 49.5 & 274 & 328 & 342 & 374 & 374 & 374 & 374 & 374 & 13,563 & 16,236 & 16,929 & 18,513 & 18,513 & 18,513 & 18,513 & 18,513 \\
\hline Banana & 5\% & 8.3 & - & & 1,474 & & 1,690 & & 1,690 & & - & & 12,234 & - & 14,027 & & 14,027 & \\
\hline Total & & 214.6 & & & & & & & & & & 290,533 & & 363,386 & & 386,074 & & 409,834 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area (ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwtha)} \\
\hline & & & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|c|}{2 nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|l|}{4th year} \\
\hline & & & SA & SB \\
\hline Maize & 70\% & 1.4 & 645 & 842 & 909 & 1,027 & 1,027 & 1,027 & 1,027 & 1,027 & 903 & 1,179 & 1,273 & 1,438 & 1,438 & 1,438 & 1,438 & 1,438 \\
\hline Vegetable (Cabbage) & 5\% & 0.1 & - & 1,458 & - & 1,745 & - & 1,860 & - & 2,032 & - & 146 & - & 175 & - & 186 & - & 203 \\
\hline Vegetable (Tomato) & 5\% & 0.1 & 1,603 & - & 2,115 & - & 2,319 & - & 2,627 & - & 160 & - & 212 & - & 232 & - & 263 & - \\
\hline Beans & 5\% & 0.1 & 274 & 328 & 342 & 374 & 374 & 374 & 374 & 374 & 27 & 33 & 34 & 37 & 37 & 37 & 37 & 37 \\
\hline Banana & 20\% & 0.4 & & & 1,474 & & 1,690 & & 1,690 & & - & & 590 & & 676 & & 676 & \\
\hline Total & & 2.1 & & & & & & & & & & 2,448 & & 3,759 & & 4,044 & & 4,092 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{\begin{tabular}{l}
Crop Area \\
(ha)
\end{tabular}} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|l|}{1 st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Rice & 20\% & 9.8 & 1,063 & 1,129 & 1,152 & 1,170 & 1,170 & 1,170 & 1,170 & 1,170 & 10,417 & 11,064 & 11,290 & 11,466 & 11,466 & 11,466 & 11,466 & 11,466 \\
\hline Maize & 45\% & 22.1 & 645 & 842 & 909 & 1,027 & 1,027 & 1,027 & 1,027 & 1,027 & 14,255 & 18,608 & 20,089 & 22,697 & 22,697 & 22,697 & 22,697 & 22,697 \\
\hline Vegetable (Cabbage) & 15\% & 7.4 & - & 1,458 & - & 1,745 & - & 1,860 & - & 2,032 & - & 10,789 & - & 12,913 & - & 13,764 & - & 15,037 \\
\hline Vegetable (Tomato) & 15\% & 7.4 & 1,603 & - & 2,115 & - & 2,319 & - & 2,627 & - & 11,862 & - & 15,651 & - & 17,161 & - & 19,440 & - \\
\hline Beans & 10\% & 4.9 & 274 & 328 & 342 & 374 & 374 & 374 & 374 & 374 & 1,343 & 1,607 & 1,676 & 1,833 & 1,833 & 1,833 & 1,833 & 1,833 \\
\hline Banana & 5\% & 2.5 & - & & 1,474 & & 1,690 & & 1,690 & & - & & 3,685 & & 4,225 & & 4,225 & \\
\hline Total & & 54.1 & & & & & & & & & & 79,946 & & 101,299 & & 107,140 & & 110,692 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area (ha)} & \multicolumn{8}{|c|}{Net Return (000Rwtha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Rice & 20\% & 11 & 1,063 & 1,129 & 1,152 & 1,170 & 1,170 & 1,170 & 1,170 & 1,170 & 11,693 & 12,419 & 12,672 & 12,870 & 12,870 & 12,870 & 12,870 & 12,870 \\
\hline Maize & 45\% & 24.8 & 645 & 842 & 909 & 1,027 & 1,027 & 1,027 & 1,027 & 1,027 & 15,996 & 20,882 & 22,543 & 25,470 & 25,470 & 25,470 & 25,470 & 25,470 \\
\hline Vegetable (Cabbage) & 15\% & 8.3 & - & 1,458 & - & 1,745 & - & 1,860 & - & 2,032 & - & 12,101 & - & 14,484 & - & 15,438 & - & 16,866 \\
\hline Vegetable (Tomato) & 15\% & 8.3 & 1,603 & - & 2,115 & - & 2,319 & - & 2,627 & - & 13,305 & - & 17,555 & - & 19,248 & - & 21,804 & - \\
\hline Beans & 10\% & 5.5 & 274 & 328 & 342 & 374 & 374 & 374 & 374 & 374 & 1,507 & 1,804 & 1,881 & 2,057 & 2,057 & 2,057 & 2,057 & 2,057 \\
\hline Banana & 5\% & 2.8 & - & & 1,474 & & 1,690 & & 1,690 & & & & 4,127 & & 4,732 & & 4,732 & \\
\hline Total & & 60.7 & & & & & & & & & & 89,707 & & 113,658 & & 120,211 & & 124,195 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area (ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwt/ha)} \\
\hline & & & \multicolumn{2}{|l|}{1 st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3 rd year} & \multicolumn{2}{|c|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Rice & 20\% & 21.2 & 1,063 & 1,129 & 1,152 & 1,170 & 1,170 & 1,170 & 1,170 & 1,170 & 22,536 & 23,935 & 24,422 & 24,804 & 24,804 & 24,804 & 24,804 & 24,804 \\
\hline Maize & 45\% & 47.7 & 645 & 842 & 909 & 1,027 & 1,027 & 1,027 & 1,027 & 1,027 & 30,767 & 40,163 & 43,359 & 48,988 & 48,988 & 48,988 & 48,988 & 48,988 \\
\hline Vegetable (Cabbage) & 15\% & 15.9 & - & 1,458 & - & 1,745 & - & 1,860 & - & 2,032 & - & 23,182 & - & 27,746 & - & 29,574 & - & 32,309 \\
\hline Vegetable (Tomato) & 15\% & 15.9 & 1,603 & - & 2,115 & - & 2,319 & - & 2,627 & - & 25,488 & - & 33,629 & - & 36,872 & - & 41,769 & - \\
\hline Beans & 10\% & 10.6 & 274 & 328 & 342 & 374 & 374 & 374 & 374 & 374 & 2,904 & 3,477 & 3,625 & 3,964 & 3,964 & 3,964 & 3,964 & 3,964 \\
\hline Banana & 5\% & 5.3 & - & & 1,474 & & 1,690 & & 1,690 & & - & & 7,812 & & 8,957 & & 8,957 & \\
\hline Total & & 116.6 & & & & & & & & & & 172,451 & & 218,349 & & 230,916 & & 238,548 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Crop Area } \\
\text { (ha) }
\end{gathered}
\]} & \multicolumn{8}{|c|}{Net Return (000Rwfha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|r|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Rice & 20\% & 9.4 & 1,063 & 1,129 & 1,152 & 1,170 & 1,170 & 1,170 & 1,170 & 1,170 & 9,992 & 10,613 & 10,829 & 10,998 & 10,998 & 10,998 & 10,998 & 10,998 \\
\hline Maize & 55\% & 25.9 & 645 & 842 & 909 & 1,027 & 1,027 & 1,027 & 1,027 & 1,027 & 16,706 & 21,808 & 23,543 & 26,599 & 26,599 & 26,599 & 26,599 & 26,599 \\
\hline Vegetable (Cabbage) & 10\% & 4.7 & - & 1,458 & - & 1,745 & - & 1,860 & - & 2,032 & - & 6,853 & - & 8,202 & - & 8,742 & - & 9,550 \\
\hline Vegetable (Tomato) & 10\% & 4.7 & 1,603 & - & 2,115 & - & 2,319 & - & 2,627 & - & 7,534 & - & 9,941 & - & 10,899 & - & 12,347 & - \\
\hline Beans & 5\% & 2.4 & 274 & 328 & 342 & 374 & 374 & 374 & 374 & 374 & 658 & 787 & 821 & 898 & 898 & 898 & 898 & 898 \\
\hline Banana & 5\% & 2.4 & - & & 1,474 & & 1,690 & & 1,690 & & - & & 3,538 & & 4,056 & & 4,056 & \\
\hline Total & & 49.5 & & & & & & & & & & 74,950 & & 95,367 & & 100,687 & & 102,943 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multicolumn{6}{|c|}{Irrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|r|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|r|}{Case 1} & \multicolumn{2}{|r|}{Case 2} & \multicolumn{2}{|l|}{Case 3} \\
\hline & & SA & SB \\
\hline Sorghum & 22\% & - & 22.4 & - & 14.7 & - & 11.2 & - & 116 & - & 116 & - & 116 & - & 2,598 & - & 1,705 & - & 1,299 \\
\hline Maize & 12\% & - & 12.2 & - & 8 & - & 6.1 & - & 152 & - & 152 & - & 152 & - & 1,854 & - & 1,216 & - & 927 \\
\hline Sweet potato & 7\% & 7.1 & 7.1 & 4.7 & 4.7 & 3.6 & 3.6 & 88 & 88 & 88 & 88 & 88 & 88 & 625 & 625 & 414 & 414 & 317 & 7 \\
\hline Beans & 30\% & 30.6 & 30.6 & 20.1 & 20.1 & 15.3 & 15.3 & 53 & 53 & 53 & 53 & 53 & 53 & 1,622 & 1,622 & 1,065 & 1,065 & 811 & 811 \\
\hline Cassava & 24\% & 24.5 & 24.5 & 16.1 & 16.1 & 12.2 & 12.2 & 148 & & 148 & & 148 & & 3,626 & & 2,383 & & 1,806 & \\
\hline Banana & 5\% & 5.1 & 5.1 & 3.4 & 3.4 & 2.6 & 2.6 & 345 & & 345 & & 345 & & 1,760 & & 1,173 & & 897 & \\
\hline Total & 100\% & 67.3 & 101.9 & 44.3 & 67.0 & 33.7 & 51.0 & & & & & & & & 14,332 & & 9,435 & & 7,18 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline & & & & Irigab & ea (ha) & & & & et Retur & OPro & (000Rw & year) & & & tal Net & m W/O & ject (000 & dilyear) & \\
\hline Crop & Share (\%) & & & & & & & & & & & & & Cas & & Cas & & & \\
\hline & & SA & SB \\
\hline Sorghum & 22\% & . & 32.8 & - & 16.5 & . & 12.5 & - & 116 & - & 116 & - & 116 & - & 3,805 & - & 1,914 & - & 1,450 \\
\hline Maize & 12\% & - & 17.9 & - & 9 & - & 6.8 & - & 152 & - & 152 & - & 152 & \(\cdot\) & 2,721 & . & 1,368 & - & 1,034 \\
\hline Sweet potato & 7\% & 10.4 & 10.4 & 5.3 & 5.3 & 4 & 4 & 88 & 88 & 88 & 88 & 88 & 88 & 915 & 915 & 466 & 466 & 352 & 352 \\
\hline Beans & 30\% & 44.7 & 44.7 & 22.5 & 22.5 & 17.1 & 17.1 & 53 & 53 & 53 & 53 & 53 & 53 & 2,369 & 2,369 & 1,193 & 1,193 & 906 & 906 \\
\hline Cassava & 24\% & 35.8 & 35.8 & 18 & 18 & 13.7 & 13.7 & 148 & & 148 & & 148 & & 5,298 & & 2,664 & & 2,028 & \\
\hline Banana & 5\% & 7.5 & 7.5 & 3.8 & 3.8 & 2.9 & 2.9 & 345 & & 345 & & 345 & & 2,588 & & 1,311 & & 1,001 & \\
\hline Total & 100\% & 98.4 & 149.1 & 49.6 & 75.1 & 37.7 & 57.0 & & & & & & & & 20,980 & & 10,575 & & 8,029 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multicolumn{6}{|c|}{Irrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|l|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|c|}{Case 3} \\
\hline & & SA & SB \\
\hline Sorghum & 22\% & - & 15.8 & - & 32.1 & - & 24.2 & - & 116 & - & 116 & - & 116 & - & 1,833 & - & 3,724 & - & 2,807 \\
\hline Maize & 12\% & - & 8.6 & - & 17.5 & - & 13.2 & - & 152 & - & 152 & - & 152 & - & 1,307 & . & 2,660 & - & 2,006 \\
\hline Sweet potato & 7\% & 5 & 5 & 10.2 & 10.2 & 7.7 & 7.7 & 88 & 88 & 88 & 88 & 88 & 88 & 440 & 440 & 898 & 89 & 678 & 678 \\
\hline Beans & 30\% & 21.6 & 21.6 & 43.8 & 43.8 & 33 & 33 & 53 & 53 & 53 & 53 & 53 & 53 & 1,145 & 1,145 & 2,321 & 2,321 & 1,749 & 1,749 \\
\hline Cassava & 24\% & 17.3 & 17.3 & 35 & 35 & 26.4 & 26.4 & 148 & & 148 & & 148 & & 2,560 & & 5,180 & - & 3,907 & \\
\hline Banana & 5\% & 3.6 & 3.6 & 7.3 & 7.3 & 5.5 & 5.5 & 345 & & 345 & & 345 & & 1,242 & & 2,519 & & 1,898 & \\
\hline Total & 100\% & 47.5 & 71.9 & 96.3 & 145.9 & 72.6 & 110.0 & & & & & & & & 10,112 & & 20,521 & & 15,472 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multicolumn{6}{|c|}{lrrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|c|}{Case 3} & \multicolumn{2}{|l|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|l|}{Case 3} \\
\hline & & SA & SB \\
\hline Sorghum & 29\% & 13.9 & 13.9 & 17.7 & 17.7 & 14.2 & 14.2 & 116 & 116 & 116 & 116 & 116 & 116 & 1,612 & 1,612 & 2,053 & 2,053 & 1,647 & 1,647 \\
\hline Maize & 7\% & 3.4 & 3.4 & 4.3 & 4.3 & 3.4 & 3.4 & 152 & 152 & 152 & 152 & 152 & 152 & 517 & 517 & 654 & 654 & 517 & 517 \\
\hline Sweet potato & 17\% & 8.2 & 8.2 & 10.4 & 10.4 & 8.3 & 8.3 & 88 & 88 & 88 & 88 & 88 & 88 & 722 & 722 & 915 & 915 & 730 & 730 \\
\hline Beans & 16\% & 7.7 & 7.7 & 9.8 & 9.8 & 7.8 & 7.8 & 53 & 53 & 53 & 53 & 53 & 53 & 408 & 408 & 519 & 519 & 413 & 413 \\
\hline Vegetable (Cabbage) & 4\% & . & 1.9 & - & 2.4 & - & 2 & - & 660 & - & 660 & - & 660 & - & 1,254 & - & 1,584 & - & 1,320 \\
\hline Vegetable (Tomato) & 4\% & 1.9 & . & 2.4 & . & 2 & . & 324 & - & 324 & - & 324 & - & 616 & - & 778 & . & 648 & \\
\hline Cassava & 18\% & 8.6 & 8.6 & 11 & 11 & 8.8 & 8.8 & 148 & & 148 & & 148 & & 1,273 & . & 1,628 & & 1,302 & \\
\hline Banana & 5\% & 2.4 & 2.4 & 3.1 & 3.1 & 2.5 & 2.5 & 345 & & 345 & & 345 & & 828 & - & 1,070 & & 863 & \\
\hline Total & 100\% & 46.1 & 46.1 & 58.7 & 58.7 & 47 & 47 & & & & & & & & 10,489 & & 13,342 & & 10,747 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multicolumn{6}{|c|}{lrrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|l|}{} \\
\hline & & SA & SB & SA & SB & & \(\bigcirc\) & SA & SB & SA & SB & \(\bigcirc\) & 7 & SA & SB & SA & SB & \(\bigcirc\) & \\
\hline Rice & 15\% & 47.1 & 47.1 & 24.8 & 24.8 & & \(\bigcirc\) & 464 & 464 & 464 & 464 & , & , & 21,854 & 21,854 & 11,507 & 11,507 & , & \\
\hline Sorghum & 24\% & - & 75.4 & - & 39.6 & , & - & - & 116 & - & 116 & \(\bigcirc\) & , & . & 8,746 & - & 4,594 & - & \\
\hline Maize & 20\% & 62.8 & 62.8 & 33 & 33 & & & 152 & 152 & 152 & 152 & , & , & 9,546 & 9,546 & 5,016 & 5,016 & - & , \\
\hline Sweet potato & 5\% & 15.7 & 15.7 & 8.3 & 8.3 & , & , & 88 & 88 & 88 & 88 & , & - & 1,382 & 1,382 & 730 & 730 & , & - \\
\hline Beans & 24\% & 75.4 & 75.4 & 39.6 & 39.6 & \(\bigcirc\) & \(\bigcirc\) & 53 & 53 & 53 & 53 & \(\bigcirc\) & \(\bigcirc\) & 3,996 & 3,996 & 2,099 & 2,099 & \(\bigcirc\) & \(\bigcirc\) \\
\hline Vegetable (Cabbage) & 2\% & - & 6.3 & - & 3.3 & \(\square\) & \(\bigcirc\) & - & 660 & - & 660 & \(\bigcirc\) & \(\bigcirc\) & - & 4,158 & \(\cdot\) & 2,178 & 2 & \(\bigcirc\) \\
\hline Cassava & 5\% & 15.7 & 15.7 & 8.3 & 8.3 & \(\bigcirc\) & \(\bigcirc\) & 148 & & 148 & & \(\bigcirc\) & \(\bigcirc\) & 2,324 & & 1,228 & & \(\bigcirc\) & \(\bigcirc\) \\
\hline Banana & 5\% & 15.7 & 15.7 & 8.3 & 8.3 & \(\bigcirc\) & \(\bigcirc\) & 345 & & 345 & & \(\bigcirc\) & \(\bigcirc\) & 5,417 & - & 2,864 & & \(\bigcirc\) & , \\
\hline Total & 100\% & 232.4 & 314.1 & 122.3 & 165.2 & - & \(\sim\) & & & & & \(\sim\) & \(\square\) & & 94,201 & & 49,568 & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multicolumn{6}{|c|}{lrrigable Area (ha)} & \multicolumn{6}{|c|}{Net Return W/O Project (000Rwf/ha/year)} & \multicolumn{6}{|c|}{Total Net Return W/O Project (000Rwflyear)} \\
\hline & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & & & \multicolumn{2}{|c|}{Case 1} & \multicolumn{2}{|c|}{Case 2} & \multicolumn{2}{|l|}{\(\longrightarrow\)} \\
\hline & & SA & SB & SA & SB & \(\bigcirc\) & \(\bigcirc\) & SA & SB & SA & SB & \(\bigcirc\) & \(\bigcirc\) & SA & SB & SA & SB & , & \(\bigcirc\) \\
\hline Sorghum & 24\% & - & 0.2 & - & 0.5 & \(\bigcirc\) & , & - & 116 & - & 116 & \(\bigcirc\) & \(\bigcirc\) & - & 23 & - & 58 & \(\bigcirc\) & \(\bigcirc\) \\
\hline Maize & 34\% & 0.3 & 0.3 & 0.7 & 0.7 & \(\bigcirc\) & \(\cdots\) & 152 & 152 & 152 & 152 & , & \(\cdots\) & 46 & 46 & 106 & 106 & - & , \\
\hline Sweet potato & 2\% & 0 & 0 & 0.0 & 0.0 & \(\bigcirc\) & \(\bigcirc\) & 88 & 88 & 88 & 88 & \(\bigcirc\) & \(\bigcirc\) & - & & & & \(\bigcirc\) & \(\bigcirc\) \\
\hline Beans & 15\% & 0.2 & 0.2 & 0.3 & 0.3 & \(\square\) & \(\bigcirc\) & 53 & 53 & 53 & 53 & \(\bigcirc\) & \(\bigcirc\) & 11 & 11 & 16 & 16 & \(\bigcirc\) & \\
\hline Cassava & 4\% & 0 & 0 & 0.1 & 0.1 & \(\checkmark\) & \(\bigcirc\) & 148 & & 148 & & \(\bigcirc\) & \(\bigcirc\) & & - & 15 & & & \(\bigcirc\) \\
\hline Banana & 21\% & 0.2 & 0.2 & 0.4 & 0.4 & \(\bigcirc\) & \(\bigcirc\) & 345 & & 345 & & \(\bigcirc\) & \(\bigcirc\) & 69 & - & 138 & - & , & \(\bigcirc\) \\
\hline Total & 100\% & 0.7 & 0.9 & 1.5 & 2.0 & \(\sim\) & \(\bigcirc\) & & & & & \(\bigcirc\) & - & & 206 & & 455 & \(\bigcirc\) & \(\square\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{\[
\begin{array}{|c}
\begin{array}{c}
\text { Crop Are } \\
\text { (ha) }
\end{array} \\
\hline
\end{array}
\]} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/ha/year)} & \multicolumn{5}{|r|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Banana & 20\% & 20.4 & & 1,139 & 1,338 & 1,338 & 1,338 & & 23,236 & 27,295 & 27,295 & 27,295 \\
\hline Pineapple & 80\% & 81.6 & -2,488 & 3,056 & 3,056 & 3,056 & 3,056 & -203,021 & 249,370 & 249,370 & 249,370 & 249,370 \\
\hline Total & 100\% & 102 & & & & & & -203,021 & 272,606 & 276,665 & 276,66 & 276,6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{Crop Are} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/halyear)} & \multicolumn{5}{|r|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Banana & 20\% & 29.8 & & 1,139 & 1,338 & 1,338 & 1,338 & & 33,942 & 39,872 & 9,872 & 39,872 \\
\hline Pineapple & 80\% & 119.2 & -2,488 & 3,056 & 3,056 & 3,056 & 3,056 & -296,570 & 364,275 & 364,275 & 364,275 & 364,275 \\
\hline Total & 100\% & 149 & & & & & & -296,570 & 398,217 & 404,147 & 404,147 & 404,147 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Crop Are } \\
\text { (ha) }
\end{array}
\]} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/ha/year)} & \multicolumn{5}{|l|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Banana & 20\% & 14.4 & & 1,139 & 1,338 & 1,338 & 1,338 & & 16,402 & 19,267 & 19,267 & 19,267 \\
\hline Pineapple & 80\% & 57.6 & -2,488 & 3,056 & 3,056 & 3,056 & 3,056 & -143,309 & 176,026 & 176,026 & 176,026 & 176,02 \\
\hline Total & 100\% & 72 & & & & & & -143,309 & 192,428 & 195,293 & 195,293 & 195,29 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{Crop Are} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/ha/year)} & \multicolumn{5}{|l|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Banana & 20\% & 9.6 & & 1,139 & 1,338 & 1,338 & 1,338 & & 10,934 & 12,845 & 12,845 & 12,845 \\
\hline Avocado & 80\% & 38.4 & 659 & 30 & -30 & 2,777 & 2,777 & -25,306 & -1,152 & -1,152 & 106,637 & 106,63 \\
\hline Total & 100\% & 48 & & & & & & -25,306 & 9,782 & 11,693 & 119,482 & 119,482 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Crop} & \multirow[b]{2}{*}{Share (\%)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Crop Are \\
(ha)
\end{tabular}} & \multicolumn{5}{|c|}{Net Return W/ Project (000Rwf/ha/year)} & \multicolumn{5}{|r|}{Total Net Return W/ Project (000Rwf/ha/year)} \\
\hline & & & 1st year & 2nd year & 3rd year & 4th year & 5th year & 1st year & 2nd year & 3rd year & 4th year & 5th year \\
\hline Rice & 20\% & 62.8 & 2,112 & 2,708 & 2,708 & 2,708 & 2,708 & 132,634 & 170,062 & 170,062 & 170,062 & 170,062 \\
\hline Pineapple & 80\% & 251.2 & -2,488 & 3,056 & 3,056 & 3,056 & 3,056 & -624,986 & 767,667 & 767,667 & 767,667 & 767,667 \\
\hline Total & 100\% & 314.0 & & & & & & -492,352 & 937,729 & 937,729 & 937,729 & 937,729 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area (ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Maize & 65\% & 43.6 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 21,538 & 29,256 & 31,872 & 36,493 & 36,493 & 36,493 & 36,493 & 36,493 \\
\hline Vegetable (Cabbage) & 15\% & 10.1 & - & 1,168 & - & 1,422 & - & 1,524 & - & 1,677 & - & 11,797 & - & 14,362 & - & 15,392 & - & 16,938 \\
\hline Vegetable (Tomato) & 15\% & 10.1 & 1,246 & - & 1,706 & - & 1,891 & - & 2,168 & - & 12,585 & - & 17,231 & - & 19,099 & - & 21,897 & - \\
\hline Beans & 15\% & 10.1 & 135 & 180 & 190 & 217 & 217 & 217 & 217 & 217 & 1,364 & 1,818 & 1,919 & 2,192 & 2,192 & 2,192 & 2,192 & 2,192 \\
\hline Banana & 5\% & 3.4 & - & & 1,139 & & 1,338 & & 1,338 & & - & & 3,873 & & 4,549 & & 4,549 & \\
\hline Total & & 77.3 & & & & & & & & & & 78,358 & & 107,942 & & 116,410 & & 120,754 \\
\hline
\end{tabular}

\section*{Table 79 Bugesera 3 Net Return With Project (Economic Price): Case :}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area
(ha)} & \multicolumn{8}{|c|}{Net Return (000Rwtha)} & \multicolumn{8}{|c|}{Net Return (000Rwtha)} \\
\hline & & & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|c|}{2 2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Maize & 65\% & 48.8 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 24,107 & 32,745 & 35,673 & 40,846 & 40,846 & 40,846 & 40,846 & 40,846 \\
\hline Vegetable (Cabbage) & 15\% & 11.3 & & 1,168 & & 1,422 & & 1,524 & & 1,677 & & 13,198 & & 16,069 & & 17,221 & & 18,950 \\
\hline Vegetable (Tomato) & 15\% & 11.3 & 1,246 & & 1,706 & & 1,891 & & 2,168 & & 14,080 & & 19,278 & & 21,368 & & 24,498 & \\
\hline Beans & 15\% & 11.3 & 135 & 180 & 190 & 217 & 217 & 217 & 217 & 217 & 1,526 & 2,034 & 2,147 & 2,452 & 2,452 & 2,452 & 2,452 & 2,452 \\
\hline Banana & 5\% & 3.8 & & & 1,139 & & 1,338 & & 1,338 & & & & 4,328 & & 5,084 & & 5,084 & \\
\hline Total & & 86.5 & & & & & & & & & & 87,690 & & 120,793 & & 130,269 & & 135,128 \\
\hline
\end{tabular}

Table 80 Bugesera 4 Net Return With Project (Economic Price): Case :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area
(ha)} & \multicolumn{8}{|c|}{Net Return (000Rwtha)} & \multicolumn{8}{|c|}{Net Return (000Rwtha)} \\
\hline & & & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|l|}{2 nd year} & \multicolumn{2}{|l|}{3rdy year} & \multicolumn{2}{|c|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|r|}{\(2{ }^{2}\) nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Maize & 65\% & 94.9 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 46,881 & 63,678 & 69,372 & 79,431 & 79,431 & 79,431 & 79,431 & 79,431 \\
\hline Vegetable (Cabbage) & 15\% & 21.9 & & 1,168 & & 1,422 & & 1,524 & & 1,677 & & 25,579 & & 31,142 & & 33,376 & & 36,726 \\
\hline Vegetable (Tomato) & 15\% & 21.9 & 1,246 & & 1,706 & & 1,891 & & 2,168 & & 27,287 & & 37,361 & & 41,413 & & 47,479 & \\
\hline Beans & 15\% & 21.9 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 10,819 & 14,695 & 16,009 & 18,330 & 18,330 & 18,330 & 18,330 & 18,330 \\
\hline Banana & 5\% & 7.3 & & & 1,139 & & 1,338 & & 1,338 & & & & 8,315 & & 9,767 & & 9,767 & \\
\hline Total & & 167.9 & & & & & & & & & & 188,939 & & 259,960 & & 280,078 & & 289,494 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area (ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|c|}{3 rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Maize & 75\% & 45.8 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 22,625 & 30,732 & 33,480 & 38,335 & 38,335 & 38,335 & 38,335 & 38,335 \\
\hline Vegetable (Cabbage) & 10\% & 6.1 & - & 1,168 & - & 1,422 & - & 1,524 & - & 1,677 & - & 7,125 & - & 8,674 & - & 9,296 & - & 10,230 \\
\hline Vegetable (Tomato) & 10\% & 6.1 & 1,246 & - & 1,706 & - & 1,891 & - & 2,168 & - & 7,601 & - & 10,407 & - & 11,535 & - & 13,225 & - \\
\hline Beans & 10\% & 6.1 & 135 & 180 & 190 & 217 & 217 & 217 & 217 & 217 & 824 & 1,098 & 1,159 & 1,324 & 1,324 & 1,324 & 1,324 & 1,324 \\
\hline Banana & 5\% & 3.1 & & & 1,139 & & 1,338 & & 1,338 & & - & & 3,531 & & 4,148 & & 4,148 & \\
\hline Total & & 67.2 & & & & & & & & & & 70,005 & & 96,910 & & 104,297 & & 106,921 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Crop Area } \\
\text { (ha) }
\end{gathered}
\]} & \multicolumn{8}{|c|}{Net Return (000Rwtha)} & \multicolumn{8}{|c|}{Net Return (000Rwtha)} \\
\hline & & & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|r|}{2 2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|r|}{2 nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Rice & 20\% & 33 & 920 & 1,192 & 1,334 & 1,374 & 1,374 & 1,374 & 1,374 & 1,374 & 30,360 & 39,336 & 44,022 & 45,342 & 45,342 & 45,342 & 45,342 & 45,342 \\
\hline Maize & 15\% & 24.8 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 12,251 & 16,641 & 18,129 & 20,758 & 20,758 & 20,758 & 20,758 & 20,758 \\
\hline Vegetable (Cabbage) & 30\% & 49.5 & & 1,168 & & 1,422 & & 1,524 & & 1,677 & & 57,816 & & 70,389 & & 75,438 & & 83,012 \\
\hline Vegetable (Tomato) & 30\% & 49.5 & 1,246 & & 1,706 & & 1,891 & & 2,168 & & 61,677 & & 84,447 & & 93,605 & & 107,316 & \\
\hline Beans & 30\% & 49.5 & 135 & 180 & 190 & 217 & 217 & 217 & 217 & 217 & 6,683 & 8,910 & 9,405 & 10,742 & 10,742 & 10,742 & 10,742 & 10,742 \\
\hline Banana & 5\% & 8.3 & & & 1,139 & & 1,338 & & 1,338 & & & & 9,454 & & 11,105 & & 11,105 & \\
\hline Total & & 214.6 & & & & & & & & & & 233,674 & & 312,688 & & 333,832 & & 355,117 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{\begin{tabular}{l}
Crop Area \\
(ha)
\end{tabular}} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3 rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|l|}{4th year} \\
\hline & & & SA & SB \\
\hline Maize & 70\% & 1.4 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 692 & 939 & 1,023 & 1,172 & 1,172 & 1,172 & 1,172 & 1,172 \\
\hline Vegetable (Cabbage) & 5\% & 0.1 & - & 1,168 & - & 1,422 & - & 1,524 & - & 1,677 & - & 117 & - & 142 & - & 152 & - & 168 \\
\hline Vegetable (Tomato) & 5\% & 0.1 & 1,246 & - & 1,706 & - & 1,891 & - & 2,168 & - & 125 & - & 171 & - & 189 & - & 217 & - \\
\hline Beans & 5\% & 0.1 & 135 & 180 & 190 & 217 & 217 & 217 & 217 & 217 & 14 & 18 & 19 & 22 & 22 & 22 & 22 & 22 \\
\hline Banana & 20\% & 0.4 & & & 1,139 & & 1,338 & & 1,338 & & - & & 456 & & 535 & & 535 & \\
\hline Total & & 2.1 & & & & & & & & & & 1,905 & & 3,005 & & 3,264 & & 3,308 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area (ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1 st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Rice & 20\% & 10.2 & 920 & 1,192 & 1,334 & 1,374 & 1,374 & 1,374 & 1,374 & 1,374 & 9,384 & 12,158 & 13,607 & 14,015 & 14,015 & 14,015 & 14,015 & 14,015 \\
\hline Maize & 45\% & 23 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 11,362 & 15,433 & 16,813 & 19,251 & 19,251 & 19,251 & 19,251 & 19,251 \\
\hline Vegetable (Cabbage) & 15\% & 7.7 & - & 1,168 & - & 1,422 & - & 1,524 & - & 1,677 & - & 8,994 & - & 10,949 & - & 11,735 & - & 12,913 \\
\hline Vegetable (Tomato) & 15\% & 7.7 & 1,246 & - & 1,706 & - & 1,891 & - & 2,168 & - & 9,594 & - & 13,136 & - & 14,561 & - & 16,694 & - \\
\hline Beans & 10\% & 5.1 & 135 & 180 & 190 & 217 & 217 & 217 & 217 & 217 & 689 & 918 & 969 & 1,107 & 1,107 & 1,107 & 1,107 & 1,107 \\
\hline Banana & 5\% & 2.6 & - & & 1,139 & & 1,338 & & 1,338 & & - & & 2,961 & & 3,479 & & 3,479 & \\
\hline Total & & 56.3 & & & & & & & & & & 68,532 & & 92,808 & & 98,519 & & 101,830 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area (ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1 st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Rice & 20\% & 11.4 & 920 & 1,192 & 1,334 & 1,374 & 1,374 & 1,374 & 1,374 & 1,374 & 10,488 & 13,589 & 15,208 & 15,664 & 15,664 & 15,664 & 15,664 & 15,664 \\
\hline Maize & 45\% & 25.7 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 12,696 & 17,245 & 18,787 & 21,511 & 21,511 & 21,511 & 21,511 & 21,511 \\
\hline Vegetable (Cabbage) & 15\% & 8.6 & - & 1,168 & - & 1,422 & - & 1,524 & - & 1,677 & - & 10,045 & - & 12,229 & - & 13,106 & - & 14,422 \\
\hline Vegetable (Tomato) & 15\% & 8.6 & 1,246 & - & 1,706 & - & 1,891 & - & 2,168 & - & 10,716 & - & 14,672 & - & 16,263 & - & 18,645 & - \\
\hline Beans & 10\% & 5.7 & 135 & 180 & 190 & 217 & 217 & 217 & 217 & 217 & 770 & 1,026 & 1,083 & 1,237 & 1,237 & 1,237 & 1,237 & 1,237 \\
\hline Banana & 5\% & 2.9 & & & 1,139 & & 1,338 & & 1,338 & & - & & 3,303 & & 3,880 & & 3,880 & \\
\hline Total & & 62.9 & & & & & & & & & & 76,573 & & 103,693 & & 110,072 & & 113,770 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{Crop Area (ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1 st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Rice & 20\% & 22 & 920 & 1,192 & 1,334 & 1,374 & 1,374 & 1,374 & 1,374 & 1,374 & 20,240 & 26,224 & 29,348 & 30,228 & 30,228 & 30,228 & 30,228 & 30,228 \\
\hline Maize & 45\% & 49.5 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 24,453 & 33,215 & 36,185 & 41,432 & 41,432 & 41,432 & 41,432 & 41,432 \\
\hline Vegetable (Cabbage) & 15\% & 16.5 & - & 1,168 & - & 1,422 & - & 1,524 & - & 1,677 & - & 19,272 & - & 23,463 & - & 25,146 & - & 27,671 \\
\hline Vegetable (Tomato) & 15\% & 16.5 & 1,246 & - & 1,706 & - & 1,891 & - & 2,168 & - & 20,559 & - & 28,149 & - & 31,202 & - & 35,772 & - \\
\hline Beans & 10\% & 11 & 135 & 180 & 190 & 217 & 217 & 217 & 217 & 217 & 1,485 & 1,980 & 2,090 & 2,387 & 2,387 & 2,387 & 2,387 & 2,387 \\
\hline Banana & 5\% & 5.5 & & & 1,139 & & 1,338 & & 1,338 & & - & & 6,265 & & 7,359 & & 7,359 & \\
\hline Total & & 121.0 & & & & & & & & & & 147,428 & & 199,546 & & 211,800 & & 218,895 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Crop} & \multirow{3}{*}{Share (\%)} & \multirow[b]{3}{*}{\begin{tabular}{l}
Crop Area \\
(ha)
\end{tabular}} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} & \multicolumn{8}{|c|}{Net Return (000Rwf/ha)} \\
\hline & & & \multicolumn{2}{|l|}{1st Year} & \multicolumn{2}{|l|}{2nd year} & \multicolumn{2}{|l|}{3rd year} & \multicolumn{2}{|l|}{4th year} & \multicolumn{2}{|c|}{1st Year} & \multicolumn{2}{|c|}{2nd year} & \multicolumn{2}{|c|}{3rd year} & \multicolumn{2}{|c|}{4th year} \\
\hline & & & SA & SB \\
\hline Rice & 20\% & 9.8 & 920 & 1,192 & 1,334 & 1,374 & 1,374 & 1,374 & 1,374 & 1,374 & 9,016 & 11,682 & 13,073 & 13,465 & 13,465 & 13,465 & 13,465 & 13,465 \\
\hline Maize & 55\% & 27 & 494 & 671 & 731 & 837 & 837 & 837 & 837 & 837 & 13,338 & 18,117 & 19,737 & 22,599 & 22,599 & 22,599 & 22,599 & 22,599 \\
\hline Vegetable (Cabbage) & 10\% & 4.9 & - & 1,168 & - & 1,422 & - & 1,524 & - & 1,677 & - & 5,723 & - & 6,968 & - & 7,468 & - & 8,217 \\
\hline Vegetable (Tomato) & 10\% & 4.9 & 1,246 & - & 1,706 & - & 1,891 & - & 2,168 & - & 6,105 & - & 8,359 & - & 9,266 & - & 10,623 & - \\
\hline Beans & 5\% & 2.5 & 135 & 180 & 190 & 217 & 217 & 217 & 217 & 217 & 338 & 450 & 475 & 543 & 543 & 543 & 543 & 543 \\
\hline Banana & 5\% & 2.5 & - & & 1,139 & & 1,338 & & 1,338 & & - & & 2,848 & - & 3,345 & - & 3,345 & \\
\hline Total & & 51.6 & & & & & & & & & & 64,769 & & 88,067 & & 93,292 & & 95,399 \\
\hline
\end{tabular}

Table 88 Bugesera 2 Gashora Case 1
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & W/P & Increment \\
\hline 1 & 32,643 & \(-183,926\) & \(-216,569\) \\
\hline 2 & 32,643 & 323,748 & 291,105 \\
\hline 3 & 32,643 & 328,154 & 295,511 \\
\hline 4 & 32,643 & 328,154 & 295,511 \\
\hline 5 & 32,643 & 328,154 & 295,511 \\
\hline
\end{tabular}

Table 89 Bugesera 2 Gashora Case 2
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & W/P & Increment \\
\hline 1 & 21,485 & 101,829 & 80,344 \\
\hline 2 & 21,485 & 135,639 & 114,154 \\
\hline 3 & 21,485 & 145,062 & 123,577 \\
\hline 4 & 21,485 & 149,910 & 128,425 \\
\hline 5 & 21,485 & 149,910 & 128,425 \\
\hline
\end{tabular}

Table 90 Bugesera 2 Gashora Case 2
\begin{tabular}{|c|r|r|r|}
\hline Year & W/O P & W/P & Increment \\
\hline 1 & 15,736 & 79,946 & 64,210 \\
\hline 2 & 15,736 & 101,299 & 85,563 \\
\hline 3 & 15,736 & 107,140 & 91,404 \\
\hline 4 & 15,736 & 110,692 & 94,956 \\
\hline 5 & 15,736 & 110,692 & 94,956 \\
\hline
\end{tabular}

Table 91 Bugesera 3 Case 1
\begin{tabular}{|c|r|r|r|}
\hline Year & W/O P & \multicolumn{1}{|c|}{ W/P } & Increment \\
\hline 1 & 47,773 & \(-268,677\) & \(-316,450\) \\
\hline 2 & 47,773 & 472,926 & 425,153 \\
\hline 3 & 47,773 & 479,363 & 431,590 \\
\hline 4 & 47,773 & 479,363 & 431,590 \\
\hline 5 & 47,773 & 479,363 & 431,590 \\
\hline
\end{tabular}

Table 92 Bugesera 3 Case 2
\begin{tabular}{|c|r|r|r|}
\hline Year & W/O P & W/P & \multicolumn{1}{|c|}{ Increment } \\
\hline 1 & 24,082 & 113,957 & 89,875 \\
\hline 2 & 24,082 & 151,788 & 127,706 \\
\hline 3 & 24,082 & 162,333 & 138,251 \\
\hline 4 & 24,082 & 167,757 & 143,675 \\
\hline 5 & 24,082 & 167,757 & 143,675 \\
\hline
\end{tabular}

Table 93 Bugesera 3 Case 3
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & \multicolumn{1}{|c|}{ W/ P } & \multicolumn{1}{|c|}{ Increment } \\
\hline 1 & 17,675 & 89,707 & 72,032 \\
\hline 2 & 17,675 & 113,658 & 95,983 \\
\hline 3 & 17,675 & 120,211 & 102,536 \\
\hline 4 & 17,675 & 124,195 & 106,520 \\
\hline 5 & 17,675 & 124,195 & 106,520 \\
\hline
\end{tabular}

Table 100 Ngoma 22 Rurenge Case 1
\begin{tabular}{|r|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & \multicolumn{1}{|c|}{ W/P } & \multicolumn{1}{|c|}{ Increment } \\
\hline 1 & 194,912 & \(-428,547\) & \(-623,459\) \\
\hline 2 & 194,912 & \(1,049,891\) & 854,979 \\
\hline 3 & 194,912 & \(1,049,891\) & 854,979 \\
\hline 4 & 194,912 & \(1,049,891\) & 854,979 \\
\hline 5 & 194,912 & \(1,049,891\) & 854,979 \\
\hline
\end{tabular}

Table 101 Ngoma 22 Rurenge Case 2
\begin{tabular}{|r|c|c|r|}
\hline \multicolumn{1}{|c|}{ Year } & W/O P & W/ P & \multicolumn{1}{|c|}{ Increment } \\
\hline 1 & 102,562 & 290,533 & 187,971 \\
\hline 2 & 102,562 & 363,386 & 260,824 \\
\hline 3 & 102,562 & 386,074 & 283,512 \\
\hline 4 & 102,562 & 409,834 & 307,272 \\
\hline 5 & 102,562 & 409,834 & 307,272 \\
\hline
\end{tabular}

Table 96 Bugesera 4 Case 2
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & W/ P & Increment \\
\hline 1 & 33,926 & 172,451 & 138,525 \\
\hline 2 & 33,926 & 218,349 & 184,423 \\
\hline 3 & 33,926 & 230,916 & 196,990 \\
\hline 4 & 33,926 & 238,548 & 204,622 \\
\hline 5 & 33,926 & 238,548 & 204,622 \\
\hline
\end{tabular}

Table 94 Bugesera 4 Case 1
\begin{tabular}{|c|r|r|r|}
\hline Year & W/O P & \multicolumn{1}{c|}{ W/P } & Increment \\
\hline 1 & 23,032 & \(-129,830\) & \(-152,862\) \\
\hline 2 & 23,032 & 228,528 & 205,496 \\
\hline 3 & 23,032 & 231,638 & 208,606 \\
\hline 4 & 23,032 & 231,638 & 208,606 \\
\hline 5 & 23,032 & 231,638 & 208,606 \\
\hline
\end{tabular}

Table 95 Bugesera 4 Case 2
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & W/P & Increment \\
\hline 1 & 46,742 & 240,719 & 193,977 \\
\hline 2 & 46,742 & 321,419 & 274,677 \\
\hline 3 & 46,742 & 343,763 & 297,021 \\
\hline 4 & 46,742 & 354,275 & 307,533 \\
\hline 5 & 46,742 & 354,275 & 307,533 \\
\hline
\end{tabular}

\section*{Table 102 Gatsibo 31 Rugarama Case 1}
\begin{tabular}{|r|r|r|r|}
\hline Year & W/O P & \multicolumn{1}{|c|}{ W/P } & \multicolumn{1}{c|}{ Increment } \\
\hline 1 & 398 & \(-3,780\) & \(-4,178\) \\
\hline 2 & 398 & -329 & -727 \\
\hline 3 & 398 & 1,060 & 662 \\
\hline 4 & 398 & 1,537 & 1,139 \\
\hline 5 & 398 & 1,537 & 1,139 \\
\hline
\end{tabular}

Table 103 Gatsibo 31 Rugarama Case 2
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ Year } & W/O P & W/ P & Increment \\
\hline 1 & 862 & 2,448 & 1,586 \\
\hline 2 & 862 & 3,759 & 2,897 \\
\hline 3 & 862 & 4,044 & 3,182 \\
\hline 4 & 862 & 4,092 & 3,230 \\
\hline 5 & 862 & 4,092 & 3,230 \\
\hline
\end{tabular}

Table 99 Ngoma 21 Remera Case 3
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ Year } & W/O P & \multicolumn{1}{|c|}{ W/ P } & Increment \\
\hline 1 & 21,359 & 74,950 & 53,591 \\
\hline 2 & 21,359 & 95,367 & 74,008 \\
\hline 3 & 21,359 & 100,687 & 79,328 \\
\hline 4 & 21,359 & 102,943 & 81,584 \\
\hline 5 & 21,359 & 102,943 & 81,584 \\
\hline
\end{tabular}

\section*{11. Flow of Benefit (Economic Price)}

Table 104 Bugesera 2 Gashora Case 1
\begin{tabular}{|c|r|r|r|}
\hline Year & W/O P & W/P & \multicolumn{1}{|c|}{ Increment } \\
\hline 1 & 14,332 & \(-203,021\) & \(-217,353\) \\
\hline 2 & 14,332 & 272,606 & 258,274 \\
\hline 3 & 14,332 & 276,665 & 262,333 \\
\hline 4 & 14,332 & 276,665 & 262,333 \\
\hline 5 & 14,332 & 276,665 & 262,333 \\
\hline
\end{tabular}

Table 105 Bugesera 2 Gashora Case 2
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & \multicolumn{1}{|c|}{ W/ P } & \multicolumn{1}{c|}{ Increment } \\
\hline 1 & 9,435 & 78,358 & 68,923 \\
\hline 2 & 9,435 & 107,942 & 98,507 \\
\hline 3 & 9,435 & 116,410 & 106,975 \\
\hline 4 & 9,435 & 120,754 & 111,319 \\
\hline 5 & 9,435 & 120,754 & 111,319 \\
\hline
\end{tabular}

Table 106 Bugesera 2 Gashora Case 2
\begin{tabular}{|c|r|r|r|}
\hline Year & W/O P & W/ P & Increment \\
\hline 1 & 7,185 & 68,532 & 61,347 \\
\hline 2 & 7,185 & 92,808 & 85,623 \\
\hline 3 & 7,185 & 98,519 & 91,334 \\
\hline 4 & 7,185 & 101,830 & 94,645 \\
\hline 5 & 7,185 & 101,830 & 94,645 \\
\hline
\end{tabular}

Table 107 Bugesera 3 Case 1
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & W/ P & Increment \\
\hline 1 & 20,980 & \(-296,570\) & \(-317,550\) \\
\hline 2 & 20,980 & 398,217 & 377,237 \\
\hline 3 & 20,980 & 404,147 & 383,167 \\
\hline 4 & 20,980 & 404,147 & 383,167 \\
\hline 5 & 20,980 & 404,147 & 383,167 \\
\hline
\end{tabular}

Table 108 Bugesera 3 Case 2
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & \multicolumn{1}{|c|}{ W/ P } & \multicolumn{1}{|c|}{ Increment } \\
\hline 1 & 10,575 & 87,690 & 77,115 \\
\hline 2 & 10,575 & 120,793 & 110,218 \\
\hline 3 & 10,575 & 130,269 & 119,694 \\
\hline 4 & 10,575 & 135,128 & 124,553 \\
\hline 5 & 10,575 & 135,128 & 124,553 \\
\hline
\end{tabular}

Table 109 Bugesera 3 Case 3
\begin{tabular}{|c|r|r|r|}
\hline Year & W/O P & \multicolumn{1}{|c|}{ W/P } & Increment \\
\hline 1 & 8,029 & 76,573 & 68,544 \\
\hline 2 & 8,029 & 103,693 & 95,664 \\
\hline 3 & 8,029 & 110,072 & 102,043 \\
\hline 4 & 8,029 & 113,770 & 105,741 \\
\hline 5 & 8,029 & 113,770 & 105,741 \\
\hline
\end{tabular}

Table 117 Ngoma 22 Rurenge Case 2
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ Year } & W/O P & W/ P & Increment \\
\hline 1 & 49,568 & 233,674 & 184,106 \\
\hline 2 & 49,568 & 312,688 & 263,120 \\
\hline 3 & 49,568 & 333,832 & 284,264 \\
\hline 4 & 49,568 & 355,117 & 305,549 \\
\hline 5 & 49,568 & 355,117 & 305,549 \\
\hline
\end{tabular}

Table 112 Bugesera 4 Case 2
Table 112 Bugesera 4 Case 2
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & W/ P & Increment \\
\hline 1 & 15,472 & 147,428 & 131,956 \\
\hline 2 & 15,472 & 199,546 & 184,074 \\
\hline 3 & 15,472 & 211,800 & 196,328 \\
\hline 4 & 15,472 & 218,895 & 203,423 \\
\hline 5 & 15,472 & 218,895 & 203,423 \\
\hline
\end{tabular}
Table 118 Gatsibo 31 Rugarama Case 1
\begin{tabular}{|r|r|r|r|}
\hline Year & W/O P & W/P & \multicolumn{1}{|c|}{ Increment } \\
\hline 1 & 206 & \(-3,741\) & \(-3,947\) \\
\hline 2 & 206 & -359 & -565 \\
\hline 3 & 206 & 607 & 401 \\
\hline 4 & 206 & 1,079 & 873 \\
\hline 5 & 206 & 1,079 & 873 \\
\hline
\end{tabular}

Table 110 Bugesera 4 Case 1
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & \multicolumn{1}{c|}{ W/ P } & \multicolumn{1}{|c|}{ Increment } \\
\hline 1 & 10,112 & \(-143,309\) & \(-153,421\) \\
\hline 2 & 10,112 & 192,428 & 182,316 \\
\hline 3 & 10,112 & 195,293 & 185,181 \\
\hline 4 & 10,112 & 195,293 & 185,181 \\
\hline 5 & 10,112 & 195,293 & 185,181 \\
\hline
\end{tabular}

Table 111 Bugesera 4 Case 2
\begin{tabular}{|c|r|r|r|}
\hline Year & \multicolumn{1}{|c|}{ W/O P } & W/ P & Increment \\
\hline 1 & 20,521 & 188,939 & 168,418 \\
\hline 2 & 20,521 & 259,960 & 239,439 \\
\hline 3 & 20,521 & 280,078 & 259,557 \\
\hline 4 & 20,521 & 289,494 & 268,973 \\
\hline 5 & 20,521 & 289,494 & 268,973 \\
\hline
\end{tabular}

Table 119 Gatsibo 31 Rugarama Case 2
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ Year } & W/O P & W/ P & Increment \\
\hline 1 & 455 & 1,905 & 1,450 \\
\hline 2 & 455 & 3,005 & 2,550 \\
\hline 3 & 455 & 3,264 & 2,809 \\
\hline 4 & 455 & 3,308 & 2,853 \\
\hline 5 & 455 & 3,308 & 2,853 \\
\hline
\end{tabular}

\section*{12. Calculation of Finaicial Internal Rate of Return (FIRR)}

Table 122 FIRR (\%)
Table 122 FIRR (\%)
\begin{tabular}{|l|r|r|r|r|r|}
\hline & Bugesera2 & Bugesera3 & Bugesera4 & Ngoma 21 & Ngoma 22 \\
\hline Catsibo 31 \\
\hline Case 1 & \(16.4 \%\) & \(25.9 \%\) & \(12.9 \%\) & \(4.4 \%\) & \(22.5 \%\) \\
\hline \#DIV/O! \\
\hline Case 3 & \(9.5 \%\) & \(13.8 \%\) & \(17.2 \%\) & \(4.8 \%\) & \(16.9 \%\) \\
\#DIV/0! \\
\hline
\end{tabular}

Table 123 Bugesera 2 Gashora Flow of Cost and Benefit (Financial Price): Case 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Cost (000Rwf)}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Benefit } \\
\text { (000Rwf) } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Benefit -Cost } \\
(000 \mathrm{Rwf}) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{Present Value} & \multicolumn{2}{|l|}{Present Value} & \multirow[t]{2}{*}{Present Value} & \multicolumn{2}{|l|}{Present Value} \\
\hline & & & & & & & Discout Rate & 16.4\% & & Discout Rate & 12.0\% \\
\hline & Investment & O \& M & Total & & & & Cost & Benefit & & Cost & Benefit \\
\hline 1 & 1,559,292 & & 1,559,292 & -216,569 & -1,775,861 & 0.85929 & 1,339,883 & -186,095 & 0.89286 & 1,392,225 & -193,365 \\
\hline 2 & & 460 & 460 & 291,105 & 290,645 & 0.73838 & 340 & 214,946 & 0.79719 & 367 & 232,067 \\
\hline 3 & & 460 & 460 & 295,511 & 295,051 & 0.63448 & 292 & 187,496 & 0.71178 & 327 & 210,339 \\
\hline 4 & & 460 & 460 & 295,511 & 295,051 & 0.54520 & 251 & 161,114 & 0.63552 & 292 & 187,803 \\
\hline 5 & & 460 & 460 & 295,511 & 295,051 & 0.46849 & 216 & 138,443 & 0.56743 & 261 & 167,681 \\
\hline 6 & & 460 & 460 & 295,511 & 295,051 & 0.40257 & 185 & 118,963 & 0.50663 & 233 & 149,715 \\
\hline 7 & & 460 & 460 & 295,511 & 295,051 & 0.34592 & 159 & 102,223 & 0.45235 & 208 & 133,674 \\
\hline 8 & & 460 & 460 & 295,511 & 295,051 & 0.29725 & 137 & 87,840 & 0.40388 & 186 & 119,352 \\
\hline 9 & & 460 & 460 & 295,511 & 295,051 & 0.25542 & 117 & 75,480 & 0.36061 & 166 & 106,564 \\
\hline 10 & & 460 & 460 & 295,511 & 295,051 & 0.21948 & 101 & 64,859 & 0.32197 & 148 & 95,147 \\
\hline 11 & & 460 & 460 & 295,511 & 295,051 & 0.18860 & 87 & 55,733 & 0.28748 & 132 & 84,952 \\
\hline 12 & & 460 & 460 & 295,511 & 295,051 & 0.16206 & 75 & 47,890 & 0.25668 & 118 & 75,850 \\
\hline 13 & & 460 & 460 & 295,511 & 295,051 & 0.13926 & 64 & 41,152 & 0.22917 & 105 & 67,723 \\
\hline 14 & & 460 & 460 & 295,511 & 295,051 & 0.11966 & 55 & 35,361 & 0.20462 & 94 & 60,467 \\
\hline 15 & & 460 & 460 & 295,511 & 295,051 & 0.10282 & 47 & 30,386 & 0.18270 & 84 & 53,989 \\
\hline 16 & & 460 & 460 & 295,511 & 295,051 & 0.08836 & 41 & 26,110 & 0.16312 & 75 & 48,204 \\
\hline 17 & & 460 & 460 & 295,511 & 295,051 & 0.07592 & 35 & 22,436 & 0.14564 & 67 & 43,040 \\
\hline 18 & & 460 & 460 & 295,511 & 295,051 & 0.06524 & 30 & 19,279 & 0.13004 & 60 & 38,428 \\
\hline 19 & & 460 & 460 & 295,511 & 295,051 & 0.05606 & 26 & 16,566 & 0.11611 & 53 & 34,311 \\
\hline 20 & & 460 & 460 & 295,511 & 295,051 & 0.04817 & 22 & 14,235 & 0.10367 & 48 & 30,635 \\
\hline 21 & & 460 & 460 & 295,511 & 295,051 & 0.04139 & 19 & 12,232 & 0.09256 & 43 & 27,352 \\
\hline 22 & & 460 & 460 & 295,511 & 295,051 & 0.03557 & 16 & 10,511 & 0.08264 & 38 & 24,422 \\
\hline 23 & & 460 & 460 & 295,511 & 295,051 & 0.03056 & 14 & 9,032 & 0.07379 & 34 & 21,805 \\
\hline 24 & & 460 & 460 & 295,511 & 295,051 & 0.02626 & 12 & 7,761 & 0.06588 & 30 & 19,469 \\
\hline 25 & & 460 & 460 & 295,511 & 295,051 & 0.02257 & 10 & 6,669 & 0.05882 & 27 & 17,383 \\
\hline 26 & & 460 & 460 & 295,511 & 295,051 & 0.01939 & 9 & 5,731 & 0.05252 & 24 & 15,520 \\
\hline 27 & & 460 & 460 & 295,511 & 295,051 & 0.01666 & 8 & 4,924 & 0.04689 & 22 & 13,858 \\
\hline 28 & & 460 & 460 & 295,511 & 295,051 & 0.01432 & 7 & 4,231 & 0.04187 & 19 & 12,373 \\
\hline 29 & & 460 & 460 & 295,511 & 295,051 & 0.01230 & 6 & 3,636 & 0.03738 & 17 & 11,047 \\
\hline 30 & & 460 & 460 & 295,511 & 295,051 & 0.01057 & 5 & 3,124 & 0.03338 & 15 & 9,864 \\
\hline Total & 1,559,292 & 13,340 & 1,572,632 & & 6,776,212 & & 1,342,268 & 1,342,268 & & 1,395,520 & 1,919,669 \\
\hline & & & & & & & NPV = & 0 & & NPV = & 524,149 \\
\hline
\end{tabular}

\section*{Table 124 Bugesera 2 Gashora Flow of Cost and Benefit (Financial Price): Case 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Cost (000Rwf)}} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Benefit } \\
(000 \mathrm{Rwf}) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{Benefit -Cost (000Rwf)} & \multirow[t]{2}{*}{Present Value} & \multicolumn{2}{|l|}{Present Value} & \multirow[t]{2}{*}{Present Value} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Present Value}} \\
\hline & & & & & & & & & & & \\
\hline & Investment & O \& M & Total & & & & Cost & Benefit & & Cost & Benefit \\
\hline 1 & 1,318,182 & & 1,318,182 & 80,344 & -1,237,838 & 0.91362 & 1,204,319 & 73,404 & 0.89286 & 1,176,948 & 71,736 \\
\hline 2 & & 460 & 460 & 114,154 & 113,694 & 0.83470 & 384 & 95,285 & 0.79719 & 367 & 91,003 \\
\hline 3 & & 460 & 460 & 123,577 & 123,117 & 0.76260 & 351 & 94,240 & 0.71178 & 327 & 87,960 \\
\hline 4 & & 460 & 460 & 128,425 & 127,965 & 0.69673 & 320 & 89,478 & 0.63552 & 292 & 81,616 \\
\hline 5 & & 460 & 460 & 128,425 & 127,965 & 0.63655 & 293 & 81,749 & 0.56743 & 261 & 72,872 \\
\hline 6 & & 460 & 460 & 128,425 & 127,965 & 0.58156 & 268 & 74,687 & 0.50663 & 233 & 65,064 \\
\hline 7 & & 460 & 460 & 128,425 & 127,965 & 0.53133 & 244 & 68,236 & 0.45235 & 208 & 58,093 \\
\hline 8 & & 460 & 460 & 128,425 & 127,965 & 0.48543 & 223 & 62,342 & 0.40388 & 186 & 51,869 \\
\hline 9 & & 460 & 460 & 128,425 & 127,965 & 0.44350 & 204 & 56,957 & 0.36061 & 166 & 46,311 \\
\hline 10 & & 460 & 460 & 128,425 & 127,965 & 0.40519 & 186 & 52,037 & 0.32197 & 148 & 41,349 \\
\hline 11 & & 460 & 460 & 128,425 & 127,965 & 0.37019 & 170 & 47,542 & 0.28748 & 132 & 36,919 \\
\hline 12 & & 460 & 460 & 128,425 & 127,965 & 0.33822 & 156 & 43,435 & 0.25668 & 118 & 32,963 \\
\hline 13 & & 460 & 460 & 128,425 & 127,965 & 0.30900 & 142 & 39,684 & 0.22917 & 105 & 29,432 \\
\hline 14 & & 460 & 460 & 128,425 & 127,965 & 0.28231 & 130 & 36,256 & 0.20462 & 94 & 26,278 \\
\hline 15 & & 460 & 460 & 128,425 & 127,965 & 0.25792 & 119 & 33,124 & 0.18270 & 84 & 23,463 \\
\hline 16 & & 460 & 460 & 128,425 & 127,965 & 0.23565 & 108 & 30,263 & 0.16312 & 75 & 20,949 \\
\hline 17 & & 460 & 460 & 128,425 & 127,965 & 0.21529 & 99 & 27,649 & 0.14564 & 67 & 18,704 \\
\hline 18 & & 460 & 460 & 128,425 & 127,965 & 0.19669 & 90 & 25,260 & 0.13004 & 60 & 16,700 \\
\hline 19 & & 460 & 460 & 128,425 & 127,965 & 0.17970 & 83 & 23,078 & 0.11611 & 53 & 14,911 \\
\hline 20 & & 460 & 460 & 128,425 & 127,965 & 0.16418 & 76 & 21,085 & 0.10367 & 48 & 13,313 \\
\hline 21 & & 460 & 460 & 128,425 & 127,965 & 0.15000 & 69 & 19,264 & 0.09256 & 43 & 11,887 \\
\hline 22 & & 460 & 460 & 128,425 & 127,965 & 0.13704 & 63 & 17,600 & 0.08264 & 38 & 10,613 \\
\hline 23 & & 460 & 460 & 128,425 & 127,965 & 0.12521 & 58 & 16,079 & 0.07379 & 34 & 9,476 \\
\hline 24 & & 460 & 460 & 128,425 & 127,965 & 0.11439 & 53 & 14,691 & 0.06588 & 30 & 8,461 \\
\hline 25 & & 460 & 460 & 128,425 & 127,965 & 0.10451 & 48 & 13,422 & 0.05882 & 27 & 7,554 \\
\hline 26 & & 460 & 460 & 128,425 & 127,965 & 0.09548 & 44 & 12,262 & 0.05252 & 24 & 6,745 \\
\hline 27 & & 460 & 460 & 128,425 & 127,965 & 0.08723 & 40 & 11,203 & 0.04689 & 22 & 6,022 \\
\hline 28 & & 460 & 460 & 128,425 & 127,965 & 0.07970 & 37 & 10,235 & 0.04187 & 19 & 5,377 \\
\hline 29 & & 460 & 460 & 128,425 & 127,965 & 0.07281 & 33 & 9,351 & 0.03738 & 17 & 4,801 \\
\hline 30 & & 460 & 460 & 128,425 & 127,965 & 0.06653 & 31 & 8,543 & 0.03338 & 15 & 4,287 \\
\hline Total & 1,318,182 & 13,340 & 1,331,522 & & 2,454,028 & & 1,208,441 & 1,208,441 & & 1,180,243 & 976,730 \\
\hline & & & & & & & NPV = & 0 & & NPV = & -203,513 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{3}{|c|}{\multirow[b]{3}{*}{Cost (000Rwf)}} & \multirow[b]{3}{*}{\[
\begin{gathered}
\hline \text { Benefit } \\
\text { (000Rwf) } \\
\hline
\end{gathered}
\]} & \multirow[b]{3}{*}{\[
\begin{gathered}
\hline \text { Benefit -Cost } \\
\text { (000Rwf) } \\
\hline
\end{gathered}
\]} & \multirow[t]{3}{*}{Present Value} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\frac{7.7 \%}{\text { Present Value }}\)}} & \(\mathrm{B} / \mathrm{C}=\) & \multicolumn{2}{|l|}{0.71} \\
\hline & & & & & & & & & \multirow[t]{2}{*}{Present Value} & \multicolumn{2}{|l|}{Present Value} \\
\hline & & & & & & & Discout Rate & 7.7\% & & Discout Rate & 12.0\% \\
\hline & Investment & O \& M & Total & & & & Cost & Benefit & & Cost & Benefit \\
\hline 1 & 1,137,606 & & 1,137,606 & 64,210 & -1,073,397 & 0.92857 & 1,056,344 & 59,623 & 0.89286 & 1,015,720 & 57,330 \\
\hline 2 & & 460 & 460 & 85,563 & 85,103 & 0.86224 & 397 & 73,775 & 0.79719 & 367 & 68,210 \\
\hline 3 & & 460 & 460 & 91,404 & 90,944 & 0.80065 & 368 & 73,182 & 0.71178 & 327 & 65,060 \\
\hline 4 & & 460 & 460 & 94,956 & 94,496 & 0.74345 & 342 & 70,595 & 0.63552 & 292 & 60,346 \\
\hline 5 & & 460 & 460 & 94,956 & 94,496 & 0.69035 & 318 & 65,553 & 0.56743 & 261 & 53,881 \\
\hline 6 & & 460 & 460 & 94,956 & 94,496 & 0.64103 & 295 & 60,870 & 0.50663 & 233 & 48,108 \\
\hline 7 & & 460 & 460 & 94,956 & 94,496 & 0.59524 & 274 & 56,522 & 0.45235 & 208 & 42,953 \\
\hline 8 & & 460 & 460 & 94,956 & 94,496 & 0.55272 & 254 & 52,484 & 0.40388 & 186 & 38,351 \\
\hline 9 & & 460 & 460 & 94,956 & 94,496 & 0.51324 & 236 & 48,735 & 0.36061 & 166 & 34,242 \\
\hline 10 & & 460 & 460 & 94,956 & 94,496 & 0.47658 & 219 & 45,254 & 0.32197 & 148 & 30,573 \\
\hline 11 & & 460 & 460 & 94,956 & 94,496 & 0.44253 & 204 & 42,021 & 0.28748 & 132 & 27,298 \\
\hline 12 & & 460 & 460 & 94,956 & 94,496 & 0.41092 & 189 & 39,020 & 0.25668 & 118 & 24,373 \\
\hline 13 & & 460 & 460 & 94,956 & 94,496 & 0.38157 & 176 & 36,232 & 0.22917 & 105 & 21,762 \\
\hline 14 & & 460 & 460 & 94,956 & 94,496 & 0.35431 & 163 & 33,644 & 0.20462 & 94 & 19,430 \\
\hline 15 & & 460 & 460 & 94,956 & 94,496 & 0.32900 & 151 & 31,241 & 0.18270 & 84 & 17,348 \\
\hline 16 & & 460 & 460 & 94,956 & 94,496 & 0.30550 & 141 & 29,009 & 0.16312 & 75 & 15,489 \\
\hline 17 & & 460 & 460 & 94,956 & 94,496 & 0.28368 & 130 & 26,937 & 0.14564 & 67 & 13,830 \\
\hline 18 & & 460 & 460 & 94,956 & 94,496 & 0.26342 & 121 & 25,013 & 0.13004 & 60 & 12,348 \\
\hline 19 & & 460 & 460 & 94,956 & 94,496 & 0.24460 & 113 & 23,226 & 0.11611 & 53 & 11,025 \\
\hline 20 & & 460 & 460 & 94,956 & 94,496 & 0.22713 & 104 & 21,567 & 0.10367 & 48 & 9,844 \\
\hline 21 & & 460 & 460 & 94,956 & 94,496 & 0.21090 & 97 & 20,026 & 0.09256 & 43 & 8,789 \\
\hline 22 & & 460 & 460 & 94,956 & 94,496 & 0.19584 & 90 & 18,596 & 0.08264 & 38 & 7,847 \\
\hline 23 & & 460 & 460 & 94,956 & 94,496 & 0.18185 & 84 & 17,268 & 0.07379 & 34 & 7,007 \\
\hline 24 & & 460 & 460 & 94,956 & 94,496 & 0.16886 & 78 & 16,034 & 0.06588 & 30 & 6,256 \\
\hline 25 & & 460 & 460 & 94,956 & 94,496 & 0.15680 & 72 & 14,889 & 0.05882 & 27 & 5,586 \\
\hline 26 & & 460 & 460 & 94,956 & 94,496 & 0.14560 & 67 & 13,825 & 0.05252 & 24 & 4,987 \\
\hline 27 & & 460 & 460 & 94,956 & 94,496 & 0.13520 & 62 & 12,838 & 0.04689 & 22 & 4,453 \\
\hline 28 & & 460 & 460 & 94,956 & 94,496 & 0.12554 & 58 & 11,921 & 0.04187 & 19 & 3,976 \\
\hline 29 & & 460 & 460 & 94,956 & 94,496 & 0.11657 & 54 & 11,069 & 0.03738 & 17 & 3,550 \\
\hline 30 & & 460 & 460 & 94,956 & 94,496 & 0.10824 & 50 & 10,278 & 0.03338 & 15 & 3,169 \\
\hline Total & 1,137,606 & 13,340 & 1,150,946 & & 1,654,048 & & 1,061,249 & 1,061,249 & & 1,019,014 & 727,420 \\
\hline
\end{tabular}
13. Calculation of Economic Internal Rate of Return (EIRR)

Table 128 EIRR (\%)
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline & Bugesera2 & Bugesera3 & Bugesera4 & Ngoma 21 & Ngoma 22 & Gatsibo 31 \\
\hline Case 1 & \(15.4 \%\) & \(24.3 \%\) & \(12.0 \%\) & \(4.8 \%\) & \(23.8 \%\) & \#DVVO! \\
\hline Case 2 & \(8.6 \%\) & \(12.6 \%\) & \(15.9 \%\) & \(4.4 \%\) & \(18.2 \%\) & \#DIV/0! \\
\hline Case 3 & \(8.4 \%\) & \(12.1 \%\) & \(13.8 \%\) & \(4.8 \%\) & & \\
\hline
\end{tabular}

Table 127 E-B/C
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline & Bugesera2 & Bugesera3 & Bugesera4 & Ngoma 21 & Ngoma 22 & Gatsibo 31 \\
\hline Case 1 & 1.29 & 2.20 & 1.00 & 0.45 & 2.10 & 0.002 \\
\hline Case 2 & 0.77 & 1.04 & 1.27 & 0.51 & 1.44 & 0.04 \\
\hline Case 3 & 0.76 & 1.01 & 1.13 & 0.53 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & & & & & & EIRR = & \multicolumn{2}{|l|}{15.4\%} & \(B / C=\) & \multicolumn{2}{|l|}{1.29} \\
\hline & \multicolumn{3}{|c|}{Cost (000Rwf)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Benefit } \\
(000 \mathrm{Rwf}) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{Benefit -Cost (000Rwf)} & Present & \multicolumn{2}{|l|}{Present Value} & \multirow[t]{2}{*}{Present Value} & \multicolumn{2}{|l|}{Present Value} \\
\hline & & & & & & & Discout Rate & 15.4\% & & Discout Rate & 12.0\% \\
\hline & Investment & O \& M & Total & Total & & & Cost & Benefit & & Cost & Benefit \\
\hline 1 & 1,454,417 & & 1,454,417 & -217,353 & -1,671,770 & 0.86661 & 1,260,410 & -188,360 & 0.89286 & 1,298,587 & -194,065 \\
\hline 2 & & 344 & 344 & 258,274 & 257,930 & 0.75101 & 258 & 193,966 & 0.79719 & 274 & 205,894 \\
\hline 3 & & 344 & 344 & 262,333 & 261,989 & 0.65083 & 224 & 170,735 & 0.71178 & 245 & 186,723 \\
\hline 4 & & 344 & 344 & 262,333 & 261,989 & 0.56402 & 194 & 147,960 & 0.63552 & 219 & 166,717 \\
\hline 5 & & 344 & 344 & 262,333 & 261,989 & 0.48878 & 168 & 128,223 & 0.56743 & 195 & 148,855 \\
\hline 6 & & 344 & 344 & 262,333 & 261,989 & 0.42358 & 146 & 111,119 & 0.50663 & 174 & 132,906 \\
\hline 7 & & 344 & 344 & 262,333 & 261,989 & 0.36708 & 126 & 96,297 & 0.45235 & 156 & 118,666 \\
\hline 8 & & 344 & 344 & 262,333 & 261,989 & 0.31811 & 109 & 83,452 & 0.40388 & 139 & 105,952 \\
\hline 9 & & 344 & 344 & 262,333 & 261,989 & 0.27568 & 95 & 72,320 & 0.36061 & 124 & 94,600 \\
\hline 10 & & 344 & 344 & 262,333 & 261,989 & 0.23891 & 82 & 62,673 & 0.32197 & 111 & 84,464 \\
\hline 11 & & 344 & 344 & 262,333 & 261,989 & 0.20704 & 71 & 54,313 & 0.28748 & 99 & 75,414 \\
\hline 12 & & 344 & 344 & 262,333 & 261,989 & 0.17942 & 62 & 47,068 & 0.25668 & 88 & 67,334 \\
\hline 13 & & 344 & 344 & 262,333 & 261,989 & 0.15549 & 53 & 40,790 & 0.22917 & 79 & 60,120 \\
\hline 14 & & 344 & 344 & 262,333 & 261,989 & 0.13475 & 46 & 35,349 & 0.20462 & 70 & 53,679 \\
\hline 15 & & 344 & 344 & 262,333 & 261,989 & 0.11677 & 40 & 30,633 & 0.18270 & 63 & 47,927 \\
\hline 16 & & 344 & 344 & 262,333 & 261,989 & 0.10120 & 35 & 26,547 & 0.16312 & 56 & 42,792 \\
\hline 17 & & 344 & 344 & 262,333 & 261,989 & 0.08770 & 30 & 23,006 & 0.14564 & 50 & 38,207 \\
\hline 18 & & 344 & 344 & 262,333 & 261,989 & 0.07600 & 26 & 19,937 & 0.13004 & 45 & 34,114 \\
\hline 19 & & 344 & 344 & 262,333 & 261,989 & 0.06586 & 23 & 17,278 & 0.11611 & 40 & 30,459 \\
\hline 20 & & 344 & 344 & 262,333 & 261,989 & 0.05708 & 20 & 14,973 & 0.10367 & 36 & 27,195 \\
\hline 21 & & 344 & 344 & 262,333 & 261,989 & 0.04946 & 17 & 12,976 & 0.09256 & 32 & 24,281 \\
\hline 22 & & 344 & 344 & 262,333 & 261,989 & 0.04287 & 15 & 11,245 & 0.08264 & 28 & 21,680 \\
\hline 23 & & 344 & 344 & 262,333 & 261,989 & 0.03715 & 13 & 9,745 & 0.07379 & 25 & 19,357 \\
\hline 24 & & 344 & 344 & 262,333 & 261,989 & 0.03219 & 11 & 8,445 & 0.06588 & 23 & 17,283 \\
\hline 25 & & 344 & 344 & 262,333 & 261,989 & 0.02790 & 10 & 7,319 & 0.05882 & 20 & 15,431 \\
\hline 26 & & 344 & 344 & 262,333 & 261,989 & 0.02418 & 8 & 6,342 & 0.05252 & 18 & 13,778 \\
\hline 27 & & 344 & 344 & 262,333 & 261,989 & 0.02095 & 7 & 5,496 & 0.04689 & 16 & 12,302 \\
\hline 28 & & 344 & 344 & 262,333 & 261,989 & 0.01816 & 6 & 4,763 & 0.04187 & 14 & 10,984 \\
\hline 29 & & 344 & 344 & 262,333 & 261,989 & 0.01573 & 5 & 4,128 & 0.03738 & 13 & 9,807 \\
\hline 30 & & 344 & 344 & 262,333 & 261,989 & 0.01364 & 5 & 3,577 & 0.03338 & 11 & 8,756 \\
\hline Total & 1,454,417 & 9,976 & 1,464,393 & & 5,921,852 & & 1,262,316 & 1,262,316 & & 1,301,050 & 1,681,614 \\
\hline
\end{tabular}

Table 130 Bugesera 2 Gashora Flow of Cost and Benefit (Economic Price): Case 2

Table 131 Bugesera 2 Gashora Flow of Cost and Benefit (Economic Price): Case 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Benefit } \\
(000 \mathrm{Rwf}) \\
\hline
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline \text { Benefit -Cost } \\
\text { (000Rwf) } \\
\hline
\end{gathered}
\]} & \multirow[t]{3}{*}{Present Value} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Present Value}} & \multicolumn{3}{|l|}{\(\mathrm{B} / \mathrm{C}=10.76\)} \\
\hline \multirow[t]{2}{*}{Year} & \multicolumn{3}{|c|}{Cost (000Rwf)} & & & & & & \multirow[t]{2}{*}{Present Value} & \multicolumn{2}{|l|}{Present Value} \\
\hline & & & & & & & Discout Rate & 8.4\% & & Discout Rate & 12.0\% \\
\hline & & & & & & & Cost & Benefit & & Cost & Benefit \\
\hline 1 & 1,062,417 & & 1,062,417 & 61,347 & -1,001,070 & 0.92231 & 979,874 & 56,580 & 0.89286 & 948,587 & 54,774 \\
\hline 2 & & 344 & 344 & 85,623 & 85,279 & 0.85065 & 293 & 72,835 & 0.79719 & 274 & 68,258 \\
\hline 3 & & 344 & 344 & 91,334 & 90,990 & 0.78456 & 270 & 71,657 & 0.71178 & 245 & 65,010 \\
\hline 4 & & 344 & 344 & 94,645 & 94,301 & 0.72360 & 249 & 68,486 & 0.63552 & 219 & 60,149 \\
\hline 5 & & 344 & 344 & 94,645 & 94,301 & 0.66738 & 230 & 63,165 & 0.56743 & 195 & 53,704 \\
\hline 6 & & 344 & 344 & 94,645 & 94,301 & 0.61553 & 212 & 58,257 & 0.50663 & 174 & 47,950 \\
\hline 7 & & 344 & 344 & 94,645 & 94,301 & 0.56771 & 195 & 53,731 & 0.45235 & 156 & 42,813 \\
\hline 8 & & 344 & 344 & 94,645 & 94,301 & 0.52360 & 180 & 49,556 & 0.40388 & 139 & 38,226 \\
\hline 9 & & 344 & 344 & 94,645 & 94,301 & 0.48292 & 166 & 45,706 & 0.36061 & 124 & 34,130 \\
\hline 10 & & 344 & 344 & 94,645 & 94,301 & 0.44540 & 153 & 42,155 & 0.32197 & 111 & 30,473 \\
\hline 11 & & 344 & 344 & 94,645 & 94,301 & 0.41080 & 141 & 38,880 & 0.28748 & 99 & 27,208 \\
\hline 12 & & 344 & 344 & 94,645 & 94,301 & 0.37888 & 130 & 35,859 & 0.25668 & 88 & 24,293 \\
\hline 13 & & 344 & 344 & 94,645 & 94,301 & 0.34944 & 120 & 33,073 & 0.22917 & 79 & 21,690 \\
\hline 14 & & 344 & 344 & 94,645 & 94,301 & 0.32229 & 111 & 30,504 & 0.20462 & 70 & 19,366 \\
\hline 15 & & 344 & 344 & 94,645 & 94,301 & 0.29725 & 102 & 28,134 & 0.18270 & 63 & 17,291 \\
\hline 16 & & 344 & 344 & 94,645 & 94,301 & 0.27416 & 94 & 25,948 & 0.16312 & 56 & 15,439 \\
\hline 17 & & 344 & 344 & 94,645 & 94,301 & 0.25286 & 87 & 23,932 & 0.14564 & 50 & 13,785 \\
\hline 18 & & 344 & 344 & 94,645 & 94,301 & 0.23321 & 80 & 22,073 & 0.13004 & 45 & 12,308 \\
\hline 19 & & 344 & 344 & 94,645 & 94,301 & 0.21509 & 74 & 20,358 & 0.11611 & 40 & 10,989 \\
\hline 20 & & 344 & 344 & 94,645 & 94,301 & 0.19838 & 68 & 18,776 & 0.10367 & 36 & 9,812 \\
\hline 21 & & 344 & 344 & 94,645 & 94,301 & 0.18297 & 63 & 17,317 & 0.09256 & 32 & 8,760 \\
\hline 22 & & 344 & 344 & 94,645 & 94,301 & 0.16875 & 58 & 15,972 & 0.08264 & 28 & 7,822 \\
\hline 23 & & 344 & 344 & 94,645 & 94,301 & 0.15564 & 54 & 14,731 & 0.07379 & 25 & 6,984 \\
\hline 24 & & 344 & 344 & 94,645 & 94,301 & 0.14355 & 49 & 13,586 & 0.06588 & 23 & 6,235 \\
\hline 25 & & 344 & 344 & 94,645 & 94,301 & 0.13240 & 46 & 12,531 & 0.05882 & 20 & 5,567 \\
\hline 26 & & 344 & 344 & 94,645 & 94,301 & 0.12211 & 42 & 11,557 & 0.05252 & 18 & 4,971 \\
\hline 27 & & 344 & 344 & 94,645 & 94,301 & 0.11262 & 39 & 10,659 & 0.04689 & 16 & 4,438 \\
\hline 28 & & 344 & 344 & 94,645 & 94,301 & 0.10387 & 36 & 9,831 & 0.04187 & 14 & 3,963 \\
\hline 29 & & 344 & 344 & 94,645 & 94,301 & 0.09580 & 33 & 9,067 & 0.03738 & 13 & 3,538 \\
\hline 30 & & 344 & 344 & 94,645 & 94,301 & 0.08836 & 30 & 8,363 & 0.03338 & 11 & 3,159 \\
\hline Total & 1,062,417 & 9,976 & 1,072,393 & & 1,721,334 & & 983,279 & 983,279 & & 951,050 & 723,105 \\
\hline
\end{tabular}

\section*{9．調達事情}

1．ボーリング業者
（1）Foraky Africa Rwanda
Mr．Patrick Carpentier
Director General 250－（0）－78－8301304
最近までルワンダで唯一のボーリング調査会社であった。日本の援助による地下水開発プロジェ クトを始め，ダム，道路，橋梁，建築の基礎地盤調査の経験がある。
（2）Africa Drilling \＆Exploration Ltd．
Mr．Jyothi Basu
General Manager
Phone：250－（0）78－8309495
Aderwanda2008＠gmail．com
ルワンダでは2007年に設立されたが，インド，ザンビアで 15 年以上の経験がある。
18 年の経験がある技術者と数人のスタッフを擁する。
2007 年以来民間会社及び NGO 発注による井戸掘削及び地質調査業務を行なっている。
（3）Planning the Future Company
Mr．J．Bosco NTUNZWENIMANA
General Manager
Phone：＋257－29－559520，＋257－77740527
jbntunzwe＠yahoo．fr
ブルンジの業者
（4）GEOSCIENCES\＆CIVIL ENGINEERING
Mr．Didi Didace
Managing Director
Phone：＋257－24－7655，＋257－79932018
didaced＠yahoo．fr
ブルンジの業者
（5）MIDROC FOUNDATION Specialist Pvt Ltd
Mr．Achim Braun，
General Manager，
Mobile Phone：＋251－911－200327
Fax：＋251－11－4402703
e－mail：midrocfoundation＠ethionet．et
エチオピアのボーリング会社のケニヤ支店。東アフリカ全般でボーイング調査業務の経験がある。
（6）B．P．C．\＆Engineering Services Ltd
Building，Civil，Geotech \＆Engineering Services
Mr．G．K．Wambugu
Director
Mobile Phone：＋254－734139348
e－mail：bpcontractors＠yahoo．com
ケニヤのボーリング業者で，ケニヤ，スーダン等で日本の援助プロジェクトの経験がある。
2．測量業者
（1）BEEGL s．a．r．l．
Mr．Innocent Ntiruhongerwa
Director of Administration and Finance

P．O．Box 6686．Kigali，Rwanda
Tel：（250）（0）78－8308875
Fax：（250） 584947
E－mail：beegl＠beegl．com
1997年設立
20 年以上の経験のある技術者 3 人を含む 9 人の職員を擁する。
主な受注先は MINICOFIN，MINAGRI，民間企業で，パイプライン，道路，宅地造成等の測量業務 を行なっている。
（2）GIS－TECH CONSULTANTS SARL
Mr．Rono Kiplangat
Operations Manager
P．O．Box 3521，Kigali，Rwanda
Tel：（250）（0）78－8548638
E－mail：ronohchep＠gmail．com，gistechsarl＠gmail．com
2006 年設立。3人の技術者を含む 7 人の職員を擁する。民間及び郡の測量，GIS データベース作成業務等に従事。
（3）Geoinfo Africa
Mr．Tonui K．Jackson
Director
P．O．Box 1804，Kigali，Rwanda
Tel：（250）078－830－8853，
E－mail：tonuijk＠geoinfo－africa．com
ウガンダでの日本による援助プロジェクトに従事した経験のある技術者を含む5 人の技術者を擁する。

\section*{3．土質試験}
（1）Soil Mechanics and Geotechnical Engineering Laboratory，Kigali Institute of Technology and Science
Mr．Berin Kabayiza
Laboratory Technician
Tel：078－8517636
（2）National University of Rwanda
P．O．Box 56，Butare Rwanda
Tel：（250） 252530122
E－mail：info＠nur．ac．rw
（3）Foraky Africa
前述ボーリング業者。室内試験は外注。
（4）Africa Drilling \＆Exploration Ltd．
前述ボーリング業者。室内試験は外注。
4．水質試験
（1）Faculty of Science，Laboratory of Water Analysis，National University of Rwanda
Mr．Mardochee Birori
Chief of laboratory
Tel：078－8599447
E－mail：fs－dean＠nur．ac．rw

国立ルワンダ大学キガリ分室
（2）ELECTROGAZ
P．O．Box 537，Kigali
Mr．J．Pierre Nkeramihigo
Chef d＇Usine de traitement d＇eau de kimisagara－Kigali
Tel：078－8306897
E－mail：elgz＠rwanda1．com，jpnkeramihigo＠electrogaz．co．rw
ルワンダのすべての電気•水道事業を行なっており，給水関係で，水質試験の実績は豊富である。

\section*{5．建設業者}
（1）Tohomas \＆Piron
P．O．Box 6589，Kigali，Rwanda
Ms．Coralie Piron
Gerante
Tel：（250） 518501
E－mail：coraliepiron＠tpintl．net
ベルギーの大手建設会社のルワンダ支店。
ルワンダでは 350 人の職員を擁する。主に建築工事を受注しているが，土木工事も行なう。
（3）ROKO Constuction
P．O．Box 323，Kigali，Rwanda
Mr．Nigel Done
Operations Manager
Tel：078－8307005
E－mail：rokomanager＠rwanda1．com
1969年ウガンダで設立，ルワンダでは2001年設立。ルワンダでは主に建築工事を受注している。 ウガンダ本社にはダム建設エンジニアがおり，ダム工事にはウガンダ本社から技術者を連れてく る。
（4）STRABAG international GmbH
P．O．Box 4832，Kigali，Rwanda
Mr．Karl－Heinz Schneider
Commercial Manager
Tel：（250） 55102804
E－mail：strabag＠rwanda1．com
オーストリアに本社を置く大手建設会社で，ヨーロッパにおいては建築，道路，橋梁，港湾等の工事を受注。ルワンダでは道路工事を多く請け負っている。
（5）Fair Construction
P．O．Box 3109，Kigali，Rwanda
Mr．Joseph Mugisha
Chairman
Tel：078－8300080
E－mail：fair＠fairconstruction．co．rw
（6）Enterprize de Construction Mubuligi Paul
P．O．Box 1127，Kigali，Rwanda
Mr．Paul Mubiligi
Director
Tel：078－8300211
E－mail：paulmub＠yahoo．fr
1984 年設立。道路，建築，水道施設，ダム等の工事を請け負つており，RSSPプロジェクトの ダム建設を受注するなど，いくつかのダム建設の経験がある。
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{April 2009 Price List} & & & & \\
\hline No. & DESCRIPTION & UNIT & Price & Currency & remark \\
\hline & [Labor] & & & RWF & \\
\hline 1 & Administrator & day & 40,000 & & Rwandatel \\
\hline 2 & Asst. Administrator & day & 30,000 & & Rwandatel \\
\hline 3 & Accountant & day & 23,300 & & Thomas \&Pirron Rwandatel and BRALIRWA \\
\hline 4 & Typist & day & 8,300 & & Thomas \&Pirron Rwandatel
and BRALIRWA \\
\hline 5 & Civil Engineer (senior) & day & 28,300 & & Thomas \&Pirron, Rwandatel
and BRALIRWA \\
\hline 6 & Civil Engineer & day & 23,300 & & Thomas \&Pirron, Rwandatel and BRALIRWA \\
\hline 7 & Asst. Eng ineer & day & 15,000 & & Thomas \&Pir ron, Rwandatel
and BRALIRWA \\
\hline 8 & Mechanic Engineer (senior) & day & 20,000 & & Thomas \&Pirron, Rwandatel and BRALIRWA \\
\hline 9 & Mechanic Engineer & day & 15,000 & & Thomas \&Pirron, Rwandatel and BRALIRWA \\
\hline 10 & Asst. Mechanic & day & 6,500 & & Thomas \&Pir ron, Rwandatel
and BRAL IRWA \\
\hline 11 & Electric Engineer (senior) & day & 20,000 & & Thomas \&Pirron, Rwandatel and BRAL IRWA \\
\hline 12 & Electric Engineer & day & 15,000 & & Thomas \&Pirron, Rwandatel
and BRALIRWA \\
\hline 13 & Asst. Electric & day & 6,500 & & Thomas \&Pirron, Rwandatel
and BRALIRWA \\
\hline 14 & Technician & day & 6,000 & & Thomas \&Pir ron, Rwandatel
and BRAL IRWA \\
\hline 15 & Surveyor & day & 6,500 & & Average of payment in Rwanda \\
\hline 16 & Store keeper & day & 4,000 & & Average of payment in Rwanda \\
\hline 17 & Office boy & day & 1,000 & & Average of payment in Rwanda \\
\hline 18 & Chief Security & day & 3,000 & & Average of payment in Rwanda \\
\hline 19 & Security & day & 1,500 & & Average of payment in Rwanda \\
\hline 20 & Cook & day & 2,000 & & Average of payment in Rwanda \\
\hline 21 & Cook helper & day & 500 & & Average of payment in Rwanda \\
\hline 22 & Houseboy & day & 1,000 & & Average of payment in Rwanda \\
\hline 23 & General Foreman & day & 10,000 & & Average of payment in Rwanda \\
\hline 24 & Foreman & day & 7,000 & & Average of payment in Rwanda \\
\hline 25 & Carpenter & day & 6,500 & & Average of payment in Rwanda \\
\hline 26 & Bar bender & day & 6,500 & & Average of payment in Rwanda \\
\hline 27 & Welder (qualified) & day & 6,500 & & Average of payment in Rwanda \\
\hline 28 & Welder & day & 5,000 & & Average of payment in Rwanda \\
\hline 29 & Welder helper & day & 3,000 & & Average of payment in Rwanda \\
\hline 30 & Concrete worker & day & 5,000 & & Average of payment in Rwanda \\
\hline 31 & Rigger (slinger) & day & 5,000 & & Average of payment in Rwanda \\
\hline 32 & Mason & day & 4,000 & & Average of payment in Rwanda \\
\hline 33 & Skilled Labor (senior) & day & 6,000 & & Average of payment in Rwanda \\
\hline 34 & Skilled Labor & day & 5,000 & & Average of payment in Rwanda \\
\hline 35 & Labor & day & 3,000 & & Average of payment in Rwanda \\
\hline 36 & Operator (heavy) & day & 12,000 & & Rwandatel \\
\hline 37 & Operator & day & 10,000 & & Rwandate I \\
\hline 38 & Driver (heavy) & day & 10,000 & & Rwandatel \\
\hline 39 & Driver & day & 6,500 & & Rwandatel \\
\hline 40 & Electrician & day & 6,500 & & Rwandatel \\
\hline 41 & Mechanic & day & 6,500 & & Rwandatel \\
\hline & & & & & \\
\hline & [Rental Equipment] & & & RWF & \\
\hline \multirow[t]{3}{*}{} & Buldozer & & & & \\
\hline & Weight 21 ton class & day & 450, 000 & & Fair construction \\
\hline & Weight 15 ton class & day & 350, 000 & & Fair construction \\
\hline & Weight 6 ton class & day & 150,000 & & Fair construction \\
\hline 52 & Backhoe Bucket capacity 0.6m3 & day & 350, 000 & & \\
\hline & Bucket capacity 1. 0 m 3 & day & 450,000 & & \\
\hline 53 & Dump Truck 11 ton & day & 150,000 & & Fair construction \\
\hline & 8 ton & day & 120,000 & & Fair construction \\
\hline & 4 ton & day & 80,000 & & Fair construction \\
\hline 54 & Truck Crane & day & & & \\
\hline & Lifting capacity 20 ton class & day & 640,000 & & Euro corp \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & DESCRIPTION & UNIT & Price & Currency & remark \\
\hline 113 & stand fan & Unit & 69, 700 & & Nakumat \\
\hline 114 & Desk large & Unit & 190, 000 & & Nakumat \\
\hline 115 & Chair large & Unit & 95,000 & & Nakumat \\
\hline & small & Unit & 84, 000 & & Nakumat \\
\hline 116 & Sofa set for living & Unit & 600, 000 & & Nakumat \\
\hline & for office & Unit & 1,560, 000 & & Nakumat \\
\hline 117 & Kitchen table for 6 men & Unit & 800, 000 & & Nakumat \\
\hline 118 & Bed wooden & Unit & 220,000 & & Nakumat \\
\hline 119 & Mattress & Unit & 94, 000 & & Nakumat \\
\hline 120 & Water pot & Unit & 6,760 & & Nakumat \\
\hline 121 & Toaster & Unit & 27,900 & & Nakumat \\
\hline 122 & Clock & Unit & 8,000 & & Nakumat \\
\hline & & & & & \\
\hline & [Utilities/others] & & & RWF & \\
\hline 130 & Tel to Tokyo 1st 3 min . & min & 525 & & Rwandatel \\
\hline & every 1 min . & min & 525 & & Rwandatel \\
\hline 131 & Fax to Tokyo 1st 1 min. & min & 525 & & Rwandatel \\
\hline 132 & Telephone installation & Unit & 30,000 & & Rwandatel \\
\hline & fixed charge & Unit & 30 & & Rwandatel \\
\hline 133 & Taxi rental fee & hour & 40,000 & & Average in Rwanda \\
\hline & long period & day & 35,000 & & Average in Rwanda \\
\hline 134 & Jeep rental fee long period & day & 70,000 & & Average in Rwanda \\
\hline 135 & Hotel & night & 45, 000 & & Average in Rwanda \\
\hline 136 & Rental house 2 bedrooms L. D. & mth & 200, 000 & & Average in Rwanda \\
\hline 137 & Electric power & kwh & 132 & & Electrogaz \\
\hline 138 & Water fee & m3 & 240 & & Electrogaz \\
\hline & & & & & \\
\hline & [General Temporary Works & & & RWF & \\
\hline & Temporary Buildings] & & & & \\
\hline 140 & Site Office (by Concrete Block) & m2 & 5,000 & & Average in Rwanda \\
\hline 141 & Site Office (by Wooden) & m2 & 2,000 & & Average in Rwanda \\
\hline 142 & Site Office (by Local Made Brick) & m2 & 800 & & Average in Rwanda \\
\hline 143 & Unit House (Rental) \(4 \times 8 \mathrm{yd}\) & mth & 400, 000 & & Average in Rwanda \\
\hline 144 & Unit House (Rental) \(4 \times 6 \mathrm{yd}\) & mth & 300, 000 & & Average in Rwanda \\
\hline 145 & Unit House (Rental) \(4 \times 10\) yd & mth & 600, 000 & & Average in Rwanda \\
\hline 146 & Warehouse (Material Stock/by Block) & m2 & 3,000 & & Average in Rwanda \\
\hline 147 & Warehouse (Material Stock/by Wooden) & m2 & 1,500 & & Average in Rwanda \\
\hline & & & & & \\
\hline & [Safety Facility] & & & & \\
\hline 150 & Safety Rope (16mm /100M) & Rod & 55,000 & & Nakumat \\
\hline 151 & Rain Coat & EA & 12,600 & & Nakumat \\
\hline & & & & & \\
\hline
\end{tabular}```

